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SUMMARY

The commercial incentives to obtain improved control of the steelmaking 
process in the electric arc furnace are presented and progress made in 

applying computer control is reviewed. The development of a mathematical 
model of the refining process is shown to be restricted by the complex 

metallurgical nature of the process and the deficiency of existing plant 
instrumentation. The ability of a mathematical model, evolved from 
theoretical considerations, to simulate accurately a limited class of 

operating practice is demonstrated. A compromise between complexity 

and implied certainty of the model is obtained by a reduction in the 

dimension of the model state vector and by the introduction of a white 
Gaussian noise process to account for the effect of the ignored states 

and the hypotheses on which the model is developed. Techniques recently 
developed for obtaining noise corrupted measurements of the carbon 
content and temperature of the process are investigated and the statistics 
of the uncertainty on these measurements is determined. The implemen­
tation of the extended Kalman filter for on-line state estimation is 
considered and the operation of the filter under varied conditions of 
uncertainty is discussed. A technique for controlling divergence of 

the filter algorithm is presented and the results of simulations 
indicate that estimates of the states can be obtained to the accuracy 
required for the design of a refining control strategy.
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Introduction

1.1 Motivation
The use of gaseous oxygen to accelerate the refining process in 

steelmaking was proposed1 as early as 1924, however the technology 
required for the economic production and handling of hulk liquid 
oxygen was not available until the end of the second World War. 

During the war Germany developed the necessary technology for 
military purposes and subsequently it was acquired by Allied 
investigators. The Electric Arc Furnace sector of the steel­

making industry was a leader^inthe use of the oxygen lance, which 
is now employed in most large shops both as a tool to assist 

refining and during the melting stage as an auxiliary energy 
supply.

The role of the Electric Arc Furnace in the steelmaking industry 
encompasses the manufacture of a wide range of steels from a 
cold scrap charge. The 'power-on* to 'tap' time for furnaces of 
capacity in excess of 100 tonnes is approximately 4 hours and the 
refining part of the steelmaking cycle typically takes 1.5 hours.

A time saving in this period of at least 10 minutes per cast 

produced, due to a reduction in time taken to reach control 
decisions, reduction in the probability of errors in additions 

calculations and corresponding reduction in the time taken to 
obtain correct analyses, is likely to be achieved by computer 
aided refining control. The financial value of this time saving 

would depend on steel market conditions. However, it would 
typically allox*T at least one extra cast to be produced per week 
per furnace, which in times of heavy steel demand would be worth 
in the order of £100,000 per annum per furnace. There would 
also be savings in refractory costs and alloy additions cost due



to improved energy control, reduced residence time in the furnace and 

more effective use of alloy additions. An accurate model of the 

refining process would also allow a much more effective application 

of the 'least-cost~mix? technique to furnace charge weight calcu­

lations by allowing the 1least-process-cost mix' to be determined.

1,2 Operating Practice

The energy requirement for the refining of medium and low alloy 

steels in the Electric Arc Furnace is supplied almost wholly by 

electric power through the electrodes. Control of the level of 

power input must take into account the state of the bath, the effect 

of the arcs on refractory erosion, the desired end-point temperature 

and in some works the maximum demand constraints imposed by the 

Electricity Authori ty. Although some advances have

been made towards solving part of this complex problem by on-line 

computer control, particularly in electrical power demand control, 

in general the level of power input is controlled by the furnace 

operators. Medium and low alloy steels are refined to meet an 

end-point state determined typically by eleven chemical speci­

fications and one temperature specification. Chemical speci­

fications are normally given as bounded intervals, for example the 

final carbon may be required to be between 0.35% and 0.4%. 

Concentrations of specific alloying elements may be changed by 

making alloy additions and impurities are removed by the injection 

of gaseous oxygen and by the establishment of a suitable slag. The 

temperature is primarily increased by the use of electric power, but 

the heat liberated by exothermic reactions must also be considered. 

The temperature can be decreased by the addition of a coolant, 

usually lime, but the need to make this adjustment can normally be 

taken as an indication of bad steelmaking technique. Independent



control of individual variables i3 not possible. For example blowing 

longer to decrease carbon also affects the temperature of the process 

and the iron oxide concentration of the slag, hence, control of the 

process is complex and requires great skill from the operator. 

Continuous measurement techniques are not available,at present, for 

most of the process variables and the high temperature, in excess of 

1600°C, and highly corrosive nature of the system are but two of the 

many difficulties encountered when obtaining what information there 

is available from the process. It is desirable that all the target 

specifications are met simultaneously so that no time, oxygen or 

electricity are expended on end-point corrections. So even if 

continuous measurements were available, some predictive algorithm 

would still be necessary so that the process could be controlled to 

meet simultaneously the end-point constraints.

1.3 History of Previous Work

1.3.1 Mathematical Models

During recent years, much research effort has been devoted to 

the problem of identifying steelmaking processes for control

purposes. The major part of this effort has concerned steel­

making in the basic oxygen converter. Although the results of

this work are not directly applicable to the arc furnace

process, the common chemical principles of steel refining under 

basic slags and similarity in engineering environment of all 

steelmaking processes ensure the suitability of a review of 

this work as a prelude to the present investigation.

A survey of the literature exposes a variety of mathematical 

models but they reduce to two basic types since division 

between those evolved using analytical and those evolved using 

empirical or statistical techniques is possible. The



requirements of an exact mathematical model for an equilibrium 
oxygen refining process are presented in Philbrook3 and the 
limitations of both thermodynamic data and theoretical 

evaluation of some of the variables are pointed out. To model 

the kinetics of the nonequilibrium basic oxygen process 
Philbrook makes suggestions concerning the forms of serai- 

empirical equations that are most likely to be fruitful. 

Subsequently research groups throughout the world have studied 
the problem and many of the evolved models have been reported 

in the literature. Typical of this work in the United Kingdom 

are the dynamic models developed in U.M.I.S.T. by Middleton and 
Rolls1* and for the British Steel Corporation by Weeks5. In 
Japan;Asai and Muchi6 have made a theoretical analysis of the 

oxygen converter by the use of a mathematical model and in 
Belgium>Nilles and Denis7 established a model which describes 
the transfer of oxygen from the lance to the metal and slag. 
Wells 3 report of work on the feasibility of applying state 

estimation techniques to oxygen steelmaking contains a 
mathematical model of the process. Wells also refers to two 
other studies, not reported in the open literature, which have 

been conducted in the U.S.A. A feature common to all of these 
models is their complexity, the U.M.I.S.T. model consists of 
40 first order, nonlinear, ordinary differential equations 
and a similar number of algebraic equations. Although close 

simulation of the full-scale plant has been attributed to most 
of these models their practical limitations, for use in the 
on-line control of the process, arise not only from complexity 

but also because many of the variables required to characterize 
the state are nonmeasureable. This latter problem will be 
given further consideration when the use of on-line state 
estimation is reviewed.



Greenfield5 has argued a case for employing regression analysis 
to develop a linear multivariable model of the basic oxygen 

process. In particular it was found that the model parameters 
could be readily updated in the course of refining and that a 
feedback control system could be employed since a suitable 
quadratic cost function was available. Mayer et al10have 

shown that the dynamics of the decarburization process in the 
oxygen converter can be modelled by an exponential function 
which describes the end-point refining curve. By making use 
of material and thermal balances it is possible to develop 

static models of some oxygen steelmaking processes in which 
some of the coefficients used are theoretically determined 

while the remainder are obtained from a statistical analysis 

This technique has been used to model the refining of stainless 
steels in the Electric Arc Furnace11512. Such combinational 
models have also been used in the control of basic oxygen 
steelmaking13>llf and the view has been expressed15 that it 
would be difficult to effect much improvement on a static basis.

1.3.2 State Estimation
Although the aerospace and aircraft industries were quick to

16 ’7apply the filtering theory of Kalman and Kalman and Bucy*

to control problems, only recently have these techniques been
applied in the steel industry. Wells reports on a study of
the feasibility of applying the extended Kalman filter to a
basic oxygen converter. This study made use of a complex

twenty-four equation model of the process to generate

synthetic data and a reduced dimensional model in the filter

algorithm. From the results of this investigation Wells
concluded that the reduced model is not accurate enough for
use with only continuous measurement of the carbon monoxide



content of the waste gases. In particular the filter failed 

to track satisfactorily the true carbon and temperature states. 
This failure might, at least in part, have been anticipated 

since an examination of the transition matrix of the filter 

model shows that when only carbon monoxide is measured the 
filter is decoupled from the uncertainty in the thermal 
dynamics and possibly also the carbon dynamics. This 
decoupling, which is not mentioned by Wells, explains why the 
states tend to follow the filter model and to ignore the 
observations. This problem of divergence is considered in 
Chapter 7. Wagner18 also considers the application of an 

extended Kalman filter to steel production in the oxygen 
converter. His filter model is similar to that described in 
Kawasaki12 but no results are presented and the study serves 

only to indicate possible problems which might arise in a 
subsequent attempt to implement this work. Komblum and 

Tribus19 make use of Bayesian inference to design an end­
point control system for the oxygen converter. The process 
model in this system is similar to that of Mayer et al10 
but here the model parameters are assumed to be random with 
statistics known a priori from data obtained from previous 
heats. They conclude that this approach, wherein decision 
theory is used to account for the uncertainty associated with 

the model and observations, should give even more accurate 
control than that at present achieved by the Jones and 
Laughlin Steel Company20 who make use of Mayer's model in a

• o 1deterministic fashion. Soliman et al present results of a 
first feasibility study of the application of the extended 

Kalman filter to the estimation of the temperature and bath 
composition in the argon-oxygen blown stainless-steel process.



The results of this study indicate that reliable estimates of 
the metal bath composition can be obtained even when only 
bath temperature can be measured.

1.3.3 Computer Control of Electric Furnace Steelmaking
Until recently the role of the computer in the control of the 

production of steel in the Electric Arc Furnace has largely 
concerned decisions for optimum plant and scrap useage with 

few applications to the control of batch production in 
individual furnaces. Gosiewski and Wierzb icki22 present 
a dynamic control system for optimizing electric power input 
during the melting stage of the steelmaking process. Their 
preliminary results show a 5% reduction in energy consumption 

for the melting stage, the duration of which was reduced by 
11%. They describe in detail how the theoretical problems 
of process optimization and of control system synthesis are 
solved by means of the Maximum Principle. Wheeler et al23 
describe how control of the power level during the 
refining period of the process may be effected. The model 

of the energy transfer in the furnace, which is the basis 
of the control system, was the result of several years of 

research performed on production Electric Arc Furnaces.
The complexity of the model is such that a large process- 
control digital computer would be required to implement the 

control system. So Wheeler and his co-workers also present 

a simplified regression model that enables an inexpensive 
analogue controller to be used on plant which cannot justify 
the cost of the sophisticated system. Static optimization 
of the stainless steelmaking process in the Electric Arc

• 19Furnace has been studied by Lipszyc and by Calanog and



Geiger11. A computer control system based on a static model 

has been used to control stainless refining at the Detroit 
plant of Jones and Laughlin2lf. Optimal control of arc furnace 

steelmaking has been investigated by Woodside et al25. They 
present a'highly simplified model of chemical and thermal 

dynamics of the process and the existence of a singular arc on 
the optimal power input trajectory is investigated.

1.4 Programme of Work

To appreciate some of the practical problems associated with the 
proposed investigation, a study of plant operating practice was 

conducted. Subsequent to this study and a consideration of the 
general requirements of the model a theoretical basis for model 

development was adopted. The formulation of a function describing 
the change in Free Energy associated with the refining reactions was 
shown to resolve the problem of determining the equilibrium 
trajectory of the process to the solution of a constrained 

optimization problem. However, due to the inadequacy in range 

and accuracy of the available fundamental thermo chemical data it was 
found that it is not at present possible to calculate the 
equilibrium bounds of the process. A lumped parameter represen­
tation of the diffusion mechanisms describing the primary refining 
reactions was investigated in the light of current metallurgical 
theory. It was concluded from these studies that the process could 
not be identified solely from analytic studies but that combined 
theoretical and empirical investigation was a xrorthwhile approach 

to the development of a practical model of the process. The major 

refining reactions were determined by analysis of collected plant 

data, taking into consideration the available metallurgical theory. 
The mechanisms of these reactions were investigated and a system of 
equations describing the rates of reaction was formulated. To



overcome the limitations of both thermodynamic data and theoretical 
evaluation of some parameters it was necessary to apply intuitive 
judgement to an indepth study of the literature on the metallurgy 
of steelmaking and statistical analysis to the available plant 

data. Consequently empirical and semiempirical relationships were 

derived, techniques for parameter estimation developed and a multi- 

variable model of the process evolved. This model was then tested 
using typical plant data and the results indicated that the model 

provided a reasonable representation of the refining process. A 
further period of plant studies was then conducted and data from 
monitored casts were collected. During this study samples of slag 
were taken along with the standard bath analyses. It was proposed 
that these data be used in conjunction with a non-linear parameter 
estimation procedure to improve the performance of the model. 

However, a critical assessment of the range and accuracy of these 

data and of the magnitude of the discontinuities inherent in the 
operating practice resulted in a rejection of this proposal.
Instead the model in its original form was used to simulate the 

monitored casts. These studies showed that with only minor 
adjustments, the original model could simulate very accurately those 

casts during which no major abrupt changes in operation occurred. 
From the practical viewpoint the model was9 however,limited by its 
dependence on process data which are not easily obtained. Hence, 

from an investigation of plant data it was found that the dimension 
of the model could be reduced by treating some of the state 
variables as random parameters whose statistics are known apriori. 
This reduction in dimension of the model was compatible with the 
conclusion that because of the problems associated with modelling 
abrupt changes in process behaviour an accurate deterministic 

model of^process was unobtainable. A study of the theory of



stochastic processes and the practical problems of implementing 

filter procedures was conducted. Subsequently a computer code for 
the Extended Kalman Filter was written. The accuracies of 
available techniques for indirect measurement of process variables 
were obtained and the filter was implemented. Its performance 
under a variety of levels of uncertainty was studied and the 

possibilities of using simple techniques to control divergence were 

investigated.



Selection of a modelling technique

2.1 Introduction

The problem of identifying a system has been defined by Zadeh2Gas 

follows?

' ’Identification is the determination, on the basis of 
input and output, of a system within a specified class 
of systems, to which the system under test is 
equivalent.’

To specify a suitable class of systems for a given problem the purpose 

of the identification must receive primary consideration. The 

ultimate objective of the present investigation is the design of a 

control program for the batch refining process. Such a control 
program must determine the inputs required for optimal transition 

from one state to another. If this program is to effect control 

using the existing inputs, the bounded nature of the power and 

oxygen control variables and the impulse effect of bulk furnace 

additions deny the use of a feedback controller. Hence on the 

assumption that the proposed control program must be capable of 

operation in an open-loop manner it follows that a fairly accurate 

model of the system dynamics is required. The furnace is shown 

schematically in Fig. 2.1 and a description of a standard operating 

practice is presented in Appendix 1. The control problem can be 

given a simplified representation if only the dominant system 

variables, these are the process temperature and the carbon concen­

tration of the bath, are considered. The refining process starts 

with liquid metal at a temperature of about T580°C with a carbon 

content of about 0.5% greater than that required by the order 

specification. The process ends when the carbon content has been 

reduced to the desired level and the process temperature has been
iraised to a level necessary for satisfactory pouring into ingot moulds
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The course of refining may therefore be illustrated as a trajectory on 

the carbon-temperature phase plane. Typical trajectories are shown 
in Fig. 2.2 and the end-point specifications are indicated by an area 
of the space. The effects of bulk furnace additions are shown to 
cause discontinuities in the phase-trajectory.

Two classes of models might be considered to present possible solutions 

to the identification problem; multivariable statistical models and 
explicit mechanistic models. The former approach was rejected for 
the following reasons.

(a) The limitations in the existing instrumentation and the wide 

range of steels produced are such that the time and effort 
required to obtain sufficient well monitored plant data for 
significant statistical studies to be made would be 
prohibitive.

(b) The model would not provide a good basis for either on~plant 
or off-plant control studies since significant extrapolation 
outside of the data range would be meaningless.

To develop a mathematical model of the process on a theoretical basis 
its fundamental chemistry must be examined. To this end a simple 

model of the possible reaction mechanism within the gas entrainment 
zone was developed (see Appendix 2). This model was, howevers 
rejected on both practical and theoretical grounds and it was then 
decided that the process should be examined in depth.

2.2 Theoretical model of the steelmaking process in the electric arc 
furnace

2.2.1 Selection of major reactions

The problem of selection of reactions, and their mechanisms, 
occurring during the refining of steel is not confined to the 
electric arc furnace process. None of the processes at



present in tise is fully understood. Hypotheses of reactions 

and reaction mechanisms must be based on critical investigations 
of plant data and taking into consideration the available 

metallurgical theory. Subsequently Table 2.1 was derived from 
collected plant data and data published in the literature2®335,110 

In theory,reaction between all the system species occilrs but 
an analysis of the changes in Gibbs Free Energy associated 
with the possible reactions justifies limiting the investi­
gation to a small subset. The following were selected%

C + i e2(g? - co(g) R1
Fe + £ 02(g) = (FeO) R2

(FeO) = Fe + 0 R3
C + 0 - CO(g) R4

(FeO) + Mn = Fe + (MnO) R5

jLxĉ vwcV
jVS,

A formal representation of the refining reactions requires that 

the thermodynamics and the kinetics of the process be considered. 
The literature contains much descriptive and graphical results 

of research into these aspects of steelmaking but little has 

been presented which relates these general results to an 
underlying mathematical structure. It is therefore 

expedient that the extent to which the fundamental chemistry 

of the process can be mathematically modelled should be 
determined.

2.2.2 Thermodynamics of steelmaking

A criterion for spontaneous change within an isolated system 

is included in the Second Law of Thermodynamics - within an 
isolated system entropy must tend towards a maximum. The 
interrelationship of other state functions9 such as internal 

energy* with entropy allow for the establishment of a whole 
set of criteria for spontaneous change within systems subject
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Hi Scrap .3 %

AI
Only Significant 
when added to the 
Ladle cat Tapping

Scrap

Sn Scrap 0.03%

MnO SLAG be rats 10.0 %

MgO Refractories

CaO Charged Lime
luosnar

! Si02 Scran + 
Limestone 17.0 %

I A1203 Refractories 7 n

! P205 >crap 2.0

(Fe),
Charged Mill scale 

*5- (Fe202)
Oxidized Bath (Fe Qq)

25.0 %

TABLE 2.1 The System Species and Ileltout Concentrations



to constraints. Now over a short time increment the steel-

making process can be treated as a closed system, constant in
pressure and temperature and subject to mass balances. Such a
system is not necessarily isolated and may exchange heat and

work with its surroundings. Under these conditions the
criterion for direction of change and condition of equilibrium
is obtained by considering the Gibbs Free Energy of the system.
The Gibbs Free Energy, G, is defined as 

A
G = E - TS + PV 2.1

where E *= the internal energy

T = the absolute temperature 
S “ the entropy
P - the pressure

V * the volume
are system variables.

Now for a reaction at constant pressure

dG - dE - TdS + PdV 2.2

If only pressure-volume work is possible, then 
dE * qp - PdV 2.3

where qp « heat transferred.
It follows from the definition of entropy and the second law 
that

dS 2.4

Substituting 2.3 and 2.4 into 2.2
dG = qp ~ TdS < 0 2.5

Therefore for any spontaneous change which does not result in 

a change in pressure and temperature the associated change in 
the Gibbs Free Energy must be negative. The system is in 

equilibrium when no further decrease is possible.



If the furnace is assumed to be in equilibrium at time t = 0, 
the change in state due to the injection of a quantity, uAt, 

;*of gaseous oxygen, 02, can be considered in terms of the 
resulting change in Free Energy, provided that the time incre­
ment, At, is such that the heat flow from endothermic and 
exothermic reactions is insufficient to significantly change 

the temperature of the system. It is well known that the 

steelmaking process will consume all the injected oxygen, that 
is no oxygen escapes with the waste gases. This assumption 

is implicit in the present formulation wherein it is assumed 
that no surplus oxygen is available for reaction to form 
carbon dioxide, (carbon dioxide may of course be formed in the 
furnace atmosphere due to reaction with infiltrated air).
The quantity of injected oxygen may be considered in terms 
of an equivalent amount, 2uAt, of iron oxide and the change 
in distribution of the system1s chemical species can be 

formulated as follows;

Let the concentrations of Fe, (3, Mn, (FeO), (MnO), CO 

at time t = t be xi(tQ) s x2(to), etc. Now if a quantity 
uAt of gaseous oxygen is injected the bulk reaction can be 
written

(xi(tQ) - 2uAt)Fe + x2(to)£ + x3(tQ)0 + x^(tQ)Mn +

+ (x5(to) + 2uAt)(FeO) + x6(tQ)(MnO) + x7(tQ)CO * x1(t1)Fe 

+ x2(tj)£ + x3(t1)0 + xlf(t1)IIn + x5(tj)(FeO) + x6(t1)(MnO)

+ x7(tj)CO 2.6 2.6

Subject to

x. (t) > 0  all i 2.7 2.7i x ' —

and element balances

A X(t,) = AX (t ) + a 2uAt 2.8l o



where

(1 0 0 0 1 0 0 ) ( -1 )
( ) ( 0 )
( 0 1 0 0 0 0 1 ) ( 0 )

A = ( ) and a ~ ( 0 )
( o 0 1 0 1 1 1 ) ( 1 )
( ) ( 0 )
( o 0 0 1 0 1 0 ) ( 0 )

Determination of the equilibrium state at t = t may therefore 

be expressed as the following optimization problem 
minimize GCXCtj))

subject to AX(tj) - b = 0 2„9

XCtO > 0

where G(X(t )) - I u.
i-1

y^ - the partial molar Free Energy of i
b == AX(t ) + a2uAt o

Now if y^s£ is molar Free Energy of i in its standard state
at a temperature, T, then y^ is related to y^g£ by the 
equation

where

= y_, . + RTln a.1 rrsi i

R = Gas Constant

« the activity of species i relative
to its standard state

The standard state for species in solution in iron is the 

infinitely dilute solution and the standard state for species 
in the slag is assumed to be the pure substance. Henry’s 
and Raoult’s laws may therefore be used to give

4
'I
3:

Qk \

a. = i M.f. x./Y M.x. i - 2,3,4 i i * *-=1 3 J s s

k = 5,6
x + x + n5 6 ex



where M. is the molecular weight or species i and £. and e,1 i x
are Henrian and Raoultian activity coefficients respectively, 

The constant n accounts for the non-variable slag species6X
such as calcium oxide. The activities of iron, ax, and 
carbon monoxide a7 may be assumed to be unity.

The problem of determining the equilibrium trajectory of the 

refining process is therefore equivalent to the constrained 
optimization problem 2.9. The simpler problem of determining 
the equilibrium state in a mixture of gases has been shown to

2*7 • 2 8 •be convex and Bracken and McCormick have reported its 
solution by use of the sequential unconstrained minimization 
technique, SUMT. It is not, however, the problem of 

determining a solution technique that makes this approach 
impractical at present, it is the availability of thermodynamic 
data. Values of the Henrian activity coefficients, f^, for 

species in the bath are available29. Determination of the 
activities of species in slags has had no comparable success.
Approaches to the subject based on the treatment of the species

• • * 3 0as ionic solutions do allow for some interactive effects,
but to date no generally accepted interaction coefficients
have been evaluated. Molar Free Energies for species in

standard states, are available31 but values differing

by in excess of 10% can be found in the literature.

2.2.3 Kinetics of Steelmaking
From the control viewpoint knowledge of the endpoint or 
equilibrium state is only of secondary importance. The rate 

at which the reactions proceed is of primary concern, since 
it is genrally accepted that during refining in the arc 
furnace the major process species are not in equilibrium.
To determine the rate of reaction it is necessary to conduct



a step-by-step analysis of the underlying chemical and 

diffusion processes which are contributory to the bulk 
reaction. The rate of the bulk reaction is determined by the 

rate of the slowest contributory step. As has been demon­
strated in the previous section it is the injection of gaseous 
oxygen that perturbs the system from the equilibrium state, 
the partitioning of this oxygen between the various phases is 

shown schematically in Fig. 3.1. To illustrate this step- 

by-step analysis the reaction between dissolved oxygen and 
carbon may be considered. This reaction requires a 

nucleation site. Studies of ore-fed systems32 have confirmed 
the theory that these sites are located on the bottom of the 

furnace. The sequence of steps in transferring oxygen from 
the slag to the carbon monoxide bubble on the hearth of the 
furnace are?

1. Transport of (FeO) in the slag to the slag-metal
interface

2. The reaction (FeO) - Fe + 0 at the interface
3. Transport of oxygen in the metal, away from the

slag-metal interface

4. Transport of (a) Oxygen and (b) Carbon9 in the metal, 

from the bulk metal to the phase boundary between the 

metal and the CO bubbles

5. The reaction £  + £  = CO(g) at the gas-metal interface
6. F.ise of CO bubbles out of the metal and slag into the

furnace atmosphere
At the temperatures typical of steelmaking the rates of 

chemical reactions, steps 2 and 5, are several orders of mag­

nitude greater than the observed bulk reaction rate hence these 
steps are eliminated from further consideration. It may also



be assumed that step 6 cannot bo rate controlling. Since the
! •

oxygen concentration of the slag is high only the diffusion of

iron need be considered when determining the rate of step 1.

The rate of diffusion of iron in the slag is sufficiently large

for the steelmaking practice under consideration for this step

to be eliminated. This being so since well fluxed slags of

high fluidity are obtainable by use of good slag control and
also because the use of gaseous oxygen ensures that pure FeO
is available. The determination of the rate controlling step
from steps 3 and A is not easily resolved. In the present
study it is shown that step 3 is probably rate limiting for

carbon concentrations greater than some critical value. Step
3 may be described mathematically by the following lumped
parameter form of Fick's first diffusion law 

, r  D
~ * A - ~ ( a * - a )  2.10dt s o o  oo

where Ag * the metal-slag interfacial area
Dq *= the oxygen diffusion coefficient

6o = the thickness of the boundary layer

an*,aQ = the chemical activity of the oxygen in

equilibrium with the slag and the 
activity of the bulk oxygen concentration 
respectively.

Values for the parameters Dq and <5q are available, but the use
of laboratory determined values in the description of the
industrial process must be viewed with caution. In particular

it is quite certain that will decrease with increasing
reaction rate since the boundary layer thickness is a
decreasing function of the Reynold’s number for the bulk flow.
The area of the slag-metal interface, A , may be determined,s



for the stagnant bath, from the dimensions of the furnace.

However, during a vigorous carbon boil the turbulence of the 

bath will increase the area. An exact determination of 
equilibrium oxygen activity, aQ*» would require the solution of 
the nonlinear programming problem presented in the previous 
section but an approximate solution can be obtained by considering 
the equilibrium of the reaction (FeO) *= Fe + £  in terms of the 

activity of the iron oxi de concentration of the slag. The
activity of the bulk oxygen concentration, aQ, may be replaced

by the bulk oxygen concentration as a weight percent which may 
be considered a system variable. Since 2.10 also determines 

the rate of the bulk carbon oxidation reaction the general

form of the rate of carbon oxidation itfwt.%.s  ̂ is as follows

d % C  __ ,s ,d % C N / c t \ *7rv\ n 1 1

d t  ~  l ^dt ^ ^ 2  ^ e O ^  “  — ^

where f. is a function relating A , D and <5 to the1 s o o
boil rate

f2 is a function relating the equilibrium activity
of the oxygen in the metal at the metal slag inter­
face to the iron oxide activity of the slag.

This implicit formulation of the reaction kinetics shows how 
even a preliminary analysis of underlying metallurgy of the 

process leads to a model structure far too complex for control 

purposes. Similar formulations may be obtained to describe 

the rates of the other major reactions. If the chemical 
variables are denoted by a vector X(t) and their equilibrium 

values by X*(t) the dynamics of the refining process may be 

described in the following general form
X(t) = f(X(t))(g(X(t)) - h(X*(t,U») 2.12

where U, the oxygen injection rate, has been included in the 
arguments of X* since, as has been shown in the previous



section, the equilibrium trajectory is a function of the injection 

rate.

To complete this theoretical formulation of a process model the 
thermal dynamics must be considered. The major influence on 

the temperature of the system is the power input by the electric 
arcs* but a complete thermal balance for the process requires 
that the heat generated and absorbed by the chemical reactions 

should be considered, also the heat losses due to convection 
and radiation must be evaluated. The general formulation of 
this heat balance is of the form

^ £ 2 -  „ (T(t) - To)" + a (T(t) - Tq)

+ C„-1 {P(t) + WHM I h. X ((t) } 2.13
1 = 1

where ax, a2 are constants

T(t), Tq are the system and ambient temperatures 
respectively
CL is the heat capacity of the system
si

P(t) is the electric power input 
WHM is the weight of hot metal
h^ is the heat liberated (or absorbed) by the reaction 

of X;.

If the assumption is made that a discrete time model of the 
process can be obtained from the system equations 2.12 and 2.13 

wherein the time increment At is such that the variation in the 
process temperature is sufficiently small that the conditions 

required in 2.2.2 are satisfied then the theoretical model 
can be described by the flow chart in Fig 2.3.
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2.3 Conclusions
The terms of reference of the investigation are shown to be best 
satisfied by the development of a model on a theoretical basis.
The formulation of an exact mathematical model has demonstrated that 

the limitations of available, thermodynamic data are such that 
calculation of the equilibrium trajectory of the process is not 

possible. Moreover, as no established knowledge of the reaction 

mechanisms exists a wholly analytic study of the kinetics is not 

feasible.

In consideration of these conclusions, it seems inevitable that a 

practical process model must incorporate many features which are 
dependent on the individual furnace and the particular practice. 
These features may best be understood by developing the model on a 
theoretical basis. Furthermore this should permit the basic model 
to be applicable to any furnace and the use of adaptive techniques 
to up-date empirical coefficients, thus improving its accuracy.



Uii&r iUK. 3

A mathematical model of the refining process 
in the electric arc furnace

3.1 Introduction
It has been shown in Chapters 1 and 2 that to formulate a mathematical 
model of the refining of steel in the arc furnace thatnot only must 
the complex chemistry of the process by understood but also, that 
engineering judgement is required to overcome the many inadequacies 

in the available data and theory. A solution to this problem is 
presented here and the process is described by a set of differential 
and algebraic equations. Treatment of the techniques employed in 

estimating parameters has been left until Chapter 4 and only the 

structure of the equations is presented. Where necessary 
additional studies on the chemistry of the process are provided.
It should be noted that when required the following is the 
conversion from kmol per tonne to weight percent.

%i = Ci x x 10“1

where C^ = the concentration of i in kmol tonne 1

= the molecular weight of the i species

3.2 Process Variables

For preliminary studies the following were determined as being the 

necessary variables to give adequate description to the interactive 
nature of the process.

<D ; the bulk oxygen concentration in the bath 

(kmol? tonne 1)

C ; the carbon concentration of the bath
(kmol tonne *)

Mn; the manganese concentration of the bath

(kmole tonne *)



3 ; the slag basicity ratio
(FeO) 5 the iron oxide concentration of the slag

(kmol tonne *)
WSL  ̂ weight of slag (tonnes)

WKM ; weight of bath (tonnes) (P ** WSL/WHM)

NFeo * kmol fraction of FeO in the slag
a_ ; Chemical activity of FeO in the slagr eu
N^no 3 kmol fraction of MnO in the slag

T s’ the temperature of the bath (°K)
(MnO) ; the concentration of MnO in the slag

(kmol tonne *)

3.3 Oxygen dissolved in the bath

Studies of carbon/oxygen concentrations in oxygen steelmaking
3 3 3 ̂  3 5processes * 3 show that although equilibrium is not attained a

definite correlation exists between their respective concentrations. 
If carbon and oxygen are in equilibrium 1600°C the following

lrelationship has been shown to exist between their concentrations

%C X %0 = T :°T % RC ■ 3<11. + 0.85 x %0
where P = total pressure (atms)

Only limited data are available for the carbon/oxygen concentrations 

in the electric arc furnace and that presented by Hills and Knaggs36 
were correlated to give a relationship of the form (see Chapter 4)

0 = a(c)b 3.2

where a and b are constants

3.4 Decarburization

3.4.1 General
The reaction between carbon and oxygen is the most important 

one occurring during refining. Its importance lies not only



in the necessity of taking the carbon down to some specifi­

cation or range, but also in the vigorous stirring action of 
the 'carbon boil7. This agitation assists in the promotion 
of slag-metal reactions by increasing the interfacial area and 

generally cleans and gives homogenity in the bath.

The metallurgical theory for this reaction has been described 

briefly in Chapter 2 and the dynamical equation for the 
reaction is developed on the assumption that it has two 
components.

3.4.2 Component 1, the reaction between carbon and gaseous oxygen. 
Since it is not generally accepted that this reaction occurs, 
a justification for its selection is necessary. Until the 

mid-sixties,investigations of the mechanism of the carbon- 

oxygen reaction mostly considered the classical open-hearth 

process, that is, oxygen for decarburisation is supplied 
through the slag layer. These investigations supported the 
theory that since homogeneous nucleation of carbon monoxide 

bubbles is improbable, nucleation must be hetrogeneous 
occurring either at the slag-metal interface or on the furnace 
hearth. Nucleation at imperfections on the furnace hearth 
is now the accepted mechanism for carbon oxidation in processes 
where the oxygen is introduced through the slag32. However, 
results of recent research375385,39 show that the decarburi- 
nation mechanism, when gaseous oxygen contacts directly with 
molten steel, must be different from that which had been 
accepted for classical open-hearth steelmaking. In 

particular this research has demonstrated that when Fe-C 
melts are decarburized under an oxidizing atmosphere the 

reaction mainly takes place at the gas-metal interface. It 
is therefore reasonable to conclude that reaction between



oxygen and carbon will occur in electric arc furnace steel- 

making where an oxygen entrainment zone exists below the slag. 
The rate of this reaction may be expected to be determined by 
the diffusion of oxygen, down to some critical carbon concen­
tration38 ,39. However, it is not reasonable to expect this 

to be the sole reaction occurring, since the effect of carbon 
shortage has been estimated to manifest at concentrations as 
high as 1% . For this reason, a partitioning of the oxygen

has been developed as displayed in Fig. 3.1. It is accepted 

that below some critical concentration it is the transfer of 

carbon that is rate limiting. Therefore, the rate of the 

first component of the decarburization reaction (i.e. the 
Free Surface Reaction) can be expressed in the following form, 
for carbon concentrations greater than this critical value

<Ckr>
dC

■ V i  <ai - aoeq) 3-3dt
eo • . . .  .where a ~' * the oxygen activity for equilibrium with the

carbon in the bath (aQeC* “ EQi/%C)
EQj * the equilibrium constant for the reaction

C + 0 = CO(g)

a^ = the oxygen activity in the entrainment zone
(see Chapter 4)

When £  < the rate of this component of the reaction is 

controlled by the mass transfer of carbon to the reaction 

site. Thus, the change-over to carbon control can be 

determined as follows;

Let Cj - Dc(%C - EQi/a') 

S2 - Do(a* - EQj/XC)



where Dc = the diffusitivity of carbon in liquid steel
Do *= the diffusitivity of oxygen in liquid steel.

For £ > EL the rate of the reaction is controlled by the1 2
transport of oxygen

£ < £ the rate of the reaction is controlled by the1 2
transport of carbon 

£i ~ ^2 Neither transport is dominantly controlling.
In the present study this transition is not 
considered significant and the first inequality 

(Si > S2) is replaced by £x >

3.4.3 Component II - Reaction between dissolved oxygen and dissolved 
carbon

For this reaction the rate may be limited either by the 

transport of oxygen from the slag to the metal, or by the 
transport of oxygen through the bath to the gas metal inter­
face. A critical survey of the literature revealed that the 

degree of approach to equilibrium between the carbon and 

oxygen in the bath was related to the furnace shape.
Shallower types of furnaces, for example the open hearth, 
have a carbon/oxygen relationship a lot closer to equili­
brium than that of the deeper B.O.F. It is admittedly 
somewhat unreasonable to compare two processes so different 
in refining speeds. But it is reasonable to deduce from a 
comparison of the electric arc furnace and the B.O.F. which 

have similar slag (FeO) contents, but different bath oxygen 

contents at the same carbon concentration, that the electric 

arc furnace is closer to equilibrium because;
(i) it has a greater hearth surface area/unit volume,
(ii) its mean slag-hearth path is shorter, and
(iii) it has a greater slag metal interfacial area/unit 

volume.
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FIG 3.2 Effect of Carbon on Oxygen Concentration



Fig. 3.Z shows that the departure from equilibrium is carbon 
dependent and increases more noticeably when the carbon 
concentration drops below about 0.3%. Since concentrations 
greater than this coincide with the most vigorous period of 
the ’carbon boil1 it was concluded that the increased slag- 
metal surface area accounts for the reduced departure to a 
significant extent. The problem may be illustrated in terms 

of three separate oxygen activities, as shown in Fig. 3.3.
If oxygen diffusion from the bulk metal to the carbonmonoxide- 

metal interface is rate controlling then the chemical 
potential for the reaction would be given by

A0! - ao - aoeq 

Substituting 3.2 and the equilibrium constant EQ, of the 
reaction £  + 0 » Co gives

&0t = a(C)b - EQ,/C

It is shown in Fig. 3.2 that this relationship is an accurate 
description of AOj for a wide range of carbon content and 
different operating practices. Hence if the hypothesis, 

that the rate of reaction is determined by s is accepted 

then it would be reasonable to conclude that the rate of 

reaction would be only weakly related to the turbulence of
♦ i* 2the bath. This however is not so, Barnsely and Thornton 

have found that the rate of injection, q°, for optimum 
efficiency of decarburization (here efficiency is a measure 
of the quantity of oxygen required to oxidize 0 .01% of 
carbon per ton of metal) is related to the furnace capacity 

and lance diameter by

q° = 50d(6 + /Wt )
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t

FIG 3.3 Localized Oxygen Activities



where q° = rate of oxygen injection (ft!min X) 
d “ lance diameter (in)

Wt = bath weight (tons)
An examination of this equation reveals that the optimum oxygen 

input is a function of the furnace diameter, D, since /tons otD . 

Also at constant gas momentum, the following linear relation­

ship exists between two different lance diameters and oxygen 
flow rates:

di «ii
d7 " q2

It is significant that this relationship is satisfied by the 

equation for optimum oxygen input rate. Hence it seems 
reasonable to conclude that the stirring effect derived from 
the momentum imparted to the bath by the oxygen stream is a
major factor in determining the rate of oxygen transfer.

The rate controlling step was therefore decided to be the 

transport of oxygen from the slag to the metal. The rate 
of this reaction can be expressed ass 

dC
•jr *= -k A (a eqs - a ) 3.4dt 2 2 0  o2 —

During the ’carbon boil5 vigorous stirring of the bath occurs 
and this turbulence increases the slag-metal interfacial area. 
A„ is therefore written as a function of the boil rate and of 
the mechanical energy of the oxygen jet.

A2 " + e<|C|)f> 3.5

where ^j[n *-s t îe area °f the slag-metal interface for 
a stagnant bath

For the conditions £ '> £ the rate of decarburisation for the
l —  2

process is given bys



where ^oe°0 is the oxygen activity for equilibrium with the 
oxide content of the slag. Substitution for the various 
parameters gives;

f  = - k  A (a* - EQi/%C) - k2A2 (aFe0/EQ2 - %0)

3.7
Assumptions made in Chapter 4 reduce this equation to the 
followings

§  -  -  { k A ^  -  EQi/%C) + k2, ^ . n f(u)fare0/EQ2

-%C)}/{1 - (a^/EQ - %C) } 3.8(a)

For the condition £ < £ this equation becomess1 2
§  = - { k A  (%C - EQ^.*) + k A ^  f(u)(aFe0/EQ#

-ZC) }/{!-- ek2/lM.n(aI,e0/EQ2 - %0) } 3.8(b)

3.5 The oxidation of Manganese
The partitioning of manganese between the slag and the metal is 
described by the reaction

(FeO) + Mn == (MnO) + Fe 3.9

Though this reaction has received little attention in the 

literature, comparison studies between steel making processes and 

virtual maximum rate studies 3lfJ 35 for the reaction conclude that 
equilibrium is closely approached towards the end of the oxygen 
refining period. The rate of the reaction during the injection 
period is considered to be controlled by the mass transport of 
manganese to the slag-metal interface. The rate of this transport 
process can be written as;

d MN i a / ^
dt ~ 3 3 âMh "̂fneq



the reaction as?

EQ =    3al0
3 ^eQ . ^Ineq

If the concentration of MnO and FeO in the slag are expressed as

kmol fractions9 assigning Raoultian activity coefficients gives?
Y N m  MnO MnO

v-3 Y „  ^ N„ » a.. 3.11FeO FeO wneq
^MnOThe relationship between —--- and the basicity of the slag is
FeO

studied in Chanter 4.

Since this reaction, like the rate controlling reaction for the second 
component of decarburisation takes place at the slag-metal interface 

must be the same as . The performance equation describing the 
oxidation of manganese is therefore?

at - k3W V u) * *<icl> ) < » > -  f . ( «2

Nm  _/EQ N„ _ 3.12MnO 3 FeO

6 Slag Basicity Ratio

Steelmaking slags have a large number of component oxides. These 

complex systems may be either acidic, neutral or basic. The 

present study is confined to practices using basic slags. The 
basicity of a slag is expressed as the ratio between the concen­
trations of the basic and acidic components.

The form adopted here is as suggested by Pearson et al35

N_, _ + N., n + N-. n3 - CaO MnO MgO  ̂^
NSiO + NA1 0 + N P 02 2 3 2 5

where Ih = Number of kmol of i species



The concentration of HgOP dissolved from the hearth can be 
expected to be near saturation3. The influence of iron oxide 
and basicity on the solubility of MgO has been investigated43.
A comparison between the results of this study and the limited 
plant data available justifies treating as being constant.,
as an initial assumption.

(ii) CaO

The dissolution of lime in slag proceeds at a rate controlled by 

the diffusion of CaO across the solid-liquid interface1*4. The 
area of this interface cannot be estimated because bulk lima 
tends to disintegrate at random. Moreover, the practice of 
using powdered lime does not remove the difficulty of 

considering what part of the area may be blocked by a film of 

dicalcium silicate. The rate of precipitation of this film is 
dependent on the viscosity of the slag45 and hence on the 
composition and temperature of the slag. The problem of 

describing this process can be avoided if it is assumed that all 
the charged lime is dissolved shortly after the start of the 
oxygen blow. This assumption is valid for the arc furnace 

because the use of arc power permits the slag to be controlled 

to meet almost any desired characteristic, a fact that is the 

real basis of the flexibility of steelmaking in the arc furnace. 

^CaO t îere^ore treated as a constant but the problem of 
describing the lime dissolution rate may present itself again 
when lime additions must be considered as control variables.

(iii) SiO and P 02 2 5

As shown in Table 2.1 the melt-out bath analysis indicates a 
low concentration for silicon. It is therefore reasonable to 
expect little change in the slag silica thus permitting



SlU ”2
treating Np Q as being constant.

2 5

(iv) A1 0
2 3

An investigation of the limited published work1*6 concerning the 

solubility of A1 0 in slag3 concluded that for the concentrations
2 3

occurring in the present study, see Table 2.1, the slag must be 
near saturated with A1 0 , NA, ^ was therefore considered as2 .' "A1203
constant.

(v) MnO

The oxidation reaction for manganese has been described in 3.5.

The product of this reaction is considered to be the sole
variable in the basicity ratio.

The performance equation for g is given by

-46 . _________1____________ „ i^fap. 3 u
dt HS.O + KP 0, + NA1 0 dt1 2 2 5 2 3

3.7 Iron in the slag

The distribution of iron between its ferrous and ferric states is

not easily resolved. This problem has been studied43 in terms of 
+++

the j~ratio = / (Fe + Fe ) and it has been shown that
this ratio is sensitive to slag composition in the range of
commercial slags. The present study does not take into account this
distribution and all the iron oxidised is assumed to exist as FeO. 

Although this assumption cannot be wholly justifiable, the fact that 
practically all of the carbon reacts to form carbon monoxide can be 

taken as an indication of little surplus oxygen being available.
Hence the occurrence of Fe 0 is probably not all that significant.

2 3

From the oxygen partitioning given in Fig, 3.15 it follows that the 

rate of reaction for iron oxide is obtainable from an oxygen balances,



giving;

d FeO /n/^s/o , dC , d Mn dO N , , c
“at = (1/p) (2u + a t + - & r  ~ at > 3-15

3.8 Material balance

To determine the slag and bath weights a dynamic material balance is 
used. The ratio of slag to bath weight is given by;

t »
WSL° + f (FeO x WHM x Mp . x p) dt

p = --------%---------------— -------- 3.16c •
WHM° - / (FeO x WHM x Mpe x p) dt 

where WSL° and WHM° are the initial slag and bath weights respectively,

It should be noted that in deriving this balance only the oxidation 

of iron was considered to have a significant effect on the slag and 
bath weights.

3.9 The kmol fraction of iron oxide in the slag 
The kmol fraction of iron oxide is given by;

„o . ,d FeONN_, 0 + / (---77“ / dtFeO o dt nH ---------1--------------------3.17
. . r  A  PeO 1 d Mnx
2 + f o <—a r " p - a r > dt

where £ = Nc A + N_ A + NA A + NM A + N„ A + N° A + N®S.02 P205 CaO 11203 MgO FeO MnO

3.10 The oxygen activity of the slag
The activity of iron oxide in a complex basic slag is not readily 

calculable. The problem of deriving a relationship to give a 

continuous estimate of this variable is considered in Chapter 4. 
There a regression analysis is performed on published data and an 
expression of the following form is obtained.



3.11 The kmol fraction of manganese oxide in the slag 

The kmol fraction of manganese is given by

H° + / ( ~  dtw c  H—  2__2__ Si!:______  3 iQW.0 v . rt /d FeO 1 d MnN ^
z + '  < - a r - - p - i r > dt

3.12 Heat balance
The rate of change of temperature of the bath is calculable from an 

enthalpy balance for the process. Heat of reaction and heat 

contents are available in the literature47. Heat losses due to 
radiations convection and conduction are taken as being constant. 

Cooling due to infiltrating air is accounted for and a fraction of 

this is assumed to react with carbon monoxide to form carbon 
dioxide. A certain proportion of the heat from this reaction is 

considered to be radiated back to the bath.

f  ■ <H* + H3T> + f 2

(H- + h 3t) + T T  <H S + h 6t) + 

p ( H 7 + H 8T) + K n  £  (H12+ H i3T)

+ U(H + H. J)) + E)/(H WHM + H 1QWSL)
3.18

dC ̂ dC ̂Where and —  refer to the first and second components of the

decarburisation reaction respectively and E is electric power input

Estimated values for and what they represent T*ill be given in
Chapter 4.

3.13 Summary
The structure of a set of equations required to simulate the proces 

has been described. Since the structure is subject to the



validity of many hypotheses the set may require expansion or

modification when more accurate plant data or experimental
. , , .... In Appendix 4 the current parameterevidence becomes available.

estimates are only assumed to be accurate to ±10%.



The derivation of empirical relationships and 
parameter estimates

4.1 Introduction
In the previous chapter the development of a mathematical model of 
the refining process has demonstrated the necessity for both the 
derivation of relationships to describe phenomena and the estimation 
of parameters not theoretically evaluated. In this chapter a 

solution to these problems is obtained by analyses of the results 

of both plant investigations and a wide range of work reported in 
the literature,

4.2 Least squares fit applied to carbon-oxygen data.
3 3 9 3 6 > h 8 » 9 > 5 0

Despite the recent progress in the field of oxygen

determination in steel, a study of the literature reveals that 

for the electric arc furnace only limited data are available.

The following data were obtained from the work36 of Hill and 
Knaggs:

%0 .04 .032 .026 .0225
%C .1 .15 .2 .25

Tx^\functions were considered:
(1) A power curve

Results

%0 = ct0(%C)ai 4.1(a)

a = 9.4 x 10 8o

a = ~0,63l
Correlation coefficient *= -0,99



Results
a1 = 6.0 x 10“20
a1 = -3.871

Correlation coefficient = -0.986

The correlation coefficients, being a measure of that degree of 

association between the data points, indicate that the power curve 
is the more probable relationship. This is in agreement with the 

result of similar studies conducted by Coheur and Nilles31* on the 
carbon/oxygen relationship in four other steelmalcing processes.

The data used in the present study do not include any carbon 

concentrations representative of the earlier part of the refining 
period. The two functions 4.1(a), 4.1(b) were therefore tested
with melt-out data from the literature33.

%0 Evaluated by 
%C %0act Power curve Exponential function 

.3 0.019 0.020 0.019

.4 0.016 0.0160 0.013

These tests endorse the adoption of equation 4.1(a) to relate the 
concentrations of dissolved carbon and oxygen.

4.3 The interaction between the submerged oxygen jet and the molten steel
4.3.1 Introduction

The oxygen jet affects a number of the chemical and physical 

processes occurring in the furnace:
(i) The decarburisation rate

Against a decreasing oxygen efficiency, the rate of 
decarburisation increases with the oxygen flow,



subject to the limitations imposed by splashing and 

pressure drop considerations,
(ii) Oxygen efficienc3*

A range of input rates which give optimum efficiency, 

for each lance diameter and furnace size, have been 

reported**2.
(iii) Mixing

The transfer of momentum between the jet and the 

liquid imparts a stirring effect to the bath.

(iv) Refractory Wear

Direct contact between the jet and the refractories 

results in serious refractory erosion.

(v) Splashing
The bath is only capable of dissipating a limited 
amount of jet energy before liquid spouts are formed 

which result in excessive fume loss and refractory 
wear.

Despite the apparently important role of the oxygen jet no 

theoretical studies of its fluid dynamics could be found in 
the literature. Some more general studies of gas-liquid

51—5 6systems provide the basis of the present investigation.

4.3.2 Bubble size

Bubble size has been shown to be dependent on the dimensions 

of the orifice and its Reynolds number57. This study 

concluded that for Reynolds numbers exceeding 40,000 the 

bubble size is virtually constant and has an average 
diameter of about 0.4 cm.

The Reynolds number, is given by:



where q « gas flow rate (m3/s)

d = lance diameter (m)o

X 88 kinematic viscosity (m2/s)8

For the present study the gas kinematic viscosity X is lesss
than iO*"1* m /s at the process temperature. The flow rate is

0.71 m3/s and the lance diameter 0.038m, These values give 

an orifice Reynolds number greater than 40,000. It may 
also be noted that for optimum oxygen efficiency (see 3.43) 
Barnsley and Thornton have shown that the ratio q/dQ is 
related to furnace capacity and for a 140 tonne capacity 

furnace (as considered here) this gives a Reynolds number 
of 7 x 105.

4.3.3 Jet trajectory

Themelis et al51 derived the following equation to describe 

the trajectory of a gas jet in a liquid:
j tan2(0c/2) dY 2 1

Where Y.r y/d * dimensionless vertical distance J o
fi./m jet pole

Xr x/do dimensionless horizontal distance
from jet pole

d = orifice diametero
P-,,P = liquid and gas densities respectively§

0c = jet cone angle
0Q = angle of inclination of axis of orifice to 

horizontal



C = volume of fraction of gas in jet at a distance
x from jet pole given by

d p- 5
c ° d2, (c + jr ( 1 " c) }8

d = jet diameter at a distance x from the orifice.

From the geometry of the jet9 d = 2x tan (Qc/^)

The following values were estimated from data obtained in the 
course of plant studies.

Nfr - 210

do = 0.038m

pX*pg = 7.16 x 10

0o

o0CO1II

From the literature51 0 = 20°c .

4.3.4 Solution of Equation 4.2

The equation was solved numerically subject to the following 

initial conditions

1 dYr
at Xr = 2tan(0 /2) 9 Yr = °* dx“ “ tan0oc r

The resulting jet trajectory is presented in Fig. 4.1.

The average jet velocity at a distance x from the orifice is 
given by

^1 —l
Ux " Uc (C + p (1 ’ C) } 4,4g

From the jet trajectory the approximate distance (Z) 

travelled can be measured.
& = lm.
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Equation 4.5 was solved numerically using Simpson’s Rule and an 
average residence time of 0.25 secs obtained. The volume of 

gas in the bath is3 after correction for temperature and pressure, 
approximately 1m3•

From 4.3.2 the average bubble diameter before correction is
-34 x 10 m. Correcting for temperature and pressure gives an

«-3approximate diameter of 7.5 x 10 m. The gas-metal inter­
facial area can be estimated as follows

. Vol. of gas _ _ , ,A = --- f t  rvT~ x surface area of bubblel Vol. of bubble

= 74.0 m2.

3,5 Calculation of the mass^-transfer coefficient (ki) for the 
reaction between gaseous oxygen and carbon

If direct proportionality is assumed between mass transport 
and diffusitivity5 the mass transport coefficient can be 
expressed as

A1 »o Pj>
d.(wt.bath)

From the literature Dq = 5 x 10 9(m2/s)5 6 - 3 x 10**5(m). 

Substitution of these values into Equation 4.69 assuming the
initial bath weight to be 140 x 103 kg gives

k , = 7 x 10 s 1

3.6 Estimation of the value of a1 the oxygen activity in the jet
For an oxygen injection rate of 1500 cu.ft/min the rate of 
decarburisation of the bath is approximately 6 x 10



0.17 kmol.tonne"1. For ore-fed processes, which have 
similar slag oxygen potentials the rate of decarburisation is

• -If Japproximately 2 x 10 kmol .tonne .s . From equation 3.1

the oxygen potential of the bath for equilibrium with a

carbon concentration of 0.5% = 0.43 kmol.tonne-1 is
a = 0.004°eq

The rate of the decarburization reaction in the jet zone is 
given by:

f §  = k x <a» -  a0£q)

. . dcSubstitution of the above values of -r- «, k and a givesdt 9 l oeq &

a1 = —  - ---- - ̂ —  + 0.004
0 7 x 10

= 6 x 10‘"2

This value of a1 was taken as an initial estimate for use in o
equation 3.3.

It is of interest to note that the accuracy of these estimated 

values of lcx and a* can be tested in a general sense as 
follows:
In 3.4.2 it was stated tha4* changeover from oxygen transport 

control to carbon transport control occurred when = C2 

Substituting the estimated value for and 0.002 for E Q ^
..5 _ 7(see 3.4.2) with D = 5 x 10 and D = 7 x 10 gives / o c

5 x 10~5 (.06 - 0.002/%Ckr) = 7 x 10”5(%Ckr - 0.002/0.06)

%Ckr * 0.17
This estimated value of %^kr is in close agreement with the 
value of 0.16 which has been reported**2 for plant practice.



of the slag

The complexity of steelmaking slags has been discussed in Chapter 3.

Turkdogan et al studied the effects of composition by expressing

slag compositions as mole fractions of oxides. The results of this

investigation ware drawn on a ternary diagram, Fig. 4.2, giving iso-

activity curves of ferrous oxide in the system (CaO + MnO + MgO)

- FeO ~ (Si0 2  + P2 O 5 ). A study of slag analyses concluded that

for the present investigation, the slag composition can be constrained

to an area bounded by,

(i) 2 < $ < 5 1  . + NM , + N _
where g = —  ^ n 1 6

(ii) 0.0 < NFe0 < 0.25 Si02 \ o 5+ KA1203

This region is indicated in Fig. 4.2

A multiple linear regression analysis was conducted on data from 

the area defined above.

The resulting relationship is

aFeO = ° ‘ 5 5 5  + 2 - 2 4  NFeO '-°-177e 4 ’ 7

Iso~activity lines determined by equation 4.7 are shown in Fig. 4.3 

data from the ternary diagram are included to display the accuracy 

of this relationship over the constrained region.

4.5 Estimation of the relationship between slag-metal interfacial area 

and bath turbulence

4.5.1 The stagnant bath slag-metal interfacial area

For an Electric Arc Furnace of 140 tonnes capacity the internal

shell diameter is approximately 6.7ta. The corresponding

slag-metal interfacial area for a stagnant bath is,

A . = 35.0 m 2mxn
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Energy is available for stirring from two source^5**?

(i) Mechanical energy of the oxygen stream
(ii) Conversion of thermal energy, released owing to 

exothermic reactions, to mechanical energy.

The resulting bath turbulence increases the effective slag-metal 

phase boundary area. This increase in area is due to both 

the agitation of the actual slag-metal interface and to the 

dispersion of FeO formed in the vicinity of the oxygen jet.

4.5.3 The slag-metal interface area
The total mechanical energy of the bath cannot be calculated 
since no estimate can be made of the fraction of thermal 
energy converted into mechanical energy. Consequently only 

an inexact study of the effect of stirring is possible. The 

following relationship is suggested to describe this effect 

on the interface area.

A . (f (u) + e ( |~| T) min 1 'dt1

Where fi (u) ,*= the effect of the stirring action of the 

oxygen jet. (f 1 (u) 1)
dc fe (|^| ) 83 the effect of turbulence due to the

carbon boil

For preliminary studies fx (u) and f were set equal to unity.

The latter simplification allowed equation 3.8 which is implicit
dc •in -r , to be reduced to the form described in equation 3.9. at

It has been reported58 that at the peak of the boil the 
effective slag-metal area is probably about twice the stagnant 

bath area. For a stagnant bath area of 35 m2, assuming a
— 3 — 1boil rate of 6 x 10 (kmol.(tonne.s) )s a value of 1.7 x 

103 for e was estimated.



*+ e U  X U t ? uuuscciuu ĵ2 tae reaction Detween aissoivea carcon

and oxygen (See equation 3.4)

The rate of this component of the decarburisation reaction has been
shown to be given by

dc _ , . t aFeO .
dt 2 *2  ̂EQ2 ” a£

As stated in 4.3.6 for a carbon content of 0.43 (kmol.tonne?1) the rate 
. .of this component is approximately 2 x 10 (kmol.(tonne.s) ).

_2
From equation 4.1 (a), a = 1.4 x 10 . Assuming a value of 0.3
for as being typical, it follows that

-it ~ik2 - 1.0 x 10 s

4.7 The effect of slag composition on the activity coefficient ratio 

YMnO/YFeO (See equation 3-11)

The effect of slag basicity on the activity coefficient ratio has 

been studied . This investigation, which included data from 

other similar studies, concluded that the ratio increased 

steeply with basicity and closely approaches unity at $ = 5.
The data presented in this study was subjected to a regression 
analysis to give

YMnO
YFeO

= f2(8) = (l.o^EXP.fajB)) 4.9

Results a = 3 . 2 7  o
otj = “0.95

correlation = o 99 
coefficient * ‘



reaction (See equation 3.1?.)

The manganese oxidation reaction proceeds at a maximum rate during 

the early part of the carbon boil. This was deduced from a study 
of plant data and is supported by the fact that the slag-metal 

interface A2 is at a maximum at this time. Substitution of the 

following data, which are typical of the process, into equation 3.1-1
estimated.
%Mn = 0.25

NFeO 0.1

NMnO 0.08

YHnO 0.24
YFeO
dMn - _ - 5•— 7— = 1 x 10 wt%/sdt

k3 = 2.8 x 10 11 s 1

4.9 Explanation and selection of values of the coefficients for

i = 1.17 occurring in the heat balance for the process

4.9.1 Introdution

A base temperature of 295.15°K is taken for all reactions, 

other than the solution of oxygen, so the additional heat 

required to raise the reaction products to the process 

temperature must be included. The generalised expression 
for the heat of reaction is

AHj « AHX + AH2(T - 295.15) 
kJ/(kmol of product)

A positive sign for AH^ denotes a heat input and a negative 
sign of heat loss.



(i) IL (i *= 19 , 8  and 12, 13) values for these
coefficients were obtained from the literature**7.

(ii) Hg This coefficient represents the heat required to
raise the temperature of 1 tonne of the bath by l°k;
Hg - -860 kJ/(tonne °k *)

(iii) H10 The heat required to raise the temperature of

1 tonne of slag by l°k.

Hio - ~2300 kJ/(tonne °k *)
(iv) KX1 A coefficient which incorporates that fraction of

the evolved CO that reacts with infiltrated air and
the fraction of the heat given off, that is radiated to
the bath.

H = 0.3 11
(v) H  ̂Heat loss due to radiation and water cooling and 

convection. This was assumed constant and a value of 

-8400 kJ/s was estimated from the literature59.
(vi) H 15 Rate of infiltration of air into the furnace, 

assumed constant at 0.2 kg/s.

(vii) H 16, H 17 Terms in the expression for the heat content 
of 02 and air at T°k.

H = -16,000 kJ/kmol; H = 38.0 kJ/(kmol °k)16 17

4.10 Comments

In this chapter combined statistical and theoretical analyses of 
both collected and published plant data have been employed to •'* 

obtain estimates of values for the elements of the parameter set 
associated with the mathematical model of the refining process.
It is probable that some of the parameter estimates and regression 
coefficients presented here have at best only order of magnitude



accuracy. However, it will be shown later that this uncertainty 

is tolerable when state estimation is employed to filter these 
stochastic features of the process model.



P.esults of Simulation Studies

5.1 Introduction

In order to determine the accuracy with which the dynamical model> 

developed in the previous chapters, simulated the industrial process 
the equations were integrated numerically. Initial conditions 

typical of the process were available from the plant study reported 

in Appendix 1 and the system was forced by inputs similar in 

magnitude and duration to those employed in standard operating 

practice. The Poinge-Kutta method with Gill's coefficients was 
used since it was available as a subroutine on the Polytechnic 
computer. The chief advantage of Gill's procedure lies in the 
requirement of a minimum amount of storage locations. It does, 
however, have the disadvantage that neither the truncation errors 

nor estimates of them are obtained-in the calculation procedure. 

Therefore control of accuracy and adjustment of step size h is 

done by comparison of the results due to double and single step 
size 2h and h. This control requires an input vector of error 

weights and a tolerance for the approximate truncation error.

5.2 Calculation of error weights and the tolerance for the approximate 
truncation error

A test value 6 for accuracy is generated in the following ways™

5.1

where X.l error weight on ith estimate, also E = 1
i

- estimate of y£(tQ + 2At) computed using step size 
h « At

(2)y i estimate of y^C^Q + 2At) computed using step size
h « 2At.



Error Weights



, i 0 ) (2)iwhere « 1/(maximum permissible (|y /  - y \  |))

The values selected for and the corresponding values if X^ are 
presented in Table 5.1.

The tolerence E is obtained by substitution of thfe maximum 
permissible estimation errors in Equation 5.1, to give

E = ~  Z A./y. *» 1015 . i ll

for the values presented in Table 5.1.

5.3 Solution of model equations
The state space formulation of the process model, as was coded for 
use with the integration procedure, is presented in Appendix 3.
The set of initial values for the process variables, the control
inputs and the set of process parameters are also presented there.
The system of equations was solved using a step size of 10.Os, 
which was found to satisfy the tolerance E and the variables were 
printed at one minute intervals. The trajectories of the major 

process variables are presented in Figs. 5.1-5.

5.4 Model Performance (refer Figs. 5.1, 2, 3, 4, 5)

5.4.1 General
The initial low rate of decarburization is in agreement with 
observed practice where initiation of the carbon flames does 
not occur until a short time after the start of injection.
This low rate of decarburisation coincides with an increase 

in the iron oxide content of the slag. The oxidation of iron
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Once the boil gets started, the temperature rise is less 

pronounced, this may be explained as being a result of the heat 

required to maintain the endotherraic second component of the 
decarburization reaction. The influence of carbon transport 

control manifests at about 0.42%C. The effect of carbon 

shortage can also be observed where the iron oxide content of 
the slag increases more rapidly with decreasing carbon content.

The rate of oxidation of manganese remains almost constant 
over the duration of the boil. This is in agreement with 
practice, but in the absence of adequate plant data little can 

be concluded.^

5.4.2 Oxygen efficiency
The efficiency of the process can be measured by calculating 
the oxygen required to remove 0.01%C per tonne of steel.

The efficiency predicted by the model is displayed in Fig. 5.5 

along with the data from the literature. The results from 
the model study show a good proximity to these latter data.
These extra data were obtained from studies in the refining 

process in an eight ton furnace and the agreement achieved may 
be taken as an indication of the validity of the model structure.

5.4.3 Total decarburization time
The plant data available does not provide the time taken to 
reach the desired carbon content. The total refining time is 
provided, this includes periods when no oxygen is injected.

A . . . .It should be noted that these conclusions were limited to comparisons
between the simulation results and data obtained from the literature and 
during the plant study reported in Appendix 1.



decarburization period can be estimated by considering the 

total carbon drop, the total volume injected and the blox^ing 
rate. Only an appoximate value is pbtained since the volume 

of oxygen injected during melt down is not available for 

subtraction from the total. Applying this technique gives a 

decarburisation period of 40 mins. The shorter period 

predicted by the model can be explained by the volume of 

oxygen injected during melt down and by the inefficiencies 
inherent in the practice of stopping and starting the injection 

during the refining period.

5.5 Conclusions
A study of the capability of the model to simulate the industrial 

process has been conducted. It has been shown that the model in 
its present form, wherein values for parameters were obtained from 
a physical analysis, can make predictions of the trajectories of 
the steelmaking process which are comparable with the observed 
practice. The study does, however, expose limitations in the 
range and accuracy of the available plant data. Hence, if a more 

meaningful analysis of the possible role of the model as the basis 
for a practical control system i~ to be conducted then the need for 

carefully monitored plant data must be satisfied.



Data Collection and Parameter Optimisation

6.1 Introduction

The results presented in Chapter 5 indicate that, in its i:>resent form, 

the model has a generally correct structure. It must, however, be 
extended to include the effects the. power input from the electric 

arcs before further studies can be conducted to determine how 

accurately it simulates actual furnace practice. For this reason 
a further series of plant investigations were conducted. It was 
intended that sufficient chemical and thermal process data should be 

collected during these investigations to allow the parameters in the 
model to be adjusted using a non-linear parameter estimation program. 

Such a program had been obtained from the IBM Share Library and had 

been tested using simple non-linear models. However, subsequent to 
a thorough investigation of plant operation and an analysis of the 
range and accuracy of the available data it was apparent that 

statistically meaningful estimates of the parameters could not be 

obtained. Instead the model in its original form was used to simulate 

the monitored casts and it was found that, with only minor adjustments, 

the original model could simulate very accurately those casts during 

which no abrupt changes in operation occurred.

6*2 Further plant studies

6.2.1 General study of the modes of furnace operation
In terms of increasing difficulty to simulate, the following is 
a classification of the various modes • of furnace operation. *
(a) Stagnant closed furnace - no power or oxygen input
(b) Closed furnace - constant power and/or oxygen

input



bulk additions to be made or 

slagging-off. (With or without 

power and/or oxygen input,)

(d) Open furnace - roof swung back to allow large

additions of slag-making materials 

to be made.

The model? as developed so far, is capable of simulating the

chemistry of the process, ignoring the effects of heat loss and

power input. To extend the simulation to cover the complete

range of operating modes is the long terra aim, but in the interim

only modes (a) and (b) will be considered. The thermal dynamics

of the process when operated in these inodes may be described by

the following general equation

S = f j (T) + f2 (E) + f3 (XSU) 6.1
where S - heat content, Js

f#(.),i=l,2,3 = function describing the heat flow
i

due to (.) ,W 

T = process temperature, °K 

E * electric power input, W 

X - state vector 

U = oxygen input, kmol/tonne/s.

To simplify the development of this thermal balance it was 

assumed that the contribution due to chemical reactions, f3 (.), 

is negligible when the oxygen input is nero. This assumption 

permits the components fj(.) and f2(») to be identified by 

statistical analysis of data pertaining to operation in modes 

(a) and (b) without oxygen injection. The component, f3(.), 

has already been formulated, (see section 3.12) and cannot be 

studied in isolation from the mathematical model of the process 

chemistry.



A three-week period of plant studies was conducted and in 

addition to the production data recorded by the furnace 
operators the following details were also noted?
(i) The injection rate and the duration of the periods 

of oxygen lancing

(ii) The times of transformer tap changes and the transformer 

tap settings.

6.2.3 Slag sampling

During the refining period a number of samples are taken from 

the furnace. These samples are obtained by inserting a long 

shafted sampling spoon into the furnace. Upon removal from 

the furnace a coating of slag is normally to be found 

adhered to the shaft of the spoon. By ensuring that the 

shaft was clean prior to use, a sample from the slag was 
obtained simultaneous to the standard sample from the bath. 
These samples were collected and subsequently analysed in 
the Department of Metallurgy at Sheffield City Polytechnic. 

Although many of these samples proved to be satisfactory a 
number were discarded. In particular, it was found that 

some samples .contained an unrealistically high concentration 

of a single oxide. Such unrepresentative samples may be 
anticipated since the slag is rarely homogeneous and it is 

quite possible for the sample to contain undissolved lime 
or excessive amounts of a particular oxide. A typical 

record is presented in Table 6.1 and the complete set of 
records are presented in Appendix 6.

6.2.4 Further data

In addition to these data, recorded during this series of 
plant studies, further thermal and chemical data were made



CAST 170. *** QUALITY 0.3 CARBON

timeER. MIN. OBSERVATIONS TRANSFORMER
TAP

0 . 0 Melt-out3 Sample 1„ Power On5
Temnerature = 1560 C

0 . 13 Power; Off,. Oxygen On.

0 . 17 Power 0n3 Carbon ';Boil'5
0 . 20 Oxygen Off (Lance Change)

0 . 23 Oxygen On
G . 25 Sample ?.t, Power Off

Temperature = 1630°C? Oxygen Off
0 . 30 Oxygen 0n-> Poor Open3 Slagging Off
0 . 35 Sample 3
0 . 36 Temperature. ~ 1645°C
0 . 45 Boil Ebbing

0 . 47 Sample 43 Oxygen Off
Temperature = 1660°C

0 . 49 Power On

0 . 55 Temperature = 1660
0 . 56 Power Off. Furnace Tanned

12

NOTES:

Weight of metallic charge 
Weight of I5.me charge 

Oxygen injection rate

= 145 tonnes
= 8 tonnes

-*= 42.48 nfVrnin

TABLE 6 ,1 Typical Cast Record



available by the works Quality Control Department. These 
included a log of the thermal behaviour of the furnace made over 
a number of weeks of operation and twenty sets of slag analyses 

obtained for samples taken at "meltout" and at "tapping5.

6.3 Investigation of the thermal behaviour of the process during refining 

A study of the available sets of thermal data, which covered forty 

casts, revealed that only a limited number of these sets could be 

usefully employed in statistical studies. Many of the sets were 
rejected because of corruption of the data by the effects of inter- 

ruptions in the standard operating practice., such as, swinging the 
roof of the furnace back to permit bulk additions to be made. From 

the remaining data those presented in Table 6.2 relate to periods 
during which the furnace was operated without oxygen lancing. The 
following linear regression equation was obtained from these data

— • (T) = 2.18 x l(f6 E + 0.166 6.2.

where E = the power input, W. The apparent anomaly of the constant 

increase in temperature for E = 0 will be resolved later when this 
term is incorporated in an overall constant heat loss term for the 

process.

It is of interest to note the following interpretation of equation 

6.2
(T) = (r, E +a)/C 6.2(a)

where f) is the efficiency of the. energy transfer and C is the heat ' P
capacity of the system. It will be shown later that ( see. ecjn 7.|) 0 7-
(1/C ) * 4 x 10 6 °K.J 1 hence from eqns. 6.2 and 6.2(a)P

f) = 2.18 x 1Q~6M  x 10~6

i) = 0.55
This estimate of the efficiency compares favourably with the results 

of Wheeler et al23 who obtained an estimate of 0.588 for from data 

gathered on 73 production heats.



Power Input 
E (W)

Tine Interval 
At (rain)

Agprox. T 
C/min

T (from Eqn. 
°G/min

1 . 8 106 11.0 4.09 3.13
1.32 106 15.0 1.0 2.7
6.6 10s 22.0 1.59 ' 1.73
1.32 106 10.0 4.0 2.7
1.178 10e 7.0 0.71 2.5
2.0 105 9.0 -0.55 0.79
9.9 105 14.0 2.5 2.27
9.9 10s 14.0 2.14 2.27
3.9 105 5.0 5.0 2.27
6.0 105 5.0 3.0 1.622
1.2375 106 1.25 1.25 2.6
9.9 iO5 1.42 1.42 2.27
9.9 10 5 1.66 1.66 2.27
6.0 105 3.0 3.0 1.622

LEAST SQUARES FIT TO GIVE
•mX = oijE * a2

RESULTS CXi = 2.17788 10 6

a2 = 0.16576
Correlation Coefficient , ~ 0.52

TABU' 602 Thermal Data



the process a number of attempts were made tc obtain a more complete
description of the energy transfer in the furnace. A variety of

nonlinear and linear dynamic and static model structures were

considered. Statistical analyses of the significance of these

models were conducted using the available parameter estimation
program. No significant improvement on the results presented in
Table 6.2 obtained using eqn. 6.2 was, howevers achieved. In

particular the best results obtained* from analysis of data for

periods of operation when bulk furnace additions were made* gave
tr\ccU{

an error on the temperature prediction^of standard deviation 50°C. 
Such an estimate is considerably less accurate than the * educated 
guess’ of the furnace operator who can estimate the 

temperature of the process to a standard deviation of 20°C.

6*4 Parameter Optimization

In theory, optimum estimates of the unknown parameters in the model 

might be obtained by employing an optimization technique to 
systematically vary the parameter values until the minimum 

deviation between the predicted and measured values of the process 

variables is obtained. For the present model the use of this 

technique is denied by the lack of sufficient accurate process 

measurements and the variety of modes of furnace operation.

Instead the sensitivity of the model response to parameter 

variations was studied by conducting simulations on an interactive 
computer terminal. This approach enabled manual adjustments of 
the parameter values to be made and the monitored casts were 

simulated. To facilitate these studies it was assumed that the 

time variation of the slag species can be determined solely in 
terms of their initial concentrations and a mass balance on the 

bath species. In addition this assumption implies that the time



same mass balance. Hence* the number of state equations (see 

Appendix 3) was reduced from twelve to four with retention only of 
those describing the dynamics of the following process variables.

Xj = concentration of carbon in molten bath, kmol/tonne

x2 - concentration of manganese in molten bath, kmol/tonne
x3 “ concentration of iron-oxicle in slag, kmol/tonne
x^ = temperature of molten bath. °K.

This simplified model is presented in section 7.3.1.

These studies exposed that the model responses were especially 

sensitive to the choice of values for the parameters ~ the mass
transfer coefficient for the reaction C + |02 - CO and 6  ̂ - the

reciprocal of the heat capacity of the system. The investigation o 

the accuracy with which the model simulated the monitored casts 
revealed a strong dependence between the operating mode of the furna 
and the accuracy. In particular, it was observed that with only 
minor adjustments of the parameters and the model was accurate 

for those during which the furnace was operated in modes (a) and (b) 

of section 6.?.1. The results of a simulation of such a cast are 
shown in Fig. 6.1 and the accuracy these demonstrate is emecially 
noticeable from the responses of the states xx and x2 which are the 

industrially most important variables. The results presented in 

Fig. 6.2 are, however, more typical and these demonstrate the 
inaccuracy of the responses obtained when the furnace operating 

practice includes all the modes (a) to (d). The final form of the 

model of the process arrived at from these simulation’studies is 
presented in the next chapter and this represents the limit of the 
development of the model on a deterministic structure.



(a) Oxygen injection strategy (kmol/sec)
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(b) Carbon response
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(c) Manganese response
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(d) Power input strategy (MW)

(e) Temperature response
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6.5 Discussion
The ability of the theoretically evolved model to simulate a limited 
class of operating practice has been demonstrated. Its failure 

to be accurate over the complete range of operating modes had been 

anticipated from the results of on-plant studies and the difficultie 
encountered when collecting process data. The shortcomings in the 
model exposed by these simulation studies can be interpreted as an 
indication of a lack of sufficient a priori information about the 
process for accurate deterministic predictions of its behaviour to 

be made. It was therefore decided that the inherent uncertainty 

in the model should be studied and that the possibility of combining 

the limited information in the model with that available from 

indirect process measurements, to give best estimates of the process 
states, should be investigated.



Sstimation of the states during refining in
the electric arc furnace

7.1 Introduction

The results presented in Chapter 6 demonstrate that* given sufficient 

process data the model of the refining process can accurately simulate 
a limited class of operating practices. The need for a complete and 
accurate analysis of the slag at meltout is, however, very restrictive. 

The additional effort required to obtain this analysis could make any 
control system based on this model uneconomical to implement, 

especially since it seems probable that the simulation must be 
re-initialised after any variation from the standard operating 
practice. In addition, although the weight of slag at meltout can 
be estimated from the known charge weight of lime and the CaO 
concentration, it is not possible to model the changes that occur 
during :slagging-offc.

In this chapter the effects of forcing with a stochastic process are 

introduced to resolve these sources of indeterminism and to account 

for the uncertainty due to estimated parameter values and the 

hypotheses on which the model has been formulated.

7.2 Reduced dimension model
7.2.1 Stochastic variables

To reduce the complexity of the model and to remove its 

dependence on the non "measurable chemical states associated 
with the slag phase the following stochastic variables were 
introduced.

= $ 3 the slag basicity ratio
E_ = IN. 9 where N. = the total number of kmols of the- 2 i i •* 1

slag specie, i, per tonne of slag



per tonne of slag at meltout 
(EeO)0* the number of kmols of iron oxide per 

tonne of slag at meltout.

The mean values and variances of these variables were determined 

from the following data obtained during plant studies.

(a) = 8  the basicity ratio
Data

£1 “ ^ £1 =
Castt p. . j „ , ,T Start End Ho. i !

1 ; 3.956 | --
2 14.01 | -•
3 5 3.028; ~
4 '4,023 ! -
5 |5.06 i
6 j3.013j -
7 !3.C27 |4.438
8 :3.887 14.887
9 14.747 15.137 
10 i3.932 14.155

, Casti_! - .StartHo

11
12
13
14
15
16
17
18
19
20

3.124
6.299

End
- !

6.52 
5.736

3.372 [4.114 
3.041 (5.3 
4.049 i3.544 
5.837 ‘5.494 
13.385 15.678 
3.954 (4.491 
2.626 3.407 
- |3.819

tr ~
{Cast,
I'To._

2.1
22
23
24

‘.Start: End

j4.914i5.256 
:4.63115.042 j 
i4.096 :5.14? j

qi; j! ‘4 i If
i 5.693 “6.158 
13,

\

963
i 4.7 30 I 
'5.997 I

Mean values., £>l ~ 202/45 = 4.5

Variance O 2 » 1

(b) £ 5 the total oxide content
Tata

9̂ = IN.l SN.x
Casi
No. ■ Start♦

J...
End j Cast

: n o .
Start End

1 !! 15.8 - 1 XX 15.66 15.5
2 i 15.1 - I 12 15.1 14.7
3 |15.43 ; 13 15.73 jl6.01
4 i16.55j 1 14 15.41 15.73
5 j15.57 - 1 15 15.16 14.51
6 i17.07 - ! 16 14.39 15.09
7 i15.44 - * 17 15.29 15.27
8 !15.67 16.3 ; is 14.57
9 *15.62 15.69 i 19 15.06 15.94
10 114.73 14.2 ! 20 

* 14.18 15.72

I Cast „ !j „ ; Start tEndi No. : i

21 il5.3l ’
22 115.62. !

Mean value? £ 
Variance, 0>-

2 « 15.4 kmol/tonne
2 r\ oj (kmc1/tonne)



\W S>3
Bata

VCXJ>

, Cast %MnO %FeO Cast i® : ° %FeO :r !i 1
..J.. 1 l_ J.. .X... . |I

! i 4.8 >14.3 11 4.23, 13.32 |
i 2 3.37 13,63 j 12 6.02j15.9 j
! 3 ;4.73 12,73 13 4.86; 20,02 j
! A 1 k 3.85 18.17 I 14 5.191 13 .-84 j
! 5 15.64 14.22 j 15 2.94 15, 39 j
' 6 |5.54 12.32 | 16 3.77 22,95
j 7 ! 5.06 19.57 ! 17 5.07 ai 7 !il. / i
! 8 i 4.24 16.1 \ IS 5.2 I17.74 !
: 9 i l> e 94j . C ^  - 15.2. ' 19 7.03115.53 ;
! 10i

J8.21 J13.8 ! 20 4.16! 20.18 iiJ

Mean values ^

Variances Oc,.-2

o5j

5% MnO E 0.7 kmol/tonne
15.86% FeO E 2.3 lcmol/tonne 
0.03 (kmol/tonne)2 
0.18 (kmo1/tonne)2

7.2.2 Stochastic process model
Combining the stochastic variables 9 (i « with the

i
results presented in Chapter 6 permits the following reduced 

dimension model describing the dynamics of x1 ~ the carbon 
contents x2 = manganese content; x3 = iron oxide contenty 
Xi» - process temperatures to be formulated* a  efi.

X a ((K /l,2x ) + a ) + s (xsu)s (x9u)/K - 1.6a x *)
1 1 1 2 1  2 2 3 1

Sj (x,u) (5.49x2 - s3 ( x 5, u ) / F .3x 3 )

7.1
X .

x.

a.CUj + xx(l ~ s^Xju)) + x2)
3

a g + a ? ( e 8 ( % A E ^  x. + A K ^  ^  si((x,u) + A H g u ^  
i“l

+ u

where the functions s^(.)r, (i - l?..s4) are as follows? 

i = 19 see Eqn. 4.8

Sj(x-u) ~ 0.00263 + 6.15 Uj



s2(:r3u) = 0.555 -- O.U?C, + 2.24x3/52
i “ 3, see Eqns, 3.1?. and 4.9

s (x.u) = (1 - 3.27 exp(~0.95£ ))(£ + a (x° - x ))o 1 3  5 2 2
i - 4S see Eqns. 3.15 and 4.1

a/ \ *f -'ls^Cxju) * as&kxi

The coefficients i = 152?39 are the equilibrium constants 

of the following reactions?
*i.

i - 1 C + 0 = 00(g)

?coat equilibrium  = X « exp(-4.77 -- 2690/x )
V o  1 *
k2

i = 2 Fe + Q = (FeO)

^FpOat equilibrium --- —  = It = exp(”6.3 + 14564/x )
*FeaO 2

K3i = 3 Mn + (FeO) = (MnO) + Fe

at equilibrium — 1------- ~ K = exp(--8.0 + 17053/x^)

The parameter set a.(i = l9...s9) has values1
ax = •-0.00635 if ux > 0

= 0 if u = 0l
a^(i = 29..99) » 0.0146, 0.00524, ~ 0.633s 7.0, ~0.019

-4.0 10 •6i 140. ? 0.8 
The thermochemical coefficients3 AEL (i = ls..95)9 have values47 

AH. (i « 1,..,5) = -0.138 106s -0.36 106, -0.353 10s,

10.12 106, -0.27 105



The values of the process parameters given in the previous section are 
the mean values of a vector of random variables which is assumed to 

be time-invariant. Combining the uncertainty associated with these 

parameters with that arising from the hypotheses on which the model 

has been e. volved results in a stochastic representation of the 
general non-linear form, x ~ f(x,u,w), where w is a Gaussian process. 

The assumption, that the sum effect of these many sources of 
uncertainty is equivalent to forcing by a Gaussian process, follows 
from the central limit theorem.

Using the simple Euler integration formula and assuming that the 
model is separable into stochastic and deterministic parts permits 
the following vector difference equation description of the process 
to be obtained.

*k + 1 = F(W  + V k  7-2
The statistics of the noise process x*. are given byK.

E(w, ) = 0 E(w.w .T) = 0. (5. . 7.3k k j k kj

The 4x4 diagonal covariance matrix has elements q^^Ci ~
which represent a measure of the uncertainty associated with the

parameter set. The values of these elements were approximated
by considering the maximum error, for each of the difference
equation^,to be given by

N 9F.
(Error.)2 = £ fo—  63.)2 i = 1,,.,4 7.4

j

where 3* - 53j (j = 1,..,N) are the elements of the parameter vector. 
Since the sum effect of this uncertainty is Gaussian distributed 

it is reasonable to assume that Error  ̂ is equivalent to the 

3-Standard Deviation bound on component w.. The value of Error^ 
is obviously dependent upon the value of the state, x, and controls, 

u, but the general form for the covariance matrix Q is given by



Error 2, Error 21 7.53 ** J

Equation 7.4 was evaluated over the normal operating range of the 

processj see Appendix 4, and it was found that the covariance matrix 
could be reasonably approximated by

Qk = 0.0625 diag.p1(xk,uk)2J>...5FIt(xk?u1,)2] 7.6

The evaluation of a suitable noise matrix, G^, is a matter for

engineering judgement. The simplest solution is to assume that

Gr = ^4X4* There are, however, readily apparent objections to this
choice. In particular, this choice is equivalent to assuming that the 
uncertainties associated with the components of F are uncorrelated.

The evaluation of these cross-correlation effects is not easy, but 
the following approach proved satisfactory, in the present case.
(a) Determine the dominant parameter or relationship common to two 

components F^ and Fj

(b) Isolate this common variable, 0, in component Fj to give

Q “ g(F.), where g(F.) is a function relating 0 to F.. 
3 3  3F. 3

(c) Replace 0 in F. by g(F.) and set F.. = t— ’ •* l J j 13 8F..

For example, in the continuous-time case considering fj(x,u) and 
f2(x,u), the dominant variable, common to both functions was found to 

be SjCxju). Writing s1(x,u) as a function of f2(x,u) gives

s^Xju) = -f2(x,u)/(5.49x2 - s3 (x,u)/k3x3) 7.7

Substituting this expression into f (x,u) and differentiating with 

respect to f2(x,u) gives

G12(t) = 0f1 (x,u)/0f2(x?u) 7.8

= (s2(x,u)/k2 - l.eagX^/CS.AgXjj - sg (x,u)/k3x3)



G.|k ‘■'ij{o ^ } irj ~ 1E...,4 7.9
k

where g.. = 1 and g.. « 1/g..U  ° u

7.4 Measurements

Indirect measurement of the carbon concentration, xx, by measuring the 

flow rate and composition of the waste gases forms the basis for a 
number of control and estimation systems10563s611 in use in the BOF 

sector of the steelmaking industry. So far as the author is aware 

no such systems are at present in use in the arc furnace section of the 

industry. The following analysis, which employs conservative 
estimates of the achievable accuracy using this techniques demonstrates 

that the uncertainty associated with this measurement of the carbon 
concentration is too large for it to be used in lieu of the standard 
discrete sampling technique.

At time t, the measurement of the carbon concentration* C(t), obtained

from the gas analyser is given by
•t

C(t) = {C(0)W(0) - V(T)(b CO(T) + b C0o(T))dT}A7(t) 7.10
o

where W(t) is the weight of hot metal, V(t) is the gas flow rate and 

blsb2 are coefficients relating the volumetric carbon monoxide CO, and 

dioxide C0t, to equivalent weights. If it is assumed that W(t) “ 

m(t)W(0), where m(t) is a known function of time, then the percentage 

accuracy of the measurement, C(t) is given by
t

5C(t) = {W(0)C(0)(6W + 6C) + (6V + 5C0) / b1V(T)C0(T)dT
o

t
+ (SV + 6CO ) f b2V(T)G02(T)dxH{c(0(W(0)

 ̂o

rt

VCxXbjCOCT) + b2C02(T))dT} + 6m(t) + SW 7.11



cW ~ ±3.5%s> 5C = ±4% and it is assumed that 6m(t) - 0

For a typical cast
at t 0 W(0) = 140 x !03 kg? C(0) = 1% = 140 kg
at t = 25 nin C(25) = 0.57% = 798 kg 

r25
Therefore., V(x)(blC0(T) + b2C02(x))dx = 602 kg5 and substitution
into equation 7.11 gives

60(25) = (1400(7.5) + 22(602)}/798 + 3.5 * 33.25%

Hences the error on the final carbon measurement is

AC(25) = ±0.57 x 0.3325 = ±0.19

If this maximum error bound is associated with the Three-standard- 

Deviations 3cf , levelss then the probability that the measured value 

is within the required range of ±0.04 is given by

where cc = 0.63 - 3(0.04/0.19. It is thus apparent that in its
present form the waste gas analysis technique is not sufficiently 

accurate to provide a consistent measurement of the carbon 

concentration. It iss howevers possible tc obtain the following 

stochastic measurement procedure :.\:r the carbon state Xj.

y2 (t) = xx (t) + Vj (t) 7.12

where v (t) is a zero mean Gaussian process with variance

E(Vj2(t)) = {((x1(0)c1 - xl(t)fi2)/x1(t) + <5W)Xj (t)/300}2

- ac2(t> 7.13

where 6 « 6VJ + 6C + 6 CO + 6V and 62 6V + 6CO.



direct measurement of the temperature of the molten bath can only be 

obtained by the use of a disposable thermocouple. A variety of 

techniques for obtaining an indirect measurement of the temperature are 
at present under investigation in the industry. To date none of these 

techniques are capable of providing the required measurement accuracy 
of ±10°K but it is reasonable to assume that a continuous measurement of 

the temperature to an accuracy of standard deviation 10°K is achievable. 
For example9 one technique65 using thermocouples embedded in the lining 
of the furnace gives a reported accuracy of standard deviation 7.7°iC. 

Hence the temperature of the process can be observed by the following 
stochastic measurement procedure

y2(t) = x^Ct) + v2(t) 7.14

where v2(t) is a zero mean Gaussian variable with variance

E(v22(t)) = aTz = 100 7.15

Filter algorithm
The discrete”time form of the extended Kalman Filter, as described 

by the following equations, was implemented

" F(xkk’uk) 7*16(B)

pL i  ■ V k \ T + W k T 7-16(b)

7-16(c)

*k+i = *k + i* W yk+i - v i i *  7-16(d)
V+1 V- T T

K+i = ' ‘ - V i W - V i W  +IW \ +i \ +i
7.16(e)

where $ is the linear approximation to the process equations obtained 

in terms of the Jacobian matrix of f.. see Appendix 4S P is a 4x4 real, 

symmetric, positive semi-definite matrix which approximates to the



matrices H and R are the observation and observation noise covariance 
matrices respectively, given by

1 0  0 0 
0 0 0 1

and R. R
r a 2 0c

c cT2 j

Implementation of the Filter Algorithm

7,6.1 Prccass-noise decoupling

The67 has shown that it is necessary that certain elements in the
transition matrix $ are not simultaneously zero, if the filter is
not to diverge due to partial decoupling of the process noise
covariance. Applying this technique to the case when only the

carbon state is measured, that is for H = (1 0 0 0), it is

found that the elements of interest are 25^13*^1 if • if any or
all of these elements, $ . (3 = 25394)s are zero then it is1J
seen from the filter equations that, in the case of G ~
the gain K is independent of the effects of the autocorrelation

qj.. This is apparent from the following simple analysis.

Let t = t. j than
k~l(i) from eqn.. 7.16(b) it follows that only (pjj)^ contains

« jj> w
T T(ii) the gain = (k2,k2,k3sk^) * {(pn ,pi2,Pi3,px^)}

/(Pji + r11 »̂ hence the gain on this pass through the
filter is independent of (q..), -\J3 k-1

(iii) evaluating eqn. 7.16(e) shows that only element (Pjj)k 

contains (q..), -
(iv) on the next pass through the filter, at t - tr .1 s it is1C**" 4.

kseen from eqn. 7.16(b) that if ( $ , -  0 then (p,.), ...1,] K K+i
will not contain (q*j)j„_p and from (i)s will not contain



is no uncertainty associated with the dynamics of x. and the gain
k. will approach zero thus decoupling the state x. from the 
J ‘ 3

estimation procedure. The analysis in the present case, where
G. ^ I. ,, is not so straight forward since now the autocorrelation k 4x4
(q..jL affects all the elements in pJC.-. It is, however,33 k k+1 9 9
reasonable to assume that such decoupling will occur since
$ - 0 and , is 'small* due to the effects of terms in12 **♦

Tl/x2 and (GQG contains the dominance of o... This33 k -33
assumption is validated by the results shown in Fig 7.1 from 
which it may be concluded that the process temperature may not 

be observable if only the carbon content of the waste gases is 

measured.

7.6.2. Divergence control

As developed so far, the state-estimation procedure is based
on the assumption that the deterministic part of the process

model is an accurate representation of the process dynamics
and that any uncertainty, due to the parameter estimates and

hypotheses on which i<r i£ formulated, is accounted for by the
Gaussian noise process w. Unfortunately this is not true,

since even a cursory inspection of standard furnace operating
■ practice discloses that a number of significant, and often abrupt,
changes in the thermal and chemical behaviour of the process
occur. Unless some means of accounting for these changes is

included in the estimation procedure the filter will tend to

track the erroneous process model and divergence from the true

states will result. A variety of methods 6B»69 has been
suggested for the control of divergence arising from modelling

7 0 71errors. However, all but two of these schemes 9 were found 
to be either too complex or dependent on engineering judgement 
to be applicable to the present problem. These two schemes



A

time (min)
%

FIG 7.1 Process Noise Decoupling : H =(10 0 0)

x = Actual %C 1
& = Estimated %C1
x = Actual temperature 4
& = Estimated temperature4

1650

T(°C)

1600



A k“*l •defined as ?y ~ ŷ. ~ BXj_ is a non~stationary Gaussian process

with statistics

E(zk) = 0; E(zkZjT) = (HPk" V  + 1^)6^ 7.17

L study, see Appendix 5, of the applicability of these schemes 

to the present problem was conducted and a modified form of 

one71 of these is the basis of the implemented schema.

Following extensive simulations of the performance of the 

filter under a variety of modelling error levels it x̂ras 
concluded that divergence of the filter response from that of 

the 5.ndus trial process, due to unknown changes in the furnace 
behaviours could be best detected and controlled by the 
following algorithm which is initialised at t = t with the 
operation index X = 0 and the normalised variances

= e_2 = b_3 = o.
(i) At t = tk, E((ZjA T) ) = (HPk"'1HT + i y  « ak

(ii) Set Bk = ((z )k)2/a,_

(iii) Set ck = <Bfc + + Bk„2 + Bk..3) M

(iv) If X ~ 0 to to (v)

* 1 go to (vi)

(v) If Ejc < 1 go to (vii)g otherwise

set (qUu)* “ 2.25 ((F. (xsu)).)2, for j > k, and
J H 3

X = 1, go to (vii)

(vi) If E^ > 0*5 go to (vii), otherwise
set (%^)j ~ 0.0625 ((F̂  (x,u)) j)2, for j > k, and X = 0

(vii) Continue

Briefly, this procedure tests the consistency of the statistics 
of the smoothed innovation associated with the temperature 

measurement. The measure Ejc will be less than unity with



Q and R are correct. Divergence is suspected to occur when 
this measure exceeds unity and control is effected by increasing 
the uncertainty associated with the thermal dynamics. This 

increase in is maintained until the measure falls below 
0.5 when the variance is restored to its original value.

7.7 Results

7.7.1 General

A FORTRAN program for implementing the extended Kalman filter 
was written. The program consists of the following sections 

as indicated in the flow chart in Fig. 7.2.

(i) irIAINLINE - a preliminary section which sets the number
of states and observations, the discrete
time interval and the observation interval
This section calls the subroutine EXKAF

(ii) EXKAF - a subroutine which has overall control of
the filter and the simulation. In this sub­
routine the filter and the process model ar

initialised and the process model and filter

model are solved using the Euler integration
formula. This subroutine calls subroutines
AUX and PREBI at each integration step and

ubroutine UPDAT when an observation is made
(iii) PSEDI - a subroutine for evaluating the equation

k+1

(iv) AUX - a subroutine for evaluating the state equations
and the elements of the Jacobian and noise

matrices



k+1and estimating the states
Jk+1 _ . ,the covariance matrix, P. _. This subroutinerC • jl

also contains the divergence control algorithm,

(v) OUT? - a subroutine called by EXKAF at 1 min intervals 

to output the states, the estimated states and 
the observations. At 5 min intervals the 
covariance and gain matrices are also printed.

This program implements the filter as described by aquations 

7.16. The equation for updating the covariance matrix, 
eqn. 7.16(e) is used in preference to the simpler equivalent 
expression

®  -  V i V t i  7 - 16<f)

for the following reasons ;
(a) The right-hand side of 7.16(e) is the sum of two symmetric,

positive definite matrices, and, whan these are added, the

sum will be positive definite. On the other hand, eqn.

7.16(f) is, at best, the difference of two positive
definite matrices. As a consequence, eqn. 7.16(e), is
better conditioned for numerical computations, and will
tend to retain more fa’+hfully the positive definiteness 

k+1and symmetry of •

(b) If a small error is made in the computation of the
filter gain then, to first order, eqn. 7.16(f) gives

6pvii ■
whereas eqn. 7.16(e), to first order, gives

5Pkli = 0

Thus, to first order, eqn. 7.16(e) is insensitive to errors 

in the filter gain and is to be preferred in numerical 
computations.
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The filter was initialised with the following values which are 

typical of normal operating practice.

x° « (0.833, 0.0546* 1.63, 1833)Q

P° * diag (0.0017, 0.83 x K f \  0.175 , 6.25)

The initial process states, x(o) ware obtained by perturbing 

the filter state vector, x°, using a Gaussian random number 
generator to give for i = 1,..,4

E(x.(o)) = (x°).s E((x. (o) - (x°).)2) = (P°)..l o Is i o x  O XX
where E(.) is the expectation operator. As determined in sechon 
7.2.1, E(x3(o)) = and typically x(o) = (0.78675, 0.07107,

2.09, 1832).

The effect of non-modalled perturbations to the process were 
introduced by assuming that, unknown to the filter, the process 

undergoes two abrupt changes in temperature of ~10°C at t = 10 mil 

and t = 25 min. The rate of heat loss, a6, was assumed to 
double over the interval 33 min < t < 43 min.

The process was forced by the following oxygen injection, UjCt), 

and power input. u 2(t), strategies which are.typical of normal 

operating practice.

Uj (t) - 0 0. j; t £ 13 min
-if- 4.3 x 10 kmol/(tonne.s) 13 mins ^ t < 20 min

= 0 20 min t 23 min
= 4.3 x 10  ̂kmol/(tonne.s) 23 min £ t < 25 min
= 0 25 min < t < 30 min

= 4.3 x 10 11 kmol/(tonne.s) 30 min ^ t < 47 min

u?(t) - 22 m  0 < t < 13 min
= 0 13 min < t < 18 min
~ 17 MW 18 min $ t < 25 min



Svbj act to these initial conditions, process perturbations ana 
control strategies the performance of the filter under varied 

conditions of uncertainty was examined. The range of these 
studies is covered by the following simulations.

Run lo The process and filter models are identical, i.e. the 
parameter set a^(i = 1,..,9) cf the process model have the same 
values as the parameter set s|(i = l9..9S) of the filter model. 

The observation interval and the discrete time interval are 
equal with At ~ 10 sec and the variance of the observation 

noise on the measurement of x^(t) is given by, see eqn. 7.13

E(v2(t.)) = {((xi(t._1)6i - x2(t.)6^)/xj(t^) + 6W)xi(ti)

/300}2 7.18(a)

The divergence control algorithm is not employed during this 
simulation.

Run 2% The process model differs from the filter model by 

perturbing the parameter set, = 1?..?9) using a Gaussian
random number generator to

E(a$) = a., S((a$ - a.)2) = 0.25 a.21 I s ' 1 3/ 1

All other operating conditions for this simulation are the same 
as those given for Run 1.
Run 3s The variance of v^(t) evaluated using eqn. 7.18(a) is 

not the actual variance of the noise that occurs in practice 

on the measurement, y(. The actual variance at t = £. is given 
by, see eqn. 7.13

E(v2(t.)) ® {((^(tfc)^ ~ (t£>^2)/xi <ti> 6W)x1(ti)

/300}2 7.18(b)

where t̂ , the time at which the last chemical analysis of the 

molten steel was obtained, satisfies t, < t.. During thisK X
and subsequent simulations k = 0; that is, only the meltout



analysis is assumed to be available. In addition to the 

process disturbances considered in the previous simulations 
here the effects of a 1 min computation interval are introduced. 

Hence the filter output is with t^ - tj = 1  min. This one 
minute lag is a conservative estimate of the time required to 

process the measurement from the waste gases and also allows 
for the transportation delay between the furnace and the gas 
take-off flue. It also takes into account the thermal lag 

associated with the embedded thermcouple measurements.
Run 4; This simulation has the same operating conditions as 

Run 3 but here the divergence control algorithm is employed.

7.7.3 Discussion

The results of the simulations described in the previous 

section are presented in Figs. 7.3 to 7.6. The responses 

of the states shown in these figures are indicated as Model, 

Process or Filter. Those responses indicated as Model are 
the results obtained from the model employed in the filter. 

Those indicated as Process are the results of the process model
and those indicated as Filter are the state trajectories as
estimated by the filter.

The results of the simulation, Run 1, are presented in 
Fig. 7.3(a)~(h). The responses in Fig. 7.3(a),(c),(e) and 

(g) show that the carbon and iron oxide dynamics are not 

significantly effected by the perturbed initial conditions 
and that for i « 1 and 3

x. (t) , - - x. (t) * x. (0) , . - x.(0)l model i process • l model i process

This perturbation of the initial conditions is, however, 

seen to effect significantly the manganese dynamics but the 
effect on the thermal dynamics is not clear due to the 

influence of the abrupt changes in the process response.
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simulation explains the rapid alignment of the filter with the 

process as shown in Fig. 7.3(b). This low level of measurement 

noise gives rise to significantly large values of gain for 

elements k21 and fc31S that is the emphasis within the filter 

tends towards tracking the observations and the apparent 

randomness of the filter estimates of states x and x as shown2 3

in Fig. 7.3(d) and (f) demonstrates the influence of the 

innovations process (t.). The effects of the abrupt changes 

in process temperature and the doubling cf the rate of heat 

loss are shown in Fig. 7.3(g) and it is apparent from the 

responses shown in Fig. 7.3(h) that the filter can operate 

effectively even in the presence of these discontinuities.

The variances of the estimates at t = 47 min are

diag.P^ = (0.95 lcf5, 0.76 lcT59 0.02, 9.)

In terms of weight percentages and "'V these correspond to the 

following standard deviations

ac - 0.005%, aMn - 0.02%, aFeQ = 1.0%, aT = 3°C

Hence, subject to the simulation conditions of Run i the filter 

can accurately track the carbon and temperature trajectories.

The results for the manganese and iron-oxide trajectories 

demonstrate the ’weak* observability of these states, a 

feature, which becomes more apparent in the subsequent simulations

The use of identical process and filter models in Run 1 makes 

the results of that simulation have little practical significance 

As a first approach towards considering the level of uncertaint- 

associated with the actual process the random parameters, a*, 

were employed in the filter model. The variance of the 

measurement noise on y 1 is again given by eqn. 7.18(a).

Simulation studies were conducted under the conditions



in Fig. 7.4 (a) - (h). Comparison of the responses in Figs.
7.3 and 7.4 (a),(c),(e) and (g) shows the increased divergence 

between the plant and filter models that results from intro­
duction of the random parameters. It is apparent from the 

responses shown in Figs. 7.4(b),(d)s(f) and (g) that although 
there is some degradation in the ability of the filter to track 
the state x3, the introduction of the random parameters does not 

have a significant effect on the accuracy of the estimation of 
the other states. It is, however, important to remember that 

in both Run 1 and Run 2. the variance of the uncertainty on y1 

is given by eqn. 7.18(a). This variance was found to be 
almost constant with E(v2(t.)) - 6.25 x 10 \  that is, thel i
standard deviation on the carbon measurement is of the order 

of 0.03%, an accuracy that is attaintable using a direct 

measurement technique for determining the carbon content.

Hence, although the results of the simulation Run 2 are not 
representative of a practical waste gas analysis system, the 

results do demonstrate the sort of performance that could be 

obtained from the filter if the engineering problems, at 
present preventing the use of an in~furnace measurement device, 
were overcome.

In 7.4 the variance of the uncertainty on the carbon measurement 
was shown to be dependent on the time elapsed since the last 
chemical analysis of the molten steel was obtained. If it is 
assumed that only the melt-out analysis is available then, 

from eqn. 7.13(b) it is apparent that the variance is a non- 

decreasing function of time since (t^) < x̂  (tu_) for all 

t. > t, . Simulation studies were conducted under the1 v* iv
conditions described in Runs 3 and 4. The process and filter 

models responses for these simulations are the same as those 
obtained from Run 2. and shown in Figs. 7.4(a)?(c),(e) and (g).
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with 7.3(a) reveals the effect of the increasing variance of

v.(t.). The trajectories of the estimated state-variables as l i
calculated with and without the divergence”control algorithm are 

shown in Figs. 7.5(b)-(£). The periods during which the control

algorithm was active are shown in Fig. 7.5(b). The effect of 

the divergence controller on the filter gain matrix and on the 

variances of the state estimates is shown in Figs. 7.6(a)~(h) 

and Figs. 7.7(a)-(d). It is apparent from these results that 

the controller has a significantly greater influence on the gains 

k. (1 * 1»..»4) than on the gains k.„ (i = 1,..»4). This isr i i™
especially the case for the gains klis k21 with k^j = 2k xl and
n  n
k ~ 2k , where k.. is the value of the gain in the 5 controlled2 1 2 1  ij-
filter' during a period whan the controller is active. The

apparent anomaly that the controller» by increasing the 

magnitude of element a in the process noise covariance matrix,'4 4 *

exerts greater influence on the gains associated with the carbon 

measurements y , than on the gains associated with the temperaturei
measurements y , may be explained by the following analysis of

. . . kthe conditional variances o \  and measurement noise variancesk-f-1
rM  and r22.

At t, ~ 25, (the superscript D denotes values from the *controlled 

filter5).

p§£ 0.24 x 10“3; D  = 0.3 x 10“2
n  u

n2!| = 6 ? P21* D = 10•2 5 J * 25
4 4 4 4

For both filters the measurement noise variances are

r * 0.25 x 10 2 and r = 100. Now if the sequential 11 2 2 ^
filter was employed and the carbon measurement was processed 

first then the gain vector k - (k , k , k , k ) would have
1 2 ' 3 4

values
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e The process and filter model responses
f The process and filter responses with and without divergence 

control



For i - 1

k - 0.24 x 10 3 /2.. 74 x 10 3

= 0.087

With divergence control

k° « 0.3 x 10 2 /0.55 x 1 0 ' 2l
= 0.55

These values of gain are approximately equal to the actual values 

for kjjs as shown in Fig. 7.6(a). Alternatively if the

temperature measurement was processed first similar calculations
D . . . .give k, -- 0.06 and k, =0.1. The actual variation m  the g a m

for the temperature measurements, kh2> see Fig. 7.6(h)s is even

less than obtained by this approximation. Thus what appears to

be happenings while the divergence controller is in operations is
k kthat both conditional variances9 (p,“ ) and (p. .,) are
k . i  j j  k + 1  ^

increased but due to the fact that the variance r is large in2 2
• lc> • • •  • •comparison to (p ) only a small variation in the gain k is

K + l  i|. 14. 4 2

obtained. This analysis may be extended to explain the variation 

in the elements k.j (i = 2*3) and (i * 2*3) when the 

divergence control algorithm is employed.

The importance of the relative magnitudes of the conditional

and measurement noise variances in determining the filter gains

nay be seen from the results shown in Fig. 7.6(a)-(d). It is

apparent from these that in the absence of the control algorithm

that the gains k.^ (i = ls..9 4) decrease with increasing time

due to the continuous growth of the variance of v,(t, ). Th^l k
increase in gain which the controller introduces over the interval 

20 < t. < 30 of the refining period has the noticeable effect of 

correcting the tendency of the estimate of x to diverge from 

the process trajectory. This may be seen in the responses



Figs. 7.5(c) and (d) that even with the use of the control algorithm 

no significant improvement in the estimates of the states x2 and xa 

can be obtained. The close alignment of the trajectories of the 

estimated teraperafure5 x̂ .. see Fig. 7.5(e), obtained with and without 

the divergence controller may be explained by the approximate
r>

equality of the gains k and 1C' .
42 42

The results sfcoxm in Fig. 7.7(a)-(d) demonstrate that the increase

in the variances p.. (i «= l5 ..5 4)s which occurs over the intervals

of divergence control actions does not have a long term affect.

That is, the perturbation introduced by the divergence controller

decays quickly when the control action is removed. It is

therefore reasonable to conclude that the filter is not particularly

sensitive to the choice of the initial covariance p°. That is3ro
the prior data contains little information compared with the

observations. Without divergence control the approximate final

variances at t, = 47 are k
ai2(i = 19.. j,4) = (0.58 x 10“ 3 s0.9 x  1 0 ~ 5 s0 . 16s6.55)

= diag.o4 7
47

with divergence control

a . 2 (i = 1,..,4) = (0.65 r \ 0 ~ ,0.2 x 10^ ,0.25,8.4)

47~ diag.p47

In terms of weight percentages this means that with divergence 

control the final carbon and manganese estimates have standard 

deviations of 0.03 and 0.02 respectively. This implies that 

the estimation procedure can give results which have a better 

than 80% probability of satisfying the industrial accuracy 

requirement.
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In view of the limited accuracy of the detailed mathematical model of 

processj as developed in the previous chapters9 the need for a compromise 

between complexity and implied certainty of the model has been discussed. 

Subsequent to the reduction in the dimension of the process state vectors 

effected by treating some of the process states as random variables 

with statistics known a priori from the process data, the extended 

Kalman filter has been presented as an efficient method of combining 

the a priori information about the process in the form of a dynamical 

model with incomplete error-corrupted measurements. The implementation 

of the extended Kalman filter for on-line state estimation has been 

considered and the operation of the filter under varied conditions of 

uncertainty has been discussed. A. technique for controlling 

divergence of the filter has been presented and the results of 

simulations indicate that estimates of the states can be obtained to 

the accuracy required for the design of a refining control strategy.

A number of alternative techniques for controlling divergence of the 

filter algorithm are presented in Appendix 5. Simulations were 

made under the conditions described in Run 3 to investigate the 

feasibility of employing these alternative techniques. These 

simulations failed due to effects of the large increases in the filter 

gain which these techniques introduced. In particulars it was 

found that freezing the gain and allowing the covariance matrix ? 

to increase j as is recommended in method a70r; resulted in an estimate 

of the state x„ which was negative and caused the simulation tc be 

terminated due to overflow errors. Attempts to increase the 

complete process noise covariance matrix Q when divergence was 

suspected* as in recommended in method b 1 and method c7%  had a 

similar effect on the gain matrix and a number of unsuccessful 

attempts were made to tune the controller. The technique for 

controlling divergence that has been employed successfully in this



study is a modified form of the methods a and b and its success may 
be attributed to the use that has been made of the available 
knowledge of the source of the divergence. In particular in the 
present application of the filter it is known that the estimate of the 
states may diverge due to ̂ effect of unknown but significant changes 

in the process temperature. Hence the divergence control algorithm 

has been based on a test of the statistical consistency of the 
innovation associated with the temperature measurement and action 
of the controller is limited to increasing the variance of the 
uncertainty associated with the thermal dynamics.



CHAPTER S 

CONCLUSIONS

The motivation for obtaining improved control of the batch production of 

steel in the electric arc furnace has been highlighted. A survey of the 

literature has exposed that, to date, progress made towards obtaining 

computer control of the steelmaking process has been confined primarily 

to the problems of scrap selection for the initial charge and power 

allocation between furnaces. A study of conventional furnace operating 
practice has demonstrated the complexity of the process and the considerable 

skill required from the operator for its control. Justified by the common 

chemical principles and similarity in engineering environment of all steel- 
making processes a review of modelling of the Basic Oxygen Process has been 
presented. In this review both analytical and statistical techniques for 

model development have been considered. The former technique has been 
found to give non-linear models of large dimension which are unlikely to 
be practical for on-line applications. The latter technique, however, 

has been found to encounter difficulties due to the poor accuracy of the 
available furnace instrumentation.

The objectives of the present investigation have been shown to dictate 

that the analytical modelling technique be employed to develop a model of 

the steelmaking process in the electric arc furnace. Based on a study 
of the metallurgical theory of the steelmaking process and the range of 
variation of the constituent chemical species a set of chemical reactions 

describing the process has been determined. The evaluation of the 
equilibrium state for the chemical system has been shown to require the 
solution of a constrained non-linear programming problem. Although 
techniques for solving such problems are available the shortcomings in 

both the range and the accuracy of the necessary thermo-chemical data have 

been shown to make this approach unpractical.



A study of tha sequence cf steps contributory to the bulk reaction rates 

has been conducted and the rates of the. major reactions have been shown 

to be determined by the effects of mass transport. A lumped parameter 

representation of kick’s first diffusion law has been employed to describe 

mathematically these mass transport effects. This approach has been 

based on the accepted assumption that the driving forces for diffusion 

may be approximated by the differences between the average chemical 

potentials in the various phases. The rates of mass transfer 

have been given as the product of these driving forces and system 

conductances. These conductances have been shown to be functions of a 

number of the process states and that an exact formulation of the rates 

of reaction gives a set of highly non-linear differential equations.

Subsequent to this study of the metallurgical theory of the proce.ss a 

set of system variables, necessary to describe the process, has been 

determined. The structure cf a set of equations describing the dynamics 

of these variables has been developed. This development has made use of 

the results of the many recent studies on the chemistry of steelmaking. 

That the structure of some of the equations is determined wholly hy 

regression techniques has been shown to be an inevitable consequence of 

the fact that much of the information on the process, available from the 

literature, is presented in graphical form. The validity of these 

statistically derived components of the model has been assessed hy 

comparison with the results from independent studies.

To determine the accuracy with which this model described the dynamics of 

the major process phenomena, simulation studies have been conducted. 

Initial conditions for the process states and control strategies typical 

of tha industrial process have been employed in these studies. The 

results obtained have demonstrated good agreeement between the simulated 

and observed behaviour of the carbon, iron oxide and temperature state



trajectories. In the absence of adequate plant data little could be 

concluded about the accuracy with which the model simulated the dynamics 

of the manganese oxidation reaction. The oxygen efficiency of the 
process, as predicted by the model, has been compared with published 
data. The results obtained from the model have been shown to be in 
close proximity to these data indicating the validity of the structure of 

the model. A comparison of the total decarburisation time as estimated 
by the model with that observed in practice exposes a discrepancy which 
has been assumed to be due to the losses inherent in the normal practice 

of stopping and starting the process. It has been concluded from these 

simulation studies that the techniques employed to develop the model have 

proved successful but that a significant amount of plant data would be 

required to facilitate the tuning of the model necessary to make it 
suitable for use in a practical control system.

A further study cf plant operating practice has been reported and the 

difficulties encountered when monitoring the process for the collection 
of data have been described. The variety of modes of furnace operation 
have been considered and the collected data have been employed to extend 
the model to include the effects of the power input from the electrodes. 

However, because of the large and often abrupt perturbations in the 
trajectories of the process states that can result from either additions 

made to the furnace or de-slagging, only the simple operating modes have 
been considered. A proposal to employ a numerical technique for parameter 

estimation has been rejected because of the difficulties attendant to 

obtaining sufficient process data for statistically meaningful studies 
to be conducted. Instead minor manual adjustments made to a number of 

parameters when simulating the monitored casts have been shown to be 
sufficient to ensure that the model is accurate for a limited class of 
operating practice.



The inherent complexity of the mathematical models evolved from theoretical 

considerations, has been examined. A reduction in the dimension of the 
model state vector has been effected by the introduction of stochastic 

parameters to account for the non**raeasureable states associated with the 

slag phase and the hypotheses on which the model has been developed. 

Techniques recently developed for obtaining noise corrupted measurements 
of the carbon content and temperature of the process have been investi­

gated and the statistics of the uncertainty on these measurements has 
been determined. The implementation of the extended Kalman filter for 

on-line state estimation has been considered. Divergence of the 

estimation procedure has been shown to result from partial noise 
decoupling, when only the carbon state was measured. A simple scheme 
for ensuring that the filter does not diverge, due to modelling errorss 

has been incorporated in the filter and the performance of the state 
estimation procedure under varied conditions of uncertainty has been 
studied. It has been shown that even under extreme conditions the 
filter is capable of estimating the chemical and temperature states 

with the accuracy required for control of the industrial process.

^ZThis investigation of the refining of steel in the electric arc furnace 

has exposed the feasibility of employing the following philosophy in 

the development of a model of the process suitable for use in an 
on-line control system.

(i) A deterministic model of the process is evolved making full use 
of the available metallurgical theory of the process but also 

ensuring that its structure does not imply an unwarranted degree 
of certainty.

(ii) From a consideration of plant data and an. investigation of the 
attainable accuracy of the plant instrumentation; the nature and 

statistics of the uncertainty associated with the model and the 

measurements is determined.

(iii) The extended Kalman filter is employed as an efficient method of 

combining the a priori information about the process contained in



the dynamical model with the incomplete error-corrupted process 

measurements.

The success with which similar techniques have been employed in the aero­

space industry have been reported extensively (a compendium of applications 
is to be found in the NATO publication AGAPJDograph No. 139). Many 
general principles and techniques for a very broad range of applications 

of Kalman filtering are available but to date these have not had a 
significant impact on the steelmaking industry. The inertia of the 

industry is probably in part due to the fact that present control of 
process is quite successful. Hence a high probability of a significant 
economic benefit would be required before any major changes would be 

made to the conventional operating practice. There is, however, an 
increasing interest in the use of computers to assist in the control of 
recently developed steelmaking processes such as the argon-oxygen process 
for stainless steelmaking. These processes offer facilities for control 

hither to unavailable and it is to these and the continuous steelmaking 
processes of the future that the results of the present investigation 

are most likely to have a practical application. Further areas of 
application for these results may be found in the development of new 
process instrumentation, wherein the following questions might be 

answered;

(a) If the statistics of the uncertainty associated with a model of the 

process are available then what measurements are necessary to 
ensure that the estimates of the endpoint states satisfy the process 

requirements?
(b) There is a measureable cost associated with sampling the furnace to

ubfc&in an accurate estimate of the process state, hence, does a least 

cost measurement policy satisfying the endpoint accuracy requirements 

exist?
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Arc furnace steelmaking - A Study

Al.l Introduction
Prior to commencing the investigation reported in the body of this 

thesis the author undertook a study of the industrial process.
The purpose of this study was to gain some familiarity with the 

complex nature of the process. To this end the terms of 

reference under which the study was conducted were drawn up by the 
author's industrial supervisor and were approved by the manager 

of the melting-shop in which the study was conducted. This 
appendix is a synopsis of a report made on this study and is 
intended to expose the difficult engineering environment of the 
industrial process, the problems encountered when collecting 
plant data and the great skill required of the furnace operators 

to effect control of the process.

The types of steel produced in the melting-shop at which this 

study was conducted are described by in excess of ten thousand 
codes, some of which have additional sub-codes. All of these 
codes are part of the general classification of low and medium 
alloy steels. The approximate range of these steels is as 

follows?

(a) Plain carbon steels - 0.1 < %C < 1.3
(b) Nickel steels - max.(%Ni) * 4.0

(c) Chrome steels - max.(%cr) « 3.5
(d) Molybdenum steels - max. (%Mo) *= 0.5

A1.2 Event sequence for a typical cast
Since the melting-shop at which this study was conducted only 

supplies steel billets for the plant’s own rolling-mill the 
programme of casts for the shop's two furnaces is determined Uj



drawn up in the offices at the melting shop and this programme is 

passed to the scrap office and also to the shift-managers office 
in the melting-shop, to which it is accompanied by specification 

and instruction cards for each of the casts to be made.

At the scrap office the scrap-foreman decides the make-up of the 

initial charges for each cast on the programme. This decision 

is made with knowledge of the available scrap and the final 
specifications to be met by each cast. In making this decision 
the foreman uses the ’Least Cost Mix’ method in a crude form, as 
the decision is made knowing the approximate alloy content of 

the available scrap and whether it was obtained internally, 

for example as waste from the rolling-shop or purchased from an 
external supplier. Scrap is stored in railway wagons and the 

scrap-foreman sends an order to the traffic controller giving the 

location of the desired loads and the sequence in which they are 
to be tipped into the charging-baskets. This sequence is 
important because no heavy scrap should be charged high in the 
furnace since its collapse during melting could cause electrode 
breakages. The scrap-foreman then enters the charge ordered 

on a charge-card giving an estimate of its nickel, chrome and 
molybdenum content. From an estimate of the carbon content of 
the charge the foreman orders any additional carbon required to be 
added in the form of graphite. Lime and scale, that is the iron- 
oxide removed from the surface of the billets in the rolling-shop, 

to give a basic slag are ordered and the quantity required is 

determined by the expected acidity of the charge. Finally a 

prediction is made of the meltout' carbon, nickel and chrome 
and molybdenum content, the predicted carbon content should be 

sufficient to allow a minimum of a twenty point carbon boil, that



is the rasltout carbon should be at least O.Z« greater than the 

desired end-point concentration. The charge-card is then 

passed to the traffic-controller who ensures that the loads 
ordered are tipped into the charging-baskets in the correct 
sequence.

The charge-card is then passed to the furnace operator who decides 

on the rate of charging, that is on tiie times during the melting 
period at which the baskets should be emptied to ensure a minimum 

melt down time. A record is kept of the time of charging of 

each basket and the weight of its contents. When the final 
basket has been emptied into the furnace the charge card is 
passed to the steel-maker who is responsible for ensuring that 

the finished steel satisfies the order specifications. The 
stee1-maker is already aware, from the programme, of the type 
of cast being produced and has been informed of the weight of 
the total charge. On the basis of this information the steel­

maker places provisional orders for any additions which may be 
required. At meltout, that is when the furnace temperature 
reaches about 1560°CS a sample of the hot metal is sent to the 
laboratory for analysis. When the result of this analysis is 

available the steel-maker, in injunction with the furnace' 
operator, decides on the actual additions required and when 
these should be made. The stee 1-maker then informs the furnace 
operator of the end-point carbon content and temperature required. 

The steel is then refined using oxygen injection to burn out the 

surplus carbon and electric energy to raise the temperature of 

the molten metal. During the refining period the furnace 

operator has a number of checks made on the carbon content using 
a discrete measurement device known as a Tect Tip and on the 
temperature of the steel using disposable thermocouples. When



the carbon content reaches the required level a sample of the ho 
metal is sent to the laboratory for analysis. The slag is then 

poured off and a de-oxidising slag known as Blocking Slag is put 

on. If the order specification is for a final sulphur content 
of less than 0.025% a reducing slag is then made up, this is 

known as Double Slag Practice. If a low sulphur content is 
not required the furnace is tapped, this is known as Single 

Slag Practice, and further alloy additions, decided on the 
results of the pre-Block sample, are made in the ladle. The 
extent of these additions will depend in part on whether or 

not the cast is to be de-gassed. If the cast is not to be 
de-gassed it should now satisfy the order specifications as 

further refining would be very costly and to re-grade the 

cast would upset the programme. If the cast is to be 
degassed it is then brought to the de-gasser unit. This unit 

extracts dissolved gases from the cast by drawing steel into 
an evacuated vessel. Vigorous stirring occurs when this 
metal flows back into the ladle. This stirring ensures that 
any additions made via the evacuated vessel are distributed 

homogeneously in the cast. After de-gassing the finished 
steel is poured into ingot moulds.

A1.3 Sources of production data
Al.3.1 Data record on the charge-card

(i) The charges The origin, weight and types of scrap 

that make up the charge are recorded. An estimate 

is sometimes given of the nickel, chrome and 
molybdenum weights per load, but the accuracy of 
this estimate is limited by the heterogeneity of 
the scrap. Also recorded are the weights of any 
lime, graphite or iron oxide which are included 
in the charge.



(ii) Aim points? Normally only a prediction of the carbon 
concentration at meltout is recorded, but if a 

significant nickel, chroma or molybdenum concentration 
is expected then this also may be recorded.

(iii) Chargings The weight of the contents, the identi­
fication number and the time at which it charged 

the furnace is recorded for each basket. The 
weight of the contents is probably subject to an 

error in the order of 3% since this weight is only 

an estimate based on the known weight of the loads 

tipped into the basket and no account is made for 
the material which misses the basket.

(iv) Powers Meter readings taken at power-on, melt­
out and tap give the energy used during each stage 
measured in hundreds of kWhrs.

(v) Oxygen; The initial and final readings of a

quantity meter are recorded for each cast and the 
total oxygen used can be calculated in thousands 
of cubic feet.

(vi) Furnace additions? The quantity and time of charging 

is recor died for all additions of slag-making 

materials and alloys.

(vii) Chemical and thermal data? A record is kept both 
of the times at which the furnace is sampled and 
of the results of the chemical analysis of these 
samples. A record is also kept of the time and 

result of each temperature measurement made during 
the refining period.



Al.4.1 The furnace control room
Meters in the furnace control room measure the following? 
Furnace power factor, the supply current (A), the supply 

voltage (kV), the total furnace power (MW), the arc 
current per phase (IcA), the arc reference voltage per 
phase (V). The tap setting on the transformer is also 

displayed.

Al.4.2 The melting shop floor

Two oxygen rate meters are located adjacent to each 
furnace. The ranges of these meters are 0 to 500 cu.ft. 

per min. and 0 to 2000 cu.ft. per min respectively.
The narrower range meter is employed to measure the 
oxygen flow rate during the melt-down period when oxygen 
is injected to assist melting. The other meter is 
employed to measure the high rates of flow which are used 
during refining.

A1.5 Conclusions
This study of a typical arc furnace steelmaking practice exposes 
the extent to which present control of the process is dependent 

on the experience and skill of the operators. The existing 
instrumentation serves only to assist the furnace operators and 

the extent of the data records maintained is determined by the 
needs of the quality control and commercial sections of the 

industry. Hence, the information at present available from the 
process is neither sufficiently accurate nor extensive enough for 
a model of the process to be developed using only statistical 
techniques. This lack of well monitored plant data can only be 
alleviated by a change to a standard operating practice and an



improvement in the range and accuracy of the production data logged. 
It is of interest to note2** that a significant contribution to the 

increased productivity that is obtained when computer-aided 

refining control is implemented is probably due to the standardised 
operating practice which such control introduces.
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APPENDIX 2

Fonaulation of a simple model of the kinetics of the 
steelmaking reactions

*1 introduction
Prior to the development of the detailed process model described in

this dissertatiorip a simple model of a possible reaction mechanism

within the gas entrainment zone was investigated. This simple

model was developed by employing some of the arguments presented in
4-7 5 0the reported work on the modelling of the BOF process 5 

There ares howeverP some major differences between the arc furnace 
and the BOF processess the important role of slag-metal emulsions61 

in the BOF is one example. The model of the BOF developed by 

Jemeljanov et al60 not only ignores the effect of such emulsions 
but also the significant increase in the temperature of the hot 
metal during refining in the BOF. Consequently this rather 
restricted model of the steelmaking process in the BOF was considered 
to provide some basis for constructing a limited model of the 

electric arc furnace process.

£2.2 Assumptions

The following assumptions were made?

(1) That all the injected oxygen takes part in reactions within the 
bath,, i.e. none escapes with the flue gases.

(2) That all the oxygen entering the reaction zone located at the 
lance end can be accounted for by the following reactions

C + J Op(g) - CO(g)
Fe + J 02(g) - (FeO)

i 02(g) = 0



(3) That the specific rate constant for the carbon-oxygen reaction 
is given by the Arrhenius equation.

(4) That the rate of oxidation of iron is dependent only on the
rate at which oxygen is supplied to the process since a limitless 

supply of iron may be assumed.
(5) The rate of diffusion of carbon into the reaction zone is a 

function of the excess of carbon above a critical value.
(6) That the chemical activities of carbon and oxygen in the bath 

are equal to their respective concentrations expressed as 
weight percentages.

A2.3 Development of model equations 

A2.3.1 The oxidation of carbon
From assumption (3) the kinetics of the carbon oxidation 
reaction are described by

where A = the frequency factor for the reaction
E - the energy of activation for the reaction

A2.3.2 The oxidation of iron
From assumption (4) the uynamics of the iron oxidation 
reaction are described by the following second order 

equation

dC
dt A [C] [0] exp (-E/RT) A1

^  (FeO) = K, U(t) A2

where T_ = a time constant which is determined by Fe
thermodynamic and kinetic constants

Kl a stoichiometric coefficient



A2.3.3 The dissolution of oxygen in the bath
The rate at which oxygen dissolves in the molten metal will 

be proportional to available iron oxide less that required 
for reaction with carbon. Hence the dynamics of the 
dissolution of oxygen may be described by the following 

equation
dO
dt•%—  = a.

dFeO

dt
K

dC
dt

A3

where K.

a.

« a stoichiometric coefficient 

= a coefficient which characterises the 

availability of oxygen

A2.3.4 The diffusion of carbon into the reaction zone

Assumption (6) asserts that the limitation of the available 
supply of carbon begins to manifest itself at some critical 

concentrations C^. Hence the dynamics of the entry of 
carbon into the reaction zone may be represented by the 

following eauation

M .C dt + [«] -<*. [C]-; A4

w ith  [c] . n c° a t t  -  0

where

1 o 5 ! ■ rt f \dC
k o 4dt

<• 4

dt t > 0

a time constant which is determined by 

thermodynamic and kinetic constants 
a coefficient which characterises the 

carbon concentration gradient

A2.4 Estimation of process parameters
Three estimates of the value of activation energy9 E s for the 

carbon-oxygen reaction obtained from the literature are given as



value 01 -is ^KJ/Kmoi; source

45171. 60
58080. 55
117230. 62

The largest of these estimates was ignored since the results of the 

most recent studies60y65 were obtained using quite different 

experimental techniques and imply that Niwa's62 estimate is 

excessive. The value of E given in Jemeljanov60 was obtained 
from an analysis of BOF process data whereas Solar and Guthrie’s55 
estimate was obtained in the laboratory. Since the arc furnace 
process is more alike the B0Fs in mode and', temperature of 
operation,,, then the laboratory vessel a value of -50000 kJ/kraol 

was taken as an estimate for E.

Since no estimate of the value of the frequency factor9 A 3 was 

to be found in the literature it was evaluated using the following 

empirical analysis.
(i) For an oxygen injection rate of 0.0135 kmol/tonne/min at 

a process temperature of 1873°K the rate of decarburization 

is approximately 0.0083 kmol/tonne/min.
(ii) The equilibrium fc] [o] product is 0.00105 at 1873°K and 

1 atm pressure.
(iii) Assuming that E = -5000U kJ/kmol and T = 8.32 kJ/kmol/°K 

then

A ? 0.0033/(0.00105 exp (-50000/16583))

A 4= 160

In view of the larger [c] [o]product expected during oxygen injection 

it was decided that a value of 120 be taken for A.

The critical carbon concentration C, below which the effect ofk
carbon shortage manifests was obtained from the results of Barnsely



and Thornton*(.see J.4.J; xrao round that the efficiency of 
decarburization decreased rapidly once the carbon concentration 

fell below 0.066 kmol/tonne.

For the remaining process parameters the following values were 

obtained from Jemeljanov et al.60
T„ = 0.539 min, K. =2.0i?e A
ttj = 0.586 K l «1.05

T n = 0.337 min a  = 1.072

A2.5 Solution of model equations

The system of equations A1-A4 was investigated on an analogue 
computer using the values of process parameters given in A2.4 
and the following initial values for the process variables.

At t *= 0 for a bath weight of 140 tonne

[c] = 0.75% = 0.625 kmol/tonne
[c] = % 0(equilibrium) 5 0.00105/0.625 = 0.00168

kmol/tonne

T = 1873°IC
U = 1500 ft3/min = 0.135 kmol/tonne/min

The results of this computer study are shorn in Figs A2.1, A2.2.

A2.6 Discussion
The responses shown in Figs. A2.1 and A2..2 are in general agreement
in shape and magnitude with plant data, but this does not

necessarily imply that the model is validly constructed. Indeed 
analysis of the behaviour of the model from the chemical viewpoint 
exposes some fundamental theoretical weaknesses in the present 

formulation. These weaknesses are typified by the presence of

equation Al which is rate limiting for high carbon concentrations.
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FIG A2.1 Effect of Oxygen Flow Rate on Carbon Response
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FIG A2.2 Effect of Frequency Factor on Decarburization Rate



Al describee the rate of the chemical reaction yet the accepted 
theory is that for such carbon concentrations it is the mass 
transfer of oxygen (see 2.2.3) that is rate limiting.

Since to pursue the development of a model along the present lines 

would probably lead to a model with very little theoretical 

validity it was decided that a detailed theoretical analysis of The 

process should be conducted (see Chapter 2),



State space formulation of chemical process model

A3.1 State variables
xi - carbon concentration, kmol/tonne of hot metal 

X2 = manganese concentrations kmol/tonne of hot metal 

X3 = iron oxide concentrations kmol/tonne of slag 

xi* - weight of hot metal, tonne 

X5 = temperature of hot metal, °K 
xg = weight of slag time9 tonne
X7 = manganese oxide concentration, kmol/tonne of slag
xs - magnesium oxide concentration, kmol/tonne of slag
X9 = phosphorous pentoxide concentration, kmol/tonne of slag
x10 - alumina concentration, kmol/tonne of slag
Xjj = silica concentration, kmol/tonne of slag

X12 *= calcium oxide concentration, kmole/tonne of slag
Control input, u * oxygen injection rate, kmol/tonne of hot metal/sec

A3.2 Dependent variables

Yi - oxygen concentration, kmol/tonne of hot metal 

y2 « slag basicity ratio
y3 = ratio of weight of slag to weight of hot metal.

A3..3 State equations x^ = f£(x, u) (i *= l,...5ll)

i s 1, Xj «* fj(x, u), see eqn. 3.8(a), it is assumed here that 
£i > C2s i»e. that the rate of reaction is controlled by the rate 
of oxygen diffusion. This is reasonable in the present case since

it is rare that the end-point carbon is less than 0.1%.

*i = “[Pi(p2 “ Kj/l^Xj) + PgCgjCx)/^ - \.byl)]/
[l -- p^PgCgj (x ) / K 2 - 1.6yx)]



i ° 2V x2 = f2 (x« u) ? see eqn. 3.12
*2 = ~ Ps 1̂ + p6fi (x,u)> (5.5x2 ~ 8 2 (x )/IC3)

1 = 35 x3 = f 3 (x, u) s see eqn. 3,15
x3 = (2u + fj(x, u)(I + p7yj/x ) + f2(x, u))/y3

i = 4, ^  u) see e(In- 3.16
= -“55.35 x^y3f3(x5u)

i = 5, Xg = f5(x, u), see eqn. 3.18
= xlt(f1(xt u.XAHj + A H 2p 7Y j /x  ) + f2(x. u)

AH3 + f3(x, u)y3AH^ + uAH5)(AH6x* + AH^)*"1

i * 6p & = f (x, u)9 see eqn. 2.166 6

= 68x^y3f3(xP u) + 56.08xef12(xsu)

i = 7,, x = f (x, u) see eqn. 3.127 7

x? « f2(xs u)/y3
i - 8*...,12

x^ ~ * f (x, u)9 see 3.6
x. = 0

A3.4 The dependent variables y^(i « 19 2y 3) and the parameters

Pj(j - 1? • • • 7)

i = 1> see eqn. 4.1(a)

y = 1.6a (1.2x }aiI -J I

where aM = 0.0094 

ax = “0,633 
1 = 2 ,  see eqn. 3.12

y2 = (x12/56.08 + x?/70.94 + x8/40.32)/(x11/60.09

+ x, n/101.9f> + xQ/141.96)10 9
i = 3? see eqn< 3.16

y3 - x6/x,,
j = l ,  see 4.3,5

p = A 3 n./<5(wt.bath)1 l l o*V u
= 0.007 s ~X



j = 2j see 4.3,6
O *5 -2 O

= 0.06

j * 3;, see 4.5.3 and 4.6
P„ - k. A .13 2 a m
p3 = 0.0035 e*/s

j =43 see eqn. 4.8
p, = k A . e 2 uin

= 5.95

j = 5s see eqn. 3.13 and 4.8
p„ = k„ A .15 3 ram

= 0.0098 m2/s

j - 6 see eqn. 3.13

n = e 
" 6

= 1700

j = 7? see eqn.s. 3.15 and 4.1(a)

-0.633

A3.4 The functions p.(x) (i = ls2)'X

i = 15 see eqn. 4.7

S!(X) = “fbO 12
- 0.555 + 2.24x /( X  x. + x )

3 j»7 3 3
~0,117y

i = 2s see eqns, 3.11 and 4.9

S2(x) “ YMn0 HMa0^YFe0 UFeO^

= (1-3.27 exp(-0.95y2))x7/x3



A3.5 The equilibrium constants (i = l025'J) and the thermochemical
coefficients AHj (j = 1?.»P7)

i = I K is the equilibrium constant for the reaction 

C + 0 = CO (g)

Kj = exp (A,77 - 2.690/xg) 
i = 2 K2 is the equilibrium constant for the reaction 

Fe + 0 = FeO
IC2 = exp ( 6.3 + 14564/xs) 

i = 3 K3 is the equilibrium constant for the reaction 
Mn + (FeO) = (MnO) + Fe 

K3 - exp (-8 + 17053/xg) 
j = l  AHj = "0.1382 106 kJ/kmcl

3 = 2 AII2 = 0.1172 106 kJ/kmol
3 = 3  ARg = -0.3601 106 kJ/kmol
3 = 4  AHi* = 0.247 10e kJ/mol
j = 5 AH5 = -0.2726 105 kJ/kmol
j = 6 AHg = 860 kJ/tonne/°K

j = 7 AR7 = 2300 kJ/tonne/°IC

A3.6 Plant data and initial conditions
The initial conditions are determined by the values of the elements 
of z^(i = lP..y14)s the process data record. The values for 

presented in Table A3.1 are those employed in the simulation study 
reported in Chapter 5 and the initial values of = x? (i = 19..914) 

are related to z as follows

Ki =

x° = z2/5.5

x° = zk/6.3

O
X !f “  S 1 2

x° = z + 273
5 10



INPUT
VARIABLE DESCRIPTION VALUE FROM

plant data
!

Zl Initial C Concentration .75%

22 57 Mn ” .3 %

Z 3 CaO 46.1 %

Z» FeO " 11.3 %

Z 5 b O 9.3 %

Z6 MgO 7.3 %

Z y " P ,°5 1.6 %

Z8 Si02 " 13.5 %

fry

‘"B
*» M  *12 °3 5.2 %

zio Process Temperature 1600°C

Z11
Approxo inner shell 
Diameter 6.7m

Z12
Initial Bath Weight 
(approx.) 140 tonnes

Z 1 3 Oxygen Injection Rate 1500 cu.ft/rain

Z H> Weight of Charged Line 7.75 tonnes

TABLE A3.1 Input Data



*6 = lOQZj^/z^

x° * z /7.Q947 5

xg *= zg/4.032

x° « z7/14«. 196 

x°0 - Zg/10.196

xii = z8/6»°°9

x i2 = V 5 ’608

u — z /47462.912Z
1 3



APPENDIX 4 A4.1

Elements of the stochastic process model

A4.1 Determination of the process noise covariance matrix

Let the maximum error on the state equation f^(xsu) be given by

3f.
(Error.)2 = £1 1=1 { 337  ̂ J

A1

where the vector 3 has elements

3. = a. j = 1? ..., 9w .1
3. = p j - 10n ...s 16. m * 1,.., 73 m •

j = 17, 20. n = 1,..?4

Here p (m = I,,.,7) are the parameters occurring in the functions
s, (Xj,u) (k = I.,...4) as defined in section 7.2.2 and have values Ic

p « (O.OC263- 6.15, 0.555, 0.12, 2.24, 3.27, 0.95)

For convenience of notation let d>. = (Error.)2. It is apparent1 v 1
from the state equationss see eqn. 7.1., that only the following 

partial derivatives are required in the evaluation of (|).

3f, 3f. 3f. 3f.
  =  B ~K. /1.2x. + a2 ? -----=   - a
D3j 3aj 332 <̂a2 1

3f. 3f_ 3f, 3f
   s= _—  ~ - s (x,u) 1. 6x. 4  ----- -----
33 3a 33, 3a3 3 h it

a -1« 1.6a a s (xsu) x

. SJ ±
3(3 3p 

10 1

as2(x,u)/K2 - l - ^ a ^  *»

3 f . 3 f  3 f  3 f  3 f
  « ------ = s (x3u) ,/K j   =   = ---1 •3B12 3p3 3Bj3 3p„ 3p



!!i •'“1 i 1 
X 

1 10 3fl 3fx 3f,

3ps V
'*2 3p3 3317 35,

!!i . « , 3fi

8®ie ’ 352 ^2 3?5

3f,
3p.

To evaluate tp the following partial derivatives are required

3f,

3f __ 2

3f2

8B „

3f„

36

3f,

33

3£

15

Sa5

3f __2_
3Pi

3£2

3p2

3f„
C.

3Pe

(1 - p ^ x p C - p ^ p ) ^ 0 - x2)/K,x3

=  5 c 4 9 x 2 "  s 3 ( x , u ) / K 3 x 3

u
O'D■Pi

sx (x.,u)exp(-p7^ l) (^3 + ag (x2 - x? ))/K3x ;

1G 9f*7

'2 9"2
3319 3^,

Pg^i
3f2 3f2 3f,

3P6 3317 35, c*l,

Sj(x?u)(l “ p6exp(p75 1))/K3x3 

Employing the linear dependence of fs(x,u) on ft (x,u) and fz(x,u)

permits (J)3 to be written as, (see eqn. 7.1) 

<t>3 = a5 (1 - S|* (XpU))^! + a5<J)2 +

3f

3f ^2 I
33, J

<S35:

f W'L3 + , --
1 33.

) 2 r 3f3 '«e32 + —
✓ 1 33*, J

where
3f 3f___3_ _ ___3

33s 3as

3f 3 3f3

3a^

(SB*'

;fJ (x:,u)stt(xsu)/a;

= aifa5^1 (x yn)sJ+ (x,u) /x.



The simulation studies presented in Chapter 6 indicate that the model 
can accurately describe the thermal dynamics when the process is 

operated in an undisturbed manner, Consequently it is reasonable 
to confine the present error analysis to the chemical state 

equations and thereby avoid the need to evaluate the extremely 

complex components which the state equation f^Cx^u) would introduce.

An estimate of the process noise covariances may be obtained from 

the errors <■>. (i = 1,7..»3) be setting

A2q.. = ri>. / 9. i = 1,2,3

The dependence of the errors (j).. on the value of the state, x3 

and controls, u, is apparent from the expressions describing the 

partial derivatives of the state equations with respect to the 
vector . On-line evaluation of these errors would signif icantly 
increase both the computation time and computer storage require­
ments for the state estimator. It was therefore decided that a 
study be made of the time variation of the ratio /$.. /31f^(x9u) | 

over the refining interval. Estimates of the errors 63 were 

made by setting

6£j = A8j for j = I,.,316

where A is a constant. For j = 17,..,20 6$. is determined by 

the standard deviations presented in section 7.2.1.

For A = 0 .01p 0,1? 0.5 a constant defined by

/3T A3
r 3 ■T

e = r (M> ./3|f , (x,u)|)dt

i il f* o 1 -1

was evaluated using the data presented in Fig. 6.1, here T = the 

duration of the refining period. The following values were 
calculatedi



A ~ 0 , 0 1  £ ~ 0 . 0 6

A - 0,1 e ~ 0,25
A - 0,5 £ ~ 1,2.

Since 10% (that is A = 0,1) is a reasonable estimate of the average 

error on the elements of 3 a choice of 0,25 for £ was made. It 
follows therefore from eqn. A3 that the state and control 
dependence of d*. may be approximated by setting

/<&. = 0.7 51 f. (x, u) | A4
ju 2.

From eqn. A2 it follows that

a.. 0,0425 f.2(x,u) i = 1,2,3 A5‘ii i ' '

Since f1+(x;u) includes terms linear in fjCx.u), f2(xsu) and 

fg(xsu) it was decided that this expression should be used to 
estimate o, , „-i i if

Remarks

(a) The analysis; presented above, considers the continuous time 
process model, HOwevers since the discrete time model has 
been obtained using the Euler integration formula, see section 
7.3; the equivalent variances of the vector noise sequence are

a.. = 0.0625 F.2(x,u)*ii l **

(b) This analysis provides an initial estimate for the parameter £ 

which IG3V be employed as a tuning factor when implementing 

the filter on-line. Two possible extensions of this 

technique would be to consider £ as an adaptive variable 

which might be updated at the end of each cast. Alternatively 

a different value, of £ might be associated with each component 
of the system model. Further comments on the problems of 
on-line implementation of the filter are to be found in 
Appendix 5.



A4.2 The choice of elements in the noise matrix, G.k

The approach adopted for determining the elements of the process 

noise matrix has been presented in sec.toon 7.3. As a 
consequence of the symmetry of the matrix to be evaluated it is 

apparent that only the following elements require to be evaluated;
G r\ r* ri c* n12s U’l 3 J VJ11* s ^2 3 » u'2 4 S' ^3 •

In the following study the variable, 0, is employed to denote the 

dominant parameter or relationship common to two components 

£.(x>u) and f. (x,u) of the vector of state aquations, see section

Element G12: 0 = Sj (x,u)

From eqn. 7.1 0 = ~f2(x9u)/(5.49x2 ~ sg (xfu)/K3xg)

and fjCxjU) = ax((Kj/I.?xx) + a2)

-  0 ( s 2 ( x s u ) / K 2 -  l . G a g X j ^

U
a = — L = (s2 (x,u)/K2 " l.SagXj **)/' 12 -

3f2
(5.49x2 “ s3 (x su )/K3x 3)

Element G13s 0 = fj(x,u)

From eqn. 7.1 0 = (f (x,\)/a - u - f (x,u)/(l - s (x,u))o o 1 Z H

8fiG13 =   = l/a5(l - slf(x,u))

Element &llfs 0 ~ f (x,u)

From eqn. 7.1 0 = ((f (x.u) ~ a )/a - a u )/ait ’ 6 7 9 2

AH2f2(xsu) - AK3f3(x,u) - AEsUjj
(AH -f- AH s (x9u)) 1 k h 5

Bfi
Qlk = --- - l/a a (AH + AH s (x9u))

3f4 2 8 1  2 4



Element G 23' 0 s* f (x,u)

From eqn. 7.1 0 = f 3(xsu)/a5 - u } ~ (1 - s(x,u))f2(x-u)

3f
G,, = — -2- 1/a23 cl

af

Element G2lf: 0 = f2(x,u)

From eqn. 7.1 0 ® j \ ( f 4 (xsu) - ag) / a 7 -  agu2) / a 8 *

(AHj + AHlts(xsu))f1 (x.u) - AH3f3(x,u) ~

AHsu /AE2

^ 2
~ = l/a7a8AH2

3 ^

Element G3tt: 0 = f3(x„u)

From eqn. 7.1 0 = ^((f^Cxnu) - a6)/a7 - a9u2)/a8 ~

(AHj + AH|+s(xEu))fl (x5u) - AE2f2(x,u) - 

AH u /AH5 lj 3

1/a7a8AHn3 h
3f3

3f,

A4.3 The linearized process model
The implementation of the extended Xalman filter requires the

evaluation of a linear approximation to the discrete-time process
model9 see eqn. 7.2. Let § denote the transition matrix of the

linearized models see eqn. 7.16. The elements of $ aresin
general. = (At3f./3x.) + <$.., where At is the discrete-time & 9 ij * i j iJ
interval and it follows that the Jacobian matrix of f(x5u) must 

be evaluated. The Jacobian matrix has the following form3 see 

eqn. 7.1.

3f1/9x1 = ajK^/l.ZXj2 + 1.6a3a^s1 (xs>u)x1£llf 1 

3fi/3x2 = 0
3fj/3x3 = 2.24SJ(x5u)/^2K2

Sfj/Bx^ = 2690.a1K/1.2x1Xif2 + 14564sj (xsu)s2 (xru)/K1x^2



3f2/3x1 « 0

3f2/3x2 - -5.498!(xsu) - asSxCx^iOCl •*• 3.27exp(“ „95£;3))/k3x3

3f2/3x3 « -Sj(xru)s3(x3u) / K 3 x 3 2

Sfg/Sx^ = 17053Sj (x;;u)s3 (xj^/KgXgX^2

afg/axj = a5(l - Slf(x>u))3f1/3x1 - agCa^ - 1 ) (x9u)f l (x3u)/x2

3f3/3x 2 ” a53f2/3x2

3f3/9x4 = a5(3f2/3xlt + (1 - (x„u))3fi/dxk)

3f^/3xx = aySgpAHj + s4 (xs,u)AHlt)3f j/Sxj + A H ^ ^ i i )

(ai, - l)si,(x9u)/xij 
3f^/3x2 = a7a8AH23f2 / 3 x 2

3flt/3x3 =  a7a8AH33f 3 / 3 x 3

3f ij/Sxtj = 0



Control of Divergence in Kalman Filters

A5.1 Introduction

In practice the information required to construct the Kalman filter 

is only approximately known. The noise parameters and models may be 

based on limited data and the system model may not be adequate. As a 

result of these errors, inconsistency between the error covariance, as 

calculated by the filter and the actual error covariance can arise.

This phenomenon, known as divergence, is in effect the result of the 

filter placing undue confidence on the erroneous description of the system 

and ignoring subsequent measurements. A study of the literature exposes 

a variety of methods for the control of divergence. The range of these 

methods74 extends from adaptive filters66 ,72 ,75 ,7G, wherein parameters in the 

models and/or the noise covariance matrices are estimated, to filters68 

in which a fixed lower limit on the gain is set to ensure that adequate 

insensitivity to errors in the system description is obtained. Inter­

mediate to these are the methods based on limited memory filtering77 and 
decision directed70 ̂  »7 8 divergence prevention. Here, a number of methods 
of the latter type are considered and their application in practice is 

commented upon.

A5.2 Filter: We consider the linear discrete time filter, but the results

can be readily applied in the non-linear case when the linearized extended 

filter is employed. The system model is

V i = * k V Gk \ A1

V, ■■ = H, „x, +w,k+1 k+1 k+1 k +1 A2

where v. are white gaussian vector noise

sequences. The fi lter equations are



k+1

Pkk+1

*k+l
Pk+1k+1

Vk
♦kp̂  + W k
k T k TP, , H, (H. ,P, ,H, +K ,) k+1 k lc+l k+1 k+1 k +1

(I-K, _H jP,k , k+l k+1 k+1
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A5

A6

A7

A8

where the notation (*)^ denotes the estimate of (•) at time t = iAt, 

with measurements made on the interval t = [o,jAt]. Useful information 

on the accuracy of the filter can be obtained from the innovations process,
• • 7 2 .z^> which is known , in theory, to be a white gaussian noise sequence with 

k—i xcovariance 0^ ^  H^+R^) .

Based on tests on the consistency of the statistics of z the
IV

following three methods have been proposed for detecting and controlling 
divergence.
w  , , 7 0Method a :

Test:

Method b7 \

Test:

T k-1 Tif zkzk > 3 trace(H^P^ H^+R^), suspect divergence,
Action: freeze filter gain at present value and by-pass eqn 6.

T k-1 TMaintain this action until < trace(H^P^ H^+R^).

T k-1 T -1 if J = z (H P H- +R, ) z, > J , suspect divergence K K k  K K K m a x
Action: set Q, = Q, +SQ, . Maintain this action until J < J . .k k k m m

The thresholds J and J . are positive scalars, max m m

Method c 7 8 This method requires•that the measurement is a scalar, hence 

in the case of multiple measurements it is assumed that the
. . .  • •  « y  ofilter is implemented m  its sequential form



2Test.: if a. < z < a_ , choose hypothesis AI k z o
2if z^ < , choose hypothesis A^
2if z^ > <*2 » choose hypothesis A^.

where a^, represent positive scalar thresholds.
k-1Action: if A is accepted, leave P unchanged,0 rC
k-1 -if A.. is accepted, change P, to P, ,1 k k
k-1 +if A_ is accepted, change P to P ,

^  K. rC

• * • • " *f* #The modified covariance matrices P, and P, have values such thatk k
p" < < p+
k * Ak * V
The test proposed in method a is not statistically meaningful in the

k—1 Tcase of non-scalar z.' The measure, 3 trace(H^P^ H^+R^) will be influenced

most by the largest variances, as in the following example obtained from the

study of the steelmaking process. Consider the measurement
o T Ty = (% Carbon, Temperature K) with typically z = (0.3,6) and

(HPI1T+R) =
.009 -0.1

-0.1 40

Also zTz = 36.09 < 3 trace(HPHT+R) =120.027
2 2Hence the test m  method a does not imply divergence yet z » o  , where
1 zi

a = the standard deviation on z,. 
zi 1

Writing eqn 6 in the equivalent form

Pkk = A9

shows that the action proposed in method a, that is, that eqn A5 should be 

by-passed, is similar to setting R^  ̂= 0. This is intuitively undesirable 

since in effect we are saying that the filter is diverging and there is no 

information in the measurement, i.e. R^ = °°.

The test presented in method b is statistically meaningful since the 
quadratic form J defines an m-dimensional (m = dim y) closed ellipsoid



centred at the origin. This ellipsoid is called the ellipsoid of

probabilities associated with the quadratic form J. The values of

threshold levels J = 9  and J . = 1  suggested for their correspondencemax m m  v

to the commonly used 3 and 1 - Standard Deviation tests, only have this

meaning in the scalar, m = 1, case. It is , however, easily shown80 that

J is a chi-square variate with m degrees of freedom. Hence, values of

J and J . can be obtained to give any desired confidence interval, max m m
The action proposed in method b is intuitively agreeable if we assume that 

the divergence is due to errors in the process model or the estimate of 

its noise covariance. It is apparent that the extent to which the 

emphasis within the filter is shifted from the model to the measurements 

is determined by the choice of value of the ‘control' variable 6Q • ThisCV
value must be precomputed and in the case when Q is time-varying a

k-1reasonable approach may be to consider 6Q, = eQ or 6Q = eP , where cK R R R
is a small positive constant. For invariant Q, useful information on 

the performance of the filter under different values of control may be 

obtained by conducting studies on the sensitivity66509 of the filter to 

changes in the description of the process.

The tests proposed in method c were derived from the Neyman-Pearson 

criterion for hypotheses selection. The thresholds and o. are 

determined as follows.
rp 1

Let t = [a /(HPH +R)] 2
1 , 2then Pr^ = (2/tt) 2 J exp(-T /2)dx A10
0 *

T -Similarly t2 = (c^/(HPH +R) ) 2

1 *”2
then Pr2 - 1-(2/tt) 2 / exp(-x^/2)dx All

o
where Pr^ and Pr2 represent the probability of choosing A^ and A^ 

respectively when Aq is true. If values of 0.68 and 0.002 are taken



A5.5

for Pr^ and Pr^ respectively then the thresholds and a w i l l  correspond

to the respective 1 and 3-Standard Deviation levels. Other values of Pr^

and Pr may of course be selected. The action proposed in method c is

obviously similar in effect to that in method b and the values of P, andk
■f , # *■P may be associated with changes _6Q, and +6Q in the process noiseK K K.

covariance matrix. Since the components of the measurement vector are 

processed sequentially, different control actions, that is different values 

of P^ and P , may be associated with each test. This increase in complexity 

compared with that proposed in method b may cause difficulties during 

tuning, but it has been found* that the association of suspected 

divergence with an increase in uncertainty in one of the state equations 

can enable simple but effective control of the filter to be obtained.

A 5 .3 Conclusions

Three decision directed methods for controlling divergence in the
. 0

Kalman filter have been discussed. Two of these, methods b and c, have 

been shown to propose similar action when divergence is suspected. The 

latter of these methods has the appeal that it has been developed using 

the decision theory of Neyman and Pearson. In its present form this 

method is restricted to application with the sequential filter. An 

extension of the method to the standard filter, wherein all the observations 

are processed simultaneously, can be obtained by use of the test proposed 

in method b, which provides a measure of the filter quality which is a 

chi-square variate. The following method therefore suggests itself for 

application with the standard filter.

Test: if < J < » choose Aq ,

if J < ^  > choose A^,

if J > > choose A^,

* See Section 7. b,Z



Action: if Aq is accepted, leave Qk unchanged

if A^ is accepted, set

if A^ is accepted, set

The thresholds and $2 > relate to probabilities Pr^ and P ^  as defined 

in method c. But here the values of these thresholds are obtained from 

the probability density function of the chi-square variate.



APPENDIX 6 Afro I

Process Bata

-1 Records of process operation

CAST NO. 1
Time
(min) Action Traneformer 

Tap

0 Power-Qn, Sample - 1.1, T = 1560°C 7

13 Power-Off, Oxygen-On

17 Power-On 9

20 Oxygen-Off

23 Oxygen-On

25 Power-Off, Oxygen-Off, T = 1630°C

30 Oxygen-On, Slagging-off

35 Sample 1.2
36 T = 1645°C

47 Oxygen-Off, Sample - 1.3

49 Power-On 12

55 T = 1660°C
56 Power-Off, Tapping



Tim
(•mi:
0

23

2.4

25
27

30

33

35
42

45

47
50

52
53

58

73

76
78

86
87

105
110
120

124
130

132
140

143

CAST NO. 2
Action Transformer

TaP
Power-On, Oxygen-On, Sample - 2.1 
Power-Off, T - 1620°C

7

Oxygen-Off

Power-On 12

Power-Off, Lime addition of 3000 kg, 
Roof-off
Power-On 12
Power-Off

Oxygen-On
Oxygen-Off, T = 1600°C

Spar addition of 750 kg
Oxygen-On, Power-On 12

Power-Off

Oxygen-Off, Slagging-Off 

Oxygen-On

Oxygen-Off, Sample - 2.2, T = 1590°C 
Sample - 2.3 
T « 1565°C

Power-On 12

Power-Off, Spar addition of 500 kg 

Power-On 12
Oxygen-On, Slagging-Off
Tap change 15
Sample - 2.4 
Power-Off, T = 1680°C 
Sample - 2.5
Oxygen-Off, Power-On 15
T « 1660°C 

Power-Off, Tapping



Time
(min) Action Transformer 

Taj).......
0 Sample - 3.1, T * 1570°C
3 Power-On, Slagging-off 5
12 T = 1615°C

17 Power-Off, 170 kg of Mo added
18 Power-On
22 Tap change, T = 1660°C 9
25 Slagging-off
29 Power-Off

34 Sample ~ 3.2, Power-On
38 Power-Off
47 Blocking-Slag additions 

Double-Slab Practice .

CAST MO. 4
Time
(Min) Action Transformer

Tap
0 Sample - 4.1
5 Power-On 5
13 T = 1530°C

14 Oxygen-On, Slagging-off

15 Tap change 11
25
26

Sample - 4.2, Power-Off 

Oxygen-Off
28 T = 1530°C
30 Power-On 9
38 Power-Off, T = 1575°C

39 Power-On
42 Power-Off, Blocking-Slag additions 

Double-Slag Practice



(Min) _______________    Tap

0 Sample - 5.1, T = 1540°C

15 Lime addition of 2250 kg and 
Spar addition of 750 kg

21 Power-On 12

25 Oxygen-On

37 Power-Off

42 T = 1558°C

44 Sample - 5.2, Oxygen-Off

63 Power-On 14

71 T « 1575°C

77 Slagging-off

79 Oxygen-On

83 Power-Off

86 Oxygen-Off

87 T = 1615°C, Sample - 5.3

90 Blocking - Slag additions 
Double-Slag Practice

CAST NO. 6
Time
(Min) Action Transformer

Tap
0 Sample - 6.1, Power-On 9
33 Slagging-Off

20 T * 1540°C

35 Power-Off, Additions of 230 kg Mo and 
220 kg Ni

38 Power-On

49 Slagging-Off
50 T = 1605°C

58 Power-Off, T - 1640°C

61 Additions of 1000 kg FeMn, 
300 kg FeAl and 750 kg FeO

66 Power-On
70 Power-Off, Blocking - Slag additions 

Sample - 6.2, T - 1640°C
Double-Sla Practice



CAST NO. 7
Tima
(min) Action Transformer

Tap
0 Sample ~ 7.1* T = 1580°C
4 Power-On 7
15 Tap change 11
20 Power-Offs Addition to 80 kg Mo and 

450 kg FeMn
2.2 Sample -• 7.2

24 Power-On 9
28 T = 1630°C

30 Power-Offs Sample - 7.2
45 Sample - 7.3S T = 1625°C 

Blocking-Slag additions 

Double-Slag Practice



A6.2 Slag and inetal analyses

Weight Percentages
r- _. Total

1.1 1. .3 19.24 11.7

1.2 0.57 0.19 12.92 20.8

1.3 0.27 0.15 16.36 13.2

2.1 1.09 21.7 9.4

2.2 0.81 0.31 12.0 10.4
2.3 *— — 11.3 9.2

2.4 0.61 0.21 10.8 22.4
3.1 0.09 0.12 —

3.2 0.05 0.1 —

4.1 0.62. 0.13 15.34 15.15
4.2 0.46 0.76 — —

5.1 0.51 0.17 12.2 14.2

5.2 0.65 0.2 16.66 19.2

5.3 0.57 0.14 13.7 14.73

6.1 0.C9 0.12 10.33 21.1
6.2 0.11 0.6 10.11 15.44

7.1 0.08 0.03 13.04 15.12

7.2 .35 .47 — —

7.3 .36 .47 10.35 16.48

CaO MgO MnO A1 0 Cr 0 P 0

44.07 3.73 6.09 6.68 0.73 1.316

41.97 4.31 5.88 5.01 0.76 1.386

49.67 5.01 4.64 5.0 0.79 1.11

46. 2.61 5.42 5.44 0.86 2.03

59. 3.6 2.97 3.32 0.91 1.42

60.3 3,62 3.1 3.44 0.97 1.4

42.7 6.47 2.58 3.14 .364 1.06

46.5 3.28 4.9

42.6 4.51 4,32

46.2 5.33 3.1
48.66 6.2 2.2
48,72 3.10 3.73
45.16 7.32 4.56

45.84 5.42 7.05

43.32 7.66 5.01

4.88 2.42 2.1

4.19 0.54 1.01

3.36 0.57 1.3
3.62 0.62 1.41

3.54 0.91 1.61
4.13 0.78 1.55
4.26 0.53 0.95

4.53 1.02 1.13


