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4j LÂ >-li $.L« $.lX̂ Jl (Jjjf aJJI Dl y  °̂> I 

IjIjJl (2 7 )^ _ ^  cL-j |̂ p j  L ^ J i _ j d i 5 £ -  < j ^

^>Jaii Sjjjj (2 8 )jj jL p  ĴLH 0} £.lX-L£Jl 4IM ^*1

Do you not see that Allah sends down rain from the sky, and we produce thereby 

fruits of varying colors? And in the mountains are tracts, white and red of varying 

shades and [some] extremely black (27). And among people and moving creatures 

and grazing livestock are various colors similarly. Only those fear Allah, from 

among His servants, who have knowledge. Indeed, Allah is Exalted in Might and 

Forgiving (28). Fatir
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Abstract

Normally, the balance between the production and degradation of cellular proteins is 
necessary for the cell to exist. One of the most important pathways by which the largest 
number of cytosolic and misfolded proteins is degraded is the autophagy-lysosome 
pathway. A defect in this process may result in accumulation and aggregation of 
proteins leading to cellular toxicity and subsequently neurodegenerative diseases. 
Previous work by Anderson (2003) with a truncated presenillin 1 construct, in HEK293 
cell line showed structural changes in the cell in the early stages o f autophagy. 
However, it seems that the autophagic process had failed to clear the presenilin-1 
aggregates as would be expected in the normal state and appeared to lead to cell death. 
The work presented in this thesis primarily attempts to investigate, in term of 
subcellular localization, the influence of truncated PS1, expressed in HEK293 cells, on 
selected autophagy regulators (mTOR, raptor and LC3 proteins) and subsequently on 
the autophagy process.

To investigate this, many different commercial antibodies were characterized 
against whole cell lysates from three different cell lines (NRK, MCF-7 and HEK293) 
using western blotting to obtain specific antibodies for mTOR, raptor and LC3. Then, 
the selected antibodies were used in dual label immunocytochemistry with 
mitochondrial antibody and wheat germ agglutinin (as a Golgi marker) to determine the 
subcellular localizations of mTOR, raptor and LC3 in non-autophagic HEK293 cells. To 
study the behaviour of the proteins of interest during autophagy of untransfected cells, 
HEK293 cells were rapamycin treated or serum starved. To compare the observed 
results with the behaviour of the proteins after the transfection, a truncated PS1-GFP 
construct was transiently transfected into HEK293 cells. Also, the subcellular 
localizations o f the proteins were determined by dual label ICC.

The data obtained suggests that in non-autophagic HEK293 cells, mTOR 
appears to be localized to mitochondria, raptor to the cytoplasm and LC3 to Golgi 
apparatus. Rapamycin treatment and serum starvation have the same influence on the 
behaviour o f these proteins. In both cases, mTOR remained localized to mitochondria 
(no effect), raptor protein partially moved from the cytoplasm to the perinuclear area 
(similar to mitochondrial distribution) and some of the LC3 protein diffused to the 
cytoplasm, while most of it remained localized to the Golgi apparatus. Following the 
transfection, the observable data suggest that interactions between truncated PS1 and 
mTOR, raptor and LC3 might be occurring. It seems that truncated PS1 has no 
influence on the subcellular localizations of mTOR and raptor proteins (similar to 
mitochondrial distribution). However, in the case o f LC3 protein, it seems that the 
protein has partially moved from the Golgi apparatus to interact with truncated PS1 in a 
new subcellular localization which is similar to the subcellular localizations o f mTOR 
and raptor. The suggested interactions between truncated PS1 and mTOR, raptor and 
LC3 may dysregulate mTOR signalling pathway, prevent recruitment o f mTOR 
substrates by raptor or block the fusion between autophagosomes and lysosomes via 
LC3. The results of this thesis indicate that further investigations into the interactions 
between PS1 and the proteins of interest especially LC3 are warranted.
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1.1 AUTOPHAGY

Autophagy (from the Greek meaning "eating o f s e l f") was first proposed by Christian 

de Duve over 40 years ago (Glick et al., 2010). This term was based on the observed 

degradation o f mitochondria and other intracellular structures inside the lysosomes of 

rat liver perfused with glucagon (Deter and De Duve, 1967). The balance between the 

formation and degradation o f cellular proteins is necessary for the cell to exist. The 

pathways by which the largest number o f cytosolic and misfolded proteins is degraded 

are through the ubiquitin proteasome system (UPS) and autophagy-lysosome pathway 

(ALP) (Ciechanover, 2005; Rubinsztein, 2006). A fault, problem or lack in either o f  

these processes may result in accumulation and aggregation o f proteins leading to 

cellular toxicity and subsequently neurodegeneration as seen in Parkinson’s disease, 

Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis and other 

related protein conformation disorders (Pan et al., 2008). Despite the importance o f  

autophagy being well recognized in mammalian systems, the important discovery o f  

how autophagy is regulated and executed at the molecular level has been made in yeast 

(Klionsky, 2007). At the present time, 32 different genes related to autophagy have 

been identified in yeast (Nakatogawa et al, 2009). Based on how intracellular cargo is 

delivered to lysosomes, autophagy can be divided into three basic forms: 

macroautophagy, microautophagy and chaperon-mediated autophagy (Cuervo et al., 

2004; Levine and Klionsky, 2004).

Macroautophagy: usually referred to as autophagy, is activated by several stress

conditions such as nutrient starvation, toxin exposure, infection or oxidative stress (He

and Klionsky, 2009). Autophagy is a multistep process, including the formation o f

double membrane structures called autophagosomes. After that, the autophagosomes

fuse with lysosomes to produce autolysosomes where their contents are degraded by

lysosomal enzymes (Takeuchi et al., 2004). At the end, degradation products are
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recycled to supply energy and amino acids needed by the cell (Pan et al, 2008). A large 

number o f autophagy related genes have been recognized to work at different stages of 

the process, one o f the most important regulators o f the process is mTOR (Mammalian 

target o f rapamycin) which can inhibit autophagy-related gene l(A tgl) leading to 

suppression o f macroautophagy (Hands et al, 2009).

Microautophagy: unlike macroautophagy, microautophagy happens when the lysosomes 

directly engulf cytoplasm by invaginating the lysosomal membrane to sequestrate 

cytosolic components (Garcia-Arencibia et al., 2010).

Chaperone-mediated autophagy: is a process in which a specific protein binds to a 

molecular chaperone (heat-shock protein, hsp70) to form a complex which subsequently 

binds to the lysosomal membrane receptor (Lamp2a) leading to the translocation o f  

substrate across the lysosomal membrane (Pan et al., 2008).

1.2 THE BASIC AUTOPHAGY MACHINERY

As summarised in Figure 1.1, autophagy starts with an isolation membrane called a 

phagophore. Although the exact origin o f the phagophore is controversial, it probably 

arises from the lipid bilayer contributed by the endoplasmic reticulum (ER) and/or the 

trans-Golgi network and endosomes (Axe et al., 2008). The phagophore increases in 

size to completely surround and engulf intracellular cargo, such as protein aggregates, 

ribosomes and organelles, leading to sequestering the cargo in a double-membrane 

autophagosome (Mizushima, 2007).

The autophagosome then fuses with the lysosome, promoting the degradation o f the 

autophagosomal contents by the acid proteases which are present in the lysosome. After 

that, via the permeases and transporters o f the lysosome, the degradation products such 

as amino acids are exported back to the cytoplasm for re-use.
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Figure 1.1 Molecular and signalling pathways regulating autophagy. Autophagy is a multistep self-degradative 
process: (a) regulation of phagophore initiation by Beclin-l/VPS34 at the  ER and o ther  m em branes  under the  
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Therefore, autophagy is considered as a cellular recycling process that in addition to the 

degradation o f non-functional proteins and organelles can also play an important role in 

promoting energy efficiency via ATP generation (Mizushima, 2007).

At the molecular level, autophagy can be divided into five main stages which are:

(1) The formation or nucleation o f the phagophore.

(2) Atg5-Atgl2 conjugation.

(3) Processing o f LC3.

(4) Cargo for degradation.

(5) Fusion o f autophagosome with the lysosome (Glick et al., 2010).

1.2.1 Formation of the phagophore membrane

In yeast, the formation o f the phagophore membrane begins around a cytosolic structure 

called the pre-autophagosomal structure (PAS). However, in mammals there is no 

evidence for a PAS (Klionsky, 2007). The formation of the phagophore membrane in 

mammalian cells appears to start primarily from the ER (Yla-Anttila et al., 2009) in 

dynamic state o f balance with other cytosolic membrane structures, such as the trans- 

Golgi network and late endosomes (Axe et al., 2008) and possibly even membrane 

derived from the nuclear envelope under some conditions (English et al., 2009). The 

ER source is more feasible because it, along with its ribosomes, is involved in protein 

synthesis. The presence o f many Atg proteins close to the ER also suggests that ER 

plays an important role as a membrane source for autophagosome formation (Hayat, 

2015).

However, given the relative lack o f transmembrane proteins in autophagosomal 

membranes, it is not yet possible to completely rule out de novo membrane formation



from cytosolic lipids in mammalian cells (Glick et al., 2010). In yeast, during the 

phagophore formation, the activity o f the Atgl kinase in a complex with Atgl3 and 

Atgl7 is required, and this may control the transmembrane protein Atg9 recruitment by 

encouraging the recruitment o f lipid to the expanding phagophore (Klionsky, 2007; 

Garcia-Arencibia et al., 2010). Energy-sensing TOR kinase has a role to play in 

controlling this step. TOR kinase phosphorylates Atgl 3 preventing it from interacting 

with Atgl and initiating autophagy sensitive to growth factor and nutrient availability 

(Glick et al., 2010). More recent data, however, suggest that A tgl3 is always in a 

complex with Atgl (Kraft et al. 2012), which would be in agreement with the 

interactions o f the homologous proteins in higher eukaryotes (Reggiori and Klionsky, 

2013).

The mammalian homologue o f Atgl (Ulk-1) is very important for autophagy in 

maturing reticulocytes (Kundu et al., 2008). However, it still not clears whether Ulk-1 

or Ulk-2 (a second Atgl homologue) has a role in promoting autophagy in mammalian 

systems (Glick et al., 2010). In mammalian cells, the role o f class III Phosphoinositide 

3-kinase (PI-3 kinases), especially Vps34 (vesicular protein sorting 34) and it’s binding 

to Atg6/Beclin-1, in the formation o f phagophore and autophagy is relatively well 

established. Vps34 participates in many different membrane sorting processes in the cell 

but especially in autophagy when connected to Beclin-1 and other regulatory proteins 

(Backer, 2008).

In addition, regulatory proteins such as uv radiation resistance-associated gene protein 

(UVRAG), endophilin B1 (BIF-1), Atgl4L and activating molecule in Beclinl- 

regulated autophagy (Ambra) complex with Vps34 and Beclin-1 at the ER and 

nucleated phagophore to promote autophagy (Liang et al., 2006; Fimia et al., 2007), 

while other regulatory proteins such as Rubicon and Bcl-2 complex with Vps34 and

Beclin-1 to inhibit autophagy (Pattingre et al., 2005; Matsunaga et al., 2009).
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Supporting this, recently, among others, UV radiation resistance-associated gene 

(UVRAG), Bax-interacting factor 1 (Bif-l)/Endophilin B l, Run domain Beclin-1 

interacting and cysteine- rich containing protein (Rubicon), activating molecule in 

Beclin 1 regulated autophagyl (Ambral), high-mobility group protein Bl(HM GBl), 

and nuclear receptor-binding factor 2 (NRBF2) have been shown to regulate Beclin-1- 

VPS34 binding or their participation in autophagic activities (Kang et al., 2011; Wirth 

et al., 2013; Lu et al., 2014).

Vps34 is the only one amongst the PI3-kinases that using phosphatidylinositol (PI) as 

substrate to produce phosphatidyl inositol triphosphate (PI3P), which is necessary in the 

elongation o f the phagophore and the recruitment o f other Atg proteins such as Atg9 to 

the phagophore (Xie and Klionsky, 2007; Poison et al., 2010; Tooze et al., 2010; Wirth 

et al., 2013).

One of the regulatory events that is well-characterized is the interaction o f Beclin-1 with 

Bcl-2, which prevents the interaction o f Beclin-1 with Vps34 (Pattingre et al., 2005). 

Thus, in autophagy, the activity o f Beclin-1 is inhibited via it's interaction with Bcl-2 

(and Bc1-Xl) at the ER (Maiuri et al., 2007). The interaction between Beclin-1 and Bcl- 

2 is mediated by the BH3 domain in Beclin-1 and this interaction is prevented through 

Jnkl-mediated phosphorylation o f Bcl-2 in response to starvation-induced signalling, 

thereby allowing autophagy to proceed (Wei et al., 2008). Thus, Bcl-2 has a dual role to 

play in the determination o f cell viability that may depend on its subcellular position: 

(a) at the mitochondria, Bcl-2 plays a pro-survival role in inhibiting the release o f  

cytochrome c, thereby blocking apoptosis, while (b) at the ER, it plays a role in the 

inhibition o f autophagy through the interaction with Beclin-1 which can result in non- 

apoptotic cell death (Pattingre et al., 2005).
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The cytoprotective function o f autophagy is mediated in many circumstances by 

negative modulation o f apoptosis. Apoptotic signaling, in turn, serves to inhibit 

autophagy (Gordy and He, 2012). The connection between Beclin-1 and Bcl-2 is not the 

only way to regulate the crosstalk between autophagy and apoptosis, the cleavage of 

Atg5 by calpain is another way, where this cleavage blocks the activity o f Atg5 in 

autophagy and results in its translocation to the mitochondria, where interaction with 

Bcl-XL causes the release o f cytochrome c, activation o f caspase and finally apoptosis 

(Yousefi et al., 2006; Gordy and He, 2012).

1.2.2 Atg5-Atgl2 conjugation

Ubiquitin is a small (8.5 kDa) regulatory protein that has been found in almost all 

tissues o f eukaryotic organisms (Wilkinson, 2005). Ubiquitination is a post-translational 

modification where ubiquitin is attached to a substrate protein. The addition o f ubiquitin 

can affect proteins in many ways: It can signal for their degradation via the proteasome, 

alter their cellular location, affect their activity, and promote or prevent protein 

interactions (Mukhopadhyay and Riezman, 2007).

Extension o f autophagosomal membranes is regulated by 2 ubiquitin-like conjugation 

pathways, with both LC3 and A tgl2 resembling an ubiquitin structure (Geng and 

Klionsky, 2008). One involves Atg7 and AtglO acting as El and E2 enzymes, 

sequentially conjugating with A tgl2 via glycine-cysteine thioester bonds, eventually 

conjugating Atgl 2 to Atg5 at a lysine residue through an isopeptide bond (Glick et al., 

2010). Then, the conjugated Atgl2- Atg5 binds in pairs with Atgl6L dimers in order to 

produce a multimeric Atg5-Atgl2-Atgl6L complex association with the extending 

phagophore (Lee, 2012). The connection o f Atg5-Atgl2-Atgl6L complexes is thought 

to cause a curvature in the growing phagophore by asymmetric recruitment o f processed 

LC3B-II. This complex associates with the autophagosomal membrane at an early step
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and dissociates from the autophagosomes upon completion o f autophagy (Barth et al., 

2010).

1.2.3 LC3 processing

The second ubiquitination-like reaction involves the conjugation o f microtubule- 

associated protein 1 light chain 3 (MAPl-LC3/Atg8) to the lipid 

phosphatidylethanolamine (PE). LC3 is cleaved at its C terminus by Atg4 to form the 

cytosolic LC3-I with exposed carboxyterminal glycine, which is conjugated with PE 

through the action o f Atg7 (El-like) and Atg3 (E2-like) to generate LC3-II (Tanida et 

al., 2004). LC3-II is bound to both sides o f the membrane o f autophagosomes, and it 

remains membrane bound even after fusion with lysosomes (Tanida et al., 2004). The 

presence of LC3 on both the internal and external surfaces o f autophagosome has a role 

to play in both hemifusion o f membranes and in selecting cargo for degradation (Glick 

et al., 2010). Then, LC3-II on the cytosolic face o f autophagosomes can be recycled (to 

LC3-I) by Atg4, while the LC3-II on the inner face o f the membrane is degraded 

(Tanida et al., 2004). The increase in LC3 synthesis and processing during autophagy 

make it a key read-out o f autophagy levels in cells (Barth et al., 2010).

1.2.4 Cargo degradation

Generally, autophagy appears to engulf the cytosol indiscriminately. For this reason, it 

was believed that autophagy is a random process, especially when electron micrographs 

showed autophagosomes with different contents including ER, mitochondria and Golgi 

membranes (Eskelinen, 2008). However, much evidence has shown that the growing 

phagophore membrane has the ability to communicate selectively with protein 

aggregates and organelles. It has been suggested that ubiquitinated proteins can be re

cognized by adaptor proteins, p62/SQSTMl (sequestosome 1), NBR1 (neighbour o f  

Brcal gene 1) NDP52 (nuclear dot protein 52), and Optineurin, through an ubiquitin
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associated domain (UBA), and brought to autophagosomes through binding o f these 

adaptor proteins to LC3 via their LC3-interaction regions (LIR) (Johansen and Lamark, 

2011; Rogove et al., 2014). In yeast, Uthlp and Atg32 have been recognized to play a 

role in selective uptake o f mitochondria in a process called mitophagy (Kim et al., 

2007; Kirkin et al., 2009).

1.2.5 Fusion of the autophagosome with the lysosome

After the fusion o f the expanding ends of the phagophore membrane to form an 

autophagosome, the next step in maturation in this process is fusion with the lysosome 

to produce an autolysosome (Mizushima, 2007). It has been suggested that before the 

fusion with the lysosome, the autophagosome fuses with early and late endosomes and 

both deliver cargo and components o f the membrane fusion machinery and decrease the 

pH of the autophagic vesicle before delivery o f lysosomal acid proteases (Eskelinen, 

2005). Fusion firstly requires movement o f the autophagosome into endosomes or 

lysosomes along microtubules using dynein-dynactin complex (Ravikumar et al., 2005; 

Jahresis et al., 2008). Therefore, cytoskeletal complexes are important facilitators o f the 

autophagic process (Lee, 2012), since agents such as nocadazole block the fusion o f the 

autophagosome with the lysosome (Webb et al., 2004). There is some ambiguity about 

this part o f the process. However, this aspect requires the small G protein Rab7 in its 

GTP-bound state (Gutierrez et al., 2004; Jager et al., 2004), and also the presenilin 

protein that is involved in Alzheimer’s disease (Eskelinen, 2005). It has been shown that 

mTOR localization to the lysosomes is an important regulator o f autophagosomal- 

lysosomal fusion, and mTOR inhibition by Torinl stimulates fusion (Zhou et al., 2013). 

Other components such as microtubules and DNA damage-regulated autophagy 

modulator 1 (DRAM1) are required for, or promote, autophagosomal-lysosomal fusion 

(Webb et al., 2004; Zhang et al., 2013).
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Within the lysosome, cathepsin proteases B and D are needed for autophagosome 

turnover and also for autolysosome maturation (Koike et al., 2005). For functional 

autophagy, Lamp-1 and Lamp-2 in the lysosome are important because it was revealed 

that deletion o f these proteins in mice has an inhibitory effect on the maturation of 

autolysosomes (Tanaka et al, 2000).

mTOR is an important component o f a complex that regulates autophagy through the 

mTOR complex 1 (mTORCl) composed o f mTOR, raptor, mLST8 and PRAS40 (Hara 

et al., 2002, and Peterson et al., 2009). Raptor acts as a scaffold protein inside the 

complex, responsible for identifying and binding to the mTORCl substrates.

1.3 MAMMALIAN TARGET OF RAPAMYCIN (mTOR)

Nutrient starvation, stress, or growth factor deficiencies are conditions that cause 

eukaryotic cells to change their metabolic processes to survive. One o f the first changes 

in the cellular metabolic processes is inhibition o f growth and induction o f autophagy to 

optimize the usage o f limited energy supplies. Among the many different components 

participating in the regulation o f autophagy and growth, TOR is a key component that 

coordinately controls the balance between growth and autophagy in response to cellular 

physiological conditions and environmental stress (Jung et al., 2010).

1.3.1 mTOR domain structure

TOR is a serine/threonine protein kinase with a large molecular size o f approximately 

300 kDa (Noda and Ohsumi, 1998; Scott et al., 2004). TOR was first described in 1991 

as a target protein of the anti-fungal and immunosuppressant agent rapamycin (Heitman 

et al., 1991). Rapamycin binds to the FK506 binding protein 12 (FKBP12) to produce a 

complex that interacts and inhibits many different functions regulated by TOR (Loewith 

et al., 2006). TOR belongs to the phosphatidylinositol kinase related kinase (PIKK) 

family (Bhaskar and Hay, 2007; Loewith et al., 2006). Members o f the PIKK family
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contain a catalytic carboxy-terminal domain that has similarities with the catalytic 

domains o f phosphatidylinositol-3 and phosphatidylinositol-4 kinases (Pattingre et al.,

2008). Four functional domains are conserved in TOR proteins including the central 

FAT [FKBP-Rapamycin Associated Protein (FRAP), Ataxia telangiectasia 

mutated (ATM), TRAF and TNF receptor-associated protein (TTRAP)] domain, the 

FRB (FKBP12-rapamycin binding domain) domain, the kinase domain and at the C- 

terminal part o f the protein the FATC domain. It has been suggested that these two 

domains may interact to expose the catalytic domain. The FATC domain is essential for 

TOR kinase activity (Pattingre et al., 2008) (Figure 1.2). The inhibition o f TOR activity 

under the influence o f nutrient starvation has been considered to be the crucial step for 

autophagy induction in eukaryotic cells (Noda and Ohsumi, 1998; Scott et al., 2004).

1.3.2 mTOR function

Several studies have demonstrated many important functions o f TOR in yeast and 

higher eukaryotes, placing the TOR protein at a central position in the signalling 

network that controls cell growth. The function o f TOR in yeast and eukaryotic cells 

includes regulation o f translation, metabolism and transcription in response to nutrients 

and growth factors (Jung et al., 2010). The different cellular functions o f TOR have 

made it a subject o f considerable interest in the study o f cancer, metabolism, longevity 

and neurodegenerative diseases.

In yeast, the activity o f TOR is controlled by the availability o f nutrients such as 

nitrogen and carbon (Wullschleger et al., 2006). In a similar way, in mammalian cells, 

the activity of mTOR is regulated by the levels o f available amino acids and glucose 

(Hara et al., 1998; Inoki et al., 2003). The understanding o f TOR regulation has 

significantly increased since the discoveries o f TOR binding partners. There are two 

TOR proteins in Saccharamyces cerevisiae; TORI and TOR2. The two TOR proteins
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bind to KOG1, LST8 and TC089, but TOR2 also binds lethal with SEC13 protein 8 

(LST8), Avol, Avo2, Avo3, and 61 kDa binding partner o f TOR2 protein (BIT61) to 

produce a separate protein complex (Wullschleger et al., 2006; Loewith et al., 2002). 

Similarly, the mammalian target o f rapamycin (mTOR) exists in two different 

complexes: mTORCl andmTORC2 (Figure 1.3).

mTORCl is composed o f raptor (KOG1 ortholog), which is involved in recruiting 

substrates for phosphorylation by the kinase domain o f mTOR (Wang and Proud, 2011), 

GpL/mLst8, proline-rich Akt substrate 40 kDa (PRAS40) and DEP domain-containing 

mTOR-interacting protein (DEPTOR).

mTORC2 (mTOR complex 2) is composed o f rapamycin insensitive companion of 

mTOR (rictor) (Avo3 ortholog), GpL/mLst8, Sinl (Avol ortholog), Proline-rich protein 

5 (PRR5)/protor and DEPTOR (Hara et al., 2002, and Peterson et al., 2009).

The TORC1 complex, which contains KOG1, and the mammalian mTORCl, which 

contains raptor, are key regulators of translation and ribosome biogenesis in yeast and 

mammalian cells, respectively. They are also responsible for autophagy induction in 

response to starvation (Jung et al., 2010). On the other hand, mTORC2, the rapamycin- 

insensitive complex participates in the regulation o f phosphorylation and activation o f  

Akt/PKB, protein kinase C, and serum-and glucocorticooid-induced protein kinase 1 

(Sarbassov et al., 2005; Garcia-Martinez and Alessi, 2008). Because mTORCl is 

positively regulated by Akt, it is possible to speculate that mTORC2 may work as a 

negative regulator of autophagy. Indeed, autophagy and atrophy in skeletal muscle cells 

were induced by the inhibition o f mTORC2 via fasting condition (Mammucari et al., 

2007, and Zhao et al., 2007). However, the induction o f autophagy through the 

inhibition o f mTORC2 is mediated mainly by Fox03, a transcription factor downstream 

of Akt, which has a role to play in the expression o f autophagy genes (Figure 1.3) (Jung 

et al., 2010).
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Figure 1.3 mTORCl and mT0RC2 complexes, and their components. mTORCl is composed of 
mammalian target of rapamycin (mTOR), regulatory-associated protein of mTOR (raptor), proline-rich AKT 
substrate 40 kDa (PRAS40), DEP domain-containing mTOR-interacting protein (DEPTOR) and G protein 
like (G[3L). mTORCl is the protein complex that induces autophagy in response to nutrient starvation, stress 
and reduced growth factor signaling. mTORC2 is composed of mTOR, rapamycin-insensitive companion of 
mTOR (rictor), proline-rich protein 5 (PRR5), stress-activated map kinaseHH-interacting protein l(Sinl), 
DEPTOR and G(3L. mTORC2 controls autophagy through protein kinase B (Akt)- Fork head transcription 
factors of O group (Fox03) in skeletal muscle cells under fasting condition (Jung et al., 2010).
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mTORCl is also an important mediator o f growth factor signalling to activate 

autophagy. The signalling o f the growth factor that controls mTORCl usually involves 

the insulin/insulin-like growth factor (IGF-1)-PI3K (phosphoinositide 3-kinase class I)- 

Akt pathway, which negatively regulates the induction o f autophagy (Jung et al., 2010). 

The pathway o f the insulin/IGF-1 involves positive and negative regulators o f mTORCl 

signalling. The positive regulators include phosphoinositide-dependent kinase 1 (PDK1) 

and Ras homolog enriched in brain (Rheb), while the negative regulators include 

phosphatase and tensin homolog (PTEN) and tuberous sclerosis complex 2 (TSC2). 

TSC2 works in a complex with tuberous sclerosis complex 1 (TCS1) that behaves as a 

GTPase activating protein (GAP) for the small GTPase Rheb and the activity o f GAP is 

controlled by Akt through the mediation of TSC2 phosphorylation (Manning et al., 

2002; Inoki et al., 2002). The Akt-dependent phosphorylation results in dissociation o f  

TSC1/2 from the lysosome, where Rheb is localized and promoting Rheb activation 

(Menon et al., 2014). Since GTP-bound Rheb is a potent mTORCl activator, inhibition 

o f TSC1/2 by AKT-dependent phosphorylation results in mTORCl activation (Saucedo 

et al., 2003; Stocker et al., 2003).

In addition, Akt directly phosphorylates and inhibits PRAS40, an mTORCl component 

that negatively regulates the complex’s kinase activity, leading to mTORCl activation 

(Vander et al., 2007; Woo et al., 2007; Sancak et al., 2007; Wang et al., 2007). 

Autophagy can be also induced by cellular stresses through mTORCl. Low cellular 

energy levels or hypoxia activate TSC1/2 to inhibit mTORCl activation. The AMP- 

activated protein kinase (AMPK) is a sensor o f cellular energy levels and is activated by 

a high AMP/ATP ratio. AMPK phosphorylates TSC2 and presumably increases the 

TSC1/2 GAP activity (Inoki et al., 2003; Sofer et al., 2005). Moreover, AMPK directly 

phosphorylates raptor, resulting in decreased mTORCl activity through allosteric 

inhibition (Gwinn et al., 2008).
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It has been demonstrated that REDD 1 (regulated in development and DNA damage 1) 

can participate in the response o f mTORCl and autophagy to the stress in the 

endoplasmic reticulum (ER) which is connected to the unfolded protein response and 

inflammatory signalling (Whitney et al., 2009). This gives an impression that there is a 

tight link between mTOR and mitochondrial function (Kim et al., 2002; Desai et al., 

2002). It has been suggested that the inhibitory effect of the reactive oxygen species 

(ROS) on the mitochondrial function might in some way stimulate the mitochondrial 

autophagy (mitophagy) in a manner dependent upon mTORCl (Jung et al., 2010). The 

discovery that mTORCl is found in proximity o f mitochondria and is inhibited by 

oxidative stress and mitochondrial dysfunction, raises the possibility that mTORCl 

participates in the mechanism through which damaged mitochondria induce autophagy 

(Kim et al., 2002; Desai et al., 2002).

1.3.2.1 The regulation of autophagy related gene 1 (Atgl) by TOR in yeast

This section will focus on the mTORCl downstream signalling pathway by which 

mTORCl regulates the machinery o f autophagy. Firstly, how does TOR regulate the 

autophagy machinery in yeast? The first signalling component downstream o f TOR in 

the pathway o f autophagy is Atgl, an evolutionarily-conserved serine/threonine kinase 

(Jung et al., 2010). Atgl has an important role to play which may be the most upstream 

step in the initial stages o f autophagy induction such as the nucleation (the early event 

when membrane structures are initiated) and formation o f the pre-autophagosome 

structures (PAS) (Noda and Ohsumi, 1998; Straub et al., 1997, Matsuura et al., 1997).

In yeast, based on the nutrient status or TOR activity, Atgl interacts with autophagy 

proteins such as A tgl3, Atgl 7, Atg29 and Atg31 (Kamada et al., 2000; Funakoshi et al., 

1997; Kawamata et al., 2008, Kabeya et al., 2005; Kabeya et al., 2009) (Figure 1.4a). 

Activation o f Atgl and induction of autophagy require A tgl3 (Kamada et al., 2000).
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A tgl7 is very important for Atgl and other autophagy proteins to be localized on the 

PAS (Suzuki et al., 2007; Sekito et al., 2009). Under nutrient starvation, Atgl 7 interacts 

with other autophagy components such as Atgl, A tgl3, Atg29 and Atg31, but the 

interaction between Atgl 3 and Atgl 7 is essential for Atgl kinase activity and 

autophagosome formation (Figure 1.4a) (Kabeya et al., 2005; Cheong et al., 2005). In 

addition, Atgl 7 plays an important role by recruiting Atg9 to the PAS in a manner 

dependent upon Atgl (Sekito et al., 2009).

In yeast, Atgl 3 is phosphorylated by TOR at a number o f residues leading to the 

decrease o f the affinity between Atgl and its binding proteins resulting in autophagy 

repression (Kamada et al., 2000; Kawamata et al., 2008; Kabeya et al., 2005). 

Following the inhibition o f TOR activity by nutrient starvation, Atgl 3 is de- 

phosphorylated and the hypo-phosphorylated form of the protein acts to stimulate A tgl, 

A tgl7 and other important autophagy factors to be localized on the PAS (Kamada et al., 

2010). The interaction between the three important autophagy components (Atgl, 

A tgl3 and A tgl7) under the influence o f rapamycin treatment or nutrient starvation 

enhances the kinase activity o f Atgl that is required for autophagosome formation. It 

has been suggested that the Atgl complex is an important node o f the signalling 

pathway through which TOR triggers the events o f autophagy in yeast (Jung et al.,

2010).
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Figure 1.4 Comparison of the autophagy related gene l(Atgl)/ UNC-51 like kinase (ULK) machinery 
between yeast and higher eukaryotes, (a) Current model for the regulation of Atgl complex by TOR in S. 
cerevisiae. A tgl3 phosphorylated at multiple residues by TOR leading to autophagy inhibition because of the 
disruption of the complex, (b) Comparison of the domain structures of S. cerevisiae Atgl, C. elegans UNC51, 
D. melanogaster Atgl, and Homo sapiens ULK1, ULK2, ULK3 and ULK4. (c) Regulation of phosphorylation 
of ULK1/2 complexes via mTORClunder the influence of nutrient levels. mTORCl phosphorylates ULK1/2 
and Atgl3 and inhibits the kinase activity of ULK1/2 under high nutrient conditions. Under starvation, 
mTORCl suppresses the phosphorylation of ULK complex, releasing ULK from mTORCl inhibition, which 
subsequently induces ULK to phosphorylate Atgl3, focal adhesion kinase family interacting protein of 200kDa 
(FIP200) and itself (Jung et al., 2010).
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1.3.2.2 The regulation of mammalian Atgl (ULK) by mTOR

In mammalian cells, the counterpart o f Atgl is known as ULK (UNC-51 like kinase). 

The first member o f the ULK family proteins (ULK1) was recognized as a homologue 

o f C.elegans UNC-51, the gene named following a mutational phenotype 

“UNCoordinated locomotion” connected with defects in the mutant worm (Yan et al., 

1998; Kuroyanagi et al., 1998). After that, ULK2 was recognized in mouse as a second 

member o f the gene family and cloned (Yan et al., 1999). The structure o f the domain 

demonstrated unique features having the N-terminal kinase domain, the middle 

proline/serine-rich domain, and the C-terminal domain involved in protein-protein 

interaction (Figure 1.4b). The sequence similarity between ULK1 and C.elegans UNC- 

51 is 41%, and the sequence similarity between ULK1 and S. Cerevisiae Atgl is 29%. 

In regard to ULK2, it demonstrates 33% amino acid identity to UNC-51 (Kabeya et al., 

2005).

There are at least two additional Atgl homologues in the human genome: ULK3 and 

ULK4. There is no proline/serine-rich region in the middle o f both ULK3 and ULK4 

similar to that o f ULK1 and ULK2. Also, the C-terminal domain that is present in 

ULK1 and ULK2 are missing in both ULK3 and ULK4. The middle region in ULK3 is 

predicted to interact with microtubules, and the middle region o f ULK4 contains a 

protein-protein interaction motif o f armadillo/beta-catenin-like repeats (Figure 1.4b) 

(Jung et al., 2010). The C-terminal regions o f ULK3 and ULK4 are completely different 

from ULK1 and ULK2. However, the kinase domains o f ULK3 and ULK4 demonstrate 

high sequence similarity, 52% and 41% to that o f ULK1, respectively (Jung et al., 2010).

It has been revealed that ULK1, ULK2 and ULK3 participate in the pathways o f  

autophagy (Chan et al., 2007; Young et al., 2009). It has also been demonstrated that 

ULK1 is recognized as a kinase that has the ability to control autophagy (Chan et al.,



2007). In addition, a study by Hara et al (2008) revealed that overexpression o f the 

kinase-dead mutants o f ULK1 and ULK2 resulted in autophagy suppression in NIH3T3 

mouse embryonic fibroblasts. Furthermore, a study utilizing HeLa and HEK293 cells 

has shown that when ULK1 and ULK2 were silenced from these cells, the activity o f  

the autophagy process in the cells was inhibited (Jung et al., 2009). In terms o f  

colocalisation, a study has revealed that ULK3 is co-localized with A tgl2, the 

ubiquitin-like protein participates in the production of the autophagic isolation 

membrane under the influence o f reduced amino acid levels and serum depletion 

(Young et al., 2009).

The limited information about A tgl3, A tgl7, Atg29 and Atg31 homologues in 

mammalian cells has made the autophagy induction mechanisms difficult to study. A 

putative mammalian homologue o f Atgl 3 was predicted by a gapped-blast homologue 

search (Meijer et al., 2007). Different studies have demonstrated that the predicted 

mammalian homologue o f Atgl 3 interacts with ULK1 and ULK2 and plays a crucial 

role in the formation o f autophagosomes (Jung et al., 2009; Chan et al., 2009; Mercer 

et al., 2009) (Figure 1.4c).

It has been proposed that FIP200 (focal adhesion kinase family interacting protein o f  

200kDa) is a counterpart o f Atgl 7 in mammalian cells. The protein was recognized as 

one that interacts with ULK1 and ULK2 and plays an essential role in the process o f  

autophagosome formation (Hara et al., 2008) (Figure 1.4c). FIP200 performs the same 

function as Atgl 7 in yeast; however, they have little sequence similarity (Hara et al.,

2008). A recently identified protein named ATG101 appears to bind to Atgl3 (Mercer 

et al., 2009; Hosokawa et al., 2009) (Figure 1.4c). It was shown that ATG101 interacts 

with ULK1 in an ATG13-dependent manner and plays an important role in the 

formation o f autophagosomes (Mercer et al., 2009; Hosokawa et al., 2009).
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Many research groups have demonstrated that mTOR, similar to yeast TOR, has the 

ability to phosphorylate mammalian ATG13 (Jung et al., 2009; Ganley et al., 2009; 

Hosokawa et al., 2009). Certainly, mTORCl could phosphorylate not only ATG13 but 

also ULK1 and ULK2 in vitro (Jung et al., 2009; Ganley et al., 2009; Hosokawa et al.,

2009) (Figure 1.4c). It has been shown that mTORCl inhibition by rapamycin or 

starvation, the process known to induce autophagy, has led to de-phosphorylation of 

ULK1, ULK2 and ATG13 in human cells (Jung et al., 2009; Ganley et al., 2009; 

Hosokawa et al., 2009). Based on the results obtained from these studies, it has been 

suggested that ULK1, ULK2 and ATG13 would be direct effectors o f mTORCl. On the 

other hand, FIP200 phosphorylation inversely correlated with mTORCl activity (Jung 

et al., 2009). This inverse relationship implies that the phosphorylation o f FIP200 is 

stimulated when ULK1 and ULK2 are in active forms. Certainly, ULK1 and ULK2 

could phosphorylate FIP200 in vitro (Jung et al., 2009). In addition, the binding 

between ULK1, ULK2 and ATG13 was essential for the phosphorylation o f FIP200 by 

ULK1 and ULK2 in cells, and therefore suggests that the interaction between FIP200 

and ULK via ATG13 is necessary for the phosphorylation o f FIP200 by ULK (Jung et 

al., 2009).

The interaction between Atgl and Atgl 3 is regulated by nutrient starvation in yeast. 

However, in mammalian cells, the interaction between ULK1 and ATG13 is not 

affected by starvation or rapamycin treatment (Jung et al., 2009; Hosokawa et al., 2009) 

(Figure 1.4c). It has been revealed that the association between mTORCl and ULK1 

complex is very strong under nutrient-enriched conditions (Hosokawa et al., 2009).

This result is in agreement with the findings that mTORCl stimulates ULK1 

phosphorylation under nutrient-enriched conditions (Jung et al., 2009; Ganley et al., 

2009; Hosokawa et al., 2009). So, it has been suggested that the recruitment o f ULK1
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complex to mTORCl under nutrient-enriched conditions may facilitate the 

phosphorylation o f ULK1 complex by mTOR resulting in inhibition o f ULK1 function 

(Jung et al., 2010).

In yeast, TOR stimulates hyperphosphorylation o f Atgl 3 and inhibits the kinase activity 

o f Atgl (Kamada et al., 2000), so, it was expected that a similar mechanism would 

occur with the mammalian homologues. In mammalian cells, mTORCl phosphorylates 

Ser758 (Ser757 in mouse) o f ULK1, preventing the interaction and phosphorylation of 

ULK1 by AMPK, which is essential for ULK1 activation. Thus, the initiation of 

autophagy by ULK is reciprocally regulated by mTORCl and AMPK in response to 

dynamic changes in cellular nutrients and energy levels (Kim et al., 2011). In addition, 

another layer o f ULK1 regulation by mTORCl has been suggested in which mTORCl 

inhibits ULK1 stability by inhibitory phosphorylation o f autophagy/beclin 1 regulator 1 

(AMBRA1) (Nazio et al., 2013).

Indeed, mTOR regulated the kinase activity o f ULK1 and ULK2 (Hara et al., 2008; 

Jung et al., 2009; Ganley et al., 2009; Hosokawa et al., 2009) (Figure 1.4c). It has 

been demonstrated that inhibition o f mTOR by leucine deprivation or rapamycin 

treatment has led to enhance the kinase activity o f ULK1 and ULK2 and stimulates the 

phosphorylation o f ATG13 and FIP200 and autophosphorylation o f ULK under 

starvation conditions (Jung et al., 2009; Ganley et al., 2009; Hosokawa et al., 2009).

On the other hand, the kinase activity o f ULK1 was reduced when mTORCl was 

activated by overexpression of Rheb (Jung et al., 2009; Ganley et al., 2009; Hosokawa 

et al., 2009). In line with these results, ULK-dependent phosphorylation o f FIP200 as 

well as ULK autophosphorylation became more apparent under the condition o f  

mTORCl inhibition. These findings support the notion that mTORCl has the ability to
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regulate the kinase activity of ULK and thereby mTORCl is able to suppress the 

induction o f autophagy (Jung et al., 2010) (Figure 1.4c).

In regard to ULK function and cellular localization, it has been suggested that mTORCl 

might regulate the function o f ULK through altering its cellular localization. Several 

studies have revealed that inhibition o f mTORCl by nutrient starvation has promoted 

the localization o f ULK1, ULK2 and ATG13 to the autophagic isolation membrane 

(Scott et al., 2007; Chan et al., 2007; Chan et al., 2009; Hosokawa et al., 2009). In 

support o f this result, a study utilizing HeLa cells revealed that, following rapamycin 

treatment, ULK1 accumulated in membrane fractions o f the cells (Jung et al., 2009). 

All the studies mentioned above have emphasised that ULK complexes work as a 

crucial node through which nutrient and growth factor signalling and stress response 

pathways are transmitted to the autophagy process via mTORCl.

1.4 REGULATORY ASSOCIATED PROTEIN OF mTOR (RAPTOR) 

mTOR, when connected to raptor, mLST8 and PRAS40, forms the mTOR Complex 1 

(mTORCl) (Kim et al., 2002; Loewith et al., 2002; Vander Haar et al., 2007; Sancak 

et al., 2007). Raptor works as a scaffold protein inside the complex, and is responsible 

for identifying and binding to the substrates o f mTORCl (Hara et al., 2002; Schalm et 

al., 2003). mTORCl receives signals derived from growth factors, energy and nutrient 

levels to regulate the activity and phosphorylation o f two crucial downstream substrates 

which participate in the translation o f the protein, known as ribosomal protein S6 kinase 

1(S6K1) and eukaryotic initiation factor 4E-binding protein 1(4E-BP1). Low levels o f  

cellular amino acids down regulate mTORCl signalling, which decreases the synthesis 

of the protein and stimulates the process o f autophagy (Dunlop et al., 2011).
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1.4.1 Raptor structure

All raptor homologues have an N-terminal domain known as RNC (for raptor N- 

terminal conserved) that consists o f three blocks with at least 67% - 79% sequence 

similarity (Kim et al., 2002). Following the RNC domain, all raptor homologues have 

three HEAT repeats, which are then followed by seven WD40 repeats (WD or beta- 

transducin repeats are short ~40 amino acid motifs) in the C-terminal third o f the protein 

(Figure 1.5) (Kim et al., 2002; Yonezawa et al., 2004). It has also been reported that 

human and mouse raptor exhibited 96.9% identity in the amino acid sequence 

(Yonezawa et al., 2004).

1.4.2 Raptor function

Raptor serves as a scaffold for the mTOR signalling pathway (Hara et al., 2002). It has 

been revealed that over expression o f recombinant mTOR in HEK293 cells showed 5-6 

times higher kinase activity toward 4EBP1 in vitro when coexpressed with raptor (Hara 

et al., 2002). This result demonstrates that raptor must be continuously connected with 

mTOR to enhance the kinase activity o f mTOR toward 4EBP1 (Hara et al., 2002). The 

same study also revealed that reduction in the expression o f endogenous raptor by RNA 

interference led to reduction in the mTOR-catalyzed 4EBP1 phosphorylation in vitro, 

supporting the key role o f raptor in the signalling pathway of mTOR. In a similar way, 

the kinase activity o f mTOR toward P70a also increased in the presence o f raptor in 

vitro, and this enhancement is lost when raptor is reduced in vitro (Hara et al., 2002).

Independently o f its connection with mTOR, the raptor polypeptide is able to bind 

directly to 4EBP1 and P70a (Hara et al., 2002). mTOR has the ability to enter a ternary 

complex with raptor and either 4EBP1 or P70a. This supports the notion that raptor 

works as a scaffold for mTOR and positively regulates the reaction o f mTOR kinase 

toward 4EBP1 and P70a (Hara et al., 2002).
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Figure 1.5 Raptor and its homologues. The N-terminal domain of all raptor homologues known as RNC 
domain. RNC stands for raptor N-terminal conserved, and consists of three blocks with at least 67% - 79% 
sequence similarity. In addition to RNC, all raptor homologs contain three HEAT (Huntington, Elongation 
Factor 3, PR65/A, TOR) repeats followed by seven WD40 repeats in the C-terminal third of the protein. The 
accession numbers for the raptor homologs are: D. meZcinogaster (AAF46122), S. pombe (P87141), S. 
cerevisiae (P38873), C. elegans (T19183), and A. Thaliana (NP 187497) (Kim et al., 2002).
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Raptor mediates mTOR signalling pathway in intact cells (Hara et al., 2002). 

Overexpression o f raptor unexpectedly led to dose-dependent inhibition o f the 

phosphorylation and activation o f 4EBP1 and P70a respectively. In addition, a deletion 

mutant o f raptor lacking the C-terminal 437 residues including WD repeat also caused 

similar inhibitory effects (Hara et al., 2002).

Scaffold protein when overexpressed usually leads to inhibition o f signalling in vivo. 

This occurs because the excess scaffold may associate with incomplete sets o f  

signalling elements, causing an uncoupling o f signal transmission (Hara et al., 2002). 

Hara et al (2002) revealed that mutant raptor does not bind mTOR and binds only 

weakly to 4EBP1. Thus, the inhibitory effect o f overexpressed mutant raptor (and 

possibly wild type raptor) may not be caused by binding to mTOR or 4EBP1 and 

thereby disrupting the ternary signalling complex o f mTOR-raptor-4EBPl; rather, 

mutant and wild-type raptor may sequester an unknown molecule that is essential for 

the intact mTOR signalling pathway, and this may occur by binding via the highly 

conserved regions in the N-terminus (Hara et al., 2002).

As reported above in the mTOR section 1.3.2.1, in yeast, Atgl forms a complex with 

Atgl3, Atgl7, Atg29 and Atg31, (Funakoshi et al., 1997; Kamada et al., 2000) and 

plays an initial role in the induction o f autophagy. The mammalian complex which is 

equivalent to this yeast complex consists o f ULK1, ATG13, FIP200 and ATG101 

(Hosokawa et al., 2009; Mercer et al., 2009). Also, as mentioned above, ULK1 is a 

serine/threonine kinase which promotes autophagy signalling. It has been shown that 

the association between mTORCl and ULK1-ATG13-FIP200 complex occurs through 

the binding o f raptor with ULK1 (Hosokawa et al., 2009; Lee et al., 2010a). It has also 

been revealed that through raptor interaction with ULK1-ATG13-FIP200 complex, 

mTORCl phosphorylates both ULK1 and ATG13, which represses the kinase activity
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of ULK1 (Hosokawa et al., 2009; Jung et al., 2009; Ganley et al., 2009). Thus, when 

amino acids are available and mTORCl is active, autophagy is inhibited as a 

consequence o f ULK1 inhibition by mTORCl-mediated phosphorylation. Conversely, 

under conditions o f starvation or mTORCl downregulation, mTORCl de- 

phosphorylates ULK1, and as a result, ULK1 is activated by autophosphorylation. 

Thereby, allowing the phosphorylation o f ATG13 and FIP200 by ULK1 and initiation 

of autophagy (Dunlop et al., 2011).

Biochemical changes between anabolic processes such as protein synthesis and 

catabolic processes such as autophagy in cells must be tightly regulated. Two studies 

have shown that ULK1 negatively controls S6K1 in Drosophila (Lee et al., 2007; Scott 

et al., 2007) and mammalian cells (Lee et al., 2007), suggesting a possible crosstalk 

between ULK1 and the mTORCl pathway (Dunlop et al., 2011). This suggests that 

there is a complex interplay o f signal transduction between mTORCl and the 

autophagic ULK1-ATG13-FIP200 complex, which coordinates whether protein 

synthesis or autophagy becomes dominant (Dunlop et al., 2011). It has been revealed 

that following ULK1 overexpression in HEK293 cells, ULK1 has directly 

phosphorylated raptor on multiple sites and inhibited the signalling o f mTORCl by 

impeding substrate binding. For this reason, while mTORCl represses ULK1 and 

autophagy induction during nutrient sufficiency, a negative feedback loop was proposed. 

It has been proposed that ULK1 induces the phosphorylation o f raptor, impairs docking 

of substrate to raptor and represses the signalling o f mTORCl during nutrient limitation 

(Dunlop et al., 2011).

1.5 MICROTUBULE-ASSOCIATED PROTEIN 1 LIGHT CHAIN 3 
(LC3)

LC3 was recognised originally as a protein that co-purified with microtubule-associated 

protein (MAP) 1A and IB from rat brain (Mann and Hammarback, 1994). LC3 shows
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28% amino acid identity with Atg8 which is essential for yeast autophagy (Liang et al., 

1999). A study o f Atg8 has suggested that the protein plays a crucial role in 

autophagosome formation (Kirisako et al., 1999). At least three families o f mammalian 

Atg8-related proteins have been identified: microtubule-associated protein 1 light chain 

3 (LC3); Golgi-associated ATPase enhancer of 16 kDa (GATE 16); and y- 

aminobutyric-acid-type-A (GABAA)-receptor-associated protein (GABARAP). Each 

family sometimes has subfamilies, and three human LC3 subfamilies (LC3A, LC3B and 

LC3C) have been identified (He et al, 2003). LC3 localizes to autophagosomal 

membranes, and based on this observation, LC3 is thought to be an orthologue o f yeast 

Atg8 (Kabeya et al., 2004).

1.5.1 LC3 processing and function

It has been revealed that there are two forms o f LC3 molecules in cells: one that is in the 

cytoplasmic form and is processed into a second form associated with the membrane o f  

autophagosomes (Kabeya et al., 2000). These forms are known as LC3-I (18 kDa) and 

LC3-II (16 kDa) (Kabeya et al., 2000). The same group have also revealed that both 

LC3-I and LC3-II are derived from the same mRNA. After translation, the unprocessed 

form of LC3 (proLC3) is proteolytically cleaved by Atg4, resulting in the formation o f  

LC3-I with a carboxyterminal exposed glycine. Following autophagy induction, the 

exposed glycine o f LC3-I is conjugated by Atg7, Atg3, and by Atgl2-Atg5-Atgl6L  

multimers to the highly lipophilic phosphatidylethanolamine (PE) moiety to produce 

LC3-II (Mizushima, 2007; Nakatogawa et al., 2009) (Figure 1.6). The PE group causes 

LC3-II to integrate into lipid membranes at the phagophore and autophagosomes. At the 

autophagosome, LC3-II has been shown to perform two functions: the first is selecting 

cargo for degradation, and the second is promoting membrane tethering and fusion 

(Nakatogawa et al., 2007). This is supporting a possible role in the fusion o f  

autophagosomes with other membrane compartments, such as endosomes or
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Figure 1.6 processing of Microtubule-associated protein light chain 3 (LC3). Immediately after 
synthesis, (1) the C-terminus of LC3 is cleaved by Atg4 to produce a soluble LC3-I with C-terminal 
glycine. (2) Atg7 acts as ubiquitin-activating (El) and binds to the exposed C-terminus of LC3-I before 
recruiting Atg3 via its N-terminal domain. (3) During the interaction between Atg3 and Atg7, LC3-I is 
transferred to Atg3 and Atg7 leaves the LC3-I complex. (4) The conjugation between LC3-I and the lipid 
phosphatidylethanolamine (PE) results in the production of LC3-II in a reaction catalyzed by Atg3. The 
lipidation of LC3-I enhances through the binding of Atg5-Atgl2-Atgl6Ll to Atg3.The newly produced 
LC3-II is incorporated into the elongating isolation membrane. The conversion of LC3-I to LC3-II is 
reversible (Eri et al., 2013).
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mitochondria (Barth et al., 2010). Interestingly, Atg8/LC3-PE is deconjugated, again 

by Atg4. The cycle o f conjugation and deconjugation is very important for the normal 

progression o f autophagy (Kirisako et al., 2000). It has been reported that LC3-II is the 

only well-characterized protein that is specifically localized to the autophagic structures 

throughout the process from phagophore to lysosomal degradation (Nakatogawa et al.,

2009).

Based on the importance o f LC3 processing for autophagosome formation and function, 

antibodies to LC3-I and LC3-II are widely used in western blotting techniques to 

monitor autophagy (Karim et al., 2007; Tanida et al., 2008; Mizushima and Yoshimori, 

2007). As previously reported, LC3 is expressed as three isoforms in mammalian cells, 

LC3A, LC3B and LC3C; however LC3B is only the isoform that correlates with the 

number of autophagic vesicles. For this reason, it is recommended to utilize anti-LC3B 

antibodies for analysis o f autophagosomes formation (Barth et al., 2010).

1.6 AUTOPHAGY AND DISEASE

The large number o f physiological functions performed by autophagy provides a good 

reason why alterations in this process either in term o f autophagy protein function or 

subcellular localisation, result in cellular malfunctioning and often cell death (Sridhar et 

al., 2012). This has formed the basis for the contribution o f autophagy to the 

pathogenesis o f several human diseases. The common pathological conditions in which 

autophagy has been shown to be altered are: cancer, immune and infectious diseases, 

heart dysfunction and neurodegeneration (Sridhar et al., 2012).

In cancer, for instance, it has been revealed that Beclin-1 (ATG 6), a core component of 

the autophagosome nucleation complex, is mono-allelically deleted in human breast, 

ovarian and prostate cancer (Liang et al., 1999), and recently, it has also been revealed 

that the Beclin 1 gene is mono-allelically deleted in most cases o f sporadic human
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cancers (Gong et al., 2013; Fu et al., 2013). It has been suggested that autophagy 

prevents tumorigenesis through limiting necrosis and inflammation, inducing cell cycle 

arrest and preventing instability o f the genome (Degenhardt et al., 2006). However, 

because o f the role o f autophagy in the cell survival mechanism, it has been argued that 

autophagy may encourage drug resistance and adaptation o f tumour cells to stress 

(Amaravadi et al., 2007).

With regards to immune and infectious diseases, a genome-wide association study 

(GWAS) has reported that there is a connection between the mutation T330A in 

ATG16L (Atgl6L binds in pairs with the conjugated Atgl2- Atg5 dimers to produce a 

multimeric Atg5-Atgl2-Atgl6L complex (Figure 1.1b) which is crucial for the 

extending phagophore (Lee, 2012)), and Crohn’s disease, a condition that causes 

inflammation o f the digestive system (Hampe et al, 2007).

In addition, autophagic inhibition may lead to insufficient induction o f tolerance against 

commensals or self-antigens in the gut (Rioux et al., 2007); also it may affect 

antimicrobial protein production by Paneth cells (epithelial cells o f the small intestine) 

(Cadwell et al., 2008). This autophagic role in the establishment and maintenance o f  

tolerance has suggested a possible role for autophagy in autoimmunity (Lunemann and 

Munz, 2009). It is known that autophagy contributes to apoptotic cell clearance (Qu et 

al., 2007), and the failure in the clearance o f apoptoic cells has been proposed to result 

in autoimmune diseases, such as systemic lupus erythematosus (Bratton and Henson, 

2005).

It has been revealed that mutations o f P62/SQSTM linked to Paget's disease, lead to 

abnormal turnover o f bone leading to bone deformation, arthritis and nerve injury 

(Ralston, 2008). Osteoclasts in such patients demonstrate deregulation o f NF-kB

32



signalling and ubiquitinated proteins accumulate, consistent with a main role for 

autophagy in normal bone development and function (Glick et al., 2010).

With regards to heart diseases, it has been reported that inactivation o f Lamp-2 is the 

genetic cause o f the lesion associated with Danon disease in humans, an X-linked 

disease that results in cardiomyocyte hypertrophy and autophagosome accumulation in 

heart muscle (Glick et al., 2010). This thesis focuses on the relation between autophagy 

and neurodegenerative diseases.

1.6.1 Autophagy and neurodegenerative diseases

In neurons o f some neurodegenerative diseases, abnormal accumulation of 

autophagosomes or autolysosomes was observed (Lee, 2012). Despite this, it is not 

obvious whether the accumulation o f autophagic vacuoles in degenerating neurons is a 

sign o f increased autophagic flux. In fact, the increase in the number o f autophagosomes 

or autolysosomes could be caused by either increased autophagic vacuoles formation or 

impaired autophagic vacuoles clearance (Lee, 2012). It has been reported that the 

sustained failure o f the balance between the formation and degradation of 

autophagosomes results in autophagic stress (Chu, 2006). Either the cells failed to 

control excessive demand of autophagy or failed to remove autophagic vacuoles as a 

result o f defects in fusion or lysosomal degradation could result in autophagic stress 

which is associated with neurodegenerative diseases (Lee, 2012).

Intracellular protein aggregates is one o f the features that are shared by a number of  

neurodegenerative diseases (Bredesen et al., 2006). Initial studies have revealed the 

accumulation o f autophagic vacuoles in the brains o f Alzheimer’s disease (AD), 

Parkinson’s disease (PD) and Huntington’s disease (HD) patients (Rubinsztein, 2006, 

Levine and Kroemer, 2008).
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As the bulk degradative nature o f autophagy would promote the removal o f the 

intracellular protein aggregates, great efforts have been devoted to understanding 

whether autophagy may be induced to eliminate these aggregated proteins, and whether 

the presence o f aggregates may be attributed to malfunctioning o f the autophagic 

pathway (Cheung and Ip, 2011).

Many studies have suggested that aggregation o f the toxic species may actually be 

neuroprotective (Rubinsztein, 2006), autophagy may still be important for removing the 

oligomeric form o f the toxic proteins (Cheung and Ip, 2011). Supporting the protective 

role o f autophagy, it has been revealed that transgenic animals with neural-specific 

deletion o f Atg5 and Atg7 develop neurodegeneration, accompanied by the presence of 

inclusion bodies (Hara et al., 2006; Komatsu et al., 2006). Nonetheless, although it has 

been observed that elevated autophagy would facilitate the degradation o f protein 

aggregates in HD, PD and AD (Rubinsztein, 2006; Mizushima et al., 2008), other 

studies have revealed that each neurodegenerative disease may have different extents o f  

autophagy deregulation, at different stages in the pathway o f autophagy (Cheung and Ip,

2011).

In Huntington’s disease, it is believed that the toxicity o f the mutant huntingtin (Htt) 

protein is caused by the intraneuronal aggregates o f the N-terminal fragments, the 

typical pathological hallmark o f HD. Autophagic alterations were first observed in post

mortem brains o f HD patients (Tellez-Nagel et al., 1974). Mutant Htt accumulation was 

proposed to induce the endosomal-lysosomal pathway and contribute to an autophagic 

process o f cell death (Son et al., 2012). The involvement o f autophagy in HD was 

further demonstrated by mTOR sequestration in polyglutamine aggregates in cell 

models, transgenic mice and human brains (Son et al., 2012). This sequestration inhibits 

the kinase activity o f mTOR leading to autophagy induction. The induced autophagy
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protects against the toxicity o f polyglutamine (Son et al., 2012). It has been revealed 

that induction o f autophagy through inhibition o f mTOR by rapamycin has attenuated 

the Htt accumulation and cell death in a cellular model o f HD, and when autophagy was 

inhibited the opposite effect was observed (Ravikumar et al., 2004).

Despite the observed neuroprotective effect o f autophagy activation in HD models, the 

precise mechanism that underlies autophagic dysfunction in HD is poorly understood. 

However, it has been proposed that the inefficient engulfinent o f cytosolic components 

by autophagosomes is responsible for the general decrease in turnover o f these 

components and accumulation of Htt in HD cells. A study using cellular and mouse 

models o f HD and also HD patient’s cells, has revealed that the autophagic vacuoles in 

the HD cells failed to recognize the cytosolic cargo. The formation o f the autophagic 

vacuoles was at normal rates and removal by lysosomes was also at the normal rate, 

however, autophagosomes failed to efficiently trap cytosolic cargo in their lumen 

(Martinez-Vincente et al., 2010).

In Parkinson’s disease, death o f dopaminergic neurons in the substantia nigra is 

associated with accumulation of a-synuclein within inclusions known as Lewy bodies 

(Hashimoto and Masliah, 1999). It has been demonstrated that a-synuclein, the major 

constituents o f Lewy bodies, is degraded by both macroautophagy (autophagy) and 

chaperone-mediated autophagy (CMA) (Webb et al., 2003; Cuervo et al., 2004; 

Vogiatzi et al., 2008; Mak et al., 2010). Impaired clearance o f a-synuclein aggregates 

may play a crucial role in PD pathogenesis (Bendiske and Bahr, 2003; Cuervo et al., 

2004). It has been suggested that a-synuclein aggregates interfere with the autophagy 

mechanisms resulting in neurodegeneration (Cuervo et al., 2004; Meredith et al., 2002; 

Nakajima et al., 2005; Rideout et al., 2004; Rockenstein et al., 2005; Stefanis et al., 

2001). Mutant forms o f a-synuclein found in familial PD patients, and also the oxidized
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forms of a-synuclein found in sporadic PD have been shown to block autophagy, and a- 

synuclein contains a consensus sequence for CMA targeting (Cuervo et al., 2004; 

Martinez-Vicente et al., 2008). Studies utilising neuronal cell cultures (Xilouri et al.,

2009) and transgenic mice, have revealed that overexpression o f a-synuclein is 

connected with autophagic impairment and neurodegeneration that is reversed by 

expression o f Beclin-1 (Spencer et al., 2009). Other studies have suggested that 

progressive accumulation of a-synuclein aggregates interferes with the fusion o f  

lysosomes and formation o f autophagosomes (Cuervo et al., 2004; Martinez-Vicente et 

al., 2008; Xilouri et al., 2009). Taken together, these lines o f evidence suggest that in 

PD, specific molecular defects in the pathway o f autophagy may play a role in the 

pathogenesis o f this disease (Kragh et al., 2012).

In Alzheimer’s disease (AD) (the most common form of dementia) the presence of 

senile plagues composed of p-amyloid (AP) aggregates, and intracellular neurofibrillary 

tangles containing hyperphosphorylated tau, are characteristic features (Vassar et al., 

1999). The deregulation o f autophagy was initially connected to AD when a study 

utilizing electron microscopy revealed the accumulation o f autophagic vacuoles in the 

brains o f AD patients (Nixon et al., 2005; Yu et al., 2005). It has been reported that 

autophagy activation is increased after Ap stimulation and also in APP/PS1 mice 

(APPPS1 mice contain human transgenes for both APP bearing the Swedish mutation 

and PSEN1 containing an L166P mutation which exhibits a partial loss to y-secretase 

function and resistant to y-secretase modulation by nonsteroidal anti-inflammatory 

drugs), an AD mouse model (Yu et al., 2005; Hung et al., 2009; Wang et al., 2010). 

Interestingly, strong evidence has shown that during autophagy, Ap is generated in the 

autophagic vacuoles, suggesting that autophagy activation in AD brains may exacerbate 

the pathogenesis o f AD through increasing the levels o f Ap (Yu et al., 2005; Nixon et 

al., 2007). It has been shown that autophagic vacuoles are efficiently removed in



healthy neurons; whereas clearance o f autophagic vacuoles is impaired in AD brains 

(Boland et al., 2008). In addition, knock down o f presenilin-1 (PS1), a gene mutated in 

familial AD, results in defects in clearance o f autophagic vacuoles, acidification of 

lysosomes and also decreased lysosomal proteolytic activity (Lee et al., 2010b). 

Importantly, expression o f PS1 mutants associated with early-onset AD also leads to 

similar abnormality in the autophagic-lysosomal pathway (Lee et al., 2010b). Different 

studies have reported that despite the observed generation o f Ap in autophagosomes, 

autophagy is also involved in the degradation o f APP and Ap (Caccamo et al., 2010; 

Jaeger et al., 2010; Vingtdeux et al., 2010). Moreover, it was demonstrated that 

autophagy is involved in the modulation o f tau protein levels and fragmentation (Berger 

et al., 2006; Wang et al., 2009). The soluble and aggregated forms o f tau are degraded 

by autophagy and the inhibition o f autophagy increased the aggregation and toxicity of  

tau (Berger et al., 2006; Wang et al., 2009).

1.7 PROTEIN LOCALISATION AND FUNCTION

The correct localisation o f a protein within a cell is crucial to allow them to perform 

their functions effectively. Approximately half o f the proteins synthesized by a cell have 

to be transported into, or across, at least one cellular membrane to reach their functional 

destination (Chacinska et al., 2009). The regulation o f the trafficking o f the protein 

relies on encoded information within the sequence o f the protein and occurs through 

two mechanisms: co-translational and post-translational translocation (Rapoport, 2007). 

Co-translational translocation is found in all cells and is used for the translocation o f  

secretory proteins, and also for most membrane protein integration (Rapoport, 2007). In 

most cells, some proteins are transported after completion o f their synthesis. This 

pathway o f translocation is known as post-translational translocation. Post-translational 

translocation appears to be used by a larger proportion o f proteins in simpler organisms,
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such as bacteria and yeast, because the growth in these simple organisms is very fast 

and translocation does not always keep pace with translation (Rapoport, 2007).

Subcellular localisation controls the access o f proteins to interacting partners and the 

post-translational machinery and facilitates the proteins integration into functional 

biological networks (Hung and Link, 2011).

Abnormal protein localisation can be caused by a mutation, altered expression of cargo 

proteins or transport receptors or by deregulation o f components o f the trafficking 

machinery and has been linked to human diseases as diverse as Alzheimer's disease, 

kidney stones and cancer (Hung and Link, 2011). Deregulation of protein trafficking 

can cause incorrect localization o f proteins and hence result in loss o f function, and also 

misregulation or an adverse effect at the wrong location. Abnormalities in the 

subcellular localization o f proteins that are necessary for the signaling, metabolic or 

structural properties o f the cell can lead to disorders that involve biogenesis, protein 

aggregation, cell metabolism or signaling (Hung and Link, 2011).

An example o f incorrect localisation o f protein via alterations o f the trafficking 

machinery has been documented for the nuclear pore complex (NPC). Alterations in this 

complex have been linked to several genetic diseases (Chahine and Pierce, 2009). For 

example, mutations in some components of NPC, such as the nucleoporin p62 protein 

and ALADIN (alacrima achalasia adrenal insufficiency neurologic disorder) are thought 

to be the reason behind the neurodegenerative diseases infantile bilateral striatal 

necrosis and triple A syndrome, respectively (Basel-Vanagaite et al., 2006; Kiriyama et 

al., 2008). The mutations in some components o f the NPC can reduce the permeability 

o f the nuclear envelope and has an influence on the export o f Hsp70 mRNA and import 

of HSP70 protein. Also, mutation in ALADIN prevents nuclear entry o f the DNA repair
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proteins aprataxin and DNA ligase I, leading to increased DNA damage followed by 

cell death (Kiriyama et al., 2008).

Incorrect localisation of proteins via alterations in targeting signals due to genetic 

alterations that have an influence on protein targeting signals, have been linked to 

several metabolic diseases that are characterized by defects in functions o f specific 

organelles, such as lysosomal or peroxisomal functions (Djordjevic et al., 2010). In 

addition to changing the localisation signal o f a protein, some disease related mutations 

can lead to incorrect localisation o f a protein via protein sequestration. For example, it 

has been revealed that mutations in the LMNA (lamin A/C) gene, the cause o f  

laminopathies, cause incorrect localization o f the DNA-binding transcriptional repressor 

zinc finger protein 239 (ZNF239). The mutant protein (pathogenic lamin A/C) 

sequesters ZNF239 into nuclear aggregates, and this sequestration is thought to 

deregulate ZNF239 target genes (Dreuillet et al., 2008).

With regards to the incorrect localisation o f signaling proteins, because proteins cannot 

diffuse as fast as small molecule second messengers (such as cyclic AMP, cyclic GMP, 

inositol triphosphate, diacylglycerol and calcium), the subcellular localisation o f  

signaling proteins near their downstream targets is crucial (Scott and Pawson, 2009). 

Signaling protein translocation gives a signal over a large distance or between 

components o f a cell. A fault in this signaling arrangement has been demonstrated to be 

involved in tumorigenesis, tumor growth and metastasis (Kau et al., 2004; Wang and 

Hung, 2005). To perform their function, some important tumor suppressor proteins need 

to be localised to the nucleus, however, their localisation to the cytoplasm works as an 

inactivation mechanism and causes uncontrolled cell proliferation and the onset o f  

disease. Consequently, this incorrect localization o f these nuclear proteins to the
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cytoplasm has been suggested as a mechanism for the inactivation o f tumor suppressors 

(Kau et al., 2004; Salmena and Pandolfi, 2007).

1.7.1 Autophagy and Protein localisation

In autophagy, the re-localisation o f mammalian homologue o f yeast Atgl8 (WIPI2) to 

the omegasome (pre-autophagosome)-anchored phagophore plays an important role in 

LC3 lipidation and autophagosome formation (Poison et al., 2010). The re-localisation 

of Atgl 8 occurs by the aid o f Atgl kinase complex and the autophagy specific Vps34 

lipid kinase complex (Suzuki et al., 2007). Poison et al., (2010) demonstrated that in 

mammalian cells, WIPI2 is amongst one o f the early components o f the process o f  

autophagy and moves to sites o f autophagosome formation in response to PtdIns3P, 

where it colocalizes with double FYVE domain-containing protein (DFCP1), Atgl6L  

and ULK1. They revealed that re-localisation o f WIPI2 to these structures is dependent 

on the production o f PtdIns3P and is required for their maturation (DFCP1, Atgl6L and 

ULK1) and for LC3 lipidation. This explains the importance o f lipid phosphorylation by 

PI3Kinase. It seems that WIPI2 plays an important role in the maturation o f these 

proteins through maintaining their distribution on the omegasome membrane to perform 

their function in the maturation o f the omegasome to autophagosome. It has been 

revealed that after WIPI2 deletion, DFCP1 redistributes to punctate structures, and these 

structures failed to produce LC3-positive autophagosomes, or mature. Thus, it has been 

hypothesized that WIPI2 works downstream of DFCP1 and is required for the 

maturation o f the omegasome (Poison et al., 2010).

It is also thought that Atgl 8, WIPI1 and WIPI2 that have PtdIns3P binding domains 

exist in a cytosolic pool and re-localise to the pre-autophagosomal structure (PAS) or 

autophagosome by direct interaction with PtdIns3P. This re-localisation o f these 

proteins is an indication that there is a link between autophagic protein localisation and
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their function. So, the suggested interaction between tPSl and mTOR, raptor and LC3 

in the present study may result in re-localisation o f these proteins causing a change in 

their function leading to an autophagic failure.

Vps34 (amongst the PI3Kinases) has the ability to phosphorylate the 3' position o f the 

inositol head group o f phosphatidylinositol (Ptdlns) to produce PtdIns3P (Poison et al., 

2010). In yeast, an autophagy-specific complex was formed by the combination of 

Vps34 with Vpsl5, Vps30/Atg6 and Atgl4. The Vps34-autophagy specifc PtdIns3P 

can be recognized by Atgl 8p, Atg21 and Ygr223p. The mammalian homologue o f yeast 

Vps34 complex is produced by the combination o f hVps34 with p i50, Beclin 1 and 

ATG14L. The importance o f creating and regulating the autophagy-specific pool of 

PtdIns3P in mammals was discovered by the recognition o f a PtdIns3P phosphatase, 

Jumpy, (Vergne et al., 2009), that dephosphorylates PtdIns3P on phagophores and 

autophagosomes in order to negatively regulate the formation o f autophagosomes. 

Furthermore, it has been demonstrated that a double FYVE domain-containing protein 

(DFCP1) binds to ER membrane domains where PtdIns3P pools are produced under 

starvation resulting in omegasome formation (Axe et al., 2008). Poison et al., (2010) 

also demonstrated that both WIPI1 and WIPI2 share common ancestry with Atgl 8 and 

they are the mammalian orthologue o f Atgl 8. In addition, they proposed that the 

function o f WIPI2 and DFCP1 are connected, and they hypothesized that WIPI2 works 

as a downstream target o f DFCP1 and is needed for the maturation o f the omegasome.

In 2010, Sancak et a l, demonstrated that for the mTORCl (an autophagy key 

regulator) to be activated by amino acids requires the re-localisation from an un-defined 

cytoplasmic location to the lysosomal surface in a Rag-Ragulator dependent manner. To 

regulate cell growth, mTORCl requires signals from growth factors, intracellular 

energy levels and amino acid availability, and in some different diseases, the
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deregulation o f this signaling pathway has been observed (Guertin and Sabatini, 2007). 

For growth factors and energy sensing, mTORCl receives signals from the TSC1 and 

TSC2 complex through the regulation o f GTP-loading state o f Rheb, a Ras-related 

GTP-binding protein. After the interaction with GTP, Rheb has the ability to interact 

and activate mTORCl (Laplante and Sabatini, 2009). However, in the case o f amino 

acid sensing, the Rag GTPases, are the amino acid-specific regulators o f the mTORCl 

pathway (Kim et al., 2008; Sancak et al., 2008).

There are four mammalian Rag proteins: RagA, RagB, RagC, and RagD. These four 

Rag proteins form heterodimers consisting o f RagA or RagB with RagC or RagD. RagA 

and RagB, like RagC and RagD, are highly similar to each other and are functionally 

redundant (Sancak et al., 2008). It has been revealed that in HEK293T cells, the 

presence o f amino acids, mTOR and raptor co-localized with LAMP2 (lysosomal 

marker) (Eskelinen, 2006) and this localisation is dependent on the Rag GTPases. 

Sancak et al also showed that; mTORCl binds to the Rag heterodimers in an amino 

acid-dependent manner, with the Rag GTPases working as an amino acid-regulated 

docking site for mTORCl on lysosomes (Sancak et al., 2010).

Rag GTPases do not have lipid modification signals in their amino acid sequence that 

might play a role in the recruitment o f Rag to lysosomal membranes. It was believed 

that unknown Rag-interacting proteins are required for localisation o f the Rag GTPases 

to lysosomes and play a role in mTORCl signaling. It has been revealed that three small 

proteins called MP1, p i4, and p i8 (Ragulator) were behined the localisation o f Rag 

GTPases to the lysosomes and a complex consisting o f Ragulator, a Rag heterodimer, 

and mTORCl can exist in cells (Sancak et al., 2010). It has been revealed that in HEK- 

293T cells with pl4, p i8, or MP1 knockdown, amino acids failed to induce the 

recruitment o f mTOR to the lysosomal suface, where mTOR was found in the
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cytoplasm in both amino acid starved and stimulated cells. This confirms the essential 

role o f Rag proteins in the translocation o f mTORCl to the lysosomes, and also reveals 

that all Ragulator subunits are essential and needed for lysosomal targeting o f the Rag 

GTPases and mTORCl (Sancak et al., 2010). The disruption o f the localisation o f  

mTORCl to the lysosomes results in mTORCl inactivation. For instance, nutrient 

depletion and lysosomal stress converge on the v-ATPase-Ragulator-RagGTPase 

system, and lead to the detachment o f mTORCl from the lysosome and inactivation. 

Inactivation o f mTORCl stops anabolic reaction and improves cellular degradation 

(Efeyan et al., 2012). In addition, it has been revealed that disruption o f mTORCl 

localisation to the lysosome due to a partial loss o f function o f Ragulator, which is 

responsible on the recruitment o f mTORCl to the lysosome through Rags, has caused a 

human disease known as hypoactive mTORCl signaling, and this disease is 

characterized by stunted growth, immunodeficiency and albinism (Bohn et al., 2007).

The importance o f mTOR localisation has also been documented where the 

sequestration o f mTOR with HD (Huntington disease) aggregates impaired its kinase 

activity and induced autophagy (Ravikumar et al., 2004). This sequestration decreased 

soluble mTOR levels and as a result, the mTOR phosphorylation o f S6K1 and BP1 was 

reduced and S6K1 -driven translation decreased (Ravikumar et al., 2004). In addition, 

the presence o f mutant htt (huntingtin) has led to production o f a greater number o f  

autophagosomes, and therefore, it has been suggested that sequestration o f mTOR by htt 

aggregates could increase autophagosome numbers by limiting mTOR availability 

(Ravikumar et al., 2004).

It is very clear from the mechanisms described above that there is a link between 

autophagic protein localisation and their function. Based on this information, the present 

study was an investigation o f subcellular localisation o f selected autophagy proteins in
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non-autophagic, autophagic and tPSl transfected HEK293 cells. The present study 

investigated the movement and subcellular localisation of selected autophagy proteins 

(mTOR, raptor and LC3) in autophagic and non-autophagic cells. Then, the observed 

result was compared with the results obtained after the transfection o f HEK293 cells 

with truncated protein presenilin-1 (PS1) (the most common genetic cause o f  

Alzheimer's disease) to investigate if  the normal movement and subcellular localisation 

o f the selected proteins was interrupted by the truncated PS1 aggregates leading to 

autophagic failure.

1.8 THE ROLE OF PS 1 AND AUTOPHAGY

In 2010, Lee et a l, demonstrated that autophagy requires the Alzheimer’s disease (AD)- 

related (PS1) and that PS1 mutations lead to a disruption in the autophagic pathway. PS- 

1 is a ubiquitous transmembrane protein needed for lysosomal turnover o f autophagic 

and endocytic protein cargo. Lee et al., (2010b) revealed that PS1 holoprotein, present 

in the ER, works as an ER chaperone to facilitate maturation and targeting o f the v- 

ATPase VOal subunit to lysosomes. This step is crucial for lysosomal acidification, 

protease activation, and autophagic/lysosomal cargo degradation. In WT cells, the v- 

ATPase VOal subunit (as a marker o f proton pump function in lysosomes) was localised 

to LAMP-2-positive compartments. However, in PS1 (-/-) cells, v-ATPase was 

concentrated in a perinuclear region (Lee et al., 2010b). This shows the importance o f  

normal PS1 in the correct localisation o f v-ATPase to the lysosome to play its role in 

the lysosomal acidification.

The v-ATPases are multisubunit complexes that are composed o f a membrane-bound 

subcomplex V0 and a cytosolic VI subcomplex. Lee et al., (2010b) demonstrated that 

in the immature form of v-ATPase, the VOal subunit is unglycosylated, and to be N- 

glycosylated, v-ATPase VOal subunit requires a physical interaction with PS1. This N-
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glycosylation is needed for the subunit to be efficiently delivered to lysosomes. It has 

also been shown that v-ATPase VOal subunit was posttranslationally N-glycosylated, 

and the function was lost after the deletion o f PS1. Also, they demonstrated that the PS1 

effects on autophagy are not dependent on gamma secretase activity. Of particular 

clinical significance, Lee et al., (2010b) have also shown that PS1 mutations that cause 

early-onset familial Alzheimer’s disease (FAD) has prevented the same 

lysosomal/autophagic functions that are more severely affected in PS1 KO cells (PS1 

knockout mouse).

Previous work showed that a truncated presenillin 1 construct, when transfected into 

fibroblast cell line (HEK293 cells), stimulated the early stages o f autophagy, as shown 

by structural changes within the cell seen by electronic microscopy (Anderson, PhD 

thesis). However, the autophagic process did not appear to go to completion as would 

be expected in the normal state, because the presenillin 1 aggregates persisted in the 

cells and were not removed, and appeared to lead to cell death.

1.9 HYPOTHESIS

In addition to a lysosomal acidification defect, truncation or mutation o f PS1 (the most 

common genetic cause o f Alzheimer's disease) results in intracellular autophagy protein 

movement interruption, leading to their incorrect subcellular localisations, causing an 

autophagic failure leading to protein aggregation inside the cells.

4 5



1.10 THE AIMS AND OBJECTIVES OF THIS RESEARCH:

Since presenillin 1 mutations are the most common genetic cause o f Alzheimer’s 

disease, and defects in autophagy have been implicated in degenerative diseases, and as 

many published localisation studies have revealed that there is a connection between 

autophagy proteins localisation and their function, the aims o f this project are:

1. To characterize antibodies to selected protein components o f the autophagy 

pathway (mTOR, raptor and LC3) for their utility in detecting the expression and 

determining the subcellular localization o f these proteins in cultured cells.

2. To establish the transient expression o f a truncated presenillin 1 protein construct 

in cultured cells that previous work has shown leads to an aborted autophagic 

response.

3. To investigate and determine the subcellular localization o f selected autophagy 

proteins using the methods described in (1) and (2) above to determine if  the cause 

for the aborted autophagy can be identified.
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C hapter 2

Materials and Methods



2.1 INTRODUCTION

This chapter describes the details of the experimental procedures applied throughout the 

course o f this research. Further details o f the materials and methods exploited for 

specific experiments are presented in the relevant chapter.

2.2 Cell culture

The cell lines that have been used in this study were a normal rat kidney (NRK) cell line 

(gift from Professor David Parkinson), a human breast cancer (MCF-7) cell line 

(European Collection o f Cell Cultures) and a human embryonic kidney (HEK293) cell 

line (European Collection o f Cell Cultures).

2.2.1 Culture of cells from frozen stock

Cells were stored in 10 % (v/v) dimethyl sulfoxide (DMSO) (Sigma, UK) in foetal calf 

serum in liquid N2 , and once thawed were propagated in specific culture medium for 

these cell lines.

The media used in this research is Eagle’s Minimum Essential Medium (EMEM) 

(Lonza, UK) supplemented with 10 % (v/v) foetal bovine serum (FBS) (Sigma-Aldrich, 

UK), 1 % (v/v) non-essential amino acids o f 10 mM (Sigma-Aldrich, UK), 1 % (v/v) 

sodium pyruvate o f 100 mM (Sigma-Aldrich, UK), 1 % (v/v) penicillin (100 I.U/ml) 

(Sigma-Aldrich, UK), 1 % (v/v) streptomycin (lOOpg/ml) (Sigma-Aldrich, UK) and 2 

mM L-glutamine (Sigma-Aldrich, UK).

The vial containing frozen cells (for all used cell lines) was warmed to 37 °C. The 

contents o f the vial were transferred to a 50 ml tube and 5 ml o f media was added to the 

cells drop wise to reduce the toxicity o f DMSO. The cells were cultured by dividing the 

contents o f the tubes into culture flasks containing media according to the appropriate
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density that determined by a haemocytometer. The cells were incubated in a humidified 

environment at 37°C under 5 % CO2 atmosphere for 3 days.

Cells were allowed to reach 80-90 % confluence before being sub-cultured. Next, the 

cells were rinsed with serum free media (EMEM) to remove any trace o f serum. The 

adherent cells were re-suspended by trypsinisation with 0.5 % trypsin and 0.2 % 

Ethylenediaminetetraacetic acid (EDTA) solution (Sigma-Alrich, UK) (3 ml for 25 cm 

flask) and incubated at 37 °C for 5 minutes. Trypsinisation was then stopped by 

neutralising trypsin/EDTA with 3 mL complete media, which was mixed with the cell 

suspension by gentle pipetting and then transferred to a sterile 15 mL centrifuge tube. 

Suspended cells were then centrifuged at 1000 rpm to pellet the cells, and the 

supernatant was aspirated to remove the trypsin/EDTA containing medium. The cell 

pellet was then re-suspended in a known volume o f fresh pre-warmed culture medium, 

and cells counted if  required for experimental purposes, or suspended in the appropriate 

amount o f complete media and seeded at a 1:10 split ratio to further propagate cells. 

Cell lines were used between passages 4 and 15.

2.2.2 Cell counting

Cells were centrifuged at 200 g for 10 minutes and supernatant discarded. The cells 

pellet was resuspended in 1 ml of complete media and mixed gently by pipeting up and 

down. Cells were counted using a haemocytometer and the number o f the cells in the 

central and four comer squares o f the middle square (25 small squares) o f the counting 

area were counted. Then the number o f cells per ml was calculated using the following 

equation: Cell concentration per ml = Total cell count in 5 squares x 5 x 104. The 

counted cells were further diluted to the densities required for experimental procedures.
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2.3 Protein Extraction

2.3.1 Whole cell lysate

The cells were sub-cultured in 6-well plates and left in the incubator at 37 °C until 

confluent. After aspiration o f the media from the wells o f 6-well plate, 3 ml o f ice cold 

serum free media (EMEM) (Lonza, UK) containing protease inhibitor cocktail (10/100 

pi) (Sigma, UK) were added to each well in order to wash the cells. After aspiration o f  

the wash, 500 pi o f sample buffer containing 10 mM of DTT and protease inhibitor 

cocktail were added to each well. The protein extract was then collected from each well 

into 1.5 ml Eppendorf tubes and heated in thermal-lok 4-position dry heat bath at 60°C 

for 10 minutes. After that, the DNA in the extract was sheared by moving it up and 

down in the tube with a pipette fitted with a blue tip for 20 times. Then, 25 pi o f fresh 

iodoacetamide (20 mM) was added to each tube and incubated for 1 hour at room 

temperature. Then, the samples were ready to be run on the SDS-PAGE.

2.4 Tris-glycine polyacrylamide gel preparation:

The most commonly employed type o f gel electrophoresis is sodium dodecyl sulphate- 

polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli, 1970). SDS-PAGE is a 

technique used to separate proteins according to the molecular weight. Polyacrylamide 

gels for SDS-PAGE were prepared in different percentages based on the molecular 

weights o f the proteins o f interest (Laemmli, 1970).

2.4.1 Resolving gels

Glass plates thoroughly cleaned with washing-up detergent, rinsed, dried, assembled 

into cassettes and then mounted in the casting stand. Based on the desired acrylamide 

percentage and total volume, the following table was used, (Table 2.1).
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Table 2.1: Acrylamide percentages in tris-glycine resolving gels

Percentages (%) 6 6.5 7 7.5 10

10 ml
30 % acrylamide (ml) 2 2.167 2.333 2.5 3.333

d-water (ml) 3 2.833 2.667 2.5 1.667

In the whole study, mini-gels ( 8 x 1 0  cm, BioRad) o f 1 mm thickness were prepared. 

After the selection o f the desired acrylamide percentage, for instance, 6 % acrylamide 

gel; 2 ml o f 30 % (v/v) acrylamide, 3 ml o f  distilled water, 2.5 ml o f 60 % (v/v) glycerol,

2.5 ml o f 4x resolving buffer, 100 pi o f 10 % (w/v) SDS, 100 pi 5 % (v/v) 

tetramethylethylenediamine (TEMED) and 100 pi 5 % (w/v) ammonium persulfate 

(APS) were added to the same tube. Immediately after the addition o f  APS, 3.2 ml o f 

the gel mixture was pipetted between the glass plates and overlaid with distilled water 

and allowed to polymerize for 1 hour.

2.4.2 Stacking gels

The stacking solution was prepared by adding 2 ml o f 2x stack acrylamide, 1 ml o f  

60 % (v/v) glycerol, 1 ml 4x stacking buffer (0.5 M tris.HCL pH 6.8), 40 pi o f 10 % 

(w/v) SDS, 40 pi o f 5% (v/v) TEMED and 40 pi o f 5% (v/v) APS. The layer o f  distilled 

water over the resolving gel was aspirated. Immediately the glass plates were filled with 

stacking solution to the top and the Teflon comb was inserted and the gel allowed to 

polymerize for 1 hour.

2.5 Tris-tricine polycrylamide gel preparation:

According to Schagger and Von Jagow (1987), these gels were used to separate low 

molecular weight proteins and peptides down to 4 kDa. In this project, these different 

gels were used to detect LC3 proteins (18 and 16 kDa).
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2.5.1 Resolving gels

Glass plates were prepared as above (Section 2.4.1). 10 % tris-tricine gels were prepared 

by adding o f 3 ml 30 % (v/v) acrylamide to 3 ml 3M Tris, pH 8.45 to 3 ml o f 60 % (v/v) 

glycerol or 3.2 g urea and mixed. Then, 90 pi of 10 % (w/v) SDS, 90 pi o f 5% (v/v) 

TEMED and 90 pi o f APS were added, mixed and immediately loaded in to the cassette 

and overlaid with distilled water and allowed to polymerize for 1 hour.

2.5.2 Stacking gels

The stacking solution was prepared by adding o f 2 ml o f 2 x stack acrylamide to 1 ml o f  

60 % (v/v) glycerol to 1 ml o f 3M tris at pH 8.45 and mixed. Then, 40 pi o f 10 % (w/v) 

SDS, 40 pi o f 5 % (v/v) TEMED and 40 pi o f 5 % (w/v) APS were added. The layer o f  

distilled water over the resolving gel was aspirated. Immediately the glass plates were 

filled with stacking solution to the top and Teflon comb was inserted and the solution 

allowed to polymerize for 1 hour.

2.6 Western blotting

Western blotting is a widely used analytical technique for the detection o f specific 

proteins in a given sample of tissue homogenate or cell extract (Kurien and Scofield, 

2006). It uses gel electrophoresis to separate native proteins by three-dimensional 

structures or denatured proteins by the length o f the polypeptide chain. These separated 

proteins are then transferred onto a membrane where they are probed with antibodies 

specific to the target protein. Specific antibody binding is then detected using a range o f  

methods, most commonly chemiluminescence with an enzyme-labelled secondary 

antibody, or a fluorescently labelled secondary antibody.
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2.6.1 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS- 

PAGE)

Protein samples (18 pi / well) were fractionated on different percentages (6 %-10 %) o f  

gels using SDS-PAGE. Protein samples were prepared as above (Section 2.3.1). The 

gels were placed into an electrophoresis tank containing electrode buffer (running 

buffer) which was prepared by adding o f 6 g o f Tris, 28.8 g o f glycine and 2 g o f SDS 

to 2 L of d-water. Protein sample was loaded per well along with 10 pi o f molecular 

weight marker (7-215 kDa) (BioRad, UK) or multicolor high range protein ladder (40- 

300 kDa) (Thermo Scientific, UK), and electrophoresis carried out at 100 V for 

approximately 3 hrs, until the dye front reached the bottom of the gel.

2.6.2 Protein electroblotting

Following electrophoresis, the proteins were electroblotted onto nitrocellulose 

membranes (Hybond-c, GE Healthcare, UK) at 100 V for lh  with an ice insert as 

follows: first, the transfer tank was filled with cold transfer buffer (2.2 g o f  CAPS in 

900 ml o f d-water and then 100 ml o f MeOH was added, pH 10.3), and then an ice pack 

was inserted into the tank. The gel was removed from the plate into a large weighing 

boat containing cold transfer buffer. Blotting paper and nitrocellulose membrane were 

soaked in transfer buffer for 5 minutes and the blotting sandwich was made according to 

the following order; black (cathode -ve), sponge, two blotting papers, gel, membrane, 

two blotting papers, sponge and white ( anode +ve) for each gel. The blotting sandwich 

was placed into the transfer tank and the proteins were electroblotted at 100 V and 0.2A 

for lh.

2.6.3 Immunoprobing

Membranes were incubated for at least 30 minutes in 5% (w/v) non-fat skimmed milk in 

Tris-buffered saline (TBS) (15 mM Tris, 140 mM NaCl in d-water, pH 7.4 ) containing
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0.01 % (v/v) Tween 20 (TBST) (Sigma, UK) to block non-specific binding o f antibody. 

Blots were then washed 3 times for 5 minutes each in TBST.

The primary antibodies (Tables 3.1, 3.2 and 3.3) were then diluted to appropriate 

concentrations in TBS-T with 5 % (w/v) non-fat skimmed milk and incubated overnight 

at 4°C with gentle shaking. For negative controls, primary antibody was omitted, and 

the membrane was incubated with TBS-T with 5 % (w/v) non-fat skimmed milk alone. 

The next day, the membranes were washed as above to remove any unbound antibody. 

Alkaline phosphatase (AP)-linked secondary antibody (Donkey anti-rabbit IgG) (Cell 

signalling technology, UK) were then diluted (1:1000) in TBS-T and placed onto the 

blots and incubated for 1 hour with gentle agitation. The membrane was then washed 3 

times for 5 minutes each in TBS followed by 1 time for 5 minutes in d-water.

Development o f the blots was carried out using substrate solution prepared by adding 6 

ml o f Alkaline phosphatase (AP) buffer to 60 pi o f 15 mg/ml 5-Bromo 4-Chloro 3'- 

Indolyphosphate p-Toluidine salt (BCIP) (Sigma-Alrich, UK) and 60 pi o f 30 mg/ml 

nitroblue tetrazolium (NBT) (Sigma-Alrich, UK) for each membrane and then the 

membrane incubated with the solution for 30-60 minutes. The reaction was stopped by 

washing the membranes in d-water. The blots were then visualised using the naked eye 

and scanned (Epson Expression 1680 pro).

2.6.4 Molecular weight calculation for unknown protein samples

The molecular weight o f an unknown protein can either be estimated using the 

prestained molecular weight marker as a guide to identify the molecular weight o f the 

protein o f interest, or using a graph, shown in figure (2.1). The graph uses the molecular 

weight standards; the loglO for each band of the known molecular weight marker was 

taken, and then plotted against the Rf values. The Rf value is the distance a specific
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sample travels (mm) divided by the distance the tracking dye travels, which was the 

bromophenol blue (mm).

2.5
y = -0.0233x + 2.5608w>

« 1.5

0.5

40
Distance by cm

Figure 2.1 to determine molecular weight of unknown protein on SDS PAGE/WB

The equation in figure 2.1 y = - 0.023x + 2.560, was used. The R f value o f  the protein 

o f interest was substituted for y and rearranged. The obtained value was the log 10 o f 

the molecular weight, in order to find the molecular weight o f the protein the anti log 

was taken.

2.7 IMMUNOCYTOCHEMISTRY

Antibodies are routinely used to detect the cellular localisation o f  proteins (or antigens) 

in cells, tissues or biological fluids. The detection o f  an antigen using antibodies in 

cultured cells is referred to as immunocytochemistry (ICC).

Prior to antibody application the cells and/or tissues are subjected to fixation,

permeabilisation and if  necessary blocking. Fixation preserves both the cellular and

subcellular structure in addition to the antigenicity o f  the antigen(s) o f  interest. Fixatives

either form cross-linkages to preserve the tissue structure e.g. aldehydes such as
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glutaraldehyde or formalin, or remove lipids and dehydrate cells whilst precipitating 

proteins or fixing them in their usual cellular localisation e.g. organic solvents such as 

acetone, ethanol or methanol (Delves et al., 2006).

A blocking step is often employed using bovine serum albumin (BSA) or serum from 

the species in which the secondary antibody is made. This prevents non-specific binding 

o f the labelled secondary antibody and particularly binding to endogenous Fc receptors 

(FcRs) present on the surface o f some cells (Buchwalow et al., 2011).

There are two types o f immunofluorescence: direct and indirect. In the direct method of 

immunofluorescence, the primary antibody directed against the antigen o f interest is 

directly conjugated with a fluorochrome. Although this method involves fewer steps, 

the technique is limited as only a limited number o f antibodies can access the antigen of  

interest leading to low sensitivity. Based on this, indirect immunofluorescence is often 

the preferred method utilised.

In this research work, indirect immunocytochemistry was used to reveal the subcellular 

localisation o f autophagy proteins o f interest utilising single and double-label 

techniques.

2.7.1 Indirect immunocytochemistry

2.7.1.1 Preparation of cover slips

For cover slip sterilization, one cover slip was dropped into each well o f a 24 well plate 

and incubated in 70 % (v/v) ethanol for 30 minutes. Following this, the ethanol was 

aspirated and the plate left open inside the laminar hood for 30 minutes to dry. Then the 

cover slips were washed with sterile EMEM media (Lonza, UK) and media aspirated to 

remove the residual ethanol, before adding the cells to the wells to grow on the cover 

slips. To support the attachment in the case o f HEK293 cells, cover slips were coated 

with poly-L-lysine (1 pg/ml) (Sigma, UK) first. After the ethanol dried, the cover slips 

were washed with sterile distilled water and 250 pi o f poly-L-lysine (1 pg/ml) per well
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were added and incubated for 30 minutes inside the hood. Then the poly-L-lysine was 

aspirated and the cover slips washed again with sterile distilled water. Then the cells 

were seeded into the 24-well plate at a density o f 0.5 x 105 cells/ml in complete media 

(500 pi per well) and left to adhere to the cover slips for 48 hours in an incubator at 37 

°C containing 95 % air and 5 % C02.

2.7.1.2 Fixation

Methanol (-20 °C) was used as it can both fix and permeabilise cells (Jamur and Oliver,

2010) prior to immunocytochemistry without chemical modification o f antigens. The 

media was aspirated from the wells and the cells washed with cold medium lacking FBS. 

Cells were then fixed with methanol at the same volume as used for medium (500 pi) 

and incubated for 10 minutes at room temperature. Following this, the methanol was 

aspirated and the cells washed with TBS containing 0.02 % (w/v) sodium azide.

2.7.1.3 Addition of primary antibodies

Following fixation, the cells were blocked with 5 % (v/v) normal serum (from animal 

used for secondary antibody) (Sigma-Alrich, UK) in TBS (filtered by syringe filter and 

centrifuged 1000 rpm for 5 minutes), 500 pi per well, for 30 minutes at room 

temperature to reduce background. Cells were stained for mitochondria, mTOR, raptor 

and LC3A/B with specific antibodies (Table 2.2). Preliminary experiments were 

performed to determine the optimum concentration for ICC, with each antibody diluted 

within a range recommended by the supplier. The primary antibodies were diluted in the 

same blocking solution and incubated overnight at 4 °C. The negative controls with the 

primary antibody omitted were incubated in the block solution only.

2.7.1.4 Addition of secondary antibodies

The primary antibody solution was aspirated and the cells were washed 3 times in 

TBS containing 0.02 % (w/v) sodium azide, to remove any unbound antibody, for 5
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minutes each. In order to detect any bound antibody, secondary antibodies, Alexa Fluor 

488® conjugated to chicken anti-mouse IgG (for mouse monoclonal antibodies) or 

Alexa Fluor 594® conjugated to donkey anti-rabbit IgG (for rabbit monoclonal 

antibodies) were then applied. The secondary antibodies were diluted in blocking buffer 

and 500 pi per well was added and incubated in the dark for 45 minutes at room 

temperature. The secondary antibody dilutions used in this experiment are shown in 

(Table 2.2). Following this, cells were washed three times in TBS containing 0.02 % 

(w/v) sodium azide, to remove any unbound secondary antibody, for 5 minutes each. To 

stain the cell nuclei blue, 4,6-Diamidino-2-phenylindole (DAPI) 1 pg/ml (Sigma, UK) was 

added in the first wash for 5 minutes and the unbound DAPI was removed by the 

second and third washes.

2.7.1.5 Slide preparation

Slides were labelled appropriately and a small drop of Fluoromount-G (Southern 

Biotechnology Associates, UK) was dropped on to the slide. The cover slip was taken 

from the well with a bent syringe needle and forceps and cells down onto the 

Fluoromount-G drop. Slides were left to dry in the fridge and examined on the second 

day using an upright Olympus BX60 fluorescent microscope, equipped with a Cool- 

Snap Pro (Cybernetics) digital camera to acquire images into Labworks™ where they 

were saved without further manipulation or confocal microscopy (Axiovert 200M, laser 

unit: ZESS LSM 510 Laser Module).
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Table 2.2: Details of primary and secondary antibodies used for 
immunocytochemical detection of mTOR, raptor, LC3A/B and Mitochondria

Primary antibodies

Immunogen Species Clonality Dilution Source

mTOR Rabbit Monoclonal
1:100
1:200 Millipore, UK

Raptor Rabbit Monoclonal
1:100
1:50

Cell Signaling 
Technology, UK

LC3 A/B Rabbit Monoclonal
1:100
1:200 Millipore, UK

Mitochondria Mouse Monoclonal
1:100
1:200

Secondary antibodies

Millipore, UK

Immunogen Species Conjugate Dilution Source

Rabbit IgG Donkey
Alexa fluor®

594 1:100
Life
technologies, UK

Mouse IgG Chicken
Alexa fluor®

488 1:100
Life
technologies, UK

Key: mTOR; mammalian target o f  rapamycin, Raptor; regulatory associated protein o f 

mTOR, LC3; microtubule-associated protein 1 light chain 3.

The optimal antibody titre was determined in preliminary experiments. The optimum 
concentration for each antibody used in this thesis is highlighted in bold.
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2.8 DNA MANIPULATION

DNA vector encode for truncated PS1 (N-terminal fragment) fused to the N-terminus of 

GFP was synthesized by Life Technologies, UK to be used in transfection o f HEH293 

cells. For vector multiplication, the vector was transformed into the E. coli strain NEB 

5-a (competent cells) (New England BioLabs, UK) and extracted using QIAprep Spin 

Miniprep kits (Qiagen, UK). To confirm the presence o f the vector in the extraction, 

restriction enzymes were used to digest the vector according to the cloning sites 

provided by the supplier (Life Technologies. UK).

2.8.1 Expression vector:

The synthetic gene PS1282EGFPa was assembled from synthetic oligonucleotides 

and/or PCR products. The fragment was cloned into pcDNA 3.1(+) _A009 using 

Hindlll and Xhol cloning sites (Figure 2.2). The plasmid DNA was purified from 

transformed bacteria and concentration determined by UV spectroscopy. The final 

construct was verified by sequencing. The sequence within the used restriction sites was 

100 % accurate as supplied by the manufacturer (Life Technologies, UK).

pcDNA™3.1(+) is a 5.4 kb vector derived from pcDNA™3 and designed for high-level 

stable and transient expression in mammalian hosts. High level stable and non- 

replicative transient expression can be carried out in most mammalian cells. The vector 

contains human cytomegalovirus (CMV) immediate-early promoter for high-level 

expression in a wide range o f mammalian cells, multiple cloning sites in the forward (+) 

and reverse (-) orientations to facilitate cloning, neomycin resistance gene for selection 

of stable cell lines, SV40 origin for episomal replication and simple vector rescue in cell 

lines expressing the large T antigen (i.e., COS-1 and COS-7), Ampicillin resistance 

gene and pUC origin for selection and maintenance in E. coli (Life Technology, UK).
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pUC

Figure 2.2: N-terminal fragment o f PS-1 fused to GFP

Designation: E.coli K 12 (dam+dcm+tonA rec-).

Gene name: PS1282EGFPa.

Gene size: 1638 bp.

Vector backbone: pcDNA3.1 (+)-A009.

Cloning sites: Hindlll / Xhol.

12ABA75P_PS1282EGFPa_pcDNA3.1 (+)
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2.8.2 Competent cells

The E. coli strain NEB 5-a (High Efficiency) (New England BioLabs, UK) was 

routinely exploited for production o f stock plasmids.

2.8.3 Transformation

A tube containing 0.05 ml o f chemically competent NEB 5-a competent E.coli cells was 

thawed on ice for 10 minutes, and then 1 pi o f plasmid DNA (Life Technology, UK) at 

an approximate concentration o f 100 ng was transferred into the cells mixture. The tube 

was gently agitated prior to being incubated on ice for 30 minutes. Cells were heat 

shocked at 42 °C for exactly 30 seconds then returned to ice for a further 5 minutes. 

After adding 950 pi o f super optimal broth with catabolite repression (SOC) at RT, cells 

were allowed to recover by incubating the tube at 37 °C, for 60 minutes with shacking 

at 250 rpm. When cells were purchased as competent cells, transformations were carried 

out according to the procedure described by the manufacturer. To select out the 

transformed cells, 100 pi o f undiluted, 1:10 diluted, 1:100 diluted and 1:1000 diluted 

transformation reactions were plated out on antibiotic (Amp)-selective LB-agar plate 

and incubated at 37°C overnight. In order to extract the plasmid DNA, a single colony 

was selected and incubated with 5 ml o f LB broth in a shaker at 37°C for 16 hours.

2.8.4 Growth media and solutions

2.8.4.1 Luria-Bertani media (LB media)

To 250 ml o f deionised water, 5 g o f LB media powder (ready to use) (Oxoid, UK) were 

added. The media solution was maintained at pH 7.0, and then sterilised by autoclaving 

at 121 °C for 20 minutes. LB-agar was produced by adding 3.75 g bacto-agar (Oxoid, 

UK) to the media prior to autoclaving.
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2.8.4.2 Antibiotic selection: Ampicillin

A 1000 x stock solution o f ampicillin was produced by dissolving ampicillin sodium 

salt (Melford, UK) in water at a concentration o f 100 mg/ ml and filter sterilised with a 

0.2 pm syringe filter (Sigma-Alrich, UK). Aliquots (1ml) o f the stock solution were 

kept at -20 °C until needed when they were gently thawed and added to culture media at 

a final concentration o f 100 pg/ml.

2.8.5 Plasmid minipreps

Plasmid DNA was extracted from 5 ml overnight growths in Luria Bertani (LB) 

medium using QLAprep Spin Miniprep kits (Qiagen, UK) according to the protocol 

provided by the supplier. The purified plasmid was stored at -20 °C.

2.8.6 Estimation of DNA concentration

The concentration o f the plasmid was determined using the optical absorbance at 260 

nm. The purity o f the plasmid was assessed by comparing the ratio o f absorbance at 260 

nm and 280 nm as a pure DNA sample has a ratio o f approximately 2. All absorbance 

measurements were taken on a Nano-Drop ND1000 spectrophotometer (Bio-Rad).

2.9 AGAROSE GEL ELECTROPHORESIS

2.9.1 Running buffer (TAE buffer)

To a liter o f deionised water, 4.84 g o f Tris hydroxymethylamine, 1 % (v/v) o f glacial 

acetic acid and 1 mM of EDTA (pH 8.0) were added.

2.9.2 Loading dye

Bromophenol blue 0.25 % (w/v)

Xylene cyanol 0.25 % (w/v)

Glycerol 30 % (v/v)
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2.9.3 DNA bp standards

GeneRuler 1 kbp DNA ladder (Fermentas Life Sciences) was prepared and used 

according to the manufacturer’s protocol. The ladder has 14 fragments o f 10000, 8000, 

6000, 5000,4000, 3500, 3000, 2500, 2000, 1500,1000, 750, 500 and 250 base pairs.

2.9.4 Preparation of 1 % (w/v) agarose gel

A 1 % (w/v) agarose gel was prepared by adding 1 g electrophoresis grade agarose to 

100 ml TAE buffer in a loosely stoppered conical flask. The solution was gently heated 

until all the agarose had melted and then allowed to cool. The gel solution was poured 

into the gel tray o f a Biorad mini sub DNA tank up to 1 cm in height. 1.5 pi ethidium 

bromide (5 mg/ml) was introduced into the gel solution and mixed. The well comb was 

carefully inserted and the gel allowed to set. The gel was placed in the gel tank and 

submerged in TAE buffer.

2.9.5 Electrophoresis

Samples were prepared with a ratio o f 2:1 (DNA solution: loading buffer) and 8 pi was 

loaded onto the gel. The gel was electrophoresed at constant voltage o f 100 V for 1 hour. 

The electrophoretic pattern was photographed utilising a UVP epi chemi II dark room 

using Labworks software version 4.0.

2.10 TRANSFECTION

2.10.1 Transient transfection

HEK293 cells were transfected in a 24-well plate. The cells were cultured on cover slips 

(13 mm) as above (2.7.1.1). Cell density was 50,000 cells per well. In this experiment, 

X-tremeGENE 9 DNA Transfection Reagent (Roche, UK) was used. Cells were 

incubated at 37 °C in 500 pi per well complete MEME media (Lonza, UK) and allowed 

reach 50 % confluence before transfection.
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DNA complex was prepared as follows: X-tremeGENE 9 DNA Transfection Reagent 

(Roche, UK), DNA and media (antibiotic and serum free media) were allowed to 

equilibrate to 15 °C. According to the supplier (Roche, UK), to form a complex, the 

minimum amount for the reaction between X-tremeGENE 9 DNA Transfection Reagent 

and DNA is 100 pi. So in a 100 pi reaction, a ratio o f 3:1 (transfection reagent: DNA) 

were used. 3 pi o f transfection reagent and 1 pg o f DNA were diluted in 100 pi of 

serum, antibiotic free media and incubated for 30 minutes at room temperature.

The plate was removed from the incubator and the complete media was aspirated and 

replaced with antibiotic free growth media (500 pi). According to the protocol, 25 pi 

per well o f the transfection complex was added in a drop wise manner. The plate was 

replaced in the incubator for 24 hours at 37 °C.

As mentioned above, the HEK293 cells were cultured on a cover slip in the well and 

because green fluorescent protein (GFP) was conjugated to the gene o f interest in the 

construct, cells expressing the construct were fixed and examined under the 

fluorescence microscope.

After 24 hours, the plate was removed from the incubator, the growth media was 

aspirated and the cells were fixed with ice cold methanol for 10 minutes (section 

2.7.1.2). The slides were prepared as described above (section 2.7.1.5) and the cells 

were examined under the fluorescence and confocal microscopes. The green fluorescent 

colour produced by correctly folded GFP inside the cell is an indicator o f successful 

transfection.
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C hapter 3

Antibody Characterisation



3.1 INTRODUCTION

The number o f antibodies available commercially grows ever larger. Maybe as a result, 

quality control is not always what it could and should be. Investigators must be aware o f  

potential mistakes and take steps to assure themselves that the specificity o f each 

antibody is as advertised (Couchman, 2009).

The use o f immunocytochemistry and immunohistochemistry has become ubiquitous in 

many scientific fields. Now, a large number o f published papers uses 

immunocytochemistry or immunohistochemistry, and some papers use ten or more 

antibodies to investigate issues o f colocalization or cell typing. This way o f dealing with 

these types o f techniques has produced a large amount of new information, but also a 

large amount o f misinformation (Clifford B, 2005).

The Journal o f comparative neurology has reported that the Journal has received 

distressed communications from authors, who have had to withdraw papers because an 

antibody against a novel marker was found to stain tissue in knockout animals, who lack 

the protein of interest (Clifford, 2005).

Many researchers use multiple antibodies from different companies and compare 

staining patterns. This is a very good approach; especially if  the antibodies are 

monoclonal and polyclonal antibodies and they recognize different epitopes on the 

antigen o f interest (Couchman, 2009).

In the present study, different antibodies from different sources against autophagy 

proteins o f interest (mTOR, raptor and LC3) were characterised utilizing western 

blotting. Anti-mTOR and anti-raptor antibodies were tested against protein extracted 

from three untreated and untransfected cell lines: normal rat kidney (NRK) cell line, 

human breast cancer (MCF-7) cell line and human embryonic kidney (HEK293) cell 

line. Anti-LC3 antibodies were tested against proteins extracted from rapamycin treated
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HEK293 cell line in order to detect the two forms o f LC3 (LC3-I and LC3-II), produced 

as a result o f autophagy induction under the influence o f rapamycin treatment.

3.2 MATERIALS AND METHODS

All the primary antibodies that have been characterised in this study and the ones that 

were selected to be used in this project are shown in the three tables below: anti-mTOR 

antibodies (table 3.1), anti-raptor antibodies (table 3.2) and anti-LC3 antibodies (table 

3.3). In the case o f anti-LC3 antibody characterisation, the proteins used were extracted 

from rapamycin treated (different concentrations for different times) HEK293 cells.
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3.2.1 Cell culture and protein extraction

Cell culture, protein extraction and western blot were conducted by the methods 

described in chapter 2 (Sections: 2.2, 2.3 and 2.6). Additional experiments (mTOR 

knock down using mTOR siRNA, peptide competition and negative controls) were 

conducted to confirm the identity o f some bands produced by the two rabbit polyclonal 

anti-mTOR antibodies (ab 83495) and (ab 25880) (Abeam, UK).

3.2.2 siRNA experiment for mTOR knockdown

RNA interference is the process o f sequence-specific, post transcriptional gene silencing 

in animals and plants, induced by double-stranded RNA that triggers the degradation of  

complementary mRNA (Gunter and Tuschi, 2004). To confirm the identity o f the bands 

at 42 kDa, siRNA experiments to knockdown mTOR gene expression were conducted. 

The two polyclonal anti-mTOR antibodies (ab 83495) and (ab 25880) were used to 

detect mTOR in this experiment.

In this experiment, only NRK cells were used. SignalSilence mTOR siRNA kit (lOpM 

in 150 pi) (Cell Signalling Technology, UK) was used. The transfection reagent used 

was X-treme GENE siRNA transfection reagent (1 ml) (Roche, UK). The proteins 

extracted from un-transfected NRK cells, NRK cells transfected with mTOR siRNA I 

and II (200 nM) and NRK cells treated with transfection reagent only were loaded 

(18pl/well) on to 7.0 % polyacrylamide gels.

The difference between siRNA I and II is that they target different regions o f the mRNA.

Both o f them target the open reading frame, but siRNA I is about 1000 nucleotides

more 5 than the second. In the siRNA experiment, the NRK cells were cultured in t25

flasks containing EMEM media (Lonza, UK) and left in the incubator at 37 °C until

80 % confluent. Next, the cells were trypsinised and the suspension was aspirated. Then,

the cells were centrifuged at 200g for 10 minutes at RT. The media was discarded and
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the cell pellets were re-suspended in 1 ml o f fresh serum and antibiotic free EMEM 

media. 20pl sample from the solution was taken for cell counting using a 

haematocytometer. Cells were seeded into 6-well plates at a density o f 2 x 105 (2 ml 

serum and antibiotic free medium/well) and allowed to adhere for 24 h. Subsequently, 

the cells were transfected by adding the complex (transfection reagent: siRNA) to each 

well (siRNA, 200 nM/well) according to the siRNA manufacturer protocol. Some wells 

contained un-transfected cells and others had cells treated with transfection reagent only 

as a control. Then the cells were returned to the incubator and allowed to grow until 

confluent. Protein was extracted from the cells as described in chapter 2 (section 2.3) 

and examined by western blotting.

3.2.3 Peptide competition experiment for mTOR antibody (ab83495)

Peptide competition experiment was also performed to confirm the identity o f the same 

bands detected on WB. The protein extraction from the NRK cells and western blot 

were performed as described in chapter 2 (Sections: 2.3 and 2.6). Only, the polyclonal 

anti-mTOR antibody (ab 83495) was used in this experiment. In order to block the 

primary antibody (ab83495), peptide (sequence derived from C-terminus o f human 

TOR protein, covering from 2400-2470 aa) corresponding to the immunogen (ab 

99156) (0.20 mg/ml) (Abeam, UK) was used.

In this experiment, blocking peptide (lOOpl) (0.20 mg/ml) was incubated with the 

primary antibody (lp l) (0. 50 mg/ml) in 1.5 ml o f 5 % non-fat skimmed milk in Tris- 

buffered saline (TBS) at RT for 1 hour before incubation with the membrane for 90 

minutes at room temperature.

3.2.4 Negative control for mTOR antibody (ab83495)

In the case o f negative control experiments, only secondary antibodies were incubated 

with the membrane. The secondary antibody was goat anti-rabbit labelled with alkaline
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phosphatase (AP) (Cell signalling technology, UK). To identify any false positive 

results, proteins extracted from NRK cells were loaded (18pl/well) on two 7% 

polyacrylamide gels and immunoblotted onto two nitrocellulose membranes. The first 

membrane was incubated with primary antibody (1:1000) overnight at 4°C, and then 

incubated with the secondary antibody (1:1000) for lhr at RT. The other membrane was 

incubated only with the secondary antibody (1:1000) for lhr at RT.

3.3 RESULTS

3.3.1 mTOR expression

The proteins used to assess the specificity o f the antibodies were extracted from three 

different cell lines which are: NRK, MCF-7 and HEK293. Six different anti-mTOR 

antibodies from different suppliers were characterised, (table 3.1). Also, alongside 

antibody characterisation, optimisation was performed in terms o f fixation and antibody 

dilution. For example, different percentages o f polyacrylamide gels ranging from 6 to

7.5 % were prepared in order to obtain the optimal gel percentage to separate bands for 

such a large protein (mTOR) at 289 kDa.

3.3.1.1 The Polyclonal anti-mTOR antibody (ab2732)

The polyclonal anti-mTOR antibody (ab2732) stained non-specific bands for mTOR 

(approximately at 129 and at 88 kDa) on 6.5 % polycarylamide gel utilizing NRK 

protein extract (Figure 3.1). After that and because mTOR is a large protein, 6% 

polyacrylamide gels were used. In this western blot, the antibody (ab2732) detected two 

bands: one at approximately 270 kDa which is close to that expected for mTOR at 289 

kDa. However, there was another band at approximately 115 kDa in cell extracts both: 

with and without protease inhibitor cocktail, (Figure 3.2). For this reason, this antibody 

(ab2732) was excluded and was not used to determine the subcellular localization o f  

mTOR by immunocytochemistry.
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3.3.1.2 The Polyclonal anti-mTOR antibodies (ab83495) and (ab25880)

After the failure o f the first antibody to detect the correct molecular weight band for 

mTOR, two more anti-mTOR antibodies (different immunogens) from the same 

company (Abeam, UK) were obtained and characterised. The antibodies are: (ab83495) 

and (ab25880).

According to the anti-mTOR antibodies supplier (Abeam) bands should be detected by 

ab 83495 at molecular size approximately 298 kDa and by ab 25880 at molecular size 

approximately more than 204 kDa.

On a 7 % polyacrylamide gel using NRK extraction, the two antibodies (ab83495) and 

(ab25880) detected bands at high molecular weight, approximately 135 kDa, but less 

than 298 and 204 kDa, while the major bands stained by the two antibodies were at 

approximately 42 kDa (Figures 3.3 and 3.4).

The above experiment was repeated using the same gel percentage and the same result 

was obtained (data not shown). In addition, the experiment was also repeated using 

lower gel percentage (6.5 %) and both antibodies (ab83495) and (ab25880) produced 

the same staining as before (Figures 3.5 and 3.6).

3.3.1.2.1 siRNA experiment for mTOR knockdown

From these results, it appears that the result is reproducible and the band detected at 

approximately 42 kDa, especially by ab83495, is strong and clear. Therefore, to confirm 

the identity o f the band, siRNA experiments to knockdown mTOR gene expression 

were conducted (figures 3.7 and 3.8). By using the same anti-mTOR antibodies, the 

immuno blot shows that the two antibodies: (ab83495) and (ab25880), failed to detect 

any band in the lanes (4, 5, 8 and 9) that represent the transfected cells lanes (i.e the 

lanes where mTOR has knocked down)
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Western blot analysis for actin (18pl/well) demonstrated the presence o f actin in all 

samples loaded at similar levels, acting as a loading control. The monoclonal anti-actin 

antibody produced a band at 42 kDa (figure 3.9).

3.3.1.2.2 Peptide competition experiment for mTOR antibody (ab83495)

The result o f the previous experiment (mTOR knockdown) suggested that the lower 

molecular weight bands might be generated from mTOR, and therefore another 

confirmation experiment was required. Peptide competition experiment in which the 

primary antibody is blocked by the corresponding peptides before incubation with the 

membrane was used. In this experiment, the primary antibody (ab83495) was blocked 

by the corresponding peptide (ab99156).

Western blot result in (figure 3.10) shows that the antibody was blocked and the bands 

disappeared, as can be seen in lanes 5 and 6 when compared with the other lanes.

3.3.1.2.3 Negative control experiment for mTOR antibody (ab83495)

To exclude any false positive result, protein extracted from NRK (18pl/well) was used 

as a negative control to assess non-specific binding o f the secondary antibodies. The 

result revealed no non-specific bands detected by the secondary antibodies in the 

absence o f the primary antibodies as can be seen in lanes 5 and 6 when compared with 

lanes 2 and 3 where primary antibodies were used before the secondary antibody (figure 

3.11).

To test for mTOR degradation during extraction, the same protein extraction (with and 

without protease inhibitors cocktail) was performed. The western blot analysis (Figures 

3.12 and 3.13) revealed that both antibodies stained faintly bands for mTOR at the 

correct molecular weight (approximately 289 kDa). However, the antibodies especially 

(ab38495) also stained very strong and clear bands at approximately 70 kDa on the 

same membrane.
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It has been reported that the human breast cancer cell line MCF-7 is a good model to 

study mTOR. For this reason, MCF-7 cells were obtained, and again the same 

antibodies were tested against the protein extracted from MCF-7 cells. The protein was 

extracted from MCF-7 cells with and without protease inhibitor cocktail. The western 

blot results showed that the antibodies (ab83495) and (ab25880) stained the same bands 

that were seen in the previous experiment (bands at approximately 289 and 70 kDa) 

with extra bands at approximately 170 and 130 kDa in case o f ab83495 (Figure 3.14) 

and (Figure 3.15).

3.3.1.3 Rabbit polyclonal anti-mTOR antibody (2972)

The previous three different commercial anti-mTOR antibodies from the same company 

(Abeam, UK) were characterised. All o f the antibodies failed to detect a single band at 

the appropriate molecular weight for mTOR full length protein on different percentages 

o f polyacrylamide gels. For this reason, using anti-mTOR antibodies from different 

suppliers was considered. Rabbit polyclonal anti-mTOR antibody (2972) (Cell 

Signaling Technology, UK) was obtained. The antibody was tested against protein 

extracted from NRK, MCF-7 and HEK293 cells (Figure 3.16) and (Figure 3.17) on 6 % 

polyacrylamide gels. The antibody produced the correct molecular weight bands for 

mTOR with the three cell lines at approximately 289 kDa. However, the antibody also 

stained faintly other bands at approximately 250 and 180 kDa on the same membrane. 

For this reason, also this antibody was excluded from the project.

3.3.1.4 Rabbit polyclonal anti-mTOR antibody (07-1415)

Another rabbit polyclonal anti-mTOR antibody (07-1415) (Millipore, UK) was obtained. 

The antibody also was tested against protein extracted from two cell lines, NRK and 

MCF-7. The proteins were separated on 6 % polyacrylamide gel. The western blot result 

showed staining o f multiple bands in both cell lines (Figure 3.18). Some o f these bands
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were at the correct molecular size o f full length mTOR, but the other bands were at 

different molecular weights. Also, because o f the multiple band detection, this antibody 

was excluded from the study.

3.3.1.5 Rabbit monoclonal anti-mTOR antibody (04-385)

All the anti-mTOR antibodies that were previously characterised were polyclonal 

antibodies. The shared characteristic between these polyclonal antibodies is the 

production o f multiple bands. For this reason, a rabbit monoclonal anti-mTOR antibody 

(04-385) (Millipore, UK) was obtained. The monoclonal antibody was tested against 

proteins extracted from three different cell lines (NRK, MCF-7 and HEK293). The 

proteins were separated on 6 % polyacrylamide gels. The western blot results revealed 

that the antibody detected only one band at the correct molecular weight o f full length 

mTOR (289 kDa) with the three cell lines (Figures 3.19 and 3.20). Based on this result, 

this rabbit monoclonal anti-mTOR antibody was selected to be used in the 

determination o f the subcellular localization o f mTOR protein in the present study. 

While, all the other previously characterised polyclonal anti-mTOR antibodies were 

excluded from the research.
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Figure 3.1 Western blot analysis for mTOR expression by NRK cells, protein sample (18pl/well) was 
loaded and analyzed by polyclonal anti-mTOR antibody (ab2732) on 6.5% polyacrylamide gel. Lane 1 
prestained protein marker. Lane 2 protein extracted from NRK cells.
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300
250

130

100

Figure 3.2 Western blot analysis for mTOR expression by NRK cells, protein sample (18pl/well) was 
loaded and analyzed by polyclonal anti-mTOR antibody (ab2732) on 6.0% polyacrylamide gel. Lanes 1 
and 5 multicolor high range protein ladder. Lanes 2-4 protein extracted from NRK cells without protease 
inhibitor cocktail. Lanes 6-8 protein extracted from NRK cells with protease inhibitor cocktail.
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Figure 3.3 Western blot analysis for mTOR expression by NRk cells, Protein samples (18jxl/well) were 
loaded and analyzed by using polyclonal anti-mTOR antibodies (ab83495) on 7.0 % polyacrylamide gel. 
Lane 1 is molecular marker. Lanes 2-3 Protein extracted from NRK cell line.

Figure 3.4 Western blot analysis for mTOR expression by NRK cells, Protein samples (18pl/well) 
were loaded and analyzed by using polyclonal anti-mTOR antibodies (ab25880) on 7.0 % polyacrylamide 
gel. Lane 1 is molecular marker. Lanes 2-3 Protein extracted from NRK cell line.
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Figure 3.5 Western blot analysis for mTOR expression by NRk cells, Protein samples (18pl/well) were 
loaded and analyzed by using polyclonal anti-mTOR antibodies (ab83495) on a 6.5 % polyacrylamide gel. 
Lane 1 is molecular marker. Lane 2 Protein extracted from NRK cell line.
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Figure 3.6 Western blot analysis for mTOR expression by NRK cells, Protein samples (18pl/well) 
were loaded and analyzed by using polyclonal anti-mTOR antibodies (ab25880) on a 6.5 % 
polyacrylamide gel. Lane 1 is molecular marker. Lane 2 Protein extracted from NRK cell line.
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Figure 3.7 mTOR knocked down. Western blot analysis for mTOR expression by NRK cells, Protein 
samples (18|il/well) were loaded on 7 % gels and analyzed using polyclonal anti-mTOR antibodies 
(83495). Lanes 2-3 Protein extracted from untreated NRK cells, lanes 4-5 Protein extracted from NRK 
cells treated with mTOR siRNA I, lanes 6-7 Protein extracted from NRK cells treated with transfection 
reagent only, Lanes 8-9 protein extracted from NRK cells transfected with mTOR siRNA II and lane 1 is 
molecular weight markers.
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Figure 3.8 mTOR knocked down. Western blot analysis for mTOR expression by NRK cells, Protein 
samples (18pl/well) were loaded on 7 % gels and analyzed using polyclonal anti-mTOR antibodies 
(25880). Lanes 2-3 Protein extracted from untreated NRK cells, lanes 4-5 Protein extracted from NRK 
cells treated with mTOR siRNA I, lanes 6-7 Protein extracted from NRK cells treated with transfection 
reagent only, Lanes (8-9) protein extracted from NRK cells transfected with mTOR siRNA II and lane 1 
is molecular weight markers.

2 3 4 5  6 7 8 9

Actin

Figure 3.9 Western blot analysis for actin expression by NRK cells, Protein samples (18pl/well) were 
loaded on 7.0 % gels and analyzed by using polyclonal rabbit anti-actin antibodies. Lanes 2-3 Protein 
extracted from untransfected NRK cells, lanes 4-5 Protein extracted from NRK cells transfected with 
mTOR siRNA I, lanes 6-7 Protein extracted from NRK cells treated with transfection reagent only, Lanes 
8-9 protein extracted from NRK cells transfected with mTOR siRNA II.
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Figure 3.10 Peptide competitions.Westem blot analysis for mTOR expression by NRK cells, Protein 
samples (18pl/well) were loaded and analyzed by using polyclonal anti-mTOR antibodies (ab83495). 
Lanes 2-3 Protein extracted from NRK cells, lanes 5-6 Protein extracted from NRK cells, but polyclonal 
anti-mTOR primary antibodies were blocked by corresponding peptide, lanes 8-9 Protein extracted from 
NRK cells, and Lanes 1 -4-7 are molecular markers.

2 nd AB

kDa 1 2 3 4 5 6

215  '

129 = -

Figure 3.11 negative control for mTOR. Protein samples (18jil/well) were loaded. (Western blot 
analysis without primary anti-mTOR antibodies). Lanes 2-3 protein extracted from NRK cells, primary 
and secondary antibodies were used, lanes 5-6 proteins extracted from NRK cells, only secondary 
antibodies were used and lanes 1-4 are molecular markers.
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Figure 3.12 Western blot analysis for mTOR expression by NRK cells, Protein samples (18|il/well) 
were loaded and analyzed by using polyclonal anti-mTOR antibodies (ab83495). Lanes 2-4 Protein 
extracted from NRK cells without protease inhibitor cocktail. Lanes 6-8 Protein extracted from NRK cells 
with protease inhibitors cocktail. Lanes 1 and 5 are multicolor high range protein ladder.

NRK Protease inhibitors
kDa 1 2 3 4 5 6 7 8

289 kDa

<------  70 kDa

Figure 3.13 Western blot analysis for mTOR expression by NRK cells, Protein samples (18pl/well) 
were loaded and analyzed by using polyclonal anti-mTOR antibodies (ab25880). Lanes 2-4 Protein 
extracted from NRK cells without protease inhibitors cocktail. Lanes 6-8 Protein extracted from NRK 
cells with protease inhibitors cocktail. Lanes 1 and 5 are multicolor high range protein ladder.
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Figure 3.14 Western blot analysis for mTOR expression by MCF-7 cells, Protein samples (18|il/well) 
were loaded and analyzed by using polyclonal anti-mTOR antibodies (ab83495). Lanes 2-4 Protein 
extracted from MCF-7 cells without protease inhibitors cocktail. Lanes 6-8 Protein extracted from MCF-7 
cells with protease inhibitor cocktail. Lanes 1 and 5 are multicolor high range protein ladder.
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kDa 1 2 3 4 5 6 7 8

300

70

+
Figure 3.15 Western blot analysis for mTOR expression by MCF-7 cells, Protein samples (18pl/well) 
were loaded and analyzed by using polyclonal anti-mTOR antibodies (ab25880). Lanes 2-4 Protein 
extracted from MCF-7 cells without protease inhibitor cocktail. Lanes 6-8 Protein extracted from MCF-7 
cells with protease inhibitor cocktail. Lanes 1 and 5 are multicolor high range protein ladder.
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Figure 3.16 Western blot analysis for mTOR expression by NRK and MCF-7 cells, Protein samples 
(18pl/well) were loaded and analyzed by using polyclonal anti-mTOR antibodies (2972) (Cell Signaling 
Technology, UK). Lanes 2-4 Protein extracted from NRK cells with protease inhibitor cocktail. Lanes 6-8 
Protein extracted from MCF-7 cells with protease inhibitor cocktail. Lanes 1 and 5 are multicolour high 
range protein ladder.
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Figure 3.17 Western blot analysis for mTOR expression by HEK293 cells, Protein samples (18pl/well) 
were loaded and analyzed by using polyclonal anti-mTOR antibodies (2972) (Cell signaling technology, 
UK). Lanes 2-4 Protein extracted from HEK293 cells with protease inhibitors cocktail. Lane 1 is 
multicolour high range protein ladder.
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Figure 3.18 Western blot analysis for mTOR expression by NRK and MCF-7 cells, Protein samples 
(18pl/well) were loaded and analyzed by using polyclonal anti-mTOR antibodies (07-1415) (Millipore, 
UK). Lanes 2-4 Protein extracted from NRK cells with protease inhibitors cocktail. Lanes 6-8 Protein 
extracted from MCF-7 cells with protease inhibitor cocktail. Lanes 1 and 5 are multicolour high range 
protein ladder.
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Figure3.19 Western blot analysis for mTOR expression by NRK and MCF-7 cells, Protein samples 
(18pil/well) were loaded and analyzed by using monoclonal anti-mTOR antibodies (04-385 Millipore, 
UK). Lanes 2-4 Protein extracted from NRK cells with protease inhibitor cocktail. Lanes 6-8 Protein 
extracted from MCF-7 cells with protease inhibitor cocktail. Lanes 1 and 5 are multicolour high range 
protein ladder.
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Figure 3.20 Western blot analysis for mTOR expression by HEK293cells, Protein samples (18pl/well) 
were loaded and analyzed by using monoclonal anti-mTOR antibodies (04-385 Millipore, UK). Lanes 2-4 
Protein extracted from HEK293 cells with protease inhibitor cocktail. Lanes 1 is multicolour high range 
protein ladder.
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3.3.2 Raptor expression:

Using the same strategy as used for anti-mTOR antibodies, anti-raptor antibodies were 

characterised. Three different anti-raptor antibodies from different suppliers were 

obtained (table 3.2). During anti-mTOR antibodies characterisation, the results showed 

that the rabbit monoclonal anti-mTOR antibody was more specific than the polyclonal 

ones in detecting mTOR full length protein. Based on this information, it was decided to 

obtain anti-raptor antibodies which were either polyclonal or monoclonal. These anti

raptor antibodies were tested against proteins extracted from three different cell lines 

(NRK, MCF-7 and HEK293). For this western blot analysis, 7 % polyacrylamide gels 

were used.

3.3.2.1 The polyclonal anti-raptor antibodies (ST1048) and (09-217)

According to the suppliers, the raptor protein detected by these antibodies was at 

molecular weight o f 150 kDa. The western blot result revealed that anti-raptor 

(ST1048) (Calbiochem, UK) antibody, when tested against protein extracted from 

HEK293 cells, stained multiple bands at different molecular sizes including one at the 

expected 150 kDa molecular weight for raptor (Figure 3.21). The other anti-raptor (09- 

217) (Millipore, UK) antibody, when tested against the same protein extraction, 

produced two bands. One o f these bands is very near to the correct molecular weight o f  

raptor (Figure 3.22). Because of the production o f multiple bands, it was difficult to 

utilize these two antibodies in the determination o f the subcellular localization o f raptor 

by ICC. So, these two antibodies were excluded from the project.

3.3.2.2 The monoclonal anti-raptor antibody (2280): see (table 3.2).

After the failure o f the previous two polyclonal anti-raptor antibodies to detect only one 

band for raptor at the right molecular size, the monoclonal anti-raptor (2280) (Cell 

Signalling Technology, UK) antibody was tested. According to the supplier, this
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antibody should detect a band at molecular weight 150 kDa. Firstly, the antibody was 

tested against protein extracted from NRK cells. After the separation o f the protein on 

7 % polyacrylamide gel, the western blot demonstrated that the antibody detected only 

one band at 150 kDa (Figure 3.23). To confirm the result, in the same experiment 

circumstances, the antibody was tested against proteins extracted from the other two cell 

lines (MCF-7 and HEK293). The western blot result revealed that the antibody has also 

stained only one band for raptor at the right molecular weight in both cell lines (Figures

3.24 and 3.25). From these results in the present study, it seems that monoclonal 

antibodies are more specific in western blot analysis than polyclonal antibodies. Based 

on these results, this antibody (2280) was selected to be used in the determination of 

raptor subcellular localization, while the other two polyclonal antibodies were excluded.
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Figure 3.21 Western blot analysis for raptor expression by HEK293 cells, Protein samples (18pl/well) 
were loaded and analyzed by using polyclonal anti-raptor antibodies (ST1048, Calbiochem, UK). Lanes 
2-4 protein extracted from HEK293 cells with protease inhibitors cocktail. Lane 1 is multicolor high 
range protein ladder.
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Figure 3.22 Western blot analysis for raptor expression by HEK293 cells, Protein samples (18pl/well) 
were loaded and analyzed by using polyclonal anti-raptor antibodies (09-217, Millipore, UK). Lanes 2-4 
protein extracted from HEK293 cells with protease inhibitors cocktail. Lane 1 is multicolor high range 
protein ladder.

HEK293 
2 3

91



NRK
kDa 1 2 3 4

£ <--------  150 kDa

f m  

:'iy0 '

Figure 3.23 Western blot analysis for raptor expression by NRK cells, Protein samples (18pl/well) 
were loaded and analyzed by using monoclonal anti-raptor antibodies (2280 Cell Signaling Technology, 
USA). Lanes 2-4 Protein extracted from NRK cells with protease inhibitors cocktail. Lane 1 is multicolor 
high range protein ladder.

MCF-7  
kDa 1 2 3 4

150 kDa

Figure 3.24 Western blot analysis for raptor expression by MCF-7 cells, Protein samples (18pl/well) 
were loaded and analyzed by using monoclonal anti-raptor antibodies (2280 Cell Signaling Technology, 
USA). Lanes 2-4 Protein extracted from MCF-7 cells with protease inhibitors cocktail. Lanes 1 is 
multicolor high range protein ladder.
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Figure 3.25 Western blot analysis for raptor expression by HEK293 cells, Protein samples (18 pl/well) 
were loaded and analyzed by using monoclonal anti-raptor antibodies (2280 Cell Signaling Technology, 
USA). Lanes 2-4 Protein extracted from HEK293 cells with protease inhibitors cocktail. Lane 1 is 
multicolor high range protein ladder.
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3.3.3 LC3 expression:

The characterisation o f anti-LC3 antibodies was more difficult than the characterisation 

o f anti-mTOR and anti-raptor antibodies. LC3 is now widely used to monitor autophagy. 

One approach is to detect LC3 conversion (LC3-I to LC3-II) by immunoblot analysis. 

Pro-LC3, which is neither LC3-I nor LC3-II, is not detected under normal conditions 

because it is processed by Atg4 into LC3-I immediately after synthesis (Kabeya et al., 

2000). Although the molecular weight o f LC3-II is larger than that o f LC3-I due to the 

addition o f PE, LC3-II migrates faster than LC3-I in SDS-PAGE possibly because o f its 

extreme hydrophobicity. Since LC3-II itself is degraded by autophagy, LC3 

immunoblotting is sometimes interpreted inappropriately (Mizushima and Yoshimori, 

2007). It so difficult to decide whether the antibody used does not work properly or the 

experiment needs further optimization. For instance, the type and gel percentage need to 

be changed or gel ingredients need to be replaced. In the present study, three different 

anti-LC3 antibodies from different companies were obtained (table 3.3). The antibodies 

were tested against proteins extracted from HEK293 cells. But this time, the cells were 

firstly treated with different concentrations o f rapamycin for different times to induce 

autophagy.

3.3.3.1 The polyclonal anti-LC3 (NB100-2220):

According to the supplier, this polyclonal antibody should detect two bands for LC3-I 

and LC3-II at molecular weights 17 and 19 kDa respectively. The antibody was tested 

against proteins extracted from rapamycin treated HEK293 cells. Because LC3 is a low 

molecular weight protein, the extracted proteins were separated on 10% tris-glycine 

polyacrylamide gels. The western blot result has showed a large number o f bands 

(Figure 3. 26), which could imply specificity issues. For this reason, the antibody was 

excluded from the project.
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3.3.3.2 The monoclonal anti-LC3B (D ll) XP (3868):

A monoclonal anti-LC3 antibody was tested against proteins extracted from rapamycin 

treated HEK293 cells. But this time, the extracted proteins were separated on 10% tris- 

tricine gel (Schagger and von Jagow, 1987). According to the supplier, two bands for 

LC3-I and LC3-II should be detected by the antibody at molecular weights 14 and 16 

kDa respectively. The western blot result revealed that the antibody detected two bands 

(Figure 3.27). However, one o f these bands is at a higher molecular size than expected, 

while the other one is near the expected size, but not separated into two bands (LC3-I 

and LC3-II). In the present study, this is the first observation o f a monoclonal antibody 

producing multiple bands. Production o f multiple bands led to the exclusion o f this 

antibody from the present research.

3.3.3.3 Rabbit monoclonal anti-LC3A/B (MABC176):

This antibody was examined against proteins extracted from rapamycin treated 

HEK293 cells. Also, the extracted proteins were run on 10% tris-tricine gels. The 

western blot demonstrated that the antibody detected only one strong band at the 

expected molecular weight. However, this band did not separate to produce the two LC3 

forms (LC3-I and LC3-II) (data not shown). This result was promising because the 

detected strong band was at the correct molecular size and tends to be separated into 

two bands. This suggested an optimization may be required. Western blot analysis was 

performed many times under a range o f conditions in order to detect LC3-I and LC3-II. 

Finally, by replacing glycerol with urea during the preparation o f the resolving gel, and 

also by decreasing of the antibody concentration from 1:1000 to be 1: 2000, the 

antibody succeeded in detecting LC3-I and LC3-II consistently at the correct molecular 

weight (Figure 3. 28). Based on this result, the antibody was selected to be used in the 

determination o f the subcellular localization o f LC3 protein.
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Figure 3.26 Western blot analysis for LC3 expression by HEK293 cells, Protein samples (18pl/well) 
were loaded and analyzed by using polyclonal anti-LC3 antibody (NB100-2220) (Novus Biologicals, US). 
Lanes 3, 4 and 5 HEK293 treated with lOnM, 30nM and 50nM of rapamycin respectively for 16 hrs. 
Lanes 8, 9 and 10 HEK293 treated with lOOOnM, 2000nM and 3000nM of rapamycin respectively for 
72hrs. Proteins extracted from HEK293 cells with protease inhibitor cocktail. Lanes 2 and 7 untreated 
HEK293. Lanes land 6 are molecular marker.
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Figure 3.27 Western blot analysis for LC3 expression by HEK293 cells, Protein samples (18pl/well) 
were loaded and analyzed by using monoclonal anti-LC3B antibody (D ll)X P (3868) (Cell Signaling 
Technology, US). Lanes 3, 4 and 5 HEK293 treated with lOnM, 30nM and 50nM of rapamycin 
respectively for 16 hrs. Lanes 8, 9 and 10 HEK293 treated with lOOOnM, 2000nM and 3000nM of 
rapamycin respectively for 72hrs. Protein extracted from HEK293 cells with protease inhibitor cocktail. 
Lanes 2 and 7 untreated HEK293. Lanes land 6 are molecular weight marker.
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Figure 3.28 Western blot analysis for LC3 expression by HEK293 cells, Protein samples (18pl/well) 
were loaded and analyzed by using monoclonal anti-LC3B antibody (LC3A/B) (MABC176, Millipore, 
UK). Lanes 3, 4 and 5 HEK293 treated with 50nM, 200nM and 500nM of rapamycin respectively for 16 
hrs. Lane 2 untreated HEK293. Lane 1 is molecular marker. Protein extracted from HEK293 cells with 
protease inhibitor cocktail.
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3.4 DISCUSSION

Antibodies can provide a great deal o f critical information about a specific protein under 

both normal and disease conditions, including localisation and quantification o f  

expression with respect to biological state, post-translational modifications and function 

within a specific cell (Solache et al., 2013). User experience has shown that high quality 

antibodies are most often a combined result o f effective strategies for immunogen 

design, immunisation, screening, purification, validation and finally customer usage and 

feedback (Solache et al., 2013). Many commercially available antibodies on the market 

today have not been rigorously tested and have only been analysed via a single method 

(Bordeaux et al., 2010).

For this reason, the antibodies that have been selected to be used in the present study to 

detect the subcellular localisation o f autophagy proteins o f interest were re-characterised 

utilizing western blot technique. Validation by western blotting is best performed using 

multiple cell or tissue lysates to determine the range o f detectable endogenous protein 

expression in various cells and tissues (Solache et al., 2013). In the present study, the 

selected antibodies were tested against three different cell lysates (NRK, MCF-7 and 

HEK293 cells).

Western blotting is a primary validation step that is routinely used to determine whether 

a specific antibody recognises the denatured target antigen. The observation o f a single 

band that corresponds to the target’s molecular weight indicates specificity for the target 

antigen. However, the presence o f multiple bands or a band exhibiting an unexpected 

molecular weight does not necessarily indicate lack o f specificity. These bands may 

represent the same target antigen with post-translational modifications, breakdown 

products or splice variants (Solache et al., 2013).

For instance, the case of the polyclonal anti-mTOR antibodies (ab25880) and (ab83495) 

characterised in this project. By utilizing different cell lysates (NRK and MCF-7), the
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antibodies have detected multiple bands at different molecular sizes including ones at 

expected 289 kDa molecular weight for mTOR especially with MCF-7 cell lysate 

(Figures 3.12, 3.13, 3.14 and 3.15). To confirm the identity of the detected bands, 

mTOR in NRK cells was knocked down by mTOR siRNA, the primary antibodies were 

blocked by the corresponding peptides and the secondary antibodies were used without 

primaries as a negative control. All the results (Figures 3.7, 3.8, 3.10 and 3.11) revealed 

that the previously observed multiple bands might be belonging to the mTOR protein. 

The polyclonal anti-mTOR antibodies (ab25880) and (ab83495) have failed to detect 

the multiple bands when mTOR was knocked down, also the same primary antibodies 

failed to stain any bands when blocked by their corresponding peptides. In addition, no 

bands were produced by the secondary antibody alone. However, such observations 

should raise concerns for using these antibodies for further experiments. For this reason, 

the antibodies were excluded from the study.

Although in some cases high-quality and reliable results can be obtained with crude 

polyclonal antisera, in other cases even the most highly purified polyclonal antibody 

preparations (i.e., affinity-purified antibody preparations) may contain antibodies with 

reactivity against closely related antigenic sequences, and this cross reactivity 

contributes to or even dominates the observed signal (Rhodes and Trimmer, 2006).

All the polyclonal antibodies that have been characterized in the present study have 

produced the same observation (multiple bands) and failed to produce a single band for 

the autophagy proteins o f interest. The main goal from the commercial antibody 

characterisation in the present study was to select the appropriate antibodies that are 

able to detect only one band for the proteins o f interest to utilize them in the ICC. For 

this reason, all o f the polyclonal antibodies were excluded from the present research.
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The project focused on the characterisation o f the monoclonal antibodies. Monoclonal 

antibodies are produced from single clones o f fused cells producing immunoglobulins 

(Bordeaux et al., 2010). Consistent with this, in the present study, four monoclonal 

antibodies were characterised. Three o f the monoclonal antibodies were specific; they 

detected a single band at the expected molecular weights 289 kDa, 150 kDa and 16 kDa 

for mTOR, raptor and LC3 proteins respectively (Figures 3.20, 3.25 and 3.28). However, 

the clones o f the monoclonal antibodies may be grown in host animals where the ascites 

fluid containing the secreted antibody is collected (Ramos-Vara, 2005; Saper and 

Sawchenko, 2003).

Therefore, these antibody preparations may be contaminated by antibodies other than 

the monoclonal antibody o f interest. A study by Spicer et al.(1994) demonstrated that 

seven o f 20 monoclonal antibody preparations (35%) they analyzed had staining 

patterns localized to the Golgi cistemae unrelated to the antigenic specificity o f the 

antibody, and that five o f these cross-reactive antibodies failed to even stain the antigen 

o f interest (Spicer et al., 1994).

It has also been reported that antibody validation has shown similar lack o f specificity, 

even in monoclonal antibodies (Bordeaux et al., 2010). This may be in consistence with 

the fourth monoclonal antibody characterised in the present study. The monoclonal anti- 

LC3B (D ll)  (3868) failed to stain only the expected molecular size bands, but it 

recognized another band at the wrong molecular weight. For this reason this antibody 

was excluded from the study, while the other three monoclonal antibodies were selected 

to detect the subcellular localisation o f mTOR, raptor and LC3 autophagy proteins in 

HEK293 cells utilizing ICC.

In the case o f ICC, it has been reported that an antibody may recognise a protein that is 

fully denatured but cannot detect the same protein in its natural conformation; therefore, 

this antibody would work well for use in western blotting but not for
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immunoprecipitation or other applications that require detection o f native protein and 

vice versa. Additionally, it is impossible to predict how an antibody will perform when 

using different sample sources, or when variations are introduced into sample 

preparation protocols (Solache et al., 2013).

In addition, it has been demonstrated that western blotting cannot be an absolute 

standardization for antibody binding in IHC or other assays, where the antigen is in its 

native conformation (Bordeaux et al., 2010). Furthermore, the native versus denatured 

conformation is further complicated by methods used to fix tissue. Epitopes that are not 

exposed in the native proteins can be exposed in fixed tissue and vice versa, even 

though they may not be truly denatured. Thus, an antibody could recognize one epitope 

in fresh tissue, but when applied to fixed tissue recognize another epitope (Saper and 

Sawchenko, 2003).

However, a database, AbMiner, was published by Major et al. (2006). This database is a 

resource for information including the immunogen, vendor, and antigen on over 600 

commercially available monoclonal antibodies that the group validated via WB against 

pooled cell lysates from each o f the NCI-60 cell lines. Based on this database, it was 

reported that an antibody was considered validated if  it produced a band (or bands) o f  

the expected molecular weight(s) for the target protein (Major et al., 2006).

3.5 CONCLUSION

Antibodies have become a critical research tool within the scientific community and are

routinely used in a number of applications. Most commercial antibodies available today

have not been rigorously tested, however, and there are no universally accepted

validation guidelines or standards to which manufacturers must adhere, leaving

suppliers to develop their own internal validation specifications. In the present study,

the commercial antibodies were re-characterised utilizing western blot technique. A

mixture o f twelve commercial polyclonal and monoclonal antibodies against autophagy
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proteins o f interest (mTOR, raptor and LC3) was characterised. The antibodies were 

tested against three different cell lysates (NRK, MCF-7 and HEK293 cells). The 

western blot results have revealed that the monoclonal antibodies are more specific than 

the polyclonal ones. During the characterisation and optimization processes, only three 

monoclonal antibodies were succeeded to detect the only expected molecular weight 

bands for mTOR, raptor and LC3. The selected three monoclonal antibodies are: rabbit 

monoclonal anti-mTOR antibody 04-385 (Millipore, UK), rabbit monoclonal anti-raptor 

antibody 2280 (Cell signalling technology, UK) and rabbit monoclonal anti-LC3A/B 

antibody MABC176 (Millipore, UK) see (Tables 3.1, 3.2 and 3.3), see (Figures 3.20,

3.25 and 3.28) respectively.

The remaining antibodies were excluded from the study, while the selected three 

monoclonal antibodies were utilized to detect the subcellular localization o f mTOR, 

raptor and LC3 in HEK293 cells.
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4.1 INTRODUCTION

Proteins are able to reside in two or more subcellular locations simultaneously or travel 

across two or more subcellular location sites. This characteristic o f proteins, making 

them unique in their biological functionality, is o f particular interest (Chou, 2013). This 

part o f the project was focused on the determination o f the subcellular localizations o f  

some important autophagy proteins in order to understand their behaviour under 

different cellular conditions. The subcellular localization o f mTOR, raptor and LC3, 

which are key regulators of autophagy process, were determined in non-autophagic and 

autophagic cells by immunocytochemistry. The effects o f autophagy induced by 

starvation or rapamycin treatment were examined. As mentioned in chapter one, it is 

known that autophagy is aborted in neurodegenerative diseases such as Alzheimer’s 

disease and also a mutation in PS-1 is the common genetic cause o f this disease. Thus, 

does the mutated PS-1 contribute to aborted autophagy?

The main purpose o f this is to build knowledge about the behaviour o f mTOR, raptor 

and LC3 in non-autophagic or autophagic cells in the normal state where there is no 

genetic defect in the cells. This might help in discovering o f any changes in the 

subcellular localization of these proteins after the transfection o f the cells with truncated 

PS-1. This may reveal the reason behind the failure o f autophagy in clearing o f the 

protein aggregation inside the cells o f degenerative diseases.

4.2 MATERIALS AND METHODS

4.2.1 Cell culture:

Cells were cultured on cover slips in 24-well plates as described in chapter 2. In this 

project, MCF-7 cells were used as a model to study mTOR.
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4.2.2 Rapamycin treatment:

In the case o f HEK293 cell line, cells were un-treated or treated with different 

concentrations o f rapamycin for different times. 1 mg o f rapamycin (Sigma, UK) was 

dissolved in 1 ml o f dimethyl sulfoxide (DMSO) (Sigma, UK) to obtain 1000,000 nM 

o f rapamycin and 100 % (v/v) of DMSO as a stock solution.

The volume o f the media used per well o f 24-well plate was 500 pi and the cells 

seeded onto the plates at a density o f (0.5 xlO5) cells per well. Working solutions were 

prepared from the stock solution by dilution in serum-free media and added to the 

media per well to obtain the required final concentration. In this project, HEK293 cells 

were treated with six different concentrations o f rapamycin for two different periods of 

time. First; the cells were treated with 10, 30 and 50 nM of rapamycin for 16 hours and 

the concentration o f DMSO was fixed at 0.005 % (v/v) with the three concentrations. 

Second; high concentrations o f rapamycin were applied for longer time. The cells were 

treated with 1000, 2000 and 3000 nM o f rapamycin for 72 hours and DMSO 

concentration was 0.3 % (v/v).

4.2.3 Serum Starvation:

In the present study, autophagy was also induced by serum starvation. Serum starvation 

has been used as a tool to study autophagy and other molecular mechanisms by many 

researchers (Pirkmajer and Chibalin, 2011). In a study o f the role o f astrocyte elevated 

gene-1 (AEG-1) in autophagy induction, it was revealed that AEG-1 promotes cell 

survival by autophagy in normal cells grown under serum starvation conditions (Bhutia 

et al., 2010). In addition, autophagy was induced by serum starvation in human lung 

cancer cell line (HI299), human colon cancer cell line (HCT116) and human cervical 

carcinoma cell line (Hela) to determine whether FoxOl is a direct factor in the 

autophagic process. This determination was through the measurement o f autophagy 

biological markers; p62 degradation and LC3-II accumulation (Zhao et al., 2010).
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Nutrient starvation is a typical trigger o f autophagy, based on this, unavailability of any 

type o f essential nutrients is able to induce autophagy (Mizushima, 2007). Apart from 

amino acid deprivation, serum starvation results in lack of growth factors which impacts 

on induction o f autophagy. It has been demonstrated that the endocrine system, 

especially insulin has the ability to manage autophagy regulation in vivo. It has also 

been revealed that other hormones and growth factors are able to regulate autophagy 

(Mizushima, 2007). It is well known that serum starvation has the ability to induce 

autophagy in many different types o f cultured cells (Mizushima, 2007). Haematopoietic 

growth factor interleukin-3 (IL-3) suppressed autophagy via regulation o f nutrient 

availability (Mizushima, 2007). Signals o f insulin/growth factors are thought to 

converge on mTOR, which is the main regulator o f nutrient signaling (Mizushima, 

2007). In this case, the signaling by growth factors controls mTORCl expression and 

subsequently regulates autophagy induction (Jung et al., 2010). (See page 16).

According to the method described in Pirkmajer and Chibalin, (2011), HEK293 cells 

were starved in serum-free MEME media (Lonza, UK) for different periods o f time. 

The cells were cultured on prepared cover slips (Sigma, UK) in three different 24-well 

plates. The cells were seeded into the plates at a density o f (0.5x105) cells per well in 

500 pi complete medium. The plates were labelled as plate 1, 2 and 3 and incubated for 

24 hours to allow cells attachment. After that, the complete media was aspirated from 

the wells o f the three plates except the contol wells. The cells were washed with serum- 

free media to remove all traces o f serum and the complete media was replaced with 

serum-free media. Then, to induce autophagy by serum starvation, the plates 1, 2 and 3 

were re-incubated at 37°C for 2, 6 and 24 hours respectively. Then, the plates were 

collected at different time points and the cells were prepared for ICC.
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4.2.4 Immunocytochemistry:

Immunocytochemistry to determine the subcellular localisation o f mTOR, raptor and 

LC3 was performed exactly as described in chapter 2. In the case o f using wheat germ 

agglutinin (Sigma, UK) to stain the Golgi apparatus together with anti-LC3 antibody at 

the same time, 5 pg/ml o f WGA was added to the well o f a 24-well plate at the same 

time with the secondary antibody but this time in 500 pi o f BSA and incubated for 45 

minutes at room temperature and then washed in the same way as above.

4.3 RESULTS

4.3.1 Mammalian Target of Rapamycin (mTOR)

4.3.1.1 ICC of mTOR in un-treated MCF-7 and HEK293 cells:

After the antibody characterisation, a specific anti-mTOR antibody was selected for the 

subcellular localization o f the protein to assess the endogenous mTOR expression and 

localisation in autophagic and non-autophagic HEK293 cells. MCF-7 cells were used 

initially because it has been reported that MCF-7 cells are good cells to express mTOR.

Non-autophagic MCF-7 cells showed mTOR expression mainly in the perinuclear 

region (Figure 4.1). The distribution o f the protein around the nucleus is very similar to 

the distribution o f the mitochondria. To determine if  mTOR was present on the 

mitochondria, an anti-mitochondrial antibody was obtained and used to detect the 

distribution o f the mitochondria in the same cells. The similarity in the distributions o f  

the mitochondria and mTOR was confirmed by dual label ICC. mTOR staining is rather 

weak, in contrast to antibody to mitochondria, thus it is difficult to detect the co

localisation seen in (D). However, there is little red fluorescence detected in D 

suggesting proteins are colocalised (Figure 4.2). ICC showed that the endogenous 

mTOR was expressed in the perinuclear area o f non-autophagic HEK293 cells. Also, 

the subcellular localization of the protein was similar to the distribution o f the
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mitochondria as mentioned above. By using dual label ICC, it appears that mTOR may 

localize with the mitochondria. Although there is some colocalisation o f mTOR to the 

mitochondria, this is not complete as many mitochondria are single stained green 

particularly in perinuclear region. Overlapping o f mTOR in D is not punctate, which 

casts some doubt on the specificity o f this localisation (Figure 4.3).

4.3.1.2 ICC of mTOR in rapamycin treated HEK293 cells:

HEK293 cells were treated with rapamycin in order to induce autophagy through 

mTOR inhibition. This step is to investigate and study the behaviour o f mTOR in 

HEK293 cells that undergoing autophagy and compare it with the behaviour o f the 

protein in both; the non-autophagic HEK293 and also in HEK293 that transfected with 

tPS-1. To ensure autophagy occurrence, HEK293 cells were treated with different 

rapamycin concentrations for different periods o f times. The cells were treated with 

lOnM, 30nM and 50nM of rapamycin for 16 hours and also treated with lOOOnM, 

2000nM and 3000nM for 72 hours. The images o f the dual label ICC o f mTOR in both 

experiments showed the same results (Figures 4.4 and 4.5). From the obtained results, it 

seems that even in the case o f autophagy, mTOR did not move to any other part o f the 

cell, but was still mostly localized to the mitochondria. To ensure that this result was not 

an artefact, all the appropriate controls were performed. The HEK293 cells were treated 

with rapamycin dissolved in the vehicle (DMSO) or with vehicle alone. The cells were 

stained with the two secondary antibodies (chicken anti-mouse and donkey anti-rabbit) 

only with or without rapamycin. To avoid cross reaction, the cells were stained with the 

two secondary antibodies with each single primary antibody used in the experiment.

4.3.1.3 ICC of mTOR in starved HEK293 cells:

Many researchers have used serum starvation as a tool to study molecular mechanisms 

involved in protein degradation, cellular stress response, autophagy, and apoptosis
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and/or to simulate particular pathological conditions (Pirkmajer and Chibalin, 2011). 

Protein synthesis and cell growth are regulated by the mTOR pathway, which is in turn 

indirectly dependent on nutrient, growth factor, and energy availability (Pirkmajer and 

Chibalin, 2011). The activity o f TOR is inhibited under nutrient starvation, which is 

known as a crucial step for autophagy induction in eukaryotes (Scott et al., 2004).

In the present study, HEK293 cells were starved in serum-free media for different 

periods o f time (for 2, 6 and 24 hrs) to induce autophagy through mTOR inhibition. The 

purpose o f this experiment was to study the behaviour of mTOR in starvation-induced 

autophagy, and observe if  the distribution o f mTOR protein is different from what has 

been seen in the rapamycin-induced autophagy.

Dual label ICC on serum starved HEK293 cells (for 2, 6 and 24 hrs) demonstrated the 

same results, with mTOR expressed in the perinuclear area. mTOR did not change its 

previous subcellular localisation under the influence o f serum starvation and also mostly 

localized to the mitochondria (Figure 4.6). This indicates that there is no difference in 

the movement o f mTOR during autophagy under both conditions (rapamycin or 

starvation-induced).
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Figure 4.1 Single label immunofluorescence for mTOR in MCF-7 cells. Cells were 
fixed in cold methanol and labelled for (A) Nuclei, counterstained with DAPI (B) mTOR using primary 
monoclonal rabbit anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 
594 donkey anti-rabbit IgG (C) Merge (cropped zoomed image). Scale bar: 10pm
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Figure 4.2 Dual label immunofluorescence for mTOR and mitochondria in MCF-7 cells. Cells 
were fixed in cold methanol and labelled for (A) Nuclei, counterstained with DAPI (B) mTOR using primary monoclonal 
rabbit anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG 
(C) mitochondria using primary monoclonal mouse anti-mitochondria antibody (Millipore, UK) and secondary antibody 
Alexa fluor 488 chicken anti-mouse IgG (D) Merge. Scale bar: 10pm
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Figure 4.3 Dual label immunofluorescence for mTOR and mitochondria in HEK293 cells. Cells 
were fixed in cold methanol and labelled for (A) Nuclei, counterstained with DAPI (B) mTOR using primary monoclonal 
rabbit anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) 
mitochondria using primary monoclonal mouse anti-mitochondria antibody (Millipore, UK) and secondary antibody Alexa 
fluor 488 chicken anti-mouse IgG (D) Merge. Scale bar: 10pm
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Figure 4.4 Dual label immunofluorescence for mTOR and mitochondria in 16 hours 
rapamycin treated HEK293 cells. Cells were fixed in cold methanol and labelled for mTOR using 
primary monoclonal rabbit anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa 
fluor 594 donkey anti-rabbit IgG and for mitochondria using primary monoclonal mouse anti-mitochondria 
antibody (Millipore, UK) and secondary antibody Alexa fluor 488 chicken anti-mouse IgG in HEK293 
treated with (A, B) control, (C, D) lOnM of rapamycin, (E, F) 30nM of rapamycin, (G, H) 50 nM of 
rapamycin. Scale bar: 10pm
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Figure 4.5 Dual label immunofluorescence for mTOR and mitochondria in 72 hours 
rapamycin treated HEK293 cells. Cells were fixed in cold methanol and labelled for mTOR using 
primary monoclonal rabbit anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 
594 donkey anti-rabbit IgG (Red) and for mitochondria using primary monoclonal mouse anti-mitochondria 
antibody (Millipore, UK) and secondary antibody Alexa fluor 488 chicken anti-mouse IgG (Green) in HEK293 
treated with (A, B) control, (C, D) IpM of rapamycin, (E, F) 2gM of rapamycin, (G, H) 3pM of rapamycin. Scale 
bar: 10pm
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Figure 4.6 Dual label immunofluorescence for mTOR and mitochondria in 24 hours serum 
starved HEK293 cells. Cells were starved in serum free media for 24 hours and then fixed in cold methanol 
and labelled for (A) Nuclei, counterstained with DAPI (B) mTOR using primary monoclonal rabbit anti-human 
mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) 
mitochondria using primary monoclonal mouse anti-mitochondria antibody (Millipore, UK) and secondary 
antibody Alexa fluor 488 chicken anti-mouse IgG (D) Merge. Scale bar: 10pm
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4.3.2 Regulatory associated protein of mTOR (Raptor)

4.3.2.1 ICC of Raptor in HEK293 cells:
As for mTOR, a specific anti-raptor antibody was selected and used in the 

determination o f the subcellular localization o f raptor in autophagic and non-autophagic 

HEK293 cells. By fluorescence microscopy, the dual label ICC (anti-raptor and anti

mitochondria antibodies) of HEK293 demonstrated that the majority o f raptor staining 

is in the cytoplasm and some o f the protein was localized to the mitochondria with the 

presence o f some diffuse raptor staining in the perinuclear region (Figure 4.7).

4.3.2.2 ICC for Raptor expression in rapamycin treated HEK293 cells:
Rapamycin was used to induce autophagy through mTOR inhibition. HEK293 cells

were treated with varying concentrations o f rapamycin for varying periods o f time (see 

section 4.2.2). The result revealed that, after rapamycin treatment, some o f raptor 

protein has moved toward the perinuclear area. However, the raptor staining appears as 

single punctate spots within each cell with some diffuse cytoplasmic staining remaining. 

This change in the subcellular localization o f raptor is very clear with the highest 

concentrations o f rapamycin in both experiments (Figures 4.8 and 4.9). The changed 

distribution o f the protein was similar to the distribution of the mitochondria. However, 

in both figures it seems that raptor already present in the perinuclear area was not 

localized to the mitochondra.

4.3.2.3 ICC of Raptor in starved HEK293 cells:
HEK293 cells were serum starved for different periods o f time (2, 6 and 24 hrs) in order 

to induce autophagy. The result shows that serum starvation has the same effect as 

rapamycin on the distribution o f raptor protein. After starvation, the protein changed 

distribution, and some o f the protein moved toward the perinuclear region to appear in a 

new subcellular localization, which is similar to the distribution o f mitochondria. 

However, it is not complete overlap as single red staining seen in D (Figure 4.10). 

Similar to the previous figures (4.8 and 4.9), it seems that some diffuse cytoplasmic 

staining remaining and raptor spots that present in the perinuclear area were not 

localized to the mitochondria. This observation indicates that under the influence o f  

both: rapamycin treatment or serum starvation, mTOR drives and regulates the 

autophagic process in the same way.
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Figure 4.7 Dual label immunofluorescence for raptor and mitochondria in HEK293 cells.
Cells were fixed in cold methanol and labelled for (A) Nuclei, counterstained with DAPI (B) raptor using primary 
monoclonal rabbit anti-human raptor antibody (CellSignaling Technology, 2280) and secondary antibody Alexa 
fluor 594 donkey anti-rabbit IgG (C) mitochondria using primary monoclonal mouse anti-mitochondria antibody 
(Millipore, UK) and secondary antibody Alexa fluor 488 chicken anti-mouse IgG (D) Merge. Scale bar: 10pm

117



Figure 4.8 Dual label immunofluorescence for raptor and mitochondria in 16 hours 
rapamycin treated HEK293 cells. Cells were fixed in cold methanol and labelled for raptor using primary 
monoclonal rabbit anti-human raptor antibody (CellSignaling Technology, 2280) and secondary antibody Alexa 
fluor 594 donkey anti-rabbit IgG (Red) and for mitochondria using primary monoclonal mouse anti-mitochondria 
(Millipore, UK) antibody and secondary antibody Alexa fluor 488 chicken anti-mouse IgG (Green) in HEK293 
treated with (A, B) control, (C, D) lOnM of rapamycin, (E, F) 30nM of rapamycin, (G, H) 50 nM of rapamycin. 
Scale bar: 10pm
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Figure 4.9 Dual label immunofluorescence for raptor and mitochondria in 72 hours 
rapamycin treated HEK293 cells. Cells were fixed in cold methanol and labelled for raptor using 
primary monoclonal rabbit anti-human raptor antibody (CellSignaling Technology, 2280) and secondary antibody 
Alexa fluor 594 donkey anti-rabbit IgG (Red) and for mitochondria using primary monoclonal mouse anti
mitochondria (Millipore, UK) antibody and secondary antibody Alexa fluor 488 chicken anti-mouse IgG (Green) 
in HEK293 treated with (A, B) control, (C, D) lpM  of rapamycin, (E, F) 2pM of rapamycin, (G, H) 3pM of 
rapamycin. Scale bar: 10pm
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Figure 4.10 Dual label immunofluorescence for raptor and mitochondria in 24 hours 
serum starved HEK293 cells. Cells were starved in serum free media for 24 hours and then fixed in cold 
methanol and labelled for (A) Nuclei, counterstained with DAPI (B) raptor using primary monoclonal rabbit anti
human raptor antibody (CellSignaling Technology, 2280) and secondary antibody Alexa fluor 594 donkey anti
rabbit IgG (C) mitochondria using primary monoclonal mouse anti-mitochondria antibody (Millipore, UK) and 
secondary antibody Alexa fluor 488 chicken anti-mouse IgG (D) Merge. Scale bar: 10um
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4.3.3 Microtubule-associated protein 1 light chain 3 (LC3)

4.3.3.1 ICC of LC3 in HEK293 cells:

LC3 is now widely used to monitor autophagy (Mizushima, 2004; Kirkegaard et al., 

2004 and Klionsky et al., 2007). One approach is to detect LC3 conversion (LC3-I to 

LC3-II) by immunoblot analysis because the amount o f LC3-II is clearly correlated with 

the number o f autophagosomes (Kabeya et al., 2000). However, LC3-II itself is 

degraded by autophagy, making interpretation o f the results o f LC3-II immunoblotting 

problematic. The present study focused on using LC3 as an autophagy indicator, and the 

subcellular localization o f it to investigate the behaviour o f the protein during 

autophagy induced by different methods.

In the present study, a specific anti-LC3 antibody was selected by western blot after 

autophagy induction. The antibody successfully stained LC3-I and LC3-II at the 

expected molecular sizes. The ICC of endogenous LC3 HEK293 cells demonstrated that 

the subcellular localization o f the protein appears to localise to the Golgi apparatus 

(Figure 4.11).

To confirm the LC3 localisation to the Golgi apparatus, wheat germ agglutinin (WGA) 

was utilized to stain the Golgi apparatus. The dual label ICC showed that the subcellular 

localization o f LC3 is similar to the distribution o f Golgi apparatus. However, image D 

showed that there is some red staining not localised to the Golgi apparatus indicating 

that there is not total overlap (Figure 4.12). To confirm this result, confocal microscopy 

was used. The obtained confocal images also indicate that LC3 is only partially 

localized to Golgi apparatus (Figure 4.13).

To avoid artefactual results, several controls were performed. The HEK293 cells were 

stained with the primary antibody and WGA at the same time and then with the 

secondary antibody. The cells were also stained with WGA alone (no primary anti-
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LC3A/B antibody) and then with the secondary antibody. The secondary antibodies 

were incubated with the WGA in a tube at RT for 30 min before adding them to the 

cells already stained with the primary antibody. The cells were stained with the 

secondary antibody and the WGA at the same time (no incubation) but without the 

primary antibody. All the controls showed that the observed results are not artefacts.

4.3.3.2 ICC of LC3 in rapamycin-treated HEK293 cells:

To study the behaviour o f LC3 during normal autophagy and compare it with the 

behaviour o f the protein in interrupted autophagy, HEK293 cells were treated with 50 

nM rapamycin for 16 hours to induce autophagy. The images obtained revealed that ja 

very small proportion o f the LC3 protein diffuses in the cytoplasm, while the majority 

o f the protein did not move but remained localized to the Golgi apparatus (Figure 4.14).

4.3.3.3 ICC of LC3 in serum starved HEK293 cells:

To compare the influence o f rapamycin treatment and serum starvation on LC3 

behaviour, HEK293 cells were starved in serum-free media for 24 hours to induce 

autophagy. The dual label ICC revealed that rapamycin treatment or starvation has the 

same influence on LC3 behaviour. During serum starvation induced autophagy, it seems 

that the majority o f LC3 protein still localized to the Golgi apparatus and a very small 

proportion o f the protein diffused to the cytoplasm (Figure 4.15).
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Figure 4.11 Single label immunofluorescence for LC3 in HEK293 cells. Cells were fixed in cold 
methanol and labelled for (A) Nuclei, counterstained with DAPI (B) LC3 using primary monoclonal rabbit anti
human LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG 
(C) Merge. Scale bar: 10pm
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Figure 4.12 Dual label immunofluorescence for LC3 and Golgi apparatus in HEK293 cells.
Cells were fixed in cold methanol and labelled for (A) Nuclei, counterstained with DAPI (B) LC3 using primary 
monoclonal rabbit anti-human LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 
donkey anti-rabbit IgG (C) Golgi apparatus using 5pg/ml WGA (D) Merge. Scale bar: 10pm
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Figure 4.13 Dual label immunofluorescence for LC3 and Golgi apparatus in HEK293 cells, 
(confocal image). Cells were fixed in cold methanol and labelled for (A) LC3 using primary monoclonal rabbit 
anti-human LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 donkey anti-rabbit 
IgG (B) Golgi apparatus using 5pg/ml WGA (C) Merge. Scale bar: 10pm



200 nM

Merge

Figure 4.14 Single label immunofluorescence for LC3 in 16 hours rapamycin treated 
HEK293 cells. Cells were fixed in cold methanol and labelled for (A) Nuclei, counterstained with DAPI (B) LC3 
using primary monoclonal rabbit anti-human LC3A/B antibody (Millipore, MABC176) and secondary antibody 
Alexa fluor 594 donkey anti-rabbit IgG in 200nM rapamycin treated HEK293 (C) Merge. Scale bar: 10pm

126



Figure 4.15 Dual label immunofluorescence for LC3 and Golgi apparatus after 24 hours 
serum starvation in HEK293 cells. Cells were starved in serum free media for 24 hours and then fixed in cold 
methanol and labelled for (A) Nuclei, counterstained with DAPI (B) LC3 using primary monoclonal rabbit anti-human 
LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) Golgi 
apparatus using 5pg/ml WGA (D) Merge. Scale bar: 10pm
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4.4 DISCUSSION

4.4.1 Mammalian Target of Rapamycin (mTOR)

The present study has shown that endogenous mTOR proteins are predominantly 

localized to mitochondria in MCF-7 and HEK293 cell lines, as judged by dual label ICC. 

To ensure the specificity o f the antibody used for these experiments, the monoclonal 

anti-mTOR antibody that produced this result was selected from seven different anti- 

mTOR antibodies from different suppliers after a characterisation process by western 

blot (chapter 3). The antibody stained bands at the right molecular size o f mTOR (289 

kDa) using proteins from whole cell lysate o f three different cell lines (NRK, MCF-7 

and HEK293 cell lines) (Figures 3.19 and 3.20). The anti-mitochondrial antibody that 

was used in this experiment was a mouse antibody to a surface o f intact mitochondria.

This result is in agreement with the findings o f Desai et al. (2002). They reported that a

large portion o f FRAP/mTOR associates with the mitochondrial outer membrane. They

proved their results through several confirmational experiments. They reported that

P70S6K of human T cell line (kit-225) was markedly dephosphorylated and lost its

kinase activity within minutes after treatment o f these cells with mitochondrial

inhibitors. This result indicates that dysfunctional mitochondria signal to P70S6K in an

mTOR-dependent manner. In addition, they used Jurkat cells to perform subcellular

fractionation. Four distinct fractions were obtained. These four fractions were: nuclear,

heavy membrane, cytosolic and vesicular proteins. These proteins were probed for

presence o f marker proteins and mTOR. The result showed the presence o f mTOR in

both the heavy membrane pellet and the cytosolic fraction. Then, they purified the

mitochondria from the heavy membrane pellet by utilizing sucrose density gradient-

ultra centrifugation. The result demonstrated that mTOR cofractionates with the purified

mitochondria and rapamycin treatment had no effect on this association. Furthermore,

by using immnuofluorescence confocal microscopy and immunoelectron microscopy,
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the same group using 3T3 cells proved the co-localization o f mTOR to the 

mitochondrial outer membrane or exposed on the surface of mitochondria.

Moreover, it has been shown that Rheb activates mTORCl by antagonising its 

endogenous inhibitor, FKBP38 (Bai et al., 2007). Under growth factor deprivation or 

amino acid starvation condition, FKBP38 binds directly to mTOR and down regulates 

mTORCl activity. When amino acids and growth factors are present, Rheb interacts 

with FKBP38 and releases mTORCl for activation (Ma et al., 2008).

A study by the same group (Ma et al., 2008) using HEK293 and HeLa cells 

demonstrated that the majority o f Rheb is co-localized with mitotracker, suggesting that 

the protein is localized with mitochondria. The localization o f Rheb with the 

mitochondria is also consistent with the fact that Rheb directly interacts with FKBP38, 

which has been reported to be a mitochondrial protein (Shirane and Nakayama, 3003; 

Portier and Taglialatela, 2006).

After fractionation analysis, Ma et al., 2008 reported that at least a portion o f mTOR is 

localized to mitochondria, where Rheb and FKBP38 reside. This result is supported by 

previous findings showing that mTOR localized with outer membrane o f mitochondria 

(Desai et al, in 2002). Given that mitochondria is the major metabolic organelle, co

localization o f mTOR, Rheb, and FKBP38 on mitochondria is consistent with the role 

of mTORCl in nutrient, energy, and oxygen sensing (Ma et al., 2008).

Furthermore, a study on the subcellular localization o f mTOR in Jurkat cells and 

HEK293 cells utilizing cellular fractionation technique revealed that mTOR in an 

mTORCl complex is associated with the mitochondrial channel VDAC (Schieke et al., 

2006; Ramanathan and Schreiber, 2009).

However, several studies investigating the mTOR localization have demonstrated that

mTOR is localized to other organelles. For example, a recent study (Yadav et al., 2013)

using fluorescence lifetime imaging has reported that the main localization o f mTOR
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appeared to be located in the perinuclear region in the Golgi and ER. Three different 

cell lines (HEK293, CHO and HeLa cells) were transiently transfected with EGFP 

tagged at either end o f mTOR. Cells were examined for expression 24h and 48h after 

transfection. HEK293 and HeLa cells showed mTOR expression mainly in the 

cytoplasm with some detectable but weak presence within the cell nucleus.

In addition, a study conducted by Rosner and Hengstschlager (2008) in HEK293, 

NIH3T3, IMR-90, MRC-5 and WI-38 cells using subcellular fractionation revealed that 

mTOR was highly abundant in the nucleus but mTORCl integrity was higher in the 

cytoplasm.

Moreover, it has been reported that mTOR is localized to lysosomes. A study in 

HEK293T cells utilizing paraformaldehyde (PFA) fixation and confocal imaging to 

investigate the subcellular localization o f mTOR revealed that amino acids stimulate 

mTOR translocation from the cytoplasm to the lysosome in a Rag-and Ragulator- 

dependent manner and showed that Rheb, Ragulator and Rags are at the lysosome 

independently o f amino acids (Sancak et al., 2008, 2010; Bar-Peled et al., 2012).

The present study demonstrated that mTOR is localized to mitochondria in MCF-7 and 

HEK293 cells. The distribution o f mTOR in the perinuclear area o f these cells was in a 

punctate pattern and was very similar to the distribution o f the mitochondria as 

investigated using an anti-mitochondrial antibody. Thus, it seems that mTOR has been 

found at several cellular locations by different groups, even in the same cell lines. 

However, it is necessary to consider the issues that related to a protein or complex 

subcellular determination. The antibodies that are used in these studies might be non

specific. In addition, tagged proteins can show different localisation. Moreover, the 

different fixation and lysis methods can also influence the subcellular localization o f a 

protein. The isolated organelles can be contaminated with other organelles (Betz and

Hall, 2013). Furthermore, in regard to mTOR, the determination o f one component o f
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the complex in an organelle does not necessarily reflect the presence o f the entire 

complex in that organelle. Also, the most important issue that should be considered, 

especially when dealing with a very complicated signalling pathway such as mTOR 

pathway, is nutrient, stress, and cell cycle status. Using different cell lines should be 

also taken into account (Betz and Hall, 2013).

Modulation o f cell signalling can change the subcellular localization o f  important 

components o f the corresponding pathways (Drenan et al., 2004). Based on this concept, 

in the present study, HEK293 cells were treated with varying rapamycin concentrations 

for varying periods o f times to induce autophagy via mTOR inhibition to study if  there 

is a change in the subcellular localization o f mTOR in cells undergoing autophagy. The 

result showed that there was no change in the location o f mTOR by showing that mTOR 

still localized to mitochondria. In terms o f localisation, this result indicates that mTOR 

was not affected by rapamycin treatment. However, it might be that the observed mTOR 

in this study is mTORC2 and not mTORCl. This is because it is well known that 

mTORC2 is rapamycin insensitive (Sarbassov et al., 2004). However, it has been 

reported that prolonged rapamycin treatment also inhibits and reduces the levels of 

mTORC2 (Sarbassov et al., 2006). For this reason, in the present study, HEK293 cells 

were treated with low concentrations o f rapamycin for short period o f time (16 hours) to 

influence mTORCl and also the cells treated with high concentrations o f rapamycin for 

long period o f time (three days) to influence mTORC2. However, the results showed 

that in both cases, mTOR still localized to mitochondria and did not move to any other 

organelles. These results indicate that, in terms o f subcellular localization, it seems that 

mTORCl and mTORC2 were not influenced by rapamycin treatment. These results are 

also in agreement with the findings o f a study conducted by Yadav et al. (2013). By 

utilizing of GFP/FRET-FLIM approach, Yadav et al. (2013) have reported that the
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addition o f rapamycin was not seen to affect the localization o f mTOR in HEK293 and 

HeLa cells.

In addition, a study investigated whether mTOR location changed in response to cellular 

condition that modulate mTOR signalling has reported that mTOR remained in the 

perinuclear pattern during rapamycin treatment which inhibited mTOR signal 

transduction (Drenan et al., 2004). Furthermore, a study using HEK293T and HeLa 

cells has reported that inhibition o f mTORCl activity with rapamycin does not affect 

mTORCl localization (Sancake et al., 2008).

In the present study, HEK293 cells were starved in serum-free media for different 

periods o f time (2, 6 and 24 hours) to induce autophagy through mTOR inhibition by 

starvation. These experiments were conducted in order to study the behaviour and the 

subcellular localization o f mTOR under the influence o f starvation, and compare it with 

that o f rapamycin treatment. As mentioned above, the result demonstrated that there is 

no difference between the effect o f rapamycin treatment or starvation on the subcellular 

localization o f mTOR. The protein remained localized to the mitochondria and did not 

move to other organelles. This result indicates that starvation also has no effect on the 

mTOR localisation, which is in agreement with the findings o f a study conducted by 

Drenan et al. (2004). They reported that mTOR subcellular localization in HeLa cells 

did not change under the influence o f serum starvation, even for a long period o f time. 

In addition, it has been demonstrated that amino acid starvation does not affect the 

subcellular localization o f mTOR (Yadav et al., 2013).

Apart from the place where mTOR localized, the present result and all the above studies 

have shown that rapamycin treatment or starvation have no effect on the originally 

observed subcellular localization o f mTOR. It is well known that inhibition o f mTOR 

by rapamycin treatment or starvation is the crucial step in autophagy induction. If 

mTOR localisation does not change during autophagy, then, how is mTOR
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communicating with its partners or substrates that play an important role in the 

autophagic process? Do they recruit to where mTOR is localized and are then 

phosphorylated or de-phosphorylated locally?

4.4.2 Regulatory associated protein of mTOR (Raptor)

By using dual label (anti-raptor and anti-mitochondrial antibodies) ICC, the present 

study has demonstrated that in HEK293 cells raptor diffuses in the cytoplasm and a 

small portion o f the protein might be localized to the mitochondria. The monoclonal 

rabbit anti-raptor antibody that produced this result was selected from three different 

anti-raptor antibodies from different suppliers after a characterization process by 

western blot. The antibody successfully stained bands at the right molecular size o f  

raptor (150 kDa) using proteins from whole cell lysate o f three different cell lines (NRK, 

MCF-7 and HEK293 cells) (Figures 3.23, 3.24 and 3.25).

The results o f this study are in agreement with the findings o f Yadav et al., (2013). 

They demonstrated that in HEK293, HeLa and CHO cells raptor expression was 

observed in the cytoplasm. They studied the subcellular localization o f raptor in these 

three cell lines after a transient transfection o f these cells with a vector for DsRed-raptor, 

while the present study investigated the endogenous protein. Also, Sancak et al., (2008) 

have reported that raptor localized to the cytoplasm of HEK293T cells.

The present study showed that mTOR is localized to mitochondria in HEK293 cells and 

after rapamycin treatment or starvation, raptor (mTOR partner) has clearly moved from 

the cytoplasm toward the perinuclear area with expression pattern was similar to the 

distribution o f mitochondria (Figure 4.8), (Figure 4.9) and (Figure 4.10). mTOR works 

in a complex called mTORCl and this complex contains raptor. So, the result suggests 

that after the induction o f autophagy via mTOR inhibition, through either rapamycin 

treatment or serum starvation, raptor moved to join the mTOR on the mitochondria to
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form the mentioned complex. The present study also found that a small portion o f raptor 

might be localized to the mitochondria o f HEK293 cells. So, from this result it seems 

that during autophagy raptor needs to be abundant on the mitochondria.

It has been reported that raptor interacts with mTOR as well as with mTORCl 

substrates S6K1 (ribosomal protein S6 kinase 1) and 4EBP1 (eukaryotic initiation factor 

4E (eIF4E)-binding protein 1) (Hara et al., 2002; Kim et al., 2002; Loewith et al., 2002; 

Nojima et al., 2003 and Schalm and Blenis, 2002). Each one o f these substrates contains 

a TOR signaling motif that mediates raptor interaction and their subsequent 

phosphorylation by mTOR (Nojima et al., 2003 and Schalm et al., 2003). Thus, raptor 

functions as a scaffolding protein that facilitates the recruitment o f substrates to the 

mTOR kinase (Foster et al., 2010, Wang and Proud, 2010).

Since the present study has shown that mTOR localized to mitochondria under all 

conditions (un-treated, rapamycin treated and serum starvation in HEK293 cells), and 

also showed that under the influence o f rapamycin treatment or serum starvation 

(autophagy induction) raptor moved toward the perinuclear area to join mTOR to form 

with other proteins the mTOR complex 1, and also it has been proved that raptor is 

responsible for recruitment o f mTOR’s substrates, suggesting that important autophagic 

proteins such as ATG-1 and ATG-13 are recruited to the mitochondria via raptor to be 

phosphorylated or dephosphorylated by mTOR to inhibit or induce autophagy 

respectively.

In yeast, it has been reported that to induce autophagy, TOR has to dephosphorylate 

Atg-13 and allow it to bind to Atg-1 to form a complex with Atg-17 to initiate 

phagophore membrane formatiom which is the first step in autophagic process 

(Mizushima, 2010; Glick et al., 2010).

TOR signaling also inhibits autophagy (Jung et al., 2010). It seems that phosphorylation

of Atgl (downstream o f TOR) decreases the binding o f Atgl to Atgl3, impairing
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autophagy. Atgl 3 also appears to be phosphorylated by TOR, and this seems to repress 

its function (Wang and Proud, 2010).

In mammalian cells, there are some proteins related to Atgl, i.e. ULK1-4. On the basis 

o f data from over expression o f wild type or kinase-dead mutants, ULK1-3 seems to 

have roles in autophagy induction (reviewed in Jung et al., 2010). There appears to be 

an ortholog o f ATG13 in mammalian cells, and an additional protein, FIP200, also 

connect with ATG13 and ULK1. Moreover, mTORCl phosphorylates the ATG1 

homolouegs ULK1/2 (Ganley et al., 2009; Hosokawa et al., 2009; Jung et al., 2009) and 

this appears to repress their activities.

It has also been reported that in some cell lines, including HEK293 cells, silencing o f  

ULK1 is sufficient to inhibit autophagy, suggesting that ULK1 could be the major form 

o f ULK (Chan et al., 2007 and Young et al., 2006). However, other aspects o f the 

regulation o f the complex differ in mammals for example; inhibition o f mTORCl does 

not affect ULK1/Atgl3 binding (Wang and Proud, 2010). Understanding the control o f  

autophagy in mammalian cells is still very far from complete (Wang and Proud, 2010). 

Hosokawa et al. (2009) have reported that mTORCl is incorporated into the large 

ULKl-mATG13-FIP200 complex upon nutrient stimulation and its recruitment is 

mediated by the interaction between raptor, a substrate recognition unit o f mTORCl, 

and PS domain o f ULK1. This interaction is independent o f mAtgl3, because a C- 

terminal deletion mutant o f ULK1 that is unable to bind mATG13 remains capable o f  

interacting with raptor (Hosokawa et al., 2009). In addition, both in vitro and in vivo 

data suggest that mTORCl phosphorylates ULK1 and mATG13 under nutrient rich 

conditions (Ganley et al., 2009; Hosokawa et al., 2009; Jung et al., 2009).

Taken together with the results o f the present study, it can be suggested that after 

rapamycin treatment or serum starvation (autophagy induction), raptor moves from the 

cytoplasm toward the perinuclear area to join mTOR on the mitochondria. Then, it is
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proposed, raptor recruits the autophagic proteins ATG1/ULK1 and mATG13 to the 

mitochondria to be dephosphorylated by mTORCl to induce autophagy.

Nevertheless, Yadav et al., (2013) have reported that raptor expression was 

predominantly within the cytoplasm of HEK293, HeLa and CHO cells and rapamycin 

treatment or amino acids starvation had no effect on its localisation and distribution.

4.4.3 Microtubule-associated protein 1 light chain 3 (LC3)

By utilizing dual labelling (anti-LC3 and WGA for Golgi apparatus), the present study 

has shown that in HEK293 cells, LC3 is localized to Golgi apparatus. The monoclonal 

rabbit anti-LC3 antibody that produced this result was selected from three different anti- 

LC3 antibodies from different suppliers after a characterization process by western blot. 

The selected anti-LC3 antibody has succeeded to detect bands o f LC3-I and LC3-II 

forms at the right molecular sizes utilizing whole cell lysate from HEK293 cells treated 

with 50nM of rapamycin for 16 hours to induce autophagy. To confirm the localization 

o f LC3 on Golgi apparatus, confocal microscope images using Z-stack option were 

performed and the obtained images have also showed that LC3 was localized to Golgi 

apparatus.

There are at least three families o f mammalian Atg8-related proteins: microtubule- 

associated protein 1 light chain 3 (LC3); Golgi-associated ATPase enhancer o f 16 kDa 

(GATE 16); and y-aminobutyric-acid-type-A (GABAA)-receptor-associated protein 

(GABARAP) (Kabeya et al., 2004). Each family has subfamilies, and three human LC3 

subfamilies (LC3 A, LC3B and LC3C) have been identified (He et al., 2003).

Kabeya et al., (2000) reported that LC3 localizes to the autophagosomal membrane after 

C-terminal processing. They investigated, using cellular fractionation techniques, both 

endogenous and exogenous (Myc-tagged LC3-I and II) LC3 in HeLa cells. Based on 

this result they proposed that LC3 is an orthologue o f yeast Atg8, and they also reported
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that the precise function and localization o f the other two homologues (GATE 16 and 

GABARAP) are unclear (Kabeya et al., 2004). It has been suggested that GABARAP 

might be involved in the GABAA-receptor clustering (Chen et al., 2000) or transport 

(Kneussel et al., 2000). GATE16 has been suggested to be an intra-Golgi transport 

modulator that interacts with A-ethylmaleimide-sensitive factor (NSF) and the Golgi v- 

SNARE GOS-28 (Sagiv et a l , 2000).

Kabeya et al., (2000), (2004), did not provide any information about the subcellular 

localization of un-processed LC3 (in non-autophagic cells). Here, the present study, 

utilizing confocal microscopy, has shown that in non-autophagic HEK293 cells, the 

endogenous LC3A/B was localized to Golgi apparatus. Since LC3 and GATE 16 are 

both mammalian homologues o f yeast Atg8 and GATE 16 was suggested to be an intra- 

Golgi transport modulator, so this supports the result in the present study suggesting 

that also LC3 may play a role in Golgi apparatus o f non-autophagic HEK293 cells.

To study the behaviour o f LC3 protein after autophagy induction, HEK293 cells were 

treated with 50 nM of rapamycin for 16 hours or serum starved for 24 hours to induce 

autophagy. As reported previously, rapamycin and serum starvation have the same 

effect on LC3. The result has shown that a proportion o f LC3 has moved from Golgi 

apparatus toward the cytoplasm in a punctuate pattern. However, most o f the LC3 

protein remained localized to Golgi apparatus.

Upon autophagy induction, LC3 is cleaved after Glyl20 within 6 minutes o f synthesis 

in the cytoplasm (Kabeya et al., 2000). As a result, a cytosolic 18-kDa LC3-I, which 

lacks the C-terminal 22 amino acid fragment, is produced. Subsequently, a 

subpopulation o f LC3-I is converted to LC3-II, a 16 kDa protein that localizes to 

autophagosomal membranes (Kabeya et al., 2004). At the autophagosome, LC3-II has 

been shown to play a role both in selecting cargo for degradation (e.g. interaction o f  

LC3-II with p62/SQTMl targets-associated protein aggregates for turnover) but has
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also been reported to promote membrane tethering and fusion in vitro (Nakatogawa, 

Ichimura and Ohsumi, 2007), supporting a possible role in fusion o f other membrane 

compartments, such as endosomes or even mitochondria with autophagosomes (Barth, 

Glick and Macleod, 2010).

Taken together, the results suggest that un-processed LC3 localized to Golgi apparatus 

and immediately after autophagy induction the protein move to the cytoplasm to be 

cleaved and produce LC3-I, which is then converted to LC3-II which localizes to 

autophagosomal membrane to perform its function.

4.5 CONCLUSION

This chapter has firstly focused on the subcellular localization o f mTOR, raptor and 

LC3 in non-autophagic HEK293 cells. The results showed that, in non-autophagic cells, 

mTOR localized to mitochondria, raptor localized to cytoplasm and a fraction might be 

localized to mitochondria and LC3 localized to Golgi apparatus.

The rationale behind these experiments, was to investigate first the movement o f these 

important proteins when autophagy is induced and secondly to investigate if  there is a 

difference between the effect o f rapamycin treatment and the effect o f serum starvation 

on these proteins.

Autophagy was induced by both; rapamycin treatment or serum starvation, and the 

results showed that there is no change in the subcellular localization o f mTOR, but 

raptor moved from the cytoplasm toward the perinuclear area and had a distribution the 

same as mitochondria and a fraction o f LC3 moved to the cytoplasm in a punctuate 

pattern, however, most o f the protein was still localized to Golgi apparatus. The results 

have also demonstrated that rapamycin treatment and serum starvation have the same 

influence on the proteins o f interest. The other reason behind these experiments is to
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investigate the movement of these proteins inside a cell undergoing autophagy in a 

normal state (i.e. without any genetic defect).

In the present study, it was hypothesized that during autophagy, mTOR localized to 

mitochondria and raptor moved from the cytoplasm to mitochondria to join mTOR and 

other proteins to form the mTORCl complex. Raptor would be expected to recruit 

autophagic proteins such as ATG13 to the complex to be de-phosphorylated by mTOR 

and allow it to bind to ATG-1 to form a complex with ATG-17 to initiate phagophore 

membrane which is the first step in autophagic process. Also, it is proposed that LC3 

moved from Golgi apparatus to the cytoplasm to be cleaved and produce LC3-I and 

then converted to LC3-II and localized to the phagophore membrane to play a role in 

the elongation and fusion processes to produce autophagosome and fuse with the 

lysosome respectively.

In the next chapter HEK293 cells were transiently transfected with truncated PS-1 to 

investigate if  the observed autophagic proteins movement were interrupted by the 

truncated protein.
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C hapter 5

Expression o f Truncated PS1-GFP and its 
effect on the localisation o f  mTOR, 

Raptor and LC3
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5.1 INTRODUCTION

Presenillin 1 (PS-1) is a ubiquitous transmembrane protein. The protein has diverse 

putative biological roles in cell adhesion, apoptosis, neurite outgrowth, calcium 

homeostasis, and synaptic plasticity (Kim and Tanzi, 1997; Shen and Kelleher, 2007). A 

part o f the PS1 holoprotein (45 kDa protein) is cleaved in the ER to produce a two- 

chain form (Zhang et al., 1998). One o f the functions o f the cleaved form of PS1 is that 

it forms the catalytic subunit of the gamma (y)-secretase enzyme complex, which 

mediates the intramembranous cleavage o f many type 1 membrane proteins, including 

amyloid precursor protein (APP) and Notch (Citron et al., 1997; De Strooper et al., 

1998).

In addition to a role as the catalytic subunit o f gamma (y)-secretase enzyme complex, 

Strooper and Annaert in 2010, reported that PS plays a role in several diverse cellular 

processes, including autophagy. Mutated presenillins underlie the majority o f FAD 

cases (Mann et al., 1996; Borchelt et al., 1997; Gomez-Isla et al., 1999).

The first connection between neurodegeneration and autophagy originated from the 

observation that protein aggregates can be eliminated by autophagy (Yamamoto and 

Simonsen, 2011; Ravikumar et al., 2002). Growing evidence supports the concept that 

neurons utilize diverse ways to eliminate pathogenic proteins and that multiple steps o f  

the autophagic process are often affected in a given neurodegenerative disorder. Thus, 

for example, in the case of Alzheimer’s disease (AD), autophagy contributes to the 

elimination o f the toxic product o f the APP, amyloid beta (A-p). However, clearance o f  

A-p is compromised as the disease progresses, due to the failure in this autophagic 

pathway (Yu et al., 2005). Anderson (2003) transiently transfected HEK293 cells with a 

tPSl-GFP construct to induce autophagy and by using electron microscopy,
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demonstrated that autophagosomes were formed and accumulated in the cytoplasm, and 

did not clear as would be expected in the normal way.

In the present study, this chapter focuses on the transfection o f HEK293 cells with the 

same tPSl-GFP construct used previously (Anderson, 2003) to induce autophagy. Then, 

investigate the effect o f the truncated protein on the behaviour and the subcellular 

localization o f key autophagic process regulators such as mTOR, raptor and LC3 in an 

attempt to understand the reason behind the autophagic process failure.

5.2 MATERIALS AND METHODS

DNA manipulation, transfection, immunocytochemistry and agarose gel preparation 

were performed as described in chapter 2.

5.2.1 Plasmid digestion

In order to confirm the presence o f the gene o f interest, the plasmid was digested into 

three pieces using Hindlll, XhoL and EcoRl sites. The digestion o f the first piece was a 

double digestion and was for Hindlll and XhoL The reaction was performed as follows: 

In a 50 pi reaction, 35 pi o f distilled water was added to an Eppendorf tube and then 5 

pi o f 10 x BSA, 500 ng o f the plasmid, 5 pi o f 10 x NEBuffer 2, 1 pi o f Hindlll enzyme 

and 1 pi o f Xhol enzyme were added to the same tube (New England Biolab, UK).

The tube was then incubated in a water bath at 37 °C for 2 hours. Then, the enzymes 

were inactivated in a water bath at 65 °C for 20 minutes. The second digestion was also 

a double digestion and was at EcoRI and Xhol sites. It was exactly as the first digestion 

reaction, but this time, according to the supplier, EcoRI enzyme was used instead o f  

Hindlll and NEBuffer EcoRI was used instead o f NEBuffer 2 (New England Biolab, 

UK).

The third digestion was a sequential digestion and was at EcoRI and H indlll sites. The 

protocol was as follows: To an Eppendorf tube, 35 pi o f distilled water, 500 ng o f the
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DNA, NEBuffer 2 and Hindlll enzyme was added. The tube was incubated in a water 

bath at 37 °C for 2 hours and then inactivated at 65 °C for 20 minutes. The tube was 

returned to a water bath at 37 °C for 5 minutes. At this point, 1 pi o f the second enzyme 

EcoRI was added to the tube and incubated at 37 °C for another 2 hours. For enzyme 

inactivation, the tube was incubated again at 65 °C for 20 minutes.

Agarose gel electrophoresis was performed as described above to examine the digestion 

process. 8 pi o f each digestion tube were loaded to 1 % (w/v) agarose gel and the gel 

was electrophoresed at 100 V for an hour as described in 2.9.5.

5.3 RESULTS

5.3.1 Agarose gel electrophoresis

Upon the transformation step the truncated PS1-GFP construct was extracted from E- 

coli bacteria by QIAprep Spin kit according to the protocol provided by the supplier. 

Following the extraction, DNA extracts were run on a 1 % (w/v) agarose gel to confirm 

the presence o f the construct and its size. The result confirmed the presence o f the 

construct at 6986 base pairs (Figure 5.1).

To confirm the presence o f the gene o f interest (PS1-GFP), the construct was digested 

into three fragments using restriction enzymes (.Hindlll, Xhol and EcoRI), which are 

present at the cloning sites provided by the construct supplier (Life Technology, UK). 

The agarose gel showed a band at 1638 base pairs that represents the size as reported by 

the construct supplier (Life Technology, UK) (Figure 5.2).
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1 2 3 4 5 6 7 8

Figure 5.1 Agarose gel electrophoresis of PS1-GFP construct.

Lane (1) ladder GeneRuler lkb DNA, lanes (2-8) PS1-GFP construct.

1 2 3 4 5

2000 bp 
1500 bp 
1000 bp 
750 bp 
500 bp

GFP-PS1 (1638 bp) H/X 

Rl/X

Figure 5.2 Agarose gel electrophoresis of digested PS1-GFP construct.

Lane (1) ladder (GeneRuler lkb DNA, lane (2) un-digested construct, lane (3) construct digested 
with Hindlll + Xhol (double digestion), lane (4) construct digested with EcoRI + Hindlll 
(sequential digestion), lane (5) construct digested with EcoRI + Xhol (double digestion).
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5.3.2 Expression of PS1 (NTF)-GFP in HEK293

Firstly, because stable transfection is more difficult and requires a long time to be 

achieved with HEK293 cells, the cells were transiently transfected with truncated PS1 

conjugated to GFP and monitored by fluorescence microscopy in order to assess how 

long the construct is able to remain inside before its degradation by the cells. The 

fluorescence microscopy images show that PS1 (NTF)-GFP- construct was remained in 

the cells for nine days (Figure 5.3). Based on this result, it was decided that transient 

transfection was sufficient to study autophagy in the present study.

Day 1

PS1 (NTF)-GFP

PS1 (NTF)-GFP

PS1 (NTF)-GFP

Figure 5.3 HEK293 cells transiently transfected with PS1 (NTF)-GFP upto 9 days 
post transfection. HEK293 cells transiently transfected with PS 1-GFP using X-tremeGENE 9 DNA 
Transfection Reagent (TR) in a 3:1 ratio (3|nl TR: lpg DNA). Cells were transfected for 24hrs. (x400 
magnification). Scale bar: lO îm
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5.3.3 Expression of PS1 (NTF)-GFP with mTOR in HEK293 cells

Two 24-well plates o f HEK293 cells were transiently transfected with tPSl-GFP 

construct for 24 hours and then left for two different periods o f time before fixation. The 

first plate was left for 72 hours (3 days), and the other plate was left for 144 hours (6 

days). This experiment was performed to induce autophagy in HEK293 cells by tPSl- 

GFP construct, and study the effect o f tPS-1 on the subcellular localization o f mTOR 

during autophagy. The main purpose in using different periods o f time before fixation is 

to be sure that autophagy has initiated and also to give chance for the process to deal 

with the tPS-1.

Using standard fluorescence and confocal microscopy (Axiovert 200M, laser unit: 

ZESS LSM 510 Laser Module), the ICC pictures indicate that there is no difference in 

the observed subcellular localization o f mTOR in HEK293 cells transfected for three or 

six days (Figures 5.4 and 5.5). The confocal images demonstrate that transiently 

expressed fluorescent protein tPSl-GFP in both cases (3 and 6 days) appear to be co

localized with mTOR protein in a distribution similar to the distribution o f mitochondria 

(Figure 5.6). Controls for mTOR expressed by un-transfected HEK293, HEK293 

transfected with transfection reagent alone, HEK293 transfected with DNA alone or 

HEK293 transfected with complex (DNA+TR) were performed. ICC showed that 

mTOR had the same distribution in all cases (Figure 5.7). It has been previously 

reported in chapter 4 that mTOR might be localized to mitochondria in autophagic and 

non-autophagic HEK293 cells. The result from this experiment has also show that after 

transfection, the distribution o f mTOR is still similar to the mitochondrial distribution. 

Since tPSl-GFP has been observed appear to be co-localized with mTOR, this suggests 

that tPS-1 may interact with mTOR complex on the surface o f the mitochondria.
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Figure 5.4 Dual label immunofluorescence for mTOR and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells, (3 days after transfection). Cells were transiently transfected with PS l(NTF)- 
GFP for 3 days, fixed in cold methanol and labelled for (A) Nuclei were counterstained with DAPI (B) mTOR using 
primary monoclonal rabbit anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 
donkey anti-rabbit IgG (C) PS1(NTF)-GFP (D) Merge. Scale bar: 10pm
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Figure 5.5 Dual label immunofluorescence for mTOR and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells, (6 days after transfection). Cells were transiently transfected with PS l(NTF)- 
GFP for 6 days, fixed in cold methanol and labelled for (A) Nuclei were counterstained with DAPI (B) mTOR using 
primary monoclonal rabbit anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 
donkey anti-rabbit IgG (C) PS1 (NTF)-GFP (D) Merge. Scale bar: 10pm
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Figure 5.6 Dual label immunofluorescence (Confocal image) for mTOR and PS1 (NTF)- 
GFP in transiently transfected HEK293 cells, (6 days after transfection). Cells were transiently 
transfected with PS1(NTF)-GFP for 6 days, fixed in cold methanol and labelled for (A) mTOR using primary 
monoclonal rabbit anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey 
anti-rabbit IgG (B) PS1(NTF)-GFP (D) Merge. Scale bar: 10pm
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Figure 5.7 Single label immunofluorescence for mTOR in HEK293 cells, (Controls). Cells were 
fixed in cold methanol and labelled for (A) mTOR in untransfected HEK293 cells (B) mTOR in HEK293 cells 
transfected with transfection reagent (TR) only (C) mTOR in HEK293 cells transfected with DNA (PS1 (NTF)-GFP) 
only. In all three merge pictures, mTOR was labelled with primary monoclonal rabbit anti-human mTOR antibody 
(Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG. Scale bar: 10pm
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5.3.4 Expression of PS1 (NTF)-GFP with raptor in HEK293 cells

In this experiment, in order to detect the subcellular localization o f raptor and 

investigate the effect o f truncated PS-1 expression on its location, two groups of 

HEK293 cells were transiently transfected with the tPSl-GFP construct to induce 

autophagy for either 3 or 6 days.

Three days after transfection, the ICC images illustrated that there may be an interaction 

between raptor and the transiently expressed tPSl-GFP construct (Figure 5.8). Also, 

after 6 days, HEK293 cells demonstrated the same result (Figure 5.9). It appears that 

raptor and tPSl-GFP are present in the same subcellular location. However, in both 

cases, although it appears that granular raptor staining was localized with tPSl 

expression, the raptor staining was not completely co-localized with it. The other 

observation in both cases is that it seems that the non-transfected cells have more raptor 

staining than the transfected cells. Controls were also performed to test for artefactual 

results and illustrated no non-specific staining. Raptor protein was diffusely stained in 

the cytoplasm in all cases (Figure 5.10).

Interestingly, the interaction between raptor and tPSl-GFP construct is similar to what 

has been observed between mTOR and the same construct in the present study. In 

addition, they have the same intracellular distribution. This similarity in the interaction 

and the cellular distribution between mTOR, raptor and tPSl-GFP may represent 

another indication for a direct physical interaction between mTOR and raptor, and the 

tPSl-GFP construct might be co-localize with the mTORCl that include mTOR and 

raptor proteins.
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Figure 5.8 Dual label immunofluorescence for raptor and PS1 (NTF)-GFP in 
transiently transfected HEK293 cells (3 days after transfection). Cells were transiently 
transfected with PS1(NTF)-GFP for 3 days, fixed in cold methanol and labelled for (A) Nuclei were 
counterstained with DAPI (B) Raptor using primary monoclonal rabbit anti-human raptor antibody 
(CellSignaling Technology, 2280) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) 
PS 1 (NTF)-GFP (D) Merge. Scale bar: 10pm
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Figure 5.9 Dual label immunofluorescence for raptor and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells (6 days after transfection). Cells were transiently transfected with PSl(NTF)- 
GFP for 6 days, fixed in cooled methanol and labelled for (A) Nuclei were counterstained with DAP1 (B) raptor using 
primary monoclonal rabbit anti-human raptor antibody (Cell Signaling Technology, 2280) and secondary antibody 
Alexa fluor 594 donkey anti-rabbit IgG (C) PS1(NTF)-GFP (D) Merge. Scale bar: 10pm
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Figure 5.10 Single label immunofluorescence staining for raptor in HEK293 cells (Controls).
Cells were fixed in cold methanol and labelled for (A) raptor in untransfected HEK293 cells (B) raptor in HEK293 cells 
transfected with transfection reagent (TR) only (C) raptor in HEK293 cells transfected with DNA (PS1 (NTF)-GFP) 
only. In all three images, raptor was labelled with primary monoclonal rabbit anti-human raptor antibody (Cell Signaling 
Technology, 2280) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG. Scale bar: 10pm
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5.3.5 Expression of PS1 (NTF)-GFP with LC3 in HEK293

HEK293 cells were transiently transfected with truncated PS-1 (PS1-GFP construct) for 

3 or 6 days to induce autophagy and to study the behaviour o f LC3 under the influence 

o f truncated PS-1.

By fluorescence and confocal microscopy, the ICC images from both groups have 

shown that the expressed fluorescent protein tPSl-GFP appears to be co-localized with 

LC3 protein (Figures 5.11 and 5.12). However, it seems that the small amount o f LC3 

staining that is present over the nucleus is not co-localized with tPSl as shown clearly 

in figure 5.12. It has been previously reported in chapter 4 that LC3 appears to localize 

to the Golgi apparatus in non-autophagic HEK293 cells. However, upon autophagy 

induction by rapamycin treatment or serum starvation, a small portion o f LC3 moved to 

the cytoplasm, while the majority o f the protein remained localized to the Golgi 

apparatus.

Interestingly, in this experiment, upon autophagy induction by truncated PS-1, the 

majority o f the LC3 protein moved from the Golgi apparatus and appears to be co

localized with tPSl-GFP in the cytoplasm or on other subcellular organelles. However, 

a small portion o f the LC3 protein remained localized to the Golgi apparatus. Figure 

5.13 shows confocal images o f transiently expressed fluorescent protein tPSl-GFP with 

LC3 protein in HEK293 cells. As in figure 5.12, figure 3.13 showed that there is not 

total overlap o f staining for tPSl and LC3. Controls showing subcellular localization of 

LC3 in transfected and un-transfected HEK293 cells were performed. All three controls 

showed that the result is not an artefact or due to non specific binding o f antibodies. The 

result suggests that LC3 protein may indeed localize to the Golgi apparatus (Figure 5. 

14).
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Figure 5.11 Dual label immunofluorescence for LC3 and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells (3 days after transfection). Cells were transiently transfected with PS 1(NTF)- 
GFP for 3 days, fixed in cold methanol and labelled for (A) Nuclei counterstained with DAPI (B) LC3 using primary 
monoclonal rabbit anti-human LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 
donkey anti-rabbit IgG (C) PS1(NTF)-GFP (D) Merge. Scale bar: 10pm
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Figure 5.12 Dual label immunofluorescence for LC3 and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells (6 days after transfection). Cells were transiently transfected with PS l(NTF)- 
GFP for 6 days, fixed in cold methanol and labelled for (A) Nuclei counterstained with DAPI (B) LC3 using primary 
monoclonal rabbit anti-human LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 
donkey anti-rabbit IgG (C) PS1(NTF)-GFP (D) Merge. Scale bar: 10pm
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Figure 5.13 Dual label immunofluorescence (Confocal image) for LC3 and PS1 (NTF)-GFP in 
transiently transfected HEK293 cells (6 days after transfection). Cells were transiently transfected with 
PS1(NTF)-GFP for 6 days, fixed in cold methanol and labelled for (A) LC3 using primary monoclonal rabbit anti-human 
LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (B) PSl(NTF)- 
GFP (C) Merge. Scale bar: 10pm
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Figure 5.14 Single label immunofluorescence for LC3 in HEK293 cells (Controls). Cells were 
fixed in cold methanol and labelled for (A) LC3 in untransfected HEK293 cells (B) LC3 in HEK293 cells transfected 
with transfection reagent (TR) only (C) LC3 in HEK293 cells transfected with DNA (PS 1 (NTF)-GFP) only. In all three 
merge pictures, LC3 was labelled with primary monoclonal rabbit anti-human LC3A/B antibody (Millipore, MABC176) 
and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG. Scale bar: 10pm
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5.4 DISCUSSION

Presenilins are ubiquitous, intramembrane proteins that are known to have crucial 

functions in many cellular processes including autophagy (Strooper and Annaert, 2010). 

It has been revealed that lysosomal proteolysis and autophagy require presenilin 1 and 

are disrupted by Alzheimer related presenilin 1 mutation (Lee et al., 2010b). In addition, 

Neely et al. (2011) demonstrated that presenilin is necessary for efficient proteolysis 

through the autophagy-lysosome system in a y-secretase-independent manner. Both 

studies demonstrated that absence or mutation o f presenilin leads to autophagic 

dysfunction late in the pathway, at the autophagosome-lysosome fusion step.

Lee et al. (2010b) attributed the autophagic failure to a deficit in the lysosomal 

acidification. The authors used PS1 null blastocytes, neurons from mice hypomorphic 

for PS1 or conditionally deleted o f PS1, and show that the substrate proteolysis and 

autophagosome clearance during macroautophagy are prevented. They concluded that 

this defect is due to selective impairment o f autolysosome acidification and cathepsin 

activation. Neely et al. (2011) have supported Lee’s hypothesis but suggested another 

role for presenilins at the autophagosome-lysosome interaction. Neely et al. (2011) have 

treated PSDKO (presenilin-1 and -2 double knockout mice fibroblasts) cells with the 

vacuolar ATPase inhibitors, bafilomycin A l and the microtubule-destabilizing drug 

nocodazole, both o f which will inhibit autophagosome-lysosome fusion. They reported 

that cells with autophagic defect at the lysosome will lead to a build-up in 

autophagosomes, and inhibition at the lysosome will not result in an additional increase 

in LC3-II/autophagosome because the downstream steps o f the process are already 

defective. Interestingly, they have found that PSDKO cells do not have an additional 

increase in LC3-II when treated with bafilomycin A l or nocodazole. Based on the 

results, they concluded that this is a novel function of presenilins in autophagy at the 

level o f autophagosome-lysosome interaction or lysosomal function.
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However, a study by Zhang et al. (2012) utilizing embryonic stem cells (ES) lacking 

presenilin 1 (PSlko-ES) or both presenilin 1 and presenilin 2 (PSko-ES) compared to 

wild type embryonic stem (WT-ES) cells and also hippocampi of mice with genetic 

deletions o f presenilin 1 and presenilin 2 in excitatory neurons (PScdko mice) compared 

with their littermate controls has revealed that the absence o f presenilins has no 

significant influence on lysosomal pH.

Anderson (2003) transiently transfected HEK293 cells with truncated presenilin 1 

construct and demonstrated that autophagy failed to proceed normally. Transfected 

HEK293 cells with tPSl-GFP construct formed autophagosomes which accumulated in 

the cytoplasm, observed by electron microscopy and did not clear as would be expected 

in the normal state. This is another indication that the problem in the autophagic process 

occurred late in the pathway at the level o f autophagosome-lysosome interaction.

The present study repeated and extended the experiments using the same cell line and 

construct to investigate the reason behind the autophagic dysfunction in terms o f the 

subcellular localization o f key autophagic regulator proteins (mTOR, raptor and LC3) 

and their relation with truncated PS1 localization. In this study, HEK293 cells were 

transfected for either 3 or 6 days, to compare the results and also to allow time for 

truncated PS1 to be aggregated and ensure autophagy induction.

The results show that tPSl persisted in the cells and did not disappear over time at 

either three or six day experiments and this is an indication that autophagy failed to 

clear it. In order to study the effect o f truncated PS1 on the subcellular localization o f  

the proteins o f interest (mTOR, raptor and LC3) and subsequently on the autophagic 

process, dual label ICC studying the relation between the subcellular localization o f  

truncated PS1 and mTOR, raptor and LC3 localizations was performed.
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5.4.1 Intracellular distribution of mTOR and truncated PS1

Intracellular distribution o f truncated PS1 is very similar to the intracellular distribution 

of mTOR protein as seen by ICC, suggestive o f co-localisation. The distribution o f tPSl 

and mTOR is similar to that o f mitochondria, as has been demonstrated for mTOR in 

autophagic, HEK293 cells serum starved or treated with rapamycin, and non-autophagic 

HEK293 cells. The anti-mitochondrial antibody used in this study detects the surface o f  

the mitochondria, which indicates that truncated PS1 might be co-localized with mTOR 

in this location.

It has been reported that PS1 modulates autophagy induction (Lee et al., 2010b), which 

is negatively regulated by mTOR (Wullschleger et al., 2006), suggesting a possible 

interaction between PS1 and mTOR (Caccamo et al., 2011). If there is a direct or 

indirect interaction between tPSl and mTOR protein, so the question is whether PS1 

normally interacts with mTOR or mTORCl during autophagy or whether this 

interaction occurred incorrectly due to its truncation. If PS1 is required to interact with 

mTORCl during autophagy for it to proceed normally, the truncation in this experiment, 

or the mutations in the case o f AD, may alter the normal function o f PS1 during 

autophagy leading to the failure o f the process. If the interaction happened incorrectly 

because o f the truncation, so tPSl may cause dysregulation o f the mTOR pathway 

leading to impairment of autophagy.

As mentioned in chapter four, in yeast, mTOR has the ability to induce and inhibit 

autophagy. This autophagic induction or inhibition is through dephosphorylation of 

Atgl3 (Mizushima, 2010; Glick et al., 2010) or phosphorylation o f Atgl (Wang and 

Proud, 2010). Thus, it is proposed that the dysregulation o f mTOR pathway by 

truncated PS1 may result in, for instance, phosphorylation o f ATG1 leading to 

autophagic impairment.
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However Lee et al. (2010b) and Neely et al. (2011) have shown that autophagic 

dysfunction was late in the pathway, at the autophagosome-lysosome fusion step. Also, 

before them, Anderson (2003), using electron microscopy, has shown that 

autophagosomes have formed and accumulated in the cytoplasm of transfected HEK293 

cells. However, the autophagic process did not appear to go to completion as would be 

expected in the normal state, because the PS1 aggregates persisted in the cells and were 

not removed, and appeared to lead to cell death. Consistent with this, it has been 

demonstrated that PS1 deletion did not have a significant influence on the major 

upstream aspects o f macroautophagy, including nutrient-dependent regulation o f mTOR, 

a protein kinase-signaling pathway that uses phosphoinositide 3-kinase and protein 

kinase B (PI3K-AKT) (Sarbassov et al., 2005) and is modulated in part by PS2 (Kang et 

a l , 2005).

It has also been revealed that following autophagy induction in PS1 KO cells, P70S6K 

was normally dephosphorylated and LC3-positive punctate and autophagic vacuoles 

were increased. This is an indication o f the ability o f the cells to form autophagosomes 

(Lee et al., 2010b). The accumulation o f P62 (autophagic substrate) is also an indication 

that PS1 KO cells have the ability to sequester substrates despite the subsequent 

degradation impairment (Lee et al., 2010b).

5.4.2 Intracellular distribution of raptor and truncated PS1

Similar to the mTOR protein, ICC illustrates a similarity between the intracellular 

distribution o f raptor and tPSl-GFP construct, suggesting that raptor may interact or co- 

localize with the tPSl-GFP construct. The present study demonstrated that raptor 

localised to the cytoplasm of non-autophagic HEK 293 cells and that following 

autophagy induction by rapamycin treatment or by serum starvation, raptor moved from
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the cytoplasm to the perinuclear area which was similar to the distribution o f the 

mitochondria in these cells.

In this study, it was suggested that mTOR localised to the surface o f the mitochondria in 

HEK293, and upon autophagy induction, mTOR remained localized to the mitochondria 

but raptor has moved from the cytoplasm to be abundant on the mitochondria and join 

mTOR to form the mTORCl. Based on this, one can suggest that tPSl may interact 

with raptor in the cytoplasm first and then they move together to the perinuclear region. 

The other suggestions are that: tPSl has co-localized with raptor on the mTORCl, or 

tPSl has co-localized with mTOR and not raptor on the mTORCl (or vice versa) and 

this is the reason to observe it co-localized with mTOR and raptor at the same time. If 

the interaction between tPSl and raptor is true, how can this affect the autophagic 

process?

Previous studies indicate that raptor may have roles in mediating mTORCl assembly, 

recruiting substrates, and regulating mTORCl activity and subcellular localization 

(Hara et al., 2002; Kim et al., 2002; Sancak et al., 2008). The strength o f the interaction 

between mTOR and raptor can be modified by nutrients and other signals that regulate 

the mTORCl pathway, but how this translates into regulation o f the mTORCl pathway 

remains elusive (Yip et al., 2010). See also (chapter four: section 4.4.2).

If the PS1 plays a role in normal autophagy via its interaction with raptor, then the 

truncation o f PS1 as in this experiment or the PS1 mutations in the case o f FAD may 

alter or destroy the required normal function o f PS1 leading to autophagic impairment. 

While the abnormal interaction between raptor and tPSl caused by the protein 

truncation or mutations, may result in interruption o f one of the normal raptor functions. 

For instance, this abnormal interaction may lead to prevention o f mTORCl assembly or
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block substrate recruitment to be phosphorylated or dephosphorylated by mTOR, 

causing an mTOR pathway dysregulation and subsequently autophagic failure.

However, the formation o f phagophore membrane and autophagosomes as proved by 

Lee et al. (2010b) and Neely et al. (2011), and also showed by Anderson (2003) gives 

an indication that there is no defect in the initiation o f autophagy. Since mTORCl is 

responsible for the initiation o f autophagy through mTOR inhibition, it can be suggested 

that the mTORCl is not affected by the interaction between tPSl and raptor, unless this 

interaction may stimulate another raptor pathway that would stop autophagy late at the 

fusion step.

5.4.3 Intracellular distribution of LC3 and truncated PS1

Autophagy induced by tPSl-GFP construct in HEK293 cells and the behaviour o f  

endogenous LC3 under the influence o f tPSl during autophagy was investigated. By 

utilizing fluorescence and confocal microscopy, ICC demonstrated that LC3 changed its 

subcellular localization and had a similar subcellular localization to truncated PS1. In 

chapter four, the results showed that in non-autophagic HEK293 cells, it seems that LC3 

was localized to the Golgi apparatus and upon autophagy induction by rapamycin 

treatment or serum starvation, some o f the protein diffused in the cytoplasm, while the 

larger part remained localized to the Golgi apparatus. In comparison, after autophagy 

induction by tPSl, it’s clear from the images that the larger part o f the endogenous LC3 

was in the cytoplasm and has a similar distribution as tPSl giving an indication that this 

might be an interaction between the two proteins upon autophagy induction.

If this interaction between the proteins is true, then does tPSl move towards the Golgi 

apparatus first and interact with LC3 and upon autophagy induction they moved 

together back to the cytoplasm, or has truncated PS1 remained in the cytoplasm or on 

other cellular organelles, and then LC3 diffused to interact with it and as a result o f this
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diffusion a new subcellular localization o f LC3 was observed. In the present study, 

because o f the limitations in time and resources, it was not possible to view live images 

of HEK293 cells during transfection. This might have shown the movement o f the tPSl 

inside the cell.

LC3 is an ubiquitin-like protein that is the mammalian homologue o f the autophagy- 

related Atg8 encoded product in yeast (Kabeya et al., 2000; He et al., 2003). After 

translation, the unprocessed LC3 is cleaved by Atg4 protease to produce LC3-I form, 

with a carboxy terminal exposed glycine. Following autophagy induction, the 

uncovered glycine o f LC3-I is conjugated by Atg7, Atg3 and Atgl2-Atg5-Atgl6 

multimers to the highly lipophilic PE moiety to produce LC3-II (Mizushima, 2007; 

Nakatogawa et al., 2009). The PE group is crucial for the integration o f LC3-II into 

lipid membranes at the phagophore and autophagosomes (Barth et al., 2010). It has 

been demonstrated that LC3 at the autophagosome plays a role in selecting cargo for 

degradation. For example; interaction o f LC3-II with p62/SQTMl targets associated 

protein aggregates for turnover (Pankiv et al., 2007). In addition, it has been reported 

that LC3 plays an important role in promoting membrane tethering and fusion in vitro 

(Nakatogawa et al., 2007). Based on this, there is the possibility for LC3 plays a role in 

fusion of autophagosomes with other membrane compartments such as endosomes 

(Barth et al., 2010).

Based on LC3 function, if  the interaction between tPSl and LC3 is true, this interaction 

may interrupt the normal function o f LC3 leading to autophagic failure. One o f the 

functions o f LC3 is to select a cargo for degradation, so when LC3 moved to interact 

with the cargo to drive it to autophagy, because o f the truncation o f PS1 in this study, or 

the mutations o f the protein in the AD, this interaction may occurs incorrectly and 

prevents LC3 protein from fulfilling its normal role in the autophagy process.
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Intriguingly, it has been shown that PS1 has a role to play in autophagy at the level o f  

autophagosome-lysosome interaction or lysosome function (Neely et al., 2011). In 

addition, Lee et al. (2010b) and Neely et al. (2011) have reported that the autophagic 

dysfunction is late in the pathway, at the autophagosome-lysosome fusion step. 

Moreover, LC3 has been proved to play a role in tethering and fusion (Nakatogawa, et 

al., 2007). Taken together, these results suggest that the interaction between LC3 and 

the tPSl may be implicated in the observed autophagic dysfunction.

Nakatogawa et al. (2007) used liposomes containing PE incubated with purified Atg7, 

Atg3 and Atg8 in the presence o f ATP and reported that Atg8-PE was efficiently 

formed. Interestingly, the group demonstrated that aggregates were generated during the 

production o f Atg8-PE and the size o f the aggregates appeared to correlate with the 

amount o f Atg8-PE produced. They suggested that these aggregates were clusters o f  

liposomes. After performing some confirmation experiments, they suggested that Atg8- 

PE molecules function to tether membranes to which they are anchored. Based on these 

results, one can suggest that the interruption o f the lipidation process by tPSl may have 

an influence on both: the autophagosome formation and autophagosome-lysosome 

fusion, as the same group have also found that not only tethering but also fusion o f the 

liposomes was mediated by Atg8-PE.

It has been reported that fusion proceeds via an intermediate state known as hemifusion, 

in which outer leaflets o f two opposed lipid bilayers merge, while inner leaflets remain 

intact (Chemomordik and Kozlov, 2005). A study revealed that membrane fusion 

mediated by Atg8-PE is hemifusion and not complete fusion (Nakatogawa et al., 2007). 

It was also reported by the same group that fusion can be arrested or delayed at the 

hemifusion state under some conditions. Therefore, it can be suggested that the 

interaction between tPSl and LC3 has an undesirable effect on the hemifusion step in 

the autophagy process.
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Nakatogawa et al. (2007) have also reported that Atg8 forms a multimer in response to 

the conjugation with PE. They used immunoelectron microscopy to study liposomes 

that were clustered by Atg8-PE and demonstrated that Atg8-PE tends to be enriched at 

the junction between the liposomes. They incubated the same mixture but without ATP. 

By using the same analytical technique, they realized that the previous observation had 

disappeared. The group concluded that Atg8-PE is directly involved in the tethering and 

hemifusion o f liposomes. In the same study, the researchers have observed that naked 

liposomes do not associate with liposomes carrying Atg8-PE, and they suggested that 

tethering could be achieved by interactions between Atg8-PE molecules on different 

membranes. Based on this information, if  the observed interaction between tPSl and 

LC3 in the present study is true, this interaction may interrupt the lipidation step and 

prevent multimerization or this interaction may block the association between two 

Atg8-PE molecules on different membranes leading in both cases to prevention o f the 

tethering and fusion steps and subsequently to autophagic failure.

5.5 CONCLUSION

Based on ICC images obtained in this study, it appears that there is an interaction 

between truncated PS1 and mTOR, raptor and LC3 proteins. If these interactions are 

true, this suggests that these interactions may be involved in the disruption o f the 

autophagic process in neurodegenerative diseases. The interaction between mTOR and 

truncated PS1 may dysregulate the mTOR signalling pathway, the interaction between 

raptor and truncated PS1 may prevent mTORCl assembly or stop mTOR substrate 

recruitment and the interaction between LC3 and truncated PS1 may prevent the 

lipidation process between LC3 and PE or block the connection between two LC3-PE 

molecules on the membranes of the autophagosome and lysosome and prevent thier 

fusion. In fact, the most important observation from the present study is the interaction 

between LC3 and PS1. As previously reported, many studies have revealed that the
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defect in the autophagic process occurred late in the pathway at the fusion step. In 

addition, it has also been reported that PS1 is required in the late autophagic stages, and 

LC3-PE (LC3-II) was observed to play an important role in tethering and fusion of 

liposomes. Therefore, the interaction between tPSl and LC3 should be taken into 

consideration. It has been reported that the lipidation process between LC3-I and PE is 

ATP-dependent. So, one can suggest that upon autophagy induction, lipidation process 

may occur on the mitochondria. So, based on the observation in the present study which 

suggested that upon autophagy induction, mTOR and raptor might be localized to 

mitochondria. This may explain why mTOR, raptor and LC3 were observed co

localised with tPSl in the same location on the surface o f the mitochondria.
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C hapter 6

Effect o f Rapamvcin or Serum Starvation 
on localisation o f  Truncated PS1-GFP or

mTOR, Raptor and LC3



6.1 INTRODUCTION

In the present study, the subcellular localisation of mTOR, raptor and LC3 proteins 

were investigated in non-autophagic HEK293 cells. Then, the cells were serum starved 

or treated with rapamycin to induce autophagy and investigate whether the behaviour 

and subcellular localisation o f these proteins have changed during autophagy. The ICC 

results have shown that the intracellular location o f raptor and LC3 proteins has 

changed, while no change has been observed with mTOR protein. After that, HEK293 

cells were transiently transfected with tPSl-GFP construct to induce autophagy 

(Anderson, 2003), and to study the influence o f tPSl on the behaviour o f the proteins of 

interest. The immunofluoresence and confocal microscopes images have demonstrated 

that an interaction might occur between the tPSl and mTOR, raptor and LC3 proteins. 

However, i f  the interaction is true, it was difficult to confirm the place where these 

proteins have interacted. The interaction might be occurring on the mitochondria 

because mTOR was localized to mitochondria in autophagic and non-autophagic 

HEK293 cells, while the other two proteins were moved toward the perinuclear area 

upon autophagy induction.

After the transfection experiment, a question arises: is the tPSl transfection in this 

experiment enough to induce autophagy? To overcome this concern, in this chapter, 

HEK293 cells were serum starved or treated with rapamycin after the transfection to be 

sure that autophagy has induced. The other purpose from this experiment is to study the 

effect o f serum starvation and rapamycin treatment on the subcellular localization o f the 

truncated PS 1 and mTOR, raptor and LC3 proteins after the transfection. In addition, to 

perform further investigations such as cellular fractionation, transfected HEK293 cells 

were sorted by a flow cytometer. However, for some reasons, it was not possible to 

obtain sufficient sorted cells for further experiments.
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6.2 MATERIAL AND METHODS

6.2.1 HEK293 cells transfection, rapamycin treatment and starvation:

HEK293 cells were cultured on cover slips in 24-well plates. Then, the cells were 

transfected with tPSl (see section 2.10.1). After that, the cells were treated with three 

different concentrations o f rapamycin (50, 200 and 500 nM) for 16 hours. The 

concentration o f DMSO (rapamycin solvent) was 0.05% at all three rapamycin 

concentrations. The cells were treated in the same way as reported in chapter 4: section 

4.2.2. The cells were serum starved after transfection in serum free EMEM media 

(Lonza, UK) for 24 hours as described in section 4.2.3.

6.2.2 Immunocytochemistry:

The HEK293 cells were fixed by cold methanol and the rest o f the experiment was 

performed exactly as reported in section 2.7.1.

6.2.3 Flow cytometry and fluorescence activated cell sorting (FACS):

Transiently transfected HEK293 cells were sorted by a flow cytometer in the Medical 

School at the University o f Sheffield. HEK293 cells were cultured in EMEM complete 

media using T25 flask and left in the incubator at 37 °C to be confluent. Then, the 

complete media was removed and replaced with antibiotics free media and the cells 

transfected with truncated PS1 at ratio 3:1 (3 pi transfection reagent: lpg  DNA) 

according to the protocol provided by Roche company. The cells were left for 24 hours 

and then the transfection reagent containing media was removed and replaced by 

complete media for cells recovery. The transfected cells were left for another 24 hours 

in the complete media and then the flask was taken to the flow cytometry staff in 

Sheffield University and the transfected cells were sorted by flow cytometer and FACS 

machine (BD FACSAriaTM llu, BD FACSAriaTM Cell Sorter) and collected.
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6.3 RESULTS

HEK293 cells were transfected with tPSl-GFP and then treated with three different 

concentrations (50, 200 and 500 nM) o f rapamycin for 16 hours. ICC was performed to 

investigate the subcellular localisations o f tPSl-GFP, mTOR, raptor and LC3 for each 

rapamycin concentration. The dual label ICC images for mTOR and tPSl-GFP show the 

same results as observed in the previous chapter. Rapamycin treatment of the cells after 

transfection had no effect on the subcellular localisation o f tPSl when compared with 

the previous results (chapter 5). ICC demonstrated that tPSl still persisted in the cell 

and might be interacting with mTOR in a distribution similar to the distribution o f the 

mitochondria (Figures 6.1, 6.2 and 6.3). However, mTOR staining was not completely 

co-localized with the tPSl and this is observed clearly in figures (6.1, 6.2 and 6.3). In 

addition, the result revealed that there was no difference observed between the three 

rapamycin concentrations used in the experiment.

In regard to raptor, the result also revealed that rapamycin treatment after transfection 

had no effect on the expression o f either tPSl or raptor protein, as observed in chapter 5. 

An interaction between truncated PS1 and raptor might be occurred during autophagy 

(Figures 6.4, 6.5 and 6.6). However, some raptor staining present in the perinuclear 

region was not co-localized with tPSl staining. Also, the three different rapamycin 

concentrations have produced the same results. In the case o f LC3A/B result, no change 

has been observed in the subcellular localisations o f tPSl and LC3 when HEK293 cells 

treated with rapamycin after the transfection.

As observed in chapter 5, the majority o f the LC3 staining moved from the Golgi 

apparatus to interact with tPSl in the same subcellular distribution, whilst a small 

portion o f the LC3 protein remained localized to the Golgi apparatus. In addition, there 

were some small tPSl bulbs not co-localized with the LC3 protein. The same result was
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observed under the influence o f the different rapamycin concentrations (Figures 6.7, 6.8 

and 6.9).

HEK293 cells were serum starved after transfection in serum-free media for 24 hours. 

Then, dual label ICC was performed to investigate the influence o f starvation on the 

expression o f tPSl and on the subcellular localizations of mTOR, raptor and LC3 after 

transfection. The obtained immunofluorescence images revealed that starvation had no 

effect on the subcellular localization o f tPSl. The result was the same as what has been 

observed in chapter 5. It seems that tPSl might be interacting with mTOR, raptor and 

LC3 upon autophagy induction.

However, in the case o f mTOR staining, some small tPSl bulb staining was not co

localized with mTOR protein, and also, some mTOR stained spots were not co

localized with tPSl. In regard to raptor, the perinuclear raptor spots were not co

localized with tPSl, and also, the small bulbs o f tPSl were not co-localized with the 

raptor protein. The majority o f LC3 protein moved from the Golgi apparatus and co

localized with tPSl. However, some small bulbs o f tPSl were not co-localized with 

LC3 protein (Figures 6.10, 6.11 and 6.12).

Transient transfection produces a mixture o f transfected and non-transfected cells. In the 

present study, to perform further investigation such as cellular fractionation using 

transiently transfected cells only, transfected HEK293 cells were sorted by flow 

cytometry at the University o f Sheffield. The cells were sorted more than five times in 

order to obtain pure, live and uncontaminated transfected cells. But, it was difficult to 

handle the sorted cells. In the first attempts, after the sorting process, the cells were re

cultured in complete media, but, the cells did not attached to the bottom of the flasks 

and then died within 24 hrs. After that, the plan was to deal immediately with the sorted
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transfected HEK293 cells, but this time the cells had bacterial contamination after the 

sorting process.

Figures (6.13A, 6.13B and 6.13C) show the graphs o f the last attempt of the sorting 

process. In this case, immediately after the sorting process, the cells were poured into a 

well o f a 6-well plate and pictures were taken using an inverted microscope (Olympus, 

IX2-UCB) to be sure that the well contained transfected cells only (Figure 6.14a and 

6.14b). However, it was not possible to obtain sufficient sorted cells for further 

experiments.
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Figure 6.1 Dual label immunofluorescence for mTOR and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after 50nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1(NTF)-GFP first and then treated with 50 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) mTOR using primary monoclonal rabbit 
anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG 
(C) Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.2 Dual label immunofluorescence for mTOR and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after 200nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1 (NTF)-GFP first and then treated with 200 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) mTOR using primary monoclonal rabbit anti
human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) Green 
fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.3 Dual label immunofluorescence for mTOR and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after 500nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1 (NTF)-GFP first and then treated with 500 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) mTOR using primary monoclonal rabbit anti
human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) Green 
fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.4 Dual label immunofluorescence for raptor and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after 50nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1 (NTF)-GFP first and then treated with 50 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) raptor using primary monoclonal rabbit anti
human raptor antibody (CellSignaling Technology, 2280) and secondary antibody Alexa fluor 594 donkey anti-rabbit 
IgG (C) Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.5 Dual label immunofluorescence for raptor and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after 200nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1(NTF)-GFP first and then treated with 200 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) raptor using primary monoclonal rabbit anti
human raptor antibody (CellSignaling Technology, 2280) and secondary antibody Alexa fluor 594 donkey anti-rabbit 
IgG (C) Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.6 Dual label immunofluorescence for raptor and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after 500nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1(NTF)-GFP first and then treated with 500 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) raptor using primary monoclonal rabbit 
anti-human raptor antibody (CellSignaling Technology, 2280) and secondary antibody Alexa fluor 594 donkey anti
rabbit IgG (C) Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.7 Dual label immunofluorescence for LC3 and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after 50nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1(NTF)-GFP first and then treated with 50 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) LC3 using primary monoclonal rabbit 
anti-human LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 donkey anti-rabbit 
IgG (C) Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.8 Dual label immunofluorescence for LC3 and PS1 (NTF)-GFP in transiently
transfected HEK293 cells after 200nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1(NTF)-GFP first and then treated with 200 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) LC3 using primary monoclonal rabbit anti
human LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) 
Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.9 Dual label immunofluorescence for LC3 and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after 500nM rapamycin treatment for 16 hrs. Cells were transiently 
transfected with PS1(NTF)-GFP first and then treated with 500 nM rapamycin for 16 hrs and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) LC3 using primary monoclonal rabbit anti
human LC3A/B antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) 
Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.10 Dual label immunofluorescence for mTOR and PS1 (NTF)-GFP in 
transiently transfected HEK293 cells after serum starvation for 24 hrs. Cells were transiently 
transfected with PS1(NTF)-GFP first and then starved in serum free media for 24 hrs, and then fixed in cooled 
methanol and labelled for (A) Nuclei were counterstained with DAPI (B) mTOR using primary monoclonal rabbit 
anti-human mTOR antibody (Millipore, 04-385) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG 
(C) Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.11 Dual label immunofluorescence for raptor and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after serum starvation for 24 hrs. Cells were transiently transfected with 
PS1(NTF)-GFP first and then starved in serum free media for 24 hrs, and then fixed in cooled methanol and labelled 
for (A) Nuclei were counterstained with DAPI (B) raptor using primary monoclonal rabbit anti-human raptor 
antibody (CellSignaling Technology, 2280) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) 
Green fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Figure 6.12 Dual label immunofluorescence for LC3 and PS1 (NTF)-GFP in transiently 
transfected HEK293 cells after serum starvation for 24 hrs. Cells were transiently transfected with 
PS 1 (NTF)-GFP first and then starved in serum free media for 24 hrs, and then fixed in cooled methanol and labelled 
for (A) Nuclei were counterstained with DAPI (B) LC3 using primary monoclonal rabbit anti-human LC3A/B 
antibody (Millipore, MABC176) and secondary antibody Alexa fluor 594 donkey anti-rabbit IgG (C) Green 
fluorescence of GFP conjugated to PS1 (NTF) (D) Merge. Scale bar: 10pm
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Scale bar 500jam (B) Scale bar lOOjam.
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6.4 DISCUSSION

From the results presented in this chapter, it is clear that tPSl protein persisted in the 

cells and was not removed even when autophagy was induced with rapamycin treatment 

or serum starvation after transfection. The similarity between the results in chapter five 

and in this chapter suggests that tPSl has the ability to induce autophagy and indicates 

that autophagy has failed to proceed normally even when induced by rapamycin or 

serum starvation. In addition, the result has revealed that rapamycin treatment has as the 

same influence as serum starvation on the subcellular localization o f tPSl and the 

autophagy associated proteins studied in this project.

In chapter three, it was shown that the rapamycin concentrations (50, 200 and 500nM) 

for 16 hours were able to induce autophagy. The anti-LC3A/B antibody has succeeded 

in staining the two forms o f LC3 (LC3-I and LC3-II) (autophagic markers) using 

proteins extracted from HEK293 cells treated with these concentrations o f rapamycin. 

So, the same rapamycin concentrations and times were used in this experiment to be 

sure that autophagy has really induced after the transfection o f the cells with tP Sl.

It is clear that the results obtained in this chapter are the same as what was observed in 

chapter 5. The results suggest that there might be some interaction between tPSl and 

mTOR, raptor and LC3 proteins. These suggested interactions may somehow interrupt 

the autophagy process.

A limitation o f this current study is that only HEK293 cell line was investigated. 

Previous studies investigating different cell lines have shown that the autophagy 

proteins of interest can be present at different subcellular localizations.

192



C hapter 7

Conclusion and Recommendations

193



7.1 CONCLUSION

The research reported in this thesis has investigated, in terms o f subcellular localization, 

the effect o f tPSl on the autophagy proteins: mTOR, raptor and LC3 and subsequently 

on the autophagy process. Evidence presented here suggests that some interactions 

between tPSl and mTOR, raptor and LC3 take place. These interactions may have a 

deleterious influence on the performance o f these autophagy proteins, leading to 

autophagic impairment. In vitro studies on different cell lines using truncated or 

mutated PS1 have proved to lead to the formation o f autophagosomes, and also that 

autophagy failed to remove these autophagosomes. This suggests that the autophagic 

defect might be at the late stage o f the process (fusion step). Based on this, it is unlikely 

that mTORCl, which contains mTOR and raptor, are responsible for the 

autophagosome initiation to be the cause o f this problem. However, it has been 

demonstrated that mTOR localization to the lysosomes is an important regulator o f  

autophagosomal-lysosomal fusion, and inhibition o f mTOR by Torinl stimulates fusion 

(Zhou et al., 2013). So, the proposed interaction between mTOR and tPSl in this study 

may prevent the localisation of mTOR to the lysosome.

LC3 protein, which is importantly involved in selecting cargo and in the fusion step of 

autophagy, might be aggregated with the truncated or mutant PS1 protein, leading to 

loss o f its normal function and thus may be implicated in the autophagic defect. This is 

not specific for truncated or mutant PS1, as the same defect has been observed with 

other neurodegenerative diseases such as PD and HD in the presence o f normal PS1 

protein (Martinez-Vincente et al., 2008; 2010).

Analysis o f the binding interaction between tPSl and the autophagy proteins o f interest 

especially LC3 protein, would provide some insight into the nature o f this interaction at 

the molecular level and the protein domains involved in the binding process. This may
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present an interesting, alternative entry point for motivating further research and novel 

therapeutic approaches in neurodegenerative diseases caused by protein aggregates.

7.2 FUTURE WORK

Although conflicting results were found, accumulating evidence suggests a role for 

mTOR, raptor, LC3 and tPS-1 proteins in the defective autophagy process in the 

pathogenesis o f degenerative diseases such as AD, and warrants further investigation. It 

is important that future research focuses on why the autophagy proteins: mTOR, raptor, 

LC3 and tPS-1, have the same subcellular localization. Are they actually bound to each 

other after autophagy induction by the transfected protein or just present in the same 

organelle? Further investigations that use biochemical methods such as isolation of 

subcellular organelles will need to be done with homogenous populations, since the 

transient transfection with tPSl has resulted in mixed cell populations; some expressing 

tPSl and some not.

Investigation o f the interaction between the truncated PS-1 and the proteins of interest 

should be undertaken using protein-protein interaction methods, for example: co- 

immunoprecipitation assays. In addition, the failure in having live images during the 

transfection o f HEK293 cells with tPS-1 needs adressing. It would also be useful to 

have live images during transfection to determine the movement o f truncated PS-1 

inside the cells.

There are no publications, in terms o f subcellular localization, investigating the 

relationship between PS-1 and the autophagy proteins o f interest (mTOR, raptor and 

LC3) or any other autophagy proteins; therefore it would be useful to further investigate 

these relationships. The studies should be repeated with different cell lines including 

neuronal cells in order to compare the results and provide more relvant detail to AD.
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