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Abstract.

A range o f  liquid crystal units based on mainly phenyl benzoate esters have been 

synthesised and characterised. These have been attached to polysiloxane systems to 

form ring, linear and elastomeric polymer liquid crystals. The effect o f  system 

purity on the phase transitions o f  the ring materials was found to be crucial, and this 

has resulted in a phase diagram for a 'doped' ring system where the doped material 

exhibits liquid crystalline behaviour while the pure material does not. Properties o f  

linear material were found generally to be consistent w ith data in the literature. 

Extremely low glass transition tem peratures w ere not observed even though pure 

poly(hydrogenmethylsiloxane) is considerably m ore flexible than its hydrocarbon 

equivalent. Effects o f  degree o f  polymerisation and spacer length were as expected. 

Linear polymers were cross-linked to produce equivalent elastomeric m aterials.W e 

have characterised a range o f  these systems and investigated the effect o f  

deformation on the LC order within the elastomers through the use o f  FTIR. Phase 

transitions for the cross-linked systems were generally slightly lower than the 

analogous linear materials which is in agreement with data found in the literature. 

Partial substitution by cyano-terminated molecules enabled us to determine the peak 

ratios o f  Si-H/CN stretching frequencies on deformation. Small enhancements, 

approx 7%, o f  LC order parallel to the direction o f  stretching were observed. In 

addition, a novel 'ring' elastomer incorporating liquid crystal units has been 

produced. Cyclic materials were substituted with liquid crystal units and cross-



linked to yield elastomers with 25% and 37% mesogen density. Although 

elastomers were produced, no liquid crystal behaviour was observed. Glass 

transition temperatures in the region o f  -100 °C were observed. It is believed that 

by increasing mesogen density in these materials, elastomers with extremely low 

glass transition temperatures and liquid crystal properties could be achieved.
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1.Introduction

The first liquid crystalline observations are largely credited to Reinitzer (1) 

and Lehmann (2). In 1888 Reinitzer observed two apparent melting points for 

cholesteryl benzoate, 145°C and 179°C. Further work by Lehm ann led to a 

publication in which he termed this material a 'liquid crystal', as between the 

two 'melting points' the material possessed low rigidity o f  fluidity ( a liquid like 

property) and also optical anisotropy (a crystal like property). It is worth 

noting at this point that a similar class o f  compounds termed plastic crystals also 

exists. These materials are classed by their, exhibition o f  positional order 

while the orientational order has disappeared or is strongly reduced. 

Conversely a  liquid crystal is characterised by a degree(s) o f  orientational 

order while the positional order is reduced or completely absent. Today 

liquid crystals or m esophases are accepted as one o f  the five states o f  m atter 

w hich occupy a position between ordered solids and isotropic (or random ) 

liquids. As a consequence we might expect mesophases to exhibit properties 

characteristic o f  both. Molecules or atoms within crystalline solids exhibit 

long range 3D positional and orientational order with little mobility. In the 

liquid state there is no long range structure, but there is some short range 

structure with rapid molecular motion and mobility. In general, m esophases



contain a degree o f  fluidity coupled with long range orientational order (3). 

Liquid crystals can be further subclassified into thermotropic and lyotropic 

materials. In the former the term thermotropic arises since transitions result from 

changes in temperature. For traditional low molecular mass (LMM) liquid crystals 

length to breadth ratios o f  4-8 and relative molecular m asses o f  200-500 are 

observed. Lyotropic behaviour is brought about by sufficiently high concentration 

solutions o f  rod-like molecules in an isotropic solvent. In lyotropic systems the 

’rods’ are typically larger than for thermotropic ones. Axial ratios greater 

than 15 are rarely found. So far w e have seen that for a compound to exhibit a 

traditional low molar mass liquid crystal phase w e require it to have a basic  rod 

shape. In fact, liquid crystal phases are possible with polymers and disc-like 

molecules. These will be discussed later. By studying many compounds that 

exhibit liquid crystalline behaviour, two basic requirements for m esom orphic 

behaviour can be formulated (4):

(1) The compounds should have an anisotropic elongated form, as reflected in 

their length/width ratio.

(2) The compounds should have a relatively rigid polarisable part. Using 

these studies it is possible to deduce a set o f  building blocks that can be used 

to assem ble a liquid crystal structure.

SU BSTITU EN T-[-A RO M A TIC—LINKAGE-],,-AROMATIC—SUBSTITUENT



The requirem ent for rigidity is met by choosing groups that contain multiple 

bonds for the linking units. Such units also have the advantage that they are 

capable o f  conjugating with the aromatic systems and can m aintain the 

polarisability and birefringent properties o f  the molecules. Substituent units are 

generally used to tailor the m olecules phase type and behaviour. Here w e may 

use anything from cyano units, which will provide a high induced dipole, 

through electronegativity effects, along the molecular axis, to alkyl units w hich 

can, i f  sufficiently long, disrupt the packing o f  the molecules due to m any 

available statistical conformations. Structure/property relationships will be 

discussed m ore fully later.

1.1.1 The nematic state, (Fig 1) (5)

The simplest LC  state is the nem atic state in which the molecules are 

uigned with their molecular axes roughly parallel, this direction being defined 

locally as the director, n. There is no correlation between the centres o f  

gravities o f  the molecules and the molecules can flow easily over one another, so 

that the viscosities are o f  the same order o f  magnitude as the isotropic phase. For 

nearly all the known molecules that exhibit nematic phases, the nem atic phase 

is uniaxial. That is, there exists rotational symmetry around the director. This 

axis has no polarity even though the constituent molecules may exhibit polarity.



Hence n and -11 are equivalent. A transition from isotropic to nem atic involves 

a first order phase transition for which the enthalpy change, AH, and density 

change, A p, can be measured. Thermodynamic theory (6) tells us that the 

entropy change, AS, can be calculated from the enthalpy change using the 

formula;

A G =  A H - T  AS

where AG is the Gibbs free energy, which is zero at the transition, and T is the 

temperature. Hence the entropy change is given by;

AS =  AH/T

Typically, values o f  between 0 and 10 J K " 1 mole"1 are observed for nem atic 

systems passing through the nem atic to isotropic transition. Typically, organic 

materials that exhibit solid to liquid transitions have entropy changes around 

100 JK "1 mole"1. Therefore the nem atic phase contains only a small amount o f  

order.

5



F i g  F A  t y p i c a l  n e m a t i c  m o l e c u l e

M

K 118 N  135.51

Hie notation above describes the phase behaviour the system exhibits on 

heating from the crystalline phase. Hence K 118 N  represents the temperature at 

which the molecules pass from the crystalline phase to the nematic phase while 

N 135.5 I represents the temperature at which the system passes from the 

nem atic phase to the isotropic phase. The superscript o f * is used to indicate a 

chiral nematic phase. Other notations include S to represent smectic phases. A 

subscript is used to indicate the type, i.e. SA represents a smectic A phase 

(these are described frilly later). Temperatures are in °C unless otherwise 

stated.

I.L 2 . C h ira l N em atic phases.

These are a twisted version o f  the nem atic phase due to the presence o f 

chiral centres. A helical structure is observed within the phase which is

6



characterised by a pitch, P. As in optically active organic molecules , the pitch can 

be positive or negative depending on the sign o f  the chiral centre, i.e. if  the 

chiral centre generates a clockwise rotation then the sign will be positive. I f  the 

pitch is in the region o f  the wavelength for visible light, then these materials 

will exhibit colours which may change with temperature due to a change in 

pitch (thermochromicity). Mixtures o f  materials with opposite chirality can result 

in a simple nematic compound where the pitch effectively becomes infinite. 

Nematic and chiral nematic materials are completely m iscible and the addition o f  

a small amount o f an optically active compound changes a nematic phase into 

a chiral nematic phase.

Fig 2. A typical chiral nematic molecule.

CH 3  CH 2  CH (Cl l2 )n- ' ( ( O / ) -
- < 0 ^ c n

c h 3
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Fig 3. Nematic / Chiral nematic structures.

(a) Nematic (b) Chiral nem atic

1.13. Smectic phases.

M ore ordered mesophases, such as smectic mesophases, have an 

additional degree o f  order in that the molecules are also arranged in layers. 

Therefore, as well as the one dimensional orientational order present in nem atics 

there is also a one dimensional density wave (7). The molecular centres are, 

on average, arranged in equidistant planes, leading to what is loosely, called a 

layer structure. Tne simplest, smectic A, has no order within the layers so that 

there is no correlation between molecular axes other than the roughly parallel 

arrangement o f  the molecular axis. The layer thickness approximates , to within

8



5%, to the molecular length, the variations arising from fluctuations in the order 

or con form ational changes in alkyl substituents. As in nematics, n and -n are still 

equivalent. In simple terms the smectic C is a tilted version o f  the smectic A .

u  A t w f l w a t *  a  r\ 1 o t m  m  1 1 m  r r  t r >  t f r j a  A i A f m o l  K i o v t o l i H r  r v P  a  p i  m f  a m
1 1 U V V C V U ,  HIV*/ U . l O L l l l g U . l O l X J X l g  l ^ U t U l ^  XO  U IV ^  V ^ j J L l^ C U  U i a M O l l l ) '  O l  LIXV^ O y  O L V ./111.

Further order is possible, so that for example, the smectic B phase adopts 

hexagonal clusters within the layers. Although these clusters possess a lattice like 

structure, the fluid character o f  the layers ensures that the distance between the 

centres o f  the clusters is not related to the lattice spacing. Thus w e have a long 

range order o f  the orientation o f  clusters due to bond orientation order with 

positional order w ithin the layers.

9



Fig 4. Typicai Smectic A andB Molecules.

p,p'-dinony!azobenzene

CgH-jg \C i) N = N  * 1——CgHig

K37S B40SA 53I

p.p-diheptyloxyazobenzene

'7 *1 50 ------------} ) —  ^ )----- OC7H15

O

K37S b95 .5N124I

Fig 5. Smectic A, B and C structures.

W ' i  - . s — k

K /I 
V A 11 , ' \ .  1/
.w m W  s i

i  f

I t •

// /// /,
f / /  . Jn / / / / /

\  1\  i '  >
\ 11 > / \ l
J / ' M ' /  K  / I  1 . 1 I . /

N ___ V H  m / I
1 1 t f 1

Smectic A Smectic B Sm ectic C
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1.1.4. General transition order.

M any molecules are found to exhibit a number o f  different liquid crystal 

states and comparison o f  these has led to a general order o f  the phase transitions 

observable during cooling in thermotropic liquid crystals.

ISO-LIQ, N EM A TIC, SM ECTIC A,CJHEX B,I,CRYST B,F,J,G ,E,K ,H 

High temperature Low temperature

1.1.5. Non symmetric molecules.

W hen the molecules possess a  dipole moment it becom es possible to 

distinguish between the head and tail. Para cyano-substituted molecules, to  be 

distinguished from ortho and met a types (see below) are an example for w hich 

a variety o f  smectic A  phases have been observed. In such systems a num ber 

o f  orientations are possible. Firstly the molecules can minim ise their dipolar 

interaction by an antiparallel dipole arrangement (Fig 7).



Fig 6. Arrangement of Ortho, Meta and Para substituents.

O R TH O PA R A

Fig 7. Antiparallel arrangement of mesogens.
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As a result the layer thickness is now given by d=a+2b where a is the length o f  

the arom atic head and b is the length o f  the aliphatic chain. This type o f  

interaction may be the origin o f  the ’re-entrant nematic' phase (8).

Fig 8. Antiparallel dipole correlation of CN terminated molecules.

CNCN

CNCN



1.1.6. O rd e r  param eter.

A simple order parameter. S, describes the average orientational ordering o f  the 

molecules;

S=0.5 <3cos2 0 -l>

where 0 is the angle a m olecule-m akes with the director, n, and S is the 

result o f  averaging over the m acroscopic system. When a molecule can assume 

any angle relative to its neighbouring molecules with equal probability 

then the result o f  the above equation is zero and this represents the isotropic 

system. When all molecules are aligned exactly parallel then 0 has a value o f  zero 

for all molecules and the result for the above equation is one. A s a ru le , liquid 

crystals have order parameters between 0.2 and 0.8. (9)

14



Fi^ 9. Typical order parameter diagram.

0.7
> -

o0.6

0.4

0.3

0.2
0.86 0.920.9 0.94 0.96 0.98

T* (Reduced Temperature)

T* is the actual temperture divided by the clearing temperature.

1.1.7. Disc molecules.

Molecules, such as those containing fused benzene rings, which are relatively 

flat and disc shaped, have been shown to exhibit mesophase behaviour 

(10,11,12). These materials also exhibit a variety o f  phases and form a new 

class o f  thermotropic liquid crystals. The thermotropic sequence o f  such systems 

is given below.

15



^hcb ^ licr ^ rd ’ ^ t-  ^ D j ^  ’ d

Low temperature High temperature

The simplest arrangement i s t h e N D or nematic-like arrangement o f  discs. In 

this phase all the discs are roughly in parallel planes but there is no 

correlation between the position o f  individual discs. Other phases involve the 

discs stacking in columns.

1.2. Polymer liquid crystals.

By analogy to low molar mass liquid crystals, these can be divided into thermotropic 

and lyotropic systems. The m ost extensively studied lyotropic polymer is 

poly-y-benzyl-L-glutamate (13,14). However, we are primarily interested in 

thermotropic systems, in particular polysiloxanes.

1.2.1 Classification.

Polymeric liquid crystals can be sub classified into a number o f  divisions. .

(1) Side chain liquid crystal polymers.

Here the liquid crystal behaviour is a result o f  liquid crystal units attached to a 

polymer backbone.

(2) M ain chain liquid crystal polymers.

H ere the liquid crystal behaviour is a result o f  LC monomers linked to form 

polymer chains. (15,16,17)

16



(3) Ring polymers.

Analogous to side chain systems. Here the chain terminals are connected to form 

a ring and the liquid crystal units are linked onto the side. Here w e might 

expect to observe discotic phases so long as the system retains its rigidity.

(4) Cross linked systems.

Can be side or main chain systems that are connected by cross-linking units. Here 

w e form a network and possibly, an elastomeric liquid crystal system.

W e have been interested in side chain polymers, particularly rings, 

linear polymers and cross-linked systems.

1.2.2. Side chain polymers.

The idea o f  ordered polymer liquid crystal systems does not sit easily, with 

traditional theories o f  polymers and liquid crystals. Polymer entropy is 

antagonistic to nematic order and a flexible polymer is expelled from a nem atic 

solvent. Direct polymerisation o f  liquid crystal monomers into polymers is 

possible but not very successful. Blumstein (18) and Shibaev and Plate (19) 

provide reviews on this kind o f  work up to 1978. It is possible to polymerise 

m onom ers which exist in a well defined liquid crystal state. However, the 

resulting polymer loses the initial liquid crystal state. From nem atic m onom ers, 

polymers result which exhibit either highly ordered smectic phases or a glassy



state at temperatures below those used for polymerisation. These polymers 

were either amorphous or showed a 'locked in' or 'memory effect' liquid crystal 

state w hich w as permanently lost on heating above the phase transition 

temperature. Space filling models o f  such systems indicate that the result o f  

such a polymerisation is a polymer which has a rigid main chain, thus explaining 

the high glass transition temperatures. Since nem atic phases rely on a 

statistical distribution o f  centres o f  gravity o f  mesogens, which is not possible 

under these conditions, only amorphous or smectic phases are observed.

1.2 3 . The spacer concept.

To balance the competition between the backbone random  coil configuration 

and anisotropic side group alignment, R ingsdorf et al (117) proposed that the 

motions o f  the polymer main chain must, be decoupled from the m otions o f  the 

m esogenic side groups. This can be achieved via a flexible spacer. Using this 

approach, models predict that the side groups should be able to adopt ordered 

conformations even when the backbone adopts a random coil configuration. This 

approach assumes that the motions o f  the backbone and m esogenic side 

groups are completely independent and therefore the nature o f  the backbone 

should have no effect on the thermal stability or type o f  mesophase form ed 

(see Fig. 10). However, the nature o f  the backbone does affect the 

m esomorphic behaviour (20). This will be discussed more fully later.

18



Fig 10. Decoupling of mesogens and backbone.

Side chain 
in LC 
order

Main chain 
in liquid 

state

Polymer with 
LC phase

Polymer without 
LC phase

Tendency
towards

anisotropic
orientation

Tendency
towards

statistical
chain

conformation

Flexible spacer  
decouples motion 
of main and side  

chains

Direct linkage 
couples motions 

of main and 
side chains

We find that at least part o f the spacer is anisotropically orientated together 

with the mesogen. Using the spacer concept a wide range o f  side chain LCPs 

have been synthesised and it is now accepted that only a partial decoupling 

o f  the mesogen and chain motions is achieved (see Fig. 11).

19



Fig 11, Partial decoupling by flexible spacers.

sk
Partial decoupling 
by flexible spacer

Anisotropic arrangement 
of m esogenic units
{Anisotropic phase]

Statistical arrangement 
of chain segm ents  

(random coiij

1.3. Molecular engineering of Polvsiloxane liquid crystals.

1.3.1. Polysiloxanes : Structural types.

Achievement o f  good ordering o f  side chain liquid crystals is affected 

by the flexibility o f  the polymer backbone. In this respect polysiloxanes are 

promising because o f  the high flexibility o f  a backbone o f  alternating oxygen and 

silicon atoms. While it is true that the S i-0  bond strength o f  452 kJ m ol' 1 is high, 

compared to say that o f  Si-Si at 226 kJ mol' 1 (21), thus giving good thermal 

stability, the rotational energy o f  the bond is low. Coupled with the wide



variations in the Si-O-Si bond angle, this results in low glass transition 

temperatures, i.e. pure poly(dimethylsiloxane) has a T gof-127°C. Furthermore, 

rotational changes along the backbone are relatively easy and this should help the 

decoupling o f  the mesogens from the backbone (2 2 ).

13.2, Structural types of polysiloxane liquid crystals.

A number o f  structural types are possible. These are outlined in Fig. 12 below. 

Typical chain lengths are in the range 30 to 120.

Fig 12. Structural types of polysiloxane.

Homopolymer

—̂ -S iM e------ O

R1

■SiMe O-

Side chain co-polymer

Backbone co-polymer

Side chain/ backbone co-polymer



13.3. influence of moiccuiar mass on phase behaviour.

Initial work in this field suffered from the fact that many research groups did not 

publish polymer molecular m ass data with the phase data. The fact that polymer 

molecular mass had an effect on phase transitions w as not appreciated. Stevens 

et al (23) studied the effect using fractionated polysiloxanes. The data is shown 

in Fig. 13.

F ig  13. In fluence of m olecu lar m ass on phase behaviour.

co2

v_/

/ n

( c h 2 )6
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Fig 13 Ctd. Effect of degree of polym erisation on phase transition.
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N ote systems differ only in length o f  flexible spacer, but longer space induces 

additional transitions. See later.

A  num ber o f  points arise. Initially w e note that the tendency for side chain 

crystallisation to occur decreases from monomer onwards. There is a  rap id  

increase in all transition temperatures up to a  degree o f  polymerisation equal 

to 10 after which the transition tem perature gradually levels off. It is generally 

accepted that an increase in molecular m ass creates a denser packing o f  the 

mesogens and so reduces the specific volume at the phase transition.. W e must

23



also consider the polydispersity o f  the system. Ideally we would like a 

monodisperse sample ( M J M =  1.00) however, this ideal situation is unlikely to be 

achieved. Hawthorne (24) has studied the effect o f  polydispersity on such a system 

(Fig. 14).

Fig 14. Polymer studied by Hawthorne to investigate effect of polydispersity.

n \^  jS iM er\
IV!

Table 1. Effect of polydispersity on phase transitions for system in fig.15.

M J M n =  Polydispersity Tg /°C =  Glass transition temperture

Tcl l°C = Clearing temperature Pw /°C = Peak width

P o lym er M J M n T J ° Cto Tcj/°C PW/°C

n=3

Y=OEt

15.5 - 2 73 26

1.9 5 79 2 0

1.35 1 0 81 18

n= 6

Y=CN

15.5 - 1 2 117 25

1.9 -3 123 2 0

1.15 2 128 16

24



Here the important indicator appears to be the peak width o f  a transition. The 

results demonstrate that as Mw/M n approaches unity, the peak width o f  the 

transition decreases indicating a tendency towards sharper transitions with 

increased mesophase stability. The importance o f  such considerations 

becom es obvious when we consider the possibility that a single peak may 

actually consist o f  two unresolved peaks when small transition temperature 

ranges are involved.

1.3.4. Influence of spacer length on phase transitions.

The spacer length plays an important role in determining both the nature 

and thermal stability o f  the mesophase. A s discussed earlier, a polymer with no 

spacer either exhibits a  smectic phase or no liquid crystal phase. The introduction 

o f  a short flexible spacer allows the mesogens to adopt a nematic state while 

longer spacers cause the reappearance o f  the smectic phase.

Fig 15. Effect of spacer length on phase transitions.

C H 2  CH

O (C H 2 )m
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From  figure 15, we can note two points. Initially we can see that the glass 

transition temperature remains effectively constant w ith respect to  chain length. 

This is probably due to the increase in spacer length having very little effect 

on the overall polymer molecular mass. Secondly w e can see a  distinct 

odd-even effect in the . isotropisation tem peratures. H ere w e have to consider 

the architecture o f  the molecule as the spacer length increases. For this particular 

example, a spacer containing an even num ber o f  atoms places the m esogen 

perpendicular to the polymer chain which facilitates the formation o f  sm ectic

*

Isotropisation

$ - ' " "

G lass transition
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phases and increases the inter-atomic interaction between neighbouring 

mesogen s. For odd spacer lengths we find the mesogen s tilted with reduced 

interactions and hence lower transition temperatures. This tendency vanishes 

as the spacer length increases. Furthermore, Shibaev et al (25) has shown that 

when the spacer contains more than eight units, side chain crystallisation takes 

place independently o f  main chain conformation. It has been suggested that in 

these situations, on melting, the mesogens should show liquid crystal order with 

no interference from the polymer backbone and thus spacers o f  greater than eight 

units should be used in order to obtain 'complete decoupling'. H ow ever it is 

found that this type o f  polymer produces only smectic mesophases and thus 

the shorter, partially decoupling spacers are required to obtain the nem atic 

phase.

1.3.5. Influence of mesogen length.

Analogously to low molar mass LCs, an increase in mesogen length leads to an 

increase in m esophase stability. A  special case, where the mesogen contains an 

alkyl group in the para position o f  the core (fig. 16), m ust be considered. A gain 

we m ust consider the odd-even effect. Gemmell et al (26) demonstrate this.
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Pig 16.influence of terminal aikvi groups-

It can be seen that depending on the number o f  methylene units in 

the alkyl chain, the terminal methyl group will be placed either on or o ff  axis, 

assum ing an all trans arrangement o f  the alkyl chain. When placed on axis w e 

expect the mesogens anisotropic behaviour to be improved and hence nhance 

mesophase stability.

1.3.6. Influence of constitutional isomerism on phase transitions.

Fig. 17 below demonstrates the effect o f  isomerism for various 

polysiloxanes w ith differing spacer lengths.
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Fis* 17. Influence of conformational isomcrisation.
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First we note that w hile the polymer molecular masses are different, they 

are well beyond die critical D P= 10 value and hence should show little difference 

in phase behaviour due to this. The polymer containing the cyanobenzoyl ester 

unit has phase transitions m uch higher than that containing the cyanophenyl 

ester. The former also undergoes side chain crystallisation while the latter does 

not. The only way to  explain this is that the cyanobenzoyl ester is less restricted 

in forming interdigitated layers than the cyanophenyl ester (See fig. 18).
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Fig 18-Thcorcticai iavcr s tru c tu re s  of cyanobenzoyl ester and  cvanophenv  

ester

CN

CN

Cyanophenyl ester

CN

CN

Cyanobenzoyl ester
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1.3.7. Influence of lateral placement of niesogens.(27,28)

Keller (29) reports the synthesis o f  a polysiloxane with side groups attached 

laterally by a flexible spacer. Hassel et al have also reported a similar system 

which has biaxial properties (30) while Zhou et al have reported a system that 

uses very short linkages (31). Hassel studied the system shown in fig 29.

Fig 19. Laterally substituted mesogen studied by Hassel.

0— (CH2)x- 2  CH3OO

It w as found that all polymers based on this mesogen were basically 

nem atogenic. However, diamagnetic anisotropy measurements indicate a 

nematic to nematic transition. Here it is thought that the system is changing from 

a biaxial to a uniaxial system and while this is known for low m olar m ass 

liquid crystals, it is the first tim e this has been observed for a polymer system.



j.3.8. influence of dilution of side groups on phase behaviour.

Diele et al (32) have investigated the effect o f  'diluting' the side chain content o f  

the polymer. They studied the effect o f  placing between one and ten 

dimethylsiloxane units between the side group being studied (see fig 2 0 ).

Fig 20. Effect of side g roup  dilution.
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Only the non-diluted systems exhibit the nematic phase while all polymers exhibit 

a sm ectic A phase. It was also found that the layer spacing in the smectic 

phases was dependent on the extent o f  dilution with an approximately linear 

correlation between the two.

Fig 21. Dependence of layer spacing (d) on mesogen dilution for system in

fig. 20.

(layer
spacing
nm)

Diamond=Modei B 
Box=Model A

Number of inserted dimetnyisiioxane units (y)
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The only way that the variation in layer spacing (fig .2 1) can be 

explained is i f  the main chain participates in the layer formation. In the 

non-diluted systems, the agreement between the layer spacings and the side 

chain mesogen length indicates the layers are formed by the side chains. In the 

diluted systems, although the layer spacing increases, we must consider that the 

latter distances are effectively unchanged. This requires a biphasic model where 

the backbone is folded in the centre, thus allowing the mesogens to adopt the 

'non-diluted positions'. (See fig.22).

Fig 22. Model of diluted system.

Polymer
backbone

V
M esogens
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i.4. Eicctro-opricai effects in side chain polymers. 

The ability o f  liquid crystals to orientate in an electric field is the basis o f  

their use in display devices. For polymers, Talroze et al (33) have shown that

Here 0 is the degree o f  completeness o f the process, T - is the time and k and n are 

constants, k can be regarded as the rate constant for the orientation process and 

depends exponentially on time and field strength. The effect is demonstrated in 

fig.23 w hich demonstrates the polymers ability to orientate at tw o different 

frequencies.

Fig.23. Orientation of a typical LC side chain polymer in an electric field.

in an electric field the side cl s orientate in the direction o f  the field.1-\ n m  
I C t l l i

Studies o f  the kinetics o f  the process have yielded the equation:
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(Change in 
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An important application here is in the field o f non-iinear optical m aterials which 

are characterised by a molecular non-centrosymmetry. By heating the system 

above its Tg and applying an electric field a net m acroscopic order is 

introduced. For optically non-linear side groups possessing a perm anent dipole a 

net polar ordering will be induced leading to non-centrosymmetric systems 

showing second and higher order effects, e.g. frequency doubling. M olecules 

without a permanent dipole lead to third and other odd order effects. The polymer 

is then cooled to below Tg while maintaining the field and the order rem ains 

frozen in. The bulk material now  exhibits non linear optical properties and the 

potential for larger effects than those demonstrated by inorganic single ay sta ls  can 

be investigated.

1.5. Cyclic polymers containing rod shaped mesogens.(34,35..36)

Studies o f  cyclic polysiloxane liquid aysta ls  are quite rare. Everitt et al (37) 

used theoretical models to predict that 'disc shaped' molecules based  on 

tetrahydrogenmethylcyclotetrasiloxane in which the hydrogen has been substituted 

by a m esogenic side chain w ould form discotic phases at low tem peratures.
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Fig 24. A typical modified cyclic polysiloxane.

Hahn and Percec (38) compared the phase transitions, for the same m esogenic 

side group, for a cyclic and linear polysiloxane. The results are indicated in 

fig-25.
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Fig 25. Phase tran sitio n s o f analogous cyclic and linear su b s titu ted

poiysitoxanes.
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Considering the differences in degrees o f  polymerisation, it is
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remarkable to note the similarity in phase behaviour. This has not been explained 

yet. The most comprehensive studies o f  cyclic LC polysiloxanes have been 

performed by Richards et al(39) and Kreuzer et al(40).

1.6 . E lastom ers.

1.6.1. Rubber elasticity.

Rubber-iike behaviour is restricted to long chain molecules as only such 

systems have enough configurations to alter their end to end separation. It follows 

that the chain must not be rigid nor locked in the glassy state and to prevent 

chain slippage, the chain m ust be crosslinked at least every 1 0 0  units (41).

In elastomers the m g or effect o f  deformation is the stretching o f  the 

netw ork chain which reduces the entropy (42,43,44). Therefore, w hen an 

elastomer held under permanent deformation is heated, shrinkage is observed, 

opposite to the effect observed for a metal strip, due to the elastomer’s tendency 

to increase its entropy to a  m axim um . M olecular theories o f  elasticity are largely 

based on a Gaussian distribution for the end-to-end separation o f  the chains 

with the elastic force being largely entropically derived (45). M g or assumptions 

are that the elastic response is entirely intramolecular, i.e. the response o f  n  

chains is n tim es the response o f  a single chain and that the strain induced 

displacements are affine.
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D efo r m a lio n  ratios for e la sto m ers  are e x p r e sse d  as:

a=X* f X

where a  is the extension ratio, X* is the extended length and X is the original rest 

length.

A ssum ing that the mean square end to end distance is < r >  and values 

o f  the chains in the undeformed elastomer are essentially the same as for the 

uncrosslinked polymer we can deduce ;

AF = ( vkT/2) *( ci2x+ < +  a2z-3)

For an affine elongation in the x axis w e find;

ax= a >  1 a x= ct7=  a 05< 1 

The force is obtained by differentiation o f  F with respect to length and w e can 

deduce the nominal stress as ;

*f =  vkT ( a  - a 2)

where * f A  , A  being the undeform ed cross sectional area. Commonly quoted 

is the reduced stress or modulus.

[*f] =  *f /  ( a  - a 2) =  vkT  

This is the elastic equation o f  state which demonstrates the stress is 

directly proportional to the temperature at constant a. ( a  - a 2) is the strain 

function, where a2 represents the compressive effects o f  near incompressibility 

o f  the network. The observed behaviour is often approximated by the semi-emprical
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Mooney-Rivlen relationship (46,47):

m'] = Cl + C2 * a 1

where C, and C2 are constants. This is explained because network 

deformations are found to be non-affine. From the above equation we would 

expect a stress-strain plot to be linear. In fact, this is found to be only 

approximately true.

F ig 26. S tress-stra in  plot fo r  PD M S.
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Considering experimental results from figure 26, the rapid  increase in force 

is attributed to limited extensibility o f  the drains as the strain is reapportioned 

within the network structure to avoid chain stretching to maximum length, until
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no iurlher reapportioning is possible. Theoretical work (48-53) suggests that the 

elongation o f  a network is not affine and that cross-link fluctuations diminish the 

m odulus by a factor < L For highly non-affine deformations, as exhibited by a 

phantom network, the chains are imagined to intersect each .other.

1.6.2. Polvsiloxanc liquid crystal elastomers.

This represents a relatively new field within liquid c r y s t a l  r e s e a r c h .  In 1981, 

Finkelmann et al (54,55,56) announced the synthesis o f  such a system based on 

a polysiloxane backbone. Cross-linked polymers are o f  interest due to their 

elasticity and ability to return to the original state after large deformations. I f  

coupled with the anisotropic properties o f  liquid crystals, the potential for a 

new  type o f  material is realised (5 7)

D ue to the flexible linker (flg.27), w hich carries no m esogenic groups, 

the glass and liquid crystal transitions are lowered while the extent o f  the 

liquid, crystal temperature range remains constant. Similarly to the case o f  linear, 

polymers, short spacers lead to nematic phases while longer spacers yield sm ectic 

phases. Finkelmann observed that liquid crystal phases are produced at up to  

I0m oi%  content o f  the cross-linking agent. Further increases lead to a  drop 

in the liquid crystalline phase transition tem perature due to the disturbing 

influence o f  the crosslinker. As far as can be established, no work has been



published on the effect o f  side-chain liquid crystal elastomers containing 

long spacers. The question here is whether side chain crystallisation 

will dominate over network properties. This will be addressed m ore fully in the 

Discussion section. At this point we note that a traditional elastomer undergoing 

a first order phase transition can be described by the Clausius-Clapeyron equation 

(58).

A f /  At = f / t -  ( A H / T A L )

Here A H  is the enthalpy o f  transformation, A f is the retractive force, AL is 

the change o f  sample length and ( A f /  AT) is the slope o f  the co-existence line 

in the f-T diagram. On cooling, the elastomer becomes crystalline at die 

transition temperature, a first order process. Conversely on heating, the 

crystalline elastomer passes into the homogeneous liquid crystal state at the 

clearing point. Through- thermoelastic measurements, the above equation can 

be used to determine the enthalpy o f  the isotropic to liquid crystal transform ation.

H ie  nature o f  liquid crystalline elastomers makes dieir physical properties 

o f  interest. D o they follow traditional network models? Characteristics such as 

mechanical, thermal and photoelastic behaviour are o f  particular interest.
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L6.3. M echanical behaviour.

Trelar (59) described the elastic behaviour o f  networks by statistical theoiy.

Thermodynamic variable changes due to deformation are linked solely to 

intramolecular phenonema. Thus we can relate stress to strain ratio in the 

following way.

o = v k T  * < r >  / < r2> 0 * ( I 2- A ' 1)

Here o represents the stress; (X2-X~) represents the strain ratio; < r2> 0 is the 

mean square end to end distance o f  unstrained free chains and <r2>  is for 

cross-linked chains. This simple form has been developed to account for non- 

affine deformations (60) and chain entanglements (61). L iquid crystal 

elastomers are also subj ect to such factors. The factors contributing to the elastic 

properties in liquid crystal elastomers are direction-dependent due to the 

aligning potential o f  the side groups. In the isotropic state, stress-strain 

relationships can be derived (up to a point) using classical theories. How ever, 

in the liquid crystal state, w e have to consider the coupling o f  the anisotropic 

properties to the network properties. Therefore w e have to use anisotropic chain 

statistics to deal w ith an anisotropic contribution o f  network fluctuations and 

chain entanglements. deGennes (62) has shown that entanglement slippage is 

preferred parallel to a particular direction, while restricted in the perpendicular 

direction with the appearance o f  entanglements being related to the degree o f
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polymerisation o f  the elastomer. The elastic behaviour o f  liquid crystal 

networks is determined by conformational properties and hence retractive 

forces are entropic in origin, hi the liquid crystal state conformational 

properties are also important. However, coupling o f  network anisotropy to the 

state o f  order o f  the liquid crystal phase probably contributes to the restoring 

forces.

1.6,4. Director orientation by mechanical deformation.

The director orientation can be determined by a number o f  m ethods 

such as X-ray investigations and possibly FTTR measurements (see later). In 

siloxane elastomers, the preferred orientation o f  the side groups depends on 

the spacer. Schatzle and Finkelmann (63) demonstrated the effect for the 

system shown in figure 27.
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Fig 27. Schematic diagram of a polvsiioxanc elastomer.
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Fig 28. Plot of C T  v T  fo r  L C  e lastom er in fig.27 and norm al rubber .
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Here C is the stress optical coefficient while T is the temperature. C is the 

quotient o f  the birefringence and the true stress and is proportional to the optical 

anisotropy o f  a chain segment. For natural rubber CT is constant. For the system 

studied by Schatzle and Finkelm ann there are large deviations from this. 

Three spacer units allow perpendicular orientation while four allow parallel. 

Increasing spacer length reflects improved chain flexibility and it would be expected 

that a five spacer unit would also lead to parallel alignment. However, in th is



case perpendicular alignment is observed. This could be a quirk o f  the odd-even 

effect and, if so, this would be expected the effect to tail off with increasing spacer 

length, but as yet the detailed mechanism o f  alignment is not understood. All lightly 

cross-linked liquid crystal polymers demonstrate elasticity. In the isotropic 

phase they behave like conventional rubbers. Similar results are found as the 

materials enter the nematic phase. Radius o f  gyration measurements show a 

slight anisotropy with the average being that o f  the isotropic phase. Transitions 

to the smectic A phase increase the anisotropy o f  the radius o f gyration but the 

material retains its elasticity. When the network does not orientate 

spontaneously in the liquid crystal state, it is found that strains as small as 20%  

are enough to induce liquid crystal monodomains. Similar strains induced 

in the material in the isotropic state yield a value o f  the order parameter several 

orders o f  m agnitude smaller. This corresponds to the situation in non-LC  

elastomers where strains o f  up to 1000% are required to induce netw ork 

orientation.

1.7. Potential for Liquid crystal polysiloxanes.

Investigations on polysiloxane liquid crystals are still young but already 

a num ber o f  uses have been demonstrated. Optical computers require 

m aterials which exhibit non-linear optical effects, lithium niobate being an
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example. However, organic materials with extended pi-elec-tron systems and 

non-centrosymmetric crystal structures can have good non-linear optical properties 

and can switch faster. The m ajor problem o f  needing the material in a 

crystalline state is overcome by using the polymer in the glassy state with 

suitable side chains locked in. The idea o f  locking the liquid crystal structure within 

the polymer has other uses. This can potentially be used for data storage (64,65,66). 

Local heating by a laser, takes the polymer above its glass transition temperature. 

The side chain orientation can then be m odified by electric or m agnetic 

fields. As the laser beam moves on, the polymer reverts to its glassy state and 

the information is stored through the retained order. Obvious advantages o f  this 

are that datastorage at a molecular level becomes feasible, provided the beam  

size can be controlled effectively. However, there are still some doubts as to the 

effectiveness o f  the long term  data storage potential for such systems.
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2. Strategy for synthesis.

The ultimate aim o f  the prqj ect was to synthesise and characterise a liquid 

crystal elastomer based on a polysiloxane backbone. To achieve this, various 

mesogens were prepared and characterised. Selected mesogens w ere then 

substituted onto linear and cyclic polysiloxane backbones and these products were 

also characterised before the final elastomeric materials were produced. 

Earlier work by Cockett (67) had studied the effect o f  attaching known mesogens 

to cyclic siloxane systems. W ork carried out by Everitt et ai (37) on the 

modelling o f  such systems suggested their potential to exhibit discotic phases. 

Cockett found no evidence o f  liquid crystalline behaviour in the systems he 

studied. W ith the cyclic siloxane readily available it was decided to repeat 

and expand on this work. This would provide familiarity with the synthesis o f  

the mesogens and indicate any potential problems with the hydrosilylation 

coupling reaction. Once satisfactory results from the ring systems were obtained, 

work was then started on a range o f  linear polymers based on those o f  Finkelm ann 

et ai (68) and novel systems. The final step involved cross-linking the linear 

species to produce elastom ers{53).

2.1. Mechanistic aspects of polysiloaxane chemistry.

2.1.1. Preparation of linear polvfhvdrogcnmethylsiloxane)

Polysiloxanes o f  a ’determined length' can be made by cationic polymerisation
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o f  a cyclic siloxane precursor ( tetrahydogenmethyicyclotetrasiloxane, DH4 

hereafter) in the presence o f  a chain terminator (1 ,1 ,1,3,3,3-hexamethyldisiloxane 

denoted HM D hereafter).

This ring opening reaction (69-72) is an equilibrium or redistribution 

process because the breaking and reformation o f  the siloxane bonds takes place 

effectively at random.

Fig 29. Ring opening process.
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O H
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A variety o f  interchange reactions can take place and hence the precursors are

not converted quantitatively to high RM M  material. During the course o f  the

reaction the mixture consists o f  linear and cyclic materials. Since the formation

o f  cyclic material requires a backbiting process, which is statistically

unfavourable, only small ring structures are formed. Cyclic material can be

removed by vacuum distillation. Using this approach we can synthesise linear

poly(hydrogenmethylsiloxanes) o f  comparable m ass to those commercially

available ones. The degree o f  polymerisation (DP) is given by:

Moles o f  DH 4 x 4
D P =  -----------------------

moles o f  HM D

Obviously there will be a spread o f  chain lengths that are not indicated by 

such an equation. However, this can be narrowed down by distillation and 

gel permeation chromatography. Divinyl-terminated cross-linking agents can be 

prepared in much the same way. Here w e have the advantage that the average 

RM M  can be determined by end group analysis using ’H-mnr.

2.1.2. Coupling of mesogens to poiymer backbone.

This reaction utilises the hydrosilylation process (73-76) which can be carried 

out by irradiation, therm ally, or in the presence o f  a catalyst.
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Fig 30. The catalytic hydrosilylation process.
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It can be seen from Fig.30 that the process utilises an aikene-terminated 

m esogen, whereby the sp2 hybridised carbon atoms in the double bond are 

converted to sp3 hybridised via a hydrogen transfer process. The most 

commonly favoured process is the catalytic approach using, for example, 

hexachloroplatinic acid (H2PtCl6.xH20 )  prepared in a solvent, commonly dry THF 

or propan-2-ol. The progress o f  the reaction is easily monitored using infra

red spectroscopy and observing the gradual loss o f  the Si-H stretch at 2160 cm"1 

(77) (seeF ig .3 1).

Fig 31: Reaction progress monitored by IR.
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Apfel et al (78) have recom mended the use o f  Tf-nmr in preference to
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IR. However, this technique requires the instrument to either resolve the almost 

identical shifts for Si-H and CH2=CHR or detect the 10% excess alkene at 

100% reaction. Thus the residual peak intensity for the alkene will be 9.1% 

o f  its original intensity and to detect the differences between 95% and 100% 

reaction would mean working at the limits o f  the instrumental capability. Early 

attempts at hydrosilylation gave only sporadic success. Products varied in colour, 

often being off-white or black rather than the pure white, or contained impurities 

associated with side reactions. The most commonly prepared catalyst is Spiers 

catalyst. This consists o f  hexachloroplatinic acid in propan-2-ol. Freshly 

prepared solutions are found to function as expected as the platinum is present 

in t h e +4 state and this is the species that perform s the catalysis (79-81). In 

older solutions the platinum is gradually reduced to both Pt(2) and Pt(0). Both 

o f  these catalyse the reaction but also induce side reactions such as:

(1) 2 =Si-H + Pt(2) +[0] —> =Si-0-Si + Pt(0) + H (82)

(2) Pt(0) catalyses Si-C splitting reactions (83)

(3) Hydrosilylation across cyano units (84)

Evidence demonstrating that propan-2-ol used in the catalyst is gradually 

oxidised to propanone was produced by Pukhnarevich etal ( 1 1 8 )  whereby it w as 

shown that gradually the Pt(TV) had been reduced to the Pt(II) state. The dark 

appearance o f  some polymers is attributed to the Pt(2) being reduced to Pt metal.
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The method for removal o f  excess alkene is determined by the nature o f  

the product. Elastomeric material is swollen in a suitable solvent, e.g. toluene, 

for a number o f  days followed by careful deswelling in methanol. Linear material 

is purified by precipitation using a polar solvent such as methanol. Traditionally, 

the num ber o f  precipitations was arbitrary and one or two were considered as 

acceptable. However, recent studies show that a minimum o f  eight to ten 

precipitations are required to completely remove the excess m esogen. Such 

operations generally reduce the phase transition peak width , as observed by 

D SC , and increase the melting transition temperature. N estor et al (76) 

demonstrated that different groups producing ’identical’ polymers could report 

transition temperatures differing by as m uch as 10°C. Cyclic m aterial is 

generally purified by gel permeation chromatography. W ith such m aterials w e 

have a consistent point emerging from the data. That is, that the purity is essential 

for an accurate characterisation o f  any polymeric liquid crystal m aterial.

2.3. Characterisation of liquid crystal phases.

2.3.1. Optical microscopy.

U sing a polarising microscope with a  heated stage, it is possible to observe 

characteristic textures o f  the different mesophases. Isotropic liquids, w ith 

randomly orientated molecules, yield a black image through crossed polarisers.



Introduction o f  ordering into the system allows the molecules to refract the 

light into characteristic birefringent textures which can be observed changing 

during transitions on heating or cooling. This technique allows the observation o f  

typical textures such as nematic Schlieren or focal conic textures (the latter from 

smectic phases).

Fig 32. Typical LC textures.

(a) N em atic schlieren (b) Smectic A  focal conic

This technique can be coupled with miscibility investigations. W hen 

two phases have a different symmetry , i.e. uniaxial or biaxial, they will not m ix. 

By m ixing an unknown with a compound o f  known phase behaviour and
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observing their m ixing behaviour under the microscope it may be possible to 

determine the phase types o f  the unknown. Phases with identical symmetry 

may undergo complete mixing to yield a single texture. Different symmetries 

will produce a boundary separating the respective textures. It should be noted 

that observations o f  phase changes have to be carefully controlled. M any 

liquid crystal materials are subj ect to defects analogous to crystalline materials. 

D ue to the polymorphic behaviour o f  liquid crystals, defects in one phase 

m ay be transm itted to another. That is, textures observed exhibit 

characteristics o f  the previous phase. Hence i f  we observe an LC phase as a 

result o f  heating from the crystal phase, we could observe defects that m ay be 

associated with the crystal rather than the texture o f the liquid crystal phase. For 

this reason, observation o f  phase changes during cooling are used to classify phases. 

In this way the risk o f  large defects obscuring the texture o f  the phase is 

reduced. The observations were carried out using a Vickers m icroscope 

equipped w ith tw in polarisers. To raise the mesogens to their isotropic 

temperature, a heated stage w as built. A n observation hole w as drilled through 

a copper plate. A  12 V block heater was attached to one end, while a P t resistance 

thermometer w as attached to the other. H ie voltage signal obtained from this 

was converted to a temperature reading using a conversion chart supplied by R S 

components.
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2.3.2. Differential Scanning Calorimetry (DSC),

Nem atic to isotropic transitions are on the whole first order with heats o f  

transition o f about 500 J m o le '1 which are easily detected by D SC. Transitions 

between mesophases can be second order and have m uch smaller heats o f  

transition. The DSC technique is usually used to determine m esophase 

temperature ranges and enthalpies o f  transition and is not used to determine phase 

type.

Fig 33. Typical DSC curve.

Linear polymer

Crosslinked polymer

300
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Experiments were carried out using a Mettler TA 2000 instrument equipped 

with a liquid nitrogen cooling system. Samples o f  about 5 to 20 m g were used 

in sealed aluminium pans. The system was purged with nitrogen gas, and 

heating/cooling rates were 10 K m in-1.
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2.4. Synthesis.

2.4.1. Characterisation techniques.

Infra-red spectra were recorded using a Galaxy 6 0 2 1 FTIR spectrometer equipped 

with a liquid nitrogen cooled mercury cadmium telluride detector, T l-nuclear 

m agnetic resonance spectra were recorded using a Bruker 80 M Hz instrument. 

Melting point and elemental analysis were performed by Medac Ltd.

2.4.2. Stock reagents.

A ll chemicals were supplied by Aldrich and used as supplied without 

further purification, apart from siloxane compounds which were supplied by 

Petrarch Systems, Germany. Solvents were used as supplied apart from the 

following.

2.4.2.1. Tetrahvdrofuran (THF).

This solvent absorbs water very readily and so must be dried as required and used 

immediately. Stock supplies were kept over sodium wire. W hen required the 

THF was transferred to a still equipped with a nitrogen purge system. A  few 

grams o f  potassium pieces were added along with a few grams o f  benzophenone. 

and the system w as set to reflux. W hen the THF was dry the solution turned 

a dark blue colour. I f  no colour was observed after refluxing for about an hour 

further benzophenone w as added. I f  colour still failed to appear further 

potassium was added with care. When diyness had been achieved the addition
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o f  ju s t a small amount o f either substance produced a deep blue colour around the 

potassium chips.

2.4.2.2. Dichioromethane (PCM).

Generally this was used as supplied. However due to expense, and the 

contamination o f  some supplies with grease, a still was set up to clean up new 

supplies and recycle used DCM .

2.4.3. Target mesogen structures.

The figure overleaf (Fig.34) indicates the range o f  mesogens that w ere to be 

investigated. All were vinyl term inated to allow coupling to a 

poly(hydrogenmethylsiloxane) backbone. The phenyl benzoate esters w ith n = l,2  

and 3 were chosen as they have been extensively used by other researchers and 

provided a reference point from which to work. H ie second group w as also based 

on phenylbenzoate esters coupled to 10-undecenoic acid to yield m esogens with 

longer spacer units which hopefully would improve the decoupling o f  the m esogen 

from the polymer.
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Fig 34. Target mesogen structures.

CH2

X=OCH3iCN n=1,2,3

CH2= C H  (CH2)n

X=OCH3 ,CN n=10

CH2= C H  (CH2)n O
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2.4.4. General procedure for the synthesis of p-alkenoxybenzoic 

acids from p-hydroxybenzoic acid 

Scheme 1. Coupling of p-hydroxvbenzoic acid to Haloalkene.

HO CH2

HO

p-Hydroxybenzoic acid (10.0 g, 0.0724 moles) w as dissolved in ethanol (100 

ml) and potassium hydroxide solution (8.124 g, 0.1448 moles in 8 m l o f  water) 

and a few crystals o f  potassium iodide were added. The solution w as brought
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to reflux and the haloaikene (0.0724 moles) was added slowly. After refluxing 

for 12 hours the solution w;as cooled, diluted with water and acidified. The crude 

product w as collected by vacuum filtration and recrystallised from ethanol.

Syntheses were carried out using allyl chloride, 4-bromo- 1-butene and 

5-bromo- 1-pentene. Yields were 55, 30 and 20% respectively.

’H-Nmr.

Allyl: 7 .5 (q ) ,5 .0 ( t) , 4.5(d)

Butene: 7.5(q) , 5 .0 (t) , 4.0(t)

Pentene: 7.5(q) , 5 .0 (t) , 4.0(t) , 1.8(m)

Elemental analysis.

Allyl: Calculated C = 67.40% H = 5 .65%

Obtained C =  67.23% H = 5.73%

Butene: Calculated C = 68.73% H = 6.29%

Obtained C =  68.01%  H = 6.68%

Pentene: Calculated C =  69.88%  H = 6.84%

Obtained C =  69.46%  H = 6.52%
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2.4.5. General procedure for the synthesis o f cvano term inated

mesogens.

Scheme 2. Coupling of alkenoxybenzoic acid to cyanophenol.

\0----- (CH2) n-2---- C H =C H 2CN

{ O )—0-----(CH2)n-2---- CH=CH2CN

A n alkenoxybenzoic acid (0.0112 moles) w as stirred w ith thionyl chloride 

(0.0168 moles) and two drops o f  N^N-dimethylfomiamide at room temperature for 

30 minutes. The excess thionyl chloride w as rem oved under reduced pressure 

and the crude acid chloride dissolved in dry THF. p-Cyanophenol (0.0112 

moles) was dissolved in dry THF (50 m l). Triethylamine (1.25 g, 0.0123 

m oles) w as added and the solution w as cooled to below 5 °C. The acid 

chloride solution was added dropwise during four hours while maintaining the
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temperature below 5 °C. After dilution with diehloromethane (200 ml) the 

solution was washed three times with water and dried over magnesium sulphate. 

The solvent was removed under reduced pressure and the pure product was 

obtained by column chromatography using the system silica gel/dichloromethane. 

Yields o f  white solid product were 45-55%.

IR (cm-)

Allyl 3100, 2900, 2200, 1730, 1610, 1460-1380, 1300-1070,990, 840

Butene 3080, 2940, 2215, 1730, 1610, 1520, 1280, 1180, 925, 760

Pentene 3070, 2960, 2220, 1740, 1610, 1520, 1270, 1175, 920, 765

Nmr.

Allyl: 7 .3 (m ), 5 .0 ( t) , 4.4(d)

Butene: 7.3(m) , 5 .0 (t) , 4 .1(d)

Pentene: 7.3(m) , 5.0(t) , 4. l ( t ) , 2.0(m)

Elemental analysis.

Allyl: Calculated C =  73.10% , H  = 4.69% , N  =5.02%

Obtained C =  71.78% , H  = 5.54% , N  =4.42%

Butene: Calculated C =  73.70% , H  =  5.15% , N  =4.77%

Obtained C =  74.72% , H  =  5.64% , N  =4.70%

Pentene: Calculated C =  74.25% , H  =  5.57% , N  =4.56%

Obtained C = 74.12% , H  =  5.92% , N  =4.35%
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2.4.6, Synthesis of p-m ethoxvphenvi-M -hvdroxybenzoate.

Scheme 3. C oupling  of p-hydroxvbenzoic  acid to p-m ethoxyphenol.

OH

OH

A  m ixture o f  p-hydroxybenzoic acid (4.9 g, 0.036 moles) and 

p-m ethoxyphenol (4.96 g, 0.04 moles) in toluene (20 ml) containing 

concentrated sulphuric acid (10 drops) was refluxed for six days. W ater w as 

removed using a Dean Stark trap and the reaction w as monitored by TLC (70% 

petroleum spirits /  30% ethyl acetate). The cooled m ixture w as filtered and the 

crude product dissolved in diethyl ether (250 ml), washed w ith saturated 

sodium bicarbonate and dried over anhydrous magnesium sulphate. The ether 

was reduced in volume to 100 ml and hexane added to yield a white solid.
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Yield -  6.8 g / 79%.  

lH Nmr.

7.1(m),3.1(s)

Elemental analysis.

Calculated C = 68.84% , H  = 4.95% 

Obtained C =  69.50%  , H  = 5.20%

70



2.4.7. Gcncrai procedure for the synthesis o f methoxv-terminated

mcsogens.

Scheme 4. Coupling of 4-methoxvphenvl-4-hydroxvbenzoate to the

haloalkenes.

OH +  Cl— (CH2)n-2 CH2

A  haloalkene (0.028 moles) w as added to a m ixture o f  4-methoxyphenyl 

4-hydroxybenzoate (6.8 g ,0.028 moles) and potassium carbonate (5.4 g, 0.028 

moles) in dry acetone under dry nitrogen. The m ixture w as refluxed for 48 hours 

with IL C  monitor (90% petroleum spirit /  10 % ethyl acetate). The potassium  

salts were filtered o ff  and acetone w as rem oved under reduced pressure. The 

pure product was obtained by column chromatography using the system
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silica gel / 90% petroleum spirits / 10% ethyl acetate. Syntheses were carried 

out using allyl chloride. 4-bromo-1-butene and 5-brom o-l- pentene. Yields 

o f  white solid were about 70%.

IR (cm-)

C3 3079, 2954, 1733, 1607, 1459-1363, 1269-1072, 940, 872-761

C5 3080, 2960, 1730, 1615, 1520, 1290, 1180, 980, 845

^-Nmr,

Allyl: 7. l (m ) ,5 .3 ( t ) ,  4.3(d)

Butene; 7.1(m) , 5.3(t) , 4.0(t)

Pentene: 7. l (m ) , 5 .3 ( t) , 4 .0 ( t) , 2.0(m)

Elemental analysis.

Allyl: Calculated C =  71 .82% , H  = 5.67%

Obtained C = 71 .38% , K  =  6.13%

Butene: Calculated C =  72.47% , H  = 6.08%

Obtained C =  71 .07% , H  =  6.00%

Pentene: Calculated C =  73.05% , H  =  6.45%

Obtained C =  73.28% , H  =  7.28%



2.4.8. Synthesis of 10-undecenoyl chloride.

Scheme 5. Conversion of 10-undecenoic acid to 10-undecenovI chloride.

o  

C H 2 = C H  (CH2)8 C OH + SOCi2

▼

o

CH2=  CH (CH2)8 c  Cl

10-undecenoic acid (25.0 g, 0.1536 moles) w as stirred with thionyl chloride 

(24.22 g, 0.204 moles) and 2 drops o f  N,N-dimethylformamide at room  

temperature for 30 minutes. The excess thionyl chloride w as rem oved by 

rotary evaporation and the acid chloride w as stored in a flask protected w ith 

a drying tube.

IR .fcm '1)

2940, 2860, 1800
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lH Nmr.

5 .0 (t) , 1.5(m)

2.4.9. Synthesis of mesogens based on 10-undecenoyl chloride. 

Scheme 6. Synthesis of methoxv terminated mesogen.

C (CH2)8 C H =C H 2
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p-Methoxyphenyl 4-hydroxybenzoate (3.Og, 0.01228 moles) and triethylamine 

(1.367g, 0.01228 moles) were added to a flask charged with dry THF (50 ml). 

The solution was cooled to less than 5 °C in an ice bath. 10-Undecenoyl 

chloride (2.49g,0.01228 moles) was added slowly during four hours while 

m aintaining the temperature below 5 °C. The mixture was diluted with 

dichloromethane (100 ml) and washed with water ( 3 x 100 m l). The 

dichloromethane layer was dried over anhydrous magnesium sulphate and the 

solvent rem oved under reduced pressure. Pure mesogen w as obtained by 

column chromatography using the system silica gel / dichloromethane. 

Yield = 50-55%

IR .fcm '1)

2920. 2850. 1740,1600, 1500.

*H Nmr.

7 .2 (m ), 5 .0 ( t) , 3 .2 (s ) , 1.5 (m)

Elemental analysis.

Calculated C = 73.15% , H  = 7.36%

Obtained C =  73.50% , H  =  7.31%
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2.4.10. Synthesis o f cvano and methyl ester terminated niesogens.

Scheme 7. Synthesis of long spacer mesogens via undecenoyl chloride.

O H +  Cl C (CH2)s C H = C H 2HO C-

; {CH2)s------C H -— CHoHO C-

(a) Synthesis of p-10-undecenvloxvbenzoic acid.

p-Hydroxybenzoic acid (25.0 g, 0.181 moles) and triethylamine (20.0 g, 0.200 

moles) w ere added to a flask containing dry THF (200 ml). The solution w as 

cooled to below 5 °C in an ice bath. Undecenoyl chloride (36.70 g, 0.181 moles) 

was slowly added during four hours while m aintaining the tem perature below  

5 °C. The solution w as diluted w ith dichloromethane (500 ml) and w ashed 

three tim es with water. Separation o f  the aqueous and organic layers could be 

promoted as required by salting with KC1. The dichloromethane w as dried over 

magnesium sulphate and the solvent removed under reduced pressure. Y ields o f
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between 20 and 55% were obtained. 

IH -N m r, 7 .1(d), 5. l ( t ) , 1.4 (m)

(b) Synthesis o f m esogens.

p-10-Undecenoyloxybenzoic acid (5.00 g. 0.0164 moles) was stirred with thionyl 

chloride (10.0 g, 0.084 moles) and two drops o f  N,N-dimethyl form amide at room 

temperature for 30 minutes. The excess thionyl chloride was rem oved by rotary 

evaporation and the crude acid chloride w as dissolved in dry THF (20 ml). 

p-Cyanophenol or methyl p-hydroxybenzoate (0.0164 moles) and triethylamine 

(1.825 g ,0.1804 moles) were dissolved in dry THF (25 ml). The solution was 

cooled to below 5°C in an ice bath. The acid chloride was added slowly over 

4 hours while m aintaining the temperature below 5 °C. After addition the 

solution was diluted with dichloromethane (100 ml) and washed three tim es 

w ith w ater. The dichloromethane layer w as dried over m agnesium  sulphate 

and the solvent removed under reduced pressure. The pure m esogens were 

obtained by column chromatography using the system silica gel /  

dichloromethane. Yields o f  between 45 and 55% were obtained.
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!I1 Nmr.

CN 7 .2 (m ), 4 .9 ( t) , 1.5 (m)

CH3C 0 2 7 .4 (m ), 5.Oft), 3 .7 (s ) , 1.7(m)

2.4.11. Preparation of catalyst for poivsiioxane synthesis

Fullers earth (10 g) was stirred in dilute sulphuric acid (50 ml) for 12 hours, 

filtered, washed with distilled water until the washings were neutral and finally 

dried under vacuum at 100°C.
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2.4.12. SvntSicsis of diviny! term inated noivsiloxanes.

Scheme 8. Ring opening of octamethvlcvciotetrasiloxane to produce divinvl

terminated noivsiloxanes.

C f-h
/  \

? h3 <?h3

- { - S i ------ O - } -  +

—
CD'

ioIICM
Xo O----- si----- C H = C H 2

11^ ^ (C y c lic )

c h 3 ch3 c h3

f

CH, CH3

l. ICH2=  CH---- S r^ -0 —
1 \

“Si— 1 0---- Si---- CH=|7n | = ch2

ch3 ch3 ch3

Into a flame dried flask, fitted w ith a  nitrogen balloon, w as placed 

tetramethyldivinyldisiloxane (1.5 g, 0.0080 moles) and

octamethylcyclotetrasiloxane (labelled D4' from hereafter) (1.191 g, 0.0161 

moles). A  small amount o f  acid activated Fullers earth w as added and the 

reaction m ixture w as stirred under nitrogen for 72 hours at 60°C. A fter 

cooling the catalyst w as rem oved by filtration. Low molar m ass rings were
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removed under vacuum ( 150°C ,0.1 torr). The products were characterised using 

lH-Nmr and IR.

Yield = 7 0 %

IR  ( c m - ) 2990 , 1600 , 1410 , 1260 , 1260 , 1070 

^ - N m r .  0 .0 (s) . 4.6(broad s')

2.4,13, Synthesis of polv (hydrogen methyl siloxanes.)

Scheme 9. Ring opening of tetramethyicvciotetrasiioxane to produce 

polv(hvdrogenmethylsiloxane)

Si— O CHCH
4 (C y c lic )

CHCH
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To a flame dried flask fitted with a nitrogen balloon was added 

tetrahydrogenmethylcyclotetrasiloxane (29.7 g.O.1234 moles) and

hexam ethyldisiloxane (1 g, 0.0062 moles). A small amount o f  acid activated 

Fullers earth was added and the mixture was stirred under nitrogen for 72 hours 

at 60°C. After cooling the catalyst was removed by filtration and the low molar 

m ass rings were removed by vacuum distillation. (150°C, 0.1 torr). Products 

were characterised using IR and 1H Nm r. Yield = 77%

IR (cm -) 2990 , 2190 , 1410 , 1270 , 1100

^-N m r. 0 .0 (s) , 4.5 (s)
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2.4.14. Synthesis o f ring systems.

Note: All polymer products were subj ected to micro analysis and were m onitored 

for Si-H disappearance.

Scheme lO.Svnthesis of cyclic LC systems based on 

tetramethvicyclotetrasiloxane.

c h 3 

- f c i  O +■ CH2 = C H  (CH2)n-2 O
4(Cyclic)

H

=Mesogen

c h 3 

- + - S i — o - ) -
V ' a h4(Cyclic)

CH2

CH2 (CH2)n -2 O-
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Route  A.

Tetrahvdrogenmethylcyclotetrasiloxane (0.147 g, 6.11 x lO -4 moles) w as added to 

a flame dried two-necked flask equipped with a nitrogen balloon and a septum 

cap. The w hole apparatus was sealed in foil to exclude light. The alkene 

terminated mesogen (2.68 x l0 ‘3 moles, 10% excess) was dissolved in dry 

THF and added. Hexachloroplatinic acid in THF (50% solution added such that 

mole ratio o f  catalyst to alkene was 1:10 ) ; freshly prepared in a dry box, w as 

added. The solution was stirred for five days at 50 °C, progress being 

m onitored by the disappearance o f  the Si-H stretch at 2160 cm"1 in the IR 

spectrum. Pure polymers were isolated by GPC using Sephadex LH -20 gel and 

dry THF as the solvent. The column was monitored by IL C  using 90% petroleum  

sp irit/10% ethyl acetate. Solvent was removed by rotary evaporation and the 

polymer dried under vacuum  as the isotropic liquid. Problems w ith the GPC 

method lead to the development o f  a different m ethod for purification. A s an 

alternative the crude product was dissolved in acetone. After standing for a few 

days the siloxane polymer separated as an oil and the acetone w as decanted off.

Route B.

Problems with the ’dryness1 o f  the THF led to the use o f  an alternative so lv e n t. 

The m ethod w as as for route A except that dry toluene was used as the solvent
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and propan-2-ol was used to dissolve the catalyst. The temperature could be 

increased to 8 0 °C th u s  reducing the time for complete reaction.

2.4.15. Synthesis of linear poiysiioxane iiquid crystals.

To a flam e-dried, three-necked round bottomed flask fitted with a nitrogen 

balloon and rubber septum and sealed in foil w as added 

poly(hydrogenmethylsiloxane) (1.0 g ). The mesogen (1.76 x 10'2 moles, 10% 

excess), dissolved in the minimum amount o f  dry toluene, w as added. 

Hexachloroplatinic acid , dissolved in propan-2-ol (catalyst/ alkene = l : l x l 0 ‘4) 

was added via the septum and the mixture was heated to 60 °C. H ie  reaction w as 

m onitored daily ( 2-5 days ) until the Si-H stretch had disappeared in the IR 

spectrum. After cooling further toluene was added dropwise to ensure complete 

dissolution o f  the polymer. The pure polymer was then reprecipitated a num ber 

o f  tim es from iced methanol until monitoring by TLC (dichloromethane) 

detected no free m esogen present. The methanol w as removed under reduced 

pressure and the polymer w as dried in the isotropic state under vacuum .

2.4.16. Synthesis of poiysiioxane elastomers.

A range o f  elastomers incorporating various mesogens and cross-linking 

densities were produced. The general m ethod for a system incorporating a 10 

% cross-linking density is outlined below.

84



Method A.

Into a flame-dried three-necked round bottomed flask fitted with a nitrogen 

balloon and rubber septum, and sealed with foil w as added 

poly(hydrogenmethylsiloxane) (k O g , 1.988 xlO4 moles) and divinyl 

terminated poly (methyl siloxane) (0.611 g, 6.765 x l0 °  moles). M esogen 

( 1.433x 10'2 moles) dissolved in a slight excess o f  dry toluene w as added along 

with hexachloroplatinic acid in propanol (mole ratio o f  catalyst to alkene =  1:104). 

The reaction mixture w as then heated at 60 °C until the Si- H  stretch at 2160 

cm-1 in the IR spectrum had disappeared. The solid material w as then w ashed 

in a Soxhlet apparatus for tw o days using toluene and deswollen in methanol. 

Finally the products were dried under vacuum. Samples prepared as thin films 

could be purified by immersing in a beaker o f  hot toluene overnight followed 

by deswelling with m ethanol, (see table 2 over page.)
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Tabic 2.

Reaction ratios for production o f  elastomers o f  various cross-linking density. 

The ratios below yield approximately 6.5 g o f  elastomeric material depending 

on the RM M  o f  the mesogen used. The percentage o f  crosslinking assumes 

equal reactivities o f  mesogen and cross-linking agent.

% Cross-linking Moles Polymer Moles Cross

linker

Moles Mesogen

10 2.00 x 10-4 7.96 x lO"4 1.43 x 10-4

15 2.00 x 10-4 1.20 x 10'3 1.36 x lO*4

20 2.00 x 10A 1.60 x 10'3 1.28 x 10-4

Method B.

For elastomers with side groups having longer flexible spacers, i.e. those based 

on undecenoyl chloride, it w as found difficult to obtain good results using 

m e th o d A .A san  alternative it was found that the bare elastomer (without side 

chains) could be formed first. Once the network was formed a solution o f  the 

mesogen dissolved in dry toluene was added along with a little fresh catalyst and 

the m ethod proceeds as m ethod A .
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2.4.17. Synthesis o f ring elastomers.

The diagrams below illustrate the synthesis o f  two novel, potential liquid 

crystal elastomer systems. Synthetic methods were as for elastomers described 

previously. Table 3 at the end lists typical quantities used.

Schem e 11. S ynthesis o f elastom ers based on 
tetrahvdrogenmethylcvclotetrasiioxane.

System  A
ch3

-M i— o V  ■+■ 1x
V /4 (Cyclic)

H

ch2̂ =ch— n

-r  1.5X 

1

CH2:=CH >ŝ //v̂ /̂ CH=CH2

Ring elastomer type A

System  B

CH3

- t K  -v  74(Cydic)
H

1X CH2= C H --- Q

**-
+

1X  CH2 :----CH\ / S V/  CH==CH2

c h 3

- ( .I— o }- +  1.3X Ot2=CH-Q
'  [ M(Cydic)

n
1X CH2------CH ----- CH2

Ring e lastom er type B
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Table 3.

Reaction ratios for the production o f  ring elastomers based on scheme 11.

System Moles ring Moles cross
linker

Moles mesogen

A 4 .16xl0 '3 6 .23x l0 ‘3 4 .16x 10'3

B 4.16x1 O'3 5.20x10‘3 6.24x 10'3

Ring =  tetrahydrogenmethylcyciotetrasiioxane.
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3.0 Observations on cyclic and linear systems.

3.1 Cyclic poiysiioxane systems. (85,86.87)

Synthesis o f  cyclic polysiioxanes w as first achieved in 1981. These systems were 

described as calamitic or discotic with particular interest being shown in 

cholesteric derivatives. Cholesteric systems have found applications in optical and 

holographic storage devices (88,89). Kreuzer et al (40) have investigated a 

number o f  mesogenic systems using a variety o f siloxane ring sizes. Computer 

m odelling and synthetic w ork has also been previously carried out (90). We 

have repeated some o f  this earlier w ork and synthesised some new  systems. The 

m ost commonly investigated systems are those that incorporate four siloxane 

units and we have used this as our cyclic oligomer. A s a result w e m ust take into 

account that there are four possible diastereoisomers o f  such a system (fig.35). 

Due to die system being a closed ring, free rotation about the S i-0  bond is not 

possible and the individual isomers can only adopt other configurations 

allowed by ring ’flipping’ (91).

Fig 35. Geometric isomers.
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Each isomer is likely to have a distinct melting point. However, the result 

o f  a mixture o f  isomers will probably be a melting point lower than any o f  the 

individual isomers coupled with a broadening o f  the transition.

F ig  36. D SC  of com m ercially  available cyclic polysiloxane (DP=4).

The therm ogram  (fig.36) appears more complex than expected. 

However, a broad m elting transition is apparent-at - 100°C. The feature at higher 

temperature may be associated with decomposition processes, however, TGA 

would be needed to prove this. The effect o f  coupling m esogens to such a 

system has been investigated and compared, where possible, w ith data
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available from the literature. The table below indicates the phase behaviour 

for the mesogens selected, determined from optical microscopy.

Table 4. Thermal behaviour of mesogens.

The basic mesogen structure was:

r* ui«------ n  us C
\J

OO <cHo r i 2 ------ c n i U i 2 )n -2

Key to table : C = Cooling 

N  =  Nem atic

H  =  Heating 

S = Smectic

K = Crystalline 

I = Isotropic

n X Y phase

behaviour

Heating / 

Cooling

3 0 o c h 3 K86.6I

I57.3N42.0K

H

C

3 0 CN K 108.61 

I82.7S68.9K

H

C

5 0 o c h 3 K82I

I52K

H

C

5 0 CN K82I

I71.9N58.3K

H

C

10 C 0 2 CN K60I

I43N35S7K

H

C
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Characters in the last column o f  Table 4 indicate that data is either for heating or 

cooling at a rate o f  10 K per minute.

Following general theories w e would expect the coupling o f  mesogens to 

ring systems to exhibit lc and crystalline phases since they are forced to adopt 

an ordered conformation. Kreuzer et a l (40) demonstrated that there are two 

possible arrangements o f  such structures (fig.37).

Fig 37. Possible arrangements for ring systems.
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Monte Carlo simulations were perform ed by Everitt et al (37) on such systems. Tire 

model used a ring solely as a constraint on the relative positions o f  the 

mesogens. Three dimensional ring translations, rotations and mesogen rotations 

were allowed in the system in a random order at high temperature. From this, 

two order parameters were obtained based on the symmetry axes o f  the rings 

and mesogens, both taking the form;

S = 0.5 (3 cos2 0-1 )

On reducing the temperature a transition (S=0.3 to 0.8) was observed at a 

reduced temperature o f  1.4, where the reduced temperature is defined as T /Tcl, 

were T is the observed temperature and Tclis the clearing temperature. This general 

model demonstrated that such ring systems should exhibit discotic behaviour.

Figure 38, overleaf, illustrates the reaction used and Table 5, the phase 

behaviour for the ring systems synthesised.
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Fig 38. Thermal behaviour of modified cyclic poiysiloxancs. 

Scheme 12: Synthesis of cyclic LC systems.

CH2=CH (CH2)n-2
4(Cydic)

4 (Cyclic)

CH (CH2 )n-2

Table 5. Phase behaviour of Mesogens and Cyclic polymers in scheme 12.

n X Y M esogen Polymer

3 0 o c h 3 K  8 6 .6 1 V o  i

3 0 CN K  108.61 V O  i

5 0 o c h 3 K  8 2 1 Tg ION 9 4 1*

5 0 CN K  8 2 1 Tg -7 N  9 4 1

10 C 0 2 CN K  6 0 1 K 46 L C  75 I

* M icroscopy indicates a nem atic phase. LC indicates nature o f  phase not fully 

known as only DSC data available.
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T a b ie  6  lis ts  data  a v a ila b le  from  other so u r c es .

Table 6. Phase behaviour of comparable polymers from other sources.

n X V1 Polymer

transitions

Source

3 0 o c h 3 T g26N  1071 Kreuzer (see 

re f  40)

3 0 o c h 3 Tg 171 Cockett(see 

r e f  67)

5 0 o c h 3 Tg 15 N 9 4 I Cockett(see 

r e f  67)

For the methoxy terminated 3 carbon spacer systems, the correlation between 

our data and that o f  Cockett is quite good w ith the observation o f  only a glass 

transition. Kreuzer et a l (40) report an increased glass transition tem perature 

and a nematic-isotropic transition. Although model considerations predict such lc 

behaviour, w e observed no such transitions for this system.

W hile it is accepted that for linear polymers a 3 unit spacer is sufficient to  

decouple the motions o f the mesogen from die backbone, we suspect that in the 

case o f  the rings this is not sufficient to overcome the conformational restraints
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imposed by the rings. The limited degree o f flexibility imparled by the spacer 

also seems to reduce the 'effective ' disc structure and hence we observe no 

discotic phases. Observations on impure systems demonstrated that excess mesogen 

could induce lc phases in the bulk material o f  which it is a part. Kreuzer 

included 'H nm r spectra for a selection o f  compounds. Figure 39 illustrates 

nm r spectra for one o f  Kreuzer's purified systems (a), one o f  our purified 

systems (b) and the same system with impurities still present at about a 5 m ole % 

level (c). Close examination reveals that a small alkene signal around d=5.0 

is still present in the Kreuzer spectra indicating the presence o f  unreacted 

alkene. Our purified sample did not exhibit this. The impure sample showed 

alkene peaks m ore prominent than Kreuzer's and exhibited a crystalline 

transition rather than a glass transition. This indicates that the presence o f  alkene 

im purities induced an lc phase in these systems. Nestor et al (77) have 

demonstrated the importance o f  purity and this example reinforces this. Therefore 

w e speculate that the lc phase for this system w as due to the presence o f  

mesogen impurities which could interact with die mesogens associated w ith ring 

systems.
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Fig 39. nmr spectra for ring systems.
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Following this, we attempted some studies on the effect o f  doping the pure ring 

system with excess mesogen. At high proportions o f  excess mesogen sharp, first 

order thermal transitions indicating a crystalline system were observed. 

M icroscopy indicated a nem atic texture. A s the system approached 50% 

excess mesogen the crystalline transition has broadened quite markedly. Lower 

proportions o f  excess mesogen (down to 10 mole %  excess) were also 

observed to form crystalline materials on standing, however, these were not 

observable by D SC due to supercooling.

Example D SCs and a table o f  data are presented in Fig.42 and Table 7.

Fig 40. DSC curves for 90% and 50% excess mesogen.



Table 7. Phase behaviour o f doped cyclic polymer systems.

% Excess mesogen Transitions on cooling Peak width °C

100 I57.3N42K 7

90 I59.9LC55.4LC4 IK 17

80 151.1LC32.7K 25

70 I43.5LC28.0K 28

60 I35.8LC18.0K 28

50 I35LC8.6K 35

40 145.3 * 10.OK 25

10 _4 **
-

0 Tg-40 -

* Small broad transition. 

** Small broad transition.
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Fig 41. Phase diagram of 'doped 1 ring systems.
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Fig 42. Qpticai m icrographs of 7 moSc% doped C3GMc ring system.

1. Pure mesogen. N em atic phase.

iigMiiMi
‘m

Ring system. LC phase forming from isotropic phase.



O n set o f  cry sta llisa tio n .

8

Crystallisation almost complete.



The data appears to indicate that a large excess o f  mesogen has very little 

effect on the phase behaviour o f  the pure mesogen. An additional phase is 

observed at 90% mesogen possibly indicating that the ring molecule could 

stabilise a smectic phase not normally obtainable in the pure mesogen. A s the 

proportion o f  ring increases the transition tem peratures are lowered and peak 

widths are broadened due to the mixture o f  molecules. The introduction o f  ring 

material may disrupt the packing o f  the nem atic phase thus inducing the smectic 

phase. A s the two types o f  material are fully m iscible a eutectic m ixture is 

formed. For mixtures in die region 40 to 90% free mesogen , the rings disrupt 

the crystalline packing o f  the pure mesogens, hence lowering the m elting point, 

while the free mesogen possibly forces the rings to adopt some form o f  ordered 

structure, hence the lack o f  a glass transition. X-ray characterisation w ould be 

required to confirm this. Below 40%  free mesogen the picture becomes less 

clear. Crystalline transitions are completely absent. Here w e speculate the 

mesogens are ’diluted' to such an extent that interactions are no longer possible. 

R ing behaviour dominates and w e see evidence o f  the glass transition. 

M icroscopy indicates (Fig.42) that these materials exhibit some form o f  lc 

behaviour, the exact structure o f  which could not be determined. Further 

observations m ade at very low mesogen impurities i.e. 5% or less w ould 

demonstrate that liquid crystal behaviour observed in these materials must be due
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lo free mesogen still present. Purity is normally the critical factor in obtaining 

reliable data for liquid crystals. Recently, Bunning et al (86) demonstrated that 

ring systems with residual unreacted mesogen exhibited variations in thermal 

behaviour. However, in this case we have demonstrated that the impure material 

yields lc properties not normally accessible in the pure systems. Both Kreuzer and 

Bunning investigated systems based on five or more siloxane units. Generally 

such systems are found to exhibit liquid crystalline behaviour. 

Conform ational restraints within four unit systems appear to inhibit the 

form ation o f  liquid crystal phases for ring material based on short spacers. 

Longer spacers may allow the mesogens to decouple sufficiently from the 

ring to result in liquid crystal behaviour. However, it is unlikely that such 

m aterials would be discotic and we would speculate that they w ould behave as 

pseudo-linear liquid crystal polymers.

3 2 . Linear polysiloxane liquid crystals.

Linear liquid crystal polysiloxanes have been investigated intensively by 

Finkelmann et al (92), Gray etal (93) and N estor etal (94). D ue to the flexibility 

o f  the polymer chain, pure poly(dimethylsiloxane) has a low glass transition 

temperature o f  -127 °C. We would expect that this w ould allow the production o f  

substituted systems having very low glass transition temperatures in comparison 

to hydrocarbon analogues. While lower T„s are indeed observed, R ingsdorf and
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Schneller (95) demonstrated that they were generally in the region 0-30 °C and 

not nearly as low as the unsubstituted polymer. Therefore while the spacer 

appears to decouple the motions o f  the mesogen from the backbone, w e can 

only view  this process as a partial decoupling m echanism  ( see 

introduction). Figure 43 and table 8, below illustrates some data obtained by 

Finkelmann et a l (92)

Fig 43, System investigated by investigated by Finkelmann.

i CH3
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Tabic 8. Phase behaviour o f M esogens and linear substituted polymers.

R Mesogen Polymer

— ch2— och3
K 292 I K 398 I

— CH2 - K ^ 2 ^ > — ° CH3

K 389 I K 396 I

K  3 6 2 1 T0 288 N  2 2 4 1
0

W e have synthesised some side chain polymers based on Finkelm ann’s 

work and on a novel system with the view to producing elastomers at a later 

stage. The polymers were prepared using commercially available 

poly(hydrogenmethylsiloxane) and a polysiloxane produced by cationic ring 

opening polymerisation. End group analysis by nm r and thermal analysis by
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DSC allowed the two polymer backbones to be compared. 

T able 9. D SC  d a ta  fo r  polysiloxane backbones.

Sample Glass transition temperature ( °C)

Commercial -137

Synthetic A -139

SyntheticB  -137

For apolysiloxane o f  DP=80 as specified by Petrach we would expect die following 

*H nm r data.

T abic 10. n m r d a ta  fo r  po ly(hydrogcnm ethylsiloxane).

Proton Total count Ratio a/b

a 258 3.45

b 80
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Table 11, below shows the experimental ratios obtained from ’H nm r spectra.

Tabie 11. Comparison of theoretical and measured data for 

poly(hvdrogenmethylsiloxane).

Sample Ratio a/b

Theoretical 3.45

Commercial 3.38

Synthetic B 3.50

The D SC and frinmr data indicate that the behaviour o f  our synthesised 

polym er backbones is comparable to that o f  commercial equivalent. Further 

comparisons will be made for the substituted polymers. Potential lc polym ers 

were then synthesised according to the scheme below.
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Fig 44. Scheme 13: Synthesis o f linear polym er liquid crystals.

CH3-

ch3 

Si— O- 

ch3

ch3 ch3
I 1 I
Si— Of-Si— CH3
I ^80 I
H CH3

CH2 = C H - ( - C H 2 ^ _

i
ch3 ch3 ch3

CH3— Si— 0 _F_Si— oj—Si— CH3
I L | Jso I
CH3 (CH2)a CH3 

□

| | = Mesogen unit

The phase behaviour o f  the products is summarised in table 12 below.
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Table 12. Phase behaviour o f mesogens used in fig. 45.

a X V«/ Phase behaviour
o
J 0 o c h 3 K86.6I

5 0 o c h 3 K82I

5 0 CN K82I

10 C 0 2 c o 2c h 3 K 76. IS 83.4 N 

91.61

Table 13 below represents data from polymers obtained after several heating and 

cooling cycles.

Table 13. Phase behaviour of modified polysiloxanes used in fig 44.

a X y Phase behaviour
n
J 0 o c h 3 TgON58I (c) 

Tg-ION 601 (s)

5 0 o c h 3 Tg-5N58I (c)

5 0 CN Tg5S182I (c)

10 co2 c o 2c h 3 K72S87N96I (c)

(c) =  Commercial polymer (s) =  Synthesised polymer
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Fig 45.DSC curve for Crystalline polymer.

T2SMP/°“ C .
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O  • S 1 ^  O
<2-<s> *s» o  <s> o

CO "Cl *1*- C’J  ‘ <f! O

Table 14. Comparable polymer data available from the literature.

a X y Phase

behaviour

Source

3 0 o c h 3 T gl5N 61I Finkelm ann 

(see r e f  92)

5 0 CN K107S 183.51 Gray

(see r e f  93)

11 0 o c h 3 K53S133I Ringsdorf(see 

re f  95)
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Comparing the data we can see that our results are in reasonable agreement with 

those published. Although the type o f  transitions m atch, w e have to take into 

account certain factors. The published data contains little reference to the degree 

o f  polymerisation o f the polymers, thus m aking comparisons difficult. 

Finkelmann et a l (92) quote average values o f  DP=120 for their polysiloxanes 

while our polysiloxane had aD P=80. Hence modified polymers produced from 

these tw o sources should show only small differences due to the RM M  

differences. An overall observation can be made: R ingsdorf and Schneller (95) 

concluded that even though unsubstituted siloxanes have extremely low Tgs, 

the spacer does not give sufficient decoupling to enable very low glass 

transitions to be achieved, h i effect the spacer imposes a restraint on the 

backbone. D ue to the increased flexibility o f  the polysiloxane over their 

hydrocarbon analogues, we observe a lowering o f  the glass transition temperature. 

The lack o f  polymer characterisation in m uch o f  the literature m akes 

comparison w ith published data difficult. D irect comparison can only be m ade 

w ith  Finkelmann etal(94) for the 3-carbon spacer methoxy-term inated polymer. 

H ere w e see that our transition tem peratures are lower. This is in agreement 

w ith observations on the effect o f  degree o f  polymerisation on transition
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tem perature  ( 9 6 ) .

The Tg values o f  our samples seem low (especially for the synthetic 

polymer) compared to Finkelmann’s. Initially it was thought that this was due to 

incomplete substitution. However, no residual Si- H stretching w as detected by IR 

and the difference is most likely attributable to the differences in the degree 

o f  polymerisation o f  the polysiloxanes used. On changing from a 3-carbon 

spacer to a 5-carbon spacer we observe a slight lowering o f  the transition 

temperatures. Again this is in agreement with published data (97). Increasing the 

spacer length enhances the decoupling o f  backbone and mesogen. In comparison, 

the 5-carbon spacer cyano-terminated polymer has a smectic phase with a much 

larger temperature range. (177 °C range compared to 57 qC). This is an effect o f  the 

terminal substituent. The cyano unit produces a greater dipole m om ent than 

a m ethoxy substituent and hence the dipolar interaction between 

neighbouring molecules is stronger. A s a result o f  this increase in dipole 

moment, we can visualise an interdigitation effect between neighbouring 

molecules, the result being a smectic phase. (See Fig. 46).
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Fig 46. Possible interdigitation due to enhanced dipole moment.

This also agrees w ith the general observation that increasing the 

spacer length tends to induce smectic mesophases.

The final polymer contains effectively an 11 carbon spacer although w e m ust take 

into account that this includes a carbonyl unit. The terminal unit is now  a m ethyl 

ester. D ata for the m ost closely related compound in the literature is provided by 

Ringsdorf and Schneller (95). Here a true 11 carbon spacer is used coupled w ith a
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methoxy terminal u n i t , so we can only make tentative comparisons. Both 

polymers are crystalline at room temperature, agreeing with observations that 

spacers longer than eight carbon units allow sufficient decoupling to induce side 

chain crystallisation. Again both polymers exhibited a smectic m esophase as 

expected with longer spacers. However, the methyl ester-terminated polymer 

also exhibited a nematic phase. This is consistent with low molar m ass 1c 

observations. The terminal group is not only greater in size but also induces a 

greater dipole moment. The size increase disrupts the packing o f  the smectic 

layers thus favouring the nematic phase and lowering the isotropisation 

temperature. The effect o f  the carbonyl unit appears to be negligible. D ue to the 

increased spacer length, the effect o f  the linking unit on the geometry o f  the 

mesogen relative to the backbone has been greatly diminished. The 3-carbon 

spacer m ethoxy term inated unit is common to both the linear and cyclic 

systems. While the cyclic system exhibits no lc phases, it is o f  interest to note 

that the glass transition temperature o f  this system is almost identical to that o f  the 

linear polym er. H ahn and Percec (38) also observed similar behaviour for a 

cyclic system that did exhibit lc behaviour. Here they also noted that the nature 

o f  the lc transitions w as also almost identical to that o f  the linear polymer. 

Considering the differences in RM M  this is unexpected and no theoretical 

basis has been found for this observation.
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4. Observations on elastomcric material.

4.1. Polvsiioxane elastomers.

Liquid crystalline elastomers were first prepared by Finkelmann et al

(98). These early elastomers were based on polysiloxane networks but, since 

then, liquid crystal elastomers based on both siloxane and hydrocarbon 

backbones have been m ade and characterised. A number o f  synthetic routes to 

elastomers have been described. Finkelmann et al describe the one step process 

where mesogens and cross-linking units are coupled to a polysiloxane backbone 

in a 'one-pof approach. This tends to yield elastomers with relatively low glass 

transition temperatures (95 and 98). Elastomers based on hydrocarbon 

backbones have also been produced from monomer and cross-linking units in a  

single step process, e.g. Barnes et al (99). Legge et al (100) demonstrated a tw o 

step process. Initially a copolymer was produced from m onom er units. 

Elastom ers were then produced by casting a film o f  the copolymer in 

dichloromethane w ith diisocyanatohexane onto a Kapton sheet. Solvent w as 

rem oved under reduced pressure and the sample was heated in a  uniform  

magnetic field o f  0.6 T a t  108 °C for 72 hours to ensure complete cross-linking. 

Effectively cross-linking is occurring in the nematic melt. The characteristics o f  

the elastomers based on the first two methods are very similar. As expected, due 

to the differences in backbone architecture, the siloxane based systems have
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^lass transitions about 10 °C lower than corresponding hydrocarbon analogues. 

Transitions in both types can be induced either thermally or m echanically. The 

third system is different in that it exhibits a memory effect (see later) even after 

holding the sample in the isotropic state for 17 days. On cooling the sam e 

direction o f  orientation always occurs unlike the monomer, which exhibits local 

alignment. Liquid crystal elastomers present several unusual properties 

including stress induced molecular, switching (101), shifts in phase transition 

(102), piezoelectricity and electrically induced shape changes (103) and 

electro-optical properties. W e have been concerned with the synthesis 

and characterisation o f  some know n and novel liquid crystal elastomers, 

adopting the approach o f  Finkelm ann. The maj ority o f  the w ork involved 

methoxy-terminated phenyl benzoate esters. (See fig. 47.)
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Fig 47. Scheme 14:TvpieaI synthetic  route for  production of  elastomers 

incorporating methoxy te rm in a ted  phenvibenzoate  ester.

x=5
y=83
2=12

R= - ^ ^ > - 0 0 0 - 0 - 0  CHj

Table 15 below  represents the phase behaviour previously observed for 

elastomers and linear polymers incorporating similar structural units.
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via schem e 14.

Elastomer: x=5 y=83z= 12

Linear: x=5 y=95 z=0

m Phase behavior Type
nD Tg285N332I Elastomer

7j T0288N334I» -j Linear

4 Tg275N343I Elastomer

4 TK288N368I Linear

Here, Finkelmann clearly demonstrated that network and lc properties could be 

com bined to yield an lc elastomer. Later Legge et a l (100) demonstrated that lc 

elastomers could display memory effects, by which the elastomer 'remembers' 

the orientational configuration at the tim e o f  cross-linking, the degree o f  this 

effect being dependent on the density o f  cross-linking. It is useful to review  

some o f  Finkelmann's work on siloxane systems. Liquid crystal elastomers can 

be obtained by cross-linking lc side chain polymers. In these systems the 

translational motion o f  the entire'm olecule', i:e. m acro Brownian m otions, is 

prevented. Motions o f  the chain segments, i.e. micro Brownian m otions, 

remain unhindered. Hence, while lc elastomers exhibit properties characteristic 

o f  lc polymers, they also have novel properties such as rubber elasticity (104).



Therefore, above the glass transition temperature the side groups have almost 

the same degree o f  freedom as in the analogous linear polymers. Due to their 

elasticity, the influence o f  mechanical stress on liquid crystal behaviour is o f  

interest. High birefringence in the lc state leads to these studies being perform ed 

at temperatures high enough to induce the isotropic state. Obviously then, 

stress-optical measurements in this region yield information on the lc  units in 

the isotropic state. The stress-optical coefficent, C ; which is a quotient o f  the 

birefringence , An, is proportional to the optical anisotropy o f  a chain 

segment, where A a  is the difference between the polarisabilities parallel 

and perpendicular to the axis o f  the statistical segment. The sign o f  An tells us 

about the- orientation o f  the liquid crystal side units. A  theory proposed by 

Kuhn (105) suggests that the product CT, where C is the stress optical coefficent, 

should not vary with T. This is indeed observed for natural rubber, although strong 

deviations are observed for liquid crystal elastomers.
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Fig 48, CT v T for natural rubbers and lc siloxane elastomers.

(m =  side chain spacer length)
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The difference between the m=3 and m =4 curves is explained by the different 

orientations o f  the side groups. For m =3, A n  is negative, and hence the 

refractive index perpendicular to the chain segment is the greatest. The rapid  

increase in CT as temperature decreases to Tc (clearing temperature) is explained 

by the formation o f  pre- transitional clusters. For m=4, the preferred alignment is
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parallel to  the  chain se g m e n t .  W e  therefoi tve t w o  op tica l ly  d ifferen t  s a m p le s

W hen m =3, the sample is biaxial, the optical axis o f  the mesogen being

perpendicular to the anisotropically deformed network. When m=4, the sample 

is uniaxial, i.e. network and liquid crystal optical axis coincide.

Thermomechanical measurements, involving changes in specific volume, 

can be m ade on liquid crystal elastomers in a manner analogous to anisotropic 

solids. Specific volume changes can be obtained over temperature ranges while 

the sample is macroscopically aligned in the lc state by m echanical 

deformation. For m=3, it w as shown that alignment for stretched samples 

was perpendicular to deformation. As a result we might expect compression 

m easurem ents to yield an optically uniaxial sample with liquid crystal 

segm ents orientated parallel to the axis o f  deformation. Figure 49, below 

demonstrates this.

Fig 49. Uniaxial/biaxial systems.
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In the isotropic state, the elastomer behaves like a conventional rubber. A.s the 

tem perature is lowered to Tc an anisotropic deformation o f  the sample occurs 

leading to decreases in length. Below Tg the system behaves as a 

conventional glass. It is clear that mechanical deformation o f  elastomers causes 

a macroscopic orientation o f  the mesogenic groups in a m anner analogous 

to electric or magnetic field-induced effects in conventional low molar m ass 

liquid crystals. As in low molar mass and linear polymer lcs, the order param eter 

o f  elastomers can be determined (106). Elastomers that incorporate an IR active 

unit in the mesogen can either be stressed or heated and the resultant changes 

in the absorption parallel and perpendicular to a direction within the sam ple e.g. 

direction o f  stretching, can be determined. Schatzle and Finkelm ann (107) 

investigated heating effects using an elastomer incorporating a small 

proportion o f  cyano terminated mesogens. The order param eter can be 

calculated using the form ula detailed in section 1.1.6.

The results are shown in figure 50.
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Fig 50. Example of the order parameter for an elastom er.
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4.1.1. Elastomers incorporating short spacers.

We have repeated some o f  Finkelm ann’s work. The results are shown in the  table 

16 below. The system is based on m=3 as in fig 47.
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T able 16. T herm al da ta  fo r  elastom ers analogous to F in k c lm an n 's  

elastom ers.

Sample No. %  Cross-linking Phase behaviour

1 20 Tg0N53I

2 20 To0N43I

j 20 Tg0N52I

4 20 Tg5N52I

5 12 Tg0N62I

Samples 1-4 are different samples obtained by the same synthetic route. 

Sample 5 is reported by Finkelmann.

Our results are based upon a polymer o f  DP=80 while Finkelmann's polym ers 

have DP= 100. This should be in the region were polymer RM M  has little effect 

on phase behaviour or transition temperatures. In addition, the presence o f  a 

cross-linking agent effectively makes the molecular mass the same as the sam ple 

mass (assuming a single, netw ork structure) and hence the differences in 

phase behaviour should now  be attributable to variations in cross-linking 

density. Barnes et a l . (99) demonstrated that as the degree o f  cross-linking is 

increased the glass transition temperature is raised, while the nem atic to 

isotropic transition tem perature is generally reduced. This is to be expected as 

an increase in cross-linking density has two effects. The first is to restrict the



motions o f the chain segments between cross-linking units which affects the glass 

transition temperature, while the second factor is the reduction in liquid crystal 

density, i.e. fewer mesogens per unit volume, within the sample w hich will 

reduce the interactions between m esogens thus lowering the temperature o f  the 

lc transitions. This work w as based on poly acrylates which are much stiffer 

than polysiloxanes. Their observations indicate a relatively large increase in T s 

up to 10% cross-linking density after which the effect , becomes smaller. Nem atic 

to isotropic transition tem peratures generally fall linearly.

4.1.2, Effect of cross-linking density on phase transitions.

For siloxane elastomers w e w ould expect this effect to be less dram atic 

due to die increased flexibility o f  the backbone. A  comparison o f  our data and 

Finkelmann's does show an increase in Tg and a reduction in the nem atic to 

isotropic transition temperature. (See table 17).

Table 17. Effect of cross-linking density.

% cross-linking Elastom er Linear polymer

20 Tg 0 N  5 2 1 Tg ON 5 8 1

20 Tg 0 N  43 I Tg-10N  601

20 Tg 0 N  53 I

10 Tg 0 N  6 0 1

20 Tg 5 N  4 9 1 Tg 15 N  62 I

10 Tg 0 N  62 I Tg 3 N 6 1 1
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Lines 1-3 are different samples (20% cross-!inking) synthesised in the same wav. 
4 is 20% cross-linking while 5 and 6 are taken from Finkelmann’s data.

Tile results for linear polymers represent the range o f data observed for m aterials

produced from the same backbone as the elastomers and do not relate directly to

elastomers on the same line. From the data we see that at 10% cross-linking

both Finkelmann and ourselves observe nem atic to isotropic temperatures

very similar to the linear polymers. Finkelmann observes a reduction in glass

transition temperature on cross-linking while our elastomers exhibit similar

or slightly higher glass transition temperatures. This seems more consistent

with Barnes' observations on the effects o f  cross-linking density. W e should

note that it would be difficult to obtain exactly matching transition tem peratures

due to differences in the starting polymer. Also consistent with B a rn es , both

Finkelm ann and ourselves observe a  reduction in the nematic to isotropic

transition temperature on increasing cross-linking density. An elastomer based

on a cyano terminated m esogen w as also produced.

Fig 51. Cvano terminated elastomers.

c — o- •CNCH2====:CH CH2 0
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M e s o g e n  =

Table 18. Phase behaviour o f ’Cvano' and 'Methoxy* terminated elastomers.

C3CN Tg 0 LC 52 I (20% cross linked elastomer)

Free mesogen K 108.6 I (heating)

I 82.7 LC 68.9 K (cooling)

m  *T—'voOivib Tg 0 LC 52 1 (20% cross linked elastomer)

Free mesogen K 8 6 .6 1 (heating)

157.3 LC  42.0 k  (cooling)

It is suprising that mesogens with such varying thermal transition tem peratures 

yield elastomers o f  such similar ones. N o explanation o f  this effect has been 

found in the literature and we assume that the network properties restrict 

the ordering properties o f  the mesogen independent o f  the strength o f  m esogen 

interactions.

4.1.3. Elastomers incorporating long spacers.

Attention was then switched to mesogens containing longer spacers. It is well 

known that in side chain liquid crystalline polymers, long spacer groups induce 

side chain crystallisation in preference to a  glass transition. Initial studies w ere 

performed on samples containing 30% cross-linking agent. The results are shown
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Fig 52. Elastomers incorporating long spacers and high cross-linking

density.

M esogen ■CNC — 0ch2= ch— (CH2)8— c — o

K 6 0 1 (heating) 1 42 N  31 S 27 (cooling)

Table 19.Repeat sample elastomers. 30% cross-linking.

Sample Heating run Cooling run

A  1 K  43 lc 5 8 1

B X K 3 9 l c 5 6 1 1 I 2 5 K

2 K 3 6 1 2 1 25 K

H ere w e have an interesting effect. Both samples exhibit an lc phase on 

initial heating which is lost on successive heating/cooling runs. This is similar 

to the memory effect observed by other researchers(l02). Work by Barnes e ta !

(99) indicates that high cross-linking densities (above 20%) lead to a loss o f  lc 

phases. W e initially chose a density o f  30% in an attempt to restrict the effects
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initial memory effect, namely an lc state locked in by the polymerisation process. 

Heating the sample destroys the lc structure. Cross-linking density was then 

reduced to 10% with the following observations.

Table 20. Phase behaviour of samples incorporating 10% cross-iinking.

Sample Phase transitions

Heating Cooling

A K 45 lc 1301

B K  391c 1301 I 1101c 18 K

Hawthorne (108) has demonstrated that for side chain liquid crystal polymers 

with short spacers and exhibiting a glass transition, a reduction in mesogen density 

lowers the observed thermal transition temperatures and vice-versa. Our samples 

exhibit side chain crystallisation temperatures which, unlike glass transition 

temperatures, w e would expect to remain constant (mesogen behaviour should 

be independent o f  the backbone) down to the point where the m esogen density 

is insufficient to induce the liquid crystal state. A t this point farther reductions 

would affect the glass transition temperature as w e reduce the restrictions on 

the polymer backbone motion. Hence w e observe similar crystalline transition 

tem peratures for both the 10 and 30% cross-linked elastomers. However , w e



note that the liquid crystal to isotropic tem perature has drainaiically increased 

and is reproduceable. The free mesogen (C10CN) exhibits both a nem atic and a 

smectic phase while the elastomer exhibits only a single liquid crystal state. In 

line w ith  similar liquid crystal polymers w e expect this to be a sm ectic state 

although X-ray work is required to con firm this. Synthesis o f other elastomers, 

based on long spacer mesogens, was now attempted.

Fig 53. Mesogens incorporating longer spacers.

o 0
M esogen = II

c — OCH2= C H ----- (CH2)8— c —  o

Table 21. phase transitions for mesogens in figure 53.

X =  OMe (ClOOM e) X  =  C 0 2M e (C 10CO2Me)

Heating K  591c 7 2 1 K  76 lc 83.4 lc 9 1 .6 1

Cooling 166  lc 40 K I9 L 3  lc 79 lc 52 K

Attempts at one stage synthesis using these mesogens proved unsuccessful. Two 

possible reasons arise:



1. The increase in m esogen length, due io the change in the term inal group , 

prevents the cross-linking process occurring.

2. The C10CN sample achieves cross-linking through a reaction involving the 

terminal CN group.

The second o f  these is easily ruled out for three reasons:

a. The conditions o f  the polymerisation were exactly the same as for previous 

elastomers involving CN terminated molecules. Effects o f  catalyst ageing, that can 

promote cross-linking through CN units, were taken into account and hence fresh 

catalyst w as always used ,

b. FTIR measurements on samples clearly indicatedthe presence o f  unreacted 

CN units. Cross-linking effects would reduce the number o f  CN triple bonds.

c. The results o f  experiments involving C10CN units were always repeatable. 

CN is always observed in the resulting elastomer.

The residue from a C 10CO2M e cross-linking experiment w as recovered and

precipitated from methanol to yield a  white crystalline solid with the follow ing

transitions ( °C).

C 10CO2M e residue K  53.7 lc 70.9 lc 8 3 .6 1

C 10CO2M e Free mesogen K  76.1 lc 83.4 lc 9 1 .6 1
(for comparison)

The lowering o f  the transition temperatures indicates that a linear polym er 

species has been fonned, possibly a side-chain co-polymer with non-m esogenic
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sites being occupied by vinyl term inated cross-linking agent. Follow ing this, a 

different route w as attem pted. U nsubstituted netw orks w ere sw ollen and 

m esogens w ere allow ed to  diffuse through them , followed by desw elling and  

drying under vacuum . In th is  w ay it w as hoped to produce elastom ers based  

on C iOCOMe and C lO CCkM e units. The following results w ere obtained.

Table 22. Phase behaviour for polymers btained from swelling experiments.

Mesogen %Cross-linking Phase behaviour

ClOOMe 10 K 5 5 1

ClOOMe 15 K 5 9 1

C10CO2 M e 10 K  7 2 1

C10CO2 M e 10 K 6 5 1

For comparison:

C lOOMe free m esogen K  59 lc 7 2 1

C10CO2 M e " K  7 6 .11c 83.41c 9 1 .6 1

Unsubstituted elastomer Tg -102

It is unclear what occurred in these experiments. Initially substitution appears to

have occurred to some extent. However two factors argue against this:

1. The crystalline transition temperatures o f  the materials are very high 

compared to the C10CN derivatives.
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2. For the C10CN derivatives we noticed a large drop in transition 

temperatures compared to the free mesogen. For the ClOOMe and CIOCO Me 

samples we observe that the crystalline transition temperature is almost 

identical to that o f  the free mesogen.

We also note that no liquid crystal transitions were observed for the 

C lOOMe and C10CO2 Me materials. For these reasons it is likely that the 

mesogens have simply diffused into the networks without reacting and w e 

have a polymer network'doped* with free mesogen. The crystalline transition 

temperature is characteristic o f  the free mesogen with the liquid crystal transition 

temperatures probably not detected by the D SC due to poor signal/noise ratios.

4.2. Novel netw orks.

So far w e have studied the effects o f  cross-linking linear polymer species to 

produce networks. In addition we have devised and investigated a new route to 

produce novel networks from cyclic oligomers. Earlier we investigated polym er 

modification reactions involving four mem bered siloxane rings to produce 

disc-like molecules. It follows that it should be possible to link these rings 

together to produce a  network o f  rings. It turns out that three out o f  the four 

sites are required to be involved in the cross-linking process to produce a

136



network. This means we have a very high cross-linking density o f  75% on the 

rings which leaves 25% substitution by the mesogenic units.

Tig 54. Potential ic ring network.
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The process w as carried out for the m esogens C3CN and C 3 0 M e. The D SC 

results are indicated below.

Table 23. i hernial data for ring elastomers.

T ran sitio n  tem p era tu re s

Tg -110 Tg -140

Tg -115 Tg -135

M esogen 

C 30M e 

C3CN

Typical unsubstituted T„ -102 linear type network.

F ig  55. D SC  curve fo r  cyclic n e tw o rk  C 3C N .

-I

“SO.00

i 40.0

■>
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it was observed that these ring elastomers were brittle. Their extensibility was 

limited and yet they were highly compressible, to such an extent that they 

behaved in ways similar to a rubber ba ll! A number o f  interesting points arise 

from these results. No liquid crystal transitions were observed for these 

polymers. This is not suprising if  we compare them to the disc sysytems produced 

earlier. Even with all four sites occupied with mesogenic units, we observed no 

liquid crystal structure lor these materials. With only one site per ring occupied 

by mesogens in this ring network it would be highly unlikely that a liquid crystal 

structure would result, unless the polymerisation process orders the rings into 

layers. I f  this occurred it m ight be possible for weak interactions to occur 

between mesogens in neighbouring layers. However, considering that the layer 

separation m ust be o f  the order o f  the cross-linker length, this is very unlikely. 

Three ways appeal' possible to overcome th is :

1. M esogens w ith longer spacer units could be used. Here w e w ould try to 

decouple the mesogens from the ring network. However, unlike conventional 

networks where the chains are held loosely together and the network can easily 

deform  to accommodate larger units, here w e have a m uch m ore 

constrained system and it is unlikely that larger units could be successfully 

incorporated. Indeed, an attempt was m ade to incorporate the C10CN unit into 

such a system, the result being a lack o f  network properties.
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2. Larger ring systems could be used, in this way the percentage o f  sites 

being occupied by mesogens on the ring could be significantly increased, i f  a 

twenty unit ring system were used we could increase this figure from 25 to 85%. 

The larger ring systems would now resemble a conventional network. As 

well as predicting a liquid crystal phase, due to the increased mesogen density, we 

would expect better network properties. Not only should the network deform in 

more traditional ways, through the cross-links, but also deformation and 

relaxation properties would be available by ring deformation. W e would expect 

these systems to show enhanced elasticity. Unfortunately such rings were not 

available to investigate this possiblity.

3. It is possible to increase the mesogen density on the four-unit ring system. 

We now consider a system to be composed o f  two types o f  rings, the first the 

normal lype with one mesogen and three cross-linkers per ring and the second 

containing two mesogens and tw o cross linkers per ring. By using only two 

cross-linkers, these rings can only link together as a chain. This process effectively 

increases the mesogen density from 25% to 37.5% (see Fig. 56). This approach 

w as attem pted using the C3CN unit, the result being a single glass transition 

tem perature o f  -100°C .
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5. Observations on deformation of elastomers.

5.1 O rien ta tion  by m echanical deformation*

Classical elastic behaviour, as described by Hooke's law, is characterised 

by a stress within a material directly proportional to the strain appliedto it. A thin 

metal strip will stretch to a permanent deformation if  a force is applied 

to it. Heating this strip at constant force will cause further deformation. In 

contrast, an elastomer does not obey Hookes law and heating will cause the 

material to shrink. The difference is simply that stretching the elastomer 

causes elongation o f  the chains thus reducing their entropy. The retractive 

effect is caused by the tendency o f  the system to increase its entropy tow ards 

the value it had  when undeform ed. Gaussian chain statistics (109) can be 

used to predict the average orientation o f  the chains. The probability o f  tw o 

cross-links, on a chain o f  length L, being separated by a distance R  is found to be;

P(R )= exp(-3R2/2yL) 

where 10 is the effective step length at the temperature o f  network formation.

The free energy due to elastic effects is the average over P o f  this phase space 

weight:

F =  - k  T ( InP )

T =  Temperature 

k = Boltzmann's constant



Thus, rubber elasticity and Hookian elasticity depend on different effects. 

Hookian elasticity is based upon increased energy due to greater molecular 

separation while rubber el asticity is a result o f  entropy effects due to chain 

elongation and cross-linking density. Deviations from a classical stress-strain 

curve will arise due to the lim ited extensibility o f  the chains. Studies into the

orientation o f  mesogenic side groups by mechanical deformation have been 

carried out by a number o f  people (110,111.112,113,114). Generally these have 

involved experiments using X-ray or polarising microscope techniques. Recently, 

Brauchler et al (115) have investigated the effects o f  deformation using FTIR 

techniques. For such studies, a  window in the IR spectrum o f  the elastomeric 

network is required through which the vibrations o f  a suitable side group 

can be observed. H ie  m ost suitable side group is the cyano-unit. W ith its 

fundamental stretching frequency around 2300 cm-1, it is generally isolated 

from the typical hydrocarbon frequencies. Brauchler included a 

cyano-containing side unit at 5% levels as a label quantifiable using 

FTIR. By polarising the light passing through the sample it is possible to 

determine the preferred orientation o f  the sample on stretching at constant 

temperature or heating at constant draw ratio.
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5.2. Effects of heating undrawn samples.

Samples that exist in the glassy state at room temperature can be held at 

constant length in a frame. The sample can then be heated to its isotropic state. 

Absorbance measurements using polarisation directions parallel and 

perpendicular to the beam can be made while the sample cools. Two 

possibilities arise. I f  the mesogens align parallel to the stretching direction we 

would expect the absorbance o f  the CN stretching vibration parallel to the 

stretching direction to increase and the perpendicular component to decrease. 

H ie opposite would be true for mesogens aligning perpendicular to die stretching 

direction. However, w e also have to consider i f  the system is biaxial or uniaxial. 

For the case o f perpendicular alignment, uniaxial systems would have a random  

distribution o f  the mesogen long molecular axes perpendicular to the 

stretching direction thus demonstrating rotational symmetry.

53. Effect of stretching at constant temperature.

In order to determine whether phase changes can be induced 

mechanically rather than thermally, we can use a  similar method. One further 

factor can be investigated by this procedure: careful study o f  absorbance data 

enables the film thickness to be monitored. By assuming constant volume, 

changing the length will change the film thickness and width proportionately
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ana n e n c e  tne a o so r o a n c e  ror a n x e a  o ea n i area w in  a lso  cn a n g e .

5.4. A bso rbance  m easurem ents,

A b sorb an ce data was obtained from a Galaxy 602 1 FT1R. spectrometer equipped 

with a liquid nitrogen cooled Mercury Cadmium Telluride (M.CT) detector and 

a dr}' air-purged sample compartment. Samples were held in a stretching frame 

constructed such that the thread o f  the screw had a 1 mm pitch. The sample 

chosen for measurements w as the elastomer based on C3CN. T heC lO C N  

sample proved too brittle to w ork with, while the ring elastomer demonstrated no 

interesting phase behaviour besides being brittle. The C3CN elastomer has 

a  glass transition a tO °C a n d  an lc to isotropic transition at 5 2 °C. It w as 

hoped to m easure the improvement in order on stretching. The CN stretching 

vibration at around 2200 cm '1 w as used to detect the change in orientation 

o f  the mesogens. Initially it w as hoped to compare this with the Si-CH m odes 

involving the polysiloxane which occur in the regions o f  1260 , 850 and 755 

cm '1. These proved to have large background absorbances m aking 

m easurem ent errors unreasonably large. The spectra inF ig .57  relate to  a 

sample that is unstretched followed by a  sample with an extension ratio o f  1.4
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Fig 57. Sample unnoiariscd spectra for C3CN system.

l :

:.Lt

The IR beam was unpolarised as at this stage w e were trying to observe w hether 

the CN and Si-CH absorbances could be clearly observed and to determine the 

effect o f  reducing the film thickness on absorption. It was anticipated that the 

introduction o f  the polariser would yield less sensitive results. Table 24 gives 

the data for these frequencies and extension ratios.

147



Table 24. Deformation data for C3CN svstem.

Sample : C3CN 20%  cross-linked.

Extension ratio Peak absorbance Absorbance Ratio

CN Str Si-CH Str CN/Si-CH

1.0 0.56 0.55 1.03

1.4 0.54 0.53 1.02

1.8 0.48 0.47 1.03

The main problem is the small peak amplitude for the Si-CH vibration 

against the high background absorption which m akes accurate m easurements 

difficult in comparison to the strong CN stretching absorption which is easily 

distinguishable. Also, w e m ust consider the lack o f  beam  polarisation at this 

stage. Signals that are difficult to detect without polarisation would lead us 

to predict difficulties with a  reduced beam intensity. W e therefore anticipate 

low signal/noise ratios for the Si-CH units which w ould reduce the accuracy 

o f  any measurements. Secondly, as w ould be expected, w e observe no real 

change in the ratios o f  the absorbances as we are measuring the total rather than 

parallel or perpendicular polarisations (see later). W e also observe that increasing 

the extension ratios does reduce the absorbance values and hence w e can 

obtain information on film thickness assuming that absorption is not
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sensitive to orientation. Film thickness can be analysed in an approxim ate w ay as 

follows. Beer's law ( 116) states that the absorption is proportional to the 

sam ple th ickness, i.e.

A = E x C x L 

A = M easured absorbance 

E = Molar absorbance coefficient 

C = Sample concentration 

L =  Path length

Tf w e consider that on stretching the sample retains constant volume, 

then it can be shown that the new  sample thickness will be proportional to the 

inverse square root o f  the new  length or extension ratio.

5.5. P a rtia lly  substitu ted  polysiloxanes.

h i order to obtain m ore reliable data a new approach was needed. Ideally w e 

would like to compare two frequencies in the same region o f  the spectrum . One

should be associated w ith the mesogen and one w ith the network. U sing  

samples produced so far this is not possible. However, i f  w e have a sam ple 

where some o f  the backbone sites are left vacant then w e can compare the CN and 

Si-H stretching frequencies. A  sample w as produced where 50% o f  the site 

were occupied by mesogens and 50% were left blank. This was found to exhibit 

a similar DSC to the ‘norm al1 C3CN type elastomer with slight changes in the
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transition temperatures (Tg -10 Ic 50 1). Absorbances parallel and perpendicular ; o 

the beam were then determined, using a polarised input beam, for a sample during 

the stretching experiment. Again it should be stressed that as the sample 

already exists in the liquid crystalline state at room temperature, we are only 

trying to detect small improvements in the ordering o f  the mesogens.

An example spectrum is shown in fig.58.

Fig 58. C3CN spectrum exhibiting Si-H and CN stretching frequencies.
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perpendicular and paraliet to stretching direction.

1. R esults m easured  p e rp e n d ic u la r  to stre tch ing  direction

Extension ratio Peak absoibance 

CN Si-H

Peak A rea (Arbitrary' 

units)

C’N Si-H

LOO 2.98 2.91 21.70 64.07

1.26 2.79 2.74 19.98 59.54

1.53 2.77 2.63 19.41 58.22

1.80 2.83 2.67 19.42 58.86

2. Results measured parallel to the stretching direction.

Extension ratio Peak absorbance 

CN Si-H

Peak area (Arbitrary 

units)

CN Si-H

LOO 1.17 1.14 8.80 26.21

1.26 1.18 1.15 11.06 32.04

1.53 1.17 1.12 11.94 33.68

1.80 1.12 1.08 11.78 32.72

2.06 1.09 1.03 11.99 32.64

2.34 1.08 1.01 12.12 32.45

2.60 1.06 0.96 11.88 31.59



The figures in Table 25 indicate small decreases in the absorption o f  both 

peaks parallel to the stretching direction accompanied by small increases 

in that perpendicular to the stretching direction for the cyano-unit. Assum ing 

the Si-H units simply move with the backbone, their absorbance should only vary 

as a function o f  sample thickness and with the alignment o f the backbone, We 

should see a small decrease in the Si-H absorbance in one direction and possibly 

an increase in the other direction, due to thickness /  backbone alignment effects, 

i.e. reduced sample thickness coupled with backbone alignment in the direction 

observed. I f  stretching induces enhanced mesogen alignment in a  preferred 

direction, we would observe larger changes in the CN absorbance relative to the 

Si-H absorbance. Therefore it is useful to look at the ratio o f  CN /  Si-H 

measurements.(See table 26).

Table 26. Ratio of absorbances and areas of CN/Si-H

ICG

Extension ratio Ratio CN/Si-H peaks 

Absorbance A rea

LOO 1.02 0.34

1.26 1.02 0.34

1.26 1.05 0.33

1.80 1.06 0.33
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Extension ratio Ratio CN / Si-H Peaks 

Absorbance A rea

1.00 1.02 0.34

1.26 1.03 0.35

1.53 1.04 0.36

1.81 1.04 0.36

2.06 1.06 0.37

2.34 1.07 0.37 |

2.60 1.07 0.37 j

Fig 59 .Plot of Area ratios versus extension ratio for CN/Si-H stretching modes 

using data from table 26.
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The ratio o f  absorbances indicates that the alignment both parallel and 

perpendicular to the stretching direction is increasing slightly which is unlikely. 

However, if  we compare areas (which yield smaller errors), we see that those 

parallel to the stretching direction demonstrate a small increase while those 

perpendicular show a small decrease. This is as expected. We predict small 

changes as we are studying a system that is already ordered and the increases 

in one direction must be compensated by decreases in a perpendicular direction.

The plot (see figure 59) clearly indicates that stretching increases the 

alignment o f  the mesogens parallel to the stretching direction. On reaching an 

extension ratios o f  1 to 1.8 w e observe a 7.4 % increase in the ratio o f  CN/Si-H 

absorbance areas for that parallel, while a drop o f  2.7% is recorded for that 

perpendicular. Thus we are observing an enhancement o f  the liquid crystal 

alignment induced by m echanical force.

5.6. Observations on sample thickness.

The variation in thickness as the sample is stretched is expected to be 

proportional to the inverse square root o f  the length, providing that deformation 

is equal in all directions and that there is no volume change. A s absorbance 

is proportional to the thickness o f  the sample, it follows that th is m ust also be 

proportional to the inverse square root o f  the sample length. Therefore, i f  the 

absorbance changes are simply a result o f  change in the sample dimensions,
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a plot o f  inverse square root o f  extension ratio versus absorption should be 

a straigilt line, providing the sample deforms ideally. Obtaining an ideal sample 

is difficult due to the synthetic approach , clamping restrictions etc. Therefore we 

would expect our results to deviate from this. Furthermore, due to its initial ordered 

state, we expect our sample to exhibit signs o f  further ordering in the initial 

stages o f  elongation and hence we expect larger deviations at the lower 

extension ratios. Therefore, at the point where side chain ordering has ceased, 

w e expect a change in the slope o f  the plot. The results are shown below in 

table 27.

Table 27. Results for parallel absorbances of cyano units.

1/root extension ratio Absorbance

LOO 1.17

0.89 1.18

0.81 1.17

0.75 1.12

0.70 1.09

0.65 1.08

0.62 1.06
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Fig 60. Plot of Absorbance v inverse root extension ratio for elastomer C3 CN

a t  2 0 %  cross-linking. D a ta  tak en  from  tab le  27.

1.15

1.05
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

1/root extensio ratio

The plot demonstrates two separate regions. A t extension ratios greater than

1.6 (relates to an inverse root extension ratio o f  0.8) w e observe a proportional 

behaviour between absorbance and inverse root extension ratio, indicating that 

th is region corresponds to changes in sample dimensions on stretching, w hilst 

maintaining a  constant volume. For the region o f  extension ratios between 1.0 and

1.6 (relates to 1 and 0.8 in term s o f  inverse root extension ratio) the absorbance 

remains roughly constant. We speculate that a small ordering effect is taking
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place. Mesogen alignment is improving due to the constraints imposed by the 

network and hence the sample volume will have to change to adopt these new 

conformations. Further studies would be needed to prove this unambiguously.
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Cyclic poivsiioxane systems.

These systems proved difficult to isolate in high purity. While the use o f  

Sephadex gel will separate monomers from cyclics, the choice o f  pore size 

appears to be critical. Theoretical models predicted such systems should 

exhibit liquid crystai behaviour due to the systems behaving essentially as a solid 

disc. We would therefore expect the systems with the shortest spacer group to 

exhibit the strongest discotic behaviour. Short spacer units will couple the m otion 

o f  the mesogens and rings by limiting the number o f  possible conformations. For the 

system n=3, no liquid crystal behaviour was observed. Cyclics incorporating side 

chains with longer spacer units ( n=5 , n=  10 ) did exhibit liquid crystal behaviour, 

although this is probably due to decoupling o f  the mesogen from the ring. In effect 

w e have a unit similar to linear material w ith low degrees o f  polymerisation. 

Doping o f  pure cyclic material w ith excess mesogen resulted in liquid crystal 

behaviour, however, its exact nature w as not fully determined. Further w ork on 

doped cyclic material could result in systems o f  extended thermal stability.

Linear poivsiioxane liquid crystals.

These m aterials generally behaved in accordance with published data. Short 

spacer units resulted in nematic types while the introduction o f a longer spacer unit
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resuited in smectic systems. Terminal groups with large dipole moments (i.e. CN) 

also yielded smectic behaviour. For materials with very long spacers ( n = 10), side 

chain crystallisation dominates and the observed liquid crystal behaviour is 

almost identical to the pure liquid crystal unit. Differences in phase 

behaviour between samples produced from commercially available poivsiioxane 

and laboratory synthesised material demonstrate the need for careful polymer 

characterisation. Further differences due to the number o f  polymer precipitations 

during purification, highlighted the need for a larger number o f  precipitations than 

was previously thought, the accepted value now  being 8 - 1 0  rather than 3.

Elastomeric material.

Short spacer m aterial (n=3) behaved as predicted by Finkelmann etal (48), in 

that glass transitions around 0°C were generally observed for m ethoxy 

terminated mesogens. Variations in cross linking density produced conflicting 

evidence. W e observed tw o effects. For high cross linking densities ( around 

30%), a memory effect w as observed. The liquid crystal structure is locked 

in on initial polymerisation and subsequently lost on heating. This is generally 

consistent w ith published data. For lower cross linking densities (around 

10-12%) slight increases in cross-linking appear to yield increases in the glass 

transition temperature. This conflicts with Finkelmann etal's work (98) on
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poiysiioxanes, while m atching the trends observed by Barnes etal (99) on 

hydrocarbon species. While some error can be apportioned to the DSC 

instrument, this does not explain the overall trend. Further work would be required 

to determine the exact nature o f  this effect, although the most likely reasons 

appear to be competition between the restriction o f  the backbone mobility and 

the reduction in mesogen density. Elastomers produced incorporating long chain 

spacers (n is larger than 10) generally exhibited side chain crystallisation as 

expected. Materials produced from cyclic siloxanes appeared to yield elastomeric 

materials, although these were brittle in nature. Synthesis o f  these proved very 

variable and the exact conditions required could not be determined. A lthough 

these elastomers were analogous to the C3CN and C 30M e linear polymers, their 

phase behaviour was remarkably different. Neither o f  the cyclics exhibited liquid 

crystal behaviour, while both demonstrated remarkably low glass transition 

temperatures, less than-100°C. Lack o f  liquid crystal behaviour w as probably 

due to the low mesogen density, around 25%, although this is generally taken as 

the lower limit for polymer substitution before mesogenic behaviour is observed. 

The increased backbone restriction probably restricts the conformational 

mobility o f  the mesogen, thus limiting their ability to adopt a  liquid crystal 

structure in such a dilute environment. Each sample exhibits tw o very low 

glass transitions , one due to the ring and the other due to the cross-linking unit.
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would imply that it may be possible, through combinations o f  different mesogens 

and/or larger rings, to produce liquid crystalline materials with very low glass 

transition temperatures. Investigations on sample deformation provided evidence 

o f enhanced order. Samples used already existed in the liquid crystal state. The 

application o f  force to the sample appeared to yield increased mesogen alignment 

up to extension ratios o f about 1.8. Further extensions produced observations 

consistent with simple variations in sample thickness.
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