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Abstract.

The contributions of specific polluting sources to both indoor and outdoor atmospheric 
pollution are difficult to determine, as solid and gaseous products from different combustion 
sources are often similar. Sometimes, however, a marker compound can be identified that is 
unique to a pollution source (or at least not present in most other local combustion sources) and 
which will allow assessment of the contribution of that source to total atmospheric pollution.

The aim of this study was to identify suitable marker compounds and methods for the 
apportionment (assessment of percentage contribution) of specific sources to atmospheric 
pollution. The sources selected were diesel exhaust emissions in outdoor, and environmental 
tobacco smoke (ETS) in indoor environments. Studies with controlled (laboratory) atmospheres 
would be followed by field studies using these methods and markers to produce apportionments 
for these sources to air pollution in selected environments. Initial analysis of such polluting 
sources was therefore the qualitative analysis of volatile compounds and particulate associated 
material, both organic and inorganic. Volatile organic compounds were adsorbed onto various 
resins, while particulate material was sampled onto various filter paper types. Organics were 
determined by GC-AED and GC-MS, and elements by ICP-MS.

1-Nitropyrene was identified as a suitable marker for diesel particulate emissions (<5pm). A 
large volume air sample from Sheffield city centre using 1-nitropyrene as a marker suggested 
that 63% of atmospheric particulate material (<5pm) might be of diesel origin. However the 
concentration of 1 -nitropyrene is low in atmospheric samples, and in the volumes used in 
routine sampling the amount of 1 -nitropyrene was below the limit of detection on the 
instrument used. In an alternative approach the aliphatic alkane tetracosane (C24) was used as 
a diesel marker for urban air, with a l-nitropyrene:tetracosane ratio derived from the average 
results from laboratory experiments with a diesel engine running at various speeds and loads. 
This approach yielded apportionment values ranging from 5-85% for the diesel contribution to 
particulate material (<5pm) in the urban air of Sheffield. No volatile marker compound was 
found for diesel apportionment.

The contribution of ETS to atmospheric pollution has previously been estimated from the 
measurement of respirable suspended particulates (RSP), which was superseded by total UV 
absorbance and total fluorescence of a methanol extract. More recent work has suggested the 
use of solanesol or scopoletin as marker compounds. This thesis shows that the non specific 
methods overestimated the particulate contribution of ETS in some atmospheres, and that 
solanesol is a better marker compound than scopoletin. Preliminary studies from a small 
number of smokers homes and offices, with solanesol as a marker compound for particulate 
ETS, indicated that ETS contributions to total particulate material (<5pm) ranged from 6  to 
49% in homes and 11 to 28% in offices.

Pyrrole was used as a marker for ETS contribution to volatile organic pollution, and studies 
with controlled atmospheres with a smoking machine allowed calculation of the ratios of 
pyrrole to other volatile organic compounds (VOC’s) in ETS. Samples from the field study 
were used to produce apportionment percentage levels of benzene, toluene, o-xylene and p+m- 
xylene associated with ETS.

In addition the use of tree bark as a atmospheric sink for airborne particulates was investigated. 
Six nitrated polycyclic aromatic hydrocarbons associated with diesel emissions were quantified 
in bark extracts and levels of these were found to be highest during winter months.
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1. Introduction,

The Royal Commission on Environmental Pollution defined pollution as:-

“The introduction by MAN into the environment of substances or energy liable to 

cause hazard to human health, harm to living resources and ecological systems, damage 

to structure or amenity or interference with legitimate use of the environment”(l).

Pollution is deemed to include products from the combustion of carbonaceous material, 

be it for energy production (oil, coal and gas), transport propulsion (petrol, diesel and 

kerosene) or from waste disposal. These are known as anthropogenic sources of 

pollution. Emissions from naturally occurring events including volcanic eruptions, 

vegetation or the decay of natural material are not deemed to be pollution in this context. 

Naturally occurring emissions are known as biogenic sources.

Air pollution includes any airborne material such as solid (particulate material), liquid 

(aerosols) and gases. Once emitted into the atmosphere, the organic material can be 

transformed chemically and/or physically prior to producing environmental damage. Such 

atmospheric reactions include

Photochemical formation of ozone from hydrocarbons.

Formation of acid rain from SO2/NO2 and rain water.

Other visible pollution phenomena include

Soiling of buildings by particulate material.

Respiratory damage by acidified aerosols.

Pollution can include highly toxic molecules often at trace levels which can have a direct 

effect on individuals, as well as pollution which can cause more general atmospheric 

damage such as chlorofluorocarbons on the ozone layer. The general structure o f the 

atmosphere is shown in Figure 1.1.

1



(Above, the Ionosphere)

STRATOPAUSE

OZONE LAYER

EQUATC

TropopausE Cirrus cloud
> Aircraft height

Stratus cloud (low level)

Mt Everest — hnI/

Figure 1.1: Structure of the Atmosphere, Identifying the Variation in Troposphere

Depth with Latitude Variation.

The troposphere can be described as the “chemical processor” of the atmosphere, where 

partial or complete degradation of nearly all organic compounds released into the 

atmosphere occurs. The exceptions to this are chlorofluorocarbons (CFCs) and some 

Halons (small, bromine containing molecules used in portable and fixed extinguisher 

systems (2)). These compounds are relatively inert and slowly diffuse through the 

troposphere to the stratospheric layer. Here low wavelength UV radiation degrades these 

molecules to free chlorine and bromine radicals (Cl* and Br*). These are now known to 

destroy ozone, a vital compound that protects the earth’s surface from harmful low 

wavelength UV radiation.
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1.1 Atmospheric Pollutants.

1.1.1 Small gaseous polluting molecules.

There have been several major pollution contributors through history, which have had a 

major impact on plants and animals. These include:- 

1 Carbon Monoxide

2. Carbon Dioxide

3. Sulphur Dioxide SO2

4. Nitrous oxides NOx (NO + NO2)

5. Ozone (formed indirectly)

SO2 and NO are deemed to be primary pollutants as they are produced directly from 

anthropogenic combustion material. NO2 is seen as both a primary and secondary 

pollutant as it is not only released directly from a polluting source, but it can also be 

formed during atmospheric chemical reactions. Ozone is almost entirely a secondary 

pollutant with formation from atmospheric chemical reactions.

Pollution increased steadily from the 16th century due to the increased use o f fossil fuels 

such as coal and oil for heat and energy, by the escalating population and industry (3). 

The 19th century saw the start of an explosive increase in anthropogenic emissions, 

people began to live longer due to improvements in health care and expected a more 

comfortable lifestyle with heat, light and access to energy. These improvements further 

increased the levels of CO, CO2 , SO2 , and NOx in the atmosphere.

1.1.1.1 Carbon Monoxide (CO).

Carbon monoxide (CO) is formed during the combustion of any carbon containing 

material with insufficient oxygen to complete the combustion process to carbon dioxide. 

The combustion of fossil fuels produces a large quantity of CO, along with elemental 

carbon. This toxic gas acts as an asphyxiant by combining with haemoglobin to form a 

very stable molecule via a reversible reaction. The absorption o f oxygen by the



haemoglobin molecule is prevented, hence reducing the level of oxygen in the blood. The 

present major source of CO is petrol driven vehicles. However, the use of catalytic 

converters can reduce CO emissions by up to 90%, and therefore CO emissions from 

petrol driven vehicles should, in the future, be significantly reduced.

1.1.1.2 Carbon Dioxide (CO2).

Carbon dioxide (CO2) is a major biogenic emission associated with the carbon cycle. 

However, since the industrial revolution the atmospheric concentration of CO2 has 

steadily increased as the combustion of carbonaceous material has escalated. Major 

sources of CO2 include power stations, domestic coal burning, and industry. Emissions 

from these sources have been decreased since 1970. However, conversely, emissions 

from transportation have steadily increased during the same time period.

The recent summit in Kyoto (Japan) discussed ways of reducing emissions of this gas 

because of its effect on the world’s climate. It has been associated with a universal 

increase in temperature of the planet. CO2 hinders solar radiation from leaving the 

atmosphere. The phenomena known as “Global Warming” is a cause for concern, since 

melting ice-caps and increasing sea levels caused by global warming would put many 

millions of lives at risk.

1.1.1.3 Sulphur Dioxide (SO2).

There are several biogenic sources of SO2 . These include volcanic activity, the emission 

of dimethyl sulphide (DMS) by marine photoplankton, and its subsequent oxidation to 

SO2 , in addition to hydrogen sulphide (H2 S) emitted by natural decomposition. However, 

the amount of SO2 released world-wide from these sources is heavily outweighed by man 

made production. Three quarters of all sulphur emissions are in fact man made (3).

Sulphur is found in most fossil fuels due to the presence of a small percentage (0-4%) of 

sulphur compounds (mainly organic thiol derivatives and sulphides). Their combustion 

releases the majority of this sulphur into the atmosphere as SO2 . Hence emissions of SO2
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increased in parallel with the increasing use of fossil fuels from the 19th century to the 

1960’s. However, since the mid 1960’s the levels of SO2 released by Europe as a whole 

has slowed and even began to fall from the late 1970’s onwards.

The reason for this European reduction was the change of fuels used by power stations. 

These were identified as the major source of SO2 (prior to 1970), with 72% (4) of the 

UK emissions being from this source. During the 1960’s and 1970’s British coal was the 

major fuel for power stations. This had an average 1.7% sulphur content (3) producing

6.5 million tonnes of SO2 per year. The sulphur was mainly in the form of Iron pyrites 

(Iron sulphide FeS2), an intrusive mineral which was not removed prior to or after 

combustion. SO2 levels have recently dropped to 2.5 million tonnes per year due to the 

increased use of oil and gas power stations (as natural gas has nearly all of its sulphur 

(H2 S) content removed). The decline of British coal during the 1980’s increased the 

opportunity of importing low sulphur content coal. The reduction of coal fires in the 

home in favour of gas central heating has also helped lower total emissions.

Emissions could be reduced even further with the removal of any remaining SO2 from 

power station emissions. These can be fitted with flue gas desulphurization systems. 

These can utilise the SO2 by reacting it with various compounds to produce useful by

products, including gypsum, (hydrated calcium sulphate) and calcium sulphide for use in 

the cement industry, or sulphuric acid (3). Such systems increase the cost of electricity, 

and are not in widespread use in the UK. However, world-wide SO2 emissions have 

continued to climb (3) due to the increased use of coal in developing countries.

1.1.1.4 Nitrogen Oxides (NO and NO2).

Nitric oxide (NO) and nitrogen dioxide (N 02) are the two oxides o f nitrogen that are 

collectively known as NOx. NOx values are often quoted for combustion emissions, with 

NO being up to 90% of the total primary emission (3,5). However, the major UK source 

of NOx is not related to the combustion of coal but is associated with the use o f crude oil 

and its related compounds. Formation of these gaseous molecules is based on a thermal 

reaction between nitrogen and oxygen, which are described by the Zeldovitch 

mechanism:-



N2 + 0 ---->NO + N 1

N + 0 2 ----> NO + O 2

The reaction is endothermic so occurs readily in hot areas of the combustion zone.

From the 1960’s the UK production of NOx from industry has been falling. However, 

total emissions were constant from 1960-1990, due entirely to the increase in vehicle 

emissions. Since 1990 the total of NOx has now begun to fall, as a result o f the fitting of 

low NOx burners to power stations and the addition of catalytic converters to vehicles

(3).

Nitric oxide (NO) and nitrous oxide (N2 0 ) are also produced in nature by nitrifying 

bacteria found in soil. Nitric oxide is thought to be the predominant molecule released. 

Little scientific analysis has been carried out in this area, with a proposed emission value 

of 2-5% of total NO being released by biogenic sources.

NO and N 0 2 also react with ozone to produce an equilibrium reaction which varies 

throughout the day and night. High levels of ozone and NO (rapidly used in other 

atmospheric reactions) are produced during the day, while low levels of ozone with high 

N 0 2 concentrations being produced at night. N 0 2 has been identified as causing 

respiratory problems at levels exceeding 300ppb, in addition to causing leaf damage and 

being a pre-cursor for the formation of nitric acid in the atmosphere (6 ).

1.1.1.5 Ozone O3.

Naturally occurring ozone is found predominantly in the stratospheric layer o f the 

atmosphere, which is positioned between 15 and 50km above the earth’s surface (see 

Figure 1.1). This layer protects the earth from harmful high energy photons of 

wavelength (<300nm) due to the high absorption coefficients of these photons by ozone

(7).

90% of all ozone is found in the stratosphere, due to the formation of ozone by the 

reaction between oxygen and UV radiation from the sun. Radiation o f wavelength
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242nm and below have enough energy to split diatomic oxygen into two monatomic 

atoms - 3 (3).

O2 + hv (<242nm)--------> 2 0  3

These monatomic oxygen atoms are then capable of reacting with a diatomic molecule of 

oxygen (in the presence of an impartial molecule such as nitrogen) to produce ozone - 4.

O + O2 + M  > O3 + M (where M = O2 or N2) 4

A current major issue is the depletion of this protective ozone layer due to the 

breakdown of ozone molecules by chlorofluorocarbons, but this will not be discussed in 

this thesis.

Ozone is a secondary pollutant, i.e. it is not released in any quantity by a polluting 

source. However, it is produced from chemical reactions that can occur with primary 

pollutants. The relationship between ozone and NOx will be discussed later (see Section 

1.4.1). NO2 produced from vehicle emissions decomposes photolytically in daylight by 

absorbing UV radiation at <420nm, and decomposes to NO and monatomic oxygen, 5. 

This oxygen can react further to produce ozone, 4.

N 0 2 + hv (280-430nm)->NO + O 5

This results in a photochemical equilibrium of lower NO2 during the day, while the

reverse reaction dominates during night-time, increasing levels of N 0 2 - 6 .

NO + O3  > NO2 + O2 6

The formation of ozone from photolytic degradation of NO2 produced from 

anthropogenic emissions, is likely to be only a minor contributor to ozone formation in 

the troposphere. Ozone is produced in greater quantities from a complex series of 

reactions that take place between hydrocarbons, radicals, in addition to an indirect route 

to the formation of N 0 2 from NO, 7-9.



Ozone production via atmospheric reactions of hydrocarbons.

Any hydrocarbon (saturated or unsaturated short hydrocarbon molecules) in the 

atmosphere can react with a hydroxy radical (OH*) via hydrogen abstraction, producing 

an alkyl radical. These react rapidly, and almost solely with a molecule of oxygen to form 

organic peroxyalkylradicals (RO2) (3,8).

RH + OH* >R* + H20  7

R* + 0 2 --------} R 02* 8

These radicals readily react with NO, to form N 0 2 depleting the NO level in 6 , pushing 

the equation in favour of O3 accumulation (3,8).

R 02* + N O  > RO* + NO2 9

This increase in N 0 2 formation from a secondary source can undergo photochemical 

reduction, as seen in 5 to ultimately produce ozone - 4.

A variation in ozone concentration occurs throughout a 24 hour period, with an increase 

of hydrocarbons, NO and N 0 2 during morning rush hours. As the UV radiation 

increases, these primary pollutants undergo the previously described reactions, increasing 

ozone concentration and causing NO and N 0 2 to fall. The initial high input of NO from 

diesel combustion hinders the formation of ozone and increases levels of N 0 2 in 6  (9).

As the day progresses, this reaction is reduced in importance and ozone is formed in 

larger quantities. During late afternoon, UV begins to reduce in intensity. Along with 

this, the ozone level begins to fall, increasing the concentrations of N 0 2 and NO during 

late evening. These levels stay high until early morning, when the cycle begins again.

Daytime formation of ozone in addition to airborne particulate material are responsible 

for smog formation during the summer months, when the length of time for the 

production of ozone from the above routes are at their highest. It has been observed that



there is a yearly cycle of tropospheric ozone production, with the highest levels during 

the summer months, reducing to the lowest levels during colder winter months (10). A 

number of studies have identified many adverse effects of high ozone levels. These 

include damage to agricultural and natural vegetation, disease in human beings ( 1 1 ), eye 

irritation and breathing difficulties (3).

The by-products o f these reactions include formaldehyde and peroxyacyl nitrate (PAN) 

which are both toxic and irritants. Nitric acid is also produced leading to an increase in 

the acidity of aerosol droplets.

In order to control vehicular pollution a reduction in the primary sources which produce 

hydrocarbons, NO and NO2 is required. These sources are invariably road traffic and in 

particular diesel engines, since these engines produce NO and NO2 as well as 

hydrocarbons. Petrol fuelled vehicles produce mainly hydrocarbons and very little NO or 

NO2 as petrol contains few nitrogen containing compounds. NO can be produced in the 

high temperature regions of the engine via the Zeldovitch mechanism (see Section 

1.1.1.4) (3). Of the NOx produced by a petrol vehicle, less than 10% is NO2 (12). During 

the winter, increased quantities of NO2 have been observed, with the mechanism for the 

conversion of NO to NO2 being unclear. However, the presence of high concentrations 

of hydrocarbon material in the exhaust is thought to have an effect ( 1 2 ).

Unfortunately the solution to these problems is not achieved by simply reducing NOx. 

The formation of ozone can be increased with a reduction in NOx if volatile organic 

compound (VOC) emissions stay constant. A reduction in VOC does produce an overall 

drop in ozone formation, therefore in order to reduce tropospheric ozone, a reduction in 

hydrocarbons released into the atmosphere needs to be achieved. The advent o f catalytic 

converters for petrol cars appears to be a step forward, along with the development of 

hybrid vehicles which use both a conventional engine and an electrical motor which can 

be used when driving through urban areas (13), reducing urban emissions. However, 

with diesel engines releasing large quantities of hydrocarbons into the atmosphere and an 

ever increasing vehicle fleet world-wide, this problem is unlikely to be resolved in the 

near future.

9



1.1.2 Acidic species.

Daytime conversion of primary to secondary pollutants can be attributed to various 

oxidative radical reactions. These are initiated by photolytic reactions with various 

oxygenated species. These then react with primary pollutants causing oxidation and the 

start of many pathways to degradation of chemicals in the atmosphere.

However, oxidation of some primary pollutants can ultimately produce acidic species. 

Such species can have an adverse effect on a wide variety of surfaces when they are 

deposited back to the earth. These surfaces include vegetation, both natural and 

agricultural, aquatic systems and buildings (14).

Acid rain was reported more than one hundred years ago (15), and more recent work has 

identified certain acidic species as being long range pollutants (14). Long distances of 

deposition are possible under favourable meteorological conditions, since the average 

residence times of these acidic species and their pre-cursors in the atmosphere is between

2-5 days (16,17). Emissions of SO2 and NOx from the combustion of anthropogenic 

material can ultimately produce HNO3 and H2 SO4 . These acidic species can be formed 

from gas phase reactions or heterogeneous reactions between gases and particulate 

surfaces. Reactions can also occur within aerosols after primary pollutants and oxidative 

species have been dissolved into the droplet.

European studies originally completed in Scandinavia during the early 1970’s (18) found 

that quantities of acids were being transported from combustion sources in other 

European countries, to Scandinavia. Here they were deposited to earth and were causing 

environmental damage. This has been deviated to some extent with the reduction in SO2  

emissions over the last twenty years due to the change in fuels used for electricity 

production, (See Section 1.1.1.3).

NOx is still a major pollutant, with an ever increasing quantity being produced from 

vehicle emissions, especially diesel engines. Therefore the production o f nitrogen 

containing acidic species is likely to increase.
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1.1.3 Particulates.

Particulate material is a very important component of atmospheric pollution due to 

probable irritation of and possible toxic effects on the respiratory system. The extent of 

this health response is dependant not only on the individual in question (and the 

condition of their airways), but also upon the size and possibly the composition of the 

particles.

Particulate material can be produced from direct primary emissions or through 

atmospheric chemical reactions which produce secondary particulate material. These 

particulates can be solid, or liquid (aerosols), and can vary widely in size from a few 

nanometers to micrometers. The sources of atmospheric particulate material can be quite 

diverse, and range from coarse materials including soil particles and industrial dusts, to 

finer particles, produced from combustion sources (19).

Particulate material can be categorised into three size dependant groups which can to 

some degree, help to clarify this complex area of atmospheric particulate pollution.

1. Nucleation <0.2qm.

These exceptionally fine particles are often produced from processes that involve hot 

vapour condensation including incinerators, smelters and possibly combustion sources 

(specifically diesel particulate emissions (see Section 4.3.2)).

Atmospheric formation of acidic aerosols ( i.e. SO2 —» H2 SO4 and NO2 —» HNO3) can 

produce fine particulate material if they react further with ammonia (NH3). This produces 

ammonium sulphate or ammonium nitrate which once formed, agglomerate to form 

larger particles.

2. Accumulation. 0.2-2qm.

These particles are often formed from the clustering of smaller nucleation particles, 

producing larger agglomerates of irregular shape (see Section 4.3.2) (19). Such particles



include material produced during combustion. Particles this size are the most stable and 

can have an atmospheric lifetime of between 7-30 days (20). Their extended lifetime is 

due to the lack of mass, and this prevents rapid removal due to physical deposition and 

the inefficiency of wet deposition on this particular particulate size. Wet deposition 

effectively removes both larger and smaller particles from the atmosphere via different 

processes (2 0 ).

3. Course >2pm.

Particles of this size are often produced from natural sources, including silicas from soil 

erosion, as well as re-suspended street dusts, and salt crystals formed from sea spray 

(19).

Particulate material of 10pm (PM10) are regularly found suspended in atmospheric air. 

Therefore inhalation of such material can occur, with deposition being possible in the 

respiratory system at three possible sites depending upon the size of the particulate:-

1. Nasopharyngeal

2. Tracheobronchial

3. Alveolar.

Both the nasopharyngeal and tracheobronchial areas use a combination of hairs (cilia) 

and mucus to trap and remove particulate material from the inhaled air. These areas can 

effectively cope with particles >2 .5pm, as the particles mix with the mucus and are 

removed from the airway by the wafting type movement of the cilia hairs. This moves the 

mucus/particulates up the airway to the trachea/oesophagus intersection, allowing the 

cleared particles to be swallowed and dealt with by the digestive system.

However, particles of <2.5pm (often produced from anthropogenic combustion (19,21)) 

are capable of penetrating deeper into the lung and being deposited at the alveolar 

region, where oxygen is absorbed and carbon dioxide is released by the blood. These 

regions of the lung are unciliated, so particulate material is removed far less efficiently by 

macrophages which transport the particles to ciliated areas or deposit them directly into
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the lymphatic system. This also suggests that material contained on/in the particulate 

could cause detrimental health effects, including lung disease (2 2 ).

Other particles found in the atmosphere are the inorganic salts formed from atmospheric 

reactions. These include ammonium sulphate and ammonium nitrate produced from 

reactions between ammonia and sulphuric or nitric acid. The acids are themselves 

produced from SO2 and NO2 and converted to mineral acids through other atmospheric 

chemical reactions. (Acid chemistry is dealt with in Section 1.4.3).

1.1.4 Metals/Inorganics.

All atmospheric elemental material (with the exception o f mercury) are associated almost 

entirely with particulate material. Elements including aluminium, chromium, cerium, 

chloride, sodium and manganese are biogenically released from crustal rock, soils and 

marine sources (23,24). Other elements including lead, bromine, zinc and vanadium (24) 

have been identified as major components of anthropogenic emissions. This was 

especially true when tetraethyl lead was added to petrol as an “anti-knock” additive for 

engines. However, with increased knowledge of the effects of lead on health, leaded 

petrol was superseded by unleaded petrol, resulting in the steady reduction of lead in 

atmospheric samples. Lead is still released into the atmosphere from leaded petrol cars 

(with the lead content being reduced to 0.15g/l from 0.4g/l in January 1986), diesel 

emissions, (see Section 2.2.6.4) and industrial emissions.

Transport of these elements can be quite extensive as nickel, lead and zinc have been 

found in the Arctic (25).
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1.1.5 Organic compounds.

The organic compounds that are released into an indoor or outdoor environment can be 

classified into the three following types:-

1. Volatile.

2. Semi-volatile.

3. Non-volatile.

This is not a precise way in which to describe all organic compounds, but it helps to 

identify some of the many problems encountered when sampling and analysing 

atmospheric samples.

1 . Volatiles.

These are organic molecules which are found almost entirely in the gaseous phase. Such 

molecules are often small in size and include methane (CH4), small aliphatic chain lengths 

(possibly oxidised) in addition to benzene and associated compounds such as toluene and 

xylenes. The major route of removal of these compounds from the atmosphere is physical 

dry and wet deposition to a sink or surface. The rest of these molecules react with the 

various radicals present in the atmosphere, including the hydroxy (OH*) and nitrate 

radical (N0 3 *). They undergo radical reactions which invariably increase polarity while 

reducing carbon number. This continues until they are either oxidised to CO2 and/or 

H2 0 , or removed from the atmosphere by wet or dry deposition before this occurs.

2. Semi-Volatiles.

Semi-volatile organic molecules are compounds which associate partly with particulate 

material, as well as being present in the gaseous phase. Straight chained alkanes from 

C15-C22 can be found in both these phases and also various PAH and heterocyclic 

compounds. However, this is dependant upon the ambient temperature and the 

compounds individual vapour pressure.
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3. Non-volatile compounds.

These are organic compounds which are associated totally with particulate material. 

These include the larger straight chained alkanes often identified as unbumt or partially 

combusted anthropogenic fuel and lubrication oil, larger PAH compounds, PAH 

derivatives, in addition to heterocyclic and polar compounds.

1.2 Physical Atmospheric forces.

A wide range of chemicals can be released as pollutants into the atmosphere from a 

variety of sources. As stated previously, such chemicals include organic, inorganic and 

organometallic material. These gaseous or particulate associated chemicals, from either 

anthropogenic or biogenic sources, can be subjected to physical and/or chemical forces 

before their fate of removal from the atmosphere is determined.

The troposphere is a very good environment for this to occur, since mixing due to wind 

and small scale turbulent air (often associated with the lower region (l-2km) (23) o f the 

troposphere) helps to induce intimate mixing of all pollutants. This is very important as 

all pollutants are able to mix well prior to significant dilution, allowing chemical reactions 

to occur and hence transforming molecules before dispersion. All but the most inert 

compounds (CFCs and some halons) are transported, transformed and finally removed 

either by complete oxidative processes, or physical deposition to a certain sink 

(continental area or sea).

It can be seen that atmospheric conditions will ultimately control the fate o f any one 

pollutant. Wind variations, temperature, pressure, solar radiation, and relative humidity 

due to the time of year and the site of emission will help/hinder the various possible 

reactions that can occur. It has been explained in previous sections that radical formation 

is increased with increased UV radiation (the summer months) (10), and a more 

complete overview of basic atmospheric chemical reactions are discussed as a whole in 

Section 1.4.
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1.2.1 Physical deposition for pollutant removal.

Physical deposition is the major method by which pollutants are eventually removed from 

the atmospheric environment. This can occur by two routes, dry deposition when 

gaseous and particulate material deposit directly to a surface or sink, and wet deposition, 

where pollutants are removed due to various interactions with atmospheric water 

molecules (e.g. rain, snow or fog).

1.2.1.1 Dry deposition.

Dry deposition is poorly understood compared to wet deposition, as the process is very 

difficult to follow. This is due to the slow rate of dry deposition compared with wet 

deposition. Dry deposition mainly occurs through collisions of the pollutant with a 

surface, reducing velocity and producing deposition of the pollutant due to range of 

parameters. These vary according to the physical state of the pollutant.

Particulates.

Parameters effecting the rate of dry particulate deposition include the size and shape of 

the particle, as well as the velocity of the prevailing wind (23).

Gaseous.

Important characteristics of dry deposition for gaseous pollutant are physiochemical, and 

include chemical reactivity, polarity, water solubility and molecular weight (23).

Surface.

The type of recipient surface also has an effect on the overall rate of dry deposition, i.e. 

whether it is wet or dry, hot or cold, rough or smooth. The variations in these parameters 

make it very difficult to accurately quantify dry deposition. Various mathematical 

equations have been devised to quantify this route of deposition (23,26). However, 

variation of certain parameters make the quantitation uncertain (23).



1.2.1.2 Wet deposition

Several routes to wet deposition have been identified. These include the collision of 

water droplets with a polluting particle or gaseous molecule. This can result in the 

dissolution of the pollutant (depending upon its solubility) or the deposition of the wet 

particle due to its heavier mass. This mainly occurs below cloud level, while other 

processes including nucleation and brownian capture often occur at cloud level.

Nucleation is where a particulate acts as a nucleus for the formation of a water droplet. 

Once the droplet has increased to a sufficient size, it drops to earth removing the 

polluting particle from the atmosphere. Brownian capture also occurs at cloud level, and 

is where water droplets come into contact with pollutant particles through kinetic 

motion.

Wet precipitation has a major effect on the routes of removal of atmospheric pollutants, 

especially particulates and the associated organics, in comparison to gaseous organic 

molecules (27). Chemical reactions can also occur, with atmospheric water droplets, 

inducing the formation of various mineral acids from gaseous SO2 and sulphate ions as 

well as NOx molecules.

1.3 Transportation

The majority of polluting sources emit close to the surface (exceptions to this include 

aircraft and volcanic activity) hence the pollution is expected to be deposited in relatively 

close proximity to the polluting source, producing an accumulation of that pollutant 

close to the point of origin. However, this is not the case for many pollutants, with the 

distances travelled by certain pollutants being dependant upon a number o f parameters. 

These include not only the physical climate that the pollutant is exposed to, but also the 

chemical stability of the pollutant in question. Residence times of various organic species 

can be varied, with some being as little as a few seconds (radicals) while others can last a 

few days, or even years (low reactive compounds).
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As previously stated, the CFC and Halon families are highly stable (inert). However, 

these molecules are small and light, often rising to the stratosphere in preference to 

deposition back to earth. Other pollutants can have a relatively large residence time 

(days/weeks) in the atmosphere, thereby increasing the possibility o f being transported 

great distances from their source of origin (28), prior to deposition. This has been clearly 

identified with the discovery of various pollutants in areas originally thought to be 

“clean” of such human activity. Examples include the identification of radioactive 

material found world-wide after weapons testing (29) and more recently, the discovery 

of chlorinated hydrocarbons (28,30) and mercury in the Arctic (30). It has been 

hypothesised that unreactive organic molecules are transferred from warmer to colder 

regions by a number of successive deposition and re-emission steps (26,28,30). This is 

due to evaporation and condensation of these volatile elements and organic compounds 

with the variation in atmospheric temperature, until reaching a more permanent sink in 

the colder aquatic polar regions (30).

Larger residence times increase the possibility o f some degradation either from the 

various oxidative species produced indirectly from solar radiation, or from species 

introduced into the body of atmosphere in which the pollutant is present. Chemicals with 

a residence time of a few days associated with favourable atmospheric conditions, are 

capable of diffusing over an entire continent (11). Species with residence times longer 

than this (weeks/months) are capable of diflusing throughout the troposphere, and can 

even diffuse into the lower stratosphere ( 1 1 ).

1.4 Photochemical Degradation.

In this section, various relevant atmospheric reactions that can occur will be discussed, 

along with the possible effects these can have on primary pollutants emitted into the 

atmosphere.

Many of the photochemical degradation reactions that occur in the atmosphere, are 

induced by radical chemistry and initiated by UV radiation. Such atmospheric reactive
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species include OH*, OH2, CH3 O2 , N 0 3 *, peroxides and their related radicals, in addition 

to ozone, oxides of nitrogen, S02, atomic oxygen, along with various acidic and basic 

species (23). These can cause degradation via various pathways using either 

homogeneous (in one phase, i.e. gaseous phase) or a heterogeneous reactions (where 

volatile or involatile molecules are adsorbed to a surface, catalysing a chemical reaction) 

(23). The phase partitioning of these organic molecules is very much related to the 

compound’s vapour pressure, along with the atmospheric temperature and pressure at 

the time. The partitioning of compounds between the gaseous and particulate associated 

phase can therefore be predicted by using the vapour pressures of the organic 

compounds under investigation (26).

As has been previously described, a large proportion of the pollution material is removed 

from the atmosphere by physical processes. However, during its atmospheric lifetime 

organic pollutants are available for reactions with many of the reactive species previously 

stated. The result being that each individual organic compound has numerous possible 

routes of degradation. Major radicals identified as having an effect on organic pollutants 

include OH*, M V , and ozone.

1.4.1 Daytime atmospheric reactions.

A comprehensive description of all possible atmospheric chemical reactions is a thesis in 

itself. However, the following description and schematic of possible reactions that can 

occur during day and night activity will identify the complexity of this environment.

Hydroxy radical fOH*) production.

The OH radical is produced from the photochemical degradation of tropospheric ozone 

to an oxygen molecule and an excited oxygen atom - 1 0 .

0 3 + hv(<320) > 0 2 + 0 ( ‘D) 10



The reaction only occurs during the day, as UV radiation is needed for the initial 

photochemical degradation of O3 to occur.

The excited oxygen molecule can do one of two things:-

1. It can de-excite with a diatomic molecule of nitrogen or oxygen - 11, which 

can then react further with an oxygen molecule to re-produce ozone - 4.

2. Or it can react with a molecule of water to produce two hydroxy radicals -12.

O ('D) + M  > O (3P) + M (where M = 0 2 or N2) 11

0 ( 'D )  + H20 --------> 20H* 12

Even though OH* is only found at very low concentrations in the atmosphere (typically 

sub ppt/volume) (31), it plays a major role in the oxidation of organic compounds in the 

atmosphere.

Hydrocarbon degradation.

Alkanes (produced from incomplete anthropogenic combustion and vegetation) do not 

undergo photolysis in the atmosphere, or reactions with ozone at any measurable rate 

(32). However, they do react with OH* and N0 3 * radicals, as well as chlorine atoms. 

Reactions with the OH* radical are seen to dominate over the other possible reactions, 

and proceeds via hydrogen abstraction from the carbon chain -7 in the day, the night time 

reaction can be seen in 13.

Night-time RH + N0 3 *-----> HONO2 + R* 13

These alkyl radicals react almost entirely with diatomic oxygen to form alkyl peroxy 

radicals - 8 (3,8).

These alkyl peroxy radicals can react with a number of atmospheric species. Species 

available include NO, NO2 , as well as HO2 and RO2 radicals, with their relative 

concentrations dictating which reactions are likely to occur. It is thought that the major 

reactions that occur include those with NO, NO2 and the HO2 radical (8).
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The reaction with NO produces NO2 and an alkoxy radical 9. The NO2 molecule is 

available for ozone production by photolysis 4-5 (3,8) or Peroxyacyl nitrate (PAN) 

formation - (33).

Another possible reaction which the alkyl peroxy radical can undertake is with NO and 

oxygen, -14, to produce analogous aldehydes and ketones.

R 02* + NO + O2  > aldehydes/ketones +NO2 + TKV 14

The production of aldehydes and ketones (33) introduces various routes of degradation 

due to possible breaking of the carbon chain at the ketone active site, or even 

isomerization (8,34). This has also been shown to occur with atmospheric alcohols (35).

The alkyl peroxy radical can also react with hydro peroxy radicals to produce a hydro 

peroxide -15 (8).

R 02* + H 02*-----> ROOH (hydroperoxide) + O2 15

These hydroperoxides are themselves removed from the atmosphere by wet or dry 

deposition, photolysis, or by various reactions with OH*(8).

The alkoxy radical (RO ) produced in 9, as well as the aldehydes and ketones formed in 

14, can react under favourable conditions to form peroxyacyl radicals -16-18 (33).

R C O  + 0 2 --------> RC (0)02* + N 0 2 16

Aldehydes + OH- + 0 2 -----> RC(0)02* + H20  17

Ketones + OH* + OH* + 0 2 +hv > RC(0 )0 2 * + H20  18

These peroxyacyl radicals can undergo several reactions, including a reaction with

hydroperoxy radical to produce a hydroperoxide -19-20 (8).

RC(0)02* + H 02*-------> ROOH + 0 3 19

RC (0)02* + H 02*-------> R C (0)00H  + 0 2 20
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Under cooler atmospheric conditions these peroxyacyl radicals can react with NO2 to 

produce a peroxyacyl nitrate (PAN) - 21 (33).

RC(0)02* + N 0 2 -> RC (0)0 2N 0 2 21

PAN is stable in the atmosphere at low temperatures however, it readily decomposes to 

N 0 2 and the peroxyalkyl radical at higher ambient temperatures. This can act as a 

possible route for transportation of N 0 2 over large distances, before decomposition due 

to temperature (33).

0(’D) + H20 
(Eqn. 12),

20H* + 2RH (hydrocarbons.)
-H20  
(Eqn. 7)

2R* + 20?

( E q n . J ^

0 2 + 0 ('D )

(Eqn. 12)

0(3P) + M (0 2 or N2) + 0 2 

\^ E q n . 4)

0 3 + M (0 2 or N2)
A

0 3 + hv (320 nm) (Eqn. 4)

Eqn. 8)

2R02*. +2NO -  

(Eqn. 14)

(Eqn. 9)

2NjO + 0  + M (02 or N2) + 0 2
 J A hy (280-420nm)

(Eqn. 5)
-► 2RO* + 2N02

Decomposition (chain breaking)

o2
(Eqn. 16)

-h2o
or Isomerization. Aldehydes + OH* + 0 2» RC(0)0,* (peroxyacyl radical)

Ketones + ° Hm T-,°’ + hv ^+ - i i 2U

NO? + H02# (hydroperoxy radical) + N 02
NO 

NO? + OH

O? + H?02

03

OH* + 202 

+ OH2*

+hy »• 20H* 
+ - 

PAH

(Eqn. 21)

+HO?* (Eqn. 20) 

RC(0)OOH + 0 2

RC(0)0?N02 (Peroxyacyl nitrate {PAN})

NO?
HNOi PAH-NO? + H?0

Figure 1.2: Schematic of Daytime Reactions.

The “natural” daytime atmospheric cycle is disrupted with the introduction of 

anthropogenic emissions released into the atmosphere. For simplicity, and in order to

22



identify the major pre-cursors for atmospheric reactions, only NO, NO2 , SO2 and 

hydrocarbons, will be discussed. All these emissions are released by combustion sources.

Many other compounds are released from combustion sources, but these can often 

follow similar routes of degradation to that of a hydrocarbon chain. However, the 

degradation routes of many groups of compounds found at relatively low concentration 

in atmospheric samples are yet to be clearly identified. Certain nitrated PAH have been 

shown to photodegrade to quinone type compounds (36,37). However, exhaustive work 

has yet to be undertaken to clarify the favoured degradation routes of these and many 

other compounds.

The increase in levels of NO and NO2 effects the equilibrium of a range of chemicals 

found in the atmosphere. The photolytic reduction of NO2 to NO and an excited oxygen 

atom, 5 results in the formation of ozone. Equally, NO reacts with ozone to produce 

NO2 and O2 , resulting ultimately in a stable equilibrium. However, the formation of other 

species effects this equilibrium and leads to a net increase in the formation of ozone 

during the day. This excess ozone can react with UV light and water vapour to produce 

hydroxy radicals (OH*) as well as other oxygenated species, and radicals capable of 

causing atmospheric oxidation of organic molecules.

With a sufficient quantity of UV radiation, the cycle is initiated, and these reactions can 

begin to remove organic material from the atmosphere, 7-9. The degradation pathways 

produce other oxygenated radicals/species capable of oxidising compounds to their 

analogous oxidative species, 10 and 12, while ozone is formed from NO2 photolysis, 5. It 

is this continuous daytime formation of oxygenated species, especially the hydroxy 

radicals, which plays a predominant role in the daytime cycle (31) and degrades 

hydrocarbon material to oxygenated alkanes (33). These compounds can either degrade 

(chain break), isomerise, or form oxygenated peroxyacyl compounds (33).

Laboratory experiments have shown that these reactions do indeed occur (3), with levels 

of ozone and PAN compounds steadily rising during the daytime. After an initial increase 

in NO2 , the NO2 levels steadily decrease as they are consumed not only through ozone 

formation but also through PAN formation. PAN has been identified as a possible
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accumulation compound as it can have a relatively long residence time at low 

temperatures (33). However, PAN (as previously stated), does decompose rapidly in 

warm atmospheres (33).

Therefore, it can be seen that during the summer months, daytime reactions produce and 

accumulate ozone in the lower troposphere. High levels of aldehydes, peroxyacyl nitrates 

(PANs), and fine particulate material are partially responsible for the smog formation 

seen around major polluted cities today. It was first recognised as a potential pollution 

problem in California in the 1950’s (38,39). Reduced visibility, due to absorption and the 

scattering of light by the fine particles, causes the haze known as smog.

1.4.2 Night-time atmospheric reactions.

The onset of night-time causes many daytime reactions to cease, due to the loss o f UV 

radiation needed to initiate the photolytic reactions. However, night-time reactions take 

over, producing sinks for reactive oxidative species or routes for the removal of some 

atmospheric compounds. Ozone, formed during the day is used in various reactions, 

including the formation of nitrate radicals.

Nitrate radical fNO^*) production.

N 0 3* radicals are produced from nitrogen dioxide reacting with ozone, to form a nitrate 

radical and an oxygen molecule - 22.

NO2 + O3 > N 03* + O2 22.

Nitrate radicals rapidly react photolytically in daylight - 23, so concentrations are low 

during the day. However, concentrations rise during the night-time to measurable levels 

(8), providing a sink for ozone as well as forming a reactive nitrogen species.

N 03* + h v  > NO + O2 23.
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Nitrogen dioxide is capable of continuing the atmospheric reactions, producing PAN 

type molecules - 21 from various radicals (including peroxyacyl) formed during the day, 

16-18.

Nitrogen dioxide can also react with the recently formed NO3 radical to produce 

dinitrogen pentoxide -24, another nitrating species available for night-time reactions.

N 03* + N 02--------> N2 O5 24.

Dinitrogen pentoxide has been shown to react with gaseous PAH during the night to 

form specific isomers of nitrated PAH (see Section 4.2.3.3) (40-42).

N2 O5 + PAH (g) > PAH-NO2 25.

The rate determining step of this reaction is the volatility of the PAH during the night, as 

many PAH molecules are associated almost entirely with particulate material. Nitration 

of these PAH molecules can proceed via a different route (see Section 4.2.3.2), as it has 

been shown that the reaction of gaseous N2 O5 with particulate associated PAH material 

is of minor consequence (43)

Many daytime reactions are driven by the hydroxyl radical, which can be produced from 

various photolytic reactions. However during the night the concentration of this radical is 

reduced and can be “stored” in the molecule HNO2 (sometimes written HONO), 

produced from the reaction of the hydroxy radical with NO, -26.

OH* + N O  » HN02 26.

Along with this gas phase reaction are heterocyclic night-time routes to HONO 

formation, such as: - 27 (44,45).

NO + N 0 2 +H20  > 2HONO 27.
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Initially it was thought that this reaction occurred rapidly, due to catalysis from the 

surface it was adhered to (44,45). However, work by Pitts et al (46) identified that the 

rate of reaction was far slower, producing little nitrous acid in a real atmosphere.

HONO has been shown to increase during the night due to its direct release from exhaust 

emissions (47). Levels steadily accumulate due to little photolytic degradation and also 

through a second heterocyclic reaction between NO2 and water - 28 (45,46,48).

2N02 + H20  > HONO + HNO3 28

HN02 (HONO) is a stable molecule during the night, however daylight causes the 

reaction to reverse thereby being an early morning source of OH radicals (33,49).

Peroxyacyl nitrates (PANs)
Night RC(0)0 2N 0 2

OH* + NO ^  w HN0 2 (OH* store during night) a
Day

+ n o 2
(Formed during the day)

See daytime r q .  + Q 2 » R C (0)0 2

Schematic + Peroxyacyl radical
Os+NO  *»n o 2 + o 2

+ 0 3
o2

RO?*-*--------  +
R* + HNO3 ^ ----------  RH + 0 2* + 0 2

+ N ° 2 Acid
r Formation

PAH-NOj ^ gaSe° US N20 5 IW 1 )  ^  2HNO,
. . . PAHs heterocyclic
(specific isomer) ..v y '  reaction

Figure 1.3: Schematic of Night-time Chemical Reactions.

1.4.3 Acid Formation.

The following rapid overview of acid rain formation is by no means comprehensive. 

However, it does show the main routes to certain mineral acid formation in the
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atmosphere. For a more comprehensive description of atmospheric reactions to 

atmospheric acid production Finlayson-Pitts, et al (21) is a good point of reference.

Anthropogenic sources are once again mainly responsible for the formation of acidic 

molecules formed in the atmosphere. The release of sulphur dioxide (SO2) and nitrogen 

dioxide (NO2) are the precursors for the formation of sulphuric and nitric acid 

respectively.

Sulphur Dioxide fSO?)

The most likely route to the oxidation of ground state SO2 is by OH* which produces an 

adduct, 29, as observed by Hasimoto. et al (50)

Reaction 30 described by Calvert, et al (51) is thought to be endothermic (52) so is 

unlikely to occur at any great rate at ambient temperature. After absorbtion into water 

droplets or adsorption to surfaces, oxidation by various species can possibly occur.

S0 2 + OH* (+M) > H 0S 02* (+M) 29

H0 S0 2 * + O2 -------- > SO3 + H 02* 30

Alternative exothermic reactions include

h o s o 2* + H20  > h o s o 2 *oh 2 31

H 0S 0 2 *0H2 + 0 2 --------> H2 SO4 + H 0 2 32

and

S0 2 + 0 ( 3P) + (M )-------->S03 33

SO3 + H2 O  > h 2 s o 4 34

The atmospheric sulphuric acid formation after the initial oxidation of SO2 , 29 is often 

written as

HOSO2 H2 SO4

27
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All routes to the formation of sulphuric acid need oxidative pre-cursors for the initial 

oxidation to occur. This ensures that there is a seasonal variation in the production of 

atmospheric sulphuric acid, with larger concentrations produced the warmer summer 

months (53).

Nitrogen Dioxide fNOf)

The following daytime reaction, 36 dominates the production of atmospheric nitric acid 

during the summer period due to the large amount of OH* produced from photolytic 

reactions (33).

NO2 + OH* + M (N2 or 0 2) -------->HN03 36

However, night-time reactions also produce nitric acid. A heterocyclic reaction of 

gaseous N2 O5 with water vapour can produce liquid HNO3 (54) - 37.

N2 O5 (g) + H20  (1)--------> 2HN03 (1) 37

The night-time reaction is dominant during the winter months when night-time levels of 

N20 5 are at their highest (53). Another route to night time formation of HNO3 is a 

reaction between the N 0 3* and a hydrocarbon - 38 (55).

N 03* + RH  > HNO3 + R* 38

The possible formation of nitric acid during both the daytime and night time removes the 

independence of the reaction from photolytic OH* production, (as with sulphuric acid) 

resulting in nitric acid being present in the atmosphere throughout the year.

These acid molecules can be removed from the atmosphere by either wet or dry 

deposition. However, these inorganic acids can be partially neutralised by reacting with 

ammonia released into the atmosphere from various sources (both biogenic or
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anthropogenic). These reactions produce fine particles of ammonium nitrate and 

ammonium sulphate.

HNO3 + NH3  >NH4N0 3 39

H2 SO4 + 2 NH3  >(NH4)2 S0 4 40

Along with carbonaceous particulate material, these inorganic salts are partially 

responsible for the visible smog hazes seen around polluted cities during heavy pollution 

episodes due to the scattering of light. These inorganic particles are temperature 

sensitive, with higher temperatures reducing the ammonium salts to ammonia and the 

relevant inorganic acid.

Other cations available to react with nitric acid include sodium ions, released into the 

atmosphere predominantly from sea salt. Sea salt is mainly associated with the coarser 

fraction of particulate material (>2pm) thereby resulting in the identification of nitrate in 

coarse particulate material (56).

HOSO2 «<+° H - S0229
02 
30

1
S03 +H02 H2Q

34

(NH4);

Daytime. Night time.

+OH

RH + NO;

-O:

Figure 1.4: Schematic of Acid Formation,

It can be seen from this generalised overview that atmospheric chemistry is highly 

complex, with minor constituents having major effects on the reactions occurring in any 

outdoor atmosphere. Daytime reactions are generally powered by OH* radicals with 

ozone and NOx continually reacting (often photolytically) to produce various amounts of
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reactive precursors at any one time. The OH* radical is able to control oxidation of many 

manmade and naturally occurring compounds emitted into the earth’s atmosphere 

(Figure 1.2) (31).

As night falls and the UV radiation diminishes, other reactions begin to take control. 

Hydroxyl radicals and other precursors form compounds, such as HONO where OH* can 

be “stored” until the next morning before pholatolysing back to OH* and NO at the start 

of a new day. Oxidation as such, stops at night. However, nitration becomes the major 

reaction occurring at night with NCb* and N2 O5 being two species capable of reacting 

with organic atmospheric pollutants.

Acidic species and fine ammonium salts are produced under the right conditions 

producing another group of toxic compounds that are detrimental to plant and animal 

life.

We can therefore see that there are many factors which can effect gaseous and 

particulate associated organic pollutants once they have been released into the 

atmosphere. Physical processes can remove them, before or after chemical reactions have 

occurred with the numerous radicals or reactive species (found in the atmosphere during 

the day or night). This can produce a whole range o f possible secondary compounds 

from one primary pollutant, resulting in the eventual removal o f the pollutant from the 

atmosphere. Re-emission of compounds after degradation whilst deposited at a sink can 

also occur, showing that pollutants both organic and inorganic can undergo a wide and 

diverse existence, before complete degradation or final deposition to a specific sink 

occurs.
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1.5 Sources.

The sources of air pollution are very much dependent upon the type of context the air 

sample is taken from. For example, samples can be from inside a building or from an 

outdoor environment, be it urban or rural. Specific sources will be discussed later, 

however, in general possible sources for pollutants in indoor and outdoor air include:-

Outdoor air.

Primary emissions

1. Road transport including petrol and diesel emissions.

2. Power generation.

3. Residential and commercial combustion.

4. Industrial combustion.

5. Construction emissions.

6. Quarrying emissions.

Secondary emissions.

Chemical reactions ; formation of fine particles of ammonium 

sulphate/nitrate.

Indoor air.

1. Fuel combustion/cooking emissions.

2. Tobacco smoke.

3. People.

4. Animals.

5. Building materials.

6. Furnishings.

7. Outdoor air diflusing in.

It can be seen that a sample from either of the environments will be complex, with a 

number of contributing sources being possible. The development of methodology by 

which specific sources could be identified from a sample, would therefore be very useful. 

Ultimately, ways of reducing the effect of such a source, could be investigated.
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1.5.1 Outdoor Air.

The major sources of pollution in outdoor air have changed quite considerably over the 

last 50 years, as the chemistiy of the atmospheric environment has become understood, 

and the detrimental effects of certain pollutants has become apparent. Coal was the main 

source of industrial and residential heat and power up to and including the 1950’s and 

60’s. Air pollution during this time was considerable with “dirty smog” regularly 

occurring in urban areas due to the high concentrations of particulate material, and SO2 

released from coal combustion, e.g. the London smog episode of 1952 (57). This was 

caused by exceptionally high levels o f total suspended particulate (TSP) material and SO2 

over a four day period in December. Average concentrations for that time of year were 

120-440pg/m3 and 0.07-0.23pg/m3 (TSP) and SO2 respectively. These levels rose to 

highs of 4460pg/m3 and 1.34pg/m3 for (TSP) and SO2 during this time. This large 

increase in atmospheric pollution was in part due to the “still” meteorological conditions 

that were situated over the south of England, in addition to the pollution emitted 

continuously during this period. The high concentrations had a major effect on mortality 

(specifically chronic respiratory and cardiac deaths) with an estimated 3500-4000 excess 

deaths due to the air pollution. 90% of the deaths occurred in individuals over 45 years 

of age, with between 60-70% over the age of 65. The number of deaths in children under 

1 approximately doubled. The increase in deaths was seen mainly associated with older 

individuals often with respiratory or cardiac problems or young children whose 

respiratory and cardiac systems were still developing (57). The 1952 smog pollution was 

a major reason for the introduction of the Clean Air Act of 1956.

The advent of gas central heating and smokeless areas where the residential combustion 

of coal or wood is prohibited, along with the conversion of power stations from coal, to 

gas and oil, has drastically reduced the emissions of particulate material and S02. 

However, other sources have begun to increase in recent years, specifically the emissions 

from motor vehicles. Levels were reduced slightly with the introduction o f unleaded 

petrol in 1986. However, urban areas are now under the threat of increased pollution 

from vehicle emissions and specifically diesel emissions.
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1.5.1.1 Vehicular Emissions.

Vehicular emissions are similar to all anthropogenic emissions, containing quantities of 

carbon monoxide, carbon dioxide, particulate material, NOx, organic compounds and 

metals at varying concentrations. The emissions from any one vehicle can be very 

different to similar vehicles due to physical engineering factors and the manner in which 

the vehicle is driven. For example a car driven at a relatively slow constant speed will 

produce different emissions to a vehicle driven hard and fast in a lower gear.

Diesel emissions have become an increasingly important source o f urban pollution. They 

are likely to become even more significant in the near future due to many, if not all of the 

following reasons.

1. From 1993, all new petrol powered cars were required to emit a reduced level of CO, 

CO2 , unbumt hydrocarbons and NOx (58). This was achieved by many car firms by 

fitting catalytic converters, which was made law in 1993 (59). However, due to the 

different characteristics found in the various types of diesel engine, there is as yet, no 

commercially available catalytic converter for diesel vehicles. Their contribution to an 

atmosphere will therefore become more pronounced as the number of petrol engines with 

catalytic converters increase.

2. Diesel cars have also begun to become more common on the roads as their popularity 

has increased. In 1991, diesel cars occupied 5-6% of the new car market, by 1993 this 

had risen to 25% (60). The increase in the share of the new car market by diesel was due 

to the prices of diesel and petrol powered cars becoming comparable. Petrol cars had to 

be fitted with emission reducing systems pushing the price of the car up. Diesel cars 

became more attractive due to the similar price and also due to the financial gains 

associated with diesel car. These were that the car was more economical to run due to 

better fuel efficiency, along with the maintenance of the vehicle being less than for an 

average petrol powered vehicle. This is due to diesel engines using compression ignition 

in the combustion region, which is known to be less wearing on engine parts compared 

to petrol powered spark engines. Diesel cars were also seen as the cleaner more 

environmentally friendly mode of transport as they emit less CO2 than petrol cars.
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3. A comparison of emissions from petrol vehicles (both with and without catalytic 

converters) and a diesel engine (61) identified that the major emitter of CO, total 

hydrocarbons and NOx was the standard petrol driven car with no catalytic converter. 

Emissions from a petrol car with catalytic converter released slightly higher levels of CO, 

compared to the diesel engine, however the diesel engine released slightly more NOx and 

total hydrocarbons compared to the petrol car with catalytic converter. Particulate 

material released in the exhaust emissions was also measured. A measurable quantity was 

found only in the diesel emissions.

4. Particulate material from a diesel engine consists of approximately two thirds 

elemental carbon and one third organic carbon (62). Particulate material released from 

leaded petrol consists mainly of organic carbon, lead and bromine (from anti-knock and 

scavenging agent additives, respectively) (63). With the introduction of unleaded petrol, 

the lead particles around which much of the petrol particulate material was formed is no 

longer present. This caused the amount of particulate material in petrol emissions to drop 

to levels where certain diesel vehicles can release up to an order of magnitude more 

particulate material into the atmosphere than an unleaded petrol vehicles (61).

It can therefore be seen that a major source of urban particulate emissions in the future is 

likely to be from diesel engines, due to the increase in diesel cars, along with the 

emissions from various light goods vehicles (LGV’s), heavy goods vehicles (HGV’s) and 

buses. Particulate material is likely to be even more specific to diesel compared to petrol 

engines due to the elevated levels found in diesel emissions. If a method for specifically 

identifying vehicle emitted particulate material, (e.g. diesel particulates) can be found, a 

contribution to an atmosphere for diesel emissions could be identified. Other urban 

particulate material which would account for the unknown percentage would include re

suspended street dusts, particles from tyre debris and other worn car parts. However, 

these particles have been identified as being mainly associated with larger particles 

>2.5pm (64).
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Diesel.

There are two main types o f diesel engine:-

1. The direct injection (DI) engine where fuel is injected directly into the combustion 

chamber, and ignition is induced via compression. This type of engine is used for LGV’s, 

HGV’s and buses. The DI diesel engine is more fuel efficient and as a consequence 

produces a higher quantity of NOx and particle material in its exhaust emissions 

(compared to indirect injection diesel engines). Higher quantities of NOx and particulate 

material are produced per volume of fuel as there is a certain amount of heat loss when 

the burning fuel flows into the cylinder from the pre swirl chamber (in indirect injection 

diesel engines). This heat loss results in lower combustion efficiency and ultimately lower 

particulate emissions (per volume of fuel). The average temperature of an indirect diesel 

engine is also lower, reducing the amount of NOx produced by the Zeldovitch 

mechanism.

2. Indirect injection (IDI) diesel engine is a quieter engine compared to the DI. Fuel is 

injected into compressed air in a pre (swirl) chamber where it ignites and combustion 

begins. The combustion mixture then flows directly into the combustion chamber where 

the power is generated. Due to its quieter running this type of engine is mainly used in 

diesel cars.

Diesel particulates contain elemental carbon, with some sulphate and water. These 

elemental particulates are formed in the pre swirl or combustion chamber into which a 

fine spray of fuel is injected and ignited. Fine particle <0.2pm are formed along with 

pyrolysed fuel. These combustion products along with CO, CO2 , NOx, VOCs and 

unbumt fuel are released into the atmosphere through the exhaust system. As these 

emissions pass through the exhaust they are capable of reacting with other emissions at 

the elevated temperatures to produce an increased variety of organic compounds. As 

they pass into the atmosphere (or cooling tunnel when samples are being taken) the 

emissions cool, high temperature boiling point organic compounds and some of the 

unbumt fiiel condense out and coat the elemental carbon particles which begin to 

coagulate forming larger particles from between 0.2-2pm. These particulate emissions
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have been linked with possible detrimental health effects as they are small enough to 

penetrate deep into the lung (Section 1.1.3). Particulate material has in some studies 

been linked with mortality/morbidity (Section 1.6) however, the direct mechanism for 

this is not yet understood.

100% of the particulate material released by diesel vehicles has been shown to be of a 

size less than 10pm in diameter, and 92% of all emitted particulate diesel material is 

below 2.5pm (58). Petrol driven vehicles (not including cars with a catalytic converter) 

produce on the whole larger particles than diesel engines, with only 70% of the 

particulate material being <2.5pm in diameter (64).

The increased levels of particulate material found in the urban environment has been 

attributed to vehicle exhaust emissions, of which the majority is likely to be from diesel 

engines. An estimated 2-10 times more particulate material is generated by diesel cars 

compared to petrol powered cars and 5-50 times more particulate material is released by 

larger HGV type vehicles compared to petrol driven cars. Over-all in 1995 it has been 

estimated that 5 times more particulate material was released by diesel powered vehicles 

compared to petrol driven vehicles throughout the UK (64). An accurate quantitative 

value is very difficult as little work has been published on the average particulate 

emissions from petrol engines.

The emissions of particulate material, hydrocarbons and CO increase from a diesel engine 

with the use of lower speeds, acceleration and deceleration due to urban speed ramps, 

sleeping policemen and other traffic control measures (however, contradictory evidence 

to this is found in literature (65)). Such driving increases fuel consumption by the engine 

due to inefficient fuel combustion, especially during acceleration, compared to the 

constant speeds of a duel carriageway or motorway. Urban areas are where this type of 

driving is found in most profusion thereby increasing levels of pollution in urban 

environments. This is especially true for buses owing to their constant stopping and 

starting, to pick up and alight passengers along their route. It has been estimated that 

86% of all PM10 material in Greater London can be attributed to road traffic (64), a 

major proportion of this is likely to be from diesel emissions.
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Previous work to identify if vehicular traffic did increase pollution in an urban 

environment has been completed. PM10 samples taken from roadside sites in central 

London were compared to PM10 samples taken at three roadside “background” urban 

sites on the outskirts of the city. Averages over the years 1986-89 identified an 

approximate increase in PM10 levels of between 2.5-3 times at the central roadside 

samples compared to the background samples. This increase was attributed almost 

entirely to vehicle emissions (66).

Another study centred on London identified that up to 77% of all particulate polluting 

material was from vehicular emissions (67). It identified that particulate material and lead 

varied throughout the year with highs in the winter (from increased use of vehicles 

during cold weather and the prevention of dispersion of the pollutants emitted at ground 

level sources due to stable atmospheric conditions) and lows in the summer (67). More 

recently, a daily variation has been observed for particulate matter with peaks at 8.00am 

and 5.00pm during week days, adding further evidence to the increased levels of 

particulate material in urban environments as being from transport (66).

As described earlier in this section, much of the diesel particulate emissions originally 

released are of very small size, <0.2pm in diameter. These can be extremely difficult to 

accurately measure especially if a filter with a pore size of 1pm is used. Even if they are 

successfully sampled, the small size causes little contribution to the actual sampled 

particulate mass. However, it has been shown that these ultra fine particulates can be 

present in the immediate vicinity of the source at very high concentrations. For example 

measurements in central Birmingham three metres from a main road gave particulate 

counts of 103-106/cm3 (Average 180000/cm3) (66). Counts under similar weather 

conditions at a background site several hundred metres away gave an average particulate 

count of 27,000/cm3. This 6-fold reduction is likely to be due to dilution through mixing 

with cleaner air, agglomeration of the smaller particles into larger particulates, or 

adhesion to surfaces.

Thus, the indication here, is not only that the mass of particulate material is important in 

identifying the major polluting sources but, just as important, is the number of smaller 

particulates released into the atmosphere. The high levels of finer particulate material

37



released into the atmosphere, adjacent to the source is considerable, and also it is known 

that these particulates are capable of penetrating deep into the lung to be deposited into 

the alveolar region (21). Work by Jones and Harrison (66) has identified that the number 

of particles does not drop after the morning rush hour unlike many components of 

vehicle emissions such as PM10. This indicates that they have a longer life-time in the 

atmosphere and are hence respirable throughout the day.

Conclusion.

In this section it has been shown that petrol and diesel propelled vehicles are likely to 

contribute different amounts of polluting emissions to any one atmosphere. However, in 

an urban environment it is likely that diesel engines will emit the largest quantity of 

particulate emissions, as they release approximately 5 times more particulate material 

than petrol powered vehicles. The contribution from diesel vehicles is likely to escalate 

with the expected increase in the numbers of LGV’s, HGV’s and buses over the next few 

years (60). The increased amount of stopping and starting of these vehicles in the urban 

area and the increasing number of diesel cars will also exacerbate the situation. These 

factors along with the health implications of fine particulate material and access to a 

diesel engine in an exhaust sampling laboratory led to the initial aim of this project. To 

identify a convenient method capable of identifying the contribution of diesel emissions 

to an urban environment.

1.5.2 Indoor Air.

People spend the majority of time in an indoor environment these days, be it either at 

home or at work. The vast quantity of air that we breath is therefore indoor air which 

until recent years was an area of the atmosphere that was not well researched. Notice 

was originally taken around 1973 and coincided with the Middle East oil embargo, which 

identified the necessity for an increase in overall energy conservation. This was achieved 

by improving combustion efficiency for heating, along with improvements in insulation. 

However, increased insulation produced a reduction in ventilation of buildings (especially 

during colder climatic times), which led to increasing levels of indoor pollution, such as 

volatile compounds (68). Health complaints associated with indoor air were seen to

38



increase with this variation in indoor air. Levels of various pollutants did not necessarily 

exceed those permitted by current legislation. However, the long term exposure to these 

lower concentrations (chronic exposure), in conjunction with outdoor pollution could 

have induced the health problems observed.

Major sources of indoor pollution include biological pollutants, with humans mainly 

emitting odorants, water vapour and CO2 . Other biological emissions include those from 

pets and micro-organisms releasing CO2 and odorants as well as skin, hair and waste 

material. Combustion due to heating and cooking can release various pollutants including 

CO, NOx, particulate material and formaldehyde. Buildings and their contents can emit 

various chemicals including volatile organic compounds and formaldehyde from 

insulation, paints and varnishes. Human activity releases a whole array o f substances into 

the indoor environment with cleaning releasing organics and odorants and environmental 

tobacco smoke (ETS) producing CO, particulate material and odorants (69).

Groups that are found to spend the majority of their times in an indoor environment 

include the elderly, the young (children) and the sick. Their movements are often 

restricted by climatic variations with an increase in heating during the winter associated 

with a reduction in time outside. At the same time, levels of indoor air pollution increase 

due to reduced ventilation and increased combustion emissions. All these groups (elderly, 

the sick, and children) have been identified as being highly susceptible to some forms of 

air pollution and climatic variations. This is discussed iurther in Section 1.6.

A recent study by the Department of the Environment in collaboration with Bristol 

University (70) undertook a study investigating child health, child development, and 

indoor air. The main objectives of the study was to investigate the concentrations of 

various compounds in the air and the variation of these due to house characteristics and 

human activity. Variation o f chemical and microbial concentrations throughout the year 

were also investigated

The highest average concentrations of NO2 were generally found in the kitchen, and gas 

cookers were identified as the major source. Levels were high during the winter months 

and when the dwelling was situated in an urban environment, adding weight to the idea
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that outdoor pollution penetrates the indoor environment. This has been identified as 

occurring for both gaseous and particulate pollutants (72). Concentrations of NO2 in 

some households were found to be regularly above levels found in outdoor air, 

depending on the season (68).

Mites, fungi and bacteria were found mainly in the living room and bedroom. The 

seasonal fluctuation of mites and fungi indicated that higher levels were present during 

the summer months, this was mirrored to a lesser extent by bacteria.

Volatile organic compounds were found to be up to ten times higher in indoor 

environments compared to outdoor environments. There are therefore major sources of 

organic compounds to be found in indoor areas which are not being diluted or 

transported from indoors due to poor ventilation. Formaldehyde is a fairly ubiquitous 

compound, which has been found to be released in higher concentrations from newer 

houses than from older houses. There was also an annual fluctuation of formaldehyde 

release with higher levels found during the summer months. Major sources of volatile 

organic compounds were found to be houses where painting was or had recently taken 

place along with a household in which there was a smoker (68).

The sponsors of the work reported in this thesis, Rothmans International were interested 

in comparing indoor air quality o f households/workplaces with smokers to 

household/workplaces without smokers, and measuring the effect a smoker has on an 

environment. Using a measure of vehicle (diesel) emissions a value for outdoor air 

penetrating into an indoor environment could also be investigated, along with the 

contribution associated with ETS.

1.5.2.1 Environmental Tobacco Smoke (ETS).

Environmental tobacco smoke (ETS) describes the tobacco emissions a non-smoker is 

exposed to when in the presence of a smoker. ETS is of greater significance in an indoor 

environment since the accumulation of emissions due to reduced dilution is possible. 

ETS is of less importance in an outdoor environment due to the large dilution possible 

from the overall atmosphere.
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ETS is the overall name given to tobacco smoke released from various parts of burning 

tobacco, be it a cigarette, cigar or pipe. ETS can be divided into three specific sources. 

These include

1. Side-stream smoke (SS), which is the emissions released from the burning end of the 

cigarette, directly into the atmosphere, and the major source of ETS (74).

2. Main-stream smoke (MS), which in itself contains two components, the smoke 

exhaled from the lungs by the smoker and the emissions exhaled that don’t reach the 

lungs after the initial inhalation of the cigarette. Little inhaled material is subsequently 

exhaled (73).

3. The final emission type includes material released through the paper of the cigarette.

The chemistry o f tobacco combustion is extremely complex and consists o f a number of 

chemical reactions that occur in the combustion zone. Oxidation is the major reaction 

occurring. However, there is seldom enough oxygen for complete combustion, therefore 

an array of partial and completely oxidised compounds are produced. Other reactions 

include pyrolysis (transformation of a compound to one or more different compounds 

due to heat alone) as the temperature at the end of the cigarette can reach temperatures 

in excess of 800°C (73). This ensures that the 2000 compounds identified in the tobacco 

blend can produce up to twice this number in ETS.

The type of tobacco being smoked can also produce variations in emissions. For 

example, cigarette tobacco, cigars and pipes all contain different blends o f tobacco and 

tobacco that has leaves cured in different ways. The majority of cigarette tobacco leaves 

are flue-cured, where warm air is passed over the leaves to dry them. On the other hand, 

cigar and pipe tobacco is often allowed to dry more naturally. This causes a variation in 

the sugar content of the tobacco as the warm air associated with flue curing activates 

enzymes in the leaf to convert starch into sugar, while the naturally dried leaves produce 

little conversion of starch to sugar. Tobacco blends vary from brand to brand and 

additives (a list of which can be found reference in 75) and their respective 

concentrations all ensure that ETS is a highly complex mixture (74).
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Another added complexity of ETS is that the concentrations of many of the compounds 

released in ETS vary with time, this is known as ageing. Both vapour phase and 

particulate associated organic chemicals released from the cigarette are susceptible to 

chemical conversion once released into the atmosphere. Particulate material is also likely 

to change due to the original particle containing a high proportion of water. These 

particles are susceptible to surface adhesion, removing them from the respirable 

atmosphere quite rapidly.

However, particulate material and vapour phase organic compounds can be inhaled (by 

both smokers and non-smokers) deep into the alveolar region of the lungs, as much of 

the particulate material released by cigarette smoke is of <2.5pm. The health effects this 

can cause will be dealt with in Section 1.6. However, as ETS contains gaseous molecules 

of CO and NOx, vapour phase organic compounds including benzene, toluene, xylenes, 

nicotine and various derivatives in addition to particulate associated organics including 

PAH compounds, we can identify that exposure to such organic material is likely to be 

increased in households/workplaces where individual(s) smoke.
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1.6 Health Effects.

A great deal of literature has been published on the effects of both indoor and outdoor 

air pollution on health. The following section is aimed to further clarify the importance of 

accurate measurements of air pollution and their sources, due to the possible adverse 

health effects.

1.6.1 Health Effects Associated with Outdoor Air Pollution.

The difficulty in trying to discuss the contribution of air pollution to increased health 

problems is immediately apparent to anyone who reads the literature associated with this 

area. The biggest problem being how you quantify if a person fell ill purely through the 

inhalation of polluted air, or if they would have fallen ill anyway? Is the polluted air 

purely speeding up an illness that is exacerbated by air pollution? Is it caused by pollution 

that is present at low concentrations over a long period of time (chronic exposure)? 

Pollution that is present at higher than normal concentration for short periods of times 

(acute exposure)? Does it effect certain age groups? Does it preferentially effect people 

with respiratory problems? Is it a specific pollutant from one source or a combination of 

pollutants from various sources? Are these adverse health effects occurring during the 

summer months (of high ozone and secondary particulate material) or winter months 

(low ozone and high levels of particulate material). There are more question than 

answers at the current time. However, some interesting correlations are to be found.

A lot of work found in the literature relates to a specifically high pollution episode in a 

specific place due to certain weather conditions (often anticyclones preventing air 

movement). Such conditions restrict the dispersion of the constantly emitted pollutants 

producing extremely high concentrations in the atmosphere. Such episodes include those 

seen in London in 1952 (57,76) discussed earlier, the 1962 London episode and another, 

again in London in December 1991 (77). These studies have been used to identify 

increases in the morbidity, mortality rates during the pollution episodes and relate them 

to the high concentrations of pollution at that time.

43



Other studies on atmospheric health effects use groups of individuals (be they young or 

old, symptomatic or asymptomatic of asthmatic type problems), who keep records of 

illnesses or health problems for a period of time. Research in America has used these 

diary exercises to good effect. These real time studies produce possible statistical 

increases in health problems due to atmospheric pollution.

Chamber studies (where volunteers are exposed to levels of pollutants) and in vitro 

studies (where animals are exposed to pollutants) can all add to the understanding o f the 

possible effects of pollutants on individuals. All these types of studies were investigated 

to try and identify the major contributory effects associated with atmospheric pollution.

Nitrogen Dioxide.

Nitrogen Dioxide is mainly released in vehicle emissions into the outdoor atmosphere 

and is often associated with urban areas. NO2 is also a major pollutant of indoor air, 

associated with gas cooking facilities (69). Analysis of outdoor exposure has been 

extensive however, the health effects are still valid for NO2 exposure indoors. High levels 

have been observed in several cities around the world, including the London high of 

1991 (77). In that instance, the highest ever levels of NO2 in the UK were recorded. 

However, this pollutant was found not to significantly contribute to the increase in 

mortality/morbidity. Conversely, other studies have found a statistical increase in overall 

mortality due to elevated NO2 (78). However, these same workers identified that this 

increase was not associated with respiratory or cardiac deaths (79). Difficulties arise 

from specifically associating increases in mortality to NO2 , as increases in particulate 

material concentrations are often associated with NO2 variations, due to their similar 

sources.

Even though mortality association is unclear for NO2 , there has been literature which has 

associated respiratory problems with an increase o f this pollutant. Admissions to 

hospitals do seem to increase, with an increase in asthma admissions (80) other 

respiratory problems (79), specifically in children (81), and circulatory problems 

including chronic obstructive pulmonary disease (COPD) (82). N 0 2 has also been 

identified as effecting asthma sufferers (83-85), associated with causing a reduction in
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lung function (86) and inducing an inflammatory response o f the respiratory tract 

(83,87). A reduction in mucociliary activity has also been observed after exposure to 

NO2 for only a short period (88). This type of response may cause increased sensitivity 

of the airways and produce an enhanced sensitised response to allergens solely due to 

NO2 (89,90) or in association with other atmospheric pollutants such as SO2 (91).

We can see from the studied literature that an understanding of the health effect of NO2 

in the atmosphere on individuals is not complete. Even though statistical evidence of 

increased mortality (78) has been attributed to NO2 in certain elevated episodes, other 

pollutants are often present causing a great deal of uncertainty about the specific 

contribution associated with N 0 2. However, we can conclude that NO2 could possibly 

induce increased sensitivity to the respiratory system (especially in asthmatics and 

individuals with other respiratory problems). The increased sensitivity and possible 

airway permeability (84) can then be aggravated by other pollutants present in the 

atmosphere, such as S02 (91,92), and/or particulate material (78), during the winter and 

ozone (93) during the summer months, when the levels of ozone are high. Circulatory 

problems could be associated with the formation of NO-Haemoglobin and met- 

Haemoglobin, i.e. haemoglobin that reacts with NO and NO2 respectively, preventing 

them from carrying oxygen around the body (94).

Particulates.

Particulate material is a complex atmospheric pollutant, due to the size, shape and 

composition all depending on which source the particles arise from (See Section 1.1.3). 

Particulate material and its effects on health have therefore been investigated a great 

deal. However, even after extensive investigation, there is still no known biological 

mechanism by which particulate matter effects the health of individuals. The smaller 

particulate material <2.5pm in diameter (PM2.5), are able to penetrate into the alveolar 

region of the lung. Sources of this material are vehicular emissions and secondary 

production of ammonium sulphate and nitrate. The fine fraction from vehicle emissions 

therefore consists of carbon particles which can have various metals and organic 

compounds associated with them, in addition to ammonium sulphate/nitrate. The smaller

45



sized particulates are thought to induce the adverse health effects rather than coarser 

material. However, there is as yet no proof of this (79,95).

Numerous studies (after correcting for possible errors for individuals that smoke, or are 

exposed to high levels of ETS or occupational exposure due to work) have identified 

particulate matter PM 10 as causing an increase in overall mortality/morbidity (96) and 

hospital admission cases (97). Problems can occur in this type of study from the use of 

death certificates, as the stated cause of death can be mis-leading from the actual cause 

of death which may be due to stresses on a weakened area from an associated problem. 

For example many respiratory deaths in America are recorded as cardiovascular or 

circulatory deaths (98). However, correlations are still identified in many 

mortality/hospital admissions, these include respiratory disease (97-100) cardiovascular 

deaths (97-99,101) and a number of respiratory associated hospital admissions and 

deaths, due to levels of particulate material (85,102,103). Wordley et al (102) identified 

elevated concentrations of PM 10 material with increased mortality/admissions of people 

with ischaemic heart disease (IHD) and acute cerebrovascular problems.

Identification of increased irritation due to air pollution of asthmatic and “healthy” 

children has also been investigated in the USA (104) and Europe (100,106,107), while a 

study of adult individuals using respiratory medication was undertaken in Europe (108). 

Children were seen to be more effected than adults. Children both symptomatic and 

assymptomatic (of asthma symptoms) were found to show reduced peak expiratory flow 

(PEF) and an increase in symptoms of respiratory disease. The effects were seen to be 

most significant in the symptomatic children (105). The identification of a lag time was 

also observed, with the effects of a high pollution episode of increased PM10 causing an 

increase in mortality/respiratory associated problems (99,105,109) for up to four days 

after the original high emission. Work in the USA also identified an increase in the 

hospital admissions of people with cardiovascular problems (110) and respiratory 

problems (111,112) who were aged 65+. Several atmospheric pollutants were measured 

during the time of the study, including PM10, ozone, SO2 and CO. Statistical 

independent association was observed between congestive heart failure, PM 10 and CO 

(110). While independent PM10, levels were found to statistically increase the admission 

of ischaemic heart disease (110).

46



Anderson, et al (77) found that with the elevated levels of pollution (including particulate 

material and NO2) in the London pollution episode of 1991, led to a statistical increase in 

all mortality (excluding accidents) compared to the immediate previous weeks. The 

number of respiratory problems for the elderly (65+) part of the population was also 

observed to increase. Control values were also obtained from other parts of the country 

for the same weeks, where no increase in air pollution was apparent. All levels of 

mortality increased for respiratory type diseases, in all age groups, including respiratory 

infections, and obstructive lung disease. A statistical increase was also seen for deaths 

from cardiovascular diseases. The increased levels of particulate material were found to 

be statistically associated with the increase in deaths and admissions for respiratory and 

cardiovascular problems. As stated previously, NO2 was not found to cause any health 

effect in this study. Several more recent studies have investigated the effects of air 

pollution and health in London (101,113,114) along with a study carried out in 

Birmingham (102) and a European study including results from six cities (115). The 

Birmingham study identified a higher level of mortality due to particulates compared to 

the London and European studies but all studies identified a statistical correlation 

between particulate pollution and increased mortality.

One possible mechanism for this increase in health effects is believed to be due to the 

acidic fine fraction of the atmospheric particulates released from anthropogenic sources 

and secondary formed particulates (116,117). These ultra fine particles are capable of 

penetrating deep into the alveolar region of the lung, where they cause lung inflammation 

as well as increasing blood coagulation resulting in cardiovascular deaths. It is proposed 

that it is the number of these fine particles (which have little mass) and not the overall 

mass of material inhaled which can cause detrimental effects. A recent study on rats 

showed that an exposure to high numbers of fine particulate material induced 

bronchoconstriction and resulted in the deaths of some of the rats (118). Such reasoning 

would help to explain why people susceptible to atmospheric pollution are likely to be 

elderly house bound individuals (since traffic emissions are capable of penetrating indoor 

areas (91,97,119) rather than industrial workers who are often exposed to a larger mass 

of particulate material but of a coarser size.
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It can be seen from the literature reviewed in this section that an increase in particulate 

pollution does seem to cause ill health both directly (respiratory problems) and indirectly 

(cardiovascular/cardiopulmonary). Particulate pollution has been linked with chronic 

effects, leading to increased mortality/morbidity (79). Investigations have also identified 

a statistical increase in respiratory and cardiovascular problems in the elderly 65+ (77) 

along with problems for asthmatics with increased problems for asthmatic children (106). 

We can therefore state that particulate material does seem to cause an adverse effect on 

the health of individuals. Those at most risk include children and the elderly, especially 

those with medical conditions. A recent UK government report stated that 8100 

premature deaths were caused by particulate material along with 10500 additional 

hospital admissions (79).

Sulphur Dioxide ISOf).

SO2 is present in the atmosphere and is the only combustion product discussed in this 

section which is known to cause respiratory irritation and bronchoconstriction, especially 

to asthma (79) and bronchitis sufferers (115). However the mechanism for this reaction 

is not yet known (79).

Several recent studies from six European cities (79,104) have shown that there is a 

statistical increase in the number of over-all deaths from cardiovascular and respiratory 

illnesses with an increase in SO2 . Similar trends were also noted in a review by Lebowitz 

(120). Hospital admissions have been observed to statistically increase with increasing 

SO2 levels, in the case of elderly, (79,101) respiratory, (111) and asthma admissions 

(100,103). Other health effects due to elevated SO2 levels include an increase in 

wheezing and use of bronchodilator medicines and also a reduction in peak expiratory 

flow (PEF) in children with chronic respiratory symptoms (106). Similar results were 

seen in a study of adults with respiratory disease (121). A recent UK report stated that 

the possible number of premature deaths due to SO2 pollution was 3500 and the number 

of additional hospital emissions of a respiratory nature was also 3500 (79).

From the literature investigated it is observed that SO2 does have an effect on the health 

of individuals. As with NO2 , the problem with discussing the health effects o f SO2 is that
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its present sources such as vehicle emissions also produce particulate pollution at the 

same time. An elevated concentration is therefore likely to correspond with high levels of 

NO2 and particulates making the identification of their individual contribution to adverse 

health effects very difficult. However, it can be determined that SO2 even at relatively 

low concentrations can produce a cumulative effect with other pollutants such as NO2 

(91,92) and/or particulate material (78). S02 also contributes to the secondary pollution 

through the formation of sulphate particles along with the primary SO2 gaseous 

pollution.

Ozone.

Studies have shown that ozone can cause inflammation of the respiratory system 

resulting in a reduction in lung function (122). Once again, no mechanism has yet been 

identified linking ozone with effects in health, but trends and statistical data from various 

studies show that some effects can occur. Contradictory results have been obtained from 

several studies looking at the increase in mortality due to an increase in ozone in an 

atmosphere. A European study of several cities identified ozone as a cause of a statistical 

increase in total mortality (78,103,113,114,123), for sufferers of cardiovascular and 

respiratory problems. Some studies from the USA agree with these findings, as they also 

found an increase in mortality due to an increase in atmospheric ozone (100,124). 

However, other US studies disagree with this hypothesis since no statistical increase in 

mortality was found due to ozone (125).

The European study indicated that there was a specific increase in cardiovascular and 

respiratory mortality with admissions for respiratory problems in all age groups. COPD 

admissions and asthma admissions all statistically increased with increased ozone 

(103,114,123). Respiratory admissions for the elderly (65+) population also increased in 

a US six city survey (113,125) along with elderly COPD admissions (112). An increase 

in the admission of pneumonia cases has been observed and identified as statistically 

significant with respect to ozone (125).

The short term effects of ozone on the respiratory system have been discussed, with brief 

exposure to certain concentrations causing increased lung permeability and reactivity
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(124). Other detrimental effects include a reduction in forced expiratory volume (FEVi in 

1 second) (126) and PEF (115,121,127), often associated with higher previous day 

concentrations. However these expiratory flow results were contradicted by similar 

studies carried out on children, which identified no statistical reduction in FEVi (107) or 

PEF (126), due to high ozone levels (107).

Ozone toxicity at the levels often found in the atmosphere is difficult to quantify, as a 

great deal of contradictory evidence is available from the literature. Effects of ozone 

from minor short term problems to hospital admissions and fatalities have at some point 

been shown to be statistically significant. However there also seems to be an equal 

number of studies which find no such significance in ill health due to ozone. The result of 

this is therefore slightly more tentative than for previous pollutants. Ozone possibly 

causes detrimental health effects, especially in susceptible individuals, with this increasing 

when other pollutants such as SO2 , NO2 or particulate material are present.

Carbon Monoxide ICO).

Several studies have identified a statistical increase in overall mortality (128,129) and 

cardiovascular admissions (129,130) due to an increase in CO levels. These are often 

associated with elevated PM10 and SO2 . The increase in admissions has been 

investigated further and statistical increases in myocardial infarction, heart failure and 

circulatory disease admissions (101) have been identified. Increases in admissions of 

congestive heart failure in the elderly (131) due to elevated CO concentrations have also 

been observed.

As CO is released from combustion emissions it can be seen that an elevated level of CO 

will probably correlate with an increase in other combustion products including SO2 , 

NO2 and particulate material. Such effects will be evident in both indoor and outdoor 

environments. It can therefore be said that CO has a role to play in the health effects that 

occur through atmospheric pollution both individually and cumulatively. The mechanism 

by which CO causes detrimental health effects is uncertain. However, the statistical 

increases in admission and fatalities are all associated with the circulatory system and the 

heart. The effect that increased CO levels have on the oxygen levels in the blood can
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cause health problems especially in elderly (131) or individuals with cardiovascular (101) 

or heart problems (101).

1.6.2 Health Effects Associated with Indoor Air Pollution.

Environmental Tobacco Smoke.

For some time the health effects of direct smoking (i.e. the inhalation of tobacco smoke 

directly from the cigarette) has been known to be a cause of chronic respiratory disease, 

cardiovascular disease, in addition to cancers of the lung and various other sites including 

oral and throat (132). It has also been stated that half of all regular smokers are 

eventually killed by tobacco related illnesses. This works out to be approximately 1/5 of 

all deaths in the UK, attributing 120,000 deaths a year to tobacco related disease (132).

The determination of a link between increased illness and ETS has been much harder to 

accurately identify. Numerous studies have been published identifying/not identifying a 

link between non-smokers and exposure to ETS at work or at home. Increased 

respiratory problems including asthma have been identified, along with middle ear 

infections for children often present in ETS atmospheres due to parental smoking (132). 

ETS has not only been linked with an increased likelihood of respiratory and 

cardiovascular disease but also to possible incidences of increased coronary heart disease 

(133). However, reanalysis of results published in this area by LeVois and Layard (134) 

identified bias towards falsely high relative risk values for coronary heart disease 

associated with ETS exposure.

Even with the extensive array of literary sources, the conflicting information makes it 

difficult to determine the health effects of ETS. However, the following section will 

attempt to identify the major effects of ETS to an atmosphere, and why it is therefore 

necessary for accurate analysis of indoor environments to identify the contribution that 

ETS makes to an atmosphere.
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ETS was originally described as having a similar chemical composition to main stream 

(MS) cigarette smoke, and therefore contained several known carcinogens/mutagens 

previously identified in MS smoke, which were identified as causing lung cancer. The 

concentration was simply diluted due to the mixing of ETS with air in the atmosphere 

(132). However the simple presence of the compounds does not directly necessitate that 

ETS should be classified as a class A human carcinogen (135) (which it has been by the 

US EPA (136)) as many of these compounds had not been identified as carcinogenic at 

the concentrations found in ETS, or when inhaled into a biological system (137). Also 

certain publications identify ETS as causing cancer “beyond reasonable doubt” (138), 

while other publications strongly refuted this (135,139).

In fact ETS is a complex combination of side stream (SS) and exhaled MS smoke which 

has a different chemical composition than inhaled MS smoke due to the adsorption of 

major quantities of constituents from MS smoke into the body of the smoker. It has been 

stated that over 90% of inhaled MS particulate material is retained in the respiratory tract 

(140,141). Non-smokers retain a much smaller proportion of ETS particulate material 

(estimated to be 11% by Hiller (141), and 34%/26% in men and women respectively 

(142)), due to their better lung clearance compared to a regular smoker. The emitted 

particulates and gases are then diluted by the atmosphere (increased by circulation and 

ventilation) along with various ageing processes that change the chemical composition of 

ETS. Therefore the identification of ETS as diluted MS smoke is likely to produce 

erroneous results, but has in the past been used to estimate ETS exposure. Tobacco 

smoke carcinogenicity due to direct inhalation has also been identified as being reversible 

in action, i.e. the risk of damage reduces when the smoker stops smoking for a period of 

time. They never attain the lower level of risk associated with a non-smoker, indicating 

that a small amount of permanent damage is left (135). However the lungs do recover to 

a great extent. Recent toxicological work using A/J rats that inhaled ETS (side stream) 

for a number of hours per day for five months, were then allowed to recover (no ETS 

exposure), did show a significant statistical increase in the number o f rats that produced 

lung tumours against a control group (143). However two studies were unable to 

identify a significant increase in the number of lung tumours found in A/J mice when one 

group were exposed to ETS while a control group was not (144,145). The major 

difference was the use of a recovery period in the experiment in which a significant
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increase was seen. This identified that a recovery period was necessary for the full 

carcinogenicity to become evident.

Numerous studies have identified a link between ETS and various respiratory illnesses 

(136). Epidemiological studies of lifetime non-smokers who have lived with a smoker 

were shown to have an increased likelihood (relative risk = 1.24) of developing lung 

cancer (146). The study also identified a relationship between the average number of 

cigarettes smoked and the length of time of exposure with increased risk (146). Overall 

averaged relative increased risks due to ETS has been stated as being between 1.38 and 

3.11 (136) (although a study by Cardenas et al (147) identified a far lower relative risk of

1.2 for non smoking women and 1.1 for non-smoking men married to smoking spouses). 

The higher risk factor (RR = 3.11) is in fact higher than some relative risks identified in 

studies looking at women who actively smoke (135,136). Direct measurement of ETS 

exposure by analysis of marker systems/compounds identify that levels are far lower than 

those estimated by epidemiological studies with relative risks of 1.04 for women and

1.07 for men with smoking partners, identified by Lee et al (148) (by biological cotinine 

measurements), while other extrapolated exposures have been identified as being from 

1.003-1.07, (measurements of ETS particles and nicotine atmospheric concentrations 

(135)).

Disagreement in relative risk, especially the higher risks identified by epidemiological 

studies have been published, in which confounding factors are found to cause the 

increase in lung cancer associated with non-smokers who live with smoking partners. 

Such factors include diet, air pollution, life style, mis-diagnosis and various biases 

including recall, publication and misclassification (Tobacco Manufacturers’ Association 

132) and hereditary disposition (135). They identify that data from written reports or 

interviews can be unreliable and that questioning can sometimes miss important factors 

such as a non-smokers previous smoking habits, which are seldom taken into 

consideration (135).

One bias identified as causing a major influence on data available in the literature 

included bias by the authors/editors preference to publish data identifying a statistical 

significance. In fact, a mathematical data analysis on the identification of ETS causing
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lung cancer in non-smokers was investigated by Givens et al (149). They used a funnel 

plot to identify bias of US EPA data which identified a link between ETS and lung 

cancer. Givens (149) identified that up to five studies which displayed no increase in 

relative risk between ETS and lung cancer had not been published, and that the excess 

risk may be overestimated by up to 30%. These results were later “found” in 1994 (150).

Another major confounding factor for higher levels of risk associated with ETS in 

epidemiological studies could be due to the socio-economic level of certain individuals 

along with their diet (135). It has been identified that people on low incomes that 

volunteer/chosen for epidemiological study are more likely to smoke (135,151) and may 

spend periods of time unemployed. This increases the average length of time at home, 

possibly increasing the length of time a non-smoking partner or infant is exposed to ETS. 

Similar trends are identified in smoking mothers and associated infant and school child 

studies (151). It is stated in Sterling et al (151) that 34 reports of epidemiological studies 

of non-smoking women with smoking husbands were reviewed and none considered the 

socio-economic position of the individuals in the study.

Dietary information along with socio-economic position and ETS exposure has also been 

investigated. Levels of fruit and vegetable intake seem to be associated with such 

grouping with lower levels consumed by families containing a smoker (often the husband 

(135,152)) compared to non-smoking families. These are of importance as carotenoids 

and vitamin A, found in fruit and vegetables induce a protective effect with respect to 

lung cancer (153,154). High levels of saturated (animal) fat in the diet has also been 

linked with possible increases in lung cancer (155). High consumption levels o f saturated 

fat and low quantities of fruit and vegetable consumption have been identified as being 

most prevalent in low socio-economic families (135). These confounding factors can 

skew the results towards high risk responses, and it has been commented that the 

removal of such cases reduces the cancer risk from ETS to a nonsignificant level (135).

Further factors that can cause over estimation of ETS damage were identified by Phillips 

et al (156) where salivary cotinine analysis was used to help identify the validity of the 

questionnaires when individuals stated if they were smokers or non-smokers. 34 

individuals (out of 327 (10.4%)) were rejected due to the salivary cotinine result being
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above 25ng/ml, originally identified by Lee (148) as a level associated with a smoker. 

Questionnaire results can therefore also introduce a great deal of error into any study.

A European working group identified a weak association of increased lung cancer when 

a partner smoked and explained this association was due to confounding factors and that 

there was in fact no elevated risk of lung cancer due to ETS (157). This material is 

discussed in the report on tobacco and health (132), and is subsequently disregarded as it 

was submitted by tobacco companies, due to it stating no link between the increased 

probability of various illnesses due to ETS. However, little of the “rejected” material 

(presumably of the type discussed in the previous paragraphs) is referenced or discussed 

in this 1998 government publication (132) so that conclusions cannot be drawn from 

both perspectives by the reader. This conclusion was recently confirmed by a European 

study published in The Journal of the National Cancer Institute which also identified a 

weak positive correlation (non significant of 1.17) due to spousal smoking (158). The 

report discusses in great depth the literature published on ETS and the adverse health 

effects this can have on various individuals. The following paragraphs cover these areas, 

adding where necessary any literature that contradicts or disagrees with the conclusions 

drawn by these publications, as this was not done in the government report (132).

A large quantity of material has been published on the effects of ETS on children where 

one or more of the parents smoke. Illnesses identified as being associated with possible 

increased likelihood of developing include sudden infant death syndrome (SIDS) and 

lower respiratory tract illnesses in pre-school children. Prevalence of asthma and 

respiratory symptoms have also been identified in school children with links to ETS. 

Possible responses included bronchial reactivity, allergic sensitisation, an increased 

prognosis of asthma and ear infection (132).

The government report (132) states that there is an elevated risk of SIDS (2.08), and 

asthma (159) if maternal smoking is present while the increased risk of lower respiratory 

illness is increased by maternal ETS for pre-school infants. Socio-economic factors also 

appeared in this study with children from poorer backgrounds and a maternal smoker 

being more likely to be diagnosed with asthma than children from more educated families
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with a smoking mother. Factors including better living conditions and diet are possible 

reasons for this observed difference (159).

Maternal smoking again had the greatest effect on school children, with an increased risk 

being identified for asthmatic symptoms, including wheezing with colds, or a persistent 

wheeze (where which parent that smoked was found to be irrelevant (160)) bronchial 

hyper-reactivity, ear infections and respiratory symptoms (132). No relationship was 

identified between parental smoking and allergic sensitisation (132). The exposure of 

siblings to ETS mainly identify statistical increases in most studies published (some 

studies identify little or no statistical increase (161)), discussing the respiratory illness 

with ETS exposure from a parent (especially maternal exposure, (161)). Sensitivity of 

child respiratory systems is probably due to the immaturity of the system, unable to cope 

with the type and quantity of material inhaled in ETS.

The disagreement for the relative risk of ETS to an indoor atmosphere seen between 

epidemiological and direct measurement studies is a cause for concern. Further work is 

needed to identify if there is a major overestimation in some epidemiological work due to 

confounding factors stated earlier including poor questionnaire (mis-classification) 

information, diet, socio-economic situation and bias needed to be strictly controlled to 

produce a more concrete risk factor for ETS inhalation.

The more disturbing results are those that identify illnesses increased in children due to 

parental smoking and the inhalation of ETS both pre-school and during school age. The 

respiratory system of infants will still be developing with the effects of ETS probably 

being more pronounced in these individuals.

1.7 Conclusion.

It can be seen from this rather detailed chapter that atmospheric pollution (both indoor 

and outdoor), can be highly complex with the source pollutant containing an array of 

compounds/elements. All of these may be subjected to both chemical and physical 

processes. This produces a plethora of compounds/elements which may be harmful to 

animals or plants. However due to the often trace levels of many of these compounds it
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is very difficult to identify specific pollutant chemicals and relate them to a specific health 

effect. In fact, a great deal of contradictory evidence is identified when epidemiological 

studies are investigated (especially associated with ETS, and to a lesser extent individual 

outdoor pollutants).

These pollutants and their sources are thought introduce toxic material into the 

atmosphere. Therefore, the sources of these pollutants need to be identified and 

quantified to enable a reduction of some if not all of them. The particulate material seems 

to cause many detrimental health effects, ranging from increasing short term symptoms 

to increased admissions to hospitals and deaths. The mechanisms for these are unclear, 

so measurement of those outdoor particulates which arise from diesel emissions and ETS 

from indoor environments needs to be performed.
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2. Apportionment of Pollutant Sources in Air Quality Measurements.

2.1 Previous methods for contribution determination.

2.1.1 Diesel.

Source apportionment of vehicle emissions (specifically diesel emissions) in an urban 

environment, have been attempted in previous studies. The first study to identify the 

contribution of vehicles in an urban environment (London), used black smoke 

measurements, and was published in 1977 by Ball and Hume (1). Lead concentrations 

related to black smoke measurements were used to identify a percentage apportionment 

for vehicle emissions (mainly leaded petrol cars, although diesel vehicles also emit lead 

(see Section 2.2.6.4)) into the atmosphere. Values were identified as being around 77%, 

rising to as high as 89% during high pollution episodes throughout the winter months.

More recently, a study by Horvath et al, (2) was able to identify the contribution of diesel 

emissions to urban atmospheric particulate material in Vienna, Austria. All diesel fuel 

used by vehicles in Vienna was stored at one refinery just outside the city. The addition 

of a tracer compound to the fuel at the refinery meant that all diesel fuel sold in Vienna 

during the experiment contained the added tracer molecule. A tracer molecule was added 

as a specific diesel associated tracer had not been identified. The tracer molecule added 

was tris-dipivalyl-methanato-dysprosium (Dy(CH(COC(CH3)3)2)3. The organometallic 

compound was sufficiently soluble in diesel, and dysprosium was found in the emissions 

at a measurable level (2). The percentage contribution of diesel emissions to particulate 

material was quantified at between 12-32%. Vienna has an extensive fleet o f leaded 

petrol powered road vehicles contributing to particulate material. During the time of the 

experiment (1982) diesel vehicles made up only 7% of the total vehicle fleet (2). Many of 

these diesel vehicles were used for commercial purposes thereby using a larger 

proportion of the fuel consumed in Vienna for that year. In fact, 32% of the total fuel 

used in Vienna during 1982, was diesel.
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An even more recent study, (1996) described in the 3rd QUARG (Quality of Urban Air 

Review Group) report (3) discussed the correlation between particulate concentrations 

(PM10) and CO emissions. They found that the correlation was most useful during the 

winter months, and that a value for the fraction of particulate material (PM10) that could 

be attributed to traffic emissions could be calculated. Values from across the UK 

produced a range of fraction values of between 0.66 and 0.79. The publication then 

stated that these fraction values identified that 40-50% of PM10 particulate material in 

those samples were from traffic emissions.

The values for traffic related emissions were very high during the mid 1970’s with 

between 77-89% of total particulates attributed to vehicle emissions (1). Leaded petrol 

and diesel powered heavy goods vehicles (HGVs) were the major sources of particulate 

material. The introduction of unleaded petrol in 1986 (4) reduced the amount of petrol 

related particulate emissions, as the lead acted as a nuclei for particulate formation. 

Diesel emissions have increased in importance since this time. The Vienna study (2) 

indicated that 12-32% of particulate material was due to diesel emissions. Particulate 

emission values were found to be higher in the UK during 1993 with a value o f 40-50% 

being identified by the PM10/CO correlation method (3). The contribution of diesel 

vehicles can therefore be seen to be rising, due to the continuing success of diesel cars 

and the increasing number of buses and HGV’s on urban roads. Recently, a possible 

diesel catalytic converter (5) has been produced. However, it is likely to take some time 

before the invention becomes commercially available, or fitted as standard to diesel 

vehicles. Thus diesel emissions are likely to rise for the foreseeable future. For these 

reasons, and taking into account the detrimental health effects of particulate material (see 

Section 1.6.1), there is a need for a diesel tracer molecule that can be used to identify the 

contribution of diesel emissions to an atmosphere.

2.1.2 Environmental Tobacco Smoke (ETS).

Environmental tobacco smoke is a highly complex mixture of compounds that are 

released through the combustion (oxidation or pyrolysis) of tobacco leaves. The
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measurement of tobacco associated emissions has been researched a great deal, with over 

3800 compounds having been identified in emissions (both vapour and particulate 

associated) released through smoking (6). A number of standard methods along with 

several “tracer” methods have been published in the literature.

Initial methods for the identification of tobacco smoke used the total respirable 

suspended particulate (RSP) value (7,8), as an elevated quantity is found in households 

where a smoker is an inhabitant (9). The quantity of particulate material sampled on a 

filter paper at a certain flow for a period of time produces a mass value of particulates 

per cubic metre of air. The problems associated with this method for ETS determination 

is that not all particulate material sampled in a smokers environment is due to ETS. 

Therefore values obtained are always over estimates of the actual contribution o f ETS 

(8), in fact it has been suggested that this over estimation could be as high as 50% (7).

To reduce this over estimation, more specific methods have been introduced. These 

include total UV absorption (10) and total fluorescence (11) measurements of a 

methanol extract from a particulate filter sample. No column is used in the HPLC 

systems for total UV or total fluorescence quantitation. Quantitation is achieved by 

comparison with a specific standard associated with the relevant technique (See Section

2.2.5.2). Both methods have been shown to be more specific than total RSP. However, a 

value is obtained even when there is no ETS present, suggesting that these methods also 

over estimate the contribution of ETS to any environment (See Section 3.5.3). 

Therefore, to accurately measure the contribution of ETS in an atmospheric sample, a 

tracer compound specific to tobacco smoke is required.

Several requirements have been suggested by the National Academy of Sciences (12) for 

a tracer for ETS. These include

1. “The compound be unique, nearly unique to ETS; that is, there is a low contribution 

of the species from other sources”.

2. “There is a determination method available for the species even for low level 

measurements”.

3. “There is a similar emission factor for the marker from various cigarette products”.
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4. “The marker is present in constant proportion to the ETS components, which cause 

adverse health effects”.

The identification of a tracer compound is complicated by the fact that both volatile and 

non-volatile compounds are released in ETS. Some compounds are therefore found in 

the gaseous phase while others are found associated with particulate material, in addition 

to some being found distributed between these two phases. The identification of tracer 

compounds will therefore depend upon the distribution of the specific compound 

between these two phases and also the speed by which this compound degrades (ages) in 

an atmosphere.

The ageing of ETS complicates the accurate determination of ETS contribution to an 

atmosphere, as the distribution and concentration of compounds (especially volatiles) can 

vary quite significantly in a short period of time (13). Major factors identified as 

occurring during the ageing of ETS include:-

1. Coagulation of particulate material, causing a change in the size distribution of 

particles in ETS (7,14,15).

2. Variation in the distribution of semi-volatile compounds between the gaseous phase 

and particulate associated phase (7,16).

3. The possibility of reactions between other available chemicals or radiation, to induce 

chemical reactions degrading compounds in various phases (16,17).

4. Variation in chemical composition due to recirculation and dilution with outdoor air 

(7,18).

It is necessary for a tracer molecule to be stable over a period o f time for accurate 

sampling to be possible.

Many specific tracer molecules have been identified in ETS. These include nicotine (14), 

along with several similar molecular compounds, such as cotinine, nicotyrine or 

myosmine (14), and 3-ethenylpyridine (19-21). All these tracers identify the contribution 

ETS has on the gaseous phase of the environment, as the compounds are found almost 

entirely in the gaseous phase. Tracer compounds that are less volatile, and identify the
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contribution of ETS associated with particulate material include, solanesol (17,22) and 

scopoletin (23). An elemental marker of cadmium was also identified as a possible tracer 

for particulate associated ETS (24).

Volatile tracers.

In the past, nicotine has been the major tobacco related compound that has been 

identified as an ETS tracer compound (6,14,25,26). Its inherent specificity to tobacco 

products would seem to identify nicotine as the ideal tracer compound for ETS. 

However, variation in concentrations from different sampling devices introduce 

uncertainty for this compound as a marker. Nicotine is found almost entirely in the 

gaseous phase (16,27) in fresh ETS. However, gaseous nicotine is rapidly removed from 

an environment compared to particulate ETS (13,18,19,28) and particulate associated 

nicotine (19). Particulate associated nicotine also decreases rapidly compared to 

particulate material itself (13). This is due to nicotine either reacting with UV radiation 

(14,16), desorbing then re-adhering to surfaces (20), or associating to non ETS 

particulate material as the ETS ages (29). However, the relative removal rate is 

dependant upon factors associated with the sampling site. These can include air 

circulation, the presence of people, in addition to the types of furnishings and wall paper 

(7).

Nicotine measurements were at one time used to quantify the contribution of ETS to the 

particulate phase. The concentration of nicotine could be related to respirable suspended 

particulate material (14,30), as ratios of nicotine to RSP were known and did not appear 

to vary with brand (31). Recently this was shown to be a far more complex situation and 

such a ratio system was found to be invalid (7,32). The faster removal of gaseous 

nicotine resulted in an underestimate of nicotine, and therefore an underestimate of 

particulate associated ETS in an indoor atmosphere (28). Nicotine is unique to ETS 

emissions, it is easily measurable in environmental samples and is emitted at similar 

concentrations from different brands. However, the concentration of nicotine is not 

found to be constant in an indoor environment. Thus, it is not an ideal tracer molecule 

for ETS.
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Other nicotine type compounds have been identified as possible ETS tracer molecules. 

These include compounds of similar structure to nicotine, such as myosmine (16,32) and 

nicotyrine (14). In addition, 3-ethenyl pyridine (16,20,28,32), a pyrolytic product of 

nicotine (20), was identified as a possible gaseous ETS tracer molecule along with 

isoprene (7) and pyrrole (20).

Nicotine.

Nicotyrine.

Myosamine.

3-Ethenyl pyridine.

I
H

H2C=CH-C(CH3)=CH2 (Isoprene). Pyrrole.

Myosmine and nicotyrine are both found almost exclusively in the gaseous phase 

(7,16,19) and are specific to tobacco smoke emissions. However, they are present in 

lower concentrations than nicotine, making them harder to accurately quantitate. 

Myosmine and nicotyrine also react rapidly with UV radiation (14).

3-Ethenyl pyridine has been identified in many studies as being a more robust gaseous 

phase tracer molecule for ETS (7,13,19,28). It is more stable than the nicotine type 

compounds to UV degradation (16), and is also the fourth most abundant compound 

found in ETS, behind only nicotine, isoprene and 1,3-Butadiene (7). However, although 

it appears ideal, 3-ethenyl pyridine is not quantitatively sampled onto XAD-4 resin using 

flows of several litres per minute (28), which are used for sampling nicotine (28). Several 

studies have used XAD-4 resin as the sampling media for 3-ethenyl pyridine (21).
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Quantitative adsorption of 3-ethenyl pyridine is achieved by a multisorbent thermal 

desorption tubes containing Tenax-TA, Ambersorb XE-340 and activated carbon, 

producing a method for attributing percentage contribution to volatile compounds (20).

Isoprene has also been reported as being a possible tracer molecule for ETS (33). 

Although not necessarily totally unique to ETS, the emissions from other sources into 

indoor atmospheres seem to be trivial when compared to the amount released in tobacco 

smoke.

Therefore there were a number of possible compounds that could be quantified to 

identify the contribution of ETS in any environmental sample. It was decided that 

nicotine would be analysed using XAD-4 resin tubes as the sampling device (due to its 

selectivity in sampling only vapour phase nicotine (28)), as recommended by the 

following accepted standard methods (28,34-36). These XAD-4 resin tubes were 

positioned directly behind the particulate filter samplers (see Section 2.2.2.2). Nicotine 

associated with particulate material was also quantified.

Apportionment of volatile organic compounds would be quantitated by using 

ATD/GC/MS with 3-ethenyl pyridine or pyrrole as the tracer molecule.

Particulate associated tracers molecules.

The improvement of UVPM and FPM apportionment of ETS is significant as they 

reduce the over-estimation by RSP measurements that was originally used for ETS 

apportionment. However, these methods still produced an over-estimation o f ETS to any 

environment, as UV absorbance and fluorescence at the relevant wavelengths were 

obtained in background samples. A particulate phase marker was therefore necessary for 

the specific identification of ETS particulate material in a sample.

Solanesol was the first and most widely used tracer molecule for particulate ETS. It was 

originally identified in flue cured tobacco in 1956 (37) as a primary terpenoid alcohol. 

The compound was later correctly identified as having a trisesquiterpenoid long chain 

(C45) structure (38):-
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CH3-C(CH3)=CH-[CH2-CH2-C(CH3)=CH]8-CH2-OH

Structure of Solanesol (3,7,11,15,19,23,27,31,35-Nonamethyl- 

2,6,10,14,18,22,26,30,34-hexatriacontanonaen-1 -ol), (39).

Solanesol has been regularly studied in tobacco leaves (40-43) but was only recently 

identified as being present in ETS (39). Due to solanesols large molecular weight, the 

compound is very involatile, and was found entirely associated with the particulate 

emissions of ETS (44). Studies on solanesol in the tobacco plant have identified 

solanesol in the laminae of the tobacco leaf, and not in the stalk or stem (45). Solanesol 

has also been identified in higher concentrations in the new leaf growth (46). Solanesol is 

found in many plants from the Solanaceae family, of which one member is the Nicotiana 

genus. Other members of the family known to contain solanesol include tomato plants, 

potato plants, eggplants and pepper plants. Therefore, sources other than ETS for 

solanesol include certain possible cooking emissions. However, the interference is 

thought to be of only minor consequence (39).

The original analysis by capillary GC of solanesol was complicated by the interference of 

solanesenes, produced from the pyrolysis of solanesol and solanesyl esters during 

smoking. The break down of solanesol at high temperatures in the GC oven also 

hindered the direct quantitation of solanesol by GC analysis (44). However, by 

derivatising the alcohol group with N,0-bis(trimethylsilyl)trifiuoroacetamide (BSTFA) 

analysis by capillary GC was possible (17,44). The extraction and sample manipulation 

methods varied between the groups that completed the work. However, all were time 

consuming and specific only to solanesol determination and capillary columns lost 

chromatographic performance over a relatively short period of time (39). Although the 

performance could be restored through washing, or the use of guard columns, the 

situation was far from ideal (39).

A HPLC method using UV detection at A,=205nm from a methanol extract of a 

particulate filter sample was found to be just as quantitative as the GC method. The 

methanol extract could also be used to determine total UVPM and FPM values for the

71



determination of ETS in the sample (44). A slightly modified version of this method was 

used for solanesol determination in this thesis, (See Section 2.2.5.2).

Another compound that has recently been identified as a possible particulate associated 

ETS tracer molecule is scopoletin (6-methoxy-7-hydroxy-coumarin) (47). It has been 

identified in tobacco leaves (48,49) and has also recently been detected and quantified in 

particulate ETS (23).

Scopoletin.

Scopoletin is extracted into methanol from particulate material collected on teflon 

impregnated glass fibre filters. Quantitative analysis can be achieved using reverse phase 

HPLC and fluorescence detection (Ex=342nm, Em=464nm (23)). A slight variation of 

the method in reference (23) was used to quantitate scopoletin in this study (See Section

2.2.5.2). The method of sampling and extraction can be used to produce a sample that 

can quantitatively determine UVPM, FPM, solanesol and scopoletin, reducing the 

number of samples that need to be taken. These four ETS parameters along with RSP 

were determined in an attempt to obtain an accurate apportionment of ETS in field 

samples, and also to identify the average overestimation of ETS by UVPM and FPM 

measurements.

Long chained iso (2-methyl) and anteisoalkanes (3-methyl) (C29-C34) have been used to 

identify the contribution of ETS particulate material to an outdoor environment in Los 

Angeles (50). These marker compounds were not investigated further as the four 

previously described particulate methods seemed sufficient to quantify ETS particulate 

contributions in both indoor and outdoor air.
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Elemental

Several studies have been undertaken to identify possible elemental markers for ETS 

(51,52). These identified a number of elements to be present in tobacco smoke. These 

were determined by a range of methods, including:

1. Neutron Activation Analysis (51,52).

2. Atomic Absorption Spectroscopy (51,52).

3. Inductively Coupled Plasma - Mass Spectrometry (52).

4. X-ray Fluorescence Spectroscopy (52).

Elements determined included: Arsenic (As), Cadmium (Cd), and chromium (Cr) 

(specific to tobacco), while Lead (Pb), copper (Cu), Potassium (K), nickel (Ni), Zinc 

(Zn), thallium (Tl), thorium (Th), Iron (Fe), lithium (Li), and bromine (Br) were 

identified in the ETS. These were identified at varying concentrations. However, many of 

these elements are retained in a higher concentration in the cigarette ash, specifically Fe 

and Ni (52).

Cadmium has been proposed as a possible particulate marker for ETS (24), with 

quantitative analysis being achieved using neutron activation analysis employing 

Compton suppression (24). Elevated quantities of cadmium were found to be present in 

ETS atmospheres compared to ETS free atmospheres, and similar quantities were found 

in various types of tobacco leaf. It was identified that around 44% of the cadmium was 

released into the atmosphere associated to ETS particulate material (90% of which is 

associated with particles <lpm) after smoking. The removal of cadmium from the 

atmosphere was found to be relatively slow, making it ideal as a marker element for ETS 

(24).

The possibility of Cd as a marker element for ETS prompted the decision for elemental 

analysis of ETS to be undertaken. The acquisition of a HP4500 Series inductively 

coupled plasma - mass spectrometer (ICP/MS) introduced an ideal method for a semi- 

quantitative analysis of ETS for possible elemental markers. A more rigorous
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determination of cadmium as a marker element or any other compound found to be 

relatively specific to ETS could then be performed.
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2.2 The identification of marker compounds and their phase distribution in diesel 

emissions and ETS.

2.2.1 Sampling.

2.2.1.1 Diesel.

Diesel exhaust samples were taken from a four cylinder, 4-1, non-inter-cooled direct 

injection diesel engine with turbo charger, in a controlled test environment. The engine 

could be run at a number of different revolution per minute (rpm) speeds, for example 

the engine idle, at 1300, 1600 and 2300 rpm. Each speed could then be subjected to 

various rated powers, increasing or decreasing the work that the engine had to do. This 

was undertaken to investigate the variation in emissions from an engine moving heavy or 

light loads.

The exhaust emissions were split after leaving the exhaust (Figure 2.1). Half o f the 

emissions were released into the atmosphere, while the other half passed into the dilution 

tunnel (Weslake Developments Ltd, Figure 2.2). Here, the emissions were mixed with air 

to reduce the temperature of the exhaust gases to below 52°C. This was done to prevent 

chemical reactions such as oxidation and nitration of organic compounds, which were 

collected on glass fibre filter papers at the end of the dilution tunnel. It has been 

hypothesised that the filters used to collect particulate material could cause possible 

variations in the distribution of organic compounds between the gaseous and particulate 

phases. For example, compounds being blown off sampled particulate material or 

gaseous compounds adsorbing to sampled particulate material (53). We have assumed in 

this sampling regime that this occurrence is negligible.

Due to the partitioning of organic compounds between the gaseous and particulate 

phases, the following sampling procedures were carried out.
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Particulate material was sampled onto 12.5cm glass fibre filter papers (Whatman) (The 

silver filter holder can be seen in Figure 2.3). Each filter paper was changed every 20-30 

minutes to prevent clogging by the sampled particulate material. Placed directly behind 

the filter paper was a XAD-4 resin tube with a flow of approximately four litres a minute 

passing through it (the resin tube was attached to the black rubber tubing protruding 

from the left of the copper “T” section in the foreground), collecting any volatile 

compounds that passed through the filter paper, not associated with the particulate 

material (Figure 2.3).

This side line from the dilution tube made it possible to sample exhaust volatiles directly 

onto a tenax resin tube (containing 0.16g of Tenax) at a lower flow rate of approximately 

lOOml/min, with the use of a flow regulator.
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Figure 2.1: The exhaust emissions from the diesel engine are split, with half being vented 

to the atmosphere and half continuing into the dilution tunnel.

Figure 2.2: Emissions continue irom the exhaust split into the large silver dilution tunnel.
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Figure 2.3: Filter holder with tubing for volatile sampling situated directly behind the filter holder,
connected by the black tubing.
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2.2.1.2 Environmental Tobacco Smoke.

Controlled ETS sampling was kindly undertaken by Rothmans International at their 

research and development facility in Basildon, Essex.

Each cigarette was smoked by a Borgwaldt smoking machine (situated in a smoke 

generation room attached to the main sampling room - Figure 2.4) which smokes each 

cigarette to the international standard ISO 3308 (54). Main stream smoke was trapped 

on a Cambridge filter and the main stream vapour emissions were piped directly out of 

the smoke generation system.

The smoke generation chamber was 0.7m (wide) x 0.849m (long) x 0.795m (high), 

producing a volume of 0.472m3 (Figure 2.4). Access to the smoking machine positioned 

within was achieved through a hinged door. Rubber gaskets ensure an air tight seal forms 

around the door edge. An electric cigarette lighter penetrates through the door via an 

airtight slip ring gasket that enables ignition of the cigarettes while maintaining a closed 

atmosphere. Fresh ETS was transferred from the smoke generation chamber to the main 

room via an interconnecting duct. This was achieved with the use of the recirculation 

system (Figure 2.4). This draws air from the main chamber through the base of the 

smoke generation chamber, and back into the main room through the interconnecting 

duct, taking with it the freshly produced ETS.

ETS produced in the smoke generation chamber was circulated into a model room which 

is 2.745m (wide) x 3.245m (long) x 2.3m (high), producing a total volume of 20.78m3 

(Figure 2.4). The walls were constructed of interlocking panels of heavy duty PVC 

coated “galvatite” sheet metal. Three main chamber walls were hollow, including a 

serpentine void in which thermostatted air was recirculated via a temperature control/fan 

unit positioned in the roof. Insulation of the room keeps the temperature constant at 

21 °C. The room floor is constructed of a composite material of PVC, glass fibre, and 

aluminium oxide bonded to the concrete floor. Samples can be taken directly from this 

room using sampling equipment or via sampling ports positioned in the door.

79



M
OD

EL
 

RO
OM

 
- 

SC
H

E
M

A
T

IC

C5
COao

C Q

n

O h

to

CO

<L>
t-O

03,

u
CO

rf
CN

80

Ro
th

m
an

s 
In

te
rn

at
io

na
l, 

B
as

ild
on

.



2.2.2 Samples.

2.2.2.1 Diesel.

Volatile, semi-volatile and particulate exhaust emission samples were taken from the test 

diesel engine at 1 speed (1600rpm), but at three different loads. All samples were taken 

in duplicate.

Table 2.1: Samples Taken from the Turbo Charged Diesel Engine at 1 Speed but

Three Different Rated Powers.

Volatiles Semi-volatiles Particulates Metals

1/2 rated 2 tenax tubes 2 resin tube 2X4 filters 2X1 filter

power (176)

3/4 rated 2 tenax tubes 2 resin tube 2X4 filters 2X1 filter

power (286)

full rated 

power (373)

2 tenax tubes 2 resin tube 1X4 filters 

1X6 filters 

2X1 filter.

2X1 filter

As we can see from Table 2.1, all samples were taken in duplicate, with the tenax 

thermal desorption tubes capped and stored prior to analysis while the other samples 

were extracted as necessary (see Section 2.2.3). All samples were taken to identify 

possible diesel tracer molecules/elements.

Alkane Quantitation.

Another specific experiment completed using the diesel engine was to obtain particulate 

samples from a number of different engine speeds (with various loads to identify an 

average alkane C24 (tetracosane) emission for a diesel engine. The previously described 

diesel engine was run for approximately thirty minutes to obtain each particulate filter 

sample. The range of speeds included 1300, 1600 and 2300 rpm (see Section 2.2.63).



All samples were run in duplicate, and the four filter papers were extracted for GC/MSD 

analysis, see Section 2.2.3.1.

2.2.2.2 Environmental Tobacco Smoke (ETS)

Two types of samples were taken from the smoking facility, These included :-

1. Volatile organic samples.

A low flow pump (Model 222-3, SKC Ltd, Dorset England) was used to sample ETS 

onto two automated thermal desorption (ATD) metal tubes. The first tube was filled with

0.16g of Tenax TA resin, 60/80 mesh (Supelco, Dorset, England), and the second tube 

contained 0.18g of Carboxen 569, 20/45 mesh (Supelco, Dorset, England) resin. Each 

sample was taken in duplicate to ensure a sample was available if an instrument fault 

should occur. The flow rate used for this sampling was 50ml/min with analysis of the 

sample by ATD/GC/MS.

2. Particulate samples.

Particulate material was sampled onto a 37mm teflon impregnated glass fibre filter paper 

(Gelman Science, Supelco, Poole, Dorset, England) in a round “target” type filter holder. 

The size of particulate material sampled could be determined by the flow through the 

sampling system. The “target” type filter head used the principle that larger particles hit 

and stuck to the target placed adjacent to the sampling orifice (grey area Figure 2.5b), 

while smaller particulate material was swept around the target and sampled on the filter 

paper (pore size 1pm) situated directly behind the target. Directly behind the filter head 

was an XAD-4 resin tube to collect any organic compounds found in the gaseous phase. 

The total flow through this sampling apparatus was 11/min, achieved by a larger personal 

sampling pump (SKC Ltd, Dorset, England). The particulate material sampled at this 

flow was <5 pm. Sampling was done in duplicate as two filter samples were needed to 

complete all the chemical analyses undertaken.
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Filter paper
Target

Air in r
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Supporting gauze
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Air out
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Teflon Spacers

Particulate target (not drawn to size with sampler head).

Figure 2.5a Filter Head (apart) and 2.5b Target, Used in the Sampling o f Particulate

Material in Various Environments.
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2.2.3 Extraction.

2.2.3.1 Diesel.

Volatiles.

The Tenax tubes were not extracted, but were placed directly into an automated thermal 

desorption instrument and analysed. Each tube was analysed separately. Quantitation was 

achieved using external calibration.

Semi-volatiles

The resin in the XAD-4 tubes was removed and placed into an amber screw topped vial. 

Dichloromethane (5mls) was added and the resin was extracted in an ultrasonic bath, for 

30 minutes. The extract was reduced in volume using a dry flow of pure nitrogen, before 

being transferred to a 2ml autosampler vial and reduced to 1ml. D 10-anthracene was 

added as an internal standard for alkane and PAH quantitation prior to analysis by 

GC/MSD and GC/AED.

Particulate associated organics.

The filters for each individually sampled speed and rated power were placed into a 

soxhlet apparatus and extracted for 24hrs with dichloromethane (80mls). The 

dichloromethane was reduced to a few mis by rotary evaporation, prior to reduction to a 

lOOpl (using a flow of pure nitrogen) before fractionation using an amino/alumina 

tandem solid phase extraction (SPE) system (See Section 2.2.4).

The higher rated power engine load also had 2 single filters sampled. These were 

separately extracted into methanol (10ml) and heated to 50°C for 30 minutes. The 

methanol was reduced to 5ml and analysed by HPLC for the following:-
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1. Total UV adsorption.

2. Total fluorescence.

3. Scopoletin.

4. Solanesol.

Metal samples.

The relevant glass fibre filters with diesel particulate emitted material were wet ashed 

with lOmls of nitric acid on a hot plate for 30 minutes. The filter material was not 

dissolved by this technique. This meant that the extract had to be filtered prior to analysis 

by ICP-MS. The acidic metal extracts were made up to a volume of 25ml with MilliQ 

water.

2.2.3.2 Environmental Tobacco Smoke (ETS).

Volatiles.

The Tenax tubes were not extracted but were placed directly into an automated thermal 

desorption instrument and analysed. Each tube was analysed separately, and quantitation 

was achieved using external calibration.

Semi-volatiles.

Each tube of XAD-4 resin with their glass wool plugs were emptied into a 7ml screw 

topped amber vial. The emptied XAD-4 glass tube was washed through with 

dichloromethane containing 0.01% triethylamine, (as nicotine adheres well to glass 

surfaces and the addition of triethylamine was found to ensure reproducibility in the resin 

extracts) (55). The washings were added to the vial along with more dichloromethane 

(DCM) until the extraction volume was 5ml. The resin was extracted for 30 minutes 

using an ultrasonic bath. The volume of dichloromethane was then reduced to less than 

2ml, transferred to an 2ml amber autosampler vial and reduced to 1ml. Internal standards 

of quinoline for nicotine determination and DIO anthracene for alkane and PAH 

quantitation were added to each extract prior to analysis by GC/MSD and GC/AED.
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Particulate associated organic compounds.

Filter 1. Dichloromethane (5ml) containing 0.01% triethylamine was added to the filter 

placed in a 7ml screw top amber vial. The sample was extracted for 30 minutes by 

ultrasonication, the filter was then removed. The dichloromethane extract was 

subsequently reduced to less than lOOul using a flow of ultra pure nitrogen. The sample 

was transferred to an 2ml autosampler vial containing a 200pl glass insert. 20pl of 

lOOpg/ml solutions of D 10-anthracene and quinoline internal standards were added. The 

sample volume was reduced to be IOOjliI prior to analysis by GC/MSD and GC/AED.

Filter 2. This filter was cut in half with the use if a ceramic column cutter to prevent as 

much elemental contamination as possible.

One half of the filter was placed in a 7ml screw top amber vial and methanol (5ml) was 

added. The vial was then heated to 50°C in an oven for 30 minutes. Analysis by all the 

appropriate HPLC methods (stated in 2.2.5.2) were completed.

The second half of the ETS filter 2 was wet ashed in an identical way as described in 

Section 2.2.5.2. The teflon filters did not disintegrate so filtering was not necessary with 

these samples. Another slight modification was that the acid extracts were diluted to 

10ml and not 25ml (as for the diesel emissions). The extract was then analysed by 

inductively coupled plasma/mass spectrometry (ICP/MS).

2.2.4 Fractionation. (Organics)

2.2.4.1 Diesel.

Solid Phase Extraction

Solid phase extraction (SPE) was performed using polypropylene cartridges containing 

an amino bonded phase (200mg of sorbent with a 10ml reservoir, obtained from
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International Sorbent Technology, Jones Chromatography, Mid Glamorgan, Wales, 

England) and an alumina cartridge (500mg of sorbent with a 6ml reservoir obtained from 

J.T. Baker. U.K. Milton Keynes, Bucks, England) in series. The cartridges were initially 

cleaned with acetone (30ml) to remove all adsorbed water. 15ml of each eluting solvent 

were then passed through the cartridges. This commenced with methanol and continued 

back through the solvents with reducing polarity to hexane, leaving a layer of 10ml of 

hexane in the top cartridge reservoir. The sample extract was loaded onto the cartridge 

using the smallest quantity of dichloromethane (often 50-1 OOpl), introduced directly into 

the 10ml of hexane. Fractionation was achieved by elution of compounds with 10ml of 

the following solvents of increasing polarity:-

Table 2.2: Solvents of increasing polarity and the compounds they eluted from the 

solid phase extraction system (Amino-Aluminal.

SOLVENT ELUTING COMPOUNDS

Hexane 

Cyclohexane 

5% Dichloromethane : 95% Cyclohexane 

20% Dichloromethane 80% Cyclohexane 

Dichloromethane 

Acetonitrile 

Methanol

Aliphatics 

Aliphatics 

2-4 ringed PAHs (up to Pyrene) 

Larger PAHs and Nitrated derivatives 

Polar Species 

Polar Species 

Polar Species

The fractions were transferred to pre-weighed amber vials, and reduced to lOOpl of 

solution with a dry stream of nitrogen. Two internal standards were added, (8- 

Nitroquinaldine (obtained from Sigma-Aldrich Co. Poole, Dorset, England, at 98% 

purity) and D10 anthracene (Supelco, Poole, Dorset, England), for alkane and PAH 

quantitation prior to analysis by GC/MSD and GC/AED.
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2.2.5 Analysis.

The mass of the particulates that were sampled from various environments was 

determined using two balance systems.

Diesel engine samples.

These samples were taken using 12.5cm glass fibre filter papers that were weighed prior 

to and after the engine sample had been completed using a Satorius 2004MP five figure 

balance.

Environmental tobacco smoke samples.

Accurate determination of sample masses were required at pg levels for these samples. 

For this reason a Perkin Elmer PU-50 balance was used to identify the mass of the 37mm 

teflon impregnated glass fibre filter (Gelman Science, Supelco, Poole, Dorset, England) 

prior to and after the sampling. The balance was calibrated prior to use with NAMAS 

accredited weights. Accuracy at this low mass level can be effected quite markedly by 

static electricity. Such effects were removed by placing the filter in front of a Stat-attack 

anti-static fan (Stat-Attack) for a few seconds and obtaining three mass values within 

3pg. An average of the three mass values was then used as the actual mass of the filter.

2.2.5.1 Volatile Organic compounds.

Automated Thermal Desorption (ATP)-Gas Chromatographv/Mass Spectrometry 

(GC/MST

A Perkin Elmer ATD 50 instrument was used for the thermal desorption, coupled to a 

Hewlett Packard 5890 gas chromatograph with a VG Trio I quadrupole mass 

spectrometer detector (VG Masslab, Manchester, UK).



Thermal desorption parameters.

The tenax and carboxen tubes were desorbed for 12.5 minutes at 250°C, with the trap 

temperature set at -30°C. The trap was then heated to 260°C with the transfer line to the 

GC set at 150°C, and the GC injector temperature set at 250°C. The carrier gas was 

helium, at a flow rate of lml/min.

GC/MS parameters.

A Restek Rtx-5 (Thames Chromatography U.K.) capillary column (50m x 0.25mm i.d.) 

with a film thickness of 1 pm was used for analytical separation. The GC parameters were 

as follows:-

The initial oven temperature was 45°C hold for 1 minute, ramp 1: 10°C/min. to 250°C 

hold for 13 minutes, producing a total analysis time of 35 minutes. The mass 

spectrometer used a scanning range of 10-300mu.

2.2.5.2 Semi-volatile and particulate associated organic compounds.

Samples for analysis of organic compounds that could be analysed by gas 

chromatography, were reduced to the relevant solvent volume, and injected into 

GC/MSD and a GC/AED instrument for general qualitation. Several compounds were 

quantified using various analytical methods also reported in this section.

Gas Chromatographv/Mass Spectrometry (GC/MS).

A Hewlett Packard 5890 Series II gas chromatogaph coupled to a Hewlett Packard 

5971A Mass Selective detector were used for this analysis. All splitless injections were 

carried out by a Hewlett Packard 7973 autosampler which injected lp l of sample (To 

ensure that all the injected sample went onto the column). A Restek Rtx-5 (Thames 

Chromatography U.K.) capillary column (30m x 0.25mm) with a film thickness of

0.25pm was used for analytical separation, with helium as the carrier gas set at lml/min. 

The injector temperature was set at 275°C, with following GC oven program

89



Initial oven temperature was 40°C, hold for 5 minutes, ramp 1: 10°C/min to 280°C, hold 

for 10 minutes, producing a total analysis time of 39 minutes. The mass spectrometer 

scanned over a range of40-500mu. There was an initial solvent delay of 10 minutes.

Gas chromatographv/mass spectrometry-selected ion monitoring (GC/MS-SIMT (For 

PAH quantitation).

The instrument described in the GC/MS section above was used in selected ion 

monitoring mode so that only the ions for the PAH eluting at any one time were 

analysed. This reduces the number of ions under investigation and increased sensitivity. 

The compounds and ions identified at specific times throughout the analysis were as 

follows:-

Table 2.3: The PAH and the associated ions used in the selective ion monitoring

program.

PAH. Ions.

Naphthalene. 127,128.

Acenaphthene, Acenathylene. 154,153,152,76.

Fluorene, Phenanthrene, Anthracene and 

DIO Anthracene (Internal Standard).

166,165,178,152,188.

Fluoranthene, Pyrene. 202,101.

Benzo(a)anthracene, Chrysene. 228,114.

Benzo(b)fluoranthene, 

Benzo(k)fluoranthene, Benzo(a)pyrene.

252,126

Dibenzo(a,h)anthracene, 

Benzo(g,h,i)peiylene, 

Indeno(l ,2,3,c-d)pyrene

278,276,138
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Gas chromatography with Atomic Emission Detection.

A Hewlett Packard 5890 Series II gas chromatogaph coupled to a Hewlett Packard 

5921A Atomic Emission Detector were used for this analysis, lp l o f each sample was 

injected splitless with the use of a Hewlett Packard 7673 autosampler. Ultra pure helium 

was used as a carrier gas at a flow rate of lml/min. The GC/AED system was controlled 

with a Hewlett Packard 300 data station with pascal based software (HP 35920C). A 

Restek Rtx-5 (Thames Chromatography U.K.) (25m x .25mm i.d) capillary column with 

a film thickness of 0.25pm was used for the separation. The injector temperature was set 

at 280°with the detector temperature at 280°C and the cavity and transfer line set at 

300°C. The GC oven temperature program was identical to that used in the GC/MS 

section above.

The wavelengths monitored were Carbon 496nm and 193nm, Hydrogen 486nm, 

Chlorine 479nm, Bromine 478nm, Sulphur 181nm, and Nitrogen 174nm.

Gas Chromatography with Negative Ion Chemical Ionisation Mass Spectrometry 

working in Selected Ion Monitoring mode. (GC/NICIMS-SIM.)

Analysis was undertaken using a Hewlett Packard 5890 (Series II) gas chromatograph 

coupled to a VG Trio 3 mass spectrometer working in SIM mode. The reagent gas used 

for chemical ionisation was methane with an ion source temperature of 125°C. The NICI 

conditions were optimised by injecting a small quantity of methyl iodide via the septum 

inlet and tuning the instrument via the peak at m/z 127. A SIM experiment was set up 

monitoring each of the M-* shown in Table 2.4. The column used was a 60m x .32mm

i.d. 5% diphenyl wall coated open tubular capillary column (Rtx-5, Thames 

Chromatography U.K.) with a film thickness of ,25pm. The injector temperature was set 

at 275°C and the GC oven temperature program was:-

Initial oven temperature of 40°C, hold for 4 minutes, ramp 1: 25°C/min. to 175°C hold 

for 1 minute: ramp 2: 5°C/minute to the final temperature of 280°C, hold for 15 minutes. 

The carrier gas was helium at a flow rate of lml/min. lp l of each sample was injected 

splitless.
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Table 2.4: The Molecular ions used to quantify individual nitrated PAH.

Compound SIM Molecular 

Ion

1 -Nitronaphthalene 173

Internal Standard 188

4-Nitrobiphenyl 199

5 -Nitroacenaphthene 199

2-Nitrofluorene 211

9-Nitroanthracene 223

3 -Nitrofluoranthene 247

1-Nitropyrene 247

.Gas Chromatography with Electron Capture Detector (GC/ECD)

The instrument used in all cases was a Hewlett Packard 5880 Gas Chromatograph using 

a 5% diphenyl wall coated open tubular capillary column (Rtx-5, Restek, Thames 

Chromatography U.K.) (20m x .32mm) with a film thickness of .25pm. The carrier gas 

used was nitrogen, at a flow rate of lml/min, with nitrogen as the makeup gas yielding a 

total flow of 30ml/min. lp l of each sample was injected splitless using a Hewlett Packard 

7673A autosampler. The injector temperature was set at 275°C with the detector at 

300°C. The oven program temperature used was:-

The initial oven temperature was 40°C hold for 4 minutes, ramp 1; 25°C/min to 145°C 

hold for 1 minute, ramp 2; 5°C/min to 280°C with a final hold time of fifteen minutes.

High Performance Liquid Chromatography methods.

Total UV absorption.

The analysis was carried out using a Pye Unicam PU 4015 isocratic HPLC pump with a 

Pye Unicam PU 4025 UV detector. The wavelength used for the analysis was set at
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325nm (56). A 7125 Rheodyne injector with a 50jxl loop was used for all manual 

injections. A Hewlett Packard HP3394 integrator was used to obtain the relevant 

integrated chromatograms. Methanol was the eluent, at a flow rate of 0.4ml/min, with 

no column used for analytical separation. 2,2’,4,4’ Tetrahydroxybenzophenone (Aldritch, 

Poole, Dorset U.K.) was used as an external calibration molecule against which the 

concentration equivalent of the total UV measurement was determined (10,56). A 

calibration graph of 0.05-10ppm was constructed to ensure linearity over this range.

Solanesol quantitation.

The pump and detector were the same as those described in the UV section above. The 

wavelength used for the analysis was 210nm (56). A 7125 Rheodyne injector with a 

200pl loop was used for all manual injections. Integrated chromatograms were obtained 

from the system described in the UV section above. Methanol was the eluent, at a flow 

rate of lml/min, using a octadecyl silane (ODS) column (5cm x 4.6mm) for analytical 

separation. An external calibration graph of Solanesol (Aldritch, Poole, Dorset, U.K.) 

was used to quantify the solanesol in all the samples analysed.

Total fluorescence.

The HPLC system consisted of a Jasco LG-980-02 tertiary gradient pump, with a Jasco 

PU-980 intelligent HPLC unit. Injections were completed manually using a 7125 

rheodyne injector, with a 20pl injection loop. The eluent used was 100% methanol, at a 

flow rate of 0.5ml/min. Detection was completed by a Jasco FP-920 intelligent 

fluorescence detector, (Ex =300, Em =420 (56)). No column was used for total 

fluorescence determination. Integration was completed by a Shimadzu C-R4A 

chromatopac computing integrator. Scopoletin was used as an external calibration 

molecule against which the concentration equivalent of the total fluorescence 

measurement was determined.
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Scopoletin quantitation.

The HPLC and integration system were the same as that described in the total 

fluorescence section above. All manual injections were completed using a 7125 rheodyne 

injector, with a 20pl injection loop. The analytical column used was a Spherisorb ODS 

(25cm x 4.6mm) column with an eluent system of 90%/10% (water/methanol), hold for 5 

minutes, followed by a 15 minute ramp to 100% methanol, which was held for 15 

minutes. The flow rate of the eluent was lml/min. Detection was by a Jasco FP-920 

intelligent fluorescence detector, Ex = 300, Em = 420 (56). Scopoletin was used as an 

external calibration molecule.

Inductively Coupled Plasma / Mass Spectrometry (TCP/MS).

A Hewlett Packard 4500 Series ICP/MS coupled to a Hewlett Packard Data station was 

used for the elemental analysis of particulate samples. A semi-quantitative method, found 

as part of the HP 4500 Chemstation software (HP 35920C - copyright 1992), was used 

to obtain data of elements found in particulate samples from diesel emissions and ETS. 

The semi-quantitative method took six readings across a peak, producing a maximum 

accuracy of 70% ±10-30% (57). A linear response for each element is assumed over the 

range investigated, with the variation in quantitation of any specific peak being the same 

from the semi-quantitative nature of the computer analysis.

Indium was added to all samples as an internal standard, as indium is a very rare element 

which is unlikely to be found in the atmospheric samples under investigation. Indium is 

ideal as an internal standard by ICP/MS as it has one major isotope, with 100% o f the 

isotope being ionised in the plasma, giving excellent sensitivity.

A standard containing 12 elements at known concentrations, in addition to the indium 

internal standard, was run prior to analysis of any samples to identify any variation in 

ionisation or response of the instrument at that time. The elements in the standard were 

magnesium (Mg), vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), strontium 

(Sr), molybdenum (Mo), cadmium (Cd), tin (Sn), barium (Ba), mercury (Hg) and lead 

(Pb). The responses of these elements are obtained and then using response factors found
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in the semi quantitative program, a set of semi quantitative data for almost any element in 

the samples can be obtained.

2.2.6 Results and Discussion.

2.2.6.1 Volatiles.

Diesel.

The chromatogram seen in Figure 2.6 is typical for all the samples taken from the diesel 

test engine at the three different rated powers.

Analysis of the mass spectral data and library searches provided the identification of 

compounds emitted from a diesel engine, seen in Table 2.5.

95



CO < J - H  
N m * 
0 0 H cn

'H
O

sfi<p+
LD•rH

Q

O

CD

CSC•M

96



Ta
bl

e 
2.5

: 
AT

P 
Vo

la
til

e 
O

rg
an

ic 
C

om
po

un
ds

 f
ou

nd
 

in 
Di

es
el

 E
xh

au
st

 F
um

es
.

<4-1oT3OOa,C/3uc
‘5bGW

cd 43
Vh ’C 43
(U 3
ts
£

Go-♦->u
C/3

u >>
< X

O

uGcd
I

O
cd u J3 o C +3 C O u u 4 3

g s •§ 
J “ jSO
s

co•£J (U 
C £  <u .5
3  **04

Tf vo ov t'- cq
cd  r}-

vo co in Tf vq Ov 
K oo oo o  CN

w) Ol
tT  VO . Ov t"VO t— t

' S o  
•8 S
<d c oOhM td

—Hs s
SP &G o  

W o  vo

O <L>

*10)s
u G cdcd £

‘C 43 3
6

u
s

-4-»
U §

o
3

CO
3

oVio 1u
C X ?

4=
3
£
3
‘3cd
uo<

o G
u

oo ^  c u g g
43 W"3
s

uT3

u £ S
Gu

43Oh

cd
3ocd

u
,G
*3

O,
T3 v- • !-c a) O +5_o Ol-o

s
£

£
cd to
S w

oP-H

C ( DU, , .  § _, G G 2“ fi « eS ft
|  I  |
oM  *£ £  > .6  o
m « 6

T t VO 
CN cd

Ov CO m CO i n
CO vo t— 'd- vo Ov

CO O' VO r - oo OO

04

i nr- CN

CN
vo

t n  v )  o o  o o  (O ^  (Ot^ o\
(b S K

T3
<4-1 So 3
Td Jy
U  
G hC/3
uG

'5bGm

a

£
oovo

U  4 3

I -J> <Uo<

43 O
•O -*->u Gedo O H 43cd Grd T3 Vi<D u

X (> -4-* •*>u u X
o ffi o o

43-4-4uo
<

<L>
S

uu C G ua ^N OhG O a) .G

uT3

acd■4—*u

oG53 o(Jh

"'t ^
CN CO

co cn r co co oo ov 
T t u o  o o  v d

i n
N- vq vn

Ov
CO CO

•O' Ov

1
6

.3

m
N"

CO
vq

r̂ - cn
l> oo OO Ov CN in t-H

04

cd~o
Gcd

00

S3O33 u 
C £  u3

O cd
) |

43
3 u

G
u
G

GOH—»
£oVi

cdXu
u
N
G

oo o ffi u
m

< 2u

_ U uv̂ c G
43 cd o> u u
3
a G c  u «

G h O h

Gu
3

N
Gu

43•3 O u o ,
CN H >»

iG1 o u

u
G
u

X

m
c o

oo
vd

oovo
m
o CO

r-
Ov

m
vo

04

97



Cj_j cdo o
T3
0) TP 0) tS & T1w ts
4) _,.s soo g-

<SW o
VO

J  *&X 5

<D 4> CDg g CD
cd 4> CD o CTD N N cd 4>
Pn C 4) c O N
J* 4) 4> o c4DJO C JO c 4)
s cd L 1JOCD Po O
N
o

.g
4)

4>
P £CD £4> o

4>
CQ B s 6

A-ho
£ £ P Q

rn 4) CD
5 c c

cd cd
cd CD
CD

TD
CD

TD
c G O

D D P

g |a5 '4-> Pi

CO vn CO CO OO in CN m m CO (N OO oo CO m m
vo Ov o CO "d- in OO Ov o Ov f "H r- Ov CN CO Ov
oo OO Ov O o H—HH—I n-H CN CN CO CO CO N" vo oo< < y HCN CN CN CN CN CN CN CN CN CN CN CN CN

TD
c*-h g  O ^

Tfcd -51 9> co 
Q*
1/5 cd cd _,
s£p &G O  
W o

VO

(L>
c
cdXCD
•g
I

IViOh

0D

£
cd

cdN
Ccd
PQ

P>-» CD N  
O* fl O §
& s g £
•^•g 8 ^x  -s n 5  
« & 2e ° .§

4) c4) Oc N4> GNC 4)JP J3
4> 4>X)o*-HO

Po£
CD

B4)
c

•g Po
J3

4>
N
G
4D
PQP 4D

4)
C0)
N
CCDJO
o! ~ Oh CDO T3
Oh (5Jh D

£
CD
s

4)
c  .
cd 4)

&oJO 4)s §
f iS g0 SP TD 2 ^ 0  
° ^ P

JO
U

CO in in OO in vo m  h—i OO CO CN CO CN m in t T
vo Ov o "d- Ov <n OV ’—i Ov VO m y—i CO C^ OV
oo oo Ov O H-H CN CN CO CO 'd:

CN ■'d- CN in in
CN vo vo oo

»—i CN CN CN CN CN CN CN CN CN CN CN

pS

TO
S  o £

TD «M

8 1  Oh 'C C/5 H-*
4. ^
c

*ob
c  5
w ovo

s

CD 0)
c  c  
5  O ?3

I h§ 8
jp C : -5
1 £ Ss ^  M
5  P

4>
0
cds
•g
1

&

CD
c
cd
cd
CD
P

4)» 4) Gn 4> 4)n> G G N
N cd 4) Gr! G N 4D(i) O G JP,o G 4> , ,

, ,
Po O JPJ3 J3 o H-14>4> 0) J2

CDs B Po
JP

& P P 4>
s

4) 4>
G G
cd cd
CD CD
4> 4>

TD TD
G O

P P

PS

CO 1—1 <—I 
OV O  CO
oo ov oH—H CS

CO
TT
o
CN

Ov cn m
C> Ov O  
^  H-H* CN 
CN CN CN

CN
CN

00 f ' in 
O  t -  ov  
CO CO CO 
CN CN CN

CO
'cf
CN

CN OO r - CN CN
•'d* m «n . »—1 CO Ov
tj- t T CN m

CN m VO oo
CN CN CN CN CN

cd
TO10
cd

4>
C
4>

*>»
X

4> 4)c G4) CD
N NG GCD CD£ JD
Po O
Gh OOS-H 2Gh CDoC/5 P

c  £  cd . —
cd ■*■'

PS

coo CN
CO
o
CN

r -
Ov
CO
CN

98



<2

o
n3 <U V
o, _  
w ca
0  r -4

.s  s
60 &  G o  

W o  vo

<u
c<u

43

£

6o
43 O
ea" 2
£  • -  Q

<D
O
•8 ®  c$3 5  ca d> Q u 

N  __, D  
C  ^ T 3s  £  *c43 *3 £D I-4 

2

*S o  2 c 2 « o ca 
43

ca ca 43 ,0 ■*-» 43 43 & Oh ca ca G Op  _
>*43
3  & 3.%
J3 G * g  £0) <U (U
H 2 1

'Oca
o
PQ

Pi

n - cn 
cn in
O n O n 
CN CN

in cn0 NO
0 r <
cn cn m cn

O n CN r - cn
O 00 00 T f
(N CN cn rl-
cn cn cn cn

T3 C4_ rt
O £  
T3<u <; 2 cnOh
M ta
©  H2 s
£p & o o

w

<D
Ccao

•8 8© 5

2 8>»3 
£  £  OJ M
2
£

ca ca 
^  tSH—* H—»
43 43 
O h O h ca ca G G

*>* ^  43 43■*-> -4-*<u <u
s  s

<D
Ccao<L>T3caGO
£

0
2
G m cnO f"

.2c 0cn cn cnu<u
Pi

ON t CN O "St 00
h  m  00 00 00 m

cn  cn  cn  cn

00 in 
cn <n 
i>  00 
cn cn

ti-
o
0Tf

T3
O 3  -o ^  
ft «
O h ^  vi +2
o  w 

.2  2  
G &
w g

<uGca >*0
<L>

T3 <L>
GG 2

0tH
O

43 43
<L> 0
2 Q

Q

« cn
s  °

§
—I ©

r  ^ 3i> £  S<u E—1 
2 

"C 
H

ca
43

ca
’£  ^  43 43
O h O hca ca G S3

*>» !>» 
■5 'B<D <D
s  s

<0
ceao0)T3ca
3
PQ

Tj- CN O n  cn O n
CN m T f O VO

O n ON O  "-H r 1
CN CN cn  cn cn

! • §
(2

r -  
©
CN CN CN

Tf
tT

t  CN >n (N  C \
OO OO V )  r-H

n  «n  vd
cn  cn  cn  cn  cn

r f  CN 
in
00 00 
cn cn

99



The compounds listed in Table 2.5 were identified by retention time (where standards 

were available) and/or spectral data library matches. An initial look at the compounds 

released from the diesel engine at the three speeds identifies several compounds including 

hexane, benzene, ethyl benzene and xylene isomers. Other compounds identified included 

thiophene, pyridine, various branched alkanes, alkyl benzenes, alkyl naphthalenes in 

addition to an envelope of alkane compounds from C ll (undecane) to C l9 

(Nonadecane). The variation of these combustion volatiles compared to their rated 

power was not investigated.

It can be seen from these results that the dominant family of compounds are the straight 

chained alkanes, from Cl 1 to Cl 9. These are the main constituent of diesel fuel, with the 

alkane fraction extending from at least CIO to C27 (GC/MS chromatogram of alkane 

standard: Figure 2.7, and fractionated diesel fuel: Figure 2.8). Therefore, these alkanes 

are released from the exhaust of the engine in the gaseous phase either as un-combusted 

or partially combusted material.

100



Abundance
1.5e+07

CIO

1000000
Time->^

Alkane Standard.

C12

A - i
15.00

C20 C22
Cl 9 

C1 8

20.00

C24

cz;

25.00

C30

30.00 35.00

Figure 2.7: Alkane Standard Containing C10-C20, C22-C24
and C30.
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Figure 2.8: Fractionated Diesel Fuel, Identifying the Major 
Alkane Envelope Typical in Diesel Fuel.

101



Even though this thermal desorption analysis (Figure 2.6) was not quantitative it can be 

inferred that as the carbon length increases from decane (CIO), the size of the peak 

diminishes. This suggests that the quantity of the alkane reduces with increasing length 

from decane (CIO). This is expected, since as the volatility of alkanes decreases with 

increasing chain length, and the larger alkanes are more likely to be found associated 

with particulate material.

A compound in the gaseous phase unique to diesel emissions was not identified. The 

volatile compounds released by diesel engines are almost entirely aliphatic in nature. 

These are likely to be released from other anthropogenic sources (such as petrol engines) 

in a similar, if not larger quantity. These results are comparable to those obtained from 

volatile compounds in roadside water (58), in which it was also not possible to identify a 

potential anthropogenic volatiles marker compound.

However, some interesting compounds were identified in samples from this phase. These 

included thiophene, pyridine (also identified as present in ETS (7)) and volatile PAH. 

The presence of benzene, toluene and the xylene isomers is also of interest, as they have 

been identified as being in both indoor and outdoor environments. Quantitative analysis 

of these compounds as well as others were undertaken in the field sampling (see Section 

3.5.2).

Environmental Tobacco Smoke fETS).

The ETS ATD/GC/MS chromatogram (Figure 2.9) looks very different to that obtained 

from the diesel samples. There is no alkane envelope which is so dominant in the diesel 

chromatogram. Table 2.6 lists the presence of a number of compounds found in the ETS 

chromatograms, these include: benzene, toluene and the xylene isomers, all o f which 

were present in diesel emissions. However, there are a large number of compounds that 

were not seen in the diesel samples. Nicotine is a major peak along with heterocyclic 

compounds including fiirans, pyrroles and pyridine derivatives. Oxygenated species are 

also present, including various aldehydes and ketones. Naphthalene is the only PAH seen 

in the ETS chromatogram.
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These results compare well with volatile compounds identified in literature by thermal 

desorption or analogous methods. However, it was noted by Thompson et al (18) that up 

to 10% of the adsorbed nicotine stayed on the Tenax (p-2,6-diphenyl phenylene oxide) 

resin. Hence, nicotine is not suitable as a volatile tracer molecule. Other volatile tracer 

molecules discussed in the literature include 3-ethenyl pyridine, pyrrole, and pyridine 

(20). Pyridine was immediately rejected as it had been identified in the diesel emissions 

(See Section 2.2.6.1-Diesel). 3-ethenyl pyridine and pyrrole were positively identified as 

being present in the standard ETS atmosphere samples. 3-ethenyl pyridine had also been 

used as a volatile tracer molecule in previous studies (59). However, the concentration 

range which was available from the sampling procedures only allowed detection of 3- 

ethenyl pyridine in two of the nine smoking environments (see Section 3.6.1.1). Pyrrole 

was found in six of the nine environments (see Section 3.6.1.1), and was found to have a 

lower limit of detection than 3-ethenyl pyridine. These practical reasons led to the use of 

pyrrole as the volatile organic marker compound for ETS since it had a quantifiable 

concentration in more of the field samples than 3-ethenyl pyridine and no evidence o f any 

problems in its recovery from tenax had been found in the literature.
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ETS apportionment.

In order to use pyrrole for “apportionment” work it is necessary to know the following: 

the ratio of the concentration of pyrrole to the organic compound of interest, in ETS; the 

concentration of pyrrole in the atmosphere in question and the concentration of the 

organic compound in the atmosphere. With these values the percentage contribution 

from ETS to the total concentration of a compound in the atmosphere can be 

determined. In this thesis I am going to describe such work as “apportionment”. Work of 

this type has been published by other authors (20,59).

Samples of standard ETS atmospheres were obtained from the smoke generating system 

described in Section 2.2.1.2 with low flow pumps (50ml/min) using tenax and carboxen 

tubes in series (see Section 2.2.2.2). Quantitative analysis by ATD/GC/MS produced the 

concentrations of the listed volatile compounds shown in Table 2.7. The ratio of the 

volatile to pyrrole was then obtained. This ratio A, multiplied by the concentration of 

pyrrole in a sample gave that concentration of the volatile released by ETS in that 

atmosphere.

A = ratio of volatile to pyrrole compound under investigation from standard atmosphere. 

B = Pyrrole concentration in sample under investigation.

C = Concentration of volatile compound due to ETS in the sample under investigation.

D = Total concentration of volatile compound in sample under investigation.

A x Bpg/m3= C pg/m3

% apportionment = (C/D) x 100.
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Table 2.7; Concentrations (tig/m3) and Ratio Values (compared to pyrrole) for

Selected Volatile Organic Compounds, (N=2) Identified in a Standard ETS

Atmosphere

Standard ETS atmosphere
Compounds pg/m3 Std. Dev. Ratio

Pyrrole 113.8 7.6 1 . 0

Benzene 374.6 19.8 3.29±0.05
Toluene 3773.65 65.66 33.14±1.77
O-xylene 37.8 7.3 0.33±0.04

P + M-xylene 85.0 6 . 8 0.75±0.06
ethyl benzene 79.5 8.9 0.70±0.08

1,4 dichlorobenzene 0 . 0 0 0 . 0

These ratios are used in, Section 3.6 .1.1 to provide percentage apportionment values for 

the above volatile compounds for ETS in smokers atmospheres.

2.2.6.2 Semi-volatiles.

Diesel.

The chromatogram seen in Figure 2.10 is a typical chromatogram for diesel exhaust semi 

volatile emissions obtained in this work. These compounds were sampled directly behind 

the glass fibre filter paper onto XAD-4 resin tubes. This sampling was undertaken to 

identify if any other compounds could be found in the gaseous phase which were not 

sampled by the thermal desorption system, due to their lower volatility. We can see that 

there are a few such compounds but they are not major constituents of the gaseous 

polluting diesel emissions. The identification of an envelope of alkanes from tridecane 

(C l3) to tricosane (C23) shows that even these longer chain alkanes are not entirely 

associated with the particulate material. In addition to the straight chained alkanes, there 

are a number of other compounds, including branched alkanes and cyclohexyl 

derivatives. Positive identification of these aliphatic alkanes was achieved by using 

standards and obtaining retention times, as the mass spectra are often very similar for 

alkanes. Thus it can seen that no specific diesel marker was immediately apparent in this 

phase.
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However, an interesting feature of the resin samples is the identification of two 

methylnaphthalene (M+*=142) compounds by ion extraction (Figure 2.11) while no 

naphthalene ( ^ ‘=128) (Figure 2.12) itself was identified. This is not consistent with the 

literature, where naphthalene and its two methyl derivatives are observed in diesel 

emissions (60). The difference is probably due to the samples being reduced to dryness, 

so loss of the naphthalene is likely to have occurred.

PAH are released from most anthropogenic sources during incomplete combustion or 

pyrolysis of coke (61), petrol (61,62), diesel (61) and wood (61). Since not all o f these 

sources were available for analysis, naphthalene and its alkyl derivatives could not be 

selected as appropriate marker compounds. However, naphthalene is identified in all the 

previously stated samples (61). No tracer was found sufficiently unique for diesel 

emissions in the gaseous phase.
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Environmental Tobacco Smoke fETST

All compounds were identified by MS library matches only.

Table 2.8: Compounds Identified in the Gaseous Phase of ETS Sampled onto

XAD-4 Resin.

Tr Resin extract from XAD-4
10.91 Phenol
11.78 Limonene

13 Benzoic acid methyl ester
13.84 Unknown
14.17 Naphthalene derivative
14.5 Naphthalene

14.66 Phenol, 2-(lmethylethyl-
15.64 Ethanone l(4ethylphenyl)-
15.94 1H Inden-l-one 2,3 dihydro
16.44 Phthalic Anhydride
17.14 Nicotine
17.55 1,1 Biphenyl, 2 methyl
18.59 Unknown
20.44 Unknown
20.56 Unknown
20.96 Heptadecane
22.27 Unknown
22.45 Unknown
22.84 Phthalate
23.78 Phthalate
27.53 hexanedioic acid dioctyl ester
28.75 Phthalate

It can be seen from Table 2.8 that few compounds in the dichloromethane extract from 

gaseous ETS could be identified by GC/MS. Nicotine is the major gaseous tracer 

molecule used for ETS determination. However, due to its inconsistent phase 

distribution (see Section 2.1.2), it is a poor ETS marker. Two compounds o f similar 

structure to nicotine, i.e. myosmine and nicotyrine, were identified as other possible 

marker compounds. However, the concentration of these compounds in this phase are 

often low, and a large sample is needed, for identification/quantification to be possible. 

Naphthalene was also identified as being present in gaseous ETS.
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ETS sampled onto XAD-4 resin was also analysed for polycyclic aromatic hydrocarbons 

(PAH) by GC/MS-SIM, to identify any possible specific PAH or PAH ratios. An 

example of a chromatogram of the 16 EPA PAH can be seen in Figure 2.13. Quantitation 

was achieved using DIO-Anthracene as the internal standard. By extracting the relevant 

ions, accurate integration was possible, even though D 10-anthracene co-elutes with 

phenanthrene and anthracene. The reconstructed ion chromatograms (Figure 2.14) show 

complete separation of the three compounds and accurate quantitation. The quantitative 

results can be seen in Table 2.9. Quantitative PAH analysis was not possible for the 

diesel semi-volatile emissions, as the flow rates throughout the dilution tunnel were not 

routinely measured.

Table 2.9: Quantitative Analysis of ETS Sampled onto XAD-4 Resin (N=2) from a

Standard ETS Atmosphere.

Basildon samDle Vapour ETS
Concentration Mean (ng/m3) Std Dev.
Naphthalene 16389.3 549.1

Acenaphthylene 167.9 7.3
Acenaphthene 146.0 5.6

Fluorene 182.4 17.1
Phenanthrene 362.5 38.6
Anthracene 0.0 0.0

Fluoranthene 0.0 0.0
Pyrene 0.0 0.0

B.(a)anthracene 0.0 0.0
Chrysene 0.0 0.0

B. (b) fluoranthene 0.0 0.0
B. (k)fluoranthene 0.0 0.0

B(a)Pyrene 0.0 0.0
B(g,h,i)Perylene 0.0 0.0

Dib(a,h)Anthracene 0.0 0.0
Indeno(l ,2,3,c-d)pyrene 0.0 0.0
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Figure 2.13: Total Selective Ion Chromatogram of 16 EPA PAH with D10 Anthracene 
Internal Standard. 1. Naphthalene, 2. Acenaphthylene, 3. Acenaphthene, 4. Fluorene, 5.
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Benzo(a)anthracene, 11. Chrysene, 12. Benzo(b)£luoranthene, 13. Benzo(k)fluoranthene, 
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Figure 2.14: Reconstructed Ion Chromatograms of m/z 178 for Phenanthrene (5) and 
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Salomaa et al (63) reported that increased levels of 34 polycyclic aromatic compounds 

were seen in samples taken from rooms in which smoking had occurred. They found that 

a large proportion of the three ringed PAH studied were found in the vapour phase, with 

little associated with particulate material. This was true to an extent with the samples 

taken from the smoking environment in our study, with the majority of the three ring 

PAH compounds being found in the vapour phase. However, we found that there was 

also an appreciable amount of these PAH associated with the particulate material (see 

Section 2.2.6.3). They also identified fluoranthene and pyrene in the vapour phase (63) 

however, we found that all of the fluoranthene and pyrene was associated with the 

particulate fraction in the ETS atmospheric samples.

Table 2.10: Comparison of Quantitative Data from PAH Analysis with Literature

Values.

Vapour ETS Vapour ETS 
from Salomaa 

et al (63)

Ratio of 
PAH conc. to 

fluorene 
conc.

Ratio of PAH 
conc. to 

fluorene conc. 
from Salomaa 

(63)
Concentration ng/m3 ng/m3
Naphthalene 16389.39 - 89.81 -

Acenaphthylene 167.94 162.8 .915 2.78
Acenaphthene 146.02 33.1 0.800 .565

Fluorene 182.49 58.6 1 1
Phenanthrene 362.55 124.4 1.987 2.12
Anthracene 0.00 21.7 - 0.37

Fluoranthene 0.00 15.6 - 0.27
Pyrene 0.00 6.6 - 0.11

Comparison of the ratios of the concentration of each PAH to fluorene concentration, 

seems to yield little similarity between the two sets of data. There may be several reasons 

for this; a different brand of cigarettes were used by Salomaa et al, the number of 

cigarettes smoked was different and also the sampling procedure. However, the 

concentration ranges are similar (ng/m3). Little other quantitative data on PAH in ETS 

has been reported and therefore further comparisons were not possible.
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2.2.6.3 Particulate associated organic compounds.

Possible marker compounds for diesel.

The residue extracted from the diesel particulate emissions were fractionated using an 

amino/alumina separation system (see Section 2.2.4.1). This was originally devised for 

the pre-concentration of nitrated PAH compounds adsorbed to tree bark (64). A 

fractionation step was necessary due to the large amount of compounds released from 

the diesel exhaust, including alkanes, PAH and heterocyclic compounds.

Nitrated PAH

Nitrated PAH compounds have been identified as possible diesel markers because of 

nitration processes that occur in the engine and exhaust system. In these processes an 

electrophilic aromatic substitution reaction occurs, which produces the most resonantly 

stable isomer (See Section 4.2.3.2). Nitrated PAH compounds can also be produced in 

the atmosphere, but the route of formation is different, producing different isomers for 

several nitrated PAH compounds, (see Section 4.2.3.3). Many of these compounds are 

found almost entirely associated with particulate material. Particulate material is 

produced in a far greater quantity in diesel engines along with a higher proportion of 

NOx compared to petrol driven vehicles. These facts, along with the ability to detect 

these compounds (as they are produced in trace amounts compared to many other 

compounds), seemed to make them ideal as a marker for diesel emissions.

Separation and detection was completed using Gas chromatography/ Mass spectrometry 

using negative ion chemical ionisation working in selected ion monitoring mode.

Seven Nitrated PAH were quantitatively analysed, using their (M'“) (Figures 2.15 and 

Figure 2.16). These ions are the most abundant ion since chemical ionisation is a soft 

ionisation technique. Table 2.11 shows the quantities of each identified PAH by both 

GC/NICIMS (SIM) and GC/ECD. However, the GC/ECD results are in reality only 

semi-quantitative due to interfering peaks.
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Table 2.11: Quantitative Analysis of Diesel Particulates for Selective Nitrated PAH.

Compound

Diesel Particulates Diesel Particulates

M/Z of M“ 

ion.

NICIMS (SIM) 

ng/g

GC/ECD

ng/g

1 -Nitronaphthalene 173 1.64 2.5

Internal Standard 188 - -

4-Nitrobiphenyl 199 6.14 13.19

5-Nitroacenaphthene 199 2.48 12.43

2-Nitrofluorene 211 N.D. N.D.

9-Nitroanthracene 223 4.13 9.79

3 -Nitrofluoranthene 247 Trace Obscured

1-Nitropyrene 247 21.73 18.39

N.D. None determined.

Trace. Peak present but below limit of detection.

Obscured. The relevant peak was obscured beneath a large contamination peak.
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Of the seven nitrated PAH that were determined, five were quantifiable by both methods. 

1 -Nitropyrene was found in the largest amounts by both methods, at approximately 

20ng/g of particulate material. This corresponds very well with published quantitative 

values for 1-Nitropyrene in diesel particulate reference material 1650. The quantitative 

value for 1-nitropyrene quoted by the Laboratory of Government Chemists, (LGC) (65) 

for the reference material is 19±2 pg/g of diesel particulate exhaust material. Thus a 

sensitive and selective robust method had been developed for the determination of 1- 

Nitropyrene in atmospheric particulate samples. Using 1-nitropyrene as a diesel 

particulate marker compound, a percentage attribution of diesel emissions could be 

determined for any sample.

However, the atmospheric samples that were to be taken for the field analysis were for 

12 hours, at a flow rate of 11/min (see Section 3.3). This produced samples of particulate 

material of between 7.33 and 155.3pg (see Section 3.5.1). Even if all this material was 

due to diesel particulates, the total quantity of 1-nitropyrene would be approximately 

150-3100pg. This is the total amount of 1-nitropyrene in the sample, which would be 

diluted in lOOpl of solvent. Therefore the quantity injected on column would be 1.5- 

31pg, with the limit of detection for 1-nitropyrene being seldom better than lOOpg, it can 

be clearly seen that the concentration of 1-nitropyrene in diesel particulates is beyond our 

limit of detection from the size of sample taken.

Unfortunately the sample size could not be increased since the flow rate effected the size 

of particulate material sampled onto the filter paper. With the sampling system in place, 

the pumps were unable to achieve a flow rate of above 1.31/min. Therefore, 1- 

nitropyrene could not be used directly as a marker compound in this study. However 

there are a great number of compounds released in the exhaust emissions o f diesel 

engines, and with the use of GC/MS and GC/AED it was hoped that other specific 

compounds could be identified and used instead.
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Sulphur Heterocyclic Compounds.

The fractionated samples that were analysed by the GC/AED gave an indication of the 

elemental content of the compounds released by the diesel engine. The wavelengths used 

to detect carbon and hydrogen produced almost identical chromatograms to that 

obtained from GC/MS. The wavelengths for the analysis of chlorine and bromine gave no 

response. We concluded that there were no chlorine or bromine containing compounds 

released by the diesel engine that were associated with the particulate material. The 

sulphur and nitrogen wavelengths were of more interest, with peaks visible in several of 

the fractions. However, due to the inherent insensitivity of the nitrogen line, the few 

small peaks observed were not investigated any further.

The sulphur wavelength (Figure 2.17) showed that a number of compounds containing 

sulphur were released by the diesel engine, and associated with the particulate material. 

The sulphur content was also found to be almost entirely contained in one fraction. As 

thiophene had also been identified in the volatile GC/ATD/MS analysis it was decided to 

look for larger analogues of this sulphur heterocycle including benzothiophene and 

dibenzothiophene. No benzothiophenes or alkyl derivatives were identified in any o f the 

diesel fractions. Such compounds have been identified in petrol prior to combustion, so it 

was decided that they would not therefore be specific to diesel (66). However 

dibenzothiophene (67) in addition to a range of alkyl derivatives (68) and 

benzonaphthothiophene type compounds (69) have been found in diesel fuel. 

Dibenzothiophene (Figure 2.18) along with some of its alkyl derivatives (i.e. methyl 

(Cl), dimethyl and ethyl (C2) etc.(Figure 2.19) were subsequently identified in the 5% 

DCM fraction by library spectral matching.

121



C 4 9 6  o f  D B T R ; R E G 2 R 0 7 R . D

1 0 0 -

2 0 25 30 3515
Time (mi n . )

Figure 2.17: Carbon and Sulphur Lines From an AED of the Analysis of 
Fractionated Particulate Material.

Abundancei

700000 D10-Anthracene -»

650000
600000
550000
500000
450000
400000
350000
300000
250000
200000 Dibenzothiophene I
150000
100000
50000

i , - , i . *■!—̂«h*xiX - - ..A..,..- ... ....... - ... - ̂ _Jw—__ __  r  r-  ■ —)- -  ■-     , -J-yjy ' ■ I K ' ! * ,r̂WXl JLL J— 4-L1 
Time--> 1500 20.00 25.00 30.00 35.00

Figure 2.18: Identification of Dibenzothiophene in Fractionated Diesei Exhaust
Emissions by GC/MS.

122



Abundance

2000000

Ion 198.00 Cl-dibenzothiphenes.

1000000

0 ‘rT
20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00

Abundance

2000000

1000000

Ion 212.00 C2-dibenzothiophenes.

Time—>,0
A

i r i "i —i—r i 1 1 ■ 1 r r p - r - T —r p r m —r~i—i~ r

20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00

Abundance

2000000

1000000

Ion 226.00 C3-dibenzothiophenes.

Time—>,0 i 1 ’ | 1 r t i i—i—|—i—r i—i—|—i i—i i—|—r~r* t  i—|—r Wt/lAI t r r n v ]' i ' i—i—i—|—i—i—i—i—|—i—i—i—r -

20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00

Abundance

2000000

1000000

Ion 240.00 C4-dibenzothiophenes.

Time-->, "1—I—I—I—|—I—I—I—I—| I—I—I—I—|—I—I—I—I—
1 kiUvWvvWLJ\a .~rJ‘i—rT—i—i—i—i t | ■ r r 'i—i—|—r~i—i—i—|—r—i—i—i—p

20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00

Figure 2.19: Reconstructed Ion Chromatograms for C l, C2, C3 and C4 

Pibenzothiophenes in Fractionated Diesel Emissions.
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The alklylated dibenzothiophene compounds, specifically C2 and C3 derivatives, were 

released in quantifiable amounts, so identification of one of these C2 or C3 

dibenzothiophene derivatives would possibly lead to a satisfactory marker compound for 

diesel. The quantity identified in the exhaust emissions is comparable to that found in the 

fuel prior to combustion, indicating that these compounds undergo little chemical 

conversion/reaction during combustion (70). However, standards of these compounds 

are not commercially available. The synthesis of dibenzothiophene compounds was 

outside the scope of this work. A German company (Agentur fur Sensor-Technologie 

GmbH Nottulner Landweg 90, D-48161 Munster, Germany) was able to supply one C2 

dibenzothiophene, (no C3 alkyl derivatives were available). The compound obtained was 

2,8-dibenzothiophene. Another set of diesel exhaust samples were taken, fractionated 

and analysed by GC/MS for C2-dibenzothiophene isomers (Figure 2.20). When the 

standard was run on the GC/MSD (Figure 2.21) a peak in the same area as all the C2 

dibenzothiophene compounds in diesel emissions was observed. However, close 

inspection of the chromatogram indicated that none of the C2 alkyl dibenzothiphenes 

released in diesel particulate emissions were 2,8-dimethyldibenzothiophene.

Due to time restrictions it was decided that the identification of a marker compound 

specific to diesel emissions and found at the necessary concentration was unlikely. It was 

also observed that a reduction in the sulphur content of diesel fuel, (EEC regulations

(71) from 0.2% by weight to 0.05% from 1/10/96) would reduce the concentration of 

sulphur compounds released by diesel engines. A thiophene type compound became less 

attractive as a marker due to this reduction.

Use of an n-alkane.

It was therefore decided that an abundant compound found in diesel emissions should be 

used for the initial identification of the diesel polluting contribution. The value obtained 

could then be corrected by obtaining a ratio of the general compound to 1-nitropyrene in 

a large air sample to correct for the contribution from non diesel sources.
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Figure 2.21: 2,8 Dibenzothiophene Standard.

125



The greatest quantity of organic material emitted by a diesel engine are the aliphatic 

alkanes. Up to 60% of the elutable (material that will pass through/fractionate on a GC 

column) organic material released in diesel particulates emissions are aliphatic alkanes

(72) this is markedly different to non catalytic and catalytic petrol engines which 

contained 61% PAH and 53% n-alkanoic acids respectively (72).

The fractionation system discussed earlier was used to remove the majority of the non

polar alkane material, so that identification of other compounds released in lower 

quantities could be identified. Vehicle fuel, be it petrol or diesel, is mainly aliphatic 

alkanes. However, petrol is a lower boiling point fraction compared to diesel.

A typical alkane envelope of diesel fuel prior to combustion has been displayed in 

Section 2.2.6.1 (Figure 2.8) with identification of alkanes ranging from CIO (decane) to 

C27 (Heptacosane). Analysis of particulate associated alkanes (Figure 2.22) and those 

found partially in the vapour phase (see Section 2.2.6.2, Figure 2.10) shows that >C21 

alkanes are found to associate almost entirely with the particulate material. Aliphatic 

alkanes (C16-C25) were also identified in roadside water extracts from a major road in 

Britain (58). It was therefore decided that C24 would be used as an anthropogenic 

emissions marker as it is likely to be released in larger quantities in diesel emissions than 

from any other anthropogenic combustion source and is found to associate almost 

entirely with the particulate material (73). The over-estimation of diesel contribution 

given by using C24 could be corrected by measuring the overestimation for large volume 

air samples (by comparison with 1-nitropyrene values) and subsequent data from smaller 

volume samples adjusted using the correction factor determined.
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Figure 2.22: Particulate Associated Diesel Emissions Extract.

Quantification of C24 (TetracosaneT

Table 2.12 shows the amount of C24 and 1-nitropyrene measured in diesel particulates 

from a test engine run at three engine speeds. Each engine speed (stated in revolutions 

per minute - RPM) was calculated from three different rated powers (also known as 

load), these were 1/2, 3/4 and full rated power, samples were taken in duplicate. These 

concentrations were averaged to produce the value seen in the table.

Table 2.12: The Average Concentrations of C24 (Tetracosane) and 1-Nitropyrene 

Released in Diesel Emissions (2x3 rated power for each engine speed).

Engine speed (RPM) and rated 
power

Tetracosane (C24) 
(Fg/g)

l--Nitropyrene
(l±g/g)

1300/averaged rated power 626.0 ±82.5 17.3
1600/averaged rated power 332.2 ±43.1 22.9
2500/averaged rated power 359.1 ±54.1 24.8

Mean 439.1 ±59.9 21.7

Due to the nature of the calculated mean (an average concentration of C24 and 1- 

Nitropyrene for diesel emissions from a range of engine conditions), the standard
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deviation identified is purely an error parameter associated with instrumental variation 

(produced from the duplicate injections of the diesel samples). The values are used in the 

calculations associated with apportionment of diesel emissions in field environments 

discussed later in this thesis (See Section 3.6.2.1).

Table 2.13: Concentration of C24 (Tetracosane) and 1-Nitropyrene in a Sheffield 

City Centre Large Volume Sample (n=3).

Mean (pg/g) Std. Dev.
Tetracosane (C24) 470.7 57.4

1-Nitropyrene 13.7 1.6

The quantitative values for tetracosane and 1-nitropyrene determined in the large volume 

urban air sample (Table 2.13) provide several points of interest. Assuming 1-nitropyrene 

is released in only diesel emissions, and using the value of 20ng/g of 1-nitropyrene in 

diesel particulates determined earlier, 63% of the total particulate material <5pm is from 

diesel engines. This seems a perfectly reasonable value for particulate emissions released 

by diesel engines in the city centre of a large city in England, These results do confirm 

that 1-nitropyrene would be an interesting marker compound for diesel particulate 

emissions, and should be investigated further.

The value for tetracosane on the other hand, is quite high compared to the value obtained 

from the test diesel engine. This may be due to a number of factors including that the test 

engine was a LGV engine which is unlikely to produce an accurate representative 

average emission value for all of the various types of diesel engines that were 

commercially available. The emission rates of particulate and associated organic 

compounds from diesel engines can vary due to engine parameters including size, type, 

design, operating times and control systems. Other possible sources of C24 which may 

also add to the high value obtained for the atmospheric sample include HGV diesel 

engines (72), petrol engines (both catalysed/non catalysed) (72) and biological emissions 

(74). However, using these data a correction value for diesel particulate measurements 

based on the use of C24 can be calculated. In the control samples 21.7pg/g of 1- 

nitropyrene correlated to 439.1pg/g of C24. For the large volume air sample the
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13.7pg/g of 1-nitropyrene should have given a value of 277.6pg/g of C24 for purely 

diesel particulates, however, 470.7jug/g were detected. Hence the correction factor 

required is 0.59.
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Environmental Tobacco Smoke.

Four methods for the identification of ETS contribution to an atmosphere were 

investigated. These included:-

1. Total UV absorption.

2. Total fluorescence.

3. Solanesol determination.

4. Scopoletin determination.

Publications in the literature have used a ratio of concentration of ETS (obtained from 

one of the four methods stated above) associated with a gram of particulate ETS (22). 

The ratios for each method can be used to identify the quantity of sampled particulate 

material that has been released by ETS, identified by the four different methods. The 

original ratio is obtained from samples taken from an enclosed ETS environment where 

100% of the particulate material is assumed to be from ETS. The particulate ratios for 

the four methods from our work (and published values in the literature), are given in 

Table 2.14:-

Table 2.14: ETS Quantitation Methods Ratio Values Determined in This Study

(N=2) and Published in Literature.

Method Ratio Published ratio 
(22)

Published ratio 
(75)

Total UV absorption 5.3 ±0.45 8.2 8.0
Total fluorescence 28.7 ±3.3 45 33.6

Solanesol 53.7 ±4.8 43
Scopoletin 203.0 ±10.1 -

These compare favourably with the values obtained by our research on Rothmans 

cigarettes, and are equivalent to the ratio values obtained independently by Rothmans 

International (76). Variation between the two sets of ratios occurs because the samples 

were taken from slightly different standard smoking environments. The published data 

(22) sampled an ETS atmosphere from people smoking in a closed environment, while 

the samples taken at Rothmans International came from a closed environment in which a
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smoking machine was used to produce ETS. It has been noted that variation in ratios are 

obtained when these different methods of standard ETS formation are used (76). The 

standard deviation values associated with instrumental variation are used throughout the 

apportionment data produced in Section 3.6.2.2.

Solanesol was found to contribute approximately 2% of the total ETS from the closed 

environments, while scopoletin contributed 0.32% of the total mass of ETS. This 

explains the order of magnitude difference seen in the ratio values. The determination of 

scopoletin was not a problem due to the inherent increased sensitivity obtained from 

using the fluorescence detection system.

Polvcvclic Aromatic Hydrocarbons IP AID analysis.

Both particulate associated diesel emissions and ETS were analysed by GC/MS-SIM for 

their PAH content. Table 2.15 shows the concentration of the PAH compounds.
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The PAH concentration of particulate associated compounds is displayed in both ng/m3 

and pg/g concentrations for the ETS samples. The diesel samples are displayed only as 

pg/g as the flow rates through the dilution tunnel were not accurately noted during 

sampling. This is slightly problematic as PAH concentrations in diesel emissions are 

mainly published as ng/m3 (61).

Recently it has been reported that lower molecular weight PAH compounds are found 

mainly in the vapour phase, while higher molecular mass PAH are adsorbed to particulate 

material (77). This partitioning has been shown to be dependant upon ambient 

temperature (which directly relates to the individual PAH vapour pressure) and total 

suspended particulate (available surface area) concentrations (78).

Diesel

Historically, major sources of PAH in both the vapour and particulate phases were 

stationary, with emissions being produced from heating of individual households and 

power generation. However, more recently, PAH from mobile sources (cars and lorries) 

have increased (79), especially in the urban and sub urban areas. It has been published 

that 60-95% of most particulate associated PAH in Paris (80) and 88% o f ambient 

benzo(a)pyrene in Britain are released from vehicles (81).

PAH can be produced in three ways from vehicular emissions, these include:-

1. Synthesis from simpler molecules in the fuel (particularly aromatics) such as ethyl 

benzene and xylenes as these have been identified as better pre-cursors than benzene 

(82,83).

2. Emissions of PAH already present in the fuel (77,84).

3. Pyrolysis of lubrication oil (77,84) or diesel fuel (85).

Emissions of Polycyclic Aromatic Compounds (PAC = PAH in addition to derivatives 

and nitrogen and sulphur heterocyclic compounds) from diesel engines have been shown 

to vary with both speed and load. Low speeds and low loads were the criteria under 

which the largest quantity of three and four ringed PAC were emitted (67). This suggests
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that the main source of PAC is directly from the fuel, as has been previously suggested 

(70,84,86), and that at the higher engine temperatures (observed during higher loads) the 

combustion efficiencies of the PAC increases. The optimum speed for the highest 

combustion efficiency of PAC occurs at medium speeds, when the swirl characteristics, 

combustion timing and temperature are all at their optimum. Low speeds are less 

efficient, due to low swirl and low chamber temperatures whilst high speeds lead to over 

swirl and reduced combustion time in the chamber (67). This produces larger quantities 

of PAC in the engine emissions.

Comparing the concentration of particulate associated PAH determined in diesel 

particulates, with values reported in literature (Table 2.15 (65)), it can be seen that there 

are significant quantities of phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, 

chrysene and benzo(k)fluoranthene associated with the diesel particulates. Phenanthrene 

and pyrene are both found at significant concentrations in average diesel fuel. The 

accuracy of the measurements in the two sets of data is a little questionable in terms of 

direct comparison. However, considering that the source (i.e. engine type and size), 

engine conditions (speed and load), sampling method, sample preparation, and analysis 

were different for each data set, the variations are perhaps not surprising.

Many of these PAH have previously been identified in diesel exhaust particulates 

including pyrene, fluoranthene, and phenanthrene (62,70,87). Several publications also 

identified other PAH including chrysene, anthracene, benzo(a)anthracene, benzo(b) and 

benzo(k)fluoranthene (60,88). The data given in these publications are unfortunately 

quoted in pg/m3 or as percentages, while our quantitation is in pg/g o f particulate 

material. Direct comparison of the data is therefore not possible. However, the 

compounds identified are comparable to those observed in similar emissions described in 

the literature which is encouraging since the profiles of PAH compounds in diesel are 

known to vary considerably depending upon the source of the crude oil (70).

Environmental Tobacco Smoke.

No PAH compounds larger than the four ringed chrysene were quantifiable in the ETS 

samples. However, this does not mean that the compounds were not released, as several
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have been identified by the use of HPLC with a fluorescence detector (89). They are 

simply below the limit of detection of the GC/MS-SIM detection technique that was 

employed.

Few studies were found in the literature which compared the concentration of PAH in 

the vapour phase to that associated with the particulates emitted in ETS. However, a 

comparison with the studies available, did indicate several interesting trends.

Many of the volatile PAH identified in the vapour phase were also identified adsorbed to 

particulate material. As expected, the concentrations of naphthalene, acenaphthylene, 

acenaphthene, fluorene and phenanthrene were all higher in the vapour phase than 

associated with particulate material. The more labile particulate associated PAH 

identified in Table 2.15 (phenanthrene to chrysene) have also been identified in ETS 

(90,91), after pre concentration and fractionation. The concentrations of these PAH in 

the publication are however measured in ng/cigarette, making it difficult to directly 

compare this with the ng/m3 calculations used in our study. However, a qualitative 

comparison shows that all the PAH identified by our GC/MS-SIM method are also 

present in ETS from the independent study.

Salomaa et al (63) were the only group to measure PAH in ng/m3. The quantities they 

detected were a lot lower, but they observed the same compounds as those reported 

here. The variation in concentration could be due to differences in the sampling, 

preparation or analysis of the samples, as their sample were taken from more of a “field” 

site (i.e. a smokers room) while our samples are totally of ETS taken from a specifically 

set method for ETS atmospheric determination.

2.2.6.4 Elemental Analysis o f  particulate material.

Diesel.

The data shown in Table 2.16 indicates elevated levels of several elements in diesel 

exhaust particulate emissions. These include large quantities (mg/g) of sodium and
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potassium in addition to significant quantities (pg/g) of silicon, manganese, iron, nickel, 

copper, bromide, molybdenum, silver, tin, iodide and lead.

Few studies could be found in literature, that identified the elemental composition of 

diesel particulate exhaust emissions. Various studies have been conducted on elements 

that are found in larger concentrations around areas of anthropogenic use, for example 

roads. Elevated levels of Mn, Fe, Ni, Cu, Br, Mo, Cd, Cr, Zn and Pb are all associated 

with roads and road verges (58,92). A number of these element are released from 

abrasion of other parts of road vehicles such as Cd, from plated components and tyre 

rubber attrition, Zn from tyre rubber and Cu from brake linings (58). Therefore, Cu 

could not be used as a tracer element for diesel emissions due to abrasion sources 

causing an overestimation of diesel contribution.

Lead emissions are often associated with older leaded petrol powered vehicles as tetra 

ethyl lead was used as an anti-knock agent in leaded petrol. The introduction of unleaded 

petrol and the reduction in the lead content in leaded petrol from 0.4g/l to 0.15g/l has 

produced a decline in atmospheric lead since 1986 (4,93,94). Our results show that lead 

is also released in significant quantities in diesel emissions.

Mo, Ni, Mn and Ag have all been identified as being released in anthropogenic emissions 

including coal (95), while Br has been identified in petrol emissions (96). These elements 

are therefore not totally specific to diesel emissions. Marine or soil suspended 

particulates contain amongst other elements, Na, Cl, Si, K and Fe, all of which are found 

in diesel emissions and would hence not be specific.

From the list of elements identified in diesel emissions, the only ones left are Sn and I. Sn 

is a component of various types of bearing and roller type engine material (97). The 

elemental contribution is therefore unlikely to be solely from the fuel during combustion 

but from engine attrition associated with vehicles in general and not specifically diesel 

engines. Iodine (I) is therefore the only element found at a relatively high concentration 

in diesel emissions that could be used as a possible diesel marker. However, there is no 

clarification of this from the literature, therefore it was decided not to use it as a marker 

for diesel fuel.
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Environmental Tobacco Smoke fETSV

The results for the elemental analysis of ETS can be seen in Table 2.17 (jig/g) and Table 

2.18. The following elements were found to be released at elevated concentrations 

(jrg/g) in ETS, boron, sodium and barium. Elements found at lower (ng/g) 

concentrations in ETS included titanium, gallium, arsenic, rubidium, niobium, silver, 

neodymium, samarium, europium, dysprosium, iridium, platinum, mercury, thallium and 

bismuth.

However, the important result obtained from this analysis was the absence of cadmium in 

the ETS samples. Cadmium has been proposed as a possible elemental tracer for ETS by 

Wu et al (24). Our analysis o f small amounts of ETS particulates from a standard 

smoking environment indicated that the method we used was unable to measure 

cadmium in ETS. Hence cadmium could not be used in this study as an ETS particulate 

tracer.

Of the elements identified in this study, only arsenic, and sodium (51,98) have been 

identified in ETS previously. Sodium is fairly ubiquitous throughout the atmosphere, 

leaving arsenic as the only possible ETS elemental marker detected. It has also been 

found in ETS by others (99) in concentrations of up to 5ng/m3. Our ETS samples 

produced a concentration of 9ng/m3. This is higher than the values in the other studies 

but this would be expected as the amount of ETS in the control room was very high.

Summary.

The elemental analysis of particulate emissions from diesel and ETS did identify trace 

elemental markers. Iodine was identified specifically in diesel particulates and arsenic was 

identified specifically in particulate ETS. These conclusions are tentative as iodine has 

not previously been described in diesel emissions and only a few ETS studies have 

detected arsenic.
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2.3 Conclusion.

The object of the work described in this chapter was to identify possible vapour and 

particulate associated markers for diesel emissions and ETS. These compounds could 

then be used to give a percentage apportionment of pollutants to be for “real” samples.

The following marker compounds were identified :-

Diesel.

No volatile tracer molecule was identified for diesel emissions.

Particulate associated apportionment will be achieved using C24 (tetracosane) as the 

marker compound in the atmospheric sample and the over-estimation will be corrected 

by using the ratio of C24 to 1-nitropyrene calculated from the analysis of large volume 

air samples.

ETS.

Pyrrole was identified as a possible marker compound for ETS and will be used to 

apportion percentage contributions of volatile ETS compounds to each environment 

sampled.

For particulate apportionment, two tracer methods have been used, total UV and total 

fluorescence. Two specific ETS tracer molecules have been investigated, these are 

Solanesol and Scopoletin. The over-estimation of the total UV and total fluorescence 

methods can thus be investigated along with the identification of the most accurate 

particulate ETS tracer compound. Arsenic will be investigated as a possible ETS 

elemental marker.
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3. ATMOSPHERIC SAMPLING.

3.1 Introduction.

After the identification of the marker compounds/elements for diesel and ETS, a 

sampling regime of atmospheric samples was undertaken to check the validity of the 

marker compounds. Additional analytical methods were incorporated into this field study 

(i.e. nicotine determination, total UV and fluorescence in addition to PAH and elemental 

analysis). Sites which exhibited elevated concentrations of vehicular emissions and/or 

ETS were needed.

3.2 Sites.

After examining previous studies, it was decided that the following sites would be 

investigated with a sampling system in both their indoor and outdoor environments:-

1. Four smokers homes.

2. Four non-smokers houses.

3. Four smokers offices.

4. Four non-smokers offices.

Other sites that were investigated included :-

5. Eight roadside samples within the city o f Sheffield.

6. Two samples in the countryside outside the city of Sheffield.

All the houses were situated in residential areas around the city of Sheffield. Samples 

were taken from houses during either a Saturday or Sunday when the occupants were 

present in the house and emissions due to the presence of people were at their highest. 

All the office samples were taken from one building situated in the city centre of 

Sheffield. The samples were taken during the week so the occupants would once again 

be present in the office for the maximum amount of time. Roadside samples were either
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taken from the city centre (adjacent to a large bus and train station), or along major 

roads that radiated from the city centre. Countryside samples were obtained from areas 

of the Peak district, away from roads, to try and obtain control samples.

These sample sites were deemed to give the maximum amount of information about the 

two specific sources under investigation, i.e. diesel emissions and ETS. By taking both 

indoor and outdoor samples from the various houses/offices, diffusion o f sources from 

one context to the other could also be investigated.

3.3 Sampling.

Indoor sampling devices were housed in a converted briefcase to reduce the noise of the 

pumps and prevent tampering once the system was installed. The outside sampling 

apparatus was housed in a wooden box designed to look like a large bird box which 

could be attached to the side of a building by a number of methods. The box was 

lockable to prevent tampering and vandalism during the twelve hour sampling period.

Samples taken from each indoor and outdoor site included:-

1. Two filter samples for the collection of particulate material of < 5pm using the 

aluminium size specific head described in Section 2.22.2. The particulate material was 

collected on PTFE coated filter papers of diameter 37mm (Supelco, Dorset, England ). 

Situated directly behind each filter head was an XAD-4 resin tube (SKC Ltd, Dorset 

England), attached to the filter head by brass 1/4 inch tube fitting with rubber o-ring. 

Each resin tube was attached to a pump (SKC Ltd, Dorset England) by a length of 

tubing. The two pumps sampled at a flow rate of 11/min.

2. Volatile samples were taken using a two stage thermal desorption tube system, with 

the first tube containing 0.16g of Tenax (mesh 60/80 (Supelco, Dorset, England), and 

the second tube containing 0.18g of carboxen 569 (mesh 20/45 (Supelco, Dorset, 

England). The two tubes were attached using a brass 1/4 inch tube fitting with rubber o- 

ring. A piece of rubber tubing attached the metal sampling tubes to the low flow pump. 

The summation of the concentrations from the two tubes produced the total
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concentration of the volatile pollutants. The pumps used were low flow (SKC Ltd, 

Dorset England) pumps, sampling at a flow rate of 50ml/min. Two volatile pump systems 

were used from every indoor and outdoor site, so a second set of samples were available 

if the inherent “one shot” thermal desorption system failed at any time.

All pumps were converted to run on batteries as the pumps needed to continue sampling 

for a long period of time on external battery supplies since various sites had no accessible 

electricity sockets. All pumps were converted and loaned to us by Rothmans 

International (Basildon, Essex, England).

Immediately after sampling all tubes were separated, labelled and capped, while all filter 

samples were weighed and stored in amber screw topped vials. All samples were stored 

in a fridge (<5°C) prior to pre-treatment and analysis.

3.4 Sample Extraction and Analysis.

The following pre-treatment procedures were carried out.

1. All Filter samples were weighed to identify the mass of particulate material <5pm in 

diameter, that was sampled on each filter paper.

2a. All filter 1 samples from both indoor and outdoor contexts were placed in 7ml amber 

vials and extracted with 4mls of dichloromethane (containing 0.01% triethylamine to 

ensure nicotine extraction (1)) for 30 minutes in an ultrasonic bath. The sample was then 

reduced to lOOpl after addition of quinoline (Aldrich, Poole, Dorset, UK) and DIO 

anthracene (Supelco, Dorset England ) as internal standards. Nicotine, tetracosane (C24) 

and PAH quantitation was carried out using GC/MS as described in section 2.2.5.2.

2b. All filter 2 samples were cut in half using a ceramic GC capillary column cutter. This 

was done to reduce elemental contamination. Half the filter was placed in a 7ml screw 

topped amber vial and extracted into 4mls of methanol (warmed to 40°C). The resulting 

extract was analysed by HPLC for total UV, total fluorescence, Solanesol, and
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Scopoletin (Section 22.5.2). The second half of filter 2 was wet ashed in nitric acid. 

Analysis for elemental/inorganic content was completed using ICP/MS (Section 2.2.5.2).

3. Of the two XAD-4 resin tubes taken from each site, one was sent to Rothmans 

International for nicotine quantitation, while the resin from the other was extracted with 

4mls of dichloromethane (containing 0.01% of triethylamine (1), after it had been 

removed from the tube and placed into an amber vial. The glass tube which had 

contained the resin during sampling was also washed through with dichloromethane 

(containing 0.01% triethylamine (1)) and the washings were added to the resin, to ensure 

all nicotine was extracted. Nicotine and PAH quantitation was completed using GC/MS 

(see Section 2.2.5.2).

The thermal desorption tubes were analysed using ATD/GC/MS as described in Section

2.2.5.1. without pre-treatment.

3.5 Results.

A small questionnaire was devised to identify if there was likely to be any confounding 

factors that may have effected the results obtained from the house sites under 

investigation. The questions and answers are listed in Table 3.1.

The questionnaire identified that all the dwellings used gas for heating and that a range of 

gas and electric stoves were used for cooking. An additional fact obtained from the 

questionnaire was that one non smoking household also had a cat as a pet.
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3.5.1 Particulate gravimetric quantitation.

The mass of particulate material obtained in all the contexts can be seen in Table 3.2. The 

colour of the filter was also noted for each sample. Filter samples taken from 

houses/offices in which smoking had occurred often exhibited an orange/brown 

colouration (Figure 3.1), while samples taken from non smoking houses/offices or 

outdoor samples were grey in colour (Figure 3.2). There is no colour identified on the 

blank filters (Figure 3.3) which were simply left in the filter head sampler with no flow. 

This was done to identify any contamination from the filter head itself.

The weather was also noted when the samples were taken, as removal of particulate 

material was thought to occur (wet deposition see Section 1.2.1.2) during wet days 

reducing the quantity of particulates identified on the outdoor filter. The average mass of 

filters 1 and 2 from each sample context was calculated and the highest, lowest and 

average values are shown graphically in Figure 3.4. From this we can clearly see 

differences in the quantities obtained from various contexts.
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Figure 3.1: Filter Sample Taken From a Smokers Environment, Displaying an

Orange/Brown Colouration.

Figure 3,2: Filter Sample Taken From Other Contexts (i.e. Not a Smokers 

Environment), Displaying a Grey Discolouration.
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Figure 3.3: Blank Filter Displaying No Discolouration.
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It can be seen from Figure 3.4 that the smokers houses contained the highest average 

quantity of particulate material (<5pm) with an average value of above 80pg (range 

27.33-155.33pg). Smokers office values were also fairly high with an average value of 

around 45pg (28-70.33pg), identifying ETS as a source of particulate material <5pm. 

However, non smokers house average values were not far from this with an average of 

around 41 pg (12.33-90.67pg). This value is perhaps artificially high due to one of the 

non smokers houses (house 2) burning incense during the sampling period causing an 

increase in particulate material and producing a faint orange colour on the filter paper.

The mean values from this study (84.5pg/m3 and 41.4pg/m3 for smokers and non- 

smokers houses respectively), are slightly higher than RSP levels determined in other 

publications. For smokers homes, levels of 88.81 pg/m3 (2), 74pg/m3 (3), 44.6pg/m3 (4), 

and 44. lug/m3 (5) have been reported, while non smokers homes contained mean levels 

of 27.62pg/m3 (2), 28pg/m3 (3), 18.1 pg/m3 (4), and 15.2pg/m3 (5) for RSP. Our slightly 

higher values are expected since those published in literature were for personnel samplers 

while our study used static sampling. This can cause increases in concentration due to 

constant exposure to smokers material in smokers environments while no exposure to 

low levels occurs owing to the lack of movement of the sampling system.

All the other sites including all outdoor contexts have a similar average particulate mass 

value from between 16pg for outside the smokers offices to 38pg for the countryside 

samples. The presence of a cat as a pet in one of the non smokers houses had little effect 

on the particulate quantity. Particulate material (<5pm) can therefore be seen to be fairly 

ubiquitous throughout the environment, with elevated levels being most prominent in 

indoor environments in which smoking had occurred. However, other sources can also 

produce elevated quantities of particulate material as seen in non-smokers houses and 

also the countryside samples (possibly pollen).
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3.5.2 Volatiles.

A number of the “common” volatile organic compounds detected by GC/ATD/MS were 

quantified. These included benzene, toluene, ortho, meta and para-xylene, ethyl benzene 

and para-dichlorbenzene. In addition 3-ethenylpyridine and pyrrole were also quantified 

for use as specific volatile marker compounds for ETS. Benzene was the only compound 

besides the two ETS marker compounds that has been shown to have a significant 

correlation with ETS in the literature (3,6).

No suitable volatile marker compound for diesel emissions could be identified for 

quantitative determinations. However, many of the previously stated volatile compounds 

are released in anthropogenic emissions including diesel. The removal of organo-lead 

compounds (used as anti-knock agents) due to their toxicity, lead to an increase in the 

aromatic content in unleaded fuel. This has produced fuels in some developing countries 

with an aromatic content of 40-50% (7).

Emissions of benzene, toluene and xylene isomers in unleaded petrol emissions have 

increased accordingly (7). It was calculated in 1994 that approximately 78% of total 

outdoor benzene emissions were from petrol engine exhausts (8). With the introduction 

of catalytic converters as standard engine additions, and anti-emission devices associated 

with the petrol tank during filling, this quantity, and the overall quantity of benzene 

should begin to fall. However, this will take time so benzene will still be present in the 

atmosphere from these sources for the foreseeable future.

Figures 3.5-3.10 show the levels of a range of VOC determined at each o f the sampling 

sites. The mean concentration of the volatiles in each context is given in Table 3.3. The 

raw data for individual concentrations in each sample, used for the figures o f the volatile 

compounds are given in Appendix A Tables A1-A6.
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It can be seen from the average quantitative values for benzene (Table 3.3) and on the 

accompanying graph (Figure 3.5) that a far wider range of concentrations were obtained 

in both the smokers environments compared to the other contexts. The average benzene 

concentrations (6.5pg/m3 and 8.3pg/m3 in the smokers houses and offices respectively) 

are higher than the average concentrations identified in all the other indoor and outdoor 

sites (range from 2.7-5.3pg/m3). We can therefore propose that ETS is likely to 

contribute to the concentration of benzene, this has also been noted in the literature (6) 

and was observed in the ETS standard samples studied in this thesis (see Section

2.2.6.1). There also appears to be a number of other sources of benzene in both indoor 

and outdoor environments, as the city roadside and indoor non smokers concentrations 

are all above the level found in the countryside samples. Benzene has been identified in 

diesel emissions (see Section 2.2.6.1).

Accumulation of benzene is apparent in indoor samples as nearly all indoor sites have 

slightly elevated quantities of benzene compared to outdoor samples. With few 

exceptions, this is consistent for all the volatile compounds when the concentrations in 

the indoor and outdoor environments are studied (Table 3.3). It has been reported that 

benzene concentrations are often between 2-5 times higher in indoor samples with a 

benzene source (ETS or an attached garage) compared to outdoor samples (10,11). This 

trend can also be seen for benzene in other studies (12,13), that have identified similar 

concentrations of benzene to those determined in this study. They found statistical 

significance between having a smoker in an indoor environment and elevated benzene 

concentrations. In addition, an increase in benzene in dwellings which had an attached 

garage that were in use was found (11,12). The identification of attached garages was 

not taken into consideration in this study.

The position of the sample in a city was also described as having an effect on the 

concentration of benzene both indoors and outdoors. Higher concentrations are often 

found in urban areas where there is a large contribution from combustion emissions. 

These can also penetrate indoor environments raising the level of benzene in that sample 

(7). This is not clearly seen in the samples taken in this field study. However the highest 

concentration of benzene outdoors is associated with roadside samples, many of which 

were obtained from urban sites.
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The toluene results, (Table 3.3 and Figure 3.6) show that levels are not only elevated in 

smokers environments. Major elevated levels are identified in the non-smoking offices, 

(both indoors and outdoors) this could be due to several of the offices having been 

recently furnished with new desks and cupboard equipment. Toluene has been identified 

in emissions from various building materials, solvents and adhesives (7). The reason for 

the large variation in toluene outside the non-smokers offices is unknown, perhaps 

diffusion from the indoor environments is occurring.

If  we look at the concentration of toluene in samples other than the office samples, 

elevated levels are seen in the indoor samples (59.8pg/m3 and 62.8jug/m3 in non smokers 

and smokers houses respectively) with a possible slight increase due to ETS. These 

concentrations are two-three times higher than those in the outdoor samples (18.7- 

33.1pg/m3), except for the roadside samples which have a comparable concentration to 

toluene concentrations indoors (62.2pg/m3). Therefore we can conclude that toluene has 

major indoor sources (furnishings, paints etc.) and an outdoor source which could 

possibly be vehicular emissions, as identified by others (13).

The xylene isomers Table 3.3, Figure 3.7 and 3.8 seem to be at lower levels in outdoor 

residential and countryside outdoor air, (non-smokers/smokers houses) while higher 

average concentrations were found in all indoor environments and urban outdoor 

samples (outdoor office samples and roadside samples).

Ortho-xylenes mean levels are elevated in smokers houses and offices in addition to 

roadside samples. We can therefore identify that ortho-xylene is released by unknown 

indoor source(s), as well as ETS (see Section 2.2.5.1), while the elevated outdoor 

concentrations are possibly due to traffic emissions (13) and have been observed in the 

standard diesel samples (see Section 2.2.5.1).

The interpretation of meta + para-xylene data is not so simple with mean concentrations 

higher in indoor smokers environments, but also high in the non smokers offices, both 

indoor and outdoor. Such levels could be caused by ETS in the smokers environments 

(see Section 2.2.5.1) (2) while the non smokers sources could include indoor furnishings
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in addition to the diffusion of these volatiles from outdoor traffic emitting sources, i.e. 

diesel.

Ethyl benzene, Table 3.3, Figure 3.9, seems fairly evenly distributed throughout the 

different sample sites with little dependence upon ETS or traffic. A higher concentration 

is seen in the non-smokers house, the reason for this is not known. However the source 

seems fairly ubiquitous as it is high in all of the non smokers house samples. Levels are 

universally higher in indoor and urban outdoor (offices) samples i.e. similar to the pattern 

identified by the xylene isomers. The indoor levels could be due to the same unknown 

indoor sources such as furnishings while the elevated levels seen in urban areas and 

roadside samples are once again likely to be due to traffic emissions (see Section

2.2.5.1), (13).

Para-dichlorbenzene, Table 3.3, Figure 3.10, is seen to be present in all the office 

samples, both for smokers and non-smokers. This is probably because the building from 

which the samples were taken had toilets on each floor, which were cleaned daily. The 

use of toilet cleaner is fairly liberal so the quantity sampled is more likely be due to the 

positioning of the offices in relation to the toilets. Quantities of para-dichlorobenzene 

were detected in several of the smokers and non-smokers houses, once again the quantity 

measured is likely to be due to the distance from the source (i.e. bathroom) that the 

sampling took place. Smaller quantities of para-dichlorobenzene were observed in 

outdoor samples, identifying the possibility of diffusion from the indoor source to the 

outdoor environment. This hypothesis is further supported by the lack o f para- 

dichlorobenzene in samples taken away from dwellings (i.e. roadside and countryside 

samples).

It can be seen that for nearly every determined organic compound, that the indoor levels 

measured were higher than the corresponding outdoor concentration (o-xylene office 

samples and p+m-xylene in non-smokers offices excepted, Table 3.3) this has been 

observed in the literature (14). This shows that there is likely to be an accumulation of 

organic compounds and other pollutant material in indoor environments from 

furnishings, human activity and combustion sources (both indoor and outdoor diffusing 

in (7,14)). This could be due to pre-concentration effects through poor
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ventilation/diffiision into the outdoor atmosphere. ETS is likely to contribute in part to 

the benzene concentration in smokers environments (15) however, there is only a small 

contribution (not significant (2)) to ethyl benzene and xylene isomer concentrations from 

ETS (15) in indoor smokers sites.

Vapour Phase Nicotine.

Two vapour phase nicotine samples were taken from each sample site, one was sent to 

Rothmans International for extraction and analysis while the second sample was 

extracted and analysed in house. The quantitative results are displayed in Table A8 

(Appendix A). These show that nicotine is found specifically in samples where smoking 

has taken place. However, the precision of the results from the two different laboratories 

are very poor. In fact there is no consistency between the results at all. The reason for 

this is not known as the only difference observed between the methods employed for 

extraction and analysis was that our laboratory used an ultra-sonic bath for extraction 

while the Rothmans Laboratory (Basildon, Essex) used a wrist shaking extraction 

procedure. The Basildon results seem to be far more consistent than those carried out in 

our laboratory. However, neither set of results are consistent with the pattern of data 

observed in the ETS associated particulate methods.

Figure 3.11 shows the quantitative results for vapour phase nicotine, ETS particulate 

analysis by RSP, solanesol and scopoletin. Assuming that the quantity of vapour phase 

emissions will be directly related to the quantity of particulate ETS released we would 

assume that the pattern of emissions from vapour phase nicotine and the particulate 

marker compounds would be similar. Figure 3.11 shows this not to be the case with the 

set of samples analysed in Sheffield being low in nicotine and not following the pattern at 

all. This shows either poor sensitivity for nicotine analysis or poor extraction. The set of 

samples analysed in Basildon contained quantities of nicotine but the pattern of nicotine 

concentration does not follow the pattern of RSP, solanesol and scopoletin (the pattern 

from total UV and fluorescence also follow that of the other three particulate methods 

(not shown of this figure)). These data seem to be more confusing since the nicotine 

results determined by ATD/GC/MS do seem to follow the pattern identified by the 

particulate marker methods (see later in this section).
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Such results support the idea of nicotine being a poor ETS marker, due to the difficulty 

in obtaining an accurate sample. Vapour phase nicotine is rapidly removed from the 

environment (20) either due to degradation (21), or adsorption to particulate material 

and surfaces (16). Work by Nelson (22) discussed the variation of marker compounds 

ratios with time. He identified nicotine as a poor vapour phase marker due to the 

variation in its concentration with time. 3-ethenylpyridine was suggested as a better 

vapour phase ETS marker compound due to its greater stability over longer sampling 

periods.
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XAD-4 resin tubes have been tested in a comparison study of several methods analysing 

for the accurate determination of both vapour and particulate phase nicotine (23,24). It 

was found that in some cases, the results were low, but this was attributed to a leak in 

the sampling system. However the results were relatively consistent, and the extraction 

efficiency of the nicotine from the resin (ethyl acetate with 0.01% triethylamine rather 

than dichloromethane) was determined to be 100%. The reasons for the poor vapour 

phase results obtained in this study are therefore unknown.

Nicotine concentrations were also determined in the vapour phase by thermal desorption 

GC/MS as inconsistent results were obtained from the XAD-4 resin and nicotine 

adsorbed to particulate material (Sections 3.5.2 and 3.6.2.2). The data obtained can be 

seen in Table A9 (appendix A). They are displayed graphically in Figure 3.12 where the 

pattern of concentration is compared with that of other ETS methods (these other 

methods are discussed frilly in Section 3.6.2.2). Here the trends observed by the other 

particulate ETS measurement methods is followed to some extent, with house 4 showing 

the highest vapour phase nicotine (also identified by the other particulate methods as the 

sample containing most ETS). There was a low concentration (Opg/m3 for nicotine) in 

house 3, increasing to (6.09pg/m3) in house 2. Once again some of the samples were 

below the limit of detection (three office samples and one house sample) making the 

pattern harder to follow, but a consistent pattern of variation was observable from all 

methods, including the nicotine data.

Analysis of vapour phase nicotine by thermal desorption-GC/MS has been reported to be 

fairly efficient, with a collection efficiency of 88% (23) and quantitative. Thompson et al 

(25) found total desorption of nicotine did not occur from the tenax resin, with up to 

10% of the nicotine staying on the tube. However, he noted that the addition of 

triethylamine increased the desorption of nicotine from the tube. (This technique was not 

employed in this study). Concentrations of 0.5-37.2pg/m3 for vapour phase nicotine have 

been reported in literature (25). These compare well with our results of 0-20.95pg/m3. 

However, thermal desorption is seldom used for the determination of vapour phase 

nicotine. This could be due to the low flows associated with thermal desorption 

collection (in our case 50ml/min) while filter and XAD-4 resin sampling systems can 

sample at a much faster flow (in our case 11/min). The larger volume sampled and the
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apparent efficiency and ease of extraction from the XAD-4 resin make this a more 

attractive method for vapour phase nicotine analysis.

We found therefore that thermal desorption was a more consistent method of vapour 

phase nicotine analysis compared to the XAD-4 resin tubes. The accepted method for 

vapour phase nicotine analysis is however, the XAD-4 sorbent method with solvent 

extraction (containing 0.01% triethylamine). This method (1) has been subjected to 

collaborative trials (26) and is accepted as a general method by The Association of 

Official Chemists (27), The American Society of Testing and Materials (28) and the U.S. 

Environmental Protection Agency (29).

However it should be noted that even though nicotine is specific to ETS, that there are 

real problems in using it as a marker compound. These are its inconsistency of 

distribution between the vapour and condensed phase (due to desorption and re

adsorption to surface/particles) and the rapid removal of vapour phase nicotine 

(20,24,25,28). This makes it a poor marker for vapour phase and particulate associated 

ETS, as we observed.
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3.5.3 Particulates

Results for the concentrations of the various analytes under investigation from the 

sampled field sites can be seen in Appendix A.

Table A10 Particulate associated tetracosane (C24).

Table A11 Particulate associated nicotine.

Table A12 Particulate associated UV absorbent material.

Table A13 Particulate associated fluorescent material.

Table A14 Particulate associated solanesol.

Table A15 Particulate associated scopoletin.

The majority of the particulate associated analysis is discussed in terms of percentage 

contribution to a site after statistical manipulation these can be seen in section 3.6. As 

these statistical results are based upon one point analysis the section 3.6 (Statistical 

analysis of the field study results) is a discussion section in which the results are 

compared with literature and used to provide a basis on which further work can be 

constructed.

3.5.4 Polycyclic Aromatic Hydrocarbons (PAH).

PAH are a family of benzenoid compounds, with structures consisting of two or more 

benzene rings fused at the ortho position in such a way that each pair shares two 

carbons, systems, producing a range of compounds. Some of these compounds have 

been identified as being possibly toxic, with individual PAH being described as possible 

mutagens, carcinogens, co-carcinogens or pre-carcinogen agents. Their toxic activity can 

depend upon factors including chemical structure, absorption by the body tissue, cellular 

transport, storage and metabolism (30).

The mean concentrations of the 16 EPA PAH (vapour phase and particulate associated), 

from all the various field contexts are displayed in Tables 3.4-3.6. Due to the insensitivity 

of the analytical method to some of the PAH under investigation, no compound eluting 

after chrysene, (the larger, labile five ringed PAH) were identified, and will not be
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discussed in the following section. This does not mean that they are not present, but 

simply that they were below the limit of detection by GC/MS/SIM.
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The following section will discuss the PAH profiles obtained from the various contexts 

and identify any similarities/trends that can be identified with indoor/outdoor, diesel/ETS 

emissions.

Initial trends that are readily identifiable include the phase distribution of the PAH 

investigated. Phase distribution of these compounds is dependant not only upon the 

physical conditions present in the atmosphere (ambient temperature and pressure), but 

also on the particular characteristics of the compound. The smaller PAH (2 ringed 

naphthalene to 3 ringed anthracene/phenanthrene) are found predominantly in the gas 

phase compared to the larger four ringed PAH molecules (discussed further in this 

section) which seem to be associated with both particulate material and the gas phase. 

The distribution of these smaller PAH compounds has been shown to be difficult to 

accurately quantify as particulate associated 3-4 ringed PAH have been shown to 

vapourise into the vapour phase from the particulate material sampled on filters (49).

Diesel.

To try and clarify the PAH emitted in specific contexts (i.e. indoor and outdoor), all 

outdoor contexts were separated into vapour phase and particulate associated, Table 3.7 

and 3.8 (in addition, the particulate associated PAH identified in diesel emissions are also 

shown in Table 3.8). The vapour phase PAH (acenaphthylene-anthracene) in Table 3.7 

are found in higher concentrations than the concentration associated with particulate 

material. In fact, in some of the samples, quantities of several hundred ng/m3 are 

identified. These contexts (non smokers offices and non smokers houses) could be high 

due to point sources associated with one or more of the sampling sites. The majority of 

the vapour phase PAH have concentrations of between 0-80ng/m3 which is consistent 

with literature published in this area (50-52) during sampling that occurred during the 

colder, winter months. The sum total of the individual PAH is also very similar to results 

obtained from the Toxic Organic Micropollutants Survey (TOMPs) in the UK, 

conducted at Warren Springs for the Department of the Environment (52-54). Please 

note that uncombusted fuel was not analysed directly for PAH due to the complex nature 

of the sample and the difficulty associated with fractionation of the fuel.
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The phase distribution of each PAH in the vapour phase compared to the PAH 

associated to the particulate material was determined (Table 3.9).

Table 3.9: The Mean Percentage of each PAH Found in the Vapour Phase from all

Outdoor Samples.

PAH. % vapour
Naphthalene N.Q.

Acenaphthylene 79.8
Acenaphthene 88.0

Fluorene 72.9
Phenanthrene 89.4
Anthracene 82.2

Fluoranthene 62.2
Pyrene 45.7

N.Q. Compound not quantified due to poor or inconsistent peak shape on many of the 

chromatograms.

The above Table 3.9 shows that more than 72.9% and often more than 80% of 2-3 

ringed PAH are found in the vapour phase. This compares favourably with the literature 

where Benner et al (55) found 88% and 86% of phenanthrene and anthracene in the 

vapour phase. Our percentage values were 89% and 82% respectively. They also 

identified that approximately half the quantity of fluoranthene and pyrene (45% and 

49%) was in the vapour phase. Our study identified 62% and 45% for fluoranthene and 

pyrene to be in the vapour phase. This similarity in phase distribution shows that the two 

methods of sampling are comparable (they used a high volume sampler with a 

polyurethane foam plug after the filter to collect vapour phase compounds (55)), for 

sampling PAH from both the vapour and particulate associated phases.

Such distribution is dependant upon ambient temperature and humidity during the time of 

sampling. It has been clearly identified that a larger concentration of PAH (both vapour 

phase and particulate associated) are found in the colder winter months compared to the 

summer months (50,51,53). The main reasons for this could include the reduced 

photochemical reactions that can occur. An increase in emissions from various sources

183



due to increased energy (for heat and light) and transport (increase in urban congestion 

and “cold start” emissions (53)). Weather effects can also cause an increase in localised 

pollution due to unfavourable dispersion conditions.

Other factors which can effect the phase distribution of PAH include the individual 

compounds vapour pressure in addition to the type of surface available for adsorption 

(carbonaceous particles from diesel engines provide a better surface than mineral based 

gasoline particles (56)).

However, these quantitative results and phase distribution values do compare with phase 

distribution results published by Halsall (52) for PAH concentrations in the UK. They 

identified that 80% of pyrene was in the vapour phase throughout the year. The reasons 

for phase distribution differences between our results and those published by Halsall (52) 

are unknown.

Outdoor particulate associated PAH (shown in Table 3.8) do display a number of trends 

which possibly identify compounds that are associated with anthropogenic emissions 

(specifically vehicular) as these are found in higher concentrations around the city centre 

and the major roads used for sampling. Examples of these are fluoranthene and pyrene 

which are found in higher concentrations in the roadside samples (8.56ng/m3 and 

6.68ng/m3 respectively). These concentrations of fluoranthene and pyrene are also 

towards the lower end of the concentration range (identified by Benner (55)), and lower 

than their mean concentrations (20ng/m3 and 27ng/m3 (55)). This is to be expected as 

our samples, taken in Sheffield were in the open air and not in an enclosed tunnel (55).

Some of the outdoor urban office samples had elevated concentrations for fluoranthene 

and pyrene (3.04ng/m3 and 2.51ng/m3 respectively), compared to suburban house 

samples (0.6ng/m3 and 0.93ng/m3). However, the concentration of these two PAH in the 

countryside samples are high (11.29ng/m3 and 6.16ng/m3). The reason or possible point 

sources of these elevated concentrations could not be identified.

The quantitative PAH results for particulate diesel emissions, displayed in Table 3.8 

show that fluoranthene and pyrene are present at quite high concentrations along with
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benzo(a)anthracene and chrysene (which were unfortunately not quantified on a regular 

basis in the field samples). The levels of fluoranthene were approximately half those of 

pyrene in the diesel emissions, yet fluoranthene was found in higher concentrations than 

pyrene in the field samples. This could be due to a number of additional fluoranthene 

sources increasing the levels in the atmosphere, or a variation in emissions from different 

engines (diesel or petrol). The type/variation of the fuel content and the way in which the 

vehicles are run/serviced could produce a highly varied quantity of the two PAH 

molecules. Variation in PAH composition of exhaust emissions is described by Nielsen 

(57), where he states that a variation in combustion temperature (low, producing 

alkylated PAH and high producing unsubstituted PAH) can cause emission differences. 

He identified that diesel emissions produced a higher quantity of alkylated PAH 

compounds, specifically methyl phenanthrenes (observed by Douce et al (58), and Jensen 

et al (59)) compared to petrol engines which produced a larger proportion of 

unsubstituted PAH. Pyrene could also be more susceptible to reaction/degradation once 

released into the atmosphere.

It has also been suggested (55) that certain PAH are found at higher concentrations in 

certain anthropogenic emissions compared to others. For example, methyl and dimethyl 

phenanthrenes in addition to pyrene are associated with diesel emissions (this was 

supported by field samples in a road tunnel which found high levels of methyl 

phenanthrenes in the air sampled mainly from diesel vehicles (55)). Conversely, 

fluoranthene was found associated more with petrol emissions (55). This could explain 

why the particulate associated diesel emissions contained a larger quantity o f pyrene to 

fluoranthene, while the field samples (specifically the roadside samples) gave a higher 

concentration of fluoranthene to pyrene associated to particulate material.

Summary.

As lead compounds have been reduced in petrol engines over the last decade, other 

compounds have been added to maintain the anti-knock parameters associated with 

organo-lead compounds. PAH have been such compounds (60), and as previously 

discussed one source of PAH from anthropogenic emissions includes uncombusted 

material directly from the fuel (50,61). PAH emissions from petrol engines (specifically
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2-4 ringed PAH) are therefore likely to increase along with emissions from an increasing 

diesel powered sector, as diesel contains a higher proportion of total PAH (containing 

higher concentrations of larger PAH, >3 ringed) in the fiiel compared to petrol fuels 

(62).

The use of PAH for source apportionment studies is difficult as many of the PAH are 

released in varying concentrations by a number of sources. However, PAH in 

conjunction with other emissions including inorganics (51) and alkanes (63) could be 

used with statistical multivariate techniques to identify source apportionment of up to 

eight sources in one sample (51,63). In addition, the use of source “fingerprints” have 

been discussed where all quantified PAH are ratioed to one PAH (often benzo (e or a) 

pyrene) (50). Unfortunately, an inadequate database of source fingerprints (often due to 

the wide and varied emission concentrations emitted from similar engine types/sources 

because of age, construction, manner of use etc.) has made this type o f source 

apportionment difficult to accurately interpret (50).

Environmental Tobacco Smoke fETST

To try and identify ETS specific PAH all indoor samples, tables for vapour phase, (Table 

3.10) and particulate associated, (Table 3.11) PAH were constructed. In addition to the 

average concentration found in the various contexts, quantitative samples from ETS 

atmospheres were also included in both tables.

The only vapour phase PAH quantified in the ETS atmospheric samples were 

acenaphthylene, acenaphthene, fluorene and phenanthrene (Table 3.10). All these PAH 

were observed in the different contexts with elevated concentrations of fluorene seen 

specifically in the smokers contexts (3269ng/m3 and 1731ng/m3 in smokers offices and 

houses respectively compared to 197ng/m3 and 662 ng/m3 in non smokers offices and 

houses). This would suggest that fluorene was a major constituent of ETS, which is not 

apparent in the ETS atmospheric samples (fluorene concentration of 182ng/m3). The 

reasons for these major differences include differences in fluorene contribution between 

cigarette type/brand, (our standard atmospheres used Rothmans International cigarettes). 

Perhaps fluorene is an unreactive gaseous phase compound (as many vapour phase ETS
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compounds have a longer atmospheric residence time compared to the particulate 

material due to rapid adsorption of particles to surfaces). However, fluorene in ETS has 

been shown to have a half life of 3.4 hours (under static conditions (64)), accumulation 

due to slow continuous emissions and slow removal is therefore unlikely. Few of the 

other vapour phase PAH show an increase due to smokers contexts therefore the 

fluorene concentrations could be due to other unidentified sources present at the sites. 

Perhaps from a method/oderant used to disperse/mask the smell o f ETS.

The high mean concentrations of the vapour phase PAH in the non smokers offices made 

it difficult to identify any further increases in PAH concentration due to ETS. However, 

our results were similar in concentration to those reported in the literature from smokers 

and non smokers homes (65), with slight increases in the concentration of 

acenaphthylene, phenanthrene, fluoranthene and pyrene in smokers compared to non 

smokers houses. Higher concentrations and statistical significance of additional vapour 

phase acenaphthylene, phenanthrene and anthracene was identified by Chuang (66), in 

homes containing various heating and cooking systems. They identified pyrene and 

phenanthrene as possible marker compounds for ETS (66).
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Particulate associated PAH constituents identify concentrations of nearly all the same 3-4 

ringed PAH compounds identified in the vapour phase. However, the phase distribution 

of these compounds was seen to be slightly different to those identified in outdoor 

environments. The phase distribution of PAH in indoor environments can be seen in 

Table 3.12.

Table 3.12: Identifying the Phase Distribution of Quantified PAH in Indoor

Environments.

% vapour
Naphthalene N.Q.

Acenaphthylene 94.32
Acenaphthene 98.41

Fluorene 99.33
Phenanthrene 90.67
Anthracene 72.81

Fluoranthene 68.30
Pyrene 43.45

B.(a)anthracene 23.64
Chrysene 1.20

All but anthracene and pyrene (both found in slightly lower proportions) are found in 

higher proportions in the vapour phase in indoor environments compared to outdoor 

environments. This is probably to be expected due to the higher average ambient 

temperatures associated with indoor environments compared to outdoor environments 

during the autumnal months.

There are no particulate associated PAH that are found to be considerably higher in 

concentration in smokers environments compared to non smoking contexts. The ETS 

atmospheric samples identify that quantifiable amounts of fluorene, phenanthrene, 

fluoranthene, pyrene, benzo(a)anthracene and chrysene are released associated to 

particulate material during smoking. However ageing of these emissions rapidly removes 

them from the atmospheric environment either by rapid volatilisation o f the more 

thermally volatile compounds (such as fluorene, phenanthrene etc.) or due to adsorption 

of the moist particulates to surfaces.
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3.5.5 Elemental and Inorganic.

All the ashed samples from the field sites were analysed by ICP/MS, using indium as an 

internal standard (described in Section 2.2.5.2). The mean concentrations of a number of 

elements/inorganics can be seen in Table 3.13. No tracer element was identified specific 

to diesel emissions but several elements/inorganics were observed at higher 

concentrations. Arsenic was identified as possibly being specific to ETS. The two 

contexts where these sources are likely to be elevated will be identified and any 

correlations identified.

Diesel (Outdoor samples).

Many elements are identified as being associated with anthropogenic emissions (vehicular 

in particular). These include detection of elevated levels of manganese (Mn), Iron (Fe), 

nickel (Ni), copper (Cu), bromine (Br), molybdenum (Mo) and lead (Pb), in both our 

samples and in literature (67,68). The only possible element/inorganic identified in 

Section 2.2.6.4 to be specific to diesel emissions was iodine (I).

If  we compare this knowledge with the field sample results (Table 3.13), a number of 

trends can be observed. Mn, Fe, Ni, Cu, Br, Mo, I and Pb are all present in the roadside 

samples at quite elevated concentrations. However, many of the elements can be seen to 

be elevated in other contexts as well, many of which you would not expect to be 

associated with vehicular emissions. Some of the elements, Fe and Ni specifically are 

quite elevated (422.2-1122.2ng/m3 for Fe and 19.8-55.lng/m3 for Ni) compared to 

similar environmental results published in the literature (69) where cumulative totals (for 

<2.lpm  and >2.1-10pm diameter particulates) are 301ng/m3 and 4.8ng/m3 for Fe and Ni 

respectively. These elements could be elevated due to the close proximity of the iron 

smelters and steel foundries that are still present in and around the Sheffield area. Some 

of the high indoor values could be associated with an internal point source, or due to one 

high result that could have been caused by a contaminated sample (such as non smokers 

offices mean value for Ni).
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Figure 3.13 shows the major elemental constituents found in the field samples and diesel 

emissions. We can see that Fe is the major component of diesel emissions and this is also 

evident in many of field samples. The expected sites, roadside, and the urban outdoor 

samples (smokers and non smokers offices outdoor) show high levels o f Fe. However, 

high levels of Fe are also seen in suburban area (smokers and non-smokers houses, both 

in and outdoors). The concentrations of Fe are in fact highest in the house samples, the 

reason for this was not identified. Iodine was also fairly ubiquitous throughout the 

sampled contexts removing its use as an individual tracer molecule for diesel emissions.

In fact many of the identified elements/inorganics are present in all the field samples in 

varying concentrations. For example, lead is found in all samples, but not necessarily 

higher in one context in comparison to another. It is present in the roadside samples, in 

some suburban samples (non-smokers house outdoors) and both the indoor smokers 

contexts (houses and offices). We can therefore conclude that elemental determination of 

diesel emissions (or even vehicular emissions) from elemental/inorganic concentrations 

will need extensive further work to identify possible unique tracer elements or elemental 

ratios for there contributions to be quantified. Work using Principal Component Factor 

Analysis (PCA) using SYSTAT software (70) has used similar data to identify sources of 

outdoor pollution. However, a larger number of samples (in excess of fifty, (51)) are 

needed for this type of analysis. Mathematical methods such as this are likely to be 

necessary to identify outdoor sources in the data obtained in this study.
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ETS.

Elemental markers for the determination of ETS contribution to an atmosphere have 

been considered (71). Cadmium was identified as a possible elemental marker, due to its 

accumulation in the tobacco plant and also its accumulation in the ETS compared to its 

presence in the filter and ash (72). Cadmium was not identified in the ETS produced in 

our closed environment ETS experiments (Section 2.2.6.4). However cadmium was 

identified in many of the contexts sampled, which can be clearly seen in Table 3.14. No 

obvious relationship was identified between cadmium concentrations and smokers 

environments. Once again this does not categorically exclude cadmium as a possible ETS 

marker but perhaps shows that the technique used here was not sensitive enough for 

cadmium.

Table 3.14: Elements identified in literature of which one possible source is ETS.

M e a n  c o n c e n t r a t io n  ( n g /m 3) C h r o m i u m N ic k e l A r s e n i c S e le n iu m C a d m i u m L e a d

N o n  s m o k e r s  h o u s e  ( i n d o o r ) 1 .8 4 1 .3 0 .0 0 .0 1 5 .7 2 .2
N o n  s m o k e r s  h o u s e  ( o u td o o r ) 0 .0 3 .7 0 .0 0 .0 2 .5 8 1 .5

S m o k e r s  h o u s e  ( i n d o o r ) 3 4 2 .8 6 5 .6 0 .3 0 .0 0 .7 1 5 .6
S m o k e r s  h o u s e  ( o u td o o r ) 1 .9 2 .2 0 .1 0 .0 2 0 .2 0 .0

N o n  S m o k e r s  o f f ic e  ( i n d o o r ) 3 5 .4 2 3 6 .1 0 .0 0 .0 10 .1 0 .0
N o n  S m o k e r s  o f f ic e  ( o u td o o r ) 0 .0 0 .1 0 .0 0 .0 1 1 .6 0 .0

S m o k e r s  o f f ic e  ( i n d o o r ) 2 .4 1 9 .8 0 .6 1.1 6 .9 1 .3
S m o k e r s  o f f ic e  ( o u td o o r ) 4 .1 8 .4 0 .2 0 .7 7 .2 0 .4

R o a d s i d e 2 2 .7 5 5 .1 0 .3 0 .0 3 .2 4 8 .2

C o u n t r y s i d e 2 2 .2 3 .8 0 .0 0 .0 0 .3 0 .0

These elements, (identified in Guerin et al (73)), are discussed as being released in 

tobacco smoke, thereby producing elevated concentrations in smokers contexts. Of these 

elements, Ni, As, Se and Pb are seen at elevated concentrations in smokers environments 

compared to non smokers environments. Ni and Pb would seem to be the most abundant. 

However both these elements have major outdoor sources, including vehicular emissions, 

oil burning and industrial processes.
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Note.

Several of the mean results are artificially high due to one high result due to a point 

source or an erroneous result. These include Cr (smokers house, indoors), Ni (non 

smokers office, indoors), and Pb (non smokers house, outdoors).

As and Se seem to be the two consistent and more specific elemental markers for ETS 

however, their concentrations are low (0.3-0.6ng/m3 and 1.1 ng/m3 for smokers houses 

and smokers offices respectively). These are similar concentrations to those published in 

Guerin et al (73). As and Se also have a major outdoor pollutant source, as they are both 

released in coal emissions (51). (no house sampled contained a coal fire). Even so, the 

two elements could be of interest and specific work identifying the validity of As, Se and 

Cd as trace concentrations could categorically identify one of these elements as an ETS 

marker.
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3.6 Statistical Analysis of the Field Study Results.

As all field study results (with the exception of the filter gravimetric analysis) were 

obtained from just one sample point, we are unable to state that the results are definitive, 

as sampling variation and experimental error were not accounted for through multi

sampling, as this was not logistically possible. It is therefore the wish of all associated 

with this work that the data published within this thesis be looked upon as preliminary 

data, onto which further work could be based.

The following section takes these data points and through the use of ratios determined in 

chapter 2 identifies possible percentage apportionment values for relevant analytes in 

each context. As these field results are from single point analysis the further statistical 

manipulation completed (such as the cigarette equivalents data for volatile and 

particulate associated analyses) was undertaken to compare these results with those 

published in the scientific literature.

3.6.1.1 Percentage contribution o f  selective organic compounds to an atmosphere due 
to Environmental Tobacco Smoke.

The calculation of the contribution of ETS to the concentration of the quantified volatile 

compounds in each sample was possible, using the ratio determined from the ETS 

atmospheric samples, (see Section 2.2.6.1). The volatile in question was measured and 

compared to an ETS specific marker compound found only in the vapour phase. The two 

volatile compounds identified as possible ETS marker compounds were 3- 

ethenylpyridine and pyrrole (16). Initially it was necessary to identify how many of the 

smokers sites contained quantifiable levels of 3-ethenylpyridine and pyrrole. The 

quantitative results for pyrrole are shown in Table A7 (Appendix A) and graphically in 

Figure 3.14, with the identification of both pyrrole and 3-ethenylpyridine in the sites is 

reported in Table 3.15.
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Table 3,15: Sites in which Quantifiable Levels of 3-Ethenvlpyridine and Pyrrole

were Present.

Indoor Outdoor
Location Weather Pyrrole Pyrrole

Non smokers houses
House 1 No rain N.D. N.D.
House 2 No rain N.D. N.D.
House 3 No rain N.D. N.D.
House 4 No rain N.D. N.D.

Smokers houses
House 1 Rain N.D. N.D.
House 2 No rain Yes and 3-EP N.D.
House 3 No rain N.D. N.D.
House 4 Rain Yes and 3-EP N.D.
House 5 No rain N.D. N.D.

Non smokers offices
Office 1 No rain N.D. N.D.
Office 2 No rain N.D. N.D.
Office 3 Rain N.D. N.D.
Office 4 Rain N.D. N.D.

Smokers offices
Office 1 No rain Yes N.D.
Office 2 No rain Yes N.D.
Office 3 Rain Yes N.D.
Office 4 Rain Yes N.D.

Roadside samples (outdoor)
Roadside sample 1 Rain N/A N.D.
Roadside sample 2 No rain N/A N.D.
Roadside sample 3 Rain N/A N.D.
Roadside sample 4 No rain N/A N.D.
Roadside sample 5 No rain N/A N.D.
Roadside sample 6 Rain N/A N.D.
Roadside sample 7 Rain N/A N.D.
Roadside sample 8 No rain N/A N.D.

Countryside samples
Countryside sample 1 No rain N/A N.D.
Countryside sample 2 Rain N/A N.D.
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It can be seen from Table 3.15 that pyrrole was found in more smokers sites (6) 

compared to 3-ethenylpyridine (2), hence pyrrole was used as the volatile ETS marker 

compound. The individual quantitative results shown in Table A7 (appendix A), Figure 

3.14 indicate that pyrrole is found only in the indoor smokers samples and that hence it is 

specific and that there is no measurable diffusion of volatile ETS compounds from indoor 

to outdoor environments.

Using pyrrole as a ETS marker compound, the contribution of the quantified volatile 

compounds that were attributable to ETS in indoor smoking environments are shown in 

Table 3.16.

Note. The standard deviation values provided with each individual site contribution value 

are through instrumental variations seen during the determination of the ratio value (see 

section 2.2.6.1). The average standard deviation is therefore the summated value of the
. r

relevant standard deviation values divided by the number of samples. This provides the 

variation in apportionment concentration produced from the instrument variation 

identified when producing volatile ratios associated with standard ETS atmospheres.

The percentage contribution of benzene due to ETS in the smoking house environments 

exhibits a range of 33.7-94.6% for smoking houses while office contribution were 

between 4.5-51.1%. Only two of the five house samples contained quantifiable pyrrole, 

so results for volatiles for these sites are less clear. The average for smokers house 

samples seems to be quite high, at 64.2%. This is due to the high value obtained from 

house two and arises since the actual benzene concentration measured was low, 

producing an erroneously high benzene ETS contribution. The possible reason for the 

lack of overall quantitative data for volatiles in smokers houses is that the room volumes 

in the house samples were often larger than the office rooms, increasing diffusion in the 

house samples. The reduced number of results for smokers houses reduces the 

confidence and validity o f the house results and the majority of discussion will be 

associated with the office samples.

The average contribution of ETS to benzene levels in the office samples was 25.5%. If  

this value is calculated using the data given by Crump (12), (taking the difference
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between the average concentrations of benzene in the smoking to non smoking house 

environments, to give an average contribution of benzene being produced from the 

additional smoking of cigarettes), a value of 25.4% is produced. Similar calculations can 

be carried out on data given by Heavener (6), producing a value of 30.3%, along with an 

earlier study by the same author producing a range of 0.2-39.0% in smokers homes (17). 

These data show that the contribution from ETS to the overall benzene levels are 

significant. However a previous study that used 3-ethenylpyridine as an ETS marker, 

identified a mean of 13% benzene contribution to an atmosphere from ETS and stated 

that this contribution was non-significant (18). However, ETS does seem to elevate 

benzene concentrations in indoor environments. This contribution has been determined as 

being between 13-30% in the literature whilst the value I obtained was 25.5% for 

smokers offices. The contribution to any smokers environment will of course depend 

upon the quantity of smoking that occurs in the environment over a length of time, in 

addition to ventilation and room size. However from this study and the published 

literature we can state that an “average” smoker’s room seems to exhibit an increase of 

between 13-30% in benzene levels due to ETS.

There is an anomalous result in the study of ETS contribution to levels of toluene in the 

office samples. Sample 1 gives a value of 514% for the toluene concentration attributable 

to ETS. The reason for this odd result is unknown, presumably the low quantity of 

toluene identified in the sample results in a major overestimation as the pyrrole 

concentration in relation to toluene is quite high. If this sample is removed, the average 

contribution of toluene due to ETS is 27.75%. This is fairly significant, and has not been 

apparent in previous studies (6). However, the report by Heavner (2) gives a maximum 

of 27.9% (mean of 5.15%) for the amount of toluene due to ETS, suggesting that the 

values produced in this field study are slightly high, possibly due to the high ratio value 

for toluene obtained in the ETS atmospheric samples (see Section 2.2.6.1). This value 

may be higher than that determined by Heavner et al (2). However, we can to an extent 

explain this as the sampling system that was used was static. The sample is therefore 

taken from the smokers room, while personal sampling (as done by Heavner (2)) will 

also be sampling other atmospheres which may be “cleaner” than the one found in the 

smokers room. The higher contribution could therefore be explained by the longer 

sampling period of the field samples taken from the smokers atmosphere.
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The contribution of ETS to o-xylene, p+m-xylene isomers and ethyl benzene levels in the 

smokers offices were 6.92%, 19.05%and 12.39% respectively. These compare to 5.11%, 

14.94% and 4.95 % for o-xylene, p+m-xylene and ethyl benzene respectively, as 

published by Heavner et al (2) at smokers workplace environments. These published 

results are however from personal samples and not static samplers as in this thesis. This 

explains the higher concentrations, and the higher percentage apportionment’s identified 

as being due to ETS in this thesis.
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These percentage apportionment for the xylene isomers and ethyl benzene are not as 

significant as those for benzene and toluene (This is in agreement with previous work 

(2,6)). There is a quantity of these compounds released from cigarettes and this is 

apparent from the results obtained in this study. However, the contribution to o-xylene 

and ethyl benzene levels from ETS is small with the cumulative contribution to m+p- 

xylene levels being the most significant.

It can be concluded from the work on volatiles that pyrrole can be used as a possible 

marker compound for the determination of the ETS contribution to levels of VOC. The 

contribution to benzene and toluene levels has been shown to be significant in this study 

and to some extent this is confirmed in the literature. A lower significance of the 

contribution of ETS to levels of the other volatile compounds investigated was found. 

However, the low number of samples make the data far from conclusive and an increase 

in the size of the samples taken would have helped to confirm these preliminary data. 

Further work also needs to be completed, in order to identify the rate and pathways of 

pyrrole degradation in an atmosphere to ensure that the pyrrole is sufficiently stable 

volatile to be used as an ETS volatiles marker compound.

Using the percentage contribution identified as being from ETS and the average 

concentration of the volatiles under investigation, it was possible to identify the “extra” 

amount of each volatile compound inhaled in a year from exposure to such a smokers 

atmosphere for 37 hours a week for 48 weeks a year. Using the concentrations of 

volatile compounds found in mainstream smoke published recently (19), we could also 

identify the equivalent number of cigarettes that would need to be smoked per year to 

introduce that quantity of volatile material into an individual.
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Table 3.17: Quantities of Additional Volatile Material Inhaled by a Non-smokers 

When Exposed to a Smokers Environment at Work. The Analogous Number of 

Equivalent Cigarettes Smoked is also Identified.

B e n z e n e T o lu e n e O -x y le n e P + M - x y le n e  E th y l  b e n z e n e

% c o n t r ib u t io n 2 5 .4 8 + 0 .4 2 7 .7 5 + 1 .4 8 6 .9 2 + 3 .5 1 9 .0 5 + 1 .4 5 1 2 .3 9 + 1 .4 0

S m o k e r s  O f f ic e  ( | i g /m 3) 8 .2 6 2 5 .6 8 1 .9 6 2 .3 9 2 .2 3

C o n e , d u e  t o  E T S  ( | i g /m 3) 2 .1 0 + 0 .0 3 7 .1 3 + 0 .3 8 0 .1 4 + 0 .0 7 0 .4 6 + 0 .0 3 0 .2 8 + 0 .0 3

j ig /y e a r 2 2 4 2 .2 9 + 3 5 .2 7 5 9 3 .8 1 + 4 0 4 .9 1 4 4 .4 7 + 7 3 .5 4 8 5 .2 2 + 3 7 .3 2 9 4 .4 5 + 3 3 .0

f ig /c ig . ( r e f  1 9 ) 4 3 .6 6 0 .7 2 .1 7 9 .5 7 5 .8 1

c ig s /y e a r  (E T S ) 5 1 .4 3 + 0 .8 1 1 2 5 .1 0 + 6 .6 7 6 6 .5 8 + 3 3 .8 8 5 0 .7 0 + 3 .9 5 0 .6 8 + 5 .6 9

The number of equivalent cigarettes inhaled by a non smoker exposed to a smoky work 

place over a year period, is very similar for benzene, p+m-xylene and ethyl benzene, with 

the equivalent of 50 cigarettes being inhaled. The values for o-xylene and toluene are 

slightly higher. However, in literature, the value obtained using toluene is thought to be 

high and these data appear to support this hypothesis.

If we assume that the equivalent of 50 cigarettes inhaled in a smokers environment is the 

approximately correct value we can see that volatile emissions from ETS are significant. 

A non smoker would inhale approximately the equivalent of one directly smoked 

cigarette per week. However the measurement is only approximate as the sampling 

method used in our study was different to that used to identify directly smoked cigarette 

emissions (i.e. a cryo trap). The brand of cigarette was also different with the quoted 

published results (19) using LGC monitor cigarettes while we used Rothmans cigarettes. 

These equivalent values are also specific to volatile compounds since these are likely to 

have a longer residence time in the atmosphere compared to ETS particulate material.
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3.6.2 Particulates.

3.6.2.1 Diesel.

The results for the concentrations of particulate associated C24 (tetracosane) are shown 

in Table A10 (Appendix A). Using the diesel engine and the large air samples (as 

described in Section 2.2.6.3), the percentage contribution of diesel particulates to the 

total particulates measured in various contexts studied in the field samples was 

calculated. These data are shown in Table 3.18. It can be seen that these results confirm 

that a quantity of diesel particulate material penetrates indoor environments as has been 

previously described (7,14,30). For indoor samples the contribution of diesel particulate 

to total particulate is in the range 0-18.77% (mean of both contexts 6.22%) for suburban 

houses and 0-59.66% (mean 14.85%) for city centre office samples.

Note.

Non smokers office 4 sample gives a very high value compared to the others, this may be 

due to a preconcentration of diesel particulate material or more likely due to a source of 

C24 being present in the office, falsely producing a high contribution.

The values obtained for outdoor samples are generally higher (as would be expected) 

compared to those from indoor samples with the range of values for outdoor house 

samples and outdoor office samples being 1.19-52.41% (mean 15.95%) and 3.75- 

57.88% (mean 25.48%) respectively. The suburban house concentrations are generally 

lower than the average outdoor office values, which is expected as the office samples are 

situated in the city centre. However, these office diesel contributions could be artificially 

lower than the actual contribution due to the fact that the outside office samples were up 

to 20-30 metres above the roadside while all house samples were taken from no higher 

than three metres. The city centre office data do tend towards the roadside values (range 

4.52-84.02% mean 45.26%) obtained from the city centre and adjacent to major roads 

radiating from Sheffields city centre.
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Table 3.18: Percentage Contribution of Diesel Emissions to Total Particulate

Material Found in Each Investigated Context.

Indoor
Filter

Outdoor
Filter

Location % Contribution % Contribution
Non smokers houses

House 1 0.56 ±0.09 1.19 ±0.19
House 2 2.07 ±0.33 12.31 ±1.95
House 3 18.77 ±2.97 18.44 ±2.91
House 4 4.45 ±0.70 52.41 ±8.28
Average. 6.46 ±1.02 21.09 ±3.33

Smokers houses
House 1 11.94 ±1.89 4.10 ±0.65
House 2 0.00 15.60 ±2.46
House 3 0.00 25.08 ±3.96
House 4 1.10 ± 0.17 3.18 ±0.50
House 5 16.87 ±2.67 6.02 ±0.95

Average. 5.98 ±0.95 10.80 ±1.71
Non smokers offices

Office 1 25.16 ±3.98 19.00 ±3.0
Office 2 6.86 ±1.08 9.70 ±1.53
Office 3 7.44 ±1.18 3.75 ±0.59
Office 4 59.66 ±9.43 57.88 ±9.15

Average. 24.78 ±3.92 22.58 ±3.57
Smokers offices

Office 1 1.31 ±0.21 18.00 ±2.84
Office 2 0.00 50.65 ±8.0
Office 3 8.42 ±1.33 24.07 ±3.80
Office 4 9.96 ±1.57 20.77 ±3.28

Average. 4.92 ±0.78 28.37 ±4.48
Roadside samples (outdoor)

Roadside sample 1 N/A 41.40 ±6.54
Roadside sample 2 N/A 72.07 ±11.39
Roadside sample 3 N/A 19.69 ±3.11
Roadside sample 4 N/A 70.05 ±11.07
Roadside sample 5 N/A 4.52 ±.71
Roadside sample 6 N/A 9.46 ±1.5
Roadside sample 7 N/A 60.83 ±9.61
Roadside sample 8 N/A 84.02 ±13.28

Average. N/A 45.26 ±7.15
Countryside samples
Countryside sample 1 N/A 0.00
Countryside sample 2 N/A 11.88 ±1.88

Average. N/A 5.94 ±0.94
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The values obtained for the contribution of diesel particulates to total particulates for 

roadside samples has a mean of 45.26%. This compares well with results published in 

Quarg 1996 (31) where PMIO/CO correlation’s were used. Diesel contributions of 

between 40-50% were identified. A recent study of Leeds gave diesel emission 

contributions of 40-50% by mass of particulate material, using particulate sulphate as the 

marker compound (32). These city centre values are higher than those identified by 

Horvath (33) where 12-32% o f particulate material was identified in the atmosphere as 

being attributable to diesel. Diesel vehicle numbers have increased since that time (1982) 

and the values obtained in this study seem a reasonable representation of the 

concentrations of particulate material. Sheffield, like many other large cities has a large 

numbers of buses and HGVs passing through it, which will produce the higher 

concentration of diesel associated particulate material.

Other possible sources of fine particulate material (<10jxm) in the UK which could be 

responsible for the other 55% of particulate matter include; other combustion sources 

including petrol (5%), and coal (used for power generation, 14%), heavy industry (15%), 

re-suspended road dusts (4%), construction (2%) in addition to secondary particulate 

material (unknown), (34). However, these are country approximations and specific 

sources would ensure that the quantities would be different if measured in Sheffield 

specifically. Due to the quantitation of the fine fraction of particulate material (<5pm) 

coarse material including suspended soil and salt particles are likely to be minor 

contributors in Sheffield. However, their presence should not be forgotten, and they will 

contribute in part to the particulate material in all the context samples.

Tetracosane is in fact a poor marker compound for the identification o f diesel particulate 

material. The large air sample results (Section 2.2.6.3) show that there are other major 

sources of C24. These may include poorly maintained diesel vehicles (35), which allow 

increased quantities of lubricating oil to pass into the combustion chamber and other 

combustion sources including (non catalysed and catalysed) petrol engines (36) and even 

vegetation (36,37). Results obtained after the correction associated with 1-nitropyrene 

did produce results comparable with those published in literature from other UK sites.
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1-Nitropyrene on the other hand has been shown in this work to be an excellent marker 

compound for particulate diesel emissions. Values from the large city centre particulate 

samples indicated that 65.3% of the total was due to diesel emissions at that time (see 

Section 2.2.63). The identification of 1-nitropyrene adsorbed to bark surfaces (38) has 

also demonstrated that the compound, once thought to be a possible by-product of 

reactions occurring on filter paper surfaces during diesel particulate sampling, is in fact 

released directly in diesel emissions. Emissions of 1-nitropyrene from other sources in 

Sheffield, that contribute to particulate material of 5pm and below, seem to be minor in 

comparison.

3.6.2.2 ETS.

The particulate nicotine concentrations were determined by GC/MSD using the 

dichloromethane extract (containing 0.01% triethylamine) (1). The quantitative results 

are shown in Table A11 (Appendix A). It can be clearly seen from these data, that a 

lower concentration of nicotine is associated with particulate material compared to the 

vapour phase. In fact 95% of the nicotine released in ETS is found in the vapour phase 

(39,40). However, once again the nicotine results are very inconsistent. The quantities 

determined do not follow the pattern of ETS concentration determined using the other 

particulate methods, observed in Figure 3.15. Besides the inherent difficulty in detecting 

the low concentrations of nicotine in some of the sites, a high level o f ETS is not 

observed in house 4, and a perversely high concentration of particulate associated 

nicotine was identified in house 3. The problems associated with the use of nicotine as an 

ETS marker are discussed at great length in the literature and it is generally felt that 

nicotine is a poor maker for ETS analysis, due to its inconsistent phase distribution and 

its short half-life once released into the atmosphere.
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The contribution of ETS to particulate material in an atmosphere was initially measured 

using the quantity of respirable suspended particulates (RSP) determined in the sample 

(3,41,42). However the results obtained in this study for particulates of <5 pm in 

diameter (Table 3.2) show that such particulate material is found ubiquitously. This is 

apparent in other publications from field studies (2,43). The use of RSP therefore 

overestimates the contribution of ETS to an atmosphere.

This overestimation was reduced to some extent by the use of a total UV method which 

quantified the UV absorbance of a methanol extract of the sampled particulate material 

(see Section 2.1.2). The total UV concentrations obtained in this study can be seen in 

Table A12 (Appendix A) and are represented graphically in Figure 3.16. These data 

clearly show that the sites in which smoking has taken place give higher average 

concentrations of total UV and also much wider ranges. The average concentration of 

total UV in the two indoor smoking contexts are 17.35pg/m3 and 9.27pg/m3 for houses 

and offices respectively. The next highest mean total UV value in all the other contexts is 

2.56pg/m3 which is the outdoor samples of smokers houses. This difference in total UV 

concentration in the smoking/non smoking contexts compares favourably with published 

data (2,44). In these papers higher concentrations are also seen in the smoking contexts. 

However, there is always a response for total UV in all sample contexts (this is also 

reported in the literature (2,45)) indicating that the total UV method is not specific to 

ETS and that overestimation is inevitable (45).

From the results obtained in this field study, and the ratio values obtained from ETS 

atmosphere analysis (Section 2.2.6.3), it was possible to identify the percentage 

contribution of ETS to the total particulates in the various contexts, using the total UV 

analytical method.
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This was calculated by the following method:-

% contribution = (Y/X) x 100 

where Y = particulate material (pg/m3) equivalent to total UV value obtained in

the field sample.

i.e. Y = total UV value(fieid sample) (pg/m3) x ratio value 

ratio value for total UV = 5.3 (as the ratio value is equivalent to the total UV response 

for every pg of ETS particulate material).

X = particulate material in field sample (pg/m3).

The percentage contributions of ETS to total particulates to each sample site measured 

using the total UV analysis method can be seen in Table 3.19 and graphically in Figure 

3.17.

It can be seen that once again, the average values are far higher in the two indoor 

smoking environments, with 67.3% and 71.3% total particulates being attributable to 

ETS in smoking houses and offices respectively. The next highest value is the outdoor 

samples of smokers offices at 51.6%. All other sample sites give a value for ETS 

contribution of above 10%. This clearly illustrates the overestimation obtained using this 

method. Values for a mean percentage contribution from ETS obtained by UV analysis 

given in the literature are 44.85% and 39.5% in smokers homes and smokers work 

environments respectively (2). These values are lower than those indicated by our work. 

This is as expected since the samples in the literature (2) were from personal monitors, 

whilst our work is based on static room sampling. The data reported by Phillips (45) also 

indicate that total UV analysis overestimates percentage ETS contribution, since he 

demonstrated that the use of marker specific compounds (solanesol and scopoletin) gave 

lower values.
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Table 3.19: Percentage Contribution of Particulate Material Attributable to ETS 

in an Atmosphere Using Total UV as the Method of Analysis.

Location 
Non smokers houses

Weather Indoor Outdoor

House 1 No rain 19.04 ±1.62 19.84 ±1.68
House 2 No rain 4.54 ±0.39 7.37 ±0.63
House 3 No rain 8.88 ±0.75 1.60 ±0.14
House 4 No rain 12.68 ±1.08 17.01 ±1.44
Average 11.29 ±0.96 11.45 ±0.97

Smokers houses
House 1 Rain 44.16 ±3.75 11.36 ±0.96
House 2 No rain 69.00 ±5.86 13.01 ±1.10
House 3 No rain 33.59 ±2.85 14.91 ±1.27
House 4 Rain 124.72 ±10.59 49.72 ±4.22
House 5 No rain 64.91 ±5.51 58.64 ±4.98
Average 67.27 ±5.71 29.53 ±2.51

Non smokers offices
Office 1 No rain 53.30 ±4.53 26.96 ±2.29
Office 2 No rain 15.36 ±1.30 12.83 ±1.09
Office 3 Rain 28.54 ±2.42 15.97 ±1.36
Office 4 Rain 14.39 ±1.22 42.61 ±3.62
Average 27.90 ±2.37 24.59 ±2.09

Smokers offices
Office 1 No rain 59.49 ±5.05 44.73 ±3.8
Office 2 No rain 42.23 ±3.59 7.37 ±0.63
Office 3 Rain 62.33 ±5.29 74.58 ±6.33
Office 4 Rain 121.18 ±10.29 79.67 ±6.76
Average 71.31 ±6.06 51.59 ±4.38

Roadside samples (outdoor)
Roadside sample 1 Rain N/A 77.70 ±6.60
Roadside sample 2 No rain N/A 68.29 ±5.8
Roadside sample 3 Rain N/A 31.35 ±2.66
Roadside sample 4 No rain N/A 19.91 ±1.69
Roadside sample 5 No rain N/A 27.64 ±2.35
Roadside sample 6 Rain N/A 43.03 ±3.65
Roadside sample 7 Rain N/A 27.54 ±2.34
Roadside sample 8 No rain N/A 18.42 ±1.56

Average N/A 39.23 ±3.33
Countryside samples
Countryside sample 1 No rain N/A 14.43 ±1.23
Countryside sample 2 Rain N/A 14.53 ±1.23

Average N/A 14.48 ±1.23

221



©
bO
cb

bO £
v*
©

o >
ffi <
♦ ■

(TO) OS

(«l)OS

(«I)HS

o o<N O
o ooo o o

CM
o

©

OS
O

©
«(-(
'H
©

©
"a
V

a
©
S
a
©
-
>
a
w
©

©JSQ!»©s

<
o

CO
H
w
©
a

#©
*-+■»a-D
*C
a
©
U
©
ox
«'M
a©
©u
©CU
©

X
H

*+i
©

a
01

5« 
• pn

>;
«
a

©

O
-a
©

©
-a

5«a
>
"a
©
H
01
a

►
pO

'O
©
a• PMa-*-»
O

• u o i j n q u i u o  j  %

222



Two of the smokers samples (smokers house 4 and smokers office 4) give a contribution 

to particulates from ETS of above 100% (124.7% and 121.2% respectively). These 

results further support the hypothesis that total UV analysis produces an over estimation 

of ETS particulate contribution in any sample.

Total UV analysis has been largely superseded by the use of a total fluorescence method 

(46) for ETS particulate material quantitation, as described in Section 2.2.5.2. The raw 

data for the total fluorescence values can be seen in Table A13 (Appendix A) and are 

represented graphically in Figure 3.18. It can be seen from these data, that the average 

fluorescence values are higher in the smokers indoor samples with smokers houses and 

smokers offices giving values of 2.06pg/m3 and 1.61 pg/m3 respectively. These results are 

similar to those published in the literature (2), although the samples used were from 

personal monitors. However, once again it can be seen that there is a total fluorescence 

value obtained from all the sites. This once again indicates that the values for ETS 

particulate contributions calculated using the total fluorescence method, will be over

estimated.

These values are shown in Table 3.20 and represented graphically in Figure 3.19. The 

average percentage contribution seen in the two smokers contexts are lower than those 

identified by total UV (smokers houses 40.94% compared to 67.27% and smokers 

offices 62.11% compared to 71.31%). This shows that total fluorescence is a more 

specific method for the identification of ETS particulate contribution than total UV. The 

values of ETS obtained using the fluorescence method (using personal samplers), 

reported in the literature are 39.28% and 34.02% (for smokers houses and offices 

respectively (2)). These are lower than the median values from total UV measurements 

given in the same paper showing that total fluorescence is a more specific ETS method. 

However, it will still produce an overestimation compared to the use of specific marker 

compounds (45).
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Table 3.20: Percentage Contribution of Particulate Material Attributable to ETS 

in an Atmosphere Calculated using Total Fluorescence as the Method of Analysis.

Location Weather
Indoor Outdoor

Non smokers houses
House 1 No rain 7.87 ±0.90 12.64 ±1.44
House 2 No rain 23.39 ±2.66 32.52 ±3.7
House 3 No rain 34.11 ±3.89 66.45 ±7.57
House 4 No rain 10.00 ±1.14 10.84 ±1.23
Average 18.84 ±2.15 30.61 ±3.49

Smokers houses
House 1 Rain 17.33 ±1.98 5.16 ±0.59
House 2 No rain 56.50 ±6.44 9.05 1.03±
House 3 No rain 25.36 ±2.89 2.97 ±0.34
House 4 Rain 82.47 ±9.4 0.26 ±0.03
House 5 No rain 23.04 ±2.63 9.11 ±1.04
Average 40.94 ±4.67 5.31 ±0.61

Non smokers offices
Office 1 No rain 7.31 ±.83 11.54 ±1.32
Office 2 No rain 15.32 ±1.75 9.98 ±1.14
Office 3 Rain 22.77 ±2.59 40.00 ±4.56
Office 4 Rain 10.57 ±1.20 10.68 ±1.22
Average 13.99 ±1.59 18.05 ±2.06

Smokers offices
Office 1 No rain 100.83 ±11.49 92.66 ±10.56
Office 2 No rain 36.04 ±4.11 7.28 ±0.83
Office 3 Rain 44.22 ±5.04 13.05 ±1.49
Office 4 Rain 67.34 ±7.67 21.26 ±2.42
Average 62.11 ±7.08 33.56 ±3.83

Roadside samples (outdoor)
Roadside sample 1 Rain N/A 17.85 ±2.03
Roadside sample 2 No rain N/A 103.52 ±11.80
Roadside sample 3 Rain N/A 64.12 ±7.31
Roadside sample 4 No rain N/A 3.20 ±0.36
Roadside sample 5 No rain N/A 11.50 ±1.31
Roadside sample 6 Rain N/A 16.68 ±1.90
Roadside sample 7 Rain N/A 12.91 ±1.47
Roadside sample 8 No rain N/A 3.56 ±0.41

Average N/A 29.17 ±3.32
Countryside samples
Countryside sample 1 No rain N/A 12.97 ±1.48
Countryside sample 2 Rain N/A 1.29 ±0.15

Average N/A 7.13 ±0.82
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Since the total fluorescence method gives a response from all the other contexts, the 

range of contributions looks similar for many of the sampling sites (Figure 3.19). This 

indicates that there are other sources that can contribute to the total fluorescence value. 

An example of another source is diesel particulates and this may be very significant in 

roadside samples, which are seen to have a broad range of contributions (3.2%- 

103.52%). Particulate emission samples were taken from a test diesel engine (see Section 

2.2.1.1) and analysed for total fluorescence as described in Section 22.5.2. From this 

analysis a value of2336.50pg/g for diesel particulate material was obtained.

If  we use this very approximate value to determine the contribution of roadside 

particulate material attributable to diesel emissions, we will be able to understand the 

effect that other sources are capable of having on the total fluorescence measurements 

from the various sites. The concentrations of total fluorescence were converted from 

ng/m3 to pg/g and a percentage apportionment for diesel to roadside samples was 

calculated. These results can be seen in Table 3.21.

Table 3.21: Identification of other possible fluorescence sources in the atmosphere,

such as diesel particulate material.

Site % contribution
Roadside 1 93.97
Roadside 2 149.40
Roadside 3 76.49
Roadside 4 2.33
Roadside 5 19.41
Roadside 6 31.09
Roadside 7 10.70
Roadside 8 3.28
Average 48.33

It can be seen that diesel particulate apportionment by this method is highly variable with 

values being from 2.33%-149.4%, with a mean of 48.33% of the fluorescence in the 

roadside samples arising due to diesel emissions.. These results indicate that the 

fluorescence method for diesel determination is poor, but they do show that numerous
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sources (and specifically diesel particulate emissions) are likely to contribute to total 

fluorescence in the various sampling contexts.

It can therefore be seen that there is an over-estimation of ETS obtained by using total 

UV and total fluorescence methods. Even so, they have regularly been used for ETS 

apportionment. Recently, marker compounds specific to ETS have been identified, and 

used to obtain a more accurate apportionment value for ETS.

Solanesol.

Solanesol was determined in all the field samples, with the concentration data shown in 

Table A14 (Appendix A) and graphically in Figure 3.20. These data clearly identify that 

solanesol is found only in sites where smoking has occurred. This shows that solanesol is 

an ideal marker for ETS. Using the ratio for solanesol concentration to total particulate 

concentration determined in Section 2.2.6.3, a value for the percentage contribution of 

ETS to total particulates was calculated for all the sites. These data can be seen in Table

3.21 and are represented graphically in Figure 3.21. An average value of 21.7% and 

23.3% for smokers houses and offices respectively, was obtained. These results are very 

similar to the solanesol particulate apportionment data published (2) of 31.3% and 

27.2% for smokers houses and work places (personal sampling was undertaken in this 

study). These average contributions for ETS particulate material are far lower than those 

determined by the total UV and total fluorescence values as solanesol is more specific to 

ETS than the other methods.

The percentage contributions obtained from the smokers house samples vary quite 

considerably, ranging from 5.89-48.98%. These variations are due to the variation in 

room size, ventilation, number of cigarettes smoked, and the relationship between the 

site of smoking and the site of the sampler, as room samples were taken, not personnel 

samples. However, smokers house 4 is clearly identified as the site with the highest 

proportion of ETS particulate material. This would be expected from that particularly 

smokey atmosphere.
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The office samples give more consistent values for the contribution of particulate 

material due to ETS. This is in part be due to the offices being of roughly the same size, 

having similar ventilation rates and since a similar number of cigarettes were smoked 

during the sampling period.

Given the data reported in this thesis and since solanesol is stable in the atmosphere 

when attached to ETS particulate material, (it has been shown to degrade little over a 

one hour period (20) and longer (22)), solanesol is an excellent marker method by which 

ETS particulate contribution can be determined.
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Table 3.21: Percentage Contribution of Particulate Material Attributable to ETS

in an Atmosphere Calculated using Solanesol as a Marker Compound Method of

Analysis.

Location Weather Indoor Outdoor
Non smokers houses

House 1 No rain 0.00 0.00
House 2 No rain 0.00 0.00
House 3 No rain 0.00 0.00
House 4 No rain 0.00 0.00
Average 0.00 0.00

Smokers houses
House 1 Rain 9.32 ±0.68 0.00
House 2 No rain 15.00 ±1.10 0.00
House 3 No rain 5.89 ±0.43 0.00
House 4 Rain 48.98 ±3.60 0.00
House 5 No rain 29.31 ±2.15 0.00
Average 21.70 ±1.59 0.00

Non smokers offices
Office 1 No rain 0.00 0.00
Office 2 No rain 0.00 0.00
Office 3 Rain 0.00 0.00
Office 4 Rain 0.00 0.00
Average 0.00 0.00

Smokers offices
Office 1 No rain 27.46 ±2.02 0.00
Office 2 No rain 10.57 ±0.78 0.00
Office 3 Rain 27.16 ±1.99 0.00
Office 4 Rain 27.99 ±2.06 0.00
Average 23.29 ±1.71 0.00

Roadside samples (outdoor)
Roadside sample 1 Rain N/A 0.00
Roadside sample 2 No rain N/A 0.00
Roadside sample 3 Rain N/A 0.00
Roadside sample 4 No rain N/A 0.00
Roadside sample 5 No rain N/A 0.00
Roadside sample 6 Rain N/A 0.00
Roadside sample 7 Rain N/A 0.00
Roadside sample 8 No rain N/A 0.00

Average N/A 0.00
Countryside samples
Countryside sample 1 No rain N/A 0.00
Countryside sample 2 Rain N/A 0.00

Average N/A 0.00
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Scopoletin.

The concentrations of scopoletin determined in all the field samples can be seen in Table 

A15 (appendix A) and represented graphically in Figure 3.22. The results show that 

scopoletin was found only in sample sites where smoking had taken place. Mean 

concentrations of 112.5ng/m3 and 56.48ng/m3 in smokers houses and offices 

respectively, were obtained. Scopoletin is therefore also a specific marker compound for 

ETS.

Using the ratio value for scopoletin determined in Section 2.2.6.3 the percentage 

contributions to total particulate due to ETS were calculated and are shown in Table

3.22 and represented graphically in Figure 3.23. The average are 8.32% and 9.59% for 

smokers house and offices respectively. Compared to the solanesol values, these are far 

lower for nearly all the sites. This indicates that scopoletin may under-estimate the 

contribution of particulate ETS to a sample. This is possibly due to its instability when 

exposed to UV radiation. Another reason for this underestimation could be due to an 

error in the ratio value obtained from the total smoke environment. The samples were 

taken over a short period of time after a number of cigarettes had been rapidly smoked 

by a smoking machine. The sample could therefore contain a higher proportion of 

scopoletin as it has had little time to “age” before being sampled onto the filter paper. 

This value was used on sample measurements that were collected over a twelve hour 

period, during which time ageing of the ETS will have occurred. This would produce a 

lower than expected value for scopoletin and ultimately produce an underestimation of 

the contribution of ETS to an environment.
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Table 3.22: Percentage Contribution of Particulate Material Attributable to ETS

in an Atmosphere using Scopoletin as a M arker Compound.

Location Weather Indoor Outdoor
Non smokers houses

House 1 No rain 0.00 0.00
House 2 No rain 0.00 0.00
House 3 No rain 0.00 0.00
House 4 No rain 0.00 0.00
Average 0.00 0.00

Smokers houses
House 1 Rain 2.294 ±0.12 0.00
House 2 No rain 19.068 ±0.96 0.00
House 3 No rain 4.725 ±0.24 0.00
House 4 Rain 13.618 ±0.68 0.00
House 5 No rain 1.904 ±0.10 0.00
Average 8.32 ±0.42 0.00

Non smokers offices
Office 1 No rain 0.00 0.00
Office 2 No rain 0.00 0.00
Office 3 Rain 0.00 0.00
Office 4 Rain 0.00 0.00
Average 0.00 0.00

Smokers offices
Office 1 No rain 8.15 ±0.41 0.00
Office 2 No rain 10.65 ±0.53 0.00
Office 3 Rain 12.64 ±0.63 0.00
Office 4 Rain 6.92 ±0.35 0.00
Average 9.59 ±0.48 0.00

Roadside samples (outdoor)
Roadside sample 1 Rain N/A 0.00
Roadside sample 2 No rain N/A 0.00
Roadside sample 3 Rain N/A 0.00
Roadside sample 4 No rain N/A 0.00
Roadside sample 5 No rain N/A 0.00
Roadside sample 6 Rain N/A 0.00
Roadside sample 7 Rain N/A 0.00
Roadside sample 8 No rain N/A 0.00

Average N/A 0.00
Countryside samples
Countryside sample 1 No rain N/A 0.00
Countryside sample 2 Rain N/A 0.00

Average N/A 0.00
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Scopoletin as a quantity o f total fluorescence.

As total fluorescence and the scopoletin measurements were both quantified using 

scopoletin as an external calibrant, along with the same detection excitation/emission 

wavelengths, it was possible to identify the percentage of the total fluorescence 

attributable to scopoletin. This is useful as other possible fluorescent tracer molecules 

may be identified if different HPLC columns and eluents are used to achieve separation. 

The contribution of scopoletin to total fluorescence is given in Table 3.23.

Table 3.23: The Average Percentage Contribution of Scopoletin to Total

Fluorescence Measurements.

% Scopoletin of total fluorescence
Location 

Smokers houses Indoor
House 1 3.74
House 2 9.54
House 3 5.27
House 4 4.67
House 5 2.34
Average 5.11

Smokers offices
Office 1 2.28
Office 2 8.36
Office 3 8.08
Office 4 2.91
Average 5.41

The ETS contributions calculated using scopoletin ranged from 2.28% to 9.54% with an 

average of around 5% for the two smoking contexts. This indicates that scopoletin 

contributes only a small amount to the total fluorescence measurements and that there is 

a lot of other fluorescent material in ETS that may not as yet have been identified. These 

could include various PAH as well as a number of scopoletin derivatives.
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Comparison o f the four particulate ETS methods.

If we compare all the ETS related samples and the four methods for particulate ETS 

determination (Figure 3.24 and 3.25) several similarities become evident. All the 

particulate methods under investigation follow a very similar pattern, with house 4 

consistently having the highest values and the variation in concentration indicated by 

each individual method being replicated by all the methods. Slight differences can be 

seen, i.e. solanesol goes up from office 3 to office 4 while the scopoletin concentration 

drops. However, overall the methods do seem to follow each other very well.

If we plot two of the different particulate ETS methods against each other, the 

correlation coefficient R2 relates to how well the two methods compare with each other. 

The more closely the methods follow each other, the closer the R2 value of the straight 

line approaches 1. Such plots can be seen in Figures 3.26-3.31 which clarify if the four 

methods are comparable with each other for samples taken from smoking contexts.

Figure 3.26 (total UV against total fluorescence) shows that the two methods increase 

uniformly with increased levels of ETS, the variation of some values will be due to other 

sources artificially increasing them. In fact, all four methods used (total UV, total 

fluorescence, solanesol and scopoletin) when plotted against each other do show good 

correlation with R2 value ranging from 0.75-0.95 (The lower R2 values are produced 

when UV based detection methods are compared with florescence detection methods, 

producing higher variation). These value are a lot higher than those identified by Phillips 

et al (45). This may be because they had a larger sample in which larger variations 

occurred, and since they also included samples from non-smoking contexts. However, 

for smoking environments they found good correlation between total UV and solanesol 

as well as total fluorescence and solanesol. More recent work by Phillips (43) identified 

R2 values of 0.82 for solanesol determination compared to total fluorescence, 0.86 for 

solanesol/total UV and 0.98 for total UV/total fluorescence. These values are very 

similar to those shown in Figure 3.29, 3.27 and 3.26, where values of 0.87, 0.95 and 

0.84 were obtained for solanesol/total fluorescence, solanesol/total UV and total 

UV/total fluorescence respectively.

238



18
00

.0
0

o

o o o o o o o o oo o © o o o o o o
o o o’ o’ o o’ o o’ oo o o o o o o o
VO (N o 00 VO <N

‘dsiiodsax
239



18
00

.00

o
CLo

( I 
< I

>b

Qh czj H H c/o
■ □ □ □ □

OSU()(isO>|

0>
53

ao
©
©
Q
-a©
'S
PS
©
_2
"B©•PN
t ;
93Bu

C/5
H
W
©JS-4—
©

<2
©Vi
S3©
PI5fl ©
©-c

«4Mo
&©
5-•-
93
PisO
u
«T5
<*3
©u3
OJj

■a©

-^ ^ y jo s

i 3 3 1 0 0  s

s osnoH s

1 3 s n o n  S

£ s s n o H  S

Z  a s n o H  S

I a s n o H  S

© ai
« C-
t/3 co

t  3 ^ 1 0 0  S 

£ 3 3 1 0 0  S

240

^



The results also follow the trend in concentrations and percentage contribution seen in 

the small number of papers released on this subject. These identify that RSP grossly 

overestimates the contribution of ETS to an indoor atmosphere, as particulate material 

can be released from a whole range of other sources. The introduction of total UV and 

total fluorescence reduced this overestimation to some extent (with fluorescence 

measurements producing a more accurate ETS contribution value). However, by the use 

of tracer molecules, i.e. solanesol, it has been clearly shown that both the total 

spectroscopic methods overestimated ETS contribution.

Table 3.24: shows the average overestimation of ETS in determinations carried out by 

total UV, and total fluorescence using the solanesol measurements as the accurate (true) 

data.

Table 3.24: Percentage Overestimation of ETS obtained from Total UV and Total 

Fluorescence measurements in all Contexts when Compared to Solanesol

Measurements.

Site Total UV Total Fluorescence.
Non smokers house (In) 

Non smokers house (Out) 
Smokers house (In) 

Smokers house (Out) 
Non smokers office (In) 

Non smokers office (Out) 
Smokers office (In) 

Smokers office (Out) 
Roadside 

Countryside

11.29 ±0.96 
11.45 ±0.97 
45.57 ±4.12 
29.53 ±2.51 
27.9 ±2.37

24.59 ±2.09 
48.02 ±4.35
51.59 ±4.38 
39.23 ±3.33 
14.48 ±1.23

18.84 ±2.15 
30.61 ±3.49 
19.24 ±3.08 
5.31 ±0.61 
13.99 ±1.59 
18.05 ±2.06 
38.82 ±5.37 
33.56 ±3.83 
29.17 ±3.32 
7.13 ±0.82
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We can see that total UV clearly overestimates the contribution of ETS to a greater 

extent than total fluorescence in nearly all of the different contexts (except for the indoor 

and outdoor non smokers house sites). The reason for this is probably due to the 

presence of other sources of fluorescent material in these contexts, but the actual source 

was not identified.

Scopoletin was another possible ETS marker. However, the apparent poor stability of 

scopoletin leads to an underestimation of ETS contribution to an atmosphere. We 

therefore conclude that solanesol is the best particulate marker method by which the 

contribution of ETS can be measured.

Calculations of cigarette Equivalents from ETS Data “Passive Smoking”.

An attempt to put into perspective the quantity of ETS taken in by a passive smoker has 

been used in previous publications (43). This is achieved by comparing the quantity of 

ETS aspirated by a non smoker over a period of time to the quantity of mainstream 

smoke, aspirated by a smoker. This produces an equivalent number of directly smoked 

cigarettes to that of ETS breathed by the non smoker.

The ETS concentrations calculated from the total UV, total fluorescence, solanesol and 

scopoletin determinations were taken for all smokers environments and a value for 

mg/year for each method/compound was obtained as follows.

Houses. An average breathing rate of lm3/hr (45) was taken along with a value of 

14hrs/day at home indoor for 365 days per year.

Office. An average breathing rate of lm3/hr (45) was taken along with 8hr/day spent at 

work, 5 days a week for 48 weeks a year.

The concentrations of the four ETS methods in mainstream cigarette smoke were taken 

from the publication by Ogden et al (47).

The following table shows the equivalent number of cigarettes smoked calculated using 

the above parameters when subjected to the atmospheres sampled in this field study.
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Table 3.25: Identification of Cigarette Equivalents for Individuals Subjected to

Field Study Smokers Environments “Passive Smoking”.

ETS inhalation as Cigarette Equivalents.
Number of Cigarettes/Year.

Smokers houses Total UV Total fluorescence Solanesol Scopoletin
House 1 4.6 0.4 4.9 9.0
House 2 5.9 1.2 6.5 61.7
House 3 4.3 0.8 3.8 23.0
House 4 24.9 4.1 49.2 102.7
House 5 2.8 0.3 6.4 3.1
Average. 8.5 1.4 14.2 39.9

Smokers offices
Office 1 2.0 0.8 4.7 10.5
Office 2 0.6 0.1 0.7 5.4
Office 3 0.9 0.2 2.0 7.1
Office 4 3.3 0.5 3.9 7.2

Average. 1.7 0.4 2.8 7.5

Home ETS emissions can be seen to contribute more than ETS encountered in the 

working environment, this has also been shown in a number of publications (43,45,47). 

House 4 can also been seen to be the sample with the largest amount o f ETS. The 

household was indeed very smoky, the couple living there both smoked, and this 

produced a very high total ETS sample.

A variation of cigarette equivalents from the four methods of ETS determination is 

apparent in the results in Table 3.25. Assuming solanesol is the most accurate (and 

assuming the concentration of solanesol in mainstream cigarette smoke is equivalent to 

the concentration in ETS) we can see that the total UV and fluorescence methods 

underestimate the cigarette equivalents while scopoletin seems to overestimate. This 

could be due to higher levels of total UV and fluorescence material being present in 

mainstream emissions while lower concentrations of scopoletin are identified, compared 

to the concentrations found in mainstream smoke.

The static sampling procedure used in this field study will produce a high number of 

cigarette equivalents due to the inherent lack of dilution compared to personal samplers,
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along with the sampling occurring during a weekend when the smoker was present for 

the longest period of time, producing a high ETS concentration. We can therefore 

identify the values obtained from the static study as the higher equivalents seen in such 

an environment.

The lung clearance of a non smoker is better than a smokers as the lung mechanisms 

have not been damaged through the inhalation of hot direct cigarette smoke. This was 

discussed by McAughey et al (48), who state that the average retention of particulate 

ETS material for total UV and solanesol determination were 38% and 40% respectively 

in male volunteers and 17% and 27% respectively for female volunteers. We can clearly 

see therefore that the cigarette equivalents identified in Table 3.25, will be the highest 

possible number as the individual would have to be in that environment all that length of 

time stated (and much of the time at home is likely to be spent asleep). These static 

samples will therefore produce results which will be very much on the high side o f ETS 

exposure.

We can compare these values to those of cigarette equivalents that were obtained from 

other published studies, after identical mathematical manipulation, (Table 3.26).

Table 3,26: Cigarette Equivalents from Other Published Studies.

ETS Inhalation of Cigarette Equivalents. 
Number of Cigarettes/Y ear.

Cigarette equivalents Total UV Total fluorescence Solanesol Scopoletin

Phillips (43)
Home 0.42 0.29 2.92 N/A
Work 0.15 0.16 2.38 N/A

Heavner (2)
Home 10.74 12.86 5.83 3.90
Work 4.04 4.19 1.81 1.07

Jenkins et al (4)
Home 3.66 3.14 0.39 0.05
Work 0.63 0.54 0.02 0.05
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Note,

All the concentrations were applied to identical breathing rate parameters, used for Table 

3.25.

All samples in Table 3.26 were obtained using personal sampling monitors.

From the two sets of data we can see that for all studies, the values obtained for the 

working environment are less than those associated with the home. The assumption that 

the smoky atmosphere is present throughout the household and throughout the night at a 

constant level ensures that the cigarette equivalent number is higher in our study 

compared to the personal monitoring studies. We sampled for 12 hours during the day, 

while many of the publications discussed sampled 24hrs (45), and in particular sampled 

during the night when ETS concentrations can drop significantly.

An interesting feature of the cigarette equivalents data shown in the two tables, is that 

our total UV and fluorescence values are lower than the solanesol equivalents value, this 

was also identified by Phillips (43), while the equivalent values identified by Heavner (2) 

and Jenkins (4) are higher. The scopoletin in our study produce a higher equivalent than 

solanesol while the other published results are lower. The reason for this is not known. 

However, the variation in American and European ETS cigarettes may account for it.

Another method for the identification of cigarette equivalents is to identify the quantity 

of particulate material produced by ETS in an atmosphere (using the solanesol 

concentration) hence to obtain the cigarette equivalents to particulate material produced 

in the main stream. This removes any variation that would occur from the concentration 

of the marker materials in mainstream and side stream cigarette smoke.
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Table 3.27: Identification of Cigarette Equivalents using Particulate Material

shown as being from ETS by Solanesol Measurements.

Smokers houses CE per year
House 1 8.89
House 2 11.83
House 3 6.99
House 4 89.99
House 5 11.79

Average. 25.90
Smokers offices

Office 1 8.58
Office 2 1.32
Office 3 3.70
Office 4 7.05

Average. 5.16

Note.

A mainstream concentration of 12mg/m3 (45) was used to produce the CE values.

These cigarette equivalent values are between the solanesol and scopoletin cigarette 

equivalents values shown in Table 3.25, identifying that there could be some sort of 

variation in the concentration of the two marker compounds in main stream and side 

stream smoke. If concentrations per gram could be obtained, of the marker compounds 

in side stream and main stream smoke, this difference could be identified, and a more 

accurate value for the equivalent number of cigarettes smoked in an environment could 

be obtained.

It can be seen from the above discussion on CE values that there is still some uncertainty 

in the method by which an accurate CE is obtained. This was discussed in some detail by 

Ogden (47) for earlier methods of ETS determination. It can be seen however that these 

methods show that an equivalent (if we remove the high value from the smokiest 

environment house 4) of between 3-7 cigarettes (home) and 1-5 cigarette (work) are 

inhaled using direct solanesol measurement data. Particulate measurements identify that 

6-12 (home) and 1-9 (work) cigarettes equivalents will be inhaled during a year period 

by “passive smoking”.
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It is difficult to argue that the consumption of any pollution at whatever concentration is 

a good thing. However, the concentrations identified in these field studies inhaled by 

individuals seem to be quite low especially since these are the higher end of 

concentrations seen in an environment, by a non smoker breathing in a smokers 

environment.

The more startling discovery is the concentration identified in house 4 where a closed 

smokers environment produced a heavily contaminated atmosphere with a CE of 50 by 

solanesol determination and 90 by ETS particulate measurements. Young children and 

individuals with poor respiration systems would probably find such an atmosphere most 

unpleasant.

3.7 Conclusion.

The aim of this chapter was to use the marker compounds identified in Chapter 2 to 

identify percentage apportionment of diesel emissions and ETS to indoor and outdoor 

environments. These marker methods were compared against the more regularly used 

methods for such determination (where appropriate) in an attempt to identify if any of 

the previous, less specific methods, over-estimated the contribution of the previously 

stated sources.

Diesel.

No marker compound was identified for vapour phase diesel emissions. Hence the 

contribution of diesel emissions to vapour phase organics in an environment could not be 

quantitated.

Particulate matter apportionment for diesel emissions was calculated using C24 as the 

marker compound. It was known that this aliphatic alkane was not specific, but that this 

could be corrected, using large scale measurements against 1-nitropyrene (identified as 

an ideal marker compound for diesel emissions, but unfortunately at to low a 

concentration in the sample sizes taken in this study). The percentage apportionment
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values were obtained with the highest mean value of 45.26% being obtained for city 

centre and major road samples. The contribution did drop from urban to suburban and 

rural area, with mean values of 25%, 15% and 5% respectively. Quantities of diesel 

associated material was also identified in indoor environments illustrating the diffusion of 

outdoor pollution into indoor environments.

Environmental Tobacco Smoke fETST

Using pyrrole as a marker compound for ETS, percentage contributions o f a number of 

volatile compounds (benzene, toluene, xylene isomers etc.) were identified and used to 

identify the cigarette equivalents (CE) needed to be smoked directly that would be 

comparable to the ETS inhaled passively. A value of 50 cigarettes (approximately one a 

week) was identified for work place atmospheres. The number of cigarette equivalents is 

significant, but what needs to be clarified is that this constitutes being in the smokers 

atmosphere for 8 hours a day, 5 days a week for 48 weeks, which is seldom the case. 

This CE value is therefore a worst case scenario.

The use of nicotine as a marker compound was found to be highly problematic even with 

the use of triethylamine in the DCM used to improve nicotine recovery (1). The 

quantitative results produced by both our laboratory and Rothmans International 

Laboratory, Basildon Essex, were far from accurate and did not compare well with any 

of the other methods of ETS contribution. Thermal desorption quantitation of nicotine 

produced the best results (for the few sites that were quantifiable) with quantities 

mirroring other ETS contribution methods. This result was contradictory to the literature 

as the XAD sampling, extraction methods is proposed as the method of vapour phase 

nicotine determination (27-29).

Several methods had been used in the past to identify the ETS particulate contribution to 

an atmosphere. Many of these were not marker specific, and were thought to over

estimate the contribution of ETS quite dramatically. The recent introduction of marker 

methods (solanesol and scopoletin) identified a possible way by which the over

estimation could be identified and quantified. We were able to do this using solanesol as
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the preferred marker method and identifying over-estimation of 11-51% by total UV and 

5-38% by total fluorescence.

The use of cigarette equivalents identified that the number of cigarettes consumed in a 

year by a non smokers exposed to a smokers environment (14 hours a day, 365 days a 

year at home, office hours stated earlier) produced values of 14 and 3 cigarettes for 

smokers homes and offices respectively. Once again this is very much the worst case 

scenario as the 14 hours at home includes sleeping hours, meal times etc.

We can see that the CE values for vapour phase emissions are a lot higher than those 

identified for particulate material. This is probably due to the longer residence time of 

volatile material in an atmosphere compared to ETS particulate material which readily 

adsorbs to surfaces and is quickly removed from the atmospheric environment.
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4. Tree Bark as a Passive Sampler for Diesel Emissions.

4.1 Introduction

For the quantitative determination of diesel particulate material in an atmosphere 

(discussed in Chapters 3 and 4) the compound 1-nitropyrene was used as an indirect 

marker for diesel emissions. 1-nitropyrene in addition to other nitrated PAH has been 

identified in various anthropogenic emissions including diesel (1-12), gasoline (3,4) and 

wood (3,4). The nitration of PAH in the diesel exhaust system has been discussed 

extensively in the literature, electrophilic aromatic substitution has been identified as the 

main nitration mechanism. This yields isomers corresponding to the cationic (Wheland) 

intermediates that have the greatest resonance stability (see Section 4.2.3.2). The 

formation of these micropollutants has been thought to be an artefact of emission 

sampling, with one hypothesis being that the formation of nitrated PAH derivatives 

occurs on the filter paper (13). In this chapter these ideas are discussed and it is shown 

that 1-nitropyrene is found in the atmosphere and that its source is almost entirely diesel 

emissions. Other known atmospheric reactions appear to contribute little to the 

concentration of this compound in the environment.

To identify if nitrated PAH were in fact produced from the combustion of anthropogenic 

material and not being detected as an artefact of sampling, a method of sampling was 

needed in which nitration of PAH could not occur. The adsorption of particulate material 

from various sources onto solid surfaces has been apparent for many years in the urban 

environment with an estimated £79 million pound market for the cleaning o f “soiled” 

buildings in Britain in 1992 (14). This adsorption of particulate pollution is not only 

specific to buildings, all surfaces are prone to soiling, the amount being dependant upon 

the position of the surface and the extent of the pollution. The use of vegetation as a 

sampler for atmospheric pollutants is widely reported in the literature, and suggests that 

it is a possible method of sampling for these nitrated PAH in a real atmosphere.
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4.1.1 Use of Organic Vegetation as a Passive Sampler for Atmospheric Pollutants.

As 80% of the earth’s land surface is covered with vegetation, and since vegetation has 

approximately 6-14 times more surface area than the land it is growing on, it is highly

probable that it plays an important role in the annual cycle of organic molecules to and

from the atmosphere (15).

Vegetation is abundant in many forms, several of which have been used as sampling 

systems to determine concentration of toxic substances. Examples include:-

1. Lichens used to determine PCB (16-18).

2. Tree bark used to determine PCB (19,20), Heavy metals (19,21), Acidic gases

(18), PAH (19,22-23) and Radionuclides (24)

3. Pine needles used to determine PCB (17-18) and pesticides (18,25).

4. Mango foliage used to determine PCB (17).

5. Dried silage used to determine PCB (26) and PAH (26).

6 . Plant leaves used to determine PCB (19,25) and PAH (19).

7. Humus layer to determine PCB, PAH, Heavy metals and pesticides (19).

The possible routes of sorption of pollutants by vegetation include direct adsorption of 

pollutants onto the external surfaces, or absorption of pollutants through the roots from 

the soil. Transportation of pollutants from the soil into vegetation (evapotranspiration - 

the uptake of water from soil into the roots for transportation to the extremities of the 

plant) has been shown to be of little importance. Lipophilic organic pollutants are 

hydrophobic and do not dissolve in water (27), so little is transported into the vegetation 

via this route. Buckley (25) showed that less than 1% of radio-labelled PCB in soil were 

adsorbed through the roots from contaminated soil. Transportation of PCB from heavily 

contaminated soil was identified as being via the pollutant evaporating from the soil 

surface and adsorption occurring directly onto the surface of the vegetation (27).

Advanced analytical techniques have been able to show that plant matter accumulates 

pollutants. However, it is not clear if these compounds are transported around the plant 

system. There are several suggestions for factors which effect the sorption of pollutants.
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It is likely that the complete model will be a combination of several or all of these 

proposals.

Leaves and pine needles are both coated by a waxy, lipophilic layer (22,25) which 

prevents excessive evapotranspiration (15). Tree bark is a layer of dead cells, coated with 

suberim (a lipid mixture) which makes the bark impervious to water (28). Schuck (29) 

states that the waxy coating on the surface of pine needles (specifically a Scotch pine) is 

stable for up to two years, so presumably the lipid layer on leaves and bark are stable as 

long as they are attached to the tree.

Simonich et al (15) identified that during a year of growth, the quantitative total of semi- 

volatile PAH adsorbed by vegetation fluctuated. Not only was a larger amount adsorbed 

at times of cold ambient temperatures, but also during the growth of the plant, when the 

lipid content was higher than normal (around August). Larger quantities of PAH were 

also found in that part of the vegetation with the largest lipid content, i.e. the needles. A 

greater quantity of mutagenicity to the Ames test was identified (30) (modified 

Salmonella Typhimurium, sensitive to nitrated PAH), in extracted leaf matter compared 

to the soot washed off the leaf surface with water. This reinforces the idea that the 

organic pollutants are adsorbed into the leaf matter. However, the work o f Gaggi (18) 

indicates that the lipid content of a plant does not provide a preferential route to the 

adsorption of pollutants. The majority of the PAH studied were found in the humus layer 

(surface layer), as there was little apparent movement of PAH into ground water or into 

the deeper layers of soil, due to their hydrophobic nature (31). At the very worst these 

results suggest that the lipid layer is a more favourable sorbent than water droplets. Such 

adsorption results have led to the derivation of a mathematical equation for the 

representation of the possible variables which effect adsorption to vegetation (20). They 

also indicated that the lipid content of the plant had a minor effect on the adsorption of 

pollutants. Conversely the individual vapour pressure of an organic molecule was shown 

to be of great importance. It can therefore be seen that no definitive model has been 

produced for the effect surface lipid concentration of vegetation has on the adsorption of 

pollutants, although due to the hydrophobic nature of the gaseous pollutants it seems 

likely that the lipid layer does play some small role in the adsorption process.
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The vapour pressures of individual organic molecules are in fact deemed to be the major 

influence on their adsorption. It has shown that PCB with a high vapour pressure (i.e. 

volatiles) stay in the gas phase, while compounds of low vapour pressure (i.e. non- 

volatiles) are preferentially adsorbed onto a bark or herbage surface. It has been noted 

(15,18) that the ambient temperature and pressure have a great effect on the adsorption 

of organic pollutants. Larger amounts of volatile and semi-volatile compounds 

accumulate in vegetation in colder, or higher regions compared to warmer, low altitude 

areas. This has been called “the cold condensation effect,” in which volatile molecules 

condense out onto surfaces such as bark or other vegetation, due to lower temperatures.

Temperature can have a major effect on the state in which different molecules will be 

found. Yamasaki et al (32) sampled PAH in both the vapour and particulate phases. He 

identified that with higher ambient temperatures the 3-5 ringed PAH were found 

predominantly in the vapour phase while during colder periods the same PAH were 

found adsorbed onto particulate surfaces. This phenomena could cause a lower than 

expected value of such pollutants to be found in vegetation samples. However, this is 

dependant upon the mechanism of adsorption that occurs between pollutants in the 

gaseous and particulate phases and the surface of the vegetation.

If all of these different effects are brought together a proposal can be put forward, 

pollutants both volatile and less volatile will accumulate more readily into/onto tree bark 

in a country such as Britain during the autumnal and winter periods. This is due to the 

low average temperature at that time, whilst the burning of fuels is high both for 

transportation and heating. Photodegradation of pollutants will also be low due to the 

lack of ultra violet radiation (31). Disciduous trees are also without leaves for a large 

amount of this period, therefore the only vegetative area pollutants are able to adsorb 

into/onto is bark. It has been proposed (20) that vegetation plays a larger role in the 

removal of high molecular weight molecules due to their higher lipophilicities and lower 

vapour pressure, and that such molecules will be preferentially adsorb onto a surface. 

However the transfer of pollutants contained in particulate material onto/into the tree 

bark is unknown. The lipid surface may be a preferred environment for some compounds 

but this is at the present time only conjecture.
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Simonich et al. (22) suggest this very hypothesis and continues further by surmising that 

in spring and summer, pollutants are transferred to the leaves. So in autumn when the 

leaves are shed, the tree has removed the pollutants it has adsorbed throughout the year. 

This hypothesis is supported by the work of Thomas et al (19) who identified PAH in 

relatively large quantities in the humus of both deciduous and coniferous litter. However, 

another reason for the high levels could be the surface to mass ratio of the sample i.e. the 

large surface area compared to the mass of the sample. This could produce a high 

quantitative value for PAH per gram of vegetation. Other ways that the pollutants may 

be removed from the vegetation include the shedding of bark with time, or the increase in 

photodegradation that occurs as the sunlight strength increases during the summer 

months.
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4.2 Formation of Substituted Polvcvclic Aromatic Hydrocarbons.

4.2.1 Introduction

Polycyclic Aromatic Hydrocarbons (PAH) have been extensively studied due to their 

production from the combustion of all varieties of organic fuels. PAH are a large family of 

molecules, many of which have been shown to be indirectly active to the "Arne's test" a 

procedure carried out to identify the mutagenicity of a compound .

4.2.2 Mutagenicity and Carcinogenicity

Mutagenicity and Carcinogenicity are two methods used to indicate the toxicity of 

compounds.

Mutagenicity.

The original method used to determine mutagenicity was developed by Ames B in 1975 

(33). He proposed the use of Salmonella Typhimurium TA98 bacteria by exposing them 

to a chemical or the fraction of a complex mixture to produce a reverse mutation. Since 

this time, new strains of this type of bacteria have been introduced, which are sensitive to 

certain types of compounds (i.e. Salmonella Typhimurium strains YG1021 and YG1024 

which are sensitive to some nitroarenes, in the absence of an external activation source, S9 

(30)). S9 is a supernatant fluid prepared from Sprague-Dawley adult male rat liver, 

induced by Aroclor 1254 (33a). The components of the S9 activation system in addition 

to the rats liver supematent include nicotinamide adenine dinucleotide phosphate -sodium 

salt (NADP), o-glucose-6 -phosphate, magnesium chloride, potassium chloride and sodium 

phosphate buffer (pH 7.4) (33a).

It has been found that many mono and di nitrated PAH are “direct acting mutagens” 

compared to their analogous PAH which are “indirect mutagens”. This terminology stems 

from the fact that PAH need an external activation source, “S9”, to exhibit mutagenicity. 

Many nitrated PAH do not require “S9” activation and are capable of inducing 

mutagenicity directly.

264



The mutagenicity of nitrated PAH from different sources has been widely discussed in the 

literature, such sources include diesel exhaust fumes (34-36), ambient aerosols (37) and 

pollutants adsorbed to the leaves of woody plants (30).

Carcinogenicity

Carcinogenicity is the effect the administration of the compound in question has on a 

mammalian biological system. The majority of this type of work is carried out on mice, 

hamsters (38) or rats (39). Carcinogenicity is the effect the invading compound has on the 

DNA of the cells it is in direct contact with. Intravenous injection into systems can induce 

cancerous tumours at the point of injection (39).

How the compounds are taken into a system, such as ingestion, injection, inhalation (either 

as an aerosol or directly from the gaseous phase), can have a major effect on the overall 

damage to the system in question. Once present in the body, nitrated PAH are metabolised 

to amino, or glucuronide conjugates, and can further increase their overall polarity by the 

addition of hydroxy groups at different sites on the polycyclic molecule. The effects of 

these molecules once in the body on internal organs is not yet known, however, organic 

combustion sources have been tentatively linked with adverse health effects (see Chapter 1 

Section 1.6 ).

A lot of attention has been directed towards derivatives of PAH and more specifically 

oxygenated and nitrated derivatives due to this toxicological data. Although the quantities 

of the nitrated compounds are up to a factor of 1 to 2  orders of magnitude below that of 

PAH (40), they have been shown to be there in sufficient quantities to make monitoring of 

these direct carcinogens and mutagens necessary.

In the following section, the routes to the formation of nitrated-PAH will be identified. 

These include the production of nitrated PAH in anthropogenic combustion, and also 

independent routes for the formation of these highly carcinogenic and mutagenic 

compounds in the atmosphere.
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4.2.3 Nitrated Polycyclic Aromatic Hydrocarbons.

Nitrated-PAH are one of the many groups of compounds produced from the incomplete 

combustion of organic materials. However, this is not the only source of nitrated PAH 

that has been identified. It has also been shown that specific isomers can be formed by 

certain radical reactions that can occur in ambient air (41-44).

The major source of nitrated PAH is from the nitration of parent PAH molecules. Many 

factors can effect this nitration process, including the nature of the nitrating species, the 

chemical structure of the PAH, the chemical effects of substituent groups attached to the 

PAH molecule, and the environment in which the reaction occurs, (i.e. gas phase, in 

solution or on a surface i.e. particulate).

4.2.3.1 Nitrating Species.

In diesel exhaust emissions, NO is the dominant nitrogen containing species. This is 

quickly oxidised to NO2 on mixing with ambient air (45). NO and NO2 can react further 

with water vapour (46) to produce further reactive species including nitric acid and nitrate 

(45) along with nitrous acid (47) and with appropriate reagents peroxyacetyl nitrate 

(PAN) (48).

Hence numerous nitrogen containing species can be produced in exhaust emissions and 

ambient air. However, only nitrate, nitric acid, nitrogen dioxide, dinitrogen pentoxide, 

nitrous acid, alkyl nitrates, and alkyl nitrites are thought to nitrate PAH (41). As yet, there 

has been no evidence to show that NO acts as a nitrating species towards PAH (49). PAN 

is known to cause oxidation of PAH, not nitration (50), while the NCV has a low 

reactivity to unsubstituted PAH (41,51). Nitrous acid has been shown to catalyse the 

nitration of PAH in strongly acidic conditions (52) while N2O4 has been identified as a 

catalyst for nitration in weakly acidic conditions (52).

The reaction system containing gaseous NO2 and HNO3 (50) is known to cause nitration 

of PAH, especially with the larger molecules associated with surfaces and this is thought 

to be the dominant nitration reaction in diesel exhausts. This is an electrophilic aromatic



substitution reaction. Gaseous system of N2O5 along with small quantities of NO2, HNO3 

and the NO3 radical were identified as nitrating PAH that were attached to surfaces (42), 

but also preferentially with PAH found in the gaseous phase (43).

4.2.3.2 Formation o f  Nitrated PAH, by Electrophilic Aromatic Substitution in 
Combustion Sources

Nitration of Naphthalene.

Naphthalene is readily nitrated by electrophilic aromatic substitution (53), preferentially at 

the 1 position. This is due to the resonance stability of this isomer being greater than that 

of the analogous 2  nitronaphthalene. 

e.g.

NO2/HNO:

1-Nitronapthalene : 2 -Nitronapthalene 
10 : 1

If we compare the resonance structures of 1 and 2 nitronaphthalene

H Y

H Y

H Y

■ < -

1 - N i t r o n a p t h a l e n e  2 - N i t r o n a p t h a l e n e

N O T E . Y=N02
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1-Nitronaphthalene contains two resonance structures with the added stability of a benzene 

ring while 2-nitronaphthalene contains only one. From this we can decern that 1- 

nitronaphthalene is the most abundant isomer, via this type of reaction. Anthracene reacts 

in a very similar way, with position 9 and 10 being the most reactive.

8 9 1

5 10 4

These two positions are the most reactive towards electrophilic substitution (in this case 

nitration), due to their increased resonance stabilities compared to the resonance stabilities 

of the other possible structural isomers (53).

Effect Of Chemical Substituents on the Reactivity of PAH.

The position and type of substituent group (steric effects and electron 

withdrawing/donating respectively) can have a drastic effect on the reactivity of PAH. For 

example, electron donating substituent groups (such as CH3), increase the likelihood of 

nitration as long as steric effects are not an issue (54);

i.e. A methyl group at position 1 or 8 may sterically hinder nitration at

position 9, however the nitration reaction can occur at position 10.



This introduces the possibility of methyl-nitro PAH being present in the atmosphere, (55) 

from their formation in exhaust emissions, as numerous alkyl PAH are present in diesel 

emissions.

Other substituent groups that can cause in increase in the nitration of PAH molecules 

includes the hydroxy group. It has been shown that 9-Hydroxyanthracene is 200 times 

more reactive than anthracene (54), therefore investigation into levels of this class of 

compounds on emissions could yield some interesting results.

Other chemical substituents studied include H, Cl, CN and NO2 (54). It was observed that 

reactivity decreased from H to N 0 2 group (for this set) as the N 0 2 group is electron 

withdrawing. As an electron density is needed for electrophilic aromatic substitution to 

occur, it can be seen that dinitro-PAH would be an unfavoured compound while hydroxy- 

nitro and methy-nitro PAH would be the more favoured, and possibly the more abundant 

compounds found in diesel emissions. Dinitro-PAH have been observed in diesel 

emissions (1), therefore it seems possible that larger quantities of methyl and hydroxy 

nitro-PAH could be present.

4.2.3.3 Formation o f  Nitrated PAH derivatives in the Gas Phase.

Introduction.

The primary source of nitroarenes in air is from combustion emissions, with diesel being 

the largest identified source. The route taken to produce them is thought to be via 

electrophilic nitration of PAH (56) by N2O4 and NO2/HNO3, which occurs after 

combustion but before extensive dilution after emission (57,58). Other routes o f formation 

for nitroarenes in the atmosphere include the nitration of PAH by N2O5 at night (42-44), 

and an OH radical initiated nitration reaction (59). However, the isomers produced from 

these reaction are not those favoured by electrophilic substitution, (e.g. the isomers 

identified from these reactions include 2-Nitronaphthalene, 2-Nitropyrene etc.)
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For the hypothesis that electrophilic aromatic substitution is the dominant process to be 

true, the literature would show that organic extracts from exhaust emissions contain 

quantities of the most favourable electrophilic substitution products, e.g. 1 nitropyrene 

and 3- and 8 -nitrofluoranthene. This is in fact the case (1,2). Fluoranthene and pyrene are 

released by diesel engines, in very similar quantities (34). However, pyrene is more 

susceptible to electrophilic substitution so larger quantities of 1-nitropyrene are detected 

in comparison to 3 and 8 -nitrofluoranthene (3).

Arey et al (60) identified similar quantities of nitrated pyrenes and fluoranthenes in ambient 

air. 1- and 2 -nitronaphthalene were detected at similar concentrations in ambient air 

samples (55), while only 1 nitronaphthalene was detected in diesel emission samples (1).

Other sources of nitrated-PAH, such as gasoline fuelled vehicles (3,4) and wood burning 

(3,4) have been shown to produce 1-nitropyrene, but not 2-nitropyrene or 2- 

nitrofluoranthene, identified in ambient air particulates (2,60,61).

It has therefore been proposed (60) that the reaction occurring in emissions from organic 

combustion is one of electrophilic substitution. Resonance stability will have a great effect 

upon the position of the nitro group, therefore the major mono-nitrated PAH species 

found in anthropogenic emissions include 1-nitronaphthalene, 4-nitrobiphenyl, 5- 

nitroacenaphthene, 2-nitrofluorene, 9-nitroanthracene, 3-nitrofluoranthene and 1- 

nitropyrene.

Other mono-nitrated PAH have been identified in ambient air sampling, e.g. 2- 

nitrofluoranthene and 2-nitropyrene (2,60,61), 2-nitronaphthalene (43,60), and 3- 

nitrobiphenyl (60) These are not the most resonantly favoured isomers produced by 

electrophilic substitution. These compounds are therefore being produced by a different 

reaction mechanism.
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Two photochemical routes to the formation of nitrated-PAH in ambient air have been 

identified

1) Reaction of N2O5 with PAH.

2) Formation of nitroarenes from OH radical attack on PAH in the presence of NOx.

Reaction of N?Os with PAH

N2O5 is formed from the radical NO3 and NO2, at night (62), via the following reaction 

route :-

NO2 +  O3 > N 03- +  NO2

N 03« +  N O 2 y N2O5

Separate reactions of N2O5 (in the dark), with pyrene, perylene and fluoranthene (44), 

impregnated on glass filters, and naphthalene in the gaseous phase (43), have been 

studied. NO2 was added to the system in excess, to push the equilibrium towards N2O5 

formation, this increased the production of all the different nitrated PAH conjugates. 

However, the same reactions using only the NO3 radical produced no nitrated PAH (42- 

44). It was found that pyrene was the more reactive PAH with N2O5 than perylene, which 

is the exact opposite when these two PAH react with gaseous NO2/HNO3 (50,54,63).

It can therefore be seen that there are a whole range of possible nitrating species, with each 

system reacting preferentially with different PAH. The NO2/HNO3 system seems to react 

with the higher mass PAH, therefore indicating the likelihood of this reaction occurring on 

the particulate surfaces.

The N2O5 system, seems to occur with the lower mass, semi-volatile PAH i.e. pyrene, 

fluoranthene and those with smaller molecular masses. This suggests that the reaction is 

probably occurring in the gaseous phase. An observation by Pitts (41) was that the 

nitrated fluoranthene isomers of 3-, 8-, 7- and 1- are all produced in almost equal 

amounts. This is not the expected result if electrophilic substitution was occurring, where 

the favoured isomer reaction order is 3- > 8 - »  7-> 1- (64,65). This indicates that the
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reactions occurring here, even though they are happening without light, are occurring via 

a different process.

Formation of Nitrated PAH Species by N9OS

Extensive work has been completed on the chemical reactions of various PAH with N2O5 

in different environments. Not only gaseous N2O5 but also systems in which N2O5 and the 

PAH are dissolved in solvent systems (protic or aprotic).

2-Nitrofluoranthene is the only mono-nitrated isomer of fluoranthene obtained from the 

reaction of gaseous N2O5 with gaseous fluoranthene. However, if the fluoranthene is 

impregnated onto a surface, the 3-, 7-and 8 -nitrofluoranthene isomers are observed, with 

the 3-isomer being the most abundant due to its resonant stability.

Two different mechanisms drive the reactions in these two situations. The surface reaction 

appears to be a catalysed reaction in which the NC>2+ ion is formed, inducing electrophilic 

substitution. The other seems to be a radical mechanism with N2O5 reacting as a covalent 

species:

8 9

The Numbering system 
of Fluoranthene.

4 3

0 2N N 02

O

(44)

It is known that N2O5 and not the NO3 radical induces nitration of PAH since the 

equilibrium can be forced to the right hand side of equation (43,44) with the addition of 

N 02.
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n o 2 + n o 3* — -  w N2O5

It was found that a larger quantity of nitration was observed in the system in which the 

N 0 2 was added, signifying that N2O5 and not N 0 3* induced nitration.

Large quantities of 2-Nitrofluoranthene are formed under these conditions (6 6 ).

0 2N — N02 
\  /

O

H ONO2

-HNO:

NO:

NO:

NO:

■no2

Recombinatio 1

2-Nitrofluoranthene 3 -Nitrito-2-Nitro-2-3 -Dihydrofluoranthene

This radical reaction has been reported, and is a similar process for the production of 2- 

nitronaphthalene (43) i.e. an electrophilically unfavourable reaction. However, this 

reaction has been shown not to occur with pyrene to form 2-nitropyrene (42). The 

reaction of N20 5 with gaseous pyrene only produces 1-Nitropyrene, leading to the 

conclusion that there must be a further reaction occurring in air to produce the 2 - 

nitropyrene isomer. This other atmospheric reaction has been identified as being initiated 

by OH*, with nitration due to NOx (67,68).
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Formation of Nitroarenes from OH Radical reactions on PAH in the Presence of N(X

One proposed route for the formation of the "unfavourable" isomers of nitroarenes is the 

following daytime radical reaction. The PAH is initially attacked in the gas phase by an 

OH* radical, followed by NO2 addition, finally producing the nitrated-PAH after the loss 

of water.
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i.e. for Pyrene and Fluoranthene

Pyrene. Fluoranthene. 8  9

OH

H

+ NO;

.OH

NO;

-H?0

6

5
3

OH

OH

+ NO;

H

NO;

OH

-H20

2-Nitropyrene 2-Nitrofluoranthene
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These reactions occur predominantly in the gas phase (69) as structurally smaller PAH are 

found almost entirely in the gaseous phase with pyrene and fluoranthene present at 

approximately 50% in this phase. These nitrated PAH isomers (of pyrene and 

fluoranthene) have been shown to be ubiquitous in the environment in association with 

particulate material (58,68). This is because although the two step nitration process 

occurs in the gaseous phase, the nitrated PAH products rapidly adsorb to particulate 

surfaces.

The reaction has been shown to be quite rapid in ambient air (69-70) and provide the route 

for NO2 addition and the ultimate production of certain unfavourable nitrated PAH. 

However, this type of reaction system does not solely produce nitrated PAH. Products 

identified from naphthalanes after undergoing OH radical attack include 1- and 2- 

nitronaphthalene, 1- and 2- naphthols, and hydroxynitronaphthalene (59). Biphenyl 

products include 2-hydroxybiphenyl and 3-nitrobiphenyl, along with smaller quantities of 

3- and 4-hydroxybiphenyl (59). Both sets of reactions take place in a system in which light 

was used to help induce the radical reactions. The OH radical reaction of PAH in the 

presence of NOx follows the reaction route of monocyclic systems (i.e. Toluene etc.) 

under the same conditions, 

e.g.

For Biphenyl, the OH radical initiates the reaction, hydrogen abstraction is not an 

important mechanism for this reaction to occur, therefore addition to biphenyl often 

occurs at the 2  position.
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Biphenyl route.

HO+-OH

+NO;

NO-

2 - H y d r o x y b i p h e n y l

R i n g  o p e n in g

>ON

3 - N i t r o b i p h e n y l

It can be seen therefore that the two major products formed from OH radical attack will be

3-nitrobiphenyl and 2-hydroxybiphenyl. Other compounds formed, to a lesser extent, 

include 3 and 4 hydroxybiphenyl along with even lower quantities of 3- and 4- 

nitrobiphenyl (59).
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In the case o f Naphthalene.

OH radicals react preferentially with positions 1 and 2. This leads to the formation of l-(« 

12%) and 2-(«7.5%) naphthols. This in turn leads to the formation of a larger quantity of

2 -nitronaphthalene compared to that of 1-nitronaphthalene.

- H , 0

N O ,

2 - N  i t r o n a p h t h a l e n e

1 - N i t r o n a p h th o l

+  0 2H

Ring opening

This reaction does not occur in the exhaust emission system but rather is found in ambient 

air.

4.2.4 Conclusion.

Ambient air has been shown to contain high quantities of several nitrated-PAH including 1- 

and 2-nitronaphthalene, 3-nitrobiphenyl, 2-nitropyrene and 2-nitrofluoranthene. Except for 

1 nitronaphthalene, these are not the expected nitro-PAH derivatives that have been 

identified from a range of combustion sources (diesel (1-12,71-74) gasoline (3,4,76,77),
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wood smoke (3,4) and flue gases (104). These combustion sources produce nitrated PAH 

predominantly via electrophilic substitution (possibly occurring on the particulate surface, 

or in the gaseous phase) producing the more resonance stabilised isomers of PAH, 

including 1-nitronaphthalene, 4-nitrobiphenyl, 1-nitropyrene and 3-nitrofluoranthene. 

Atkinson (59) and Arey (60) have shown that these non resonance stabilised isomers 

found in ambient air samples are produced from PAH reacting with OH radicals in the 

presence of NOx during the day, and also at night by N2O5 radical formation.

N2O5 in the gas phase was identified as a potent nitrating species both with gaseous PAH 

in addition to PAH adsorbed onto a surface (in this case a glass fibre filter). Of the PAH 

tested, pyrene was the most reactive, followed by fluoranthene> benzo(a)pyrene> 

benzo(a)anthracene> perylene. This is in complete contrast to the reaction order when 

N2O5 is used in an aprotic solvent (i.e. Carbon tetrachloride). In this system the reaction 

order is almost opposite, with perylene> benzo(a)pyrene> benzo(a)anthracene> pyrene> 

fluoranthene. This reaction order is closer to that established for electrophilic substitution 

systems, where the nitrating species is N 02+ (54) NO2/N2O4 (78), or gaseous flow 

conditions of surface adsorbed PAH exposed to NO2 with trace levels of HNO3 (50,79). 

The reason for this behaviour is that the N2O5 reaction occurs predominantly in the gas 

phase (69). The reaction is favoured with PAH which are relatively volatile, thereby 

having a quantity of the PAH in the gas phase.

The major reaction route thought to be occurring in exhaust emissions is the NO2/HNO3 

system. This is known to react mainly with molecules adsorbed onto particulate surfaces 

i.e. the larger less volatile PAH. This was confirmed by Pitts (42) who reacted adsorbed 

pyrene and perylene with N2O5 and separately with NO2/HNO3. 1-Nitropyrene was 

formed in the N2O5 system in large quantities («60-70%). The favoured route for the 

nitration of perylene is via the N 02/H N 03 route, thought to be occurring in diesel exhaust 

emissions. Nitration could therefore be occurring to a greater extent with the larger 

organic PAH adsorbed onto particulate surfaces via electrophilic substitution, as PAH, i.e. 

larger than pyrene, are found almost entirely adsorbed onto surfaces. These PAH will 

therefore follow this route for nitration when released and cooled to 50°C in the dilution 

tunnel.
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Atmospheric reactions including the OH radical in the presence of NOx and the N2O5 

systems are both capable of producing nitrated PAH of the isomerically unfavourable type. 

Both 2-nitrofluoanthene and 2-nitropyrene have been found in relatively high quantities in 

ambient air (69). This is significant due to the fact that these isomers have been found in 

only minor industrial emissions (2 ).

Other related nitrated derivatives of PAH include methylnitro and hydroxynitro PAH (69). 

These were identified as possible major pollutants due to their increased reactivity towards 

electrophilic substitution. This type of reaction however occurs with PAH adsorbed onto 

particulate surfaces, which are mainly the larger ones. The volatile derivatives could of 

course be nitrated by this surface route, or by the gas phase reactions stated (55,80), 

posing the question will the non-volatile derivatives be more prolific in exhaust 

particulates with the volatile derivatives being found in ambient air. What effect will these 

substituents have on the rate of reaction for the two stated gas phase reactions? As yet, 

little actual quantitative data has been published on this area. However, Atkinson (80) did 

state that naphthalene and its alkyl derivatives were removed from the atmosphere by 

initial reactions with OH in the presence of NOx or by the N2O5 route in artificial 

atmospheres, therefore they should be present in ambient air. However as yet little data is 

actually available in this area.
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4.3 Identification of Nitrated PAH in/on Organic Vegetation.

4.3.1 Introduction

Nitrated PAH are released in far lower quantities than PAH making the analysis of these 

trace pollutants very difficult, when they are incorporated in complex samples. It is 

therefore necessary for the emission samples to be relatively large for a sufficient 

quantity of nitrated PAH to be obtained. If  a naturally occurring sampling system could 

be found in the environment, which is both abundant and regularly available, it would be 

of great advantage compared to sampling devices which are both expensive to buy and 

use.

Tree bark and leaf foliage have been used as passive samplers for pollutants by several 

authors (44,50,52-54,62). Two such papers (52,62) state that PAH are adsorbed 

sufficiently for detection to be possible after extraction. However few papers have 

described the mechanism by which the pollutant attaches to the vegetative surface. Are 

the pollutants adsorbed/absorbed onto/into the bark or foliage. To try and answer this 

question, Scanning Electron Microscopy (section 4.3.2) was used to try and visually 

identify the pre-concentration method of the bark surface.

The low concentrations of nitrated PAH make them difficult to detect when incorporated 

in such complex sample matrices. Extracted vegetation will contain not only pollutants 

adsorbed onto the surface, but also the organic compounds found in the vegetation itself. 

It is therefore necessary for the extract to undergo some kind of fractionation procedure 

to produce a cleaner more concentrated fraction which contains all the nitrated PAH of 

interest before detection is possible.

Diesel exhaust extracts, along with other similar samples have been fractionated before. 

However the detection of nitrated PAH from a vegetation sample to my knowledge had 

not been previously undertaken.
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4.3.2 Surface identification of pollutants and bark.

4.3.2.1 Introduction.

Scanning electron microscopy (SEM) uses a beam of electrons to produce pictoral and 

elemental data of samples placed into the instrument. Images of items pm-nm in length 

can be regularly obtained depending on the topography and structure of the sample. This 

technique requires the sample to be under vacuum to prevent the electron beam 

encountering gas molecules prior to reaching the sample. The instrument was used in an 

attempt to visually and elementally identify diesel particulate material on the surface of 

tree bark.

4.3.2.2 Experimental

A Phillips XL40 scanning electron microscope was used for the identification of material 

on various surfaces. The samples were initially dried to remove any volatile material 

(prior to exposure to the high vacuum in the SEM chamber). They were then attached to 

sampler holder devices by double sided sticky tape and a colloidal silver cement (DAG) 

to improve the conductivity of the sample, and finally coated in a fine layer of gold to 

induce conductivity over the surface and to improve picture quality. Backscattering 

imaging was attempted with some samples coated in carbon however, little elemental 

data was obtained from these carbon coated samples.

The samples were placed in the instrument and the chamber pumped out to a vacuum of 

10"4-10‘6 millibar. An accelerating voltage of between 2 and 10 kv were used for the 

samples to prevent them from charging and become damage.

4.3.2.3 Results and Discussion.

Samples examined by SEM included diesel particulates, obtained directly from a diesel 

engine via a dilution tunnel (see Section 2.2.1.1), and several bark samples were also 

investigated in an attempt to identify if particulates adsorbed to the bark surface. If  we
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look at Figure 4.1 (diesel particulate material sampled on a glass filter paper), we can see 

that the non uniform glass fibre filter paper causes a great deal of depth variation 

producing quite a dark photograph. Individual fibres are apparent, along with a great 

deal of very small particulate material attached to the filter paper. This identifies that the 

majority of the particulate material released by a diesel engine is initially very small 

(nanometres) in diameter. In the centre and bottom centre of the figure, larger 

agglomerates of particulate material can be seen, both of which are below 5 pm in 

diameter. This particulate material (<5pm) has regularly been described in literature (81) 

as being responsible for up to 90% of diesel particulate emissions.

Figure 4.2 is an image recorded at a lower magnification than Figure 4.1 of diesel 

particulates on a glass fibre filter paper. The surface of the filter paper is clearly visible. 

The formation of irregular agglomerates of smaller particulate material is also clearly 

visible. These are quite large in size probably due to the sampling method inducing 

greater agglomeration due to the restriction in diffusion. Figure 4.3 is a higher 

magnification of the larger masses of particulate material, and clearly identifies the large 

particle as an agglomeration of very small particulate material, nanometers in diameter. A 

very similar particulate was identified in atmospheric samples (82), the source was more 

than likely diesel engines.

Samples were taken from the silver birch (tree bark A) situated in the bus station and 

coated with carbon. Figure 4.4 was recorded at a relatively low magnification, and shows 

the surface of the bark, with the relatively flat surface being visible except for various 

cracks and fissures that are visible. Figure 4.5 shows spherical objects of approximately 

5 pm in diameter collecting under a crack in the bark, a clear picture could not be 

obtained at lower magnification due to non-conductivity of the wood sample, causing 

charging on the surface of the sample. This, in addition to the low accelerating voltage 

lead to poor resolution and meant that only low magnification pictures could be 

obtained. Figure 4.6 is even more startling with these spherical objects of around 5pm 

being clearly attached to the surface of the bark material. If these are the larger 

agglomerates formed from diesel emissions, there could be a great

283



Figure 4.1: A High Magnification Picture Identifying Diesel Exhaust Particulate

Material on the Surface of a Glass Fibre Filter Paper after Sampling in a Dilution

Tunnel.

Figure 4.2: A Lower Magnification SEM Picture of Larger Agglomerates of Diesel 

Exhaust Particulate Material on the Surface of a Glass Fibre Filter Paper.
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Figure 4.3; High Magnification of Larger Diesel Particulate Material due to

Agglomeration of Smaller (Nanometer in Diameter) Particulate Material Sampled 

onto a Glass Fibre Filter Paper Situated in a Dilution Tunnel.

Figure 4.4: Low Magnification Experiment Looking at the Surface of Silver Birch

Tree Bark.
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Figure 4.5: Identification of Spherical Objects (Approximately 5iim in Diameter)

Collecting Under a Crack in the Bark.

Figure 4.6: Spherical Objects Attached to the Surface of the Silver Birch Tree

Bark.
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deal of diesel particulate material of much smaller diameter which is attached to the bark 

surface which is not visible at this magnification. These spherical objects could also be 

pollen or other dust particles with the actual diesel material smaller and not clearly visible 

at this magnification. The use of backscattering electron microscopy was used to try and 

obtain some elemental data from the objects on the bark. The data obtained from this 

method of analysis was inconclusive as not enough sample was present.

4.3.3 Analysis for Nitrated PAH in/on Tree Bark, Leaf Material and Diesel 
Particulates.

4.3.3.1 Sampling.

Tree bark

Tree bark was sampled from two different locations around the city of Sheffield. Maple 

trees (which have a smooth bark) were identified in each locations and used for these 

experiments. The two locations were:

A - A tree situated in the central bus terminus of the city.

B - A tree situated in a park on the outskirts of Sheffield away from major 

roads and bus routes..

Samples of l-3g of bark were removed from the surface of each tree, 1-2 metres above 

the ground. A surface area of approximately 15cm2 of bark was removed, with the depth 

of bark removed not exceeding 2mm. Samples were stored in amber screw top vials at 

0°C until they were extracted. Samples were taken on the following dates; 1/95, 7/95, 

1/96.

Leaf Material.

The leaf vegetation was taken from Tree A on the 2/11/1995. The leaves were picked 

from the tree so no contamination from ground particulate matter was possible. The 

vegetation was stored in a brown envelope to avoid plastisizer contamination and were 

stored in a dark cupboard for five days until the remaining water in the leaf had 

evaporated. The dry leaf matter was then stored in a fridge at 0°C until extraction.
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Diesel particulate samples were obtained from the system available in the engineering 

department at the university, previously described in Section 2.2.1.1.

4.3.3.2 Extraction.

Bark

A quantity of bark was finely chopped and placed into a cellulose extraction thimble in a 

soxhlet apparatus. The samples were then extracted with 80mls of dichloromethane for 

96 hours. The soxhlet apparatus was wrapped in aluminium foil to minimise 

photochemical degradation of the desired analytes. This length of time was found to be 

necessary from earlier work (109) on the extraction of nitrated PAH spiked onto pre

extracted tree bark. In order to identify any contamination from the extraction process, 

clean thimbles were extracted and subjected to the same procedures as all other samples 

to produce reagent blanks.

Leaf

Approximately lOg of leaf material was broken up (due to its dry, brittle state), placed in 

a soxhlet apparatus and extracted for 96 hours with 200mls of dichloromethane.

Diesel particulates

Glass fibre filters, loaded with the particulate matter were placed in a soxhlet apparatus 

and extracted with 100 ml dichloromethane for 24 hours. All samples were reduced to 

residue to obtain an extracted mass of material before fractionation was undertaken.

4.3.4 Fractionation.

The extracts, obtained from the tree bark, leaf material and the diesel engine (particulate 

material), contained a very complex mixture of organic chemicals. Such an extract could
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include; aliphatics, simple aromatics, PAH, nitrogen and sulphur containing derivatives of 

PAH (heterocycles) in addition to polycyclic ketones, quinones, anhydrides and 

organometallic molecules.

Some separation of this highly complex mixture, was necessary before analysis could be 

completed. Many different methods of initial fractionation/separation have been devised 

for diesel particulate extract fractionation, for the pre-concentration o f nitrated PAH. 

These included:-

1) Liquid-liquid partition (84-85).

2) Semi-preparative chromatography (9,86).

3) Low and high resolution chromatography (5-7,87).

4) Chromatographic separation following a derivatisation step (8).

Solid Phase extraction systems.

More recently, attention has turned to the rapidly expanding separation method using 

small disposable cartridges containing separation media. These solid phase extraction 

cartridges are relatively quick and cheap whilst removing the possibility of cross 

contamination.

Scheepers (88) recently published a method for the determination o f nitrated PAH found 

in exhaust contaminated ambient air. After extraction, samples were passed through a 

silica gel cartridge. 200pl of dichloromethane was used to load the extract, prior to the 

vacuum manifold being opened. Hexane was used to remove the non-polar compounds, 

with dichloromethane eluting the nitrated PAH compounds. The use of C l8 

(octadecylsilane) solid phase extraction cartridges in this area has also been described 

(89), here the selective fractionation of PAH and nitrated derivatives from three different 

environmental matrices was completed.
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Fractionation Procedures.

Several possible methods for the selective fractionation of nitrated PAH from diesel 

exhaust matrixes are described in the literature. These methods were attempted for the 

selective separation of nitrated PAH from vegetation matrixes (i.e. bark and leaf matter).

Methods attempted included those based on the use of:-

1. Alumina column on a HPLC system (Based on ref. 72).

2. Alumina semi-prep, column on a HPLC system (Based on ref. 72).

3. Aminosilane column on a HPLC system (Based on ref. 7).

4. Silica solid phase extraction (Based on ref. 88).

5. Alumina solid phase extraction.

6. Amino solid phase extraction.

7. Tandem Alumina and Amino solid phase extraction method.

A standard of seven nitrated PAH of known concentration, was put through each system 

to determine percentage recoveries, for evaluation purposes.

The structures of the seven nitrated PAH used, along with the internal standard (8- 

nitroquinaldine) are given in Figure 4.7.
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Figure 4.7: Nitrated PAH and Internal Standard (8-Nitroquinaldine) used in This
Study.
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Unless stated otherwise, all standards were loaded onto each separation method in 

dichloromethane. Each fraction obtained after elution was reduced to residue under a 

stream of dry nitrogen and redissolved in the relevant quantity of solvent.

Due to cost and the inaccessibility of some instrumentation, it was decided that the first 

fractionation procedure used on tree bark residue would be the Basic Alumina HPLC 

column with step elution of compounds on an isocratic HPLC system.

HPLC procedures.

A HPLC column containing Brockman No.l Basic Alumina was prepared. A Varian 

5000 isocratic HPLC system was used with separation being followed by UV detection 

at 254nm. The step gradient elution system, and the classes of compounds separated are 

as follows:

Solvent Class of ComDounds Eluted

n-Hexane 

Dichloromethane 

Acetonitrile 

AcetonitrilerMethanol (3:1)

Aliphatics 

Polycyclic Aromatic Hydrocarbons 

Derivatives o f PAH 

Polar PAH (multi-substituted)

The exact surface separation mechanism has not yet been identified, unlike silica where 

the free silanol groups are sites of adsorption for polar molecules. It was initially thought 

that alumina separation was achieved also due to terminal OH groups on the surface 

however, this was shown not to be the case. If  both alumina and silica are heated above 

200°C the loss of hydroxyl groups are observed. This reduces the activity o f silica while 

increasing the activity of alumina (90). One theory is that the active alumina sites are 

exposed aluminium atoms or strained A l-0  bonds (90). Along with the alumina active 

sites which are capable of adsorbing polar molecules, there are basic sites which are 

produced from the surface adhesion of chemical reagents. These basic sites are capable 

of strongly adsorbing acids (91).
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This method was partially successful, with the separation of compound classes being 

observed. Nitrated PAH were observed in both GC-ECD results and GC-NICIMS-SIM 

however several problems were encountered:

Nitrated PAH are highly carcinogenic and mutogenic compounds that are found as 

micropollutants in the environment. With this HPLC system the maximum quantity that 

could be injected in one run was about lmg of tree bark extract. (Even at this amount the 

column rapidly lost resolution). This meant only a very small amount of nitrated PAH 

material was available to be identified as the percentage recoveries were far from 100%.

To be able to increase the amount of extract being injected into the HPLC system, a semi 

preparative HPLC column of Brockman No.l Basic Alumina was obtained and run as 

described for the previous alumina HPLC method.

Semi-preparative HPLC system.

Percentage recoveries of the seven nitrated PAH under investigation were particularly 

poor by this method with separation into one fraction not being achieved. Reproducibility 

was also poor with the percentage recoveries varying by a considerable amount. It has 

been proposed that the poor reproducibility could be due to irreversible adsorption of the 

slightly polar nitrated PAH molecules to the alumina basic sites due to their insolubility in 

the hexane mobile phase. The average length of time it took to perform one complete 

fractionation on this system was approximately 1V2 hours. The quantity of residue that 

can be injected onto the column was also limited as large sample volume could produce 

contamination to the following sample. Though increasing the sample size that could be 

fractionated, this semi-prep alumina method was not used, due to poor reproducibility.

Amino HPLC system.

Previously used amino HPLC systems (7) employed a gradient HPLC system. A dual 

pump Gilson HPLC system, coupled to a UV-detector set at 254nm using a program of 

100% hexane for 5 minutes with the addition of dichloromethane at 5% per minute until 

100% dichloromethane is reached. It was held at this level for 5 minutes. The solvent
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was then step changed to acetonitrile and run for a further 15 minutes. The flow rate was 

set at 1 ml/minute.

The surface of the amino separating media consists of both silanol groups and an 

aliphatic chain capped with an amino group. Aliphatic material is not retained and passes 

through the column, eluting with hexane. Polar and moderately polar compounds are 

retained to different amounts by both the silanol and the amino sites. The nitrated PAH 

are thought to be adsorbed to the amino groups by dipole-dipole interactions that occur 

between the two nitrogen atoms. These interactions are not strong but they are sufficient 

to allow fractionation to occur as the polarity of eluting solvent is increased. Complete 

fractionation of the nitrated PAH was not achieved as trace levels were identified in the 

other eluent fractions.

These HPLC results were far more promising, although recoveries were still not ideal. 

Reproducibility also became a problem since the column began to rapidly lose resolution. 

Once again the problem of maximum sample size was a problem, with no more than lmg 

being injected on column at any one time.

These problems pointed quite strongly to the use of solid phase extraction cartridges as 

they are quick and simple to use and a larger sample could be fractionated. 

Contamination of subsequent samples is also removed, as the individual cartridges are 

only used once.

Solid Phase Extraction Cartridges.

Loading techniques.

Cartridges initially used included silica and alumina separation media. Both were treated 

in the same way, with the eluting solvents being the same as the alumina HPLC step 

elution system. Several different methods of loading the sample onto the cartridge were 

attempted, as the extract preferred to be in dichloromethane. However, loading in 

dichloromethane reduced retention of nitrated PAH onto the separating media. Different 

loading methods included:-
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Silica Alumina

10% DCM, 90% Hexane. 10% DCM, 90% Hexane.

Sample mixed with lg  of Alumina, dried, 

and added to the top of the cartridge

Little difference was observed in the percentage recoveries with these different loading 

techniques. The method which consistently produced the best results was to add the 

extract in a small amount of dichloromethane to the cartridge which had a quantity of 

hexane already covering the separating media. The dichloromethane is allowed to 

evaporate and the hexane pulled through the vacuum manifold with the initial quantity of 

hexane to remove the aliphatics. lOmls of the four eluting solvents are then passed 

through the cartridge fractionating the mixture.

Recoveries

Silica Cartridges.

Fractionation was not achieved as trace quantities of the nitrated PAH could be seen in 

all the fractions. The major quantity of nitrated PAH were found in the hexane fraction, 

indicating little retention by the silica separating media.

Separation from aliphatics and other organic molecules was therefore not achieved. 

Alumina cartridges.

Better selectivity was achieved using the alumina cartridges as the majority o f the eluting 

nitrated PAH were found in the dichloromethane fraction. However the percentage 

recoveries were still disappointingly low due to very poor reproducibility of fractionating 

nitrated PAH. Once again this could be due to strong adsorption forces between the 

nitrated PAH and the basic adsorption sites.
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Amino solid phase extraction cartridges.

An identical method to that of the other solid phase extraction systems was used except 

the final eluting solvent was methanol. Once again, complete fractionation was not 

accomplished with many of the nitrated PAH being identified in other eluting fractions. 

The percentage recoveries were not as high as those obtained by the Amino HPLC 

system. However, the cartridges were far quicker to use with no problem of maximum 

sample size.

Amino and Alumina solid phase extraction in tandem.

To try and increase the percentage recovery and fractionation of the nitrated PAH a 

tandem system of an amino column on top of an alumina column was devised, 

cyclohexane was added as another eluting solvent to be used after hexane. This was done 

to ensure that all aliphatic material was removed from the sample. Another solvent eluent 

of 20% dichloromethane 80% cyclohexane was also added to improve the specificity of 

the fractionation system to nitrated PAH.

The rationale for this was that the bonded amino group should strongly interact with the 

nitrogen lone pair, hence selective fractionation of nitrated compounds should occur. 

Alumina suffered from poor reproducibility possibly from irreversible adsorption to the 

separating media when the sample was introduced to the system in insoluble hexane. 

How would this be effected by the nitrated PAH being loaded onto the column in a 

moderately polar solvent (dichloromethane)? The nitrated PAH should be selectively 

removed from the amino cartridge by a slightly moderately polar eluent. They should 

then pass through the alumina column with little retention while any polar compounds 

eluting or breaking through the amino cartridge should be retained by the basic sites on 

the alumina. The percentage recoveries can be seen in Table 4.1.

Four of the seven nitrated PAH have a recovery of greater than 95%. 9-Nitroanthracene 

and 3-nitrofluoranthene have recoveries of 50% and 70% respectively with 1- 

Nitronaphthalene having the lowest recovery at approximately 30%. This was found to 

be due to the volatility of 1-nitronaphthalene and the use of a stream of dry nitrogen to
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reduce the residue to dryness. By reducing the extract to a small quantity of solvent the 

percentage recovery of 1-nitronaphthalene was increased.
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4.3.4.1 Conclusion.

The original Alumina HPLC system worked quite well, even though only a small sample 

volume could be injected and reproducibility was rapidly lost. However the initial work 

produced good fractionation of the samples injected. The ECD chromatogram obtained 

of the fractionated bark was still very complex. Therefore a more rigorous clean up 

technique was needed for cleaner, chromatogram to be obtained.

The initial work carried out with solid phase extraction cartridges was very disappointing 

with the percentage recoveries being consistently low. With a more thorough 

understanding of the principles behind solid phase extraction the two stage system was 

devised, producing a relatively high percentage recovery and reproducibility. Even the 

introduction of further isomers and different nitrated PAH were found to be 

preferentially fractionated by this method.

At present separation of PAH up to pyrene, from the nitrated derivatives has been 

achieved with the PAH being eluted in an additional eluent of 5% dichloromethane in 

cyclohexane, and the nitrated derivatives and the larger PAH eluting out in a 20% 

mixture of dichloromethane and cyclohexane.
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4.3.5 Separation and Detection of Nitrated PAH.

High Performance Liquid Chromatography (HPLC) Analysis.

Organic compounds and specifically nitrated PAH are released in low concentrations 

from the combustion of naturally occurring fuels. After fractionation various separation 

methods and a range of detectors have been used for the qualitative and quantitative 

determination of these micropollutants. High performance liquid chromatography 

(HPLC), (9,73) and multi dimensional HPLC (92) have been used in the final selective 

and sensitive identification of nitrated PAH in samples of diesel particulates. This method 

of separation (HPLC) with various detectors was recently reviewed (93).

A number of detection systems have been used for the identification of nitrated PAH, 

these include UV detection at 254nm (94). However, better sensitivity has been obtained 

from fluorescence detection after the nitrated PAH are reduced to their corresponding 

amines (95), this was recently carried out using an on-line zinc dust column (96), prior to 

selective fluorescence analysis for four nitrated PAH. Electrochemical (97) and 

chemiluminescence detection methods have also been used in the detection of these trace 

organic pollutants, due to the detectors increased selectivity and sensitivity (98-100).

Gas Chromatographic Analysis.

The majority of the work in this area seems to favour the use of capillary gas 

chromatography for the analysis of such low level contaminants. Reasons for this include 

the greater sensitivity of some common GC detectors compared to regularly used 

detectors in HPLC systems. Many of the extracts obtained are highly complex so the 

greater resolution of gas chromatography is a great advantage compared to HPLC.

It has been discussed that certain nitrated PAH are not stable (suffering from partial 

decomposition in various parts of the GC instrument, including the injector (101), 

column (102) and MS interface (102). HPLC with no heating necessary for separation to 

be completed seems the ideal method of separation and detection. However the lack of a
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gradient HPLC system and a programmable fluorescence detector meant that GC with 

ECD and NICI-SIM were the best techniques available.

Numerous detectors have been used throughout the literature all having their advantages 

and disadvantages associated with the study of nitrated PAH. Detectors used include:-

1. Flame Ionisation Detector (FID) (8,71,72,86,103-105).

2. Electron Capture Detector (ECD) (8,105,106).

3. Nitrogen-Phosphorus Detector (NPD) (1,8,12,72,86,104,107).

4. Thermal Energy Analyser (TEA) (5,7,34,74,108).

Flame ionisation (FID) detects organic molecules (specifically CH2 groups) through the 

combustion of the molecule after the addition of hydrogen and air to the capillary gas 

flow. The detector is therefore non specific, with nearly all organic molecules being 

detected. Interferences and co-elution are common with this detector.

The electron capture detector (ECD) is inherently sensitive to electronegative functional 

groups (halogens, nitro groups and quinones) due to the capture of electrons from 

ionised carrier gas by a Ni63 beta emitting source. The detector is more specific than an 

FID, as compounds without electronegative functional groups are not detected, thereby 

reducing interferences and co-elution. However, quinones and oxygenated compounds 

(prolific in diesel emissions) have been reported as causing interferences (8,86).

The nitrogen-phosporous detector (NPD) can be used specifically for the detection of 

nitrogen containing compounds. This specific detector should reduce interferences from 

organic molecules that do not contain nitrogen. However, interferences have been 

identified when using this detector with diesel emissions (16,47) and carbazole along 

with related compounds were found to interfere with samples from ambient air and 

industrial emissions (105). The limit of detection is not as low as that obtained by an 

ECD detector.

The thermal energy analyser is a very specific detector for the detection of nitrated 

compounds, due to its four stage pyrolysis/chemiluminescence mechanism.
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1. Pyrrolytic cleavage of the C-NO2 bond, can also cleave N-NO2, C-NO and N-NO 

moities to produce nitro radicals.

2. Pyrolytic degradation of nitro to nitroso radicals. This step is highly specific to nitrated 

compounds, reducing interferences from other compounds in a mixture.

3. Reaction of these nitroso radicals with ozone to produce excited singlet state NO2.

4. Decay of excited NO2 to ground state N 02 by the emission of a photon.

Detection of these photons can be achieved at very low concentrations, producing a limit 

of detection around 25-80pg for many nitrated PAH (109).

Mass Spectrometer Detectors

Many different methods of mass spectrometry have been used in an attempt to discover a 

quick and simple method for the analysis of nitrated PAH compounds. Methods which 

have been employed are as follows

1. Electron Ionisation (El) (1,8,10-12,60,71,72,74,75,108,110,111).

2. Negative Ion Chemical Ionisation Mass Spectrometry. (NICIMS) 

(1,6,10,12,71,105,106).

3. Mass Spectrometry/Mass Spectrometry (MS/MS), using constant neutral loss, (11).

Electron impact (El) ionisation is a well documented technique which compares mass 

spectra obtained from a sample against a library of predetermined spectra to help identify 

compounds. This spectral matching, in conjunction with retention time comparisons is a 

method of verifying results. However, El is not a particularly sensitive method of 

detection.

One of the major problems with electron ionisation mass spectrometry is that almost too 

much fragmentation occurs, producing a spectra which is often devoid of the parent ion. 

NICI is a gentler ionisation procedure, with methane being introduced directly into the 

ion source, thereby acting as a moderator for the electrons. The result is a large 

population of "low energy" electrons. These are readily captured by electronegative
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species, including nitrated-PAH, resulting in little fragmentation. This produces a 

selective and sensitive technique for the identification of electronegative compounds, by 

their parent ions, without the use of external standards

MS/MS using a triple quadrupole mass spectrometer and constant neutral loss scans can 

be used to obtain highly specific quantitative data for a particular class of compounds. 

GC separated compounds are introduced to the mass spectrometer source where e.g. 

chemical ionisation occurs (11). The ions pass through quadrupole 1 (in scan mode). 

These ions are then introduced into a collision cell where fragmentation is induced 

through collision with nitrogen. The 3rd quadrupole scans with, for example, an offset 17 

daltons below quadrupole 1. Since the loss of 17 daltons (OH) is attributed to nitrated 

compounds under these conditions. It is an excellent method for the identification of 

unknown nitrated compounds in a complex mixture.

4.3.5.1 Instrumentation 

GC/ECD.

The instrument used in all cases was a Hewlett Packard 5880 Gas Chromatograph using 

a 5% diphenyl wall coated open tubular capillary column (Rtx-5, Restek, Thames 

Chromatography U.K.) (20m x .32mm) with a film thickness of .25pm. The carrier gas 

used was nitrogen, at a flow rate of lml/min, with nitrogen as the makeup gas yielding a 

total flow of 30ml/min. lp l of each sample was injected splitless using a fluffy Hewlett 

Packard 7673A autosampler. The injector temperature was set at 275°C with the 

detector at 300°C. The oven program temperature used was 40°C for four minutes, ramp 

1; 25°C/min to 145°C hold for one minute, ramp 2; 5°C/min to 280°C with a final hold 

time of fifteen minutes.

GC/NICIMS-SIM.

This work was performed on two instruments due to the purchase o f a more sensitive 

VG Trio III midway through the study. Initial work was completed on a Hewlett
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Packard 5890 (Series II) gas chromatograph coupled to a VG Trio 1 Mass Spectrometer 

(VG MassLab, Manchester U.K) with the MS working in the selective ion monitoring 

(SIM) mode.

The column used was a 30m x .32mm i.d. 5% diphenyl wall coated open tubular capillary 

column (Rtx-5 Thames Chromatography U.K.), with a film thickness of .25pm. Helium 

was used as the carrier gas at a flow rate of lml/min. The injector temperature was set at 

275°C with the oven temperature program being 40°C, held for four minutes then 

increased at 25°C/minute to 175°C held for one minute the temperature was then 

increased at 5°C/minute to the final temperature of 280°C for 15 minutes. All samples 

(lpl) were injected manually in splitless mode.

Later work was undertaken using a Hewlett Packard 5890 (Series II) gas chromatograph 

coupled to a VG Trio 3 mass spectrometer working in SIM mode. In both cases the 

reagent gas used for chemical ionisation was methane with an ion source temperature of 

125°C. The NICI conditions were optimised by injecting a small quantity of methyl 

iodide via the septum inlet and tuning the instrument via the peak at m/z 127. A SIM 

experiment was set up monitoring each of the M-» shown in Table 4.2. The column used 

was a 60m x .32mm i.d. 5% diphenyl wall coated open tubular capillary column (Rtx-5) 

with a film thickness of .25pm. The injector temperature was set at 275°C and the oven 

temperature program was as described earlier. The carrier gas was helium at a flow rate 

of lml/min. lp l of each sample was injected splitless.

4.3.6 Results.

The residue obtained from both the bark and leaf extracts were green/brown in colour 

and they were a complex mixture of organic compounds from the tree and pollutants, 

adsorbed to the vegetative surface. The particulate extract was black in colour due to the 

carbon particles extracted over by the soxhlet siphoning mechanism.

The following results (Tables 4.2 and 4.3) were obtained using gas chromatography with 

MS using NICI-SIM and ECD respectively.
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4.3.7 Discussion

Tree bark.

Initial analysis of the chromatograms obtained by GC/NICI-SIM (Figure 4.8 (standard) 

and Figure 4.9 (bark extract)) compared to the GC/ECD chromatograms (Figure 4.10 

(standard) and Figure 4.11 (bark extract)), identify the GC/NICI-SIM detection method 

as being the superior. The chromatograms are a lot cleaner with baseline resolution being 

achieved. The difference in the chromatograms can be easily explained. The GC/ECD 

detector responds to all molecules that electron capture, and is highly sensitive to 

electronegative fiinctional groups such as halogens, quinones, ketones, nitrated 

derivatives etc. This detector can be seen to be less selective (also due to the inherent 

specificity of NICI-SIM), as the GC/ECD chromatograms are far more complex 

containing a greater number of peaks. This makes quantitation of trace levels in this 

complex matrix very difficult, even after fractionation. This was one of the major reasons 

behind the method development work carried out on the fractionation method, so a 

fraction containing all mononitrated species could be selectively separated from the other 

numerous organic molecules.
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Figure 4.8: GC-NICI-SIM Chromatograms of a Standard Containing 
Seven Nitrated PAH and an Internal Standard: 1 .1-Nitronaphthalene, 2. 

Internal Standard, 3. 4-Nitrobiphenyl, 4. 5-Nitroacenaphthene, 5. 2- 
Nitrofluorene, 6. 9-Nitroanthracene, 7. 3-Nitrofluoranthene,

8 .1-nitropyrene.
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If we compare the results of tree barks A and B for the January samples by both 

GC/NICI-SIM (Table 4.2) and GC/ECD (Table 4.3) we can see that the total quantities 

identified correlate very well by the two methods. (Note. Except for 9-Nitroanthracene 

which could not be detected by GC/ECD as the molecule had rapidly degraded before 

quantitation could take place.

Another major observable difference is the quantities of the nitrated PAH found in the 

two trees from different environments. The quantitative results obtained from GC/NICI- 

SIM (Table 4.2, Figures 4.8 -Standards and 4.9 - bark A) identify tree bark A as 

containing a larger quantity of nearly all nitrated PAH than tree bark B throughout the 

year. The exceptions to this were 5-nitroacenaphthene (Jan/96) and 1-nitronaphthalene 

(July/95 and Jan/96) which were found to be higher in bark B than in bark A at these 

sampling times. The semi-quantitative values obtained by GC/ECD (Table 4.3, Figure 

4.10 - standards, Figure 4.11 - bark A) show a similar trend to that in (Table 4.2) with 

tree bark A consistently containing a larger amount of individual nitrated PAH compared 

to tree bark B. Here, the only exception is 4-nitrobiphenyl which is seen to have a greater 

amount in bark B than in the bark A (Jan/96).

This is what you would expect as tree bark A is situated in Sheffield’s city centre bus 

station surrounded by the major source of these isomers of nitrated PAH i.e. diesel 

engine exhaust emissions. Tree bark B on the other hand is situated in a park on the 

outskirts of Sheffield away from major diesel sources.

Over the three sampling dates both the GC/NICI-SIM data (Table 4.2) and the GC/ECD 

data (Table 4.3), show higher levels of nitrated PAH in bark samples taken during 

January compared to July. The only compounds quantified in both trees during the 

summer sampling period were 1-nitronaphthalene and 4-nitrobiphenyl, with a further two 

nitrated PAH, 5-nitroacenaphthene and 2-nitrofluorene, being detected in the bus station 

bark (July/95). With the exception of 1-Nitronaphthalene in bark B (Jan 95), all nitrated 

PAH were detected at higher concentrations in the January samples compared to the July 

1995 sample. This seasonal variation of organic pollutants in the environment has been 

identified by others (112), with increased concentrations identified in the spring and 

autumn seasons. The reasons for this may be a combination of the following:
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1. All nitrated PAH investigated in this study are found to some extent in the vapour 

phase at ambient temperatures. Average temperature and pressure will therefore have a 

great effect on the condensation of pollutants onto surfaces. For example, compounds 

will condense out during times of cold ambient temperatures (i.e. November-February in 

Britain) this is called the “Cold Condensation effect”.

2. Physical effects could induce the preferential adsorption/absorption onto/into the bark 

matrix. The amount of shade the bark samples get from direct sunlight as these 

compounds are known to photodegrade. These organic molecules are likely to 

photodegrade due to the higher levels of UV radiation and the presence of radicals 

capable of causing degradation i.e. •OH during the summer months.

3. The cold winter months always induce an increase in the emissions of organic 

combustion material due to the extra use of vehicular transport by commuters and 

travellers. More organic fuel is also burnt due to the increased use of electricity for 

heating and lighting.

4. In winter, disciduous trees are without any foliage so any gaseous or particulate 

associated pollutants condensing out onto vegetation can only condense upon the bark.

5. Preferential adsorption of certain nitrated PAH could be a reason for the increased 

quantities of some compounds observed. The ambient temperature and the individual 

vapour pressures will determine whether the compound is predominantly in the gaseous 

phase or adsorbed onto a particulate surface throughout the year. Variations in annual 

phase distribution of nitrated PAH have been identified (113). A variation in the 

degradation rate of certain compounds [e.g. 9-nitroanthracene which is known to rapidly 

degrade to anthraquinone (114) and 1-nitropyrene, thought to degrade initially to 

hydroxypyrene (115)] may also play a part.

6. Bark also grows in the spring and summer months thereby removing the surface 

adsorbed material.
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However the small number of samples taken in this present study only allow us to 

present these ideas “for discussion” rather than make any definitive conclusions.

Work was also undertaken to reduce the tree bark extraction time by using extracted 

cotton wool and dichloromethane to swab an area of tree bark and remove the 

particulate material adsorbed to the surface of the tree. This produced a blackened 

suspension in the dichloromethane after the swabbing was complete, and left a “clean” 

area of tree bark which could be seen to be several shades lighter (less soiling) than an 

untreated area (116). These extracts provided us with the knowledge that nitrated PAH 

could be quantified this way, adding to the hypothesis that particulate material and 

possibly some of the gaseous pollutants adsorb to the surface of vegetation and that tree 

bark can be used as a passive sampler.

Leaf results.

The quantitative results (obtained by GC/NICI-SIM, Table 4.2), for the leaf extract 

compare quite favourably with the tree bark values from January 1995, as both the 1- 

nitronaphthalene and the 9-nitroanthracene are found in the largest amounts, followed by 

4-nitrobiphenyl. The only difference is that 5-nitroacenaphthene was not detected in the 

leaf extract.

The only quantitative values obtained by GC/ECD (Table 4.3) were for 1- 

nitronaphthalene and 9-nitroanthracene, which have the largest quantitative values by 

GC/NICI-SIM. This poor response indicates the low concentrations of nitrated PAH 

on/in the leaf material was often beyond the GC/ECD limit of detection.

The results obtained from the NICI-SIM detection method contained several peaks on 

one mass line. These additional peaks could possibly be isomers of the same nitrated 

PAH (2-nitronaphthalene, which is known to be formed in ambient air from the reaction 

of naphthalene and nightime levels of N2O5 (43)) along with the chance of it being a 

compound with the same mass. If  this was to be proved to be true it would show that 

leaf vegetation is capable of adsorbing organic pollutants from the gaseous phase as 2 -
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nitronaphthalene has been tentatively identified in diesel particulates (74). However, the 

majority is likely to be produced from gaseous reactions occurring in ambient air.

Diesel particulates.

The particulate results identify that all the nitrated PAH (except surprisingly 2- 

nitrofluorene as this has been previously identified in diesel exhaust particulates (1)) were 

present in the GC/NICI-SIM chromatograms. The GC/ECD also identified five of the 

seven nitrated PAH. 3-Nitrofluoranthene could not be identified by GC/ECD due to an 

impurity in the solvent obliterating this area of the chromatogram. The quantities of 

nitrated PAH identified by the two methods are similar. However, the GC/ECD results 

do seem to be consistently higher than the GC/NICI-SIM results (excluding 1- 

nitropyrene). 1-Nitropyrene is often identified as the major nitrated PAH present in diesel 

exhaust fumes (1) and these data agree with this.

4.3.8 Conclusion.

Through this study, we have shown that tree bark and leaf material can be used as 

passive samplers to identify atmospheric pollutants, in this case nitrated PAH. Of the 

seven nitrated PAH investigated, five were positively identified in diesel particulate 

matter with four of these being found in the leaf extract and four being found in January 

1995 Tree bark. This indicates that diesel emissions and possibly other anthropogenic 

emissions are produced in large quantities that are not being rapidly removed from the 

environment. It does identify one route of removal of these compounds from the air, as 

the concentration found on bark is lower in the summer than during the winter. This was 

seen by Librando. and co-workers (5) who analysed air samples over a one year period. 

The identification of the major routes of removal and the products formed need to be 

investigated further to ensure these toxic chemicals are not being deposited into the food 

chain. The possible identification of how the pollutants are adsorbed into vegetation i.e. 

from the gaseous phase or directly from particulates is also of interest as the sampling 

method could be expanded to the analysis of nitrated PAH isomers produced in ambient 

air (69,117). With such knowledge, possible sources and routes to removal could be 

investigated further with the result being a mass-balance model of nitrated PAH and their
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ultimate removal from the environment. The necessity for quick, robust methods for the 

determination of these molecules is therefore imperative along with the identification of 

any other major sources. If  the other sources of nitrated PAH are of little consequence, 

nitrated PAH (specifically 1-nitropyrene) could be used as a diesel marker to identify 

heavily polluted areas.
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Conclusion.

Outdoor environments.

The results obtained for particulate associated material associated with diesel emissions 
have provided a great deal of interesting data. The results on outdoor emission of 
particulate material identified diesel engines as a major contributor to urban atmosphere 
pollution (an average of 45%), such a result is similar to results published in literature for 
UK sites (ie. 40-50% (1)). In fact, the value of 64% for particulates <5pm (identified in 
the large volume sample using 1-nitropyrene as the marker) being from diesel engines in 
Sheffields city centre, supports recent percentages attributed to diesel of 86% (for PM10 
(2)) and 77% (3) both centred on the city of London. Such quantities are higher than 
those identified in Vienna during 1984, probably due to the higher proportion of diesel 
buses and HGV’s found in and around the Sheffield area (Vienna had an extensive tram 
system and Sheffields tram system was very much in its infancy when the sampling 
regime was taking place). The geological position of Sheffield (nestled in a valley 
surrounded by seven hills also produces a great deal of atmospheric stagnation during 
certain meteorological conditions. The Vienna study also sampled total suspended 
particulate material while we sampled material 5 pm and below, which is more specific to 
diesel combustion. Such sampling would increase the percentage apportionment 
associated to the diesel emissions discussed in the Vienna study.

This initial apportionment data of diesel emissions has provided some interesting results. 
However, if the sampling methods were to be used again, a number of methodological 
improvements could be incorporated. The use of C24 as a marker for diesel emissions 
was far from ideal even though plausible results were obtained. A larger volume of air 
could be sampled (using a high flow pump which can sample up to lm3 on polyurethane 
foam plugs) to obtain a sample from which quantitative values of 1-nitropyrene are 
possible. A sufficient sample size in an urban environment would be between 30-40m 
producing a particulate mass sample of approximately 900pg. Duplicate sampling of 
perhaps 20 sites would ensure accurate sampling analysis and identify any instrumental 
and experimental error.

Diesel emissions and specifically particulate associated organics have been shown to 
include highly carcinogenic/mutagenic compounds These include certain nitrated PAH, 
dinitrated pyrenes and 3-nitrobenzanthrone, recently identified as the most highly 
mutagenic compound (by the Salmonella Typhimurium TA98 test) and suspected as 
being a human carcinogen (4). It can be seen that associated compounds known to be 
released in such emissions (NO, NO2 and aliphatic material) will also be released in 
relatively large quantities. These emissions can react in the atmosphere to produce 
secondary pollutants including nitric acid, ozone and to a lesser extent, sulphuric acid. 
This cocktail of compounds released into such an atmosphere can react further with 
various reactive species. These can include oxidative species identified in urban 
atmospheres during the day (Section 1.4.1), in addition to nitration known to occur 
during the night (Section 1.4.2). A number of both primary and secondary organic 
compounds released/produced in the atmosphere, are suspected of having major effects 
on the health of certain individuals, especially those with weakened/developing 
pulmonary or cardiovascular systems (specifically the elderly and children). Such results 
show the necessity for further research into the effect of anthropogenic emissions within
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an atmosphere, to identify the routes of degradation and the effects such products can 
have on such an environment.

The association of particulate material with vegetation has provided one route for the 
removal of particulate material released from anthropogenic emissions, known to pollute 
urban atmospheres. We were also able to show the diffusion of such particulate material 
into an indoor atmosphere (specifically diesel particulates). However, as these are only 
short distance transportation routes for such material, what is the fate of such material 
when it is transported over greater distances? This demonstrates the need for a diesel 
engine catalytic converter, or an emission trap to remove a large proportion of the 
particulate urban pollution, ultimately resulting in a cleaner atmosphere. This could 
subsequently reduce the formation of secondary pollutants, reducing smog formation and 
prevent health problems associated with air pollution.

Indoor environments.

The more traditional methods of ETS analysis (carried out on all samples) were shown to 
over-estimate the contribution of ETS to an atmosphere through the use of specific 
marker compounds. This was often due to the increase in response of non ETS material 
in the non specific ETS techniques. We identified solanesol as the most appropriate 
marker compound for particulate ETS, as scopoletin seemed to under-estimate the 
contribution of ETS, possibly due to rapid photochemical degradation of scopoletin with 
UV radiation.

The following cigarette equivalent calculations were carried out to provide a result which 
could be clearly understood, and compared to equivalent values published in associated 
literature. However, the data used to calculate these values were based upon a single 
data point sample from a small number of sites. These preliminary results are therefore 
dependant upon the usual restrictions associated with such data; these include 
uncertainties from instrumentation (both sampling based and analytical) in addition to 
experimental analysis, through non duplicate sampling at each site. Such a sampling 
regime was undertaken due to the time left for the field study. This restricted the analysis 
to either a broad analysis structure seen in this thesis, or a reduction in the analytical 
methods with samples taken in duplicate. The preliminary nature of the field study, and 
the dictate from the industrial sponsor contributing to this study, meant that the broad 
analysis structure was favoured. It was decided that this would provide the most useful 
data, and identify more clearly areas of tracer analysis and associated contribution results 
that could be investigated more thoroughly at a later date.

The results from the indoor field samples were also used to quantify the amount o f ETS 
particulate material consumed by a non smoker in a smokers room. This was found to be 
of little significance due to the low concentration of material in a smokers atmosphere 
(because of the rapid adhesion of ETS particles to surfaces), and also due to the healthy 
lung clearance of a non smoker. In fact the cigarette equivalence for particulates of a non 
smoker exposed to a smoky atmosphere (over a period of a year) is 14 and 3 cigarettes 
for home and work environments respectively. These are the highest conceivable values 
due to the way the equivalence was calculated. More alarming are the cigarette 
equivalence identified when looking at certain volatile compounds released in ETS. We 
determined that an equivalent of approximately 50 cigarettes would be aspirated per year 
by a non smoker in the same smoky environment. The effects these compounds have on
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the respiratory system is unknown. However, benzene is a suspected carcinogen and 
such a source is additional and to some extent unnecessary. Further research into the 
effects of volatile material released by cigarettes may produce some interesting results 
into this highly controversial area of pollution.

The ETS methodology could possibly be improved with the size of sample being 
increased for the volatile samples. This would have provided a larger sample and 
therefore the number of sample sites in which quantitative values of volatile material 
would have increased. The problem with increasing such samples is the possible 
breakthrough of volatile compounds at higher flows due to poor adsorption to the 
adsorbent. Such work would need to clarify such possibilities before proceeding. A 
comparison between pyrrole and 3-ethenylpyridine would provide clarification o f the 
robustness of pyrrole as a marker. The size of samples used seemed sufficient for all 
particulate analysis. Replicate sampling would once again have provided accurate 
sampling analysis and identify any instrumental and experimental error. A larger sampling 
regime (perhaps 20 smokers/non-smokers, houses/offices) would produce results that 
would solidify the preliminary results obtained in this thesis.
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J-Hoô3-t—>G

Sfr MCJD CD ed ^
53 © sa ss © |
•3 0 0 0 0 ^
acn

<i>
3"coT3
edO
Pi!

*—1 CN cn r t in vo r- 00
CD O 3 3 cd 0) <D 0

1 &
'E. *Eh

1 1 f 1
cd ed a a ed cd cd cdCO CO CO CO CO CO CO CO
CD CD CD 0 <D CD CD 0

3 3 3 3 3 3 3 3"co "co "co "co "co "co *co "coT3 T3 rO *G T3 T3 -g H3
cd cd cd cd cd cd cd cd
O Q O O O O 0 0

P h P̂ P4 P4 P4 Pi! Pi! P4

CO CN
3 3 3&*Eh*Hh

•
CJ

acd
CO 1 i <uDC CO CO WD

et <D 0 0 ed
uo> 3"co&

3 3 u
Qi"co

& & ^c E GG G0 0 O0 0 u

336



T
ab

le
 

A
7

: 
P

y
rr

o
le

 
C

o
n

c
e
n

tr
a
tio

n
s
 

in 
A

ll 
S
am

p
le

 
S
ite

s 
Q

u
a
n
tif

ie
d
 

on
 

bo
th

 
T
en

ax
 

an
d 

C
a
rb

o
x
e
n

.

es-»->
O
H

Q

cso
<D
O

a ,
o

o o o o o
©  ©  ©  ©  ©
© © © © cd

o o o o o oo o o o o o
o  o  o  o  o  o

o o o o o
©  ©  ©  ©  ©
©  ©  ©  ©  ©

V-t m

o

o

3
CD
Xo

JO

u

3
CD
H

©  ©  ©  ©  
©  ©  ©  ©
©  ©  ©  ©

© © © © o o o ©
©  ©  ©  ©

©  ©  ©  ©  ©  
©  ©  ©  ©  ©
© © © ' © ©

©  ©  ©  ©  ©
©  ©  ©  ©  ©
©  ©  ©  ©  ©

©  ©  ©  ©  
©  ©  ©  ©
d o d o

©  ©  ©  ©  
©  ©  ©  ©
© © o' o’

ccJ-4- Jo
H

Q

5

co
n>
o

a, 
 ̂ o 

OZf r-i
© gT D  ~ ir
3  g)

i— i P

©  ©  ©  ©  ©
©  ©  ©  ©  ©
CO CO O  O  O

©
©

O noo ©
©

O n
CN ©© VO

©  O  O  CN O  O

©  ©  ©  ©  ©
©  ©  ©  ©  ©
cd o o o cd

3
<D
Xo

J O

U

£3
<D
H

©  ©  ©  ©  
©  ©  ©  ©
d o d o

©  ©  ©  ©  
©  ©  ©  ©
d o d o

©  ©  ©  ©  ©
©  ©  ©  ©  ©
o' o' o cd o

© On © ON ©
© 00 © CN ©
0 © © CN © '

©  ©  ©  ©  
©  ©  ©  ©
© ©' cd cd

©  ©  ©  ©  
©  ©  ©  ©
© cd © ©

1-4
cd

$
.s .s .s . 3cd cd td cd

J-4 J—I J—( J—1
o o o o 
£  £  £  £

-  .s .B  ^  M,g cd cd .S cd
S *- *  B  ^
pd o o pd o

£  £  £

•S .a ^ ^cd cd S
*- »- 3 a
o o pd pd

3
.2
as
o
o
J

t/ 1
CD
C«
3
o

J 3
C/3
Vh
<U

4 4
O

(D  CD CDC/3 C/3 C/3
3  3  3
o .0 o

C/3
0C/ 3

• 3<W o OD S
£ w 
« &

C N  c n "cf
CD

in

C/ 3
CDo
£

« 0
W) S5CD CD CD CD CDC/ 3 C/3 C/3 C/3 C/3

3 3 3 3 3 Jr j*
D .  u v v  .  s S § 5  S ? “ • S S B iB iB  “

C/3 5  C/ 3  ^
3  r3  3
O  ^  O
£  £

337



o  o  o  o  oo  o  o  o  o
o  o  o  o  o

o o o o o o o o oo o o o o o o o o
0 0  0 * 0 0 0 0  o ' o

o o oo o o
o o o

o  o  o  o  o  o  o  o
o  o  o  o

o  o  o  o  o  o  o  o
0 0*00

o o o o o o o oo o o o o o o o
o o o o o o o o

o o o o o o o oo o o o o o o o
o o o o o o o o

o  o  o  o
o  o

o  o  o  o
o  o

CN O *-< On vo
vo t—i cn cn cn
o  o  o  o  o

o  o  o  o  o  o  o  o
0 * 0 0 0

CN O t-H ONvo t—i cn cn
O o o o

£  £

ed ed 3  3*- >- a a
o o P4 P4£  £

3 3 3 _< 3. a es . g cs .S . s aa a *- *- a a ^
•S f1 a .3 ̂ ao dd 
£

C/3
<Uo
£o CN c o  "d -

<D d> 0 )  <L)
C/3 CJ O  O  O

S B B S S E  g 
•g o  o  o  o  %
sC/3

JhooT3
3

c/3
&JD d>

d>
3‘tn
X Ja
f§

t-H CN cn a- vn vo r- oo
3

<u d > (u <u <d
3

d >

*E
1 t 1 t

&

a a a a a a a a
C/3 C/3 C/3 C/3 c« C/3 C/3 C/3

d ) <L) <D d ) < u d > d ) d >

3 3 3 3 3 3 3 3
*C/3 * 0 0 * a *a *a *a *C/3 -a
Xl X) X! X) x> X) Xt X)a a a a a a a ao o o o o o o o
P4 P4 P4 P4 P4 P4 P4 P4

C/3 t- 1  CN
32 o  d>
& •  ' H h O hi I e .
s s s &
3 <u <u ?s** 3  'O 'O *■*
TAJ •0»

<  F  & & <  
?  E 33 a  3 
O o o  U o  U

338



Table A8: Nicotine Cncentrations in the Vapour Phase of AH Sample Sites.

Location Weather
Sheffield 

Resin tube
Basildon 
Resin tube

Non smokers houses Indoor Outdoor Indoor Outdoor
House 1 No rain ND ND ND ND
House 2 No rain ND ND ND ND
House 3 No rain ND ND ND ND
House 4 No rain ND ND ND ND
Average. ND ND ND ND

Smokers houses
House 1 Rain 0.00 ND 4.50 ND
House 2 No rain 1.57 ND 4.30 ND
House 3 No rain 14.88 ND 0.80 ND
House 4 Rain 0.16 ND 3.60 ND
House 5 No rain 0.08 ND 7.40 ND
Average. 3.34 ND 4.12 ND

Non smokers offices
Office 1 No rain ND ND ND ND
Office 2 No rain ND ND ND ND
Office 3 Rain ND ND ND ND
Office 4 Rain ND ND ND ND

Average. ND ND ND ND
Smokers offices

Office 1 No rain 0.00 ND 2.50 ND
Office 2 No rain 0.34 ND 2.10 ND
Office 3 Rain 0.00 ND No sample ND
Office 4 Rain 0.41 ND 2.10 ND

Average. 0.19 ND 2.23 ND
Roadside samples (outdoor)

Roadside sample 1 Rain - ND - ND
Roadside sample 2 No rain - ND - ND
Roadside sample 3 Rain - ND - ND
Roadside sample 4 No rain - ND - ND
Roadside sample 5 No rain - ND - ND
Roadside sample 6 Rain - ND - ND
Roadside sample 7 Rain - ND - ND
Roadside sample 8 No rain - ND - ND

Average. - ND - ND
Countryside samples
Countryside sample 1 No rain - ND - ND
Countryside sample 2 Rain - ND - ND

Average. - ND - ND
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Table A9: Nicotine Concentrations in the Vapour Phase of All Sample Sites, 
Analysed by Thermal Desorption-GC/MS.

Location Weather
Indoor

Nicotine
Outdoor
Nicotine

Non smokers houses Tenax resin tube Tenax resin tube
House 1 No rain 0.00 0.00
House 2 No rain 0.00 0.00
House 3 No rain 0.00 0.00
House 4 No rain 0.00 0.00

Average. 0.00 0.00
Smokers houses

House 1 Rain 2.96 0.00
House 2 No rain 6.09 0.00
House 3 No rain 0.00 0.00
House 4 Rain 20.95 0.00
House 5 No rain 0.00 0.00

Average. 6.00 0.00
Non smokers offices

Office 1 No rain 0.00 0.00
Office 2 No rain 0.00 0.00
Office 3 Rain 0.00 0.00
Office 4 Rain 0.00 0.00

Average. 0.00 0.00
Smokers offices

Office 1 No rain 0.00 0.00
Office 2 No rain 0.00 0.00
Office 3 Rain 0.00 0.00
Office 4 Rain 4.69 0.00

Average. 1.17 0.00
Roadside samples (outdoor)

Roadside sample 1 Rain N/A 0.00
Roadside sample 2 No rain N/A 0.00
Roadside sample 3 Rain N/A 0.00
Roadside sample 4 No rain N/A 0.00
Roadside sample 5 No rain N/A 0.00
Roadside sample 6 Rain N/A 0.00
Roadside sample 7 Rain N/A 0.00
Roadside sample 8 No rain N/A 0.00

Average. 0.00
Countryside samples
Countryside sample 1 No rain N/A 0.00
Countryside sample 2 Rain N/A 0.00

Average. 0.00
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Table A10: Tetracosane (C24) Concentrations Associated with Particulate
Material.

Indoor
Filter XAD-4

resin

Outdoor
Filter XAD-4

resin
Location Weather Total C24 Total C24

Non smokers houses (ug/g)of C24 (ug/g)of C24
House 1 No rain 4.39 0.00 9.31 0.00
House 2 No rain 16.23 0.00 96.53 0.00
House 3 No rain 147.15 0.00 144.60 0.00
House 4 No rain 34.87 0.00 410.94 0.00

Average. 50.66 0.00 165.34 0.00
Smokers houses

House 1 Rain 93.61 0.00 32.17 0.00
House 2 No rain 0.00 0.00 122.29 0.00
House 3 No rain 0.00 0.00 196.63 0.00
House 4 Rain 8.65 0.00 24.93 0.00
House 5 No rain 132.32 0.00 47.23 0.00

Average. 46.92 0.00 84.65 0.00
Non smokers offices

Office 1 No rain 197.30 0.00 148.97 0.00
Office 2 No rain 53.82 0.00 76.02 0.00
Office 3 Rain 58.33 0.00 29.43 0.00
Office 4 Rain 467.82 0.00 453.86 0.00

Average. 194.32 0.00 177.07 0.00
Smokers offices

Office 1 No rain 10.26 0.00 141.15 0.00
Office 2 No rain 0.00 0.00 397.17 0.00
Office 3 Rain 66.03 0.00 188.75 0.00
Office 4 Rain 78.09 0.00 162.89 0.00

Average. 38.59 0.00 222.49 0.00
Roadside samples (outdoor)

Roadside sample 1 Rain N/A N/A 324.62 0.00
Roadside sample 2 No rain N/A N/A 565.16 0.00
Roadside sample 3 Rain N/A N/A 154.44 0.00
Roadside sample 4 No rain N/A N/A 549.31 0.00
Roadside sample 5 No rain N/A N/A 35.48 0.00
Roadside sample 6 Rain N/A N/A 74.20 0.00
Roadside sample 7 Rain N/A N/A 476.99 0.00
Roadside sample 8 No rain N/A N/A 658.86 0.00

Average. 354.88 0.00
Countryside samples
Countryside sample 1 No rain N/A N/A 0.00
Countryside sample 2 Rain N/A N/A 93.18 0.00

Average. 46.59 0.00
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Table A ll:  Nicotine Concentrations Associated with Particulate Material.

Location 
Non smokers houses

Weather
Indoor 

Nicotine (pg/m3) 
Particulate phase

Outdoor 
Nicotine (pg/m3) 
Particulate phase

House 1 No rain ND ND
House 2 No rain ND ND
House 3 No rain ND ND
House 4 No rain ND ND
Average. ND ND

Smokers houses
House 1 Rain 0.08 ND
House 2 No rain 0.00 ND
House 3 No rain 0.82 ND
House 4 Rain 0.04 ND
House 5 No rain 0.06 ND
Average. 0.20 ND

Non smokers offices
Office 1 No rain ND ND
Office 2 No rain ND ND
Office 3 Rain ND ND
Office 4 Rain ND ND

Average. ND ND
Smokers offices

Office 1 No rain 0.00 ND
Office 2 No rain 0.00 ND
Office 3 Rain 0.00 ND
Office 4 Rain 0.15 ND

Average. 0.04 ND
Roadside samples (outdoor)

Roadside sample 1 Rain N/A ND
Roadside sample 2 No rain N/A ND
Roadside sample 3 Rain N/A ND
Roadside sample 4 No rain N/A ND
Roadside sample 5 No rain N/A ND
Roadside sample 6 Rain N/A ND
Roadside sample 7 Rain N/A ND
Roadside sample 8 No rain N/A ND

Average. ND ND
Countryside samples
Countryside sample 1 No rain N/A ND
Countryside sample 2 Rain N/A ND

Average. ND ND
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Table A12; Total UV Concentrations Associated with Particulate Material.

Location Weather
Indoor 

Total UV
Outdoor 
Total UV

Non smokers houses Filter 1 (ng/m3) Filter 1 (ng/m3)
House 1 No rain 1663.1 1386.3
House 2 No rain 1046.2 437.5
House 3 No rain 442.4 67.3
House 4 No rain 941.7 1248.0
Average 1023.32 784.78

Smokers houses
House 1 Rain 9334.0 1408.7
House 2 No rain 12054.2 1159.3
House 3 No rain 8831.1 1992.4
House 4 Rain 50769.0 5125.3
House 5 No rain 5783.3 3124.6
Average 17354.32 2562.06

Non smokers offices
Office 1 No rain 2421.1 1860.4
Office 2 No rain 1556.7 1938.5
Office 3 Rain 1396.1 990.4
Office 4 Rain 578.3 1972.8
Average 1488.06 1690.54

Smokers offices
Office 1 No rain 10964.5 2070.8
Office 2 No rain 3098.8 656.8
Office 3 Rain 5008.90 2736.2
Office 4 Rain 17995.6 2714.3
Average 9266.95 2044.52

Roadside samples (outdoor)
Roadside sample 1 Rain N/A 1153.8
Roadside sample 2 No rain N/A 3698.5
Roadside sample 3 Rain N/A 2053.8
Roadside sample 4 No rain N/A 2139.0
Roadside sample 5 No rain N/A 1279.8
Roadside sample 6 Rain N/A 1804.1
Roadside sample 7 Rain N/A 2597.9
Roadside sample 8 No rain N/A 1560.4

Average 2035.92
Countryside samples
Countryside sample 1 No rain N/A 1235.4
Countryside sample 2 Rain N/A 1738.3

Average 1486.84
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Table A13: Total Fluorescence Concentrations Associated with Particulate
Material.

Location 
Non smokers houses

Weather
Indoor 

Total fluorescence 
Filter 1 (ng/m3)of 

Scopoletin

Outdoor 
Total fluorescence 
Filter 1 (ng/m3)of 

Scopoletin
House 1 No rain 127.02 163.09
House 2 No rain 996.00 356.67
House 3 No rain 313.66 514.50
House 4 No rain 137.12 146.85
Average 393.45 295.28

Smokers houses
House 1 Rain 676.68 118.10
House 2 No rain 1822.78 148.90
House 3 No rain 1231.40 73.38
House 4 Rain 6199.32 4.89
House 5 No rain 379.09 89.61
Average 2061.85 86.98

Non smokers offices
Office 1 No rain 61.33 147.12
Office 2 No rain 286.66 278.55
Office 3 Rain 205.66 458.08
Office 4 Rain 78.40 91.30
Average 158.01 243.76

Smokers offices
Office 1 No rain 3432.06 792.18
Office 2 No rain 488.41 119.84
Office 3 Rain 656.31 88.41
Office 4 Rain 1846.52 133.75
Average 1605.82 283.54

Roadside samples (outdoor)
Roadside sample 1 Rain N/A 48.96
Roadside sample 2 No rain N/A 1035.36
Roadside sample 3 Rain N/A 775.73
Roadside sample 4 No rain N/A 63.52
Roadside sample 5 No rain N/A 98.31
Roadside sample 6 Rain N/A 129.14
Roadside sample 7 Rain N/A 224.95
Roadside sample 8 No rain N/A 55.64

Average 303.95
Countryside samples
Countryside sample 1 No rain N/A 205.07
Countryside sample 2 Rain N/A 28.60

Average 116.84
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Table A14: Solanesol Concentrations Associated with Particulate Material.

Location 
Non smokers houses

Weather
Indoor

(ng/m3)of
Solanesol

Outdoor
(ng/m3)of
Solanesol

House 1 No rain 0.0 0.0
House 2 No rain 0.0 0.0
House 3 No rain 0.0 0.0
House 4 No rain 0.0 0.0

Average. 0.0 0.0
Smokers houses

House 1 Rain 383.38 0.0
House 2 No rain 509.94 0.0
House 3 No rain 301.20 0.0
House 4 Rain 3879.01 0.0
House 5 No rain 508.13 0.0
Average. 1116.33 0.0

Non smokers offices
Office 1 No rain 0.0 0.0
Office 2 No rain 0.0 0.0
Office 3 Rain 0.0 0.0
Office 4 Rain 0.0 0.0

Average. 0.0 0.0
Smokers offices

Office 1 No rain 984.84 0.0
Office 2 No rain 150.86 0.0
Office 3 Rain 424.60 0.0
Office 4 Rain 808.71 0.0

Average. 592.25 0.0
Roadside samples (outdoor)

Roadside sample 1 Rain N/A 0.0
Roadside sample 2 No rain N/A 0.0
Roadside sample 3 Rain N/A 0.0
Roadside sample 4 No rain N/A 0.0
Roadside sample 5 No rain N/A 0.0
Roadside sample 6 Rain N/A 0.0
Roadside sample 7 Rain N/A 0.0
Roadside sample 8 No rain N/A 0.0

Average. 0.0
Countryside samples
Countryside sample 1 No rain N/A 0.0
Countryside sample 2 Rain N/A 0.0

Average. 0.0
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Table A15: Scopoletin Concentrations Associated with Particulate Material.

Location 
Non smokers houses

Weather Indoor 
Filter 1 (ng/m3)of 

Scopoletin

Outdoor 
Filter 1 (ng/m3)of 

Scopoletin
House 1 No rain 0.000 0.000
House 2 No rain 0.000 0.000
House 3 No rain 0.000 0.000
House 4 No rain 0.000 0.000

Average. 0.000 0.000
Smokers houses

House 1 Rain 25.329 0.000
House 2 No rain 173.972 0.000
House 3 No rain 64.878 0.000
House 4 Rain 289.481 0.000
House 5 No rain 8.861 0.000

Average. 112.504 0.000
Non smokers offices

Office 1 No rain 0.000 0.000
Office 2 No rain 0.000 0.000
Office 3 Rain 0.000 0.000
Office 4 Rain 0.000 0.000

Average. 0.000 0.000
Smokers offices

Office 1 No rain 78.417 0.000
Office 2 No rain 40.814 0.000
Office 3 Rain 53.036 0.000
Office 4 Rain 53.664 0.000

Average. 56.483 0.000
Roadside samples (outdoor)

Roadside sample 1 Rain N/A 0.000
Roadside sample 2 No rain N/A 0.000
Roadside sample 3 Rain N/A 0.000
Roadside sample 4 No rain N/A 0.000
Roadside sample 5 No rain N/A 0.000
Roadside sample 6 Rain N/A 0.000
Roadside sample 7 Rain N/A 0.000
Roadside sample 8 No rain N/A 0.000

Average. 0.000
Countryside samples
Countryside sample 1 No rain N/A 0.000
Countryside sample 2 Rain N/A 0.000

Average. 0.000
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A bstract

It has been previously demonstrated that polycyclic aromatic hydrocarbons (PAH) are adsorbed onto tree bark and that 
bark may in fact be used as a passive sampler for these compounds. It is now demonstrated that by suitable modification of 
this methodology nitrated polycyclic aromatic hydrocarbons (nitro-PAH) may also be detected in bark. Bark samples were 
taken from urban locations in Sheffield, South Yorkshire, UK. After soxhlet extraction using dichloromethane, the nitro-PAH 
fraction was isolated by solid-phase extraction using amino and alumina cartridges in series. Nitro-PAH were detected by gas 
chromatography with electron capture detection and gas chromatography-mass spectrometry in the negative chemical 
ionisation mode. A comparison is made with nitro-PAH found in diesel particulate extracts. © 1997 Elsevier Science B.V.

Keywords: Tree bark; Polynuclear aromatic hydrocarbons; Nitrated polynuclear aromatic hydrocarbons

1 . I n t r o d u c t i o n

Nitrated polycyclic aromatic hydrocarbons (nitro- 
PAH) are one of the many families of organic 
compounds known to be produced as micropollutants 
from the combustion of organic materials including 
diesel [1-12], gasoline [2,3], and wood [2,3]. The 
release of these substituted polycyclic aromatic 
hydrocarbons (PAH) is however relatively small in 
comparison to other more common groups of com
pounds such as aliphatic hydrocarbons and PAH. 
However, their toxicity has been found to be far 
greater than that of unsubstituted PAH; they have 
been identified as direct acting mutagens and car
cinogens to mammalian systems [13-15].

"'Corresponding author.

Nitro-PAH produced from combustion processes 
are predominantly formed by electrophilic aromatic 
substitution reactions. These yield isomers corre
sponding to the cationic (Wheland) intermediates 
that have the greatest resonance stabilisation. It has 
also been shown that nitro-PAH can be formed, 
alternatively, by the reaction of PAH with reactive 
species found in ambient air, i.e. dinitrogen pentox- 
ide (N 20 5) and oxygen radicals in the presence of 
NO^. These gas-phase reactions have different mech
anisms and produce different isomers to those 
formed in combustion processes. It can therefore be 
assumed that nitrated PAH isomers corresponding to 
the most stabilised cationic intermediates are formed 
almost entirely from the combustion of anthropogen
ic materials, and should therefore be a guide to the 
quantity of nitro-PAH released into the atmosphere

0 0 2 1 -9 6 7 3 /9 7 /$  17.00 ©  1997 Elsevier Science B.V. A ll rights reserved. 
P l I  S 0 0 2 I - 9 6 7 3 ( 9 7 ) 0 0 6 0 2 - X
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from combustion sources. Examination of the litera
ture on measured nitro-PAH confirms this and shows 
that the isomers expected from conventional elec- 
trophilic substitution (e.g. 1-nitropyrene, 1-nitronaph- 
thalene, 3-nitrofluoranthene and 2-nitrofluorene) are 
detected in emissions from combustion sources (e.g. 
[1-12]) while the isomers due to gaseous reactions 
(e.g. 2-nitropyrene and 2-nitrofluoranthene) have 
only been found in ambient air [16] and emissions 
from an electrode factory [12].

The low levels of nitro-PAH released directly into 
the atmosphere dictates that a large sample of 
ambient air needs to be taken when conventional 
active sampling systems are employed in analyses. If 
a passive sampling system could be found readily 
available in the environment, costly sampling sys
tems and sampling media would not be necessary. 
Many types of vegetation have been used as passive 
samplers for atmospheric pollutants. Reported sys
tems have included pine needles for polychlorinated 
biphenyls (PCBs [17,18]) and pesticides, [18,19] and 
tree bark used for PCBs [20,21] and PAH [20,22,23] 
amongst others. As tree bark is ubiquitous through
out the environment, it was decided to examine this 
material for the presence of nitro-PAH. For com
parison purposes diesel particulates were collected 
from the exhaust of a diesel engine running under 
controlled conditions.

The soluble organic extracts obtained from tree 
bark and diesel particulate exhaust filters are very 
complex mixtures. The extract may contain; ali- 
phatics, simple aromatics, polycyclic aromatic hydro
carbons (PAH), nitrogen- and sulphur-containing 
derivatives of PAH along with polycyclic ketones, 
quinones, anhydrides, heterocyclic compounds and 
organometallics. Hence fractionation of this highly 
complex mixture is necessary prior to analysis. A 
variety of fractionation methods have been reported 
including; liquid-liquid partition [24,25], semi-pre
parative chromatography [4,26], low- and high-res- 
olution chromatography [5-7,27] and chromato
graphic separation following a derivatisation step [8]. 
All these chromatographic fractionation methods 
have been applied to the pre-concentration of nitrated 
PAH from diesel exhaust particulates or air samples. 
More recently solid-phase extraction cartridges have 
been used as a possible method of pre-concentrating 
and fractionating nitrated PAH from complex ma

trices [28,29]. However, no methods were found in 
the literature which describe a comprehensive frac
tionation of complex samples obtained from tree 
bark. Therefore, as part of this work, a solid-phase 
extraction method for the fractionation of bark 
extracts was developed.

Many methods also exist for the analytical de
termination of nitro-PAH. These include; capillary 
gas chromatography using flame ionisation (FID) 
[4,8,26,30], electron capture (ECD) [8,30], nitrogen 
phosphorous (NPD) [1,8,11,26], chemiluminescent 
nitrogen detector (CLND) [5,7,31] and mass spec- 
trometric detection [1,6,8-11,31,32].

High-performance liquid chromatography (HPLC) 
has also been used for the final determination of 
nitrated PAH. Ultra violet absorbance detection at 
254 nm has been used [33], however better sensitivi
ty has been obtained from fluorescence detection 
after reduction to their corresponding amine [34]. 
and in a recent paper this was carried out on-line 
using a zinc dust column [35].

In the work reported here we have employed gas 
chromatography with electron capture detection for 
qualitative and semi-quantitative determination ol 
nitro-PAH in tree bark and diesel particulate extracts. 
The qualitative data have been confirmed and levels 
of nitro-PAH quantified by using gas chromatog
raphy-mass spectrometry with negative chemical 
ionisation and selected ion monitoring.

2 . E x p e r i m e n t a l

2.1. Sampling

2.1.1. Tree bark
Tree bark was sampled from two different loca

tions around the city of Sheffield. Maple trees (which 
have a smooth bark) were identified in each location 
and used for these experiments. The two locations 
were: (A) a tree situated in the central bus terminus 
of the city; (B) a tree situated in a park on the 
outskirts of Sheffield away from major roads and bus 
routes.

Samples of 1-3 g of bark were removed from the 
surface of each tree, 1 -2  m above the ground. A 
surface area of approximately 15 cm2 of bark wa.1 
removed, with the depth of bark removed not
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exceeding 2 mm. Samples were stored in amber 
screw-top vials at 0°C until they were extracted. 
Samples were taken on the following dates; 1/95, 
7/95, 1/96.

2.1.2. Diesel samples
Diesel particulate exhaust samples from a four- 

cylinder, 4-1, non-inter-cooled direct-injection diesel 
engine with turbo charger in a controlled test en
vironment were collected on glass fibre filter papers. 
The engine was run at 1600 ipm at full rated power. 
Samples were taken after the emissions were diluted 
and cooled to below 52°C using a dilution tunnel. 
This was carried out in order to reduce chemical 
reactions occurring on the filter surface. Sampling 
times of between 1 and 2 h were required to yield 
sufficient organic material to quantify the nitro-PAH 
of interest.

2.2. Solvents and standards

All solvents used in the following procedures were 
HPLC grade or better. All standards and solvents 
were purchased from Sigma-Aldrich Co. (Poole, 
Dorset, UK).

2.3. Extractions

A relevant quantity of the sample in question was 
finely chopped and placed into a cellulose extraction 
thimble in a soxhlet apparatus. The samples were 
then extracted with 80 ml of dichloromethane for 96 
h. The soxhlet apparatus was wrapped in aluminium 
foil to minimize photochemical degradation of the 
desired analytes. This length of time was found to be 
necessary from earlier work [36] on the extraction of 
nitrated PAH spiked onto tree bark. In order to 
identify any contamination from the extraction pro
cess, clean thimbles were extracted and subjected to 
the same procedures as all other samples to produce 
reagent blanks.

2.4. Fractionation

2.4.1. Solid-phase extraction 
Solid-phase extraction (SPE) was performed using 

a polypropylene cartridge containing amino-bonded 
phase (200 mg of sorbent with a 10-ml reservoir,

obtained from International Sorbent Technology, 
Jones Chromatography, Mid Glamorgan, Wales, Eng
land) and alumina (500 mg of sorbent with a 6-ml 
reservoir obtained from J.T. Baker, UK, Milton 
Keynes, Bucks, UK) cartridges in series. The car
tridges were initially cleaned with 30 ml of acetone 
to remove all adsorbed water. Fifteen ml of each 
eluting solvent were then passed through the car
tridges, starting with methanol and continuing back 
through the solvents with reducing polarity to hex
ane, leaving a layer of 10 ml of hexane in the top 
cartridge reservoir. The sample extract was then 
loaded onto the cartridge using the smallest quantity 
of dichloromethane (often 50-100 jxl) introduced 
directly into the 10 ml of hexane. Fractionation was 
achieved by elution of compounds with 10 ml of the 
following solvents of increasing polarity:

Solvent Eluting compounds

Hexane Aliphatics
Cyclohexane 2-4 ringed PAH (up to pyrene)
20% Dichloromethane Larger PAH and
in cyclohexane nitrated derivatives
Dichloromethane Polar species
Acetonitrile Polar species
Methanol Polar species

The fractions were reduced to approximately 500 
|xl with a dry stream of nitrogen and transferred to 
pre-weighed amber vials. These were reduced to 
dryness once again by nitrogen to produce a residual 
weight. An internal standard (8-nitroquinaldine; ob
tained from Sigma-Aldrich Co., Poole, Dorset, UK, 
at 98% purity) and 100 p.1 of dichloromethane were 
added prior to analysis by G C -EC D  and G C - 
NICIMS-SIM.

2.5. Instrumentation

2.5.1. Gas chromatography with electron capture 
detector (GC-ECD)

The instrument used in all cases was a Hewlett- 
Packard 5880 gas chromatograph using a 5% 
diphenyl wall-coated open tubular capillary column 
(Rtx-5, Restek, Thames Chromatography UK) (20 
mX0.32 mm) with a film thickness of 0.25 pan. The 
carrier gas used was nitrogen, at a flow-rate of 1
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m l/min, with nitrogen as the makeup gas yielding a 
total flow of 30 ml/m in; 1 p.1 of each sample was 
injected splitless using a Hewlett-Packard 7673A 
autosampler. The injector temperature was set at 
275°C with the detector at 300°C. The oven program 
temperature used was 40°C for 4 min, ramp 1; 
25°C/min to 145°C hold for 1 min, ramp 2; 5°C/min 
to 280°C with a final hold time of 15 min.

2.5.2. Gas chromatography with negative-ion 
chemical-ionisation mass spectrometry working in 
selective ion-monitoring mode (GC-NICIMS-SIM)

This work was performed on two instruments due 
to the purchase of a more sensitive VG Trio III 
midway through the study. Initial work was com
pleted on a Hewlett-Packard 5890 (Series II) gas 
chromatograph coupled to a VG Trio 1 mass spec
trometer (VG MassLab, Manchester, UK) with the 
MS working in the selective ion monitoring (SIM) 
mode.

The column used was a 30 mX0.32 mm I.D. 5% 
diphenyl wall-coated open tubular capillary column 
(Rtx-5 Thames Chromatography UK), with a film 
thickness of 0.25 |xm. Helium was used as the carrier 
gas at a flow-rate of 1 ml/min. The injector tempera
ture was set at 275°C with the oven temperature 
program being 40°C, held for 4 min then increased at 
25°C/min to 175°C, held for 1 min; the temperature 
was then increased at 5°C/min to the final tempera
ture of 280°C for 15 min. All samples (1 jxl) were 
injected manually in splitless mode.

Later work was undertaken using a Hewlett-Pac
kard 5890 (Series II) gas chromatograph coupled to 
a VG Trio 3 mass spectrometer working in SIM 
mode. In both cases the reagent gas used for 
chemical ionisation was methane with an ion source 
temperature of 125°C. The NICI conditions were 
optimised by injecting a small quantity of methyl 
iodide via the septum inlet and tuning the instrument 
via the peak at m /z  127. A SIM experiment was set 
up monitoring each of the M - ’ ions for the nitrated 
PAH studied (Fig. 1). The column used was a 60 
mX0.32 mm I.D. 5% diphenyl wall-coated open 
tubular capillary column (Rtx-5 Thames Chromatog
raphy UK) with a film thickness of 0.25 |xm. The 
injector temperature was set at 275°C and the oven 
temperature program was as described earlier. The

carrier gas was helium at a flow-rate of 1 ml/min; 1 
|xl of each sample was injected splitless.

3 . R e s u l t s  a n d  d is c u s s io n

After soxhlet extraction, the residues obtained 
from the tree bark extracts were green/brown in 
colour. The diesel particulate extract was black in 
colour due to carbon particles extracted over the 
siphoning mechanism of the soxhlet.

3.1. Fractionation procedure

An amino cartridge was used as the initial sorbent 
of the SPE system. The bonded amino group strong
ly interacts with its nitrogen lone pair producing 
adsorption of nitrated compounds. The nitrated PAH 
can then be removed from the cartridge by a 
moderately polar eluent (i.e. 20% dichloromethane/ 
80% cyclohexane). They then pass through the 
alumina cartridge with little retention whilst any 
other polar compounds that have been removed from 
the amino cartridge by the moderately polar eluent 
are retained by the alumina cartridge.

Table 1 shows the percent recoveries obtained 
from the tandem SPE fractionation of a standard 
containing seven nitro-PAH studied (Fig. 1). Com
plete separation into one fraction was achieved with 
four of the seven nitrated PAH having a percent 
recovery of greater than 94%. 9-Nitroanthracene and 
1-nitropyrene have recoveries of 53 and 72%, re
spectively, with 1-nitronaphthalene having the lowest 
recovery at approximately 30%. This could possibly 
be due to irreversible adsorption to the alumina 
sorbent which occurred when alumina was used 
solely as the sorbent. A more likely reason for the 
losses of especially the volatile compounds could be 
attributed to the sample drying stage.

3.2. Tree bark

The quantitative results obtained from GC-NICI- 
SIM (Table 2, Fig. 2A (standards) and Fig. 2B (bark 
A)) indicate that the bus station sample, tree bark A. 
contained a larger quantity of nitrated PAH than tree 
bark B throughout the year. The exceptions to this 
were 5-nitroacenaphthene (Jan./96) and 1-nitronaph-
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Table 1
Average percentage recovery and standard deviation data o f  am ino/alum ina fractionation method used to selectively pre-concentrate nitrated 
PAH

Compound Hexane Cyclohexane 20% Dichloromethane Dichloromethane Acetonitrile

% recovery S.D. % recovery S.D. % recovery S.D. % recovery S.D. % recovery S.D.

1-Nitronaphthalene 0 0 0 0 28.27 1.92 0 0 0 0
4-Nitrobiphenyl 0 0 0 0 105.25 6.78 0 0 0 0
5-Nitroacenaphthene 0 0 0 0 94.97 7.37 0 0 0 0
2-Nitrofluorene 0 0 0 0 106.15 1.02 0 0 0 0
9-Nitroanthracene 0 0 0 0 53.25 1.17 0 0 0 0
3-Nitrofluoranthene 0 0 0 0 72.15 2.24 0 0 0 0
1-Nitropyrene 0 0 0 0 108.31 10.2 0 0 0 0

thalene (July/95 and Jan./96) which were found to 
be higher in bark B than in bark A at these sampling 
times.

The semi-quantitative values obtained by G C - 
ECD (Table 3, Fig. 3A (standards), Fig. 3B (bark A)) 
show a similar trend to that in Table 2, with tree bark 
A consistently containing a larger amount of in-

n o 2

n o 2

4-Nitrobiphenyl. 
(RMM-199). 
(M*- “  m /i 199).

NOj

1-Nitron*phthalene
(RMM-173).
(W - -  m/z 173).

N02

S-Nitroquinaldine. 
(RMM-188). 
(M-* -  m/z 18*).

CcO. cco
5-Nhroaceniphthene.
(RMM-199).
(NT- -  m/z 199).

2-Nitrofluoreae. 
(RMM-211). 
(M"*”  m/z 211).

9-Nitroanthncene.
(RMM-223).
(M-* -  m/z 223).

N02

3-Nitrofluoonthene.
(RMM-247).
(M-* -  m/z 247).

1-Nitropyrmc. 
(RMM-247). 
(M-* -  m/z 247).

Fig. 1. Structures and m olecular ions o f  all seven nitrated PAH 
and the internal standard.

dividual nitrated PAH compared to tree bark B. Here, 
the only exception is 4-nitrobiphenyl which is seen 
to have a greater amount in bark B than in the bark 
A (Jan./96).

Over the three sampling dates both the GC-NICI- 
SIM data (Table 2) and the G C-ECD  data (Table 3), 
show higher levels of nitrated PAH in bark samples 
taken during January compared to July. The only 
compounds quantified in both trees during the sum
mer sampling period were 1-nitronaphthalene and
4-nitrobiphenyl, with a further two nitrated PAH,
5-nitroacenaphthene and 2-nitrofluorene, being de
tected in the bus station bark (July/95). With the 
exception of 1-nitronaphthalene in bark B (Jan./95), 
all nitrated PAH were detected at higher concen
trations in the January samples compared to the July 
1995 sample. The reasons for this may be a combi
nation of the following. (1) All nitrated PAH investi
gated in this study are found to some extent in the 
vapour phase at ambient temperatures. Average 
temperature and pressure will therefore have a great 
effect on the condensation of pollutants onto sur
faces. For example, compounds will condense out 
during times of cold ambient temperatures (i.e. 
November-February in Britain) this is called the 
‘cold condensation effect’. (2) During warmer am
bient temperatures, photodegradation of these vapour 
phase organic molecules is likely due to the higher 
levels of UV radiation and the presence of radicals 
capable of causing degradation i.e. OH [16]. (3) The 
cold winter months always induce an increase in the 
emissions of organic combustion material due to the 
extra use of vehicular transport by commuters and 
travellers. More organic fuel is also burnt due to the 
increased use of electricity for heating and lighting.
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Table 2
G C-N1CI-SIM  quantitative results o f  specific nitrated PAH in tree bark A and B (three samples over a 1-year period) along with diesel 
particulate extracts: quantitative results are ng o f  compound in 1 g o f  bark or diesel particulates as appropriate

Compound SIM
molecular
ion

Tree A  
Jan./95

Tree A 
July/95

Tree A  
Jan ./96

Tree B 
Jan./95

Tree B 
July/95

Tree B 
Jan ./96

D iesel
particulates

1-Nitronaphthalene 173 70.48 2.48 22.11 0.71 8.07 26.53 1.64
Internal standard 188
4-Nitrobiphenyl 199 37.99 16.42 37.26 8.19 6.23 16.59 6.14
5-Nitroacenaphthene 199 20.67 0.71 32.3 15.38 Trace 38.4 2.48
2-Nitrofluorene 211 11.79 1.79 45.62 1.28 N.D. 30.59 N.D .
9-Nitroanthracene 223 76.19 Trace 23.77 D.S. N.D. 7.69 4.13
3-Nitrofluoranthene 247 Trace 45.3 — N.D. 26.69 Trace
1-Nitropyrene 247 N.D. 52.91 — N.D. 25.4 21.73

N.D ., none determined. Trace, peak present but below  limit o f  detection. D .S., nitrated PAH had degraded in sample.

(4) In winter, deciduous trees are without any foliage 
so any gaseous or particulate associated pollutants 
condensing out onto vegetation can only condense 
upon the bark. (5) Preferential adsorption of certain 
nitrated PAH could be a reason for the increased 
quantities of some compounds observed. The am
bient temperature and the individual vapour 
pressures will determine whether the compound is 
predominantly in the gaseous phase or adsorbed onto 
a particulate surface. A variation in the degradation 
rate of certain compounds (e.g. 9-nitroanthracene, 
which is known to rapidly degrade to anthraquinone 
[37]), may also play a part.

However the small number of samples taken in 
this present study only allow us to present these 
ideas ‘for discussion’ rather than make any definitive 
conclusions.

3.3. Diesel particulates

The particulate extracts were fractionated using 
the previously described tandem amino/alumina SPE 
method. Nitrated PAH were only identified in the 
20% dichloromethane/80% cyclohexane fraction. 
Samples were analysed by both the GC-NICI-SIM 
(Fig. 2C) and GC-ECD methods with the G C - 
NICI-SIM performed on the VG Trio III instrument.

These GC-NICI-SIM results (Fig. 2C, Table 2) 
show that, except for 2-nitrofluorene, all the nitrated 
PAH studied were present in the GC-NICI-SIM  
chromatogram (Fig. 2C). This is surprising as 2- 
nitrofluorene has previously been detected in diesel

particulates [1]. 3-Nitrofluoranthene is present in the 
diesel particulates but only at a relatively low 
concentration. The tree bark sample (Fig. 2B), 
however, contains a large amount of 3-nitrofluoran- 
thene. This could be due to preferential adsorption of 
3-nitrofluoranthene on the surface of the bark or it 
could be due to co-elution with 2-nitrofluoranthene, 
which is known to be produced by atmospheric 
reactions [38]. The problem of separating these 
closely eluting isomers has been described in the 
literature [12]. The results obtained from the mass 
spectrometer using the SIM mode often contained 
several peaks in each mass chromatogram. These 
additional peaks could be isomers of the same 
nitrated PAH or compounds with the same empirical 
formula but a different structure, i.e., nitrofluoran- 
thene and nitropyrene, produced from either pollut
ing sources or atmospheric processes.

The semi-quantitative G C -EC D  results (Table 3) 
also allowed identification and semi-quantification of 
five of the seven nitrated PAH. (3-Nitrofiuoranthene 
was not quantifiable due to an impurity identified 
from the solvent or thimble in the blank experiments 
which obliterated the area of the chromatogram 
where 3-nitrofluoanthene would appear.) The quan
tities identified by the two methods are similar, 
however, with all the values being in the tens of ng 
per gram of diesel particulates. The G C -EC D  results 
for the diesel particulates are consistently higher than 
the GC-NICI-SIM results (excluding 1-nitropyrene). 
This is probably due to the integration data from the 
GC-ECD being high due to incomplete baseline
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Fig. 2. (A) G C -N IC I-SIM  chromatograms o f  a standard containing seven nitrated PAH and an internal standard: (1 ) 1-nitronaphthalene, (2 )  
Internal standard, (3 ) 4-nitrobiphenyl, (4 ) 5-nitroacenaphthalene, (5 ) 2-nitrofluorene, (6) 9-nitroanthracene, (7 ) 3-nitrofluoranthene, (8 )  
1-nitropyrene. (B ) G C -N IC I-SIM  chromatograms o f tree bark A (2 /9 6 )  after fractionation, identifying: (1 ) 1-nitronaphthalene, (2 ) internal 
standard, (3 ) 4-nitrobiphenyl, (4 ) 5-nitroacenaphthalene, (5 ) 2-nitrofluorene, (6 ) 9-nitroanthracene, (7 ) 3-nitrofluoranthene. (C ) G C -N IC I-  
SIM chromatograms o f  diesel particulates (1 1 /9 5 )  after fractionation, identifying: (1 ) 1-nitronaphthalene, (2 ) internal standard, (3 )  
4-nitrobiphenyl, (4 ) 5-nitroacenaphthalene, (6) 9-nitroanthracene, (8 ) 1-nitropyrene.
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Table 3
G C -E C D  semi-quantitative results o f  specific nitrated PAH in tree bark A and B (three samples over a 1-year period) along with diesel 
particulate extracts: quantitative results are ng o f compound in 1 g  o f  bark or diesel particulates as appropriate

Compound Tree A  
Jan./95

Tree A 
Ju ly/95

Tree A 
Jan./96

Tree B 
Jan./95

Tree B 
Ju ly/95

Tree B 
Jan ./96

Diesel
particulates

1-Nitronaphthalene 48.52 6.33 39.37 3.43 4.17 28.9 2.5
Internal standard
4-Nitrobiphenyl 38.99 Trace 26.33 3.3 Trace 35.4 13.19
5-Nitroacenaphthene 20.67 N.D. 103.39 7.49 N.D. 71.09 12.43
2-Nitrofluorene 11.79 Trace 91.49 3.4 N .D . 43.94 N.D.
9-Nitroanthracene N.D. N .D . 57.49 Degraded N.D. 11.09 9.79
3-Nitrofluoranthene Obscured Obscured Obscured Obscured Obscured
1-Nitropyrene N.D. 89.98 N.D. 73.63 18.39

N.D ., none determined. Trace, peak present but below  limit o f  detection. D .S., nitrated PAH had degraded in sample. Obscured, the relevant 
peak was obscured beneath a large contamination peak.

resolution of some of the relevant peaks. 1-Nitro
pyrene is often identified as being the major nitrated 
PAH present in diesel exhaust fumes, [1], and the 
data presented here supports this.

JIW

W ilj

I  10 20 30 40 M
Time.

Fig. 3. (A) G C -E C D  chromatogram o f  seven nitrated PAH with 
internal standard: (1 ) 1-nitronaphthalene, (2 ) internal standard, (3) 
4-nitrobiphenyl, (4 ) 5-nitroacenaphthalene, (5 ) 2-nitrofluorene, (6) 
9-nitroanthracene, (7 ) 3-nitrofluoranthene, (8) 1-nitropyrene. (B ) 
G C -E C D  chromatogram o f tree bark (1 /9 6 ): (1 ) 1-nitronaph
thalene, (2 ) internal standard, (3 ) 4-nitrobiphenyl, (4 ) 5-nitro- 
acenaphthalene, (5 ) 2-nitrofluorene, (6 ) 9-nitroanthracene, (7 ) 3- 
nitrofluoranthene, (8 ) 1-nitropyrene.

4 . C o n c lu s io n s

The literature has shown that tree bark can act as a 
passive sampler for certain atmospheric pollutants. 
Here we have demonstrated the adsorption of ni
trated PAH from the atmosphere by tree bark. The 
seven nitro-PAH studied (Fig. 1) were all from the 
most stable intermediate in electrophilic aromatic 
substitution and are, therefore, formed in combustion 
processes. Their major source in the centre ol 
Sheffield is likely to be vehicular emissions. The 
presence of six out of the seven studied compounds 
was confirmed in separate experiments using a diesel 
engine under controlled test conditions. All nitrated 
PAH studied were found by GC-NICI-SIM  in the 
January 1996 bark samples (Table 2) while four 
were found in both of the January 95 tree bark 
samples. (Note: 1-nitropyrene and 3-nitrofluoran
thene were not analysed for in the Jan./95 samples.;

Nitrated PAH are produced in relatively large 
quantities with one route of removal from the 
environment being adsorption onto tree bark and/oi 
other vegetation, especially during colder Climatic 
periods. The extent to which this occurs, appears tc 
be seasonally dependent since concentrations in the 
bark are lower in the summer than during the winter 
This has also been observed by Librando anc 
Fazzino [5] who analysed air samples over a perioc 
of 1 year. Identification of the mechanism by which 
these pollutants are adsorbed onto vegetation (i.e 
either from the gas phase or directly from par 
ticulates) is required as the sampling method coulc 
be expanded to the analysis of nitrated PAH pro
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getation (i.e. 
ly from par- 
method could 
ed PAH pro

duced in ambient air [16,39]. Then possible sources 
and routes to removal could be investigated with the 
result being a mass-balance model of nitrated PAH 
and their ultimate removal from the environment. 
The necessity for quick, robust methods for the 
determination of these compounds is important along 
with the identification of any other major sources. If 
the other sources of nitrated PAH are of little 
consequence, nitrated PAH could be used as markers 
to identify areas which are heavily polluted from 
diesel emissions.
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