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ABSTRACT

Recent advances in 1liquid crystal research have
included the synthesis of polymeric materials which
contain liquid crystalline moieties. The work presented
here concerns the study of the structure-property
relationships of a particular group of liquid
crystalline polymers in which the polymer backbone is
cyclic, with the mesogenic moieties attached as
side-chains.

We have observed mesogenic phases above room
temperature for materials comprising cyclic
poly(dimethylsiloxane) backbones with mesogenic moieties
attached by alkyl spacer units. Dielectric relaxations
have been observed in the mesophases of these materials
and the activation energies and extent of broadening of
the relaxations have been related to the physical
structure of the molecules

Theoretical studies have been undertaken by the use
of the Metropolis Monte Carlo technique and a mean field
calculation. Two models have been studied by the Monte
Carlo technique in the NVT ensemble. In the first, each
complete molecule was represented by a disc-like
interactions potential and a tendency for the molecules
to align in columns was revealed at low temperature and
high density. In the second model, each mesogenic unit
was represented separately, with the c¢yclic polymer
represented as a constraint on the relative motions of
the attached mesogens. A variety of liquid crystalline
phases, from discotic nematic to calamitic nematic, were
observed at low temperature as the coupling between the
side-chains and the backbones was adjusted. In the mean
field model energy terms were included for ring-ring
interactions, mesogen-mesogen interactions and the
coupling between +the mesogenic moieties and the
backbones. The uniaxial solution of this model also
showed a shift from calamitic nematic to discotic
nematic phases as the strength of the coupling was
increased.

Comparisons of the results of the models and the

pPhysical measurements are presented and suggestions for
future work are proposed.

ii



ACKNOWLEDGEMENTS

I would 1like to thank my supervisors at the
polytechnic, Dr. R.M. Wood and Dr. C.M. Care, and my
contact at the Royal Signals and Radar Establishment,
Dr. D. Mc Donnell, for helpful discussions throughout
the period of study. I should also 1like to thank
Dr. D.A. Dunmur of the Department of Chemistry at the
University of Sheffield for the helpful liquid crystal

research seminars which he organised.

I should like also to thank the Royal Signals and
Radar Establishment for the use of their laboratories
for the physical measurements and Dr. D.Mc Donnell and
staff for their assistance. I should also like to thank
the Chemistry Department of the polytechnic and the
Consortium fur Elekrochemische Industrie GMBH for the

provision of the physical samples.

Finally, I should 1like to thank the Science and
Engineering Research council for the award of computing
time on the CRAY X-MP/48 at the Atlas Centre of the
Rutherford Appleton Laboratory.

iii



ADVANCED STUDIES

As part of the course of study I attended the
undergraduate course on Polymer Industry in the
Chemistry Department of the polytechnic. In addition a
course on vector programming for the CRAY computer was
attended. A review of the literature relevant to the

studies is included in the first chapter of this thesis.

The following conferences were attended:

CCP5 Annual Meeting, UMIST, Manchester
January 1987.

International Conference on Liquid Crystal
Polymers, Bordeaux, France

July 1987.

CCP5 Annual Meeting, Birkbeck College, London
January 1988.

iv



CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CONTENTS

INTRODUCTION
Liquid Crystal Phases
Monte Carlo Simulations

The Mean Field Approximation

MEASUREMENTS
Introduction
Molecular Dimensions
Thermal and Optical Measurements
Dielectric Permittivities

Conclusions

SOFT-DISC MODEL
The Molecular Interaction Potential
Computing Details
Results

THE MULTI-MESOGEN RING MODEL
The Molecular Interaction Potential
Computing Details
Results
i. Simulations of Lone
Mesogens
ii. Simulations of the M.M.R.
Model

Conclusions

page

14
26

35
37
42
45
56

58

62

66

70

76

87

91
139



CHAPTER 5

CHAPTER 6

REFERENCES

A MEAN FIELD THEORY
Introduction
The Model
Results

Conclusions

DISCUSSION

Summary and Conclusions

Future Work

vi

141
142
147
153

154
162

165



CHAPTER 1 INTRODUCTION

The scientific study of liquid crystalline
behaviour started in the middle of the last century [1].
As early as 1837, the author Edgar Allen Poe remarked on
a liquid with anisotropic properties [2], while in 1888
Reinitzer [3] and Lehmann [4] were the first to observe
liquid crystalline behaviour in a pure substance. The
study and classification of liquid crystalline materials
continued through the twentieth century, often with just
a handful of devoted workers in the field. However, in
the 1960s and 1970s, there was a large expansion in
interest in these materials resulting in the development
of liquid crystal display devices, such as those which
are commonly used in digital watches and electronic
calculators. More recently, there has been much interest
in the synthesis of polymers which contain 1liquid
crystalline moieties, with particular interest in the
development of high tensile strength polymers and optical
data storage materials. The move towards polymerisation
has resulted in a wide variety of molecular structures

being synthesised and studied [5].

This thesis concerns the study of novel 1liquid
crystal systems based on cyclic poly(dimethylsiloxane)
backbones with mesogenic units attached as side chains
via alkyl spacers. The relationships between molecular
structure and physical properties have been investigated
by means of wvarious experimental and theoretical

techniques.



LIQUID CRYSTAL PHASES

Liquid crystalline phases may be observed for
certain substances between the crystalline solid and
isotropic liquid phases on a phase diagram [6,7]. These
phases are characterised by a strong anisotropy in some
of the properties of the liquid, which remains fluid. It
is because the 1liquid crystalline phase occupies a
position intermediate between so0lid and 1liquid phases
that it has acquired the name ’'mesophase’, and a material
which can exhibit such a phase is known as a ’'mesogen’.
A typical mesogen would have elongate rod-like molecules
or flattened disc-like molecules [8], and it is the
strongly anisotropic nature of the interaction between
these molecules which gives rise to the macroscopic
anisotropy of the fluid. A mesophase may be obtained by
the melting of a pure solid mesogen, which produces a
thermotropic mesophase, or by solution in a suitable
solvent which produces a lyotropic mesophase. The
materials studied in this project form thermotropic

mesophases.

There are several distinct thermotropic mesophases,
characterised by different types of anisotropic property,
and it is possible for a single substance to exhibit more
than one of these phases [9]. The commonly accepted

classification of thermotropic liquid crystals was first

proposed by Friedel [10] in 1922. Three classes of
mesophase were defiﬁed according to their symmetry
properties. These have been named the 'nematic’,
'cholesteric’ and ’smectic’ phases. However, recent

studies of 1liquid crystal structures have led to the
observation of other types of mesophase not included in

this classification [11].



The nematic mesophase is characterised by a high
degree of long range orientational order of the molecules
combined with the absence of 1long range translational
order, as shown schematically in figure 1.1. The
molecules of a nematic mesogen are often approximately
rod-shaped and contain a rigid core section, and although
the molecules may be polar the resulting macroscopic
phase does not exhibit any polarity, unlike a
ferro-magnetic structure, for example [7]. In the
nematic phase there 1is spontaneous ordering of the
molecules into approximate parallelism and the mean
orientational girection is described by a unit vector,

the director (n). This director often varies within the

material, but a uniformly aligned sample may be produced
by the application of an electric or magnetic field, or
by surface treatment of the container walls. For a
material with low viscosity, uniform alignment may occur
without the application of an external influence if the
material is left for a time at a suitable temperature
above the melting point and below the clearing point, Tc’
above which the material is isotropic. It is
conventional to reserve the use of the word ’'homogeneous’
to refer to a uniformly aligned sample, the director of
which is parallel to the plane of the microscope slide or
cell in which it is held for observation. The word
'homeotropic’ is used when the alignment is such that the

director is normal to the plane of the slide or cell.

A homogeneously aligned sample would be optically
uniaxial and strongly birefringent. The birefringence
gives rise to a colourful image when the sample is viewed
under crossed polarisers with a cryétallographic
microscope. In the case where the sample is not
uniformly aligned, defects in the surface of the slide or
cover slip cause localised ordering which results in an

overall pattern, or texture, related to the manner in
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Figure 1.1 A schematic representation of a nematic phase

of rod-like molecules.
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Figure 1.2 Some nematic mesogens. Transition
temperatures in Celsius. 'K’ - crystalline, ’'N’ -
nematic, 'I’ - isotropic. From de Jeu [7].



which the director varies within the material. Some
textures are characteristic of a specific mesophase and
so optical observations may be used as a first stage in

the classification of a mesogenic material [9,12].

The rigid core of a nematic molecule is often
provided by a closely coupled pair of benzene rings, as
can be seen in the structures of the molecules of typical

nematogens as shown in figure 1.2.

To enable a comparison between the extent of
alignment in different mesogenic systems, a quantitative
measure is needed to describe the degree of ordering. 1In
the nematic phase, it is usual to take the average of the
second order Legendre Polynomial function as such an

order parameter [13,14]:
S = <P,(cosbB.)> = <—L-(3cosze - 1) 1.1
2 i 2 i ’

where, Gi is the angle between the axis of the i-th

molecule and the system director, and the angled
brackets, ’<..>’, represent the thermal average over all
molecules. In the nematic phase, the molecules are as

likely to align anti-parallel as ©parallel to the
director, and so the order parameter needs to reflect
this by the choice of a function which has the following

symmetry:
f(Gi) = f(n-ei) 1.2

Hence, coszei is used in preference to cosei or ei'
Rather than simply using <coszei>, the order parameter is
constructed to take the wvalue unity for full parallel
alignment and zero for complete disorder. It also takes
the value -0.5 in the event that all the molecules lie in

the plane perpendicular to the director.



The order parameter may often be estimated from the
measured anisotropy of some physical property of the
liquid crystalline material [15-17]. The calculations
often require further measurements of the same physical
property in the isotropic 1liquid or single crystal
states, and some assumption about the symmetry of the

molecules is usual.

A schematic representation of the cholesteric phase
is given in figure 1.3. The phase is similar to the
nematic, but with a twist axis perpendicular to the
director. The molecules are optically active and the
pitch of the twist is temperature dependent, which has
led to the wuse of cholesteric mesogens in digital
thermometers. The name of the phase comes from the fact
that many derivatives of cholesterol exhibit this phase.
The chemical structures of two cholesteric mesogens are

given in figure 1.4.

It is found that a nematié phase may result from a
mixture of two cholesteric mesogens with opposite twist,
and it is also found that a nematic material may exhibit
a cholesteric phase on the addition of a little optically
active material. Hence, some workers prefer to think of
the cholesteric phase as simply a twisted form of the
nematic phase, referring to it as ’'chiral nematic’. In
this case, the true nematic phase is considered to be a

chiral nematic phase with infinite pitch.

The name ’'smectic’ is used to identify a range of
mesophases which are characterised by some positional
ordering of +the molecules into layers, as well as
orientational ordering of the elongated molecules. A
variety of smectic phases have been identified and

classified according to the relationships between layers
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Figure 1.3 Schematic diagram of a cholesteric phase.

The mesogens in a real cholesteric are not confined to

specific planes.

N-(p-ethoxybenzylidene)-p’-(B-methylbutyl)aniline

oty

cholesteryl chloride c1

Figure 1.4 The chemical structure of two cholesteric

compounds. From de Jeu [7].



and the orientational ordering. Two examples are the
smectic A phase, in which the molecules align with the
director normal to the planes, and the smectic C phase,
in which there is a tilt angle between the director and
the normal to the planes. These are shown schematically

in figure 1.5,

Using geometrical arguments, Herrmann [18] concluded
that there should be 18 distinct mesomorphic groups.
However, until the recent discovery of discotic and other
exotic phases, the limited classification according to

Friedel had been considered satisfactory.

The hexagonal stacking of disc-like mesogens was
first observed by Chandrasekhar et al. [19]. Disc-
shaped mesogens have since been observed to pack in a
variety of hexagonal columnar phases, known as discotic
phases, as well as adopting nematic ordering [8,20,21].
Examples of these phases are given in figure 1.6. In the
hexagonal discotic phase there is positional ordering in
the plane perpendicular to the columns, but within the

columns the discs are irregularly spaced.

Other 1liquid crystal phases have been suggested,
including the possibility of cubic symmetry [11].

More recently, mesogenic units have been
incorporated in polymers to give a range of liquid
crystal polymer structures ([5,22-25]. Liquid crystal
polymers are generally divided into two structural types,
the main-chain and side-chain structures, as shown in
figure 1.7. However, many alternative structures are
possible and some workers have even gone to the extreme
of synthesising molecules which resemble the heraldic

figure of their home town [26].
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mesogen, 'R’ represents an alkyl chain radical. From
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Figure 1.7 Some 1liquid crystal polymer structures:

a) main chain; b) side chain; c) and d) other variations.
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The effect of including mesogenic units in the main
chain of a polymer is to force the alignment of the

polymer chains and so produce extremely strong polymers
[27-29].

In the side-chain polymer system there is a conflict
between the aligning tendency of the mesogenic units and
the random coiling of the backbone polymer [22,30,31].
The mesogenic units are connected to the backbone by a
spacer unit which, if sufficiently flexible, may decouple
the ordering of the mesogens from the backbone polymer
conformations. In general, the conflict of properties
leads to the mesogenic units in a side-chain polymer
liquid crystal exhibiting a lower order parameter than
their monomeric counterparts. However, the high
viscosity of +these materials leads to +the mesogenic
phases of the polymer being more stable than those of the
monomer. Not only does the polymer exhibit mesogenic
behaviour over a wider range of temperatures, but also a
field induced alignment will persist after the field is
removed, and this property has led to the investigation
into the suitability of side-chain 1liquid crystal
polymers as long-term optical data storage materials
[32,33].

The general structure of the materials studied in
this project is shown in figure 1.8. Some of these new
materials were synthesised in the Chemistry Department of
the polytechnic [34] and others were provided by a West
German industrial consortium [35]. These materials
comprise cyclic poly(dimethylsiloxane) backbones with
side-chain mesogenic moieties attached via alkyl spacer
units. Molecules were synthesised with a range of
polymer ring sizes which may provide a variety of rigid
and flexible backbone conformations. Molecules were also

synthesised with different spacer lengths to alter the

12
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Samples were available with the following

combinations of repeat units:

X =4, vy = 4;
x =4, vy = 6;
x =5, y = 4;
x =6, ¥y = 4;
b. x =7, vy = 4,

Figure 1.8 The cyclic oligomer compounds studied:

a) general physical structure; b) chemical structure.
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degree of coupling between the backbone and the mesogenic
moieties. Compounds have only been synthesised with a
small number of repeat units in the backbone and so these
low molecular weight polymers may be referred to as

’oligomers’,

Two theoretical techniques, the mean field
approximation [{13,36] and a Monte Carlo method [37-42]
have been used in addition to experimental measurements
in order to explore features of these molecules
significant in the generation of 1liquid crystalline
structures. The behaviour of these materials would be
expected to be strongly dependent upon the nature of the
coupling between the mesogenic moieties and the polymer
ring backbone. A weak coupling should result in the
formation of a conventional, calamitic (rod-like) nematic
ordering of the mesogenic units. However, if the
coupling is strong, the ring backbone will dominate the
behaviour of the material. For example, if the mesogens
are rigidly attached to the rings in a radial splay

conformation, a discotic phase may be expected.

MONTE CARLO SIMULATIONS

A Monte Carlo technique [37-39,41] may be used to
calculate the thermal average, or expectation value, of
some thermodynamic property, A. In the canonical

ensemble, the expectation value would be:

HQ A exp(-E(R)/kyT) d@

<A> = 1.3
I exp(—E(Q)/kBT) dQ
Q

14



where E(Q) is the total system energy and Q represents
the full system coordinates, chosen as appropriate for
the system being modelled. For example, for a system of
N mobile, non-spherical molecules, Q would comprise three
momentum coordinates, three positional coordinates, three
orientational momentum coordinates and three
orientational position coordinates for each molecule,
making a 12N-fold phase space in total. For particles
which interact via @pair-wise ©potentials which are
independent of velocity we may separate the kinetic and

static contributions to the system energy and write:

N | N
E(Q) = z Ti + Z Vij 1.4
i i, (j<i)

where Ti is the kinetic energy of the i-th particle and
Vij is the pair interaction between the i-th and j-th

particles.

The kinetic terms will cancel in the integrals in
equation 1.3 if the thermodynamic property, A, is

independent of the momenta of the particles:

f A exp(-U(T)/kgT) d@
r
<A> = 1.5

I exp(—U(F)/kBT) dQ
r

where
N
u(r) = E: Vij 1.6
i, (j<i)

and T represents the 6N positional and orientational

coordinates of the system.

15



Owing to the large number of coordinates contained
in T , it would be impossible to calculate the integrals
for all but the simplest of systems. In a Monte Carlo
method, this problem is overcome by the generation'of
configurations of the system of N particles. The
expectation values of the configurational thermodynamic
variables of the system may then be obtained by the
weighted summation of the values of those same properties

measured in the individual configurations.

A crude method of solution would be to generate
configurations completely at random and weight them
according to the Boltzmann probability factor,
exp(—E(Q)/kBT). However, the Boltzmann probability
factor varies over many orders of magnitude and is
sharply ©peaked in the region of the equilibrium
configurations. Hence, most of the randomly generated
configurations would possess an infinitesimally small
weighting, making this summation method extremely

inefficient.

The algorithm derived by Metropolis et al. [40] uses
a technique known as ’'importance sampling’, where
configurations are generated with a bias towards those
near the maximum in the exponential terms in the

integrals in equation 1.5.

The configurations are generated in the Metropolis
" method by creating a Markov chain of successive random
alterations to the system of particles. The rules
governing the alterations to successive configurations
are chosen such that for an infinitely long Markov chain
the asymptotic distribution of configurations is a
canonical distribution at the specified temperature. The

expectation value of a configurational property may then

16



be obtained as a simple average of the property over the

configurations generated.

Several rules have been developed which generate
configurations with the required distributions. We adopt
the following method which is commonly used. A particle
is chosen at random and its coordinates altered in some
way. For example, it could be displaced by a small
distance in some randomly chosen direction or rotated
through a randomly determined angle. This attempted
alteration (known as a ’'move’) is either accepted or

rejected according to the following criteria:

i) the move is accepted if the resulting change

in the system energy, AU, is negative.

ii) if the change in energy is positive, then the
probability of the move being accepted is given by
the Boltzmann factor, exp(—AU/kBT), and a
comparison with a random number on the interval 0,1

determines whether the move is accepted.

The Metropolis Monte Carlo technique is usually very
expensive in terms of computing time. Many thousands of
attempted moves are required for the system to reach
equilibrium at a given temperature and many thousands
more are required to provide a valid canonical
distribution of configurations from which the various
properties may be measured. Care must be taken to ensure
that the system does not lock itself into a
non-equilibrium metastable state, from which it would be
very difficult for the system to escape. In this case,
the system may appear to have reached equilibrium and
erroneous results might be obtained. However, to run the
simulation on further to check whether true equilibrium

has been reached may be prohibitively expensive in terms

17



of computing time.

The starting configuration for a run must be chosen
carefully in order to minimise the 1likelihood of the
system locking in such a non-equilibrium state. To
ensure that the system reaches true thermal equilibrium,
it is often necessary to allow the simulation to continue
well after equilibrium appears to have been reached.
Also, different starting configurations may be used in
order to test whether the final equilibrium state is

independent of the initial configuration.

The Monte Carlo technique is especially
computationally intensive at very low temperatures, as
few moves are accepted and consequently new

configurations are generated inefficiently.

In many cases, including liquid crystal systems, the
amount of change involved in a Monte Carlo move is an
adjustable property and is often set so that the ratio of
accepted to rejected moves is approximate unity as it is
thought that this may allow the simulations to run most
efficiently [38].

Monte Carlo simulations are invariably performed on
systems of small numbers of molecules from a few tens to
a few thousands. Hence comparison with macroscopic
systems is not necessarily straightforward as there are
of the order of 1023 molecules in a small sample real
matter. Increasing the number of particles also
increases the computing time required for the simulation,
often as the square of the increase in the number of
particles. For example, if the number of particles is
doubled, we may expect a doubling in the computing time
required to calculate the change in system energy for
each attempted move. We might also expect to have to

18



attempt twice as many moves in order to reach thermal
equilibrium, giving a four-fold increase in computing

time altogether.

The usual way of mimicking a macroscopic system is
to perform the simulation on a box of molecules with
periodic boundary conditions such that the box is
surrounded by identical boxes of molecules on each side.
Interactions are then considered between one particle, i,
and the closest replica of particle j. This technique is
suitable for short range forces, where interactions with
the next closest j-th molecule would be negligible. For
molecules with longer range interactions, some adjustment
may need to be made to the simulation or to its results
in order to account for the omission of interactions
beyond the closest of a pair of molecules. Also, it
should be noted that these periodic boundary conditions

introduce an unrealistic repetitiveness into the system.

Provided thermal equilibrium has been reached, the
accuracy of a given measurement of a configurational
property may be estimated from its fluctuations over the
distribution of configurations. In fact, the
fluctuations in some of the configurational properties
may provide a means of calculating quantities such as the
specific heat capacity, which cannot be measured directly
from the configurations. However, such calculations are
prone to large errors [38,41] owing to the loss of
information about the partition function (the denominator
in equation 1.3). One proposed solﬁtion to the problem
has been to allow the volume of the box of particles to
be one of the adjustable coordinates of the system and to
perform the Monte Carlo simulation at constant pressure
[42]. Such a simulation contains more information than
the simulation in NVT canonical ensemble, allowing for

the reliable calculation of the specific heat capacity

19



and the enthalpy etc.

The Metropolis Monte Carlo technique has been used
to simulate a variety of physical systems [38,39],
including classical fluids, many-body quantum systems and
magnetic systems, as well as some simulations of

simplified liquid crystal systems.

Various workers have undertaken Monte Carlo
simulations of 1liquid crystalline systems in which the
centres of mass of the molecules are constrained to a
lattice [43,44,48-64]. This restriction results in a
substantial saving in computing time for several reasons:
moves involving the +translation of a molecule are
avoided; repulsive interactions, which would be necessary
to prevent a translationally mobile system from
collapsing, are no longer required; interactions can
easily be limited to nearest neighbours only, simplifying
the calculation of the change in energy involved in a
move. Also, further savings in computing time may be
made by restricting the orientations of the molecules to
a limited number of discrete orientations. Of course,
the restriction of the molecules to a lattice does place
substantial limitations on the interpretation of the
results. In particular, the fluid nature of any possible
phases has been removed, prohibiting the formation of
genuinely liquid phases. However, lattice models still
retain orientational information and a useful comparison
can be made between the results of these models and the
true nematic to isotropic transition which involves only
a change in the orientational ordering of the molecules.
In fact, the simplifications involved in the construction
of a lattice model may be used to advantage where the
Monte Carlo technique is used to explore some specific
restricted feature of liquid crystalline behaviour. For

example, a lattice simulation may be used to assess the

20



validity of an analytic theory, such as a mean field
approximation, in which no information is given

concerning the spatial packing of the molecules.

The early uses of lattice Monte Carlo simulations of
liquid crystalline systems were concerned with the
comparison of an exact Monte Carlo model with the mean
field approximation of Maier and Saupe. Lasher [43] and
Lebwohl and Lasher[44], 1972, located a nematic to
isotropic transition as a function of temperature in a
lattice system of particles interacting via a potential
which had the same orientational dependence as that used
by Maier and Saupe in their mean field treatment [45-47].
The molecules were confined to a simple cubic lattice and
energy calculations were restricted to nearest neighbour
interactions. In the earlier model, the molecules were
restricted to 12 discrete, evenly distributed,
orientations, but were allowed to adopt any angle in the
later model. In both cases a transition from the
>isotropic phase to the nematic was observed as the
temperature was reduced (the terms ’isotropic’ and
'nematic’ used here somewhat loosely to define only the
orientational ordering of the necessarily spatially
ordered phases). Differences between the results of the
two models were observed in the values of the transition
temperature, the latent heat, and the change in the order
parameter at the transition. In particular, the earlier,
discrete, model grossly over-predicted the change in the
order ©parameter at the transition. Quantitative
agreement with the Maier-Saupe theory was also poor,
although the change in the order parameter at transition
was in better agreement for the simulation which had full
orientational freedom. Further comparisons were made by
Jansen et. al. [48] who investigated the Lebwohl-Lasher
model more closely and confirmed that the observed

nematic to isotropic transition was first order, as

21



predicted by the Maier-Saupe theory.

Luckhurst and co-workers have employed lattice Monte
Carlo techniques in the systematic investigation of many
liquid crystalline properties [49-611. They have made
comparisons with mean field calculations and extended the
Lebwohl-Lasher model to include longer range interactions
[49,50]. Other investigations include the simulation of
systems of non-cylindrically symmetric molecules
molecules [51], mixtures of rod-like and plate-like
molecules [52], the effect of an external field on the
alignment of phases [53], and pretransitional effects
[54] (ie. the short-ranged ordering of nematogens in the
isotropic phase just above the transition temperature).
The transition from one smectic phase to another has also
been modelled [55]. In this case the fixed spatial
ordering of the lattice was an essential feature of the

rhases formed.

Another form of lattice liquid crystal model solved
by Monte Carlo technique is that in which 1long
semi-flexible molecules are represented by strings of
adjacent squares or cubes on a simple grid in 2- or 3-
dimensions. Attempted Monte Carlo moves are performed on
individual segments of the molecules, with the rejection
of moves that would involve the disintegration of an
individual molecule. Such simulations have been used in

the study of lyotropic mesogens in solution [65].

Hard repulsive interactions have often been used in
the Monte Carlo simulation of liquid crystalline systems
in which the molecules are given translational freedom
[66-76]. These hard interactions are defined by
assigning to the molecules some shape, such as that of a
cylinder, and associating with that shape a pair-wise

interaction in the form of a step function which becomes
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infinite when any part of the two molecules overlaps, and
which is =zero otherwise. Hence, in the Monte Carlo
simulation, any configuration generated in which any two
or more molecules overlap is always rejected, and any
configuration in which no molecules overlap is accepted.
Consequently, the Boltzmann probability factor takes only
values of one or zero, the result of which is that the
state of the system is independent of the temperature.
Phase transitions are, therefore, observed as a function
of the density, rather than as a function of the

temperature.,

Simulations of hard particles can be relatively
inexpensive in terms of computing time, provided a
suitably simple shape is chosen for the molecules. In a
large box of molecules most will not overlap and it is a
straight-forward task to eliminate most pairs of
molecules from the list of those which might possibly be
overlapping. Efficient computing routines can be devised
which are able to determine whether any of the remaining
pairs of molecules overlap. However, performing Monte
Carlo simulations on a system of anisometric molecules
which have translational as well as orientational freedom
is generally more expensive in terms of computing time
than the simulation of molecules on a 1lattice.
Consequently, simulations have been performed on systems
of a few hundreds of translationally mobile molecules in
comparison with the simulation of systems of several

thousands of molecules confined to a lattice.

Many simulations of liquid crystalline systems have
been performed using translationally mobile molecules of
a variety of hard repulsive interactions. Viellard-Baron
showed the transition from the crystalline solid to
nematic fluid at high density and from nematic to

isotropic fluid at lower density for a system of 170 hard
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ellipses in 2-dimensions [66]. However, the extension of
this work to hard spherocylinders (cylinders with
hemi-spherical ends) in 3-dimensions did not yield an
ordered liquid phase [67]. Since then other workers have
employed a variety of hard shapes [68-75]: thin discs,
oblate and prolate ellipsoids, cylinders and
spherocylinders; and ordered phases have been located in
3-dimensional simulations. Nematic ordering has been
observed for disc-like objects and studies on systems of
uniaxial ellipsoids have shown an approximate equivalence
in the phase behaviour of prolate and oblate ellipsoids

which share the same axial ratio [72].

The study of hard-core particles has contributed to
the debate as to the essential nature of the interaction
between molecules which form liquid crystalline phases
[74,771]. Short-range repulsive interactions have been
shown to be sufficient to produce various smectic and
nematic liquid crystalline phases ([75]. However, the
formation of a variety mesophases has also been
successfully predicted by models which include only
longer-ranged anisotropic forces, such as the various
lattice Monte Carlo models and the Maier-Saupe mean field
approximation. The debate as to whether the steric
packing of hard-core particles dominates the behaviour of

liquid crystalline materials is still active.

Relatively few Monte Carlo simulations have been
undertaken on 1liquid crystalline systems in which the
molecules, which have translational and orientational
mobility, interact via pair-potentials with long-range
attractive forces as well as short-range repulsive
forces. The reason for this is that of the computing
cost. The long-ranged attractive forces will necessitate
the calculation of the interactions beyond the first

shell of surrounding molecules. The pair interaction
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itself will also be somewhat involved, comprising
separation and orientational terms, However, the
benefits of these simulations is in the use of more
realistic interaction potentials and the retention of

both spatial and temperature dependent effects.

One simulation of this type was that of Luckhurst
and Romano [78] in which 256 +translationally and
orientationally free molecules interacted via a simple
anisotropic pair potential based on the Lennard-Jones
12-6 potential. The system exhibited a weak first order
transition from a nematic to an isotropic phase on

increasing the system temperature.

We have used the Metropolis Monte Carlo technique to
perform simulations on two models chosen to mimic the
expected behaviour of the cyclic oligomer liquid crystals
synthesised [79,80]. In both of these models, the
molecules are allowed translational and rotational
freedom and interact via anisotropic pair-potentials
based on the Lennard-Jones 12-6 potential, thus
comprising attractive and repulsive elements.
Translational mobility was required in order to allow the
possible formation of smectic or columnar discotic
mesophases which might be expected to result from the
complex nature of our molecules. In one of the models,
the whole liquid crystal molecules are represented as
soft disc entities and simulations of 50 discs in 2-D
have generated partially ordered configurations in which
the discs stack in columns. In the other model the
cyclic backbones and the attached mesogens are
represented individually and the simulations have
exhibited a variety of phases dependent wupon the
temperature, density and, of particular interest, the
strength of the coupling between the ring backbone and

the attached mesogénic units.
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Our application of the Monte Carlo method to the
study of low molecular weight polymeric liquid crystal
systems forms a natural progression from the study of
monomeric liquid crystal systems, in parallel with the
increased experimental interest in polymeric mesogens in

recent years [5].

Another simulation technique which may be used in
the study of fluids is that of ’molecular dynamics’ [41].
The concept is very simple: the classical equations of
motion for a box of N particles are repeatedly solved
until the system reaches equilibrium. The real time path
of the system is followed, unlike the artificial Markov
process used in the Monte Carlo technique. Although the
molecular dynamics approach has been applied to the study
of some liquid crystal situations [81], the breadth of
the application of this method has not been as wide as
that of the application of the Monte Carlo technique to
the study of liquid crystals [41]. Consequently, the
Monte Carlo method seemed the more appropriate choice for
our studies, providing us with a variety of documented
applications of the technique from which to draw our
inspiration and with which to make comparison. In
particular, we have been able to compare our results with
those of Luckhurst et.al. [78].

THE MEAN FIELD APPROXIMATION

The mean field approximation is a common first
order approximation in the study of many body systems and
has been applied to a variety liquid crystalline fluids
[28,29,31,36,45-47,82-87]. In common with the Monte
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Carlo method, the aim is +the calculation of the
expectation values of various properties of a system of
particles interacting via a pair-wise potential, as given
by equation 1.5, in which the kinetic energy dependence
has been removed. Unlike the Monte Carlo method, an
exact solution is not obtained, but rather the equation
is reduced to a soluble form by the applications of

successive averages and approximations.

Following the method outlined by P.J. Wojtowicz [13]
we note that the pair interaction between axially
symmetric molecules can be written as an expansion in

spherical harmonic functions:

wbere YLm are the standard spherical harmonic functions

and the angles are as defined in figure 1.9. For
molecules with a mirror symmetry plane perpendicular to
the rotational symmetry axis, the spherical harmonic

terms with odd values of L drop from the series.

This pair-potential can be reduced to a single
particle potential by the calculation of the potential
experienced by particle i under the influence of the mean
potential field created by the presence of all the other
particles. Three averaging processes are involved.
Firstly, the pair potential is averaged over all of the
orientations of the relative position vector, Eij = r, -
Ej’ with respect to the unique rotational symmetry axis
of molecule i. Some assumption as to the distribution of
these orientations is required, and that chosen here is

that the orientations of the Eij are evenly distributed
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axis of molecule j

axis of molecule i

Figure 1.9 Full angular description of a pair of axially

symmetric molecules.,
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on the surface of a sphere. This is a simplification of
the real distribution present in a nematic fluid, which
we might expect to possess cylindrical rather than
spherical symmetry. This averaging process removes all

terms in the interaction potential for which Li # Lj'

The second average of Vij is over all of +the
orientations of the unique symmetry axes of the
molecules j with respect to the unique axis of molecule
i, The potential resulting from these two orientational

averages is:

<<Vi(cose)>> = E: ULLm(r) <P > PL(cose) 1.8
L
where 0 is the angle between the unique axis of the
i-th molecule and the director of the system, n, and PL

are the usual Legendre polynomial functions.

Finally, an average is made over all values of the

separation of the two particles, Izijl to give the

following single particle potential:

Vi(cose) = E: UL <PL> PL(cose) 1.9
L
where the UL are given by
UL = }: < ULLm(r) > 1.10
L
and
- L
< ULLm(r) > = - J ULLm(r) nz(r) dr 1.11
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where n is the number density of the molecules and nz(r)
is the distribution function for the separation of pairs

"of molecules.

From equation 1.5 the expectation values of the PL
can be expressed in terms of the single particle

potential in equation 1.9:

I PL(cose) exp(-Vi(cose)/kBT) dcos®6

I exp(-vi(cose)/kBT) dcosf
1.12

If N values of L are used in the original expansion
of Vij in equation 1.7 then there will be N equations of
the form of equation 1.12 which will be self-consistent
in the PL and each of which will contain all the <PL>
within Vi(cose) in the integrals on the right hand side.
The simultaneous solution of these N equations at a given
temperature yields the values of <PL> at that
temperature. Hence the temperature dependence of the
<PL> can be obtained, the solution for <P2> being the
usual nematic order parameter. At some temperatures
several solutions for the <PL> are possible and in these
cases it 1is necessary to calculate the free energies
associated with these solutions to determine which one

corresponds to the equilibrium state.

The results of the classic mean field .theory of
Maier and Saupe [45-47] may be obtained by using in the
above derivation a pair-interaction potential which is
dependent upon only the second order spherical harmonic
functions. Only one self-consistent equation is obtained

in this case:
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f P,(cos6) exp(VP,(cos8)<P,>/k T) dcosé

j exp(va(cose)<Pz>/kBT) dcosf

where v is a measure of the strength of the

pair-interaction.

The numerical solution of this equation yields three

solutions for temperatures below T = 0.22284 v/kB and
just one solution, <P2> = 0, above this temperature.
These solutions are shown in figure 1.10, The solid

lines represent the equilibrium solutions and the dashed
lines the other solutions. The solution at 1low
temperature is that of an ordered nematic, the order
parameter of which, <P2>, drops discontinuously from a
value of 0.4289 to 0 at a critical temperature of TC =
0.22019 v/kB.

The success of the Maier-Saupe theory lies in its
prediction of a first-order transition from the nematic
phase to the isotropic. However, quantitative
comparisons with experimental measurements and Monte
Carlo calculations have shown some discrepancies. For
example, a comparison with a lattice model solved by the
Monte Carlo technique [36] suggests that the transition
temperature is too high in the Maier-Saupe theory by 17%
and the spontaneous order parameter, <P2>, at the
transition too large by 25%. The entropy change at the
transition was also found to be about a factor of four

too large.

There has been some debate as to the source of the
quantitative deficiencies of the theory [82-84]. It has
been suggested that the prediction of a first-order

transition is an artifact of the use of the mean field
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Figure 1.10 The solutions to the Maier-Saupe self
consistent equation. The equilibrium solution is

shown as a solid line.
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approximation in the solution of the Maier-Saupe model
[821. Others, however, have extended the theory by the
retention of the higher order, P4, terms in the expansion
of the pair potential and very good agreements with

experimental data has been achieved in some cases [83].

In brief, the major limitations of the mean field
approach in its application to the study of nematic
liquid crystals lies in the neglect of short-range
ordering and fluctuation effects. The loss of
short-range ordering places too much emphasis on the
longer range interactions, leading to an enhancement of
the nematic ordering and the stability of the ordered
phase. Pretransitional behaviour in the isotropic phase
just above the critical temperature is precluded by these

limitations of the mean field approximation.

Mean field calculations have been applied to a
variety of liquid crystal systems more complex than that
of rod-like nematogens. These have included the study of
binary mixtures of rods and plates [85,86] and several
polymer liquid crystal systems [28,29,31]. Of particular
interest to us has been the work of Wang and Warner in
which the uniaxial phases of comb-like liquid crystal
polymers have been explored [31]. Various nematic phases
were found in which either the polymer backbones or the
rod-like side groups or both together exhibited positive

ordering.

In parallel with our Monte Carlo models we have
developed a further model of c¢yclic 1liquid crystal
oligomers [87] which we have solve by means of a mean
field approximation. We define a mean field which
includes energy contributions for ring-ring, mesogen-
mesogen, and ring-mesogen interactions. The uniaxial

solution of this model has yielded two ordered phases: a
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conventional calamitic nematic in which the rod-like
mesogens align parallel and a discotic nematic in which
it is the rings which tend to align parallel. The
formation of these phases is dependent upon the relative
strengths of the three energy contributions, the number

of mesogens attached to a ring and temperature.
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CHAPTER 2 MEASUREMENTS

INTRODUCTION

We have studied a series of oligomers which are the
cyclic homologues of the linear side-chain liquid crystal
polymers synthesized by Finkelmann et al. [88,89]. The
chemical structure of these cyclic oligomers has been
given in figure 1.8 in chapter 1. These comprise cyclic
dimethylsiloxane backbones with biphenyl mesogenic units
attached as side chains via alkyl spacer units. Samples
of five liquid crystalline oligomers were available for
investigation which allowed us to study the effects of
altering the number of repeat units in the ring or the
length of the alkyl spacer. An estimate of the relative
sizes of the constituent parts of these oligomers has
been made by the use of molecular graphics software. The
over all phase behaviour of the materials was studied by
optical nmicroscopy and D.S.C. techniques, and the
dielectric behaviour of the samples was studied in the
temperature region of the mesogenic to isotropic phase

transition.

For convenience, the cyclic liquid crystal materials
will be referred to by abbreviations of the form DxCy

where ’'x’ corresponds to the number of repeat units in

the siloxane backbone and 'y’

is the number  of —CHz-
units in the alkyl spacer. Table 2.1 lists the available
materials using this notation, separating them into two
homologous series according to variation in the spacer

length and variation in the size of the cyclic backbone.
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D4C4

D4C6

D4C4
D5C4
D6C4

D7C4

— spacer variation

ring size variation

Table 2.1 The available cyclic liquid crystal oligomers,

separated into two homologous series.

BOND LENGTHS: Cc-C 1.54 A
C-C (benzene ring) 1.38 A
C=0 1.34 A
c-0 1.51 A
C-Si 1.87 A
Si-0 1.61 A
C-H 1.09 A
C-H (benzene ring) 1.02 A
BOND ANGLES: all Si, 0, C 109°
except:
Z° o
—C—0- 120 coplanar

-<::>' 120° coplanar

Table 2.2 Bond lengths and bond angles used in the

construction of the molecular graphics model of D4C4.

Bond lengths obtained from covalent radii [90,91].
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MOLECULAR DIMENSIONS

A molecular graphics package [90] has been employed
in the construction of a model of a possible molecular
structure of one of our oligomeric compounds, D4C4.
Estimates of the dimensions of the major elements of the
structure have been obtained from measurements made on

this graphical model.

The bond-lengths used in the construction of the
molecule were obtained from mean covalent bond radii
[90,91] and are listed in table 2.2 together with the
bond angles employed. In the construction of the
mesogenic moieties, the benzene rings and the carboxyl
group were constrained to be coplanar, with the 1-4 axes
of the benzene rings parallel [92-94]. Other torsion
angles about the bonds were chosen arbitrarily. The
resultant mesogen and four membered alkyl spacer are
shown in figure 2.1. A four membered ring of cyclic
poly(dimethylsiloxane) was constructed in which the
silicon atoms were fixed in one plane and the oxygen
atoms fixed in a second plane parallel to the first, thus
making a regular structure as shown in figure 2.2. Note
that for the four membered ring oligomer, four of the
Si—CH3 bonds radiate from the ring structure in the plane
of the Si atoms. The attachment of the alkyl spacers to
the siloxane ring via these splay bonds results in the

structure for the complete molecule given in figure 2.3.

Several points should be noted with regard to the
construction of this molecule. The method of
construction of this graphical model does not indicate
the synthesis route used in the manufacture of the
rhysical compounds [34,35]. The structure presented is

just one of many possible conformations lfor these
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Figure 2.1 Molecular graphics model of the mesogen and

four membered spacer: CH3-(CH2)3-006H4COOHCGH4)CH3.

Figure 2.2 Molecular graphics model of cyclic
(dimethylsiloxane)4.
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Figure 2.3 A molecular graphics construction of D4C4.
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compounds and no minimum energy calculations have been
involved in the construction. We expect +the physical
samples provided to contain a mixture of molecular
conformations with only a proportion of the alkyl spacers
attached to the siloxane rings in approximate splay
conformations. The actual molecules will exhibit some
flexibility, particularly in the alkyl spacer units and
in the polymer ring backbone, dependent upon the number
of repeat units in each [34]. We would expect the
benzene ring pair, coupled by the carboxyl group, to
provide an essentially rigid structure within the

mesogenic moieties [92-94].

However, the molecular graphic model as constructed
gives us insight into the interplay between the
constituent parts of the molecules and their relative
dimensions. If we consider as our simplified picture of
the molecules a planar ring, with rod-like mesogenic
units attached equidistant around the ring via spacer
units, then we can make measurements on our graphical
model to estimate the dimensions of the constituent parts
of our idealised molecule. The relevant dimensions are
the diameter of the central ring, the length of the
spacer units and the length and diameter of the rod-like
mesogens. The actual measurements made in three
dimensions on the molecular structure are shown in figure
2.4, Owing to the possibility of other molecular
conformations, these measurements should be treated as

approximate.

From these measurements it is seen that the shape of
the mesogenic part can be approximated to that of a
rectangular prism some 13.2 A long by 4.2 A wide with a
thickness of one atomic diameter, which we can take as
approximately 1.5 A, However, it is usual as a first

approximation to reduce the shape of a nematogen to that
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2R

Figure 2.4 The distances measured from the model of
D4C4.

MESOGEN ROD LENGTH 13.2 A
ROD DIAMETER 4,2 A
SPACER UNIT 4-MEMBERED 5.0 A
(length) 6-MEMBERED 7.5 A
RING DIAMETER 4-MEMBERED 5.6 A
5-MEMBERED 6.4 A
6-MEMBERED 7.1 A
7-MEMBERED 7.9 A

Table 2.3 Approximate lengths of the basic units of the

cyclic liquid crystal oligomers.
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of a cylinder. Such a cylindrical shape may be obtained
by the rotation of the lath-like mesogen about its long
axis. The length of the (CH2)4 spacer is 5 A, somewhat
larger than one third of the length of the mesogenic
unit. It is less clear how to define the diameter of the
oligomer ring, and two measurements have been made: one
the diameter of the circle of Si atoms and the other the
diameter of the larger circle which includes the first C
atoms of the flexible spacer when attached in a planar
radial conformation. However, it is known that in the
samples provided the spacer wunits will not all be
attached to the backbone via radial bonds and so the mean
of these two measurements, 5.6 A, is adopted as the

diameter of the idealised ring backbone.

Table 2.3 lists the approximate sizes the
constituents of the idealised molecules for all of the
compounds available. More involved calculations of the
radii of gyration of cyclic dimethylsiloxane polymers
have been undertaken [95,96], but these were for larger
rings than in our oligomers. However, comparison the
radius of gyration of an eight membered
poly(dimethylsiloxane) ring is quoted as 4.5 A, which
compares well with the value of 4.4 A as calculated by
our method. It would be expected that our calculations
would provide a reasonable estimate of the ring diameters
for the smaller rings in which the number of available

conformations is limited.

THERMAL AND OPTICAL MEASUREMENTS

Phase transition temperatures were measured by

direct scanning calorimetry using a Mettler TA3000
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scanner. These measurements were supported by optical
observations using a ©polarising microscope with a
hot-stage which had a temperature resolution of 0.1°

Celsius.

The glass transition temperatures, Tg’ and the
clearing temperatures, Tc’ are given in table 2.4 for the
available materials. These were measured by D.S.C.
calibration, cooling at a rate of 10°C/min from the
isotropic phase. The clearing temperatures were
confirmed by optical observation and for all of the
materials the optical characteristics below Tc suggested
possible nematic behaviour. In general the glass
transition temperatures are about 10°C and the clearing
temperatures about 90°C. In the case of D4C4,
crystallites were seen to persist at temperatures above
the clearing of the bulk of the fluid and to undergo a
monotropic transition into the isotropic phase at 107°C.
The density of the crystallites was increased when the
sample was annealed for several hours at 50°C before
heating beyond TC on the optical stage. On cooling, a
birefringent phase was not produced until the temperature
dropped below 84°C. Repeated D.S.C. scans of D4C6 at
5°C/min indicated the formation of possibly crystalline
forms at about 50 C for this material also. However,
this form did not persist beyond the clearing
temperature. Although further detailed examination of
the phase behaviour of the other materials was not
possible, these also may exhibit more than one phase
between Tg and Tc' However, owing to the high viscosity
of the materials, the exact form, or mixture of forms,
would largely be dependent upon the thermal history of
the sample.
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compound T, (C) TC(OC)

g
D4cC4 8 84, 107 (see text)
D4C6 5 93
D5C4 6 83
D6C4 8 93
D7C4 13 92

Table 2.4 Glass transition temperature, Tg’ and clearing

temperature, Tc’ of the cyclic oligomers.

compound activation energy (eV)
D4cC4 1.818
D4cCceé 1.572
D5C4 1.677
D6C4 1.740
D7C4 1.673

Table 2.5 Arrhenius activation energies of the cyclic

oligomers.
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DIELECTRIC PERMITTIVITIES

Dielectric measurements were made using glass
capacitance cells in a parallel plate configuration with
a grounded guard-ring. The plates were kept 50 um apart
using mylar spacers and had an active area of one square
centimetre. Electrical connections to the sample -were
achieved by an indium tin oxide coating and the plates.
were surface treated with Cr-complex to favour
homeotropic alignment of the liquid crystals in the
absence of an external aligning field. The cells were
calibrated with air before filling with the oligomers by
capillary action at a temperature a few degrees above the

transition to the isotropic phase.

The capacitances of the filled cells were measured
over the frequency range of 50Hz to 1MHz using a Hewlett
Packard self balancing bridge HP4129A. The cells were
held in a shielded holder and heated by a hot air
temperature controller systemn. Homeotropic and
homogeneous alignment were induced by a magnetic field of
1.5 T provided by a Newport electro-magnet with 7"

diameter poles.

The method of measurement involved heating the
filled cell into the isotropic phase and then applying
the magnetic field to induce homeotropic alignment as the
cell was cooled in stages into the liquid crystalline
phase. Capacitances were measured over ‘the full
frequency range at each temperature. It was not
generally possible to make repeatable measurements below
50° Celsius as it was found that the capacitances drifted
indefinitely, probably due to the high viscosity of the
materials and the possible formation of other crystalline

forms at these temperatures.
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After measurements had been taken at the 1lowest
temperature the cell was heated again into the isotropic
phase, turned through 90° to give homogeneous alignment,
and measurements were again made as the cell was cooled
in stages. Good alignment in the 1liquid crystalline
phases was confirmed by the fact that the relaxations
observed in the dielectric permittivities for homeotropic
(parallel) alignment were not observed in the

permittivities for homogeneous (perpendicular) alignment.

The measurements obtained from the bridge were the
capacitance, C, and the quality factor, Q, of the
equivalent parallel resistor-capacitor circuit. The real
component of the complex dielectric permittivity, €', was

obtained from:

where CO was the capacitance of the cell when filled with

air.

The resistive part of the circuit is related to the
imaginary component of the complex dielectric
permittivity, known as the dielectric loss, €", which was
calculated from:

E,
E" = 2'2
Q

The parallel dielectric permittivities of D4C4 are
given in figure 2.5 as a function of frequency. A single
clear relaxation process is observed within the frequency
and temperature ranges of the measurements.

Corresponding peaks in the parallel dielectric loss are
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against frequency for the compound D4C4.
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also observed and are shown separately in the same
figure. The perpendicular dielectric permittivities of
D4C4 shown in figure 2.6 do not exhibit relaxations over
the same range of frequency and temperature as those for
the parallel permittivities, and neither are there any
peaks in the perpendicular dielectric loss. However,
there is some fall off of the perpendicular permittivity
at high frequency which may be the result of another
relaxation process or ©possibly due to the finite
resistance of +the tin oxide conductor. This high
frequency fall off is also observed in the parallel
permittivity. The material is clearly dielectrically
negative (ie. eﬁ - si< 0), resulting from the large
transverse component of the dipole in the mesogenic side
chains [97]. The lack of a dominant longitudinal dipole
in the mesogenic units prevented the simple estimation of
the nematic order parameter from these dielectric

measurements [17].

The existence of +the relaxations only in the
parallel permittivities confirms that good alignment was
achieved for both orientations and suggests the

6-relaxation due to end to end motions of the mesogens.

The dielectric permittivities for the other
materials showed qualitatively similar behaviour to that

of D4cC4,
The Debye theory of dielectric relaxation predicts a

single relaxation frequency for dielectric material

[98,99b]. The complex dielectric permittivity is given
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as:

where 8& is the dielectric permittivity at infinitely
high frequency and €é is the static dielectric
permittivity. T, is the relaxation time of the material

0
and w is the angular frequency of the measurement.

From equation 2.3 it can be shown that the plot of
the dielectric loss against the real part of the complex
dielectric permittivity is that of a semi-circle. The
Debye theory has been extend by Cole and Cole to allow
for a spread of relaxation times, in which case the

equation for the dielectric permittivity becomes:

1
E(w) - € = (€2 - ¢€’) — 2.4
® S 14 (qer )l
0
where Ty is here the mean relaxation time. The plot of

€" against €’ is now part of a semi-circle, the centre of
which is depressed below the €"=0 axis. The parameter «
is related to the amount by which the semi-circle is
depressed below the axis and is a measure of the
broadening of the relaxation. The minimum value of « is
zero, which corresponds to a single relaxation time, and

the maximum value is unity.

The Cole-Cole plots for the parallel permittivities
of all of the materials were nearly semi-circular with
the centre depressed below the €’- axis, corresponding to
broadened Debye-like relaxations. As an example, the

Cole-Cole plot of D4C4 for 70°C is given in figure 2.7.
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Cole~-Cole plots were constructed for all suitable
relaxations of the materials and the broadening
parameter, &, calculated from the depression of the
semi-circle. These Cole-Cole parameters are plotted as a
function of relaxation frequency in figure 2.8. The
broadening is largest for D4C4, the molecule with the
smallest ring and the shortest spacer, averaging
oa s 0,26, For this material there is an apparent trend
in which « diminishes as the relaxation frequency is
increased. However, for the other materials, the « are
scattered and show no clear trends. For D4C6 the average
broadening parameter is a« & 0.21, 0.05 lower than that
for D4C4., It would appear that the effect of lengthening
the spacer by two _(CHZ)_ units 1is to increase the
decoupling of the mesogenic units from the broadening
effect of the ring backbone. The reduction in the « is
even more pronounced as the number of repeat units in the
ring is increased. The average of a« for D5C4, D6C4 and
D7C4 is about 0.18.

Another method of estimating the broadening of
relaxation times was developed by Fuoss and Kirkwood,
whose relation is [99b]:

cosh_1

(€ max/E ) = B ln(f/fo) 2.5
where e“max is the peak value of the dielectric loss and
fo is the corresponding mean frequency of the relaxation.

The Fuoss-Kirkwood coefficient, B, can be calculated from

the slope of the curve cosh—l(s"max/e") against
In(f). Such curves are shown in figure 2.9 for D4C4.
The coefficient takes the value B = 1 for a pure Debye

relaxation of a single frequency and lower values for
broadened relaxations. The P were calculated for all the
materials for all suitable loss peaks and figure 2.10

shows against fo. Again, the largest broadening occurs
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for D4C4, for which B ® .60 is typical. The addition of
two alkyl units to the spacers results in an increase in
B to about 0.61 for D4C6. A more marked increase in B of
approximately 0.12 is observed to correspond to an
increase 1in the number of repeat units in the ring
backbone. The average value for D5C4, D6C4 and D7C4 is B
s 0.72.

Relaxation processes may also be modelled by a
system with two energy states [99a] in which the mean
relaxation frequency, fO’ is related to the potential

energy barrier, AW, separating the two states:

fO = A exp(—AW/kBT) 2.6

where A is some constant. A measure of the activation
energy, AW, can be therefore be obtained from the slope
of the plot of 1ln f0

an Arrhenius plot. Figure 2.11 gives the Arrhenius plot

against 1/T; such a plot is known as

for the relaxations in the homologous series of molecules
of increasing ring size. There is a linear dependence of
the relaxation frequencies on the inverse temperature,
with a slight curvature in D4C4 at high temperature as
the isotropic phase is approached. The slope of the
linear part of the D4C4 plot is clearly greater than
that of the molecules with larger rings, and the
activation energies as calculated from the slopes are
given in table 2.5. There is clearly a general reduction
in the activation energy as the size of the polymer ring
increases. This could be explained by a decrease in the
rigidity of the ring as the number of repeat units 1is
increased resulting in the ring playing a less dominant
part in the relaxation processes. The Arrhenius plots
for the homologous series with the spacer length
increasing are given in figure 2.12. Again a linear

relation is observed and the slope for D4C4 1is larger
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than that for D4C6. The corresponding activation
energies are given in table 2.5. The decoupling of the
mesogenic unit from the ring by the lengthened spacer
results in a substantial decrease in the activation

energy for D4C6 when compared to D4C4.

As the polymer ring size or alkyl spacer length is
increased the spread in the relaxation times becomes
narrower. This effect is more marked for changes in ring
size. Conversely, the decrease in the activation energy
is larger for the increase in spacer length than for the
increase in ring size. The rigidity of the alkly spacer
makes the dominant contribution to the potential barrier
associated with the relaxation of the rod-like mesogenic
units. However, it is the polymer ring environment which

mostly affects the broadening mechanism.

CONCLUSIONS

A molecular graphic representation of the compound
D4C4 has been constructed and from which the approximate
dimensions of the molecular building blocks of these
materials has been measured. We have shown that the side
chains may be attached to a four membered
poly(dimethylsiloxane) ring by means of radially splay
bonds although in the physical samples supplied we expect
a variety of bond angles. However, we suggest that it
should be'possible to synthesise a molecule with short
alkyl spacers in which the mesogens adopt a fairly rigid
planar splay conformation. Such a material might be

expected to exhibit discotic mesogenic behaviour.

The five cyclic oiigomers examined exhibit one or
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more mesophases between the glass transition temperature
and the clearing temperature. Two of the compounds, D4C4
and D4C6, have been shown to exist in at least two forms
in the 1liquid phase below their respective clearing
temperatures and it is likely that the other compounds
may also exhibit more than one birefringent phase under
normal laboratory conditions. From optical observations
it is suggested that the phase dominant just below the
clearing temperature is nematic for all of the materials,
although this would need to be confirmed by, for example,

X-ray diffraction.

Dielectric studies have revealed a clear relaxation
in the parallel component of the dielectric permittivity
present in the temperature range 50°C to 100°C for all of
the samples. This relaxation is not pure Debye, but is
broadened and the amount of ©broadening has been
quantified in terms of the Cole-Cole parameter, o, and
the Fuoss-Kirkwood coefficient, B. The broadening 1is
most pronounced for the compound whose molecules have the
smallest ring backbone and the shortest length of alkyl
spacer between +the backbone and the mesogenic units,
namely D4C4. From Arrhenius plots, activation energies
have been calculated for the relaxations and D4C4 has the
highest activation energy. The activation energy is
sensitive to the length of the alkyl spacer unit, the
molecule with the longer spacer exhibiting a lower
activation energy, although the size of the «cyclic
backbone also affects +the activation energy of the

relaxation.
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CHAPTER 3 SOFT DISC MODEL

THE MOLECULAR INTERACTION POTENTIAL

This model was developed to investigate by
Metropolis Monte Carlo simulation the properties of a
system of <cyclic 1liquid crystal oligomer molecules

represented by a simple intermolecular potential.

In this model, each complex, multi-component,
oligomeric liquid crystal molecule is represented as a
single entity by a pair interaction potential. A
spherical Lennard-Jones 12-6 potential is used to model
the cyclic polymer backbone and the average effect of
splay conformations of the attached mesogenic moieties
is provided by the addition of a ring of softer potential
in the form of an angular dependent r-9 term. This gives

an essentially disc-like object as shown in figure 3.1.

The interaction between rod-like liquid crystal
molecules is commonly represehted as an intermolecular
potential which depends solely upon the se<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>