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Abstract

The use of a chemometric method, partial least squares (PLS) regression and the infrared 
technique, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was 
developed for the quantification of minerals in synthetic mixtures and sandstone rocks. 
Particular emphasis was directed towards quantifying swelling clays since the proportion 
of swelling minerals present in a reservoir rock influence the composition of fluids 
injected into the rock to enhance oil recovery.

In the first study, the capability of PLS with DRIFTS was demonstrated when low 
quantities of swelling mineral, smectite, were determined in synthetic mixtures with the 
non-swelling mineral, kaolinite, and an additional mineral, calcite. A substantial 
improvement in the detection limit of smectite was found using this method since lower 
quantities could be determined (with a maximum error of 3.8 wt%) than had been 
determined by previous workers using a peak fitting technique.

An initial investigation of seven different types of sandstone rocks was carried out by 
visual inspection of XRD traces of powder and rock samples. In this work mineralogical 
heterogeneity was fotmd along the length of the different sandstone cores investigated. 
Ideally a representative sample would be one collected from a of ball milled sample of a 
large portion of a core.

The main programme of research was the development of a PLS model consisting of 
eleven mineral components, to resemble the composition of a real sandstone. This PLS 
model was used for the quantification of components in synthetic mineral mixtures using 
their DRIFTS spectra. The maximum error for predicting all the components was ±2.8 
wt%. This was in the same order as errors reported by other workers for quantification of 
minerals using XRD.

The same PLS model was used to quantify components in seven different types of 
sandstone and the results have been compared wilh studies by independent investigators 
using different techniques. The PLS model predicted components in the sandstones 
which contained relatively high concentrations of feldspars and clays, accurately, with all 
components predicted within ±2.8 wt%. PLS model was optimized in order to obtain 
more accurate quantification of components in the sandstones, in particular for the 
“cleaner” sandstones, i.e. those which contained low concentrations of feldspars and 
clays. Some improvement in accuracy was found. The PLS model developed in this 
thesis, however, was most accurate for prediction of components in sandstones which 
contained higher concentrations of feldspars and clays.
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1. Introduction

1.1 Aims and Objectives

The research in this PhD thesis has been undertaken in collaboration with Schlumberger 

Cambridge Research (SCR) and involved a study of sandstone heterogeneity, and the use 

of a chemometric method, partial least squares (PLS) and the infrared technique, diffuse 

reflectance infrared spectroscopy (DRIFTS), for the quantification of minerals present in 

sandstone rocks.

Reservoir rocks have been traditionally studied and quantified using the X-ray diffraction 

(XRD) technique. Although XRD was used in the research included in this thesis to 

visually detect mineralogical variations within a sandstone core and also to confirm the 

purity of components, it was not used for quantification purposes. The main technique 

used in this thesis was diffuse reflectance Fourier transform infrared spectroscopy 

(DRIFTS). Partial least squares regression, a program of mathematical calculations, was 

used with the DRIFTS spectra to quantify mineral components present in a sample. 

DRIFTS was used since it is a fast and relatively inexpensive technique compared to 

XRD.

In the first study, the capability of PLS with DRIFTS was demonstrated when low 

quantities of swelling mineral, smectite, were determined in synthetic mixtures with the 

non-swelling mineral, kaolinite. Industrially this is important since the presence of clays 

with different surface areas can cause problems in the coatings industry and also for 

reservoir rock analysis in the oil industry. The proportion of swelling minerals present in 

a reservoir rock would influence the composition of treatment fluid injected into the rock 

to enhance oil recovery.

An initial investigation of seven different types of sandstone rocks has been carried out 

by visual inspection of XRD traces of powder and rock samples. The aim of this work 

was to investigate the gross mineralogical heterogeneity along the length of the different 

sandstones and to determine a representative sample size.
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The main programme of research has been the development of a PLS model consisting of 

eleven mineral components, chosen to resemble the composition of a real sandstone.

This PLS model was used for the quantification of components in synthetic mineral 

mixtures using their DRIFTS spectra. The same PLS model has been used to quantify 

components in seven different types of sandstone and the results have been compared to 

studies by independent investigators using different techniques. The objective of further 

optimisation of the PLS model was to obtain more accurate quantification of components 

in the sandstones, in particular for the “cleaned’ sandstones, i.e. those which contained 

low concentrations of feldspars and clays.

1.2 The Importance of Surface Mineralogy

This project quantitatively investigated the bulk mineralogy of sandstone rocks and their 

heterogeneity with a view to quantitatively determining the mineralogy on the surface of 

pores in oil-bearing rocks.

It is important to increase knowledge of reservoir rock mineralogy and in particular pore 

surface mineralogy since the presence of clay minerals in a sandstone reservoir rock can 

significantly affect fluid flow, cation-exchange capacity, adsorption characteristics and 

swelling behaviour. Clay minerals lining the pores can greatly reduce the permeability of 

the rock by blocking the pore throats. In the oil industry, treatment fluids are pumped 

into reservoir rocks to increase well productivity and interactions of this treatment fluid 

with swelling minerals on the pore surface may also catastrophically alter the fluid 

composition. Therefore, the type of reservoir rocks better suited to this enhanced oil 

recovery process are those with high permeability and porosity, low clay mineral content 

(of which more is non-swelling kaolinite than swelling smectite) and weak quartz cement 

[1, 2].
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1.3 Reservoir Rocks

Of the rocks at the Earth’s surface, 70% are sedimentary in origin. Sedimentary rocks 

form from sediment, produced from the weathering of pre-existing rocks or from 

chemical and/or biochemical processes. The sediment is compacted by the weight or 

pressure of overlying sediments and cemented, where minerals are deposited in pore 

spaces from water carrying ions. Precipitation of minerals from solution in lakes, or the 

sea for example, can also produce sedimentary rocks. Sedimentary rocks can be 

categorised into four main groups. Terrigenous clastic sediments (or siliciclastic 

deposits) are one group and these consist of fragments (or clasts) of pre-existing rocks 

which have been transported and deposited by physical processes. Sandstones and shale 

belong to this first group. Carbonate rocks belong to the second group, which are formed 

from sediments of biochemical and organic origin. The third group includes the 

evaporites, which are of chemical origin, and form mostly by direct precipitation. 

Volcaniclastic deposits consisting of lava and rock fragments from volcanic activity 

make up the fourth group [1]. This thesis focuses on sandstone rocks.

A reservoir rock is formed when organic matter, which has matured in sediments, 

migrates to porous sedimentary rocks. A reservoir rock is therefore defined as one that 

has the ability to contain and yield oil, gas or both in commercial quantities. The most 

common reservoir rock types are sandstones and carbonates, while a less common type is 

shale. For successful oil/gas exploration, the distinct compositional and structural 

differences between these reservoir rock types must be understood.

1.3.1 Sandstone Rocks

1.3.1.1 Introduction

Terrigenous sand and sandstone cover about 30% of the world’s sedimentary cover.

They are often highly porous, frequently making them appropriate hydrocarbon 

reservoirs [2].
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1.3.1.2 Sandstone Formation

Sandstone is formed through inorganic and clastic processes. Sediments are composed 

mostly of fragments derived from the erosion of pre-existing igneous, metamorphic and 

sedimentary rocks. The grains are released by mechanical and chemical weathering 

processes, and are then transported to die depositional site. The grains may be rock 

fragments, but the majority are individual crystals, mostly quartz and feldspar. Finer 

breakdown products formed during weathering, such as clay minerals, form the matrix of 

some sandstones. Sandstones are therefore an accumulation of particles of broken rock 

generally held together by silica. The exact composition of the sandstone depends largely 

on the weathering processes, determined by the climate and geography of the area. Other 

things that affect the composition are the distance of sediment transport and diagenetic 

processes, described in section 1.3.1.5 [2],

13.1.3 Sandstone Rock Components

Clastic sedimentary rocks such as sandstone and shale have a fragmental texture 

consisting of clasts, matrix and cement. Clasts are the larger fragment grains such as 

sand or gravel which form the framework of the sediments. Some minerals and rock 

types are more stable than others. In decreasing stability order, these minerals include 

quartz, chert, muscovite and feldspars. A matrix, consisting of mud or fine-grained 

sediment, surrounds these larger grains. The cement holds the structure together, and 

may be calcite, iron oxide, silica, or clay. The cement is precipitated after the sediment is 

deposited, during diagenesis [1]. Characteristics of the sandstone such as its strength and 

durability are affected by the type of cementing material present since even a sandstone 

composed only of quartz grains may be relatively soft if  the grains are loosely cemented. 

Silica cement is the most durable, producing a veiy hard sandstone, while iron oxide is a 

slightly less strong cement. Calcite and clay cements are softer than silica and iron oxide 

cements and an excess of clay cement also means that more water will be present in the 

sandstone.

8



1.3.1.4 Sandstone Classification

There are four principal types of sandstone, classified according to their composition:

(i) dominated by quartz grains (quartz sandstone),

(ii) dominated by unweathered feldspar (arkose),

(iii) dominated by sand-sized rock fragments (lithic sandstone),

(iv) containing high contents of clay minerals (shale).

While quartz sandstone contains 100% quartz, shale contains the lowest concentration of 

quartz, at around 65% and the highest concentration of clay minerals, at 1-20%. The 

concentration of feldspars is around 1-25% in both arkose and shale.

1.3.1.5 Diagenesis

The resulting sandstone, composed of a network of various structures, is constantly 

modified by diagenetic processes. These processes include compaction, dissolution and 

replacement and result in either an introduction of material into the pore space or removal 

of material, creating pore space. This obviously has an affect on rock porosity and 

permeability and therefore the rock’s potential as an oil/gas reservoir.

Compaction arises from the weight of overlying sediment, which produces fracturing and 

grain reshaping, resulting in closer packing of grains. Dissolution of unstable quartz 

grains or, more commonly, of chemically less stable feldspar grains, can result in the 

release of ions and formation of clay minerals and carbonates, which can replace 

dissolved grains within the structure. Ions may alternatively be carried in solution until 

chemical and physical conditions favour their precipitation.

1.3.1.6 Composition

1.3.1.6.1 Rock Fragments

The rock fragments found in sandstones can be described as being, (i) fine grained 

sedimentary rock such as mudstone and shale, (ii) siliceous sedimentary rock such as 

chert and siltstone, or (iii) igneous rocks. Fragments of shale and igneous rocks can be 

compacted and undergo diagenetic alteration, becoming indistinguishable from a fine



grained muddy matrix. Igneous rock fragments may be replaced by chlorite and zeolites 

[1]-

1.3.1.6.2 Quartz

Sand particles are the largest found in a sandstone, and are between 62.5 pm and 2 mm. 

Quartz is the most common and stable mineral in sandstone, and commonly makes up 65- 

100% of the sandstone composition [1 ].

1.3.1.6.3 Feldspars

Feldspars make up between 10 and 15% of a sandstone’s content. Feldspar grains can be 

found mixed with quartz grains but are less stable, and feldspar ciystals can disintegrate 

during transportation, or undergo chemical alteration to clay minerals [1 ].

1.3.1.6.4 Other Minerals

Clay minerals, carbonates, and iron oxides that are present can act as a cement, binding 

the quartz and feldspar grains together. Mica is also a common silicate mineral found in 

sedimentary rock. Where clay minerals are present in a rock, the most commonly 

occurring are kaolinite, montmorillonite, illite and chlorite. Clays in sandstones can be 

either allogenic or authigenic. Allogenic clays originate outside of the rock and then, 

once formed, mix with the sand fraction during deposition. Authigenic clay minerals, 

however, form within the rock after burial. Authigenic clays tend to have a higher degree 

of purity, are more crystalline, and less susceptible to deformation by compaction than 

allogenic clays [3]. In sandstones, kaolinite can be found most commonly as discrete 

particles attached to pore walls and can reduce the intergranular pore volume. Illite, 

chlorite and montmorillonite can, however, form on pore walls as a continuous clay 

mineral coating and are referred to as pore-lining clays. These pore-lining clays can also 

become pore-bridging, if the continuous coating extends completely across a pore or pore 

throat [4].
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13.1.7 Sandstone Maturity

A sandstone containing many unstable rock fragments and minerals, and a high 

concentration of feldspar, is considered compositionally immature. Mature sandstone 

contains more stable rock fragments, some feldspar but a high concentration of quartz.

[i]
The performance of a sandstone as a reservoir rock depends upon its porosity and 

permeability which in turn depends upon the grain size and size distribution. The 

sandstone reservoirs which give maximum oil recovery are those that are composed of 

sand-sized quartz grains, silica cement and minimal fragmented particles.

1.3.2 Carbonate Rocks

1.3.2.1 Introduction

Carbonates make up about 20% of the world's sedimentary rocks and understanding 

carbonate reservoirs has become more important in industry since they account for 40% 

of today's hydrocarbon production and are expected to dominate production through die 

next century [5]. Carbonate formations, in fact, hold about one half of oil reserves in the 

USA, so improving oil recovery in these formations is very important. Carbonate rocks 

are, however, highly complex and heterogeneous even at the core scale [6], They are 

much less uniform than sandstones and it is more difficult to predict their geometry and 

reservoir performance [2], Carbonate reservoirs can be large but contain microscopic 

pores and can have low matrix permeability.

Carbonate sedimentary rocks differ greatly from siliciclastic sedimentary rocks in their 

formation processes, composition, stability, classification, and porosity.

1.3.2.2 Carbonate Formation

Carbonate rocks consist mainly of only two minerals, calcite (CaCCb) and dolomite 

(CaMg(CC>3)2), and remain near their point of origin compared with the longer distances 

travelled by silica based grains to form siliciclastic rocks. Carbonate rocks can form in
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many environments. Most mature carbonate rocks formed in shallow marine settings, 

while the most common type of modem carbonate rock is formed in deep water. 

Biological activity and the accumulation of organism remains on the seafloor form 

biogenic sediments from which most carbonate rocks develop. Other carbonate rocks 

form as water evaporates from shallow onshore basins or as precipitates from seawater

m.

1.3.2.3 Carbonate Rock Components

Like siliciclastic rocks, a typical carbonate rock is made of grains, matrix and cement.

Grains are either skeletal fragments of small organisms or non-skeletal particles 

precipitated from calcium-rich water. Skeletal grains are identified by their size, shape, 

microstructure and original mineralogy. Non-skeletal grains can be produced abiotically, 

by non-living physical and chemical factors, or biotically, by living organisms [8].

The matrix fills most of the space not occupied by grains and is lithified mud of 

deposition. The fine mud can be formed by chemical precipitation (associated with high 

temperatures and salinities or changes in partial pressure of CO2), or by the breaking of 

skeletal material into finer material [8], Many limestone matrices were originally 

composed of unstable aragonite (CaCOs) and high-Mg calcite, but were replaced by more 

stable, low-Mg, calcite during diagenesis [8].

Sediments can be considered either matrix supported or grain supported. In matrix 

supported systems, matrix materials are generally too small to be distinguished as a grain, 

i.e. they consist of microcrystalline carbonate sediments. Grain supported carbonate 

rocks, on the other hand, have a dominance of visible sedimentary grains over 

microcrystalline grains.

In most of the space remaining between grains and matrix, or between grains themselves, 

precipitates a crystalline material called cement. Depending on the cement composition, 

the conditions of crystallisation, and the spaces to be filled, cements can have a variety of
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crystal sizes [9]. Aragonite, high Mg calcite, low-Mg calcite, and dolomite are the most 

common carbonate cements in limestones. Less common cements are ankerite 

(CaFe(CC>3)2), siderite (FeC03), kaolinite, anhydrite (CaS0 4 ), gypsum (Ca(S04)'2H20) 

and halite. The actual mineralogy depends on the composition of the pore-fluids, the 

carbonate supply rate and on the rate of precipitation. Sparite, which consists of coarsely 

crystalline clear calcite crystals more than 10 pm in size [10], is the dominant pore-filling 

cement in limestones [8].

1.3.2.4 Classification

Carbonate rocks are classified by a completely different system from that used for clastic 

rocks. While clastic rocks are distinguished by grain composition and size, carbonate 

rocks are distinguished by factors such as depositional texture, grain or pore types, rock 

fabric or diagenesis [7].

There are numerous ways in which matrix and grains can coexist and the Dunham 

classification (1962) is the most widely used and simplest classification based on the 

internal structure and texture of the rock. The classification of limestones is described in 

Table 1.1.

Mudstones Matrix < 10% suspended grains > 20 pm in size.

Wackstones supported > 10% suspended grains >20 pm in size.

Packstones

Grainstones
Grain

supported

Increasing amount of grains and progressively less 
Matrix.

▼

Boundstones Biologically
bound

Supported during deposition by original material 
i.e. rocks formed mainly by binding of organisms.

Crystalline
Limestone Lost all original texture due to diagenetic recrystallisation.

Table 1.1: Classification of limestones [1,9,10].
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1.3.2.5 Diagenesis

Diagenesis refers to the postdepositional chemical and physical changes that sediments 

undergo which transform them into solid rock. The diagenesis process can be divided 

into six main mechanisms; cementation, microbial micritisation, neomoiphism, 

dissolution, compaction, and dolomitisation. The diagenesis a carbonate rock undergoes 

depends on the composition and mineralogy of the sediment, the pore-fluid chemistry and 

flow rates, geological history of the sediment, the influx of different pore-fluids, and 

climate. The three main environments in which carbonate diagenesis takes place are 

marine, near-surface meteoric and burial [1, 8,10].

1.3.2.5.1 Cementation

Cements in carbonate rocks have been discussed in more detail in section 1.3.2.3.

The precipitation of cements in carbonate sediments can take place provided no kinetic 

factors inhibit it.

1.3.2.5.2 Microbial Micritisation

While cementation is considered aggradation, microbial micritisation is degradation.

This type of degradation occurs when bioclasts on the seafloor are altered by small 

organisms. The skeletal grains are bored and holes filled by fine-grained sediment or 

cement. With intense activity completely micritised grains are formed.

1.3.2.5.3 Neomorphism

Neomorphism refers to replacement and recrystallisation processes where there may have 

been a change in mineralogy. Neomorphic processes take place in the presence of water 

through dissolution-reprecipitation. In limestones, most neomorphism is of the aggrading 

type, leading to a general increase in crystal size, and occurs mostly in fine-grained 

limestones. Calcitisation is a common neomorphic process. During calcitisation, 

aragonite grains, cements, dolomite and evaporite minerals (halite, gypsum, anhydrite) 

can be replaced by calcite. The original mineral gradually undergoes dissolution and 

precipitation of calcite replaces it.
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1.3.2.5.4 Dissolution

It is the presence of the metastable minerals, aragonite andhigh-Mg calcite, in carbonate 

rocks that makes them much more likely to undergo dissolution than clastic rocks.

Grains in carbonate rocks can be dissolved to form new pore space and dissolution along 

fractures and bedding planes can produce large vugs and caves. This can restore higher 

porosity in deeply buried carbonate rocks.

1.3.2.5.5 Compaction

Carbonate sediments buried, but not already cemented, become compacted under an 

increasing overburden and grain fracture can occur, resulting in a decrease in porosity 

due to closer packing. This mechanical compaction can also lead to chemical compaction 

when the grains begin to dissolve at point contacts. In previously compacted and 

cemented limestones, this chemical compaction can produce features such as stylolites 

and dissolution seams at depths of several thousand metres. Stylolites commonly appear 

as dark, jagged lines on exposed surfaces of carbonate rocks (and rarely on other 

sedimentaiy rock types) and are composed of insoluble residues. Dissolution seams are 

layers where minerals have dissolved as a result of the pressure of compaction. This can 

happen because minerals that are under pressure, or deformed due to stress, are more 

soluble than unstressed minerals.

1.3.2.5.6 Dolomitisation

While clastic diagenesis does not normally involve a change in mineralogy, carbonate 

diagenesis commonly involves the replacement of calcite and aragonite with dolomite in 

a process called dolomitisation [7], Dolomitisation can improve the hydrocarbon- 

producing characteristics because, while dolomites are normally less porous than 

limestones at shallow depths, they retain their porosity more effectively during burial and 

are less affected by compaction. Dolomites therefore tend to be better reservoir rocks 

because they contain more voids that hydrocarbons can fill.
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1.3.2.6 Composition

The most modem carbonate sediments are mainly composed of the two mineral forms, 

aragonite and calcite. There are two types of calcite, low magnesium calcite, with <4 

mole% MgCC>3 , and high magnesium calcite, with >4 mole% MgCC>3 . Since low-Mg 

calcite is more stable than both high-Mg calcite and aragonite, these less stable forms are 

commonly replaced by it. Over time all three forms may be replaced by dolomite, 

particularly in the presence of magnesium rich ground waters with a significant amount 

of salinity. Most limestones are therefore composed of low-Mg calcite and/or dolomite 

[8]. Phosphate, and minerals such as glauconite can also be present in carbonate rocks 

but are less common. Secondary minerals (minerals that replace existing minerals during 

the diagenesis process) that may also be present are anhydrite, chert (a microciystaJline 

variety of quartz), quartz, clay minerals, pyrite (FeS2), ankerite and siderite [7].

1.3.3 Porosity and Permeability in Reservoir Rocks

The porosity of a rock is determined by the shape and arrangement of sand grains and the 

amount of cementing material present, while the permeability depends upon the size of 

the pore openings and the degree and type of cementation between sand grains.

Carbonate rocks tend to be composed of more densely packed particles than sandstone 

rocks, so their porosity depends on void spaces formed by the movement of water, and on 

fractures. This causes porosity in carbonate rocks to be veiy irregular and more difficult 

to measure than in sandstone rocks.

The porosity, permeability, and wettability of a given reservoir rock determine its value 

since these factors affect the amount of oil or gas present in the rock and the ease at 

which it can be extracted.

Oil and gas can accumulate in the void space in reservoir rocks. Porosity is a measure of 

this void space and gives the rock its ability to absorb and hold fluids. Porosity in 

reservoir rocks can be primary or secondary. Primary porosity occurs where the pore 

spaces, in which oil and gas are found, originated when the formation was laid down, 

while secondary porosity refers to pore spaces formed through subsequent rock stresses
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or ground water action. The porosity most common in sandstones is primary, while 

secondary porosity is most common in limestones and dolomites. Porosity can be 

classified into two categories, effective porosity (interconnected porosity), and non- 

effective porosity (isolated porosity). Only the effective porosity is useful for 

commercial oil and gas deposits since it is only from this type of porosity that fluids can 

be recovered.

The porosity of feldspars has been studied by David et al. [11] using scanning electron 

microscopy and transmission electron microscopy. Pores were found to range in size 

from <1 pm to around 40 pm in alkali feldspars, and porosities were measured up to 

2.3% by volume. However, the pores were often not evenly distributed. Micropores can 

form in feldspars contained in weathered rocks due to release of strain or dissolution of 

structure around dislocations. The micropores on weathered feldspar surfaces are, 

however, different to those in fresh feldspar. During weathering, micropores become 

more interconnected than in fresh feldspar due to dissolution [11].

Permeability is a measure of how easily fluid flows through a reservoir rock. Darcy’s 

law is used to define the permeability, and has the equation,

Q = (K/p)(dp/dl),

where Q is the rate of fluid flow, K is the permeability, p is the fluid viscosity, and dp/dl 

is the pressure gradient in the direction of flow [1 ].

Fluids can flow either through a fracture in the rock or can work their way through the 

network of grains. Isolated pores (voids inaccessible to fluids) can form in rocks. There 

are various reasons for the presence of isolated pores, such as cement formation at a pore 

throat, and clay minerals blocking a pore throat. These isolated pores cause some highly 

cemented rocks with high concentrations of clay to have a low permeability despite 

having a high porosity.
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1.3.4 W ettability in Reservoir Rocks

Wettability refers to a measure of the tendency for one immiscible fluid to preferentially 

spread on to a solid surface compared with another immiscible fluid. In reservoir rocks, 

oil and water are the immiscible fluids in question and most producing reservoirs are 

generally in a water-wet state, meaning that water preferentially adheres to the rock 

surface [12,13]. Most carbonate reservoirs are, however, oil-wet or of mixed-wettability 

despite pure carbonate being water-wet. This means that is it difficult to predict oil 

extraction and profitability in carbonate rocks [14]. The way in which oil and water flow 

through the rock is governed by the wettability and the type of flow effects the fraction 

and yield of oil that can be recovered [15], Wettability has a large effect on oil 

production in reservoirs so it is necessary to determine the preferential wettability of the 

reservoir. The contact angle between the fluid interface and the solid surface can be used 

to define wettability [12]. High contact angles (>90°) indicate oil wet conditions and low 

contact angles (<90°) indicate water wetness, when water is the wetting phase. 

Intermediate wetness is also possible, when the contact angle is around 90°, and all three 

states are shown in Figure 1.1. In Figure 1.1a decrease in wettability o f the surface with 

respect to water is shown from surface A to C. Conversely, the surfaces in Figure 1.1 

would show an increase in wettability with respect to oil from surface A to C.

A a c

Figure 1.1: Wettability conditions of water on a surface: A) water wet, B) 

intermediate wetness, C) not water wet [16].

Porous media however, makes direct measurement of contact angles impractical, so core 

wettability tends to be measured, based on capillary pressure. In this method, non

wetting fluid is displaced from a sample by invasion of the wetting fluid [12]. Measunng 

the wettability o f a reservoir rock is made more difficult due to the higher temperature of
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reservoir rock in situ (in excess of 80 °C) compared to the temperature at which 

measurements take place. It is known that wettability increases with temperature. 

However, the relationship between wetness and pressure is less clear [16].

1.4 Classification of Minerals

The most commonly found minerals in sandstones are the silicates. Differences in the 

types of linkages between basic units are used to divide the silicates into sub-classes. In 

sandstones and sedimentary rocks, tectosilicate and phyllosilicate sub-classes are found. 

A summaiy of the classification of minerals is shown in Table 1.2.

Class Subclass Group Subgroup

---- Tectosilicates—

Silicates—

---- Phyllosilicates—

-silica -----------------------  quartz
P  alkali series

-feldspars-------------------
-  plagioclase series

-  smectites
-  kandites
-  illites
-  chlorites
-  micas

r- calcite 
Carbonates—  aragonite 

*- dolomite
Table 1.2: Classification of major minerals of relevance in this thesis.

1.4.1 Tectosilicates (Quartz and Feldspars)

Tectosilicates have a three-dimensional network of S iO /' tetrahedra with a Si:0 ratio of 

1:2 (i.e. silica). The most common form of silica is quartz. In silica, substitution of Al3+ 

for Si4+ results in a negative charge which must be compensated for by additional positive 

ions. The most common group of these aluminosilicates is the feldspars.

19



1.4.1.1 Quartz

Quartz is the most common mineral on the face of the Earth. It is found in nearly every 

geological environment and is a component of almost every rock type, frequently the 

primary mineral, due to its stability.

1.4.1.2 Feldspars

Feldspars are second in abundance, after quartz, in arenaceous sediments (sediments 

containing sand sized particles). The general formula, for the common feldspars, is 

XA1(i_2> Si(3 -2) Os, where the X in the formula can be sodium and/or potassium and/or 

calcium.

The structure consists of interlinked tetrahedra of S iO ^ and AIO45' with silicon and 

aluminium ions occupying the centres. The tetrahedra are connected at each comer to 

other tetrahedra forming an intricate, three dimensional, negatively charged framework.

It is the presence of the aluminium (in up to one half of the units) that causes the resulting 

negative charge. The cations that represent the X in the formula sit within the voids in 

this structure and balance the charge.

Figure 1.2: Four membered ring of silica tetrahedral in feldspar.

There are two sub-groups of feldspars, the alkali (or K-feldspar) and the plagioclase 

series. Isomorphism occurs between end-members (orthoclase, albite and anorthite) of 

these series, indicated in the trianglular phase diagram in Figure 1.3. The alkali feldspars 

show a continuous composition series between end members orthoclase (KAlSisOg) and 

albite (NaAlSisOg), for feldspars stable at high temperatures. Intermediate members are
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homogenous mixtures of the pure end members. The plagioclase series is, however, 

continuous between end members albite (NaAlSisOg) and anorthite (CaAl2Si2 C>8) at all 

temperatures. While alkali feldspars such as orthoclase are considered K-feldspars, albite 

is a Na-feldspar.

ORTHOCLASE
K A IS i30 8

\ V \ \ N  Feldspars stable at
low temperatures only

Feldspars stable at 
high temperature onlyALKALI SERIES, NO \

FELDSPARS

PLAGIOCLASE SERIES

Figure 1.3: Triangular phase diagram describing the compositions of the Feldspars.

1.4.2 Phyllosilicates (Clay Minerals and Mica)

1.4.2.1 Clay Minerals

1.4.2.1.1 Structure

Clay minerals are layer silicates, and are constructed from tetrahedral sheets, as shown in 

Figure 1.4, with a dominant Si4+ cation, and octahedral sheets, as shown in Figure 1.5, 

with a dominant Al3+ cation. When fitted together to form a 1:1 layer silicate, i.e. one 

tetrahedral and one octahedral sheet, two out of the three hydroxyl ions in the octahedral 

sheet are replaced by oxygens of the tetrahedra. An oxygen surface is exposed on the 

silica sheet and a hydroxyl surface is exposed on die alumina sheet. There is hydrogen 

bonding between the layers [17]. The hydroxyl groups located between the tetrahedral 

and octahedral sheets are called "inner-hydroxyls", while hydroxyls located on the 

interlayer side of the octahedral sheet are called "inner-surface hydroxyls".
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Figure 1.4: Single silica tetrahedron (a), and a section of a silica tetrahedral sheet 

(b>.

and i

Figure 1.5: Single octahedral unit (a), and a section of an octahedral sheet (b).

Layer silicates can also form in a 2:1 arrangement, consisting of an octahedral sheet 

sandwiched between two tetrahedral sheets, so that a surface of oxygens is exposed on 

each surface. In this 2:1 arrangement, van der Waal's forces between oxygens on 

neighbouring sheets hold the layers together.

The sheet-like structures of kaolinite (1:1 layered mineral), montmorillonite and illite (2:1 

layered minerals) and chlorite (2:1:1 layered mineral) are represented in Figure 1.6.
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Kaolinite Chlorite Montmorillonite
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V / / / / X  —Octahedral sheet 

\  7  —Tetrahedral sheet

Figure 1.6: Schematic representation of the sheet-like structures of clays.

1.4.2.1.2 Isomorphous Substitution

Isomoiphous substitution is the replacement of ions in a sheet by ions of like size but 

lower charge. When Si4+ is substituted by Al3+ in the tetrahedral sheet, or when Al3+ is 

substituted by Mg2+ in the octahedral sheet, the layer obtains a net negative charge, which 

can be neutralised by introducing exchangeable cations into the interlayer space [18].

The clay layers are then bound together electrostatically by sharing these exchangeable 

cations. The number of these interlayer exchangeable cations in a clay is defined by the 

cation exchange capacity (CEC), measured in milliequivalents (meq) per 100 grams of 

clay, and is different for different mineral types. The CEC values for some clays are 

shown in Table 1.3. The cations can be exchanged by other cations such as Na, Ca, Mg, 

and K by placing the clay in a solution of the new ion.

1.4.2.1.3 Swelling of Clay

Montmorillonite can swell with water and can intercalate polar organic molecules [18] as 

shown in Figure 1.7. The d spacing is 12.5 A with one layer of water and cations but can 

swell further to 15.0 A with two water layers, or can shrink to 9.6 A when dehydrated. It 

is possible to estimate the orientation of an intercalated organic molecule from the d 

spacing [19]. The amount of water in the interlayer is controlled by the humidity, the 

type of interlayer cation and by the charge density of the mineral [20].
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Figure 1.7: Schematic representation of the swelling of a clay (e.g. montmorillonite) 

in water.

1.4.2.1.4 Clav Minerals of particular interest in this thesis

Kaolinite Montmorillonite Ulite Chlorite
CEC (meq/lOOg) 3-15 80-150 10-40 10-40
Particle size 
(microns)

0.5-5 0.1-2 0.1-2 0.1-5

Surface area 
BET-N2 (m2 g'1)

15-25 30-80 140

Table 13: Selected properties of Clay Minerals [21].

Kaolinite

Kaolinite belongs to the kandite group of layer silicates.. There are four polymorphs and 

kaolinite is the most common. The others are dickite (rare), nacrite (rare) and halloysite 

(moderately common). Kaolinite has the idealised formula Al4Si4Oio(OH)g, although Fe, 

Ti, K, and Mg can also be present. It is a 1:1 layer silicate with d spacings being reported 

as 7.1 A to 7.4 A [22,23,24] where the d spacing is the distance between one sheet on a 

clay layer, and the equivalent sheet on the adjacent clay layer. Kaolinite has no interlayer 

cations since there is no charge on the lattice arising from isomoiphous substitution. 

Kaolinite has not been found to swell in water but some organic molecules such as 

formamide can be intercalated between the kaolinite layers because it enters into the 

hydrogen bonding network.
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Montmorillonite

Montmorillonite has the idealised formula Nao.3(Ali.7Mgo.3)Si4 0 io(OH)2 and is a 

dioctahedral smectite with a 2:1 layer structure. It can have a relatively high amount of 

isomorphous substitution so there are often deviations from the idealised formula. The 

surface of montmorillonite acts as a weak Lewis base since it can donate electrons to 

make a chemical bond. The surface is however quite unreactive since there is a strong 

bond between Si and O on the surface [25]. In contrast to kaolinite, the structure of 

montmorillonite allows water and polar molecules to enter between the layers easily.

This is due to the weak electrostatic bonding between the layers and exchangeable 

cations present in the montmorillonite interlayer. Interaction with interlayer cations is an 

important feature of montmorillonite behaviour.

Illite

The idealised structural formula for illite is KAl2 (Si3 Al)Oio(OH)2 , but Fe and Mg can 

also be present. The structure is the same as for montmorillonite except that some of the 

silicon ions are always replaced by aluminium ions and the deficiency balanced by 

potassium ions. Van der Waals attractive forces, caused by the small size of the non

hydrated potassium ions, combine with the electrostatic forces to produce stronger 

bonding between the layers. This strong bonding makes the illite structure veiy difficult 

to swell and difficult for cation exchange to occur.

Chlorite

The idealised structural formula for chlorite is (Mg, Fe, Al)6 (Al,Si)4Oio(OH)8, although 

some varieties contain high amounts of chromium, nickel, or manganese. Isomorphous 

substitution of silicon by iron or aluminium ions occurs in the tetrahedral sheet of 

chlorite, generating negative charges on the surface. A magnesium-hydroxide sheet with 

isomorphous substitution of aluminium ions for magnesium ions, neutralises these 

charges. Like montmorillonite, chlorite is a 2:1 layered mineral but has an extra sheet so 

is considered a 2:1:1 layered structure. Unlike montmorillonite which has a dioctahedral 

arrangement in the octahedral layer, the octahedral layer of chlorite has a trioctahedral 

arrangement. A dioctahedral arrangement means that there are two cations for each of
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the six 0H~ anions on a sheet and atrioctahedral arrangement means that there are three 

cations for each of the six OH7 anions on a sheet.

1.4.2.2 Mica

Muscovite is a common mineral found in sedimentary rock and is also found in igneous 

and metamoiphic rock. It is the most common mineral of the mica group and is in the 

same silicate class and phyllosilicate subclass as the clay minerals. It therefore also has a 

layered structure of aluminosilicate sheets. These sheets are strongly bonded together by 

layers of unhydrated potassium ions [26,17]. Bound nitrogen, mainly in the form of 

ammonium, is common in die Earth’s crust and can be found in layer silicates and mica 

in particular. The charge and radius of the ammonium atom allows it to replace the 

interlayer potassium ions of mica, although the most common interlayer cation remains 

potassium [27].

1.4.3 Carbonates

The structure of carbonates is based on the fundamental anionic unit (CO 3)2’, with carbon 

at the centre of an equilateral triangle of three oxygen ions. Carbonates are veiy common 

minerals, and calcite is one of the most common on Earth, comprising about 4 wt% of the 

Earth’s crust. It is also widespread, being able to form in many different geological 

environments [26]

1.4.3.1 Rhombohedral Carbonates

1.4.3.1.1 Calcite

Calcite is the stable form of the widespread mineral CaCC>3 . Calcite is a rhombohedral 

carbonate with a central carbon ion and three oxygen ions lying in a single plane, giving 

it trigonal symmetry. The structure of calcite consists of alternating layers of these 

carbonate ions, and of calcium ions.
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1.4.3.1.2 Dolomite

Dolomite has the formula CaMg(COs)2 . In comparison to calcite, the dolomite structure 

has the addition of magnesium ions, which differ in size to calcium ions. In dolomite, the 

structure therefore has alternating layers of exclusively Mg ions, followed by carbonate 

ions, followed by exclusively Ca ions and so on. It is thought that having these 

alternating layers probably produces a more stable structure than one with layers of 

mixed Ca and Mg ions due to the size difference of the cations.

1.4.3.1.3 Others

Ankerite is a member of the dolomite group and has the general formula CaFe(COs)2 . 

However, there is actually a significant amount of magnesium and manganese 

substitution for the iron. The structure of ankerite is similar to that of dolomite but has 

alternating layers of calcium and iron cations. The significant amount of cation 

substitution, however, lowers the symmetry compared with dolomite.

Siderite is another rhombohedral carbonate but has the formula FeCC>3 . It has a similar 

structure to calcite but with iron replacing calcium.

1.4.3.2 Ortho rhombic Carbonates

1.4.3.2.1 Aragonite

Aragonite is a common polymorph of calcite so also has the formula CaC0 3 . It is less 

stable than calcite, though, and aragonite will convert to calcite over a long time period or 

at temperatures above 400 °C.

In comparison to die one plane structure of calcite, the structure of aragonite has the three 

oxygen ions lying in two planes pointing in different directions, giving it orthorhombic 

symmetry.

1.4.3.2.2 Others

Vaterite is also a polymorph of calcite so has the formula CaCC>3, but it has hexagonal 

symmetiy. It is a veiy rare mineral and is the least common of the three phases of 

CaC03.

Strontianite, SrCC>3 , and witherite, BaC0 3 , are other orthorhombic carbonates. However, 

both are rare.

27



2. Theory of Techniques used in this thesis

2.1 Infrared Spectroscopy

2.1.1 Introduction

Infrared radiation (IR) is electromagnetic radiation with a wavelength between 

approximately 10‘3 and 1CT6 m. When a sample is positioned in the path of an IR beam, 

polyatomic molecules absorb particular frequencies of this infrared radiation, creating a 

characteristic infrared spectrum. Different functional groups absorb characteristic 

frequencies of IR radiation making IR spectroscopy an important tool for determining the 

structure of molecules and identifying compounds. An infrared spectrum is generally 

presented as absorption intensity vs. wavenumber in cm'1 and in this thesis the mid IR 

region, between 4000 and 400 cm-1, was used [28]. The infrared spectra of powdered 

samples can be measured using transmission spectroscopy, diffuse reflectance 

spectroscopy, emission spectroscopy, and photoacoustic spectroscopy. Diffuse 

reflectance spectroscopy has been applied in this thesis and will be discussed further in 

section 2.1.5 of this chapter.

1.2.2 Absorption of Infrared Radiation

The atoms in molecules are in continuous vibration with respect to each other at 

temperatures above absolute zero. A molecule absorbs radiation when the frequency of a 

specific vibration is equal to the frequency of the IR radiation directed at the molecule. A 

molecule must undergo a net change in dipole moment due to its vibrational motion to 

produce adsorption bands in the IR spectrum. The dipole moment describes the 

asymmetry of charge distribution, and is defined as the product of the total amount of 

positive or negative charge and the distance between die atoms.

The number of observed absorption bands is generally different from the number of 

fundamental vibrations. The number of fundamental vibrations is 3N-6 for non-linear 

molecules and 3N-5 for linear molecules, where N is the number of atoms. Fewer
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absorption bands may be observed because some vibrations are not IR active, i.e. there is 

no net change in dipole moment, and because a single frequency can cause more than one 

type vibration to occur [29]. The number of observed absorption bands can, however, be 

increased by the appearance of overtones, combinations of fundamental frequencies, 

differences of fundamental frequencies and coupling interactions. Overtones are integral 

multiples of the fundamental absorption frequencies, and coupling interactions can be 

between two fundamental frequencies or between fundamental vibrations and overtones 

or combinations bands. The intensities of overtone, combination, and difference bands 

are less than those of the fundamental bands. All these factors combined, produces a 

unique IR spectmm for each compound [28],

In polyatomic molecules, there are two fundamental types of vibration:

(i) stretching of the interatomic bonds, where the length of a bond changes, and

(ii) bending, where the angle between two bonds changes.

The types of stretching and bending vibrations that occur in molecules are shown in 

Figure 2.1.
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Figure 2.1: Types of stretching and bending vibrations that occur in molecules.

2.1.3 Use of Infrared Spectroscopy for Clay Mineral Analysis

For the investigation of clay organic complexes in particular, infrared spectroscopy has 

proved to be most effective since it can provide characteristic information regarding the 

molecular orientation of organic molecules in the interlayer space, mechanisms of 

interaction with the silicate surface, interlayer cations, residual water and interactions 

between the adsorbed molecules themselves. Changes in the chemical composition 

taking place in the interlayer space under the effect of heat, evacuation or changing 

humidity can be detected by infrared spectroscopy. It is therefore complementary to the
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X-ray diffraction (XRD) technique which provides information regarding the 

modification of clay basal spacing due to packing and orientation.

2.1.4 Fourier Transform Infrared Spectroscopy (FTIR)

While the FTIR spectrometer was initially used as a high performance research tool in 

industry in the late 1970s, it is now the preferred method of infrared spectral analysis. 

Both FTIR spectrometers and dispersive spectrometers can be used for mid-infrared 

applications. A dispersive spectrometer uses a prism or grating to resolve the radiation 

into its separate components for successive measurement, while an FTIR spectrometer 

uses a Michelson interferometer. FTIR spectrometers have mostly replaced dispersive 

spectrometers for mid-infrared applications because the interferometer reduces the 

measuring time of the instrument by measuring all the spectral radiation simultaneously, 

and the FTIR spectrometer is more sensitive.

FTIR spectrometers have three basic components: radiation source, interferometer, and 

detector. While a dispersive IR spectrometer uses a monochromator, this is replaced with 

an interferometer in an FTIR spectrometer. The interferometer divides radiant beams, 

generating an optical path difference between the beams before recombining them to 

produce repetitive interference signals [28], The layout of an FTIR spectrometer is 

shown in Figure 2.2.
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Figure 2.2: Layout of an FTIR Spectrometer [30],

A Michelson interferometer is the most common interferometer and it consists of three 

active components: a moving mirror (A), a fixed mirror (B), and a beamsplitter. The 

components o f a Michelson interferometer are shown in Figure 2.3.

mirror (A)

source

t
L

i

beamsplitter

Si mirror (B)

detector
Figure 2.3: Components of a Michelson interferometer [29].
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When collimated monochromatic radiation from the source reaches the beam-splitter, it is 

divided into two equal beams, one transmitted to each of the two mirrors. The two beams 

are then reflected back to the beam-splitter and recombined. The optical path difference 

between the two recombined beams varies due to the moving mirror. When the path 

difference is an integral number of wavelengths, then the beams will be in phase and 

constructive interference will occur. When the path difference is A/2, destructive 

interference occurs. The changes in the relative position of the moving mirror to the 

fixed mirror, therefore generates an interference pattern. Of the recombined beam, 50% 

is sent to the detector via the sample, and the remaining 50% is lost as it is sent back 

towards the source.

Since the mirror is moved at a constant velocity, the intensity of radiation reaching the 

detector varies in a sinusoidal manner, producing an interferogram. An interferogram is a 

plot of the detector response, intensity in volts vs. the position of the moving mirror in 

cm. At a frequency at which the sample absoibs, the amplitude of the sinusoidal wave 

reduces by an amount related to the amount of sample in the beam. The concentration of 

the sample is proportional to absorbance. The absorbance is equal to log VI, where Io is 

the intensity of the radiation incident on the sample and I is the amount of radiation 

transmitted by the sample. The interferogram, which contains information over the full 

IR region to which the detector is responsive, is converted to a frequency domain by a 

mathematical operation known as a Fourier transform. An apodisation function is used to 

truncate the interferogram, removing unnecessaiy data, and this function can also change 

both the resolution and signal to noise ratio of the spectrum.

There are two popular detectors feat can be used in an FTIR spectrometer, a deuterated 

triglycine sulphate (DTGS), and a mercury cadmium telluride (MCT). The DTGS 

detector is a pyroelectric detector that can deliver rapid responses. The MCT detector 

also delivers fast responses but is a photon detector. DTGS detectors operate at room 

temperature while MCT detectors must be cooled to liquid nitrogen temperature (77 °K) 

to operate effectively. Generally, MCT detectors are faster and more sensitive than 

DTGS detectors [28].
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2.1.5 Diffuse Reflectance Infrared Fourier Transform Spectroscopy 

(DRIFTS)

2.1.5.1 Introduction and Theory

The diffuse reflectance spectra of powders have been measured for many years to obtain 

qualitative results. DRIFTS is widely used because little sample preparation is required, 

it is a sensitive technique which allows qualitative and quantitative information to be 

obtained [31], and useful overtone and combination bands are observed [32].

In DRIFTS, incident radiation is reflected from the surface of a sample. A single 

reflectance spectrum of a sample is ratioed against a single reflectance spectrum of a 

good diffuse reflector reference to calculate a DRIFTS spectrum.

2.1.5.2 Types of Reflectance

The main difficulty with DRIFTS is the presence of spectral distortions caused by the 

mixing of diffuse and specular reflectance, diffuse reflectance being that which has 

penetrated samples and therefore contains information about the absorptivity of the 

sample, and specular reflectance being that which is reflected from the surface of a 

particle without being absorbed [33], Diffuse specular reflectance is the name given to 

radiation that has been reflected from the surface of multiple particles but, like specular 

reflectance, is not absorbed. True diffuse and diffuse specular reflections are 

indistinguishable, since in both the reflected beam can emerge at any angle relative to the 

incident radiation [33]. In specular reflectance, however, the angle of incidence is equal 

to the angle of reflectance. The three modes of reflection in a DRIFTS experiment are 

shown in Figure 2.4.
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Figure 2.4: Schematic illustration showing the three modes of reflection in a 

DRIFTS experiment.

The optical arrangement of the accessory and the physical and chemical characteristics of 

the sample govern the amount of each type of reflectance collected in an experiment. For 

example, spectral distortions, such as peak inversion (Reststrahlen bands), can be reduced 

by diluting with a powdered material inactive to infrared [31,33,34] and a Blocker can 

be used to reduce spectral distortions. A Blocker is a blade which, when placed 

perpendicularly onto the sample surface, prevents the true specular reflectance from 

reaching the detector [33],

The amount of specular component in the spectrum is governed by the refractive index 

(n1), which is described as the sum of the index of refraction (n) and the absorption index 

(k') [21].

n' = n + ik1

Fresnel’s equations describe specularly reflected light. The reflection of radiation at an 

interface is expressed as a function of the refractive indices of the two media that form 

the interface. The difference in the refractive indices leads to reflection.

The absorption index, k1 is related to the absorption coefficient, K, 

k1 = K/(47tv),

where v is the frequency of radiation (cm'1).

The absorption coefficient, K, is related to the absorptivity, a,
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K = 2.303ac,

where c is the concentration.

The larger the absorptivity of a sample, the greater the specular reflectance will affect the 

spectra. Specular reflectance can cause a sample with intermediate absorptivity to have 

spectra with derivative shaped features or a shift in peak position to higher wavenumbers. 

Samples with larger absorptivity, such as some minerals, can have large Reststrahlen 

bands present in their spectra.

Much of the non-linearity associated with DRIFTS is due to specular reflectance so all 

factors that produce specular reflectance must be minimised in experiments so that the 

maximum ratio of true diffuse to specular reflectance is collected.

2.1.53  Instrumentation

A schematic diagram of the type of DRIFTS accessory used for the studies in this thesis 

is shown in Figure 2.5.

TWO ELIPTICAl MIRRORS

SAMPLE CUP
Incident
Radiation Detector

.ELAT MIRROR

Figure 2.5: Schematic diagram of the accessory used to collect DRIFTS spectra.

The total reflectance is collected by two elliptical mirrors. Accessoiy alignment is 

critical because typically only 10 to 15% of the energy throughput is available for 

DRIFTS analysis. Two of the mirrors can be manually adjusted with Allen keys and the
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sample height adjusted with a screw so that the sample surface is aligned at the focal 

point.

2.1.5.4 Diffuse Reflectance as a Quantitative Technique

For an analytical technique to be considered quantitative, the procedure must be 

reproducible. Concerns about using DRIFTS for quantitative work have been expressed 

for two main reasons. The first is the difficulty in preparing samples with reproducible 

physical characteristics since reproducibility of spectra is dependant on maintaining the 

same particle size, packing density, analyte concentration, homogeneity and position in 

the accessory between samples [31]. The second reason is the difficulty in converting 

spectra into a format where band intensities vary linearly with concentration over a wide 

concentration range. The second problem arises due to the presence of specular 

reflectance in a diffuse reflectance spectrum, making it difficult to correlate the amount 

of true diffuse reflectance to sample concentration.

2.1.5.5 Reproducing Physical Characteristics of Samples

2.1.5.5.1 Reference Powder

The spectrum of a reference powder is used in a DRIFTS experiment as a background 

that the sample spectrum is ratioed against.

Ideal matrices for DRIFTS are hard, finely ground powders that will scatter radiation 

efficiently [35], They should also be non-absorbing, nonhygroscopic, inert, nontoxic, and 

have a low refractive index [36]. A small particle size is required since large particle 

sizes are difficult to pack and level [37]. KBr is the most widely used material for the 

matrix and TeVrucht et al. [35] compared pure KBr to a mixture of Csl and KBr and 

found KBr alone to be better since the Csl mixture is softer.

The reference powder is also used to dilute the sample. This dilution reduces the specular 

component and increases the diffuse component in the reflected radiation. This is 

because around 95% of the surface is KBr and not sample, so only around 5% of'the
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incident beam is truly specularly reflected. The remainder of the beam penetrates into the 

sample and undergoes true diffuse and diffuse specular reflectance. Also, the sample is 

in contact with KBr as opposed to air, as would be the case in pure sample. This reduces 

the specular reflectance and increases the diffuse reflectance that will occur because the 

refractive index of the powdered sample is closer in value to KBr than it is to air [21],

The amount of dilution used throughout the majority of this thesis is 4 wt% powdered 

sample dispersed in KBr.

2.1.5.5.2 Particle Size and Grinding Effects

The particle sizes of the reference powder and the sample affect the amount and type of 

reflectance that occurs in a DRIFTS experiment. With larger particle sizes, the specular 

reflectance increases, reducing the amount of spectral information which can be collected 

on the sample [21]. Also, in order for the Kubelka-Munk function, described in section 

2.1.5.6.1, to be directly proportional to the concentration of sample, the particle size must 

be less than the wavelength of the radiation [38].

The general trend is that a decrease in particle size causes an increase in band height and 

a decrease in band width.

Some previous workers found that KC1 was the best alkali halide to use as the diluent if 

ground to <10 pm, giving the fewest interferences and highest reflectance [39,40]. 

Azambre etal. [34] also suggested particle sizes of about 10 pm for both the diluents and 

sample. However, they used KBr and not KC1. Xu et a l [41] proposed that the particle 

size must not be greater than 2.5 pm for accurate quantitative analysis since above this 

the particle size would be larger than or equal to the wavelength of radiation, which 

would cause a decrease in band intensity, an increase in background, broad peaks and 

sloped backgrounds.

TeVmcht et a l [35] found the most reproducible spectra for a bituminous coal when 

diluent KBr was ground to a particle size range of 10-20 pm in a ball mill. The coal was 

ground to match this particle size range then 1 wt% of coal was diluted with KBr before
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measurement. Other workers, such as Azambre etal. [34] have used different procedures 

including grinding by hand.

Studies have been carried out on how grinding affects the structure of the clay mineral 

kaolin. During grinding local heat generated produces enough energy to break hydroxyl 

bonds and inner-surface hydroxyls are lost before inner hydroxyls [42]. The reduction in 

structural hydroxyls causes a lower dehydroxylation temperature. The amount of 

adsorbed water on the clay increases with more grinding as the clay becomes hygroscopic 

[37,42,43]. Up to a certain time, grinding increases die surface area of the powder, as 

clay layers are delaminated. After this grinding time however, the particles agglomerate 

and surface area begins to decrease [37,43,44,45]. The cation exchange capacity of the 

clay also increases with grinding since protons that have migrated to the particle surface 

can be exchanged with other cations [37, 33,44]. Grinding is said to be less destructive 

if carried out under water and the effect of grinding is less on trioctahedral clays than 

dioctahedral clays [43].

The effects of grinding on the spectra of clays were highlighted by Frost et al. [42] and 

Aglietti [44]. They reported that the OH stretching band at 3670 cm'1 decreased with 

grinding while the OH bending band at 1640 cm'1 and the band due to adsorbed water at 

3400 cm'1 increased. Clegg [21] reported that in general, as the particle size was reduced, 

band heights increased and band widths decreased. Frost et a l [42] and La Iglesia et al. 

[46] reported small changes in the 1070-1150 cm'1 region when pressure was exerted on a 

sample, due to Si-O-Si in-plane deformation, i.e. structural disorder.

2.1.5.5.3 Sample Packing

The method used to pack powdered samples into sample cups can affect the band 

intensities in collected spectra. Samples can be packed under different pressures, altering 

the degree of scattering that occurs, and therefore changing the band intensities.

A compaction device is likely to give more reproducible results since it would allow 

more control over the amount of sample in the cup and therefore provides reproducible 

depth of penetration of radiation into the matrix. Also, uniform packing across the
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surface of the cup can be achieved with a packing device. Samples packed with even 

pressure on the whole surface produce a uniform scattering coefficient for the surface. 

This means that reproducible band intensities can be achieved [36,47], The duration of 

pressure on die sample during packing also affects the scattering coefficient and therefore 

band intensities, so this also must be controlled [47],

Conflicting reports about the effect of pressure on the scattering coefficient have been 

reported by Yeboah et a l [47] and by Krivacsy et a l [36]. The scattering coefficient 

determines the extent of interaction of the incident radiation with the sample before it 

emerges from the sample [47]. While Yeboah et a l reported that the pressure increase 

resulted in a decrease in the diffuse reflectance, band intensity and scattering, Krivacsy et 

al reported an increase in scattering with pressure. The pressures investigated by 

Yeboah etal. [47] were in the range 10-80 MPa, while Krivacsy et a l investigated the 

much lower 0-1 MPa range. Krivacsy et a l [36] reported that applying a pressure of 1 

MPa for 1 minute gave reproducible sample packing and fulfils the infinite thickness 

criteria of the Kubelka-Munk theory.

TeVmcht et a l [35] also used a compaction device to ensure repeatable packing density, 

as did Hrebicik e ta l for various chemicals including hydroquinone and nicotinamide 

[48]. Azambre et a l [34] also used a concentration of only 2 wt% of an anthron- 

anthracen mixture, and did not pack the sample but, instead, simply levelled the sample 

with a blade.

2.1.5.5.4 Sample Rotation

Velapoldi and Tvedt [49] devised an apparatus for rotating the sample during DRIFTS 

analysis to obtain more precise, representative spectra. They also highlight the time 

saving advantage of using this device since multiple spectra would not have to be 

collected and averaged to obtain a representative spectrum. With their device the sample 

is rotated through 360° in the time taken to collect a spectrum.
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2.1.5.6 Relationship between Diffuse Reflectance and Sample Concentration

2.1.5.6.1 The Kubelka-Munk function

If the physical characteristics of a sample are reproducible then, as the sample 

concentration increases, the amount of specular reflectance increases, causing a decrease 

in diffuse reflectance.

Kubelka and Munk developed a theory regarding the relationship between the light 

absorbed in a diffuse reflectance experiment and the concentration of an absorbing 

component [50, 51]. The Kubelka-Munk (K-M) function, F(R«>), is given by,

F(Ro) = (1- Ra,)2/(2R«o) = K/S,

where Roo is the diffuse reflectance spectrum of an infinitely thick sample ratioed against 

that of a non-absorbing reference. K is the absorption coefficient and S is the scattering 

coefficient.

The Kubelka-Munk (K-M) function gives a linear relationship between sample 

concentration and peak intensity in a DRIFTS spectrum provided that the scattering 

coefficient remains constant [31,40], and the amount of specular reflectance is 

negligible, as the concentration is varied. Since the scattering coefficient depends on 

particle size and packing density, these must remain as consistent as possible between 

samples for quantitative measurements [40]. The K-M function is only useful when 

samples are small absorbers and the concentration range is small since deviations from 

linearity can be found with highly absorbing samples and with high sample 

concentrations [31, 40], One reason for this deviation from linearity is that the 

penetration depth of the radiation is reduced when sample concentration increases. The 

K-M equation was derived for weakly absorbing samples, and so it was assumed that the 

penetration depth should remain constant. The K-M equation assumes infinite dilution of 

the sample in the non-absorbing matrix [33] and infinite thickness, relative to the depth of 

penetration of the infrared beam [31,40]. Strong bands are exaggerated and weak bands 

diminished with the K-M function [31,33].
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2.1.6 Other Infrared Techniques

2.1.6.1 Transmission Spectroscopy

Transmission spectroscopy is the classical infrared spectroscopy method. Radiation 

passes completely through the sample and a plot of difference in energy between the 

incident and transmitted beams against wavelength/wavenumber is recorded. The 

amount of infrared radiation transmitted, T, by a sample is given by,

T = I/Io

The intensity of infrared radiation incident on the sample and the amount of radiation 

transmitted by the sample are represented by Io and I respectively. Sampling techniques 

include mulls, potassium bromide (KBr) disks, free standing films and sodium chloride 

(NaCl) plates. For the analysis of clay minerals using transmission spectroscopy, KBr 

disks, and free standing films are used [20]. A disadvantage of the KBr technique is that 

the pressure required to prepare the disks can cause structural damage to the sample, 

spectral distortions, and chemical reactions [21].

The amount of sample analysed using transmission spectroscopy is less than that 

analysed using DRIFTS since the penetration depth of the infrared beam in DRIFTS is 

about 200 pm, approximately 10% of the total bed depth. The DRIFTS spectrum is 

therefore averaged over a larger, more representative mass of sample than the 

transmission spectrum is. The enhancement of absorbance bands in the DRIFTS 

spectrum, in comparison to the transmission spectrum, also makes DRIFTS a more useful 

technique [37],

2.1.6.2 Attenuated Total Reflectance (ATR) Spectroscopy

In ATR spectroscopy, a beam of radiation enters from a more-dense, higher refractive 

index medium such as zinc selenide or diamond, into the less-dense, lower refractive 

index medium of the sample. When the angle of incidence is greater than the critical 

angle (a function of refractive index) all incident radiation is completely reflected.

Before complete reflection occurs, the beam penetrates a very short distance beyond the 

interface into the less-dense sample. The penetration is typically at a depth of a few 

micrometers and is called the evanescent wave. The sample must therefore be flush with
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the surface. While the band positions in an ATR-IR spectrum are the same as in a 

transmission spectrum, the relative intensities of corresponding bands are different [28]. 

When using ATR to study clay minerals, a clay powder or paste must have good contact 

with the crystal. ATR would be a useful technique if the clay is already in a high water 

environment [20].

2.1.63 Photoacoustic Spectroscopy

Photoacoustic spectroscopy is a suitable technique for analysing highly absorbing 

samples and requires minimal sample preparation. The modulated IR radiation from an 

FTIR interferometer is focused on a sample contained within a chamber filled with 

helium or nitrogen gas. IR radiation absorbed by the sample converts into heat inside the 

sample, which diffuses into the surrounding gas. Pressure waves are generated and a 

sensitive microphone is used to detect the resulting photoacoustic signal [28],

As an alternative technique to DRIFTS, photoacoustic spectrometry has the advantages of 

reduced distortions in the spectra and more reproducible band intensities. Also, this 

technique does not require a powdered sample, so preparation time is reduced. It does, 

however, have a poorer signal to noise ratio than DRIFTS [52].

2.2 Thermogravimetric Analysis

Thermo gravimetric analysis (TGA) is a technique whereby the mass of a sample is 

monitored over time and temperature. A refractory crucible suspended from a sensitive 

recording balance contains the sample. A sample can be heated from room temperature 

to 1000 °C and the TG curve produced shows a decrease (or increase) in weight as the 

sample is heated. The TG data can be represented as a negative derivative (DTG) curve 

where the maximum corresponds to the maximum rate of mass loss as shown in Figure 

2.6. Information on the dehydration, i.e. loss of physisorbed water, and dehydroxylation 

of samples can be found and it can be used for the quantitative analysis of 

multicomponent mixtures [53]. TGA can differentiate between interlayer water and 

structural hydroxyl groups by the temperature at which the peaks appear. Since many 

minerals have constant mass loss over certain temperature ranges, amounts of mineral
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components in a mixture can be determined provided the minerals do not have 

overlapping mass losses.

T
Weight

TG curve
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DTG

dw
dT
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Figure 2.6: A weight loss curve (upper plot) and the negative first derivative of this 

curve (lower plot) from TGA.

Thermogravimetric data can be affected by the amount of sample, the depth of the sample 

bed, particle size distribution, and degree of order of the sample [53]. The heating rate 

also affects the shape of the DTG curve. With an increase in the heating rate, the 

resolution of the maxima decrease and maxima temperatures and size increase. These 

factors must therefore be taken into account in order to achieve reproducible data.

Other factors that should be considered are the use of inert atmospheres and the type of 

sample holder. Nitrogen and/or helium atmospheres, for example, may be used to 

suppress the oxidation of organic materials in clays and the sample holder must enable 

efficient removal of product gases close to the sample.
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2.3 X-ray Diffraction (XRD)

XRD is used to identify crystalline phases present in materials. The basic features of an 

XRD experiment are shown in Figure 2.7.

Detectordiffracted x-rays X-rays may be 
scattered or absorbed 
by the sample29

incident
x-rays

t
x-ray tube sample

Figure 2.7: Schematic illustration showing the basic features of an XRD experiment.

X-rays are produced when high speed electrons strike the atoms of another substance. 

Inside the X-ray tube the electrons are generated by a heated tungsten filament (the 

cathode), under vacuum. The electrons are then accelerated in order to strike a target, 

such as Cu (the anode). The accelerated electrons strike the inner more tightly bound 

electrons of the target and knock them out of their orbital positions, producing electron 

vacancies, which are then filled by higher oibit electrons dropping inwards. The higher 

orbit electrons dropping inwards produces an X-ray photon, the energy of which is 

proportional to the difference between the energy levels of the orbitals. This energy 

difference is dependent on the number of protons in the nucleus attracting the electrons. 

The wavelength of Cu Ka radiation is 1.5418 A.

When X-rays pass through sample matter, the radiation interacts with the electrons in the 

atoms, which results in scattering of the radiation. If the atoms are organised in planes 

(i.e. the matter is crystalline) and the distances between the atoms are of the same 

magnitude as the wavelength of the X-rays, constructive and destructive interference will 

occur [30].

Diffraction will occur if a beam of X-rays falls on a series of atom-bearing planes, each a 

distance d apart, at an angle 0, if the Bragg Law:
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nA, = 2d sin 0

(where X is the wavelength of the rays and n is an integer), is obeyed.

By rearranging this equation, the d spacing of clays can be calculated.

During an experiment the detector is rotated by a goniometer in order to reach the 

required angle ranges (2-75°).

In this thesis the samples analysed were either rock core slices or powders. Powders 

were compacted into an aluminium sample holder by the back packing method.

2.4 X-ray Fluorescence (XRF) Spectroscopy

The elemental composition of a sample can be determined by XRF spectroscopy. X-rays, 

produced from an X-ray tube, are directed towards a sample, where the x-ray is either 

absorbed by an atom or scattered through the material. When the X-ray is absorbed by an 

atom, electrons are ejected from the inner shells, creating vacancies which are then filled 

by elections from the outer shells. In this process, a characteristic X-ray is produced, 

whose energy is the difference between the two energy levels, and this is called X-ray 

fluorescence. Since each element has a unique set of energy levels, each element 

produces X-rays at a unique set of energies. It is therefore possible to non-destructively 

measure the elemental composition of a sample. The amount of fluorescence at a specific 

wavelength is related to the concentration of that element in the sample.

2.5 Chemometrics

Chemometrics is the use of calculations on spectral data to enhance quantitative analysis 

of samples. Due to the complexity of multicomponent spectra, peak overlap often means 

that univariate analysis, i.e. assigning an isolated peak to correspond to one component, 

will not give accurate results [55]. Multivariate analysis is used to give more accurate 

quantitative analysis, and linear calibration models are created by techniques such as 

classical least squares (CLS), inverse least squares (ELS), principal component regression 

(PCR) and partial least squares (PLS) regression. Using these models, the concentration 

of the individual components in the samples can be related to a measured response.
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2.5.1 Classical Quantification Methods
Classical methods of quantitative analysis are relatively straightforward and use Beer’s 

law,

A = abc,

where A is the sample’s absorbance at a specific wavelength, a is the absorptivity 

coefficient for the component, b is the pathlength through the sample, and c is the 

concentration. The classical methods, therefore, relate the spectral absorbances and the 

concentrations.

There are two classical quantification methods that use multivariate analysis, classical 

least squares (CLS) and inverse least squares (ELS). These models can predict the 

concentration of components in mixtures when there is overlapping of bands.

CLS was not used for the studies described in this thesis because it requires knowledge of 

the complete composition of the calibration and independent standards. Although this 

method may be able to accurately quantify components in a synthetic mixture, it would 

not be capable of quantifying the components in a real sandstone rock. CLS is also very 

susceptible to baseline effects since the equations assume that the response at each 

wavelength is due entirely to the calibrated components. This makes the CLS model less 

robust.

In contrast to CLS, ILS can calibrate very complex mixtures since the concentrations of 

all the components in the mixtures are not required. Only the concentrations of the 

components of interest are required. ILS, however, was also not used for the studies 

described in this thesis since it requires a carefully selected number of specific 

wavelengths to obtain an accurate calibration model. If too few wavelengths are chosen 

then the model does not contain enough information. However, if too many are chosen 

then the model will include spectral noise which may not be present in the spectra of 

unknown samples. This leads to a reduction in prediction accuracy for “unknown” 

samples. Specific wavelengths must also be chosen using ILS and these must not be 

collinear, i.e. care must be taken to choose wavelengths that do not all increase and 

decrease by the same amount, as the concentrations of the components in the mixture 

change.
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2.5.2 Eigenvector Quantification Methods

There are many different variations that make up a spectrum i.e. the components in the 

sample mixture, instrument variations, changing environmental conditions, and 

differences in sample handling. Eigenvector quantification methods such as PCR and 

PLS take account of all these variations by calculating the number of independent 

variations that occur in the spectral data. The largest variations in the training set would, 

hopefully, be due to different concentrations of the components. A training set is a 

collection of standards, i.e. mixtures of components, used for a calibration. PCR and PLS 

calculate a set of “variation spectra” that represent the changes in absorbances at all the 

wavelengths in the spectra of the training set. These “variation spectra” are then used 

instead of the raw spectral data for building the calibration model. Since, in most cases, 

there are fewer common variations than the number of calibration spectra, the number of 

calculations is reduced.

The “variation spectra” can be used to reconstruct the spectrum of a sample by 

multiplying each one by a different constant scaling factor and adding the results together 

until the new spectrum closely resembles the “unknown” spectrum. Each spectrum in the 

calibration set has a different set of scaling constants for each variation since the 

composition of each standard is different. The terms “variation spectra” and “scaling 

factor” are commonly substituted for “factors”, and “scores”, respectively [55]. The 

factors are related to the concentrations of the components in the standards and, therefore, 

can be used to predict the composition of “unknown” samples. The only difference 

between spectra of samples with different component concentrations is the fraction of 

each score.

The calculated scores are unique to each separate factor and training set spectrum, and 

can be used instead of absorbances in either of the classical model equations (CLS or 

ILS). Since the spectrum of the “unknown” is reduced from many wavelengths to a few 

scores, the ILS expression of Beer’s law is used to calculate concentrations due to the 

ability of ILS to calculate concentrations among interfering species. A large number of 

wavelengths from the spectra are used in CLS and this remains the case in eigenvector 

models since the factors are calculated from large portions of the spectrum, or the entire 

spectrum. Eigenvector models, therefore, combine features from both CLS and ILS
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together in the same calculation. This is the reason why eigenvector models such as PCR 

and PLS are more accurate and robust than the classical models.

2.5.2.1 Principal Component Regression (PCR)

In PCR, the factors and scores are used to calculate the calibration equations. A 

technique called principal components analysis (PCA) is used to calculate all possible 

variations in the spectra PCA requires a training set that contains the components of 

interest that are present in the “unknown” samples and the components of the training set 

must span the concentration ranges expected in the “unknown” samples.

The training set data is often mean centred before applying PCA. This means that the 

average spectrum from all the calibration spectra is calculated and subtracted from every 

calibration spectrum. The result is that subtle differences between the spectra are 

enhanced.

PCA is effectively a process of elimination. Each independent variation is iteratively 

eliminated from the calibration spectra in series, creating a set of factors that represent 

changes in the absorbances that are common to all. One set of factors and scores is 

produced for the calibration after the training set has been fully processed by PCA. The 

factors calculated are, therefore, not optimised for each individual component which may 

cause a reduction in the accuracy of the quantification of some components.

The second step in PCR involves the regression of the scores against the component 

concentrations. A regression method similar to ILS is used. Since the regression is a 

separate second step, the factors and scores are actually calculated independently of any 

knowledge of the component concentrations. This means that they represent the largest 

common variations among the spectra in the training set rather than necessarily 

representing variations related to changes in the component concentrations. While some 

factors will be related to changes in the component concentrations, more factors than are 

necessary are often found in PCR models because some factors are not related to the 

components of interest.
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2.5.2.2 Partial Least Squares (PLS) Regression

PLS is another spectral decomposition technique related to PCR. In comparison to PCR, 

however, PLS uses the concentration of components in the training set as well as the 

spectral data to generate two sets of factors and two sets of scores for each component in 

the model. The factors calculated are, therefore, optimised for each individual 

component which should increase the accuracy of the calibration. PLS is a one step 

process with no separate regression step, unlike PCR. The use of concentration data in 

the decomposition step means that the spectra containing higher component 

concentrations are weighted more heavily than those containing low component 

concentrations. The main idea of PLS is to get as much concentration information as 

possible into the first few factors.

The two sets of scores (spectral and concentration) calculated are related to each other 

through a type of regression and a calibration model can be constructed. The factors are 

directly related to the constituents of interest in PLS, whereas in PCR it is assumed that 

the largest variations among spectra in the training set are due to changes in the 

component concentrations. PLS is therefore less likely than PCA to correlate the factors 

to irrelevant information [55] and is more robust [56]. PLS is used throughout this thesis 

since it does not require specific wavelength selection, in fact, the whole spectrum can be 

used. Also, in PLS only knowledge of the constituents of interest is required and PLS 

can sometimes be used to predict samples with constituents not present in the original 

calibration mixtures, i.e. contaminants. This is useful when studying real sandstone rocks 

since not all the constituents present in the rock will be known [55, 57].

2.5.2.2.1 PLS-1 and PLS-2

There are two subtly different versions of the PLS algorithm, PLS-1 and PLS-2. Like 

PCR, PLS-2 calibrates for all the components simultaneously. One set of factors and one 

set of scores are produced for the calibration. The factors calculated by PCR and PLS-2 

are, therefore, not optimised for each individual component which may cause a reduction 

in the accuracy of the quantification of some components. PLS-1, on the other hand, 

calculates a separate set of factors and scores for each component. Using the optimum
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number of factors for each component in a mixture can improve the accuracy of the 

quantification of components.

Despite the longer calculation time required by PLS-1 in comparison to PLS-2, the 

increase in accuracy of quantification of components by PLS-1 makes it a more attractive 

option. PLS-1 is particularly useful for analysing systems that have component 

concentrations that are widely varied [55]. Since the components in the training set 

described in this thesis have veiy different concentration ranges, it is thought that PLS-1 

would most accurately quantify the components.

2.5.2.3 Comparison of PCR and PLS

A diagram highlighting the main differences between PCR and PLS is shown in Figure 

2.8. Some common uses for the two models are also shown.
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PCR PLS

1 set of factors and scores for 
calibration.

2 sets of factors and scores for 
each component in model.

Is more accurate and robust than 
PCR.

Factors directly related to 
components of interest.

Factors relevant to largest common 
variations among spectra.

Less complicated calculations so is 
faster than PLS.

1 step process decomposition and 
regression.

2 step process. PCA 
decomposition then regression 
against concentration.

Both can be used for very complex 
mixtures since only knowledge of 
components of interest is required.

Both can sometimes be used to 
predict samples with components 
(contaminants) not present in 
original calibration mixtures.

Figure 2.8: Diagram showing the main differences between PCR and PLS and some 

common uses for both.

2.5.2.4 Optimising PLS models

2.5.2.4.1 Selecting the number of factors based on PRESS 

Choosing the correct number of factors to use for each component in the model is 

important because changing the number of factors for a component alters the R2 value, 

i.e. the precision of the calibration. The earlier factors are most likely to be related to the 

constituents of interest while later factors have less information useful for predicting

52



concentration. It is also important to avoid overfitting, i.e. using too many factors or 

including noise factors, and underfitting, i.e. using too few factors resulting in a reduction 

in accuracy of predictions due to an insufficient number of terms being used to model all 

the spectral variations. To help in choosing the correct number of factors, the prediction 

residual error sum of squares (PRESS) can be calculated for every factor. This is 

calculated by predicting the training set itself against the model of the same training set 

using a certain number of factors. The sum of the squared difference between the 

predicted and actual concentrations gives the PRESS value for that model, then this is 

repeated for each factor [54]. A PRESS plot is a plot of these calculated PRESS values 

against the number of factors and generally the number of factors at the minimum of the 

PRESS plot is chosen as optimum.

2.5.2.4.2 Cross Validation

Cross validation is a method of estimating the performance of a model by using the 

standards in the training set as unknowns. One training set standard is removed from the 

set and the decomposition and calibration is performed on the remaining standards using 

one factor. The concentration of the removed standard is then predicted. This process is 

then repeated for each factor, before the standard is placed back into the training set and 

another removed. The whole process is repeated for each of the training set standards, so 

that the model is validated with a large number of "unknown" samples, i.e. each standard 

in the training set. Cross validation therefore gives a veiy good indication of the error in 

accuracy of the model, when used to predict “real unknown” samples [55].

2.5.2.4.3 Variance Scaling

Variance scaling is a pre-processing algorithm, often used with PLS, to give all 

information in the data equal weighting, so that the calibration errors are more consistent 

across all the components. Giving all values equal weighting emphasises small variations 

in the data. The response at each spectral data point is divided by the standard deviation 

of the responses of all training spectra at that point. The concentration data are scaled in 

the same way for each component. Variance scaling is most useful for analysing
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components with low concentrations that have spectral bands that overlap those of 

components with higher concentrations [55].

2.5.2.4A Pathlength Correction

The pathlength correction method, multiplicative signal correction (MSC) is often used 

with PLS and DRIFTS to compensate for differences in pathlength and sample thickness 

caused by particle size and scattering. It does this by correcting the spectra using the 

same “ideal” spectrum, which is calculated by taking the average spectrum from all the 

data. By using a regression of the original spectra and this ideal spectmm, a MSC 

corrected spectrum is calculated, where chemical information is preserved while 

differences between the spectra are minimised. MSC therefore removes the major source 

of random variance between sample spectra. It is only applicable to spectra that have 

fairly linear responses to concentration and to spectra of samples that have a similar 

composition. If the range of variability in the sample compositions is too great, then 

correcting to the mean spectrum will not be appropriate [55].
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3. Literature Survey

3.1 Identifying Minerals

3.1.1 Identifying Minerals using FTIR 

3.1J.1 Clay Minerals

The infrared absorption bands due to structural OH and Si-0 groups are used to . 

differentiate between clay minerals. Kaolinite has four OH stretching bands which are 

well resolved compared with those of smectite, and are sensitive to subtle changes in the 

environment, so have been used to study the interlayer region [58]. The broad OH 

stretching band of smectite at around 3430 cm'1 is due to H-O-H vibrations of absorbed 

water [20]. The position of this band for smectites depends on the ion type in the 

octahedral sheet coordinated to the hydroxyl group. The type of exchange cation will 

also affect the position of the OH stretching bands slightly since they have different 

hydration energies, valence charges and radii [20]. The amount of water absorbed in the 

interlayer space, shown by a peak intensity change, is also dependant on interlayer cation 

type although this intensity change is not linear. The polarising power of cations 

increases in the order K+<Na+<Ca2+<Mg2+. An increase in polarising power corresponds 

to a decrease in wavenumber position of the band, an increase in band intensity, and an 

increase in the amount of absorbed water. This is due to stronger hydrogen bonds 

between water molecules and the cations with higher polarising power [20].

Work by Ledoux and White [59] included the assignment of the OH stretching 

frequencies of kaolinite at 3695, 3670,3650, and 3620 cm"1 to positions in the crystal 

lattice. They did this by studying the shift o f these OH stretching frequencies upon 

formation of hydrogen bonds with intercalated species. They assigned bands at 3695, 

3670, and 3650 cm'1 to inner-surface hydroxyls and the band at 3620 cm'1 to inner 

hydroxyls. A definition of inner and inner-surface hydroxyls is found in section 1.4.2.1.1 

of chapter 1. Changes in position, intensity and width of the bands related to inner- 

surface hydroxyls give information about the interlayer space. Information could be
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found on structural disorder, interlayer bonding, and the identification and bonding of the 

guest species [58]. A reduction in intensity of the bands associated with inner-surface 

hydroxyls upon intercalation is due to the formation of hydrogen bonds between the 

hydroxyls of kaolinite and the intercalated molecule. Ledoux and White [59] reported no 

change in die 3620 cm’1 peak on intercalation since it corresponds to inner hydroxyls, 

which are inaccessible to intercalated molecules. Johnston et a l [58] reported the 

appearance of a new band corresponding to inner hydroxyls at 3628 cm'1 upon 

intercalation of hydrazine into kaolinite at reduced pressures, while at 1 atm of pressure, 

no change in the 3620 cm'1 peak was observed. They suggested that the reason for the 

band shift at low pressures was due to the NH2  group keying into the kaolinite surface, 

causing repulsion between the OH and NH2  groups. This can only occur with molecules 

small enough to penetrate into or through the siloxane ditrigonal cavity. Both Ledoux 

and White [23] and Frost et a l [24] also reported changes in the spectra of kaolinite and 

the intercalating formamide when intercalation has occurred. Similarly to Johnston et al. 

[58], Frost et a l [24] also found an additional band at 3628 cm'1 but assigned it to the OH 

stretching of inner-surface hydroxyls hydrogen bonded to the carbonyl group of 

formamide. Additional bands at 3606 cm'1 and 1595 cm'1, in the hydroxyl stretching and 

water bending region respectively, are said to be due to non hydrogen bonded water 

involved in the intercalated structure, indicating that water functions as a space filling 

molecule. Kristof et a l [60] suggested that the dehydroxylation mechanism of different 

kaolinites could be predicted from their IR spectra and that the split of the hydrogen 

bonded OH band at 3605 cm'1 into 3606 cm'1 and 3602 cm'1, indicated a multi-step 

dehydroxylation.

The shape and position of the OH bending and Si-0 stretching bands in the 

1300-400 cm'1 region are also used to distinguish different clays. A shift of the OH 

deformation mode from 915 to 905 cm'1 in a kaolinite spectrum, upon intercalation of 

formamide, is attributed to OH deformation of inner-surface hydroxyls hydrogen bonded 

to the formamide carbonyl group. The OH bending vibrations of dioctahedral smectites 

are seen in the 950-800 cm'1 range. Peaks at 916 and 844 cm’1 in SAz-1 

montmorillonites correspond to Al2OH and AlMgOH respectively and therefore indicate
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partial substitution of octahedral Al by Mg. In kaolinite, the AI2 OH bending bands are 

observed at 914 and 936 cm'1 corresponding to vibrations from inner and surface OH 

groups respectively. Smectites have only one broad Si-0 stretching band, and in 

montmorillonite this is at 1030 cm"1. Kaolinite on the other hand gives several, strong, 

well resolved bands in the 1120-1000 cm'1 region [20].

Since minerals have characteristic absorption bands in an FTIR spectrum, mineral 

identification is possible and FTIR is sensitive to both amorphous and crystalline phases 

[41]. Dispersive IR spectroscopy has also been used to characterise minerals but FTIR is 

found to be more sensitive since it enhances weak absorption bands [61].

3.1.1.2 Identifying Carbonate Minerals using FTIR

Calcite has three infrared red active modes in the mid-infrared region. The asymmetric 

stretch near 1420 cm'1 is the strongest broad band in the infrared spectrum of calcite.

This band also had the greatest spread of position when different workers results were 

studied. The spread in position of this band was around 30 cm'1. The sharp bands around 

875 and 712 cm'1 were much more precise in their positions with spreads of 10 and 

3 cm'1, respectively [62],

3.1.13 Identifying Feldspars using FTIR

The composition of plagioclase feldspars in terms of the relative amounts of albite and 

anorthite was studied by Thompson et al. [63] using the pressed pellet technique and 

transmission infrared spectroscopy. Differences in the number and positions of 

absorption bands with different feldspar compositions were found. The band at 645 cm*1 

was found to shift towards longer wavelengths as the sample increased in anorthite 

content and this band was not influenced by the temperature history of the sample.

The proportion of end-member feldspars, K-, Na-, and Ca-feldspar, in a sample was also 

studied by Matteson et al. [64], again using the pressed pellet technique and transmission 

infrared spectroscopy. The composition of samples was determined by estimating pure
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end-member spectra and then using a least-squares program to fit the spectra of samples 

to the spectra of these end-members. Matteson et a l found that bands in the spectra of 

the alkali feldspars were fairly insensitive to variations of Na and K. The shape of the 

bands did vary though with the degree of disorder, with band broadening occurring with a 

lower degree of structural order. A lower degree of structural order is thought to be due 

to a higher temperature of crystallisation. The shape of the bands in the spectra of the 

plagioclase feldspars also alter depending on the degree of disorder in the same way. 

However, similarly to Thompson et al. [63], Matteson et al [64] found that bands in the 

spectra of the plagioclase feldspars shift as a function of composition.

3.1.2 Identifying Minerals using TGA

Bish and Duffy [53] stated that dioctahedral phyllosilicates dehydroxylate at lower 

temperatures than trioctahedral phyllosilicates, because trioctahedral minerals have a 

more uniform charge distribution around the OH groups, thus stabilising them.

Thermogravimetric analysis was used by Breen e ta l  [65] to differentiate between 

different exchange cations in montmorillonite, since the exchange cations change the 

properties of the clay. A probe molecule, dimethylformamide (DMF), desorbs from 

montmorillonite at different temperatures depending on the exchange cation present,

420 °C for Mg24, 330 °C for Ca2+ and 220 °C for Na+. The thermal stability therefore 

decreases in the order, Mg > Ca > Na. The polarising power of the cations also decreases 

in the same order, with Mg2+ having the largest polarising power and therefore a greater 

ability to retain sorbed water [66]. This also implies that accumulation of the 

intercalating molecule is slower on Mg2+ since it is more difficult to displace the 

coordinated water from Mg2+ than from Ca2+ or Na+ [66]. Bish and Duffy [53] described 

an increase in physisorbed water lost when the exchange cation changed from Cs+ to Li+. 

They considered that it was the difference in hydration energies that accounted for this 

change. The stability of the acrylonitrile-montmorillonite complex investigated by Sohn 

et a l [67] was also found to be directly related to the polarising power of the interlayer 

cation. Bloodworth et a l [68] suggested that the dehydroxylation temperature of 

kaolinite was related to its degree of ordering and crystal size, with fine-grained, poorly
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ordered kaolinite giving a lower dehydroxylation temperature than coarse grained, well 

ordered kaolinite.

3.1.3 Identifying Minerals using XRD

Texts such as those by Brindley and Brown (1980) [69] and Moore and Reynolds (1997)

[19] review 1he identification of minerals using XRD. Identification of clay minerals 

using XRD is based on recording a series of diffraction patterns before and after various 

treatments. The positions, intensities, and shapes of the peaks in a diffraction pattern, and 

the changes in these peaks after various treatments, form the basis for all identifications. 

Common states to record XRD traces of samples are; in an untreated air-dried state, after 

treatment with ethylene glycol, and after heating the sample to various temperatures [70]. 

With the use of a diffractometer using Co Kcl radiation, illite can be characterised by the 

presence of peaks at about 10, 5, and 3.3 A.
A strong peak is found at 17 A in the XRD trace for smectite after glyeolation and the 

003 peak is present at 5.65 A. Typical peaks for kaolinte are found at 7.15 A and 3.58 A, 
whilst the 003 peak is weak [70]. Different peaks are associated with chlorite depending 

on the exact structure of the mineral since chlorites are a very diverse group of minerals 

[70].

3.2 Clay Organic Interactions

The adsorption of organic molecules between clay layers has received much attention in 

various industries for different purposes. The preferential adsorption of organic 

molecules by some minerals and not others can be used as a basis for identification and 

quantification of minerals. Potassium acetate, hydrazine, formamide and urea [23, 71,

60] have been studied for their ability to enter the gallery space of montmorillonite and 

kaolinite. There are however only a limited number of small polar molecules that can 

intercalate into kaolinite [58]. One reason why these interactions are important is 

because intercalated molecules in clays can be used as chemical probes. A mineral 

mixture or rock is exposed to the chemical probe and the interactions of the molecules 

with different clay minerals are exploited to detect the clay mineral content. This is
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possible since, when heated, the probe desoibs at a temperature characteristic of the 

minerals present [21]. This is particularly useful for mixtures where there is a low 

concentration of one component, where conventional methods would not be able to detect 

i t  Clegg [21] found dimethylformamide (DMF) and A^-methylformamide (NMF) to be 

effective chemicals to use as probes to determine swelling clays in the presence of 

nonexpanding minerals. Forsyth [57] evaluated several chemicals for their use as 

chemical probes to determine the surface mineralogy of rocks. Dimethylformamide was 

found by Forsyth [57] to be the most appropriate chemical probe to use due to its rapid 

intercalation between clay layers and its desorption temperatures being specific to clay 

mineral type. NMF and N, N-dimethylacetamide were found to intercalate directly into 

kaolinite, whereas DMF intercalated into kaolinite veiy slowly [65]. The adsorption of 

DMF by montmorillonite is faster than the adsorption of NMF since DMF does not form 

intermolecular hydrogen bonds and therefore has a higher vapour pressure [65].

3.2.1 Kaolinite-Organic Interactions

Formamide was used as a chemical probe by Churchman etal. [22] to differentiate 

between halloysite and kaolinite since the difference between the XRD patterns of the 

two kaolin minerals is subtle. They found that halloysite intercalates formamide much 

more rapidly than kaolinite does. If a mixture of the two was exposed to formamide for 

an hour, only the halloysite would be intercalated. The intensity of the XRD peak at 10.4 

A could then be measured to give the proportion of halloysite, while kaolinite would not 

expand beyond 7.2 A. Churchman et al. [22] also found that interlayer complex 

formation was accelerated in the presence of water and that more expansion occurs in a 

more crystalline halloysite and in a less crystalline kaolinite.

Ledoux and White [23] and Frost [24] agreed on XRD results for the d(001) spacing of 

kaolinite before and after intercalation with formamide to be 7.1 A and 10.1 A, 
respectively.

Frost et a l [24] stated that the intercalation process depends on whether the kaolinite is 

ordered (low defect) or disordered (high defect). Using the width of the d(001) peak in 

an XRD trace, they found that the intercalation of a low defect kaolinite with formamide
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did not change the defect structure whereas intercalation of a high defect kaolinite 

removed some of the defects. Similarly to Kristof et al. [60], Frost et al. [24] found that a 

higher amount of formamide can interact with the clay if water is present.

3.2.2 Montmorillonite Organic Interactions

Montmorillonites have high surface areas and therefore high cation exchange capacities, 

and so can adsorb polar organic molecules relatively easily, although this is highly 

dependant on the type of exchangeable cation on the clay surface [67] and the surface 

charge density [72]. The exchangeable interlayer cations are hydrated, the extent of the 

hydration depending on the nature of the interlayer cation and composition of the layers

[20]. The water that hydrates the interlayer cations can be replaced by polar organic 

molecules, or the hydration sphere can act as a water bridge between the cation and an 

organic molecule. Water surrounding the cations can also act as Bronsted acid sites since 

they can donate protons to organic molecules [25]. Bronsted acidity is highest when 

using small cations with a high charge [25]. Breen etal. [65] suggested that DMF is 

most likely to interact with montmorillonite through its carbonyl group either directly or 

through a water bridge, since oxygen is a strong electron pair donor and strongly 

coordinates to metal ions. Breen etal. [65] also stated that DMF-water clusters were 

likely to occur since the interaction between DMF and water molecules is stronger than 

the attractive forces between DMF molecules.

The intercalated organic molecule can adopt different arrangements depending on the 

size and shape of the organic cation as well as the charge density of the clay surface. If 

the charge density of the clay is low, then the organic molecule's preferred orientation is 

parallel to the clay layer. However, when the charge density increases, the preferred 

orientation becomes nearly perpendicular to the clay layer.

The use of DMF as a chemical probe with DRIFTS and PLS was investigated in this 

thesis in chapter 4. A three component mixture of kaolinite, smectite, and calcite, was 

exposed to DMF vapour for 2 days in the hope that the quantification of smectite would
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be improved. The presence of a strong DMF absorbance band in the spectrum of both 

smectite and kaolinite, however, meant that quantification was not improved. Despite the 

presence of the DMF band in the kaolinite spectrum, the XRD trace of kaolinite exposed 

to DMF indicated no expansion of kaolinite, so it is thought that DMF had intercalated 

into only the edges of the kaolinite layers.

3.3 Quantitative Analysis of Minerals

3.3.1 Quantitative Analysis using FTIR

The sensitivity of infrared techniques to detect low concentrations of components in a 

mixture was investigated by Madejova et a l [73], Using infrared transmission and the 

KBr pellet technique, it was found that in a kaolinite-smectite mixture, detection as low 

as 0.5 wt% kaolinite was possible. However, smectite could not be detected below 

40 wt%. Peak fitting was used and only a semi-quantitative estimation of kaolinite 

content in mixtures could be found due to overlapping peaks. XRD patterns of the 

mixtures indicated that XRD is a much more sensitive technique for the detection of low 

smectite concentrations, i.e. 1% kaolinite and 5% smectite concentrations could be 

detected. The strong 001 reflections in XRD patterns of mixtures were used for the 

identification of minerals. Madejova et a l [73] used both transmission and reflection 

geometries in XRD, but found more noise in transmission traces.

Peak fitting was also used by de la Fuente et a l [74] to quantify mixed-layer illite- 

smectite (I-S) in glass matrices using FTIR. XRD methods do not provide accurate 

results for the quantification of small amounts of minerals in the presence of glass, so the 

use of diffuse reflectance and transmission spectra for quantification, was investigated. A 

calibration was prepared by mixing known amounts of I-S with volcanic glass, and peak 

fitting, using the OH stretching band near 3620 cm'1, was applied. The detection limit for 

I-S using the transmission spectra was found to be around 2%. While de la Fuente et a l 

found both transmission and diffuse reflectance methods useful for quantitative 

determination, diffuse reflectance was thought to be better, provided samples were
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dehydrated, since sample preparation is faster, simpler, and it is more reproducible than 

the transmission method.

Again, infrared spectroscopy and peak fitting was used by Graham et al. [75], to quantify 

the quartz content in clays. By calcinating the clay, the crystalline structure of the clay 

was destroyed, while the quartz structure remained intact. This enabled peak fitting of 

the quartz band near 691 cm'1, since the band was no longer overlapped by clay bands. 

The percentage of quartz present in the clay was quantified with a maximum error for 

predictions of less than ±4.8 wt%.

Moudgil et a l [76] used DRIFTS to quantitatively analyse dolomite mixtures made up of 

three dolomites that differed only in surface chemical groups. Only one of the dolomites 

had a hydroxyl peak at 3619 cm'1 and die intensity of this peak in relation to the 

carbonate peak at 2900 cm'1 was used to obtain a linear calibration. The amount of this 

dolomite in a mixture of dolomites could then be determined from this calibration.

The composition of end-member, Na-, K-, and Ca-feldspars, were determined by 

Matteson et al. [64] using transmission FTIR spectroscopy, and a least-squares program. 

The end-member spectra were estimated by preparing a calibration using die FTIR 

spectra of synthetic mixtures, and using a least squares program. From the spectrum of 

an unknown sample, the composition of the unknown could then be obtained. The 

composition of a feldspar sample could be determined to within ±1.6 wt% for each of the 

end-member components using this technique.

3.3.2 Quantitative Analysis using XRD

A detailed review of quantitative analysis of clay minerals using XRD is given by 

Brindley and Brown (1980) [69].

XRD has been used by many for mineral identification and the intensity, shape, breadth, 

and position of peaks in a diffraction pattern give information about the character of a 

sample. Quantitative information can be found from the breadth of a peak, since clay 

minerals can be distinguished from other minerals present and also all members of the 001
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series for a specific clay mineral have the same breadth. XRD does, however, have 

limitations for quantitative analysis of mixtures since it cannot differentiate between 

components that have different surface chemical groups but the same crystal structure

[76].

Limitations of XRD for quantitative analysis include changes in reflection intensities 

caused by ionic substitution, preferred orientation in the sample mount, grain size of 

different particles, differential absorption of X-rays by various minerals in the mixture

[77], and homogeneity of the sample [78], Variations in mineral ciystallinity also reduce 

the accuracy of quantitative results using XRD since minerals must be crystalline for 

XRD analysis [41]. Hillier [70] stated that care must be taken to ensure homogeneity in 

clay mineral mixtures for XRD analysis, so methods which allow particle size 

segregation to develop as the sample is prepared should be avoided. This is because 

smectites tend to be finer than kaolinite causing them to be concentrated at the surface of 

a sample. If the clay mixtures were not homogeneous, the XRD peak intensities 

produced in a trace would not be proportional to the abundance of the mineral present 

throughout the mixture since the X-ray beam is diffracted mostly from the surface of the 

sample. The thickness of the sample must also be controlled so that it is thick enough to 

diffract the X-ray beam for the whole angular range. The type of minerals present and 

their concentrations affect the thickness required. Hillier [70, 79] also stated that the area 

rather than height of XRD peaks should be measured since clay minerals have natural 

variation in peak shapes and widths.

Ouhadi et al. [80] highlighted the problems associated with quantification of minerals 

based on the peak areas or heights alone. Differences in the mass absorption coefficients 

of different minerals means that using the peak areas or peak heights alone is not a 

reliable quantitative method. Ouhadi et al. suggested that a more reliable quantification 

method involves studying not only the major reflection lines but also other reflection 

lines of minerals, taking into account the impact of clay microstructure.

If orientation of the clay mineral on the sample mount is perfect, then only the d(001) 

spacings contribute to the diffraction pattern [19], Achieving random orientation is
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important for quantitative analysis, since it allows correct relative intensities to be 

obtained in the diffraction pattern [81]. This is difficult, however, since clays are platy in 

character [19]. An XRD pattern from a randomly orientated powder can give a rough 

estimate of the amount of clay and non clay mineral present [19].

Procedures to achieve random orientation are discussed by Bish and Post [82]. Methods 

include side or back packing sample mounts, using filler materials that surround the 

particles, or sprinkling the powder on a mount coated in a viscous material [82]. Srodon 

et al. [78] used side loading as it provided reproducible density, and rigid samples with a 

lack of preferred orientation. They produced reproducible XRD patterns with this 

technique, obtaining a linear relationship between wt% kaolinite and intensity of the 

kaolinite reflections 001, 020, 060, which is only possible with a random orientation. 

More complicated methods to achieve random orientation include ejecting the sample 

into a filter in the tubular aerosol suspension method, wetting the particles suspended in 

water with a liquid immiscible in water to form spherical bodies [82], and spray drying, 

where an aqueous suspension of the sample is sprayed into a heated chamber where it 

dries in spherical agglomerates [81].

Although spray drying minimises the problem of preferred orientation, the equipment is 

expensive and product recovery only 50%, since large droplets do not diy before reaching 

the base of the chamber. Hillier [81] designed a cheaper instrument and developed an 

airbrush technique where small and uniform droplets can be obtained. Compressed air 

and the water/sample slurry are mixed internally and then sprayed with an airbrush that 

acts as a miniature spray gun. Wet grinding of the sample was preferable to dry grinding 

to reduce the particle size, as it results in a narrow grain side distribution [78]. Srodon et 

al. [78] suggested grinding in methanol to reduce drying time and prevent swelling of 

minerals. In spray drying, however, the sample can be ground in water since a 

water/sample slurry is required. A small amount of polyvinyl alcohol (PVA) can be 

added to give strength to the dried product. However this is often not required with high 

clay content samples. Finer grained samples and those containing a high swelling 

mineral content require more PVA. Smectites are difficult samples to spray dry due to
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their high water content, and the small irregular shape of the droplets they form. Despite 

this, Hillier [81] managed to achieve 70% product recovery using this technique. The 

effectiveness of spray drying as a technique to achieve random orientation was tested by 

comparing to freeze dried samples. Spray drying gave better quantitative results with no 

preferred orientation.

Non clay minerals present in a mixture will mask some of the 001 reflections and could 

destroy the preferred orientation so that identification of clay minerals would be difficult. 

By analysing only the small size fraction, much of the non clay minerals can be removed.

Kahle et al. [79] described four general methods for quantifying clay minerals using 

XRD. In the method of known additions, known amounts of a mineral present within the 

sample are added to the sample, and then the intensity of a suitable peak plotted and 

extrapolated to zero in order to calculate the original content of the mineral. In the 

absorption-dififraction method, the intensity of a diffraction peak associated with a 

particular mineral in the trace of a mixture, and the intensity of the same peak in a trace 

of the pure mineral, are ratioed and the weight fraction of the mineral calculated. The 

full-pattem method uses all the data in a given pattern and Rietveld method to quantify 

minerals. However, this method requires that the crystal structure of the mineral is 

known. The quantification method used by Kahle et al. involved the mineral intensity 

factors (MDF) in combination with the so-called 100% approach. The MIF describe the 

relationship between the intensity ratio of specific XRD peaks and the weight fraction 

ratio of two phases in a mixture. The 100% approach means that the sum of all phases 

quantified in a sample is 100%, so the method assumes that all the mineral phases in a 

mixture have been identified.

The Rietveld (1969) quantitative XRD method was used by Ward et al. [77] to 

quantitatively predict the mineral content in powdered samples. This method relies only 

on information about the crystal structure for the minerals analysed. Rietveld parameters 

cause variations in the intensity of the XRD data, and these are adjusted theoretically, to 

fit a calculated profile to the measured pattern. The calculated pattern is adjusted by 

least-squares fitting to obtain the best profile match with the experimental pattern. The
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Rietveld scaling factors give the mineral weight fraction of the sample. SIROQUANT is 

a software system which can quantify up to 25 minerals in a mixture from a powder XRD 

pattern using Ihe Rietveld method. It can also be used to develop reference patterns so 

that minerals with only partly known or poorly developed crystal structures can be used 

in the analysis and this is particularly useful for clay minerals [77]. Normative analysis 

can also be used to obtain quantitative results by determining normative mineral 

percentages from a rock's chemical composition. This technique has been more 

commonly used to characterise igneous rocks, than sedimentary rocks due to the 

uncertainties in allocating several elements to different minerals in sedimentary materials. 

The use of a multi-option computation method, called SEDNORM, allows more 

flexibility, with elemental allocations varied to suit the material under study. Ward et al.

[77] compared the results of point counting, SIROQUANT and SEDNORM and found 

relatively poor correlations. However they suggested that SIROQUANT offers the most 

direct method for quantification.

Oriented aggregate techniques were developed because bulk sample powder XRD 

patterns were seen by some to be inadequate at identifying clay minerals and in particular 

expandable lattice minerals. However, only a selected size fraction of the bulk sample is 

studied with oriented aggregate techniques [83]. Ruan etal. [83] prepared orientated 

aggregate samples by saturating the clay with ethylene glycol and heating to collapse any 

expandable lattice structures. They compared the results of a quantitative analysis of clay 

minerals using the Rietveld-based SIROQUANT and oriented aggregate techniques and 

found them to be in agreement.

Srodon et al. [78] stated that different classes of XRD reflections have different 

sensitivities to chemical and structural variations. Srodon et al. chose reflections 

insensitive to structural and chemical variations, instead of whole-pattem fitting to obtain 

better quantitative results. In the quantitative XRD procedure used by Srodon et a l, the 

samples were finely crushed and thoroughly mixed to limit the variations in diffraction 

peaks from sample to sample. Due to the crushing and mixing required, it is a technique
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used to determine the bulk mineralogy and cannot distinguish surface mineralogy from 

bulk.

3.3.3 Other Techniques

Evolved water analysis (EWA) is based on the principal that clay minerals have different 

amounts of water bound in their structure, which are released when the mineral is heated 

during thermogravimetric analysis (TGA). Heating to about 200 °C releases absorbed 

water, while further heating to about 900 °C releases structural water [84], i.e. water 

vapour evolved from the dehydroxlyation of a mineral. Bloodworth et a l [68] used 

evolved water analysis to determine kaolinite concentrations as low as 0.25% in artificial 

mixtures of kaolinite and quartz. Clay minerals have distinctive patterns of water 

evolution and the amount of water produced and the temperature at which it occurs can 

give the concentration of different minerals in a mixture.

Evolved gas analysis (EGA) is similar to EWA, and was used by Morgan [85] to quantify 

minerals in natural mineral mixtures. The decomposition of individual minerals could be 

studied and the quantification of minerals in mixtures could be found by measuring the 

evolution of water, carbon dioxide, and sulphur dioxide. The concentration of the three 

volatiles was measured as the temperature of the sample was increased. The evolution 

profiles were integrated to calculate the total weight of volatile.

A limitation of TGA highlighted by Clegg [21] is that desorption of DMF from Mg 

exchanged montmorillonite, in a mixture with quartz, could only be detected when 5 wt% 

or more Mg exchanged montmorillonite was present. Mass spectrometry i.e. analysis of 

the evolved gases, however, can detect Mg exchanged montmorillonite in mixtures with 

quartz, kaolinite, illite and chlorite at concentrations as low as 2 wt% [57].

3.4 Quantitative Analysis of Rocks

Determining the properties and composition of rocks is important to many industries 

including the oil, water, construction and ceramics industries. Generally for sedimentary 

rocks, it is the quantification of clays that is of particular importance because their
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presence provides information about past processes affecting the rock and because of the 

unique properties of clays, such as swelling, fine particle size, and high chemical 

reactivity. Due to the fine particle size, plate shape, and chemical and structural 

variability of the clays, their quantification in rocks remains challenging. Many different 

techniques have been used to quantify minerals in rocks, however where clays are 

involved, XRD remains the dominant technique [86]. Sedimentary rocks were 

traditionally analysed using point counting techniques with optical microscopy, however 

XRD is now more commonly used for mineral identification as it does not suffer from the 

same heterogeneity problems that point counting does [77]. Some examples of different 

techniques used by different investigators to quantify minerals in rocks are described in 

this section.

Thomley and Primmer [87] combined EWA and TGA with XRD for a more quantitative 

analysis of mineral content in artificial mixtures of minerals than each technique alone. 

Artificial mixtures were made up of kaolinite, illite, and chlorite mixed with quartz to 

give mineral concentrations typical of those found in reservoir sandstones. Whole-rock 

XRD is widely used but can only give semi quantitative results for the abundance of clay 

minerals, especially in sandstones where the mineral content is low [87], Thermal 

methods have also been used for quantitative analysis of clay minerals although clay 

minerals in sandstone cannot be resolved with thermal methods alone [87]. Thomley and 

Primmer [87] studied clay mineral dehydroxylation using TGA in order to quantify the 

total hydroxyl content of clay minerals in a whole rock sample. Since most reservoir 

rocks contain carbonate minerals, evolved water was measured using an infrared water 

vapour analyser, otherwise carbon dioxide evolution would be detected, and weight loss 

data would be invalid. These data were then combined with those from separated clay 

sized fraction XRD traces to assign amounts of structural water to each clay mineral. 

Individual clay mineral abundances in the whole rock could then be calculated.

Thomley and Primmer [87] applied the technique to quantify the illite and kaolinite 

content of a sandstone reservoir, and therefore its permeability characteristics. They 

found that the lower porosity of the water zone in comparison to the oil zone, in the 

sandstone reservoir studied, did not correspond to an increase in illite content but instead
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to an increase in quartz content. The increase in quartz content narrowed the pore throats 

so that illite, the concentration of which remained constant, occupied less space and could 

bridge the narrow pores, reducing permeability.

Jianhong et al. [84] also combined EWA and XRD to quantify illite and examine illite 

distribution in the Morecambe Gas Field, East Irish Sea. Given that permeability 

decreases with an increase in illite concentration, the permeability of the sandstone was 

also found. These techniques were combined by measuring the amount of structural 

water using EWA, and the proportions of different clay minerals present using XRD, in 

order to determine the percentage of each clay mineral present in the rock sample. XRD 

was able to determine the ratio of feldspar to quartz in the reservoir sandstones.

In work by Ozer et al. [88] the physical structure, together with the chemical and mineral 

composition of a phosphate rock, were determined using techniques including chemical 

analysis, TGA, XRD, and scanning electron microscopy (SEM). The TGA results 

showed weight loss due to water desorption, and separation of other volatile components 

such as organic matter, up to 617 °C. From 617-767 °C the negative first derivative of 

the weight loss curve from TGA showed a peak due to the evolution of CO2  from the 

decomposition of calcium carbonate. XRD results identified the main minerals present in 

the rock while SEM results showed that the rock had two phases, one phosphorus rich 

and the other calcium rich.

Srodon et al. [78] used XRD to quantify the mineral content of both synthetic mineral 

mixtures and natural shale samples, describing the errors encountered and choosing the 

optimum procedure. The 060 reflections were selected rather than the basal reflections 

(001), since they are relatively strong, less sensitive to defects, and the reflections of 

different clays only have partial overlap. The basal reflections (001) on the other hand 

have variable intensities, even in kaolin minerals, which have a stable chemical 

composition and orientation, and do not have mixed layering. The mineral content of the 

samples was calculated using an equation that relates wt% of mineral to the intensity of a 

reflection corresponding to that mineral, in the XRD pattern of a mixture. All minerals
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were therefore quantified individually. The deviation of the sum of the measured 

minerals from 100% was used as a test of the robustness of the analysis. Any deviation 

of the sum from 100% may be due to the presence of amorphous material. The results for 

real shale rock samples indicated a variation in quartz content. Srodon et a l found that 

rocks with low quartz content were rich in either kaolinite or 2:1 Fe clay, while rocks 

with high quartz content were rich in 2:1 Al clay.

Hillier [70] has described two approaches for quantitatively analysing minerals such as 

illite, smectite, kaolinite and chlorite using XRD. One approach involved using a clay 

fraction that had been removed from the rock, usually prepared into an orientated layer of 

clay on a substrate. For quantitative analysis of sandstones, Hillier [70] used a size 

fraction of <6 pm and suggested that minimal grinding of the sandstone should be carried 

out to release the clay minerals. The second approach used a bulk or whole rock sample, 

prepared into a random powder. The data obtained from the clay fraction approach was 

used to get detailed information on the clay minerals present, whereas from the bulk 

sample approach, the amounts of different clay minerals present could be determined. 

Hillier [70] discussed the use of reference intensity ratios (RIR) to make quantitative 

analyses without having pure mineral specimens. RIRs for 001 clay mineral peaks can be 

calculated using NEWMOD software [89,90]. Using the internal standard method and 

the RIR method, each mineral was quantified independently.

Mandile et a l [91] used the Rietveld XRD method and the SIROQUANT program to 

determine the mineral and organic content of a rock quantitatively. They found that an 

organic “hump” was present in the XRD traces of organic rich rocks and, if ignored, then 

the higher the organic content, the more the determined percentages of mineral 

components were overestimated. SIROQUANT was used to determine the organic 

content, from which the mineral content could be deduced.

SEM was used by Morad et al [92] to study feldspars. The kaolinisation and illitisation 

of feldspars in sandstone was studied. Kaolinite can replace feldspar to various extents 

and illite can fill dissolution voids and can also occur as coatings on feldspar grains.
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Morad et al. found that when kaolinite and illite cements contain kaolinised and illitised 

feldspars, respectively, the alteration had occurred under one set of diagenetic conditions. 

The feldspars are decomposed into soluble ions and/or into Si-Al chains before kaolinite 

or illite are precipitated. It was found that when samples were cleaned in an ultrasonic 

water bath, the hair-like illite substantially disappeared. It is suggested that this illite in 

hydrocarbon reservoirs might migrate during the production of oil and gas and get 

trapped in pore-1hroats, building an impermeable filter cake [92].

The quantification of minerals in carbonate rocks was investigated by Matteson et al. [93] 

using transmission FTIR spectroscopy and the spectral fitting programs; Least-Squares 

(LS) and Bounded-Least-Squares (BLS). The standards contained ten minerals, 

including quartz, feldspars, clays and carbonates. Matteson et al. found that the 

carbonate minerals from different locations showed natural variability which could be 

observed as slight differences in their IR spectra. It is therefore reported that it is 

important to establish a large data base of not only a variety of mineral standards but also 

a large number of standards from different locations. By comparing the predictions 

found, with results derived from chemical analysis, Matteson et al. report that the 

maximum prediction error for the carbonate minerals was ±5 wt%, and for all the other 

minerals, ±4 wt%.

In this thesis DRIFTS was used with the chemometric technique, partial least squares 

(PLS) regression to quantify minerals in both synthetic mixtures and in sandstones.

3.5 Chemometrics

3.5.1 Partial Least Squares (PLS) Regression

The chemometric techniques, PLS and PCR are described in section 2.5 of chapter 2.

The pioneering work in PLS was done in the late sixties by H. Wold. Geladi et al. [56] 

have produced a tutorial describing the PLS method.
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3.5.1.1 Quantification using PLS and FTIR Spectroscopy

Clegg [21] applied PLS modelling to DRIFTS spectra to quantify the mineral content of 

synthetic mixtures and rock samples. Clegg [21] developed a PLS model using a 21 

standard training set and 7 mineral components. The components in synthetic mixtures 

were quantified using this model. The model was then used to quantify minerals in 

sandstone rocks. The model that gave the most successful predictions combined 

montmorillonite and illite to represent one component, since their DRIFTS spectra are 

veiy similar.

The method used by Clegg [21], whereby pure component mixtures are prepared and 

used as calibration standards, is a common approach to the calibration of a multivariate 

model. Hughes etal. [37], however, built a calibration model to determine cement 

composition, from direct measurements on a large set of cements. The method used by 

Clegg [21 ] could not be used for cements because of the difficulty in obtaining both pure 

components and also components with the same particle size distribution as the cements 

under study. A PLS model was developed with the spectral region sensitive to 

atmospheric carbon dioxide (2390-2290 cm’1) removed, with resolution reduced to 8 cm'1 

and with baseline shifts removed by using MSC. All components were predicted to 

within ±5 wt% of the value measured by bulk chemical analysis.

The use of PLS and the direct measurement of the DRIFTS spectra of a large set of soil 

samples was used by Janik e ta l  [54] to quantify the soil components. GRAMS software 

was used for PLS manipulation. The optimum spectral region was chosen and the spectra 

pre-processed with baseline correction and mean centring. The nonlinearity of the 

regression meant that a large number of factors was required, introducing problems 

associated with overfitting. Janik et al. proposed die use of a locally linear modification 

to the infrared PLS procedure, where the full concentration range was broken up into two 

or three subsets, with samples from each subset having relatively close mineralogy and 

spectral features. This eliminated the influence of samples with widely different 

compositions from the sample being analysed, and produced more accurate predictions.
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Jiang et al. [94] proposed that the selection of specific wavelength intervals in a spectrum 

used to build a PLS model, could improve the performance of the model. In this method, 

uninformative spectral regions contained in the full spectrum were ignored. Useful 

spectral intervals could be located by using the moving window partial least-squares 

regression (MWPLSR) procedure. A less complex PLS model was produced, since the 

selection of specific wavelength intervals reduced the size of the calibration set. PLS 

models could be built for each interval separately and then combined, or one model could 

be built from the selected intervals.

3.5.1.2 Quantification using PLS and MS

Forsyth [57] applied PLS to mass spectrometry data to quantify the proportion of each 

mineral in a mixture. A training set with 6 mineral components was prepared and 

exposed to DMF vapour. The DMF acted as a probe molecule, intercalating the clay 

mineral layers. The use of the TIC (total ion current) profile, the m/z = 73 DMF parent 

ion, and the m/z =18 ion were investigated for predicting clay minerals in rocks. Forsyth 

[57] found that the m/z =18 ion gave the greatest promise for prediction of smectite in 

rocks. However, the prediction of illite was not successful.

3.5.1.3 Quantification using Other Methods

Xu et al. [41] discussed the application of a non-negative least squares (NNLS) method 

to the FTIR spectra of minerals predominantly found in an oil well, to calculate the 

mineral composition of a core sample. Unlike traditional least squares models, NNLS 

does not allow negative concentrations to be calculated. Xu et al. [41] also investigated a 

"linear background subtraction procedure" (LBSP) to minimise the variation between 

spectra caused by differences in the background. The use of LBSP was found to improve 

the accuracy of quantitative results. Unlike Jiang et al. [94], Xu et al. [41] did not find 

that the use of specific spectral regions significantly improved the accuracy of calculated 

mineral percentages. Jiang etal. [94] however used MWPLSR which selected veiy 

narrow useful wavelength regions, while Xu et al. [41] used LBSP and selected a very 

broad useful wavelength region.

74



Artificial neural networks (ANN) can be used for the interpretation of spectroscopic data 

since they are capable of pattern recognition and can model non-linear variations. ANN 

are however complex and difficult to interpret [95],

Neural networks are a system of interconnected nodes, each one being a processing unit 

which combines information being inputted to give a single numerical output. The 

transfer function is a non-linear function and gives the strength of the output signal from 

the weighted sum of the input signals. A full network is capable of giving a fast response 

to input signals, filtering out noise in the input data and can make predictions for new 

situations. It does however require much data and long calibration times. In order to 

reduce the computation time, the number of variables in FTIR spectra must be reduced 

before being inputted to neural networks. This is achieved using PCA so that information 

is reduced to a set of principal components [96]. Fletcher et al. [96] used artificial neural 

networks to estimate cement quality, by detecting ageing and contamination of a cement 

and also testing batch to batch variation.

3.5.1.4 Comparing Results from using Partial Least Squares (PLS) Regression and 

Artificial Neural Networks (ANN)

PLS is easier to use than ANN, but is not as capable at modelling non-linear variations. 

Luinge et al. [95] compared ANN to PLS, and found that both show similar results when 

predicting functional groups from the spectra. However, the ease of use of PLS and its 

ability to detect spectral outliers, makes it more attractive as a routine tool.

The use of ANN and PLS were also compared by Yang et al. [97]. The predictive ability 

of the two calibration methods was compared when synthetic data sets showed non-linear 

behaviour, i.e. band shifts with increasing concentration, a non-linear relationship 

between peak height and concentration, or a combination of both types of nonlinearities. 

The results from both calibration methods indicated that when the combination of both 

types of nonlinearities was present in the data set, the predictions were the least accurate. 

Overall Yang et al. found that the ANN calibration method performed better than the
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PLS calibration method for these nonlinear data sets. However, the computation time 

was much less for the PLS method and the PLS method was much easier to use.

Since the interpretation of IR spectra can be time consuming and is dependant on the 

knowledge of the operator, techniques such as ANN and PLS have been investigated for 

their use in recognising characteristic features in IR spectra. Visser et a l [98] found that 

the recognition of band shapes and patterns in IR spectra by spectroscopists was more 

accurate than using ANN and PLS. Results using ANN and PLS were, however, 

improved when specific spectral intervals were analysed.
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4. Results - Quantification of small amounts of swelling 

mineral, smectite, in synthetic mixtures using Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy 

(DRIFTS)

4.1 Determining low amounts of smectite

It is important to determine low quantities (0.1-30 wt%) of smectite in mixtures with 

kaolinite since, in industry, processing problems can arise if small amounts of swelling 

material are present with non-swelling material. Processing problems are caused by the 

difference in surface area between the non-swelling kaolinite (15-30 m2 per gram) and 

swelling mineral, smectite (700-850 m2 per gram). This surface area issue is a problem 

for the coatings industry, as well as for reservoir rock analysis, since the proportion of 

swelling minerals present in the rock will influence the composition of treatment fluid 

injected. DRIFTS was used in the current study since it requires only a small amount of 

sample, is fast, and is a relatively inexpensive technique compared to XRD. In this study, 

synthetic mixtures of smectite, kaolinite, and an additional mineral, calcite, were 

prepared and the powerful spectral decomposition technique, partial least squares (PLS) 

regression, used to quantify the minerals in “unknown” samples.

4.2 Experimental

4.2.1 Equipment

A spectrum of each standard was collected using two different spectrometers and using a 

different sample preparation method on each. At Sheffield Hallam University (SHU) a 

Mattson Polaris FTIR Spectrometer (manufactured by Thermo Electron Corporation Ltd.) 

with a Mercury Cadmium Telluride (MCT) detector was used to collect spectra of 

standards, while at Schlumberger Cambridge Research (SCR) a Nicolet NEXUS FTIR 

Spectrometer (manufactured by Thermo Electron Corporation Ltd.) equipped with a
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pyroelectric triglycine sulphate (DTGS) detector was used. Fitted to the Mattson Polaris 

FTIR Spectrometer was a Graseby-Specac Selector DRIFTS accessory (manufactured by 

Specac Ltd.) while fitted to the Nicolet NEXUS FTIR Spectrometer was a Spectra- 

Tech™ Collector™ DRIFTS accessory (manufactured by Thermo Electron Corporation 

Ltd.).

A ball mill was used to grind the diluent KBr powder for samples, the spectra of which 

were collected at SCR. The ball mill used was a Retsch MM2 grinder, with two tungsten 

carbide grinding pots (internal volume of 10 ml) and two tungsten carbide grinding balls 

(diameter of 12 mm) for each pot. Batches of 5 g of KBr were ground for 5 minutes at a 

frequency of 45 Hz.

4.2.2 Spectral Collection

The instrumental parameters for the Mattson Polaris FTIR Spectrometer were as follows: 

Number of scans = 276 

Resolution = 4 cm'1 

Gain = 1

Velocity = 1.264 cm s'1 

Iris = 85%

The instrumental parameters for the Nicolet NEXUS FTIR Spectrometer were as follows: 

Number of scans =176 

Resolution = 4 cm'1 

Gain = 8

Velocity = 0.6329 cm s'1 

Data spacing = 1.928 cm'1

The Graseby-Specac Selector DRIFTS accessory fitted to the Mattson Polaris FTIR 

Spectrometer was adjusted manually to maximise the throughput radiation to reach the 

detector, prior to spectral data collection. Difficulty in aligning the beam in the Nicolet
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NEXUS FTIR spectrometer at SCR meant that a higher gain was required to obtain 

spectra. The number of scans and velocity used for each spectrometer were chosen in 

order to obtain a spectrum within a few minutes with a high signal-to-noise ratio.

Slightly lower quality spectra were obtained using the Mattson Polaris FTIR 

Spectrometer compared with using the Nicolet NEXUS FTIR spectrometer so more scans 

were collected on the Mattson Polaris FTIR Spectrometer in order to improve the signal- 

to-noise ratio in the spectra. Before spectral collection in both instruments, the chamber, 

containing the sample cup, was purged with dry, CO2  free air for 1 minute, and then the 

chamber was purged continuously during data collection. FIRST software was used to 

collect spectra on the Mattson Polaris FTIR Spectrometer, while OMNIC software was 

used to collect spectra on the Nicolet NEXUS FTIR Spectrometer. OMNIC software was 

used to ratio each sample spectrum against a pre-recorded KBr spectrum background.

4.2.3 OMNIC and GRAMS Software

OMNIC software was used to view, reprocess and subtract spectra. Turboquant software 

is part of the OMNIC package and can be used to pre-process OMNIC spectra. It can 

also be used to quantify components present in the mixtures using PLS analysis.

GRAMS (Grams32-PLS-PLUS IQ, Galactic Industries Corporation, NH, USA) is a 

different software program that can also pre-process the same spectra and be used for 

PLS analysis.

4.3 Reproducibility Studies

4.3.1 Introduction

Prior to deciding upon a procedure for sample preparation for use on the Mattson Polaris 

FTIR Spectrometer, studies were carried out on kaolinite and SAz-1, each diluted in KBr, 

to measure the reproducibility of the DRIFTS spectra collected.
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4.3.2 Turning Sample Cup

A spectrum of 5 wt% kaolinite in KBr was collected. The sample cup was then turned 

90°, and another spectrum collected. A further two spectra were then collected at 180° 

and 270° from the original position. Figure 4.1 shows the different band intensities found 

in the OH stretching region of the collected spectra when the cup was in different 

positions. The differences observed in the band intensities could be due to a rough 

sample surface, uneven cup packing, an inhomogeneous sample/KBr mixture and/or 

inhomogeneous particle sizes.
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Figure 4.1: DRIFTS spectra of 5 wt% kaolinite in KBr. The four individual spectra 

were collected after the sample cup had been rotated 90° from the position at which 

the previous spectrum had been collected.

4.3.3 Compaction in Sample Cup

In the first compaction method, all 0.32 g of a 5 wt% kaolinite in KBr mixture was placed 

in the cup and pressure was applied on a glass slide to compact the sample. Using this 

method, however, some sample was lost from the cup during compaction resulting in 

different quantities of mixture being present in each cup. Four samples were prepared in 

this way and spectra collected, shown as black spectra in Figure 4.2. A wide range of

80



peak intensities were observed in the spectra. It was discovered that a double packing 

method gave more reproducible spectra, again when four samples were prepared, and 

these are shown as pink spectra in Figure 4.2. In the double packing method around 75% 

of the 0.32 g sample/KBr mixture was placed in the cup and a glass slide used to compact 

this before the remaining mixture was added and compacted.
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Figure 4.2: DRIFTS spectra of 5 wt% kaolinite in KBr. Four spectra were collected 

after the sample had been single packed (black) and four spectra were collected 

after the sample had been double packed (pink).

4.3.4 Differentiating Sample Concentration by Peak Intensity

Spectra of 4, 5, and 6 wt% kaolinite in KBr were collected to investigate how easily 

different percentages could be distinguished and to determine whether small weighing 

errors would significantly alter the peak intensities. Four spectra were collected of each 

percentage, with the sample cup emptied and repacked between measurements. The 

repeated spectra are shown in Figure 4.3. Although the peak intensities were greater with 

higher sample concentrations, the increase was not linear, which is to be expected since 

the spectra were in diffuse absorbance units and not Kubelka-Munk (K-M) units. Unlike 

diffuse absorbance, the K-M function gives a linear relationship between sample
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concentration and peak intensity provided certain criteria, discussed in section 2.1.5.6.1, 

are met. The spectra of 5 and 6 wt% samples, in diffuse absorbance units, overlapped at 

some peaks and spectra of the 4 wt% sample were more reproducible than that of 5 and 6 

wt%. It was therefore decided that the sampling method was optimised at 4 wt% sample 

in KBr and that this concentration should be used for subsequent experiments.
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Figure 4.3: DRIFTS spectra of repeated samples of 4,5, and 6 wt% kaolinite in 

KBr, in blue, black, and pink, respectively.

4.3.5 Altering G rinding Time of Sample and KBr

The initial sample preparation method involved grinding the KBr and sample together in 

a mortar and pestle manually for 1 minute prior to placing the mixture in the cup. Figure

4.4 shows, in black, spectra of three repeats of 4 wt% SAz-1 prepared in this way. Since 

decreasing the particle size decreases the amount of specular reflectance, and therefore 

increases the amount of spectral information that can be collected from the sample, it was 

thought that increasing the grinding time would improve the spectra. Also with smaller 

particle sizes, it was easier to pack and level the cup, and therefore improve 

reproducibility of the spectra collected. However, it has been found that grinding clay 

minerals for a few minutes damages their structure, so the KBr was ground alone for 5
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minutes, again in a mortar and pestle by hand, before being mixed with the sample in the 

mortar and pestle. Spectra of three repeats of 4 wt% SAz-1 in KBr, that had been ground 

for 5 minutes, are shown in Figure 4.4 in pink. The spectra where the samples had been 

ground with KBr were of higher intensity than those where the sample was only mixed 

with KBr since it has been reported that a smaller particle size gives higher intensity, 

sharper peaks [21].
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Figure 4.4: Three DRIFTS spectra of 4 wt% SAz-1 in KBr samples ground for 1 

minute (black) and three spectra where KBr has been ground separately for 5 

minutes then mixed with SAz-1, i.e. 4 wt% SAz-1 (pink).

Figure 4.4 indicates that there appeared to be no improvement in spectra reproducibility 

found when KBr was ground for a longer time and in fact a longer grinding time for KBr 

seemed to worsen the reproducibility of spectra at lower wavenumbers. It was thought 

that this lack of reproducibility was caused by insufficient grinding of the sample with 

KBr, leading a more heterogeneous mixture. It was therefore decided that subsequent 

samples, such as the standards used to create the SHU PLS models, described in section

4.8.3, be ground with KBr for 1 minute rather than be mixed with pre-ground KBr.
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4.4 Use of PLS

In this study, the decomposition technique, PLS, was used to construct a calibration 

model and predict the composition of artificial mineral mixtures. PLS requires a system 

with more than two components, since it cannot cope with collinearity. Collinearity is an 

effect that occurs when there are only two components, because their concentration 

values can only alter by the same amount when preparing standards for the training set. 

For example, if in one standard the concentrations of the components were 30 wt% and 

70 wt%, and in another standard the concentrations of components were 35 wt% and 65 

wt%, then each component had changed concentration by 5 wt%. Since PLS correlates 

the change in concentration to changes in the spectra, it cannot differentiate collinear 

components and therefore produces unstable calibrations.

A third component was added to the system used in this project so that the collinearity 

could be reduced. As more components are added to a system, the less collinear it 

becomes. However, in this study the aim was to create a simple robust model so only 

three components were used.

Calcite was chosen as the third component since it is an easily available chemical 

purchased from a supplier. Another advantage of choosing calcite was that its infrared 

spectrum displayed distinct peaks such as those around 1436 cm'1, 2510 cm'1, and 2873 

cm'1, that were not masked by peaks associated with kaolinite and SAz-1, as seen in 

Figure 4.5.
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Figure 4.5: DRIFTS spectra of 4 wt% kaolinite (black), 4 wt% SAz-1 (red), and 4 

wt% calcite (blue) in KBr.

4.5 Standard Preparation

A batch of each standard was prepared to minimise weighing errors. The amount of 

standard diluted in KBr to prepare a 4 wt% sample of 0.32 g is 0.0128 g, so a 1.28 g 

batch of each standard was prepared, i.e. one hundred times the amount of standard 

required for one sample. The training set consisted of thirty two standards each with 

varying concentrations of the components, kaolinite, SAz-1, and calcite as shown in 

Table 4.1. Despite the concentration range of interest for SAz-1 being 0.1-30 wt%, a 

range of 0-95 wt% was used for each component because the smaller the concentration 

range of one component the more collinear the system.

Twenty one of the standards were calibration standards, that is, their spectra were used to 

prepare the calibration model. Initially five mixtures (standards 22 to 26) with various 

concentrations of kaolinite, SAz-1, and calcite were prepared but not included in the 

model, and quantitative predictions of the components within these samples were 

obtained. Those mixtures that were not included in the training set were called 

independent standards. In order to obtain predictions for a wider range of concentrations
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of each component in the mixtures, a further six independent standards (standards 27 to 

32) were prepared, and predictions found. The models developed with spectra collected 

at SCR, using ball milled KBr and a compaction device, were calculated using only the 

initial five independent standards.

Standard Number Kaolinite (wt%) SAz-1 (wt%) Calcite (wt%)
1 35 30 35
2 75 15 10
3 40 60 0
4 45 0 55
5 60 20 20
6 0 75 25
7 40 20 40
8 10 15 75
9 35 35 30
10 25 30 45
11 30 35 35
12 35 50 15
13 15 30 55
14 50 0.1 49.9
15 15 5 80
16 80 1 19
17 95 1 4
18 3 95 2
19 2 3 95
20 8 80 12
21 36 7 57
22 45 20 35
23 55 25 20
24 39.5 0.5 60
25 44.8 0.2 55
26 42 27 31
27 50 5 45
28 35 9 56
29 21 13 66
30 43 17 40
31 28 30 42
32 13 37 50

Table 4.1: Mineralogical composition of the standards used in the training set.

Standards 22-32 are the independent standards.
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4.6 Sample Preparation

The sample cups used on the Mattson Polaris FTIR Spectrometer held 0.32 g of powder. 

The spectra of the standards were collected from samples containing 4 wt% of each 

sample mixed with KBr (>99%) which had not been dried in an oven. The sample/KBr 

mixtures were ground in a mortar and pestle for 1 minute before being transferred to the 

sample cup, and compressed, using the double packing method, into the cup by applying 

pressure to a glass slide on the cup. Previous reproducibility studies (sections 4.3.3 and 

4.3.5) indicated that this procedure gave the most reproducible spectra.

At SCR the KBr used for the background and diluent had been ball milled in 5 g batches 

at 45 Hz for 5 minutes. The sample cup used on the Nicolet FTIR Spectrometer held 

0.45 g and, when collecting spectra of the sample, 4 wt% of this was sample. The ball 

milled KBr was ground with the sample by hand in a mortar and pestle for 1 minute. 

After being transferred to a cup situated inside a specially built compaction cell, the 

sample was compacted under a 20 kg load for 1 minute. A razor blade was used to 

scrape off excess sample so that the top was level with the sides.

4.7 Standard Exposure to Dimethylformamide (DMF)

For this procedure 0.0128 g of each prepared standard was placed in small sample vials. 

Each open vial was then placed in an incubation chamber, as shown in Figure 4.6, 

containing a separate open vial with 5 ml of DMF.

Sealed Chamber

Mineral

Chemical Probe

Figure 4.6: Procedure for exposure of minerals to the chemical probe.
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The standards were incubated for 2 days at room temperature to ensure complete 

intercalation of the clay by DMF from the vapour phase [21]. The molecular structure of 

DMF is shown in Figure 4.7.

,CH3
c—N

\
c h3

Figure 4.7: Molecular structure of dimethylformamide (DMF).

4.8 Results and Discussion

4.8.1 Visual Examination o f Spectra from Standards

Spectra of the standards were collected using two different types of spectrometer (section 

4.2.1), each with different sample preparation methods, one method (at SCR), included 

ball milling KBr and using a compaction device. Therefore, both the spectrometers and 

the preparation methods could be compared. Two types of software, OMNIC and 

GRAMS, were used to obtain quantitative predictions of components in the mixed 

clay/calcite samples, so the two types of software could also be compared. Furthermore, 

a sample of each standard was exposed to DMF for 2 days, the spectra of these standards 

collected, and the two software types used to obtain quantitative predictions. Predictions 

for standards with and without DMF treatment could therefore be compared.

Figure 4.8 shows the spectra of a selection of standards and the spectra of pure kaolinite, 

SAz-1 and calcite that had not been treated with DMF and not been prepared with ball 

milled KBr. Standard 2, standard 20, and standard 8 had high concentrations of kaolinite, 

SAz-1, and calcite, respectively in the presence of the other two components.

The bands characteristic of each component became more pronounced at high 

concentrations of that component. The four bands in the OH stretching region, 3695- 

3620 cm'1 were strong in the spectrum of standard 2 since this standard had a high 

concentration of kaolinite. The spectrum of SAz-1 was less rich in information in this 

OH stretching region as can be seen from the spectrum of standard 18. The Si-0



stretching region, 1200-1000 cm'1, could also be used to distinguish kaolinite from 

SAz-1. The table in Figure 4.8 indicates the composition of the standards under 

discussion, where K, S, and C correspond to kaolinite, SAz-1, and calcite, respectively.
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Std 20

Std 2
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Pure
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2000
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Figure 4.8: Spectra of standards 10,18,8,20, and 2, and of calcite, SAz-1, and kaolinite.
Compositions of the standards are given in the inserted table, where K, S, and C represent 
kaolinite, SAz-1, and calcite, respectively.
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4.8.2 Visual Detection o f Components

In the spectrum of standard 18 (Figure 4.8), the OH stretching bands at 3695 and 

3620 cm'1, diagnostic of kaolinite, could still be detected in the spectrum even though the 

standard contained only 3 wt% kaolinite in the presence of 95 wt% SAz-1. The OH 

stretching region of the spectra for pure SAz-1 standard 18, and pure kaolinite is shown 

in more detail in Figure 4.9.

3620 cm'1

3695 cm'

0.4

0.2

0.0

- 0 .2-

-0.4

3500
Wavenumbers (cm-1)

3000

Figure 4.9: OH stretching region of DRIFTS spectra of pure SAz-1 (upper 

spectrum), standard 18 (middle spectrum), and pure kaolinite (lower spectrum) all 

at 4 wt%. The composition of standard 18 is 3 wt% kaolinite, 95 wt% SAz-1, and 2 

wt% calcite.

The broad band at 845 cm'1, in the OH bending region, was assigned to AlMgOH 

deformation and was used to detect the presence of SAz-1 while the sharper band at 

848 cm'1 was assigned to calcite. The spectrum of the standard which contained no 

SAz-1 did not exhibit a band at 845 cm'1 and the band could not be detected in the spectra 

of standards which contained 5 wt% SAz-1. The band was just visible when 20 wt% 

SAz-1 was present, as shown in Figure 4.10. Standard 10 contained 30 wt% SAz-1 and
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this was the lowest concentration at which SAz-1 could clearly be detected visually in the 

recorded spectra

845 cm'1

0.42

0.40

0.38 60 wt%
0.36

50 wt%
0.34

30 wt% 
20 wt%
5 wt% 
0 wt%

0.32

0.30

848 cm’1 \  
calcite band

0.28

860 840

Wavenumbers (cm-1)
820

Figure 4.10: DRIFTS spectra displaying peak at 845 cm’1 for 6 standards

containing different concentrations of SAz-1. From uppermost to the lowest 

spectrum, 60 wt%, 50 wt%, 30 wt%, 20 wt%, 5 wt%, 0 wt% SAz-1.

4.8.3 Results obtained using OMNIC and GRAMS Software

Six PLS models were developed, three using OMNIC software and three using GRAMS 

software. Models 1 and 2 were developed using spectra of standards collected at SHU, 

where the KBr was not ball milled and no compaction device was used. Models 3 and 4 

were also developed using standards collected at SHU. However, the standards had also 

been exposed to DMF. Models 5 and 6 were developed using spectra of standards 

collected at SCR, where the KBr had been ball milled and a compaction device used. 

Models 1,3, and 5 were developed using OMNIC software, while Models 2,4, and 6 

were developed using GRAMS software. In Models la, 2a, 3, and 4, the components in 

eleven independent standards were quantified to determine the predictive ability of the
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models, while in Models lb, 2b, 5, and 6, the components in five independent standards 

were quantified.

The pre-processing and wavenumber regions chosen for each model were those that gave 

the most accurate and precise predictions. For the models developed using OMNIC 

software (which uses PLS-1), cross validation was used and pre-processing included 

variance scaling, the pathlength correction, multiplicative signal correction (MSC), and 

no base line correction. These pre-processing techniques were described in section 

2.5.2.1. The region 2150-500 cm'1 of the spectra was used in Model 1 (OMNIC, SHU) 

and Model 3 (OMNIC, SHU, DMF treated), while the region 2150-680 cm'1 was used in 

Model 5 (OMNIC, SCR).

For the models developed using GRAMS software, PLS-1 and cross validation were 

used. Pre-processing included variance scaling, no pathlength correction, but automatic 

baseline correction. Again, the region 2150-500 cm'1 of the spectra was used in Models 2 

(GRAMS, SHU) and 4 (GRAMS, SHU, DMF treated), while region 2150-680 cm'1 was 

used in Model 6 (GRAMS, SCR). Models 5 and 6 used a slightly different low 

wavenumber region than Models 1-4 due to limitations of the spectrometer used.

In all the models, a low wavenumber region was used since this gave more precise and 

accurate predictions than using the full wavenumber region. The results obtained when 

Model 2a (a model developed using GRAMS software, at SHU, and predicting 

components in 11 independent standards), using the low wavenumber region 2150-500 

cm'1, was compared with Model 2a, using the full spectral region, 4000-500 cm'1, are 

shown in Table 4.2. The R2 values for the calibrations and predictions of the components 

give an indication of the precision of the models, while the sum of the squares of the 

differences (SSD) between predicted and actual percentages of components gives an 

indication of the accuracy of the models.
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Model 2a- 2150-500 cm 1 Model 2a- 4000-500 cm'1

Kaolinite SAz-1 Calcite Kaolinite SAz-1 Calcite

No. of 

Factors

3 3 2 4 4 4

R2 of 

Calibration

0.9453 0.9711 0.9889 0.9388 0.9726 0.9847

R2 of 

Prediction

0.9659 0.9893 0.986 0.908 0.9398 0.9905

SSD

(wt%2)

61 52 39 151 226 65

Table 4.2: Precision and accuracy of predictions for components using Model 2a. 

Comparison between results using the wavenumber regions 2150-500 cm'1 and 4000- 

500 cm'1.

The R2 values for the calibration using the two models were very similar. The R2 values 

for the predictions of kaolinite and SAz-1, however, were slightly lower in the model 

using the full wavenumber region, suggesting that this model gave slightly less precise 

predictions than the model using the low wavenumber region. The number of factors 

required for the components, and the values of the sums of the squares of the differences, 

were greater for the model using the full wavenumber region, indicating that this model 

was not as accurate as the model using the low wavenumber region. All the models 

discussed in this chapter therefore used the wavenumber region, 2150-500 cm*1.

The spectra were studied in a diffuse absorbance format rather than K-M format since 

PLS is, to some extent, capable of modelling non-linear response-concentration relations. 

A comparison of the results obtained when Model 2a (GRAMS, SHU) was prepared with 

spectra in diffuse absorbance format, and with spectra in K-M format is shown in Table

4.3.
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Model 2a- Diffuse absorbance Model 2a- K-M

Kaolinite SAz-1 Calcite Kaolinite SAz-X Calcite

No. of 

Factors

3 3 2 4 4 4

R2 of 

Calibration

0.9453 0.9711 0.9889 0.9378 0.9871 0.9664

R2 of 

Prediction

0.9659 0.9893 0.986 0.9492 0.9933 0.9848

SSD

(wt%2)

61 52 39 113 51 95

Table 43: Precision and accuracy of predictions for components using Model 2a. 

Comparison between results using the spectra in diffuse absorbance format and in 

K-M format

The R2 values for the calibration and prediction of the components using the two models 

were veiy similar, suggesting that the models were equally precise. However, the 

number of factors required for the components, and the values of the sums of the squares 

of the differences, were greater for the model with spectra in K-M format, indicating that 

this model was not as accurate as the model with spectra in diffuse absorbance format. 

All the models discussed in this study were therefore prepared with spectra in diffuse 

absoibance format.

Initial calibration results for the 21 standard training set using Model la  (OMNIC, SHU,

11 independent standards) and Model 2a (GRAMS, SHU, 11 independent standards), 

using the spectral range 2150-500 cm"1, are shown in Table 4.4.
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OMNIC Model la GRAMS Model 2a

Correlation

Coefficient

Number of 

Factors

Correlation

Coefficient

Number of 

Factors

Kaolinite 0.94913 7 0.9453 3

SAz-1 0.96679 3 0.9711 3

Calcite 0.94391 6 0.9889 2

Table 4.4: Comparison of calibration correlation coefficients and numbers of 

factors for each named component using Models la  and 2a.

The correlation coefficients were higher and the number of factors required lower for the 

GRAMS model, indicating that predictions should be better for this model than for the 

OMNIC model.

A plot of predicted percentages, calculated by Model la  (OMNIC, SHU, 11 independent 

standards) and Model 2a (GRAMS, SHU, 11 independent standards), against actual 

percentages are shown in Figures 4.11,4.12, and 4.13 for each component. Calibration 

plots for the components are not shown. The spectra of standards included in these 

models were collected using a Mattson Polaris FTIR Spectrometer. The standards had 

not been exposed to DMF, nor had the KBr been ball milled, and no compaction device 

was used. The least accurate predictions for both models were found for SAz-1. That is, 

the predicted percentages fell furthest from the 45° y -  x line and the four standards 

containing 30 wt%, 27 wt%, 0.5 wt% and 0.2 wt% SAz-1 were clearly under predicted . 

The predictions for SAz-1, however, were more precise, than the other components, since 

they had the highest R2 value. Overall the predictions found using the GRAMS software 

were more accurate and precise than those found using OMNIC.
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Figure 4.11: Predicted against actual percentage of kaolinite for Model la  and
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Figure 4.12: Predicted against actual percentage of SAz-1 for Model la  and Model

2a, legend as for kaolinite. The full line respresents the 45° y = x line.
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4.8.4 Results from Chemical Probe Treated Standards

DMF was chosen as the probe molecule due to its rapid intercalation between the layers 

of readily expanding clays, such as SAz-1, and because the temperature at which the most 

strongly bound DMF was desoibed could be used to distinguish different ions occupying 

the exchange sites in the gallery. DMF also had a large distinctive band at 1675 cm'1 

associated with the C=0 bond, as seen in Figure 4.14, which shifted to 1658 cm'1 when 

DMF was complexed to exchangeable cations in the clay. This indicated that DMF 

molecules adsorb onto the clay via their carbonyl group. This carbonyl band was not 

masked by those of kaolinite or SAz-1.
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Figure 4.14: Infrared spectrum (transmission) of DMF (4000-600 cm'1).

Since the carbonyl peak was so distinctive, it was thought that its presence might improve 

the quantitative results of standards that had been exposed to DMF, particularly the 

SAz-1 component, because the intensity of the peak at 1658 cm'1 should increase with 

increasing SAz-1 content.
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Spectra for standard 24 (which contained 39.5 wt% kaolinite, 0.5 wt% SAz-1, and 60 

wt% CaCOs) and standard 24 exposed to DMF are shown in Figure 4.15. A band near 

1670 cm'1, associated with the carbonyl bond of DMF, was present in the spectrum of 

standard 24 exposed to DMF even though this standard had only 0.5 wt% SAz-1. It was 

initially thought that this gave a good visual indication of the presence o f SAz-1 in a 

mixture from the spectra alone, prior to the use of PLS.
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Figure 4.15: Spectra of standard 24 (pink) and standard 24 exposed to DMF for 2 

days (black) both at 4 wt% in KBr.

A plot of the peak area in the 1680-1650 cm'1 region against wt% SAz-1 is shown in 

Figure 4.16 and the peak area in the 1680-1650 cm’1 region in the spectra for two selected 

standards are indicated. Standard 17 contained 1 wt% SAz-1, while standard 19 

contained 3 wt% SAz-1.
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Figure 4.16: Relationship between peak area 1680-1650 cm'1, associated with the 

C=0 bond of DMF in DRIFTS spectra, and the wt% of SAz-1 in the standards 

described in Table 4.1.

Although the R2 value was low at 0.9504, there did appear to be a correlation between the 

area of the band in the 1680-1650 cm'1 region and the wt% of SAz-1. This was another 

indication that introducing a probe molecule to the standards would result in more 

accurate quantitative predictions of the concentrations of components. The best fit line 

did not go through zero and it was suspected that this was due to the influence of 

kaolinite on the intensity of the C=0 peak. Standard 17 contained 1 wt% SAz-1 and 95 

wt% kaolinite and had a C=0 peak intensity greater than expected had the peak been due 

solely to the presence of SAz-1. This suggested that the presence of a high concentration 

of kaolinite greatly increased the intensity of the C=0 band and this could be due to 

partial intercalation of DMF between layers of kaolinite. Standard 19 contained 3 wt% 

SAz-1 and 2 wt% kaolinite and the peak intensity was markedly less than that of standard 

17, despite standard 17 containing less SAz-1. The area of the band in the 

1680-1650 cm'1 region of the spectrum for standard 19 had a stronger correlation with the 

concentration of SAz-1, i.e. it lay closer to the x = y line and this could be because the
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concentration of kaolinite was not large enough to significantly increase the peak 

intensity.

After studying the intensity and position of the carbonyl band in standards with different 

SAz-1 and kaolinite concentrations, shown in Figure 4.17, it became clear that this peak 

could not be assigned exclusively to SAz-1. At concentrations of SAz-1 as low as 5 wt%, 

the C=0 peak was at the expected position of 1658 cm'1, while at lower concentrations of 

SAz-1, and therefore higher kaolinite concentrations, the peak was centred at a higher 

wavenumber. This again implied that kaolinite, as well as SAz-1, may intercalate a 

proportion of DMF between the aluminosilicate layers.
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Figure 4.17: The carbonyl band region in DRIFTS spectra of standards 8 (black), 15 

(pink), 16 (blue) and 24 (green) all at 4 wt% in KBr. Compositions of the standards 

are given in the inserted table, where K, S, and C represent kaolinite, SAz-1, and 

calcite, respectively.

Figure 4.18 shows the spectra of 4 wt% kaolinite and 4 wt% kaolinite after exposure to 

DMF. The carbonyl band appeared as two peaks at 1675 cm'1 and 1665 cm'1 as 

indicated. If the appearance of this carbonyl band in the spectra of kaolinite were to 

confirm that kaolinite intercalates DMF, then since kaolinite layers are held together 

tightly by hydrogen bonding, it is suggested that DMF would intercalate into the edges of
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the kaolinite layers. It should be noted that no peak associated with DMF was observed 

in the XRD trace for kaolinite which had been exposed to DMF vapour, again suggesting 

that DMF may only intercalate into the edges of the kaolinite layers.
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Figure 4.18: DRIFTS spectra of kaolinite (pink) and kaolinite after exposure to 

DMF (black) both at 4 wt% in KBr.

Calibration results for the DMF treated training set using Model 3 (OMNIC, SHU, DMF 

treated) and Model 4 (GRAMS, SHU, DMF treated), are shown in Table 4.5.

OMNIC Model 3 GRAMS Model 4

Correlation

Coefficient

Number of 

Factors

Correlation

Coefficient

Number of 

Factors

Kaolinite 0.92552 5 0.9329 3

SAz-1 0.95288 3 0.9780 4

Calcite 0.98164 6 0.9771 3

Table 4.5: Comparison of calibration correlation coefficients and numbers of 

factors for each named component using Models 3 and 4.
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Again the predictions calculated by GRAMS should be better than those calculated by 

OMNIC since overall the correlation coefficients were higher and the number of factors 

used lower. The correlation coefficients were slightly lower and number of factors 

slightly greater for the GRAMS model for standards exposed to DMF, than for the 

GRAMS model where standards were untreated indicating that untreated standards 

should therefore give better predictions.

Figures 4.19,4.20, and 4.21 compare predictions, for each component, in the standard 

samples that had been exposed to DMF (filled and open triangles) with those predictions 

reported previously (filled and open squares), that had not been exposed. Again the 

calibration plots are not shown. The spectra of samples that had been exposed to DMF 

were all collected using the Mattson Polaris FTIR Spectrometer, and prepared in the same 

way as those samples that had not been exposed. Contrary to expectation, the predicted 

concentrations for all components were markedly less accurate and less precise for the 

samples that had been exposed to DMF. Models 3 and 4 seriously under predicted the 

concentration of kaolinite, and Model 4 had a clear tendency to over predict the SAz-1 

concentration. The concentration predictions for calcite were seriously under predicted 

by Model 3 and over predicted by Model 4.
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Figure 4.19: Predicted against actual percentage of kaolinite for Models la , 2a, 3

and 4. The full line respresents the 45° y = x line.
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Figure 4.21: Predicted against actual percentage of calcite for Models la, 2a, 3 and

4, legend as for kaolinite. The full line respresents the 45° y = x line.
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4.8.5 Results from Ball Milled and Compacted Standards

The KBr used for the background and diluent was ball milled at SCR. It was thought that 

this would give more reproducible spectra because the resulting particle size distribution 

would be more reproducible. Using the compaction device should also improve spectral 

reproducibility since each standard would be packed evenly at exactly the same pressure. 

A comparison of spectra collected at SCR with those collected at SHU included a 

comparison of the different instrument models and different preparation methods and is 

shown in Figure 4.22. The spectra o f standard 26, which contained 42 wt% kaolinite,

27 wt% SAz-1, and 31 wt% calcite, were compared.
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Figure 4.22: DRIFTS spectra of repeated samples of 4 wt% standard 26 collected at 

SHU (black) and at SCR (pink).

The spectra collected at SCR using the Nicolet NEXUS FTIR Spectrometer were lower 

in intensity than the spectra collected at SHU using the Mattson Polaris FTIR 

Spectrometer, and also the calcite band near 1400 cm'1 was a different shape in the 

spectra from the different instruments. With the Mattson Polaris FTIR Spectrometer, a 

doublet was seen at 1436 and 1400 cm'1, while the Nicolet NEXUS FTIR Spectrometer 

showed a single peak at 1380 cm'1 with a large shoulder near 1440 cm'1. Figure 4.23 

shows the spectra of standard 26 in the region near 1400 cm'1 in more detail.
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Figure 4.23: DRIFTS spectra of repeated samples of 4 wt% standard 26 collected at 

SHU (black) and at SCR (pink) in the region near 1400 cm'1.

The low intensity of the spectra collected using the Nicolet FTIR spectrometer was most 

likely to be due to the low throughput, possibly occurring due to a slight misalignment of 

the beam.

Calibration results for Model 5 (OMNIC, SCR) and Model 6 (GRAMS, SCR) for training 

set samples in which the KBr had been ball milled and a compaction device used, are 

shown in Table 4.6.

OMNIC Model 5 GRAMS Model 6

Correlation

Coefficient

Number of 

Factors

Correlation

Coefficient

Number of 

Factors

Kaolinite 0.98183 5 0.9865 7

SAz-1 0.99288 7 0.9948 4

Calcite 0.96451 6 0.9891 3

Table 4.6: Comparison of calibration correlation coefficients and numbers of 

factors for each named component using Models 5 and 6.
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Again the GRAMS model gave higher correlation coefficients and generally used fewer 

factors than the OMNIC model. The correlation coefficients for Models 5 and 6 were 

higher than for Models 1 and 2, indicating that ball milling KBr and using a compaction 

device should give better predictions.

Only the initial 5 independent standards were used to compare predictions calculated 

from spectra collected at SCR and those calculated from spectra collected at SHU, since 

these were the only spectra of independent standards collected at SCR. Figures 4.24, 

4.25, and 4.26 compare prediction results for each component using Models lb, 2b, 5 and 

6. Overall, the predictions calculated by Model 6 (GRAMS, SCR, 5 independent 

standards) were the most accurate and the precision of the calibrations from Model 6 

higher than from other models. The precision of predictions was also high using Model 

6, with R2 values for all components above 0.95. The highest error in kaolinite 

predictions was ±2.2 %, in SAz-1 was ±3.8 %, and in calcite was ±4.9 % using Model 6.

It should also be noted that the precision of kaolinite predictions for spectra collected at 

SHU were poor, with R2 values of only 0.7053 and 0.6617 calculated by Model 2b 

(GRAMS, SHU, 5 independent standards) and Model lb (OMNIC, SHU, 5 independent 

standards) respectively. However, Model 5 (OMNIC, SCR, 5 independent standards) had 

the worst precision for prediction of kaolinite, with an R2 value of only 0.2887, despite 

having an R2 value above 0.98 for the precision of the calibration of kaolinite.
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Figure 4.24: Predicted against actual percentage of kaolinite for Models lb, 2b, 5

and 6. The full line respresents the 45° y = x line.
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Figure 4.26: Predicted against actual percentage of calcite for Models lb, 2b, 5 and

6, legend as for kaolinite. The full line respresents the 45° y = x line.
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4.8.6 Comparing the Precision of Calibrations

Chart 4.1 shows bars indicating the R2 values for the calibrations of each component in 

each model. The number above each bar indicates the number of factors used for that 

component in that particular model. The number of factors for each component and 

model was chosen based on the minimum of each PRESS plot. For each of the three 

ways in which the standards were treated, the GRAMS models, i.e. Models 2,4, and 6, 

had higher R2 values, and were therefore more precise than the OMNIC Models 1,3, and 

5, respectively. Overall the R2 values in Model 6 were the highest, over 0.98 for each 

component, and therefore was the model that had the most precise calibration. There is, 

however, a chance that using more than 4 factors could make the model overfit despite 

choosing the number of factors from the minimum of the PRESS plot. This is because 

some noise may be present in the spectra of more than one standard and so the addition of 

more factors improves the calibration. However, unless these noise factors are present in 

an unknown sample, the predictive ability of the model will worsen.

Pearson [97] stated that if the number of factors chosen was greater than the number of 

calibration standards divided by three, then overfitting should be strongly suspected. It 

was also stated by Pearson that if the number of factors chosen was less than the number 

of calibration standards divided by six, then overfitting was unlikely. By following these 

rules in the current study containing 21 standards, using more than 7 factors could cause 

overfitting and using less than 3 or 4 factors suggests overfitting is unlikely.

Generally, fewer factors were used in GRAMS Models 2 ,4  and 6 than in the 

corresponding OMNIC models and if focussing solely on the GRAMS models it was 

only kaolinite in Model 6 that used more than 4 factors and could therefore be overfit. It 

was therefore more likely that GRAMS models contained the optimum number of factors 

and were not overfit.

Models la  and lb could be grouped together in Chart 4.1 since die calibration for both 

was the same, and it was only the number of independent standards, and therefore the R2 

value of predictions and sum of the squares of the differences in the predictions, that were 

different. The same was true for grouping Models 2a and 2b together.
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and b and b

Chart 4.1: R2 values for each of the named components in each of the named 

models, indicating the precision of calibrations. The number above each bar 

indicates the number of factors used for that component and model.

4.8.7 Comparing the Accuracy of Predictions

The sums of the squares of the differences between predicted and actual percentages were 

calculated and are shown as bars in Chart 4.2. The models and components with the 

highest bars had the least accurate predictions.
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Chart 4.2: The height of bars indicates the sum of the squares of the differences (in 

wt%2) between the actual and predicted percentages of each named component 

using each of the named models.

It was immediately clear that the predictions found using Model 3 (OMNIC, SHU, DMF 

treated) and 4 (GRAMS, SHU, DMF treated) were the least accurate and that the 

predictions for Model 6 (GRAMS, SCR, 5 independent standards) were the most 

accurate. There also appeared to be a tendency for the models that were calculated using 

GRAMS to be more accurate than those calculated using OMNIC.

It should also be noted that the predictions for kaolinite by Models 3 and 4 were seriously 

under predicted, predictions for SAz-1 by Model 4 were under predicted, predictions for 

calcite by Model 3 were seriously under predicted and predictions for calcite by Model 4 

were seriously over predicted.
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4.8.8 Comparing the Precision of Predictions

From the plots of predicted percentages against actual percentages, the R2 values of 

individual models gave a numerical indication of the precision of the predictions which 

can be seen in Chart 4.3.

The highest R2 values were found for Model 6 (GRAMS, SCR, 5 independent standards), 

indicating that this model gave the most precise predictions whilst the least precise 

predictions were found with Model 3 (OMNIC, SHU, DMF treated). The highest R2 

values were found for SAz-1, indicating that predictions for this component were more 

precise than for kaolinite and calcite.

It should be noted that despite the low R2 value for predicting kaolinite in Model 5, the 

sum of the squares of the differences indicated that the accuracy of these predictions was 

quite good. The precision of the kaolinite predictions by Model 5 may improve if more 

independent standards, containing a wider range of kaolinite concentrations, were 

quantified.

■  Kaolinite 
H SAz-1 
0  Calcite

Model Model Model 3 Model 4 Model 5 Model 6 M odel Model 
la  2a lb  2b

Chart 4.3: R2 values for each of the named components in each of the named 

models, indicating the precision of predictions.
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4.8.9 Comparing Results with Literature

Other groups have worked on determining low amounts of smectite and kaolinite in 

mixures using various techniques. Madejova etal. [73] used XRD to determine 1 wt% 

kaolinite and 5 wt% smectite, and as low as 0.25 wt% kaolinite and 30 wt% smectite 

using the peak fitting technique with FTIR spectra obtained in transmission mode. 

Smectite was determined at 5 wt% in quartz using thermogravimetric analysis by Clegg 

[21]. Evolved water analysis was used by Bloodworth et al. [68] to determine kaolinite 

in mixtures with quartz, at concentrations as low as 0.25 wt%, while 2 wt% smectite in 

quartz was determined by Forsyth [57] using mass spectrometric determination of 

evolved DMF and water.

Madejova etal. [73] reported that smectite could be detected visually from a spectrum of 

a mixture with as low as 40 wt% using the peak at 845 cm'1 as an indicator and the study 

discussed in this chapter also suggested that smectite could be detected visually at around 

30 wt%, using this peak. Madejova et al. [73] found that kaolinite could be detected 

visually from a spectrum at levels as low as 0.5 wt% using the OH stretching band at 

3695 cm'1. It was not the aim of the study discussed in this chapter to try and improve 

this detection limit so the lowest concentration of kaolinite used in the training set was 2 

wt%, which could be detected visually. In the study discussed in this chapter, which used 

PLS instead of peak fitting, concentrations of SAz-1, as low as 0.2 wt% were quantified, 

with a maximum (absolute) error of ±3.8 wt%.

Clegg [21] reported quantitative results from DRIFTS spectra using PLS. Samples were 

prepared in the same way as for Models 5 and 6, i.e. the KBr was ball milled and a 

compaction device used. Clegg used OMNIC software to calculate predictions, as was 

done in Model 5. However, he used the spectral range 3900-450 cm'1, while Model 5 

(OMNIC, SCR) used the range 2150-680 cm'1. Clegg used a 7 component mixture, 

containing high concentrations of quartz, and found the best model when montmorillonite 

and illite were combined. While he found a correlation coefficient of 0.92 with 5 factors 

for this component combination, Model 5 had a correlation coefficient of 0.99 with 7 

factors for montmorillonite (SAz-1) alone. Correlation coefficients for kaolinite in the
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two models were very similar (both at 0.98), but while Clegg’s PLS model required 8 

factors for kaolinite, Model 5 required only 5 factors.

Joussein etal. [100] also used IR spectroscopy to determine the ratio of kaolinite and 

smectite in binary mixtures. They found that by visual detection of the bands at 3692 and 

3620 cm'1 kaolinite could not be detected below 5 wt%. Both the spectra of smectite and 

kaolinite showed an OH stretching band at 3620 cm'1, so this band could not directly be 

used to calculate the concentration of either. The smectite was saturated with NH4+, and 

the band at 1400 cm'1 (associated with NH4+) measured and related to the concentration 

of smectite. Using the relationship between the absorbance of the band at 1400 cm'1 and 

the concentration of smectite, the absorbance of the OH stretching band at 3620 cm'1 

attributed to smectite, could be calculated. The relative absorbance of the 3620 cm'1 band 

which was due to smectite and kaolinite would then be known and the relative 

concentration of each could be determined. It should be noted that while in this study the 

smectite was saturated with NH4+ in isolation, Joussein et a l claimed that the 

smectite/kaolinite mixture could be saturated with the same results, provided the variable 

charges of kaolinite were negligible with regards to that of smectite. The work in this 

chapter suggested that a kaolinite/smectite mixture should not be saturated with a probe 

modelcule since the strongest probe molecule infrared band was found to be present in 

the spectra of both SAz-1 and kaolinite after exposure to the probe molecule and its 

presence did not improve the accuracy or precision of predictions.

A three component PLS model was developed with GRAMS software by Berzas et a l 

[101] in a similar way to the models described in this chapter. Berzas et a l used cross 

validation and a 32 standard training set to develop the PLS model. In contrast to the 

study described in this chapter, however, Berzas et a l studied the spectrophotometric 

absorption spectra of synthetic mixtures of three different food dyes. Berzas et a l found 

that only 2 or 3 factors were required to accurately quantify the three components. Two 

separate spectral regions were used for the PLS analysis and were chosen because they 

contained the main spectral information for the three components.
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4.9 Conclusion

The overall aim of this study was to determine whether using PLS could improve the 

detection limit, set by Madejova et al. [73] using peak fitting, for SAz-1 in a mixture with 

kaolinite. It is important to be able to determine low amounts of smectite because of their 

high surface area and swelling ability.

The most accurate models for the 21 standard training set in this study did not include the 

OH stretching region, but instead used only the wavenumber region below 2150 cm"1. 

Initial spectra of the standards were collected on a Mattson Polaris FTIR Spectrometer. 

The GRAMS program was found to give more precise calibrations and more precise and 

accurate predictions than the OMNIC program.

The training set was then exposed to a chemical probe, DMF, for 2 days to allow 

complete intercalation into the swelling clay. It was thought that the presence of the peak 

at 1658 cm"1, assigned to intercalated DMF, would improve the models predictive ability, 

particularly for SAz-1. However, the peak was found to be present in the spectra of both 

SAz-1 and kaolinite after exposure to DMF and its presence did not improve the accuracy 

or precision of predictions.

Spectra of the training set, without DMF exposure, were then collected at SCR on a 

Nicolet NEXUS FTIR Spectrometer after the KBr diluent had been ball milled for 5 

minutes and the sample compacted into the cup with a compaction device. It was thought 

that the smaller particle size distribution and homogeneous compaction would improve 

model predictions. It was found that Model 6 (GRAMS, SCR) gave the most accurate 

predictions of all models and the most precise calibrations and predictions. Results from 

Model 6 indicated that the highest error in kaolinite prediction was ±2.2 wt%, in SAz-1 

was ±3.8 wt%, and in calcite was ±4.9 wt%. In conclusion, it has been found that SAz-1 

could be detected at lower concentrations (0.2 wt%) using PLS than could be detected 

visually (30 wt%) from a peak on a spectrum, with an error of ±3.8 wt%.
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5. Results - Heterogeneity of Sandstone Rock Cores

5.1 Introduction

It is important to study the heterogeneity of sandstones to improve knowledge on the 

length scale over which the mineralogy varies, and also to help determine what a 

representative sample size is. Predicting mineral concentrations at one position of a 

heterogeneous core could potentially give quite different results to a prediction from 

another position in the core. If there is no knowledge of the heterogeneity, errors in 

predicted mineral concentrations may go unnoticed and comparisons with similar work 

by others would be more difficult.

The heterogeneity of sandstone rock cores was initially studied by visual detection of 

XRD patterns of slices of cores. Seven quarried sandstone cores were studied;

Hollington Red, Birchover, Yorkstone, Stancliffe, Berea, Clashach, and Castlegate. XRD 

patterns were collected on rock and powder samples at different positions along the cores 

to study whether differences in the core could be detected visually.

5.2 Experimental Strategy

The seven quarried sandstone cores studied were obtained from Schlumberger Cambridge 

Research. Each core was marked along its length prior to cutting so that once sliced, 

sliced disks could be lined up in the correct orientation, as shown in Figure 5.1. Each 

core was then dry cut using a circular saw into 5 mm thick disks.

Figure 5.1: Photograph of rock core sliced into disks with orientation markings 

shown.
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The powder produced from cutting each of the slices was collected for analysis since it 

was unknown whether certain minerals would preferentially remain in the rock slice, or 

be lost to the powder collected, due to the vibration of the saw during cutting, or due to 

differences in the friability of the sample. It was clear by looking at the rock surfaces and 

also during the cutting process that some of the sandstone cores were more dense and 

harder than others. Birchover, Yorkstone, and Stancliffe were harder rocks, while Berea 

was slightly softer. Hollington Red, Clashach, and Castlegate were the softest sandstones 

studied and were easiest to cut. It was found that more powder was collected during the 

cutting process of the harder rocks than during cutting of the softer rocks. It was 

assumed that more powder was produced due to the longer cutting times (and therefore 

more vibration) of the harder, less friable rocks. Methven and Hughes [102] investigated 

the chemical and physical properties of sandstones. They found that Hollington Red and 

Clashach contained a larger number of large pores (10-100 pm) and had a higher porosity 

(22-25%) than Birchover, Yorkstone, and Stancliffe, which had smaller pores (<1-10 pm) 

and lower porosity (11-16%). This accounted for why Birchover, Yorkstone, and 

Stancliffe appeared denser and were harder to cut than the other sandstones.

The uncrushed rock slices and the powder collected from cutting were studied using 

XRD.

Additionally, Dr. Stephen Hillier from the Macaulay Land Use Research Institute was 

approached to cany out detailed XRD analysis on samples of crushed cores. Although 

the same sandstones were studied by Hillier as were studied in this chapter, different 

areas of the same cores, or entirely different cores, were investigated.

5.3 Coarse Survey of Rock Cores

5.3.1 Introduction

In die first instance a rapid survey designed to provide an initial indication of gross 

changes in mineralogy was undertaken with XRD. Low resolution XRD traces were 

collected initially for speed, to minimise the resource investment.
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5.3.2 Experimental

The handbook, “The Building Sandstones of the British Isles” [103], was used to select 

the quarried sandstones studied, except for Berea and Castlegate, which came from the 

USA. The quarried rocks studied, their source and colour, are listed in Table 5.1. The 

constituent minerals of the sandstones, as determined by Hillier, are also listed.

Quarry Rocks Source Colour Constituent Minerals

Hollington Red Hollington,

Staffordshire

Dull red, with 

darker banding.

Quartz, K-Feldspar, Kaolinite,

Dlite/Montmorillonite,

Hematite.

Birchover Matlock,

Derbyshire

Pink to buff. Quartz, K-Feldspar, Na- 

Feldspar, Kaolinite, 

Ulite/Montmorillonite.

Yorkstone West Yorkshire Light buff. Quartz, K-Feldspar, Na- 

Feldspar, Calcite, Kaolinite, 

Dlite/Montmorillonite, 

Chlorite.

Stancliffe Chesterfield,

Derbyshire

Buff. Quartz, K-Feldspar, Na- 

Feldspar, Kaolinite, 

Dlite/Montmorillonite.

Berea Amherst, Ohio Buff. Quartz, K-Feldspar, Na- 

Feldspar, Kaolinite, 

Dlite/Montmorillonite, 

Chlorite.

Clashach Hopeman, Moray 

Firth Coast

Buff to fawn. Quartz, K-Feldspar, Kaolinite, 

Dlite/Montmorillonite.

Castlegate Southern Wasatch 

plateau, Utah

Dull orange. Quartz, Na-Feldspar, 

Kaolinite,

Illite/Montmorillonite.

Table 5.1: Source, colour [103], and constituent minerals of named sandstone 

quarry rocks.
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The X-ray diffractometer used was a Philips PW3710 with a Cu Ka radiation source, 

operating at 40 kV and 40 mA. A goniometer was used to rotate the detector during 

expenments, to reach the required angle. Parameters used to collect XRD traces are 

listed below;

Angle range = 2-65° 20 

Step size = 0.05° 20 

Time per step = 5 seconds

For the coarse survey, the samples were studied under static conditions, i.e. no spinning.

5.3.3 Reproducibility of XRD traces

To determine the variation within one slice of a core, XRD traces of the front and back 

faces of the same slice of Stancliffe were collected, and are shown in Figure 5.2a and b.
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Figure 5.2a: Low resolution XRD trace for the front of a Stancliffe rock slice. The 

red circle indicates the position of peaks associated with feldspar.
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Figure 5.2b: Low resolution XRD trace for the back of a Stancliffe rock slice. The 

red circle indicates the position of peaks associated with feldspar.

Surprisingly, the traces were quite different in terms of peak intensity. The most obvious 

dissimilarity between XRD traces of different sides o f the same rock slice were the 

feldspar peaks near 28° 20 (highlighted by the red circle), even in these low quality 

traces. One possible reason for differences in the traces is that the surface roughness of 

the rock sample may not be the same on each side of the slice. The differences could also 

be due to slight mineralogical differences between areas as small as within the irradiated 

area of one core slice.

To determine how reproducible powder sample packing was, the XRD trace of powder 

obtained when cutting slice 15 o f Stancliffe was collected. The holder was then emptied, 

and the procedure repeated twice more with the same powder. The traces are shown in 

Figure 5.3a, b, and c.

126



Co
un

ts 
Co

un
ts 

C
ou

nt
s

200 7
180 -

160 -

140 -

120
100
80 -

60 -

40 -

20 -

50 10 15 20 25 30

Figure 5.3a °2 theta

200
180 -

160 -

140 -

120 -
100
80 -

60 -

40 -

20 -

50 15 2010 25 30

Figure 5.3b °2 theta

200 7

180 -

160

140 -

120 -
100 -
80 -

60 -

40 -

20 -

0 15 205 10 25 30

Figure 5.3c 2 theta

Figure 5.3a-c: Low resolution XRD traces for the powder from cutting slice 15 of 
Stancliffe. The red circles indicate the position of peaks associated with feldspar.
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Again, the differences in peak intensities between traces of the same powder were 

surprising, and in the case of these powdered samples, differences in surface roughness 

should not be significant. The most obvious dissimilarity between the powder XRD 

traces was again associated with the feldspar peaks near 28° 20. The XRD peaks of 

feldspars are notoriously difficult to study since the low symmetry of feldspars means 

that they have complex diffraction patterns. Feldspars can be ordered and disordered and 

their peak positions can even shift with composition. It is generally thought that, when 

looking at orientated aggregates, the most identifiable peaks are near 27.5° 20 and near 

28° 20, indicating that some variety of K-feldspar and some variety of Na-feldspar are 

present respectively [19]. There were also intensity variations between the peaks for the 

clay minerals in the 4-20 (° 20) range.

Generally, the clay peaks were better defined against the background in powdered 

samples than in rock slices. This was probably due to the different ways in which the 

samples were presented to the diffractometer. The powder sample was packed, giving it 

a smooth level surface, while the rock would naturally have a more uneven surface. Clay 

in the powder sample would be better aligned than clay present in the rock sample and 

this preferred orientation of the clay in the pressed powder was the likely cause of the 

intense 001 diffraction pattern [19]. However, there was also a possibility that clay may 

have been released from the rock during the cutting process and there may be a 

correlation between the friability of the rock and the amount of clay in the powder 

obtained from cutting.

5.4 Mineralogical Variation along Core Length

5.4.1 Introduction

Having found important variations within slices, it was decided to evaluate the gross 

differences in mineralogy along the length of the different cores. Three slices from each 

core were analysed; one from the front of the core, one from the middle and one from the 

end. XRD traces of the front faces of the three rock slices were collected for each core.

In addition, XRD traces of the powders from cutting the three selected slices were 

collected for each core.
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5.4.2 Experimental

XRD traces of the rock and powder samples were collected on a Philips XPert PRO X- 

ray Diffractometer with CuXa radiation, equipped with aPW3015/20 X'Celerator 

detector. The powdered samples were back packed. Each was collected with sample 

spinning and the parameters used to collect the XRD traces are listed below;

Angle range = 2-75° 20

Step size = 0.02° 20

Time per step = 10 seconds

Spinning rate = 8 seconds per revolution

The slits and mask size chosen for samples are listed below:

For powdered samples; F°r rock slices samples;

Divergence slit = 0.125° Divergence slit = 0.25°

Antiscatter slit = 0.25° Antiscatter slit = 0.5°

Mask size = 10° Mask size =15°

The divergence slit helped to limit and direct the incident beam before it struck the 

sample. After striking the sample, the beam passed through the antiscatter slit before it 

reached the detector. While the size of the divergence slit determined the length of the 

sample that was irradiated by the incident beam, the size of the mask defined the width of 

the sample that was irradiated by the incident beam. Finer slit sizes can improve the 

resolution and sharpness of the peaks in an XRD trace. However, they also diminish the 

intensity of the peaks [19].

Smaller slit sizes were used for powder than for rock samples to avoid the irradiated area 

exceeding the sample area, since the surface area of the powder exposed was less than 

that of the rock sample. It has been reported that any spread of the incident radiation 

beyond the sample surface may cause background scattering and possible reflections 

from the sample holder [69]. The lengths of the different cores, and the number of slices 

cut from each is listed in Table 5.2.
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Length of core 
studied (cm)

Number of slices

Hollington Red 10 20
Stancliffe 8.5 17
Yorkstone 4 8

Berea 2 4
Clashach 2 4
Castlegate 3 6
Birchover 1.5 3

Table 5.2: The length and number of slices cut, from each named sandstone.

5.4.3 Results and Discussion

5.4.3.1 XRD traces of Powder from cutting and Rock slices.

As an example of the peaks identified in the XRD traces studied, a more detailed analysis 

of the XRD trace (in the 0-30° 20 range) from the powder from cutting slice 1 of 

Yorkstone is shown in Figure 5.4, with peaks identified. The components relating to the 

identified peaks are shown in Table 5.3.

Component Peak position (° 20)
Chi Chlorite 6.2

I/M(l) Ulite/Muscovite 8.9
K(l) Kaolinite 12.4

K-F(l) K-Feldspar 13.6
Na-F(l) Na-Feldspar 13.9
I/M(2) Illite/Muscovite 17.8
Q(l) Quartz 20.9

Na-F(2) Na-Feldspar 22.0
Na-F(3) Na-Feldspar 23.1
Na-F(4) Na-Feldspar 23.6
Na-F(5) Na-Feldspar 24.3

K(2) Kaolinite 24.9
Q(2) Quartz 26.6

K-F(2) K-Feldspar 27.1
K-F(3) K-Feldspar 27.5
Na-F(6) Na-Feldspar 27.9
Na-F(7) Na-Feldspar 28.2

Table 53: Peaks identified from the XRD trace of powder from cutting slice 1 of 

Yorkstone (Figure 5.4), the peak positions, and minerals associated with the peaks.
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The mineral components identified from visual inspection of the XRD trace of 

Yorkstone (Figure 5.4), were also identified by Hillier’s XRD analysis (Table 5.1).

The XRD traces of the powder from cutting the three slices and of the rock slices 

themselves are presented in Figures 5.5-5.18a, b, and c, for each sandstone. The 

peaks on the traces are identified with labels corresponding to the components listed 

in Table 5.3.

Of all the sandstones studied, the most significant differences in the XRD traces at 

different positions along the cores were observed for the Hollington Red core. This 

was expected since Hollington Red is a banded sandstone, i.e. it contains regions of 

clay rich strata with finer particles between regions more rich in silica [102]. The 

Hollington Red core studied had been cored through a band so that each slice 

contained both clay rich and silica rich parts. However, each slice may have had a 

slightly different proportion of each part.

The XRD traces for the powder from cutting the three slices of Hollington Red are 

shown in Figure 5.5a, b, and c, while the XRD traces for the Hollington Red rock 

slices themselves are shown in Figure 5.6a, b, and c.

Q(l) Q(2)

• All minerals 
identified in the 
XRD traces of 
Hollington Red, 
were also 
identified by 
Hillier (Table 5.1).
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Figure 5.5a °2 theta
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• Most significant 
difference 
between XRD 
traces for the 
powders from 
cutting was the 
intensity variation 
in K-feldspar peak 
at 27.5° 20.

Figure 5.5c °2 theta

Figures 5.5a-c: XRD traces of the powders from cutting slices 1,10, and 20 from 
Hollington Red. The minerals associated with the peaks identified are shown in 
Table 5.3.
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Illite/muscovite and 
kaolinite peaks not 
as resolved in XRD 
traces for rock slices 
as in XRD traces for 
the powders from 
cutting.

Figure 5.6a °2 theta
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• Large variation in 
the intensity of the 
K-feldspar peaks 
in the XRD traces 
for the rock slices.

Figure 5.6c °2 theta

Figures 5.6a-c: XRD traces of the front faces of rock slices 1,10, and 20 from 
Hollington Red. The minerals associated with the peaks identified are shown in 
Table 5.3.
It should be noted that all the peaks in the XRD traces for the rock slices occurred at 

an angle of 0.3° 20 less than the angle at which they occurred on the XRD traces for 

the powder samples. This was thought to be due to a difference in the height o f the 

rock slice in the XRD sample holder, compared with the height of the powder sample 

in the sample holder.

It should also be noted that the peaks tended to be less well resolved and of higher 

intensity in the XRD traces for the rock samples compared to those in the traces of the 

powder samples. This was also mentioned in section 5.3.3 and was thought to be due 

to the effect of preferred orientation of the clays in the powder sample and due to the 

larger particle size and roughness of the rock surface. The different slit and mask
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sizes used for the powder and for the rock samples, however, would also have an 

effect, as mentioned in section 5.4.2. Smaller slit and mask sizes were used for ' 

collecting XRD traces of the powder samples than were used for collecting XRD 

traces for the rock samples. This would cause an increase in peak resolution and 

decrease in peak intensity in the XRD traces of the powder samples.

The XRD traces for the powder from cutting, and for the rock slices at different 

positions along a core of Hollington Red showed large differences, especially in the 

peaks associated with K-feldspar. The XRD traces for the powder from cutting, and 

for the rock slices of Castlegate, at different positions along a core, were very similar, 

however. XRD traces for the powder collected from cutting three slices of Castlegate 

are shown in Figures 5.7a-c, while the XRD traces for the corresponding three rock 

slices of Castlegate are shown in Figures 5.8a-c.
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2 theta
Figure 5.7a

s  100 -

10 15

2 thetaFigure 5.7b

Low intensity clay 
and feldspar peaks 
were observed 
compared with the 
XRD traces for 
powders from 
cutting Hollington 
Red.
Castlegate was a 
“clean” sandstone. 
K-feldspar peaks 
observed rather 
than Na-feldspar 
peaks even though 
Hillier predicted 
that only Na- 
feldspar was 
present.
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Figure 5.7c
Figure 5.7a-c: XRD traces of the powders from cutting slices 1,3, and 6 from 
Castlegate. The minerals associated with the peaks identified are shown in Table
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Figure 5.8c °2 theta

The low intensity 
clay and feldspar 
peaks were 
difficult to identify 
in the XRD traces 
for the rock slices 
of Castlegate.

Figure 5.8a-c: XRD traces of the front faces of rock slices 1,3, and 6 from 
Castlegate. The minerals associated with the peaks identified are shown in Table
5.3.

The XRD traces for the powder from cutting and for the rock slices themselves for the 

remaining sandstones are shown in Figures 5.9-5.18a, b, and c.

0(1) 0(2)

200
180 -

160 -
K-F
Na-F

140 -

o« 120 -

3 too -
3  80-

K-F

I/M Na-F60 - Na-F
40 -

20 -

15 205 100 25 30

All minerals 
identified in the 
XRD traces of 
Birchover, were 
also identified by 
Hillier (Table 
5.1).

Figure 5.9a °2 theta
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Generally more 
variation in peak 
intensities 
observed in the 
XRD traces of 
Birchover than in 
those of 
Castlegate but 
less variation than 
those of 
Hollington Red.

°2 thetaFigure 5.9c
Figure 5.9a-c: XRD traces of the powder from cutting slices 1,2, and 3 from 
Birchover. The minerals associated with the peaks identified are shown in Table
5.3.
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• Ulite/muscovite 
peak at 8.9° 20 not 
visible in XRD 
traces of 
Birchover rock 
slices though 
visible in the XRD 
traces for the 
powder from 
cutting Birchover.
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Figure 5.10b °2 theta

Figure 5.10 a-b: XRD traces of the front faces of rock slices 2 and 3 from 
Birchover. The minerals associated with the peaks identified are shown in Table
5.3.
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All minerals 
identified in the 
XRD traces of 
Yorkstone, were 
also identified by 
Hillier (Table 5.1).

Figure 5.11a °2 theta

139



QO) Q(2)

200 -
180 -
160 H
140 -
120 -

as 100 -
U 80 -

60 -
40 -
20 -
0 -

O 5

Figure 5.11b

i n

2 theta

K-F 1

Na-F
Na-F

Na-F
i
j

25 30

QO) Q(2)
200
180 -
160 -
140 - Na-F

w 120 - 

1 loo
's  80-

Na-F
Na-FI/M

Chi60 -
40 -
20 -

0 5 10 15 20 25 30

There was little 
variation in the 
XRD traces for 
powders from 
cutting Yorkstone.

Figure 5.11c 2 theta

Figure 5.11a-c: XRD traces of the powder from cutting slices 1,4, and 8 from 
Yorkstone. The minerals associated with the peaks identified are shown in Table 
5.3.
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Unlike the XRD 
traces for the rock 
slices of Hollington 
Red and Birchover, 
in XRD traces for 
the rock slices of 
Yorkstone the 
illite/muscovite 
peak could still be 
observed.
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Figure 5.12a-c: XRD traces of the front faces of rock slices 1,4, and 8 from 

Yorkstone. The minerals associated with the peaks identified are shown in Table 

53.
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A slight variation in 
intensities of the 
feldspar peaks was 
observed in the 
XRD traces for the 
powders from 
cutting Stancliffe.

Figure 5.13a-c: XRD traces of the powders from cutting slices 1,9, and 17 from 
Stancliffe. The minerals associated with the peaks identified are shown in Table 
5 3 .
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Very strong Na- 
feldspar peaks 
were observed in 
the XRD trace for 
rock slice 1 of 
Stancliffe.
No
illite/muscovite 
peak and no 
kaolinite peak 
observed in the 
XRD trace of rock 
slice 1.

Na-feldspar peaks 
were weaker in 
intensity in the 
XRD trace of slice 
9, than observed 
in the XRD trace 
of slice 1.
No illite/ 
muscovite peak 
was observed in 
the XRD trace of 
rock slice 9, 
however the 
kaolinite peak was 
observed.

Na-feldspar peaks 
were weaker than 
those observed in 
the XRD traces of 
rock slices 1 and 
9.
As for slice 9, in 
the XRD trace for 
slice 17 the 
kaolinite peak was 
observed.

Figure 5.14a-c: XRD traces of the front faces of rock slices 1,9, and 17 from
Stancliffe. The minerals associated with the peaks identified are shown in Table
5.3.
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• All minerals 
identified in 
the XRD 
traces of 
Berea, were 
also
identified by 
Hillier 
(Table 5.1).

• Chlorite was 
not identified 
in the XRD 
traces, 
however 
Hillier 
identified 
presence of 
chlorite in 
Berea.

• Like 
Castlegate, 
only slight 
differences 
in the XRD 
traces for the 
powders 
from cutting 
Berea were 
observed.

Figure 5.15a-c: XRD traces of the powders from cutting slices 1,2, and 4 from
Berea. The minerals associated with the peaks identified are shown in Table 5.3.
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•  The weak 
illite/muscovite 
peak at 8.9° 20 in 
the XRD traces 
for the powders 
from cutting 
Berea were, not 
visible in the 
XRD traces for 
the rock slices of 
Berea.
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• Only very slight 
differences in 
peak intensities 
observed in the 
XRD traces of the 
different rock 
slices of Berea.

Figure 5.16a-c: XRD traces of the front faces of rock slices 1,2, and 4 from
Berea. The minerals associated with the peaks identified are shown in Table 5.3.
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Figure 5.17a-c: XRD traces of the powders from cutting slices 1,
Clashach. The minerals associated with the peaks identified are
5.3.

Variation in 
intensity of 
K-feldspar 
peak at 27.5 ° 
20 in XRD 
traces for 
powder from 
cutting 
Clashach 
could be 
observed.

2, and 4 from 
shown in Table
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• Large 
variation in 
intensity of 
K-feldspar 
peaks at 27.1 
and 27.5° 20 
in XRD 
traces of rock 
slices of 
Clashach.

Figure 5.18a-c: XRD traces of the front faces of rock slices 1,2, and 4 from
Clashach. The minerals associated with the peaks identified are shown in Table
5.3.



5.4.3.2 XRD traces collected by Hillier

For comparison, the XRD traces of the longest cores, bulk powdered Hollington Red 

(HR), Stancliffe (S) and Yorkstone (Y), collected by Hillier, are shown in Figures 

5.19-5.21. An internal standard of 20% corundum (AI2 O3 ) was added to each sample 

for quantification purposes, and the peak associated with corundum, at 29.8° 20, is 

indicated on the traces with “Cor”. It should be noted that the traces were collected 

on an X-ray Diffractometer using Co radiation, rather than Cu, which accounts for the 

shift in peak positions to higher angles.
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°2 theta

K-felspar peak 
observed and no 
Na-feldspar peak 
observed by visual 
inspection of 
Hillier’s XRD 
trace, in agreement 
with HR traces in 
Figures 5.5 and 
5.6.
Hillier predicted 
the presence of K- 
feldspar and not 
Na-feldspar in HR.

Figure 5.19: XRD trace of bulk Hollington Red (HR) with 20% added 
corundum. The minerals associated with the peaks identified are shown in Table 
5.3, and the peak associated with corundum indicated with “Cor”.

QO) Q(2)

1Q00
Cor900 -

800 - Na-F
700 -

600 -

500 -

400 -

300 -

200 -

100 -

0 5 10 15 20 25 30 35

°2 theta

Na-feldspar peak 
much stronger 
than K-feldspar 
peak, in agreement 
with Y traces in 
Figures 5.11 and 
5.12.
Stronger kaolinite 
peak in Y than in 
HR.
Hillier predicted 
the presence of 
both Na- and K- 
feldspars, and also 
kaolinite in Y.

Figure 5.20: XRD trace of bulk Yorkstone (Y) with 20% added corundum. The 
minerals associated with the peaks identified are shown in Table 5.3, and the 
peak associated with corundum indicated with “Cor”.
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Figure 5.21: XRD trace of bulk Stancliffe (S) with 20% added corundum. The 

minerals associated with the peaks identified are shown in Table 5.3, and the 

peak associated with corundum indicated with “Cor”.

The relative Na- and K-feldspar peak intensities in the sandstone XRD traces 

collected by Hillier (Figures 5.19, 5.20, and 5.21) were in agreement with those in the 

XRD traces of the powders from cutting (Figures 5.7, 5.11, and 5.13).

The peak at 14.4° 20, associated with kaolinite, could be detected by visual inspection 

of the XRD traces of Hollington Red (Figure 5.19), Yorkstone (Figure 5.20), and 

Stancliffe (Figure 5.21) collected by Hillier. However, the peak was not as well 

resolved as it was in the XRD traces of the powders from cutting (Figures 5.7, 5.11, 

and 5.13). Other clay peaks, such as for illite/muscovite, which could be detected by 

visual inspection of the XRD traces of the powders from cutting Hollington Red 

(Figure 5.7), Yorkstone (Figure 5.11), and Stancliffe (Figure 5.13), could not be 

clearly detected in the XRD traces collected by Hillier (Figures 5.19, 5.20, and 5.21). 

This was thought to be due to the preferred orientation of the clays in the powders 

from cutting, compared to those in Hillier’s samples. The alignment of the clays in 

the powders from cutting, induced by packing the sample into the holder, caused 

diffraction from the clays to be enhanced, and diffraction from other minerals to be 

diminished, as discussed in sections 5.3.3 and 5.4.3.1. Preferred orientation would 

lead to variation in peak intensities, which was observed in the reproducibility study 

in section 5.3.3, since some minerals in a mixture would be more susceptible than
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others to orientation and not all minerals would orientate in the same way [70].

Hillier used a spray drying method to eliminate preferred orientation, and produced 

reproducible XRD traces [81]. The spray drying method is described in section 3.3.2 

of chapter 3.

The quantification of minerals in the sandstones by Hillier using XRD is reported and 

discussed in chapter 7. Hillier used the internal standard RIR (reference intensity 

ratios) method to quantify the powdered samples. The percentages of components in 

the sandstones, predicted by Hillier, were obtained by dividing the measured peak 

intensities in the XRD trace of a sample, by the intensity of the peak for the standard, 

and multiplying by an RIR scale dependent on the amount of added standard. The 

peak intensities measured were integrated intensities, i.e. peak areas [70].

5.4.3.3 Clay Peaks

The intensity of the clay mineral peaks in the 4-20 (° 20) range of the XRD traces for 

the powders from cutting, and for the rock slices themselves, showed variations and 

were studied further by investigating the intensity ratios of a kaolinite peak and an 

illite/muscovite peak compared with the most intense quartz peak. By studying the 

peak intensity ratios, differences between the slices, differences between the powder 

and rock samples, and between the sandstones, could be compared without the added 

concern of the differences in intensity values. Charts 5.1 and 5.2 show the ratio of the 

intensity of the kaolinite peak at 12.4° 20 to the quartz peak at 26.6° 20 and the 

illite/muscovite peak at 8.9° 20 to the quartz peak at 26.6° 20, respectively.
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Chart 5.1: Ratio of intensities of the kaolinite peak (at 12.4° 20) to quartz peak 

(at 26.7° 20) in the XRD traces of powder from cutting and rock slices at 

positions named for each of the named sandstones.
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Chart 5.2: Ratio of intensities of the illite/muscovite peak (at 8.9° 20) to quartz 

peak (at 26.7° 20) in the XRD traces of powder from cutting and rock slices at 

positions named for each of the named sandstones..

Where no bars were shown in Charts 5.1 and 5.2, no peaks were observed, by visual 

detection, in the XRD traces of these powders or rock slices.

151

^



The ratios suggested differences in the clay content of each slice of sandstone. The 

highest amount of illite/muscovite was found in Hollington Red (particularly the 

middle slice), followed by Yorkstone, and then Birchover and Stancliffe containing 

around the same amount. The decreasing amount of clay content continued with 

Berea, followed by Castlegate, with no illite/muscovite peak observed in the XRD 

traces for Clashach.

With the exception of Hollington Red, which is a special case as already discussed in 

section 5.4.3.1, the intensities of the kaolinite and illite/muscovite peaks did vaiy with 

the hardness of the sandstones. The harder sandstones; Birchover, Yorkstone, and 

Stancliffe, generally had more intense clay peaks in their XRD traces, than the softer 

sandstones; Berea, Clashach, and Castlegate. Charts 5.1 and 5.2 suggested that the 

softer rocks (Clashach and Castlegate) were “cleaned’, i.e. contained less clay than the 

harder rocks.

A less intense illite/muscovite peak was generally observed in the XRD traces for the 

rock slices than in the XRD traces for the powders from cutting, implying that 

illite/muscovite may be released from the rock in the cutting process. In fact, the only 

sandstones whose XRD traces for the rock slices displayed the illite/muscovite peak 

were Yorkstone and Stancliffe. The more intense illite/muscovite peak observed in 

the XRD traces for the powders from cutting, however, could also be due to the 

preferred orientation of the clays in the powder samples enhancing the diffraction 

from the clays.

It should be noted that the location of clays within different rocks can vary. Clays can 

be present as discrete particles, or can line or bridge pores, affecting the rock porosity. 

Crocker et al. [104] investigated the clays within Berea using SEM, and found that 

most of the clay minerals present were located between the grains, acting as weak 

cement. The pores within Berea therefore had clean silica surfaces and were larger 

than if  the clays were pore-lining.

To determine whether the cores varied in mineralogy to the same extent per unit 

length, XRD traces for the powders from cutting slices 1,2, 3, and 4 of Stancliffe 

were collected for comparison with XRD traces of the short cores Berea, Birchover,
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Castlegate and Clashach. The ratio of the intensity of the kaolinite peak at 12.4° 20 to 

the quartz peak at 26.6° 20 (K/Q), and the illite/muscovite peak at 8.9° 20 to the quartz 

peak at 26.6° 20 (IM/Q), for the powders from cutting slices 1 ,2 ,3 ,4 , 9, and 17 of 

Stancliffe are shown in Figure 5.22.

cs 0.035 ------------------------------------------------------------------------------------------------
A

Slice 1 Slice 2 Slice 3 Slice 4 Slice 9 Slice 17

Figure 5.23: Ratio of intensities of the illite/muscovite peak (at 8.9° 20) to quartz 

peak (at 26.7° 20) (IM/Q) and the kaolinite peak (at 12.4° 20) to quartz peak (at 

26.7° 20) (K/Q) in the XRD traces of powders from cutting each of the named 

slices of Stancliffe.

Generally, variation in the illite/muscovite peak and the kaolinite peak (with respect to 

the quartz peak at 26.6° 20) between consecutive slices was greater for Stancliffe than 

for the shorter cores. One exception was Berea which has a greater variation in 

kaolinite than Stancliffe.

5.5 Conclusion

The heterogeneity of sandstone rock cores was studied by visual inspection of XRD 

traces of sandstone slices. It was important to study the gross heterogeneity of the 

sandstones to improve knowledge on the length scale over which the mineralogy 

varies, and also to help determine a representative sample size for further studies.

The coarse survey of reproducibility revealed the feldspar peaks near 28° 20 to be the 

least reproducible. The mineralogical variation along each sandstone core was then
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studied by visual inspection of the XRD traces of the powder produced from cutting 

slices and of the rock slices at three positions along each core. The most significant 

differences in XRD traces for the powders from cutting and for the rock slices along 

the different sandstone cores was observed for Hollington Red, indicating that this 

core contained the greatest mineralogical variation. The XRD traces for the 

Castlegate core, on the other hand, indicated the least amount of mineralogical 

variation along the length of the core.

The peak intensity ratios between clay and quartz peaks were studied and suggested 

varying amount of clay in each slice of sandstone. The highest amount of 

illite/muscovite was found in Hollington Red, followed by Yorkstone, Birchover and 

Stancliffe, Berea, Castlegate, and Clashach, which, with the exception of Hollington 

Red, follows the order of decreasing rock hardness. Less intense illite/muscovite 

peaks were generally observed in XRD traces for the rock slices than in XRD traces 

for powders collected from cutting, implying that clay may be released from the 

emerging rock surface in the cutting process, though this could only be confirmed by 

further quantitative studies.

Ideally, to study the mineralogy of a sandstone core, a large proportion of the core 

should be ground and mixed to ensure homogeneity. A small sample could then be 

taken from the bulk, for analysis. This would reduce the errors in identifying minerals 

present in the sandstones, caused by localised heterogeneity of the sandstone cores.
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6. Results - Sandstone Absolute PLS Model

6.1 Introduction

While the XRD traces and DRIFTS spectra of sandstone rocks could be investigated 

visually to provide qualitative information with regards their mineral content, the 

ability of PLS to provide quantitative predictions of mineral concentrations within a 

sample has been proven in a previous study with the three component system 

(kaolinite, smectite, and calcite), discussed in chapter 4. The three component PLS 

model was useful for determining low concentrations of smectite in synthetic 

mixtures. However, an extended model was required to quantify minerals in real rock 

samples.

Previous work by Clegg [21] resulted in the development of a seven mineral 

component PLS model to quantify minerals in sandstone rocks. The seven 

components included in this model were quartz, montmorillonite, kaolinite, illite, 

dolomite, Na-feldspar, and chlorite. The PLS model created in this study extended 

the previous seven component model in order to incorporate two different carbonates, 

two different feldspars and also the addition of hematite and muscovite. This has 

generated a more complete model, with mineral content more similar to that of a real 

sandstone rock. The eleven mineral components used to create the PLS model were 

quartz, montmorillonite, kaolinite, illite, calcite, dolomite, Na-feldspar, K-feldspar, 

hematite, chlorite, and muscovite. Synthetic mixtures of these minerals were prepared 

to form a training set comprising of calibration standards (used to prepare the model) 

and independent standards (used to test the model). The absolute PLS model 

generated was optimised for each component after considering the wavenumber 

region, the pre-processing and the number of factors to be used. The precision and 

accuracy of the model for prediction of compositions of synthetically prepared 

independent standards was discussed in this chapter before use of the model to predict 

the mineral content of real rock samples is investigated in chapter 7.
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6.2 Experimental

6.2.1 Equipment

Each standard contained varying, known concentrations of each mineral component, 

and 3 g of each were weighed out prior to ball milling. To ball mill the standards and 

the KBr diluent, a Retsch MM2 grinder was used, with two tungsten carbide grinding 

pots and two tungsten carbide grinding balls. For each standard and for KBr, batches 

of 3 g were ground for 5 minutes at 45 Hz. A Nicolet NEXUS FTIR Spectrometer 

(manufactured by Thermo Electron Corporation Ltd.), equipped with a mercury 

cadmium telluride (MCT) detector, and fitted with a Graseby-Specac Selector 

DRIFTS accessory (manufactured by Specac Ltd.), was used to collect spectra of all 

the standards.

6.2.2 Spectral Collection

The instrumental parameters for the Nicolet NEXUS FTIR Spectrometer were as 

follows:

Number of scans = 64 

Resolution = 4 cm'1 

Gain = 1

Velocity = 1.8988 cm s'1 

Data spacing = 1.928 cm'1

The accessory was adjusted, as before, to maximise the throughput radiation to reach 

the detector, prior to spectral data collection. The number of scans and velocity used 

were chosen in order to obtain spectra within a few minutes with a high signal-to- 

noise ratio. The high quality and highly reproducible spectra obtained by the Nicolet 

NEXUS FTIR Spectrometer used, meant that collecting 64 scans was sufficient. In 

the same way as described in chapter 4, the chamber, containing the sample cup, was 

purged with dry, CO2  free air for 1 minute before spectral collection, and then the 

chamber was purged continuously during data collection. OMNIC software was used 

to collect spectra and each sample spectrum was ratioed against a pre-recorded KBr 

background automatically using the OMNIC software. Grams32-PLS-PLUS IQ
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software was used to pre-process the spectra during creation of the PLS model. The 

PLS model was then used to quantify the components in the standards.

6.3 Training Set Components

6.3.1 Components Structural Formula and Source

Standards in the training set were composed of eleven mineral components, in varying 

concentrations, that represent the mineral composition of a real sandstone rock. The 

eleven components, their structural formula, and source are listed in Table 6.1.

Component Typical Structural Formula Source

Quartz (Chelford 

sand)

Si02 Macclesfield, Cheshire 

(operated by Hepworth 

Minerals and Chemicals 

Ltd.).

Montmorillonite

(SWy-2)

[(Al,Mg,Fe)2(OH)2Si4Oio

(Ca,Mg,Na,K)]nH20

Clay Minerals Repository

Kaolinite

(KGa-2)

A14Si40  io(OH)8 Clay Minerals Repository

Illite (Silver Hills 

illite, 1 Mt illite)

Al4Si4Oio(OH)2.K,Al Clay Minerals Repository

Calcite CaC03 Aldrich (99.95-100%)

Dolomite CaMg(C03)2 British Chemical Standard 

No. 368

Na-Feldspar NaAlSi3Os British Chemical Standard 

No. 375

K-Feldspar KAlSi3Og British Chemical Standard 

No. 376

Hematite Fe20 3 Aldrich (99.999%)

Chlorite

(CCa-1 Ripidolite)

(Mg,Fe,Al)6

(Al,Si)4Oio(OH)8

Clay Minerals Repository

Mica (Muscovite) KA12(A1 Si30  io)(F, OH)2 Mandoval (UK) Ltd.

Table 6.1: The components used in the training set, their structural formula and 

source.
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Although synthetic quartz is available and would be of high purity, it was thought that 

Chelford sand should be used since it more closely resembles the quartz found in 

sandstone rocks. Other samples representative of quartz, obtained from Hepworth 

Minerals and Chemicals Ltd., were analysed by Clegg [21]. Clegg [21] found 

Chelford sand to be the most pure quartz sample.

It should be noted that all the minerals included in the training set were used as 

obtained, without any purification. The purity of some of the clay components of the 

training set is discussed in section 1 .123  in chapter 7.

6.3.2 DRIFTS Spectra of the Pure Components used in the Training Set

The main characteristic bands in the DRIFTS spectra of the pure components used in 

the training set are shown in Table 6.2.

Mineral Main Characteristic Bands

Quartz Bands in the overtone/combination region (2000-1400 cm-1). 

Bands at 1107, and 1057 cm-1 (antisymmetric Si-O-Si stretching). 

Bands at 800, and 781 cm-1 (symmetric Si-O-Si stretching).

Band at 695 cm-1 (O-Si-O bending).

Montmorillonite

(SWy-2)

Bands at 3620 and 1628 cm-1 (OH stretching and bending 

respectively).

Bands at 921, 885, and 856 cm-1 (AIAIOH, AlFeOH, and AlMgOH 

deformation, respectively).

Bands at 1045, 800, and 781 cm-1 (Si-O-Si stretching).

Kaolinite Bands at 3695, 3669, 3650, and 3620 cm-1 (OH stretching).

Bands at 934, and 915 cm-1 (AIAIOH deformation of surface and 

inner OH, respectively).

Bands at 1112, 1029, 1013, 793, and 754 cm-1 (Si-O-Si stretching). 

Band at 696 cm-1 (O-Si-O bending).

Illite Band at 3620 cm-1 (OH stretching).

Band at 915 cm-1 (AIAIOH deformation).

Bands at 1022, 800, 781, and 754 cm-1 (Si-O-Si stretching).
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Calcite Doublet at 1436 and 1398 cm'1 (asymmetric stretch of carbonate 

ion).

Sharp bands at 875 and 712 cm'1 (out-of-plane bend and in-plane 

bend of carbonate ion, respectively).

Dolomite Band at 1469 cm'1 (asymmetric stretch of carbonate ion).

Sharp bands at 884 and 730 cm'1 (out-of-plane bend and in-plane 

bend of carbonate ion, respectively).

Na-Feldspar Bands at 1148,1100,1039,1021, 788, 762, 746 and 725 cm'1 (Si- 

O-Si stretching).

K-Feldspar Bands at 1052,1137,1021, 774 and 730 cm'1 (Si-O-Si stretching).

Hematite Difficult to identify.

Bands at 1540,1384, and 1206 cm'1.

Chlorite Bands at 3556 and 3415 cm'1 (OH stretching). 

Bands at 970, and 754 cm'1 (Si-O-Si stretching).

Muscovite Band at 3620 cm'1 (OH stretching).

Bands at 925, and 885 cm'1 (AIAIOH, and AlFeOH deformation, 

respectively).

Band at 749 cm'1 (Al-O-Si stretching).

Bands at 1060 and 1006 cm"1 (Si-O-Si stretching).

Table 6.2: Characteristic infrared bands for the pure mineral components to be 

used in the PLS training set

DRIFTS spectra of Chelford sand (quartz) ground by hand in a mortar and pestle, and 

ball milled are shown in Figure 6.1.
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Figure 6.1: DRIFTS spectra of Chelford sand ground (black) and ball milled 

(red).

The band intensities and shape were greatly affected by the particle size of the sample. 

The spectrum of ground Chelford sand had less well defined bands of much lower 

intensity than the spectrum of ball milled Chelford sand in the region below 

2000 cm*1. There also appeared to be a shift in the band in the 3700-3600 cm*1 OH 

stretching region of the spectrum of ground Chelford sand. The training set standards 

were ball milled for 5 minutes prior to spectral collection, ensuring spectra with well 

defined intense bands. The effect of different ball milling times was not investigated 

in this study since 5 minutes of ball milling was found to be adequate. A ball milling 

time of 5 minutes was sufficient to produce powders with particle sizes small enough 

to obtain DRIFTS spectra with strong well defined bands, and yet leave the structure 

of the clay minerals undamaged.

The DRIFTS spectra of the clay components of the training set are shown in Figure 

6.2.
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Figure 6.2: DRIFTS spectra of SWy-2 (blue), KGa-2 (black), illite (green), and 

chlorite (red).

The spectra of clays showed strong, well resolved bands and differences between the 

spectra o f the clays in the 3700-3400 cm'1 OH stretching region and in the 

1200-700 cm '1 Si-0 stretching and OH deformation region meant they were easily 

distinguishable. PLS should, therefore, be quite capable o f predicting concentrations 

of each clay, in a mixture.

The DRIFTS spectra of the carbonate components, calcite and dolomite are shown in 

Figure 6.3.
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Figure 6.3: DRIFTS spectra of calcite (black) and dolomite (red).
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The spectra of calcite and dolomite, though similar, were easily distinguishable due to 

an offset in band positions, so again PLS should be able to differentiate between the 

two and predict the concentration of each in a mixture.

The DRIFTS spectra of Na-feldspar and K-feldspar are shown in Figure 6.4.
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Figure 6.4: DRIFTS spectra of Na-feldspar (black) and K-feldspar (red).

Although in the high wavenumber region (>2500 cm '1) Na- and K-feldspar could not 

be distinguished, the Si-0 stretching region of each was quite different. Bands in the 

800-700 cm"1, Si-0 stretching, region were particularly different, with the spectrum of 

K-feldspar displaying only two bands at 774 and 730 cm'1 while the spectrum of Na- 

feldspar displayed four bands at 788, 762, 746 and 725 cm'1. Difficulty in 

distinguishing visually between the two feldspars in a mixture may occur if  one is 

present at a much greater concentration than the other as the bands would overlap. 

PLS, however, was designed to deal with mixtures o f components and spectra with 

overlapping bands, so it should be possible to predict the concentration of each 

feldspar separately.

The DRIFTS spectra o f the remaining components, mica (muscovite) and hematite 

(iron(III) oxide) are shown in Figure 6.5.
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Figure 6.5: DRIFTS spectra of muscovite (black) and hematite (red).

The spectrum of muscovite was similar to that of illite with a strong OH stretching 

band at 3620 cm '1 and similarly positioned Si-0 stretching bands in the 1200-700 cm '1 

region. Notably, however, muscovite did not display the broad OH stretching band at 

around 3430 cm'1 that was present in the spectrum of illite and montmorillonite. This 

was because the 3430 cm"1 band was due to H-O-H vibrations of absorbed water, and 

while illite and montmorillonite can absorb water by hydration of the interlayer 

cations, muscovite contains unhydrated interlayer cations. Again, the problem of 

peak overlap in the spectra of muscovite and illite may occur. However, PLS should 

be able to distinguish between the two. The spectrum of hematite, on the other hand, 

was difficult to distinguish from that of other minerals since it had no strong distinct 

bands. It is unclear how PLS would cope with the inclusion of the spectrum of such a 

mineral.

6.4 Standard Preparation

A 3 g batch of each standard was prepared to minimise weighing errors. The training 

set was comprised of fifty standards each with varying concentrations o f the 11 

components. Each 3 g batch of the standards was ball milled for 5 minutes at 45 Hz.
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The range of concentrations for each component in the standards was different to 

reflect the concentrations that would be observed in a real sandstone rock sample. 

The concentration ranges chosen are shown in Table 6.3.

Training set component Concentration range (%)
Quartz 50-90
Montmorillonite 0-10
Kaolinite 0-10
Illite 0-20
Calcite 0-30
Dolomite 0-30
Na-Feldspar 0-20
K-Feldspar 0-20
Hematite 0-10
Chlorite 0-10
Muscovite 0-10
Table 6.3: The concentration ranges of components used in the training set.

Table 6.4 shows the forty ,calibration standards, used to prepare the calibration model, 

and the ten independent standards left out of the model for later quantification using 

the model. The independent standards were numbered 5 ,13 ,14 ,21 ,23 ,24 ,27 , 37, 

39, and 48 and are indicated in Table 6.4 with an asterisk (*).
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Standard No. Quartz Montmorillonite Kaolinite Illite Calcite Dolomite Na-Feldspar K-Feldspar Hematite Chlorite Muscovite
1 58 3 2 5 8 9 5 4 2 3 1
2 90 0 0 10 0 0 0 0 0 0 0
3 50 7 10 3 4 0 2 15 1 1 7
4 67 10 6 0 0 1 11 0 0 5 0
5* 76 2 0 0 0 12 0 2 4 0 4
6 61 0 0 7 17 2 0 7 1 3 2
7 53 0 1 20 2 0 7 0 6 8 3
8 52 1 8 0 0 25 2 5 5 2 0
9 50 8 0 1 6 0 14 10 10 0 1
10 72 5 0 3 0 14 3 3 0 0 0
11 50 0 4 0 10 8 20 0 2 0 6
12 56 3 0 9 22 4 1 1 0 4 0

13* 62 2 1 6 3 6 6 7 3 1 3
14* 84 0 1 3 5 0 0 0 7 0 0
15 50 4 3 13 0 0 0 20 0 0 10
16 66 5 5 0 0 0 10 6 0 7 1
17 74 1 0 0 1 13 0 0 6 0 5
18 70 0 0 0 11 2 0 14 0 1 2
19 53 0 0 10 0 0 17 0 1 10 9
20 51 0 1 1 0 30 1 2 9 5 0

21* 50 7 9 0 5 1 12 9 5 2 0
22 69 0 0 8 0 11 8 4 0 0 0

23* 54 0 3 0 13 20 6 1 0 0 3
24* 60 3 0 3 21 4 2 0 0 7 0
25 56 1 1 4 7 8 4 11 2 1 5
26 71 0 4 7 17 0 0 0 1 0 0

27* 50 6 7 11 1 0 0 17 0 0 8
28 72 2 3 0 0 3 15 0 0 5 0
29 86 1 0 2 3 6 0 0 1 0 1
30 78 0 0 0 12 0 1 3 0 4 2
31 57 0 2 16 0 1 10 0 8 2 4
32 55 0 8 0 0 17 0 10 4 6 0
33 50 3 0 3 30 0 6 6 2 0 0
34 73 0 0 10 2 10 4 1 0 0 0
35 50 0 1 0 25 14 9 0 0 0 1
36 50 4 0 2 14 22 0 0 0 8 0

37* 59 1 7 5 5 4 12 1 3 3 0
38 66 0 5 12 8 0 1 0 5 0 3

39* 54 8 3 17 0 2 0 9 0 0 7
40 80 7 2 0 0 0 10 0 0 1 0
41 67 2 4 8 1 1 6 3 2 2 4
42 84 5 0 1 0 3 3 0 0 4 0
43 75 0 1 0 10 7 0 6 0 0 1
44 56 1 0 4 5 18 0 13 1 0 2
45 62 0 6 0 20 0 5 0 7 0 0
46 51 3 3 6 0 4 16 1 4 6 6
47 78 0 0 14 3 0 0 4 0 1 0

48* 50 6 0 3 0 12 11 11 2 0 5
49 57 10 10 0 12 6 2 0 0 3 0

50 65 0 1 9 4 0 4 16 0 0 1

Table 6.4: Mineralogical composition of the standards used in the training set  

The standards marked with an asterisk are the ten independent standards.

6.5 Sample Preparation

As mentioned previously, each of the standards, and also the KBr (>99%) diluent, 

were ball milled in 3 g batches at 45 Hz for 5 minutes. The KBr was oven dried 

overnight prior to spectral collection. Samples were prepared by mixing 4 wt% ball
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milled standard with ball milled KBr in a mortar and pestle for 1 minute. The sample 

(0.32 g) was then transferred to the DRIFTS sample cup and packed using the double 

packing method described in section 4.3.3.

6.6 Results and Discussion

6.6.1 Visual Examination of Spectra from Standards

The spectra of a selection o f standards are shown in Figure 6.6, in order to discuss the 

assignment of peaks to individual components and the overlapping of peaks.
800 cm '1

Std 2
1440 cm3556 cm'

Std 7

3556 cm 2900 cm
2530 cm3020 cm

Std 20/

2875 cm
2514 cm2984 cm

Std 49/
I
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Wavenumbers (cm-1)
Figure 6.6: Spectra of standards 2 (black), 7 (red), 20 (blue), and 49 (green).
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The spectrum of standard 2 showed distinct quartz overtone bands in the region 2000- 

1400 cm'1, and strong Si-0 stretching bands at 800, 781, and 685 cm-1, indicating high 

quartz content. The absence of bands in the 3695-3620 cm'1 region indicated that no 

kaolinite was present and, since no bands were observed in the 1470-1430 cm'1 

region, this indicated the absence of carbonate in the standard. Standard 2 in fact 

contained only 2 components, 90% quartz and 10% illite.

The spectrum of standard 7 indicated the ease at which low concentrations of kaolinite 

could be observed using FTIR spectroscopy. Standard 7 contained only 1 wt% 

kaolinite and yet the distinct peaks at 3695 and 3620 cm'1 could be clearly observed 

despite the high concentration (20 wt%) of illite which also showed a strong peak at 

3620 cm'1. A high concentration of chlorite, at 8 wt%, was also present in standard 7 

and this could be seen as a shoulder at 3556 cm'1. This chlorite peak was overlapped 

by the peaks of kaolinite and illite at 3695 cm'1. A broad carbonate peak could also 

be observed in the spectrum near 1440 cm'1 due to the presence of 2 wt% calcite in 

the standard, again indicating the sensitivity of FTIR spectroscopy for detecting these 

components. The Si-0 stretching region, 1200-950 cm'1, was different in the 

spectrum of standard 7 than in that of standard 2. This was because, unlike the 

spectrum of standard 2, which was dominated by quartz (90 wt%), this region in the 

spectrum of standard 7 was dominated by illite (20 wt%), muscovite (3 wt%), and Na- 

feldspar (7 wt%).

It was immediately obvious from the spectrum of standard 20 that it contained a high 

concentration (30 wt%) of dolomite, due to bands at 3020,2900,2530, and the strong 

band at 1469 cm'1. The spectrum also showed the 3695 and 3620 cm'1 hydroxyl 

stretching bands of kaolinite despite the presence of only 1 wt% kaolinite. The 5 wt% 

of chlorite present in the standard could be observed by the clear band at 3556 cm'1.

The spectrum of standard 49 showed a spectrum dominated by the high concentration 

(10 wt%) of kaolinite. The four strong hydroxyl stretching bands between 3695-3620 

cm'1 were clear as were the distinct Si-0 stretching bands in the 1200-950 cm'Vegion, 

indicative of kaolinite. The presence of both calcite (at 12 wt%) and dolomite (at 6 

wt%) in the standard could be observed from the spectrum. Bands at 2984,2875, and 

2514 cm'1 in the spectrum were indicative of calcite, while the strong band at 1460
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cm'1, indicated the presence of both carbonates, since pure calcite had a doublet at 

1436 and 1398 cm'1 while pure dolomite had a band at 1469 cm*1.

6.6.2 Pre-processing Studies

6.6.2.1 Introduction

To create the eleven component PLS model, PLS-1, variance scaling, and cross 

validation were used. Various models were prepared using different spectral 

wavenumber regions and different pre-processing, to investigate how these affected 

the precision and accuracy of predictions of the independent standards and to find the 

optimum model. In the first two models, different spectral wavenumber regions were 

selected to test both how robust the model could be using only a small wavenumber 

region and also to find which region gave the most precise and accurate predictions. 

The next set of models were created to investigate the pre-processing techniques MSC 

(multiplicative signal correction, a pathlength correction) and automatic baseline 

correction. Pre-processing terms are described in section 2.5.2.1. The precision and 

accuracy of predictions were studied with no corrections, and with either MSC or 

baseline correction. The numbers of factors chosen for each component in each 

model were based upon the positions of the minima in the PRESS plots and on the R2 

values of the calibrations. Once the optimum wavenumber region and pre-processing 

were chosen, this model was then further optimised by choosing factors based upon 

the precision of the model (R2 value of the calibrations and R2 value of the 

predictions), and also on the accuracy of the model (sum of the squares of the 

differences). A low value for the sum of the squares of the differences (SSD) 

indicated a more accurate prediction. The best model would be one where R2 values 

of the calibration and predictions were high, and the SSD were low.

6.6.2.2 Wavenumber Region

6.6.2.2.1 Introduction

The wavenumber region of the calibration standard spectra chosen for a PLS model 

affected the precision and accuracy with which the model could predict the 

independent standards. In the three component PLS model described in chapter 4, the
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wavenumber region 2150-680 cm'1 was chosen to be optimum, and this same region 

was studied for the eleven component model. A model was also created using the hill 

spectral region (4000-655 cm'1).

6.6.2.2.2 Results

For comparison of effects due to the wavenumber region alone, the same pre

processing was used for each model. PLS-1, variance scaling, cross validation, 

automatic baseline correction, and no pathlength correction were used for each model. 

Model 1 studied the wavenumber region, 2150-680 cm'1, and Model 2 studied the 

region 4000-655 cm'1. The numbers of factors chosen for the two models were based 

upon the R2 values of the calibrations and the minima of the PRESS plots, and they 

are listed in Table 6.5 for each component.

Component Number of Factors Chosen

Model 1 Model 2

Quartz 4 6

Montmorillonite 11 12

Kaolinite 4 6

Illite 10 10

Calcite 3 3

Dolomite 3 4

Na-feldspar 7 12

K-feldspar 6 12

Hematite 15 15

Chlorite 13 6

Muscovite 11 12

Table 6.5: Number of factors chosen for each of the named components in 

Models 1, and 2.

Plots comparing the R2 of calibration and R2 of prediction for Models 1, and 2 are 

shown in Figures 6.7 and 6.8, respectively. These plots give an indication of the 

precision of predictions of each component by the models.
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From the plots of the R2 of the calibration and the prediction it was clear that the 

predictions o f hematite gave the lowest R2 values for both models and therefore it was 

the least precisely predicted component. The highest R2 values were generally found 

using Model 2, suggesting that it gave the most precise predictions o f components, 

although the factors required for some components were quite high.

The accuracy of predictions were compared for the different models and different 

components in Figures 6.9 and 6.10, which show the SSD, and the maximum error,
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respectively. The maximum error was the value of the largest deviation from the 

actual prediction from a set of predictions, for each component. Therefore, the larger 

the maximum errors for each component, the less accurate the model was.
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Figure 6.9: The sum of the squares of the differences (SSD), in wt%2, for each of 

the named components in Models 1 (light blue), and 2 (black).

Figure 6.10: The maximum error for each of the named components in Models 1 

(light blue), and 2 (black).

Figures 6.9 and 6.10 indicate that quartz was least accurately predicted component, 

producing the highest SSD values and the highest maximum error, while kaolinite was 

the most accurately predicted. Model 2 generally showed lower SSD values and
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lower maximum errors (all below ±3.5 wt%) than Model 1, especially for quartz, 

suggesting that Model 2 gave the most accurate predictions, although again it should 

be noted that for some components, more factors were chosen in Model 2 than in 

Model 1.

Overall, Model 2, which used the full (4000-655 cm-1) region, gave more precise and 

accurate predictions than the model which used a smaller and lower waVenumber 

region. Although Model 1, which used the smaller wavenumber region, was not quite 

as precise and accurate with predictions of components such as quartz and hematite, 

the power of PLS at predicting other components when only a small wavenumber 

region was studied must be appreciated.

6.6.2.3 Pathlength and Baseline Corrections

6.6.2.3.1 Introduction

The pre-processing techniques, MSC pathlength correction, and automatic baseline 

correction, affect the calibration spectra and therefore the results of the PLS model 

created using the spectra. The pre-processing chosen for the three component model 

using GRAMS software, described in chapter 4, included no pathlength correction but 

automatic baseline correction. The three models described in this study compared the 

use of none, or either one of these corrections and all models used the full,

4000-655 cm'1, wavenumber region.

6.6.2.3.2 Results

The three models created for this study included Model 2, which has been described 

previously in section 6.6.2.2, and used no pathlength correction but did use automatic 

baseline correction. Model 3 used no pathlength correction and no automatic baseline 

correction, and Model 4, used MSC and no automatic baseline correction. As in 

section 6.6.2.2.2, the numbers of factors chosen for the three models was done so 

based upon the R2 values of the calibrations and the minima of the PRESS plots. The 

number of factors chosen for each component for each model are listed in Table 6.6.
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Component Number of Factors Chosen

Model 2 Model 3 Model 4

Quartz 6 6 5

Montmoril Ionite 12 13 11

Kaolinite 6 5 5

Illite 10 12 9

Calcite 3 4 3

Dolomite 4 4 3

Na-feldspar 12 13 12

K-feldspar 12 13 11

Hematite 15 16 15

Chlorite 6 6 7

Muscovite 12 14 11

Table 6.6: Number of factors chosen for each of the named components in 

Models 2 ,3 , and 4.

Plots comparing the R2 of calibration and R2 of prediction for Models 2, 3 and 4 are 

shown in Figures 6.11 and 6.12 respectively.
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Figure 6.11: R values of calibrations for each of the named components in 

Models 2 (black), 3 (pink), and 4 (yellow).
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Figure 6.12: R2 values of predictions for each of the named components in 

Models 2 (black), 3 (pink), and 4 (yellow).

The R2 values o f the calibrations and predictions for all the components, and for each 

model, were above 0.88, indicating that all the models were relatively precise. The 

plots indicated that there was little difference between the precision o f Models 2, 3, 

and 4. The accuracy of predictions are compared in Figures 6.13 and 6.14, which 

show the SSD, and the maximum error respectively.
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Figure 6.13: The sum of the squares of the differences (SSD), in wt% 2, for each 

of the named components in Models 2 (black), 3 (pink), and 4 (yellow).
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Figure 6.14: The maximum error for each of the named components in Models 2 

(black), 3 (pink), and 4 (yellow).

As with Models 1, and 2, Models 3 and 4 also predicted quartz the least accurately. 

The reason for this will be discussed later in chapter 7. It was thought that the reason 

for the accurate kaolinite predictions could be due to the distinct kaolinite DRIFTS 

spectra containing particularly strong and well resolved bands. Overall the precision 

and accuracy of Models 2, 3, and 4 were similar, although the prediction of quartz 

was more accurate with Model 2. Model 2, which used the spectral region 4000-655 

cm '1 and the pre-processing, no pathlength correction, but automatic baseline 

correction, was therefore chosen as the model which gave the most precise and 

accurate predictions. Model 2 could be further optimised to create the absolute PLS 

model by investigating the effects of the number of factors chosen for each 

component.

6.6.3 Absolute PLS M odel

6.6.3.1 Introduction

In the absolute PLS model, PLS-1 and cross validation were used. The study of pre

processing in section 6.6.23 indicated that the most accurate and precise predictions 

were found when using variance scaling, no pathlength correction, but automatic 

baseline correction, and this pre-processing was used for the absolute PLS model.
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The pre-processing chosen for this absolute PLS model was actually the same as that 

which was found to give the most accurate predictions in the three component model 

described in chapter 4. The study of wavenumber region used in section 6.6.2.2 

indicated that the full mid-IR region (4000-655 cm"1) should be used for the absolute 

PLS model to give the most precise and accurate predictions. The three component 

model described in section 4, however, used only the low wavenumber region, 2150- 

680 cm"1, to give the best results. The reason for this may be that, in comparison to 

the three component model, some components in the eleven component model, such 

as hematite, had little spectral information and more of the spectrum was required to 

give accurate predictions.

6.6.3.2 Optimising the Number of Factors

During the studies of different models, it became clear that altering the number of 

factors chosen for each component, greatly affected the predictions calculated. To 

ensure that the absolute PLS model gave the most precise and accurate predictions, 

while making certain the model was not over or under fit, the number of factors for 

each component was studied. Determining the correct number of factors to choose for 

each component can often be difficult because care must be taken not to underfit or 

overfit the model, as described in sections 2.5.2.1.1 and 4.8.6. Generally, as the 

number of factors increases, more information from the spectra is included and the 

precision and accuracy of predictions increases. However, if  too many factors are 

used, noise in the spectra begins to be modelled. This results in a decrease in the 

precision and accuracy of predictions.

In this study, the number of factors for each component was chosen based on the 

precision (R2 value of the calibrations and predictions) and accuracy (SSD) of 

predicted concentrations in the independent standards. The plots shown in Figures 

6.15 to 6.25 show how the R2 value of the calibration, R2 value of the predictions and 

the SSD vary for each component as the number of factors is increased. The number 

of factors chosen for each component is indicated on the plots with a vertical black 

arrow.
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Figure 6.15: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for quartz.

Figure 6.16: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for montmorillonite.
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Kaolinite Illite
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Figure 6.17: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for kaolinite.

Figure 6.18: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for illite.
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Figure 6.19: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for calcite.

Figure 6.20: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for dolomite.
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Figure 6.21: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for Na-feldspar.

Figure 6.22: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for K-feldspar.
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Figure 6.23: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for hematite.
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Figure 6.24: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for chlorite.
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Muscovite
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Figure 6.25: The precision of (a) the 

calibration, (b) the predictions and (c) 

the accuracy of the predictions 

obtained from the absolute PLS model 

for muscovite.
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The optimum number of factors was chosen for each component based on a decrease 

in the rate of improvement in R2 values and sum of the squares of the differences.

The resulting factors chosen for the optimum absolute PLS model are shown in Table 

6.7, which also lists the R values for the calibration and predictions for each 

component.

Component Number of Factors R2 of Calibration R2 of Prediction

Quartz 10 0.980 0.987

Montmorillonite 8 0.732 0.915

Kaolinite 4 0.942 0.938

Illite 14 0.956 0.971

Calcite 3 0.960 0.975

Dolomite 4 0.981 0.981

Na-Feldspar 12 0.956 0.987

K-Feldspar 12 0.954 0.971

Hematite 15 0.895 0.883

Chlorite 6 0.914 0.954

Muscovite 13 0.928 0.917

Table 6.7: The resulting number of factors chosen, the R values for calibrations 

and predictions, for the optimum absolute PLS model.

The low number of factors and high R2 values for both calcite and dolomite suggested 

they were precisely predicted components. This was expected since their DRIFTS 

spectra were very distinctive with strong bands in regions where no other components 

had bands. The lowest R2 values were seen for hematite, which also required the 

highest number of factors. The low precision of hematite predictions was expected 

since its DRIFTS spectrum had few distinct features and no strong bands. It is 

interesting to note that montmorillonite had the lowest R2 value for the calibration, at

0.732, and yet the R2 of prediction for this component was 0.915, suggesting the 

predictions were relatively precise.
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6.6.33 Absolute PLS Model Predictions

For each component in the training set, the predicted concentrations of the ten 

independent standards were plotted against the actual concentrations. The component 

concentrations were expressed as percentages. Figures 6.26 to 6.36 show these 

predicted vs. actual percentages for each component.

The thick black line at 45° represents the ideal model and any deviation of the points 

from this line indicates errors in the model. The two full lines on each side of the 45° 

line indicate the maximum and minimum worst case error for that component, i.e. the 

value of largest difference between the actual and the predicted percentage. The two 

dashed lines indicate the maximum and minimum average error for that component,

i.e. the average of the differences between the actual and the predicted percentages for 

all the independent standards.
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Figure 6.26: Predicted against actual percentage of quartz for absolute PLS 

model. The full and dotted lines represent the maximum and average errors, 

respectively, of the predictions.
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Figure 6.27: Predicted against actual percentage of montmorillonite for absolute 

PLS model. The full and dotted lines represent the maximum and average 

errors, respectively, of the predictions.
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Figure 6.28: Predicted against actual percentage of kaolinite for absolute PLS

model. The full and dotted lines represent the maximum and average errors,

respectively, of the predictions.
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Figure 6.29: Predicted against actual percentage of illite for absolute PLS model. 
The full and dotted lines represent the maximum and average errors, 
respectively, of the predictions.
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Figure 6.30: Predicted against actual percentage of calcite for absolute PLS
model. The full and dotted lines represent the maximum and average errors,
respectively, of the predictions.
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Figure 6.31: Predicted against actual percentage of dolomite for absolute PLS 

model. The full and dotted lines represent the maximum and average errors, 

respectively, of the predictions.
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Figure 6.32: Predicted against actual percentage of Na-feldspar for absolute PLS

model. The full and dotted lines represent the maximum and average errors,

respectively, of the predictions.
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Figure 6.33: Predicted against actual percentage of K-feldspar for absolute PLS 

model. The full and dotted lines represent the maximum and average errors, 

respectively, of the predictions.
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Figure 6.34: Predicted against actual percentage of hematite for absolute PLS

model. The full and dotted lines represent the maximum and average errors,

respectively, of the predictions.
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Figure 6.35: Predicted against actual percentage of chlorite for absolute PLS 

model. The full and dotted lines represent the maximum and average errors, 

respectively, of the predictions.
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Figure 6.36: Predicted against actual percentage of muscovite for absolute PLS

model. The full and dotted lines represent the maximum and average errors,

respectively, of the predictions.

189



The spread of the points within the worst case error line (outer full lines) or average 

error lines (inner dashed lines) gave an indication of the accuracy of the model. The 

errors in the model were presented in these two ways since, for some components, 

including illite (Figure 6.29), calcite (Figure 6.30), and dolomite (Figure 6.31), there 

were only one or two outlying independent standards that had large errors while the 

other independent standard points lay close to the 45° line.

The plot of predicted against actual percentages for quartz showed that five out of the 

ten points lay within the average error lines. There were not any outlying points and 

points were equally distributed above and below the ideal 45° line. The maximum 

error for quartz was ±2.2 wt%.

Montmorilonite was predicted with more precision. The predicted against actual 

percentages plot showed that seven out of the ten points lay within the average error 

lines. The remaining three points lay above the ideal 45° line indicating a slight over

prediction of montmorillonite, with the maximum error being ±2.0 wt%.

The predicted against actual percentages plot for kaolinite also showed that seven out 

of the ten points lay within the average error lines. The remaining three points lay 

both above and below the ideal 45° line, and the maximum error was ±1.4 wt%.

Illite was one of the most precisely predicted components with the predicted against 

actual percentages plot showing that nine out of the ten points lay within the average 

error lines. There was only one outlying point situated below the 45° line. Despite 

being so precisely predicted, the maximum error was relatively high compared with 

the other components, at ±2.5 wt%.

The same was true for the carbonate components because, although the plots of 

predicted against actual percentages showed that eight out of the ten points lay within 

the average error lines for both calcite and dolomite, the maximum errors for calcite 

and dolomite were relatively high a t , ±2.8 wt% and ±2.4 wt%, respectively.

For Na-feldspar and K-feldspar, the predicted against actual percentages plots showed 

that five and six points, respectively, lay within the average error lines. The
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remaining points lay above and below the 45° line. The maximum errors for Na- 

feldspar and K-feldspar were therefore, ±1.9 wt% and ±2.0 wt%, respectively.

The predicted against actual percentages plot for hematite showed that seven out of 

the ten points lay within the average error lines with remaining points lying above the 

ideal 45° line indicating a slight over-prediction of hematite and a maximum error of 

±1.9 wt%.

For chlorite, the predicted against actual percentages plot showed that only four out of 

the ten points lay within the average error lines, suggesting that chlorite was a less 

precisely predicted component. It should also be noted that all points on the plot lay 

above the ideal 45° line indicating that the model had a tendency to over-predict 

chlorite. The poor precision of the predictions was not reflected by the maximum 

error, which was only ±1.7 wt%.

The predicted against actual percentages plot for muscovite showed it was predicted 

more accurately than chlorite, with seven out of the ten points lying within the 

average error lines. The maximum error for muscovite was ±1.6 wt%.

6.7 Comparing Results with Literature

Previous work by Clegg [21] included the use of DRIFTS and PLS to quantify 

mineral components in synthetic mixtures. A PLS model consisting of seven mineral 

components was developed with a view to quantifying minerals in sandstone rocks. 

The seven components included in this model were quartz, montmorillonite, kaolinite, 

illite, dolomite, Na-feldspar, and chlorite. The absolute PLS model discussed in this 

chapter extended this seven component model in order to incorporate two different 

carbonates, two different feldspars and also the addition of hematite and muscovite. It 

was thought that a larger model, with mineral content more similar to that of a real 

sandstone, would be able to more thoroughly quantify the minerals in a sandstone 

rock.

Clegg found that the minerals, montmorillonite and illite, were poorly calibrated 

individually in the model, with correlation coefficients of 0.76 and 0.72, respectively.
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Combining the poorly calibrated components, montmorillonite and illite, increased the 

correlation coefficient to 0.92 in Clegg’s model. However, this combination still 

produced the least accurate predictions of all the components. In the absolute PLS 

model, the R2 value of the calibration for illite was 0.96, indicating that it was 

possible to accurately quantify illite separately from montmorillonite. The R2 value of 

the calibration of montmorillonite, in the absolute PLS model, was on the other hand 

the lowest of all the components, at 0.73. The two components were, however, 

predicted separately in the absolute PLS model, and the R2 value of the predictions of 

montmorillonite was found to be 0.91, and the maximum error, ±2 wt%, indicating 

that predictions for montmorillonite were still precise and accurate* despite the low R2 

value of calibration.

The correlation coefficients of all the components in Clegg’s PLS model were over 

0.92, and the number of factors chosen range from 5 to 10. In the absolute PLS 

model, all the components had R2 values of calibrations over 0.89, except for 

montmorillonite, at 0.73, and the number of factors chosen ranged from 3 to 15. 

Although initially this implied that the model developed by Clegg was more accurate, 

it tends to be the components not included in Clegg’s model that required the high 

number of factors in the absolute PLS model, e.g. hematite and muscovite.

The maximum errors found for components in the absolute PLS model and in the PLS 

model developed by Clegg were of the same order. Clegg reported that the maximum 

error of quartz prediction in the independent synthetic mixtures was ±3 wt%, and the 

other minerals ±1 wt%, while the absolute PLS model quantified all minerals with a 

maximum error of ±2.8 wt%.

As mentioned in section 5.4.3.2 in chapter 5, Hillier [70] used X-ray powder 

diffraction with the internal standard RIR (reference intensity ratios) method and the 

Rietveld method to quantify samples containing a wide range of clay and non-clay 

minerals. Corundum was used as the internal standard. Hillier obtained predictions 

for components by dividing the measured peak intensities in the trace of the sample 

by the intensity for the standard phase and multiplying by a RIR scale dependent on 

the amount of added standard. The peak intensities measured were integrated 

intensities, i.e. peak areas [70]. The maximum errors were reported to be typically 

within ±3 wt% for each component although it was found that the error tends to be 

correlated with the concentration of the components. Hillier found that generally
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errors were greatest when predicting low concentrations. The maximum error 

reported by Hillier for predicting components was very similar to that found by the 

absolute PLS model derived in this chapter (±2.8 wt%). Unlike the predictions for 

components by Hillier, no correlation between the error and the concentration of 

components was found in the development of the absolute PLS model.

Krivacsy et a l  [105] used four different calibration methods to quantify quartz and 

calcite in atmospheric aerosols using DRIFTS and the Kubelka-Munk (K-M) function. 

The four methods included calibration with one measurement of each standard, 

calibration with an internal standard, calibration with multiple measurements of each 

standard, and multiple calibration followed by reference reflectance correction, where 

the reflectance of the reference material was included in the K-M function. The 

maximum error for determining quartz and calcite in the samples was within ±3.1% 

and ±4.0%, respectively, for the calibration with one measurement of each standard, 

and improved to within ±2% and ±2.1%, respectively, for the calibration with 

multiple measurements of each standard. Krivacsy et a l  found the most accurate 

method for quartz and calcite quantification to be the multiple calibration followed by 

reference reflectance correction, where quartz was accurate within ±1.0% and calcite, 

within ±0.7%.

As was found by Krivacsy et a l , including two spectra of each standard in the 

absolute PLS model gave more accurate predictions than single measurements. The 

errors found for predicting components using the absolute PLS model were in the 

same order (within ±2.8 wt%) as those found by Krivacsy et a l  using the calibration 

with multiple measurements.

Reig etal. [106] used FTIR spectroscopy to quantify calcite and silica, in mixtures, 

using absorbance ratios. In this method, it was assumed that the bands due to the 

same compound maintained a constant relationship when the concentration of that 

compound varied. If one of the components had an absorbance band exclusively due 

to that component, then its contribution to the absorbance in the overlapped band 

could be predicted. Reig et a l  found that they could predict calcite and silica in 

mixtures with a relative error of ±5% and a standard deviation, for three replicas, of 

±4.4%. Although the relative error was reported by Reig et a l,  the maximum error 

could be calculated from the data given. The maximum error was calculated as ±1%.
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This method was applied to the quantification of silica and calcite in a sandstone 

sample, a limestone sample, and a sample of sediments. The silica quantified by this 

method, in the sandstone, was within ±2.8% of that calculated by chemical analysis. 

This error was the same as that found for the quantification of quartz using the 

absolute PLS model. However, while PLS could cope with overlapping of bands, the 

method by Reig etal. may struggle when more components are involved as it would 

be more difficult to find a single absorbance band associated with just one component.

Vagenas e ta l  [107] also used the selection of a specific absorbance band, associated 

with each component of a mixture, to quantify different calcium carbonate phases 

(calcite, aragonite, and vaterite) in ternary mixtures. To avoid complications arising 

from overlapping bands, the bands were deconvoluted. Beer’s Law was then used to 

calculate the concentration of each component from the absoibance of each selected 

band. The relative errors found by Vagenas et a l  for quantifying calcite, aragonite, 

and vaterite, were ±1, ±8, and ±2.7%, respectively. There was not enough 

information reported to be able to calculate the maximum errors of the components. 

The errors found for quantifying calcite and dolomite using the absolute PLS model 

were reported as maximum errors and were ±2.8 and ±2.4 wt%, respectively.

Vogt e ta l  [108] used QUAX software (Quantitative Phase-Analysis with X-ray 

Powder Diffraction) to quantify minerals in rocks. QUAX is a full-pattem method 

and uses a reference materials database. XRD patterns of minerals of different origin 

and chemistry are added to the database to improve its predictive ability. Reference 

materials in the QUAX software must be monomineralic and any impurities must be 

quantified. Vogt e ta l  investigated the presence of impurities in some Clay Mineral 

Society clays, by measuring both the bulk material and the <2 pm fraction by XRD 

and by using XRF. Vogt et a l  quantified the components in synthetic mixtures of 

quartz, plagioclase, K-feldspar, illite, kaolinite, and montmorillonite but did not report 

the maximum errors and instead reported the standard deviation of 8 mixtures. The 

standard deviation was found to be less than ±4.8% for all the components.

Table 6.8 summarises the different types of errors reported by the different workers 

discussed in this section. Different errors were reported by Krivacsy et a l  [105] for 

the different models they investigated. The maximum error reported in Table 6.8 for
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Krivacsy et a l is for the most accurate model reported. Where the workers have 

reported individual errors for each component studied, the greatest error is reported in 

Table 6.8.

Error Thesis

author

Clegg

[21]

Hillier

[70]

Krivacsy

e ta l

[105]

Reig et 

al 

[106]

Vagenas

e ta l

[107]

Vogt et 

al 

[108]

Maximum 

(± wt%)

2.8 3.0 3.0 1.0

Relative 

(± wt%)

5.0 8

Standard 

Deviation 

(± wt%)

4.4 4.8

Table 6.8: A summary of the different types of errors reported by different 

workers for quantitative analysis of minerals. Where no value is given, the 

relevant worker did not report this error.

6.8 Conclusion

The sandstone absolute PLS model was constructed with a synthetic mineral training 

set comprising of eleven mineral components, to resemble the composition of a real 

sandstone rock. The fifty standards of the training set were composed of quartz, 

montmorillonite, kaolinite, illite, calcite, dolomite, Na-feldspar, K-feldspar, hematite, 

chlorite, and muscovite. The DRIFTS spectra of the eleven components in the 

training set all, except hematite, displayed strong, well resolved bands and could be 

distinguished from each other visually.

The model was optimised by studying the precision and accuracy of predicted 

component concentrations in a set of synthetically prepared independent standards. 

The prediction of components in real sandstone rocks, using the absolute PLS model 

is studied in chapter 7. Studies using different wavenumber regions and pre

processing in models, indicated that the most precise and accurate predictions were 

found when using the full (4000-655 cm'1) region and when using no pathlength 

correction, but automatic baseline correction for the pre-processing. The model was
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further optimised by altering the number of factors based on a more detailed study of 

the effects of the factors.

For the absolute PLS model, the R2 values of the calibrations and predictions for each 

component were mostly above 0.9. Hematite was the least precisely predicted 

component, with R2 of calibration and predictions at 0.89 and 0.88, respectively and 

the most number of factors required. This was expected since the DRIFTS spectrum 

of hematite had few distinctive features and no strong bands. However, the maximum 

error for hematite was only ±1.9 wt%, so it was still predicted relatively accurately. 

Montmorillonite had the lowest R2 of calibration value, at 0.73. However, the R2 

value of the predictions of montmorillonite was 0.91, and the maximum error ±2 wt%, 

indicating that predictions were still precise and accurate. In the seven mineral 

component PLS model reported by Clegg [21], montmorillonite was also poorly 

calibrated, with a correlation coefficient of 0.76. Combining the poorly calibrated 

components, montmorillonite and illite, increased the correlation coefficient to 0.92 in 

Clegg’s model. However, this combination still produced the least accurate 

predictions of all the components. The absolute PLS model described in this study 

attempted to predict each of the eleven components separately and overall the 

accuracy of the model was good, with the maximum error for all components being 

less than ±2.8 wt%. This error was similar to that found by Hillier [70] for 

predictions of samples containing clay and non-clay minerals using X-ray powder 

diffraction. The absolute errors reported by Hillier were typically ±3 wt% for each 

component.
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7. Results -  Quantification of Sandstone Rocks

7.1 Introduction

In this study, the absolute PLS model, developed in chapter 6, was used to predict the 

concentrations of minerals in real sandstone rocks from the DRIFTS spectra of 

powdered samples. The seven quarried sandstones studied were the same as those 

studied in chapter 5, and included; Hollington Red, Birchover, Yorkstone, Stancliffe, 

Berea, Clashach, and Castlegate.

It was suggested in chapter 5 that variations in mineralogy along the sandstone cores 

could be detected visually from XRD traces. In this chapter the mineralogy along the 

length of the sandstones was investigated by quantifying components using the 

DRIFTS spectra of the sandstones and the absolute PLS model.

Three different sets of sandstone powder samples were quantified using the PLS 

model. One set of powders analysed was the powder released during the cutting of 

the core into slices, as described in section 5.2 of chapter 5. The other two sets of 

powders originated from the rock slices themselves. Each slice was cut in half, and 

one half was ground by hand in a mortar and pestle to create the second set of 

powders, while the other half was ball milled to create the third set of powders. The 

effect of the different particle sizes of the powders on their DRIFTS spectra was 

investigated. Since the training set standards used in the PLS model were ball milled, 

it was thought that the ball milled core samples would give the most accurate 

predictions.

The predictions of components in the different sandstones, calculated by the absolute 

PLS model, were compared. The predictions were also compared with those 

calculated by models developed by others. These models included an XRD model by 

Dr. Stephen Hillier from the Macaulay Land Use Research Institute, a least square 

fitting technique with FTIR transmission spectroscopy by Schlumberger-Doll 

Research, and a PLS with DRIFTS model developed by Clegg [21].

The prediction of sandstone components by Hillier’s XRD model was considered to 

be the most accurate since it was a well established technique. In order to improve the 

absolute PLS model so that predictions were more similar to those of Hillier, the 

number of factors chosen for the components were altered, and the pragmatic PLS
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model was created. The errors in the models, and the influence of likely impurities in 

the training set components were also discussed.

7.2 Experimental

7.2.1 Preparation of Powders

Three slices from each sandstone rock were studied; one from the front, one from the 

middle, and one from the end of the core. Three sets of powders were collected for 

each slice. The first set of powder was the fine powder released during the cutting 

process due to the vibration of the rock by the saw. This powder was collected since 

it was unknown whether certain minerals would preferentially remain in the rock disk, 

or be lost to the powder collected, during cutting. As stated in section 5.2 of chapter 

5, the sandstones differ in density and hardness and the amount of powder collected 

during cutting was related to this. The harder rocks, Birchover, Yorkstone, and 

Stancliffe produced more powder during cutting, than Berea, Hollington Red, 

Clashach, and Castlegate, presumably because of the longer cutting times and 

therefore longer vibration times of the less friable rocks. This first set of powders is 

referred to as the “powder from cutting” in discussions throughout this chapter. The 

second and third sets of powders were prepared from the core slices themselves. Each 

slice was cut in half, and the second set of powders was prepared by grinding one half 

of each of the three slices for each core. Grinding was carried out manually in a 

mortar and pestle until the powder was homogeneous by visual inspection. However, 

the particle size was still notably larger than the powders produced from cutting. The 

second set of powders is referred to as “ground slices” throughout this chapter. The 

third set of powders was produced from the remaining halves of the three slices from 

each core. The half slices were first crushed to approximately sand sized particles in a 

mortar and pestle before ball milling to produce a fine powder. Ball milling was 

carried out in 3 g batches for 5 minutes at 45 Hz. The third set of powders is referred 

to as “ball milled slices” throughout this chapter. The particle size of the different 

powders and the training set standards was not found. However, by ball milling the 

third set of powders for the same length of time as the standards in the training set, it 

was assumed that the particle size was similar and that the predicted concentrations of 

components in the ball milled sandstones were the most accurate.

198



7.2.2 Equipment

As with the training set standards, a Nicolet NEXUS FTIR Spectrometer 

(manufactured by Thermo Electron Corporation Ltd.), equipped with a mercury 

cadmium telluride (MCT) detector, and fitted with a Graseby-Specac Selector 

DRIFTS accessory (manufactured by Specac Ltd.), was used to collect spectra of all 

the sandstone powders. To ball mill the core slices in order to prepare the third set of 

powders, a Retsch MM2 grinder was used, with two tungsten carbide grinding pots 

and two tungsten carbide grinding balls. Batches of 3 g were ground for 5 minutes at 

45 Hz.

7.2.3 Sample Preparation

The KBr (>99%) used as the diluent for the sandstone powders was also ball milled in 

3 g batches at 45 Hz for 5 minutes and was oven dried overnight prior to spectral 

collection. Samples were prepared by mixing 4 wt% sandstone powder with ball 

milled KBr in a mortar and pestle for 1 minute. The sample (0.32 g) was then 

transferred to the sample cup and packed using the double packing method described 

in section 4.3.3 of chapter 4.

7.2.4 Spectral Collection

The instrumental parameters used for the Nicolet NEXUS FTIR Spectrometer when 

collecting spectra of the sandstone powders were the same as those used when the 

spectra of training set standards were collected, and were described in section 6.2.2 of 

chapter 6. The procedure for spectral collection of the powders was also the same as 

that described in section 6.2.2. The Grams32-PLS-PLUS IQ software was used to 

create both the absolute and the pragmatic PLS models. By introducing the DRIFTS 

spectra of the sandstone powders to the PLS models in the Grams32-PLS-PLUS IQ 

software, the components in the sandstones could be quantified.
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7.3 Qualitative DRIFTS study of Sandstones

The DRIFTS spectra of the sandstones were initially investigated visually to gain a 

qualitative understanding of the minerals present in each. The DRIFTS spectra o f ball 

milled Hollington Red, Birchover, Yorkstone, and Stancliffe sandstones are shown in 

Figures 7.1 and 7.2. Figure 7.1 shows the high wavenumber region of DRIFTS 

spectra, displaying the OH stretching region, while Figure 7.2 shows the low 

wavenumber Si-O-Si stretching, and O-Si-O bending region.
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Figure 7.1: The high wavenumber region of the DRIFTS spectra for ball milled 

Hollington Red (blue), Birchover (black), Yorkstone (pink), and Stancliffe 

(green) sandstones.

All clays display a band near 3620 cm'1, but it was the four distinct OH stretching 

bands of kaolinite at 3695, 3669, 3650, and 3620 cm"1, indicated by the arrows, that 

dominated this region. In the spectrum of pure kaolinite, the band at 3695 cm '1 was 

equal in intensity or was more intense than the band at 3620 cm"1, as shown in Figure 

6.2, in chapter 6. In the spectra of the sandstones, shown in Figure 7.1, the band at 

3620 cm'1 was more intense than that at 3695 cm '1 and this indicated that some 2:1 

layer minerals (montmoriIonite, muscovite, chlorite and /or illite) were present. It was 

clear that all four of the sandstones contained kaolinite and the peak intensities and
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resolution implied that Birchover and Yorkstone contained a similar amount of 

kaolinite, while Stancliffe contained slightly less and Hollington Red slightly less 

again. The broad band at 3556 cm '1 in the spectrum of Yorkstone indicated that it 

contained chlorite.
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Figure 7.2: The low wavenumber region of the DRIFTS spectra for ball milled 

Hollington Red (blue), Birchover (black), Yorkstone (pink), and Stancliffe 

(green) sandstones.

Although the spectra of these sandstones were similar, slight differences in peak 

position, resolution and intensity could be observed. The band at 1013 cm '1 

corresponds to Si-0 stretching, and the bands at 934, and 915 cm '1 to Al-Mg-OH and 

A1-OH-A1 deformation, respectively. These bands are associated with the minerals 

kaolinite, montomorillonite, illite, and muscovite. The greater peak intensity and 

resolution of these bands in the spectra of Yorkstone again suggested that this 

sandstone had the highest clay content, followed by Birchover, Stancliffe then 

Hollington Red.

The strong Si-0 stretching band at 1039 cm '1 was present in all four of these 

sandstones, and is associated with Na-Feldspar, so relatively high concentrations of 

Na-feldspar should be predicted. Another band present in the spectra and associated
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with Na-feldspar was found at 725 cm'1. In the spectra of Hollington Red, however, a 

band was present at 730 cm-1 instead, indicating that the K-feldspar content of this 

sandstone was higher than the Na-feldspar content.

The bands at 800 and 781 cm"1 (due to Si-O-Si stretching), and the band at 695 cm'1 

(due to O-Si-O bending), are associated with quartz, and were strong and sharp in all 

the sandstones. The slight differences in peak intensity suggested that Hollington Red 

contained more quartz, followed by Birchover and Yorkstone, with Stancliffe 

containing the least.

The DRIFTS spectra of ball milled Berea, Clashach, and Castlegate sandstones and of 

ball milled pure Chelford sand are shown in Figures 7.3 and 7.4. Chelford sand was 

included because it was the quartz component of the training set and, since the 

sandstones were composed predominantly of quartz, their spectra were very similar to 

that of Chelford sand. Figure 7.3 shows the high wavenumber region o f the DRIFTS 

spectra, while Figure 7.4 shows the low wavenumber region.
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Figure 7.3: The high wavenumber region of the DRIFTS spectra for ball milled 

Berea (dark green), Clashach (light blue), Castlegate (black) sandstones, and 

Chelford sand (red).

The intensities of the four distinct OH stretching bands of kaolinite, present in the 

spectra of Berea and Castlegate, indicated that Berea contained a higher concentration 

of kaolinite than Castlegate although both sandstones contained less kaolinite than
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Yorkstone, Birchover, Stancliffe and Hollington Red. It should also be noted that the 

spectrum of Castlegate was more similar to that of pure kaolinite since the band at 

3695 cm '1 was more intense than that at 3620 cm '1, indicating that while this 

sandstone contained kaolinite, it contained very little 2:1 layered minerals. It was 

clear from Figure 7.3 that the four OH stretching bands of kaolinite were not present 

in the spectra of pure Chelford sand or Clashach. This was to be expected in Chelford 

sand. However, Clashach was the only sandstone studied which did not contain 

kaolinite suggesting it was a “clean” sandstone.
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Figure 7.4: The low wavenumber region of the DRIFTS spectra for ball milled 

Berea (dark green), Clashach (light blue), Castlegate (black) sandstones, and 

Chelford sand (red).

Figure 7.4 shows a marked difference in the bands at 1013, 934 and 915 cm '1, 

associated with the clays; kaolinite, montmorillonite, illite, and muscovite, compared 

with those in Figure 7.2. The spectrum of Berea showed only a shoulder at 1013 cm '1, 

and the spectrum of Castlegate only a very slight shoulder. The bands at 934 and 

915 cm'1 were also more intense in the spectrum of Berea than in the spectrum of 

Castlegate indicating that Berea contained more clay. However, both sandstones 

contained less clay than Birchover, Yorkstone, Stancliffe, and Hollington Red
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sandstones. The spectra of Chelford sand and Clashach did not display the 1013, 934, 

and 915 cm'1 bands, again indicating that they did not contain much clay.

The band associated with Na-feldspar at 1039 cm'1 was present as a shoulder in the 

spectrum of Berea, as a slight shoulder in the spectrum of Castlegate, and as a very 

slight shoulder in the spectrum of Clashach, indicating the order of decreasing Na- 

feldspar content. It should also be noted that a very slight shoulder was present in the 

spectrum of Chelford sand suggesting it may contain some impurity. This is 

discussed further in section 7.7.2. None of the spectra in Figure 7.4 showed a band at 

725 cm'1 (associated with Na-feldspar). However, some showed a band at 730 cm'1 

(associated with K-feldspar). The intensity of this band at 730 cm'1 in the spectra, 

decreased in the order Chelford sand and Clashach, followed by Berea then 

Castlegate. This suggested that Berea, Clashach, Castlegate and Chelford sand 

contained a low concentration of Na-feldspar, and that Berea, Clashach and Chelford 

sand contained K-feldspar. Again, the possibility of impurities in Chelford sand is 

discussed in section 7.7.2.

The spectrum of Berea was unique due to the presence of a broad band at around 1470 

cm'1 and a band at 880 cm'1. These bands are associated with carbonate. This 

suggested that Berea contained more calcite and dolomite than the other sandstones. 

The strong bands in the sandstone spectra of Figure 7.4, at 800, 781, and 695 cm'1, are 

associated with quartz and decreased in intensity in the order Castlegate, Chelford 

sand, Clashach, then Berea suggesting the order of decreasing quartz content. 

Problems may arise in the prediction of the quartz component in the sandstones if, as 

the quartz band intensities suggested, Chelford sand contained a lower concentration 

of quartz than Castlegate. The implications of the quartz band intensities on quartz 

predictions are discussed further in section 7.7.1.
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7.3 Predicting the Mineral Composition of Powders from Sandstone 

Rocks using the Absolute PLS Model

7.3.1 Introduction

Spectra of the three different sets of sandstone powder samples; powder collected 

during cutting, ground slices, and ball milled slices, were collected. The wt% of 

different components present in the powders could then be predicted using the 

absolute PLS model described in chapter 6.

The components in the powder collected during cutting were predicted separately 

from the ground and ball milled slice halves so that the effect of the cutting process 

could be studied. It was thought that clay may be released during the cutting process 

and also that the friability of the rock may affect the amount of clay released during 

cutting.

7.3.2 Comparing Predictions of Powder from Cutting, Ground Slices, and 

Ball milled Slices

The predicted percentages for each component are shown in Figures 7.5-7.11 for the 

powders from the three slices of each of the sandstone cores; Hollington Red, 

Birchover, Yorkstone, Stancliffe, Berea, Clashach, Castlegate. Error bars are shown 

on the predictions for the ball milled slices of each sandstone. These show the 

maximum errors (largest difference between the actual and the predicted percentages) 

calculated for each training set component using the predictions of the independent 

standards by the absolute PLS model. For any given component, the maximum error 

for that component was the same for the predictions of the powders from cutting, the 

ground slices, and the ball milled slices, since all were predicted using the absolute 

PLS model.
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milled slices (green) of a Clashach core using the absolute PLS model.
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Figure 7.11: Predicted percentages of each component (in the numbered slices 

identified) for the powder from cutting (blue), ground slices (pink), and ball 

milled slices (green) of a Castlegate core using the absolute PLS model.

A point to note from Figures 7.5-7.11 is that some components were under predicted, 

giving negative values. This is a problem encountered in all PLS models and can
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occur when the predicted concentration of a component is low. The predictions which 

were negative could either be ignored or assigned as meaning that the sample 

contained none of that component [21]. Chakrabarty et al. [110] also reported that the 

major drawback of the least squares technique was that it could predict unrealistic, 

negative, or over 100% values, and there was no way to prevent least squares models 

from doing this. The over prediction of quartz in the ball milled slices of the softer 

rocks Berea, Clashach, and Castlegate, by the absolute PLS model is discussed further 

in section 7.7.

Table 7.1 summaries the percentage of each component predicted for each sandstone. 

The predictions for the different powder samples were compared, where BM refers to 

the ball milled slices, PC refers to the powder from cutting, and HG refers to the hand 

ground slices. Where the predicted percentages were zero or are negative, the boxes 

are shaded, in order to draw attention to them.

Using Table 7.1 some general observations could be made regarding the predicted 

percentages of components in the sandstones. Except for the ball milled slices of 

Hollington Red, Berea, Clashach, and Castlegate, montmorillonite was predicted 

negatively or at zero. This suggested that there was no montmorillonite present in the 

sandstones, except in the rock slices of these softer rocks. Calcite, too, was predicted 

negatively or at zero in all but one sample; the ball milled slice of Berea. This 

indicated that calcite was not generally present in the sandstones, however, a low 

concentration may have been present in Berea. With the exception of some of the 

ground slice samples, no Na-feldspar orK-feldspar was predicted in the softer rocks; 

Berea, Clashach, and Castlegate. Neither was any K-feldspar present in Birchover 

and Yorkstone. The predictions for kaolinite and illite were mostly positive, with 

more illite than kaolinite, generally found in the sandstones. Exceptions to this were, 

Clashach, where no kaolinite was present, and in the rock slices of Berea, Clashach, 

and Castlegate, where no illite was present.
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The predictions of components in the powder from cutting, ground slices, and ball 

milled slices, were in many cases significantly different. One possible reason for this 

was that certain mineral components may have been preferentially released from the 

rock during cutting and were therefore more concentrated in the powder collected. 

Predictions for the harder rocks Birchover (Figure 7.6), Yorkstone (Figure 7.7), and 

Stancliffe (Figure 7.8), generally showed a lower concentration of quartz in the ball 

milled slices than in the powder from cutting, implying that more quartz was released 

as powder during the cutting of these rocks. The opposite trend was observed for the 

softer rocks, Hollington Red (Figure 7.5), Berea (Figure 7.9), Clashach (Figure 7.10), 

and Castlegate (Figure 7.11), where a higher concentration of quartz was predicted in 

the ball milled slices than in the powder from cutting, implying that more quartz 

remained in the rock slice during the cutting process. It should again be noted, 

however, that in the ball milled slices of Berea, Clashach, and Castlegate, the quartz 

was actually predicted at over 100 wt%. A possible reason for the location of the 

higher concentration of quartz is that in the harder, denser rocks, the grains could have 

been held in place by strong cement, so when cut, the saw actually cut through quartz 

grains, producing a relatively smooth rock slice surface and releasing a powder which 

was rich in quartz. When the softer, less dense, rocks were cut, however, the saw 

could have separated the quartz grains rather than cutting through them, producing a 

rougher rock slice surface, and the release of less powder. The powder that was 

released was lower in quartz content than that remaining in the rock slice.

The presence of clay in the ball milled slices, and in the powders from cutting the 

harder and softer rocks, appeared to follow an opposite trend to that of quartz. If the 

predicted percentages of the layer silicates; montmorillonite, kaolinite, illite, chlorite, 

and muscovite were added for each sample then it could be said that, generally, more 

of the layer silicates were present in the ball milled slices of the harder rocks than in 

the powder from cutting. For the softer rocks, very little layer silicate was generally 

found but, where it was present, more was found in the powder from cutting than in 

the ball milled slices. This implied that during the cutting of the harder rocks, more 

layer silicates remained in the rock, while during the cutting of the softer rocks more 

was released as powder. This could be because in the harder rocks, the layer silicates 

could have been pore-lining, so the cutting process would not damage them and more 

would remain in place. In the softer rocks, however, the little layer silicate present
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may have acted as a weak cement so during the cutting process more was released as 

powder when the quartz grains were separated.

The location of clays after cutting was also investigated in chapter 5, in section 

5.4.3.3, by visual interrogation of the XRD traces for the rock slices and for the 

powder from cutting each sandstone. From the intensity of the illite/muscovite peak 

at 8.9° 20 for the different sandstones it was thought that in all the sandstones, more 

illite/muscovite was present in the powder from cutting than in the rock slices. 

Although the predictions in Figures 7.5-7.11 suggested that more illite remained in the 

rock slice of the harder rocks, after cutting, it should be noted that for all sandstones 

more muscovite was predicted in the powder from cutting than in the rock slices, and 

it may be muscovite which dominated the XRD peak at 8.9° 20. Enhanced intensity 

of the illite/muscovite peak in the XRD traces of the powders, however, may also be 

due to preferred orientation of the clays in the powder samples, as discussed in section

5.4.3.2 of chapter 5.

Most of the component predictions along the length of the core were within the model 

error bars, and in fact all the predictions for the ball milled slices were within the error 

bars. Predictions outside the error bars could be found for the powder from cutting 

Birchover (Figure 7.6), for components; kaolinite, K-feldspar, and hematite. The 

powder from cutting Clashach (Figure 7.10) also showed predictions outside the error 

bars for K-feldspar. For Castlegate (Figure 7.11), predictions for K-feldspar, 

hematite, and muscovite were again outside the error bars in the ground slices. While 

in these few cases, variation in mineralogy along the cores was indicated, the vast 

majority of the component predictions along the length of each core were within the 

model error bars suggesting that there were no significant differences in mineralogy 

along the length of the cores. This result was in contrast to the initial investigation in 

chapter 5, where it was thought from visual interrogation of the XRD traces of core 

slices that there may be significant differences in mineralogy along the length of a 

core.

Since both the ground slices and the ball milled slices originated from the rock slices 

themselves, the component predictions in each should be similar. The predictions for 

the ground slices and ball milled slices were, however, often significantly different. It
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was thought that this was due to the difference in particle size and particle size 

distribution, of the powders. The effect of the large particle size, and large particle 

size distribution, of the slices ground by hand, on their DRIFTS spectra, may be too 

great to give the predictions any significant meaning. The particle size of the powders 

from cutting, hand ground slices, and ball milled slices, is discussed further in the 

following section 7.3.3.

7 .33  Comparing the Particle Size o f Powders

7.3.3.1 Introduction

The difference in particle size of the different sets of powders; powder from cutting, 

ground slices, and ball milled slices, would have an effect on the percentages of 

components predicted in them. It was known that of the three sets of powders, the 

hand ground slices had the largest particle sizes and largest particle size distribution. 

The quartz grains were large and hard to crush, while the other mineral components 

had finer particle sizes. The powders ground manually in a mortar and pestle gave the 

lowest predicted percentages of quartz and this was because the large particle size of 

quartz in these samples produced spectra with lower intensity, differently shaped, Si- 

O stretching bands. Reig et ah [106] studied the effect of particle size on the spectra 

of ground silica samples. Absorbance ratios were used to quantify the amount of 

silica in a mixture, and it was found that the greatest influence on the accuracy of the 

quantification was the homogeneity of the particle size, and not the particle size itself. 

When the particle size distribution was small, quartz was quantified more accurately, 

even if the particle size was relatively large (around 40 pm).

73.3.2 Comparing DRIFTS spectra of Powders

The relationship between particle size and band intensity in the DRIFTS spectra has 

been discussed previously in sections 2.1.5.5.2 and 6.3.2. Figures 7.12-7.18 show the 

DRIFTS spectra of the powder from cutting, the ground slices, and the ball milled 

slices, for one slice of each sandstone core. The bands associated with antisymmetric 

Si-O-Si stretching (1200-1050 cm'1 region), symmetric Si-O-Si stretching (800 and
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781 cm"1), and O-Si-O bending (695 cm"1) were compared for each sample. The 

spectmm of ball milled pure Chelford sand was also included for comparison.

1400 1200 1000 800
Wavenumbers (cm-1)

Figure 7.12: DRIFTS spectra of ball milled Chelford sand (red), compared with 

the corresponding spectra for the ball milled slice 1 (green), powder from cutting 

slice 1 (blue), and ground slice 1 (pink) of Hollington Red.

1400 1200 1000 800
Wavenumbers (cm-1)

Figure 7.13: DRIFTS spectra of ball milled Chelford sand (red), compared with 

the corresponding spectra for the ball milled slice 2 (green), powder from cutting 

slice 2 (blue), and ground slice 2 (pink) of Birchover.

225



0.7

0.6

0.5

2 0.4
X<

0.3

0.2

1400 1200 1000 800
W avenumb ers (cm-1)

Figure 7.14: DRIFTS spectra of ball milled Chelford sand (red), compared with 

the corresponding spectra for the ball milled slice 1 (green), powder from cutting 

slice 1 (blue), and ground slice 1 (pink) of Yorkstone.
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Figure 7.15: DRIFTS spectra of ball milled Chelford sand (red), compared with 

the corresponding spectra for the ball milled slice 1 (green), powder from cutting 

slice 1 (blue), and ground slice 1 (pink) of Stancliffe.
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Wavenumbers (cm-1)

Figure 7.16: DRIFTS spectra of ball milled Chelford sand (red), compared with 

the corresponding spectra for the ball milled slice 1 (green), powder from cutting 

slice 1 (blue), and ground slice 1 (pink) of Berea.
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Figure 7.17: DRIFTS spectra of ball milled Chelford sand (red), compared with

the corresponding spectra for the ball milled slice 1 (green), powder from cutting

slice 1 (blue), and ground slice 1 (pink) of Clashach.
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Figure 7.18: DRIFTS spectra of ball milled Chelford sand (red), compared with 

the corresponding spectra for the ball milled slice 1 (green), powder from cutting 

slice 1 (blue), and ground slice 1 (pink) of Castlegate.

The intensity o f the bands gave some indication o f the difference in particle size o f the 

different powders. The most intense and well resolved bands at 800 and 781 cm '1 

were generally observed in the spectra of Chelford sand and the ball milled sandstone 

slices, suggesting that these samples had the smallest particle size. The spectra of the 

powder collected from cutting showed that generally these bands had a lower intensity 

than those in the ball milled slice spectra. This implied that the powders from cutting 

had a larger particle size than the ball milled slices. As predicted, the spectra o f the 

ground slices exhibited less well resolved bands of lower intensities, since these 

powders contained the largest particles.

Not only were the intensities of the bands at 800 and 781 cm '1,in the powder from 

cutting, the ground slices, and the ball milled slices different, but also the ratio o f the 

bands. The ratio of the 800 and 781 cm'1 bands to the band at 695 cm '1 also varied 

with the different powders. In the spectra of the ground slices, the intensities of the 

bands at 800 and 781 cm'1 were very similar and there was only a slight difference in 

intensity between these bands and the band at 695 cm'1. In the spectra o f the ball 

milled slices, the intensity ratios were more similar to those in the spectrum of 

Chelford sand, with the band at 800 cm '1 more intense than that at 781 cm '1, and a 

larger intensity difference between these two bands, and the band at 695 cm '1. It was
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thought to be the presence of more feldspar in the ground slices than in the ball milled 

slices that caused the bands at 800 and 781 cm'1 to be o f more similar intensity in the 

spectra of the ground slices, since both feldspars have spectra with bands near 

780 cm'1. The bands at 800 and 781 cm'1 in the spectra o f Chelford sand, Na-, and K- 

feldspars are shown in more detail in Figure 7.56 in section 7.7.2.1.

It should be noted that in the spectrum of ball milled Clashach, the intensity o f the 800 

and 781 cm'1 bands were very similar to the intensity o f those in the spectrum of 

Chelford sand. Furthermore, in the spectrum o f ball milled Castlegate, these bands 

were actually more intense than in the spectrum o f Chelford sand. This may be the 

cause o f the over prediction o f quartz in these samples by the absolute PLS model. 

This is discussed further, in section 7.7.

Figures 7.12-7.18 also show that the shape of the antisymmetric Si-O-Si stretching 

bands in the region 1200-1050 cm'1 were different in the spectra of the different 

powder samples. With the exception of Clashach (Figure 7.17), the shape o f these 

bands in the spectra o f the hand ground slices were significantly different to the shape 

of the bands in the spectra o f the ball milled slices and o f ball milled Chelford sand. 

The 1200-1050 cm'1 region o f the ground slice spectra appeared less like the 1200- 

1050 cm'1 region o f quartz, and was more similar in shape to the same region in the 

spectra o f the feldspars and o f kaolinite. The higher predicted percentages o f the 

feldspars and kaolinite in the ground slices o f the sandstones than in the ball milled 

slices, reflected this. In Clashach, the spectmm of the ground slice (Figure 7.17) 

showed similar band shape to the spectrum of the ball milled slice and to ball milled 

Chelford sand. The low predicted percentage o f feldspars and kaolinite in Clashach 

also reflected this.

7.3.3.3 Comparing Peak Intensity of Powder and Rock XRD Traces

The opposite trend to that observed in DRIFTS spectra, with regards particle size and 

peak intensity, was observed in XRD traces. It has been well documented that 

DRIFTS spectra show more intense bands when the particle size is reduced. Bhaskar 

e t a l  [111] compared the particle size dependency o f IR and XRD techniques for 

quartz analysis. It was found that while the DRIFTS spectra o f quartz showed high 

intensity bands for samples with a smaller particle size, the XRD traces showed lower
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intensity peaks for the same samples, and the XRD traces of quartz samples with a 

larger particle size showed more intense peaks.

Figures 7.19 and 7.20 show how the quartz peak height intensities, at 20.9 and 

26.7° 20, respectively, in XRD traces, differed with particle size for the different 

sandstones. Quartz peak intensities in XRD traces of the whole rock slices, powder 

from cutting, and the ball milled slices, were compared.
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Figure 7.19: XRD peak intensity (counts) at 20.9° 20 for whole rock slices (black), 

powder from cutting slices (blue), and ball milled slices (green), of the rocks 

identified.
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Figure 7.20: XRD peak intensity (counts) at 26.7° 20 for whole rock slices (black), 

powder from cutting slices (blue), and ball milled slices (green), of the rocks 

identified.

The quartz peaks were most intense in the whole rock sample, as would be expected, 

since these samples had the largest particle size, and also because the slit and mask 

sizes used were larger for collecting the XRD traces of the rock slices than used for 

collecting traces of the powder samples, as discussed in section 5.4.3.1 of chapter 5. 

The powder collected during the cutting process gave less intense quartz peaks, and 

ball milled slices, even less intense quartz peaks, again indicating the ball milled 

slices had the smallest particle size, although the peak intensities would also be 

influenced by the preferred orientation of clays in the powder samples, as discussed in 

section 5.4.3.2 o f chapter 5.

A different trend in peak intensity variation for the sandstones was observed in the 

rock slice traces at 20.9° 20, compared with that at 26.7° 20. However, the same trend 

was observed for both peaks in the traces from the ball milled sandstone slices. This 

could be because the roughness of the natural sandstone rock surfaces were slightly 

different, causing the XRD traces o f the rocks to show more peak intensity variation 

than shown in the traces of the homogeneous, packed, powder samples. It is 

interesting to note that despite the lower intensity o f the quartz peaks in the traces of 

the powder from cutting, the trend in intensity for the different sandstones was the
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opposite to that found in the rock slice traces. This was expected since, when less 

quartz was found in the powder from cutting, more quartz must have remained in the 

rock slice.

7.4 Comparing Absolute PLS Model and Other Model Predictions

7.4.1 Introduction

Since the standards o f the training set in the absolute PLS model were ball milled, it 

was thought that the ball milled slices o f the sandstones would give more accurate 

predictions o f the rock components than the powder from cutting, and the ground 

slices. The percentages o f components predicted in slice 1 of each sandstone, using 

the absolute PLS model were compared to predictions by models developed by 

different groups in independent studies.

The sandstones were studied by Schlumberger-Doll Research (SDR) using a least 

square fitting technique and FTIR transmission spectroscopy. Wavelet transform 

calculations were used to remove noise from useful information and a large collection 

of standards, including feldspars with Ca, Na, and K end members, was used. For 

complicated artificial mineral mixtures, SDR stated that the technique was 1%  

accurate. The model developed by SDR is referred to as LSF-SDR throughout this 

chapter. Dr. Stephen Hillier from the Macaulay Land Use Research Institute also 

studied these sandstones using detailed XRD analysis o f crushed core samples. Both 

oriented clay fractions and whole rock random powders were studied. The minerals 

were quantified from whole rock data and the clay fraction was used to confirm and 

refine the identification o f the clay minerals to provide complementary quantitative 

information. The errors found by Hillier for predicting different mineral components 

were typically within ±3%. This model is referred to as XRD-Hillier throughout this 

chapter. As with the absolute PLS model described in chapter 6, Clegg [21] used 

DRIFTS spectra o f artificial mineral mixtures to develop a PLS model that would 

quantify minerals in sandstones rocks. A seven component model was developed by 

Clegg, consisting o f quartz, montmorillonite, kaolinite, illite, dolomite, feldspar, and 

chlorite, with the maximum error for quartz reported as ±3 wt% and for the other

232



components, within ±1 wt%. This model is referred to as PLS-Clegg throughout this 

chapter.

It should be noted that for each o f the models compared, different areas o f the cores or 

entirely different cores were studied, so some variation in predictions may be due to a 

different distribution o f minerals within a core and between different cores.

Hollington Red rock must be discussed in more detail since it is a particularly non- 

uniform rock. It is considered a banded rock, i.e. there are regions o f clay rich strata 

present between more silica rich regions. While SDR and Clegg predicted two sets of  

values for Hollington Red, one for the clay rich banded region and one for the silica 

rich region, an average value has been shown in Figures 7.21-7.29, for simplicity.

The samples o f Hollington Red quantified by the XRD-Hillier model, and the absolute 

PLS model, however, contained the clay rich and silica rich regions mixed together.

7.4.2 Comparing Predictions by the Different Models

A comparison o f the predicted concentrations calculated by the four different models 

for different components of the sandstones are shown in Figures 7.21-7.30. It should 

be stated that SDR did not analyse the sandstones, Clashach, and Castlegate.
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Figure 7.21: Comparison of absolute PLS model (green) predictions of quartz in 

sandstones named, with predictions by LSF-SDR (blue), XRD-Hillier (pink), and 

PLS-Clegg (yellow). See section 7.4.1 for details of models.

The predictions for quartz in the sandstones tended to follow the same trend for all the 

models. The predictions for quartz in the harder rocks; Birchover, Yorkstone, and 

Stancliffe, using the absolute PLS model, were very similar to those of the other 

models. It was immediately clear, however, that quartz in the softer rocks; Berea, 

Clashach, and Castlegate was vastly over predicted by the absolute PLS model.

It should also be noted that the percentage of quartz predicted by the models followed 

the same trend as predicted from visual investigation of the Si-O-Si band in the 

DRIFTS spectra during the qualitative study in section 7.3.

Figure 7.22 compares predictions for combined montmorillonite and illite, in 

sandstones by the different models. These components were combined, since the 

XRD-Hillier model predicted these clays in this way. The PLS-Clegg model also 

reported combined predictions for montmorillonite and illite, since Clegg found that 

his model produced relatively poor predictions for the individual components. The 

absolute PLS model attempted to obtain predictions for these components
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individually, and maximum errors for montmorillonite and illite were found to be 2.0 

wt% and 2.5 wt% respectively. Table 7.1 showed that very little, if  any, 

montmorillonite was present in the sandstones. However, for the purpose of 

comparing the models, the components were combined.
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Figure 7.22: Comparison of absolute PLS model (green) predictions of 

montmorillonite+illite in sandstones named, with predictions by LSF-SDR (blue), 

XRD-Hillier (pink), and PLS-Clegg (yellow). See section 7.4.1 for details of 

models.

Since very little, if  any, montmorillonite was found in the sandstones by the absolute 

PLS model, the predictions using the absolute PLS model, shown in Figure 7.22, were 

predominantly those of illite. With the exception of Hollington Red, the trend for 

montmorillonite and illite combined, in the different sandstones, was similar using the 

XRD-Hillier model, the LSF-SDR model, and the absolute PLS model. In fact, with 

errors for the different models ranging from ±1 to ±3 wt%, the predictions found 

using the models were very similar.
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Figure 7.23: Comparison of absolute PLS model (green) predictions of kaolinite 

in sandstones named, with predictions by LSF-SDR (blue), XRD-Hillier (pink), 

and PLS-Clegg (yellow). See section 7.4.1 for details of models.

A similar trend was observed for the kaolinite predictions in the sandstones using all 

the models. However, the predictions calculated by the absolute PLS model appeared 

to be lower than those calculated by the other models. Taking into account the errors 

of the different models though, the predictions were similar.

Where there were negative predictions for components in the sandstones by the 

models, it was assumed that none of that component was present in the sandstone.

As with the predictions by the models, the qualitative study of the sandstone spectra in 

section 7.3, also indicated higher concentrations of kaolinite in Yorkstone, Birchover, 

and Stancliffe, and lower concentrations in Castlegate. Both the absence of the bands 

associated with kaolinite, in Figures 7.3 and 7.4 o f section 7.3, and the prediction of 

no kaolinite by all the models in Figure 7.23, confirmed that Clashach contained no 

kaolinite.
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The predictions for calcite by the different models are shown in Figure 7.24. In the 

PLS model developed by Clegg, dolomite was included as the only carbonate, so his 

model was not capable of quantifying calcite in the sandstones. The comparison of 

models in Figure 7.24 therefore does not include Clegg’s PLS model.
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Figure 7.24: Comparison of absolute PLS model (green) predictions of calcite in 

sandstones named, with predictions by LSF-SDR (blue), and XRD-Hillier (pink). 

See section 7.4.1 for details of models.

A comparison of the model predictions of calcite in the sandstones was difficult since 

such small amounts, if  any, were predicted. The LSF-SDR and XRD-Hillier models 

suggested that some calcite may have been present in Yorkstone, and the LSF-SDR 

model and absolute PLS model suggested some may have been present in Berea, 

although no models predicted high percentages of calcite. The absolute PLS model in 

fact calculated large negative values for calcite in Birchover, Yorkstone, and 

Stancliffe, indicating that they contained no calcite.

The predictions by the models, suggesting the presence of some calcite in Berea, was 

also confirmed in section 7.3, where visual investigation of the DRIFTS spectrum of 

Berea (Figure 7.4) suggested the presence of carbonate bands.
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The XRD model developed by Hillier did not investigate the presence of dolomite in 

the sandstones so only the LSF-SDR model, the PLS-Clegg model and the absolute 

PLS model predictions are compared in Figure 7.25.

c<Duu<uOh
-o<u
u
"34>
Oh

0.0
Hollington Birchover Yorkstone Stancliffe 

Red
(average)

Clashach CastlegateBerea

-1.0

-2.0

-3.0

-4.0

Figure 7.25: Comparison of absolute PLS model (green) predictions of dolomite 

in sandstones named, with predictions by LSF-SDR (blue), and PLS-Clegg 

(yellow). See section 7.4.1 for details of models.

The predictions of the absolute PLS model suggested a negative correlation between 

the concentration of calcite and dolomite in the sandstones. While large negative 

predictions were calculated for calcite in Birchover, Yorkstone, and Stancliffe, these 

same sandstones were the only ones which contained small amounts of dolomite.

Qualitative studies by Clegg [21] using Thermogravimetric-Mass Spectroscopy 

indicated that carbon dioxide did evolve from Stancliffe and Berea rocks, suggesting 

that carbonates were present in these sandstones at low concentrations. Interestingly, 

the highest percentages of calcite and dolomite predicted in the sandstones by the 

absolute PLS model were in Stancliffe and Berea.
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Figure 7.26: Comparison of absolute PLS model (green) predictions of Na- 

feldspar in sandstones named, with predictions by LSF-SDR (blue), XRD-Hillier 

(pink), and PLS-Clegg (yellow). See section 7.4.1 for details of models.

A similar trend was observed for the Na-feldspar predictions in the sandstones using 

the LSF-SDR model, XRD-Hillier model, and the absolute PLS model, while the 

PLS-Clegg model reported significantly higher Na-feldspar predictions in all the 

sandstones.

The same trend for the presence of Na-feldspar in the sandstones was also observed in 

the qualitative study o f the sandstone DRIFTS spectra in section 7.3, where high 

concentrations of Na-feldspar in Birchover, Yorkstone, and Stancliffe, and low 

concentrations in the other sandstones, was suggested.

In the PLS model developed by Clegg, Na-feldspar was the only feldspar included 

and therefore the model was not capable of quantifying K-feldspar in the sandstones. 

Figure 7.27, comparing the predictions of K-feldspar by the models, therefore does 

not include the PLS-Clegg model.
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Figure 7.27: Comparison of absolute PLS model (green) predictions of K- 

feldspar in sandstones named, with predictions by LSF-SDR (blue), and XRD- 

Hillier (pink). See section 7.4.1 for details of models.

Although the same trend was observed for K-feldspar predictions by the LSF-SDR 

and the XRD-Hillier models, the values of the predicted percentages were quite 

different. The XRD-Hillier model predictions were up to 5 wt% higher than the LSF- 

SDR model predictions. The absolute PLS model predictions for K-feldspar were 

much lower than those predicted by the LSF-SDR and XRD-Hillier models, with K- 

feldspar only being predicted positively in Hollington Red, and Stancliffe.

The qualitative study of the sandstone DRIFTS spectra, in section 7.3, also suggested 

that higher concentrations of K-feldspar were found in Hollington Red and Clashach, 

and lower concentrations in Berea and Castlegate.

Again, the PLS-Clegg model is not included in the comparison of models shown in 

Figure 7.28 since hematite was not included in this model.
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Figure 7.28: Comparison of absolute PLS model (green) predictions of hematite 

in sandstones named, with predictions by LSF-SDR (blue), and XRD-Hillier 

(pink). See section 7.4.1 for details of models.

It was clear that while SDR and Hillier predicted low amounts o f hematite in 

Hollington Red, and none in the other sandstones, predictions by the absolute PLS 

model were quite different. This indicated that the absolute PLS model may not have 

been capable of predicting hematite. Hematite was the least precisely predicted 

component in the synthetic mixtures and required the most number of factors, and its 

poor prediction may be expected since the DRIFTS spectrum had few distinctive 

features and no strong bands.

It was only in the clay rich banded region of Hollington Red, that the LSF-SDR model 

predicted some hematite. Methven and Hughes [102] reported that the clay rich 

banded region of Hollington Red contained a high clay to feldspar ratio and a 

considerable quantity of hematite. The absolute PLS model predicted relatively high 

percentages of hematite in more clay rich, harder sandstones; Birchover, Stancliffe, 

and Yorkstone, and none in the other sandstones. This suggested that there may have 

been a positive correlation between the percentage of clay and the percentage of 

hematite present in sandstones.
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Figure 7.29: Comparison of absolute PLS model (green) predictions of chlorite in 

sandstones named, with predictions by LSF-SDR (blue), and XRD-Hillier (pink), 

and PLS-Clegg (yellow). See section 7.4.1 for details of models.

A similar trend in predictions for chlorite was observed for all the models except the 

LSF-SDR model. The XRD-Hillier model, PLS-Clegg model, and the absolute PLS 

model, all predicted the highest concentration of chlorite in Yorkstone.

Of the models used for comparison, only the least squares fitting model developed by 

SDR included muscovite. Figure 7.30 therefore compares only the predictions by the 

LSF-SDR model and the absolute PLS model.
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Figure 7.30: Comparison of absolute PLS model (green) predictions of muscovite 

in sandstones named, with predictions by LSF-SDR (blue). See section 7.4.1 for 

details of models.

As with calcite, it was difficult to compare the two sets of predictions of muscovite 

due to such low amounts being predicted.

Methven and Hughes [102] reported that the most significant variance in the 

mineralogy of Birchover, Stancliffe, and Yorkstone, was found in their feldspar and 

clay contents. This was also found to be the case for these sandstones using the 

absolute PLS model for prediction. The absolute PLS model predicted only 1 wt% 

difference between the quartz content of these sandstones, while the content o f both 

total feldspar and total clay in these sandstones varied over 4 wt%. Methven and 

Hughes [102] also found an inverse correlation between the total feldspar and total 

clay content of the sandstones. This relationship was said to be related to the degree 

of alteration of feldspars to clay minerals, referred to as the textural maturity o f the 

sandstone. Although this inverse correlation was unclear from the predictions o f the 

individual feldspars and clays in this study, if  the predictions of the two feldspars 

were combined and those of the clays combined, then this inverse correlation could be
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seen to some extent. When comparing the harder sandstones; Birchover, Stancliffe, 

and Yorkstone, and the softer sandstones; Berea, Clashach, and Castlegate as two 

separate groups, this inverse correlation between feldspar and clay content was 

observed.

When making comparisons between the predictions calculated by the different 

models, the different analysis methods and model calculations should be taken into 

consideration. Hillier used XRD for analysis, while SDR used transmission infrared 

spectroscopy, so only the PLS model developed by Clegg used the same DRIFTS and 

PLS techniques as used in the absolute PLS model. Differences in the sampling 

should also be taken into consideration. As stated previously, all of the groups 

analysed different areas of the cores or entirely different cores to each other.

Although component predictions along the core lengths in section 7.3.2 suggested that 

differences in mineralogy were minimal over a short core length, the core samples 

studied by the different investigators may have originated from more distant areas or 

from different cores. This may account for slight differences in the mineralogy o f the 

sandstones calculated by each model.

It should also be noted that to produce the ball milled samples in this study, the cores 

were first cut into slices with a saw. During the cutting process, powder was 

produced, which was collected and analysed separately, and was therefore not 

included in the analysis o f the ball milled samples. The samples used for analysis by 

Hillier and Clegg, on the other hand, were chipped off the core and crushed, so no 

powder had been removed during the process. If some minerals were preferentially 

released from the rock as powder during the cutting processes then this would account 

for some differences in the mineral predictions calculated by the absolute PLS model 

and the models developed by Hillier and Clegg.

7.4.3 XRF of Ball milled Slices

For further comparison, XRF analysis was carried out on one ball milled slice from 

each sandstone. The percentage of SiC>2 found in each sandstone is shown in Figure 

7.31.
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Figure 7.31: Weight percentages of Si(>2 , from XRF analysis, for the quarry 

sandstones named.

Although the SiC>2 percentage measured in the sandstones by XRF was due to quartz, 

the feldspars and the layer silicates, the sandstones contained predominantly quartz, so 

the percentage o f SiC>2 measured was compared only with the prediction o f quartz by 

the models. It was immediately clear that the trend for the percentage o f SiC>2 found 

in the sandstones by XRF was the same as could be seen for the predictions o f quartz 

using the models, in Figure 7.21. As with the quartz prediction, a higher percentage 

of Si02 was determined in Berea, Clashach, and Castlegate, than in the other 

sandstones.

The XRF analysis also included determining the percentages o f AI2 O 3 , Na20, K 2 O, 

and CaO, and these are shown in Figure 7.32.
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Figure 7.32: Weight percentages of AI2 O3 , Na20 ,  K20 ,  and CaO, from XRF 

analysis, for the quarry sandstones named.

Again the percentages o f compounds measured by XRF could not be directly related 

to the predictions o f single sandstones components, as A I2 O 3  is found in all the layer 

silicates and in the feldspars, and K2O is found in illite, muscovite, and K-feldspar.

A trend can be seen in Figure 7.32 for the percentage of AI2 O 3  measured by XRF and 

the predictions for illite and montmorillonite combined (Figure 7.22), and also forNa- 

feldspar (Figure 7.26). The higher percentages of illite + montmorillonite predicted 

by the absolute PLS model, in Hollington Red, Birchover, Yorkstone, and Stancliffe 

and the lower percentages predicted in Berea, Clashach, and Castlegate, correlated 

with the trend o f the measured percentage o f AI2 O 3 found by XRF. The high 

percentages of Na-feldspar predicted in Birchover, Yorkstone, and Stancliffe, and low  

concentration of Na-feldspar predicted in Berea, Clashach, and Castlegate, by the 

absolute PLS model, also correlated well with the trend o f the percentage o f A I2 O 3 

measured by XRF.

The percentage o f Na20 found in the sandstones by XRF also followed a very similar 

trend to the percentages of Na-feldspar predicted in the sandstones by the absolute 

PLS model and the XRD-Hillier model shown in Figure 7.26.
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The percentage o f K2O found in the sandstones by XRF best followed the trend o f the 

percentages o f K-feldspar predicted by the models shown in Figure 7.27, with lower 

percentages of K-feldspar measured and predicted in Yorkstone, Berea, and 

Castlegate than in the other sandstones.

The percentage o f CaO found in the sandstones by XRF was very low and the 

percentage o f carbonate predicted by the models was also very low, as shown in 

Figure 7.24. Interestingly the percentage o f CaO found in Berea by XRF was slightly 

higher than that found in the other sandstones, and both the LSF-SDR model, and the 

absolute PLS model predicted slightly higher percentages o f calcite in Berea, than in 

the other sandstones.

7.5 Forming the Pragmatic PLS Model

7.5.1 Introduction

It was assumed that the XRD-Hillier model was the most accurate model since it is a 

well established technique. Although the absolute PLS model did generally give 

predicted percentages for components in the same trend for the sandstones as the 

XRD-Hillier model, some component percentages were over predicted by the absolute 

PLS model and some were under predicted. With the errors for the models 

considered, the absolute PLS model predicted all the components o f the sandstones 

which contained more feldspars and clays (i.e. Birchover, Yorkstone, and Stancliffe) 

well, with respect to predictions by the XRD-Hillier model. The absolute PLS model, 

however, appeared to over predict the amount of quartz in the “cleanef ’ sandstones; 

Berea, Clashach, and Castlegate, and also under predicted the amount o f K-feldspar in 

all the sandstones. Large negative predictions were also found for montmorillonite, 

calcite, dolomite, and muscovite in the sandstones using the absolute PLS model 

(Table 7.1). It was thought that the absolute PLS model needed to be optimised for 

predicting real sandstones, by trying to optimise the number of factors chosen for each 

component. It was especially important to tiy to improve on the predictions for quartz 

in the clean sandstones by the absolute PLS model, since this was where the greatest 

errors were observed. The model, with altered factors for optimised sandstone 

predictions, was named the pragmatic PLS model. It should be noted that the PLS-
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Clegg model, compared with the absolute PLS model in section 7.4, was actually a 

pragmatic model, where Clegg optimised the number o f factors chosen for 

components, based on obtaining the most accurate predictions for components in the 

sandstones.

7.5.2 Altering the Number o f Factors

During the formation o f the absolute PLS model, it was found that altering the number 

of factors for a component exerts a huge influence on the prediction o f that 

component. The factors in the absolute PLS model were chosen to give the most 

accurate predictions o f the independent standards, which were synthetic mixtures of 

the components, similar to the calibration standards. The spectra of both the 

calibration and independent standards were collected on the same day. It was thought 

that real sandstone samples, with varying degrees o f crystallinity, containing 

components not accounted for by the model, and having spectra collected on a 

different day, may require a different number o f factors for particular components 

than those chosen for the synthetic independent standards. In an attempt to optimise 

the absolute PLS model for the suite o f sandstone rocks studied, the number o f factors 

for each component was altered to give predictions closest to the predictions o f the 

XRD-Hillier model, since this was deemed the most accurate.

The Tables 7.2-7.8 show how the predicted percentage o f each component varied as 

the number of factors was altered, for each sandstone. The green boxes indicate the 

percentage of each component predicted, using the number o f factors chosen for the 

absolute PLS model, while the black boxes indicate the percentage o f each component 

predicted, using the number o f factors chosen for the pragmatic PLS model, i.e. the 

percentages o f each component that were generally closest in value to those predicted 

by the XRD-Hillier model. For the components, Na-feldspar and chlorite, the number 

of factors chosen in the pragmatic PLS model were the same as those chosen in the 

absolute PLS model, since the percentages predicted by the absolute PLS model also 

gave the most accurate predictions in the sandstones.

The predictions o f each component by the XRD-Hillier model are shown below the 

table, for each sandstone. No prediction is shown for montmorillonite using the 

XRD-Hillier model, since Hillier reported combined montmorillonite + illite 

predictions, and these are shown under the illite column. No predictions are shown
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for dolomite and muscovite using the XRD-Hillier model since Hillier did not 

investigate the presence of these components in the sandstones. For some sandstones, 

the percentages of components predicted by the pragmatic PLS model were not the 

closest value to those predicted by the XRD-Hillier model. This was because the 

optimum number of factors chosen for a particular component had to take into 

consideration all the sandstones studied.

No. ofFactors Quartz Montmorillonite Kaolinite Illite Calcite Dolomite Na-Feldspar K-Feldspar Hematite Chlorite Muscovite
1 87.7 1.0 -1.2 6.0 -0.1 -1.3 5.0 3.6 -0.7 -0.8 1.2
2 86.9 -0.2 -0.2 5.6 -5.2 -7.2 5.4 5.1 -0.4 -2.5 1.2

3 87.1 1.4 1.6 2.4 | 0.2 -2.5 6.5 1 7.4 -0.2 -1.3 2.2
4 88.8 1.3 1.8 2.4 -0.9 -2.4 | 3.6 2.5 -0.3 -1.5 1.1
5 88.9 0.3 1.6 3.2 -1.1 -1.8 5.7 1.6 -0.2 -0.7 1.1
6 88.2 0.8 1.5 3.6 -0.5 -1.4 6.0 0.5 0.1 -0.8 1.2
7 88.9 1.5 1.6 3.2 -0.2 -1.4 4.5 0.7 -0.7 -0.8 -0.1
8 89.1 1.6 1.8 3.3 | 0.1 -0.7 5.2 -0.6 -0.1 -0.8 -0.3
9 89.4 1.8 1.7 3.0 0.4 -0.5 5.6 -0.2 -0.8 -0.8 -0.2
10 89.6 1.5 1.4 3.8 0.3 -0.2 | 4.5 1.6 -1.0 -0.7 0.2
11 89.3 1.0 1.4 4.3 0.2 -0.3 2.1 3.0 -0.9 -0.6 0.3
12 89.0 -0.5 1.5 4.0 0.2 -0.1 1.9 1 3.6 -0.1 -0.5 -0.1
13 89.7 -0.3 1.4 4.8 0.3 0.0 0.8 4.2 -0.2 -0.7 0.3
14 89.7 -0.5 1.5 3.7 | 0.6 0.0 0.5 4.8 -0.5 -0.3 1.1
15 89.0 -0.3 1.7 2.3 0.8 -0.2 -0.5 5.3 -0.5 -0.1 1.7

►-Hillier 76.4 2.1 5.4 0.0 0.0 14.2 1.1 0.0
Predictions

Table 7.2: Predicted Percentages of each named component varying with number of factors, for 
Hollington Red. The green and black boxes indicate the percentage of each named component 
predicted using the number of factors chosen for the absolute and pragmatic PLS models, 
respectively.

No. ofFactors Quartz Montmorillonite Kaolinite Illite Calcite Dolomite Na-Feldspar K-Feldspar Hematite Chlorite Muscovite
1 82.0 1.9 0.2 7.4 -1.8 -1.6 6.0 3.4 0.3 0.8 1.9
2 77.5 1.0 0.5 8.6 -6.5 -2.7 5.4 3.9 1.8 -0.4 1.5
3 | 77.9 2.4 2.2 6.5 | -3.0 1.1 6.8 1 7.3 2.3 0.7 2.5
4 78.1 1.8 2.4 7.0 -3.0 0.4 4.4 4.1 3.5 | -0.7 1.9
5 80.0 1.8 2.7 6.0 -2.8 0.4 4.2 2.6 4.4 -0.7 [ 0.8 1
6 79.3 -0.2 3.1 6.2 -2.0 0.9 5.8 2.2 4.8 1 -02  1 0.8
7 79.0 -0.5 3.2 5.6 -1.6 0.9 5.4 2.9 5.9 -0.1 0.2
8 78.3 -1.3 3.4 4.9 | -1.0 1.0 4.7 3.9 7.5 -0.4 -0.4
9 76.1 -1.1 3.8 6.0 -1.1 0.9 3.7 5.1 8.2 -1.0 -1.3
10 [  75.6 -1.0 3.3 7.0 -0.9 0.3 | 3.3 5.3 7.6 -1.1 -1.0
11 76.7 -0.7 3.2 8.6 -0.7 0.2 4.3 4.3 6.6 -1.2 -1.1
12 77.6 -1.0 3.2 7.4 -0.2 0.7 7.9 0.0 6.7 -0.5 -1.0
13 79.1 -0.8 3.0 7.0 0.0 0.6 7.6 0.4 5.7 -0.5 [ -0.2
14 79.2 -1.9 3.4 7.3 | -0.6 0.2 6.8 0.8 5.9 -0.1 -0.6
15 80.0 -1.6 3.2 5.6 -1.0 0.3 6.3 1.2 . 5-3 1 0.1 0.1

-Hillier 76.3 4.7 2.6 0.0 5.1 10.4 0.0 0.0
Predictions

Table 7.3: Predicted Percentages of each named component varying with number of factors, for 
Birchover. The green and black boxes indicate the percentage of each named component 
predicted using the number of factors chosen for the absolute and pragmatic PLS models, 
respectively.
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No. ofF actors Quartz M ontm orillonite Kaolinite Illite Calcite Dolom ite Na-Feldspar K-Fcldspar H em atite Chlorite M uscovite

2
3
4
5
6
7
8
9
10 

11 

12
13
14
15

78.1
74.6

I 75 4 I
74.8
77.6
77.7
77.7 
77.4
75.9

2.5
1.7
2.7
1.6 
1.5 

- 0.2 
-0.7

1.1
0.6
2.0
2.0

75.3

- 2.0
-1.9

2.3
2.7
2.8 
3.0

8.0
8.8
7.5
8.4
7.1
7.2 
7.0

-2.4
-5.6
-3.2
-2.7
-2.4
-1.7
-1.4

- 1.8

- 1.0
1.6
0.4

3.1
7.1 -0.9

76.1
76.6
77.8
77.9
78.9

-1.7
-1.9
- 2.0
-1.7
-2.7
-3.0

XRD-Hillier 72.2 
Predictions

2.6
2.6
2.5
2.4
2.4
2.3

4.3

7.9
8.9 
10.6 
9.4 
9 2  
9.1
8.3

4.3

-0.7
-0.4
-0.4
0.0
0.0
-0.4
-0.4

0.2

0.3
0.5
0.5
0.7
0.6
0.2
0.0
0.6
0.6
0.4
0.4

6.7
5.8 
8.1 
6.5
6.3
7.1
7.1
7.2 
7.0
7.4
7.2

3.0
2.4
3.9
0.1
- 2.2
-2.4
-2.5
- 1.8
-1.3
- 1.0

-1.4

0.8
2.1
2.7
4.1

9.9 -4-3
9.4
8.6
8.3

10.2

-3.8
-3.1
-2.7

6.0

5.0
5.3
6.4
7.2
7.3 
6.7 
5.9
6.0 
5.2
5.4

2.0
1.5
2.7
2.0
2.1

2.4 
1.6
2.4 
2.0

2.8
0.7

5.0

0.0

2.9
2.4 
2.0
1.9
1.9
2.4 
2.2 
2.1
1.9

3.4

0.4
- 0.1

-0.4
- 0.6
- 0.1

-0.3
-0.5
0.1
0.0
0.9

Table 7.4: Predicted Percentages of each named component varying with number of factors, for 
Yorkstone. The green and black boxes indicate the percentage of each named component 
predicted using the number of factors chosen for the absolute and pragmatic PLS models, 
respectively.

'eldspar K-Feldspar Hematite Chlorite MuscoviteNo. ofFactors Quartz Montmorillonite Kaolinite Illite Calcite Dolomite
1 84.0 1.5 -0.6 7.3 -1.5 -1.1
2 75.4 0.3 -0.7 10.8 -7.2 -2.0
3 75.3 1.6 0.9 8.6 -2.8 2.6
4 74.7 0.5 0.9 9.2 -2.2 1.1
5 76.6 1.1 1.2 6.9 -1.7 0.6
6 76.6 -0.8 1.7 6.8 -0.9 1.0
7 76.5 -1.0 1.9 6.2 -0.5 1.0
8 76.1 -2.2 2.2 5.5 -0.2 1.4
9 75.0 -2.1 2.6 6.1 -0.4 1.3
10 74.7 -1.7 2.1 7.1 -0.7 0.8
11 76.1 -1.6 2.0 9.1 -0.6 0.7
12 76.9 -2.7 2.0 8.3 -0.1 1.3
13 78.5 -2.4 1.9 8.5 0.1 1.1
14 78.7 -3.2 2.2 8.9 -0.2 0.8
15 79.0 -2.4 2.0 7.3 -0.8 0.8

XRD-Hillier 72.4 4.4 2.9 0.0

5.6
5.8

2.6
3.2

0.2
2.6

9.8 | 6.8 3.1

1 74 3.1 4.2 1
6.7 0.5 5.2
7.8 1.2 5.6 [
7.4 1.7 6.7
6.7 3.0 7.5
5.5 3.9 7.9
4.9 4.4 7.5
4.5 4.3 6.7
7.6 | 0.9 6.9
7.4 1.6 5.6
6.7 1.9 5.4
6.4 2.2 4.5 |

7.3 11.5 0.0

0.4
- 0.2
1.3
0.5

1.6
1.4
2.6
2.3

Predictions

0.6 0.8 |
1 1 4  1 0.4

1.6 -0.1
1.1 -0.5
0.5 -1.1
0.3 -1.1
0.2 -1.3
0.6 -1.6
0.4 -0.8
0.7 -1.4

| 0.9 -0.9

0.0

of factors, for
Stancliffe. The green and black boxes indicate the percentage of each named component 
predicted using the number of factors chosen for the absolute and pragmatic PLS models, 
respectively.

ofFactors Quartz Montmorillonite Kaolinite Illite Calcite Dolomite Na-Feldspar K-Feldspar Hematite Chlorite Muscovite
1 93.5 0.5 -2.1 4.6 1.0 -0.1 3.4 0.6 -1.4 -1.7 0.0
2 99.0 0.4 0.8 0.9 -5.9 -6.1 1.2 1.7 -1.7 -2.7 -1.3
3 98.8 2.7 2.9 -2.9 1.0 -0.2 2.3 2.4 -1.6 -1.2 -0.3
4 100.7 2.0 3.0 -1.3 0.4 -2.1 -1.0 -4.2 -0.8 -2.4 -1.7
5 104.5 0.3 3.2 -0.5 -0.4 -1.0 2.1 -6.6 0.0 -0.9 -2.2 |
6 103.7 0.3 2.9 0.2 -0.1 -0.9 3.1 -8.9 -0.2 -0.1 -1.7
7 104.9 1.0 3.1 -0.3 0.3 -1.1 1.2 -8.5 -2.0 -0.2 -3.1
8 105.1 1.3 3.2 0.3 0.5 -0.4 3.3 -10.9 -1.7 -0.2 -2.4
9 105.4 1.9 2.9 -0.4 1.0 0.0 4.5 -10.2 -2.9 -0.3 -1.8
10 105.0 2.0 2.3 -0.6 1.5 0.4 4.9 -9.4 -3.2 -0.1 -1.1
11 104.8 1.1 2.4 0.6 1.2 0.3 0.9 -8.1 -2.2 0.0 -1.5
12 104.4 -0.8 2.3 0.8 1.3 0.4 0.1 -6.3 -1.7 -0.2 -1.7
13 105.2 -0.7 2.1 1.8 1.1 0.4 -1.1 -5.4 -2.1 -0.5 -1.3 |
14 106.6 -0.5 2.0 0.3 1.3 0.8 -1.9 -4.2 -3.0 -0.2 -0.1
15 106.2 -0.5 2.2 -1.1 0.5 0.8 -3.3 -3.3 -3.3 0.0 0.5

JD-Hillier 88.5 3.9 1.0 0.0 0.8 6.7 0.0 0.0
Predictions

Table 7.6: Predicted Percentages of each named component varying with number of factors, for 
Berea. The green and black boxes indicate the percentage of each named component predicted 
using the number of factors chosen for the absolute and pragmatic PLS models, respectively.
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f  Factors Quartz Montmorillonite Kaolinite Illite Calcite Dolomite Na-Feldspar K-Feldspar Hematite Chlorite Muscovite
1 103.1 -0.3 -4.4 4.6 -0.2 -1.6 2.9 0.0 -2.5 -3.1 -0.7
2 108.9 -1.1 -3.2 1.8 -9.4 -9.7 1.5 2.1 -2.9 -4.2 -2.1
3 108.2 1.7 -1.0 -3.2 0.0 -1.6 4.2 4.3 -2.8 -2.1 -0.7
4 109.6 0.9 -0-8 -1.6 -0.9 -3.4 0.0 -3.1 -2.4 -2.5 -2.4
5 110.0 -0.4 -0.8 -1.4 -1.5 -2.3 4.0 -3.1 -2.2 -1.2 -2.4
6 109.4 1.0 -1.0 -1.5 -0.5 -2.1 3.7 -4.6 -2.4 -0.7 -2.5
7 110.3 1.6 -0.7 -1.8 -0.2 -1.9 2.2 -3.7 -3.5 -0.8 -4.1
8 110.7 2.2 -0.5 -2.2 0.0 -1.0 2.6 -5.5 -3.5 -0.5 -4.4
9 111.1 2.8 -0.5 -3.1 0.5 -0.6 3.2 -5.1 -4.7 -0.5 -4.2
10 111.2 3.0 -0.9 -2.3 0.4 -0.1 | 1.8 -3.1 -4.8 -0.3 -4.2
11 111.2 2.5 -0.9 -1.2 0.3 -0.2 -2.0 -1.3 -4.4 -0.2 -4.4
12 110.6 0.2 -0.9 -1.1 0.4 0.0 -2.3 -0.4 -3.5 -0.2 -4.7
13 111.7 0.4 -1.0 0.1 0.2 -0.1 -3.2 0.6 -3.8 -0.5 -4.1
14 112.3 0.3 -0.8 -1.0 | 0.5 -0.1 -3.5 0.9 -4.1 -0.2 -3.0
15 111.5 0.5 -0.5 -2.7 0.1 -0.2 -4.6 1.5 . . . .  A L J 0.1 -2.5

►-Hillier 88.3 0.0 1.6 0.0 0.0 11.4 0.0 0.0
Predictions

Table 7.7: Predicted Percentages of each named component varying with number of factors, for 
Clashach. The green and black boxes indicate the percentage of each named component 
predicted using the number of factors chosen for the absolute and pragmatic PLS models, 
respectively.

No. ofFactors Quartz Montmorillonite Kaolinite Illite Calcite Dolomite Na-Feldspar K-Feldspar Hematite Chlorite Muscovite
1 100.4 0.2 -3.5 5.0 -0.7 -2.0 3.4 -0.1 -2.1 -2.4 -0.3
2 109.4 -0.2 -2.2 1.4 -8.6 -9.4 1.0 1.1 -2.5 -3.9 -2.1
3 | 109.5 2.6 0.0 -3.2 | -0.2 -2.2 1.6 | -0.1 -2.3 -2.2 -1.1
4 112.5 2.3 0.6 -1.5 -1.1 -3.8 -2.6 -9.6 0.3 -3.7 -3.3
5 117.4 1.0 1.1 -0.7 -1.7 -2.6 1.0 -11.9 0.7 -2.7 r -4.6 !
6 117.6 1.0 1.1 -0.7 -0.4 -2.5 2.2 -15.4 0.5 -1.3 1 -4.6
7 118.2 1.0 1.4 -0.9 0.1 -2.3 2.0 -16.5 -1.2 -1.6 -5.8
8 118.4 2.4 1.5 -1.3 | 0.9 -1.3 2.4 -17.7 -1.5 -1.7 -5.8
9 119.4 3.3 1.5 -1.5 1.4 -0.6 3.1 -16.4 -2.7 -1.7 -5.5
10 118.7 3.6 0.6 -1.9 1.9 -0.5 | 3.1 -14.4 -3.7 -1.4 -3.9
11 118.4 2.4 0.8 0.0 1.4 -0.9 -2.4 -11.8 -3.4 -1.1 -4.1
12 117.3 0.6 0.7 -0.9 1.6 1

'Oo

-1.9 1 -112 -2.0 -1.1 -4.6
13 118.7 1.1 0.3 0.5 1.1 -0.7 -3.6 -10.0 -2.3 -1.6 [ -3.8
14 119.2 0.6 0.0 -0.8 | 1.1 -0.5 -4.0 -9.0 -2.4 -1.7 -2.4
15 119.6 0.1 0.3 -1.7 0.3 -0.7 -5.4 -7.9 -2-5 -1.8 -1.6

XRD-Hillier 91.2 2.4 3.4 0.0 4.6 0.0 0.0 0.0
Predictions

Table 7.8: Predicted Percentages of each named component varying with number of factors, for 
Castlegate. The green and black boxes indicate the percentage of each named component 
predicted using the number of factors chosen for the absolute and pragmatic PLS models, 
respectively.

It was useful to examine how the number of factors chosen altered the predicted 

percentages o f components. For future studies it would be advantageous to study 

tables such as Table 7.2-7.8 at an earlier stage, to determine what number of factors to 

choose for each component. Unfortunately, however, although the predicted 

percentage of quartz could be reduced by reducing the number of factors, the over 

prediction of quartz in Clashach and Castlegate could not be prevented by altering the 

number of factors.

For the components, Na-feldspar and chlorite, the number of factors chosen in the 

absolute model which gave the most accurate predictions in the independent standards 

were also the factors which gave the most accurate predictions in the sandstones. In
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these two components, therefore, the number of factors was not altered. For the other 

components, however, the percentages predicted in the sandstones by the pragamatic 

PLS model, were generally closer in value to those by Hillier, than the absolute PLS 

model predictions were.

7.5.3 Com paring Absolute PLS M odel, Pragm atic PLS M odel, and XRD- 

Hillier M odel Predictions

Figures 7.33-7.40 compare the predicted percentages of components by the XRD- 

Hillier, absolute, and pragmatic PLS models.

120.0

110.0

100.0

90.0 -
o

80.0

70.0
Hollington Birchover Yorkstone Stancliffe Berea Clashach Castlegate

Red
(average)

Figure 7.33: Comparison of XRD-Hillier (pink) predictions of quartz in 

sandstones named, with predictions by the absolute (green), and the pragmatic 

(black) PLS models. See section 7.4.1 for details of models.

Although the percentages of quartz predicted by the pragmatic PLS model were lower 

for Berea, Clashach, and Castlegate sandstones, than those predicted by the absolute 

PLS model, quartz was still over predicted. One possible reason as to why the PLS 

models predicted higher concentrations of quartz than the XRD model developed by 

Hillier is that DRIFTS spectroscopy can identify both amorphous and crystalline 

quartz, whereas XRD is only capable of identifying crystalline material. If the
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sandstones contained both amorphous and crystalline quartz and, if  the PLS models 

took account o f both these forms, then the PLS models should give more true 

predictions for quartz. Percentages of quartz predicted in Clashach and Castlegate 

were over 100 wt% however, so other factors must have been involved, and these are 

discussed in section 7.7.
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(average)

Figure 7.34: Comparison of XRD-Hillier (pink) predictions of 

montmorillonite+illite in sandstones named, with predictions by the absolute 

(green), and the pragmatic (black) PLS models. See section 7.4.1 for details of 

models.

The percentages of montmorillonite + illite predicted by the pragmatic PLS model 

were not only more similar in value to predictions by the XRD-Hillier model, but also 

followed the same trend more closely, than the absolute PLS model.
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Figure 7.35: Comparison of XRD-Hillier (pink) predictions of kaolinite in 

sandstones named, with predictions by the absolute (green), and the pragmatic 

(black) PLS models. See section 7.4.1 for details of models.

Again, the percentages predicted by the pragmatic PLS model were closer in value to 

those of the XRD-Hillier model for kaolinite.
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Figure 7.36: Comparison of XRD-Hillier (pink) predictions of calcite in 

sandstones named, with predictions by the absolute (green), and the pragmatic 

(black) PLS models. See section 7.4.1 for details of models.

Although negative percentages were still predicted for calcite in Birchover, 

Yorkstone, and Stancliffe using the pragmatic PLS model, the predictions were an 

improvement on the absolute PLS model.

As stated previously, the presence of dolomite in the sandstones was not investigated 

by Hillier, so in Figure 7.37, the absolute and pragmatic PLS model predictions are 

compared with the LSF-SDR model and the PLS-Clegg model.
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Figure 7.37: Comparison of LSF-SDR (blue), and PLS-Clegg (yellow) predictions 

of dolomite in sandstones named, with predictions by the absolute (green) and 

the pragmatic (black) PLS models. See section 7.4.1 for details of models.

The percentages of dolomite predicted by the pragmatic PLS model for the sandstones 

followed much more closely the trend of predictions by the LSF-SDR model, and the 

PLS-Clegg model, than the predictions by the absolute PLS model. The large 

negative percentages predicted by the absolute PLS model, were also absent in the 

pragmatic PLS model.

The predictions for Na-feldspar using the pragmatic model are not shown since the 

number of factors, and therefore the predicted percentages, for Na-feldspar were the 

same in both the absolute and the pragmatic PLS model. A comparison of these 

predicted percentages with predictions by the other models is shown in Figure 7.26.
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Figure 7.38: Comparison of XRD-Hillier (pink) predictions of K-feldspar in 

sandstones named, with predictions by the absolute (green), and the pragmatic 

(black) PLS models. See section 7.4.1 for details of models.

The percentages of K-feldspar predicted by the pragmatic PLS model followed the 

same trend for the sandstones as both the absolute PLS model and the XRD-Hillier 

model, but were closer in value to the predictions by the XRD-Hillier model than 

were the absolute PLS model predictions.
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Figure 7.39: Comparison of XRD-Hillier (pink) predictions of hematite in 

sandstones named, with predictions by the absolute (green), and the pragmatic 

(black) PLS models. See section 7.4.1 for details of models.

Despite the slight improvement in predictions of hematite using the pragmatic PLS 

model, the predictions remained quite different to those by the XRD-Hillier model.

As with Na-feldspar, the predictions for chlorite using the pragmatic model are not 

shown since the number of factors chosen for chlorite was the same in both the 

absolute and the pragmatic PLS models. Comparisons of these predicted percentages 

with predictions by the other models, is shown in Figure 7.29.

Neither Hillier nor Clegg investigated the presence of muscovite in the sandstones. In 

Figure 7.40, the absolute and pragmatic PLS model predictions for muscovite are 

therefore compared with predictions by the LSF-SDR model.
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Figure 7.40: Comparison of LSF-SDR (blue) predictions of muscovite in 

sandstones named, with predictions by the absolute (green), and the pragmatic 

(black) PLS models. See section 7.4.1 for details of models.

In the sandstones where some muscovite was predicted, the percentages predicted 

were so low that comparison between different models was difficult since the low 

predictions were within the individual errors for the different models. The 

percentages of muscovite predicted in Yorkstone and Stancliffe by the pragmatic PLS 

model were closer to predictions of muscovite by the LSF-SDR model than by 

absolute PLS model predictions. The large negative predicted percentages in Berea, 

Clashach, and Castlegate, by the absolute PLS model, were not improved, however, 

by using the pragmatic PLS model.

259



7.6 Absolute and Pragmatic PLS Model Errors

7.6.1 Maximum Errors of Absolute and Pragmatic PLS Models

The maximum errors (largest difference between the actual and the predicted 

percentages of the independent standards) for each training set component, in the 

absolute and pragmatic PLS models are shown in Table 7.9. The corresponding 

number of factors chosen for each component in each model is also included.

Component No. of 

Factors 

for Absolute 

PLS model

Max. error for 

Absolute 

PLS model 

(wt%)

No. of 

Factors 

for Pragmatic 

PLS model

Max. error for 

Pragmatic 

PLS model 

(wt%)

Quartz 10 ±2.2 3 ±3.7

Montmorillonite 8 ±2.0 9 ±3.1

Kaolinite 4 ±1.4 9 ±1.2

Illite 14 ±2.5 8 ±4.7

Calcite 3 ±2.8 8 ±4.0

Dolomite 4 ±2.4 10 ±1.5

Na-Feldspar 12 ±1.9 12 ±1.9

K-Feldspar 12 ±2.0 3 ±6.8

Hematite 15 ±1.9 4 ±4.2

Chlorite 6 ±1.7 6 ±1.7

Muscovite 13 ±1.6 5 ±3.5

Table 7.9: Comparisons of the number of factors chosen and maximum errors 

for the absolute and pragmatic PLS models, for each of the named components.

As stated previously, the number of factors chosen for components, Na-feldspar and 

chlorite, was the same for the absolute and the pragmatic PLS models. The maximum 

error for these components was therefore the same for both models. For components 

where the number of factors in the absolute and pragmatic PLS models were different, 

the components predicted by the pragmatic PLS model generally had a greater 

maximum error than when predicted by the absolute PLS model. This was especially 

true for K-feldspar, where the maximum error had increased from ±2 wt% in the
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absolute PLS model to ±6.8 wt% in the pragmatic PLS model. This suggested that 

while the pragmatic PLS model may have predicted percentages of K-feldspar closer 

in value to those predicted by the XRD-Hillier model, compared with predictions by 

the absolute PLS model, the accuracy of those predictions had decreased. Dolomite 

was an exception to the trend of increased maximum errors in the pragmatic PLS 

model, since the maximum error was less when predicted by the pragmatic PLS 

model. This may be expected since the pragmatic PLS model included more factors 

than the absolute PLS model for dolomite prediction.

7.6.2 Maximum Reproducibility Errors

7.6.2.1 Introduction

The reproducibility of component predictions in three sets of powders; the powder 

from cutting, the ground slices, and the ball milled slices, was studied. The 

reproducibility errors were calculated by first collecting three spectra of the same 

sample from each of the sets of powders, with the sample cup being emptied and re

packed between collections. Percentages of components were then predicted for each 

spectra and the lowest value for each component subtracted from the highest value of 

each component to give reproducibility errors for each set of powders.

1,6,22 Results

Figures 7.41-7.51 show the reproducibility errors for each set of powders and each 

sandstone component, using the absolute PLS model. For comparison, the 

reproducibility errors for predictions of ball milled powders using the pragmatic PLS 

model are also shown. In Figures 7.41-7.51, the two horizontal dashed lines indicate 

the maximum error, as shown in Table 7.9, for the absolute PLS model (red) and for 

the pragmatic PLS model (black).
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Figure 7.41: Reproducibility errors for quartz in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute PLS model, 

and ball milled slice (black) using the pragmatic PLS model, in the sandstones 

named. The red and black dashed lines indicate the maximum errors for the 

absolute and pragmatic PLS models, respectively.

The largest reproducibility error for quartz was clearly found for the ground slices 

(Figure 7.41), which was expected since this powder had the largest particle size and 

particle size distribution. The reproducibility errors for the powder from cutting and 

for the ball milled slices using the absolute PLS model were similar and generally fell 

below the maximum error for the absolute PLS model. The errors found for the ball 

milled slices using the pragmatic PLS model were, however, slightly greater, which 

was expected since the maximum error for the pragmatic PLS model was greater than 

it was for the absolute PLS model.

Clegg reported a reproducibility error range for predictions of quartz in sandstones at 

±1.0-2.2 wt%, using the PLS-Clegg model (a pragmatic model), while the error range 

of predictions found using the absolute and the pragmatic PLS models were ±0.9-3 .8 

wt% and ±1.9-4.8 wt%, respectively. The PLS-Clegg model therefore predicted 

quartz with more precision than the absolute and pragmatic PLS models. This may be 

because the sandstones studied by Clegg had been ball milled for longer than those 

studied in this thesis. The 20 minutes ball milling time, used by Clegg, compared to
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the 5 minutes ball milling time used in this thesis, perhaps reduced errors caused by 

different particle sizes and particle size distributions of the different sandstones and 

therefore reduced the reproducibility error in the PLS-Clegg model.
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Figure 7.42: Reproducibility errors for montmorillonite in powder from cutting 

(blue), ground slice (pink), and ball milled slice (green) using the absolute PLS 

model, and ball milled slice (black) using the pragmatic PLS model, in the 

sandstones named. The red and black dashed lines indicate the maximum errors 

for the absolute and pragmatic PLS models, respectively.

The reproducibility errors for the predictions of montmorillonite in the hand ground 

slices (Figure 7.42) appeared to be less than for the ball milled slices. The 

reproducibility errors using the absolute and pragmatic PLS model were very similar 

despite the maximum errors for the two models being different. Interestingly, the 

reproducibility errors for montmorillonite in all the sandstones using the absolute PLS 

model were greater than the absolute PLS model maximum error so it must have been 

the lack of reproducibility of detecting montmorillonite in the sandstones that caused 

the greater error.

For predictions of montmorillonite and illite combined, the reproducibility error for 

predictions of sandstones using the PLS-Clegg model ranged from ±0.8-1.2 wt%. The 

reproducibility error for predictions of sandstones using the pragmatic PLS model 

ranged from ±2.8-4.4 wt% for montmorillonite, and from ±1.8-3.7 wt% in illite. If
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the components were combined, as they were in the PLS-Clegg model, the range of 

reproducibility errors for the sandstones, using the pragmatic PLS model, would be 

±0.6-1.5 wt%, indicating greater precision. The PLS-Clegg model and the pragmatic 

PLS model, therefore, predicted the combined percentage of montmorillonite and 

illite in sandstones, with the same degree of precision.
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Figure 7.43: Reproducibility errors for kaolinite in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute PLS model, 

and ball milled slice (black) using the pragmatic model, in the sandstones named. 

The red and black dashed lines indicate the maximum errors for the absolute 

and pragmatic PLS models, respectively.

The reproducibility errors for the predictions of kaolinite were very low for all the 

powders studied (Figure 7.43), especially for the ball milled slices, using the absolute 

and pragmatic PLS models, where the reproducibility errors were always less than 

±0.7 wt%. The predictions for the ball milled slices by the absolute PLS model were 

the most reproducible, but both the absolute and the pragmatic PLS models had 

reproducibility errors lower than the maximum error for each model, so detection and 

prediction of kaolinite from the sandstone spectra was very reproducible. It was 

unclear as to why the reproducibility errors for the hand ground slice and powder 

from cutting Berea were greater than for the other sandstones, though it does further 

confirm that samples should be ball milled to obtain reproducible results.
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The reproducibility error range for predicting kaolinite in the sandstones using the 

PLS-Clegg model was found to be ±0.8-3.0 wt%. The absolute and pragmatic PLS 

models could predict kaolinite with more precision, with an error range of ±0.2-0.6 

wt% using the absolute PLS model, and of ±0.4-0.6 wt% using the pragmatic PLS 

model.
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Figure 7.44: Reproducibility errors for illite in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute PLS model, 

and ball milled slice (black) using the pragmatic model, in the sandstones named. 

The red and black dashed lines indicate the maximum errors for the absolute 

and pragmatic PLS models, respectively.

The reproducibility errors for predicting illite alone (Figure 7.44) were far greater than 

for predicting kaolinite. The most reproducible predictions were found for the ball 

milled slices using the absolute PLS model, and the reproducibility errors were also 

less than the error of the absolute PLS model. Although the predictions for the ball 

milled slices using the pragmatic PLS model were less reproducible than those using 

the absolute PLS model, the reproducibility errors were again less than the maximum 

error of the pragmatic PLS model.
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Figure 7.45: Reproducibility errors for calcite in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute PLS model, 

and ball milled slice (black) using the pragmatic model, in the sandstones named. 

The red and black dashed lines indicate the maximum errors for the absolute 

and pragmatic PLS models, respectively.

It was clear that the reproducibility of calcite predictions for the ground slices was 

worse than for the ball milled slices and for the powder from cutting (Figure 7.45). 

The reproducibility of the predictions for the ball milled slices using the absolute PLS 

model was again better than for the pragmatic PLS model. However, for both models, 

the reproducibility errors were far lower than the maximum error for the models. The 

detection of calcite in the spectra of ball milled sandstones and its subsequent 

percentage prediction by the models, was therefore, very reproducible. Despite the 

reproducibility, it should be noted that predictions for calcite were generally negative, 

suggesting that, except for Berea perhaps, the sandstones did not contain calcite.

266



3 .0

Absolute PLS 
model error

Pragmatic PLS 
model error

o.o
Clashach CastlegateHollington Birchover Yorkstone Stancliffe Berea

Red

Figure 7.46: Reproducibility errors for dolomite in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute PLS model, 

and ball milled slice (black) using the pragmatic model, in the sandstones named. 

The red and black dashed lines indicate the maximum errors for the absolute 

and pragmatic PLS models, respectively.

Again for the prediction of dolomite (Figure 7.46), the reproducibility was worse in 

the ground slices and better in the powder from cutting and in the ball milled slices. 

The reproducibility errors for predicting dolomite in the hand ground slices were, 

however, generally lower than for predicting calcite in the hand ground slices. The 

reproducibility errors of the predictions for the ball milled slices using both the 

absolute and the pragmatic PLS models, were again lower than the maximum error for 

the models.

The PLS-Clegg model, the absolute and the pragmatic PLS models, all predicted 

dolomite in the sandstones with the same degree of precision. The reproducibility 

error range for predicting dolomite in the sandstones, found by the PLS-Clegg model, 

was ±1.0-1.1 wt%, while using the absolute and the pragmatic models it was ±0.1-1.0 

wt% and ±0.0-1.0 wt% respectively.

Only one set of reproducibility errors for the ball milled slices and one model error, is 

shown in Figure 7.47 for the prediction of Na-feldspar, since the number of factors for
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this component in both the absolute and the pragmatic PLS models was the same, so 

predictions and therefore errors for this component were the same using both models.
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Figure 7.47: Reproducibility errors for Na-feldspar in powder from cutting 

(blue), ground slice (pink), and ball milled slice (green) using the 

absolute/pragmatic PLS model, in the sandstones named. The black dashed line 

indicates the maximum error for the absolute/pragmatic PLS model.

For the prediction of Na-feldspar, the reproducibility was notably worse for the 

ground slices than for the other powders (Figure 7.47). The predictions for the ball 

milled slices were more reproducible than for the ground slices. However, it was the 

prediction of Na-feldspar in the powder from cutting that was the most reproducible.

It should be noted that the reproducibility errors were actually slightly greater than the 

model error suggesting that reproducible detection of Na-feldspar in the sandstone 

spectra may have been difficult.

Slightly greater precision was found in predicting Na-feldspar in the sandstones by the 

absolute/pragmatic PLS model than by predictions found using the PLS-Clegg model. 

The reproducibility error range for the sandstones was ±2.1-2.5 wt% using the 

absolute/pragmatic PLS model and was reported as ±1.1-3.9 wt% by the PLS-Clegg 

model.
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Figure 7.48: Reproducibility errors for K-feldspar in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute PLS model, 

and ball milled slice (black) using the pragmatic model, in the sandstones named. 

The red and black dashed lines indicate the maximum errors for the absolute 

and pragmatic PLS models, respectively.

As with Na-feldspar it was the prediction of K-feldspar in the powder from cutting 

that was the most reproducible (Figure 7.48). The reproducibility errors of the ball 

milled slices using the absolute PLS model were slightly greater than the maximum 

error of the model, suggesting that the absolute PLS model had difficulty detecting K- 

feldspar reproducibly from the spectra of the sandstones. While the large maximum 

error for the pragmatic PLS model suggested that the model predicted K-feldspar with 

less accuracy, the reproducibility of K-feldspar predictions using the pragmatic PLS 

model were similar to those using the absolute PLS model.

269



7 .0

6.0 -

Pragmatic PLS 
model error

5  3.0 H'5
3

Absolute PLS 
model error

o.o
H ollington B irchover Y orkstone Stancliffe B erea Clashach C astlegate

Red

Figure 7.49: Reproducibility errors for hematite in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute PLS model, 

and ball milled slice (black) using the pragmatic model, in the sandstones named. 

The red and black dashed lines indicate the maximum errors for the absolute 

and pragmatic PLS models, respectively.

As was the case for most of the components, the reproducibility errors for predicting 

hematite in the sandstones were also greater for the ground slices than for the other 

powders (Figure 7.49). The greater maximum error in the pragmatic PLS model was 

not reflected in the low reproducibility error for predicting hematite in the ball milled 

slices of the sandstones.

As with Na-feldspar, only one set of reproducibility errors for the ball milled slices, 

and one model error, is shown in Figure 7.50 for the prediction of chlorite since the 

number of factors for this component was the same in both the absolute and the 

pragmatic PLS models.
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Figure 7.50: Reproducibility errors for chlorite in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute/pragmatic 

PLS model, in the sandstones named. The black dashed line indicates the 

maximum error for the absolute/pragmatic PLS models.

Both the maximum error for the model and the reproducibility errors for predicting 

chlorite in the powder from cutting, ground slices, and ball milled slices, were very 

low indicating that the model detected and predicted chlorite in the independent 

standard spectra accurately and in the sandstone spectra very reproducibly.

The absolute/pragmatic PLS model was found to predict chlorite with slightly greater 

precision than the PLS-Clegg model. The reproducibility error range for predicting 

chlorite in the sandstones using the PLS-Clegg model, was found to be ±0.5-2.5 wt%, 

while the reproducibility error range found using the absolute/pragmatic PLS model 

was ±0.7-1.7 wt%.
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Figure 7.51: Reproducibility errors for muscovite in powder from cutting (blue), 

ground slice (pink), and ball milled slice (green) using the absolute PLS model, 

and ball milled slice (black) using the pragmatic model, in the sandstones named. 

The red and black dashed lines indicate the maximum errors for the absolute 

and pragmatic PLS models, respectively.

Again, the reproducibility errors for predicting muscovite in the powder from cutting, 

ground slices, and ball milled slices, were all very low. The reproducibility errors for 

predictions of muscovite in the ball milled slices using the absolute PLS model were, 

however, slightly lower than predictions using the pragmatic PLS model.

7.6.2.3 Conclusion

Table 7.10 shows a summary of the errors associated with the absolute and pragmatic 

PLS models and also the PLS-Clegg model. The maximum errors for each 

component of each model are shown, and the average errors for each component 

using the absolute and pragmatic PLS models also. The reproducibility errors for 

predicting ball milled sandstone slices are also shown for the three models.
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The highest reproducibility error for prediction of components was most often found 

for the ground slices. This was expected since the particle size distribution was 

greatest in the ground slices, making the samples less homogeneous. The 

reproducibility errors for the hand ground slices were also generally higher than the 

maximum error for the absolute PLS model, suggesting that it was difficult to collect 

reproducible spectra of the hand ground slices, and therefore the predictions of 

components were not very reproducible. In contrast, the reproducibility errors for the 

powder from cutting, and for the ball milled slices, were generally less than the 

absolute PLS model errors in most components. This suggested that for these 

powders, the spectra were more reproducible, and so it was the error of the model, 

rather than the reproducibility of the spectra, that caused the greater error.

For most components, the reproducibility of the predictions from the absolute PLS 

model was better than those from the pragmatic PLS model. This indicated that 

although the predictions of components using the pragmatic PLS model were closer to 

those of Hillier than those using the absolute PLS model, the pragmatic PLS model 

had more difficulty in detecting components from the sandstone spectra reproducibly 

than the absolute PLS model.

The reproducibility errors found by using the absolute and pragmatic PLS models 

were compared with those reported by Clegg [21] using the PLS-Clegg model, as 

shown in Table 7.10. The ranges in errors found for the different sandstones 

suggested that the PLS-Clegg model predicted quartz with more precision, predicted 

combined montmorillonite + illite, and also dolomite, with the same precision, and 

predicted kaolinite, chlorite, and Na-feldspar, with less precision than the pragmatic 

PLS model.

7.7 Reasons for Quartz Predictions

7.7.1 Over-Prediction of Quartz in Sandstones

7.7.1.1 Introduction

Changing the number of factors of the absolute PLS model to produce the pragmatic 

PLS model improved predictions of some components in the sandstones, i.e. brought 

predictions closer to those calculated by the XRD-Hillier model. The prediction of
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quartz in Clashach and Castlegate sandstones by both the PLS models, however, was 

still over 100 wt% regardless of the number of factors chosen. In attempting to find 

reasons for these poor predictions, the DRIFTS spectra and XRD traces of training set 

components, and of the sandstones were examined more closely.

1.1.12 Silica Band Intensity in DRIFTS spectra of Sandstones

The intensity of the symmetric Si-O-Si stretching bands, at 800 and 781 cm'1, in 

DRIFTS spectra of the sandstones and of pure Chelford sand were examined to help 

explain the reason for the over prediction of quartz in Clashach, and Castlegate 

sandstones. The spectra are shown in Figure 7.52.
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Figure 7.52: The low wavenumber region of the DRIFTS spectra for ball milled 

Hollington Red (blue), Birchover (black), Yorkstone (pink), Stancliffe (green), 

Berea (dark green), Clashach (light blue), Castlegate (yellow) sandstones, and 

Chelford sand (red).

Figure 7.52 shows intensity differences of the bands at 781 and 800 cm'1 in spectra of 

the different sandstones. The intensity ratio of these bands was mentioned previously, 

in section 7.3.3, with regards to differences observed in the spectra of the powder 

from cutting, hand ground slices, and ball milled slices. When comparing the 

intensity ratio of these bands in spectra of the different sandstones, it could be seen
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that the spectra of the sandstones which contained more clay and feldspar; Hollington 

Red, Birchover, Yorkstone, and Stancliffe, showed the intensity of the 781 cm'1 band 

at a similar intensity to that at 800 cm'1. The spectra of the “cleaned sandstones; 

Berea, Clashach, and Castlegate, however, showed the band at 800 cm'1 at a higher 

intensity relative to that at 781 cm'1. The spectra of both Na- and K-feldspars showed 

bands at around 780 cm'1, and so it was thought to be the presence of more feldspar in 

Hollington Red, Birchover, Yorkstone, and Stancliffe, than in Berea, Clashach, and 

Castlegate that caused the difference in intensity ratios.

The intensity ratio of the 781 and 800 cm*1 bands in the spectmm of Chelford sand 

was actually less than that observed in the spectrum of Castlegate, i.e. the bands were 

of more similar intensity in the spectrum of Chelford sand. This suggested the 

possibility that Chelford sand may have contained more feldspar than Castlegate.

The overall intensity difference of the bands at 781 and 800 cm'1 in the different 

sandstones was also clear. These bands appeared generally less intense in the spectra 

of Birchover, Yorkstone, and Stancliffe, and more intense in the spectra of Berea, 

Clashach, and Castlegate sandstones. The predictions of quartz in these sandstones 

using the PLS models also followed a similar trend, with less quartz predicted in 

Birchover, Yorkstone, and Stancliffe, and more in Berea, Clashach, and Castlegate. 

Significantly, it was also clear from Figure 7.52 that the 781 and 800 cm"1 bands were 

less intense in the spectrum of Chelford sand than in the spectra of Castlegate and 

Clashach and this may have been the cause of the over prediction of quartz in these 

samples by the absolute and pragmatic PLS models.

Similar trends were observed for the quartz peak intensities in the XRD traces of the 

sandstones and Chelford sand.

7.7.1.3 Quartz Peak Intensity in XRD traces of Sandstones

The quartz peak near 26.7° 20 in XRD traces of the sandstones and of pure Chelford 

sand is shown in Figure 7.53.
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Figure 7.53: XRD traces, illustrating the difference in quartz peak shapes and 

intensities, for ball milled Hollington Red (blue), Birchover (black), Yorkstone 

(pink), Stancliffe (green), Berea (dark green), Clashach (light blue), Castlegate 

(purple) sandstones, and Chelford sand (red).

As for the bands at 781 and 800 cm'1 in the DRIFTS spectra shown in Figure 7.52, a 

more intense quartz peak at 26.7° 20 in XRD traces shown in Figure 7.53 was 

observed for the sandstones, Castlegate, and Clashach, than for pure Chelford sand.

Another important observation from Figure 7.53 was the slight difference in peak 

shape and position of the quartz peak for the different sandstones. While the quartz 

peak was at 26.65° 20 for Castlegate, Clashach, and Chelford sand, it was at 26.64° 20 

for the other sandstones. A shoulder was also observed in the XRD traces of the 

sandstones, at positions ranging from 26.69 to 26.72° 20 for the different sandstones. 

The shoulder appeared more pronounced in the XRD traces of Clashach, Stancliffe, 

and Yorkstone, than in the other sandstones, although the reason for this was unclear. 

The difference in the peak intensities for different sandstones could indicate that they 

contained quartz from different sources, with slightly different elemental 

compositions. Differences in the size of the unit cell of the quartz in the sandstones 

may account for the differences in the position of the quartz peaks. If the sandstones 

studied contained quartz from different sources and with different crystallinities, the
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predicted amount of Chelford sand in each would not be a true representation of the 

amount of quartz in each.

7.7.1.4 Conclusion

Figure 7.54 shows how the quartz band intensity in the DRIFTS spectra, and the 

percentage of SiC>2 found by XRF, varied for the different sandstones, while Figure 

7.55 shows how the quartz peak intensity in the XRD traces varied for the different 

sandstones. The absorbance at 800 cm'1 in the DRIFTS spectrum of Chelford sand, 

and the percentage of SiC>2 found in Chelford sand by XRF, are included in Figure 

7.54, and the intensity of the peak at 26.7° 20 in the XRD trace of Chelford sand 

included in Figure 7.55, for comparison.
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Figure 7.54: Absorbance at 800 cm 1 (associated with quartz) in the DRIFTS 

spectra (red) compared with the percentage of S i02 found by XRF (black) for 

the named sandstones and pure Chelford sand.
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Figure 7.55: Intensity of 26.7° 20 quartz peak in XRD traces of the named 

sandstones and of pure Chelford sand.

The intensity of the band at 800 cm-1 in the DRIFTS spectra, the percentage of Si02 

found by XRF, and also the percentage of quartz in the sandstones predicted by the 

PLS models, all followed a similar trend. A slightly different trend was observed for 

the 26.7° 20 quartz peak intensity in XRD traces of the sandstones, although the 

highest intensities were still observed for Clashach and Castlegate.

Notably, the absorbance of the band at 800 cm'1 in the DRIFTS spectrum of pure 

Chelford sand, the percentage of SiC>2 found in pure Chelford sand by XRF, and the 

intensity of the peak near 26.7° 20 in the XRD trace of pure Chelford sand, were 

lower than that in DRIFTS spectra, XRF analysis, and XRD traces of Clashach and 

Castlegate sandstones. This may suggest that the pure quartz component of the 

training set contained less quartz than the two sandstones. This would obviously 

create a problem for quartz predictions by the PLS models, if  the models used bands 

such as the Si-O-Si stretching band at 800 cm'1 to calculate the predictions.
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7.7.2 Impurities in the Training Set Components

7.7.2.1 Presence of Feldspars in Chelford Sand

During the qualitative DRIFTS study of the different sandstones and Chelford sand, in 

section 7.3, it was noticed, when studying the low wavenumber region, that Chelford 

sand exhibited bands not associated with quartz. The low wavenumber region of the 

DRIFTS spectra of quartz, Na-feldspar, and K-feldspar are shown in Figure 7.56 in 

order to determine the assignment of these bands.
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Figure 7.56: The low wavenumber region of the DRIFTS spectra for Na-feldspar 

(blue), K-feldspar (black), and ball milled Chelford sand (red).

The spectrum of Chelford sand exhibited a slight shoulder at 1039 cm'1 and a low 

intensity band at 730 cm'1 neither of which were associated with quartz. After 

examining the spectra of the other components, it was discovered that bands at 1039 

cm'1 and 730 cm"1 were associated with Na-feldspar and K-feldspar, respectively.

This suggested that Chelford sand may have contained both feldspars as impurities. 

The position of the band at 730 cm"1 (associated with K-feldspar) instead of at 725 

cm"1 (associated with Na-feldspar) and also the presence of only a weak shoulder at 

1039 cm'1 (associated with Na-feldspar), suggested that there was more K-feldspar 

than Na-feldspar present in Chelford sand. The XRF analysis of Chelford sand and 

Castlegate are shown in Chart 7.1.
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Chart 7.1: Comparison of metal oxide content (wt%), from XRF, for Chelford 

sand and Castlegate.

The presence of more K2 O than Na20 in Chelford sand, may again suggest that 

Chelford sand contained more K-feldspar, than Na-Feldspar.

Interestingly, the presence of a more pronounced band at 730 cm-1 in the DRIFTS 

spectmm of Chelford sand than in the spectrum of Castlegate (Figure 7.52), and the 

presence of a higher percentage ofK20 found by XRF in Chelford sand than in 

Castlegate, suggested that Chelford sand contained more K-feldspar than Castlegate 

sandstone. This was also implied in section 7.7.1.2 since the bands at 781 and 

800 cm"1 in the spectrum of Chelford sand were of a more similar intensity than the 

same bands in the spectrum of Castlegate, suggesting the possibility that Chelford 

sand may have contained more feldspar than Castlegate.

The XRD traces of Na- and K-feldspar and of pure ball milled Chelford sand were 

also investigated for the presence of feldspars in the Chelford sand, and the region 26- 

29° 20 is shown in Figure 7.57.
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Figure 7.57: XRD traces of Na-feldspar (blue), K-feldspar (black), and ball 

milled Chelford sand (red).

The peak at 26.7° 20 is indicative of quartz, while the peaks at 27.5° 20 and 27.9° 20 

are indicative of K- and Na-feldspar, respectively. The XRD trace of Chelford sand 

did not appear to show the presence of the feldspar peaks. However, investigation of 

this region of the XRD traces of the three training set components highlighted another 

possible reason for the over predictions of quartz in some sandstones. The traces of 

K- and Na-feldspar may both contain a weak peak at 26.7° 20, suggesting that both 

feldspars may have contained some quartz.

1.1.12 Presence of Quartz in the Feldspars

After a weak quartz peak, at 26.7° 20, was found in the XRD traces of the feldspars, 

shown in Figure 7.57, indicating a quartz impurity, the feldspars were further 

investigated for impurities using XRF. The XRF analysis of K- and Na-feldspar is 

shown in Chart 7.2.

282



70

p 60 -

50 -■© c s o  Qu
£ 40o
U
o 30 H 
«M
CS
c 20
CJ
QJ

Oh 10

Si02 A1203 K20 Na20

Chart 7.2: Comparison of metal oxide content (wt%), from XRF, for K-feldspar 

(black bars) and Na-feldspar (shaded bars).

The SiC>2 content of the two feldspars was similar, as was AI2 O3 content. However, as 

expected, there were larger differences in the K2 O and Na20 contents. K-feldspar 

obviously contained a much greater percentage of K2 O than was present in Na- 

feldspar and Na-feldspar contained a greater percentage of Na20 than was present in 

K-feldspar. It could be seen from the XRD traces of the feldspars shown in Figure 

7.57 that K-feldspar showed a peak at 27.9° 20 which was associated with Na- 

feldspar. The XRF analysis also showed that while both feldspars contained K2 O and 

Na20, the amount of Na20 that K-feldspar contained was significantly greater than 

the amount of K2 O that Na-feldspar contained. Studies of the XRD traces and XRF 

analysis of the feldspars therefore indicated that both feldspars contained quartz, and 

K-feldspar also contained some Na-feldspar impurity. These impurities would again 

affect the predictions of quartz and feldspar calculated by the PLS models.

1.1 .23  Presence of Quartz in the Clays

The impurities found in the Chelford sand, and feldspar components, led to further 

studies of the XRD traces of all the training set components, in order to determine if 

other “pure” components contained impurities. XRD traces of the clays,
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montmorillonite, and illite, are shown in Figure 7.58, along with the trace of Chelford 

sand.
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Figure 7.58: XRD traces of montmorillonite (green), illite (light blue), and 

Chelford sand (red).

The characteristic quartz peaks at 20.9 and 26.7° 20 could be seen clearly in the XRD 

trace of Chelford sand. The same peaks, however were present in the traces of 

montmorillonite and illite clays, and were especially pronounced in the trace of 

montmorillonite. This suggested that not only did Na- and K-feldspar contain quartz, 

but the montmorillonite and illite clays also contained quartz.

Vogt etal. [108] investigated the presence of impurities in some Clay Mineral Society 

clays, by measuring both the bulk material and the <2 pm fraction by XRD and by 

using XRF. Vogt et al. found that the main impurities in SWy-2 were quartz and 

kaolinite, at 5.2 wt% and 1.3 wt%, respectively.

The purity of some Clay Mineral Society clays were also studied by Chipera and Bish 

[109] using XRD. The clay minerals were studied as obtained directly from the Clay 

Mineral Repository and then the <2 pm fraction was removed and studied. The 

improvement in purity when the <2 pm fraction was removed was reported. The
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mineral abundances were found using the RIR (reference intensity ratios) method, 

also used by Hillier [70], and described in section 5.4.3.2. KGa-2 obtained directly 

from the Clay Mineral Repository was found to contain 96% kaolinite, 3% anatase 

(Ti02) plus mica and /or illite. SWy-2 obtained directly from the Clay Mineral 

Repository was found to contain 75% smectite, 8% quartz, 16% feldspar, 1% gypsum 

plus mica and/or illite. No improvement in the purity was found when studying the 

<2 pm fraction of KGa-2, however, a large improvement was found in the purity of 

SWy-2 when the <2 pm fraction was studied. In the <2 pm fraction of SWy-2, 95% 

was smectite, 4% quartz, 1% feldspar plus gypsum and mica and/or illite. It should be 

noted that in the studies described in this thesis, the clay minerals obtained from the 

Clay Mineral Repository were used without removal of the <2 pm fraction. In future 

work, the <2 pm fractions of the Clay Mineral Repository clays should be used as 

components in the training set.

Graham et a l [75] quantified the quartz content of clays and found that the normal 

range for quartz content in the aluminosilicates was between 20 and 40 wt%, 

indicating that the quartz content of most clays was second in abundance in 

concentration only to the clay minerals themselves.

The presence of quartz in montomorillonite and illite, however, would have little 

effect on predictions by the PLS models since very little montmorillonite was present 

in the sandstones, and although more illite was present, illite contained very little 

quartz.

7.7.3 Summary

The over prediction of quartz in Clashach and Castlegate sandstones was not 

surprising after studying their DRIFTS spectra, their percentage of Si( > 2  found by 

XRF, and XRD traces, in comparison to those of Chelford sand. The DRIFTS spectra 

and XRD traces of the two sandstones showed higher intensity quartz peaks than 

those in Chelford sand and they both also contained more SiC>2 than Chelford sand.

One possible reason for this could be that the clay present in the training set standards 

was smeared on the surface of the quartz particles, masking the spectrum from the 

underlying quartz particle. The PLS model would then consider the diminished 

spectrum of quartz to be the true spectrum. In a sandstone where little or no clay was 

present, such as in Clashach and Castlegate, the silica particles would be exposed,
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causing enhancement of the silica infrared absorbance bands. This could then lead to 

the model predicting percentages of quartz over 100%. A difference in shape of the 

quartz peak at 26.7° 20, and presence of a shoulder in the XRD traces of sandstones 

also suggested differences in the sandstones associated with the quartz component. 

Differences in the quartz peak intensity and shape in DRIFTS spectra and XRD traces 

of the different sandstones and Chelford sand may mean that the predicted 

concentration of Chelford sand in the sandstones was not truly representative of the 

quantity of quartz they contained.

Another possible reason for the over prediction of quartz in the two sandstones is that 

the particle size distribution of all the sandstones may not have been the same. The 

effect of particle size on band intensity and resolution in DRIFTS spectra of samples 

is immense, as could be seen from the spectra of Chelford sand ground by hand and 

ball milled (Figure 6.1 in section 6.3.2). All the training set standards, and also all the 

sandstones, were ball milled for the same length of time in the hope that the particle 

size distribution in each would be the same and so the DRIFTS spectra would not be 

influenced by particle size. Differences in particle size may, however, have occurred 

between different sandstones after ball milling, due to the difference in hardness of 

the sandstone rocks. The harder sandstone rocks; Birchover, Yorkstone, and 

Stancliffe may have required longer grinding times in order to get the same particle 

size distribution as that obtained in the softer sandstones; Clashach and Castlegate, 

after a shorter time. The terms “hardef ’ and “softer”, refer to the ease with which the 

rocks were cut, with harder rocks taking a longer time to cut through. The sandstones 

were all ball milled for the same length of time but the grains of the softer rock may 

have been released earlier than those of the harder rocks, causing them to be ground 

for longer. This may have caused the softer rocks; Clashach and Castlegate, to have 

spectra with higher intensity bands. Since the sandstones studied by Clegg [21] were 

ball milled for 20 minutes, rather than 5 minutes as in the studies of this thesis, any 

effect due to differences in particle size would be much reduced.

Differences in particle size may also, however, have occurred between different 

standards and different sandstones due to the difference in their composition. The 

particles of quartz were the largest and hardest particles in the sandstones and could 

have acted, along with the tungsten carbide pot and balls of the ball mill, as an
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additional aid to grinding. In samples which contained a high concentration of quartz, 

the particles would be ground with more friction and therefore the particle size may 

have been smaller than in samples which contained a lower concentration of quartz, 

and a higher concentration of softer particles. The particle size of ball milled 

Clashach and Castlegate sandstones, which contained high quantities of quartz and 

low quantities of clays, may have been smaller than the other sandstones, which 

contained more clay. A Si02 sample with smaller particle size is known to give 

DRIFTS spectra with higher intensity bands, and this could be another reason for the 

high intensity of quartz bands in the DRIFTS spectra of Clashach and Castlegate 

sandstones. Since pure Chelford sand also contained a high concentration of quartz, it 

should also have had a smaller particle size after milling, and therefore have had 

higher intensity quartz bands in its DRJFTS spectrum than those present in the ,

DRIFTS spectra of the other sandstones. The intensity of quartz bands in the DRIFTS 

spectra of Clashach and Castlegate, however, were slightly higher than those in the 

spectrum of Chelford sand.

Bhaskar et al. [112] used infrared spectroscopy to determine the quartz content in dust 

samples from coal mines. It was found that infrared absorbance varied with particle 

size, with a maximum absorbance found when the particles were about 2 pm in 

diameter, with decreasing absorbance found when the particle size deviated from 2 

pm. Bhaskar et al. reported that the particle size of quartz should be reduced to <4 

pm in order to correctly determine the content of quartz. Graham et al. [75] used 

infrared spectroscopy and the peak fitting technique, using the quartz band near 691 

cm'1 to quantify the quartz content of clays. It was reported that a particle size range 

of 1.5-14.5 pm was required for the analysis of quartz.

It is evident from the results in section 7.7.2 that some of the training set components 

were not “pure” and they contained other components as impurities. The quartz 

component, Chelford sand, appeared to contain K-feldspar, and possibly Na-feldspar 

also. Both the feldspars, and also the clays; montmorillonite and illite, appeared to 

contain quartz. In addition, K-feldspar was found to contain some Na-feldspar 

impurity. These impurities in the training set components complicate the PLS model, 

since, during preparation of the model, known concentrations of the components in 

the calibration standards were included. However, the addition of impurities was not 

accounted for, so the composition of the calibration standards included would be
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incorrect. A higher number of factors for some components may be required due to 

the complication of impurities and a larger maximum error found. The impurities 

would also affect the predictions of the independent standards and sandstone samples. 

It was expected that the impurities in Chelford sand would have the greatest effect on 

the PLS models since Chelford sand was the dominant component in all the standards 

and samples, with concentration ranges between 50 and 100 wt%.

7.8 Comparing Results with Literature

Comparisons were made throughout this chapter between different models developed 

to quantify minerals in quarried sandstones.

Schlumberger-Doll Research (SDR) used a least square fitting technique and FTIR 

transmission spectroscopy to quantify minerals in Hollington Red, Birchover, 

Yorkstone, Stancliffe and Berea sandstones. Wavelet transform calculations were 

used to remove noise from useful information and a large collection of standards, 

including feldspars with Ca, Na, and K end members, were used. The full 

composition of the standards and the procedure used, however, was unknown. For 

complicated artificial mineral mixtures, SDR stated that their technique was 1% 

accurate.

Dr. Stephen Hillier from the Macaulay Land Use Research Institute studied the same 

sandstones as SDR, and also Clashach and Castlegate sandstones, using detailed XRD 

analysis of crushed core samples. Both oriented clay fractions and whole rock 

random powders were studied. The minerals were quantified from whole rock data 

and the clay fraction was used to confirm and refine the identification of the clay 

minerals to provide complementary quantitative information. The maximum errors 

for the components were typically within ±3 %.

Of the models compared in this chapter, the model most similar to the pragmatic PLS 

model was one developed by Clegg [21]. Clegg [21] used DRIFTS spectra of 

artificial mineral mixtures to develop a PLS model to quantify minerals in sandstone 

rocks. A seven component model was developed by Clegg, consisting of quartz, 

montmorillonite, kaolinite, illite, dolomite, feldspar, and chlorite. The PLS-Clegg 

model quantified quartz in independent synthetic mixtures with 3 wt% accuracy, and 

the other minerals within 1 wt% accuracy, while the absolute PLS model, described in 

this thesis, quantified all minerals with a maximum error of less than ±2.8 wt%. The
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accuracy of the pragmatic PLS model was reduced with all minerals having a 

maximum error of less than ±4.7 wt% except for K-feldspar which had a maximum 

error of ±6.8 wt%.

X-ray powder diffraction is the most commonly used technique for quantification of 

minerals in sandstones. Srodon etal. [78] used XRD to quantitatively determine the 

mineral content of both synthetic mineral mixtures and natural shale samples and the 

method used was described in section 3.4 of chapter 3. The mineral content of the 

samples was calculated using an equation that related wt% of mineral to the intensity 

of a reflection corresponding to that mineral, in the XRD pattern of a mixture. Srodon 

et a l reported the mineral component errors as the average errors i.e. an average of 

the differences between the actual and the predicted percentages. In this chapter, the 

errors for predictions of the components were generally reported as maximum errors, 

but for comparison, the average errors were calculated. The average errors for the 

prediction of different mineral components found by Srodon et a l using XRD were 

very similar to those found using the absolute PLS models described in this chapter. 

Srodon et a l found that all components had an average prediction error of less than 

±1.8 wt%, while the absolute PLS model predicted all components with an average 

error of less than ±1.1 wt%. The average errors for predictions of components, using 

the pragmatic PLS model were slightly higher, with all components predicted within 

±3.0 wt%. The results for real shale rock samples indicated a variation in quartz 

content. Srodon et a l found that rocks with low quartz content were kaolinite rich or 

rich in 2:1 Fe clays, while rocks with high quartz content were rich in 2:1 Al clays.

Chakrabarty et a l [110] used XRD and a modified matrix algebra-based method to 

quantify minerals in synthetic mineral mixtures and in real rock samples. The matrix 

algebra method used least-squares or linear regression to quantify minerals but was 

thought to be unstable due to the possibility of predicting negative values or values 

greater than 100%. The modified matrix algebra-based method was designed to 

overcome these instabilities by incorporating initial guesses for the mineral quantities, 

found by studying the XRD pattern of the unknown sample. Errors for the predictions 

were expressed as percentage relative errors. The absolute errors were calculated for 

the prediction of components by Chakrabarty et a l, and the accuracy compared with 

that of the absolute and pragmatic PLS models in this chapter. The absolute error for
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predicting quartz was greatest for the method used by Chakrabarty et a l at ±23.7%, 

followed by the error for predicting smectite, at ±7.7%. Predictions for the other 

components using the method, were all within ±1% accuracy. The errors for 

predicting smectite, and especially quartz, using this method, were far greater than the 

errors for predicting these components using both the absolute and pragmatic PLS 

models. When predicting minerals in real rock samples, Chakrabarty et a l found that 

the predicted mineral fractions added to 1.00, indicating that all the minerals present 

in the rock had been accounted for. As was reported by Clegg [21], Chakrabarty et a l 

found that more accurate predictions were determined when the smectite and illite 

minerals were combined.

The Rietveld (1969) quantitative XRD method was used by Ward et a l [77] to 

quantitatively predict the mineral content in powdered samples. SIROQUANT is a 

software system which can quantify up to 25 minerals in a mixture from a powder 

XRD pattern using the Rietveld method. Normative analysis can also be used to 

obtain quantitative results by determining normative mineral percentages from a 

rock's chemical composition. The use of a multi-option computation method, called 

SEDNORM, allows more flexibility, with elemental allocations varied to suit the 

material under study. These methods were described in more detail in section 3.3.2 of 

chapter 3. Ward et a l [77] compared the results of predicting mineral components of 

sandstone rocks using point counting, SIROQUANT, and SEDNORM, and found 

relatively poor correlations. However, they suggested that SIROQUANT offered the 

most direct method for quantification. Using SIROQUANT, the absolute errors for 

predicting mineral components were all within ±4.8%. The accuracy of the 

predictions was therefore very similar to that found using the pragmatic PLS model, 

where all components were predicted within ±4.7 wt%, except K-feldspar which was 

predicted with ±6.8 wt% accuracy.
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7.9 Conclusion

The absolute PLS model was used to predict the concentrations of minerals in real 

sandstone rocks from the DRIFTS spectra of powdered samples. The mineralogy 

along the length of the sandstones; Hollington Red, Birchover, Yorkstone, Stancliffe, 

Berea, Clashach, and Castlegate, was investigated. The predictions calculated for 

different core slices suggested that there were no significant differences in mineralogy 

along the length of the cores. The mineral components in three different sets of 

sandstone powder samples; powder from cutting, ground slices, and ball milled slices, 

were quantified using the absolute PLS model. Differences in the predictions of 

components for the different sets of powders were thought to be caused by the release 

of minerals during cutting and also because the particle size of the sets of powders 

was different. During the cutting of the harder rocks, more quartz was released as 

powder, while in the softer rocks, more quartz remained in the rock during cutting. 

The opposite was true for the location of layer silicates after cutting, i.e. after cutting 

of the harder rocks, more remained in the rock, while in the softer rock very little of 

the layer silicates were generally found, but where they were present, more was 

released during cutting. The powders ground manually in a mortar and pestle gave 

the lowest predicted percentages of quartz and this was because the large particle size 

of quartz in these samples produced spectra with lower intensity, differently shaped, 

Si-O-Si stretching bands. Since the training set standards used in the PLS model were 

ball milled, it was thought that the ball milled slices of sandstones would give the 

most accurate predictions.

The predictions of components in the different sandstones, calculated by the absolute 

PLS model, were compared. The predictions were also compared with those 

calculated by models developed by others, including an XRD model by Dr. Stephen 

Hillier from the Macaulay Land Use Research Institute, a least square fitting 

technique with FTIR transmission spectroscopy by Schlumberger-Doll Research, and 

a PLS with DRIFTS model developed by Clegg. The predicted concentrations of 

calcite, dolomite, and hematite were too low to be able to compare the models, and 

mica was not investigated by Hillier. The predictions of the other components by the 

absolute PLS model, however, followed the same trend for the sandstones as the 

predictions by the XRD-Hillier model. However, the values of the predictions by the
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different models were quite different for some components. Overall the absolute PLS 

model predicted the components in the sandstones; Birchover, Yorkstone, and 

Stancliffe very well, but over predicted the quartz content in sandstones; Berea, 

Clashach, and Castlegate.

In order to improve the accuracy of the predictions by the absolute PLS model, the 

number of factors was altered and the pragmatic PLS model was created. The XRD- 

Hillier model was thought to be the most accurate since it is a well established 

technique. The sandstone component concentrations predicted by the pragmatic PLS 

model were closer in value to those predicted by the XRD-Hillier model and were 

therefore considered to be more accurate. For components quantified by the XRD- 

Hillier model, the PLS-Clegg model, and the absolute and pragmatic PLS models, the 

pragmatic PLS model predicted the components with more accuracy (i.e. closer values 

to those by the XRD-Hillier model) than both the PLS-Clegg model and the absolute 

PLS model. The pragmatic PLS model contained more components than the PLS- 

Clegg model and, with the exception of the quartz component, produced predictions 

closer to those of the XRD-Hillier model. Predictions for the quartz component by 

the PLS-Clegg model were closer to those of the XRD-Hillier model than the 

predictions using the absolute and pragmatic PLS models due to the over prediction of 

quartz in Clashach and Castlegate sandstones by the PLS models derived in this 

thesis.

One possible reason for the over prediction of quartz could be that the clay present in 

the training set standards was smeared on the surface of the quartz particles, masking 

the spectrum from the underlying quartz particle. The PLS model would then 

consider the diminished spectrum of quartz to be the true spectmm. In a sandstone 

where little or no clay was present, such as in Clashach and Castlegate, the silica 

particles would be exposed, causing enhancement of the silica infrared absorbance 

bands. This could then lead to the model predicting percentages of quartz over 100%. 

Another reason may be that the sandstones contained quartz from different sources, 

i.e. they did not all contain Chelford sand. If this were the case then the predicted 

concentrations of Chelford sand in the sandstones would not be truly representative of 

the quantity of quartz they contained.
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Difference in particle size between different sandstones after ball milling would also 

affect the DRIFTS spectra and therefore the predictions of components in the 

sandstones. After ball milling, sandstones may have had different particle sizes due to 

the difference in hardness of the sandstone rocks. Difference in particle size may also 

have occurred between different standards and different sandstones due to the 

differences in their composition. In samples which contained a high concentration of 

quartz, the quartz would act as an additional aid to grinding causing smaller particle 

sizes than in samples which contained a low concentration of quartz.

Inaccuracies in predicted percentages of some components may be due to impurities. 

The quartz component, Chelford sand, was found to contain some K-feldspar, and 

possibly some Na-feldspar also, as impurities. Both the feldspars, and also the clays; 

montmorillonite and illite, were found to contain quartz. In addition, K-feldspar was 

found to contain some Na-feldspar impurity. These impurities in the training set 

components complicate the PLS model, and would affect the predictions.

The errors found for predicting different mineral components in rocks using the 

absolute and pragmatic PLS models were comparable with those found by groups 

using XRD techniques. The absolute PLS model predicted all components within 

±2.8 wt%, while the pragmatic PLS model predicted all components, except K- 

feldspar, with ±4.7 wt% accuracy. K-feldspar was predicted with ±6.8 wt% accuracy. 

The errors found by Hillier for predicting different mineral components in rocks, 

using XRD, were typically within ±3%. Ward et a l [77] used XRD and 

SIROQUANT and predicted all mineral components within ±4.8%. Srodon et al. [78] 

also used XRD to predict mineral components in rock and found errors very similar to 

those found using the absolute PLS model. Srodon etal. found that all components 

had an average prediction error of less than 1.8 wt%, while the absolute PLS model 

predicted all components with an average error of less than 1.1 wt%.
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8. Conclusions

8.1 Use of DRIFTS and PLS to quantify small amounts of swelling 

mineral, smectite, in synthetic mixtures.

Successful quantification of small amounts (0.1-30 wt%) of smectite in mixtures with 

kaolinite has been achieved using DRIFTS and PLS. Determining the concentration 

of small amounts of swelling mineral, smectite, in mixtures with non-swelling 

mineral, kaolinite, is important because small amounts of smectite can sequester all 

the treatment chemicals introduced to a reservoir rock if  its presence remains 

undetected. Traditionally, clay minerals are most commonly studied using XRD as it 

has been found to be a powerful technique for mineral quantification [70]. However, 

DRIFTS was used in this study since it requires only a small amount of sample, is 

fast, and is relatively inexpensive compared with XRD.

Other groups [98, 73] have attempted to quantify the amount of smectite in mixtures 

with kaolinite, using peak fitting with infrared spectroscopy. Since the visual 

detection of smectite and kaolinite was required from the infrared spectra, overlapping 

of bands caused the technique to be only semi-quantitative. For example, Madejova 

et al. [73] found that kaolinite could be detected at concentrations as low as 0.5 wt%, 

while smectite could not be detected below 40 wt%.

The power of PLS for improving the detection limit of minerals in a mixture was 

demonstrated in this study. A set of synthetically prepared mixtures of smectite, 

kaolinite, and an additional mineral, calcite, were used to prepare a calibration, from 

which concentrations of the minerals in unknown samples could be determined.

The potential use of a chemical probe, DMF, to improve the accuracy of the smectite 

predictions was investigated. However, the presence of the strongest DMF peak in 

the spectra of both smectite and kaolinite after the mixture was exposed meant its 

presence did not improve the accuracy or precision of predictions.

The most precise and accurate predictions were found for the model which included 

spectra collected from samples where the KBr diluent had been ball milled, and the 

sample compacted into the cup with a compaction device, prior to spectral collection. 

This was thought to be due to the smaller particle size distribution and homogeneous 

compaction of the samples. The maximum error for predictions of kaolinite, smectite,
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and calcite were ±2.2 wt%, ±3.8 wt%, and ±4.9 wt%, respectively. In conclusion, it 

has been found that smectite could be detected at lower concentrations using PLS than 

could be detected by peak fitting infrared bands, with an error of ±3.8 wt%.

8.2 Heterogeneity of Sandstone Rock Cores

The heterogeneity of sandstone rock cores was studied by visual inspection of XRD 

patterns of sandstone core slices and the powder produced during cutting, in order to 

gain knowledge on the length scale over which the rock mineralogy varies and also to 

help determine what a representative sample size was. Seven quarried sandstones 

were studied; Hollington Red, Birchover, Yorkstone, Stancliffe, Berea, Clashach, and 

Castlegate.

Visual inspection of the rock surfaces, the amount of powder collected during the 

cutting process, and studies by Methven and Hughes [102] on the chemical and 

physical properties of sandstones, indicated that Birchover, Yorkstone, and Stancliffe 

were harder rocks, with small pores (<1-10 pm) and a lower porosity (11-16%), while 

Berea was slightly softer. Hollington Red, Clashach, and Castlegate sandstones were 

softer still, i.e. they were the easiest to cut, contained a larger number of large pores 

(10-100 pm) and had a higher porosity (22-25%).

The peak intensity ratios between clay and quartz peaks in the XRD traces, indicated 

varying amounts of clay in each slice of sandstone. Less kaolinite, illite and 

muscovite was generally found in the softer sandstones, Clashach and Castlegate, than 

in the other sandstones, suggesting that these were “clean” sandstones. The intensity 

of the illite/muscovite peak in XRD traces of the powder from cutting and of the rock 

slices implied that in all the sandstones, more illite and muscovite was removed from 

the emerging rock surface in the cutting process than remained in the rock slices.

Since mineralogical heterogeneity was found along the length of the different 

sandstone cores investigated, it was thought that ideally a representative sample 

would be one collected from a of ball milled sample of a large portion of a core.

8.3 Sandstone Absolute PLS Model

While the XRD traces and DRIFTS spectra of sandstone rocks could be investigated 

visually to provide qualitative information with regards their mineral content, the
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power of PLS for providing quantitative predictions of mineral concentrations within 

a sample has been proven when studying the three component system of kaolinite, 

smectite, and calcite.

The sandstone absolute PLS model was constmcted with a synthetic mineral training 

set comprising eleven mineral components chosen to resemble the composition of a 

real sandstone rock. Studies using different wavenumber regions, and pre-processing 

in models, indicated that the most precise and accurate predictions were found when 

using the full (4000-655 cm'1) region, no pathlength correction, but automatic baseline 

correction for the pre-processing. The model was further optimised by altering the 

number of factors.

For the absolute PLS model, the R2 values of the calibrations and predictions for all 

components, except for montmorillonite and hematite, were above 0.9. Hematite was 

the least precisely predicted component. However, this was expected since the 

DRIFTS spectrum had few distinctive features and no strong bands. Montmorillonite 

had the lowest R2 of calibration value, at 0.73. However, the R2 value of the 

predictions of montmorillonite was 0.91, so it was still precisely predicted.

The results for the absolute PLS model were comparable with those for the seven 

component PLS model developed by Clegg. The correlation coefficients of all the 

components in Clegg’s PLS model were over 0.92, and the number of factors chosen 

ranged from 5 to 10. In the absolute PLS model, all the components had R2 values of 

calibrations over 0.89, except for montmorillonite, at 0.73, and the number of factors 

chosen ranged from 3 to 15. Although initially, this implied that the model developed 

by Clegg was more accurate, it tended to be the components, not included in Clegg’s 

model, that required the high number of factors in the absolute PLS model, such as 

hematite and muscovite.

The maximum errors found for components in the absolute PLS model and in the PLS 

model developed by Clegg were of the same order. Clegg reported that the accuracy 

of quartz prediction in the independent synthetic mixtures was ±3 wt%, and the other 

minerals ±1 wt%, while the absolute PLS model quantified all minerals within 

±2.8 wt%. The error found for predicting components using the absolute PLS model 

was similar to that found by Hillier [70] for predicting samples containing clay and 

non-clay minerals using X-ray powder diffraction. The maximum errors reported by 

Hillier were typically ±3 wt% for each component.
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8.4 Quantification of Sandstone Rocks

The absolute PLS model was used to predict the concentrations of minerals in real . 

sandstone rocks from the DRIFTS spectra of powdered samples. The mineralogy 

along the length of the sandstones; Hollington Red, Birchover, Yorkstone, Stancliffe, 

Berea, Clashach, and Castlegate, was investigated and the predictions suggested that 

there were no significant differences in mineralogy along the length of the individual 

cores.

The mineral components in three different sets of sandstone powder samples; powder 

from cutting, ground slices, and ball milled slices, were quantified. Differences in the 

predictions were considered to be caused by the release of minerals during cutting and 

also because the particle size of the sets of powders was different. Predictions for the 

harder rocks Birchover, Yorkstone, and Stancliffe, implied that more quartz was 

released as powder during the cutting process than remained in the rock slices, while 

the opposite trend was true for the softer rocks, Hollington Red, Berea, Clashach, and 

Castlegate. This was thought to be due to quartz grains possibly being cut through 

during the cutting of the harder rocks, while in the softer rocks the different quartz 

grains may have been separated during the cutting process.

The powders ground manually in a mortar and pestle gave the lowest predicted 

percentages of quartz due to the large particle size of quartz in these samples 

producing spectra with lower intensity, differently shaped, Si-O-Si stretching bands. 

Since the training set standards used in the PLS model were ball milled, it was 

thought that the ball milled slices of sandstones gave the most accurate predictions.

The predictions of components in the different sandstones, calculated by the absolute 

PLS model, could be compared with predictions calculated by models developed by 

others, including an XRD model by Dr. Stephen Hillier from the Macaulay Land Use 

Research Institute, a least square fitting technique with FTIR transmission 

spectroscopy by Schlumberger-Doll Research, and a PLS with DRIFTS model 

developed by Clegg. The predictions of most components by the absolute PLS model 

followed the same trend for the sandstones as the predictions by the XRD-Hillier 

model. However, some component percentages were over predicted by the absolute 

PLS model and some under predicted. With the errors for the models considered, the
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absolute PLS model generally predicted the components of the harder sandstones, 

Birchover, Yorkstone, and Stancliffe very well, with respect to predictions by the 

XRD-Hillier model, however, it appeared to over predict the amount of quartz in 

Berea, Clashach, and Castlegate.

In order to improve the accuracy of the predictions by the absolute PLS model, the 

number of factors was optimised and the pragmatic PLS model was created. The 

XRD-Hillier model was thought to be the most accurate because it is a well 

established technique and, since the sandstone component concentrations predicted by 

the pragmatic PLS model were closer in value to those predicted by the XRD-Hillier 

model, they were considered to be more accurate. The pragmatic PLS model 

contained more components than the PLS-Clegg model and, with the exception of the 

quartz component, produced predictions closer to those of the XRD-Hillier model. 

Predictions for quartz in Clashach and Castlegate, using the pragmatic PLS model, 

remained over predicted. Therefore, while the PLS models derived in this thesis 

successfully predicted components in harder sandstones which contained more clay 

and feldspars, they were not as capable at quantifying minerals in “cleanef ’ 

sandstones, which contained high concentrations of quartz. This may be because the 

PLS models derived in this thesis did not include standards with high concentrations 

of quartz and veiy low concentrations of clay. The models may therefore be 

optimised for predicting components in sandstones containing clay, but not be 

optimised for predicting “clean” sandstones.

Other possible reasons for the over prediction of quartz in clean sandstones are that 

since they contained little clay, more silica particles could have been exposed, causing 

possible enhancement of the silica infrared absorbance bands and also they may have 

contained quartz from different sources, causing poor predictions for Chelford sand.

Inaccuracies in predicted percentages of some components may have been due to 

impurities. The quartz component, Chelford sand, was found to contain some K- 

feldspar, and possibly some Na-feldspar as impurities. Both the feldspars, and also 

the clays; montmorillonite and illite, were found to contain quartz. In addition, K- 

feldspar was found to contain some Na-feldspar impurity. These impurities in the 

training set components would complicate the PLS model, and would affect the 

predictions.
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The maximum errors found for predicting different mineral components in 

sandstones, using the absolute and pragmatic PLS models, were similar to those found 

by groups using XRD techniques. The absolute PLS model predicted all components 

within ±2.8 wt%, while the pragmatic PLS model predicted all components, except K- 

feldspar, with ±4.7 wt% accuracy. K-feldspar was predicted with ±6.8 wt% accuracy.

8.5 Considerations for Future Work

8.5.1 Improving the Training Set and PLS Models

For the “less clean” sandstones, which contained more clay and feldspar, it may be 

possible to extend the training set further by including more minor minerals. Some 

investigators found small amounts of the Ca-feldspar, anorthite, small amounts of 

Other carbonates, such as magnesite and siderite, and also small amounts of sulphate, 

in the sandstones. The possible addition of alumina (Al(OH)3) into the training set 

was investigated during the work in this thesis. However, it was found to contain a 

high amount of aluminium carbonate impurity, so was not included. If it were 

possible to remove the impurity from alumina, or obtain a more pure sample, and add 

this along with the minor minerals mentioned into the training set, then quantification 

of minerals in the “less clean” sandstones, may be more complete.

Some of the clay minerals included in the training set were found to contain a quartz 

impurity. The impurities present in some clays obtained from the Clay Mineral 

Society have been studied by different workers [108,109]. Generally, it was found 

that using the <2 pm fraction of the clays produced more pure samples. In future 

preparation of a training set, the standards should contain the <2 pm fraction of the 

clays.

The DRIFTS spectmm of hematite contained few distinctive features and no strong 

bands, which may be the reason it was the least precisely predicted component. The 

addition of hematite in the training set standards may have worsened the predictive 

ability of the model since PLS could not assign any particular features of the DRIFTS
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spectrum of an unknown, to hematite. The predictive ability of the sandstone PLS 

models may, therefore, improve if  a training set was prepared without hematite.

There was some variation in the DRIFTS spectra of training set standards and 

sandstones at around 3430 cm'1. This broad band was due to the H-O-H vibrations of 

water and in future studies, the variation in intensity of this band may be reduced if all 

samples were dried prior to spectral collection.

The tables which showed how the predictions for components varied as the number of 

factors was increased for each sandstone were vital for determining the correct 

number of factors to choose for each component. In future PLS models, these tables 

should be studied earlier, for each different model prepared, so that a more thorough 

investigation of the effect of different pre-processing techniques and wavenumber 

regions on predictions is carried out.

The PLS models derived in this thesis successfully predicted components in 

sandstones which contained higher concentrations of clays and feldspars, and were 

less successful at predicting quartz concentrations in “cleanef ’ sandstones which 

contained high concentrations of quartz. This may be because the PLS models 

derived in this thesis did not include standards with high concentrations of quartz and 

very low concentrations of clay. The highest percentage of quartz in the standards 

was 90 wt%. However, the actual percentage of quartz in clean sandstones may be 

greater than this. Also, all of the standards which contained higher percentages of 

quartz also contained clay. The PLS models may, therefore, have been optimised for 

predicting components in sandstones which contained clay, but were not optimised for 

predicting “clean” sandstones.

It may therefore be advantagous to extend the training set to include standards 

containing high concentrations of quartz and no clay. Accurate quantification of 

minerals in sandstones, with a wider range of compositions, may then be possible.

The Chelford sand quartz component used in the PLS models derived in this thesis, 

was found to contain some impurities, which may have caused some inaccuracies in 

the predictions. If it were possible to clean Chelford sand with acid or alkali

300



treatment, without damaging the structure, the resulting “puref’ quartz component 

may cause an improvement in the accuracy of predictions.

Chelford sand may also, however, not be the optimum quartz component for the 

sandstones studied. The training set could also be altered by using a different quartz 

component. Since Clashach has been found to be a clean sandstone, it could be used 

as the quartz component in a model used to quantify minerals in other clean 

sandstones.

It is thought that one possible reason for the over prediction of quartz could be that the 

clay present in the training set standards was smeared on the surface of the quartz 

particles, masking the spectrum from the underlying quartz particle. The PLS model 

would then consider the diminished spectrum of quartz to be the true spectrum. In a 

sandstone where little or no clay was present, such as in Clashach and Castlegate, the 

silica particles would be exposed, causing enhancement of the silica infrared 

absorbance bands. This may then lead to the model predicting percentages of quartz 

over 100%. Investigation into the smearing of clay on the surface of silica particles 

could be carried out using scanning electron microscopy (SEM).

Difference in particle size between different sandstones after ball milling was also 

thought to affect the DRIFTS spectra and therefore the predictions of components in 

the sandstones. After ball milling, sandstones may have had different particle sizes 

due to the difference in hardness of the sandstone rocks. Differences in particle size 

may also have occurred between different standards and different sandstones due to 

the difference in their composition. In samples which contained a high concentration 

of quartz, the quartz would act as an additional aid to grinding causing smaller particle 

sizes than in samples which contained a low concentration of quartz. Future studies 

could include investigating the optimum ball milling time in order to ensure a small 

and reproducible particle size distribution for eveiy sample. The actual particle sizes 

of the different standards and sandstones should also be found using SEM or by 

suspending the samples in water and using the gravitational settling method.
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8.5.2 Other Techniques

The use of attenuated total reflectance (ATR) spectrometry using the Golden Gate 

diamond ATR accessory (manufactured by Thermo Electron Corporation Ltd.), for 

spectral collection of the training set standards and sandstone powders could be 

investigated. The Golden Gate accessory can exert a measured amount of pressure on 

a powdered sample to ensure the crystal surface is covered, and the high strength of 

the diamond can allow pressures of up to 250 pounds to be applied. The relative band 

intensities of ATR-IR spectra may be different to those in DRIFTS spectra. However, 

preparing a PLS model with ATR-IR spectra would be possible. A very small amount 

of sample would be required to cover the ATR ciystal surface, and very little sample 

preparation required, since the powders could be studied neat, without mixing with 

KBr diluent. This would make ATR-IR spectra collection faster than using DRIFTS. 

Problems may arise with using ATR, due to the requirement of close sample contact 

with the crystal. It would be difficult to ensure that exactly the same amount of 

sample was on the crystal for each measurement, and that exactly the same load of 

pressure was applied. The pressure applied may also cause a preferred orientation of 

the clay minerals onto the ciystal surface, but not cause the same effect on other 

minerals, resulting in a possible enhancement of the clay absorbance bands in a 

spectrum of a mixture. Since the diamond crystal is so small also, it may not be 

possible to ensure that a representative sample would be measured.

8.5.3 Quantification of Carbonate Rocks

Better understanding of carbonate reservoirs is becoming more important since these 

reservoirs hold vast oil reserves and hydrocarbon production from carbonate 

reservoirs is expected to increase through the next century [5]. The complexity and 

heterogeneity of carbonate rocks would make mineral quantification difficult and 

determining a representative sample size would be vital for bulk quantitative analysis. 

The carbonate training set would have to include very high concentrations of calcite 

and dolomite, and very low concentrations of quartz, feldspars, clays and other 

minerals such as pyrite (FeS2). On the smaller scale, the use of RAMAN or the IR 

microscope to collect spectra from the carbonate rock surface at different positions 

may make it possible to semi-quantitatively investigate the location of the minerals 

present with regards to features such as large pores.
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9. Conferences Attended

Infrared and Raman Discussion Group (IRDG) Christmas Meeting.

Location: King's College, London. Date: 18th December 2002.

Infrared and Raman Discussion Group (IRDG) University Research Meeting. 

Location: UMIST, Manchester. Date: 15th October 2003.

Infrared and Raman Discussion Group (IRDG) Christmas Meeting.
t l iLocation: King's College, London. Date: 15 December 2003.

Materials Research Day

Location: Sheffield Hallam University. Date: 10th September 2004

Current Knowledge on the Layer Charge of Clay Minerals 

Location: Smolenice castle, Slovakia. Date: 18th-!9th September 2004 

Presented poster: ‘Influence of Layer Charge on the Desorption of 

Dimethylformamide from Smectite9.

2nd Mid-European Clay Conference

Location: Miskolc, Hungary. Date: 20th-24th September 2004

Presented poster: ‘Spectral Analysis using Statistical Methods - Quantification of

small amounts of swelling mineral, smectite, in synthetic mixtures with kaolinite

using diffuse reflectance infrared spectroscopy (DRIFTS)9.
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