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Abstract

Defects usually have a very large influence on the semiconductor material properties and hence on 

fabricated electronic devices. The nature and properties of defects in semiconducting materials can 

be investigated by applying electrical characterization techniques such as thermal admittance 

spectroscopy (TAS), deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS 

measurements. This dissertation presents the electrical characterisation of two different wide 

bandgap semiconducting materials (polycrystalline diamond and GaN) which have both recently 

attracted a great deal of attention because of their potential applications in the fields of power 

electronics and optoelectronics. Raman spectroscopy, I-V  and C-V measurements were carried out 

as supporting experiments for the above investigations.

The first part of this work focuses on studying the effect of B concentration on the electronic states 

in polycrystalline diamond thin films grown on silicon by the hot filament chemical vapour 

deposition method. A combination of high-resolution LDLTS and direct-capture cross-section 

measurements was used to investigate whether the deep electronic states present in the layers 

originated from point or extended defects. There was good agreement between data on deep 

electronic levels obtained from DLTS and TAS experiments. A number of hole traps have been 

detected; the majority of these levels show an unusual dependence of the DLTS signal on the fill 

pulse duration which is interpreted as possibly the levels are part of extended defects within the 

grain boundaries. In contrast, a defect level found in a more highly doped film, with an activation 

energy of -0.37 eV, exhibited behaviour characteristic of an isolated point defect, which we 

attribute to B-related centres in the bulk diamond, away from the dislocations.

The second part of this thesis presents electrical measurements carried out at temperatures up to 

450 K in order to study the electronic states associated with Mg in Mg-doped GaN films grown on 

sapphire by metalorganic vapour phase epitaxy, and to determine how these are affected by the 

threading dislocation density (TDD). Two different buffer layer schemes between the film and the 

sapphire substrate were used, giving rise to different TDDs in the GaN. Admittance spectroscopy 

of the films finds a single impurity-related acceptor level. It is observed in theses experiments that 

admittance spectroscopy detects no traps that can be attributed to extended defects, despite the fact 

that the dislocations are well-known to be active recombination centres. This unexpected finding 

is discussed in detail.

VII
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Chapter 1: Introduction

1. Introduction

1.1 Overview

In 1952, Hall presented the first germanium based power device with the highest break­

down voltage and switching capabilities [1], and since that time the semiconductor 

industry has been continuously developing. Germanium was the preferred semiconduc­

tor material until the end of the 1950's when silicon started to replace germanium, 

having superior electrical properties and offering the best native oxide (Si0 2 ) among all 

known semiconductors. The ability to form a thin native oxide layer was one of the 

primary factors which led silicon to becoming the most preferred semiconductor. This 

layer can serve as an electrical insulator, a barrier material during implanta­

tion/diffusion, as an important layer in the MOS device structures, or as an interlayer 

dielectric in multichip modules.

For many decades, semiconducting silicon has dominated the electronics industry; it has 

been widely studied and understood, also techniques have been developed to control and 

enhance its features. Nowadays, the vast majority of the fabricated semiconductor 

devices require the implementation of silicon. Remarkable technological achievements 

include high frequency operations, the fabrication of silicon based power devices, and 

MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). Silicon nanostruc­

tures are an increasingly important component of many devices. MOSFETs suffer from 

significant limitations due to the high on-state resistance induced by the increase in the 

off-state performance, giving rise to overall losses [2]. In addition, due to its small 

bandgap (1.12 eV), low carrier mobility and relatively poor thermal conductivity, silicon 

may have reached its maximum potential and therefore be incapable of meeting the 

increasing demands of the electronics industry. These limitations are indicative that 

different materials are necessary for future generations of electronic devices, particularly 

for power electronics, RF, optoelectronics and lasers that cover a wider range of the 

electromagnetic spectrum.
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Chapter 1: Introduction

Wide bandgap (WBG) materials have recently attracted a great deal of attention because 

of their applications in efficient light-emitting devices (LEDs) and potential for use in 

high-power, high voltage, high-temperature and high-frequency electronic operations. 

Silicon carbide (SiC), gallium nitride (GaN), and diamond are amongst the WBG 

semiconductors that have already started to be investigated for power and optical applica­

tions [3-5]. However, these materials have to be thoroughly investigated, bottlenecks in 

the development and fabrication of the desired electronic devices have to be solved, and 

much work is required in order to develop the necessary techniques to control the 

properties of these semiconducting materials. Furthermore, the ever growing require­

ments for downscaling of device dimensions gives rise to complicated physical 

phenomena. As scaling increases, the presence of defects in the semiconductor becomes 

increasingly detrimental to the device performance and a vast amount of research has 

been performed to identify and eliminate them or control their behaviour. In addition to 

the study of defects, investigation of novel semiconducting materials has increased 

during the last few decades in order to provide an alternative that can have sufficiently 

good properties to one day replace the silicon technology. A wide range of experimental 

techniques have been developed to ensure adequate information about the properties of 

these defects can be obtained and is subsequently used in order to produce more effi­

cient devices.

The present work investigates the electrical properties of two WBG materials: GaN and 

semiconducting diamond. Electrical characterisation of defects was performed using 

suitable techniques for this purpose, namely high resolution Laplace Deep Level Tran­

sient Spectroscopy (LDLTS) and Thermal Admittance Spectroscopy (TAS).

1.2 Aim and motivation of this work

In this research the existence of deep traps is investigated in two different semiconduc­

tor systems; B-doped polycrystalline diamond and Mg doped GaN epitaxial layers. 

These materials have huge potential for different applications, as briefly discussed next.

2



Chapter 1: Introduction

The first aim of this work was to determine the effect of B concentration on the elec­

tronic states in polycrystalline diamond thin films grown on silicon by the HF-CVD (hot 

filament chemical vapour deposition) method. The second was to study the electronic 

states associated with Mg doping in GaN films grown by MOVPE (metalorganic vapour 

phase epitaxy) on sapphire substrates, and to determine how these are affected by 

differing threading dislocation densities (TDDs).

The main focus of this research is to investigate the electrical properties of defects in 

both semiconductors, as the processes that occur at deep levels within the bangap of 

either of the mentioned materials can limit the performance and service lifetime of 

devices made from them. Despite many years of diamond research, little is known about 

native and extrinsic defects in CVD polycrystalline diamond films. The work reported in 

the first part of this thesis is aimed to help understanding B-related defects in CVD 

diamond grown on silicon substrates, also enhance scientific knowledge and assist in the 

future study and implementation of similar structures. The second part of this thesis is 

aimed to provide useful information about the interaction of Mg dopants with TDDs in 

GaN. The interaction of p -type dopants in GaN and the high level of dislocation density 

in the material (due to the lack of available lattice matched substrates) are key bottle­

necks in the development of GaN-based devices. Some of the defect states are non- 

radiative recombination centres and cannot be observed by optical techniques. The 

application of sensitive electrical characterisation tools such as admittance spectroscopy 

and high resolution Laplace DLTS has enabled the extraction of new interesting data on 

the defect states found in these materials.

1.3 Properties of specific wide bandgap materials: GaN and diamond

The predicted physical properties of WBG semiconductors such as SiC, GaN and 

diamond indicate that those materials have outstanding electrical properties and could 

introduce disruptive technology in to the semiconductor industry and eventually replace 

silicon technology. Table 1.1 compares some of the physical characteristics of these 

semiconductors to Si and gallium arsenide (GaAs).

3
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Knowledge of crystal structure and lattice constant values are important in determining 

some of the crystal's physical and electrical properties. Semiconductor materials such as 

silicon and diamond have cubic structure, whereas compound semiconductors such as 

GaAs and GaN can have more than one crystal structure; can be either cubic or hexago­

nal (wurzite). SiC can be cubic or one of several different hexagonal crystal structures. 

The cubic crystals are characterized only by the lattice constant parameter (a), while the 

hexagonal structures are characterized in the hexagonal plane by a lattice constant and 

by the distance between the hexagonal planes (c), as tabulated in Table 1.1.

Table 1.1 Physical properties of different semiconductors [6].

Property Si GaAs 6H-SiC* 4H-SiC* GaN Diamond

Bandgap (eV) 1.12 1.43 3.03 3.26 3.45 5.54

Dielectric constant, sr 11.9 13.1 9.66 10.1 9 5.5

Electric breakdown field 
(kV cm 1) 300 400 2500 2200 2000 10000

Electron mobility 
( cm2.V V ) 1400 8500 500 1000 1250 2200

Hole mobility (cm^V'^s1) 450 400 101 115 850 850

Thermal conductivity 
( W W .K 1) 1.5 0.46 4.9 4.9 1.3 22

Saturated electron drift 
velocity (xlO7 cm.s-1) 1 1 2 2 2.2 2.7

Crystal structure Cubic Cubic Wurtzite Wurtzite Wurtzite Cubic

Lattice Constant at
5.43 5.65 a=3.08 a=3.08 a=3.189 3.56300 K (A) c= 15.11 c= 15.11 c=5.185

1

6H-SiC and 4H-SiC are Silicon Carbide polytypes. 4H-SiC wafers exhibit higher mobilities.

One of the major limitations of Si is higher temperature operation, since at room tem­

perature the intrinsic carrier concentration of Si is about 1010 cm'3, and it rapidly

4



Chapter 1: Introduction

increases with increasing temperature. It is the most temperature-dependent of the above 

mentioned materials due to its small bandgap. At elevated temperatures (>150°C) Si 

based devices will tend to behave more as an intrinsic semiconductor, and the designed 

doping will have no effect on the properties of the material as the Fermi level will be at 

a comparable position in the bandgap to the intrinsic level. In contrast, WBG materials 

such as diamond have extremely low intrinsic carrier concentrations even at high 

temperatures, hence should be able to maintain their electrical properties, preventing 

device failure. This makes diamond a better choice for devices to be used in high-power 

systems, transportation, defence, and space applications.

Another important aspect of device operation is the leakage current of rectifying con­

tacts; for example, in Schottky contacts the current transport mechanism depends on the 

barrier height at the metal-semiconductor interface. The barrier height is partially related 

to the bandgap of the material, and its value can be as high as three quarters of the 

bandgap depending on the work function of the metal used. For WBG semiconductors 

the barrier height is high, which limits the thermionic emission related leakage currents. 

Table 1.1 illustrates that GaN and diamond have higher carrier mobility than Si, how­

ever at elevated temperatures mobility decreases due to phonon scattering, reducing the 

current through the device, therefore materials with higher mobilities may be more 

suitable for higher temperature applications. The carrier mobility is directly proportional 

to the drift velocity of carriers; as in principle the carriers in a semiconductor will move 

under the influence of a small electric field, with a drift velocity in addition to their 

thermal velocity. However, as the electric field becomes larger, the drift velocity in­

creases less rapidly and finally approaches a saturation drift velocity [6]. In WBG 

semiconductors, saturated drift velocities are more than twice as large as that of silicon. 

Therefore, WBG materials are expected to yield higher frequency switching capabilities 

than silicon based devices, because the saturated drift velocity of a semiconductor 

material is directly proportional to the high-frequency switching capability.

WBG semiconductors have higher electric breakdown field than Si or GaAs, which is 

required for manufacturing of devices with high breakdown voltages, and hence can be

5



Chapter 1: Introduction

useful for the fabrication of MOSFETs and Schottky diodes with high voltage rating. 

Also higher doping densities can be used, which entails that the drift region of power 

devices can be made thinner and with lower resistance.

1.4 Applications of GaN

Because of the unique material properties, as discussed above, GaN-based devices are 

promising not only as high-speed devices, but also as high-temperature and high-voltage 

devices suitable for operating in chemically hostile environments. Furthermore, group 

III nitride materials, including GaN, indium nitride (InN), and aluminum nitride (AIN) 

have attracted a great deal of attention because of their wide applicability to optoelec­

tronic devices such as LEDs. Figure 1.1 illustrates that GaN-based material systems can 

be tuned to cover a wide range of wavelengths, from red to UV (650 to 200 nm) by 

alloying with AIN and InN.

200

300 S

if}
400 J

<U
500 |
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Lattice constant a() (A)

Figure 1.1 Bandgap vs. lattice constant of lll-Nitride semiconductors [7]
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Chapter 1: Introduction

Telecom Electronics
♦AIGaN HEMT

Opto Electronics
♦ UV LED
♦ Blue LED
♦ Green LED

Defense Electronics
♦AIGaN HEMT 
♦InGaN HEMT

Power Electronics
♦ HBT (Heterojunction Bipolar Transistors)
♦ FET (Field Effect Transistors)
♦ SBD (Schottky Barrier Diodes)

Figure 1.2 Applications of GaN-based semiconductors [9]

Ongoing technological developments have resulted in crack-free GaN surfaces, the 

discovery of a p-type dopant for GaN and eventually the fabrication of p-n homo­

junction green and blue LEDs. This has now opened up new opportunities for general 

white light illumination systems [8], as introducing blue LEDs fills the missing element 

of RGB (red-green-blue) primary colours. Figure 1.2 shows a wide range of applications 

for devices fabricated from GaN or Ill-nitride compounds, encompassing violet laser 

diodes, UV detectors, and High Electron Mobility Transistors (HEMTs) which are the

7



Chapter 1: Introduction

next generation of RF power transistor technology that offers the unique combination of 

higher power, higher efficiency and wide bandwidth.

Nowadays, GaN-based violet laser diodes (emitting 405 nm radiation) are used to read 

the Blu-ray Discs which can hold about five times the amount of information that can be 

stored on a DVD. GaN also has great potential as a spintronics material when doped 

with a suitable transition metal such as manganese.

1.5 Applications of semiconducting diamond

Even though diamond still in its infancy as a semiconductor material; diamond devices 

have been made and tested [10]. Devices include: p -n  diodes, UV emitting p -n  diodes, 

p -i-n  diodes, various types of radiation detectors, high voltage Schottky diodes and 

photoconductive or electron beam triggered switches. Also there has been a large focus 

on the development of diamond devices for RF applications; this is driven by experi­

mental efforts [11-14] in investigating unipolar devices, such as MISFETs (metal- 

insulator-semiconductor field effect transistor), MESFETs (metal epitaxial semiconduc­

tor field effect transistor) and JFETs (junction field effect transistor).

Only H-diamond has a stable negative electron affinity surface; the bulk conduction 

band lies above the vacuum level, and hence conduction band electrons are readily 

emitted. This has attracted interest in investigating the possibility of constructing a 

negative electron affinity diamond vacuum collector transistor which is expected to have 

exceptional high frequency and temperature operation capabilities.

Diamond is transparent from ultraviolet to far infrared (225 nm to -100 pm) wave­

lengths, except for an absorption band resulting from two phonon absorption between 

2.5-6.5 pm, as shown in Figure 1.3. This makes diamond an ideal material for 

multispectral optical applications. It is known that only multiphonon processes can lead 

to absorption. Diamond contains only a single type of atom, hence there is no electric

8
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dipole coupling between photons and phonons; however, impurity atoms will allow 

these electric dipoles to form.

1 10 100
W avelength (pm)

Figure 1.3 Optical transparency of CVD diamond in the UV, Visible, IR and far IR [15].

Pure diamond remains transparent even at elevated temperatures and radiation intensi­

ties because the large bandgap (5.45 eV) prevents thermal generation of charge carriers 

across the bandgap even at high temperatures. Experimental reports [16] show that a 

natural diamond window survived a 1 s exposure to a focused 1 kW laser beam with a 

peak irradiance of 1MW cm’2. The diamond window was unaffected by the exposure.

Diamond can be used for coating soft IR optics with a high index coating to serve as an 

anti-reflective as well as a protective coating. Therefore, diamond's extreme thermal 

conductivity, hardness, and chemical resistance (extremely chemically inert) are of 

importance for various optical applications.

1.6 Thesis outline

Chapter 2 provides an overview of defects, their types and effect on the properties of 

semiconducting materials. It also briefly discusses doping of wide bandgap semiconduc­

tors. Finally, reviews of defects in CVD diamond and p-GaN  are provided.

9



Chapter 1: Introduction

Chapter 3 describes the growth techniques used in this work to grow thin films of CVD 

diamond and p-GaN. The chapter discusses the importance of CVD growth techniques, 

problems associated with these methods, and the current technological developments to 

improve the CVD processes.

Chapter 4 describes the theory of the depletion region, p-n junction, the structure and 

operation of Schottky diodes and focuses on the theory of electrical characterisation 

methods for characterising devices. These include C-V, I-V, DLTS, the high resolution 

Laplace DLTS, and Thermal Admittance Spectroscopy.

Chapter 5 presents the experimental setup used for the electrical characterisation of all 

diodes in this project. Details of the hardware and software for each technique are 

provided.

Chapter 6 provides details about the growth, surface characterisation, and device proc­

essing and fabrication of the Schottky diodes on both the CVD diamond and p-GaN 

films.

Chapter 7 describes and discusses the results obtained from the electrical characterisa­

tion of defects in Schottky structures of CVD diamond grown on silicon.

Chapter 8 describes and discusses the results obtained from the electrical characterisa­

tion of defects in Schottky structures of p-GaN grown on sapphire.

Chapter 9 summarizes the results and provides conclusions about the defects investi­

gated in the two wide bandgap materials in this work. Finally, based on these results, 

some suggestions for future work are presented.
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Chapter 2: Defects in GaN and semiconducting diamond

2. Defects in GaN and semiconducting diamond

2.1 Overview of defects

What defines semiconductors is that they have a bandgap that separates the highest fully 

occupied valence bands from the lowest unoccupied conduction bands. Pure 

semiconductors are useless in many electronic applications unless they contain specific 

atomic impurities (dopants) whereby the electrical properties of semiconductors can be 

controlled. Dopants may be introduced during growth or post-growth. Post-growth 

doping can be typically controlled by the use of photolithography on selected areas and 

subsequently doped further by techniques such as diffusion [1] and ion implantation [2]. 

The functionality of all modem electrical devices is based on doped semiconductors; the 

incorporation of dopant atoms can change the ability of a semiconductor to conduct 

electricity, rendering the material w-type or p-type.

Basically, anything that alters the ideal crystal structure of a semiconductor will, in fact, 

affect its optical and/or electronic properties. These distortions are called defects. 

Defects can have a very large influence on the material properties; for example, 

resistivity of the material, carrier mobility and lifetime, and its optical properties are all 

dependant on the precise defects present and their concentrations. They introduce energy 

states in the forbidden gap of a semiconductor. Defects may be classed as line defects, 

planar defects, bulk defects or point defects. The first three can be avoided when 

growing some semiconductor crystals; vacancies and self-interstitials (both point 

defects) will always occur in solids at thermal equilibrium. Dopant species may be 

present either as interstitial or as substitutional point defects. Figure 2.1 and Figure 2.2 

illustrate some examples for typical point and extended defects in semiconductors.

Point defects can be classified into intrinsic defects (native defects), formed only from 

the host atom types, and extrinsic defects (impurities) consisting of foreign atoms. 

Deviations from the perfect crystalline periodicity of the solid constitute point defects. 

These can be missing atoms (vacancies), atoms at the wrong lattice site (antisite/ sub­
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stitutional defects) [3-4], atoms in between the ordinary lattice sites (interstitial defects) 

or complexes that form between different kinds of point defects.

Foreign
interstitial Vacancy

Foreign
substitutional Self interstitial

Figure 2.1 Typical point defects in semiconductors. The grey circles represent the 
host atoms {e.g., silicon) and the black represent foreign atoms {e.g., oxygen in 
silicon).

Precipitate

Edge
dislocation

Stacking 
fault ^

Figure 2.2 Typical extended defects in semiconductors. The grey circles represent 
the host atoms and the black represent foreign atoms.
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Line defects form when some of the atoms of the crystal lattice are misaligned (also 

known as dislocations) [5]. The termination of a plane of atoms in the middle of a 

crystal causes edge dislocations; adjacent planes bend around the edge of the terminat­

ing plane. Dislocations may move if the atoms from one of the surrounding planes break 

their bonds and re-bond with the atoms at the terminating edge. Other types of line 

defects can be either "screw" dislocations, in which a helical path is traced around the 

dislocation line, or "mixed", which is neither pure edge nor pure screw.

bulk / relaxed
Si Or

imsJH 
d is k *  a ttm i

Si substrate

Si (100) substrate

threading
dislocations

Figure 2.3 Typical misfit and threading dislocations in Si/SiGe heterostructures [6].
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Misfit dislocations may be edge, screw or mixed in nature. Misfit describes the sort of 

strain that introduced the dislocation, i.e. they are caused by lattice mismatch strain 

introduced during epitaxial growth that subsequently relaxes to give dislocations (and 

reduce the strain) either as the layer gets thicker or on annealing. At the ends of any 

misfit dislocation there will always be two threading dislocations. These must thread to 

a surface or form a loop so that the two ends of the dislocation can join. Figure 2.3 

illustrates how misfit and threading dislocations occurring in Si/SiGe heterostructures 

due to the silicon lattice. These threads are at 60° since they glide on the Si (111) lattice 

plane.

P lanar defects can occur when the crystallographic direction of the lattice abruptly 

changes. This usually occurs when two crystals begin growing separately and then meet; 

that forms a planar defect due to discontinuity of the perfect crystal structure across a 

plane, i.e. grain boundaries separate regions of different crystalline orientation {grains) 

within a polycrystalline solid. They tend to decrease the electrical and thermal 

conductivity of a material. Planar defects can also occur when the stacking sequence of 

the atomic planes is interrupted by the insertion or deletion of one plane. These are 

most common in face-centred cubic crystal structures where the ideal stacking sequence 

is ABCABCABC... Stacking faults are necessarily bounded by dislocations.

oooO ;o t o ° » C
0 0  ° o  o o  O o 

l o o o o o
O O O O o

Figure 2.4 Grain Boundaries separate regions of different crystalline 
orientation within a polycrystalline solid [7].
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Finally, Bulk defects are formed when impurities cluster together and form small 

regions of a different phase (this may also be called Precipitate), and if a number of 

vacancies coalesce then they form a Void.

2.2 Shallow and deep defects

According to the positions of defect levels in the band gap with respect to the conduc­

tion or valence band edge, defects in semiconductors are generally placed in one of two 

categories: shallow-level defects or deep-level defects.

Shallow levels, acting as either donors or acceptors, contribute electrons or holes 

respectively and determine the conduction properties of the semiconductor. An impurity 

or native defect will alter the electrical properties of a semiconductor if it either acts as a 

donor, contributing electrons to the conduction band, or as an acceptor, creating holes in 

the valence band. Whether an atom acts as a donor or an acceptor is dependent on the 

location of the defect in the crystal lattice. For example, a group IV atom in a IH-V 

semiconductor substituting a group III atom will only need three electrons to complete 

the four bonds to its closest neighbours and the last outer-shell electron will occupy the 

conduction band and hence act as a free charge carrier. In this case the group IV atom 

will act as a donor. If it is instead located on a group V lattice site, there will be one 

outer-shell electron site empty, which will act as an acceptor.

The same impurity atom can actually act both as an acceptor and a donor depending on 

the position of the Fermi level [8]. Acceptors have shallow defect levels slightly above 

the valence band edge and donors have shallow defect levels slightly below the conduc­

tion band edge. In this way the positions o f the dopant’s defect levels are o f great 

importance for the concentration of charge carriers.

Shallow levels have small binding energy, typically 0.01 eV, and are almost fully 

ionized in silicon at room temperature. On the other hand, deep level defects bind the 

carriers more strongly and lead to highly localized states in the forbidden gap [8]. Deep
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levels, which are defect levels located in the middle of the band gap, have a tendency to 

interfere with the optical functionality of semiconductors.

e"
J

Conduction band

v/\AA* D efect1r
or

hv i k

r

Valence band __
— *  x̂ r J
|«l+  non- radiative

radiative

Figure 2.5 Radiative and non-radiative recombination processes.

Figure 2.5 illustrates the situation when an electron-hole pair is created as a photon of 

sufficiently high energy hv (higher than the bandgap) is absorbed by the material. The 

carriers quickly thermalize to the limits of the conduction and valence bands, the excess 

energy is transferred to the crystal lattice (phonon emission). The electrons and holes 

can radiatively recombine, giving rise to a photon emission. Also an electron from the 

conduction band can be captured by an empty defect in the bandgap of the semiconduc­

tor. The yield of the photon emission is governed by a competition between radiative 

and non-radiative recombination processes. For indirect bandgap materials, the radiative 

recombination is only possible with the assistance of momentum-conserving phonons 

and/or traps (trap assisted recombination process). In cases such as B-doped diamond, a 

single phonon emission is not sufficient to match the difference in level energies, 

multiple phonons are typically required for such transitions. In addition, the probability 

of creating photons in defective materials is very low, as the defects would quench the 

photoluminescence.
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A high concentration of defect levels deep within the band gap can thereby lower the 

efficiency of optical devices considerably. If defects are studied and understood these 

problems may be avoided, and semiconductors could even be engineered in such a way 

to make native defects work in favour of the desired electric properties [9].

2.3 Doping of wide bandgap semiconductors: GaN and diamond

There is a great deal of interest in overcoming obstacles associated with doping of wide 

bandgap materials. For example, most natural diamonds are insulators and thus doping 

of electrically active impurities such as boron or phosphorus is required to turn the 

diamonds into p-type or w-type, respectively. However, the tight bonding of carbon 

atoms makes incorporation of dopant species difficult. Large substitutional dopant 

atoms will introduce significant lattice distortion and can therefore only be incorporated 

substitutionally at very low concentrations. Only relatively small atoms such as B can be 

incorporated in solid solution at useful concentrations in order to replace carbon in 

vacancy sites. Doping techniques such as diffusion, used in silicon and related materials, 

are not possible in diamond due to the extreme strength of the C-C bond in the material.

In addition, it is necessary to ensure that doping can introduce relatively shallow 

acceptor or donor that can enhance conduction even at room temperature. For example, 

in GaN, oxygen and silicon are known to be shallow donors but still there is a problem 

in finding an efficient shallow acceptor for producing p -type material; magnesium and 

beryllium are currently used but their activation energies are higher than optimum, so 

that not all the acceptors are ionised at room temperature. This results in quite low 

conductivities at room temperature. Doping techniques such as ion implantation, which 

work well with silicon technology, are not successful in controlling the doping process 

for most wide bandgap materials. For example, Si implants can be used to convert 

p-type GaN into «-type, however, it has been reported that ion implantation induces 

lattice defects, which are hard to remove by subsequent annealing [10]. Implantation 

doping in diamond is problematic due to the difficulty in removing implantation damage 

which compensates donors [11]. Therefore, doping of wide bandgap materials is best 

done during growth.
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In CVD grown diamond, p -type doping has been achieved by the introduction of B into 

substitutional sites, forming an acceptor level at about 0.37 eV above the valence band. 

In synthetic diamond, rc-type doping with N is possibly achieved by introducing 

nitromethane or N2 in the precursor gas, N introduces a very deep donor level at about 

1.7 eV. There have been some attempts to find a shallow donor in diamond by introduc­

tion of group I elements (Li and Na) to occupy interstitial sites in diamond and 

contributing to conduction with their outer electron, however, the experimental results 

have shown high resistivities and could not verify the theoretical computations [12]. A 

much shallower donor level than N has been successfully achieved by using phosphorus 

as a dopant, however, the donor level of P is still relatively deep (0.6 eV below the 

conduction band).

The search for a suitable dopant to yield shallow donor levels in diamond has motivated 

much theoretical modelling work [13]. Co-doping the diamond with more than one 

element has been considered theoretically to yield shallower levels than simple n-type 

doping. This is achieved by introducing a group VI element (O or S) bounded to a group 

III element (such as B). Another mode of obtaining n-type diamond by the combination 

of two donor atoms and a single acceptor in close proximity such as H and B will give 

rise to a single donor, but this may be shallower than that of an isolated single donor. 

This is due to the fact that energy levels of isolated impurities tend to shift at lower 

donor or acceptor levels when complexes are formed. Recently, n-type conduction has 

been discovered by the exposure of a B-doped diamond to a hydrogen (deuterium) 

plasma. The experimental results show that conversion takes place when the D/B ratio is 

about two. However, heating the samples at high temperatures (above 650°C) causes the 

original p-type conductivity to return [14]. This may be due to the break-up of the 

complexes responsible for the formation of the shallow donor level. Although co-doping 

has promised much, no satisfactory theoretical explanation for experimental findings has 

been given so far.

Boron is known as the most effective acceptor in diamond if it is to be used in electronic 

devices [15], although its acceptor level is deep by the standards of related materials; 

meaning that full ionisation of the dopant at room temperature is unlikely to be
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achieved. The status of p-type diamond has been well documented [14], a major 

improvement in producing p-type diamond was achieved by the development of 

diamond film growth using CVD by different methods (hot filament, microwave 

plasmas or direct current glow discharge); either in the form of single crystal homo- 

epitaxial layers or as polycrystalline films [16]. CVD facilitates the doping process by 

incorporating B substitutionally into the diamond lattice during the CVD growth by 

adding a boron compound (such as B2H6) into the environment above the substrate. 

Generally, a low boron concentration converts insulating diamond to a p-type 

semiconductor. A gradual change from semiconducting to metallic state and then to a 

superconducting state is observed as the boron doping level increases from 1018 cm-3 to 

above 1021 cm-3 [17,18], as the band starts to overlap with the valence band. However it 

is also known that more than ten percent of boron atoms incorporated into diamond do 

not act as acceptors [19,20]. Some may be electrically inactive; it has been suggested 

that some boron atoms are passivated by association with other impurities such as 

hydrogen [20] although annealing schedules can reduce the concentration of these 

complexes. It is also a possibility that boron may segregate into highly defective regions 

of the material which could result in complexes of B with vacancies and boron intersti­

tial defects [21,22]. In polycrystalline diamond films B may also segregate to the grain 

boundaries and be trapped there as inert impurities.

It has been reported [23] that hole mobility for B-doped polycrystalline diamond can be 

improved by increasing the grain size and that such material can exhibit much better 

field effect transistor (FET) properties than single-crystal material. The mechanisms 

underpinning these findings are still not clear; this underscores the ongoing requirement 

for a deeper and more thorough understanding of the physics of defects in polycrystal­

line diamond.

Advances in GaN doping have been limited by several factors such as the lack of a 

lattice-matched substrate, which implies highly defective material and the fact that the 

most commonly used acceptor dopant, Mg, can be easily compensated by hydrogen.
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The activation energy of the Mg acceptor is quite high, reportedly in the range 

120 - 250 meV [24-27]. This fact, together with the compensation of Mg by H, implies 

that at room temperature the ionised acceptor concentration (Na+) is well below the total 

magnesium concentration (Ay measured by secondary ion mass spectrometry (SIMS) 

[28]. It is believed that the high specific resistance of the p-GaN layer is due to the 

reduction of the hole concentration with increasing Mg-doping concentration, which has 

been attributed to the self-compensation effect in metalorganic vapour phase epitaxy 

(MOVPE) grown Mg-doped GaN layers [29].

Currently the most important problems and open issues related to p-type doping in GaN 

remain the lack of understanding of the defects responsible for performance degradation 

in GaN-based devices; these still include acceptor doping and the formation of robust, 

reliable and well-characterised electrical contacts to p-GaN.

2.4 Review of defects in CVD-Diamond: beneficial and detrimental

This review will not attempt to discuss many of the defects most commonly seen in 

natural diamonds or n-doped diamond, as the interest for this research is limited to B- 

doped CVD diamond.

The use of the term "defects" implies that their presence in the material is detrimental. 

However, this is only true in some cases where the incorporation of dopant atoms is 

essential. For example, doping of diamond with boron is necessary to produce p-type 

material, whereas finding a suitable n-type dopant remains problematic. Other defects, 

such as the nitrogen-vacancy (N-V centre) in diamond, which has desirable properties 

by acting as a single photon-source or a quantum bit in a quantum computer [30], which 

has attracted a great deal of attention for potential uses in novel fields of spintronics, 

quantum cryptography and quantum computing. In its isolated form, nitrogen is a deep 

donor with an activation energy of 1.7 eV [18]. Nitrogen in CVD diamond is unlikely to 

be in the form of aggregates but it is commonly found as a nitrogen-vacancy complex.
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Diamond has gained a considerable increasing interest since the discovery that it is 

possible to grow polycrystalline diamond films by various chemical vapour deposition 

(CVD) methods using a hydrocarbon gas, e.g. methane, in an excess of hydrogen, as 

process gases (discussed further in section 3.2). CVD diamond has to be grown in a 

hydrogen-rich environment [31], the incorporation of hydrogen in CVD diamond is 

significant. The hydrogen atoms are known to play a number of crucial roles in the CVD 

process; they react with stable gas-phase hydrocarbon molecules and produce highly 

reactive carbon-containing radical species such as CH3 which can diffuse to the 

substrate surface and react, forming the C-C bond necessary to propagate the diamond 

lattice. In addition, hydrogen terminates the CVD diamond surface, i.e. hydrogen atoms 

terminate the dangling C bonds on the diamond surface and prevent them from cross- 

linking, thereby reconstructing to a graphite-like surface.

It is well documented that CVD diamond surfaces exhibit negative electron affinity [32- 

35], i.e. the vacuum level lies below the bottom of the conduction band. In this case 

electrons have no potential barrier for their escape to vacuum, i.e. they are free to leave 

the surface. H removal from the diamond surface results in reconstruction of the surface 

and hence leads to the restoration of a positive electron affinity. Cui et al [32] have 

reported that the lowering of the electron affinity in CVD diamond to a value of -1.3 eV 

was due to the presence of hydrogen on the diamond surface, hence allowing cold 

electron emission from a hydrogen-terminated diamond surface. It has been shown by 

Takeuchi et a l  [35] that the observed photoelectron emission in an intrinsic B-doped 

diamond films (hydrogenated diamond surfaces) is attributed to direct photo-excitation 

from the valence band to the vacuum and does not depend on the position of the Fermi 

level. The electron affinity in that work was found to be -1.1 eV. Maier et a l  [36], using 

Hall effect measurements, have provided experimental evidence of high surface conduc­

tivity in H-terminated diamond surface immediately after growth due to their exposure 

to atomic hydrogen in the gas-phase. This conductive layer was postulated to be due 

hydrogen-related acceptors with a very low activation energy (~50 meV), a RT surface 

carrier concentration of about 1013 cm-2 and hole mobilities of -70  cm2 V-1 s-1. This 

low resistive layer disappeared upon heating at 200°C. The negative electron affinity of
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the H-terminated diamond surface facilitates all electron emission processes such as 

thermionic emission, emission of secondary electrons induced by photons, by electrons, 

by ions and by an external electric field [33].

However, the presence of hydrogen in the bulk of the crystal is less understood as 

compared with surface hydrogen. Hydrogen is known to passivate dopants in diamond 

[20,35]. As a result of such passivation, shallow donor centers are formed [38]. After 

growth, the diamond films are usually contaminated with hydrogen; lattice vacancies 

such as hydrogen-vacancy [39] and hydrogen-nitrogen-vacancy [40] complexes have 

been observed experimentally in negative charge states. It has also been shown that 

hydrogen can increase diamond film surface conductivity, and mobile H diffuses to 

form complex pairs with B in p-type diamond and passivate the electrically active 

defects [38]. Hence the electrically active B content appears reduced, although anneal­

ing schedules can reduce the concentration of these complexes. It is also a possibility 

that boron may segregate into highly defective regions of the material which could result 

in complexes of B with vacancies and boron interstitial defects [21, 22]. The BH and 

BH2 complexes in B-doped diamond have been theoretically investigated [41]; the 

associated acceptor levels were predicted to be Ev+4.44 eV and Ev+1.14 eV, respec­

tively. The associated donor levels were found to be Ec-4.84 eV and Ec-2 .80  eV, 

respectively. The BH donor level at Ec-4.84 eV (corresponding to Ev+0.6 eV) is found 

to be at the same energy level as the donor level of the vacancy [42]. These are in good 

agreement with recent results measured by isothermal transient spectroscopy [43]. The 

atomic structure of the complex defect BH3 is less understood, it is predicted to form a 

donor level at Ev+0.20 eV [44]. Recently, it has been reported [43, 45] that in B-doped 

diamond hole traps with ionisation energies between 0.7-1.6 eV are most likely due to 

hydrogen related defects.

One of the major problems with polycrystalline diamond films is a tendency to contain 

high defect densities due to their non-homogeneous structure and abundance of grain 

boundaries. Grain boundaries invariably contain a high density of lattice defects such as 

defect clusters and dislocations. In polycrystalline diamond films B may also segregate
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to the grain boundaries and be trapped there as inert impurities. Monocrystalline dia­

mond does not have these problems but large-scale production is still thought to be 

largely impracticable due to growth requirements and fairly low growth rates of high 

pressure-high temperature (HPHT) diamond which limits the monocrystal size to 

volumes of about 1 cm3. Therefore, heteroepitaxial CVD of polycrystalline diamond 

films on Si substrates remains the industrial growth method of choice for many devices. 

High quality polycrystalline diamond films have recently been reported [31,46], with 

grains range in size from micrometres to less than 5 nm.

It is known that B in diamond forms an acceptor level at about 0.37 eV, however, it has 

been confirmed that the activation energy of the B acceptor level changes with B content 

in the diamond films [12, 18, 46-50]. As the B doping increases the activation energy of 

the acceptor decreases, due to broadening of the defect band while the effect of grain 

boundaries becomes weaker [50]. In polycrystalline diamond the areal density of the 

grain boundaries decreases as the layer gets thicker. There has been clear experimental 

evidences showing the columnar nature of the polycrystalline diamond growth up from 

the surface of the silicon substrate using different CVD growth methods.

1 0 urn

Figure 2.6 Secondary electron micrograph of a cross-section through a 6.7 pm-thick 
diamond film on Si grown by HF-CVD, showing the columnar nature of the growth up 
from the surface. [51]
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Figure 2.7 Secondary electron micrograph of a cross-section through a 
4 pm diamond film on Si grown by MWP-CVD [52].

Figure 2.6 and Figure 2.7 show cross-sections through microcrystalline diamond films, 

grown on silicon by different groups, showing the growth to be essentially columnar.

Although the grain boundaries are usually mechanically quite strong, there are disconti­

nuities in the structure which affect the bulk properties. The boundaries between the 

crystals are imperfect due to misalignment of adjacent grains, e.g. stacking faults, 

dislocations, and because they may contain impurities or non-diamond carbon.

Isolated vacancy defects in boron-doped single-crystal diamonds behave as deep 

electron donors/acceptors; their electronic properties depend on the charge state. For 

example, the +/0 state is at Ev +0.6 eV and the energy level for the 0/- state is at Ec -2.5 

eV [53]. Experimental studies, based on monitoring the changes induced by electron 

irradiation in the optical absorption features associated with these centres in a number of 

natural and synthetic diamonds, have revealed a series of sharp lines called GR1-8, of 

which the GR1 line (zero-phonon line at 1.673 eV, due to neutral vacancies V°), at 

741 nm is the most prominent and important [54].
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B interacts with carbon interstitials creating a neutral boron-interstitial complex with a 

sharp optical absorption at 2250 nm (0.552 eV) [53]. To the best of my knowledge, no 

evidence is known so far for boron-vacancy complexes [55].

Silicon has been identified as a common defect in diamond films grown by CVD; it 

originates from the silicon substrate or from the walls of the CVD reactor. Silicon reacts 

with vacancies in the diamond; the substitutional silicon traps a migrating vacancy 

creating a Si-vacancy complex (semi-divacancy) [56]. This trap is a deep donor having 

an activation energy of 2 eV, situated above the valence band [57]. Isolated silicon 

defects have been identified in diamond by the presence of a sharp optical absorption 

peak at 738 nm [58] and by EPR (electron paramagnetic resonance) [56].

Over the last two decades various activation energies and capture cross-sections have 

been reported for majority carrier traps in semiconducting diamond using capacitance 

transient spectroscopy techniques such as DLTS [59-71]. However, some of these data 

may have been misinterpreted due to the low resolution of the experimental measure­

ments. Recently valuable information about defects in monocrystalline [43,45,63,64] 

and polycrystalline [65-67] diamond films have been obtained.

In boron-doped homoepitaxially grown CVD diamond, thermal and optical-DLTS have 

shown that there is a deeper electronic level than the boron acceptor at 1.25 eV above 

the valence band [6 8 ]. This trap was identified as the positively charged vacancy, and 

the optically induced transition between the boron and the vacancy at 0.9 eV was 

observed as well as the direct ionisation of the vacancy [69,70]. Using this technique, it 

was possible to see passivation of boron after deuteration, although there was no 

evidence of shallow donors. Charge-based-DLTS (Q-DLTS) has been used to detect a 

number of trapping levels, of which few have been identified with specific defects. One, 

at 0.36 eV, is clearly associated with boron and has a capture cross-section of

1.3 x 10-13 cm2 [71]. Traps with cross-sections of ~10' 12 -1 0 ' 14 cm2 and activation 

energies of 1.14 eV and 1.23 eV been observed in undoped CVD diamond films using 

Thermally Stimulated Currents (TSC) and Photoinduced Current Transient Spectro-
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•i / r   o

scopy (PICTS) with concentrations around 10 cm [72], but these are not definitely 

identified with any defects, although the positively charged vacancy is a good candidate.

Traps with very small capture cross-section values (less than 10-15 cm2); imply that 

these centres are repulsive or neutral and these capture cross-section values may be 

correspond to donor traps in a p-type material or may be extended defects. A summary 

of the deep levels related to boron, hydrogen, or native defects in B-doped CVD 

diamond is tabulated with their estimated capture cross- section values in Table 2.1.

Table 2.1 Major trap levels observed in polycrystalline B-doped CVD diamond along 
with single crystal (*) and in un-doped CVD diamond films (**).

Reference Trap Energy level 
(eV)

capture cross- 
section o (cm2)

Experimental
Method

[73,74]
Bs

E v + 0.3 to 0.38 - DLTS & Resistivity 
Measurements

[71]
E v + 0.36 1.3xl0‘13

Hall effect & DLTS
B-related E v + 0.25 4.5xl0'19

[43,75]* Bs E v + 0.2 -
Theoretical calcula­

tions

[67] Extended
(B-related)

E v+  0.21 to 0.23 - Laplace DLTS

[65]
Extended

(B-related)
Ey + 1.1 to 1.3 ~ 10’18 Q-DLTS

[64]*
Dislocation-

Related
E v+  0.99 to 1.15 ~ 10'18

DLTS & HR-ITS 
(high-resolution 

isothermal transient 
spectroscopy)

[53]*

[43]*
V

Ey + 0.6
~10'22

Positron Annihilation 

DLTS & HR-ITS

[76] Ey + 0.6 ~1017
ICTS (Isothermal 
capacitance Tran­
sient Spectroscopy)
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Reference Trap Energy level 
(eV)

capture cross- 
section a (cm2)

Experimental
Method

[77]** E v + 0.6 to 0.8 -
SCLC (Space 
charge limited 

currents)

[69]*

[72]**
V

Ey + 1.25 

E y +  1.14 1.23 ~1013

DLTS & O-DLTS 

TSC & PICTS

[53,54]* V E c + 2.5 -
Positron Annihila­
tion & Theoretical 

calculations

[21,43,75]* BSV E y +  1.0 ~1018
DLTS& Theoretical 

calculations

*00 BH 1 o - Theoretical calcula­
tions

oo * b h 2 E c - 1.84 to 2.88 -
Theoretical calcula­

tions

75]* BSVH Midgap -
Theoretical calcula­

tions

[78]* H
Ec -1.45 

Ec - 3.0
-

Theoretical calcula­
tions

2.5 Review of defects in p -type GaN: beneficial and detrimental

GaN commonly crystallises either in the hexagonal (wurtzite) structure or in the zinc 

blende structure. From theoretical calculations, the bandgap of wurtzite GaN is found to 

be approximately 3.45 eV, while for the zinc blende the predicted value is 3.34 eV. This 

review will focus on the wurtzite GaN, as the GaN samples discussed in this dissertation 

were grown in this form.

There are a number of essential factors that may cause significant reduction in the room 

temperature hole concentration achieved in any particular Mg-doped GaN film. These 

can be summarised as follows:
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• The deep nature of the Mg acceptor (i.e. partial ionisation at room temperature)

• The presence of compensating donors (e.g. nitrogen vacancies).

• The incorporation of Mg atoms in electrically inactive sites (i.e. Mg dopants may 

segregate into planar defects).

The first point, the binding energy of Mg, is a fundamental issue and cannot be readily 

adjusted. It is therefore worth focusing on the other two effects.

The level of compensation in any Mg-doped GaN film depends strongly on the growth 

conditions and growth system design. This may explain the variations in p-type conduc­

tivity reported by various groups over the last two decades. In the literature [79-82], a 

compensating donor in Mg-doped GaN has been attributed to an intrinsic defect or a 

Mg-related defect, as usually experimental results from SIMS (secondary-ion mass 

spectroscopy) do not show high concentrations of any specific impurity. Calculations 

have shown that the formation of donor states, such as nitrogen vacancies (Vn), is most 

likely to occur in Mg-doped GaN rather than in n-type GaN. The activation energy for 

nitrogen vacancy diffusion is controlled by the position of the Fermi level [83-84], i.e. 

when the Fermi position is in the midgap the Vn charge state is positive and diffusion is 

unlikely to occur. It has been suggested that a deep donor may be formed as a result of 

association of a nitrogen vacancy and a substitutional Mg (VN-Mgca)- Hautakangas et al. 

have studied defects in metal organic chemical vapour deposited (MOCVD) Mg-doped 

GaN films using positron annihilation spectroscopy [85]. Their observations indicate 

that the N vacancies are complexed with the magnesium dopants, forming neutral Vn- 

Mgca complexes with a concentration of ~1017 to 1018 cm-3. Most Vn should be bound to 

Mgca in equilibrium at room temperature, and these pairs dissociated after thermal 

annealing at (500 -800°C) contributing to both activation and compensation of Mg 

doping; i.e. Mg activation and Vn migration to the surface. The major compensating 

centres in p-type materials are VN-Mgca complexes. It has been reported that the 2.8 eV 

emission band observed in photoluminescence (PL) spectrum of MOCVD grown Mg- 

doped GaN films is due to donor-acceptor pair recombination [8 6 ]. This is in good 

agreement with theoretical calculations [84,87], which assume that the -2.8 eV emission
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band is due to electron transitions from the donor level of the VV-Mgca complex (with 

an ionisation energy of 0.3-0.4 eV below the conduction band minimum) to the acceptor 

level (-0.2 eV above the valence band maximum), depending on the Vn-  Mgca configu­

ration and charge state.

The gallium vacancy (Vca) defect plays a role in donor compensation in n-type GaN; it 

forms complexes with donor impurities. However, according to theoretical predictions 

and experimental observations, Vca defects are more likely to form in n-type than in 

p-type GaN [8 8 ]. The VGa in «-type GaN has a deep level about 1.1 eV above the 

valence band [89-90]. It has been proposed that the Vca is the source of the frequently 

observed yellow luminescence (YL) in GaN, centred around 2.3 eV. It is suggested that 

the YL is due to a transition between the conduction band or shallow donors and this 

deep level (1.1 eV), therefore result in emission around 2.3 eV. An increase in Voa 

concentrations has been observed by Saarinen et al. [91] in positron annihilation 

experiments on oxygen-doped MOCVD-grown GaN samples. The presence of oxygen 

was found to enhance the concentration of Ga vacancies and hence the YL. On the other 

hand they found that the YL was suppressed in p-type material, consistent with easier 

formation of Vca under n-type conditions.

It is known that hydrogen is always present in MOCVD grown films, which can also 

passivate the Mg in Mg-doped GaN films. It is believed that the high specific resistance 

of the p-GaN layer is due to the reduction of the hole concentration with increasing Mg- 

doping concentration, which has been attributed to the self-compensation effect in 

metalorganic vapour phase epitaxy (MOVPE) grown Mg-doped GaN layers [8 6 ]. The 

low p-type conductivity gives rise to considerable heating, leading to low performance 

and degradation of GaN-based devices. The study of device processing issues and the 

properties of Ohmic contacts to p-GaN have also lead to important improvements in 

device technology. Typically, Ohmic contacts to p-GaN are based on high work function 

metals, such as Pd, Pt, or Ni, with an over-layer of Au. These are annealed at 500-700°C 

to increase the hole concentration at the surface via the decomposition of Mg-H com­

plexes and the formation of Ga vacancies through interaction with Au.

30



Chapter 2: Defects in GaN and semiconducting diamond

Van de Walle et al. [8 8 ] have found that the formation energy of hydrogen is lower in p- 

type GaN than in «-type GaN, corresponding to a much higher solubility in p-type than 

in «-type GaN. In p-type GaN, H acts as a donor (H+); it is electrostatically attracted to 

negatively charged acceptors and hence it compensates acceptors. Interactions of 

hydrogen with native point defects in GaN have been studied. Van de Walle et al. 

performed DFT-LDA calculations for Vn-H complexes and reported that the Vn-H 

complex is the shallow double donor (-20-30 meV) responsible for the frequently 

observed 3.27 eV emission in Mg-doped GaN and present in sufficient amounts under 

p-type conditions. Experimental observations by Gelhausen et al. [92] show that the 

3.27 eV donor-acceptor-pair (DAP) emission line to be strongly affected by low-energy 

electron beam irradiation. They have suggested that the acceptor in the 3.27 eV DAP 

emission is Mg and that the donor (20-30 meV) is a hydrogen related complex (Vn-H). 

Another emission line (-2.95 eV) relating to a donor at 350±30 meV was reduced 

during electron irradiation and attributed to a H-related defect. Their results also indicate 

that Vn-H complex dissociated during electron irradiation or thermal annealing in N2 or 

O2 atmosphere, generating isolated Vn and highly mobile H. Isolated Vn were found to 

have a binding energy of 180±10 meV according to DLTS and temperature-dependant 

Hall measurements results [93]. It has been reported [92] that isolated Vn is a possible 

candidate to be the donor level (-160 meV below the CB) in the frequently observed 

3.14 eV DAP emission.

Carbon is an impurity in GaN acting as a shallow donor when Cca (substitutional carbon 

atoms on Ga site) or as an acceptor when Cn (substitutional carbon atoms on N site) 

[94-96]. The presence of the shallow defect Coa (-0.2 eV below the conduction band) 

has been theoretically acknowledged in p-type GaN [96] and also via recent 

experimental observations [94] using cathodoluminescence on nominally undoped semi- 

insulating GaN layers grown by hot-wall MOCVD. Kakanakova-Georgieva et al. [94] 

have observed a clear evidence of carbon-caused compensation; the blue luminescence 

at -415 nm has been strongly correlated with DAP transitions via CGa-CN. Recent 

theoretical calculations [97] have predicted that the substitutional defect Cn to be a deep 

rather than a shallow acceptor in GaN. However, Carbon-related defects in GaN and
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their involvement in the various radiative recombinations under photon and electron 

excitation remain a topic of persistent discussions.

The incorporation of Mg dopants in electrically inactive sites or diffusion to dislocation 

cores is still a subject of ongoing debate [98-104]. Threading dislocations in GaN films 

arise as a consequence of the lattice parameter mismatch between the GaN and the 

substrate; this is due to the fact that most of the GaN based devices are grown heteroepi- 

taxially on substrates such as sapphire. Threading dislocation densities in the order of 

109 cm"2 are commonly observed in GaN grown on foreign substrates [98], this used to 

be more than 1010 cm"2 in early devices [100]. In conventional optoelectronic devices 

(e.g. AlGaAs or AlInGaP based devices), defect densities six orders of magnitude lower 

would be expected to result in excessive non-radiative recombination, generation of heat 

and consequently device failure [99]. Despite the high density of defects, GaN based 

LEDs still can achieve high quantum efficiencies. It has been shown that the concentra­

tion of non-radiative recombination centres in GaN is somehow in correlation with the 

threading dislocation density [105]. However, the concept of whether TDs themselves 

act as non-radiative recombination centres remains controversial. An explanation for the 

defect insensitive nature of the near-band-edge emission in indium-containing nitride 

films (e.g. InGaN or AlInGaN) is due to the extremely short diffusion lengths (<4nm), 

short radiative lifetimes of excitonic emissions, fairly long non-radiative lifetime and 

preferential capture of holes and/or positrons (positrons are the antimatter of electrons, 

having a positive charge similar to holes) by localised radiative centres (atomic conden­

sates of In-N) which form localised valence states with high positron affinity; the holes 

form localized excitons to emit the light, although some of the excitons recombine at 

non-radiative centres [106].

A range of experimental techniques have been used by a number of authors to 

investigate deep level centres in p-GaN. Temperature-dependent Hall effect experiments 

have been carried out to deduce the acceptor activation energy and investigate the 

compensation level [107-110]. Thermal admittance spectroscopy measurements on Mg- 

doped GaN have also received considerable attention as reliable method for detecting
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shallow and deep levels [111,112]. DLTS measurements have been extensively applied 

to /I-type GaN [113-115], evidence of various deep centres within the bandgap have 

been revealed, however, fewer DLTS studies have been conducted on defects in Mg- 

doped GaN [116,117]. Unfortunately, conclusions from this range of electrical 

measurements regarding the properties and origin of deep levels in Mg-doped GaN have 

not been convincing, perhaps the samples employed may have varied in quality, with 

difficulties in forming metal contacts to p-GaN and issues with doping level.

A summary of the defect levels reported in Mg-doped wurtzite GaN, with their esti­

mated activation energies, is tabulated in Table 2.2.

Table 2.2 Trap levels observed in the literature for Mg-doped wurtzite GaN films.

Reference Trap Energy Level (eV) Experimental Technique or 
Method Used

[88,92], 
[118- 12 0 ]

Substitutional Mg 
(Mgca)

Ev + 0.124 

Ev + 0.135 

Ev + 0.16 

Ev + 0.18 

Ev + 0.20 

Ev + 0.25

DLTS, TAS and Theoretical 
calculations

[95,121] Dislocation-related Ec - 2.97 O-DLTS and SSPC (Steady- 
State PhotoCapacitance)

[118] Dislocation-related
Ev + 0.40 

Ev +0.85

TAS, DLTS combined with 
MCL (Microcathodolumines- 

cence) and EBIC (Electron 
beam induced current) imaging

[88,92-93] Vn Ec - 0.16 DLTS, PL and Theoretical 
calculations

[94- 96] CGa Ec - 0.20 O-DLTS, SSPC and Theoreti­
cal calculations

[8 6 ,8 8 ],
[122-124] Vn-  Mgca Ec - 0.3-0.4 PL, Hall measurements and 

Theoretical calculations
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2.6 Electrical contacts to polycrystalline diamond

Most metals have been found to yield Schottky contacts to polycrystalline diamond; 

metals such as Au or Al are commonly used to form Schottky contacts [125-128]. It has 

been always difficult to produce good Ohmic contacts on wide bandgap materials such 

as diamond due to the large barrier heights that generally form when metals are 

deposited. Heavy doping near the diamond surface is used to enhance 

tunnelling through the potential barrier at the metal/diamond interface and improve 

conduction. Ohmic contact formation depends on several factors such as the doping 

level, surface treatment prior to metal deposition, annealing temperature or the density 

of surface states which govern the Fermi level pining and therefore influence the barrier 

height. The application of different surface treatments has been found to change the 

surface termination from hydrogen to oxygen terminated and hence change the proper­

ties of contacts. For example, low resistivity contacts can be achieved by exposing the 

diamond film to O2 plasma, prior to metal deposition, or dipping in a Cr0 3  in H2SO4 

solution at 200°C followed by a rinse in a 1:1 solution of H2O2 and NH4OH at 90°C. It 

has been found that transition metals such as Ti or Ta form low resistivity carbides as 

they have great affinity with carbon, this would enhance the diffusion of subsequently 

deposited metals [129]. Ti/Au contacts have been reported [130] to exhibit good Ohmic 

characteristics. A post deposition anneal at 500°C for 10 minutes yielded a reduction in 

the specific contact resistivity by three orders of magnitude to 10'6 Q cm2. However, not 

much improvement of the resistance of the Ohmic contacts has been achieved by post 

annealing at higher temperatures (>850°C).

2.7 Electrical contacts to /J-type GaN

The difficulty in forming low resistance Ohmic contacts to p-type GaN is due to the fact 

that GaN is a wide bandgap semiconductor, requiring high work function metals to 

obtain Ohmic contacts. High work function metals including Au, Pt, Pd or Ni have been 

investigated, in standard metal contact forms to p-GaN [131-135]. Various bilayer and 

complex metallization schemes have been also investigated. For example, Ni/Au, Pt/Au, 

Pd/Au, Pd/Pt/Au, Pt/Ni/Au, Ni/Pt/Au, Cr/Au, Ni/Cr/Au, Au/Mg/Au, Ni/Mg/Ni/Si,
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Ni/Au-Zn and Cr/Au-Zn [136-143]. These have all exhibited high specific contact 

resistance (> 10"3 Q cm2). Only Ni/Au bilayer when annealed in an oxygen-containing 

atmosphere (400 - 600°C) resulted in a specific resistance of the order of 10’4 Q cm2 

[144]. Reduction in the specific contact resistance (10"4-10 '6 Q cm2) has been achieved 

by using the Au/Ni structure annealed in O2 + N2 ambient [145]. It has been found that 

the main mechanism responsible for the Ohmic nature is the creation of a thin oxide 

layer (NiO) on the metal//?-GaN interface. Liday et a l  [145] have investigated a NiOx 

based contact scheme (Au/NiOx) to p-GaN, with a low content of oxygen in the NiOx 

layer. They have reported that a low contact resistance is assisted by Ga vacancies in the 

region of the metal/p-GaN interface after diffusion of Ga into the metallic layer, and 

also suggest that the creation of a metal/NiO/p-GaN contact structure due to annealing 

in O2 + N2 is responsible for the obtained Ohmic properties. Smalc-Koziorowska et al. 

argue that an essential factor leading to high resistance contacts is Ni [146]. They have 

suggested that in order to obtain low resistance contacts to p -type GaN a thin non­

oxidized Ni layer combined with the separated oxidized Ni layer is necessary. They 

have observed that one of two contact structures may develop during annealing of the 

simple Ni/Au contact, depending on the GaN surface morphology. These normally 

result in different properties of the Ni/Au contact under thermal strain. They have 

concluded that contacts on rough GaN surfaces (covered with hillocks containing 

dislocations) cause non-uniformity of the Au layer, and result in high resistance, 

whereas relatively low resistance contact may be obtained on a relatively smooth GaN 

surface as the Au layer deposited on such surface remains continuous [146].

2.8 Effect of plasma etching on contacts to p-type GaN

Chemical etching is a useful process for device fabrication. Various wet etching 

approaches have been applied to n-type and p -type GaN [147-152]; investigations have 

shown that selective wet etching of GaN in KOH is still associated with difficulties and 

does not yield satisfactory results [147,148]. So far, no suitable wet etchant has been 

found for GaN and related compounds due to their chemical stability against various 

acids and bases used at 75°C. Plasma etching (dry etching) is an important process for
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the fabrication of various GaN based devices. Despite the fact that it is well documented 

that plasma processing of nitride semiconductors may induce significant damage to the 

near surface region of the film [153-159]. Argon plasmas are commonly used as they do 

not interact chemically with the GaN. O2 plasmas are also used in semiconductor device 

processing to remove hydrocarbon contamination, while fluorine-containing plasmas are 

used for dielectric etching. There have been some attempts [160] to overcome the 

plasma damage issue by burying the damage with a p-type re-growth; however this has 

not solved the problem completely. Several authors have investigated the effect of post­

plasma processes to recover from the induced damage and achieve reliable Ohmic 

contacts to p-type GaN [154,155,161]. It has been reported that exposure of w-type GaN 

surfaces to plasma affects the performance of Schottky contacts, with increased leakage 

currents and reduced barrier heights [162]. This has been postulated to be caused by an 

increased n-type doping in the near surface region due to preferential loss of nitrogen 

from these layers [155,163]. In p-GaN, damage-related shallow or deep donor states 

significantly degrade the properties of contacts, i.e. compensation of the acceptors will 

take place in the near-surface region. Annealing at very high temperatures (750°C) in 

N2, for 30 seconds, has been shown to have a significant effect on reducing the plasma- 

induced damage in p-type GaN [164]. It has been reported [165] that ohmic contacts 

were obtained using a low inductively-coupled plasma (ICP) power (-50 W) combined 

with high temperature post-etch annealing (1000°C), however, there is no quantitative 

analysis of the resistance of the contacts, which may have been affected by this high 

annealing temperatures. Hsueh et al. have investigated the effect of a low reactive ion 

etching plasma power of 50 W on Schottky barrier height [166]. Low power etching, 

using RF/ICP powers of 20/40 W, have been found to improve the properties of unan­

nealed Ohmic contacts to p-GaN and without the use of regrowth techniques [167].

2.9 Conclusions

This chapter initially discussed the different types of crystallographic defects in semi­

conductors and the properties of deep and shallow levels. The issues of impurity
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incorporation and doping of wide bandgap semiconductors were also discussed. 

Literature reviews on beneficial and detrimental defects in CVD polycrystalline 

diamond and Mg doped MOCVD GaN have been provided. Finally, various methods for 

the fabrication of metal contacts on B doped diamond and p-GaN have also been 

presented.
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3. Growth Techniques Used In This Work

3.1 Introduction

Chemical vapour deposition (CVD) is a microfabrication chemical process, widely used 

in the semiconductor industry to produce thin films. The process involves a gas phase 

chemical reaction occurring above a solid surface. Usually, the CVD process is used to 

produce solid materials with high-purity and high-performance. The materials of inter­

est, such as silicon, silicon carbide, gallium nitride and synthetic diamonds, can be 

deposited in various forms including: monocrystalline, polycrystalline, amorphous, and 

epitaxial films.

According to the process by which chemical reactions are initiated (i.e. activation 

process) and process conditions, the CVD technique is classified into a number of 

methods. The activation can involve thermal methods (e.g. a hot filament is used to 

chemically decompose the source gases), electric discharge (e.g. DC, RF or microwave 

which allows deposition at lower temperatures, always critical in the manufacture of 

semiconductors), or a combustion flame (such as an oxyacetylene torch, an open- 

atmosphere, flame-based technique for depositing high-quality thin films and nano­

materials). Although each method differs in detail, they still share a number of common 

features. For example, to ensure the formation of diamond rather than amorphous carbon 

the temperature of the substrate is usually greater than 700°C. Also, growth of diamond 

normally requires that about l%vol. CH4 (the precursor gas) is diluted in excess of 

hydrogen. In addition the desired doping can be incorporated into the film during CVD 

growth by including the required dopant atoms into the gas mixture. A detailed review 

of the various CVD methods can be found in [1-4]; only brief explanations about the 

techniques used in this work are mentioned here.

49



Chapter 3: Growth Techniques Used In This Work

3.2 Hot Filament CVD

Hot filament CVD (HFCVD) is one of the CVD techniques used for producing diamond 

films. It uses a vacuum chamber in which the process gases are metered in at carefully 

controlled rates. The pressure in the chamber is maintained at typically 20-30 Torr. A 

substrate heater is used to bring the substrate up to a temperature of 700-900°C, the 

substrate sits on the heater, a few millimetres below a filament, which is electrically 

heated to temperatures in excess of 2200°C, as illustrated in Figure 3.1.

heater

I
pump

filament

process 
gases |

substrate

i/

Figure 3.1 On the left side: the HFCVD reactors at Bristol University dedicated for 
Boron doped diamond. On the right a schematic diagram of the vacuum chamber.

The filament is usually made from a metal such as tungsten or tantalum; however, the 

resistivity of these metals changes due to the fact that they react with the carbon- 

containing gases and carburize to form the metal carbide and hence they become brittle, 

reducing their lifetime and the maximum deposition time that can be performed in one 

run. This issue can be solved by using rhenium for the filament material since Re is able 

to survive these conditions and does not react significantly with the process gas (e.g. 

does not act as a sink for carbon or boron species).
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The HFCVD method is relatively low-cost and easy to operate and produces reasonable 

quality polycrystalline diamond films at a rate of 1-10 pm/h, depending upon exact 

deposition conditions. However, one of the major disadvantages of this technique is that 

the hot filament is particularly sensitive to oxidizing or corrosive gases, which limits the 

variety of gas mixtures which can be used [5]. Recent advances in the HFCVD tech­

nique have led to the growth of mono-crystalline diamond under specific conditions; this 

may be the future of large scale single crystal growth for electronic applications [6].

3.3 Microwave Plasma CVD

Plasma is any gas in which a significant percentage of the atoms or molecules is ionized; 

typically this takes place at low pressure (mTorr to a few Torr). Plasmas with low 

fractional ionization are of great interest for materials processing because electrons are 

very light compared to atoms and molecules. Energy exchange between the electrons 

and neutral gas is very inefficient, therefore electrons can be maintained at very high 

temperatures, equivalent to several electronvolts of average energy, while the neutral 

atoms remain at the ambient temperature. These energetic electrons can induce dissocia­

tion of precursor molecules and the creation of large quantities of free radicals.

Microwave plasma CVD (MWPCVD) deposition occurs after the creation of plasma of 

the reacting gases. The plasma is generally created by RF (AC) frequency or DC dis­

charge between two electrodes, the space between which is filled with the reacting 

gases; microwave power is coupled into the chamber via a dielectric window (usually 

quartz) in order to create a discharge. The microwaves couple energy into gas phase 

electrons, which in turn transfer their energy to the gas through collisions. This leads to 

heating and dissociation of the gas molecules, the formation of active species, and 

finally film deposition onto a substrate, which is immersed in the plasma.

MWPCVD reactors use very similar conditions to HFCVD reactors, but they use higher 

power and higher growth rates have been achieved (>10 pm/h). Hence MWPCVD is 

now among the most widely used techniques for diamond growth, despite being signifi­

cantly more expensive. In addition, a wide variety of gas mixtures can be employed due

51



Chapter 3: Growth Techniques Used In This Work

to the fact that no filaments are required. Recent advances using MWPCVD have been 

reported [7] for successful growth of single crystal diamond, where the substrate stage 

design and methane concentration have been optimised. High quality diamond at high 

growth rates (50-150) pm/h was achieved while varying the gas pressure, concentration 

and substrate temperature for enhanced growth and crystal purity [8].

Figure 3.2 illustrates an ASTeX (2.5 GHz) MWPCVD reactor [9] in which microwave 

powers of up to 5 kW can be used achieving growth rates well in excess of 10 pm/h.

tuning
antenna

microwave
Generator

waveguide
-  plasma

substrate

heater

pump

Figure 3.2 On the left side: an ASTeX MWPCVD reactor at Bristol University dedicated 
for B doped diamond. On the right, a schematic diagram of the vacuum chamber.

The substrates to be coated are positioned on a heated stage directly beneath the plasma 

ball; substrates as large as 10 cm in diameter can be used to grow thin films. In princi­

ple, the inner chamber diameter is chosen so that only one microwave radial mode can 

be sustained in the cavity at 2.45 GHz. Microwaves are coupled into a water-cooled
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metal cavity through a quartz window, using a tuning antenna which converts the TEio 

microwave mode in the waveguide to the TMoi mode in the cavity.

3.4 Metalorganic Vapour Phase Epitaxy

Metalorganic vapour phase epitaxy (MOVPE), is a CVD method of epitaxial growth of 

materials and is also known as metal organic chemical vapor deposition (MOCVD); it is 

primarily used for growing II-VI and III-V materials, some metallic oxides and metals.

The MOVPE technique has become more important since nitride based light emitting 

diodes (LEDs) were first demonstrated in the early 90's [2, 3].

Carrier gas
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Carrier
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Group III 
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MFC

MFC

MFC

MFC

Heater

Power supply

Filter & 
purifier

Scrubber
unit

MOVPE
reac to r

Figure 3.3 Basic MOVPE schematic diagram, where MFC is the m ass flow controller 
which controls the amount of gas going into the reactor.
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The word epitaxy is derived from the Greek term meaning stacked or arranged in thin 

layers. Basically, to produce thin layers of compound semiconductors, the chemicals 

have to be vaporized and transported into the MOVPE reactor together with other gases; 

ultra-pure gases are injected and then finely dosed, as illustrated in Figure 3.3. Forma­

tion of the epitaxial layer occurs by final pyrolysis of the constituent chemicals at the 

substrate surface.

Many materials of interest are difficult to transport via gases because they tend to have 

very low vapour pressures, unlike organic compounds which often have very high 

vapour pressure. Therefore, a metal such as Ga, A1 or Cu has to be chemically attached 

to an organic compound that has a very high vapour pressure. However, the organic- 

metal bond is very weak and can be broken during thermal processing on the wafer, 

depositing the metal with the high vapour pressure organic component being pumped 

away.

One of the disadvantages of MOCVD is that care must be taken to ensure that little of 

the organic byproducts are incorporated. Unintentional hydrogen incorporation and 

carbon contamination are sometimes detrimental issues. Also there are growing con­

cerns associated with the safe use and the maximum quantities of hazardous materials 

such as certain gases and metalorganics permissible in device fabrication operations. 

These have become factors of paramount importance in the MOVPE-based crystal 

growth of compound semiconductors.

A robust route to uniformity and scalability has been achieved by implementing the 

Close Coupled Showerhead (CCS) MOVPE technology [11]. Figure 3.4 shows a photo 

of a CCS Thomas Swan (now Aixtron) 6x2 inch MOCVD growth system, at the Uni­

versity of Cambridge, in which the GaN samples discussed in this work were grown.

54



Chapter 3: Growth Techniques Used In This Work

cham ber

Therm ocouple

O ptical probes

Substrate in a 
w afe r pocket

Susceptor

W ater cooled cham ber 

Quartz liner 

E xhaust

M etalorganic 
plenum

NH3 in let lower 
plenum  cham ber

Three zone 
heater

Exhaust

Figure 3.4 A Thomas Swan (now Aixtron) 6x2 inch MOCVD growth system at the 
University of Cambridge, which is dedicated to lll-Nitride materials [10].

In CCS MOCVD, the chemicals are introduced vertically into the reactor chamber, with 

the gases introduced through a huge number of very small channels designed like a 

showerhead in the reactor ceiling, located very close to the heated wafers, which assures 

that the process gases are always distributed uniformly over the whole wafer carrier 

surface. Further, it is constructed to enable precursors to be separated right up to the 

point where they are injected onto the substrates through multiple small pipes. The 

reagents are injected into the reactor chamber through separate orifices in a water-cooled
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showerhead injector, to create a uniform distribution of reagent gases. Substrates are 

placed on top of a rotating susceptor, which is resistively heated. The three-zone heater 

enables modification of the temperature profile to provide temperature uniformity over 

the susceptor diameter. This technology enables the chemicals to decompose and the 

targeted atoms diffuse very quickly through the gas phase onto the wafer surface.

Figure 3.5 Aixtron Close Coupled Showerhead 55x2 inch [11].

Figure 3.5 shows an Aixtron multi-wafer CCS system; the reason for using 2 inch 

diameter wafers is because GaN-based materials typically grown on sapphire, which is 

cheaper per unit area for 2 inch wafers. The current advances in MOCVD technology 

have enabled the deposition of large surface areas and therefore MOCVD has become 

the first and most cost-effective choice for compound semiconductor manufacturers.
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3.5 Conclusions

This chapter briefly discussed several important CVD techniques used to fabricate 

electronic materials to meet the industry demands, as well as pointing out the drawbacks 

associated with CVD such as unintentional hydrogen incorporation and carbon contami­

nation which are sometimes detrimental effect in device fabrication.

In addition, the HFCVD and MWPCVD growth techniques used in this work to grow 

synthetic diamond thin films were discussed. Detailed information about MOVPE 

growth using Close Coupled Showerhead technology were given in this chapter, as this 

was the method used to grow GaN wafers in this thesis.

Finally, some examples were given to show that researchers and industry are currently 

concentrating upon developing methods to scale up the CVD processes and reduce 

production costs to the point at which it becomes economically viable to use wide 

bandgap semiconductors as materials of choice.
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Chapter 4: Theory of Electrical Characterisation Methods

4. Theory of Electrical Characterisation Methods

4.1 Introduction

Most semiconductor device applications rely on the electrical properties of the semicon­

ductor. It is important to measure the electrical properties of deep level defects within 

the bandgap as, in some cases, the processes that occur in deep levels which influence 

device performance are non-radiative and cannot be observed by optical techniques such 

as Photoluminescence (PL). Different capacitance measurement techniques have been 

applied to investigate defects within the bandgap of semiconductors. These include 

Photocapacitance and Thermally Stimulated Capacitance (TSCAP) which either exhibit 

low sensitivity or they are only suitable for the extraction of optical parameters and 

therefore did not cover broad application. Other techniques such as Positron Annihila­

tion Spectroscopy (PAS), a contactless method which allows depth-dependent defect 

characterization, is significantly sensitive to void-like defects such as vacancies but 

requires elaborate equipment that is not readily available to most researchers. Thermally 

Stimulated Current (TSC), Deep Level Transient Spectroscopy (DLTS), and Thermal 

Admittance Spectroscopy (TAS) are amongst the useful electrical characterisation tools 

that are widely used for studying electrically active defects in semiconductors. However, 

TAS is only suitable for detecting majority carrier traps and TSC is strongly influenced 

by leakage currents and the information obtained from TSC is limited and more difficult 

to interpret comparing to DLTS [1]. DLTS is one of the most common deep-level 

characterisation techniques today, having replaced TSC. Capacitance-Voltage (C-V) and 

Current-Voltage (/-V), used in conjunction with other electrical characterisation me­

thods, are helpful tools for extracting useful information and also in assessing the 

suitability of a specific Schottky or a p-n junction to be used for further measurements 

such as DLTS or TAS.

The theory of semiconductors is described in many text books [1-3]. Therefore, only a 

short description of the basic aspects that are relevant to this research is given. The aim
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of this chapter is to introduce the reader to the terminology and notation used in this 

thesis.

4.2 Theory of the depletion region

4.2.1 An overview of semiconductor junctions

Junctions are the boundary or the interface that occurs between two semiconducting 

materials of interest. For example, growing a layer of crystal doped with one type of 

dopant (e.g. a p-type semiconductor) on top of a layer of crystal doped with another type 

of dopant (n-type semiconductor) should form a p-n junction. If these layers were made 

of the same material but different dopants then it is called a p-n homojunction, whereas, 

if they were made out of different semiconductors, they are called p-n heterojunctions. 

Heterojunctions can form between two different materials with the same type of doping 

(isotype), known as p-p  or n-n heterojunctions.

A different type of junction known as a metal-semiconductor junction is created by 

depositing metal layers on a semiconductor. A metal-semiconductor junction can either 

form a Schottky barrier (as a device by itself it is known as a Schottky diode) or form a 

non rectifying contact known as Ohmic contact. The type of contact formed depends on 

the bandgap of the semiconductor, doping type and carrier concentrations in the semi­

conductor, the metal's work function, and other factors such as surface states.

Although a p-n or a Schottky are both junctions of interest for electrical characterisation 

measurements using capacitance spectroscopy techniques, the analysis or characterisa­

tion of defects within a bandgap of a specific material can be made simpler by using a 

Schottky junction. In the fabrication of a Schottky device only one type of semiconduct­

ing material is used, one type of carrier and also there is no need to dope the same 

material both n and p-type. In a Schottky barrier the space charge region extends only 

into the semiconductor. Due to Schottky barrier there should be no injection of minority 

carriers; hence there is only majority carrier conduction, making the analysis easier. 

However, this depends on factors such as the formed barrier's characteristics.
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4.2.2 p-n  Junctions

A p-n structure consists of two semiconductor regions with different doping type as 

shown in Figure 4.1. The p -type region has an acceptor density (Aa), while the n-type 

region has a donor density (Ad). The dopants are considered to be shallow, so that, for 

example, the electron density in the n-type region is approximately equal to the donor 

density. The same applies to the holes in the p-type region.

neutra l region
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charge
region

A V
neutra l region

holes
© © electrons

© O'
p-doped n-doped© ©
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Charge
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Figure 4.1 A p-n  junction in thermal equilibrium (zero-bias). The underneath plots 
illustrate the charge density, the electric field, and the built-in voltage [4].
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In thermal equilibrium condition (no external voltage is applied), a potential difference 

or built-in potential ( V b i )  is formed across the junction. This is due to the fact that the 

dopants in the regions close to the p -n  interface lose their neutrality and become 

charged, forming a depletion region or space charge region. In the n region nearby the 

p -n  interface, electrons tend to diffuse into the p  region leaving behind positively 

charged ions (donors). Similarly, holes in the p region near the junction tend to diffuse 

into the n-type region leaving negatively charged ions (acceptors). An electric field 

formed by the charges on the ionized donors and acceptors, causes a drift of carriers in 

the opposite direction. The diffusion of carriers continues until the drift current balances 

the diffusion current. The depletion region extends further on the less doped side, since 

the depletion region has the same magnitude of charge on both sides of the p -n  junction. 

Equilibrium is reached when the two Fermi levels (EFn and EFp) equalise.

Depletion

p-type Si n-type Si

Figure 4.2 A reverse-biased silicon p-n diode.

If a p-n diode is reverse-biased, as shown in Figure 4.2 and Figure 4.3, the potential 

across the junction increases with increasing reverse-bias voltage and so does the width 

of the depletion region. The junction barrier becomes greater and charge flow is mini­

mal. When the p -n  junction is forward-biased (opposite polarity) the negative charge 

applied to the n-type semiconductor repels the electrons (i.e. electrons flowing through 

the n-type region toward the junction), while the positive charge applied to the p-type
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semiconductor repels the holes (i.e. holes flowing through the p-type region in the 

opposite direction toward the junction). This lowers the potential barrier; the electrons 

and holes travel in opposite directions, but they also have opposite charges, so the 

overall current is in the same direction on both sides of the diode. The depletion region 

decreases with increasing forward-bias voltage and eventually becomes narrow enough 

that electrons can cross the junction and inject into the p-type semiconductor. Also the 

two species of carriers are constantly recombining in the vicinity of the narrow junction, 

which is detrimental for device performance.

Reverse bias Forward bias

Figure 4.3 Energy band diagram of a  p-n junction under reverse and forward bias [5].

4.2.3 Schottky barrie r diode

According to the Schottky model, bringing a metal and a semiconductor in intimate 

contact will result in a potential barrier formed at the metal-semiconductor interface 

preventing most charge carriers (electrons or holes) from passing from one side to the
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other. Only carriers that have enough energy to get over the barrier will cross to the 

other side of the junction via thermionic emission.

In Figure 4.4, a basic Schottky contact on an n-type semiconductor is shown. The 

energy band diagram is constructed with reference to the vacuum level (the energy of a 

free stationary electron outside the material). However, not all metals form Schottky 

barriers; a metal is characterised by the work function {<Pm) which is the energy required 

to excite an electron from the metal to the vacuum level. The semiconductor is charac­

terised by the electron affinity of the material (JQ. In thermal equilibrium, the Fermi 

energy levels of the semiconductor (EFs) and the metal (EFm) should be aligned, band 

bending occurs on the semiconductor side, meaning that the depletion region is extend­

ing only on the semiconductor side.

V acuum

Figure 4.4 Band diagram of a Schottky junction on n-type semiconductor, in 
thermal equilibrium [5].
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Figure 4.5 Energy band diagram of a Schottky junction (a) under forward bias and 
(b) under reverse bias [5].

Figure 4.5 illustrates that it is possible to vary the depletion width by applying a voltage 

to the Schottky junction. When the junction is reverse-biased, the negative charge 

applied to the metal repels the electrons; the dopants electrons will be emitted (i.e. 

dopants become ionized and give rise to a space charge). If the junction is forward 

biased, the electrons will be captured. The metal-semiconductor interface and the edge 

of the depleted region work like two capacitor plates, with the depletion region acting as 

a dielectric.

Therefore, Schottky devices are commonly used in electrical characterization of semi­

conductors. It is possible to characterize a semiconductor material by analysing the 

emission and/or capture of electrons by dopants or by any defects; C-V profiling admit­

tance spectroscopy and DLTS are the most popular electrical characterization techniques 

that use this type of junction.
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For a Schottky barrier or a p-n junction diode, capacitance measurements should detect 

any charge that responds to an applied time varying voltage. However, interface traps 

and/or deep level defects in the semiconductor bulk can contribute to the capacitance 

and hence produce errors in capacitance profiles. Although the ac voltage frequency is 

often considered to be sufficiently high (1 MHz) for the interface traps to be unable to 

follow, errors can still arise in both time and depth dependent C-V profile because the dc 

reverse bias usually varies sufficiently slowly for the traps to be able to respond. For 

trap concentrations much less than the doping density, e.g. 1% or less, the contribution 

of traps is usually negligible.

4.3 Majority and minority carriers: emission and capture

The semiconductor has n electrons/cm3 in the conduction band and p  holes/cm3 in the 

valence band introduced by shallow-level dopants. There are only four possibilities for 

the behaviour of a deep level with regard to the conduction and the valence bands, as 

illustrated in Figure 4.6, where n j  and p r  represent the deep traps occupied by electrons 

and holes respectively.

Pt

Figure 4.6 The probabilities of carrier capture and emission processes for 
deep-level impurities within the bandgap of a semiconductor [1].
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The emission rate (en) represents the electrons emitted per second (s'1) from electron- 

occupied centres. The capture rate (cn .ri) represents the density of electrons captured per 

second (cm3 s’1) from the conduction band. For example when an electron is captured 

from the conduction band by a deep centre, this process is called electron capture and it 

is characterised by the capture coefficient (c„), one of two events will takes place. The 

deep centre can either emit the electron back to the conduction band (called electron 

emission) or it can capture a hole (cp) from the valence band. Following either of these 

processes, the deep centre is occupied by a hole and again has two options; either it 

captures an electron from the conduction band or emits the hole back to the valence 

band. The latter event is sometimes viewed as electron emission from the valence band 

to the centre. Generally after an electron has been emitted, the centre finds itself in the 

Pt state and subsequently emits a hole, returning it to the tit state. Then the cycle re­

peats.

An impurity can act as a trap or a generation-recombination (G-R) centre depending on 

the Fermi level position, the energy level of the deep centre, the capture cross-section of 

the centre, and the temperature. For centres nearer to the conduction band edge electron 

emission dominates en»  ep, whereas for centres nearer to the valence band edge 

ep»  en. Centres with energies near the midgap behave as G-R centres, which can exist 

in one of two states. If occupied by an electron, it is in the nr state and if occupied by a 

hole, it is in the pr  state. If the G-R centre is an acceptor, tit is negatively charged and pr  

is neutral. If it is a donor, nr is neutral and pr  is positively charged. The density of 

centres occupied by electrons nr and holes pr  must equal the total density (N j = nr + pr)- 

It should be noted that when majority and minority carriers are generated or recombine, 

the electron density in the conduction band (n), the hole density in the valence band (p), 

and the charge state of the centre nr or pr  are all functions of time.

For a Schottky diode, as described in Figure 4.7(a), at zero bias, capture dominates 

emission, and the steady-state density of deep traps is h t - N t . The time dependence of 

nr, during the initial emission period, is given by:
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Figure 4.7 A Schottky diode (a) zero bias, (b) reverse bias at t = 0, (c) reverse bias at 
t>0 and (d) The applied voltage as a function of time and the capacitance transient [1],

nT(t)=nT(0)Qx p'_r « NT expr_r
< Te , k Te j

(4.1)

where xe is the electron emission time (re = l/en), n j  (0) is the initial steady-state density 

and it is given by:

nT =— -— Nt
en +ep

(4.2)

When the diode is biased from zero to reverse bias, with most trap levels initially 

occupied by electrons for t < 0, electrons are emitted from the traps for t > 0. During this
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period of reverse bias emission dominates because the emitted carriers (electrons) are 

swept out of the space-charge region (scr) very quickly (i.e. the transit time is shorter 

than the typical capture times), therefore reducing the probability of being recaptured. 

When the diode is pulsed from reverse to zero bias, electrons rush in to be captured by 

traps in the p r  state. During the capture period, the time dependence of itj is:

where, A is the area of the diode, q is the electron charge , Vj is the applied reverse bias, 

Vbi is the built-in potential, s & s 0 are the permittivities of the semiconductor and free

space respectively and Nscr is the density of ionized impurities in the scr. The ionized 

shallow donors (dopant atoms in the scr) are positively charged Nd+, and Nscr depends on 

the status of deep levels:

• In the case of deep acceptor impurities that are occupied by electrons (negatively 

charged), Nscr = ND+ -  n ~.

• For deep acceptor centres that are occupied by holes (neutral), Nscr = Nd+-

•  For shallow and deep donor levels occupied by electrons (neutral), Nscr = Nd+.

•  For deep donor level occupied by holes (positively charged), Nscr = Nd+ + Pt •

In Figure 4.7(a) the diode is initially zero biased, allowing traps to capture majority 

carriers (electrons in n-type). In Figure 4.7(b) majority carriers are emitted from the 

traps as a function of time immediately after a reverse bias pulse is applied to the 

junction. The majority carriers are emitted at t > 0 contributing to the capacitance, i.e.

where zc is the electron capture time (rc = \/cn.ri)

The capacitance of the Schottky device of Figure 4.7 is best described by [1]:

(4.4)
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the depletion region width (W) decreases and C increases until steady state is attained as 

illustrated in Figure 4.7(c) & (d), where Co is the quiescent capacitance, and C(v=o) is the 

capacitance at zero bias. It should be noted that the applied reverse bias has to be long 

enough so that all majority carriers are emitted. If the time available for electron capture 

is short, not all the traps will be occupied by electrons when the diode returns to reverse 

bias. The capture time (rc) is given by:

where on is the electron capture cross-section, vth is the electron thermal velocities and n 

is the electron density.

Unfortunately there are situations when not all traps empty during the emission process; 

trap levels below the Fermi level remain occupied by electrons during the emission 

transient and do not capture electrons during the filling process.

For electrical minority carrier injection (e.g. holes in n-type), p-n  junctions should be 

used. It is well known that Schottky diodes do not inject minority carriers efficiently. 

For example if a p +~n junction is forward biased, holes are injected into the n region and 

capture dominates emission. In this case it is difficult to predict the occupancy, but the 

traps are no longer solely occupied by majority carriers (electrons) contrary to the case 

of zero bias; a certain fraction is occupied by holes.

In Figure 4.8, at t = 0, assume that in an n-type diode all deep-level impurities are 

occupied by electrons (majority carrier emission) or holes (minority carrier emission). 

The transient is still detected as a time-varying capacitance and it is described by the

Tc — (Cn.n) (4.5)

Cn Gn-Vth (4.6)

expression

te x p ----- (4.7)
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Figure 4.8 The capacitance-time transients following majority carrier emission 
and minority carrier emission [1].

where nr(0) is the initial steady-state density and Co is the quiescent capacitance (i.e. the 

initial capacitance of a device at reverse bias -V  assuming that all deep-level impurities 

are emitted). The trap concentration can be calculated using a first-order expansion of 

Equation (4.7).

C * C
\  nT( 0)^ 

2 Nd j
(4.8)

if it is assumed that most traps are occupied by holes (minority carriers), this would 

imply for the deep-level acceptor impurities that n j  » 0 and Nscr ~ No, because deep- 

level acceptor centres are neutral when occupied by holes. That is the state just after the 

junction has been forward biased (at t=0). Immediately after applying a reverse bias 

pulse, minority carriers (holes) are emitted from the traps, and hence their charge 

changes from neutral to negative, for t -> oo , the total ionized scr density decreases Nscr« 

Nd ~ nr, the width of the scr increases, and the capacitance decreases. The emission time 

constant (xe) is given by:
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r ,  = —  (4.9)
e n + e p

Where ep»  en, (hole emission dominates for centres nearer to the valence band edge).

for electrons re = .« * ( & - f r ) /* D
° n v thN c

(4.10)

f  u i exp((ET - E ) / k T )  . . . . .for holes re = — ------- —-----  (4.11)
<?pv thN v

where Nc and Nv are the effective densities of state in the conduction and valence bands 

respectively, k is the Boltzmann constant and T  is the temperature.

J3kT
  (4.12)
m..

Nc =2
2nm„kT 

h:
(4.13)

where mn is the electron effective mass and h is Planck’s constant. Similar expressions 

apply for holes.

If Equation (4.10) is multiplied by T2 and the factor (v(h /T 1/2J(n c / r 3/2) is expressed 

as:

r „ = W lT m ){NcIT m ) (4.14)

The emission time constant can be rewritten as:

t T 2 = exp ((Ec - E T)/kT) ^  ^

Y n °n

The trap activation energy can be deduced, using equations (4.10) and (4.15), from the 

slope of the In{ep)T  ) versus 1 fT  plot and the trap capture cross-section can be extrapo­

lated from the intercept on the In(ep/T 2) axis.
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4.4 Current-voltage analysis

The current through a p-n junction is characterised by the equation:

I  =1  o
(q (y  - I R S) '  '

exp
rjkT

-1
J J

(4.16)

where I0 is the saturation current and r] the diode ideality factor. V= Vd + IRS, where Vd 

is the voltage across an ideal diode, i.e. the voltage across the space-charge region in 

series with any voltage drops across the p  and n quasi-neutral regions (qnr), Rs is the 

series resistance and I  is the current.

AV = 7r,

qnr<
4—>c<u
fc3
U

scr

r 10 o,scr

o,qnr
r!2

0.2 0.4 
Voltage (V)

0.6 0.8

Figure 4.9 l-V curve for a forward biased diode with series resistance [1].

Figure 4.9 shows an example for current in a p-n junction diode (forward biased junc­

tion), plotted using Equation (4.16). At high currents the deviation of the log(7) vs. V  

curve from linearity is due to series resistance. Rs can be determined according to:

AV  = IRS (4.17)
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For IRS »  V »  rjkT /q, the plot shows linear dependence of current on voltage. For 

V > rjkT /q  , at low current, the current is dominated by scr recombination and at higher 

current it is dominated by qnr (quasi-neutral region) recombination. Therefore, the total 

current is described by the following equation:

(
i  = /  ft< exp

V v

q(V - IR S)') 1
qkT

-1
J J

+ I  o,qnr

r /  
exp

V V qkT
(4.18)

The reverse saturation currents for any of the two regions (I0,Scr and I 0,qnr) can be deter­

mined by linear extrapolation of each region to V  = 0. The ideality factor is deduced

from the slope
/
m  =

v
diogjy 

dV
as a function of the sample's temperature.

Tf =
1

2.3 kT d\og(I)
dV

(4.19)

The thermionic current of a Schottky barrier diode is characterised by the equation:

I =L

J  = AA*T2 ex

f
exp

V v

q(V - IR S)
rjkT

 ̂ A 
-1

J )

kT

c r 
exp 

V v

q(V - I R s ) }  }
q kT

-1  
J J

(4.20)

(4.21)

where Is is the saturation current, A  is the area of the diode, A* is Richardson’s constant, 

A* = 120 (m /m ) A cm'2 K'2, ij is the diode ideality factor, and 0b is the effective barrier 

height.

^  k T .
<&b = — ln

AA T 2 \
(4.22)

The barrier height is commonly calculated from the saturation current ls. It can be 

determined by extrapolating the log(Is) versus V  curve to V  = 0. The effect of series
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resistance is not important in this extrapolation because the current Is is very low. At 

higher currents, the value of Rs can be estimated using the same method as described for 

a p-n  junction.

For V »  kT/q, at a constant forward bias voltage V  = V\, Equation (4.21) can be written 

as:

A plot of In (I/I2) versus 1 IT  is called a Richardson plot, the slope of which 

~q(€>b ~ V\/r))/k and the intercept on the vertical axis is ln(AA*). However, the extraction 

of A* from the intercept is prone to error, as the 1000/T axis usually covers only a 

narrow range and any uncertainty in the data can produce a large error in the value of A*. 

Fortunately, A* appears in the “In” term and an error of 2 in A* gives rise to an error of 

only 0.7 kT /q  in Ob.

In this case n must be determined independently.

Accurate extraction of Ob sometimes becomes impossible when both the barrier height 

and the ideality factor are temperature dependent and non-linear Richardson plots are 

observed. Linearity can be restored if r] In(IfT )  is plotted against 1 IT  [6].

For a well-behaved Schottky diode, rj value is near unity. However, r] can deviate from 

unity as a result of current flow due to mechanisms other than thermionic emission such 

as thermionic-field emission and recombination& generation. The presence of high Rs 

also increases the value of ideality factor, rf.

(4.23)

d{in( I /T2))  
d ( l / T )

The barrier height is calculated from the slope

Vx k j ( ln ( / / T 2))
rj q  d ( l / T )

(4.24)
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4.5 Capacitance-voltage analysis

The width of a reverse-biased scr of a junction device relies on the applied voltage. The 

capacitance per unit area of a Schottky diode is given by

£ = I SsSOQ{NA - Nd) 
A V 2(Vbi-V )

(4.25)

For n-type semiconductors ND »  NA, whereas for p-type ND «  NA. The built-in 

potential V# is related to the barrier height by the relationship

0b = Vbi + Vo

Vo = (kT/q) In(Nc/Nd)

(4.26)

(4.27)

where Nc is the effective density of states in the conduction band. Plotting 1/C2 versus V 

gives a curve with the slope 2/[q.£s.ea.(NA - ND)], and with the intercept on the V-axis 

gives the intercept voltage (V,), as shown in Figure 4.10 (in this example V,=0.53 V).

x 1020

7

6

4

0
70 I 0

Reverse Voltage (V)

Figure 4.10 1/C2 versus V plot of a diode, exhibiting an intercept voltage of 0.53 V.
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Vi = -V bi + kT /q  (4.28)

The barrier height can be determined from the 1/C2 —V  curve for 1/C2 —» 0 or C —»co 

indicating sufficient forward bias to cause flat band conditions in the semiconductor. 

The flat-band barrier height Ob (c-v) is determined by using Equations (4.26) and (4.28)

®b oc-v) = ~Vi + V0 + kT /q  (4.29)

For a Schottky barrier diode with a p-type semiconductor that has Na doping density,

using the depletion approximation, i.e. neglecting minority carriers and assuming

perfect charge neutrality beyond a depth W  and total depletion of majority carriers in the 

scr to W, the doping profiling can be obtained using the following equations:

Na(W)= ^  (4-30)qSs£oA2 t M £ 1
s 0 dV

w  = £ j£o£  (431)
C

This approximation works reasonably well when the scr is reverse biased and when the 

semiconductor is uniformly doped. Further, it is known that the charges that actually 

respond to the ac voltage are the mobile carries (i.e. holes in this case, not the ionised 

acceptor ions). Hence, the differential C-V profiling measures the effective carrier 

density, not the doping density. That is neither the true carrier density nor the doping 

density. Fortunately, the effective carrier density is approximately the majority carrier 

density and therefore Equation (4.30) can be described as:

P(W ) = --------------2- ---------- -  (4.32)
.2 d (l/C 2)

q£r£nA -----------
s dV

It should be noted that for a Schottky diode the width of the scr only spreads into the 

semiconductor; the spreading of scr into the metal is negligible. In the case of a p-n  

junction, Equations (4.31) and (4.32) are applicable only when one side of the junction
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is more highly doped than the other side (i.e. p +n or n+p  junction), and hence the scr 

spreading into the heavily doped region can be ignored. If that is not the case then these 

equations must be modified. Fortunately, most p-n junctions for doping density profil­

ing, are of the p +n or n+p  type, and therefore corrections due to doping asymmetries are 

not necessary.

4.6 Deep Level Transient Spectroscopy (DLTS)

As discussed in section 4.3, the presence of deep traps in the depletion region of a 

Schottky diode alter the junction capacitance; it is affected by any variation in the 

charge state of the deep traps, i.e. change in concentration of carriers trapped by the 

deep levels [1-2]. The traps that capture or emit carriers can be monitored by observing 

the corresponding change in the capacitance. DLTS is a powerful technique for investi­

gating the electronic behaviour of deep levels in semiconductors. The trapping process 

is examined by changing the voltage applied to the junction using biasing pulse tech­

niques. There are two types of biasing pulses, the majority carrier pulse, in which the 

voltage bias is pulsed from reverse voltage to zero voltage, the momentary reduction in 

the diode bias introducing only majority carriers into the region of observation. In the 

second type of biasing pulse, the injection pulse is applied either by forward biasing the 

device for a very short interval (this is in the case of a p-n  junction) or by an optical 

pulse which inject both majority and minority carriers into the depletion region, this is 

known as O-DLTS, where the voltage bias can be pulsed from a reverse voltage to a 

forward voltage.

In Figure 4.11 firstly assume that a p +n junction diode so that the depletion region is 

expected only to occur in the n side of the junction. Secondly, assume that the semicon­

ductor contains a low concentration of defect that forms a deep electron trap with an 

energy level Ej. The conduction and valance bands are denoted by Ec and Ev.
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Figure 4.11 A schem atic diagram describing the origin of the DLTS transient for 
majority carrier trap. (1) Quiescent state; (2) The filling pulse; (3) reverse bias; (4) 
exponential decay as  carriers are emitted [7].

The unshaded area illustrates the depletion region while the n shaded area indicates the 

bulk of n-type semiconductor containing free carriers. At the Et level, black dots and 

spaces between them indicate filled and empty traps respectively. It is assumed in the 

initial state (step 1) that all the trap level in the depletion region is empty and the traps in 

the bulk of the n region are filled. With the application of a fill pulse, the reverse bias 

across the diode is reduced. The width of the depletion region W is reduced while the 

capacitance of the diode is drastically increased, as shown in (2). As a result of the 

reduction in the depletion region the traps are filled up to a distance of approximately 

the depletion width below the surface of the semiconductor. After filling pulse duration 

of tp, the reverse bias is returned to its quiescent level, as shown in (3). The increase in 

the reverse bias increases the width of the depletion region; some of the deep level traps 

in the depletion region are now filled. The filled traps in the depletion region are in this 

case above the Fermi level; hence, they will emit carriers since they are thermally
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excited. This causes the charge density in the depletion region to increase, increasing the 

junction capacitance. Immediately after each pulse the rf capacitance changes by AC.

Figure 4.12 illustrates the situation of a minority carrier trap (i.e. hole traps in n-type), 

an injection pulse is used to apply forward bias and hence inject both minority and 

majority carriers into the depletion region; since the depletion region is forward biased 

and the junction barrier may have collapsed [8]. The assumed hole traps in this case 

must have high hole capture coefficient cp» c n to be filled with holes. After the filling 

pulse the defect states are filled with holes and the width of scr is smaller, as shown in 

(2). After filling pulse duration of tp, the bias is returned to its quiescent level, as shown 

in (3), with emission of the trapped holes the capacitance becomes smaller and relaxes at 

the initial value C r .

rf
t *

CD Quiescent reverse
bias, /<0 7 • •

12] Injection

[TlBeginning of 
transient, t=0+

- 0 - 0  0 -0 - 0

n
z d f0 0 0 E y

+
p n +

p
••••••••
I n

ooo 0 o o o o o o
E,
E. ooo r  " o o o o

[4] Decay of transient due to 
thermal emission, t >0 

Ec

E,
Ey

Figure 4.12 A schematic diagram describing the origin of the DLTS transient for a 
hole trap in an n-type semiconductor. (1) Quiescent state; (2) The filling pulse; (3) 
reverse bias; (4) Exponential decay as carriers are emitted as a function of time [7].
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It should be noticed that for majority carrier emission the capacitance increases with 

time whether the material is n- or p-type and whether the impurities are donors or 

acceptors [9]. For an w-type semiconductor, traps in the upper half of the band gap are 

generally observed with majority carrier pulses; those in the lower half are detected with 

minority carrier pulses. Midgap traps can respond to either minority or majority carrier 

excitation. Minority carriers can also be injected optically [1].

Basically, DLTS is a signal-processing method based on transient analysis. It is known 

that the power of capacitance-time transients analysis was only fully realized when 

automated data acquisition techniques were introduced. The first o f these was Lang’s 

dual-gated integrator or double boxcar approach [10]. In DLTS, the dual-gated signal 

integrator is necessary for the setting of a rate window, extracting the difference in 

capacitance from the transient, and averaging the signal for noise reduction. The rate 

window concept can simply explained by assuming the capacitance-time transients in 

Figure 4.13 are sampled at times t = t\ and t -  t2 and that AC is the difference in 

capacitances at ti and t2, i.e. AC = C(t\) -  C(t2). The temperature is slowly scanned while 

the diode is repetitively pulsed between zero and reverse bias. A difference signal is 

generated, as a change in the capacitance within the preset rate window. The capacitance 

difference is plotted for each transient as a function of temperature; this is known as the 

DLTS spectrum, and it passes through a maximum when the emission rate matches the 

system's time constant. In DLTS plots the position of the peak (a peak for each deep 

level) on the temperature axis allows one to determine the fundamental parameters 

governing thermal emission and capture. The height of the peak is related to trap 

density. The majority carrier trap spectra usually are depicted with an opposite sign of 

peak amplitude in respect to the minority carrier trap spectra.

The DLTS signal is described by the following equation:

A C  = C(t1) - C ( t2) = C0 M°)
2N n
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temperature

-o high T

low T

Figure 4.13 Illustration of how the DLTS signal is generated from using the double 
boxcar. The output is the average difference between the capacitance at time f* and the 
capacitance at time t2 as a function of temperature [10].

The maximum emission time constant (Te>max) is in fact the set rate window for the scan 

that will detect an emission rate e from a trap and it is obtained by differentiating 

Equation (4.33) with respect to re and setting the result equal to zero [1].

emax

It should be noticed that different rate windows can be used for each temperature scan 

by varying t\ and t2, (i.e. it is possible to record and monitor the emission rate of a trap 

as function of temperature by setting different rate windows). A suitable way of doing 

that by varying t\ and ^  while In(t^/h) remains constant. In this way the shape and size 

of the peaks on the AC versus T  plot will not be affected, i.e. the peaks shift with
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temperature with no curve shape change, making peak location easier. For every t\ and 

t2 gate, one value of ze corresponding to a particular temperature is generated, giving one 

point on a In( t J 2) versus 1/T plot. Trap parameters such as the activation energy and the 

apparent capture cross-section can be deduced according to Equation (4.10).

The trap concentration (Nt) can be easily calculated from ACmax if the hole or electron 

trap is completely filled due to a saturation injection pulse or a large majority carrier 

pulse.

N t = 2 ^ ( N a - N d ) (4.35)

where Na - No is the net ionized impurity concentrations and C is the quiescent 

capacitance of the junction under reverse bias conditions.

DLTS also offers the extraction of information about the carrier capture cross-section 

that describes the ability of the trap to capture free charge carriers. Measurements o f o 

are best achieved by varying the fill pulse duration. The application of a short fill pulse 

implies that the trap will not have time to fill completely while along fill pulse entails 

that the trap will be saturated by carriers. The capture cross-section can be determined 

by measuring the trap occupancy while varying the fill pulse duration. The capacitance 

change as a function of the fill-pulse length is best described by the following equation 

[10].

fACoo -  A Q l
In — — ------  =  trp v th p tp (4.36)

where ACa> is the equilibrium capacitance value, AC, is the capacitance at time t, cp is 

the trap capture cross-section, p  is the majority carrier population, tp is the fill-pulse 

duration, and vth is the thermal velocity.

Equation (4.36) can be used to investigate whether deep electronic states originated 

from point or extended defects. In these experiments consecutive DLTS scans are 

performed around the peak temperature of the defect and the fill pulse length is reduced
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consistently until a point is reached where the trap fails to fill the DLTS peak maximum. 

In the case of point defects, the majority carrier capture cross-section should obey a 

linear dependence on the logarithm of a combination of capacitance terms as function of 

fill pulse length. Deviation from this relationship provides a sensitive test for the pres­

ence of extended defects that exhibit Coulombic repulsion, because the repulsive force 

reduces subsequent carrier capture at the defect, i.e. this is due to the Coulomb potential 

that arises around the defect that prevents further carrier capture after a period of time. 

In this case, non-linear slope is obtained, hence the capture characteristics can not be 

described by Equation (4.36). Nevertheless, DLTS can still be applied to identify such 

defects. It has been reported [11,12] that the DLTS signal should exhibit a dependence 

on the logarithm of the fill pulse time when the carrier capture is into extended defects,

ACm ocln(tp) (4.37)

where ACm denotes the amplitude of the DLTS signal.

4.7 High resolution Laplace-DLTS

Conventional DLTS has insufficient energy resolution (at best about 50 meV) to reveal 

information about closely spaced trap levels. A high resolution modification of DLTS, 

Laplace DLTS (LDLTS) [13] provides substantial increase in energy resolution over 

conventional DLTS. LDLTS records and digitizes the capacitance transient due to 

carrier emission at a fixed temperature and extracts the emission rates present in the 

transient by applying a mathematical algorithm. In fact, several thousand capacitance 

transients are averaged, which ensures that the signal-to-noise ratio is of the order of 

1000, which is enough to separate transients with closely spaced emission rates. LDLTS 

is capable of distinguishing whether a single DLTS peak is due to emission from a 

unique defect or several defects closely spaced in energy. The choice of measurement 

temperature is usually governed by the original DLTS measurement, i.e. an optimum 

temperature is chosen for each deep state, which is around the maximum of the DLTS 

peak.
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In the LDLTS software used in this work, the capacitance transients are analysed by 

three different inverse Laplace transform algorithms (i.e. mathematical algorithms that 

effectively performs an inverse Laplace transform for the recorded transient), and a plot 

of peak intensity as a function of emission rate produced. In LDLTS the improvement in 

resolution was possible by changing the filter characteristic. A common approach to the 

quantitative description of non-exponential behaviour in the capacitance transients is to 

assume that they are characterised by a spectrum of emission rates. A mathematical 

representation of the capacitance transients given by the following equation is the 

Laplace transforms of the true spectral function F(s).

m  = ] n s ) e - s ,ds (4.38)
o

where fit)  is the recorded capacitance transient.

Therefore, it is necessary to use a mathematical algorithm that effectively performs an 

inverse Laplace transform for the function/(7) in order to find a real spectrum of the 

emission rates (time constants) present in the transient. The LDLTS software offers a 

library of algorithms which either modified for the requirements of LDLTS or were 

developed specifically for this system. The three different algorithms used (CONTIN, 

FTIKREG and FLOG) [14-16] are based on the Tikhonov regularization method and 

they differ only in the way the regularizations parameters are defined. This provides a 

complete and comparative analysis of emission rate which increases confidence in the 

accuracy of the generated LDLTS spectra.

LDLTS requires the use of a highly stable cryostat and it is very important to establish 

accurate communication with the temperature controller, as any instability in tempera­

ture before the end of the fill pulse will affect the occupation of the traps, e.g. a stability

of ± 50 mK is required for the detection of a shallow level -100 meV from the band 

edge. Any large degree of instability in temperature will introduce noise which is 

detrimental for accurate measurement of such a shallow trap.
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Further details about the specifications of the equipments and software used in this 

project for DLTS and LDLTS are given in the following chapter.

4.8 Thermal Admittance Spectroscopy (TAS)

In principle, the presence of a deep level in the measured rectifying junction is deter­

mined by a flexion in the capacitance-frequency (C-f) curves, and a peak in the 

conductance/frequency (G/f) curves that occurs at frequency fo\ this frequency is related 

to the emission rate of the deep level [1,17].

where ep(T) is the emission rate of a carrier from a deep level in a p-type semiconductor 

as a function o f temperature, op is the capture cross section of the deep level, Nv is the 

valence band density of states, vth the thermal velocity and Ea is the energy level of the 

acceptors above the valence band edge. However, the response of majority carriers at a 

measurement frequency is limited by the dielectric relaxation time (zrei) [17]. The 

majority carriers can not respond to the measurement frequency (/) when the angular 

modulation frequency (d=2nf exceeds l/zre[. The C -f and G /f curves should shift 

towards higher/lower frequencies by increasing/decreasing the measurement tempera­

ture, and hence it is possible to evaluate the dependence of the defect emission rate on 

temperature. The equivalent circuit of a p-n junction or a Schottky diode is a junction 

capacitance (C) in parallel with a junction conductance (G) (which governs the leakage 

current) and a series resistance (Rs) (which depends on bulk resistivity and on contact 

resistances), as shown in Figure 4.14.

(4.39)
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Figure 4.14 The actual equivalent circuit for a p-n or Schottky diode.

The complex impedance (Z) of the circuit is given by

Z  = R .+  G. = Re{Zj + Im{Z} =
G 2 +{coCf

R .+
G2+ {m C f

~ J
coC

G2+ (coC f _
(4.40)

where Re{Z} and Im{Z} are respectively the real and imaginary components of the 

complex impedance. The general equation defining the measured complex admittance 

(Y) is given by [1]:

z
G (l + RsG)+RJcoC)2 
(1 + RsG)2 +(coRs C)2

+ j
coC

(l + RSG)2 + (coRs C)2
(4.41)

and the admittance is also defined as: Y = Gm+ jcoCn (4.42)

~ G{l + RsG)+RJcoC)2 r  — c
(l + RsGY+(o>RscY ’ m (l + RsG)2+{a>Rs C)2

(4.43)

where Cm and Gm are the measured capacitance and conductance respectively.
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For reasonably good junction devices, the condition RSG «  1 is generally satisfied. 

Lowering the frequency reduces the second term in the denominator to less than one and 

the true capacitance is determined. Then the frequency is raised until the second term 

dominates, and Rs can be calculated with all other quantities known. Unless the effect of 

the series resistance is not negligible, the imaginary component of the measured admit­

tance is directly proportional to the depletion capacitance, i.e. if  (RSG «  1) and 

(Rs «  l/(coC), then Cm = C. However, for large Rs and G values ( Rs > 1 kQ and G ~ 

10‘5 S), the measured capacitance should be corrected using the above equations. 

Therefore care must be taken if the directly measured Cm is used to obtain the built-in 

voltage (Vu) and impurity concentration. It is reported [18] that analysis of Cm vs. V data 

suggests that the extrapolated Vw value increases with increasing frequency. This 

implies that extrapolating the Vbi from a plot of 1/C2 vs. V is not always valid; there may 

not be a unique gradient. It is therefore advisable to investigate the measured capaci­

tance as a function of dc bias, frequency and temperature. The series resistance can be 

either estimated from the I-V  curves [19] for each temperature or by constructing a 

Nyquist plot from complex impedance measurements [18,20], as function of bias, 

frequency and temperature, where Rs equals the saturation value in the measured real 

part of the impedance.

It is worth mentioning that in the TAS experiments (G/co vs. T), the conductance data 

can be recorded using a stable temperature scan rate at a fixed probing frequency for 

each experiment; this in principle is similar to the DLTS experiments [17].

It is possible to directly use the conductance peaks occurring at each temperature to 

construct an Arrhenius plot and hence Ea and the apparent a of each defect can be 

deduced according to the standard equation [21]:

2 n f
~ p ~  *  exP

E„
k T

(4.44)
max V max J
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where Tmax is the temperature at which the conductance peak is occurring and f  is the 

probing frequency for each experiment. A plot of In (co/I2) vs. 1/T should give a straight 

line the slope of which corresponds to Ea and the intercept is related to o.

4.9 Conclusions

This chapter described the necessary theoretical background associated with device 

physics of junction diodes. An overview of capacitance-voltage and current voltage 

analysis were provided for both p-n and Schottky barrier junctions. This chapter also 

discussed the occupancy of the electrically active traps in semiconductors by majority or 

minority carriers in light of the mentioned junction devices. In addition, the techniques 

used for studying deep defect levels such as Deep Level Transient Spectroscopy 

(DLTS), Laplace-DLTS and Thermal Admittance Spectroscopy were briefly described. 

The theory of these experimental tools was discussed together with the necessary 

equations for the extraction of significant trap parameters in semiconductors.
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5. Experimental Setup

5.1 Introduction

As discussed in chapter 4, it is essential to use sensitive tools for characterising deep 

level defects in semiconductors. The high frequency (1 MHz) transient capacitance 

techniques, deep level transient spectroscopy (DLTS) and the high resolution Laplace 

DLTS (LDLTS), have proved to be useful experimental tools to probe deep and shallow 

level defects. Thermal admittance spectroscopy (TAS), in which the conductance of a 

Schottky or a p-n junction is monitored as a function of temperature, is also used to 

verify the existence of electrically active defects (charge carrier traps) within the 

bandgap of a material. These experimental techniques allow for the calculation of 

fundamental defect parameters and measure their concentration in the material.

This chapter starts with a description of the DLTS and LDLTS experimental setup used 

in this study; it also provides information about the LDLTS software used. The second 

section presents the setup used for carrying out thermal admittance spectroscopy 

experiments and also for measuring capacitance-voltage (C-V), as a function of 

temperature. Further, it illustrates the current-voltage (I-V) system and describes how 

these instruments are connected and also controlled via LabView applications.

Finally, this chapter provides a brief description for the supplementary techniques used 

in this study namely Raman spectroscopy and scanning electron microscopy (SEM).

5.2 DLTS and LDLTS experimental setup

5.2.1 The Hardware

Figure 5.1 shows a schematic diagram for the DLTS and LDLTS systems used in this 

study. The setup used for the DLTS and LDLTS measurements consisted of the 

following hardware elements:
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Figure 5.1 Schematic diagram of the DLTS and LDLTS system s used in this study.

5.2.1.1 Acquisition and pulse generator card

This interface card is the most vital hardware element; it is connected to a PC dedicated 

for Laplace DLTS experiments, and is used for data acquisition and sample biasing and 

pulsing; as in this system no external pulse generator is used. This card has an internal 

pulse generator for supplying a filling pulse to the sample followed by a constant 

quiescent reverse bias during which the capacitance of the sample is observed. Two 

types of data acquisition and pulse generator card are available within the DLTS facility 

at Sheffield Hallam University (SHU). The first one is the transient processing card 

(known as the UMIST card), this was developed at the University of Manchester, with 

the following specifications: Input voltages: ± 5  V, resolution: 16-bit, maximum sam­

pling frequency: 200 kHz, output voltages: ± 10 V and pulse widths from 20 ns. The 

other card is a National Instruments PCI-6251 together with a NI I/O SCB-68 connector
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box, with the following specifications: Input voltages: ± 10 V, resolution: 16-bit, 

maximum sampling frequency: 2 MHz, output voltages: ± 10 V and pulse widths from 

0.5 \xs.

5.2.1.2 GPIB interface card

To get the applications up and running fast, a National Instruments (NI) GPIB card for 

PCI interface is used. GPIB cables and connectors (IEEE 488 Bus) are used to establish 

fast communication between the system instruments via defined GPIB addresses 

(individually defined using the I/O software interface).

ARS - 4HW 
Cryostats

Edwards 
Vacuum Pump

Water cooled 
ARS Compressor

Vacuum
Shroud

Edwards 
Pressure gauge

Figure 5.2 A photograph of the vacuum system s used for DLTS at SHU. Two heads 
are available: (10-450) K and (15-800) K.
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5.2.1.3 Tem perature controller

A Lakeshore-340 temperature controller is used for controlling the set point temperature 

or temperature scans of the measurements. The system uses two different sensors, either 

a silicon sensor (10-450) K or a platinum sensor (15-800) K, to measure the sample 

temperature inside the vacuum chamber, and the temperature is also monitored nearer 

the cold head. The output of the sensors is fed back to the temperature controller in 

order to maintain the appropriate rate of temperature change during measurements.

5.2.1.4 Cryostat and sample holder

An Advanced Research Systems (ARS) 4HW Cryostat connected to an Edwards pump 

for pumping the system to vacuum is used, as shown in Figure 5.2. The pressure of the 

sample chamber is monitored using an Edwards ADG high vacuum indicator.

Vacuum
Shroud

Electrical
co n ta c ts

S am ple 
u n d er te s t

Cold finger 
"Copper"

Figure 5.3 Photographs of the sam ple holder inside the closed-cycle liquid He cryostat.
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The sample is mounted on a cold finger in the closed-cycle liquid Helium cryostat which 

is capable of operating in the selected temperature range. Figure 5.3 shows some photo­

graphs of the sample holder inside the vacuum chamber.

5.2.1.5 Capacitance meter

A Boonton 72B capacitance meter (1 MHz) was used for capacitance-voltage (C-V) and 

DLTS measurements, which monitors thermal emission after excitation by an electrical 

pulse.

5.2.1.6 Oscilloscope

An Agilent DSO6104A Oscilloscope was used to monitor the filling pulse to be 

supplied to the sample.

5.2.2 The Laplace DLTS Sofware

The Laplace DLTS software used in this work was first developed in 1993 by 

L. Dobaczewski, I. D. Hawkins and A. R. Peaker, who were awarded a UK National 

Physical Laboratory prize for this invention; this was followed by a Royal Academy of 

Engineering Foresight Award in 1997 [1]. Laplace DLTS has been subsequently 

developed through several research projects funded by the European Union, the Polish 

Ministry of Science and Higher Education and by the Engineering and Physical Sciences 

Research Council, UK.

The graphical user interface (GUI) of the software enables the user to choose the 

measurement mode and scan parameters, for example, using single temperature scan, 

simultaneous 9-rate windows measurements, or multiple temperature scans with 2 rate 

windows each (based on the TrapView software). The software also allows the user to 

set the biasing conditions for every experiment and to choose the sample pulsing mode, 

for example, single pulse, double pulse for the electric field dependence and trap 

profiling, injection pulse for carrier recombination processes analysis, or minority 

carrier transient spectroscopy. In addition the software controls the hardware, for 

example, it is easy to set the parameters for the temperature controller and set up the
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excitation and acquisition parameters. Further, it performs preliminary analysis of the 

time constant and creating the noise histogram. The software stores the large amounts of 

experimental data and all parameters that describe each measurement in a database 

system, and then readily manipulates the data. The database system runs in the back­

ground of the measurement process, records experimental data and when the 

measurement is done it enables the user to extract, compare and visualise recorded data.
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Figure 5.4 (a) A capacitance transient (b) a spectrum obtained from the 
capacitance transient using three different algorithms.
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It is important to minimize the effect of noise on measurements because the capacitance 

transient is very small. Therefore, instead of taking a single point, the capacitance 

measurements are usually averaged over thousands of transients. For numerical 

calculations, the LDLTS software uses three mathematical algorithms; CONTIN [2], 

FTIKREG [3] and FLOG [1]. The trap relaxation process is measured as a capacitance 

transient, as shown in Figure 5.4, then using these algorithms it is converted from the 

time domain into a spectrum of carrier emission rates in the frequency domain.

Laplace Deep Level Spectroscopy provides an increase in energy resolution over 

conventional DLTS of an order of magnitude. The use of three different algorithms in 

parallel substantially increases the level of confidence in the spectra obtained. 

Additionally, for preliminary data analysis a discrete deconvolution method can be used, 

this method is based on a simple integration procedure [4].
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Figure 5.5 LDLTS spectrum of hydrogenated silicon containing gold. The inset shows 
DLTS spectrum of the sam e defect [5].
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Figure 5.5 demonstrates the improvement in energy resolution possible with LDLTS. 

The main plot shows a measurement of a Si:Au sample using Laplace DLTS, whereas 

the inset shows the DLTS spectrum of the same defect. It is clearly evident in LDLTS 

there are two distinct defects; one of these has been found to be due to substitutional 

gold the other to a gold-hydrogen complex [5]. However, these peaks can not be 

resolved using DLTS.

5.3 Thermal Admittance Spectroscopy and I-V  experimental setup

The vacuum system used in the admittance spectroscopy and I-V  setup is similar to the 

one described above (used for DLTS). Figure 5.6 shows a schematic diagram for the 

systems used in this study.

GPIB Card

Closed cyde 
He Cryostat

Keithely 6487 
Picoammeter

BNC coaxial cab le

GPIB cable

LCR Meter
A g ilen t E4980A (20 Hz -2 MHz)

Vacuum Pump

T - Sensors 
10 - 450 K

H eater
GPIB cable (IEEE 488 Bus)

I
<

Lakes hore
Model 340  Temperature Controller

Figure 5.6 Schematic diagram of the FAS and I-V system s used in this study.
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Figure 5.7 A photograph of the setup used for TAS and I-V system s at SHU.

5.3.1 Agilent LCR m eter E4980A

A precision LCR meter is used for evaluating semiconductor devices over a wide range 

of frequencies (20 Hz to 2 MHz) and test signal levels 0.1 mV to 20 V, and 50 pA to 

200 mA.

The E4980A’s list sweep function permits entry of up to 201 frequencies, test signal 

levels, or bias level points to be automatically measured. Such an LCR meter is some­

times needed before performing DLTS measurements when a sample conductance has 

to be known or to find out whether the measurement has to be performed with a test 

frequency other than 1MHz. This system is also used to carry out C-V and capacitance- 

frequency (C-f) measurements.

Lab view programs have been developed locally to automate the different measurements 

and to enable the user to select different parameters using a friendly graphical user 

interface. Once a single measurement is executed the data are recorded and subsequently 

saved in a predefined disk location on the system. Hardware drivers have been config-
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ured to establish automatic connection between the E4980A, the temperature controller 

and the PC using the GPIB interface.

5.3.2 Cryostat and sample holder

The cryostat and vacuum system is similar to the one discussed above. The sample is 

mounted on a finger in the closed-cycle liquid Helium cryostat which is capable of

operating in the range 10 - 450 K.

5.3.3 Current-voltage experimental setup

A Keithley 6487 Picoammeter/Voltage Source is used for I-V  experiments, it provides 

higher accuracy and fast rise times, as well as a damping function for use with 

capacitive devices. With eight current measurement ranges and high speed auto-ranging, 

this instrument can measure currents from 20 fA to 20 mA. It performs measurements at 

speeds up to 1000 readings per second and provides a voltage source from 200 pV to 

500 V.

An application program (developed by a former SHU student) based on Lab VIEW

software was used in this study to carry out the current-voltage-temperature (I-V-T)

experiments. This application is provided with a graphical user interface which confirms 

that the connection with the instruments has been automatically initialised via 

predefined GPIB addresses. It enables the user to select a voltage sweep, plot the 

corresponding currents, and store the recorded data on the user's folder.

5.4 Supplementary techniques used for this work

5.4.1 Raman Spectroscopy

Raman Spectroscopy is a technique that can be used to study solid, liquid and gaseous 

samples. The Raman technique is named after the Indian scientist Sir C. V. Raman who 

was the first to observe in practice the inelastic scattering of light in 1928, he won the 

Nobel Prize in Physics in 1930 for this discovery [6].
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Raman Spectroscopy relies on the inelastic scattering of photons by a substance. Usually 

the source of light is a laser in the near infrared, visible or UV. This inelastic scattering 

is observed as a shift in the frequency of the scattered light relative to the excitation 

wavelength. The Raman shift gives information about the vibrational, rotational modes 

and other low frequency transitions in the system. Therefore, this technique provides 

unique spectra (containing information about chemical composition and structure) for 

each specific compound.
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Figure 5.8 Schematic diagram of the Raman spectrom eter [7].

The basic setup of a Raman spectrometer is outlined in Figure 5.8. The excitation laser 

beam is directed into the spectrometer via an array of mirrors; the beam is passed 

through a set of optics to set the profile of the beam. The power of the laser illuminating 

the sample is controlled by a set of neutral density filters. The beam is passed through a 

line filter (with specific wavelength) that removes any plasma lines from the laser to 

ensure a monochromatic source. The beam is focused onto the sample as it is reflected 

into a microscope. The scattered light is collected back into the spectrometer and passed 

though a notch filter to remove the intense Rayleigh-scattered radiation, leaving the 

weaker Raman-scattered light. Another set of optics is used to focus the Raman-
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scattered light before diffraction grating separates the different wavelengths. Finally, the 

different wavelengths are then detected by a CCD camera (charge-coupled device) 

connected to a PC running the Raman software. The software is also used to set the 

Raman measurement parameters, such as scanning range, exposure time and number of 

accumulations.

The Raman Spectroscopy setup used in this study is a Renishaw RM2000, it is a multi­

wavelength system with three different excitation sources; 785 nm diode laser, the 514.5 

nm line of an Ar+ laser, and the 325 nm line of a HeCd laser.

5.4.2 Scanning Electron Microscopy

The scanning electron microscope (SEM) uses a high-energy beam (up to 40 keV) of 

electrons to produce an image. The beam of electrons is focused by electromagnetic 

lenses on to the specimen and rastered over the surface to build up an image. The 

electrons interact with atoms at and near the surface of the specimen producing signals 

that contain information about the specimen's surface topography, grain structure, grain 

size, composition, and other properties such as electrical conductivity. The SEM is 

capable of much higher resolution than conventional optical microscopes due to the 

short wavelength of the electron beam. Resolutions of less than 1 nm are possible with 

modem machines. Most SEMs require a high vacuum throughout the chamber and an 

electrically conductive sample. More recent developments have involved the use of 

pressure limiting apertures in the column enabling a low pressure of an imaging gas to 

be maintained in the specimen chamber whilst keeping high vacuum conditions at the 

gun. This enables the study of non-conducting or vacuum-sensitive materials. Since its 

development in the early 1950's, SEM has opened up new areas of research in physical 

and medical sciences.
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Figure 5.9 Schematic diagram of a  scanning electron microscope [8].

In a typical SEM, as illustrated in Figure 5.9, a beam of electrons is emitted from an 

electron gun (either thermionic or field emission) [9]. The electron beam, with energy 

ranging from 50 eV to 30 keV, follows a vertical path through the microscope. The 

beam passes through electromagnetic fields and lenses which focus the beam down 

toward the sample. As soon as the beam hits the sample, electrons and X-rays are 

ejected from the sample; detectors are used to collect the X-rays, secondary or 

backscattered electrons, and convert them to a signal that is used to produce an image.

The SEM setup used in this study is The FEI Nova™ Nano SEM. This system offers 

high resolution (~1 nm) in high vacuum mode with accelerating voltage of 15 kV. Small
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and large samples can easily be accommodated inside the large chamber on high preci­

sion and high stability stage.

5.5 Conclusions

This chapter firstly presented the experimental setups used for electrical characterisation 

of devices in this work. These included C-V, I-V, DLTS, LDLTS and admittance spec­

troscopy setups. Details of instruments connectivity and used software in each setup 

were also provided.

Finally, basic description was given for the Raman spectroscopy and SEM techniques 

that were used in this work to provide supplementary information about the quality of 

the grown thin films.
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6. Materials growth, Characterisation and Device fabrication

6.1 Introduction

Two different materials and different sets o f samples were investigated in this thesis, 

using the electrical techniques explained in chapter 5. The first set of data is associated 

with the electrical characterisation o f defects in B-doped polycrystalline diamond films 

grown on p + silicon substrates. In this work, hot-filament Chemical Vapour Deposition 

(CVD) and Microwave Plasma-Enhanced CVD methods were employed to grow 

diamond thin films. The diamond films were grown by Prof. P. W. May at the 

University of Bristol. This chapter provides details of the growth conditions, contact 

formation and characterisation for semiconducting diamond thin films. It also discusses 

the deposition o f several types o f Schottky contacts on polycrystalline diamond.

The second part o f this chapter is associated with a description o f the growth o f Mg- 

doped GaN films grown by MOVPE on sapphire substrates. Details o f the processing of 

Schottky diodes on these films have also been provided. The aim of forming electrical 

contacts on GaN was to investigate the effect o f threading dislocation density (TDD) on 

electrically active defects in Mg-doped GaN films using DLTS and/or admittance 

spectroscopy. The GaN thin films described in this chapter were grown by Dr. M. 

Kappers at the University o f Cambridge.

Finally, details o f the sheet resistance, the estimated doping concentrations and the 

Raman characterisation of the as-grown thin films are also provided in this chapter.

6.2 Specifications of the diamond thin films

6.2.1 Substrate and nucleation layer

Silicon is the most commonly used substrate for depositing CVD diamond because of 

various considerations; it has the same crystal structure as diamond, a high melting point 

(1683 K), relatively low thermal expansion mismatch coefficient with diamond and the
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ability to form a carbide layer on the substrate surface to which the carbon-containing 

species in the gas phase can bond to and hence form CVD diamond.

The substrate for all the diamond samples reported in this chapter was single crystal 

(100) Si (B-doped, p+, resistivity » 0.01-0.02 cm), cleaved into 0.5 or 1 cm2 squares. 

Since nucleation on the substrate is necessary for the growth of the diamond film, the 

silicon substrate was manually abraded prior to deposition using 1-3 pm diamond grit, 

to facilitate the diamond nucleation, and then cleaned with isopropyl alcohol (IPA). 

Before diamond film deposition the substrate was positioned on a resistive heating unit 

inside the vacuum chamber. A current of 4 A was passed through the heater, increasing 

the temperature of the substrate to ~400°C to remove any adsorbed impurities such as 

water.

6.2.2 Growth conditions of B-doped Hot Filam ent CVD diamond Ulms

Ten polycrystalline diamond films were deposited on /?-type Si substrates using hot 

filament CVD (HFCVD). Sample OS-al, which was not intentionally doped, was grown 

in a B-free reactor. This is because B is known to diffuse into the sidewalls and 

components within a reactor, and then diffuse out again during later growth runs, 

inadvertently introducing B into the gas mixture and causing unwanted doping of any 

growing film [1 ].

The gas mixture used was high purity H 2 (200 seem), CH 4 (2 seem) with diborane 

(B2 H6) as a variable source of boron. These gases were metered into the chamber via 

mass flow controllers with the process pressure maintained at 20 torr. Rhenium was 

used for the filament material since Re does not act as a sink for carbon or boron 

species. The filament coil was suspended -5  mm above the Si substrate and a current of 

6.75 A passed through it (Vac -20  V) for the duration of the deposition run, usually 

6 - 8  hours, yielding a film thickness of 3-4 pm. The estimated filament temperature was 

~2000°C and the estimated Si surface temperature (combined heat from filament and 

substrate heater) was ~900°C.
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6.2.3 Growth conditions of B-doped Microwave Plasma-enhanced CVD films

Three boron-doped polycrystalline diamond films were deposited on heavily boron- 

doped Si substrates using a 1.5 kW ASTeX (2.5 GHz) microwave plasma-enhanced 

(MWP) CVD reactor with a water-cooled, double-walled chamber containing a Mo 

substrate holder. The Si substrates were manually abraded prior to the deposition run, 

cleaned and then placed on an alumina plate and raised ~ 1  mm into the plasma, with the 

result that the substrate attained a temperature of ~900°C, as measured by two colour 

optical pyrometry. The gas mixture used was high purity H 2 (200 seem), CH4  (2 seem) 

with diborane (B2 H 6 ) as a variable source of boron, using microcrystalline diamond 

(MCD) conditions [2], and the deposition time was 1.5 h.

Table 6.1 Details of all as-grown CVD-diamond films.

Batch Sample
Growth
Method

Deposition 
run (hour)

4-pt probe - 
resistance (G)

B-concentration
(cm3)

OS-al 6 50 K Undoped

OS-a2 6 1 2 1 ~2 x l 0 20

A OS-a3 HF-CVD 6 38 ~8 x l 0 20

OS-a4 6 35 ~9xl O20

OS-a5 6 42 ~6 x l 0 20

OS-bl 1.5 43 ~6 x l 0 20

B OS-b2 MWP-CVD 1.5 1.8 K ~8 x l 0 18

OS-b3 1.5 Out of range (highly doped)

OS-cl 8 1.75 K ~8 x l 0 18

C OS-c2 HF-CVD 8 1.35 K ~2 x l 0 19

OS-c3
8 450 ~8 x l 0 19

D OS-dl HF-CVD 8 1.5 K ~1.5xl019

OS-d2 8 950 ~4xl0 19
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An estimation o f the B content was made for each film by comparison with a calibration 

graph o f 4-point probe resistivity measurements against B-content measured by SIMS

[2]. This procedure gives the total B content in the film, which may be higher than the 

concentration o f electrically active B due to compensation or segregation, as mentioned 

earlier. Table 6.1 details the polycrystalline diamond films, as grown in four batches.

6.2.4 SEM results of boron doped CVD-diamond films

Figure 6.1 illustrates that in sample OS-b3 nucleation on the substrate did not take place 

and hence deposition o f diamond film was unsuccessful. However this could be due to 

the silicon substrate not being abraded prior to deposition, to facilitate the diamond 

nucleation. This film is therefore not discussed further.

r
/

• 1 p m  -

Figure 6.1 Electron micrograph of sample OS-b3, scale is shown for 1 pm.

The rest of the polycrystalline films were of thickness 3 -4  jam. Figure 6.2 shows typical 

scanning electron microscope (SEM) images o f the boron-doped CVD diamond films. 

The film morphology was microcrystalline with facetted crystallites averaging -1  //m  in 

size, uniformly deposited with good reproducibility from film to film.
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(a)

(b)

(c)

Figure 6.2 Electron micrographs of different HF-CVD diamond films, scales 
are shown for (a) 1 pm, (b) 5 pm and (c) 50 pm. The SEM with low magnifica­
tion is to show the uniformly deposited films.
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6.2.5 Ram an spectroscopy to determ ine crystal quality

Laser Raman Spectroscopy (LRS) is a widely used technique to identify the 

characteristic energies of the chemical bonds; it can also distinguish between different 

phases within the same material.

The Raman spectrum of natural diamond shows a sharp, single peak centred at a wave 

number of approximately 1332 cm ' 1 [3]. This feature also dominates the Raman spectra 

o f high quality, polycrystalline diamond films grown by CVD methods [2-3], see Figure 

6.3. CVD diamond films mostly consist of small diamond crystallites surrounded by 

graphitic/amorphous carbon grain boundaries. These boundaries produce additional 

peaks in the Raman spectrum that can help identify the crystallite size and overall 

quality of the diamond sample.

Diamond

2c

3
•£c
I

G Peak

1400 1600 18001000 1200
Raman shift (cm '')

Figure 6.3 Raman spectrum of a microcrystalline diamond, taken at 325 nm [3].

However, peaks may be observed in the spectra which are characteristic of non-diamond 

contamination, depending on the deposition conditions (such as films grown with high 

methane concentration in gas phase). The Raman spectrum of graphite shows a broad
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feature centred on 1575 cm '1, called the G peak [3]. The relative intensity o f the 

diamond peak to the intensity of the G peak is often used as a crude measure of the 

phase purity of CVD diamond. However, when characterising CVD diamond films, the 

observation of any broad resonance at higher wave numbers is generally taken to 

indicate the presence of graphite-like non-diamond phases containing sp2-bonded carbon 

atoms.

In this work, the quality of the diamond films was verified by Raman spectroscopy. The 

presence o f polycrystalline diamond in all films was confirmed. Figure 6.4 and Figure

6.5 show laser Raman spectra for samples OS-a2 to OS-a5, which were obtained at 

room temperature using a Renishaw 2000 spectrometer and were obtained with a green 

excitation source of 514 nm wavelength derived from an Ar+ laser.

1150 cm

1332 cm

G peak
OS-a2

OS-a5

500 700 900 1100 1300 1500 19001700

Ram an Shift [cm 1]

Figure 6.4 Raman spectra for sam ples OS-a2 and OS-a5, taken at 514.5 nm.

Figure 6.4 shows that samples OS-a2 and OS-a5 each present a sharp peak centred at 

1332 cm '1, corresponding to a s/f-bounded structure [2-4]. This diamond peak shifts to 

lower wavenumber with increasing B content, and the line shape becomes asymmetric, 

as shown in Figure 6.5. The large Si line at 520 cm- 1  generally decreases in intensity
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with B concentration as the film becomes darker and less transparent to the green laser 

light. The large feature around 900-1000 cm- 1  is the second order from this intense Si 

line.

highly Doped, 
Film becom es 

opaque

OS-a3

OS-a4

900500 700 1100 1300 1700 19001500

Ram an Shift [cm-1]

Figure 6.5 Raman spectra for sam ples OS-a3 and OS-a4, taken at 514.5 nm.

The broad feature at 1225 cm- 1  increases with B concentration and dominates the 

spectrum at high B content [4]. The G band is evident at low B concentrations, but is not 

very intense, and at higher B concentrations, as the film achieves metallic conductivity 

(OS-a3 and OS-a4), it disappears. This does not imply that there is less graphite in these 

films, only that the G band signal is hidden beneath those from the other more dominant 

nearby features. The peak at ~1150 cm - 1  maybe characteristic of nano-phase diamond or 

could be due to sp2 carbon species at grain boundaries [5]. This is weakly present for the 

undoped film, but it increases with B concentration, suggesting that B promotes the 

incorporation of sp2 carbon species, possibly at grain boundaries. At even higher B 

concentrations, this peak is hidden beneath the 1225 cm- 1  peak.

Figure 6 . 6  shows a laser Raman spectrum for sample OS-al, which was obtained at 

room temperature using a Renishaw 2000 spectrometer and was taken using green
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excitation 514 nm wavelength (Ar+). The undoped film exhibited a large rising photo- 

luminescent (PL) background. This PL background decreases markedly with trace 

amounts of B doping, and it almost disappear for B contents > 8  x  1018 cm - 3  giving a 

flat baseline. The reason for this is attributed to the fact that B is compensating the 

nitrogen-related defects within the diamond that give rise to the majority of the PL [2].

520 cm

500 700 900 1100 1300 1500 1700 1900

Ram an Shift [cm 1]

Figure 6.6 Raman spectrum for sam ple OS-a1, taken at 514.5 nm.

Figure 6.7 shows laser Raman spectra for samples OS-dl, OS-d2 and an un-doped film, 

which were obtained at room temperature using a Renishaw 2000 spectrometer and were 

taken using UV 325 nm excitation (HeCd).

P. May et al. [2] have investigated the variations in Raman spectra of B-doped diamond 

films as a function of B content, publishing a large amount o f data for microcrystalline 

diamond (MCD). In samples OS-dl to OS-d2, the diamond peak decreases in intensity 

with increasing B content, as previously reported [2]. The G band is apparent with a 

peak at about 1585 cm" 1 due to crystalline graphite impurities. Notably, the broad peak

115



Chapter 6: Materials growth, Characterisation and Device fabrication

usually seen on the visible Raman spectrum at -1225 cm- 1 is absent from the spectrum 

of OS-d2. Wang et al. [4] reported that the peak located at -1225 cm - 1  cannot be 

detected when it is excited by the UV lasers even in a highly doped sample.

cm'1

OS-d2
OS-d1
Un-doped 1585 cm1

ac
<D

1000 1200

Raman Shift [cm1]
1400800 1600 1800

F ig u re  6 .7  Raman spectra for the different boron-doped MCD films using UV 
(325 nm) excitation. Features below 700 nm were not visible due to the cut-off 
filter used to remove the UV laser line.

6.2.6 Fabrication of Schottky diodes on the diamond films

Usually after CVD diamond growth, the surface of the diamond is hydrogen terminated 

since the surface is an abrupt ending of growth and unsatisfied dangling bonds are 

present. However, hydrogen causes surface conductivity and as a result reduces the 

current passing through the bulk semiconductor because the conducting surface presents 

an alternate conducting path [6 ]. Therefore, the diamond surface requires oxygen 

passivation (e.g. oxygen plasma) resulting in the removal of conductive H surface states 

before electrical contacts are made.
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6.2.6.1 Batches A, B and C

The process for making Schottky contacts on B-doped films in batches A, B and C was 

as follows: the films were degreased using trichloroethylene followed by acetone and 

the samples were then stored in methanol. The films were immersed in a solution of 

NH 4 0 H:H2 0 2 :H2 0  (1:1:5) for 10 minutes at 70°C, to remove metallic impurities, and 

subsequently rinsed in deionised (DI) water. The films were then dipped in a solution of 

HC1 :H2 0 2 :H2 0  (1:1:6) for 10 minutes at 70°C, to remove any organic impurities, and 

rinsed in DI water. The diamond surface was passivated using a RT Oxygen plasma 

asher (5 to 10 seconds only). Subsequently, A1 dots of 1 mm in diameter were 

evaporated through a shadow mask on to the diamond surface to produce rectifying 

Schottky contacts. Before the fabrication of the Ohmic contact on the back o f the p-type 

Si substrate, the diamond surface and sides of the film were protected with hydrofluoric 

acid (HF)-resistant wax/photo resist to minimise H-contamination during the processing 

of the back contact. The films were dipped for a few seconds in hydrofluoric acid 

(buffered HF) solution, to remove the native oxide layer from the silicon, and then 

rinsed in Di-water and blown dry with N 2. It was then stored under methanol (to prevent 

surface oxidation) prior to the evaporation o f an A1 layer on the back o f the /?+-Si.

F ig u re  6 .8  Cross-sectional schem atic diagram of the diamond Schottky diode.
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Figure 6.9 shows a micrograph of processed Schottky diodes (1 mm in diameter) on one 

sample, bonded to gold pads mounted on ceramic.

Figure 6.9 Schottky diodes (dots of 1 mm in diameter) on one sample, bonded 
to gold pads mounted on ceramic.

6.2.6.2 Batch D

The diamond films OS-dl and OS-d2 were degreased using trichloroethylene followed 

by acetone; the samples were then immersed in a saturated solution of H 2 SO4  and 

HNO3 acid at around 200°C for 20 min to remove any graphitic layers and to O- 

terminate the surface. The films were subsequently annealed in vacuum at 750°C for 30 

minutes. Schottky contacts (1-mm-diameter dots) were formed on the oxidized diamond 

surface with Al deposited by thermal evaporation through a patterned mask; there were 

about 8  Schottky devices on each 0.5x0.5 cm2 sample. Al Ohmic contacts were evapo­

rated on the Si back surface, as described in section 6.2.6.1.

The diamond samples were mounted on ceramic and then each of the Schottky contacts 

was bonded to a gold pad on the ceramic. The back contact was also bonded to a contact 

pad.
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6.3 Specifications of the Mg-doped GaN films

6.3.1 Substrate and buffer layer

The thin films discussed in this section were grown on (0001) sapphire substrates. Two 

different buffer layer schemes between the film and the sapphire substrate were used, 

giving rise to differing threading dislocation densities (TDDs) in the film. Buffer 

scheme A consisted of a 2 pm thick layer o f AIN grown at 1130°C on the sapphire, 

followed by a 1.0 pm thick not-intentionally-doped (NID) GaN layer at 1020°C. Buffer 

scheme B consisted of a 30 nm GaN nucleation layer deposited at low temperature 

(540°C) on the sapphire, followed by a 1.5 pm layer o f NID GaN buffer layer grown at 

1005°C.

0.5 pm GaN:Mg 

1 pm NID GaN

2 pm AIN

Sapphire

0.5 pm GaN:Mg

1.5 pm NID GaN

Sapphire

(a) (b)

Figure 6.10 Schem atic diagrams of Mg doped GaN thin films: (a) structure A, 
(b) structure B.

6.3.2 MOVPE growth conditions of the Mg doped GaN wafers

Four Mg doped GaN wafers were grown in a Thomas Swan close-coupled showerhead 

metal-organic vapour phase epitaxy (MOVPE) reactor using (0001) sapphire substrates. 

Two buffer layer schemes were used in this study, as discussed above. In all cases a

0.5 pm thick layer of Mg-doped GaN was grown on top of the buffer. The GaN growth
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mode was quasi-two-dimensional in order to avoid unintentional n-type doping during 

early stages of the GaN epilayer growth [7,8]. The reactor pressure was 100 ton*, the 

V-to-III ratio was 1420 and the growth temperature for the Mg-doped GaN was 1020°C. 

One wafer (C4022B) was subsequently grown using buffer scheme A, and three wafers 

(C4039B, C4052C and C4041B) were grown using buffer scheme B and different Mg 

precursor fluxes. These were annealed in the growth reactor for 20 minutes at 780°C in 

a nitrogen atmosphere to activate the carriers. Details o f the Mg precursor flux are 

given in Table 6.2.

6.3.3 Characterisation of the Mg doped GaN thin films

The Mg concentrations in selected films (C4039B and C4022B) were quantified as 

~ lx l0 19 cm'3 by secondary ion mass spectrometry (SIMS) performed by Loughborough 

Surface Analysis Ltd. using 02+ primary ion bombardment and positive secondary ion 

detection to optimise the sensitivity to magnesium. Atomic Force Microscopy (AFM) 

experiments revealed a TDD of (2 ± l)x l0 9 cm'2 in film C4022B (structure A), whereas 

in structure B the TDD was (l± 0 .1 )x l010 cm'2 using the method described in [9]. The 

AFM experiments were carried out by Dr. R. A. Oliver at the University o f Cambridge. 

These measurements were performed in intermittent contact (IC) mode using a Veeco 

Dimension 3100 microscope equipped with a Nanoscope V controller. Veeco RTESP 

tips with a nominal apex radius o f 8 nm were used.

For Hall effect experiments, indium bump contacts were deposited in a Van der Pauw 

configuration. The Van der Pauw resistances were measured on a home-built set-up 

involving an HP relay and DVM box (HP3497A), a programmable current source 

(Keithley 220), a PC and an electromagnet with a magnetic flux density o f 0.2 T at the 

centre o f the pole gap. The Hall effect data measured at room temperature are given in 

Table 6.2, and are the average o f four measurements made at different positions for each 

wafer, as illustrated in Figure 6.11. The above mentioned experiments were carried out 

at the University o f Cambridge in collaboration with Prof. C. Humphreys' group.
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Table 6.2 Sample growth details, AFM and room tem perature Hall effect results.

Wafer No. / 
buffer 
scheme

Mg precursor 
flux 

(pmol/min)

TDD
(cm'2)

Sheet
resistance

(kfl/n)

Hall mobility
(cm2 V 1 s'1)

hole concen­
tration (cm'3)

C4022B
Structure A 0.87 (2 ± l)x l0 9 144.5 12.5 0.7xl017

C4039B
Structure B 0.87 (l± 0 .1 )x l0 10 144.3 9.3 0.9xl017

C4052C
Structure B 0.67 (l± 0 .1 )x l0 '° 118.8 14.5 0.7xl017

C4041B
Structure B 0.43 (l± 0 .1 )x l0 10 Out of range

Figure 6.11 Hall sam ple position on wafer.

6.3.4 Ram an spectroscopy results

Room temperature Raman spectroscopy experiments were performed using 514.5 nm 

Ar+ laser excitation and a Renishaw Raman spectrometer prior to annealing. The Raman 

active phonons for the wurtzite GaN structure have been widely discussed in the 

literature [10-13].
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Figure 6.12 Raman spectra for the films with different levels of Mg-doping, 
taken at 514.5 nm.

Sample C4022B

Eq (752)

(734)
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Figure 6.13 Raman spectra for sample C4022B, taken at 514.5 nm.
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All the samples in this work show spectra typical of high quality material. Figure 6.12 

shows Raman spectra taken at room temperature for the three samples with the same 

TDD and different Mg doping levels, whereas Figure 6.13 shows the Raman spectrum 

of sample C4022B. The GaN E 2 (high) phonon frequencies were all reasonably close to 

the generally accepted value in unstressed material (567 cm '1).

A common peak ascribed to a phonon mode of GaN, Ai(LO), is also observed at 735 

cm ' 1 in all samples; the local intensity o f this is used as a direct measure o f the phonon- 

plasmon interaction. The LO phonons interact strongly with the charge carriers. How­

ever, the compressive stress imposed by the substrate may result in the small increase in 

the GaN E 2 (high) phonon frequencies in the samples with high TDDs. All of the spectra 

show the usual sapphire signals (Aig and Eg) at 418 and -750 cm '1, respectively, as 

denoted by arrows in all films. The sapphire signals were visible because the GaN 

wafers were too thin to absorb the entire incident light.

6.3.5 Fabrication of Schottky diodes on the p-type GaN

The GaN samples were cleaned using n-butyl acetate, acetone and isopropanol, then 

dried under nitrogen. After cleaning, the /?-GaN surface was dry etched by exposure for 

3 min to an Ar2 plasma with a RF power of 100 W; the Ar2 flow rate was 50 seem and

Ni/Au
Ohmic

Al/Au
Schottky

0.5 |jm  Mg d o p e d  GaN

1 pm NID GaN 

2 pm AIN

Sapphire substrate

Ni/Au
Ohmic

Al/Au
Schottky

0.5 |jm Mg d o p e d  GaN

1.5 pm NID GaN

Sapphire substrate

(a) (b)

Figure 6.14 Metal contacts on films (a) structure A, and (b) structure B.
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the chamber pressure was 5 mTorr. Subsequently, Ohmic contacts were formed with 

Ni/Au (20 nm/20 nm) deposited by thermal evaporation, followed by lift-off and 

annealing at 500°C for 5 minutes in a nitrogen/air mix. Al/Au (20 nm/200 nm) Schottky 

contacts of varying diameters (50, 100, 200, 300, 400 and 500) pm were deposited by 

thermal evaporation through a mask.

500 pm 
diode

Figure 6.15 Bonding of Schottky contacts on one sample.

Firstly, bonding was made directly to the thin Schottky contacts, as shown in Figure 

6.15. Unfortunately, this has resulted either in devices with poor rectification behaviour, 

or in some samples bonding to contacts was not possible and the contacts peeled off. 

This may be due to the pressure applied by the bonding machine.

A second set of samples was processed similarly, as described above, and in order to 

enable bonding to these thin contacts, a 500 nm silicon nitride layer was deposited over 

the entire surface. Electrical access to the contacts was achieved by reactive ion etching 

(RIE) windows in the silicon nitride. The RIE etch parameters were: CHF3 with a gas 

flow rate of 35 seem, RF power 70 W and the chamber pressure was 35 mTorr. Ti/Au
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contact pads (20 nm / 200 nm) were then thermally evaporated on to the samples. The 

micrograph in Figure 6.16 shows some of the fully processed devices.

wires

Figure 6.16 Bonding of Schottky contacts (View looking down). The micrograph on the 
right shows processed diodes on one sample, scale is shown for 1000 pm.

All Ni/Au contacts demonstrated Ohmic behaviour, as all samples were annealed under 

the same conditions. However, the device processing conditions were varied slightly 

from the above mentioned routine for another set of samples. These were not subjected 

to argon plasma (surface treatment) prior to Schottky contact deposition; the fabricated 

diodes exhibited high leakage currents. The effect of surface treatment is further 

discussed in chapter 8 .

All the device processing work was carried out at the EPSRC national centre for III-V 

technologies in Sheffield under the supervision of Dr. G. Hill and Dr. Robert Airey.
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6.3.6 Supplem entary Ram an Spectroscopy Results

The objective of these supplementary Raman spectroscopy experiments was to use the 

leftover of the GaN wafers in order to investigate the effect of thermal annealing on the 

activation o f Mg dopants.

Local vibrational modes related to the activation o f Mg acceptors were observed in the 

Raman spectra after annealing at 550°C in N 2 ambient for ~5 minutes. Figure 6.17 and 

Figure 6.18 clearly show that an additional phonon line appears at about 657 cm ’ 1 after 

thermal annealing; the intensity of this peak is almost proportional to the Mg content in 

the films.

(571)
Ê (high)

C4041B
C4052C
C4039B

annealed at 
550°C in R,

(735)
A(LO)

(418)
Sapphire (657)

450 500 550 600

Raman shift [cm'1]
650 700 750400

Figure 6.17 Raman spectra for the annealed Mg-doped films (the films were annealed 
in N2 for ~5 minutes), taken at 514.5 nm.
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(571)
E^high) Annealed at 550°C in ISl,

Sample C4022B

(735)
A,(LO)

(657)(418)
Sapphire

0
400 450 500 550 600 650 700 750 800

Raman shift [cm'1]

Figure 6.18 Raman spectrum for the annealed C4022B film (the film was annealed in 
N2 for ~5 minutes), taken at 514.5 nm.

The 657 cm ' 1 peak has been observed by Harima et al. [13] in annealed Mg-doped 

samples prepared by MOCVD and thermally annealed in N 2 atmosphere at temperatures 

above 500°C. They attributed the 657 cm ' 1 peak to a local vibrational mode for M g-N 

stretching because the frequency agrees with an estimation from that of the iii(TO ) 

mode of GaN (560 cm '1) multiplied by the root o f the reduced mass ratio between 

Mg-N and Ga-N pairs. It was concluded that the 657 cm ' 1 mode intensity is a good 

measure of activated Mg concentration, as this structure has been observed for Mg- 

doped GaN samples but not for undoped GaN samples.

The Mg concentrations for the GaN samples in this work were ~10 19 cm'3, as
17 3determined by SIMS experiments. The free hole concentrations were -10  cm' in the 

annealed films, which were measured at T=300 K by Hall effect measurements. This 

explains why the 657 cm ' 1 mode was not detectable in the as-grown samples as only a 

few percent of the Mg atoms are ionized at room temperature [14].
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Figure 6.17 shows a variation in the intensity o f the Raman peak isj(TO) at 560 cm '1 

with Mg content, i.e. the incorporation of Mg causes disorder. It is noticeable for all 

samples that a higher Mg content yields a more intense Ej(TO) mode. The isj(TO)/is2 

intensity ratio may be used as a measure for the disorder in the sample [15], as the 

£ j(TO ) mode is caused by a high concentration o f defects. Additionally the E 2 mode 

becomes broader with a higher Mg content, which can be attributed to the lower 

crystalline quality.

6.4 Conclusions

This chapter described the growth conditions and characterisation o f the diamond and 

GaN thin films examined in this project. The polycrystalline diamond thin films were 

grown on p+ silicon by HF-CVD and MWP-CVD. The boron concentration in the films
1R 9 0  9ranged from approximately 8x10 to 9x10 cm' . The quality of the produced films was 

verified by Raman spectroscopy.

The Mg:GaN thin films were grown on sapphire by MOVPE using two different buffer 

layers giving rise to differing TDDs in the GaN as measured by AFM. The Mg 

concentrations in the GaN films were -1 0 19 cm'3, as determined by SIMS experiments, 

whereas, the free hole concentrations were -1 0 17 cm'3, as measured at T  =300 K by Hall 

effect measurements. Only a few percent o f the Mg atoms were ionized at room 

temperature. Experimental results showed activation of Mg upon annealing at 550°C in 

N 2 atmosphere. Finally, different contact structures have been carefully fabricated in 

order to make reliable electrical contacts to wide bandgap semiconductors for 

subsequent investigations.
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7. Experimental results fromp-type diamond diodes

7.1 Introduction

Polycrystalline diamond films always exhibit electrical properties significantly different 

to those of single-crystal diamond. However, despite many years of research, little is 

known about the energy distribution and density of native and extrinsic defects in CVD 

polycrystalline diamond films. These defects can trap carriers or form recombination 

centres, and therefore detailed information about them is required in order to improve 

the performance of devices based on CVD diamond.

In this chapter a comparison of electrically active defects in CVD diamond films with 

different boron levels has been conducted. Table 7.1 details the polycrystalline diamond 

samples discussed in this chapter.

Table 7.1 Details of the CVD-diamond samples.

Batch Sample Growth
Method Annealing

Estimated 
B-doping (cm'3)

A
OS-a2

OS-a5
HF-CVD Un-annealed

~2xl O20 

-6x1020

B
OS-bl

OS-b2
MWP-CVD Un-annealed -6x1020 

~8xl018

C

OS-cl 

OS-c2 

OS-c3

HF-CVD Un-annealed

~8xl018

~2xl019

~8xl019

D OS-dl

OS-d2
HF-CVD

Annealed 
750°C for 30 min

~1.5xl019

~4xl019
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These samples were grown on p-type Si substrates. Schottky diodes were processed on 

the diamond surface as described in chapter 6; the investigation of Schottky diodes 

allowed electrical profiling of the region near the surface of the diamond. Consequently 

useful conclusions were drawn about the nature of defects present in the diamond film 

and their capture kinetics, also significant information was extracted about the dopant 

behaviour at different electrical depths.

Deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) have been 

applied to investigate the electronic behaviour of deep levels in semiconducting 

diamond. Prior to DLTS or AS experiments, capacitance-voltage (C-V) and current- 

voltage (7-V) measurements, as function of temperature, were performed to check the 

integrity of all the diodes on each sample. The C-V data were analysed to yield concen- 

tration-depth profiles while the I-V  data were used to obtain important diode parameters 

such as the Schottky barrier height. In addition, the high-resolution Laplace DLTS 

technique has been applied to establish whether the traps detected by DLTS are due to 

single or multiple carrier emissions, and direct capture cross-section measurements have 

been taken to demonstrate whether the detected deep electronic states originated from 

point or extended defects. Finally, results from AS and DLTS have been compared for 

the semiconducting diamond.

7.2 Experimental results from MWP-CVD grown materials

7.2.1 Sample O S-bl

I-V  and C-V measurements were first carried out at room temperature on all the diodes 

of this sample in order to select the diodes with the lowest leakage current and 

conventional capacitance-bias dependence.

The I-V  data in Figure 7.1, for sample OS-bl, revealed that the forward and the reverse 

currents were high; the diodes exhibited very high leakage currents, possibly due to the 

combination of low mobility and very high B doping in this sample. This is as expected
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Figure 7.1 Current-Voltage characteristics for sample OS-b1 at different tem peratures.

for a highly doped film. Both the forward and reverse currents rapidly increase with 

increasing temperature until 350 K and when the temperature rises above 350 K they 

almost become temperature independent. A possible explanation for this behavior is that 

the B concentration is very high, near the limit for metallic conduction; above 350 K, a 

sufficient proportion of the B is ionised and so the carrier concentration appears to be 

independent of temperature and mobility decreases at temperatures above RT due to 

phonon scattering [1,2]. Consequently, conductivity slightly reduces resulting in a small 

decrease in current. The obtained values of reverse current were high and hence further 

analysis by techniques that scan over a temperature range such as DLTS and LDLTS 

was not possible for this particular sample.

Figure 7.2 and Figure 7.3 illustrate respectively the obtained C-V and the corresponding 

carrier concentration-depth (N-x) profiles for this highly doped diode. It is clear that the 

capacitance of diode OS-bl at zero bias is quite large and it greatly increases with
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Figure 7.2 Capacitance-Voltage characteristics for sample O S-b1, at 
different tem peratures.
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Figure 7.3 Carrier concentration-depth (N -x ) profiles for sample OS-b1.
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temperature. This indicates that the width of the depletion region is narrow, as can be 

verified from the N-x profiles (~ 14 nm), which is expected since the carrier 

concentration is high. It is worth noting that semi-metallic conduction was taking place 

in this sample, and the B acceptor level may be getting very close to the valence band

[3].

7.2.2 Sample OS-b2

7.2.2.1 I-V  and C-V M easurem ents

I-V  measurements were carried out over a wide temperature range of 200 to 600 K, as 

shown in Figure 7.4. At temperatures below 500 K the diode exhibited almost zero 

leakage current (at V -  -5 V), however as the temperature reached 500 K an abrupt 

change in reverse current values was observed, and as the temperature rises further the 

leakage current of the diode rapidly increases.
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Figure 7.4 I-V  characteristics for sample OS-b2 at different temperatures.
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Figure 7.5 Richardson plot, ln(//T2) vs. 1/7for sample OS-b2.

The I-V  data were used to construct a plot of ln(I/T2) versus 1/T, shown in Figure 7.5, at 

a constant forward bias voltage V = 0.5 V (Richardson plot); the activation energy was 

calculated from the slope, and the ideality factor was determined independently 

(A]= 1.56) from the V = 0 intercept of Io (at 7=300 K for V »  kT/q). The obtained Ea 

value was 270 ± 10 meV. This value is near that of the acceptor level, and suggests that 

the increase in current was caused by simple thermal ionisation of the dopant. It could 

also be due to ionisation of holes trapped at defects.

Figure 7.6 illustrates the N-x profile for this diode at a high temperature. The carrier 

concentration value was about two orders of magnitude smaller than the initial doping 

concentration (see Table 6.1) indicating that only about 2% of the B concentration was 

activated at T= 450 K.
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Figure 7.6 Carrier concentration-depth (N-x) profile for sam ple OS-b2.

7.2.2.2 DLTS and LDLTS M easurements

The DLTS experiments for this sample were performed with a reverse bias -4 V, -0.5 V 

fill pulse and fill pulse length 2 ms. The spectra are shown in Figure 7.7. The substrate 

temperature was varied over the range 690 to 80 K by using a closed cycle He cryostat 

and the DLTS data were recorded using a temperature scan rate 4 K/min at a fixed 

frequency of 1 MHz.

The DLTS spectra revealed two minority carrier (electron) traps; the first trap or peak 

covers a wide range of temperature from 140 to 290 K for the 200 s' 1 emission rate 

window (RW). This peak shifts towards higher temperatures for larger rate windows as 

expected, since the carriers have more energy as the temperature increases. A broad 

shoulder in the spectra extending to over 280 K is observed. The second feature in the 

DLTS spectra covers a wider range of temperature (400 - 600) K for the 200 rate 

window. This peak or minority carrier trap shifts slightly with temperature for smaller 

rate windows. Variation of the biasing conditions did not detect any other defects.
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Figure 7.7 DLTS spectra for sample OS-b2, performed with a reverse bias -4 V.
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Figure 7.8 Arrhenius plot derived from the DLTS spectra for sample OS-b2.
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The activation energy of each trap was derived by measuring the peak temperature for 

every particular emission rate on the DLTS spectrum. The slope of the Arrhenius plot of 

ln(ep IT2) versus the reciprocal of temperature allowed the trap activation energy to be 

calculated. The Arrhenius plot in Figure 7.8 shows that the points are virtually on a 

straight line. The activation energy of the low temperature trap was 0.35 eV and that of 

the high temperature trap was 1.36 eV, deep in the diamond bandgap.

To illustrate the behaviour observed by DLTS in this particular sample, it is worth 

mentioning again that hydrogen-related defects are some of the most technological 

important impurities in diamond. Polycrystalline CVD diamond films are grown in an 

atmosphere rich in hydrogen and some is incorporated during growth; much of the 

hydrogen may be located at the grain boundaries or in non-diamond carbon inclusions.

t =2 ms

240 K 
220 K 
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180 K 
160 KU)

0.000-

10000100 100010
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Figure 7.9 LDLTS spectra for the low tem perature peak, VR=-4 V and 
tP=2 ms, sample OS-b2.

138



Chapter 7: Experimental results from p-type diamond diodes

On the other hand, p-type to n-type conversion of B-doped homoepitaxially grown 

diamond films upon deuterium plasma treatment was experimentally observed [4] and 

the conversion process was related to the presence of defects in the B-doped layer.

Higher resolution measurements provided by LDLTS may be able to provide accurate 

information on whether there are more closely spaced defects contributing to the 

observed levels. Therefore, LDLTS experiments were performed on the low temperature 

DLTS peak, using the same biasing conditions for this diode. Figure 7.9 shows the 

LDLTS spectra obtained at different temperatures (160 - 240 K) to illustrate the number 

of emission rate components that are present. Figure 7.9 clearly indicates that the 

activation energies can not be extracted and these levels are not due to point defects. 

Rather these two traps may be due to emission from extended defects, as the emission 

rates did not vary with temperature. Figure 7.10 shows the LDLTS spectra for the high 

temperature DLTS peak, the experiments were performed using the same biasing 

conditions as DLTS, at selected temperatures.
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Figure 7.10 LDLTS spectra for the high tem perature peak, VR=-4 V and 
tP=2 ms, sam ple OS-b2.
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Three levels were revealed, and the peak emission rates were scattered with temperature 

and hence did not allow meaningful activation energy calculations.

Unfortunately, the LDLTS can not yield more information other than the fact that a 

multitude of closely spaced defects exist, which possess complicated emission 

characteristics. However, it is worth noting that both the I-V  and C-V  measurements for 

this sample show a sudden change at elevated temperatures (above 500 K). However, 

slight changes in the color of the electrical contacts of this particular sample were 

observed after testing; it is suggested that the contacts may have degraded due to 

enhanced diffusion along grain boundaries at very high temperatures (-690 K), hence 

results for this sample are not discussed further.

7.3 Experimental results from the HF-CVD grown materials: Batch A

The film OS-al was nominally undoped for reference purposes, as discussed in chapter 

6; the remaining HF-CVD diamond thin films were processed for electrical contacts.

While checking the suitability of the contacts it proved difficult to bond to contacts on 

samples OS-a3 and OS-a4, they also exhibited semi-metallic behaviour. This can simply 

be explained by the very high doping of those samples. It should be once again 

mentioned that the boron doping concentration of 5 x l0 20 cm'3 is considered to be the 

beginning of metallic conduction in single crystal diamond, however this level may be 

different for the polycrystalline diamond films examined in this work. Hence it was not 

possible to conduct any electrical measurements on those two samples.

7.3.1 Samples OS-a2 and OS-a5

7.3.1.1 7- V  Measurements

I-V  measurements were performed at room temperature on all the diodes of samples 

OS-a2 and OS-a5 in order to select the diodes with the least leakage current.
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Figure 7.11 I-V characteristics for sam ples OS-a2 and OS-a5, at 300 K.

The I-V  plots in Figure 7.11 illustrate that the less highly doped sample OS-a2 exhibited 

higher series resistance, which was expected. I-V  measurements were then performed 

over a wide temperature range, 80 to 400 K, and as the temperature rose the leakage 

current of the diodes increased rapidly. In order to avoid irreversible diode breakdown 

the maximum applied reverse bias was set to -1 V. The I-V  characteristics reveal that, 

whilst DLTS measurements may be possible at temperatures below 400 K, at high 

temperatures the diodes become very leaky.

The I-V  characteristics for both samples were analyzed in order to deduce the ideality 

factor and the barrier heights from the slope and the intercept of the plot of log /  vs. V. 

Large ideality factors, (2.5 < q < 7) and (2 < rj < 4), were obtained over the mentioned 

range of temperatures for sample OS-a2 and sample OS-a5 respectively. These n values 

may suggest that other current transport mechanisms rather than thermionic emission 

were taking place, possibly due to the fact that, at high doping levels, conduction occurs 

by nearest-neighbour and variable range hopping of holes between ionised B sites
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accompanied by a drop in mobility [5]. At very high doping levels, an impurity band is 

formed, giving rise to semi-metallic conductivity.

There was also a temperature dependence involved in the Schottky barrier height. The 

extrapolated barrier heights for diodes on both samples were fairly low ( 0  b ~ 0.8) at 

400 K.

7.3.1.2 C -V M easurem ents

C -V experiments on these samples were carried out at different temperatures. They were 

performed at the same bias as the I-V  measurements to ensure that there was no large 

current passing through the device. The capacitance of sample OS-a2 was quite large 

and it increased greatly with temperature; for temperatures below 200 K the capacitance 

almost vanished but as the temperature rose beyond this point the capacitance increased 

continuously.
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Figure 7.12 C -V  characteristics for sample OS-a2, at different temperatures.
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Figure 7.13 C-V characteristics for sample OS-a5, at different tem peratures.

The capacitance of sample OS-a5 at zero bias was even higher than that of OS-a2 as the 

boron doping for this sample is higher. However, the capacitance changed more rapidly 

as the temperature rose beyond 180 K.

There was a temperature dependence involved in the extrapolated V« and the values for 

Vbi were too large at temperatures below RT to be interpreted as the diode's Vbi, 

whereas at 400 K the extrapolated Vbi values were 1.12 V and 1.15 V for samples OS-a2 

and

OS-a5 respectively. These values of Vbi seem acceptable for both diodes. The 

temperature dependence of Vbi may be due to interface states present at the interface of 

the metal and the semiconductor.

The acquired data were analysed to yield the carrier concentrations for each sample. 

Figure 7.14 shows the N-x profiles obtained at 400 K for both samples. The carrier 

concentration was larger in sample OS-a5 and depletion region commences at around 

40 nm from the surface.
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Figure 7.14 Carrier concentrations-depth (N-x) profiles, at 7=400 K.

The values determined from C-V profiling represent the majority carrier density and not 

the doping density. However, in sample OS-a5, there is a decrease of carriers further 

behind the surface, therefore, the C-V data suggest that the B is passivated further into 

the sample; this might be consistent with H partially diffusing out from the surface 

during the heat treatment, but not being completely removed. This phenomenon is 

regularly observed in many semiconductors where H incorporation and passivation 

occurs.

7.3.1.3 DLTS and LDLTS M easurements

Figure 7.15 shows the DLTS spectra acquired with five different rate windows, reverse 

bias of -0.75 V, Vp = 0 V and tp = 5 ms. The DLTS spectra revealed a broad peak 

indicating a defect level emitting majority carriers between 150-280 K and another peak 

starting at -320 K.
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Figure 7.15 DLTS spectra for Sample OS-a2
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Figure 7.16 Arrhenius plot, derived from the DLTS spectra of peak A.

The peaks are positive; therefore they are majority carrier traps. However the intensity 

of the peaks reduced for slower emission rate windows. As it is a broad level, it could
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consist of defects closely spaced in energy; there was a slight asymmetry in the 2 0 0  s' 1 

peak which disappears at slower rate windows. This is also suggestive of more than one 

trap contributing to this peak. In order to verify this, higher resolution measurements 

(LDLTS) were required.

Unfortunately, it was only possible to deduce the activation energy for the trap 

contributing to peak A, as shown in Figure 7.16. The DLTS data for peak B were noisy, 

yielding an inaccurate Arrhenius plot (not shown). Interpretation of the value for peak A 

follows later.

LDLTS measurements were performed at temperatures around the peak-maximum of 

the DLTS spectrum.

180 K 
210 K 
230 K 
250 K

t =10 ms

0.0-

1000100

Emission Rate [S'1]

10000

Figure 7.17 LDLTS spectra for the low tem perature peak (A).

Figure 7.17 shows that three emission rate components were revealed at each of the 

measured temperatures for the DLTS peak at around 220 K for sample OS-a2. In the
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case of simple point defects an increase of emission rate is expected when the 

temperature increases; the peaks should shift towards higher emission rates at every 

temperature increment in a consistent manner, since the traps have more energy at 

higher temperatures and therefore emit faster. However, the LDLTS spectra for this 

defect show that this is not the case.

Furthermore, the LDLTS peaks either moved in a random fashion when the temperature 

increased or they seemed almost unaffected by the temperature change, which was not 

expected to occur. Therefore meaningful activation energies could not be calculated 

from the LDLTS data.

The calculated trap activation energy from DLTS (0.19 eV) may imply that this level is 

related to hydrogen, as H is known to be a relatively fast diffuser in boron-doped 

monocrystalline diamond; it has a low migration energy of 0.2 eV. During this diffusion, 

H is trapped by boron acceptors giving rise to B-H complexes and to a passivation of 

boron acceptors by hydrogen. However it must be noted that the LDLTS data have 

implied that the situation is potentially more complicated than this. It may be that those 

defects that contribute to the DLTS peak (A) are in the strain field of a larger defect, 

such as a grain boundary, and the DLTS is averaging the whole system.

The DLTS spectra for sample OS-a5, illustrated in Figure 7.18, reveal a trap level 

emitting between 140 -180 K. The biasing conditions were similar to OS-a2, a reverse 

bias of -0.75 V, a filling pulse of 0 V and a fill pulse length of 5 ms.

Unfortunately the Arrhenius analysis for this level did not yield an activation energy as 

the data were extremely noisy, which may be indicative of more than one trap present. 

This was confirmed by the LDLTS spectra as shown in Figure 7.19 and Figure 7.20. 

This may be attributed to the presence of strain fields in the sample.
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Figure 7.18 DLTS spectra for sam ple OS-a5
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Figure 7.19 LDLTS spectra for the low temperature peak of sample OS-a5.
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Figure 7.20 LDLTS spectra for sam ple OS-a5 at 160 K taken with varying tp.

Two closely spaced traps are apparent in the LDLTS spectra. The LDLTS spectra across 

a small range of temperature show virtually no change in the peak temperature. This has 

been observed before in SiGe quantum wells and was attributed to carriers being 

thermally emitted from a confined state in the quantum well [6 ]. It is postulated that the 

carriers being emitted in this sample are trapped in electronic states associated with the 

grain boundaries; these states are invariant with T over a small range because they are 

acting as quantum confinement centres on a microscopic scale.

The results revealed that the main DLTS peak (A) in sample OS-a2 consisted of three 

levels situated in strain fields of extended defects, possibly grain boundaries. 

Furthermore, as the boron content of the film increases, one of the traps disappears from 

the spectra. Unfortunately, activation energies could not be deduced from the LDLTS 

data, since emission rates did not consistently reduce with temperature, yielding an 

inaccurate Arrhenius plot. This is attributed to the presence of strain fields in the sample.
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It has not been possible to obtain activation energies for the two closely related levels 

that contribute to the single peak observed in the DLTS spectra from sample OS-a5.

7.4 Experimental results from the HF-CVD grown materials: Batch C

7.4.1 Sample OS-cl

7.4.1.1 I-V  and C-V  M easurem ents

Prior to DLTS measurements, C-V and I-V  measurements were carried out to check the 

integrity of the diodes. The I-V  characteristics of this sample, shown in Figure 7.21, 

exhibited good rectification behavior, zero leakage current was observed for this diode 

over the examined temperature range. However, the forward current increased gradually 

with temperature. The C-V data in Figure 7.22 show that the capacitance is correctly 

bias dependent and hence it is possible to conduct DLTS experiments.
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Figure 7.21 I -V  characteristics for sample OS-c1, at different temperatures.
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Figure 7.22 C-V characteristics for sam ple O S-c1, at different tem peratures.
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Figure 7.23 Carrier concentrations-depth profile, at 7=550 K.

151



Chapter 7: Experimental results from p-type diamond diodes

It is worth mentioning again that it is known, for example, in diamond containing 

1018 cm'3 boron acceptors and having a compensation ratio of 10%, 84% of boron 

acceptors are not ionized at a temperature of 320°C because of their high ionization 

energy (-0.37 eV) [7,8]. However in this sample the carrier concentration measured by 

C-V was about lx lO 17 cm'3 (at T=550 K), as shown in Figure 7.23, which is much lower 

than the estimated boron doping density. The carrier concentration was about two orders 

of magnitude smaller than the initial doping concentration; the B ionization percentage 

was -  1.25%.

In this sample the I-V  and C-V characteristics suggest that there is a thin insulator layer 

between the A1 Schottky contact and the diamond, which may account for the low 

current in this sample. This could be a thin oxide layer (AI2 O 3 ) formed during the 

processing. This should not significantly affect the ability to carry out the reverse-biased 

DLTS however.

7.4.1.2 DLTS and LDLTS Measurements

Figure 7.24 shows the DLTS spectra of sample OS-cl, using a Schottky diode, 

measured at -2  V reverse bias, various rate windows, fill pulse -0.5 V and fill pulse 

duration of 5 ms.

The DLTS spectrum revealed one minority carrier trap; the reason that the DLTS of this 

sample is showing minority carrier emission may be connected with the thin oxide layer 

in this sample as illustrated in the I-V  and C-V plots; minority carriers (electrons) may 

tunnel through the thin oxide, especially at high temperatures.

The DLTS peak covers a wide range of temperature from 450 K to 600 K for the 200 s '1 

rate window. The peaks look well behaved with the variation of rate windows, they shift 

towards lower temperatures as the rate window reduced; therefore it was possible to 

calculate the activation energy of this trap, which was found to be 0.54 eV.
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Figure 7.24 DLTS spectra for sam ple O S-c1.
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Figure 7.25 Arrhenius plot, derived from the DLTS spectra of O S-c1.
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The DLTS results may be interpreted as boron-hydrogen complex defects. H+ is the 

diffusing species in B-doped diamond, and subsequently, neutral BH pairs will form in 

diamond as a result. Theoretical reports by Mehandru and Anderson [9] predict the 

formation of a deep donor level by hydrogen, above the fundamental level of boron, 

which traps the electron from neutral hydrogen leaving a mobile H+ which neutralizes 

the B' state, thus forming a neutral B-H complex. As a result, a compensated semicon­

ductor is generated within the depth of hydrogenation.

LDLTS experiments were performed at temperatures around the peak-maximum of the 

DLTS spectrum. Figure 7.26 shows that only two emission peaks were detected by 

LDLTS for the broad peak seen in DLTS. The high emission rate peak did not particu­

larly change in emission as the temperature varied, which may be indicative of an 

extended defect. The other LDLTS peak present at lower emission rates seemed to vary 

in emission as the temperature reduced, but not in a consistent manner.
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Figure 7.26 LDLTS spectra for sample OS-c1 for a tp of 5 ms. 
The inset is a magnification for the low emission rate peaks.
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Figure 7.27 LDLTS spectra for sam ple OS-c1 recorded at 600 K 
using different fill pulse durations, the reverse bias was se t to -4 V.

Figure 7.27 shows the LDLTS recorded at 560 K using different fill pulse durations, the 

reverse bias was set to -4 V. The emission rate of the lower peak did not vary with fill 

pulse length behaving as a defined point defect while the LDLTS peak at higher 

emission rate slightly varied consistently with the increase of the fill pulse length, which 

implies that the defect being emitted is trapped in electronic states associated with the 

grain boundaries. However, in polycrystalline diamond, it is not surprising that there is a 

rich defect structure with many electronic levels.

7.4.2 Sample OS-c2

7.4.2.1 I-V  and C-V  M easurements

Figure 7.28 shows the I-V  data obtained for sample OS-c2 at different temperatures. The 

I-V  characteristics for this sample exhibited better forward currents than OS-cl, but the 

leakage current was higher and varied with temperature.
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Figure 7.28 I-V characteristics for sample OS-c2, at different tem peratures.
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Figure 7.29 C -V  characteristics for sample OS-c2, at different temperatures.
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C-V measurements for sample OS-c2 were performed on the same diode and the data 

were analysed to yield the carrier concentrations. Figure 7.29 and Figure 7.30 show 

respectively the C-V  data as function of temperature and the N-x profile obtained at 

7=550 K. The carrier concentration measured by C-V at this temperature was about 

lx lO 18 cm'3, which was much lower than the estimated boron doping density. The B 

ionization percentage is 5%, which is larger than OS-cl but still only a small fraction of 

the estimated B doping for this sample.
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Figure 7.30 Carrier concentrations-depth profile for sample OS-c2, at 7=550 K. 

7.4.2.2 DLTS and LDLTS Measurements

Figure 7.31 shows the DLTS spectra of the Schottky diode, measured at -2  V reverse 

bias, applying a negative fill pulse -0.5 V, and pulse duration of 5 ms.
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Figure 7.31 DLTS spectra for sam ple OS-c2.
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Figure 7.32 Arrhenius plot, derived from the DLTS spectra of OS-c2.
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Two dominant majority carrier traps were observed in the DLTS spectra at all rate 

windows. The first peak at about 160 K, is similar to that observed in OS-a5 although it 

is somewhat narrower in this diode and contains a shoulder that extends slightly towards 

lower temperatures. The second DLTS peak is broad, emitting over a wide range of 

temperatures 220-400 K. Both peaks shifted towards lower temperatures as the rate 

window reduced. Arrhenius plots were constructed using the DLTS data. The points for 

each level lie perfectly on a straight line, yielding activation energies of about 0.29 eV 

for the 160 K peak, and 0.49 eV for the broad peak, as shown in Figure 7.32.

In order to verify the nature of these defects, LDLTS experiments were carried out at a 

range of temperatures contained within each peak. The LDLTS results shown in Figure 

7.33 confirms the presence of one single defect emitting at around 160 K, the emission 

rate of the low temperature defect is almost unaffected by changes in temperature, 

suggesting this is not a point defect.
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Figure 7.33 LDLTS spectra for the low temperature peak of OS-c2.
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Figure 7.34 LDLTS spectra for the high tem perature peak of OS-c2.

It is obvious from the LDLTS results (shown in Figure 7.34) that in fact two traps give 

rise to the DLTS peak at around 350 K. The emission rates of the defects emitting 

between 260 K and 420 K do vary consistently with temperature, but the results of an 

Arrhenius plot were not convincing and did not indicate the high temperature trap was 

due to an extended defect or a point defect. Also, efforts to calculate the activation 

energy of the defects by plotting the LDLTS pairs of peak emission rate against tem­

perature did not yield a straight line.

It is worth noting that above 380 K only one emission rate appears in the LDLTS 

spectrum, as illustrated in Figure 7.34. This defect was examined again by cooling the 

sample in the cryostat and repeating the LDLTS measurements. Two emission rates 

reappeared in the spectrum for temperatures below 400 K which implies that the second 

defect did not anneal out permanently at 400 K rather that the emission rate is too fast to 

see at temperatures above 380K.

160



Chapter 7: Experimental results from p-type diamond diodes

In order to further characterise the nature of the defect contributing to the low 

temperature peak, capture cross-section measurements were performed at T= 160 K 

according to Equation (4.36), in order to investigate the evolution of the capture kinetics 

with time. Figure 7.35 presents the capture cross-section data of the peak capacitance 

acquired from DLTS measurements by varying the fill pulse duration from 5 ps to 5 ms. 

The reverse bias was -2 V and the fill pulse -0.5 V. Figure 7.35 illustrates that the defect 

has a capture rate that changes exponentially with time; deviation from linearity 

provides a sensitive test for the presence of extended defects that exhibit Coulombic 

repulsion because the trapped carriers repel any further charges resulting to a diminished 

carrier capture probability with time.

Figure 7.35 The capacitance change as a function of fill-pulse duration 
for the defect at 160 K.

The LDLTS measurements are in accordance with this conclusion where it was 

observed that the emission rate almost unaffected by the change in temperature. It is 

postulated that the emission detected in DLTS is due to an extended defect, possibly 

grain boundaries. This is discussed in more detail later in this chapter.
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Capture cross section data were acquired for the high temperature defect, from DLTS 

measurements by varying the fill pulse duration at 350 K, as shown in Figure 7.36. It 

can be seen that the capture characteristics appear to have a combination of linear and 

exponential dependency with time.

The combination of capacitances should remain below unity as Cmax is the maximum of 

the DLTS peak for the highest fill pulse length. The observed increase in the capacitance 

terms with reduced fill pulse length signifies that the term dCt becomes smaller which 

means that the peak of the DLTS spectrum reduces for reduced fill pulse; this behaviour
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Figure 7.36 The capacitance change as  a function of fill-pulse duration 
for the defect at 350 K in sample OS-c2.

is expected for point defects. However, as the fill pulse reaches 300 ps, the combination 

of capacitances starts to reduce. The decrease in the logarithm of the capacitances 

signifies that the peak of the DLTS starts to increase even if the fill pulse length 

gradually reduces. These observations indicate that there may be two closely spaced 

levels, as suggested by LDLTS results, one of which has a more point defect-like 

capture characteristic while the other is an extended defect. The other scenario may be
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that the entire capture process is governed by complex defects. In the case of the 

extended defect the Coulomb potential that has developed after the initial capture may 

be of opposing strength to the electric field existing in the depletion region during bias 

application and is hence momentarily reduced enough by longer fill pulses, therefore 

result in point defect-like capture or emission. However, when applying very short pulse 

lengths, there is not enough time to reduce the Coulomb potential around the extended 

defect sufficiently for carrier capture, thus the behaviour of emission deviates from that 

of a point defect. In fact it is not a typical behaviour even for extended defects to see an 

increase in emission as dCt increases. Therefore, emission from grain boundary sites has 

to be considered as the capture process is even more complicated.

7.4.3 Sample OS-c3

7.4.3.1 I-V  and C-V  M easurements

The I-V  plots in Figure 7.37 for diode OS-c3 show good diode characteristics, in 

particular below room temperature for reverse bias -2 V. However, as the temperature
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Figure 7.37 I-V  characteristics for sample OS-c3, at different temperatures.
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Figure 7.38 C-V characteristics for sample OS-c3, at different tem peratures.
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Figure 7.39 Carrier concentrations-depth profile for sample OS-c3, at 7=550 K.
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rises above 300 K the reverse currents continue to increase quickly and at 550 K the I-V  

becomes virtually temperature independent.

The C-V plots in Figure 7.38 show that the capacitance is very dependent on bias. Below 

550 K the capacitance at zero bias consistently increased with increasing temperature. In 

this sample the carrier concentration measured by C-V at 7=550 K was about 

3 x l0 18 c m 3 showing a B ionization percentage of 3.7% for this diode.

7.4.3.2 DLTS and LDLTS M easurem ents

The DLTS results for diode OS-c3 are shown in Figure 7.40 for a reverse bias -2 V, a 

fill pulse of -0.5 V and fill pulse length 2 ms.

Figure 7.40 DLTS spectra for sample OS-c3.
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Figure 7.41 Arrhenius plot, derived from the DLTS spectra of low tem perature peak.

The DLTS spectra revealed a broad majority trap level, covering a wide temperature 

range from 100 to 220 K for the 200 s' 1 emission rate window. This positive peak 

appears as a single defect level in this spectrum. Use of different biasing conditions in 

DLTS did not reveal any other levels in the DLTS spectrum; this was further verified 

using LDLTS. The peak is well behaved and shifts in a consistent manner towards lower 

temperatures as the rate window reduces. An Arrhenius plot was constructed to yield the 

activation energy of this trap, as shown in Figure 7.41. The activation energy is 0.2 eV.

It is worth mentioning that this level (0.2 eV) was detected at similar temperature range 

to that observed in OS-a5 and OS-c2, and has similar characteristics. However, this may 

contain more defects; one of them may be the B acceptor level which reduces in 

activation energy for higher doped samples. It may be the reason that the activation 

energy of this trap is lower than that of OS-c2 (0.29 eV).

At high temperatures, around 550 K, there was a reversal of capacitance (the negative 

peak) which could be due to a minority carrier trap emitting around that temperature. An
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explanation for this may be that electrons were injected at very high temperatures where 

this diode tends to have high leakage currents, as illustrated in Figure 7.37. However, 

the peak seems almost unaffected with the variation of rate window, which is not 

expected to occur, yielding an inaccurate Arrhenius plot (not shown). Application of 

different fill pulse voltages was performed to examine this DLTS feature but this did not 

yield any useful information. Therefore this peak can not be discussed further, but as the 

emission rate of the defect is not affected by temperature it is suggested that the 

emission detected in DLTS is either from an extended defect or due to levels in the grain 

boundaries in diamond, exhibiting very complex emission characteristics. 

A combination of several characterisation techniques would be necessary to investigate 

such a feature.
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Figure 7.42 LDLTS spectra for the low tem perature peak.

LDLTS measurements were performed over the entire temperature range that the low 

temperature DLTS feature spanned, using the same biasing conditions as DLTS. The
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LDLTS results revealed two emission peaks which randomly shift with temperature; this 

confirms that these levels are not due to simple point-like defects.

7.5 Experimental results from the HF-CVD grown materials: Batch D

7.5.1 Samples OS-dl and OS-d2

As pointed out in section 6.2.6, the device processing of samples OS-dl and OS-d2 was 

different from the previously discussed diamond samples. These films were chemically 

cleaned to remove any graphitic layers and to O-terminate the surface and then 

subsequently annealed in vacuum at 750°C. As it has been suggested that large 

population of boron atoms are passivated by association with other impurities such as 

hydrogen [8 ], annealing should reduce the concentration of such complexes, and 

increase the proportion of electrically active B.

Observations of the effect of examining the A1 contacts at elevated temperatures were 

taken in consideration; the diodes were only tested at temperatures below 500 K to 

prevent thermal degradation of the contacts.

7.5.1.1 The I-V  and C-V Measurements

Prior to DLTS experiments, C-V and I-V  measurements were performed to check the 

suitability of the diodes (up to 8 diodes on each film), and also to obtain information 

about the Schottky barrier heights of these diodes.

Figure 7.43 and Figure 7.44 show the I-V  characteristics for diodes on both films 

obtained at different temperatures. Table 7.2 details the Schottky diode properties for 

both diodes in the temperature range 300 to 450 K.
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Figure 7.43 I-V characteristics for sample OS-d1, at different tem peratures.
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Figure 7.44 I-V  characteristics for sample OS-d2, at different temperatures.
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Table 7.2 Schottky diode param eters for diodes OS-d1 and OS-d2 m easured 
by I-V and C-V plots.

T [K] ■
Sample OS-dl Sample OS-d2

n d > b (/V ) d>b(C V ) n d > b (/V ) d ^ c v )11 [eV] [eV] '/ [eV] [eV]
2 0 0 2 . 2 0.83 2.36 3.6 0 . 6 6 1.95

250 1.94 0.94 2.38 3.2 0.79 2.05

300 1 . 8 1.17 2.25 2.9 0.95 2.3

350 1.7 1.25 2.18 2.5 1 . 1 2 2.24

400 1.4 1.37 2 . 1 2.3 1.17 2.15

450 1 . 2 1.48 1.95 2 . 1 1.26 2.03

The barrier height decreased with decreasing temperature (~ 1 eV at 300 K). Schottky 

barrier heights between 0.8 and 2.2 eY have been reported in the literature [10-13], our 

measured value of barrier height was within this range. Recent theoretical studies [14] 

have suggested barrier heights of 1.1 eV for A1 contacts on H-terminated diamond.

 250 K
 300 K
-  -  450 K

- 2.0 -1.5 - 1.0 -0.5 0.0 1.00.5

Bias [V]

Figure 7.45 The log (/) vs. V plots for sample OS-d2 at different tem peratures. 
The plot shows a change in the current conduction mechanism above 250 K.
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In sample OS-d2 the I-V  behaviour changes above -240 K, as illustrated in Figure 7.45, 

implying that current mechanisms other than thermionic emission were taking place; 

therefore larger n values were obtained.

The C-V data are plotted in Figure 7.46, revealing the profile of carrier concentrations 

within the space-charge region of a Schottky diode on each of the samples. As expected, 

the doping was found to be uniform in the space-charge region investigated by the 

applied voltages. The carrier concentration was higher in sample OS-d2 and the 

depletion region was narrower (-30 nm) than in sample OS-dl (-50 nm) at 400 K, as 

expected. However, carrier concentrations were much lower than the estimated boron- 

doping density in both samples; showing a B ionization percentage of 2.6% for sample 

OS-dl while for sample OS-d2 was 3%. It is worth noting that a large population of the 

boron atoms incorporated into diamond do not act as acceptors [7,8], despite trying to 

remove B-H complexes from the subsurface region by annealing.

= 400 K |at T
OS*d2
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Figure 7.46 The concentration-depth profiles for OS-d1 and OS-d2, at 7=400 K.
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From the C-V data, the built-in potential (V^) values were deduced from the extrapola­

tion of 1/C2 to zero and the Schottky barrier heights (<&b)cv were calculated from these 

values at 300-450 K. These data are listed in Table 7.2. It is reported by Nebel et al. [15] 

that the barrier height of Al on B-doped diamond, evaluated using C-V measurements, is 

1.95 eV; this agrees well with the value obtained for sample OS-dl.

Variations of the barrier height over the contact area can occur as a result of non­

uniformity of the interfacial layer thickness, inhomogeneities in the interfacial layer 

composition, and/or distributions of interfacial charges. The variations in the ideality 

factor with temperature are related to barrier inhomogeneities and also to the degree of 

its deformation under the applied bias. The ideality factor evolution and difference 

between (<3>b)cv and (O^)iv barriers have been widely discussed by other authors 

[16,17].

7.5.1.2 DLTS and LDLTS Measurements

DLTS experiments were performed using the multi emission rate windows and a range 

of biasing conditions. Figure 7.47 shows the DLTS spectra for samples OS-dl, 

measured under reverse bias -3  V with a fill pulse of -0.5V  applied for 50 ms.

The DLTS spectra for sample OS-dl revealed two majority carrier traps. The first peak 

was around 170 K with an activation energy 0.29 eV, with trap density of 

~ 2.8x10 cm' , and the second peak covered a wide range of temperatures from 320 K 

to 440 K with an activation energy of 0.53 eV and trap density of ~ 4.3x1016 cm'3. Both 

peaks shift towards higher temperatures for higher-rate windows as expected. However, 

the peaks are asymmetric with a tail on the low-temperature side (as was the case for 

most rate windows), a feature typical of an extended defect.

The DLTS experiments of sample OS-d2 were performed using two sets of RWs 

(20 s*1, 50 s '1) and (80 s '1, 200 s '1); for clarity two RWs are shown in Figure 7.48.
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Figure 7.47 DLTS spectra of sample OS-d1, obtained with multi 
rate windows (RW), reverse bias -3  V and fill pulse -0 .5  V.
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Figure 7.48 DLTS spectra of sam ple OS-d2, obtained with reverse 
bias -3  V and a  fill pulse of -0 .5  V.
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Three hole traps E l, E2 and E3 were found in this film; the activation energies of these 

levels were deduced from the Arrhenius plot in Figure 7.49 and found to be 0.26 eV,

0.49 eV and 0.35 eV respectively. The E l and E2 levels are found in both films OS-dl 

and OS-d2 whereas E3 is only seen in the more highly doped film. E3 is centred around 

250 K, with trap density ~ 3 x l0 16 cm ' 3 and an apparent capture cross-section of 

- l x l O ' 16 cm2. This o value is less than expected for the boron acceptor. However, 

capture cross-sections extrapolated from Arrhenius plots can have uncertainties of 

several orders of magnitude and need to be treated with caution.
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Figure 7.49 Arrhenius plot, derived from the DLTS spectra of OS-d2.

A defect with similar activation energy (0.35 eV) has been reported in B-doped dia­

mond, grown by hot filament CVD, detected by admittance spectroscopy in the 

170-270 K temperature range; the origin of this level has not been confirmed [18].

The high-temperature peak (E2) observed may contain multiple emissions as it covers a 

wide range of temperatures in both samples. Kiyota et al. [19] reported a trap level with 

activation energy of 0.6 eV above the valence band edge in boron-doped polycrystalline 

diamond films grown on Si substrates using HF-CVD. They argued that the detected
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level is either generated by the hot filament technique applied to grow this diamond or is 

related to grain boundaries in the polycrystalline diamond. Furthermore, Lombardi [20] 

has calculated the properties of boron and its complexes with hydrogen in diamond 

using density functional theory; his results show that BH2 centres are stable with 

binding energies of 0.23 to 0.71 eV. It can be argued that although these samples were 

grown in a hydrogen-rich environment but were oxygen-terminated on the diamond 

surface it is very likely that hydrogen is present in larger volumes near the interface 

because the annealing has removed H nearer the surface, giving rise to this level. Kumar 

et al. [21] have theoretically investigated the BH and BH2 complexes in B-doped 

diamond. They predicted the associated acceptor levels to be EV+4A4 eV and E v+1.14 

eV, respectively. The associated donor levels were found to be Ec- 4.84 eV and E c—2.80 

eV, respectively. The BH donor level at E c- 4.84 eV (corresponding to Ev+0.6 eV) is 

found to be at the same energy level as the donor level of the vacancy [22]. These are in 

good agreement with recent results measured by isothermal transient spectroscopy [23]. 

The atomic structure of the complex defect BH3 is less well understood, it is predicted 

to form a donor level at Ev+0.20 eV [24]. Recently, Muret et al. [23, 25] have reported 

that hole traps with ionisation energies between 0.7-1.6 eV are most likely due to 

hydrogen related defects. Further details about deep donor levels and deep acceptor 

levels related to boron, hydrogen, or structural defects in B-doped monocrystalline 

diamond calculated by ab initio method and attribution to traps observed by DLTS is 

given in [23].

In order to verify the nature of the DLTS features, LDLTS measurements were 

performed under the same biasing conditions as DLTS, over the entire temperature 

range that the DLTS feature spanned.

At 170 K, LDLTS results revealed one emission in sample OS-dl, whereas in sample 

OS-d2 two closely spaced electronic levels were revealed, as shown in Figure 7.50, 

confirming that a second level was introduced in the more highly doped film.

175



Chapter 7: Experimental results from p-type diamond diodes

(E1)  160 K
 180 K 160 K 

180 K
_■
3
03

Sample OS-d1

SU)
<75

sD
- I

1000 
Emission rate [s'1]

10000100

100 1000 
Emission rate [s'1]

10000

Figure 7.50 LDLTS of OS-d2 at 160-180 K with VR= -3  V, fill pulse -0 .5  V and fill 
pulse length 50 ms. The inset shows the LDLTS of O S-d1.

Figure 7.50 also illustrates that changing the temperature does not particularly influence 

the emission of these traps. The carrier emission rates did not change with temperature 

and it is likely that this is because we were unable to sample for long enough due to very 

slow emission rates, particularly at the low temperatures. Therefore, although one could 

speculate that this might indicate the electronic levels giving rise to the emission are not 

pure point defects, this data would need considerable further investigation. A detailed 

capture cross section measurement which also indicates that extended defects are 

contributing to these spectra is discussed next.
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Figure 7.51 LDLTS of OS-d1 at 360 and 380 K with VR= -3  V, fill pulse length 50 ms.

360 K 
400 K=j

eU)
55

9

1 10 100 1000
Emission Rate [s'1]

Figure 7.52 LDLTS of OS-d2 at 360 and 400 K with VR=-3 V, fill pulse length 50 ms.
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LDLTS measurements were carried out at temperatures around the peak-maximum of 

the DLTS feature E2 on samples OS-dl and OS-d2. The results, shown in Figure 7.51 

and Figure 7.52, reveal three distinct emission rates, confirming that this defect 

possesses three closely spaced electronic levels in the bandgap. The appearance of the 

same number of emission rates in both samples means these are unlikely to be artefacts 

of the measurements. These defect levels either behave in a random way or are almost 

unaffected by increasing the temperature, suggesting these are not due to point defects.
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Figure 7.53 LDLTS of OS-d2 at tem peratures 230-270 K with reverse bias -3  V and fill 
pulse length 50 ms. The spectra have been offset vertically from each other for clarity.

Figure 7.53 shows the LDLTS results for sample OS-d2 at temperatures around the 

peak-maximum of the DLTS peak E3. These demonstrate the presence of two closely 

spaced defects, the emission rates of which vary with temperature in a consistent manner 

throughout the entire range 230-270 K, behaviour typical of point-like defects. 

Therefore, activation-energy calculations were possible for these levels; the activation
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energy of the defect appearing at lower emission rate was found to be 0.35 eV while the 

activation energy of the higher emission rate defect was 0.37 eV. This is in very good 

agreement with that of substitutional B.

It is well known that capture cross-sections extrapolated from Arrhenius plots can have 

uncertainties of several orders of magnitude and need to be treated with caution. There 

are various reasons for this discrepancy: a small overlapping effect with a neighbouring 

signal in DLTS and the fact that DLTS analysis relies upon simple relationships 

between emission and temperature where in fact these are often more complex. Also, 

there is experimental evidence showing that electric-field-enhanced emission tends to 

generate errors in cross-sections [26,27]. A more reliable technique for determining the 

capture properties is by using various pulse widths at a fixed temperature [27,28] where 

the capture time can be determined by varying tp and hence carrier emission does not 

affect the results.
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Figure 7.54 The capacitance change a s  a function of the fill-pulse length of the defect 
at E1 in sample OS-d1 and the defect at E3 in OS-d2, a  reverse bias of - 3  V w as 
applied. The data were recorded at 170 K For E1, w hereas for E3 at 250 K.
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Figure 7.54 shows the capacitance change as a function of the fill-pulse length. The data 

were recorded for the defect at E l in sample OS-dl at 170 K, reverse bias of -3 V and a 

fill pulse of -0.5 V, in accordance with Equation (4.36). The defect at E3 in sample 

OS-d2 was examined at 250 K under similar biasing conditions. The recorded data show 

excellent linearity when plotted in accordance with Equation (4.36), as shown in 

Figure 7.54, and hence it was possible to extract the capture cross-section by calculating 

the gradient of the graph; it was found to be 3x10' cm , which is significantly larger
1 f\ 0than the value extrapolated from Arrhenius plot (1x10' cm ).

The majority capture cross-section should obey a linear dependence on the logarithm of 

a combination of capacitance terms as function of pulse length. This provides a sensitive 

test for the presence of isolated point defects only if the mobile holes concentration is 

instantaneously provided to a level where holes could be captured by the deep centres. 

Deviation from this relationship may provide a test for the presence of extended defects. 

However, the causes of non-linearity in the capture cross section data could be explained 

by different scenarios. The first scenario could be that, Equation (4.36) is not valid for 

E l, as the hole emission time for the transition from the ground state to delocalised 

states in the valence band falls into the fill pulse time range. For example, if one 

assumes shallow acceptors like in single crystalline diamond, with a capture cross- 

section of 4 x l0 ' 13 cm2 and an activation energy of 0.37 eV (at -170 K), the emission 

time is estimated to be 3 ms [29]. This reduces the likelihood of the mobile holes 

concentration to be instantaneously available to the zone where they have to be captured 

by the deep centres and resulting in a non-linear characteristic. Such a limitation disap­

pears at 200 K and above. Therefore, E l could be due to point-like defects.

The second scenario could be that the level E l is grain boundary related states. This is a 

reasonable suggestion since it has been only reported in polycrystalline diamond 

[30-32], although this has not been proven here. In this case the trap distribution will be 

very inhomogeneous and the defects may be sufficiently closely spaced that the 

presence of a filled trap will reduce the likelihood of a neighbouring empty trap 

capturing a hole. Therefore, E l could be due to an extended defect exhibiting
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Coulombic repulsion, because the repulsive force reduces subsequent carrier capture at 

the defect which is slowly charging up.

In the case of E2, the ionisation should be fast enough, as this trap is emitting at

T  >200 K. However, nonlinearity is observed in the capture cross section data for 

samples OS-dl and OS-d2 (recorded at 360 K), hence Equation (4.36) does not hold. It 

has been reported in [25], for B-doped monocrystalline diamond that the origin of the 

majority carrier traps located in energy between the top of the valence band and circa

1.6 eV is related to hydrogen, confirming previous predictions [21, 23]. Based on these

findings, one can suggest that E2 may be due to BH donor level.

ET
Q.

o■a

•  Level E1
★ Level E2

log (fP)

Figure 7.55 DLTS signal as  a function of the logarithm of the filling time for the 
defects at E1 and E2 in sample OS-d1, m easured at 170 K and 360K, respectively.

Referring to Equation (4.37), the DLTS signal should exhibit a dependence on the 

logarithm of the fill pulse time when the carrier capture is into extended defects.
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Figure 7.55 shows the data for levels E l and E2 in sample OS-dlplotted in accordance 

with Equation (4.37). An excellent fit was obtained, thus demonstrating that the defects 

giving rise to these capture characteristics are extended-defect-like states. Similar 

analysis of the E3 level in sample OS-d2 confirmed that the defects giving rise to this 

level are point defects. The data show excellent linearity when plotted in accordance 

with Equation (4.36).

7.5.1.3 Admittance Spectroscopy (AS) Measurements

Admittance spectroscopy (AS) is a slightly less sensitive technique than DLTS [33] as 

the deep-level response is probed only by a small region and not by the whole space- 

charge region as in the standard DLTS technique. However, electric field effects on the 

ionization energy are more easily controlled with the admittance method [33]. In 

addition, accurate capture cross section for traps associated with extended defects can be 

obtained. Although a mode of DLTS can be employed that ensures field consistency, the 

method is more difficult to control than TAS, hence the use of the latter technique in this 

report.

Figure 7.56 and Figure 7.57 show AS spectra recorded at f r  =10, 50 and 250 kHz for 

samples OS-dl and OS-d2, respectively, taken at reverse bias of -3 V and 100 mV ac 

signal, where G is the measured conductance and f T is the probing frequency. Both 

samples were cooled down in the 450-100 K temperature range. It is worth mentioning 

that TAS and DLTS experiments were carried out using two different setups but under 

similar vacuum conditions ~ 10"4 Pa. In all experiments, the data were recorded using a 

temperature scan rate 4 K/min.

A dependence of the G/co peak position (in Figure 7.56 and Figure 7.57) and the corre­

sponding capacitance step (in Figure 7.58 and Figure 7.59), on the probing frequency f r  

and/or sample temperature is observed.
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Figure 7.56 Experim ental G/co curves as a function o f  tem perature for sam ple O S -d l .
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Figure 7.57 Experimental G/co curves as a function of temperature for sample OS-d2.
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Figure 7.58 Capacitance-Tem perature plots for sample O S-d1, recorded with 
frequencies 50 kHz and 1 MHz, at reverse bias -3  V.
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Figure 7.59 Capacitance-Tem perature plots for sam ple OS-d2, recorded with 
frequencies 50 kHz and 1 MHz, at reverse bias -3  V.
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The G/co vs. T  data qualitatively reproduce the behaviour observed in the DLTS 

experiments, and the activation energies of the trap levels determined by admittance 

spectroscopy agree fairly well with those calculated from DLTS. Two hole traps 

E l(0.26 ± 0.04) and E2(0.58 ± 0.03) were detected in the G/co vs. T  spectra of samples 

OS-dl and OS-d2, and an additional level E3 (0.36 ± 0.02) was observed only in sample 

OS-d2. The peaks shift towards higher temperatures with increasing frequency, 

indicating an increase in hole-emission. It was possible to directly use the conductance 

peaks occurring at each temperature to construct an Arrhenius plot, the acceptor 

activation energy and the apparent capture cross-section (cr/7) of each defect were 

deduced according to Equation (4.44).

A least-squares fitting procedure yields a straight line, the slope of which corresponds to 

the trap activation energy, as shown in Figure 7.60. The capture cross sections of all 

three traps were deduced from the intercept with the vertical axis.

2 3 4 5 6

100CUT [1C1]

Figure 7.60 Arrhenius plot, derived from the AS spectra of OS-d2.
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As illustrated in Table 7.3, admittance spectroscopy offers capture cross section 

extrapolation (at zero bias) for traps associated with extended defects (El and E2).

Table 7.3 Summary of the deep levels calculated by DLTS and AS.

Trap N t *
(cm'3)

E j - Ey (eV) c p (cm2)

DLTS AS DLTS AS"

E l 5 x l0 16 0.29 ±0.03 0.26 ±0.04 n/a 2 x l 0 '18

E2 7 x l0 16 0.53 ±0.07 0.58 ±0.03 n /a *

0\oy—iX00

E3 3 x l0 16 0.35 ±0.02 0.36 ± 0.02 3 x l0 ' 15 2 x l 0 '15

Trap concentration calculated from DLTS.
" Measured at 0 V.
t Accurate values cannot be determined by DLTS as equation (4.36) does not have a linear fit.

The appearance of point-like-defect states in the more highly doped film may be 

indicative of isolated B-related centres in bulk diamond, whereas the extended states 

contributing to E l and E2 in both films may be due to B trapped at grain boundary sites.

7.6 Discussion and Conclusions

The main objective of this work was to investigate electrically active defects in thin 

polycrystalline diamond films deposited by HF-CVD on conducting p-type silicon, 

containing different amounts of boron. The boron concentration in the diamond film 

ranged from approximately 8x10 cm' to 9x10 cm' , the quality of the produced 

HF-CVD diamond films was verified by Raman spectroscopy. Different device 

processing recipes have been carefully investigated to make reliable electrical contacts; 

Schottky contacts were fabricated on the diamond film and Ohmic contacts on the Si. 

Assuming a low ionisation rate of the boron in the diamond, the Si resistivity was 

chosen such that the majority of the depletion region was contained in the diamond.

186



Chapter 7: Experimental results from p-type diamond diodes

In addition, a comparison of defects in polycrystalline diamond films grown by different 

CVD methods, namely HF-CVD and MWP-CVD, as function of B content was 

attempted. Unfortunately, due to some technical issues with the MWP-CVD growth 

system (dedicated for boron doping), it was only possible to conduct two successful 

growths which were not enough to carry out such a comparison.

In this chapter, I-V , C-V, DLTS and high-resolution LDLTS characterisation techniques 

were applied to thin polycrystalline semiconducting diamond films, at temperatures up 

to 690 K. However, a peculiar behaviour was observed at very high temperatures 

(> 650 K) as well as change in the contact's color that may be due to enhanced diffusion 

of the A1 contacts along grain boundaries. Therefore, further measurements were 

performed at lower temperatures.

The C-V analyses of the unannealed samples mostly imply that the carrier concentra­

tions reduce deeper into the sample behind the surface. This can be attributed to the fact 

that in polycrystalline diamond the areal density of the grain boundaries decreases 

towards the surface as the layer gets thicker, as discussed in section 2.4. As it is known 

that B segregates to the grain boundaries in inactive complexes, a larger fraction of the 

volume being associated with grain boundaries (which is what is found deeper within 

the film) is likely to result in less active B within the layer, giving rise to more free holes 

nearer the surface. C-V analysis of the annealed samples OS-dl and OS-d2 revealed 

more uniform carrier concentration-depth profiles; this is possibly due to dissociation of 

boron-hydrogen complexes at 750°C, as these films were vacuum annealed before 

processing, or may be due to dissociation of grain boundary complexes. CVD diamond 

growth is inextricably linked to the presence of hydrogen atoms, which are generated as 

a result of the gas being activated thermally, and so it is probable that B-H complexes 

are formed during growth.

LDLTS is capable of distinguishing whether a single DLTS peak is due to emission 

from a unique defect or several defects closely spaced in energy. Several thousand 

LDLTS capacitance transients were averaged, which ensured that the signal-to-noise 

ratio was of the order of 1 0 0 0 , which was enough to separate transients with closely
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spaced emission rates. The LDLTS transient was analysed by three different inverse 

Laplace transform algorithms, and a plot of peak intensity as a function of emission rate 

produced. A combination of LDLTS and direct capture cross-section measurements was 

used to demonstrate whether the electrically active defects present in the material are 

due to point or extended defects.

Increasing the B content in CVD diamond films from lx lO 19 to 4 x l0 19 cm ' 3 and 

annealing the films resulted in a number of majority carrier traps appearing in the DLTS 

spectra. In the more highly doped film, E l was found to contain two closely spaced 

extended defects. The E2 level in both films consisted of three closely spaced states, all 

of which were extended in nature, according to their electrical behaviour. The E3 level 

found in the more highly doped film consisted of two closely spaced levels, both of 

which are due to point-like defects. Taken with the fact that these levels were not found 

in the less heavily doped films, this is consistent with them being associated with a 

B-related centre in bulk diamond.

Fewer shallow defects were detected in the diamond films at -170 K than deeper at 

-400 K, although they mostly exhibited linear dependence of the DLTS peak on the 

logarithm of the fill-pulse time, demonstrating that the trapping is in defects in the strain 

field of an extended defect, possibly B segregated to the grain boundaries.

Finally, it was shown that data recorded by DLTS and admittance spectroscopy yielded 

identical information about the activation energies of deep levels in CVD-diamond 

films. Accurate calculation of the defect’s capture cross-section, using DLTS or 

admittance spectroscopy, was discussed. This is the first time that admittance spectros­

copy and DLTS have been compared for semiconducting diamond.
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8. Experimental results from p-type GaN diodes

8.1 Introduction

GaN based devices have recently attracted a great deal of attention because of their 

applications in light-emitting diodes (LEDs) and potential for use in high-power, high- 

temperature and high-frequency electronic devices. However, one of the key bottlenecks 

in the development of GaN-based devices is accurate control of p-type doping. This is 

due to factors that include the ready compensation of the most usual p-type dopant, Mg, 

by hydrogen. Hydrogen is unintentionally incorporated in GaN films during growth and 

processing. The Mg acceptor state is relatively deep in the band gap, with reported 

values ranging from 120 to 250 eV [1-4]. Coupled with compensation by H, this means 

that the ionised acceptor concentration at room temperature is significantly below the 

total Mg concentration. It has also been suggested that there is a significant degree of 

self-compensation in Mg-doped GaN [5]. A further problem is thought to be the high 

level of dislocation density in the material, due to the lack of available lattice matched 

substrates, as most GaN-based LEDs are grown heteroepitaxially on substrates like 

sapphire, silicon, or silicon carbide. The lattice mismatch between the substrate and the 

GaN results in the formation of a high density of threading dislocations, usually more 

than 109 cm ' 2 [6 ]. The reason that GaN-based quantum wells emit light so efficiently, 

even though the TDD is high, is not because these dislocations are electrically inactive, 

but because the carriers are thought to be localised [7], that prevents them diffusing to 

the dislocations which would otherwise quench the light emission. The interaction of the 

dopants with these extended defects is not well understood and the subject of ongoing 

debate [6 - 12].

In this chapter the effect of threading dislocation density (TDD) on electrically active 

defects in Mg-doped GaN films grown by MOVPE on (0001) sapphire has been 

investigated by admittance spectroscopy (AS). The capacitance and conductance of the 

films were measured as functions of modulation test frequency for temperatures in the
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range 200 -  450 K. The variation in TDD was introduced by using different buffer layer 

schemes between the sapphire substrate and the p-GaN film. The technique of reducing 

TDDs by these layers was developed at Cambridge University by Dr. R. Oliver who 

provided the materials for this work.

8.2 Electrical characterisation of p-type GaN Schottky diodes

The growth of the GaN layers and the metal contact formation is discussed in detail in 

section 6.3. Table 8.1 gives a summary of the thin film growth details, TDD in each 

wafer as measured by AFM at Cambridge, and room temperature Hall effect results 

(measured at Cambridge).

Table 8.1 summary of the sam ples growth details, TDD in each wafer as  m easured by 
AFM, and room tem perature Hall effect results

W afer No. / 
Buffer scheme

Mg precursor flux 
(pmol/min) TDD (cm'2) Hole Concentration

(cm-3) ;

C4022B / A 0.87 ~ 2 x l0 9 0 .7 x l0 17

C 4039B /B 0.87 ~ lx lO10 0 .9 x l0 17

C4052C / B 0.67 ~ lx lO10 0 .7 x l0 17

C4041B / B 0.43 ~ lx lO10 Not detectable

The measured C-V (at 1 MHz) of the fabricated GaN Schottky diodes did not vary with 

bias. Therefore, deep level transient spectroscopy (DLTS) experiments could not be 

applied to the p -type GaN diodes discussed in this chapter, because our DLTS system 

uses a Boonton capacitance meter that can only operate at 1 MHz.

It is also known that the resistivity of the Mg-doped GaN is extremely high below 200 K 

[13], therefore the capacitance variations at that DLTS temperature range will result in 

stray values. Hence, for the GaN samples discussed here, admittance spectroscopy was 

more reasonable than the conventional DLTS measurement.
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The I-V  characteristics of the diodes were recorded using a Keithley 6487 automated 

system. Admittance spectroscopy measurements were carried out using an Agilent 

E4980A LCR meter used in the parallel equivalent circuit mode, at zero to -3 V reverse 

bias with a 50 mV rms value for the small ac signal. The conductance and capacitance 

of each diode was monitored over a wide range of frequencies and temperatures. The ac 

signal frequency was varied in the range 100 Hz -  1 MHz and the substrate temperature 

was varied in the range (140- 450) K by using a closed cycle He cryostat. Further 

details about the specifications of the equipments used for I-V  and thermal admittance 

spectroscopy experiments are given in chapter 5.

8.2.1 I-V  M easurem ents

Figure 8.1 illustrates the I-V  characteristics of Schottky diodes on all four films after 

etching. Only diodes on samples C4022B (lower TDD) and C4039B (higher TDD) 

were suitable for comparison and detailed analysis.

400
C4022Bi I4039B

300-
T= 300 K

1  200 -

C4052C

100 -

3o C4041B

0 - -

C4039B

-100

Bias voltage [V]

Figure 8.1 The I - V  characteristics of Schottky diodes fabricated on etched
Mg-doped GaN films, at room temperature.

193



Chapter 8: Experimental results from p-type GaN diodes

200

150-

<
i
~  50 -|
o
3o 0

-50 A

-100

(u n -e tch ed )

— C4022B 
C4039B

------
V

▼ ■
'  /

▼ ■
▼ ■

T ■

/ /▼ ■
▼ ■

....................

■ ▼

■ ▼

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
B ias v o ltag e  [V]

Figure 8.2 The I-V characteristics at room tem perature for diodes fabricated 
on unetched Mg-doped GaN films C4022B and C4039B.

For comparison, unetched diode I-V curves are also presented. As illustrated in Figure 

8.2, the I-V  characteristics of the as-cleaned (unetched) diodes exhibited high reverse 

leakage currents, The current-voltage characteristics showed that the diode on C4022B 

is slightly less resistive than the diode on sample C4039B, which could be attributed to 

the lower TDD in sample C4022B, assuming the dislocations capture carriers and 

reduce current flow. However, both diodes are poor before etching. As a measure of 

diode quality and to help explain what the effect of the etching is, it is easiest to choose 

an arbitrary reverse leakage current value, and test at what reverse voltage this value is 

exceeded, i.e. if we choose 5.9x10° A, in the unetched sample C4022B the reverse 

voltage at which this occurs is -0.95 V, and in the unetched sample C4039B it is 

-1.15 V. After etching both these reverse voltages increase with sample C4022B 

showing the biggest increase. This means that Sample C4022B is now showing no 

reverse leakage current up of the chosen test magnitude until at least -10 V. This is 

interpreted as meaning that an etched diode on Sample C4022B is a higher quality diode
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than an etched diode on Sample C4039B. This is clearly shown in Figure 8.3. This has 

previously been reported and attributed to a decrease in hole concentration in the near­

surface region through the creation of shallow states, possibly nitrogen-vacancy related 

defects [14].

200
T= 300 K

150-

100 -<
(etched)

50-
-10

Bias [V]3o

•  C4022B
■ C4039B

-50-

-100
4 410 -8 6 2 0 2 6 8
Bias voltage [V]

Figure 8.3 The I-V characteristics at room tem perature for plasm a etched diodes 
with different TDDs. The inset shows the log (I) vs. V plot.

The electrical effects of plasma damage in the surface of p-type GaN have been reported 

in the literature [14-20], and surface type conversion has been observed in p-GaN at 

high ion fluxes and high ion energies (>750 W). It is believed that this Schottky 

behaviour is associated with more nitrogen-vacancy related defects formed below the 

p-GaN surface, after plasma etching, which lead to an increased Schottky barrier for the 

transport of holes. It has also been reported [15,16] that plasma etching plays a very 

important role in the change of electrical properties in p-GaN.
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Figure 8.4 The I-V characteristics for sam ple C4022B at different tem peratures.
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Figure 8.5 The I-V characteristics for sample C4039B at different temperatures.
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8.2.2 Capacitance Measurements

It is known that the resistivity of the Mg-doped GaN is extremely high; its capacitance 

drops dramatically at low temperatures and almost vanishes at 200 K [13,21] due to very 

low dopant ionisation rates. Therefore, the effect of the series resistance on the 

measured capacitance should be corrected using an equivalent circuit model.

Conduction band

r Ec

p-GaN

AlAu
Ef

<f>b Ev
Valence band

w

Rs

Depletion layer Bulk

c i

Ideal
device

Parallel
Equivalent

Circuit

H O C c >
= = ^ G m

Figure 8.6 Schematic view of energy band diagram for p-GaN Schottky diode and the 
parallel equivalent circuit, where Cm and Gm are the measured capacitance and con­
ductance respectively. These measured values contain the series resistance effect.
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As illustrated in Figure 8 .6 , the equivalent circuit of that diode is a junction capacitance 

C in parallel with a junction conductance G (which governs the leakage current) and a 

series resistance Rs (which depends on bulk resistivity and on contact resistances).

The complex impedance (Z) of the actual circuit, shown in Figure 8 .6 , is given by:

Z = R c +
G —jo)C

G2 + (a>C)2 

Equation (8.1) can be re-written as:

(8.1)

Z = Z  + j Z  = R<
G2 +  (a> C) 2 J - ' I

o) C
G2 +  (co C)2J

(8.2)

whereas the measured complex impedance (Zm) is given as

Zm~ G l  + (2  cm y  j  G2 + (ftTcm )2 -  Zm 1 Zm (a3)
where Cm and Gm are the measured capacitance and conductance respectively.

The general equation defining the measured complex admittance (Ym) is given by [22]

Ym = Gm + j  (8-4)

6 (1  +  Rs 6 ) +  Rs (o) C)
m (1 +  Rs 6 )^ +  (a) Rs 6 )^ m (1 +  Rs 6 )^ +  (co Rs 6 )^

The imaginary component of the measured admittance is directly proportional to the 

depletion capacitance if the effect of the series resistance is negligible, i.e. If (RSG «  1) 

and (Rs «  l/(coC), then Cm = C. However, for large Rs and G values ( Rs > 1 kQ and 

G ~ 10‘5 S), the measured capacitance should be corrected using the above equations.

The admittance is also defined as:
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1 1

¥ = z  = T = W  W

rz'+j z  \
if Equation (8.5) is multiplied by then it can be written as:

Z' Z"
r - ( Z ' ) 2 +  (Z")2 + ; (Z ' ) 2 +  (Z " ) 2 ( a 6 )

Care must be taken if the directly measured depletion capacitance is used to obtain the 

built-in potential and impurity concentration, as it has been recently reported [23] that 

analysis of Cm vs. V data show that the extrapolated built-in potential value increases 

with increasing frequency. This implies that extrapolating the built-in voltage from a 

plot of 1/C vs. V is not always valid; there may not be a unique gradient. It is therefore

advisable to investigate the measured capacitance as a function of dc bias, frequency and

temperature.

2.5x10
T= 300 K

2.0x10 -

1 MHz

1.5x10 - 100 Hz
s

N
1.0x10^-
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0.0
1x104 2x104 3x104 4x1040

Z' [Q]m L J

Figure 8.7 An example of the Z m vs. Z"m plots of the AC im pedances of a 
Schottky junction (sample C4022B) at different AC frequencies and constant 
temperature.
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The series resistance can be either estimated from the I-V  curves [24] for each tempera­

ture or by constructing a Nyquist plot from complex impedance measurements [25] as 

function of bias, frequency and temperature, where Rs equals the saturation value in the 

measured real part of the impedance. Equation (8.3) is used at each measurement 

temperature to estimate the Rs values, as illustrated in Figure 8.7. The series resistance is 

determined from the minimum Z m value at the highest frequency.

In this work it was necessary to correct for the high resistivity of all samples during 

analysis of the admittance spectroscopy data. Due to carrier freeze-out at temperatures 

below 200 K and the upper temperature limit of our cryostat, admittance spectroscopy 

was carried out in the temperature range 200-450 K. This was done using a model 

proposed by Kavasoglu et a l  [23] based on the equivalent parallel circuit model, in 

which the corrected impedance (Z) can be calculated using Equations (8.2) and (8.3) by 

subtracting the series resistance effect from the measured real component (Z 'm), at each 

measurement temperature:

by substituting (8.7) and (8 .8 ) in (8 .6 ), the real and imaginary components of the cor­

rected admittance can then be re-written as:

(8.7)

(8.8)

(Zn  Rs) and C =
7

(8.9)(Zm -  Rsy  + (z;)2 o>Kzm-Rsy + (Z n )2]

The C - f  curves in Figure 8 .8  shows the corrected capacitance spectra of samples 

C4039B, C4052C and C4041B, obtained experimentally at zero bias and 50 mV AC 

signal over the frequency range 100 Hz to 1 MHz and at room temperature.
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Figure 8.8 C- f spectra for etched diodes over a wide range of frequencies 
at zero bias with a 50 mV rms value for a small ac signal and T=300 K.

In principle, the presence of a deep level in the measured rectifying junction is 

determined by a flexion in the C-f curve and a peak in the (G/co vs. co) plot. The peak in 

the (G/co vs. co) plot occurs at the transition frequency coo at which the carriers respond, 

and is defined as the frequency at which the capacitance is half AC, where AC is the 

difference between Cnigh and ClqW, as illustrated in Figure 8.9.
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Figure 8.9 The transition frequency u)0. It could be determined 
from the C-F plot or the conductance (G/tu v s . to) plot

Figure 8 . 8  illustrates that a single flexion point in the C-f curve occurs in all samples of 

structure (A), but it is more obvious in the higher doped sample C4039B, as expected.

The C - f  curves in Figure 8.10 and Figure 8.11 show the corrected capacitance spectra 

of samples C4022B and C4039B respectively, obtained experimentally at zero bias and 

50 mV AC signal over the frequency range 500 Hz to 1 MHz and with the temperature 

varied from 200 to 450 K. A temperature dependent step-like variation is observed in 

the frequency range indicating that the inflection frequency coq can be deduced.
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Figure 8.10 C- f spectra for sample C4022B at zero bias with a 50 mV rms 
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The temperature dependent C-f plots show that at sufficiently low frequency, about 

-1 .5  kHz, both samples exhibited almost constant junction capacitances at all tempera­

tures. This agrees very well with the low frequency value reported by J. kim et al. [21]. 

At about 1.5 kHz the capacitance becomes frequency independent, which implies full 

response of deep Mg acceptors, and hence a C-V depth profile can be constructed [2 2 ].

The TDD in C4022B is an order of magnitude lower than in C4039B. The capacitance 

of C4022B measured at zero bias is lower than that of C4039B, which implies a larger 

depletion region. This is indicative of a less conducting sample, which one may attribute 

to the lower dislocation density. There is also a temperature dependence involved in the 

barrier height, which makes detailed analysis extremely problematic. This temperature 

dependence can be seen in Figure 8.10 and Figure 8.11.

Table 8.2 details the Schottky diode parameters for samples C4022B and C4039B as 

calculated by C-V and I-V  analysis.

Table 8.2 Schottky diode parameters for etched  samples C4022B and C4039B, meas­
ured by I-V and C- l/at different temperatures.

Sample C4022B Sample C4039B

T (K) n (^b)/V
(eV)

(Rs)iv  
(k Q)

(^b)cF
(eV) T (K) n  (^b)/V

1 (eV)
(Rs)iv
(kQ)

(^b)cV
(eV)

300 3.7 1.21 8.9 2.32 300 4.9 0.88 12.8 1.78

340 3.2 1.35 4.4 2.33 340 3.9 0.99 6.4 1.79

380 2.7 1.50 2.7 2.33 380 3.2 1.10 3.9 1.81

420 2 .6 1.52 1.9 2.31 420 2.9 1.24 2 .6 1.80

For the C -V  method it is important that C versus V  plots be linear and independent of 

frequency; however the barrier height obtained using the C-V method, (Ob)cv, is hardly 

affected by the changes in the temperature. The I-V  characteristics for samples C4022B
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and C4039B have been analyzed in order to deduce the ideality factor (rj) and the 

barrier heights from the slope and the intercept of the plot of log (7) vs. V.

As shown in Table 8.2, large ideality factors, (rj > 2), were obtained over the measured 

range of temperatures. These large rj values are attributed to the high specific resistance 

of the p-G aN layer.

Barrier heights obtained using the I-V  method, (Ob)/y, shown in Table 8.2 are under­

estimates of the real potential barrier height present at these interfaces due to large rj 

values. However accurate extraction of Ob using the current-temperature method was 

impossible because non-linear Richardson plots [22] were observed, due to temperature 

dependency of the obtained barrier height and the ideality factor values. Linearity could 

not be restored using modified Richardson plots. (Ob)cv values are over-estimates due to 

effects of distributions of interfacial charges on C -V  measurements.

A number of theoretical studies and experiments have been carried out by others [26-28] 

to compare barrier heights determined by I  - V  and C -V  techniques. It was found that 

generally (Ob)cv exhibit larger values than (Ob)/v and this discrepancy was attributed to 

the existence of two regions of contact area each having a different barrier height, i.e. 

when two Schottky diodes of different barrier heights are connected in parallel the lower 

barrier height dominates the I - V  behaviour, but the C -V  behaviour is dominated by the 

one with the largest contact area. Furthermore, variations of the barrier height over the 

contact area can occur as a result of nonuniformity of the interfacial layer thickness, 

inhomogeneities in the interfacial layer composition and distributions of interfacial 

charges. Therefore it is more realistic to represent a distribution for the barrier height 

rather than only two different barrier height values.

8.2.3 Carrier concentration-depth profiles

Figure 8.12 and Figure 8.13 show the carrier concentration-depth profiles obtained at 

different temperatures for samples C4022B and C4039B, respectively, measured at

1.5 kHz.
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Figure 8.12 The C-V concentration-depth profiles obtained for diode on sam ple 
C4022B. The inset shows the 1/C2 vs. V plot at 300 K, where Vbi is the built-in voltage.
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Figure 8.13 The C -V  concentration-depth profiles obtained for diode on sample
C4039B. The inset shows the 1/C2 vs. V plot at 300 K.
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The carrier concentration is larger at the surface in C4039B; it should be noted that the 

values determined from C-V  profiling represent the majority carrier density and not the 

doping density. There is a noticeable decrease of carriers further behind the surface. The 

C-V data suggest that there is a highly doped layer, ~ 6 x l0 18 cm ' 3 (C4039B) and 

-  1.5xl018 cm ' 3 (C4022B), that lies around 50-60 nm below the surface of the doped 

GaN. This thin layer has been previously seen by others [2,29] and is attributed to post 

growth annealing; an increase in the hole concentration at the surface could be caused 

by decomposition of Mg-H complexes with the H escaping from the surface. This 

explains the observation that, in the case of un-etched samples, the sample with higher 

TDD was slightly more resistive than the one with lower TDD even though they were 

very similar in dopant concentration and processed together. Additionally, current 

transport at the metal/high Mg-doped GaN interface was dominated by a deep level 

defect band induced by high Mg doping, leading to the formation of a low barrier height 

and larger leakage currents at the Schottky interface. It is suggested here that after post 

growth annealing the deep level defect band exists with a large defect density of about 

1019 cm'3. However, when these films were exposed to plasma etching just before 

evaporating the metals, the high hole concentration near the surface of samples,
1 o o

dominated by the acceptor-like deep level defects, was reduced to - 1 0  cm' through 

the creation of shallow states by the RIE; hence the etched samples exhibited higher 

barrier height and smaller leakage current. It has also been reported by others [15,16] 

that dry etching contributes to a shift of the Fermi level towards the conduction band 

edge in p-GaN.

8.2.4 AC Conductance M easurem ents

Figure 8.14 and Figure 8.15 show the (G/co vs. co) curves for samples C4022B and 

C4039B, respectively, where (o=2nf an d /is  the probing frequency.
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Figure 8.14 The zero bias G/co spectra at different tem peratures, zero bias 
and 50 mV ac signal for etched diode on sample C4022B.
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Figure 8.15 The zero bias G/w spectra at different tem peratures, zero bias 
and 50 mV ac signal for etched diode on sam ple C4039B.
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The contribution of traps to device conductance is obvious; the frequency peaks shift 

towards higher frequencies with the increase of measurement temperature, indicating an 

increase of hole emission rate.

It is possible to directly use the conductance peaks occurring at each temperature to 

construct an Arrhenius plot and hence the acceptor activation energy and the apparent 

capture cross section of each defect can be deduced according to the standard equation 

[30]:

2n f
j2
l max

oc exp -
k Trr

(8.10)

where Tmax is the temperature at which the conductance peak is occurring and /  is the 

probing frequency for each experiment. A plot of //i(co/7j vs. 1 IT  should give a straight 

line, the slope of which corresponds to the trap activation energy and the intercept is

related to op.
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Figure 8.16 Arrhenius analysis for the G -f peaks indicated at zero bias.
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Figure 8.16 shows the Arrhenius plot for the single defect observed in the G/co vs. co 

spectra of both films. The trap energy calculated for the two samples was almost 

identical at 160 ± 5 meV.

It is worth mentioning that the (G/co vs. T) and (G/co vs. f )  experiments were carried out 

using two different setups but under similar vacuum conditions (10 6 torr). However, in 

the (G/co vs. T) experiments, the conductance data were recorded using a temperature 

scan rate 4 K/min at a fixed probing frequency for each experiment; this is in principle, 

similar to the deep level transient spectroscopy (DLTS) experiments [31].

1x 1 0 10
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n1 8x10"

35
“  6x10'11 
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4x1 O'11
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>-112x10

100 150 200 250 300 350 400 450
Temperature [K]

Figure 8.17 G -Tspectra (temperature scan) taken with different frequencies 
and an applied reverse bias of -2 V: for an etched diode on sam ple C4022B.
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Figure 8.18 G-T spectra (temperature scan) taken with different frequencies 
and an applied reverse bias of -2 V: for an etched diode on sam ple C4039B.

Figure 8.17 and Figure 8.18 show the temperature dependence of the AC conductance 

measured at a reverse bias of -2 V and an AC signal of 50 mV, using probing 

frequencies of 1, 3, 10 and 50 kHz. Both samples were examined in the (430-140) K 

temperature range. A single peak is clear in the (G/co vs. T) curves which occurs around 

250 K, at low frequency, for both samples C4022B and C4039B. The peak shifts 

towards higher temperatures with an increase of probing frequency.

Conventional Arrhenius analysis, shown in Figure 8.19, reveals the activation energy of 

the level responsible for this behaviour as 170 ±5 meV. No other deep centres were 

observed in these admittance spectroscopy experiments. The estimated trap energy 

levels are most probably associated with the Mg acceptor state as these values are 

consistent with the values reported in the literature [1-4]. The G-T results qualitatively
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reproduce the behaviour observed in the G-co experiments; this demonstrates that 

conductance methods are powerful tools for obtaining information on defect physics.
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Figure 8.19 Arrhenius analysis for the G-T peaks indicated at VR= -2 V.

The temperature dependencies of the thermal velocity contained in the capture 

coefficient and Nv were then considered. Equation (4.39) was divided by T2 and the 

term (vth x Nv) was replaced by (Constant x T2) where vth= (3k/ m h)ll2.T112, k is the 

Boltzmann constant and Nv= 8.9 xlO15. TV2. It was assumed that the effective hole 

mass for wurtzite GaN is m h = 0.8 mo and the acceptor degeneracy factor g is 4. From

the extrapolated intercept values of In(co/T2) vs. 1 IT  plots, the apparent op were estimated
20 2to be approximately -1x10 ~ cm " for all the samples. The very small ap values indicate 

that the ionised acceptor level is very repulsive which, if the situation is very simple, is 

not logical; however, Ga vacancies are assumed to assist in the activation of Mg [32], 

and hence these obtained values may be attributed to defects associated with, or in close
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proximity to, a negatively charged gallium vacancy. This interpretation should be 

considered alongside the fact that it is well known that extrapolated capture cross 

sections can have error bars of several orders of magnitude.

8.3 Discussion and Conclusions

In summary, a hole trap with an activation energy of 160 ± 10 meV was found in 

samples with the same Mg content and different TDDs. The capture cross-section of 

this defect was estimated to be 1-2 x 10' 20 cm2. Both these values lie within the range 

of previously reported values for Mg in GaN (120 -  250 meV), therefore, the traps that 

give rise to the signals in the G/co plots are assumed to be associated with the Mg 

dopant. The very small capture cross-section indicates that the trap is repulsive, which is 

not what would be expected of an ionised acceptor level. It is postulated that this may 

be partly an artefact of the extrapolation technique, and partly due to the presence of 

other defects near to the Mg acceptors which affect the apparent capture cross-section of 

the Mg acceptor state.

No shallow traps associated with threading dislocations were observed in these samples. 

Changing the TDD by an order of magnitude had no effect on the admittance spectra 

recorded from these films. This was an unexpected result, as cathodoluminescence (CL) 

studies on p-G aN films clearly show that most threading dislocations are non-radiative 

recombination centres [7, 33]. It is known that as dislocation states capture carriers and 

cause the dislocation to become charged, Coulombic repulsion means that the 

dislocation is less likely to capture further carriers [34]. As the admittance spectroscopy 

technique used in this work measures hole emission and is at relatively low 

measurement frequencies, any electrically active dislocation-related states would have 

ample time to fill up and influence the admittance spectra. Therefore the result can be 

correlated with the CL experiments by suggesting that the electrical activity of 

dislocations in GaN is primarily due to electron capture and emission. These are 

assumed to be close to zero electrons in these samples.
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There have been reports in the literature for n-type GaN that some deep levels are only 

readily activated by optical excitation techniques, such as deep level optical 

spectroscopy and photocapacitance spectroscopy [35]. Cathodoluminescence would also 

be expected to be able to probe these very deep levels.

In conclusion, there was not any influence of the TDD on the relatively shallow traps 

detected in this work. If there are very deep electrically active levels associated with the 

dislocations, they are unlikely to be ionised at device operating temperatures such as 

those probed in this work, and therefore have not influenced our results.
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9. Summary and future work

9.1 Conclusions from CVD diamond films

Deep electronic levels in boron-doped polycrystalline diamond films, with different 

boron levels, have been investigated experimentally using I-V , C-V, DLTS, high- 

resolution LDLTS and thermal admittance spectroscopy (TAS). Increasing the B content 

in CVD diamond films from - lx lO 19 to ~ 4x l0 19 cm ' 3 and annealing the films at 750°C 

resulted in a number of hole traps appearing in the DLTS spectra. The films with B 

concentrations larger than ~6 x l0 20 cm ' 3 exhibited semi-metallic behaviour.

The data reported in this thesis, recorded by DLTS and TAS, yielded identical informa­

tion about the deep levels in CVD-diamond films; these were identified by DLTS and 

TAS as hole traps. To the best of our knowledge, this is the first time that admittance 

spectroscopy and DLTS have been compared for semiconducting diamond.

Despite the polycrystalline nature of the diamond films and the difficulty of using 

LDLTS on such a defective material, still there is a very clear and accurate LDLTS 

result for the B acceptor in the more highly doped film of batch D (sample OS-d2). 

However, all the other LDLTS results are complex and really only confirm that there are 

many extended defects contributing to the DLTS signal.

Finally, it was discussed that a combination of LDLTS and direct capture cross section 

measurements can be applied to semiconducting diamond to understand whether the 

trapping is at an isolated point defect or an extended defect. It is suggested that the 

appearance of point-like-defect states in the more highly doped film (in batch D) are 

indicative of B-related centres in bulk diamond, whereas the extended states may be due 

to B trapped at grain boundary sites.
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9.2 Conclusions from Mg doped GaN films

Mg:GaN thin films were grown on sapphire by MOVPE using two different buffer 

layers giving rise to differing threading dislocation densities (TDDs) in the GaN. TAS 

was applied to study the effect of different TDDs on the electronic states in the bandgap 

of the Mg:GaN.

An electrical trap with an activation energy of about 165±10 meV was observed using 

TAS. Data were recorded from two different AC conductance experiments (G/co vs. co 

and G/co vs. T) for each sample. The obtained activation energy values equate well with 

the range of previous values reported for Mg in GaN. It is demonstrated that the 

observed energy levels exhibit repulsive capture characteristics which could be due to 

defects associated with a negatively charged gallium vacancy.

The I-V  and C-V characteristics illustrate that the electrical properties have been slightly 

affected by the occupancy of interface traps and the various charge polarities which 

govern the Fermi level pinning and lead to an increased Schottky barrier for the 

transport of holes in the sample with higher TDD. However after correcting the effects 

of series resistances, only majority carrier traps (peaks) above 200 K were detectable 

using AC conductance measurements. No traps associated with TDs were observed in 

the samples.

This study detected no deep levels that can be ascribed to the TDs. It is shown by two 

different techniques that the Mg level can be detected, and it is concluded that the 

presence of different concentrations of TDs do not significantly affect the electronic 

deep level populations in the materials. This interesting finding has relevance to optical 

device properties, as it shows that the threading dislocation density may not be a first 

order effect when considering how to increased optical efficiency. From these studies it 

can be concluded that the use of different buffer layer schemes appears to have no 

significant effect on the obtained energy levels or trap concentrations.
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9.3 Future work

It is shown in this work that it was only possible to examine a temperature range of 

100 -  450 K, and this temperature range is not sufficient to probe levels very deep in the 

band gap. Increasing the temperature much beyond 450 K causes the contacts to 

degrade in both materials studied, possibly by pipe diffusion down dislocations and 

grain boundaries intersecting the surface.

Combined electrical and optical techniques such as optical-LDLTS could be used to 

examine defects in wide bandgap materials. The use of such technique would allow 

probing of levels very deep in the band gap, by the use of optical and thermal excitation. 

Cathodoluminescence would also be expected to be able to probe these very deep levels.

Many high work-function metals have been investigated in the literature in order to 

obtain low-resistance contacts to p -type GaN; either in the form of standard contact 

design or complex metallization schemes. So far, experimental results show that Ni/Au 

contacts (if annealed at temperatures between 400 and 600°C in nitrogen/air mix) exhibit 

the lowest resistance on p -type GaN. Resistivities in the range of 10‘4 to 10‘6 Q.cm ' 2 

have been reported [1-3]. However, there is still an issue with the stability of the Ni/Au 

contacts; it is suggested [1-2] that the Ni atoms escape from the p -type GaN surface and 

hence the interface between Au and /?-GaN leads to poor electric performance, resulting 

in high resistivity contacts. The nature of the resistivity of Ni/Au contacts after 

annealing in an ambient atmosphere containing oxygen and nitrogen is still not fully 

understood. The processes taking place during contact formation, e.g. contact 

transformation during annealing, still need to be investigated.

On the other hand, current research [4- 6 ] is focusing on finding a more reliable Ohmic 

contact for improving the performance of LEDs; very recent studies [6 ] propose that 

Pt/Ag/Ni/Au could act as a promising metal contact to p -type GaN. The properties of 

this metallization scheme needs to be thoroughly investigated.

In semiconducting diamond, there are a number of issues that still need to be looked at; 

among these is the polycrystalline nature of the hetroepitaxially-grown diamond films.
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These films tend to contain large volume of grain boundaries, dislocations and other 

defects, that reduce the carriers lifetime and mobility by trapping B atoms and rendering 

them inactive, despite high doping levels. A comparison, by electrical testing, of 

electrically active defects in CVD diamond grown on either single crystal CVD diamond 

or HPHT diamond with different boron levels could be very useful to study the electrical 

properties of point defects in B-doped diamond. In addition, CVD diamond layers could 

be grown side by side in the hot filament reactor so their B levels will be virtually 

identical. There is no report in the literature on a comparison of such layers by electrical 

testing.

Furthermore, the difficulty in producing «-type diamond remains the outstanding 

problem in the development of diamond optical devices. However, co-doping the 

diamond with more than one element to produce w-type has not been satisfactory, and 

also the tight bonding and rigidity of the diamond lattice makes incorporation of doping 

atoms larger than C really difficult. This opens up another research area to find 

alternative n-dopants to those routinely used to rc-dope Si, such as P or As.
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