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ADstracr.

Devices based upon the human olfactory system, comprising arrays of gas sensing 

elements with suitable data handling systems have shown much promise as being a viable 

alternative to human testing panels and established instrumental methods o f assessing 

odours. The introductory chapter reviews the progress which has been made by various 

groups in developing these so called “electronic noses”.

Chapters 3 and 4 deal with the characterisation of a series of water-based beverages and 

a range of tobacco samples. The results show promise, but also that sensor response is 

dominated by water which masks the responses of the analyte species. Results are 

presented in tabular and visual form, the latter being radar plots and ribbon diagrams. 

When the water signals are subtracted from the raw response data, different samples 

show individual and different visual patterns. The promise o f these results is hampered 

by the impression o f the data, as it is clear that the problem o f water interference has to 

be reduced for the promise of sensor arrays to be fully realised.

In chapter 5, a series o f structure/response mapping studies are considered. The effects 

of aliphatic chain length and of ring substitution are reported. Some discrimination is 

again evident, with water creating the same problems as in the previous studies.

Throughout the work a device comprising an array of polypyrrole-based conducting 

polymer gas sensors was employed. Some response data has been analysed using 

euclidean clustering techniques to determine the individuality o f sensor responses. 

Groups of sensors, very often pairs or threes in an array have responded in a very similar 

fashion.
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Chapter 1 Introduction.

In many areas o f industrial manufacture (cosmetics, foodstuffs, beverages, tobacco etc), 

the aroma of a final product can often be a key factor in consumer acceptability. Routine 

analysis of such materials is generally performed using either specially trained panels of 

odour evaluators or traditional instrumental methods such as gas chromatography or gas 

chromatography-mass spectrometry [1], The use of odour evaluation panels yields 

subjective responses which are influenced by many factors such as the age, gender and 

general health o f the panel members. Instrumental methods o f analysis tend to be 

expensive and time consuming and in some applications may possess insufficient limits o f  

detection to allow full characterisation of an aroma. A simple method by which odours 

could be rapidly, reproducibly and inexpensively characterised would be o f great use [2].

Recent advances in gas sensing technology have led to the development of “electronic 

noses” based upon the highly sensitive human sense of smell. Gardner [24] has defined 

an electronic nose as being “an instrument which comprises an array of electronic 

chemical sensors with partial specificity and appropriate pattern recognition system, 

capable of recognising simple or complex odours”. These instruments respond to an 

odour as a whole rather than separating and detecting individual components as in 

chromatographic-based methods to produce a unique “fingerprint”, characteristic o f an 

analyte. Using computer software, electronic noses are capable o f discriminating 

between very similar odours such as different brands of coffee and classifying unknown 

species by comparison with previously learnt patterns. A wide range of applications have 

been envisaged for these devices [3, 4] and competition between manufacturers is 

steadily growing [5-7].



1.1 The human olfactory system. [8,9]

The molecular basis of olfaction is still poorly understood. A number of theories 

proposed to explain the mechanisms of this process [10-12] have been only partially 

successful. It is beyond the scope of this thesis to review the area of olfaction. 

However, more comprehensive reviews are presented elsewhere [13-15]. Instead, a brief 

overview is presented which concentrates upon features which would seem essential 

considerations when designing an electronic analogue of the human sense of smell.

The olfactory epithelium (figure 1) is an exposed odour-sensitive area containing 

approximately fifty million receptor neurone cells [16, 17]. These neurones have fine 

hair-like projections (cilia) which are immersed in a mucus layer which covers the 

epithelium. Volatile species reach the epithelium via the breathing process. The sniffing 

reflex increases the speed and volume of air reaching the epithelium, increasing 

sensitivity and allowing the detection of species which would be otherwise undetectable. 

Once dissolved in the mucus layer, odorants interact with the cilia which contain receptor 

proteins. Only approximately one hundred receptor proteins have been discovered, 

suggesting that the receptor neurones show overlapping response characteristics rather 

than being specific towards a certain class of compounds.

The olfactory bulb contains the secondary (mitral) cells of the olfactory system. Several 

thousand receptor neurones are connected to a single secondary cell and it is this 

convergence which is believed to be a key factor in explaining the high sensitivity of the 

system. Olfactory information from the array of primary neurones is pre-processed in the 

bulb before being fed to the higher olfactory centres of the brain.
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The higher olfactory centres of the brain contain several targets for the bulb output. It is 

in these areas that odour classification, discrimination, perception, memory effects and 

initiation of behavioural responses occur.

Figure 1 The olfactory epithelium.

Cilia



1.2 Realization of a practical electronic nose. [18 -24]

An electronic analogue of the complex human olfactory system would necessarily be a 

simple system with the following requirements :

i) A method of introducing the sample into the sensing environment. A flow through 

system where the test sample is swept over the sensing array using an inert gas, 

mimicking the sniffing reflex, would be capable of performing this task. An alternative 

strategy would be to adopt a static headspace system where the sample is allowed to 

equilibrate (vaporise), and be separate from the sensing array until the point of analysis.

ii) An array of sensors [25] to act as artificial neurones, which is effectively a scaled 

down version of the many millions present in the olfactory system. These sensors would 

be required to respond rapidly, reversibly and reproducibly, preferably at ambient 

conditions. In modelling the olfactory system, there should be no need for individual 

sensors to respond with any great degree of specificity although clearly, an array of 

identical sensors would be of little value. Instead, an array in which each sensor 

responds to a broad range of species and has response characteristics offset from it's 

neighbours should prove to be adequate. Several types o f gas sensor meet these criteria 

and will be considered in section 1.3.



iii) Some form of pre-processing algorithm, analogous to the pre-processing performed 

by the olfactory bulb to convert the sensor responses into a suitable form for statistical 

analysis. Various data transformations could be employed such as :

a) The difference in response (resistance, conductance etc.) between the analyte 

and a reference sample such as air. i.e. response sample - response ref

b) Relative response between the sample and a reference compound, i.e. 

response sample/ response ref

c) Fractional response, e.g. response sample - response ref/response ref

d) Logarithmic functions of the above strategies.

e) Normalisation (division of all responses by the largest or average response 

obtained).

f) Autoscaling where all data is adjusted such that it is mean centred with a 

standard deviation of one. This avoids inadvertent weighting of very small or very 

large data points.

iv) An evaluation system (a "brain") where the pattern of sensor responses to a given 

analyte may be compared with previously learnt patterns. This implies the use o f pattern 

recognition techniques [26] which are considered in section 1.4.



Of course, the development of an electronic nose does not have to follow this design 

brief. Haskard and Mulcahy [27] have envisaged a design based on an alternative 

approach using an array of many thousands of sensors. Their proposed design is based 

upon the principle that in the biological system different receptor neurones are excited 

upon each inhalation yet for a given past history the same spatial pattern is generated in 

the olfactory bulb. They suggest that the bulb may be primed for a response by initially 

sampling the inhaled air and then focusing in on a specific feature. The authors envisage 

the use array of many thousands of simple sensors with threshold values beyond which 

they are activated to produce a pattern of sensor response which is related to odour 

concentration.

1.3 Sensors suitable for inclusion in an electronic nose.

1.3.1 Metal oxide-based devices.

At temperatures of approximately 200-500 °C, the resistance of a semiconducting oxide 

such as tin oxide becomes dependent upon ambient gas composition [28]. Gas sensing 

devices based on this principle are very sensitive but unselective [29]. However, 

selectivity may be introduced using various strategies such as adopting an alternative 

operating temperature or by including catalytic additives and/or filters within the device



The mechanism of conduction in these compounds is unclear. Several models have

recently been proposed [31, 32]. It is generally agreed that conduction in these systems

is a result of the reaction of adsorbed analyte gases with previously adsorbed

atmospheric oxygen on the oxide surface layer [33, 34]. Tin (IV) oxide is a non-

stoichiometric material, containing a deficiency of oxygen atoms. Charge neutrality is

achieved by the presence o f Sn2+ ions which act as electron donors. Atmospheric oxygen

becomes adsorbed onto the surface of the tin oxide at elevated temperatures where it

accepts electrons to yield charged oxygen species such as O2', O2 and O* [35].

Adsorption of a reducing gas onto the oxide surface layer will decrease the resistance of 

the system by releasing electrons for conduction either by donating electrons or by

reacting with the adsorbed oxygen species. An oxidising analyte will have the reverse

effect whilst a multicomponent mixture such as an odour will exhibit competing effects.

Arguably the most well known and widely used commercially available semiconducting 

gas sensor is the Taguchi gas sensor [36] which is illustrated in figure 2. This device 

comprises of a small ceramic tube coated which has a sintered, porous semiconducting 

layer deposited onto it’s outer surface. This coating consists of tin oxide and catalytic 

additives such as palladium. The ceramic tube contains a heating element to allow 

operation at the optimum working temperature of 150-300 °C (poor sensitivity is 

obtained at lower temperatures). The power requirement o f the heating element is 

typically about one Watt which constitutes a major disadvantage o f these devices. The 

resistance or conductivity of Taguchi sensors may be conveniently measured as a 

function of gas concentration using simple circuitry.



Figure 2 Schematic representation of a Taguchi gas sensor
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Taguchi sensors are sensitive to both temperature and humidity changes and the active 

surface is vulnerable to poisoning by various species. Responses to a few ppm of gases 

are in the order of a few seconds with recovery times typically in the order o f sixty 

seconds. Olafsson et al [37] have applied tin oxide sensors to the monitoring o f fish 

freshness.



1.3.2 lMUJSFL'i' devices.

Metal oxide semiconductor field effect transistors (M OSFETS) [38, 39] consist o f 

source and drain diffusions separated by a gate electrode. This design is illustrated in 

figure 3.

Figure 3 Schematic diagram o f  a basic M OSFET device

Gate Insulating material

Source Drain

The n-type semiconducting source and drain are separated by an area of p-type 

semiconducting material which is covered by a thin film of insulating material. A metallic 

gate electrode is deposited on top of the insulating layer. The current that flows between 

the source and drain is governed by the voltage applied across the gate and substrate. At 

a certain gate voltage, termed the threshold voltage, the gate creates a field which is able 

to invert a thin layer of p-type material near the insulating layer to n-type material. This 

inversion process creates a channel between the source and drain which allows current to 

flow between them.

If the gate of a MOSFET device is made from a catalytic material, the threshold voltage 

can be made to be dependent upon the concentration of an analyte gas. For example a 

platinum or palladium gate device may be used as a hydrogen sensor. [40]



cjcii»ui» uaseu uu cuuuuciing polymers. [41,42J

Over the past fifteen years, there has been a great expansion of research interest in the area 

of conducting polymers. A wide range of applications have been envisaged for these 

materials [43] including their use as gas sensors [44, 45], Sensors based on heterocyclic 

derived conducting polymers such polypyrrole, polythiophene and polyaniline are well 

known. The repeat structures of these polymers are illustrated in figure 4. Gas sensing 

devices based on such polymeric materials exhibit rapid adsorption and desorption kinetics 

at ambient temperatures and are not prone to poisoning by analyte species.

Figure 4 Repeat structures of some common conducting polymers.
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The most widely studied conducting polymer is polypyrrole. Chemical methods of 

preparing polypyrrole are well known but electropolymerisation methods [46-49] have 

proved to be most popular in the area of gas sensing as they allow thin polymer films to be 

deposited directly onto sensor substrates in their oxidised, conducting state. The first free 

standing, electrochemically prepared film of polypyrrole was reported by Diaz and co

workers in 1979 [50], This pioneering work showed that conducting polymer films could 

be easily prepared using a simple two electrode cell by the application of a potential 

difference to a solution of monomer and supporting electrolyte dissolved in a suitable 

solvent. These polymerisation reactions proceed via radical cationic intermediates and 

hence are susceptible to nucleophilic species within the reaction environment. This 

obviously limits the choice o f solvent and electrolyte and many reported methods employ 

weakly nucleophilic, aprotic solvents such as acetonitrile. It is also important to ensure that 

neither the solvent or supporting electrolyte undergo oxidative decomposition at the applied 

potential. The electrical, mechanical and other properties of the films may be changed by 

altering the identity of the supporting electrolyte and/or solvent, alteration o f the duration of 

the electrodeposition reaction or by introducing substituents into the monomer structure. 

The redox properties and stability o f conducting polymer films may be investigated using 

cyclic voltammetry [51] which essentially involves monitoring the current over a pre-set 

voltage scan range.



For a material to be electrically conducting it must possess a series of atomic orbitals which 

can overlap and interact to yield a series of band-like electronic states separated by 

forbidden regions (band gaps). Most polymers are electrically insulating as the sp3 orbitals 

used in bond formation are spatially unsuited to allow sufficient overlap and interaction.

The previously described, heterocyclic based conducting polymers contain conjugated, 

unsaturated bonds. This arrangement of alternating double and single bonds yields a series 

of spatially compatible pz orbitals which can overlap and create a continuous delocalised pi 

system.

In their neutral state, polymers such as polypyrrole are electrically insulating and it is only 

when they are oxidised (or reduced) that they become highly conducting. During the 

electropolymerisation of polypyrrole, an electron is removed from the polymer pi system. 

This creates a polaron state (figure 5a) which is essentially a free radical and a cation linked 

by local bond rearrangement. Electroneutrality is achieved by simultaneous incorporation 

of an anion from the supporting electrolyte (e.g. tetrafluoroborate, hexafluorophosphate, 

perchlorate, p-toluenesulphonate) into the polymer, this process is termed "doping". The 

formation of polarons creates new localised energy states within the bandgap. Upon further 

oxidation, a second electron is removed yielding a dication termed a bipolaron state (figure 

5b). Formation of a bipolaron is thermodynamically more favourable than the production of  

two polarons by removal of another electron from the polymer chain. Bipolaron states are 

also accommodated within the bandgap.



Bipolarons are believed to be the primary charge carriers in polypyrrole [52] although 

charge transport mechanisms are still poorly understood. Doping of polymers is an 

inhomogeneous process which creates "islands" of highly conducting regions. Tunnelling or 

hopping of charge carriers between these domains is believed to occur.

Figure 5a Formation of a polaron state in polypyrrole.

Figure 5b Formation of a bipolaron state in polypyrrole.

*



Sensors are generally fabricated by electrochemically growing polymer films across the gap 

between two metal electrodes on a suitable substrate. The change in resistance which is 

observed when these devices are exposed to gases such as NO2 [53] and NH3 [54] are 

thought to be caused by secondary doping of the polymer films by gaseous species which 

adsorb onto them. This adsorption process is only likely to involve weak, surface-based 

interactions since films of this kind may be returned to their equilibrium states by purging 

with gases such as air. Secondary doping effects probably involve interactions between the 

analyte species and the counter ions and/or solvent of the polymer or generation/removal of 

charge carriers.

Slater and co-workers [55] have described a novel gas sensing element comprising of a 

conducting polymer (polypyrrole or a derivative) coated array o f eight electrodes deposited 

onto a single substrate. This design allowed the indirect investigation o f the surface and 

bulk layers of conducting polymer films upon exposure to analyte species by determining 

the responses of pairs of electrodes. Exposure to methanol clearly showed differences in 

response between different zones of a single film indicating that analyte species do not fully 

penetrate into the polymer matrix.



1.3.4 Metal Phthalocyanine-based devices. [56]

The phthalocyanines (PC's) have polynuclear structures. The parent molecule, hydrogen 

phthalocyanine is shown in figure 6.

Figure 6 Structure o f  hydrogen phthalocyanine.

The central hydrogen atoms in the above structure may be replaced by metals such as 

copper and lead. Functional groups may be also introduced into the ring or central metal 

atom. Phthalocyanines behave as p-type (hole carrier) semiconductors at elevated 

temperatures [57, 58], Simple devices comprising of thin PC films deposited on suitable 

substrates via vacuum sublimation or Langmuir-Blodgett techniques (see section 1.3.6) 

have shown good sensitivity towards strongly electrophilic gases such as NO2 [59, 60]. 

The conductivity increase observed in electrophilic environments is thought to be due to 

the adsorbed analyte accepting a pi electron from the PC, leaving a hole which is 

delocalised throughout the PC structure. These devices suffer from memory effects and 

have slow recovery times. Recovery times may be improved via elevation o f operating 

temperature but this can decrease the lifetime of the PC films.



1.3.5 Surface acoustic wave sensors.

Surface acoustic wave (SAW) devices [61. 62] are usually based upon the design shown 

below in figure 7

Figure 7 Typical SAW sensor design
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Finger-like arrays of metal interdigital transducers (IDT) electrodes are 

evaporated/sputtered onto a piezoelectric substrate such as quartz or LiNbC>3 . 

Application of a radio frequency to the transmitter array creates deformations in the 

substrate which leads to the formation of surface Rayleigh waves which propagate along 

the device to the receiver array [63], A shift is observed in this resonant frequency when 

a species is adsorbed onto the surface of the device This frequency shift is proportional 

to the mass of the adsorbed material allowing devices of this type to be used as very 

sensitive microbalances [64] The frequency shift is vulnerable to environmental effects 

such as temperature and humidity and so it is usual to have two sets of arrays on a single 

substrate with one acting as a reference.



Surface acoustic wave-based gas sensors [65-67] contain an adsorbent coating with 

some degree of selectivity towards the desired analyte in the surface region between the 

transmitter and receiver arrays. A diverse range of adsorbent materials have been 

reported in the literature including gas chromatography stationary phases [68, 69], 

polymeric materials [70], lipids [71-73], cyclodextrins [74], molecular sieves [75], 

Langmuir-Blodgett films [76], olfactory cell proteins [77], conducting polymers [78] and 

thermotropic nematic liquid crystals [79].

1.3.6 Langmuir-Blodgett techniques.[80, 81]

Langmuir-Blodgett (L-B) techniques have been extensively applied in the field o f gas 

sensing. They essentially allow the deposition of ultrathin films o f controlled thickness 

onto sensor substrates [82]. Such methods are limited to materials which possess long 

hydrocarbon chains terminated by a hydrophilic fimtionality at one end and a 

hydrophobic one at the other, such as fatty acids.

Compression of the monolayer formed by the deposition of a suitable material onto a 

liquid surface such as water yields a quasi-solid which is only one molecule thick. 

Monolayers of L-B film may then be transferred onto a substrate by continuous dipping 

and removal of the substrate through the monolayer. One layer is transferred with each 

movement through the surface with the molecules aligning in "head to tail" fashion. 

Simple gas sensors may be produced using these techniques by depositing a 

semiconducting material such as a metal phthalocyanine onto a substrate and monitoring 

conductivity changes upon exposure to a test atmosphere [83].



1.4 Pattern recognition techniques.

Pattern recognition techniques are essentially statistical methods of establishing 

relationships between data points in a set of data such as the responses o f a sensor array 

to a series of analytes. Such methods are either based upon statistical analysis of mean 

and variance (parametric) or involve training of the system (non parametric). Training in 

non parametric methods may be either unsupervised where data is separated into groups 

or supervised where rules are developed in order to classify unknowns. Examples of 

some of these techniques are outlined below. For a more general review see Gardner 

and Bartlett [84].

Principal component analysis (PCA) is a supervised parametric method which essentially 

involves the separation of unrelated pairs o f data points on the basis o f variance. It is 

usually possible to describe a data set using only a few principal components which 

exhibit a large % proportion of the total variance of the set. Principal component 

analysis is generally performed in conjunction with cluster analysis (CA) which is an 

unsupervised, non parametric method which groups a series of apparently unrelated data 

points into distinct sets (clusters) on the basis of their closeness in n-dimensional space. 

In heirarchical clustering methods, the initial clusters are grouped by comparison o f pairs 

of points such as the two closest or most distant or by more complex methods involving 

all data points in a cluster. Gardner has described the application of clustering and 

principal component techniques to the discrimination of odours using an array o f tin 

oxide sensors [85],



.Artificial neural netw orks (ANN's) [86. 87] consist o f a netw ork o f interconnected, 

adaptable processing elements. A typical three layered system comprises o f  the 

following sections :

i) An input layer with n inputs where n is equivalent to the number of sensing elements.

ii) A hidden layer containing fewer elements than the input layer, mimicing the 

convergence in the biological system.

iii) An output layer where the number of elements is dependent upon the number of 

target analytes.

Each element in the network is connected to all elements in the proceeding layer. The 

output from each element is a weighted function of it's input and is connected to all 

elements in the layer above as illustrated in figure 8.

Figure 8 A diagramatic representation of a three layer artificial neural network.

Input Hidden Output 
layer



A network is trained using a series of standard compounds. The results obtained from a 

training session are compared with the expected output. Any differences which exist 

between the two are back propagated through the network, adjusting the weighting on 

each element. This training continues until the network output matches the target 

output. The network gains experience during the learning process which it can 

subsequently apply to make judgements about unknown samples which are presented to 

the sensing array.

1.5 The development of electronic noses.

The first odour evaluation instrument based upon the olfactory system was developed at 

the University of Warwick in 1982 [88], This simple device consisted o f an array of 

three commercially available Taguchi tin oxide gas sensors, with a light emitting diode 

acting as a discrimination indicator. This pioneering work showed that a small array of 

non-selective gas sensors had the potential to discriminate between a large number of 

odours and this led to a great deal of research interest in the area of artificial olfaction by 

a number of research groups.

The subsequent development of a practical odour sensing device at the University of 

Warwick [89-93] has involved the investigation of tin oxide and conducting polymer 

sensors using simple static test rigs and the development of improved measurement 

circuitry and pattern recognition systems [94-96]. These investigations ultimately led to a 

DTI funded link scheme for the development of an instrument which underwent trials at 

a brewery (discussed later). Some of this work has been patented [97, 98].



Initial testing of Taguchi tin oxide sensors was performed using a simple test rig 

comprising of three sensors mounted and sealed into a five litre flask fitted with a stirrer 

paddle and sample injection port. The flask was immersed in a water bath to maintain a 

constant temperature within the test environment. Resistance changes caused by 

exposure of the sensors to various test species were monitored using a simple potential 

divider circuit. Experimental work was controlled using purpose written software 

running on a BBC microcomputer. Promising results were obtained from these initial 

studies [99].

A three element array with improved circuitry was subsequently applied to the 

characterisation of tobacco smoke and alcoholic beverages [100]. Application o f simple 

statistical techniques to the response data obtained in these studies allowed adequate 

discrimination between samples.

The initial test rig was subsequently upgraded to incorporate twelve sensors [101, 102]. 

Sensitivity was improved by two orders of magnitude by replacing the simple potential 

divider circuitry with an a.c bridge design [103]. The improved twelve element array 

was applied to the discrimination of brands of coffee [104], Application of statistical 

techniques to the response data allowed samples to be classified with a sucess rate o f 

88.1 %



By consideration of the heat loss mechanisms in similar devices, the Warwick group have 

constructed low powered integrated tin oxide gas sensors of a novel design [105-107], 

Thermal efficiency was improved by either mounting the sensing elements on a ceramic 

package or by suspending them by their bond wires. These sensors consume only 

approximately 20 % of the power required by Taguchi gas sensors under similar 

operating conditions.

Conducting polymers have also been investigated as potential gas sensing elements for 

inclusion in the Warwick instrument. Rapid and reversible responses to methanol were 

observed using a sensor fabricated by the electropolymerisation of pyrrole across two 

gold electrodes using a sandwich design [108] which is illustrated in figure 9.

Figure 9 Schematic diagram of a sandwich electrode
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In this design, gold was sputtered onto both sides of a strip of insulating Mylar film 

which was then sandwiched between two insulating supports. This strategy allows 

sensors with a range of inter-electrode gaps to be prepared.

A series of polyyrrole sensors o f this design were prepared and characterised using cyclic 

voltametry. A subsequent paper [109] reported the effects of temperature, analyte 

concentration and film thickness upon sensor response The sensors were found to yield 

reproducible responses to methanol vapour but their baseline resistances were found to 

increase during storage. A further series of polymers based on alternative monomers 

(poly-n-methyl pyrrole, polyaniline and poly-5-carboxyindole) were subsequently 

investigated by exposing each sensor to a series of organic vapours [110]. Of the three 

polymers investigated, poly-5-carboxyindole was found to yield the most stable and 

reproducible responses.

An alternative conducting polymer sensor design has also been reported [111] in which 

poly-n-methyl pyrrole was electropolymerised onto a gold electrode on an alumina 

substrate. A second electrode (gold or indium) was then vacuum deposited onto the 

polymer film. This is illustrated in figure 10.



Figure 10 University of Warwick electrode design.
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Shurmer et al [112] have suggested that the introduction of different response 

characteristics into an array of initially identical polypyrrole sensors could be achieved by 

using Langmuir-Blodgett films of arachidic acid to inhibit the sensitivity of the polymer 

films. They proposed that the L-B films would act as passive molecular sieves and 

would not interfere with the conduction mechanism of the polymer. A simple study 

using polypyrrole sensors with varying numbers of L-B monolayers deposited onto their 

active surfaces showed that sensor response may be significantly modified by this method 

but the L-B films seemed to play a more complex role than just as passive molecular 

sieves.



A LINK scheme involving the University of Warwick, Neotronics, Bass brewery and the 

government led to the patenting of sensor technology [97] and the development of an 

electronic nose for industrial use [113]. In an initial study [114], polypyrrole, polyaniline 

and poly-3-methyl thiophene based sensors incorporating a wide range of dopant 

(electrolyte) materials were investigated. Each of the sensors investigated contained 

three individual elements on a single substrate. The instrumental hardware comprised a 

glass sample vessel fitted with a motorised fan, immersed in a water bath to ensure 

constant temperature within the test environment. Beer samples were allowed to 

equilibrate in the sealed sample vessel until the point of analysis when the sensor head 

was inserted at a defined analysis point. Cluster analysis of the responses from a range of 

tests showed the potential of the system for application in the brewing industry.

A second paper summarising the results of the three year research programme was 

subsequently published [115]. The improved hardware consisted of an array comprising 

of up to twenty four conducting polymer sensors, an automated flow injection system 

and sophisticated classification software involving neural network pattern recognition. 

The improved system was capable of detecting taints in beer samples with a high rate o f 

success.



An electronic nose has been commercialised and launched by Essex-based Neotronics 

Scientific LTD [116] a spin off company formed by Neotronics technology pic to exploit 

the technology developed during the previously discussed DTI LINK project [117-119].

The Neotronics olfactory sensing equipment (NOSE™) is a static system which 

measures the headspace above a sample using an array of up to twelve sensors [120]. 

Each NOSE™ sensor consists of a conducting polymer electropolymerised onto a 

ceramic substrate. Polypyrrole-based sensors have mainly been employed but other 

materials are currently undergoing investigation. Different response characteristics are 

introduced into the array by variation of the dopant (electrolyte) material used in the 

electropolymerisation reaction. The sensors are reported to be manufactured extremely 

reproducibly, allowing them to be replaced without compromising subsequent tests. A 

d.c. power supply maintains a constant current through the sensors and voltage changes 

caused by alteration of the resistance of the polymer films by adsorption of analyte 

species are measured and fed to a computer system. Windows™-based software allows a 

comprehensive description of the sample and analysis conditions to be stored with the 

sample results.

The NOSE™ has been sucessfiilly applied to several areas of industrial manufacture 

[121]. Neural computing technology has also been developed to be used in conjunction 

with the system and will be incorporated into subsequent models [122].



AROMASCAN pic [123, 124], based in Crewe was formed to commercialise the results 

of research into artificial olfaction performed in the Department of Instrumentation and 

Analytical Science at the University o f Manchester Institute of Science and Technology 

(UMIST) [125, 126], AROMASCAN'S electronic nose, “AROMASCANNER” is a 

benchtop unit incorporating an array of thirty two conducting polymer-based sensors all 

located on a single substrate. Sample introduction into the instrument is achieved using a 

flow through system which incorporates single use sample bags to minimise memory 

effects. Sample discrimination is performed using sophisticated neural network software.

Early research efforts at UMIST concentrated on assessing the suitability o f conducting 

polymers as potential sensing elements in an artificial nose. In an initial investigation, a 

series of monomers were electropolymerised onto steel anodes [127, 128]. Polypyrrole 

was found to yield robust, easy to handle films and was the basis of subsequent research 

efforts. New sensors were fabricated by electropolymerising a series o f monomers 

namely, 2-chloroaniline, thiophene-2-acetonitrile, indole and 2-isobutylthiazole onto 

polypyrrole sensors. The polypyrrole film was used to allow improved adhesion o f the 

polymer films onto the sensor substrate and did not affect the conduction o f the other 

materials. The responses of these sensors to a series of simple test compounds showed 

their potential to be used to discriminate between a variety o f analytes. Many o f the 

sensors exhibited different magnitudes of resistance change towards each o f the test 

compounds and in some cases decreases in resistance were observed. The sensors 

exhibited no drift in response over a period of several months and were not poisoned by 

any of the test compounds studied. The methods of fabricating these devices were 

subsequently patented [129].



The development of an artificial nose [130] quickly followed, with arrays of conducting 

polymer sensors being employed in subsequent investigations [131, 132], An application 

specific integrated circuit (ASIC) was developed [133, 134] as an improved means of 

measuring absolute values of resistance and changes in resistance associated with a 

sensor array. This strategy overcame previously encountered problems of high noise and 

long measurement times associated with traditional bridge-based measurement systems.

The measurement of d.c. conductivity changes in conducting polymer films is a well 

established method of determining their resistances. The use of high frequency a.c. 

methods are poorly understood and have been investigated at UMIST as an alternative 

method of interrogating sensor arrays [135, 136], Several electrical parameters namely 

resistance, capacitance, conduction and capacitance were determined using this strategy 

and showed much promise to be used in conjunction with or as an alternative to d.c- 

based measurement strategies.

The AROMASCAN technology has been applied to many areas of application such as 

the food industry [137, 138] where foodstuffs and beverages such as wheat, coffee, soya 

and cheese have all been assessed. An interesting paper [139], which concerns the 

detection of taints in milk samples, outlines a method of “washing” the sensor array 

between tests using an aqueous solution of butanol which is described as a suitable 

cleanser since it is rapidly adsorbed and desorbed from the polymer films. The system 

has also been compared to various other techniques in the assessment o f offensive 

odours from livestock waste [140] and was found to be capable of discriminating 

between different animal wastes.



The “FOX 2000” electronic nose has recently been developed via the collaboration of 

Alpha MOS (France) and the Universities of Warwick and Southampton. The instrument 

is comprised of up to eighteen sensors in arrays of six elements located in three 

chambers, linked in series. The first array consists of various oxide sensors with the 

second and third comprising of conducting polymer and other oxide sensors such as tin, 

zinc and tungsten oxide. More than forty sensors have been developed which can be 

easily fitted into and removed from the instrument which allows the potential 

construction of analysis-specific arrays. Each sensor chamber is also fitted with a 

temperature and humidity sensor to allow the monitoring of conditions within the test 

environment. Sample introduction is via a flow through system. The instrument has 

been successfully applied to the analysis o f beverages and foodstuffs [141] and also in 

studies involving perfumes and body odours [142].

An electronic nose for monitoring solid state fermentations has been reported by Wang 

[77]. The device comprises an array of five quartz surface acoustic wave sensors coated 

with fractions o f receptor proteins obtained from the olfactory system of bullfrogs in 

conjunction with a lipid coated reference electrode. The nose has been applied to the 

monitoring of alcoholic beverages and the decay processes o f solid hog waste. The 

results of these tests were analysed using simple statistical techniques such as cluster 

analysis. The instrument was capable of discriminating between a variety of alcoholic 

beverages and also between raw and stabilised composts.



Winquist et al [143] have described the application of an an electronic nose to the 

estimation of the quality of ground meats stored under polyethylene sheets. The device 

is comprises a flow system which sweeps sample odours through two cells, the first 

containing ten catalytic metal gate MOSFET devices and the second containing four 

commercially available Taguchi tin oxide gas sensors. A carbon dioxide sensor based 

upon infrared absorbance was adopted in some studies since micro organisms associated 

with meat decay evolve carbon dioxide. Ground samples of beef and pork were analysed 

over a period of seven days to assess spoilage. The results from these studies were used 

to train an artificial neural network to predict meat identity and time o f storage. The 

carbon dioxide responses were omitted from some network training sessions due to the 

high cost of the sensor which would raise the cost of a practical measurement system of 

this type. Initial predictions o f storage time, based upon training sets with and without 

the inclusion of the carbon dioxide sensor data, were rather poor. More satisfactory 

results were obtained using a network with fewer inputs based upon the responses o f ten 

sensors which were considered to be the most important in terms of their contribution 

towards sample classification. This instrument has recently been applied to the 

estimation of paper quality [144]. The response data obtained from this study was 

screened using both principal component and clustering techniques and was predictively 

classified using a back propagation neural network. The authors have reported the 

successful discrimination of five classes of paper using these techniques based upon the 

responses o f only four sensors.



The application of electronic odour sensing technology to robot guidance has been 

suggested by Deveza and co-workers [145], They propose a strategy based upon a 

mobile robot detecting a trail of suitable, short-lived odorant marker material. Promising 

results have been obtained using a guidance system whereby a robot follows camphor 

floor trails using a surface acoustic wave-based odour detection system.

Lundstrom and co-workers have been active in the area of field effect devices for use in 

an artificial nose [146], They have envisaged the construction of an “olfactory camera “ 

comprising of a large array of field effect devices. Selectivity is to be introduced into 

such an array by employing a temperature gradient in one direction whilst altering sensor 

identity (gate composition) in the other. Hence, different areas of the array will exhibit 

different response characteristics towards a given analyte and a unique “picture” may be 

recorded. These workers have also described a gas sensor capable of yielding "olfactory 

images" [147]. This device is based on a field effect sensor and comprises three thin, 

overlapping catalytic metal strips (Pt, Ir, Pd) deposited onto an silicon dioxide surface 

layer. This layer has been deposited onto a p-type silicon layer which in turn has been 

deposited onto a substrate (figure 11). One end of the device is heated to approximately 

100 °C, the other to approximately 180 °C, creating a temperature gradient which alters 

the properties of the metal strips along their length.



Figure 11 Schematic diagrams of a catalytic odour sensing device (Lundstrom et al)
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Bourronet et al [149] have applied an array of commercially available Taguchi tin oxide 

gas sensors to the determination of strong, unpleasant “boar taint” cooking odours in 

samples of pork products. An initial evaluation of fourteen Taguchi sensors allowed five 

sensors which exhibited the greatest degree of specificity towards a series of test 

mixtures to be identified and adopted in subsequent studies. A simple test rig was 

developed and applied to the classification of the volatile species associated with samples 

of pork fat. Initial results were promising but the authors envisage that the realization of 

a practical taint detector will require a great deal more work.

A portable odour sensing device is undergoing development at Argonne National 

laboratory, Illinois [150]. This instrument is designed to allow coast guard personnel to 

detect and identify potentially hazardous materials in situations involving shipwrecks or 

spillages. A prototype device comprising of a compact array of amperometric sensors 

was exposed to series o f test vapours. Application of a variety of pattern recognition 

methods to the test responses including clustering and pattern recognition techniques 

showed that the device is capable of discriminating between all o f the test series.

Yokoyama and Ebishawa have developed an "artificial olfactory sensor" which they have 

used to evaluate a series of fragrances [151]. An eight element surface acoustic wave 

array coated with a range of polymeric materials was exposed to a series o f thirty seven 

fragrances. The responses obtained were quantified using pattern recognition techniques 

and then correlated to responses obtained by an odour evaluation panel by performing 

multiple regression analysis. The authors have reported that their array is capable o f  

predicting human reactions to fragrances, indicating the possibility o f developing a 

practical odour sensing device for application within the perfume industry.



The University of Leeds and Mastif Electronic Security Systems have developed an 

odour evaluation system named "Sentinel" which comprises of an array of conducting 

polymer sensors [152], The device is to be used as an advanced door security system, 

identifying whether the odour response generated by a potential visitor's palm matches 

patterns of known individuals which are stored in memory. The sensors are reputed to 

contain some form of biolgical olfactory cells.

Ohnisihi and co-workers [76] have described an odour recognition system incorporating 

surface acoustic wave sensors coated with Langmuir-Blodgett films. Pattern recognition 

techniques were applied to the responses of the sensing array to a series of commercial 

fragrances resulting in successful discrimination.

Xinxia and co-workers have described [73] the preparation and testing o f a novel 

interdigital electrode lipid film odour sensor (ILOS). This device consists of a 

dioctadecyldimethylammonium polystyrene sulphonate film deposited onto Au/Cr finger 

electrodes on an Si/SiC>2 substrate. The authors have reported that their film electrode 

may be applied to the detection of a variety of organic species.



Nakamoto and co-workers have been active in the development of instruments based 

upon the mechanisms of biological olfaction. A surface acoustic wave-based device 

incorporating neural network pattern recognition software has been applied to the 

discrimination of brands of whisky where a recognition success rate of 94% was 

achieved [153], This system has also been used to characterise a series of perfumes and 

flavourings [154]. The design was subsequently improved by the incorporation of an 

automatic sampling system [155]. The authors have also investigated the possibility of 

developing a portable gas monitor incorporating Taguchi gas sensors and neural network 

pattern recognition [156].

An odour evaluation system incorporating a headspace concentration system has been 

described by Aishima [157]. The measurement system comprises of two arrays of 

Taguchi tin oxide sensors, with one acting as a reference. The headspace concentrator is 

based upon adsorption of species on tenax and has proved most useful in studies 

involving alcoholic beverages by separating the aroma compounds present in each sample 

from the large ethanol background signal. The system was able to discriminate between a 

range of alcoholic beverages using pattern recogition techniques and was subsequently 

applied to the characterisation of coffee samples, essential oils and a range of organic 

compounds [158].



Abe and co-workers [159] have applied pattern recognition techniques to the responses 

of an eight element Taguchi tin oxide array gained from a study involving a series of 

odourants. The test series of odourants were classified by odour evaluation using terms 

such as “minty”, “ethereal” and so on. The responses of the array were investigated to 

determine whether any correlations existed betweeen response and human odour 

description. The responses of thirty compounds produced four obvious clusters 

describing different odour classes.

It can be seen from the review of the literature within this area that the most significant 

progress towards a practical odour sensing system appears to have been achieved by 

workers using arrays of conducting polymer gas sensors. Indeed, the two most 

successful instruments of this kind to date, namely Aromascan’s “AROMASCANNER” 

and the Neotronics “NOSE™” are based on such technology. Many prototype devices 

based upon Taguchi sensors, MOSFETS etc have been reported but no practical 

instrument has yet been developed to challenge the two previously mentioned 

instruments. This may be a consequence of the power requirements associated with 

heating such sensors to their optimum working temperatures. There is no such 

requirement with conducting polymer-based sensors which show relatively rapid and 

reproducible responses at ambient temperatures. The popularity o f arrays o f such 

sensors is probably due to their ease of preparation. An almost limitless range o f  

materials may be polymerised in a simple controlled reaction. The properties o f such 

polymers may also be easily modified to introduce selectivity within an array. It will be 

extremely interesting to see if the initial promise of arrays of conducting polymer gas 

sensors is fulfilled.



1.6 Aims of this work

The use of arrays of conducting polymer-based gas sensors as a potential method of 

routinely characterising and discriminating aromas has been investigated. Arrays of 

sensors connected to a computer system with appropriate software (Neotronics scientific 

pic) have been used to characterise a series of beverages. The system has also been 

applied to the discrimination of a series of tobacco samples to allow it’s performance to 

be compared to an established tobacco analysis technique, namely headspace gas 

chromatography.

A programme of structure response mapping using a series of individual compounds has 

been undertaken in an attempt to identify the specific feature(s) o f an analyte to which 

each of the sensors respond. For example polarity, molecular size/shape, functional 

groups/atoms etc. The effects of aliphatic chain length in a series of esters and positional 

substitution in aromatic systems have also been investigated.

Some sample test results have been analysed using statistical techniques in an attempt to 

identify trends in the response data. This has led us to investigate alternative methods o f  

manipulating and displaying test data since only limited options are available with the 

current version of the Neotronics software.



Chapter 2 Experimental.

2.1 Overview of the analysis system.

A model C NOSE™  (Neotronics Scientific ltd) with associated software was used 

throughout the investigations. Schematic diagrams of the system hardware are shown in 

figure 12. This instrument does not possess any neural network capabilities.

Two different arrays of sensors, which will be referred to as head 1 and head 2, have 

been utilised. Each array comprised a range of polypyrrole-based sensors whose 

response characteristics are determined by the identity of the counter ions and solvents 

used during their manufacture. The identities o f these materials are of a confidential 

nature. Head 1 was supplied with the system whilst head 2 comprised o f novel sensors 

which were produced at this institution. Each individual sensor consists of a polymer 

film which is electrochemically grown over a gap between two gold electrodes on a 

ceramic substrate as illustrated in figure 13. Arrays are constructed by arranging the 

sensors in circular fashion, facing inwardly in special sealed units. This arrangement is 

illustrated in figure 14



Figure 12 a Schematic diagram of Nose™ hardware
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Figure 13 A typical NOSE™ sensor.
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Figure 14 Underside view of a typical sensor array.



2.2 Sample preparation and introduction to sensing array.

Minimal sample preparation is required using this system but contamination of the 

equilibration vessel can lead to carry over of sample to subsequent tests. To minimise 

this effect test samples were either placed into glass sample tubes or on watch glasses 

rather than being placed directly into the equilibration vessel.

Sample introduction is based upon a static headspace design. With reference to figure 

12a, the test sample is sealed into the glass vessel by lowering the sensor array to form 

an airtight seal. Initially, the sensor array and sample vapour remain in separate sealed 

compartments. Purging of the sample and/or array may be performed simultaneously 

(section 2.4). Once the sample has reached equilibrium (typically after a period o f ten to 

fifteen minutes) the trap door between the two compartments is opened which initiates 

the acquisition of sample data .



2.3 Sensor response and recovery.

Many o f the sensors that have been investigated do not achieve a steady state response 

even after being exposed to an analyte for several minutes. Experience has shown that 

the sensors appear to exhibit one the following response behaviours :

i) An initial, rapid change in response followed by a more gradual change.

ii) A slow, gradual response change over the acquisition period.

A typical set o f responses is shown in figure 15 where both types o f behaviour can be 

clearly seen.

In most cases, a large proportion o f the full change in sensor response is observed after 

approximately sixty to ninety seconds o f exposure to an analyte. The responses o f the 

sensors may be determined at any point during the acquisition period. It is usual to 

quote the responses obtained after sixty seconds o f exposure to an analyte as being the 

test results.

Changes in temperature can affect both the sensitivity o f the sensors and the volatility o f  

test samples. Lagging o f the sample vessel and head assembly with insulating material 

was found to be impractical and we must assume that test results have been affected to 

some degree by temperature effects resulting from the day to day variation in the 

temperature o f the laboratory.



It is important to allow sufficient time between tests for the sensors to recover. If the 

array is exposed to another sample before the sensors have fully recovered, sensitivity 

will be affected. The system software contains a preset minimum recovery time and will 

not allow further acquisition of data until at least fifteen minutes has elapsed from the 

end o f the previous test. In all investigations therefore, a standard recovery time o f  

fifteen minutes was allowed between tests. Recovery was aided by purging the array 

with air which is considered in section 2.4.

Figure 15 A typical set o f responses (red wine).
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2.4 Purging.

We have used air as reference compound in our studies. The response of the array to 

cylinder air (BOC) was determined at the beginning of each working day to ensure that 

the system was responding satisfactorily. A satisfactory response was defined as all 

sensors in the array exhibiting a change in baseline resistance no greater than 0.05 %. If 

necessary, the test procedure was repeated until all sensor responses were o f this 

magnitude.

In our early investigations, the array was purged with dry air directly from a cylinder. 

This practice caused permanent damage to the sensors in head 1 which began to yield 

very high responses to the cylinder air (as illustrated in figure 16) and erratic responses 

to test samples. This damage was probably caused by cracking of the polymer films as 

they dried out. A bubbler containing a saturated solution of potassium chloride was 

introduced into the purging line to allowing purging to be performed at approximately 30 

% relative humidity. Purging at this level of humidity appeared to have no adverse effect 

on either the response or performance of the sensors. Due to financial constraints, head 

1 could not be replaced and subsequent investigations were performed using head 2 

which had been prepared to perform contracted work.
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2.5 Calibration.

Figure 17 presents the results of a simple test in which an array was exposed to samples 

of methanol on two separate occasions, two months apart. It is clear from this 

investigation that the responses of the sensors drift with time. It is therefore essential that 

the array is calibrated on a routine basis. This essentially involves setting up a fixed 

voltage across each sensor using calibration potentiometers. Calibration was performed 

at the beginning of each new program of work. Sensor calibration can be significantly 

affected if the instrument is moved or disturbed and therefore all investigations were 

performed in a vibration free environment.

Figure 17 Drift of sensor response to methanol over a two month period.

(All sensor responses are the averaged results of ten tests).
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2.6 Cluster analysis.

Response data obtained from some of the investigations were analysed using five 

different Euclidean distance cluster methods using a suitable software package 

(UNISTAT 3.0). The methods adopted were median, centroid, single linkage, complete 

linkage and group average. Results from these analyses are displayed as dendograms 

which link variables according to their similarity. An example dendogram created from 

the responses o f a ten sensor array to three samples of snuff tobacco (presented in table 

1) is shown in figure 18. The y-axis of the plot indicates the relative distance or 

similarity between data points. Variables which exhibit a high degree of similarity link at 

low distances. For example, sensors 3 and 6 exhibit very similar responses for the three 

samples. Sensors 9 and 5 have identical responses for each sample (indicated by the 

vertical line between these values on the x axis) which are also similar to the responses of 

sensor 7 which are in turn similar to those of sensor 4 which exists in a lone cluster. The 

cluster containing these four sensors links with the cluster containing sensors 1 and 2 at a 

relative distance of 0.1 indicating some degree of similarity. Sensors 8 and 10 exist in 

lone clusters and exhibit very dissimilar response behaviour. The dendogram therefore 

indicates that several sensors in the array are responding in a very similar fashion, leading 

to a reduction in the potential discrimination possible with the array. This is a 

straightforward example to illustrate cluster analysis whose usefulness increases when 

dealing with larger data sets.



Table 1 Sensor responses to three samples of snuff tobacco

Sensor Sample 1 Sample 2 Sample 3
1 0.19 0.20 0.15
2 0.23 0.23 0.16
3 0.40 0.45 0.34
4 0.25 0.35 0.23
5 0.20 0.30 0.20
6 0.41 0.46 0.36
7 0.25 0.30 0.20
8 0.10 0.01 0.05
9 0.20 0.30 0.20
10 0.31 0.56 0.8
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2.7 Manipulation of sample test results.

2.7.1 Reference templates.

Test results may be combined using the system software to create a reference template. 

Sensor responses are averaged over the tests selected and standard deviation data is 

automatically calculated for templates comprising of three or more sample tests. In 

practise, a reference template may be used to establish a standard for a particular analyte 

against which subsequent sample tests may be compared. This is a procedure 

recommended by Neotronics. Experience has shown that a template produced from 

several tests on water alone to be an adequate blank to subtract from sample response 

data to yield adjusted data and response patterns.

2.7.2 Presentation of test results.

Results may have been displayed in a variety of styles which were created using suitable 

software packages (Microsoft Excel 4.0 and UNISTAT 3.0). Radar plots have been 

adopted to study the unique nature of the response pattern generated by the array for a 

given test compound. Note the use of these “fingerprints” to compare the magnitude of 

responses between different compounds is impractical since they are displayed at a 

variety of scales. An example radar plot which displays the pattern o f response generated 

by a sample o f n-hexane is illustrated in figure 19



Figure 19 Pattern of response generated by a sample of n-hexane presented as a radar 

plot. The numbering indicates the identity of each sensor

i

6

Ribbon diagrams have also be adopted which are sometimes a clearer alternative means 

of comparing the profiles of different samples.



Chapter 3 Analysis of beverages.

3.1 Mineral waters.

In a number of areas of industry, overdosing or underdosing of an ingredient during 

production could have a marked effect upon the quality of the final product. Routine 

quality control analysis of the final product may not detect the problem until significant 

wastage has occurred. A method by which samples removed from various stages of 

production could be rapidly profiled and compared to standards o f known quality would 

prove to be of great use.

The industrial scenario was simulated in the laboratory using a ten bottle batch of 

sparkling citrus flavoured mineral water. Underdosing of the flavouring was simulated 

by diluting aliquots of the mineral water with distilled water. The response patterns of 

these samples were compared to the pattern of a reference template (created by 

averaging the response patterns generated by ten samples from the batch) to determine 

whether the array was capable of distinguishing between subtle changes in the level of 

flavouring present in the presence of a high water background.

A small aliquot of mineral water was removed from each bottle in the batch to yield a 

series of ten test samples. All samples were degassed in an ultrasonic bath for a period 

of fifteen minutes prior to analysis to remove carbon dioxide which is known to affect 

sensor response. Each of the samples was then exposed to the array in turn. The 

responses generated by these ten tests were combined to produce a reference template. 

The experimental conditions adopted in these tests are outlined below :



Array : Head 1.

Sample size : 10 drops.

Equilibration time: 10 minutes.

Purging : 2 minutes (sensors) with dry air.

Acquisition time : 3 minutes.

Analysis point: @ 1 minute.

A randomly chosen bottle from the batch was used to produce a series of test samples 

exhibiting a flavouring deficiency. Aliquots of degassed mineral water (2, 4 ,6 and 8 ml) 

were diluted to 10 ml using distilled water and then profiled under the same test 

conditions used to create the reference template. Each sample was profiled once only.

The sensor response data presented in table 2 illustrate that significant differences exist 

between some of the individual sensor responses to each sample. However, there 

appears to be no simple correlation between the level of flavouring present in a sample 

and the magnitude of the sensor responses it generates.

The normalised (division of responses by the highest response obtained for each sample) 

response data presented in table 3 illustrate that the ratio in which the individual sensors 

respond with respect to each other is virtually identical for all o f the test samples and the 

reference template. Thus, although individual sensor responses are different for each 

sample, the patterns of response they generate are virtually identical. These response 

patterns are presented in figure 20.
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Figure 20 Response patterns generated by each mineral water test sample and the 

reference template.

Reference template

4 ml diluted to 10 ml2 ml diluted to 10 ml

6 ml diluted to 10 ml 8 ml diluted to 10 ml



The level of discrimination achieved between the different samples is very poor.

However, when the reference template is subtracted from each o f the test samples, a 

series o f unique patterns is produced. The four response patterns given in figure 21 

show that we can clearly discriminate between the different levels o f flavouring in the 

test samples.

The standard deviation data for the tests used to create the reference template are 

presented in table 4. This data can be considered to be o f limited value as it does not 

take the magnitude o f the sensor responses into account. For example, a standard 

deviation o f 0.5 can be considered to be insignificant for very large response values but 

highly significant for very small ones. More meaningful data are obtained by calculating 

the % relative standard deviation (% RSD) for each sensor :

% RSD = Standard deviation X 100 
Mean response

The % relative standard deviation data presented in table 4 clearly indicate that the 

responses o f sensor 8 (% RSD o f 80) should be viewed with little confidence. It would 

seem advisable to either ignore this sensor or replace it with an alternative one.

The results from this investigation show great promise. However, it is difficult to place a 

confidence level on this investigation due to the lack o f standard deviation data for the 

tests for each of the flavouring deficiency samples. Unfortunately, it was unfeasible to 

repeat this investigation since head 1 could not be replaced.



Figure 21 Unique patterns are created for each flavouring deficiency sample by 

subtraction o f the reference template from the raw response patterns.

2 ml diluted to 10 ml 4 ml diluted to 10 ml

6 ml diluted to 10 ml

8 ml diluted to 10 ml



Table 4 Standard deviation and % relative standard deviation of the ten tests which 

were combined to produce the reference template.

Sensor Standard deviation % RSD
1 0.74 26
2 0.17 16
3 0.47 15
4 0.12 10
5 0.06 15
6 0.20 16
7 0.13 12
8 0.04 80
9 0.30 25
10 0.29 30



3.2 Cola drinks.

The reference template subtraction procedure used in the mineral water analysis 

investigation was adopted to profile a series of cola soft drinks. Again, the flavourings in 

the drinks are present in samples in which water is the major component. Subtraction of 

a water reference template (blank) from the response pattern of each cola drink should 

theoretically yield a series of unique response patterns based solely upon the flavourings 

present in each drink.

Four cola samples were profiled :

i) A well known American brand name.

ii) The diet version of the above.

iii) The Caffeine free diet version of the above.

iv) A British supermarket brand.

A small aliquot of each cola was placed in an ultrasonic bath for a period o f fifteen 

minutes to ensure total degassing prior to analysis. Five replicate tests were performed 

on each cola to allow the calculation of standard deviation data from the mean responses. 

A water reference template (blank) was prepared in a similar manner using distilled 

water. The following test conditions were adopted :

Array: Head 2.

Sample size : 5 drops.

Equilibration time : 15 minutes.

Purging : 15 minute (sensors) with 30 % r.h air.

Aquisition time : 3 minutes.

Analysis point: @ 1 minute.



At first sight the sensor responses generated by each sample exhibit sufficient differences 

to allow discrimination between the different brands of cola, these data are presented in 

table 5. The standard deviation of the tests are presented in table 6. It is interesting to 

note that the response patterns generated by the four brands which are presented in 

figure 22 are all very similar to the pattern of the water reference template. This may 

indicate that the responses are dominated by the water in the drinks which is masking the 

response due to the flavourings. Discrimination on the basis of the raw patterns is 

therefore not practical. The magnitude of the response to each cola is quite different and 

suggests that a modified approach may be fruitful.

Figure 23 shows that a unique “fingerprint” is indeed produced for each cola brand by 

subtracting the water reference template from each of the response patterns. However, 

the data presented in table 7 show that the majority of sensors display totally 

unacceptable % relative standard deviation values. This is a consequence o f the small 

differences which exist between some of the cola responses and those obtained for the 

water blank. For example, the difference between the responses obtained for the blank 

and the brand name cola is only 0.02% change from baseline resistance in the case of 

sensor 1. The level of precision achieved is this investigation is therefore very poor and 

many of the results can be viewed with little confidence. It is important to realise that 

this discussion is based upon % RSD calculated from the raw response data and it would 

seem better practice to base such an analysis on the adjusted response data which was 

the basis of the ‘"unique” radar plots and these data are presented in table 8. The 

standard deviation and % RSD calculated from the adjusted data are presented in tables 

9 and 10 respectively. It is possible that the poor test reproducibility may have been 

caused by inefficient recovery of sensors between tests. Many of the responses were 

rather high and the sensors may have had insufficient time to return to their equilibrium 

conditions before subsequent tests. It may therefore be necessary to adopt a longer 

purging time or a different purging strategy in an attempt to optimise sensor recovery 

and test reproducibility.



It would seem highly advisable to repeat this study on a regular (weekly/monthly) basis 

to investigate the poor level of precision which has been encountered. The high % RSD 

values which were observed for some sensors may mean that significantly different 

response patterns would be obtained in a repeat study.

If the problems associated with poor precision could be overcome, this characterisation 

procedure could prove to be extremely useful in many areas of application. For example, 

in the area of detecting fake perfumes the integrity of a sample could be checked in a 

matter of minutes which is far faster than by using established chromatographic-based 

techniques. It may also be possible to apply this strategy to other sample types such as 

subtraction of an ethanol template when profiling spirits to yield response patterns which 

would theoretically be based solely upon the flavourings present in each brand.
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Figure 22 Response patterns generated by the water blank and the four brands of cola.
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o-> A unique “fingerprint” pattern is produced for each cola by subtracting the 

water reference template from the raw patterns
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Chapter 4 Discrimination of tobacco samples.

4.1 Introduction

Tobacco leaves contain many thousands of compounds [160, 161] and hence their 

aromas are rather complex. Tobacco is categorised into varieties such as Burley, 

Oriental (Turkish) and Virginia (Flue-cured) which differ in their growth conditions, 

aromas etc. Cigarette tobacco is usually a blend of these three varieties. The 

characterisation of tobacco blends is generally performed by gas chromatography-based 

methods which can be rather time consuming and reflect the composition of a sample 

rather than it's aroma. The application of the sensing array to produce sample profiles 

based on aroma could therefore yield potentially very useful information. The ability o f 

the array to discriminate between a series of tobacco samples was critically compared 

with an alternative technique, namely headspace gas chromatography.

4.2 Experimental.

Headspace gas chromatography [162-164] is essentially the analysis o f the volatile 

species in equilibrium with a sample rather than the sample itself. All analysis was 

performed using a Perkin-Elmer HS6 headspace injection system [165] installed on a 

model 8600 instrument. In this system, samples are sealed into glass vials using ptfe 

lined aluminium caps. The vials are then equilibrated in a temperature programmable 

sample magazine to allow sample vaporisation. A schematic diagram of this arrangement 

is presented in figure 24 a.

The sampling needle is connected to the carrier gas line and is isolated by a septum to 

prevent loss of carrier gas during equilibration. Sample injection is initiated manually by 

raising the sample magazine which causes the needle to pierce the septum and enter the 

sample vial. Carrier gas enters the vial until the pressure within the vial is equal to that at 

the column head. This process is illustrated in figure 24 b.
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Transfer of the sample onto the column is initiated by a solenoid valve which stops the 

flow of carrier gas into the vial. This results in the sample volatiles expanding through 

the needle and onto the column. Finally, the solenoid valve reopens, stopping the 

injection and starting the chromatogram as shown in figure 24 c.

Figure 24 a Sample equilibration in Perkin Elmer HS6 headspace injection system.

^  carrier gas flow

solenoid YalYe

 to column

-  sample needle 

septum

sample vial



Figure 24 b Pressurisation of sample vial.

•i

Figure 24 c Injection of sample headspace onto column.

&



Samples of Burley, Oriental and Virginia tobaccos were stored at approximately 60% 

relative humidity prior to analysis to re-introduce some moisture into the leaves since 

they had become very dry during transit. In total, nine samples were profiled, namely 

two samples of American origin and one sample of German origin for each of the three 

varieties.

Five replicate test were performed on each tobacco sample to allow the calculation of  

standard deviation from the averaged response data. The following test conditions were 

adopted :

Array: Head 1 

Sample s ize : O.lg 

Equilibration time : 15 Minutes.

Purging : 5 minutes (vessel and sensors) with dry air.

Acquisition time : 3 minutes.

Analysis point: @ 1 minute.

Many problems were encountered during the chromatographic analysis and much method 

development was required to produce adequate chromatograms. The two most serious 

instrumental problems were the presence of water within the carrier gas line leading to 

poor run reproducibility and poor detector performance due to bad alignment o f the jet 

assembly. Attempts to realign the jet proved to be unsuccessful and several parts o f the 

detector had to be replaced.



Very little information has been reported on this area in the literature and hence each 

experimental parameter (sample equilibration time/temperature, temperature program, 

column identity etc) had to be individually optimised to create an analysis method. Three 

different columns, namely Carbowax, 2% BPX and 5% BPX were available and each 

was investigated in turn. The 5% BPX column appeared to yield the most satisfactory 

separations and was the basis of all subsequent studies. Variation of the sample 

equilibration temperature indicated that the samples were prone to burning at 

temperatures in excess of 150 °C whilst chromatograms of poor quality (too few peaks) 

were produced by adopting a temperature below 120 °C. A variety of temperature 

programs were investigated, with the best separations achieved using a relatively slow 

(10 °C/min) ramp. A holding period at the initial temperature was found to be essential 

to achieve adequate separation of the most volatile tobacco constituents at the beginning 

of the chromatogram. The experimental conditions which were finally adopted are 

summarised below :

Column : BPX5 (12.5 M, 0.32 mm id)

Detection : Flame ionization (@ 330 °C)

HS6 headspace injection system conditions : Samples equilibrated at 150 °C for 45 

minutes prior to injection.

Temperature program : 35 °C (held for 2 minutes) to 280 °C at 10 °C/ min.



4.3 Discrimination on the basis of response patterns.

The sensor responses obtained for each of the tobacco samples are presented in tables 

11-13. The standard deviation associated with these tests are presented in tables 14-16. 

The response patterns resulting from these data are given in figure 25 and show that the 

tobacco samples yield a series of very similar response patterns. It is possible to 

discriminate between samples o f different varieties to a limited extent but extremely 

difficult to distinguish between samples within a given single variety. It is interesting to 

note that all of the tobacco patterns closely resemble the pattern of the water template 

that was employed in the beverage investigations. This would appear to indicate that the 

array is responding to moisture within the test environment which is masking the signal 

due to the volatile species associated with the tobacco samples.

The raw response data were adjusted by subtracting the responses of a water reference 

template from the averaged responses of each tobacco sample. These adjusted data are 

presented in tables 17-19. the standard deviation associated with these adjusted data are 

presented in tables 20-22 . A second series of radar plots (difference plots) was created 

using the adjusted data which should theoretically be based solely upon the aroma of 

each tobacco. These patterns which are presented in figure 26 show that a much greater 

level of discrimination may be achieved between the samples using this strategy. Many 

of the samples now exhibit a unique “fingerprint” response pattern allowing 

discrimination not only between samples of different varieties but also between samples 

within a single variety. However, the patterns obtained for the second American Oriental 

sample, the German Oriental sample and the German Virginia sample are all very similar 

and it is more difficult to distinguish between these samples. This situation may be 

improved by presenting the data in an alternative form. The responses o f the three 

samples within each variety are compared as ribbon diagrams in figure 27. These plots 

show clearer discrimination between the Virginia tobacco and the two Oriental samples 

but suggest that the second American Oriental sample and the German Oriental sample 

have almost identical aromas which cannot be easily distinguished.



Table 11 Responses of an array to three samples of Burley Tobacco.

Sensor American 1 American 2 German
1 0.71 0.55 0.70
2 0.17 0.13 0.15
3 0.60 0.45 0.62
4 0.10 0.09 0.12
5 0.04 0.01 0.02
6 0.17 0.13 0.18
7 0.12 0.10 0.14
8 0.00 0.00 0.00
9 0.36 0.25 0.37
10 0.31 0.23 0.24

Table 12 Responses of an array to three samples of Oriental Tobacco.

Sensor American 1 American 2 German
1 0.64 0.35 0.35
2 0.11 0.05 0.08
3 0.47 0.27 0.27
4 0.03 0.01 0.06
5 0.00 -0.02 0.00
6 0.11 0.07 0.07
7 0.07 0.05 0.07
8 0.01 0.00 0.00
9 0.28 0.14 0.16
10 0.28 0.14 0.14

Table 13 Responses of an array to three samples of Virginia tobacco.

Sensor American 1 American 2 German
1 0.83 0.73 0.41
2 0.21 0.14 0.10
3 0.73 0.58 0.37
4 0.10 0.08 0.07
5 0.00 0.00 0.00
6 0.22 0.17 0.10
7 0.14 0.10 0.08
8 0.00 0.01 0.01
9 0.44 0.34 0.24
10 0.43 0.31 0.22



Table 14 Standard deviation of the responses obtained for the Burley samples.

Sensor American 1 American 2 German
1 0.17 0.10 0.27
2 0.04 0.03 0.03
3 0.15 0.04 0.18
4 0.04 0.02 0.03
5 0.02 0.01 0.03
6 0.03 0.03 0.05
7 0.05 0.00 0.03
8 0.00 0.00 0.03
9 0.11 0.04 0.11
10 0.10 0.06 0.11

Table 15 Standard deviation of the responses obtained for the Oriental samples.

Sensor American 1 American 2 German
1 0.20 0 11 0.11
2 0.05 0.03 0.03
3 0.14 0.08 0.10
4 0.03 0.02 0.02
5 0.03 0.03 0.00
6 0.04 0.03 0.03
7 0.03 0.00 0.03
8 0.03 0.00 0.00
9 0.06 0.05 0.07
10 0.08 0.05 0.07

Table 16 Standard deviation of the responses obtained for the Virginia samples.

Sensor American 1 American 2 German
1 0.28 0.29 0.12
2 0.07 0.07 0.04
3 0.17 0.16 0.07
4 0.01 0.06 0.03
5 0.00 0.04 0.00
6 0.08 0.05 0.05
7 0.04 0.05 0.03
8 0.00 0.02 0.02
9 0.11 0.13 0.06
10 0.10 0.13 0.07



Figure 25 Radar plot response patterns for each tobacco sample based upon raw 

response data.

Oriental American 1
Burley American 1 Virginia American I
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Table 17 Adjusted responses of the Burley samples.

Sensor Burley USA 1 Burley USA 2 Burley German
1 0.18 0.02 0.17
2 0.02 -0.02 0.00
3 0.05 -0.10 0.07
4 -0.08 -0.09 -0.06
5 0.02 -0.01 0.00
6 -0.01 -0.05 0.00
7 -0.02 -0.04 0.00
8 -0.02 -0.02 -0.02
9 0.09 -0.02 0.10
10 0.10 0.02 " 0.03

Table 18 Adjusted responses of the Oriental Samples.

Sensor Oriental USA 1 Oriental USA 2 Oriental German
1 0.11 -0.18 -0.18
2 -0.04 -0.10 -0.07
3 -0.08 -0.28 -0.28
4 -0.15 h -0.17 -0.12
5 -0.02 -0.04 -0.02
6 -0.07 -0.11 -0.11
7 -0.07 -0.09 -0.07
8 -0.01 -0.02 -0.02
9 0.01 -0.13 -0.11
10 0.07 -0.07 -0.07

Table 19 Adjusted responses of the Virginia samples.

Sensor Virginia USA 1 Virginia USA 2 Virginia German
1 0.3 0.20 -0.12
2 0.06 0.01 -0.05
3 0.18 0.03 -0.18
4 -0.08 -0.10 -0.11
5 -0.02 -0.02 -0.02
6 0.04 -0.03 -0.08
7 0.00 -0.04 -0.06
8 -0.02 -0.01 -0.01
9 0.17 0.07 -0.03
10 0.22 0.10 0.01



Table 20 Standard deviation of the adjusted Burley responses

Sensor Burley USA 1 Burley USA 2 Burley German
1 0.12 0.11 0.16
2 0.04 0.04 0.04
3 0.12 0.10 0.12
4 0.03 0.03 0.03
5 0.02 0.01 0.02
6 0.04 0.04 0.04
7 0.03 0.00 0.03
8 0.00 0.00 0.02
9 0.07 0.04 0.06
10 0.06 0.04 0.06

Table 21 Standard deviation of the adjusted Oriental responses.

Sensor Oriental USA 1 Oriental USA 2 Oriental German
1 0.14 0.10 0.10
2 0.04 0.04 0.04
3 0.11 0.10 0.10
4 0.03 0.03 0.03
5 0.02 0.02 0.00
6 0.04 0.04 0.04
7 0.03 0.00 0.03
8 0.02 0.00 0.00
9 0.04 0.04 0.04
10 0.05 0.04 0.05

Table 22 Standard deviation of the adjusted Virginia responses.

Sensor Virginia USA 1 Virginia USA 2 Virginia German
1 0.16 0.16 0.11
2 0.05 0.05 0.04
3 0.12 0.12 0.10
4 0.03 0.04 0.03
5 0.00 0.02 0.00
6 0.05 0.04 0.04
7 0.03 0.03 0.01
8 0.00 0.02 0.02
9 0.06 0.07 0.04
10 0.06 0.07 0.05



Figure 26 Secondary radar plot response patterns formed by subtracting a water 

reference template from each of the raw patterns
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4.4 Discrimination on the basis of gas chromatography.

The chromatograms presented in figure 28 clearly differentiate between the different 

varieties of tobacco and allow adequate classification of samples within a single variety. 

However, it is possible that they may not give a true representation of the composition of 

each sample as some tobacco leaf components are known to undergo thermal reactions 

at elevated temperatures [167], Visual comparison of chromatograms in some cases can 

be rather problematic and it may be better practise to list and compare the retention times 

of the most significant peaks. It should then be possible to apply pattern recognition 

techniques to such retention data in an attempt to improve the discrimination between 

samples. This chromatographic analysis clearly sets a target performance level that must 

be achieved by the arrays before they can be considered as a viable alternative to 

established chromatographic-based methods of analysis in this area of application.



Figure 28 Chromatograms obtained for each tobacco sample 

(all shown at attenuation 4).
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4.5 Cluster analysis.

Five euclidean clustering techniques were applied to the adjusted tobacco response data 

to identify which sensors respond in a similar fashion to the three samples within a given 

variety. This analysis gives an insight into the efficiency of the discrimination achieved 

by the array. Dendograms prepared by the application of a series of clustering methods 

to a single set of data may exhibit slight differences. These differences are due to the 

different methods used by each technique to decide when two clusters are merged. 

There is no accepted “best” method for analysing the results from this type o f analysis. 

Experience has shown that a strategy whereby all of the dendograms are studied as a 

whole to yield a representative picture of clustering behaviour is an adequate method of  

data analysis.

Analysis of the dendograms created from the Burley tests shown in figure 29 indicate 

that sensors 2 and 5 have almost identical responses to each sample as do the pair 

comprising of sensors 6 and 7. The responses of sensor 8 show a high degree o f 

similarity with sensors 6 and 7 and this sub group of three sensors links with the cluster 

comprising of sensors 2 and 5 at low relative distance indicating that all five sensors 

display similar response behaviour. The next most similar pairing are sensors 9 and 10 

but these two sensors exhibit sufficiently different responses to the three samples to be 

considered to have dissimilar response characteristics. These results suggest that 

adequate discrimination could have been achieved between the three samples using only 

seven sensors, namely numbers 1, 3, 4, 9 and 10 with one sensor from each o f the two 

clusters comprising of sensor 2 with 5 and sensors 6 with 7 and 8 respectively. Greater 

discrimination could theoretically be achieved by replacement o f one sensor from each of 

these two groupings with an alternative one.
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Figure 29 Dendograms created by applying five euclidean clustering techniques to the

sensor responses obtained from studies involving three samples of Burley

tobacco.
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Pairing of sensors on the basis of similar responses is also observed in the Oriental tests. 

Figure 30 shows that sensors 5 and 8 have the most similar response behaviour . Sensors 

2 and 7 also cluster into a pairing which links with sensor 6 at low relative distance 

indicating similarity between these three sensors. The most unique behaviour is displayed 

by sensor 3. Again, discrimination could have been achieved using only seven sensors, 

namely numbers 1, 3, 4, 9 and 10 with one from each of the two groupings comprising of 

sensors 2 with 6 and 7 and number 5 with 8 respectively.

The sensors also formed pairs in the Virginia tests. Figure 31 shows that each pair, 

namely sensors 5 with 8, 2 with 6 and 9 with 10 link at higher relative distances than was 

observed with the other two varieties. This indicates that the similarity of responses 

within a given pairing is reduced. Sensor 3 displays the most unique response behaviour. 

Again, the three samples could have been discriminated using less than ten sensors.

It may be extremely useful to create a large data base by applying clustering techniques 

to the responses of a large range of sensors to a range of tobaccos (or any other sample 

type). Sensors exhibiting different response characteristics to a given analyte could be 

chosen from this data base allowing the potential construction o f analyte-specific arrays 

capable of discriminating between very similar test compounds.
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Figure 30 Dendograms created by applying five euclidean clustering techniques to the

response data obtained from studies involving three samples of Oriental tobacco.
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Figure 31 Dendograms created by applying five euclidean clustering techniques to the

response data obtained from studies involving three samples of Virginia tobacco.
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4.6 Conclusions.

At first sight, the array shows much promise in this area o f application, comparing 

favourably with the chromatographic analysis in terms o f the discrimination achieved 

between samples and the time taken for analysis. However, the % relative standard 

deviation presented in tables 23-25, which are based upon the standard deviation o f the 

adjusted average sensor responses show that the precision achieved in most cases is 

extremely unsatisfactory. We again appear to be experiencing difficulties with test 

reproducibility as a consequence o f water dominating the responses o f the array. It is 

difficult to envisage how this effect could be minimised since there is a requirement that 

the arrays are purged with moist air. However, it may be possible to improve the 

situation by increasing the concentration o f analyte volatiles in the sample headspace so 

that they are masked to a lesser extent. This could theoretically be achieved by 

increasing the sample size and/or the sample equilibration time. An alternative strategy 

which has recently been suggested by a co-worker [166] is to place samples onto a 

raised, porous platform below which a magnetic stirrer bar is used to agitate the 

atmosphere within the equilibration vessel.

The two major problems which have been encountered are the similarity o f response 

between sensors and the generally dominant effect o f water within the test environment 

which largely masks the effects o f the volatile species associated with the tobaccos. It is 

recommended therefore as a first step in future work in this area that the water response 

problem be addressed. One approach may be to coat the sensors with a thin layer o f  

hydrophobic material. However, there is a requirement that the sensors are purged with 

moist air to stop them cracking. It may be possible to incorporate plasticisers within the 

polymer matrix which would give the films a degree o f flexibility although this would be 

unlikely to stop the evaporation o f the solvent within each polymer matrix when purged 

with a dried gas.



Table 23 % RSD based on the adjusted Burley responses

Sensor Burley USA 1 Burley USA 2 Burley German
1 66 18 94
2 50 200 0
3 42 100 171
4 267 33 50
5 100 100 0
6 250 263 0
7 66 0 0
8 0 0 100
9 129 200 60
10 167 200 200

Table 24 % RSD based on the adjusted Oriental responses

Sensor Oriental USA 1 Oriental USA 2 Oriental German
1 127 56 56
2 100 40 57
3 138 36 36
4 20 18 25
5 100 50 0
6 57 36 36
7 43 0 43
8 200 0 0
9 400 31 36
10 29 57 71

Table 25 % RSD based on the adjusted Virginia responses

Sensor Virginia USA 1 Virginia USA 2 Virginia German
1 53 43 92
2 83 500 80
3 67 400 56
4 38 40 27
5 0 100 0
6 125 100 50
7 0 0 17
8 0 100 200
9 35 41 125
10 27 32 500



Chapter 5 Structure/response mapping studies.

5.1 Investigation of a range of small molecules.

The mechanisms by which a polypyrrole-based sensor comprising o f a given solvent and 

counter ion responds in a certain fashion to a molecule which displays particular physical 

and structural parameters are poorly understood. An understanding o f the manner by 

which an analyte is “recognised” by a sensor would be invaluable by guiding the choice 

of specific structure responsive sensors to synthesise.

A series o f compounds comprising a variety o f functionalities was profiled using a ten 

sensor array in an attempt to identify any relationships which exist between the structural 

and/or physical properties displayed by a given analyte and the sensor responses it 

generates. The structures o f the test compounds are presented in figure 32. Three 

replicate tests were performed on each test compound to allow the calculation o f  

standard deviation data from the averaged response data. The test conditions that were 

adopted in these investigation are outlined below :

Array: Head 2.

Sample size : 0.01 Moles.

Equilibration time : 10 minutes.

Purging : 10 minutes (sensors) with 30 % r.h cylinder air.

Acquisition time : 3 minutes 

Analysis point: @ 1 minute



Figure 32 Structures of the series of simple compounds used in the structure response 

mapping investigation The numbering scheme identifies each compound in 

subsequent graphical displays
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The sensor responses obtained for each test sample are presented in table 26. The 

standard deviation associated with these data are presented in table 27. It was initially 

anticipated that the array would yield a unique “fingerprint” response pattern for each of 

the compounds since the test series display a variety of structural features. The patterns 

obtained for each test compound are illustrated in figure 33 and seem to indicate that this 

is not the case since many of the patterns are very similar. However, it is evident that 

many of these patterns closely resemble the pattern generated by water. This supports 

our previous proposal that the array is responding to moisture within the test 

environment which is masking the responses due to the test compounds. The response 

data were therefore adjusted by subtracting the average response values of water. The 

adjusted data are presented in table 28, the standard deviations in table 29. A second 

series o f response patterns was created from this adjusted data which are displayed in 

figure 34. These show improved discrimination between the members o f the test series, 

and it is possible to distinguish between many of the compounds on the basis o f these 

new patterns. However, the patterns of acetone, acetonitrile, tetrahydrofiiran, 

propanediol and methoxy ethanol are very similar to each other as are those of 

cyclohexene and cyclohexane. It is possible to improve the visual discrimination between 

these six compounds by displaying them using an alternative method o f presentation. 

The ribbon plots shown in figure 35 allow adequate discrimination between the two 

cyclohexane-based structures and also between propanediol and methoxy ethanol. The 

latter two compounds may now also be distinguished from acetone and acetonitrile but 

these two compounds are still virtually indistinguishable from each other.
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Figure 33 Response patterns obtained for the series of test compounds
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Figure 34 Secondary response patterns based on adjusted data
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5.2 Individual sensor responses.

The adjusted responses o f individual sensors to each test compound are presented 

graphically in figure 36. These plots indicate that although the actual magnitudes o f  

response for each sensor are different for each compound, the pattern o f response across 

the test series is fairly similar for all o f the sensors within the array. This was quite a 

surprising discovery as the sensors were believed to display significantly dissimilar 

response behaviour and be o f a more selective nature.

There appears to be no simple correlation between solvent/counter ion identity and 

magnitude o f response. Sensors 5 and 7 were manufactured using the same counter ion 

but different solvents. The responses o f these two sensors are markedly different and 

show how the response characteristics o f sensors o f this type may be tailored by careful 

selection o f the solvent used in their electrochemical preparation. It is difficult to 

propose a theory to explain this difference in response characteristics. The two different 

solvents may either determine the electrical properties o f the polymer films to a different 

extent or may exhibit different effects when an analyte interacts with the active sites o f  

the sensor.
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The adjusted response data was analysed using five euclidean clustering techniques in an 

attempt to identify which compounds appear most similar to the array. The dendograms 

presented in figure 37 indicate that the test series cluster into the following groups of 

compounds which display a similar degree of response behaviour :

i) Acetone, acetonitrile and chloroform.

ii) Ether, propanediol, 2 methoxy ethanol and ethyl acetate.

iii) Dimethyl sulphoxide and ethylene glycol.

iv) Cyclohexene, methylcyclohexene and cyclohexane.

v) Ethanol and butyraldehyde.

The dendograms also indicate that acetone (1) and acetonitrile (2) appear most similar to 

the array whilst pyridine (8) displays the most unique behaviour. The compounds within 

each of the above clusters do not appear to display any immediately obvious trends of 

structural and/or physical parameters such as polarity, functionality or volatility and it is 

extremely difficult to make correlations on these few data.

It is safe to assume that the volatility of a test compound will play a significant role in 

sensor response since measurements are based on the concentration of species in the 

sample headspace. The fact that the more volatile members o f the test series such as 

chloroform and ether do not exhibit the highest responses indicates the expected 

conclusion that the basis of sensor response is more complex than a simple linear vapour 

phase concentration/response relationship.



Once in the vapour phase, sample molecules must somehow interact with the conducting 

polymer matrix to generate a response. The mechanisms o f this process are poorly 

understood. Initial interactions between the analyte and the polymer are likely to involve 

hydrogen bonding and other inter molecular attractions. It would therefore seem logical 

to assume that the polarity o f a test compound will have an effect upon sensor response. 

Unfortunately, there does not seem to be any simple method for determining what 

contribution the volatility or any other property o f a molecule will have towards response 

since it is difficult to envisage how a single property may be studied whilst keeping other 

parameters constant. For example, the test series may be arranged into order o f polarity 

but the fact each compound possesses a different volatihty/functionality and so on 

makes analysis o f the effect o f polarity on response rather problematic. There is 

obviously a need to somehow develop a profiling strategy so that a study o f the effects o f  

single parameters can be made. Such a programme of response mapping would 

obviously need to incorporate a far more comprehensive series o f test compounds and 

sensors. Cluster analysis and other statistical techniques would prove to be invaluable 

tools when analysing such a large set o f response data.

The % relative standard deviation data based upon the standard deviation o f the adjusted 

sensor responses are presented in table 30. With a few exceptions, the majority o f  the 

sensors display highly unsatisfactory values which obviously means that the response 

data cannot be studied with any degree o f confidence. To successfully map the range o f  

structural features o f interest will require the problems o f sensor response to water to be 

addressed and require a test strategy to be designed which allows the investigation o f  

single parameters.
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Fitrure 37 Dendograms created by the application of five euclidean clustering

techniques to the responses obtained from the test series.
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response.

The odour properties of some molecules are related to carbon chain length. This 

complex inter-relationship may by illustrated by considering a series of aliphatic esters. 

With reference to figure 38, variation of the length of one of the aliphatic chains (Ri or 

R2) whilst keeping the identity o f the other constant yields an homologous series which 

exhibit different odour properties [89].

The effect of aliphatic chain length on the response behaviour o f a sensor array has been 

investigated using an homologous series o f acetate esters where Ri remained as CH3 

whilst R2 was increased from C\ to C6 (methyl to hexyl). Three replicate tests were 

performed on each ester to allow the calculation o f standard deviation based on the 

averaged response data. The test conditions which were adopted are outlined below:

Array: Head 2

Sample size : 0.01 moles

Equilibration time : 15 minutes

Purging : 10 minutes (sensors) with 30 % r.h cylinder air.

Acquisition time : 3 minutes 

Analysis point: @ 1 minute

Figure 38 Diagrammatic representation o f an aliphatic ester.

0



A series of response patterns (difference plots) have been prepared from adjusted 

response data obtained by subtracting a water reference template from the raw response 

data. These patterns, which are presented in figure 39 show that methyl acetate and 

ethyl acetate are very similar to each other but are different to propyl, butyl, amyl and 

hexyl acetate which display no obvious differences from each other. On the basis of 

these results, the array has difficulty in discriminating between molecules which differ 

only in their hydrocarbon chain length. The % relative standard deviation data based 

upon the standard deviation of the adjusted sensor responses which are presented in table 

31 are again unacceptable in most cases and hence it is extremely difficult to propose any 

conclusions concerning the effects of aliphatic chain length on the basis o f these studies.

Table 31 % RSD of the tests involving a series o f acetate esters.

Sensor Methyl Ethyl Propyl Butyl Amyl Hexyl
1 21 17 60 31 40 0
2 58 50 15 23 44 122
3 19 39 6 19 0 350
4 13 23 140 73 120 250
5 27 26 20 3 0 150
6 15 12 55 107 40 29
7 18 19 77 94 22 46
8 0 16 45 92 71 100
9 10 24 80 48 63 550
10 3 6 16 8 7 14



Figure 39 Response patterns for a series o f acetate esters based on adjusted response

data.

Ethyl (C2)
Methyl (Ci)

Butyl (C4)
Propyl (C,)

Amyl (C5)



5.4 Investigation of positional substitution in aromatic systems.

The effects of structural variation in analyte species on the response of an array have 

been investigated using a series of chloroanisole isomers which display subtle variations 

in positional substitution. The structures o f the test isomers are presented in figure 40.

Figure 40 Structures of the chloroanisole isomers profiled during the investigation.

2, 3 Dichloroanisole 3, 6 Dichloroanisole

0 -C H 3

2, 3, 4 Trichloroanisole 2, 3, 6 Trichloroanisole 

O—CH3

2, 3 ,4, 5 Tetrachloroanisole



Three replicate tests were performed on each isomer to allow the standard deviation of 

the averaged sensor responses to be calculated. The test conditions which were adopted 

are outlined below :

Array: Head 2 

Sample size : 0.01 Moles.

Equilibration time : 15 minutes.

Purging : 10 minutes (sensors), 5 minutes (vessel) with 30% r.h air.

Acquisition time : 3 minutes.

Analysis point: @ 1 minute.

V

The responses obtained for each isomer were again adjusted by subtracting a water 

reference template from the raw data. The adjusted sensor responses for each 

chloroanisole isomer are shown in table 32. These values are extremely similar and it is 

very difficult to distinguish between some o f the isomers on the basis o f these data. The 

trichloro isomers exhibit higher responses than the dichloro isomers whilst the responses 

of the trichloro isomers are virtually identical to those o f the tetrachloro isomer. On the 

basis o f this study, it would seem that the introduction o f increasing numbers o f chlorine 

atoms into the aromatic system does not cause any significant change in the responses o f  

any o f the sensors. A series o f patterns based upon the adjusted response data are 

presented in figure 41. It is virtually impossible to distinguish between the isomers on 

the basis o f these patterns. Comparison o f the response data using ribbon plots does not 

improve visual discrimination as shown in figure 42.



Table 32 Adjusted responses for the tests involving a series o f chloroanisole isomers.

Sensor 2, 3 Dichloro 3. 5 Dichloro 2. 3. 4 Trichloro 2, 3, 6 Trichloro 2. 3, 4. 5 Tetrachloro
1 -3.87 -3.88 -3.93 -3.94 -3.93
2 -1.49 -1.49 -1.51 -1.51 -1.50
3 -2.90 -2.90 -2.98 -2.98 -2.97
4 -3.44 -3.45 -3.49 -3.49 -3.48
5 -1.82 -1.83 -1.85 -1.88 -1.86
6 -0.56 -0.55 -0.58 -0.57 -0.58
7 -5.66 -5.67 -5.72 -5.74 -5.72
8 -2.06 -2.03 -2.11 -2.1 -2.09
9 -1.71 -1.74 -1.76 -1.75 -1.76
10 -3.28 -3.29 -3.35 -3.34 -3.34
11 -0.16 -0.24 -0.26 -0.25 -0.25



Figure 41 Response patterns for a series of chloroanisole isomers based on adjusted

response data.

2, 3 Dichloro 3, 5 Dichloro

2, 3, 4 Trichloro 2, 3, 6 Trichloro

2, 3, 4, 5 Tetrachloro
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Figure 42 Comparison o f the responses obtained for a series o f chloroanisole isomers.
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The polymer matrix o f each sensor presumably interacts to some degree with the ether 

funtionality in each of the chloro anisole isomers since it is the most polar area o f each 

structure. It may therefore seem logical to assume that sensor response would be 

influenced by steric hindrance around the oxygen atom. This effect, if it exists would 

appear to be minimal based upon the response data obtained for the 2, 3, 4 trichloro 

isomer and the more hindered 2, 3, 6 trichloro isomer which exhibit virtually identical 

responses.

With the exception of sensor 11, the majority o f the % RSD values based on the adjusted 

response data are within an acceptable range o f 2-10%. However, the mean responses 

obtained for the water reference template are far higher than those obtained for the 

chloroanisole isomers which suggests that the water response effect has been drastically 

over compensated for in this case. Obviously, there is a need to determine the extent o f  

the response to water before future investigations can be performed. Again, the results 

of this investigation are rather inconclusive, it may be possible that the response 

mechanism o f the sensors is based on “identification” o f the steric features exhibited by 

each isomer but there appears to be no simple relationship between response and 

positional substitution on the basis o f these results.



Table 33 %RSD of the chloroanisole tests based on adjusted sensor responses.

Sensor 2, 3 Dichloro 3, 5 Dichloro 2, 3, 4 Trichloro 2, 3, 6 Trichloro 2, 3, 4, 5 Tetrachloro
1 10 10 10 10 10
2 2 2 0 2 2
3 3 3 3 3 4
4 3 3 3 3 3
5 3 3 3 3 3
6 5 4 4 3 5
7 5 5 5 5 5
8 4 3 4 4 4
9 3 3 3 3 3
10 3 3 3 3 3
11 116 70 65 68 67



Chapter 6 Conclusions

The use o f arrays o f polypyrrole-based gas sensors to characterise volatile species is 

hindered by the fact that the sensor responses are dominated by water within the test 

environment. It is difficult to envisage how this effect could be minimised since there is a 

requirement that the sensors are purged with moist air between sample tests to aid their 

recovery to equilibrium conditions and avoid drying out the polymer films. Subtraction 

of a water reference template (blank) from a set o f sample responses allows the creation 

of response patterns which are theoretically based solely upon the analyte in question and 

in most cases these patterns, on the face o f it, allow adequate discrimination between a 

series o f samples. However, this strategy is only an approximation and in some cases the 

subtraction o f a blank based upon water may have over compensated for the moisture 

effect. This strategy could be significantly improved by subtracting a blank whose 

magnitude was based upon the measured humidity within the test environment (ie 

subtraction o f large blank for high humidity and low blank for low humidity). This 

would require the investigation of the effects o f humidity upon sensor response. A series 

of repeat tests would be required whereby a series o f humidity levels are generated and 

measured within the test environment. There would also be a requirement to study the 

inter-dependency between temperature and humidity. The problems associated with 

temperature variation could easily be overcome by redesigning the instrument such that 

the sensing array and equilibration vessel were contained within a temperature controlled 

environment as in the “AROMAS CANNER” instrument.



The adjusted sensor responses associated with the blank subtraction procedure exhibit 

very poor precision and many o f the results from our investigations can be viewed with 

limited confidence. There is an obvious need for a series o f repeat investigations to be 

performed on a regular basis to investigate the extremely poor reproducibility that has 

been observed. Unfortunately, it was impossible to repeat many o f the investigations to 

determine the causes o f this problem. The major contribution appears to be from the 

effects o f water response but it is feasible that temperature effects and inefficient purging 

of the arrays between sample tests leading to only partial recovery o f sensors to their 

equilibrium states may also have been significant factors in the poor response 

reproducibility achieved in some tests. Studies involving individual sensor elements in a 

simple test rig [168] have shown that sensors o f this design do not return to their 

equilibrium resistance states after exposure to an analyte even after being purged with 

cylinder air for periods in excess o f fifteen minutes. The design o f the head unit in 

which the sensor arrays are housed does not appear to allow uniform purging o f the 

polymer films and experience has shown that it is extremely difficult to ensure that a 

standard air flow rate is used at each purging session, even with the incorporation o f a 

flow meter in the gas line. This suggests the adoption o f an increased purging time but 

this strategy would compromise the rapid testing times associated with the system. It 

would therefore seem prudent to investigate alternative purging strategies which ensure 

efficient sensor recovery. It may also be advisable to investigate alternative methods o f  

housing the sensors which would allow uniform purging o f the array. Many o f  the 

reported flow through sample introduction-based devices reported in the literature 

exhibit extremely rapid recovery times (for example [109]) and it may be prudent to 

investigate this type o f instrumental design.



It would be extremely interesting to investigate the claim that the sensors are 

manufactured extremely reproducibly allowing replacement o f individual elements or 

complete heads without compromising test results. It would also seem prudent to 

investigate whether the performance o f an array is reproducible between different 

instruments.

The use o f euclidean clustering techniques have shown much promise in our studies, 

allowing the investigation o f the similarity o f the response behaviour exhibited by a 

series o f sensors or test compounds. These techniques would undoubtedly become 

invaluable if a more extensive programme o f research which generated much larger sets 

of data was undertaken in this area. It has also been demonstrated that visual 

discrimination may be improved between some test samples by simply displaying the 

response data an alternative style o f presentation. These plots and all o f the clustering 

techniques have been developed offline using suitable software packages. It is therefore 

suggested that the NOSE™ software should be improved upon to allow more 

sophisticated data presentation, manipulation and analysis.

The NOSE™ has shown great promise and has great potential in many areas o f  

application. However, although the arrays compare favourably with established 

techniques such as gas chromatography in terms o f sample analysis time they are unlikely 

to be considered a practical alternative analysis technique until the problems associated 

with their significant response to water are solved
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