
The application of natural language pragmatics in human-computer interaction.

ELLIOT, Charles.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19612/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19612/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

c , rr,PH Hallam UniversitySheluen) na . . k u b rar
Haliamshi.e .justness
1 ■ v U D ier b iiv 't

8HD

1 0 1 9 2 3 2 3 9 0

Sheffield City Polytechnic Library

REFERENCE ONLY

ProQuest Number: 10694493

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10694493

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

The Application of Natural
Language Pragmatics in

Human-Computer Interaction

Charles Elliot
B.A.hons., M.Phil., M.Sc.

A thesis submitted in partial fulfilment of the requirements of

Sheffield Hallam University

for the degree of

Doctor of Philosophy

February 1993

Sheffield Hallam University in collaboration with British Telecom

A '

[? A f { t: \ \

Table of Contents

Page

A cknow ledgem ents 6

Abstract 7

1. Introduction 8

1.0 Aims and Motivations 8

1.1 Methodology 10

1.2 Structure 11

2. The Natural Language Paradigm 14

2.0 Introduction 14

2.1 Against Natural Language Interaction 16

2.2 Natural Language Applications 18

2.3 Natural Language Pragmatics 21

2.4 The Cooperative Principle 23

2.5 Exploitation 26

2.6 Conversational Implicature 26

2.7 Mood Restrictions 27

2.8 Applying the Maxims to Non-NL HCI 27

3. User Errors 32

3.0 Introduction 32

3.1 The System Perspective 33

3.2 Error Classification 34

3.3 The Linguistic Classification of Error 38

3.4 Error Classification Scheme Categories 40

2

3.5 Why Users Make Context Errors

3.6 The Pragmatics of Context Error

3.7 Context Error: Problem Solved?

42

43

44

4. User Models 48

4.0 Introduction 48

4.1 Realistic Models 51

4.2 How It Works versus How to Do It 53

4.3 State and Functional Models of A System 54

4.4 Modelling Users' Misconceptions 54

4.5 The User's Mental Model 57

4.6 Generating Possible Worlds 59

4.7 Conversational Implicature and Possible Worlds 62

5. User Support 64

5.0 Introduction 64

5.1 The Importance of Usability 65

5.2 Intrinsic Factors 66

5.3 State Oriented Feedback 67

5.4 Training 68

5.5 Documentation 68

5.6 On-line Support 70

5.7 Intelligent Help Systems 71

5.8 Examples of Intelligent Help Systems 74

5.9 The Design of an Intelligent Context Error Assistant 78

6. Implementation 8 6

6.0 Introduction 86

6.1 The UNIX® File System 87

6.2 The Simulation 87

6.3 UNIX® Error Classification 89

6.4 The Database 89

3

6.5 Error Analysis

6.6 Error Messages

6.7 The Program Modules

90

91

92

7. Evaluation 101

7.0 Introduction 101

7.1 Formal Methods 102

7.2 Experimental Methods 105

7.3 Observational Methods 107

7.4 Experimental Task 111

7.5 Subjects 111

7.6 Experimental Design 112

7.7 Results and Evaluation 113

7.8 Protocol Analysis 115

7.9 Methodology 116

7.10 Subjects 116

7.11 Results 117

7.12 Summary 127

7.13 Conclusions 128

8. Conclusion 132

8.0 Review 132

8.1 The UNIX® Experience 133

8.2 WIMPS Interfaces 142

8.3 Error Messages 144

8.4 Possible Further Developments 145

8.5 Concluding Remarks 146

R eferences 148

B ibliography 158

4

A ppendices 165

Appendix A: Code Listings 166

Appendix B: Questionnaires 197

Appendix C: Task Specification 218

Appendix D: Startup Diagram 220

Appendix E: Target Diagram 222

Appendix F: Tutorial Material 224

Appendix G: Command List 227

Appendix H: Directory Structure Diagram 230

Appendix I: Experimental Logs 232

Appendix J: Protocol Logs 245

Appendix K: Commentaries 277

Appendix L: Protocol Video Tapes

5

Acknowledgements

I would like to thank my supervisors, Bob Steele and Rick Osbom, for

their guidance and support throughout the completion of this work. I owe a

debt of gratitude to my colleagues in the research office for their warmth

and humour and I would also like to thank Nick Harper and Caroline

Friend for their comments on earlier drafts of this text, Mel McClellan,

Duncan Kime, Jan and Steve Peel, Tony Frascina, Sue York and others

who took part in the evaluation exercises. W armest thanks must be

reserved for Niki, my wife, who has had to endure me while this thesis was

completed.

6

Abstract
The general aim of the work reported in this thesis is to investigate the

viability of applying theories and principles from the field of natural
language pragmatics to that of human-computer interaction. In pursuing
this aim, the research falls broadly into three phases.

The first of these is the exploitation and adaptation of the Gricean
Cooperative Principle, its maxims and inferential rules to situations of
computer use which do not employ natural language as the medium of
communication. The purpose of this endeavour is to provide a novel and
revealing analysis of non natural language interaction and to establish
principles for dialogue design, the application of which enhance the quality
of communication between system and user in such situations.

The second phase concerns the application of the adapted Gricean
principles to the design of a dialogue management system, intended to
address some of the problems which other research has revealed users to
experience in using the standard UNIX® shell interface. This second phase
resulted in the production of the QDOS system, which is both a simulation
of part of the UNIX® file system and an implementation of the proposed
dialogue management system.

This software acts as the vehicle for all subsequent evaluative exercises
constituting the third phase. This takes the form of an evaluation of the
QDOS system and its theoretical underpinning, based on a two-condition
experiment and a protocol analysis, involving a number of experimental
subjects.

This research provides an original application of the Gricean
Cooperative Principle in human-computer interaction and a theoretical and
practical demonstration of the validity of this endeavour. It also adduces an
analysis of the UNIX® interface and its vagaries in terms of a principled
and consistent set of criteria as well as identifying a significant class of
dialogue breakdown, the circumstances and incidence of which cut across
issues of interface style.

7

1. Introduction

1.0 Aims and Motivations

The general aim of the work described in this thesis is to investigate the

relationship between natural language communication and that occurring in

human-computer interaction (HCI). In particular, an attempt is made to

demonstrate that certain aspects of natural language communication,

namely the pragmatic factors in interpretation evident in descriptions of

natural language communication, are applicable to the HCI context and that

a comparative study provides insights into the processes involved in HCI,

leading to conclusions of significance to issues relating to the usability of

computer systems.

The aims of the project described here have been motivated by three

basic factors. The first of these is the conviction that the study of natural

language, especially natural language pragmatics, can provide valuable

insights into some of the issues involved in the study of human-computer

interaction. Although there has been a significant amount of research on

natural language and its relation to human-computer interaction prior to

that reported here, much of this work has concentrated either on lexical

and syntactic factors or on the problems inherent in computerised natural

language processing. One of the aims here has been to conduct some

investigation into the application of pragmatic aspects of natural language

theory to non-natural language forms of human-computer interaction.

A second motivational factor stems from behavioural studies of

8

computer usage which indicate similarities between certain situations which

occur in hum an-com puter interaction and human-human interaction,

especially with regard to miscues, misconceptions and errors. It is also

suggested that these cases, where the human-computer dialogue breaks

down, provide a particularly interesting view of the communication

process taking place between user and machine for the HCI practitioner, in

that they often expose to scrutiny aspects of the process which would go

unnoticed during 'normal', unbroken spells of dialogue. It is not safe to

infer from an unbroken dialogue that all is well. Users may be being

forced to compensate and compromise in all sorts of ways by an interface

design which they find unnatural, awkward or inflexible. It is not that

investigations of 'normal' usage are not designed to reveal such interface

characteristics but it is suggested that such methods provide a less direct

form of access to them.

The third motivational factor is admittedly a rather negative one but is

just as important. In recent years, it has become increasingly common to

see computer manufacturers and software companies converting their

machines and applications to what is variously called the 'graphical',

'iconic', 'direct manipulation' or 'WIMP' user interface. W hether these

terms denote the same thing is a non-trivial question and will not be

addressed here but what is usually meant is an interface like that found on

the Apple Macintosh computer. While the popularity of such a move is to

some extent justified, there are a number of accompanying assumptions

which are not at all tenable.

The worst of these, while admittedly anecdotal, is discernible, at least in

the lay population and is that most of the main issues and problems in

interface design have been solved or are solvable by the adoption of the

graphical user interface (GUI). I know that I am far from alone in having

struggled with a Macintosh Plus for months before many aspects of its

usage revealed themselves.

Two slightly more understandable and related assumptions are that the

GUI renders all human-computer interaction into a form similar to that of

9

the use of a tool, in the same way that someone might use an electric drill,

and that (perhaps as a consequence) interaction with a computer is not in

any way a communicative process like talking to another person or that all

similarities between natural language use and computer use are absent in

the GUI. Beside the fact that existing GUIs actually embody a number of

non-graphical means of interaction to which the non-linguistic or ’tool'

metaphor is inappropriate, computers differ from other devices in being

non-dedicated or multi-purpose and are used now in a multitude of tasks,

each with its own particular demands and requirements. It is unlikely, to

say the least, that a single interface ’metaphor', such as that of the 'tool', is

capable of providing suitable interaction facilities for all eventualities.

Thus, one of the aims of this research has been to suggest how

communicational issues concerning human-computer interaction cut across

issues of interface style.

1.1 M ethodology

The basic methodology adopted in the research has been to try to

analyse some form of communicative breakdown between computer and

user by applying the theoretical constructs of natural language pragmatics.

The resulting analysis then forms the basis for recommendations or

requirements for certain facets of interface design. Both the design and the

analysis are subjected to evaluation; the design by experimental methods

and the analysis by observational means.

The kind of communicative breakdown studied is that arising from user

misconceptions concerning the context of interaction, in terms of system

characteristics, caused by the inability of the system to signal those

characteristics adequately to the user in any consistent or comprehensive

way. We have termed these breakdowns 'context errors' and they are

analysed using concepts and categories from linguistic theories of

presupposition, speech acts and conversational implicature. The analysis

leads to the design of an 'intelligent' interface component, a prototype, test

bed implementation which is used in the evaluative exercises.

We hope to demonstrate that, in terms of pragmatics, there are many

similarities (as well as some differences) between human-human and

hum an-com puter com munication and that the exploitation of these

similarities can significantly influence decisions concerning dialogue design

in the human-computer interface. In particular, it will be shown that

principles assumed to be guiding cooperative communication in contexts of

natural language use may be adapted and applied in order to render the

computer's participatory role in the human-computer dialogue similarly

cooperative.

1.2 Structure

The thesis is divided into eight chapters, each dealing with a different

aspect of the research. The literature survey is integrated into each chapter

and its particular topic, rather than occupying its own section. Following

this introductory chapter, C hapter 2 looks at natural language

communication, its relation to human-computer interaction and some of the

attempts that have been made to mould human-computer communication

along the lines of that which occurs between humans through natural

language. Some objections to this endeavour are considered and conclusions

are drawn as to the circumstances and conditions which govern the

applicability of the natural language paradigm to hum an-com puter

interaction. The concept of natural language pragmatics is introduced, in

particular, the theory of conversational implicature as constituting the

underlying principles of communicative cooperation and the application of

these principles to human-computer communication is considered.

Chapter 3 is concerned with error situations in computer usage or what

has been referred to above as situations of 'communication breakdown’. As

was indicated earlier, it is suggested that an understanding of what is

happening in such situations offers valuable insights into the general

processes of human-computer communication. To this end, classifications

of error are examined and a levelled linguistic classification is proposed.

As part of this classification, the notion of context error is introduced and

analysed using the theoretical constructs discussed in Chapter 2.

Conclusions are advanced for the implications that this analysis has for

dialogue design.

Chapter 4 identifies the requirement of user modelling as a consequence

of the need for the interface component to behave intelligently and

cooperatively. Classifications of user models are compared and desiderata

are presented for the user modelling enterprise. The notion of the user's

Conceptual model is discussed and an informal approach to modelling user

misconception concerning the device, based on a 'possible worlds' model of

belief systems, is presented. The theoretical question of generating possible

world models of user misconception is addressed.

Chapter 5 discusses issues of user support and the various methods

employed to aid users in learning and utilising computer applications are

considered. The importance of user support, as a factor of usability, is

stressed and the relative effectiveness of various approaches to user support

is estimated. The requirement for intelligence in the interface is identified

and some examples of intelligent interface components are reviewed. The

design of an intelligent interface component, based on the analysis of the

previous two chapters is discussed.

The implementation of a test bed, prototype interface, as part of a

simulation of the UNIX® file system is described in Chapter 6. This

simulation is used for evaluation purposes in the project. The processing

which the user support component undertakes on user errors is explained,

as are any deviations from the design. Some explanation of the actual code

found in the appendices is included to enable the reader to refer easily to

this if required.

Chapter 7 deals with interface evaluation techniques and their relative

merits. The importance of evaluation is identified and three basic types of

evaluation are discussed. The evaluative methods and exercises conducted

within the project are described and results presented. Conclusions and

observations on these results serve as an appraisal of the success of the

approach adopted and its application to the aspect of interaction studied.

1 2

Chapter 8 attempts to draw together all of the strands of the other

chapters and to evaluate their strengths and weaknesses as they affect the

initial aims of the research.

2. The Natural Language Paradigm

This chapter looks at natural language communication, its relation to
human-computer interaction and some of the attempts that have been made

to make human-computer communication like that which occurs between

humans through natural language. Some objections to this endeavour are
considered and conclusions are drawn as to the circumstances and
conditions which govern the applicability of the natural language paradigm
to human-computer interaction. The concept of natural language
pragmatics is introduced, in particular, the theory of Conversational
Implicature as constituting the underlying principles of communicative
cooperation and the application of these principles to human-computer
communication is considered.

2.0 Introduction
A programming language is a kind of human-computer interface, in that

it is a medium via which programmers can ’communicate' their intentions
to the computer, in the same sense that the controls in a car are the media
which allow the driver to get the car to behave in the desired way. In an

interactive programming environment, the use of a programming language
will rely upon the existence of other programs (a compiler, for example)

just as the users of a word processor achieve their goals via the operating
procedures of the particular package. Both the programmer and the user
are getting the computer to perform some task for them via a

communicative medium. Programming is merely one kind of

human-computer interaction (HCI).

In the early days of computing, the medium of communication was

restricted to numerically coded instructions. The difficulty of using this
language and its error-prone nature led to the development of assembler
mnemonics, these having the advantage of greater semantic significance for
the human programmer. Assembly language is still in use, but has largely

given way to high level languages whose formalisms, on the whole, are

intended to make their functions more obvious and more powerful.
It is not difficult to detect in these changes the way in which the

communicative media have become increasingly like natural language
(NL). The use of control structures such as DO UNTIL, WHILE DO,
BEGIN END, LET and so on are testimony to a tendency which is,

perhaps, currently, taken farthest in the Hypertalk© programming

language (Weiskamp & Shammus, 1988). However, high level languages

are small, highly formalised and very restrictive when compared with

natural languages and the question arises of whether this tendency could
and should be taken to its logical conclusion by using natural language as a
medium for HCI, both for programming and in more generalised contexts

of computer use. The apparent attractiveness of this proposal lies in the fact
that it is a medium of which the great majority of people already have an
excellent grasp, whereas most other forms of interaction have to be
painstakingly learned. Thus, should this goal be realised, anyone with an

average grasp of a natural language could program or use a computer
without training.

In reality, however, the prospect of making NL the primary medium
for interacting with computers is clouded by innumerable problems and
questions. In this chapter the relationship between NL and HCI is discussed
and the various aspects of NL which relate to HCI and the extent to which
they are appropriate to it are considered.

2.1 Against Natural Language Interaction
The adoption of NL as a paradigm for human-computer interaction has

been opposed on various grounds. Hill (1983) argues against the adoption
of NL as a programming language, mostly on the basis of its inherent
ambiguity and imprecision and it must be admitted that little justification
can be found for the introduction of such features into what is intended to

be a precise activity. NL is also rather verbose compared to most
programming languages and advantages of familiarity also have to be

weighed against the loss of conciseness.
Green (1986) argues that interaction models using NL-like grammars

are inferior to event driven models because they cannot be made to
represent multi-threaded dialogues. Models of HCI need to be able to
handle non-linear interactions because of the existence of multi-tasking

systems which allow users to switch between tasks at any point, for
example, by activating a window associated with a different process. A
similar point is made by Buxton (1987) who states that the development of
novel interaction media is stifled by the adherence to characterisations of
HCI based on NL, rather than on task domains.

Other critics attack from a more philosophical point of view. Flores and
Winograd (1986) pitch their critique at the prospects for natural language
understanding and claim that the basic aim is misguided, in that human
communicative abilities are unique to the species and that machines cannot,
in principle, be imbued with such powers. Their arguments are based on a

rejection of what they call the rationalist tradition which, they insist, treats

language as a formal system; a view which they eschew in favour of an

ethnomethodologically-based alternative which sees language as a product
of the essentially social nature of humankind and our position in the
evolutionary context.

As far as Hill's remarks go, it should be pointed out that programming
is merely one form of HCI. The presence of ambiguity and imprecision
could possibly be a boon in the context of an expert system by allowing

users' input to be interpreted in ways that are not perhaps intended or

1 6

foreseen. Also, the remarks only pertain to full NL processing, while it
will be argued below that this all or nothing approach is unnecessary in the

broader HCI context (Harris, 1983: p. 73). Besides, as Harris points out, in

many HCI contexts, the semantic domain is restricted enough to rule out
ambiguity.

The point made by Green is aimed at the representation of HCI using
formal grammars and not specifically at NL interaction but the point can
be taken to apply to any grammatically based NL interface. It should not be

thought of as a general criticism, however. NL does not consist entirely (if
at all!) of phrase structure rules and if one actually looks at NL usage,
copious examples of interleaving dialogues and parallelism can be found.

Non-segmental features such as intonation and stress can also be seen as
parallel transmission channels and it has also been argued that phonemic
assimilation is evidence for the non-seriality of NL (Edmondson, 1989).

Although there is much to dispute in Flores and Winograd's book (for
example, the claim that literal meaning is not primary prompts the question
of how language is acquired if words have no systematic effect over a
range of contexts), it is not the purpose here to argue over the merits of the
aim to have computers understand natural language. The technical
problems involved in such an endeavour are daunting enough in themselves

(Grace, 1987). For the purposes of this discussion, it will merely be
reiterated that their point of view should not act as a deterrent to those who
study NL phenomena in the pursuit of more usable computer systems, since

it is not necessary to strive for systems which exhibit full NL
understanding in order to exploit such sources of insight and understanding

which may avail themselves. However, if this study is to prove fruitful, it is
necessary to look more closely at task domains in HCI and the way they
influence the user's representations, as well as the structure and content of
the dialogue.

2.2 Natural Language Applications
To start, some important distinctions must be made between the various

types of application to which NL has been or might be put. (We will ignore
the question of speech recognition and synthesis, since the success or failure

of those ventures affects only the convenience with which NL input and

output could be achieved. While this may influence decisions concerning

the suitability of NL as a HCI medium, it is not at the heart of the issue
being discussed here).

Firstly, there are those systems which are designed to 'understand' NL
by mapping NL input onto some real world model. Winograd's SHRDLU
(Winograd, 1972) embodies such an attempt. This kind of application is

intended to mimic the human ability to provide a semantic interpretation to
NL utterances or inscriptions. This is undoubtedly the most ambitious kind
of application and such success as has been enjoyed relies to a large degree

on tight restrictions on allowable syntactic and semantic domain. One
ambition level down from this is the NL database query system, where the
mapping occurs between NL and some formal database query language
such as SQL (which itself embodies a certain amount of NL mimicry).
LUNAR (Woods, 1972) is an example of this approach. Natural language is
also implicated in the use of grammars and equivalent formalisms to model

interactive processes in task analysis, in that these are intended to describe a

user's knowledge in terms of an interaction language (Green et al, 1988).

Such models trade on the notion of a user’s putative linguistic competence
(Chomsky, 1965) and when applied to dialogue design, can be seen as
imposing an NL like structure on interactive processes. At the simplest
level, use may be made of NL lexicon and syntax to provide a degree of
mapping between command function and NL semantics. Thus, the influence
of NL on HCI may be viewed as operating on a continuum from the use of

simple and fixed constructions and small domains towards full NL
functionality (Harris, 1983).

An alternative view is that NL may be pertinent to particular computer

applications. Computers are used in a wide variety of ways and it is equally

1 8

important to consider types of usage if the relevance of NL to HCI is to be
correctly assessed. The relative success of NL database query systems owes
much to the inherent similarities between such interactions and a particular
and restricted kind of everyday human communication (i.e. question and

answer), while the use of a computer aided design (CAD) package, for

example, bears little resemblance, at least on the surface, to anything
remotely like human discourse. The futility of designing an NL interface to
CAD software is left to the reader’s imagination. The point being made

here resonates with Kammersgaard’s distinction between the ’dialogue
partner’ and 'tool' perspectives of HCI (Kammersgaard, 1990). It is
unrealistic to expect human-computer interaction to be best facilitated in all
cases by the detailed mimicking of human-human communication.

The issue is also taken up by Buxton (1987), who stresses that forms of
interaction other than NL are just as 'natural' and that a true 'natural
language' system is only achieved when the language employed is suited to
the task. However, decisions concerning the most suitable language for a

particular task domain must be made largely on an empirical rather than a
priori basis. It may be possible to rely on some metaphor taken from an
existing manual system but such metaphors are not always available and in
any case, this approach may be limiting, in that the potential benefits of

task redesign in the computer context are lost. If Buxton’s remarks are

intended to encourage research into alternative interaction 'languages’, then

they are well taken. However, his sword is double edged, in that we must
take his exhortations to include the investigation of all language types,
including NL, and their relationship to task domains.

The point is, of course, not restricted to NL interfaces. The facilities
that the interface provides for the user to manipulate system functionality

are not perfected by merely adopting a particular style of interaction. The

object manipulation metaphor or direct manipulation style does not
facilitate all round perfect human-machine communication. For example,
in the Macintosh© interface, to copy a file from one disk to another

requires the dragging of the file icon onto the disk icon but to print a file

1 9

requires the use of a menu and dialogue boxes. This ambiguity is not
accounted for by the failure of the designers to fully implement the object

metaphor but is rather the failure of the metaphor to cover the full range

of communicational phenomena inherent in kinds of interaction people
have with computers and the tasks that are thereby undertaken (Sanford &
Roach, 1988; p. 568).

The argument may be further elaborated by pointing out that it is not

necessary to treat NL as an indivisible whole. Certain facets may be widely

applicable in the context of HCI or applicable to certain task domains. The

point again is that the application of NL to HCI is not necessarily an all or

nothing proposition. The rationale behind NL interfaces is the familiarity
of the interaction medium for the user. The issue of whether familiarity of
particular NL characteristics can carry over to HCI or particular task
domains within it effectively is one which should be addressed separately.
As has been indicated above, advances have already been made in system
usability merely by the exploitation of simple lexical and syntactic

verisimilitude. Simply replacing obscure command language constructions
such as R/TOOTH/,/TRUTH/ with the English equivalent: REPLACE
’TOOTH' with 'TRUTH', can improve users’ performance with a word

processor (Ledgard et al, 1980), although it must be said that this effect is
not as straightforward as it might seem (Landauer, 1990; p. 145).

In summary then, the application of NL to HCI is seen by some as a
means of rendering the latter easier by making it more like human

communication. The extent to which the two are related can be viewed as
operating on a continuum from the simple use of lexical and syntactic

mappings from system functionality to NL semantics to full natural
language understanding. However, the nature of the task domain and the
consequent effects on the user's approach and representations, as well as
dialogue structure and content, must be taken into account. In addition, the
NL medium should not be seen as indivisible and NL features must be
scrutinised individually for their appropriateness to the general HCI

context and to particular task domains or features.

20

2.3 Natural Language Pragmatics
It is not at all easy to give a precise and comprehensive definition of the

term ’pragmatics' (Levinson, 1983) and no attempt will be made to provide

one here. The term is used to refer to a number of phenomena, associated

with natural language and communication in general, which share certain
features but which also possess contrasting ones. It is the attempt to capture
both the similarities and discrepancies under a single definition and the fact
that such definitions tend to stray across the boundaries of other disciplines
which gives rise to this difficulty. For example, deixis is a phenomenon

which has certainly been studied under the rubric of pragmatics but is also

central to truth-conditional semantics in that sentences containing deictic
expressions cannot be assigned truth-conditions without knowledge of the
referents involved in a particular context of utterance. 'I am the first man
in the world to run a sub four minute mile’ can only be truly uttered by
one person and it is necessary to know who uttered this sentence to decide
its truth value. Thus the distinction between semantics and pragmatics can
be blurred.

Also, certain kinds of pragmatic phenomena seem to be attached to
particular lexical items. The conveying of contrast between the two
conjuncts in the sentence 'I'm going out but I won't be long' is not captured
in a truth-conditional account of meaning and so is ostensibly within the

realm of pragmatics. However, pragmatic phenomena are by no means
restricted to the effects of particular words and linguistic and non-linguistic

context can determine the significance of a sentence by more than the

reference of indexical expressions. Consider the following exchange:
A: 'Would you like a drink?'
B: 'Is the Pope Catholic?'

The propositions embodied in the two sentences are completely
unrelated and yet A can reasonably be expected to infer a positive answer
from B, the reasoning being something like 'the proposition expressed in

your question is as likely to be true as this question - "Is the Pope

21

Catholic?'". It is A's 'world knowledge' and belief that B is not being
deliberately obtuse which B is relying for A to receive B's intended
meaning.

While there is a strong sense that the kind of phenomena under

discussion at least have a common relation to the notion of the

interpretative process which operates on the raw material of semantic

content, there seems to be no unifying principle which enables them to be

treated homogeneously and perhaps, attempts to do so stifle rather than
facilitate progress. For our purposes it is only necessary to note the kind of
interpretations which take place and make use of some of the explanations
which have been put forward for them, without having to justify their
pragmatic credentials (whatever this turns out to mean) or arguing which

theory best explains particular phenomena. For this reason, no attempt is

made here to explain or justify the various theories and their place in
pragmatics in general. For the most part, the theory of Conversational
Implicature (Grice, 1975) will be alluded to in explanation of such

pragmatic phenomena as reveal themselves, while it is acknowledged that
the theories of speech acts, presupposition or discourse analysis may have
as much to say about them.

Notwithstanding the disputes concerning the appropriateness of NL
models of HCI, one point about which there seems to be little disagreement
is that, given the dialogue partner perspective, the computer side of the

communication ought to exhibit a degree of co-operation comparable to
that which could be expected from a human being (Pinsky, 1983). This
kind of co-operation is nicely captured in Grice's cooperative maxims
(ibid) which, because they are based on an idea of rational and maximally

efficient co-operative communication, are purported to apply to
communication per se and not just to NL. If the intention then is to render

the computer side of the human-computer dialogue cooperative in this way,

then it seems worth investigating the extent to which Gricean, or for that
matter any, principles of cooperative communication apply in this context.

22

2.4 The Cooperative Principle
The Cooperative Principle is intended to embody rational considerations

as guidelines for the effective and efficient use of language in conversation
to further cooperative ends (Levinson 1983: p .101). It is expressed as

follows:

The cooperative principle:
Make your contribution such as is required, at the stage
at which it occurs, by the accepted purpose or direction
of the talk exchange in which you are engaged.

The generalised cooperative principle is elaborated by reference to a set
of maxims which a cooperative dialogue partner is expected and assumed to
follow or exploit.

These are:
The maxim of Quality:

Try to make your contribution one that is true, do not
say what you believe to be false and do not say that fo r
which you lack evidence.

The maxim of Quantity:
Make your contribution as (but not more) informative
as is required for the current purposes o f the exchange.

The maxim of relevance:
Make your contribution relevant.

The maxim of Manner:
Avoid obscurity and ambiguity, be brief and orderly.

The point of these guidelines is not that people follow them to the letter
but that they form a background of assumptions to which most kinds of
ordinary conversation are orientated. When contributions do not literally

conform to their specification, it is assumed that the maxims are being

observed at a deeper level. There are really two aspects to the operation of

these principles. On the one hand, they are used as background assumptions

in the interpretation of another's speech acts. Thus, when we are told for

23

example that someone has six children or received a fine in court, we

naturally infer an implicit ’only' and would consider such information

misleading if we were to find out that the said person had in fact ten
children or had also been imprisoned for eighteen months, although what
we were actually told was true. On the other hand, the principles also guide
us in what to say. They are guidelines for both encoding and decoding

extra-literal content.
The idea also has some possible design implications in that it might be

possible to adapt conversational maxims to non-NL HCI contexts for the
purpose of producing guidelines for the dialogue. In conversation, people
are naturally disposed, both in speaking and in listening, to use

conversational maxims such as be brief, relevant, orderly and so on. If
people were also inclined to expect the same ’rules’ to apply in the HCI
context, then an interface which paid no heed to them would be inherently
less usable than one which was in-tune with them. In reference to
human-computer dialogues, conversational maxims probably constitute the
most pertinent and accurate interpretation available of that much abused
phrase ’user-friendly'. It should not be thought that this train of thought is
in any sense original. Human-like cooperativeness is an oft expressed
desideratum in HCI. It is not that the goal has not been stated often enough
but that there seems to have been precious little concrete progress in
achieving it.

Quite understandably, these ideas have been investigated in the context
of NL interfaces. For example, Allen (1983) uses utterance or utterance
fragments to infer users’ travel plans. Users’ plans will inevitably involve

such contextual features as times of train departures, platform numbers and
so on. If there is a contextual obstacle to a plan, a feature which might
block its execution such as a train cancellation or a change of platform,
then this fact is supplied to the user.

Kaplan's (1983) NL database query system is essentially intended to

prevent the user from being ’stonewalled’. A user might formulate a

number of queries on some particular topic, such as the number of students

24

passing a certain course in a certain year, the number with a grade higher

than 50 and the number of referrals. If it happened that the course had not
been run in that year, an uncooperative system might just give the answer
’O'. But by looking at the implications (they might actually be classified as

presuppositions, implicatures or perhaps felicity conditions) of the users’
queries the behaviour of the system can be made more consistent with what
might be expected from a human interlocutor.

In both of these examples, the general idea is that users’ NL input is
interpreted as implying certain contextual features which are compared
against the world as seen by the system. Any discrepancies must be
negotiated for or with the user. In the case of NL interfaces, the procedure
for interpretation can exactly follow the linguistic paradigm.

The procedure or ’rules’ for deriving such inferences or Gricean
conversational implicatures runs as follows:

1) S has said that P.
2) I assume that S is cooperating.
3) For 1 and 2 to be true S must think that Q.
4) S knows that 3 is mutual knowledge.
5) S has not indicated that Q is false.
6) Therefore S intends me to think that Q.

How well does this process fit in non-NL interaction? The real problem
is with 4. For 4 to be true S must know 3. For S to know 3 S must know
the meaning of P (in order to determine Q) but as a possibly novice user, S
may not know the meaning of P. The user may not be competent in the
medium of the application and this makes the implicature possibly unsound.

Thus any non-NL system utilising such co-operative strategies must allow
for this kind of dialogue failure.

25

2.5 Exploitation
One of the most interesting facets of Gricean implicature, as far as NL

is concerned, is the way that the maxims may be flouted or exploited for
communicative purposes. For example, irony or sarcasm can be achieved

merely by saying something that one obviously believes to be false or
something with such a consequence: if a teacher says ’good afternoon
Smith' to a pupil arriving late for a morning class, the implication would
not be that the teacher thinks it is past noon. While one of our aims may be
that of making computers behave less literally, (Jerrams-Smith, 1985:
Houghton, 1984: Lewis & Norman, 1987) interpreting sarcasm seems a

little superfluous to a computer system except perhaps by way of research
into the mechanisms of pragmatic inference.

2.6 Conventional Implicature
Grice states that certain implicatures stem from particular lexical items

and expressions and these are termed conventional implicatures. Such items
as but, even and yet have been suggested as giving rise to conventional
implicature in that they possess a component over and above their
truth-conditional contribution to a sentence. (Reichman, 1985) makes use
of such structural elements in the analysis of discourse structure). For
example, but has the truth-conditional meaning of conjunction but also

signals contrast. These items are often used to convey an attitude on the

part of the speaker towards the information being conveyed.
Although, as we have seen, lexical items are often borrowed from NL

for use in a command language, such conventional implicatures which
might be attached to them in their NL context would appear to have little

relevance in non-NL HCI. It is not normally expected that users will see

any point in conveying to the system the fact that they feel that the current
command is, for example, slightly unusual or that it contrasts with the
previous command in some way.

26

2.7 Mood Restrictions
Another way in which NL dialogues can differ from others is that the

former may involve different declarative, interrogative and imperative
sentence types. These are referred to under the grammatical classification
of mood and are closely connected to the ’speech acts' (Austin, 1962;
Searle, 1969) of assertion, question and request but are not tied strictly to

these. For example, the question ’do you know the time?’ is not adequately
dealt with as a speech act by responding to its interrogative form.

Therefore, the answer 'yes’ would be considered uncooperative unless

asked with the obvious intention of ascertaining whether someone who
needed specifically to know the time knew it. Similarly, 'I wonder if you
might tell me the time’ has the grammatical form of a declarative but also
instantiates a request in speech act terms. Indirect speech acts are often
involved in 'politeness conventions' in English.

In non-NL interaction, such variations are not applicable. As the name

suggests, command languages are based on the view of the dialogue as a

series of commands by the user, perhaps followed by a report of success or
error by the system. Whether a user's intentions are signalled in one mood
or another is of no account to the system and so have no functional role in
the dialogue. Neither does there seem to be any cause to imbue direct
manipulation or WIMP style interaction with this kind of subtlety of

expression. Thus non-NL interaction should not require the kind of

reasoning processes needed by NL interfaces which attempt to interpret

indirect speech acts such as these in user input (but see Ehrich et. al.,
1986).

2.8 Applying the Maxims to Non-NL HCI
If I tell you that my brother has four 'O’ levels and you happen to know

that he has six, what do you make of this situation? Well, in the first place
you might suspect that I am deliberately trying to mislead you or you may

think that I do not know the facts. There are, however, other alternatives

which are rather less obvious and which we do not normally pursue. If you

27

know me to be a competent native speaker of English, you will not tend to
suspect that I do not understand the meaning of the words I have used but if
I were not, then that would be conceivable. A much more radical

scepticism would involve the possibility that I might be following an
alternative cooperative convention or conversational maxim.

Let it not be thought that my utterance embodies an untruth. Having six
'O' levels entails having four. The reason that my utterance is misleading is
that there is an expectation that I will follow a certain cooperative

convention, the Quantity maxim in Grice's terms, which instructs me to say

the 'strongest' thing I know to be true. This expectation is so deeply
ingrained that, given the situation described, it is the last thing you would
think of questioning, if you ever did at all. That is why it can seem like a
matter of logical implication when it is not, which can be shown by the
following:

(1) My brother has four 'O' levels, if not more.
(2) *My brother has ten 'O' levels, if not eight.

If my utterance meant or logically entailed that my brother has ONLY
four 'O' levels then (1) would be as anomalous as (2).

Suppose that you knew

a) that I knew the facts of the matter.

b) that I knew that you knew the facts of the matter.

It is highly likely that you would still assume that I was cooperating but

you would be forced to make inferences about what I intended to convey in
order to maintain this assumption. The relevant maxim would ensure that,
ceteris paribus, I would say 'six' and not 'four', allowing you, lacking
knowledge to the contrary, to infer an implicit 'ONLY'. However, it could

be that I am following an alternative convention which, in effect, enables

the inference of an implicit 'AT LEAST’. This convention would work just

28

as well if universally adopted but would be less useful since the information
conveyed would be less precise than in the case of the actual convention.

The point of all this is to indicate that there are in fact a number of ways of
reasoning about the intended meaning of an utterance if we are prepared to

be a little perverse. Non-NL HCI may have its own pragmatics. When the
literal content of an utterance is anomalous in some way, there are various
ways of interpreting the situation:

i) Exploitation.

ii) Misuse of terms.
iii) Alternative convention.

iv) Factual Error.

v) Mendacity.
vi) Various combinations of i - v.

We will discount v since it is not relevant to our concerns. In human
communication between native speakers it would be unusual to infer iii, ii

or vi so that leaves i and iv.
If we apply this kind of reasoning to HCI, things are rather different.

Firstly, we can assume that the prospective system knows all the relevant
'facts1, whereas you may not have known about my brother's 'O' levels.
When interpreting users, although we will not be interested in v and i, we

cannot assume that ii and iii and possibly vi will not occur. The 'language'

of the interface may not be familiar to the user.
However, we still have a means of reasoning about the interaction. Any

utterance with imperative force will carry the generalised implicature that

the utterer believes the propositional content to be false (or have the

felicity condition or presuppose that it is false), that the utterer has the
authority to issue the request and that the 'requestee' is in a position to be

able to accede to the request.
Hence the request to close the window indicates inter alia that the

requester believes the window to be open and that the requestee can close

29

it. For any particular request there may also be particularised implicatures
arising from the nature of the requested activity. For example, In order to
be able to buy a paper for someone the newsagent must be open and a
suitable means of payment must be available. Particularised implicatures
are those which are context specific and require world knowledge or

knowledge of some domain in order to achieve a successful communicative
transaction (Allen, 1983).

Interaction with computer applications involves the same kinds of
restrictions and contextual factors in the successful management of
human-computer dialogue. In the domain of a computer application, there

may be many contextual factors determining the appropriateness of any
particular instance of a user command or action. These restrictions may or
may not be known to users, depending on their level of competence in that
domain (and possibly other factors), just as one may not realise that the
shops are closed when requesting someone else to buy a newspaper.

A requestee in possession of the facts would obviously apprise the
requester of them rather than try to buy a newspaper (unless there
happened to other means available). In this kind of case it would usually be
adequate to merely give the information that the newsagent's shop was
closed but there are circumstances, perhaps in the case of a foreign visitor,
where it might be necessary to indicate the link between the buying of

newspapers and newsagents' opening hours. When the requestee has reason

to believe that the requester lacks domain knowledge, a cooperative
response may involve the provision of any part of the domain information

relevant to the anomalous request.

This is essentially the context in which much HCI takes place and it is
with the aim of rendering the computer side of the human-computer

dialogue more cooperative that these remarks are made. This approach also

has relevance to other forms of interaction. For example, if we take this
term to characterise responses which fail to exhibit the level of
cooperativeness which could reasonably be expected from any
well-disposed and informed person, one can see in many WIMP

30

applications a version of what Kaplan (ibid) calls ’stonewalling'. The

practice of dimming menu items when the context renders their selection

inappropriate prevents users from making errors but is effectively a ’no
comment’ strategy. The user is prevented from gaining any other
information about that option except that it is not available. The precise
details of how these ideas relate to concrete systems and live interaction are

the subject of subsequent chapters but the general thrust of the argument

may be evinced.
People who take all that is said to them in a literal fashion are judged to

be pedantic or even obstructive and uncooperative. They also miss out on a

large proportion of the expressive power of language. The literal content
of an utterance is often only a cipher to the communicative action and the

hearer may have to perform a significant amount of reasoning to
appreciate the speakers intended message. Sarcasm is often wasted on
children because they are allowed to be conversationally undisciplined with

regard to conversational maxims and therefore do not always recognise
their exploitation. Computer systems designed to date perform the role of
pedant extremely well! It is no wonder that they are often difficult and
frustrating to learn and use.

Interacting with computers is a relatively new activity, with its own
particular characteristics. New methods of interaction, in the form of novel
input and output devices and techniques, as well as general developments in
computer science, constantly extend the scope and possibilities of the

relationship between humans and machines. But humans are communicators

par excellence and have evolved and developed rich and complex
communicative functions which are so ingrained in our behaviour that,
from day to day, we are scarcely aware of them.

Whatever the computer of the future looks like, we should at least make
sure that its communicative behaviour is in tune with any fundamental
aspects of our own. It is suggested here that the kind of reasoning
supporting pragmatic inferences involved in human communication is one

of these fundamantal components which should be addressed.

31

3. User Errors

This chapter is concerned with error situations in computer usage. It is

suggested that an understanding of what is happening in such situations

offers valuable insights into the general processes of human-computer

communication. To this end, classifications of error are examined and a

levelled linguistic classification is proposed. As part of this classification,

the notion of context error is introduced and analysed using the theoretical

constructs discussed in Chapter 2. Conclusions are advanced for the

implications that this analysis has for dialogue design.

3.0 Introduction

The consideration of user error is an inevitable part of the process of

designing computer systems, either from the point of view of attempting to

minimise error commission or that of handling error when it occurs. To

this end it is necessary to gain a good understanding of errors that can and

do happen, together with their causes. Part of this understanding should be

the realisation that errors are a function of the interaction between a user

and a system and not the sole responsibility of the user (Booth, 1990b).

Computer systems exist in order to serve the purposes of their users and

not vice versa. The term 'user error1 is not well chosen in this respect as

Lewis and Norman (1987) point out.

Another common and largely tacit assumption about user error is that it

is entirely negative and without utility. While nobody likes to make

mistakes, this is not to say that there is nothing to be gained from doing so.

32

One would rather get things right and have done with it than have to deal

with some anomalous situation but if, in so doing, a gross misconception is

corrected then possibly the error was fortuitous and could conceivably

prevent the commission of further and more serious errors. Making

mistakes can be extremely effective in didactic terms and has its own

rewards, as we hope to make clear.

3.1 The System Perspective

Any situation can be described in a number of ways. The book is on the

table, the table is under the book, the book is not in the library and so on

ad nauseam . The description of a situation as an error is a particular view

of it and is only valid in respect to certain other assumptions. Errors can be

viewed both from a system perspective and a user perspective and it is

important that this is acknowledged, since both the user's and the system's

contribution to the anomalous situation are relevant to its characterisation.

Where the results of a user action are not as expected, this is an error as

far as the user is concerned but not so from a system point of view. User

misinterpretations of error or system/user model mismatches are often the

result of conflict between the user and the system perspective of a

problematic situation. For example, the 'file not found' error message

common in many operating systems can result from various kinds of error

viewed from the user perspective; typographical, spelling, synonym,

pluralisation, wrong directory, wrong pathname etc. An im portant

distinction within the user perspective is that between errors of competence

and those of perform ance (Chomsky, 1965). Performance errors result

from the incorrect implementation of a correct rule, whereas competence

errors result from correct performance of an incorrect rule. As may be the

case in any mismatch between system and user perspective on an error

situation, although the error may be the same in system terms, the

appropriate response obviously differs.

It is notoriously the system designer’s failure to see things from the user

perspective and the understandable inability of the user to see things from

33

the system perspective that leads to interfaces which perform poorly

(Lewis & Norman, 1987). However, even with the best intentions towards

user-centered design, design considerations will never be just a matter of

what is best for the user. Other pressures, of an economic or technical

nature for example, dictate system design features. What is important is

that where these pressures lead to a conflict of basic perspectives between

user and system, mechanisms for bringing the two perspectives into line

are incorporated into the interface.

3.2 Error Classification

The purpose of classifying phenomena is to improve the quality of

information about it. So long as the classification relates to fundamental

underlying similarities and causes, it aids in the formulation of responses to

the phenomena in question; rationalising approaches towards it as opposed

to dealing with each event as it arises in an ad hoc manner (Booth, 1990b).

There are various ways in which errors can be classified. Some of these

focus on the cause of the error in terms of its cognitive provenance. One

such method starts by distinguishing between errors of intention and errors

of performance. Norman (1983) takes this line, calling the former mistakes

and the latter slips. Slips are held to be errors in carrying out a valid

'intention', while mistakes are errors in the 'intention '. Norm an's

distinction between m istakes and slips is an important one, in that the

system responses appropriate for one are inappropriate for the other. By

definition a slip does not require any correction in the user’s model,

whereas a mistake does. Thus it is important to be able to distinguish

between them so that appropriate system responses are generated. This

distinction corresponds to that between com petence and perform ance

alluded to above.

It is not clear from Norman's definitions that a maintainable distinction

is made. Norman's classification can lead to taxonomic problems in that he

goes on to say that there can be slips in forming 'intentions'. This

presumably means that a) the result of the slip is a mistake in the form of

34

an invalid 'intention' and b) there must have been an 'intention' to form the

invalid 'intention', which was carried out incorrectly owing to the slip. We

apparently have an infinite regress of intentions here. Norman also

classifies mode error as a slip. This entails that the 'intention' involved is

valid, which further entails that the 'intention' is logically independent of

the system state so that, in principle, the user may form a valid intention

using a completely erroneous conceptual model of the system.

The problem lies in the concept of 'intention'. Statements of intention

are inherently ambiguous. The claim that Oedipus wanted to marry his

mother is true in one (transparent or de re) sense and false in another

(opaque or de dicto) sense (Quine, 1960). While typing errors can easily be

classed as slips, if someone misnames a file in a delete command (for

example, typing 'rm address' for 'rm addresses') it is not clear that a

genuine distinction can really be maintained between the idea that this is a

case of a valid intention to remove a file, combined with a slip in

specifying the filename, and the idea that it is a case of a belief that the file

was called something other than it was without appeal to some as yet

unexplained notion of intention as the 'mental pointing finger'? All in all,

while this classification enables Norman to draw up some useful design

recommendations, it does not seem to constitute the basis for a coherent,

consistent and comprehensive taxonomy of error (not that this is Norman's

claim).

Another classification scheme which focuses on the cognitive

provenance of error is Booth's (1990a) Evaluative C lassification of

Mismatch (ECM). Here the discussion is not in terms of error but rather

'dialogue failure' signalled by user reports of misunderstandings, requests

for help, illegal commands not arising from slips and uneconomic

command sequences. The categories of mismatch are then derived from the

relation of either an object or an operation to a symbol, a concept and

possibly a context, producing eight different categories. This scheme

appears to offer a comprehensive conceptual classification of model

mismatch between system and user and to provide a term inological

35

framework for discussion of between user and system communication

problems. However, it suffers the problem that some dialogue failures can

be classified in more than one category.

Object Operation

Concept
Object/Concept

Mismatch
Operation/Concept

Mismatch

Symbol
Object/Symbol

Mismatch
Operation/Symbol

Mismatch

Concept
X
to

Object/Concept/
Context Mismatch

Operation/Concept/
Context Mismatch

c
o Symbol

Object/Concept/
Context Mismatch

Operation/Symbol/
Context Mismatch

fig. 3.1 Booth’s Classes of Mismatch following dialogue failure.

Booth (1990c) has also looked at the possibility of using the GOMS and

TAG interaction grammars for error classification but has found these to

suffer the same problem of multiple classification, as well as a tendency to

allow decomposition past the point of usefulness for this purpose. It is

worth noting that the kind of situation which is addressed here seems to

allow almost any problem to count as dialogue failure. For example, the

fact that a naive user did not understand the relation between a Macintosh

disk icon and its related window is given as an example of dialogue failure,

while it seems clear that there is no simple relation between these two

'objects'. Their relationship is functionally complex, involving many

dependencies. What this situation describes, if it describes anything at all, is

not a misconception regarding one of these functions but a lacuna, a lack of

any useful mental model of any kind of that part of the system. Granted,

the system has 'failed' to make the user understand this relationship via its

iconic 'language' but isn't this expecting rather too much? After all, what

are we comparing its performance with? What would a human instructor

have to do in order to communicate these ideas to a naive user? It thus

seems a trifle optimistic to expect such situations to fall into a simple

36

classification.

It is also worth noting that the other two dialogue failures which are

cited are both amenable to the linguistic classification scheme detailed

below. The Macintosh is prone to request excessive numbers of disk

swapping operations in order to find data or applications distributed over

more than one disk. To the uninitiated, this can be interpreted as an error

situation. Under the classification scheme advanced in this thesis, this would

be categorised as a pragmatic error on the part of the system, detailed as a

failure to comply with conversational maxims concerning brevity or

conciseness and one answer to this might be to ensure compliance, perhaps

by having the system supply an explanation for the apparently obtuse

dialogue moves.

The other dialogue failure can be classified as semantic under this

scheme, in that the two partners assign different meanings to an action

sequence.The "eject" menu selection ejects the floppy disk from the drive,

while leaving its icon and any associated windows dimmed on the monitor.

A user's expectation that these items will be removed from the display by

this command will therefore be disappointed. O f course, problem

classification does not determine or even necessarily suggest problem

solution, as in this case. The so-called 'desk top' metaphor is ambivalent

here, in that there are two totally different methods for ejecting discs; one

graphical and one command orientated. There is no obvious reason for

attaching the icon and window removal functions to either. In fact, it would

be more in keeping with the metaphor and more consistent with file

deletion if dragging the disc to the wastebasket erased the disc.

Carrying out some task using a computer broadly consists of identifying

goals and objectives, determining sets of actions which will achieve them

and perform ing those actions in the required order. This gradual

decomposition of a super-ordinate goal into sub goals and ultim ately

keystrokes as part of an overall plan of achievement can be seen as a

descent through various levels of activity. Moran's (1981) Command

Language Grammar (CLG) characterises the interaction in this levelled

37

way in order to highlight mismatches between the co n cep tu a l and

communicational components of a system. This framework has also been

put to the task of error analysis (Davis, 1983a).

A task is composed of a number of sub-goals, each of which must be

successfully completed to attain the overall goal. This is represented in

CLG by the conceptual component, containing the task and semantic levels.

These specify the tasks the user wishes to carry out (task) and the

conceptual commands and entities available on the computer (semantic). In

each level is a summary of the procedures available and the methods by

which these procedures can be sequenced to accomplish a particular goal.

The communication component specifies the available commands and the

syntax rules (syntax) and the actual interaction itself (interaction), complete

with prompts, user key presses and computer responses as the interaction

proceeds.

Errors can be classified in terms of this characterisation of the

interaction as conceptual, procedural, methodological, semantic, syntactic

or lexical according to the level at which they are deemed to have their

cause. This classification has the advantage that it addresses both the user

and the system perspective of error. As it applies to command language

interfaces, it also presents us with some familiar and well understood

linguistic categories. However, being very similar to GOMS, it is likely

that it suffers the same problems of excessive decom position and

ambiguity.

3.3 The Linguistic Classification of Error

As the motivation for the present research comes from studies of error

in command line interfaces (Bradford et. al., 1990; Hanson et. al., 1984)

and the approach undertaken here follows a natural language paradigm of

com m unication, the classification schem e proposed is sim ilarly

linguistically orientated. The kind of error under study consists in

command specifications which are intrinsically unexceptional but which are

used in system contexts where they might not have been but actually are

38

inappropriate. That is to say that while it is possible for the system to

manifest an appropriate context for the command, the prevailing context is

otherwise.

There are several points arising from this which suggest the adopted

classification scheme. Firstly, these errors are defined in relation to a

single command and therefore do not occur at the task or plan level. This

means that procedural and methodological levels are irrelevant to their

characterisation. However, in order to distinguish them from other

command level errors, lexical, syntax and semantic types are defined.

Secondly, the nature of these errors closely relates to the pragmatic aspects

of meaning in natural language. A usable definition is that a phenomenon

of linguistic meaning is semantic if it attaches to the sentence and pragmatic

if it attaches to the utterance of the sentence. In fact, as we have already

noted, in natural language some allegedly pragmatic phenomena do attach

to the form of words used (e.g. the verb to fail is seen to pragmatically

imply the notion of an attempt) but it can be argued that these are semantic

phenomena and, in any case, the definition seems workable in the more

restricted computer command language environment.

There are other reasons why our classification is appropriate to the

current research. As Thimbleby (1990, p. 50) points out, much of the

classification is inherent in programming languages and particularly

compilers, as well as in linguistics. The distinctions also correspond to

distinctions of skill, rule and knowledge in the user and are best

appreciated in terms of how they relate to errors. Lexical errors can be

detected immediately, syntax errors need only to be reported by the

system, while semantic errors have unpredictable results. To this we should

add pragmatic errors, which also constitute a significant class requiring its

own particular treatment. As the system instantiates the communicational

rules and protocols of the command language and the situations we are

interested in are those wherein the system signals that something is amiss,

rather than cases of unexpected results of actions, linguistic error

classifications represent a system perspective. By looking at the relationship

39

between system and user perspectives, the two can be brought more into

line with each other so that the system can respond more appropriately.

3.4 E r ro r C lassification Schem e C ategories

L exical E r ro r

Lexical error is essentially the use of a term which is not in the relevant

lexicon. However, just as in natural languages, a command language

system's vocabulary typically consists of closed and open sets. A closed set,

members of which might be, among other things, the prepositions of the

language, is (relatively) fixed for a language but the open set can shrink

and grow as items are added or lost. Lexical items can also be seen as

belonging to various grammatical categories such as verbs, nouns and so

on. These distinctions are built into the system, as can be seen from the

responses to lexical errors in closed and open set terms. An unrecognised

command name (in UNIX® e.g. ly m yfile) results typically in a

'command unknown' type message, whereas an unrecognised filename

typically results in a 'file not found’ type message. The system has an

implicit representation of grammatical categories; it 'knows' (or its

behaviour is consistent with the following of a rule that) file names are

referring terms and belong to the open set. This is also evident from the

actions that the system performs on receipt of a valid command. The

upshot is that only command terms which are unmatched in the closed set

are classed as lexical errors. Command terms in the syntactic position of

those from the open set of referring terms but which are unmatched in the

lexicon are designated as lacking referents and therefore fall into the class

of pragmatic error.

Syntactic E r ro r

Syntax errors are errors in the order or format of command terms.

Missing, transposed or extraneous terms and separators fall into this

category. As with lexical error, the command format or syntax is fixed (if

macros are used, the commands they replace must be entered correctly and

40

the macro commands themselves are subject to their own syntax rules) and

so there is no real problem in identifying them from the system

perspective. Again, there is no one to one correspondence between user and

system perspective with regard to these errors.

Semantic Error

The semantics of a command relate to its literal or logical sense or

meaning. Semantic errors will therefore consist in the use of illogical

(from the system perspective) combinations of command terms. The

application of system operations or values to system objects to which they

do not apply will be cases of semantic error, for example, attempting to list

(Is) a file, make a file the current working directory or copy a file onto

itself. These are equivalent to semantically anomalous sentences in natural

language such as 'colourless green ideas sleep furiously' or 'the ball kicked

the dog'. It is unlikely that this kind of error would arise through incorrect

performance, since it would be quite unusual for the fairly random results

of typing error to produce a lexically and syntactically correct command.

Thus, these errors will almost always stem from a user misconception.

However, that m isconception may concern the logical or semantic

constraints of the system and its language or the current arrangement of

objects within it, in which case the error is contextual from the user

perspective. For example, a misconception concerning the current working

directory might lead a user into trying to list a directory 'X' with the

command 'Is X'. The presence of a file called 'X' in the current working

directory will entail the interpretation of the command as an illegal attempt

to apply the Is command to a file, even though a directory X exists

elsewhere in the system.

Pragmatic Error

From the system perspective, pragmatic or context errors are situations

wherein a lexically, syntactically and semantically correct command fails

because the system is not in an appropriate state. This should not be

41

confused with m ode error, where an ambiguous action or command

produces unwanted or unexpected results. Editors often have two modes:

one for performing editing tasks, such as deleting a character, and one for

performing actions such as saving the file. A typical mode error is issuing

a command, e.g. s for 'save' while in edit mode, thus inadvertently

inserting an unwanted 's' character into the file. Mode error has no system

perspective, not being detected as an error at all.

The linguistic equivalent of a context error is a well-form ed,

semantically unexceptional sentence uttered in an inappropriate context.

For example, it would be pragmatically anomalous to say to someone

'would you please open the window?' when the only window is already

open or if that person happened to be rendered incapable of complying by

disablement. From the user perspective, context errors can result from

slips (e.g. the mistyping of a filename will be seen by the system as a

reference failure) or mismatches between the system and the user's

conceptual model. In the studies of UNIX® use cited above, context errors

accounted for a large proportion of the errors made by UNIX® users; this

is one of the reasons why it is being studied in this project.

3.5 Why Users Make Context Errors

Context errors arise from mismatches between prevailing system states

and those implied by the erroneous command or action. These mismatches

may reflect deficiencies in the user's awareness of the system. That is to say

that the user either lacks knowledge about the prevailing system state or

about the implied state. The former deficiency can arise from attention or

memory lapse, as is usually the case in mode error, or it may arise from a

lack of knowledge about the effects or implications of some previous

command; if a user does not know that removing execute permission on a

UNIX® directory will prevent its listing, the chances are that an

unsuccessful attempt to list it will occur at some point. The latter deficiency

may also concern knowledge of the preconditions of the erroneous

command; a user may misguidedly attempt to list a UNIX® directory

4 2

knowing that it is execute protected, since it may not be known that having

execute permission is a precondition on the Is command.

In order to avoid making context errors, users have to acquire and

maintain some kind of conceptual model of the system, aspects of which are

constantly changing as a result of the interaction. A conceptual model must

not only reflect current system states but also an understanding of how the

user's own actions combine with the functionality of the application to

produce new states. These two aspects of the conceptual model are here

referred to as the state and fu n c tio n a l models reflecting transient and

persistent system characteristics (Young, 1991). While experienced users

will tend to have built up a better procedural model and their errors will

relate mostly to lapses of attention and the novice's model may be

inappropriate in both respects, the classification of users into novices and

experts is overly simplistic. Competence will vary on a continuum across

users and for users across system functionality (Carroll & McKendree,

1987).

3.6 The Pragmatics of Context Error

The relationship between user and computer can be viewed as that of

dialogue partners. As the name implies, the command line interface

assumes a dialogue form of command-response. In natural language, an

utterance with imperative force involves certain general presuppositions,

for example, that the speaker has the authority to issue it and that the

addressee is able to carry it out. In addition, particular commands have

specific presuppositions, for example, that the door indicated is closed at

the time of the command to open it or that the addressee has immediate

access to some requested object (Levinson, 1983). These presuppositions

can be seen as particulars in the equations representing the reasoning about

utterances, conducted in the light of general conversational maxims of

cooperation.

If any of these presuppositions fail, then the command cannot be carried

out as directed and the addressee will typically embark on some kind of

43

clarification or correction strategy, either entering into a dialogue with the

other person or interpreting the request in some way which makes it

possible to conform with it. Any clarification dialogue will typically

include an explanation of why the command could not be carried out, in

terms of the preconditions which failed. This may then lead to a revised

command. For example, the addressee might state that the door was already

open and the reply might indicate that another door should be opened as

well.

On the other hand, the addressee may attempt to rectify matters by

acting in order to make the failed presuppositions true. For example, he

might fetch a requested object, thus making true the presupposition of

immediate availability involved in the command. Or he might interpret the

command in an intelligent manner so as to fulfil the identifiable intention

behind it. He may open the window in recognition of the intention of the

request of improving the ventilation in the room.

It is important to recognise that where requests arise in areas in which

little expertise is enjoyed by the one making the request, misconceptions

concerning rules and procedures governing that area, as well as

misconceptions about states of affairs, will lead to requests embodying

unwarranted presuppositions. These general presuppositions attach to the

abilities and powers of the dialogue partners rather than to the details of

the request itself and concern what is possible in any circumstances. The

similarity between this aspect of human-human communication and the

phenom enon of context error in hum an-com puter in teraction is

demonstrable. UNIX® cannot move a non-existent file any more than I can

play an eight note chord on a conventional guitar. It is suggested that the

kind of dialogue that such situations engender is also similar and that this

points to a particular kind of approach to dealing with context error.

3.7 Context Error: Problem Solved?

Context error is a natural consequence of the design of the command

line style of dialogue, since, typically, the user may type in any command

44

and it is only evaluated when the re tu rn key is pressed. In the WIMPS

interaction style, it is possible in many cases to preclude the incidence of

context error by 'ghosting out', hiding or removing menu items and icons

which have no valid function in the current context or relate to

non-existent 'objects'. To some, this may appear to be an adequate solution

to the problem. However, this approach may be misguided for a number of

reasons.

Firstly, this approach can only be adopted for menus and icons; simply

disabling keys amounts to a 'do nothing' approach which suffers the second

disadvantage which is that the approach constitutes a bar on exploration;

context error may be caused by a lack of knowledge of the preconditions

for an action and making the action impossible in certain circumstances

does nothing to correct this. In this case, it treats the symptom and not the

cause. This argument should not be confused with the positive effects on

learning which have been achieved by preventing users from accessing

advanced features of an application; the so-called 'training wheels'

approach (Catrambone & Carroll, 1987). That approach does not relate to

contextual features, in terms of system states, but removes options for the

whole of a period of time. The 'ghosting' approach removes options on the

basis of current system states during the course of a single interaction. The

idea that is being promoted in this thesis is that the user’s ability to build

and maintain a good mental model of a system is enhanced by the system's

support of users' exploration of the system in the pursuance of their

prevailing goals and plans. This idea challenges the 'ghosting' approach but

is neutral with regard to the 'training wheels' approach.

Thirdly, there is evidence to support the view that errors enhance the

conceptual model of a system. Frese et. al. (1991) found that error-based

training produced better non-speed performance and free recall than

error-avoidance training. Lastly, learning is an active process and is

enhanced by interactivity as opposed to factual presentation (Carroll &

Mack, 1984: p. 292).

Precluding context error may therefore be, in the long term, counter

45

productive, since substantial benefits may attach to the possibility of

making errors. Not being able to do things wrongly does not imply the

ability to do them correctly. A user’s conceptual model may be such that he

or she would make a context error if it were possible to do so and merely

rendering it impossible does nothing to correct that model. These practices

could be improved in this respect if, for example, selecting ghosted items

provided an explanation of why the option is not operative in that context.

(This being functionally equivalent to allowing the error to occur and then

providing help). However, this would not be applicable in circumstances,

for example, where items are removed from the display, as in the case of

deleted files. The graphical user interface philosophy does not allow the

speculative action which could give the system information about user

requirements or intentions.

These arguments lead us to conclude that context error is not a function

of particular interface styles but cuts across these distinctions. It also seems

clear that direct feedback mechanisms in the interface are inadequate to

enable a user to build and maintain an appropriate conceptual model of the

system. After all, there will always be more information concerning system

states and functions than it is possible or desirable to present to the user at

one time. Even if it were possible to somehow cram everything onto the

screen, the user will normally be interested only in the information

relevant to his or her current concerns. The problem is in finding a way of

determining what is relevant. It seems unlikely that this will turn out to be

a static specification or one which can be generated from a static set of

criteria. This being the case, what is sought is some interface component

whose function it is to determine dynamically the information to which the

user should have access.

Error situations constitute an ideal opportunity to provide relevant

online help and there are a number of reasons for this. Errors themselves

provide the help system with information concerning current user goals

and possible deficiencies in the user's model of the system. Information can

be presented in terms which relate to the user's current interestsj rather

46

than as abstract descriptions of the system; the user's work can be put at the

centre of concerns in the form of the objects and operations involved in the

user's current task (Carroll & Mack, 1984: p. 294). Consequently, the

information will be more digestible because it concerns issues on which the

user is already focussed. Issues affecting the appropriateness of different

forms of user support and the requirements that they impose, in relation to

the current focus of context error are taken up in the following two

chapters.

47

4. User Models

This chapter identifies the requirem ent of user m odelling as a

consequence of the need for the interface component to behave intelligently

and cooperatively. Classifications of user models are compared and

desiderata are presented for the user modelling enterprise. The notion of

the user's Conceptual m odel is discussed and an informal approach to

modelling user misconception concerning the device, based on a 'possible

worlds' model of belief, is presented. The theoretical question of generating

possible world models of user misconception is then addressed.

4.0 Introduction

For interactive systems to be be able to communicate intelligently with

users it is necessary for them not only to have knowledge about their own

states and functions but also to have access to knowledge about the users

themselves. This has been acknowledged in research on adaptive user

interfaces and intelligent tutoring systems and has grown in importance with

advances in natural language processing (Kass & Finin, 1988).

Kobsa & Wahlster (1986) state that it has become evident that user

models are needed not just for natural language interfaces and mixed

initiative dialogues but also as a base for intelligent dialogue behaviour in

general, in identifying the objects the dialogue partner is talking about,

analysing non-literal meaning or indirect speech acts and determining what

effects a planned dialogue contribution will have on the dialogue partner.

User modelling is difficult to define. Utilising general principles derived

48

from cognitive psychology as guidelines for the design of computer systems

is a form of user modelling and so is the automatic inference of individual

user characteristics in real time interactive contexts. User models can be

implicit. System designers who have no explicit knowledge of user

modelling will have produced systems which embody various assumptions

about the people who will use them and these constitute implicit user

models. Where the goal of user modelling is to represent in some way the

user's cognitive structures as relating to the system or the task being carried

out on it, task analysis can be construed as a form of user modelling.

Formalisms like Moran's CLG (1981), GOMS (Card et al. 1983), TAKD

(Johnson, 1985), and TAG (Payne & Greene, 1986) can all be seen as

models of (expert) user knowledge and therefore as user models.

This wide diversity in what can be classified as user modelling has led to

a certain amount of confusion in that different authors refer to similar

models using different terms and dissimilar models using similar terms

(Whitefield 1987, p. 57). Whitefield suggests that models may be classified

according to what they are models of and who or what does the modelling.

Identifying five possible objects (System, Program, User, Researcher &

Designer) and four possible agents (Program, U ser, Researcher &

Designer) provides Whitefield with a classification of twenty possible

combinations and so twenty model types as shown in figure 1.

Although the utility of some of these is doubtful (e.g. the program's

model of the researcher), this is a useful classification, not least because it

allows various component models to be discerned in what are usually

presented as unitary schemes. For example, Reisner’s formal grammar

(Reisner, 1984) combines references to both the program in terms of

terminals relating to keystrokes and the user in terms of terminals denoting

cognitive actions such as memory recall. Similarly the GOMS model

contains a model of the user in terms of Goals and Selection rules and the

program in terms of Operators. It is clear that most uses of modelling

combine various types of model as defined in this taxonomy.

49

Whitefield's purpose for the classification is to consider how different

types of model might be utilised in the system design process. The kinds of

model that will be of most interest here are models of the user which the

program may use in the course of the interaction. Even narrowing the scope

this far still allows for a wide range of concerns.

Program's
Mode! of
System

Program’s
Model of
Program

Program's
Model of
User

Program's
Model of
Researcher

Program's
Model of
Designer

User's
Model of
System

User’s
Model of
Program

User’s
Model of
User

User's
Model of
Researcher

User's
Model of
Designer

Researcher's
Model of
System

Researcher’s
Model of
Program

Researcher's
Model of
User

Researcher’s
Model of
Researcher

Researcher's
Model of
Designer

Designer’s
Model of
System

Designer's
Model of
Program

Designer’s
Model of
User

Designer’s
Model of
Researcher

Designer's
Model of
Designer

fig. 4.1 Whitefield's Classification of Models

Kass and Finin (1988) describe a set of dimensions along which user

models may be differentiated. For example, a model will be differentiated

by the particular aspects of the user about which it contains information.

These may be goals and plans (Carberry, 1988; Allen, 1983; Kaplan, 1983;

Wilensky, 1983), capabilities (Goldstein, 1979), attitudes (Rich, 1979) or

knowledge and beliefs (Konolige, 1981; McCoy, 1988). User models may

be generic, that is representing users in general or groups of users, or they

may be specific to particular users. They may be static or dynamic, either

staying unchanged once constructed or being modified over time. They may

be short term, such as might relate to models of user plans, goals and beliefs

or long term if related to relatively stable user attributes. They may be used

50

descriptively as a kind of database of user attributes or prescriptively in the

form of a user simulation. The method of acquisition of the model also

distinguishes it. Explicit acquisition is where the user provides information

directly. If the information is inferred from user behaviour, the method is

implicit. Systems may use multiple models. Generic user models in the form

of stereotypes may be used as an initial estimate of user attributes, this being

modified as and when new information about the user is available. The

above collection of distinctions also equates broadly with that given by

Murray (1987).

A form of user modelling especially important to intelligent tutoring

systems, intelligent database query systems and intelligent help/advisory

systems is the modelling of user plans, goals and beliefs. In these

circumstances it is very useful for the system to be able to reason about and

infer the user's intentions and misconceptions, as may be revealed indirectly

from their actions. 'One of the most important components of a user model

[in query dialogues] is a representation of the system's beliefs about the

underlying task related plan motivating an information seeker's queries.'

(Carberry 1988, p. 23). In intelligent tutoring systems and help or advisory

systems it is equally important that the program be able to identify

misconceptions behind the specific errors that users and students make so

that the source of the error may be corrected rather than its mere symptom.

4.1 Realistic Models

Since these models are meant to represent real human cognitive states

and processes, it is clear that a certain amount of notice must be taken of

what can be gleaned about real user’s mental models. Although our access to

sources for this are limited, there are a number of general remarks which

will serve to give the flavour of the kind of caution that is being advised.

Humans are not logical. That is to say that we do not, for example, believe

all of the logical conclusions of our beliefs. We may also hold contradictory

or inconsistent beliefs. Humans are also fallible. We forget things, fail to

understand information presented to us and believe things which are false.

51

We also tend to hang on to familiar propositions despite evidence against

their veracity, making ad hoc interpretations (Mack, Lewis & Carroll,

1983; p. 190; Norman, 1983a) or employing 'magic models' (Thimbleby,

1990; p. 24) in order to rehabilitate our preferred model. Similarly, we

tend to generalise from what we already know. We employ inductive

reasoning on the basis of a small amount of evidence or reason analogically

from one situation to another. The use of mental representations is

supplemented by contextual information available at the time of interaction

or task performance, suggesting that mental models need not be in any sense

complete or comprehensive where (even vital) components may be safely

left 'in the world' as a kind of 'extended memory' (Mayes et al 1990).

Relatedly, representations which are required to last in the form of Long

Term Memory (LTM) are stored in semantic form rather than in the

detailed sensory forms associated w ith Short Term memory (STM)

(Thimbleby, 1990: p. 34). Recall is harder than recognition. These last two

points may also help explain the effect found in Mayes et al. m entioned

above. People also have emotional responses to situations which interact

with and can interfere with their performance of cognitive, intellectual and

physical tasks.

Although theoretical and experimental research in the field of cognitive

science cannot be said to have provided any real generally applicable and

absolute standards addressable to the design of computer systems (Landauer

1990), the point of all of the above is to stress that any model of user

knowledge or intention constructed by any agent should not strain the

boundaries or fly in the face of the limitations and attributes that empirical

studies of user cognition have suggested to be psychologically valid. Thus, a

user model which attributes to the user the quality of believing all of the

logical consequences of a set of held beliefs or that of never holding

contradictory beliefs will probably get it wrong.

52

4.2 How it Works versus How to do it

One of the distinctions brought to bear on the question of what

knowledge users employ in interacting with a computer or other kind of

device is that between procedural (how to do it) knowledge and conceptual

(how it works) knowledge. The distinction can be likened to the difference

between reciting multiplication tables by rote and reciting them by working

out each addition along the way. The former consists in the knowledge (or

behavioural conditioning) of what comes next in the series, while the latter

implies an understanding of the mathematics involved from which the series

is deduced. Procedural knowledge may also be characterised as providing a

direct mapping between user goals and tasks, on the one hand, and user

actions, on the other, whereas conceptual knowledge mediates between them

by providing inferential connections. The distinction is important for the

purposes of determining the nature of any information the system may be

required to present to the user, either in the form of interface controls or

responses or training material of whatever kind. The research to date tends

to suggest that users make use of both types of model in a variety of

situations and that neither kind is of itself superior.

Kieras and Boyair (1990) suggest that a conceptual (how it works) model

can be useful to a user if the knowledge about the internal workings of the

system or device allows the user to learn to use the system more rapidly and

to infer how to operate the device. However, they also point out that such

knowledge need not constitute a complete device model and that it should

relate to specific control actions rather than general principles. We might

add that whether or not such knowledge is useful also depends on how

closely the user's task is mapped onto the system's objects and functions.

For example, the hierarchical file systems of many operating systems are

pointless to the user who does not have some kind of conceptual model of it.

Evidence to support the utility of procedural training material is also

available (Cantrambone & Carroll, 1987). Mayes et. al.'s {op. cit.)

experiments may be taken to suggest that the user’s long term model is

more conceptually than procedurally based, since the former is intrinsically

53

more semantic along with long term memory. It should also be noted that

the question of levels of granularity comes into the discussion. A conceptual

model of a computer system could conceivably vary in detail from a bit

level representation of a file to a more abstract file concept as a set of data,

just as a procedural model may involve gross level actions such as saving a

file, as well as the key strokes or physical actions required to do this.

4.3 S tate and Functional M odels of a System

The term 'mental model' is used here to denote a user's mental

representation of a system in terms of its internal states and processes and is

therefore used to denote 'how it works' knowledge. The present purpose in

reasoning about users' mental models is the identification of user state

misconception. In order to avoid making context errors, users have to

acquire and maintain some kind of mental model of the system, aspects of

which are constantly changing as a result of the interaction. A mental model

must not only reflect current system states but also an understanding of how

the user’s own actions combine with the functionality of the application to

produce new states. These two aspects of the mental model are referred to

here as the state and functional models.

4.4 M odelling U sers’ M isconceptions

From the system's perspective, a context error is apprehended as a

mismatch between the prevailing system state and some state feature(s)

implied by the erroneous command. For example, the command 'rm myfile'

presupposes inter alia that the file "myfile” exists in the current working

directory. However, we cannot infer from this that the user's state model

has this false proposition as a component. There are other configurations of

the user's mental model which could account for the error. The problem of

identifying user misconceptions is thus one of identifying one from a

number of possible configurations of the user's mental model.

On the face of it, what we have here is a case of diagnosis similar to that

of medical diagnosis, as implemented in expert systems such as M ycin

54

(Chamiak & McDermott, 1985). Presented with symptoms (an erroneous

command), the task is to infer the underlying disease (misconception) by

looking at a set of rules instantiating em pirically derived, m edical

knowledge. However, the situation is significantly different in that the

relationship between symptoms and causes is much less clear in the present

case. Whereas, in medicine, particular, known diseases have associated sets

of known symptoms, no such well-established, empirical links are available

to connect particular errors with the misconceptions which causes them. Not

only is there little empirical knowledge but it is also debatable whether or

not a knowledge base of this kind is even feasible for the present knowledge

domain. The diseases (misconceptions) may be novel and the symptoms

(erroneous commands) only indirectly connected with them. If we do not

know what the possible diseases and their symptoms are, then we cannot

proceed by matching symptoms presented with those that are attached to

known diseases. The process has to be basically a generative one.

It is proposed that the notion of possible worlds can be used to good

effect in dealing with the problem of determining user misconception. A

necessary truth is a proposition that is true in all possible worlds. If a

proposition is possibly true, then it is true in at least one possible world. A

necessarily false proposition (being not possibly true) is true in no possible

world. Thus we can think of propositions which happen to be (not

necessarily) false as being true in some possible worlds. For our purposes,

we are only interested in a certain subset of facts in any possible world,

these being the ones which concern the computer system in question. All

other issues can be gathered under a ceteris paribus clause so that we only

consider possible worlds which differ from actuality with regard to

propositions concerning the states and functions of the system in question.

This means that the possible worlds up for consideration are limited to those

in which the system has the same design, and therefore the same constraints,

on possible state configurations as the the actual system. Admittedly, this is

an arbitrary restriction. It is possible that a user m ight entertain

misconceptions which go beyond the 'physical' limits of the system design,

55

for example, thinking of the directory structure as a network rather than a

tree and thus that a directory could be its own ancestor.

However, the line has to be drawn somewhere if the number of possible

misconceptions is to be less than infinite and it is unlikely that any automatic

(or even human) system would be capable of diagnosing such 'bizarre'

misconceptions from a single erroneous command. In any case, users are

not passive learners and are quite capable of inferring characteristics which

are not directly presented (Carroll & Mack, 1984). The statement of a

general rule of the system flouted by the command, as part of a blanket

response, plus the failure of the command, should enable the user to identify

the area of their misconception at least.

Thus, misconceived system states are limited to those which the actual

system design could support but which happen to be counterfactual. For

example, the command 'rm myfile1 implies a possible world in which {inter

alia) there is a file called 'myfile' in the current working directory. The

system design itself is neutral with regard to the truth or falsity of the

proposition that there is such a file (we might label such propositions

'System Contingent’). System functions are fixed and unaffected by user

actions and so any misconception concerning system function inevitably will

implicate possible worlds in which the system functions in counterfactual

ways. This set of possible worlds is therefore more open ended, in that it is

not restricted to worlds in which the design of the system is identical to the

actual system. There will consequently be a need to somehow restrict the

scope of possible worlds considered, otherwise the search space is

potentially infinite. In fact, the response adopted here for functional

misconceptions is to attempt to identify the system rule which the user ought

to believe but which is not believed, rather than to try to generate the actual

false rule believed by the user. The user is expected to be able to infer from

our statement of the rule that their incorrect rule is wrong, correcting the

misconception indirectly.

The problem of trans-world identity does not arise for us here as we are

interested in all worlds which might correspond to a user's conceptual

56

model. We are just as interested in an item in a particular possible world

which is identical with some item in the actual world as with one which is a

different entity with similar attributes, e.g. the same name.

We can think of these worlds as existing (or subsisting) in a space of

logical similarity. If we imagine the actual world at the centre of this space,

then those possible worlds most similar to it will be closest to it in logical

space and those which differ radically will be somewhat further away. We

will refer to this as logical proximity. The amount the actual world would

need to be changed to transform it into a particular possible world can be

used as a measure of logical proximity.

4.5 The User’s Mental Model

The point of these possible worlds is that they can be thought of as a set

of hypotheses about the user’s model of the world (the system), since they

are ’generated' from a user command which is, we assume, intended to

work, i.e. a command which the user assumes is consistent with the actual

world. The next step is to choose from among a num ber of candidate

possible worlds one which is deemed most likely to correspond to the user’s

model of the system. Logical proximity can be taken as an initial measure of

best fit, since it credits the user with ’distorting’ the actual world as little as

possible. In other words, it assumes the user behaves rationally.

However, logical proximity only gives us a partial aid to discriminating

between possible worlds, since it only addresses one dimension of user

psychology; one which we might call 'conservation'. By this is meant the

natural tendency of the user's model to 'track' the actual world rather than

radically diverge from it, stemming from the user's desire to maintain

control of the interaction and to 'know what is going on’. This use of

possible worlds has similarities with Nozick's (1981). Other factors, such as

failures of short term memory affect the user’s ability to do this and these

need to be taken into consideration so that a measure of 'psychological

proximity' can be determined.

Thus we imagine the set of possible worlds generated by the erroneous

57

command as subsisting in a psychological space and, again, some will be

closer to the actual world than others. Psychological proximity is the

epistemic closeness of a possible world to the actual world. Thus we have to

seek evidence which is held to support or undermine the user's belief in the

various possible worlds compatible with the anomalous command. Of

course, there will be a cut off point for proximity beyond which it is

considered highly improbable that the possible world concerned could be

believed in by any user. This will limit the search space by reducing the

number of possible worlds requiring consideration. (An alternative would

be to pursue a notion of epistemic possibility in order to limit the search

space to those possible worlds which are compatible and consistent with

what the user knows. However, this would require the creation and

maintenance of an extremely detailed model of user belief, which would be

a significant achievement in itself. Therefore this avenue is not pursued

here).

We have noted elsewhere the difference between system state and system

functionality. The latter relates to the rules of the system and is static in

nature, while the former is constantly changing. This means that knowledge

of function is more likely to be stable and less prone to short term memory

limitations. As is evident in the protocol analysis described in chapter seven,

short term memory problems are legion with regard to state information

concerning the UNIX® file system. This leads us to two different types of

justification for psychological proximity.

The kind of evidence required to justify the user's belief in a possible

world where the functional rules of the system are other than the actual

rules will relate directly to the user and will generally be discontinuing. If

a user has negotiated a particular function (F) of the system several times

successfully or has been notified of a certain rule on several occasions, then

a possible world with an 'incorrect' rule (F) is less likely to be that believed

in by the user. Thus a user model of competence or knowledge can be used

as a source of evidence in disconfirming user belief in functionally distorted

possible worlds. Note that a system function may embody several rules and

58

that a single invocation of a function may not involve all of the rules

relating to that function. Thus functional knowledge should be represented

in terms of these rules and not in terms of whole functions.

As state model mismatches relate more often to short term memory

limitations, evidence in support of state-distorted possible worlds is unlikely

to be derived from this source. However, past system states can provide

such evidence of psychological proximity. What we seek is any justification

the user might have for favouring one possible world over another and the

fact that a particular possible world was actual at an earlier time may

provide such justification. For example, if the change that needs to be made

to the actual world in order to transform it into a certain possible world is

equivalent to the 'undoing' of some past user action, this may mean that the

user has forgotten that past action and believes the system state to be that

which would have been the case had that action not been performed. Of

course, these circumstances are also compatible with a possible world in

which the past action does not have the effect of rendering the later action

invalid and that possible world is also a candidate for the user's mental

model and misconception. In order to resolve this ambiguity, we require

evidence to support one candidate over all others. Failing this, all candidates

may assume equal status and so it will be necessary to correct for all of

them and allow the user to identify the information appropriate to his or

her misconception.

4.6 Generating Possible W orlds

A formal representation of a possible world need be no more than a set

of propositions true in that world. As the possible worlds that we are

interested in are ones that will be substantially the same as the actual world,

we can concentrate on the differences rather than the similarities. Thus a

possible world W1 is deemed to be a version of the actual world WO in

which a small number of propositions are altered. How they are altered is

determined by the erroneous command, for we are only interested in

possible worlds in which that command is consistent or compatible.

59

To illustrate this let us take a simple example from the UNIX® file

system. Suppose there is a root directory (A) which contains two

sub-directories (B) and (C) and one file (X). At a certain point, the current

working directory is B and a command is issued "rm X". This command is

incompatible with the actual world, since there is no file (X) in the current

working directory (B). However, there are a number of possible worlds

with which this command is compatible, as represented in figure 1. Unless

stated otherwise, the world Wn is taken to be identical to the actual world.

w i W 2

W 3

fig. 4.2 Possible Directory Configurations

W l: A file (X) exists in directory (B)

W2: (A) is the current working directory.

W3: A file (X) exists in directory (C) and the current working directory

is (C).

,W4: The command frm' can access sibling files.

W5: ...

etc.

60

These possible worlds are generated by a combination of the erroneous

command, the system state and the rules of the system. Such multiple

solutions are a feature of programming languages exhibiting polym odal

parameters such as Prolog (Thimbleby, 1990 p. 352). It is only a matter of

being able to specify commands, system states and system rules in the

programming language in order to generate possible world solutions

corresponding to W l, W2 etc in the form of Prolog facts and clauses.

Given a range of solutions W l, W2,...Wn, it is then necessary to select

the most likely candidate for correspondence with the user's mental model.

In logical space, W3 is less close to the actual world than W l and W2, since

it involves two alterations. In psychological terms, we need to look for facts

that the user might be justified in taking to support a belief in one world

over another. We can characterise this in terms of possible world histories.

The system state is a result of its initial state and its history, in terms of the

events which have transformed it. Any possible world can be derived by

following a possible world history, in the form of some possible

transformation(s), as opposed to the actual course of events leading to the

current system state.

A particular possible world is psychologically/epistemically close to the

actual world if there is a feasible possible world history from some prior

state of the system resulting in that possible world. The divergence between

actual and possible world histories might be constituted by the presence or

absence of some possible transformation. For example, the absence of a

change of directory in some possible world history would result in a

possible world identical to that corresponding to the prior system state,

whereas the presence of some possible transformation in a possible world

history would result in a possible world different to that corresponding to

both the prior and current (identical) system states.

Of course, possible world histories may also differ from the actual in

terms of the number and nature of possible transformations. However, the

notion of psychological proximity demands that possible world histories be

'feasible', in that there be reasonable or rational grounds for belief in that

61

version of history. This would be the case if, for example, there was some

past action whose effects were to make fail the one precondition of the

erroneous command which rendered it thus. If the undoing of a past

command would rehabilitate the erroneous command, this corresponds

conceptually to the situation where a user has forgotten performing the

associated action (or in some cases miscalculates its effects), which

constitutes a feasible possible world history, culminating in a possible world

according with the user's state model of the system as one generated by the

erroneous command.

The question of introducing additional possible world histories through

possible world system mles will not be pursued here. As is indicated above,

this option is seen as introducing vast difficulties, because of its open-ended

nature, and added complexity in the form of criteria for logical and

psychological proximity of possible world rules.

4.7 Conversational Implicature and Possible W orlds

At this point it seems prudent to make explicit the relationship between

conversational implicature and the possible worlds model as discussed

above, as it may not be completely clear to the reader how these two

approaches constitute different views of the same phenomenon. When

conversational maxims are explo ited , as discussed in Chapter two, the

assumption is that the cooperative principle is being adhered to on a

'deeper' level than that of literal meaning. In these circumstances, it is

necessary for the hearer to reason about the utterance in order to maintain

the assumption that it is indeed a cooperative response. For example, if you

ask me what the time is and I reply that the street lights have just gone on,

You would have to reason that I believe that the street lights come on at a

certain time and that I believe that you know (at least roughly) what time

that is, in order to maintain the assumption that my response is cooperative.

Thus, you have constructed a conceptual model for me or, in other words, a

possible world consistent with my utterance's cooperative status. If it

happened to be the case that you did not know what time the street lights

62

come on, you would be able to identify the misconception which led to my

consequently, erroneous response.

In the case of the computer user, we must still maintain the assumption

that the user's commands are issued in the cooperative spirit in order to

make any sense of them. If they make sense given a literal interpretation

then the system can obey them in a straightforward manner. And if they do

not, then it is still possible to assume that the user is behaving cooperatively

but that the behaviour is based on a different world model from that with

reference to which the commands are being interpreted. It makes no

difference that, in the human to human case, the interpretive clues are

deliberately encoded into the utterance, in contrast to user errors. In both

cases, the interpretational process is based upon the relationship between

respective belief systems of the participants in the communicative act. It is

just that the computer system is the participant who is always right and that

(unlike the native speaker) the computer user may also be unaware of the

conventions and maxims associated with the system. Such a user is like the

person who, in declaring that his brother has six children, follows the

perverse maxim of quantity: "Only say things which you know to be at least

true". Any native speaker of English apprised of the facts might deduce

either that the speaker has his facts wrong (state misconception) or his

linguistic conventions wrong (functional misconception). Thus the 'rules' or

functional characteristics of a com puter system correspond to the

conversational maxims of natural language.

The possible worlds model is merely a way of making the relationship

between respective belief systems more perspicacious, by allowing us to talk

of their logical and psychological proximity. In the next chapter the issue of

how such models may be utilised in support of the user's effective

interaction with the system is considered.

63

5. User Support

This chapter concerns issues of user support and the various methods

employed to aid users in learning and utilising computer applications. The

importance of user support, as a factor of usability, is stressed and the

relative effectiveness of various approaches is estimated. The requirement

for intelligence in the interface is identified and some examples of

intelligent interface components are reviewed. The design of an intelligent

interface component, based on the analysis of the previous two chapters is

discussed.

5.0 Introduction

It is not easy to give a simple characterisation of what constitutes the

user interface of a computer system. From a systems perspective

(Kammersgaard, 1990), it can be viewed as those parts of the software and

hardware via which the user accesses the functionality of the system and via

which the system delivers its responses to the user. However, on closer

inspection, it can be perceived that design decisions involved, for example,

in how system responses are to be delivered and the assumptions made

about users and the environment in which the system will be operated are

embodied in the design and contribute to the usability of a system. For in

talking of good and bad interfaces, what we are concerned with is whether

the users of a system find it easy, effective and efficient to use and

moreover, find it useful and hence, use it (Booth 1989, p. 112). It is not

difficult to see how this issue can be extended to include such matters as

64

user consultation in me process tnrougn wmcn computers are introduced

into a working environment by management, training and support services,

ergonomic factors such as seating and lighting and a whole host of

considerations which initially may seem remote to the system designer.

5.1 The Importance of Usability

Although computer science has advanced enormously in the last thirty

years, the general perception of HCI practitioners is that the systems

designer's knowledge and understanding of the user has not changed and

that it is the communication between system and user which constitutes the

biggest obstacle to the efficient functioning of many systems (Booth, 1989).

The problem stems from the historical fact that in the early days of

computing it was necessary to understand how computers work in order to

be able to use them or even to have access to them. Thus the prevailing

user group consisted of a clique of 'cognoscenti' and the use of jargon and

technical terminology became a norm in the production of systems whose

sole users would be members of the clique (Lewis & Norman, 1987).

Unfortunately, these habits seemed to prevail, even as the use of computers

spread and the backgrounds of users became more diverse, so that people

with no knowledge of the internal workings of computers are still too often

faced with awkward data entry procedures, arcane, terse or hostile error

m essages, intolerant error handling and confusing screen layouts.

Consequently, the costs in terms of poor performance, decreased job

satisfaction and even absenteeism and high employee turnover rates are

often a more significant factor than the cost of the systems themselves

(Sutcliffe, 1988; Shakel, 1990).

The study of human-computer interaction involves the analysis and

organisation of these factors with the goal of providing methods through

which designers can deliver more usable computer systems. Having

indicated above that the boundaries of the user interface are not clear does

not prohibit the making of some divisions and distinctions which render the

problems involved in delivering usable systems more manageable - divide

65

and rule has to be the order of the day in any case, as it is rare for any one

person to have control of and responsibility for the enormous range of

considerations which are necessary for the stated goal.

5.2 Intrinsic Factors

Although this discussion is not intended to address the issues of interface

design per se, the main area of concern here being extrinsic aspects of user

support, design issues are bound to arise in the consideration of user errors

and their causes and remedies. The first line of user-support, after all, is

inherent in the way in which the system delivers information regarding

task performance in the course of interaction. It is the responsibility of the

interface designer to ensure, as much as possible, that the application aids

the user in maintaining an awareness of the state of the interaction by

feeding back information relating to the system state and changes in it. The

way that this is attempted varies between systems but two distinct

approaches can be discerned. These are the state oriented approach,

exemplified by the Apple Macintosh, and the history oriented approach of

the command line interface (Cowan &Wein 1990). Originally based on a

hard copy terminal, the command line style of interface, for example the

standard UNIX® interface, presents no state feedback. A successful

command is followed by a return to the prompt, while the terminal screen

or window contains a record of previous commands and system responses

to which the user has access for purposes of inspection, copying or

re-executing commands. In some cases there is a scroll buffer which may

hold the interaction record for a large part of the current session. The

display is not updated to reflect subsequent system states.

In this style of interface, the user infers the current system state from

the history of commands and responses, together with knowledge of how

user actions interact with system functions to produce new states. Although

it is possible for the user to gain more information concerning state

features, for example, by use of the pw d or Is commands in UNIX®, these

tasks are incidental in that they do not represent primary goals, pursued for

66

their intrinsic value. They do not affect changes in the system and are

usually precursors to actions which do. A more usable interface would

obviate die need for as many of these 'incidental' actions as possible. This

can be achieved in part by such means as configuring the system so that the

prompt displays the current working directory, for example, but such

features only deal with a limited range of orientation problems. This style

of interface provides very little in the way of support to the user who has

an incorrect functional model of the system. States will tend to be wrongly

inferred from the history of the interaction if the implications of a

command are not known and errors w ill be compounded as confusion

arises over whether the error concerns system states or procedures.

5.3 State Oriented Feedback

In contrast to the command line style, the state oriented interface, often

referred to as the direct manipulation or WIMP (Window, Icon, Menu,

Pointer) interface, displays a graphical representation of certain aspects of

the current state, which is updated as events in the shell are received. The

display must contain enough information to enable the user to infer the

state information required to predict the outcome of any command.

However, it is possible to present only part of the system state and users

may execute commands in order to obtain more information. These actions

inevitably alter the system state (the probe effect). The existence of desk

accessories such as 'Find' and 'Locate' also suggest certain shortcomings in

the state oriented approach, since they supplement state information

provided by the interface.

The state oriented interface is more explicit or revealing in terms of the

effects or implications of actions in that they are often graphically

represented as they occur. However, these are once-and-for-all, fleeting

events and there is no intrinsic potential within the state oriented

philosophy for relating current situations to past events as part of any

explanatory capabilities, as there is in the history oriented approach.

If it is unreasonable to expect direct feedback to provide all of the

67

operational Knowledge mat any user mignt need m me course or mteraction

(and the view here is that it is), then the user must be provided with

alternative means of accessing the required information and acquiring the

relevant skills. There are a variety of ways, with varying levels of success,

that this extrinsic kind of user-support can be achieved and we turn now to

a review of these.

5.4 Training

It is very reassuring to have expert advice on hand when learning to use

an unfamiliar piece of equipment and much frustration and annoyance can

be avoided when this facility is available. Good training courses will

provide a structured introduction to the system to be learned, allowing new

users to progress at an optimum rate and in a relatively smooth manner.

They also allow users to combine a variety of learning strategies into the

overall learning process. Instruction and documentation is usually heavily

supplemented with practical experience in performing realistic tasks and

the problems in understanding which are inevitably encountered can be

dealt with relatively painlessly by the tutors. The opportunity for discovery

learning is often possible within this framework, allowing users to

consolidate and extend their knowledge by their own efforts in attempting

to predict aspects of the functioning of the new system. This mixed method

of learning is something of an ideal in that a number of approaches can

address different learning strategies within individuals (Carroll & Mack,

1984). However, training courses are expensive and usually introductory in

nature. Although they can provide a useful start for the new user of a

system, users tend to forget less well used procedures and functions and

courses rarely provide ongoing support for such eventualities. The quality

of courses will also obviously vary.

5.5 Documentation

Paper documentation is the most basic form of extrinsic user support

and most modem systems and application software comes with at least one,

68

ii not a set or user manuals ana pernaps tecnmcai system documents tor tne

system administrator/installer. User manuals are now commonly divided

into 'getting started', tutorial and reference sections covering the various

aspects of system or application functionality and use. The division between

tutorial and reference materials reflects the how to do it / how it works

distinction often found in discussions of user's procedural vs conceptual

knowledge (Carroll, Aaronson 1988). It has been found that new users

perform better when presented with as small a manual as realistically

possible, rather than a lengthy one containing detailed explanations, and

that performance in realistic tasks is improved if such so-called minimal

manuals encourage the user to infer some of the information about the

system instead of explicitly stating it. This phenomenon is probably due to

the enhancement of conceptual knowledge that inferential reasoning about

the system brings (Black & Carroll, 1987).

Although the quality of written manuals has shown some improvement

in the last ten years, their effectiveness remains minimal for a number of

reasons. Firstly, the use of a manual is often seen by users as a nuisance

rather than a facility since it takes them away from their primary goal; the

task they wish to perform using the computer system (Carroll, &

McKendree, 1987). If they are used at all, it will often be as a last resort, a

necessary evil, when all direct attempts to achieve the desired goal have

met with failure. Secondly, manuals are static and cannot adapt to the users'

level of knowledge or the specific nature of their query; bad habits,

inefficient usage and lack of knowledge about facilities are not addressed

and users have to recognise the need for help and be able to formulate it in

a way that fits the organisation of the manual (Erlandsen & Holm: 1987).

Thirdly, whereas the tutorial type of exposition of some user manuals is

predicated on the idea of 'active learning', this approach actually does not

alter the basically passive role of the user in following a set of instructions.

Too often users complete the relevant task w ithout gaining any

understanding of what it is they have done. Lastly, user manuals are often

misplaced, lost or anonymously borrowed and thus cannot always be relied

69

upon as a source ox support.

5.6 O n-line S u p p o rt

On-line documentation has the advantage that it will not normally be

removed from access by the user and can be called upon at any time

without the user having to move from the computer. However, it has a

number of disadvantages. In common with paper documentation, it is static

in nature and cannot adapt to the users state of knowledge and formulation

of the problem. The user must be able to translate the problem to suit the

structure of the on-line system in order to make best use of it. Also, in

some systems it is necessary to scroll through large volumes of text in

order to find the desired information.

Where on-line documentation allows the user to specify a topic about

which help is sought, the topic typically has to be specified in system terms

rather than from the user’s perspective of the problem. For example, the

UNIX® 'man' command must be supplied with a proper UNIX® command

and so the user must know which command relates to the question in hand.

So-called 'context sensitive' on-line docum entation presents only

information pertinent to the current state or mode of the system, thus

limiting the volume of material requiring sorting and menu driven on line

help systems can provide a more structured access to information but,

again, it is difficult, if not impossible, to make these systems adaptive to

particular situations (Houghton, 1984).

In a more active vein, some systems provide prompts to the user if the

required input is not forthcoming. For example, VAX/VMS will prompt

for missing parameters in a command. A more sophisticated kind of

prompting is implemented in Interlisp’s DWIM (Do What I Mean) where

incorrect input is interpreted via a spelling corrector and the intended input

presented to the user for confirmation {op. cit.). In some cases DWIM will

auto correct without consulting the user but this can produce unexpected

results (Lewis & Norman, 1987).

70

5.7 In telligen t Help System s

The shortcomings of the kinds of user support described above have

prompted many attempts to provide users with the kind of help facilities

which might be expected from a human expert, without the associated

costs. Some of the perceived qualities of such a system are the abilities to

answer natural language questions submitted in the user's own terms,

diagnose incorrect or inefficient user procedures and extend the user's

knowledge of the system by introducing untried facilities.

There is, of course, a great deal of overlap between automated help and

coaching or tutorial systems. Both are intended to promote in the user

facility over a domain of knowledge or skill and in both, the topic within

the knowledge domain addressed may be determined by the user, whether

implicitly or explicitly. The main differences are that the knowledge

domain of a help system will always be internal, in that the information

provided concerns the use of some application, as opposed to being

external, where the inform ation concerns matters unrelated to the

application in use. Thus, a user of a word processing package will receive

help about that package and its use, whereas the coaching within an

automated tutorial system will concern not the coaching system itself but

some other sphere of knowledge or skill. Also, in the help system context,

the interaction is always bona fide, whereas a tutorial system may take the

user through specific tra in ing exercises and 'sim ulated' or 'dummy'

interactions.

Intelligent user support can also be classified according to a number of

other criteria. Systems may be passive , requiring the user to recognise the

need for help and to request it, or a c tiv e , where the need for help is

recognised by the system. They may be static, in that the content of the

information that they provide does not change as a result of the interaction,

or dynamic, wherein the help provided is modified as a result of the

interaction being monitored. Modifications may address both the content of

information being accessed and its presentation. For example, poor user

performance might require the help system to access low level knowledge

71

bases and to present detailed information, whereas a user designated an

expert might need only brief messages on advanced topics. A mapping of

these help system characteristics to users’ information requirements is also

possible (Lutze, 1987). In general, the attribution of intelligence is taken as

the ability to address wider issues than the literal meaning of a user's

command or action and involves the use of knowledge-based techniques

(Jones & Virvou, 1991).

The knowledge bases required by an intelligent help system concern the

application itself, the user and help strategies for what the the user needs to

be told. As well as some representation of the objects and available actions

within an application, the application or user knowledge bases may also

contain information concerning possible goals and plans, which may

encompass a number of commands or actions. These plans may be

predetermined or generated in real time by a planning component. The

user model will typically model transient and persistent user knowledge,

user misconceptions and attributes such as whether the user tends towards

serial or holistic learning, for example. The help strategy knowledge base

is responsible for providing information which guides the help system's

side of the dialogue. The decision as to what to say and when to say it is

determined partly as a result of the contents of this structure.

The provision of intelligent help is not only beset with a large number

of issues and problems but is further confounded by the fact that very few

of these can be tackled in isolation from the others. Most investigations of

intelligent help address only a few aspects in the overall scope of the

possible number of questions and do so in a restricted interaction context

and there is little in the way of a generalised theory of intelligent help or

exhaustive empirical data (Carroll & McKendree, 1987). As noted above, it

is generally acknowledged that an intelligent help system needs knowledge

of the user in the form of a user model but it is far from clear what user

characteristics are appropriate or necessary. Would it, for example, be

useful to model users' irascibility levels in order to determine the level of

interruption by the help system that would be tolerated? W hat the system

72

determines as helpful information may be received by the user as an

infuriating interruption. A possible corollary is that all messages are

ignored which might lead to a catastrophic error. This might be termed the

'crying w olf problem.

Models of user knowledge need to address the fact that people do not

leam merely by adding facts to a factual database. Learning is an active

process wherein hypotheses are tested and revisions made on the basis of

exploration. Prior experience is also brought to bear on the interpreting of

novel situations (Carroll & Mack, 1984). More generally, it may not be

possible to determine whether normative or stereotypical user models are

adequate, except in relation to a particular help system function. The

various issues in question have a great tendency towards interdependence.

There are often interpretational problems in modelling user intentions,

plans and goals, owing to non-contiguity, non-linearity and ambiguity in

authentic plan execution (Finin, 1983). Users will often change, suspend or

abandon plans in mid flow and the relationship between plans and

sequences of action is often many to many. Even human observers cannot

always correctly interpret user actions, with the enormously greater

interpretational facilities they have over any conceivable automatic system.

The problem is exacerbated in situations where the task space is large and

open-ended.

The active!passive distinction is itself perhaps oversimplified. Once help

information has been presented there may well be a need to test its

effectiveness or to allow the user to clarify or extend certain points. Studies

of human help dialogues have found that users often propose answers to

their problems by way of a request for help (Aarronson & Carroll, 1986).

If these studies are relevant to the HCI context then a mixed initiative

dialogue structure is suggested. Similarly, the level of control exerted by

the system over the interaction has to be considered. A help system may

merely advise or it may block further interaction until the user conforms

to some recommendation or possibly auto-correct user errors. W hich of

these strategies is appropriate and in which situations has not been

73

determined. The timing of help provision is also a critical factor, given the

dynamic nature of human action (ibid.).

On the positive side, it is reasonably clear that help systems which

respond immediately to user errors are most effective, since the users

attention is focussed on the topic concerned in the help message and the

correction is closely attached to the decision point (ibid.). Users tend to

ignore information which does not seem to them relevant to their current

concerns. Thus it is also better to present information in terms which relate

it to the user's current task or action. Users leam to recognise dead end

situations if they have been allowed to encounter them, conforming to the

exploratory characterisation of learning. They also appear to leam more

effectively by pursuing their own goals rather than a sequence of

instructions, also suggesting that help information should address the user's

current task (Carroll & Mack, 1984). Of course, this will tend to lim it

users’ mastery of the functionality of a system to that pertaining to their

current goals and plans. The aim of expanding user expertise beyond the

scope of users' current goals and plans is an important one but one which

lies more within the bounds of tutoring than assistance.

5.8 Examples of Intelligent Help Systems

UNIX® Consultant (Wilensky et. a l., 1988) is a passive help system

which accepts natural language queries from users and generates natural

language responses. It is intended to help users leam about UNIX®

concepts and functionality via these user-initiated dialogues. Users’ plans

and goals are identified from the user query and by reference to a static

stereotype model of the user as a novice, beginner, intermediate or expert.

UNIX® concepts are ranked in terms of relative difficulty and thus each

classification is supposed to be familiar with a certain class of concepts.

Conflicting evidence of user classification can override inheritance of class

concepts. UNIX® Consultant (UC) operates separately from the user's

principle interaction and thus cannot relate its responses to specific states or

conditions in which users might find themselves. UC cannot therefore take

74

into consideration any particular contextual feature which may militate

against the advice it presents. It can only generalise from the rules

governing UNIX® usage. Each query is treated in isolation so that a

dialogue consists of a query and a single response, without any reference

being possible to a previous dialogue. The main thrust of UC has been to be

able to handle user queries in a variety of syntactic forms and sentence

types and in interpreting indirect speech acts embodied in such queries as

'do you know...’, where there is an implicit request to be given the ellipted

information.

AQUA (Quilici et. aL, 1988), also based on UNIX®, is intended to

detect and correct users' plan-based misconceptions. The idea is not merely

get the user out of trouble but to correct the belief which led to the

difficulty. AQUA assumes a description of the user's problem in terms of

what action was being attempted, what went wrong and any hypotheses the

user might have about the error, so AQUA is a passive help system. AQUA

utilises knowledge of plans and goals and typical user misconceptions in

order to find a user belief about the system which it does not share. It then

determines why it does not hold that belief and this reason is used in the

explanation to the user. Rules of the system are explicitly represented in

terms of what actions achieve, what states enable, what actions cause by

way of side effects and what states preclude and so AQUA can address state

and function-based user misconceptions. The user modelling component

transforms the problem specification into a set of propositions representing

what the users relevant beliefs might be. One or more of these is identified

as being a belief that AQUA does not hold and the reason for this used in

the advice preparation. A focussing m echanism, based on explicit

knowledge about plan failure, is used where possible to limit the set of

beliefs which AQUA has to consider from its own knowledge base. For

example, if the user quotes an error message, then this can be used to index

certain of AQUA's beliefs as relevant. If these beliefs do not provide an

explanation, the whole knowledge base has to be considered.

Eurohelp (Breuker, 1988) is both an active and passive help system

75

designed with the aim of providing immediate assistance in a manner

appropriate to the type of user, rather than that of performing sophisticated

reasoning about the users’ conceptual model. To date, the active component

has been applied to UNIX® mail and the editor Vi. The performance

monitor scrutinises sequences of user actions in order to diagnose incorrect

or inefficient plans. User commands are checked for legality and usefulness

and, if passed, compared with inform ation from a plan library to

determine if they fit into a recognised and optimum plan sequence.

Eurohelp utilises an overlay user model consisting of a subset of the plan

hierarchy which the user is considered to be fam iliar with. This

information can be used to limit the search space of possible plans the user

might be pursuing. The goal of the user's plan picks out an optimum plan

and this is compared with the user plan to determine whether the user’s

plan is optimised. An illegal or useless command or one which does not fit

into a recognisable plan, or an inefficient plan triggers Eurohelp's advisor

which attempts to diagnose the problem as either lexical, syntactic,

semantic, mode, catastrophic or planning error and advice is generated

accordingly (Erlandsen & Holm, 1987). Semantic error concerns the

existence of objects referred to by a command but it is not clear how

Eurohelp treats other contextual factors. The em phasis here is on

plan-based errors.

A number of projects pursue a plan recognition based format. SINIX

(Hecking, 1987) is another UNIX® active help system with similar

plan-based facilities to Eurohelp, SUSI (Jerrams-Smith, 1985) bases similar

help facilities on a wide range of typical UNIX® user errors and so uses no

systematic error classification. FITS-2 (W oodroffe, 1988), PRIAM

(Davenport & Weir, 1986) both use similar plan recognition techniques in

order to identify user plans and goals. REASON (Prager et. al., 1990) is an

intelligent assistant which is designed to address a number of different

kinds of user error. An inference engine dynamically generates suggestions

about what the user might have intended when an error is detected.

Context errors of the kind central to the current discussion are one of

76

tfte error types dealt with by K b A S U J N . However, K E A S U J N has no

mechanism for deciding between causes of error or diagnosing user

misconceptions. All possible causes are equally valid and information

regarding a number of possible meanings might be presented to the user.

The view presented here is that this contravenes the communicative

principles of conciseness and perspicuity (i.e. the maxims of quantity and

manner) and that at least an attempt should be made to give a precise

diagnosis. Other user support systems address the issue of context from

different perspectives. The use of navigational aids for Hypertext uses

features such as context-sensitive graphical presentation variation, history

traces, overviews, time stamps and footprints (Nielsen, 1990). Some tasks

have the property of 'cognitive viscosity' (Young, 1991) where some

alteration has implications for other parts of the system. For example,

changing a variable name in BASIC means that all instances of that variable

need to be updated. Viewdata editing can have the same consequences since

pages within the system may be related. If information on one page is

altered, it may entail updating for others.

Young and Harris (1986) report on the design of an assistant which

maintains and displays a list of implications, based on the edits performed

with such a viewdata editor and thus reduces the load on the user's short

term memory. The assistant also orders these tasks for convenience. Mode

error differs from context error (as defined here) in that it is a semantic,

rather than pragmatic, phenomenon as can be discerned by the use of the

phrase mode ambiguity. A situation of mode ambiguity arises when an

action has more than one meaning depending on the state of the system.

Context errors are not caused by multiple meaning. Mode errors are

therefore not seen by the system as errors at all. They are errors in that the

user and the system assign different meanings to a token because of the

mistaken belief concerning the system state. Mode errors can be reduced by

removing mode ambiguity either by increasing the 'width' of the interface

or restructuring the functionality of the system. The problem may also be

addressed by the use of mode signalling techniques (Monk, 1986)

77

5.9 The Design of an Intelligent Context Error Assistant

Jackson and Lefrere (1984) suggest that an explicit representation of

user intentions is required for intelligent help and that the best possible

context for interpreting user actions is the current state of the user's plan.

They offer a rule-based approach to this endeavour, based on a view of

effective interaction being determined by 'communicative competence'

characterised as the 'appropriateness of expressions in situations'. These

views find some sympathy here. However, while Jackson and Lefrere

address the business of interpreting user actions with reference to the

context of the user's plan, it should be stressed that the ascription of

intention can only be an hypothesis and is entirely bound up with the

ascription of belief and the assignment of interpretations to expressions.

In other words, assigning interpretations to another's utterances and

ascribing beliefs and intentions are parts in a single project. One cannot

complete one part without performing the other. (Davidson, 1984: p. 127).

Someone who drinks a glass of water may be interpreted as believing the

glass to contain water and being thirsty or believing the glass to contain

poison and being suicidal, along with any number of other interpretations.

The action cannot be made sense of without reference to intentions and

beliefs. Thus to form hypotheses about intended meanings by making

assumptions about non-linguistic intentions is just to choose a particular

interpretive strategy. The strategy adopted here is to ascribe beliefs by

making assumptions concerning intentions. The assumptions made are that

the expressions used can be assigned literal interpretations and that their

perlocutionary force (Austin, 1962) reflects the intentions o f the

user/speaker. The non-linguistic context interacts with that presupposed by

the utterance to allow inferences to be made about beliefs concerning that

context. The reader is invited to compare this linguistic description of the

process with that given in terms of mental models and possible worlds in

Chapter four.

Another aspect of Jackson and Lefrere's approach which finds favour

78

here is the use of rule-based techniques. As they point out, although large

rule-based systems present problems of control, they also offer great

flexibility, both in being less context-bound than higher level knowledge

representations such as scripts and frames and in being construable

variously as descriptions of expert knowledge or system rules, causal

explanations or plan generators. We have earlier described the problem of

context error in terms of pre- and post-conditions on user actions and so

the rule-based approach seems most appropriate for the representation of

this kind of knowledge. There is also the prospect of being able to use this

knowledge base both for the diagnosis of user misconception and for the

provision of help information on user errors, although the latter aspect is a

non-trivial issue and is not considered central to the present work.

The help system under consideration requires access to two basic kinds

of knowledge: knowledge of the system state and knowledge of the system

'rules', in terms of the requirements imposed on the system state by

commands issued by the user and the effects or changes which successful

commands achieve; the pre- and post-conditions of commands. It also has

to know how to interpret commands. A command can be seen as a speech

act conveying an attempt to change a state of affairs, to make some

proposition true. In the context of a command language file system, this

may be an attempt to alter the system state in terms of the file and

directory structure or attributes or to alter the state of the display in some

way, as when a directory is listed or the current working directory (cwd)

identified.

There are a number of formalisms which might be employed for the

model of this knowledge; predicate calculus for the modelling of system

state and production rules or Horn clauses for the modelling of system

rules. However, the logic programming language Prolog provides a

convenient notation for both these models as well as providing a way of

expressing the altering of states of affairs via the a ssert and re tra c t

functions. Thus a command can be treated as an attempt to assert a

particular proposition (or perform a write to the screen) but while Prolog

79

itself will allow any legal proposition to be asserted, our sub-system will

impose the conditions applicable to the UNIX® file system on what can in

general be asserted, how it must be asserted and what other propositions

must also hold for a particular assertion to succeed. Throughout the

following discussion, therefore, the Prolog notation will be used as a

formalism for the knowledge domain in question. English renditions of

Prolog clauses are provided for the reader unfamiliar with this notation.

Representing the system state presents the simplest problem, since this

can be achieved with a set of Prolog clauses. For example, the existence

and attributes of an extant file can be indicated by an instantiation of the

following clause:

file(N am e, M ode, Parent).

As a query, this would unify with a 'fact' in the database such as

f ile (le tter ,7 7 7 ,Ie td ir) .

This clause represents the situation that there is a file called ’letter* in

the directory Tetdir* which is not read, write or execute protected for any

user. Prolog uses names beginning with upper case letters as variables and

those beginning with lower case as constants. By asserting similar clauses

for directories, the state of the whole directory structure can be inferred

from the links between parent and child. Other clauses will represent such

things as the identity of the cwd. Of course, the above clause, by the nature

of the file system, entails that there is a directory called Tetdir* which

might be represented by the clause:

directory (le td ir ,777 ,root, [le tter]).

This is not the place to consider details of implementation but it should

be pointed out that the reciprocation or redundancy involved in showing

80

’letter’ as one of the children (actually, the only child) of ’letdir' as well as

showing 'letdir' as the parent of 'letter' is not logically necessary but may

be required to reduce processing and thus speed up inferences. However,

redundancy has its costs and a valid command indicating deletion of the file

'letter' should result in the removal or retraction of the above file clause

an d a modification of the directory clause to remove 'letter' from the list

of children. There is a great deal of freedom and flexibility in the way that

knowledge can be structured using such techniques and decisions have to be

made on the basis of achieving control objectives and architectural elegance

and clarity. However, only issues directly governing the effectiveness of a

design in terms of the central aims of this project are considered here.

The rules of the system are a good deal more complicated to express

and must include reference both to the preconditions which must pertain

for a command to succeed and the effects or consequences of successful and

unsuccessful commands. Let us suppose that the UNIX® command is

translated into the notation of a Prolog query (a fact presented for

unification or pattern matching to the Prolog database). For example, the

preconditions relating to changing the current working directory with the

command "cd <directory>" might be represented as follows:

cd (X):-

no t cwd(X),

d ir e c to ry (X,

cw d(Y),

p aren t(X ,Y); child(X ,Y), execute(X).

This states that

"cd(X)fl is tru e or succeeds if

X is not already the cu rren t w orking d irec to ry

and X is an existing d irectory

and w here Y is the cu rren t w orking d irec to ry

X is the p a ren t o r child of Y

81

and X has execute perm ission..

The satisfaction of these preconditions must lead to the appropriate

consequences for that particular command. In this case, that would mean

the retraction of the clause relating to the identity of the current working

directory and the assertion of a clause to the effect that the directory

currently instantiated in the variable X is the new current working

directory:

re tra c t(c w d (0 1 d)) ,

a sse r t(cw d (X)).

If one of the preconditions fails, then it is im portant that its

characteristics are noted as this constitutes the system's view of the context

error and the starting point for the identification of user misconception.

For example, if the cwd turns out to be neither the parent nor child of the

'target' directory, then it may be assumed that the misconception concerns

some aspect of the directory structure, identity of the cw d (state

misconception) or the rules for changing directory themselves (function

misconception). Ideally, it would be desirable to be able to address multiple

precondition failures so that all incorrect aspects of a command could be

indicated at once, in line with the demands of cooperative communication

but, although this ideal should alm ost be obligatory in any real

development, it is not considered imperative in the present research context

as its contribution to improved dialogue would seem to be a separable

component.

Any failed precondition will, o f course, effectively block the

consequences or post-conditions of the command. In this example, the cwd

will not be changed. The failure will also trigger the help system into an

attempt to diagnose the misconception lying behind the error. As described

in Chapter four, this consists firstly in generating a set of misconception

hypotheses and secondly in attempting to cull evidence in support of one of

82

these over the others. The former involves the generation of models of the

system which are compatible with the command. These possible states of

the system are not only ones where the unsatisfied preconditions are met

but also ones which would otherwise render the command acceptable and,

like the unsatisfied preconditions, can be generated using the rule base

itself. By substituting variables for constants in the rules governing

directory changes, we can generate the instances when the command would

succeed. For example, if the argument supplied to the cd command (say x)

remains the same but the argument for the cwd is left open as a variable,

then the rule governing directory changes will unify that variable with all

of the possible successful combinations of cwd with x. Actually, this is an

exploitation of the polym odal properties of Prolog and is not a feature of

rule based systems as such but this use of 'rules' for a number of purposes

is as described above.

Suppose then that a set of such counterfactuals is generated. It remains

for the assistant to attempt to determine which of these 'distortions' of the

actual system state corresponds to the user's mental model and so identify

the misconception. As detailed in Chapter four, for state misconceptions,

the strategy adopted here is to look for evidence that the user is more likely

to believe one scenario over the others. One kind of evidence comes from

the log of past commands which is maintained by the assistant system. If the

counterfactual system state is found to correspond with a previous system

state, then this is counted as evidence for belief that that state pertains. This

is motivated both by casual observations of users and by general features of

short term memory. The log really represents a record of past system

states. In practice, it is easier to maintain a record of state changes in the

form of a representation of successful commands than one of previous

system states, since the latter would involve a great many more 'facts'. It is

a simple matter to check through such a record for a command which

altered the system state in the relevant way.

We have noted that a context error can be caused by a misconception

concerning system functions as well as system states. The directory change

83

failure could arise from a misconception about the preconditions applying

to the cd command. In such cases, it may be adequate merely to state the

violated misconception rather than attempting to diagnose the precise

nature of the misconception. As the rules of the system are fixed, there is

not the possibility of a misconception corresponding to a possible system

rule and therefore less available evidence in support of one possible

misconception over another. A library of typical misconceptions might be

useful for this purpose. Indeed, the user protocols recorded in Chapter 7

tend to indicate typical misconceptions concerning, for example, the

construction of pathnames. Neither would the linguistic paradigm rule out

the relevance of this kind of knowledge or knowledge of user expertise to

the interpretative process. However, these lines of inference are not

pursued further in the current project.

As noted in Chapter four, in many cases it may be adequate to provide

information regarding the actual system state or rule relevant to the

unsatisfied precondition in order to address the misconception, allowing the

user to make the necessary connections. There is evidence to support the

idea that users’ learning can be aided by being encouraged and guided in

thinking about the system's workings rather than always being 'led by the

nose' (Carroll & Mack, 1984; Black & Carroll, 1987). In some cases, it

will not be possible to determine the precise nature of the misconception, as

can happen in everyday conversation. The assistant can only help according

to the quality of information at its disposal and, on occasion, the only

option will be to present information which addresses a number of possible

misconceptions, perhaps inquiring first if the user would like assistance.

Where there are a number of competing candidate misconceptions, the

heuristics outlined in Chapter four may be called upon. The assistant is

unlikely to be able to form misconception hypotheses for any user with a

radically distorted view of the system, since there is likely to be little

discernible connection between the system, the user's conceptual model and

the erroneous command. In such situations, the assistant will be obliged to

present information which addresses all likely misconceptions, requiring

84

the user to identify the appropriate one.

However, the assistant has to treat the user as a (fallible) rational agent

in treating the user's commands as rational responses to a combination of

intentions and beliefs. Overall, there is a tendency or entropy towards

rationality in that the more radically someone's beliefs about the world

differ from ours, the less likely it is that we will be able to make sense of

his utterances. We cope with discrepancies in someone’s use of our

language so long as we can interpret that use against a body of assumed

shared belief. Similarly, the assistant's hypotheses will tend to maximise

this shared belief, in that hypotheses concerning user misconceptions will

be rated on a scale relating to the amount of distortion from reality they

involve. Thus, misconceptions about the identity of the cwd will be rated

highly since these consist in minor distortions in the system state, whereas

changes in the directory structure involve greater degrees of distortion. In

this way, logical and psychological proximity (see Chapter four) are the

rationalising principles which guide the assistant's reasoning.

The next chapter describes a concrete implementation of these ideas

aimed at evaluating their application and effectiveness in live interaction

between users and a computer system.

85

6. Implementation

The implementation of a test bed, prototype interface, as part of a

simulation of the UNIX® file system is described in this chapter. This

simulation is used for evaluation purposes in the research. The processing

which the user support component undertakes on user errors is explained,

as are any deviations from the design. Some explanation of the program

code found in appendix A is included to enable the reader to refer easily to

this if required.

6.0 Introduction

Since the research findings which provided part of the motivation for

this project were based on studies of UNIX® use and in order to be able to

evaluate the approach advocated here, a simulation of the UNIX® file and

directory system was designed, to which could be attached any data logging

software, as well as the proposed help system implementation, based on the

analysis of context error detailed throughout this text.

Following the rule-based methodology described in Chapter five, all of

the software was written in AAIS Prolog on an Apple Macintosh II. Prolog

was chosen because it provides a clear and easy way to represent rules and

states of the simulated system. It also allows the possibility of generating

counterfactual states and rules in line with the possible worlds approach to

misconception identification outlined in Chapter four. The code is portable

apart from one or two routines which use Macintosh operating system calls

in order to disable the mouse pointer and menu bar and read the system

time and date. The complete code can be found in Appendix A.

86

6.1 The UNIX® File System

UNIX® has a hierarchical directory structure wherein directories are

nested to an arbitrary level. Files are always leaves in the directory tree,

whereas directories may also be branches. UNIX® provides a number of

commands to allow the user to set up, view and manipulate the directory

and file structure to taste. The simulation does not provide all of the

UNIX® facilities and omits those applying recursively, m ost of the

command options and restricts copying and moving to files only. It was not

necessary to include all of the UNIX® functionality or to follow the

UNIX® design slavishly, since evaluation subjects were to be chosen from

a novice population who would not be experienced enough to use advanced

features.

Certain variations were also included so that any experience of UNIX®

would not provide a subject with complete familiarity with the simulation.

The copy (cp) and move (mv) commands were restricted to take only files

as arguments and not directories. This was done in order to complicate the

users’ task of restructuring the file system so that errors would be more

likely. The simulation was designed to be complex enough to present a real

challenge to novice users, without overwhelming them with an extensive

range of complex operations. Thus, in the simulation, there are only ten

available commands which are described in the simulation command

summary given to subjects in evaluation exercises and reproduced in

appendix G.

6.2 The Simulation

At the top level, the software comprises a prompt generator and control

section. The control section sets up the environment and calls other

program components which perform various functions w ithin the

simulation and the help system. The first simulation component is the

command parser. The parser is actually comprised of the files 'input',

'service' and all of the '...server' files. The parser has to take the input

87

stream and divide it into command line components. Since the application

of rewrite rules are restricted by the presence of certain symbols, the

grammar of the command line is context sensitive and can be formally

represented as follows:

commandline —> lone

commandline —> single + " " + path

commandline —> double + " " + path + " " + path

commandline —> "chmod" + " " + mode + " " + object

path —> filename I dimame I dimame + 7" + path

object ~ > filename I dimame

filename —> string

dimame —> string

string —> alphanum I alphanum + string

alphanum --> {V ’-,,z ,7 ’0M-,,9M}

lone ~> {"Is”, ”ls -1", "cd", "pwdM}

single - > {"ls’V’ls -1”, ’’cd”, "mkfile", "mkdir”, "rmu, "rmdir”}

mode --> {M000M,,,100M,M200n,M300M,M400,,,M500,,,n600,,,,,700n}

double ~> {"cp'V'mv"}

The parser turns command lines into Prolog lists so any paths can be

processed recursively until a target object is identified at the end of the

path. The command is processed by the v a lid c o m m module which

identifies it as valid or not. If the command is valid the rest of the

command line is passed to individual modules dealing with arguments

relating to that command. Facts for error type and erroneous arguments

are asserted by each processing routine if an error is encountered. The

possible error types have been identified as follows in accordance with the

error typology detailed in Chapter three.

88

6.3 UNIX® E r ro r C lassification

Lexical e rro r - The command word itself is not recognised. Lexical

errors cannot apply to object names as these are user defined. Mis-spellings

and typing errors may show up as syntax errors or reference failures.

Syntactic e r ro r - The command line does not follow the correct

syntax of the above grammar. Too many or not enough spaces and

incorrect path separators fall into this category.

Logical or Sem antic e rro r - The action specified does not 'make

sense'. Attempts to list a file with the "Is" command or remove a directory

with the "rm" command are of this type.

Context or p ragm atic e rro r - The system is not in a state for this

otherwise correct command to succeed. These fall into four sub-categories:

Reference failure - the specified object does not exist in the specified

directory.

Privilege failure - the specified object is protected from the specified

operation by its current mode value setting.

Non-empty - an attempt to delete a non-empty directory has been made.

Duplication - all object names must be unique. An attempt to create a

duplicate name gives this error.

6.4 The D atabase

The database that the simulation maintains does not include 'real' files

corresponding to those manipulated by the user. Instead, the directory

structure is simulated as a set of Prolog facts. This is updated as specified

by each successful command from the user. All of the user's commands are

time stamped via a Macintosh operating system call and recorded as Prolog

facts and this part of the database is automatically written to disk when the

user logs out, along with the directory structure clauses, counts for the

different types of error committed and elapsed time since the user logged

89

on. These log files may then be scrutinised at a later time or could be used

to replay the user's whole interaction if required, although this was not

considered necessary for the planned evaluation exercises. Erroneous

commands are marked in the database with their error type, the current

working directory and the arguments which caused the error. Again, this

aids in the later analysis of errors.

6.5 E r ro r A nalysis

After each command line has been processed and the command

recorded, the analyser module is called. If an error has been signalled, the

analyser first checks the kind of error. If the error is of the type falling

under the class of context error, then the analyser scrutinises the

interaction log, via modules dedicated to finding evidence of particular

kinds, for a past action which might constitute user justification for

believing the erroneous command to be compatible with the system and its

current configuration.

In theory, the analyser should generate a set of total system states

(possible worlds) compatible with the erroneous command and then select

from these candidates for the user's mental model of the system, using the

principle of conservation or logical proximity (preferring states most

similar to the actual state) and looking for evidence that might indicate one

over the others. In practice, a heuristic is applied to lessen the amount of

processing required to produce a m isconception diagnosis. This

implementation of the process of analysis is still as strong as the analysis

criteria as they stand. Any development of the criteria might, of course,

require modifications to or perhaps even abandonment of these heuristics.

Any past action whose undoing would rehabilitate the erroneous

command is taken as evidence for the hypothesis that that action's effects

have not registered in the user’s mental model. This evidence thus provides

support for the idea that the user's mental model corresponds to the

possible world in which the effects of that action are negated. In order for

the state to change, there must have been a user action which changed it and

90

this action will be in the interaction log. Thus this action can be found by

the analyser and determined as the (probable) causal antecedent of the

error indicating that the user's mental model of the system is out of

correspondence with reality in this respect.

An output routine notifies the user of the mismatch and the action which

it deems to be the likely cause, quoting the actual arguments used in the

erroneous and causally antecedent commands. This is important in three

respects. Firstly, it presents error messages in terms the user is familiar

with i.e. the names of the objects being manipulated, rather than in system

terminology abstracted from those objects e.g. 'pathname1. Secondly, the

user is informed of the connection between the antecedent action and the

current state, thus demonstrating or reinforcing a correct device model by

illustrating the relation between the effects of one command and the

preconditions of another. Thirdly, this 'tutorial' information is presented at

a time when the user is focussed on its subject m atter, in actually

attempting a task which it relates to.

The analyser does not currently address misconceptions concerning

system rules or those having no relation to some causal antecedent user

action. The help system would no doubt be strengthened considerably by

these additions. A fully developed version of the help system would also

eschew the heuristics used here and follow the design more closely in

generating system state hypotheses and using the stated selection criteria.

However, this has not been possible owing to time constraints.

6.6 E rro r M essages

The error messages that the help system (QDOS) generates are designed

on the basis of a three part strategy. This is intended to compensate for the

fact that rule-based errors are not addressed in this implementation and to

support the conceptual information with a little of the procedural kind.

Thus, a context error will first be signalled via the standard UNIX® error

message, e.g. 'file not found'. Then the first part of the QDOS error

messaging begins with a statement of the rule that is involved in the error,

91

e.g. in the case of an attempt to duplicate a filename, 'all names must be

unique1. Next, specific information about the error is given using the object

names involved along with details of the antecedent action which caused the

system state to be such that the current command failed. Lastly, where

possible, advice is given, again in specific terms, as to how the command

might be rehabilitated. This set of messages corresponds with the 'blanket'

response to suspected misconception described in Chapter four. Ideally, the

specific state or rule based misconception would be determined, if possible,

and extraneous information omitted. If users are burdened with material

superfluous to their specific needs, they will tend not to rely on its

provider and may dismiss useful information along with that which they

consider irrelevant (Carroll & Aaronson, 1988).

6.7 The Program Modules

What follows is a short description of the main components of the

UNIX® simulation and help system QDOS. The code itself is reproduced

in Appendix A. Figures 6.1 and 6.2 illustrate, respectively, the program

structure hierarchy and control flow.

Q dos is the main calling module. It loads (reconsults) all of the other

files into the Prolog database and controls the overall flow of the program

via a 'repeat' call to the main calling clause.

S tartu p sets all of the initial values for the interaction. All error counts

and time values are initialised and the startup directory structure is set up.

The events which created this structure are also asserted so that a

pre-interaction history is present to explain the existence of the starting

state, should a context error occur involving one of these actions. The

analyser then has actions occurring prior to the experimental subjects'

interaction to draw on as explanations of current states.

O u tpu t contains all of the clauses which provide UNIX® like feedback

in the way of directory listings in long and short format and responses to

the pw d command. UNIX® numeric modes are also converted to symbolic

modes here for long lists, e.g. '700' —> 'rwx'.

92

M ylib .h contains the definitions of Prolog clauses, which Qdos uses,

and which bind to the Macintosh operating system and toolbox.

Input RecordService AnalyseValidcom m

Fig. 6.1 Program Structure Diagram

S ta r t

Qdos uses only a fraction of the available system calls so that it would

be wasteful of memory and processing resources to have the full

complement of toolbox definitions resident in the database.

U tils contains a number of generic routines used to add and delete

items from lists and to check if an object is another’s ancestor in the

directory structure.

A nalyse first checks if an error condition has been asserted. If there is

an error, it checks if the error is in the set designated as pragmatic and if it

is, it determines the kind of context error and calls other routines which

look through the interaction log for evidence associated with that particular

error type. A reference error results in a call to la s t r m v c h e c k and

la s tc d c h e c k . A read, write or execute violation results in a call to

la s t r e a d c h e c k , la s tw r i te c h e c k and la s te x e c h e c k respectively. A

duplication error results in a call to lastm km vcpcheck and a nonempty

error results in a call to n o n e m p ty p re c o n d . All of the above calls are

93

followed by a call to an appropriate p re c o n d routine which delivers

information to the user concerning the precondition associated with the

error.

j i

Check
Command

Ok

Check
A rgum ents

Ok

E rro r

No
C ontext
E rror?

A s s e rt
E rro rtyp e

C o n tex t
E rro r

Message

A nalyse

Record
Command

In p u t
Command

L ex ica l
E rro r

Message

Syntax etc
E rro r

Message

Execute
Command

Fig. 6 .2 Program Flowchart.

94

ap p earan c e sets the window title to 'QDOS', disables the mouse and

clears the menu bar, thus disguising the AAIS Prolog display screen.

cd processes the UNIX® cd command. The command is checked for

syntax errors and if there are any, a syntax error is asserted and processing

stops. If no argument is provided, the cwd is changed to 'home1. If a path is

supplied, it is traced and checks are made that each item being a directory

and that each is a child or parent of its predecessor. If the path is faulty, a

reference error is asserted with the identities of the problematic arguments.

If an item in the path is a file, a logical error is asserted and a brief error

message to this effect is output. If all is well, change is called.

change first checks the access mode on the target directory and asserts

an execute error if it is protected. If not, the target is asserted as the new

cwd and this change is recorded in the database for quick reference by the

an a ly se r.

chm od processes the chmod command. It first checks the command for

syntax errors before testing the mode argument for validity (000 - 700).

The path is traced, checked and errors flagged as in cd and, if all is well,

the mode setting is altered for the target item. This is unless the item is the

root or home directory. In that case, the information is provided that the

user is not the owner of these directories and cannot therefore alter their

access mode settings. This is discounted as a context error, since it involves

system characteristics which are beyond the control of the user.

cp processes the cp command. The syntax and path references for

source and target arguments are checked in the manner described above

and appropriate errors flagged if necessary. A logical error is flagged if

the source target is a directory, since this implementation only allows the

copying of files. An existing file of the same name is overwritten (actually

no change is necessary) if it is in the target directory. A duplication error

is signalled. Duplication is also indicated if a directory of the same name as

the destination target name exists. Access violations are also checked for

and recorded if discovered. All being well, the records are altered to

9 5

reflect the existence of the new file.

In p u t deals with the feeding of command lines into the simulation.

Characters are read from the keyboard until an argument separator (space

or V) or commandline terminator (return) is encountered. The resulting

lists of characters are transformed into a list of atoms which the other

processing routines treat as data. The form of these commandline lists is

observed in the log files presented in appendices I and J.

lastcdcheck is used in the analysis of reference errors. Its function is

to check the contents of the previous working directory for the presence of

the erroneous item in a reference error. It is thus testing the hypothesis that

the user has forgotten the last directory change or does not know the

effects of the cd command and therefore holds the misconception that the

previous working directory is the current working directory. This

hypothesis is one which would inevitably arise as a possible world, under

the criterion of logical and psychological proximity. The alteration to the

system state is minimal and the erroneous command would be acceptable

had the last directory change not occurred. If the test is positive, the

hypothesis is taken to be proved and a reminder of the directory change

and its effects is presented to the user.

lastexecheck is also used in the analysis of errors. It searches the user

log for an instance of the chm od command which had the erroneous

argument as its target. If found, such an occurrence is taken as evidence for

a state based misconception involving the state wherein that command had

not been invoked. In this case the criteria of logical and psychological

proximity are less reliable, owing to the less obvious connections between

the setting of execute protection and the actions which are consequently

outlawed. The possibility of the cause of the error being a rule based

misconception, even given evidence under the stated criteria, is not as

remote as in other cases of context error.

la s tm k m v c p ch e ck is used in the analysis of duplication errors. It

searches the user log for instances of mkfile, mkdir, mv and cp command

whose argument matches the erroneous argument in the duplication error.

96

Again, a positive test is taken as evidence for a state-based misconception

and a reminder of the causal antecedent action presented. If no such

antecedent is found, state and rule-based information is generated.

la s tre a d c h e c k and la s tw rite c h e c k operate in the same fashion as

lastexecheck .

lastrm vcheck is utilised in the analysis of reference errors. The user

log is searched for the presence of an instance of the rm , rm dir or m v

command whose argument matches that of the erroneous command in the

reference error. If such an occurrence is found, this is taken as evidence

for a state-based misconception involving the state which would have

obtained had that command not occurred. O therw ise, rule-based

information, concerning the preconditions of the failed command are

presented.

Is -1 processes the Is command in its ’long' option format. The usual

syntax, access and path reference checks are made and if no errors are

found the target directory contents are listed with their access modes,

owner and size attributes.

Is is essentially the same as Is -1 but in this case only the names of the

target directory contents are displayed.

m k d ir services the m kdir command. Syntax, reference, access and

duplication checks are made and appropriate error attributes asserted if any

context errors are found. If the command is sound facts are added to the

Prolog database representing the addition of the new directory.

m kfile processes the mkfile command, which does not actually exist in

UNIX® but which was created to enable files to be created without the use

of an editor or other application program. Its function is largely the same

as mkdir except that its targets are files instead of directories.

rp e rm , w perm and xperm are the clauses which check file and

directory command arguments for read, write and execute protection. If

arguments fail any of these checks, the error characteristics are asserted

and the modefail predicate is set to true to signal other modules to cease

processing the command.

97

m v processes the mv command. Syntax, reference, duplication and

access tests are made on the arguments, which may only be files in this

implementation. Errors are signalled to the analyser in the usual way. If no

errors are found the relevant facts are retracted and asserted in the Prolog

database, representing the displacement of an item and its renaming where

necessary.

w ritelist, listconts and longlistconts provide output routines for

the UNIX® Is commands and error messages which require the output of

data stored in Prolog list format.

tran sm o d e translates UNIX® numeric mode formats into character

based codes for output in response to the Is -I command (e.g. 400-->r-x).

p re c o n d provides output of general inform ation relating to the

preconditions of particular commands. If the analyser decides that a

hypothesis for a state-based m isconception cannot be supported, the

possibility of a rule or function-based misconception is suggested. For

example, if no evidence is available in the user log to support the

hypothesis that the user holds the misconception that a directory is empty

when it is not, then the possibility that the precondition of emptiness on the

rm dir command is unknown to the user is met with information to this

effect.

p w d serves the p w d command and outputs the path from the root

directory to the current working directory listing every directory node on

the way (e.g. root/home/mail/letters).

s ta r t is the main routine in the suite of Prolog modules. It reconsults

(loads) all the other modules and sets up the QDOS environment detailed in

the s ta r tu p module, zeroing all counts, setting the start time, looping

through the main calling sequence of the program and supplying the

prompts.

reco rd is the module which provides all of the logging facilities in the

simulation. All user commands are asserted into the Prolog database in the

form of e v e n t or n o n e v e n t clauses. Error counts, final directory

configurations and statistical data is also recorded here. When the user logs

98

out of the system these clauses are written to disc and are presented in

Appendices I and J.

rm d ir processes the rm dir command, checks are made for syntax,

reference and access errors and also for logical errors such as the target

being a file and that the target is an empty directory. Error characteristics

are asserted appropriately if one is found and if not, the facts representing

the existence of the target directory are retracted.

rm is essentially the same as rm d ir but its target must be a file,

service, validcom m and com m and form part of the command line

parser. They essentially check that the command itself is recognised and

call the appropriate service routines which process the arguments to the

command. The scope of context adopted in the general approach does not

allow the occurrence of alien commands to be considered as context errors

and so any errors in commands are flagged as lexical errors.

s ta rtu p is a file containing all of the environmental settings to be

loaded when the user logs on to the system. This includes the initial

directory structure (see Appendix D) and the events which brought it

about so as to provide an interaction history on which the analyser can

work to generate error messages relating to causal antecedent actions as

soon as the user starts the task. This allows the effects of previous actions

to be related to the current error situations and is intended to strengthen

the user's understanding of the causal structures inherent in the system’s

functionality.

tellkids was intended to maintain consistent reference to a directory

name in all its child records if the directory name was altered. Once the

decision was made to disallow directories as arguments to the m v

command, this turned out to be unnecessary.

getdatetim e ascertains the system date and time via a operating system

call. This value is converted to 12-hour and day-date-month-year format

and is used in error messages and for timestamping the user log records.

tim elapse calculates the elapsed time between two given times. It is

used to calculate the total time spent logged in by any user and in error

99

messages which state how long ago some change was made to the directory

structure, which is intended to provide users with some chronological

orientation within the error situation.

We next move on to a discussion of evaluation techniques and a

description of the evaluative exercises conducted within this research using

the QDOS system described above.

100

7. Evaluation

This chapter deals with interface evaluation techniques and their relative

merits. The importance of evaluation is identified and three basic types of

evaluation are discussed. The evaluative methods and exercises conducted

within the project are described and results presented. Conclusions and

observations on these results serve as an appraisal of the success of the

approach adopted and its application to the aspect of interaction studied.

7.0 Introduction

The outcome of good interface design is the production of systems

which are easy to learn, pleasant to use and which facilitate the completion

of user tasks with the least effort. However, the task of translating these

desiderata into specific interface characteristics is far from simple, as is

that of extrapolating from specific characteristics to estimates of usability.

Thus an important part of the design process is the evaluation of design

decisions. Evaluative measures can be undertaken at any point within the

system life-cycle but it is clear that the earlier that design decisions can be

evaluated the better, since the costs of altering a design increase at each

stage of the product life-cycle.

Without design criteria and evaluative techniques, it is all too easy for

designers to succumb to common pitfalls. These include the reliance on

'common sense' which although useful, can lead to design errors. For

example, common sense would probably not lead one to suppose that

speech recognition in noisy environments could be improved by the use of

ear plugs, yet this is in fact the case. Another possible mistake designers

101

can make is to assume that they are somehow typical or representative of

the population of users. This is always false. Designers have a particular

and specialised view of the system not normally available to users.

Design ’traditions', appeals to authority and unanalysed assumptions

about the user population or context of use can also mean that design faults

are introduced. A system ’beep' may not be audible in a noisy environment

or by hearing-impaired users. Sometimes what seems like a 'bright idea'

w ill become a design decision w ithout proper consideration of its

implications or testing of its consequences and in general, evaluation may

be postponed for convenience, making design alterations all the more

difficult and costly when they are eventually recognised as being necessary.

Even when evaluation is undertaken it is important that representative

samples and contexts are utilised and that the experimental data gathered is

analysable to give meaningful measures of usability within the parameters

of the evaluation technique used (Downton, 1991). Evaluation techniques

fall broadly into three categories. These are formal methods, 'classical'

experiments and observational methods.

7.1 Formal methods

Formal methods offer the potential to evaluate designs from the very

earliest point in the design process since they do not necessarily require an

implementation of the design to work with. The great problem with formal

methods is their relative remoteness from the context of use and the

vagaries of human performance, mostly assuming expert knowledge or

performance, a factor which is bound to reduce the degree of confidence to

be held in their results. Few approaches attempt to cope with individual

differences in learning styles or cognitive strategies and user motivation

(Wilson et. al., 1988). However, they can enable many kinds of design

faults to be 'weeded out' at an early stage.

In evaluating an interface design the concern is with the demands, in

terms of knowledge requirements, cognitive processing and physical action,

which the design places on the user in performing tasks and the level of

102

support that the design presents to the user. Any formal method used in

evaluation w ill therefore adopt some m odel of hum an cognitive

characteristics in order to predict these qualities. Thus there is a substantial

overlap of concerns between this chapter and chapter four, dealing with

user modelling.

Early models follow the linguistic paradigm prevalent in command

language interfaces of many early interactive system s. R eisner’s

'psychological BNF' (Bachus-Naur Form) (Reisner, 1984) represents

cognitive processes and overt actions in an interaction grammar. User

performance is taken to be related to the number of terminal strings in the

grammar and the overall number of productions required to describe the

dialogues. Thus a dialogue with many rules and terminals would be seen as

being more difficult to learn and harder to use than one with fewer rules

and terminals. This criterion can have useful application but the

construction of grammars is a somewhat, arbitrary process and different

predictions of usability for the same design can be generated simply by the

choice of grammar (Fountain & Norman, 1985; p. 10)

Payne and Green's (1986) Task Action Grammar (TAG) adds to the

grammatical model a notion of the relatedness of tasks and the consequent

groupings of grammatical rules into sets. This simplifies grammars and is

claimed to have more psychological validity in predicting ease of learning,

since users are assumed to abstract and make use of similarities between

tasks. TAG can reveal design faults related to the concern for consistency,

in that simple tasks which share features should be reflected in the design as

instances of a more generic task. However, TAG gives the same status to

small and large inconsistencies which it may unearth in a system (Booth,

1990c) and has difficulty in defining a simple task.

External-Internal Task Mapping Analysis (ETIT) (Moran, 1983) is

intended to predict learning complexity and ease of transfer of skills, by

mapping tasks in users' terms (external task space) to system orientated

(internal) task descriptions. A greater number of mapping rules indicates

more complexity and therefore less ease of use. ETIT has not been used 'in

103

anger' and there is some difficulty in determining a user's 'external task

space', apart from abstract specifications or those based on the devices

being considered.

The above approaches essentially model the user knowledge or

competence required to operate a device as opposed to the mental

processing required. In general, these methods tend to suffer the limitations

of assuming a simple relationship between knowledge and behaviour and

make little reference to cognitive processes of interpretation and problem

solving and general limitations on cognitive processes such as memory

retrieval. The following approaches attempt to deal more directly with

these latter issues.

Card et al.'s (1983) Keystroke Level Model makes explicit assumptions

about human cognitive processes in order to derive time comparisons based

on expert users performing familiar tasks. In this model different human

cognitive processes are seen as autonomous facilities with their own

characteristics on which performance calculations can be derived. Although

the view of human beings as information processors w ill not do as a

general cognitive model, for example, this m odel does not predict

conceptual difficulties, the Keystroke Level M odel can guide the

construction of expert user time performance models for simple tasks.

Norman's (1986) identification of seven stages of mental activity (goal

formation, intention formation, action specification, execution, perception,

interpretation and evaluation) does not make quantitative predictions but

facilitates the understanding of the consequences of design decisions. For

example, menu systems can be seen as supporting goal formation and action

specification. In these terms, the overall aim of interface design is seen as

facilitating each of the stages of activity as they arise in the course of

interaction.

Moran's (1981) Command Language Grammar combines a conceptual

and a process model of a system and is intended to elucidate the

relationship between the conceptual model of a system and its command

language in order to identify conflicts between the two. It has been used

104

with limited success to predict the incidence of error from the mismatches

between conceptual and procedural system models (Davis, 1983b).

GOMS (Goals, Operators, Methods & Selection Rules) (Card et. al.

1983) which, like CLG, hierarchically decomposes goals into 'unit tasks',

in order to make performance predictions, is a coarser grained version of

the Keystroke Level Model. Again, reasonably good estimates are possible

but GOMS has difficulty in defining the concept of 'unit task', in that no

planning component exists to show how simple tasks are combined into unit

tasks, and problems in explaining how selection rules are related to one

another and the rest of the analysis (Green et. al. 1988).

Kieras and Poison (1985) present a two part formalism intended to

represent users' 'how to do it' knowledge and the device itself. The former

part is GOMS based and the latter uses generalised transition networks. The

aim is to show ease of learning and use and mismatches between the device

model and the production system. Rules which belong to more than one

method are assumed to require no extra learning overheads and thus to

facilitate learning. The depth of the goal stack generated is taken as an

indication of ease of use, in terms of the consequent demands on short term

memory. This model can provide reasonably accurate predictions of

learning and execution times.

7.2 Experimental Methods

Evaluation may be undertaken for the ratification of specific interface

designs or in the attempt to discover particular design principles. Lessons

may be learned from testing particular designs but often useful principles

are 'buried' among the mass of data derived. In any case, the main goal of

HCI to date has been the delivery of such principles. The basic

methodology of experim ental evaluation comes from experim ental

psychology where a wealth of techniques and experience in empirical

evaluation have accrued, to the extent where there are standard procedures

for designing and evaluating the results of experimental settings.

The first important decision in experimental design is the selection of

105

tests, the object of which is to expose the experiment to the most realistic

context possible in terms of tasks and environment, at least to the extent of

aspects which could reasonably be expected to influence the outcome.

Within these terms, it may be desirable to work with the least number of

subjects for the least amount of time required to generate significant

results.

A variable is a factor which may be expected to influence the result.

Ideally, an experiment will attempt to observe effects on just one variable

in order to provide the simplest statistical model and therefore the most

potentially compelling result. In practice, it is rarely possible to achieve

this and the aim of realism simultaneously, since everyday situations

naturally involve many variables. The variables in which the experimenter

has no interest are nuisance variables whose effects m ust be somehow

eliminated from the results. Differences between subjects in terms of

ability, mood or motivation fall into this category. The use of a within

subjects design, where each subject is exposed to all test conditions, as

opposed to an inter subject design, where two or more sets of subjects, are

exposed to differing conditions, may be used to minimise the effects of

some of this kind of variable. However, within subjects designs have their

own problems.

Other nuisance variables may be introduced into the experiment with

the procedures adopted. Learning effects, fatigue and the like can influence

results and so it is important that the experimental procedure is designed to

minimise these factors as much as possible by balancing the sequencing of

tests across subjects, replicating the experiment with sequences reversed or

randomising aspects of the procedure in the expectation that randomness

will produce ’even’ results. The mere fact of being measured at all can

affect a subject's performance; the so called 'Hawthorne' effect.

Supposing that an optimal experimental design has been achieved and

the data gathered, it is then necessary to analyse this data in order to detect

any significance in them. A variety of methods are available and

determining which is the most appropriate method depends upon such

106

factors as the number of subjects, the number of experimental variables

and whether the data can be taken to be representative of a random sample

from a normal distribution.

To say that some finding is statistically significant is not to say that it is

of any practical significance. If some measure of the quality of some

interface design or design feature is shown to be statistically significant to

some degree it does not necessarily follow that it is a worthwhile option,

particularly if it happens to be an expensive one. The m ajor problem

suffered by the experimental approach concerns the issue of assessing the

generality of results (Monk & W right, 1991). In practice, the kinds of

computer systems and the tasks and problems with which they aid users are

large and complex. Tasks may involve many simultaneous and successive

cognitive processes and require highly detailed interactive procedures. This

has two consequences. Firstly, any of the details of either cognitive

processes or interactive procedures, may influence the performance of the

others, rendering established research findings concerning individual or

small numbers of details dubious in such a complex context. Secondly,

measures of the usability of the total system will be of minimal generality,

since results will be applicable to only those contexts which are all but

identical to the one tested. These factors have been instrumental in the

growth in interest and development of the third category of evaluative

methodologies.

7.3 Observational Methods

Observation has always been an important, if informal, part of interface

evaluation but a growing dissatisfaction with formal and experimental

methods, for reasons outlined above, has led to an increasing interest in

developing means of assessing usability in context which amount to more

than casual observation.

Part of this dissatisfaction also develops from a feeling that the theory

or principle being tested is often put at the centre of concerns, rather than

the user. This has led to a num ber of user-centered approaches to

107

evaluation. As a beginning, one can solicit user responses and opinions via

interviews and questionnaires. However, the usefulness of this approach

depends upon such factors as the amount of bias or ambiguity inherent in

the questions themselves and possible bias in the questionnaire respondents.

Questionnaire and interview results cannot be counted as objective data but

can be useful as a backup to experimental findings.

A more radical approach to user-centred evaluation, akin to the

ethno-methodology of certain anthropologists, eschews all artificial

constraints and allows free use in work contexts. The philosophy behind

this approach is that the user's experience is central and that all

interpretation of it by the observer is invalid. Evaluation is conducted by

the user with a 'co-evaluator' and the data are the discussions which ensue

(Whiteside et. al., 1987). Such methods, however, do not normally and are

not intended to provide generalisable results. C ontextuality and

generalisability are, as usual, in inverse proportion.

Another radical departure from the 'traditional' view in HCI that

designs are arrived at through the application of validated principles stems

mainly from two observations. The first of these is that innovation almost

invariably precedes the development of theory. The second is that when an

'artifact' is introduced into a work context, it invariably alters that context

and this tends to invalidate the design based on the previous context. Any

subsequent alterations suffer the same fate and so the whole business of

design is necessarily an iterative process; evaluating artifacts in terms of

how they support user tasks in the context of use and modifying them

accordingly. Any theory inevitably embodied in an artifact arises out of

this process rather than preceding it. This kind of position is espoused by

Carroll and others (Carroll et.al., 1991). Approaches of this kind, unlike

the ethno-methodological account, still carry a m inim al am ount of

psychological 'baggage' in terms, for example, of being structured around

Norman's generic task model (Carroll et. al., op. cit.).

One of the problems with debriefing interviews with users is that

subjects may not accurately rem em ber significant aspects o f their

108

experience. A way around this is to get them to provide a verbal protocol

while the interaction is proceeding. In this way, the intentions and events

which concern the user most and responses to them will naturally enter into

their monologue and the researcher will gain some degree of access to the

user’s 'live' thought processes. However, it should be added that the

advantage of this must be set against the occasional unwillingness of some

experienced subjects to share their expertise or inability to explain actions

which have been 'internalised' (Diaper, 1989).

Generally, protocol analysis is a method for gaining insight into the

psychological processes of an individual engaged in some task or activity. It

consists in encouraging the subject to 'think out loud' by way of

explanation of the thought processes which underlie and motivate current

actions and psychological responses to stimuli received in the course of the

activity. Since it is impractical to attempt to analyse these 'monologues'

concurrently or recall them for later analysis, it is usual to undertake audio

and video recording and sometimes to electronically 'log' user actions and

system responses in a computer file.

In addition to the prior request for a verbal protocol, the researcher

may prompt the subject from time to time to reveal current m ental

machinations if the subject should lapse into quiet performance or if a

particularly interesting episode should occur. Of course, not all subjects

will find it easy to provide such commentaries and the necessity for doing

so can easily disrupt task performance. For this reason an alternative

method is to have the subject provide a commentary over a recording of

their prior performance and to record this commentary. The disadvantage

here is that subjects may tend to 'over-rationalise' their previous actions

and again not remember their mental machinations accurately enough to be

useful.

With either method, another problem can be shyness or reticence on the

part of the subject and every effort must be taken to remove any feelings of

being under examination (Monk & Wright, 1991). This kind of approach is

especially useful for identifying communication breakdown between user

109

and system. It allows the researcher to focus in on fairly minute aspects of

the interaction and to tease out details of miscues and misconceptions. This

kind of analysis is extremely laborious and time consuming to perform,

since hours of video tape and log records can result from a relatively small

number of subjects. Again, results will rarely submit to any significant

generalisation, although attempts have been made to identify 'interaction

scenarios', which describe typical situations of computer use, as basic units

of interaction which do generalise across contexts (Carroll et.al., op. cit.).

For the purposes of evaluating the research presented here, it was

decided to utilise two approaches. A 'traditional' experiment was devised to

try to compare two alternative interface designs and a protocol analysis was

conducted so that fine details of interaction might be studied so as to

evaluate the hypothesis proposed concerning the cognitive causes of context

error.

The software simulation of part of the UNIX® file system described in

chapter six was used for the experiment. Although it might have been

possible to sample 'real' users, perhaps over a prolonged period, by

monitoring them in a live UNIX® environment, it was decided to use a

simulation so that greater control could be exercised over the facilities and

functions of the system. The experimental variable was the presence or

absence of the QDOS context error module in the simulation. At the time

when the experiment was conducted, the version of QDOS developed was

not capable of reasoning about process-based but only state-based context

errors.

The simulation logs user commands so that this record can be

scrutinised for causal antecedent actions in context error situations (in

theory, the error analyser would look for prior states implicated by the

error but in practice, it is easier to record actions which alter states and to

look for these actions. This also has the effect of limiting the set of possible

worlds considered to those most like the actual world, as described in

chapter four). When context errors occur, the help system checks the log

for a likely cause. For example, if a file is not found, the help system

110

checks for deletions, moves or renames of the file and also for its presence

in the previous working directory. If such a causal antecedent is found the

action is notified to the user as a definite or likely reason for why the

current action failed. The simulation also logs all errors, so that an analysis

of their relative frequency can be made, and the final state of the file

system, so that a measure of task completion can be calculated.

7.4 The Experimental Task

A task was designed for the experimental subjects. The experimental

hypothesis being tested was that the experimental group would perform

more of the task, in less time and with fewer errors than the control group,

owing to the activity of the help system. An aim was to provide a relatively

realistic working situation with sufficient task complexity to make the

production of errors likely in a comparatively short task duration. Subjects

had to take an existing directory and file structure and transform it

according to a written specification. This specification is presented in the

guise of an informal memorandum and was made intentionally disorderly

so that users would have to devise their own task structure in terms of the

ordering of tasks. The startup and target file system configurations can be

found in Appendices D and E and the printed materials provided to subjects

in Appendices C and G.

Pilot trials were conducted with two subjects to validate the

experimental design. In any case, the performance results were to be time

related to increase performance variability and sensitivity of measure as

much as possible.

7.5 Subjects

The subjects were recruited from the third year of a degree course in

communication studies. A questionnaire was administered (see Appendix B)

to provide information so that two groups could be balanced for relevant

experience, the aim being to have two groups with roughly equal

experience. Although it would have been preferable to also have some

111

measure of subjects' aptitude, as there was little opportunity for prior

contact with the subjects, balancing of the experimental groups had to be

undertaken on the basis of previous experience in using computers, using

relevant software applications and typing skills, as obtained from the

aforementioned questionnaire. Prior experience was deemed the best

available balancing variable to correlate with the independent variable.

In all, twenty subjects were recmited; ten in each group. Unfortunately,

only ten of the volunteers actually attended the appointed sessions, a

disappointing fact which probably marred the whole exercise. As the

experiment was conducted in two sessions, it could not be known how

many subjects would attend and so the process was not aborted, in the hope

that a reasonable number would eventually attend.

7.6 Experimental Design

It seemed clear that a 'repeated measures' experimental design would

not be appropriate for the purposes of this exercise for two reasons; firstly,

subjects had little time to spare for the exercise and secondly, it would be

unsafe to assume that the considerable learning effects would operate in the

same way over the two condition sequences. It also seemed unlikely that an

'independent subjects' experimental design would, with the num ber of

subjects involved, eliminate significant constant errors relating to aptitude

and experience among subjects. Thus, the 'matched subjects' design was

chosen and the results were organised into two groups of five subjects each

in such a way as to balance them for previous experience, as ascertained

from questionnaires.

One group (experimental group) attempted the task using the simulation

with the help system operational while the other group (the control group)

received only UNIX® type error messages. Subjects were given a brief

description of the UNIX® file system and its commands before the

experiment began and a supervisor was on hand to give advice on the task

but not on the system being used. Subjects were unable to give more than

about two and a half hours of their time because of other commitments.

112

7.7 R esults and E valuation

Ques.
Time
(hrs)

Correct
Comms Error

Total
Comms

No.
Context
Errors

%
Context
Errors

%
Alt.

Score
Task
Perf.

Error
Perf.

SI 40 1.35 76 47 123 31 66 85 63 62

S2 30 2.40 163 78 241 47 60 83 35 68

S3 40 1.24 78 89 167 74 83 3 2 47

S7 25 0.70 50 22 72 10 45 1 1 69

S10 15 1.35 25 80 105 55 69 3 2 24

Avge 30 1.4 78 63 142 43 65 35 21 54

fig.l: Individual Results For Helped Group

n Ques.
Time
(hrs)

Correct
Comms Errors

Total
Comms

No.
Context
Errors

%
Context
Errors

%
Alt.

Score
Task
Perf.

Error
Perf.

S l l 35 2.42 201 124 325 91 73 79 33 62

S12 25 1.58 36 64 100 33 51 0 0 36

S13 20 2.48 100 66 166 39 59 64 26 60

S14 45 1.89 168 145 313 105 72 83 44 54

S15 25 1.69 105 178 283 116 65 24 14 37

Avge 30 2.0 122 115 337 81 64 50 23 50

fig. 2: Individual Results for Non-helped Group

113

Figs. 1 and 2 above show tables of results derived from the

experimental log files in appendix I. The tables show, by group and from

left to right, each subject’s questionnaire 1 score, total time taken, number

of successful commands, number of errors, total number of commands,

number of context errors, context errors as a percentage of all error types,

alteration score (reflecting the extent to which the task had been completed

as a percentage of total task), task performance (alteration score/time

taken) and error performance (errors as a percentage of total commands).

The results were evaluated in terms of performance and error counts. A

scoring system was devised in order to give a value for the percentage of

task achieved for each subject. This was achieved by rating each subtask in

terms of its complexity. For example, the sub-task of moving an empty

directory attracted a score of one unit, whereas a directory with three files

attracted a score of four units. A maximum score could thus be calculated

for the whole task and percentages calculated on the basis of the file system

configuration recorded by the simulation. A rating of performance was

obtained by dividing the percentage of task achieved score by overall time

taken. Error performance was calculated as correct commands as a

percentage of total commands.

Scores varied widely between subjects in both groups; Standard

Deviation for the helped group task and error performance was 27 and 19

respectively and for the ’unhelped’ group 17 and 12. This would appear to

be accountable to a floor effect in the experiment, in that subjects 3, 7, 10,

12 and (arguably) 15 failed to achieve a significant percentage of the task.

If these subjects are dropped from the data and the group scores are

recalculated, task performance averages of 49 and 34 are achieved for the

helped and unhelped groups respectively (49 and 29 including subject 15);

an improvement of 44% for the helped group (or more if subject 15 is to

count). No statistical significance can be claimed for this 44%, since there

are now only two subjects in one of the groups. However, this difference

does not appear to correlate with subjects’ experience, as indicated by the

first questionnaire, where the helped group showed only a slight experience

114

advantage, inese results indicate tnat tne experimental task was too

difficult and that more piloting, with typical subjects, would have been

advisable. This fact, along with the disappointing turnout would appear to

have undermined what might have been a successful outcome. However, the

unavailability of resources for repeating the experiment, both in terms of

time and subjects, dictate that a demonstration of the effectiveness of the

approach to context error advocated here will have to be achieved by

different means.

In any case, error analysis of all subjects reveals that around 65% of all

errors were context errors, mostly reference failures, and that 25% of this

65% had significant causal antecedents. Errors constituted over 47% of all

attempted commands. In general, subjects found the UNIX® style file

system and its command line interface hard to understand and frustrating to

use. It is encouraging to note the ubiquity of context error in the results,

bearing out other UNIX® studies, although it has yet to be demonstrated

that the proposed approach to dealing with it is significantly effective.

7.8 P ro tocol A nalysis

The study was conducted in order to test certain hypotheses concerning

the causes of context error. These hypotheses provide part of the

justification for the particular approach to dealing with context error

proposed in this thesis. A detailed discussion of the hypotheses and the

remedial approach adopted has been presented in earlier chapters. Briefly,

it is suggested that these errors are caused by mismatches between the

system and the user's conceptual model and that they highlight a failure of

the interface in aiding the user to build and maintain an appropriate

conceptual model in the course of the interaction. It is also suggested that

the problem is exacerbated by the interface's failure to meet warranted

expectations of communicative cooperation. The study is intended to

demonstrate that the kind of approach proposed in this thesis, adapted from

linguistic pragmatics, would be effective in determining and remedying

user misconceptions about the computer system being used.

115

/ . 7 lUCUIUUlilUgJ'

For the purposes of this study, a video camera was used for recording

both the occurrence of typed commands on the computer monitor screen

and the subjects voice, via a lapel microphone. The software in use was a

modification of the UNIX® simulation software used in the experimental

exercise, designed to record all users’ successful and unsuccessful

commands as well as noting the error type and some of the contextual

features of the error, including its exact time of commission. The video

tape was time stamped so that the log files and the video could subsequently

be correlated.

In this case, the QDOS context error analysis module was rendered

inactive so that subjects would not be pre-empted in their speculations

about any errors occurring. The same task and preparation was used as in

the experimental setup but questionnaires were not required.

7.10 Subjects

Four subjects took part, two of whom were computer science graduates

and all of whom were occasional computer users. All were familiar with

the basic notion of hierarchical file systems before the study but none was a

recent or regular user of such. Each subject was given a brief pre-task

description of the system and a written list of commands and their effects

to which reference could be made while completing the task.

After all subjects had been recorded, the video tapes were scrutinised at

or near the time points indicated by the log file to be instances of context

error. Any comments made by the subject at these times were noted, along

with a description of the circumstances of the error and any comments felt

to be relevant to the situation. What follows is a set of observations based

on these notes, grouped according to similarities in the analysis of the

errors. A detailed account of some of the more significant error situations,

along with explanations of the way that the proposed help system would

interpret them is included from appendix K.

116

/.XX XV C Ml 115

L ocational D iso rien ta tio n :

Subjects often made errors because of misconceptions concerning the

identity of the current working directory (cwd). Below are some examples

taken from appendix K.

51

nonevent([cd, ' persaddr], reference, persaddr, persaddr,

persaddr, monday, 20, january, 1992, 18, 16, 34).

D escription: ’persaddr1 was already the cwd when the subject tried to

make it so; the classic "please close the window" error.

C o m m en ta ry : In this case, there is almost certainly a previous

directory change which will operate as evidence for the state misconception

that the previous cwd is the cwd. QDOS’s response would be to inform the

user of the relevant state and the prior action which brought it about, thus

correcting the state misconception, reminding the user of the forgotten

prior action and indicating the consequences of that action. QDOS’s error

message would read:

"T h a t com m and failed because you changed d irec to ry from

<previous-cw d> to ’p e rsa d d r’ <tim elapse> ago."

52

nonevent([cd, ' addresses], reference, mailin, addresses, mailin,

tuesday, 21, january, 1992, 17, 36, 34).

D escrip tion : This was an attempt to change the cw d to a sibling

directory ’addresses’ from ’mailin’, without supplying the parent as the

path. The user said at this point "I think I’ve lost where I am" indicating

that he did was unsure of identity of the cwd at this point.

117

v ^ u m i i i c u i a i y • m e i c i a i e n a i i g e U i U i l C U l U i y J.IUII1 I l U I I i e IU I l i a i l l l l

would be taken as evidence for the diagnosis of the misconception that

’home’ was the cwd. The present cwd and the location of ’addresses’ would

thus be deemed as sufficient information to enable the user to recover and

correct the misconception. The error message would thus read:

11 T h at com m and failed because you changed d irec to ry from

’hom e1 to 'm ailin ' < tim elapse> ago."

S4

nonevent([cd, ' ', business], reference, home, business, home,

tuesday, 11, february, 1992, 18, 36, 36).

D escription: The subject attempted to change directory from 'home'

to 'business' without supplying the correct path. She was expecting the

command 'cd' to find the directory for her, which amounts to a functional

misconception concerning the rules for accessing the directory structure.

C om m entary: The particular precondition violated is that an item in

the path must be a parent or child of its predecessor (the cw d being

assumed to be the path start). There is no evidence to support the idea that

the subject held any particular state misconception and so general forms of

correction are indicated. Assuming that the information on relevant system

states (locations of cwd and target items) and rules for path construction

could be assimilated, the problem could be overcome. QDOS's error

messages would read:

"T he cu rren t d irec to ry is 'hom e '."

"T he item you apply the com m and to m ust exist in the

specified d irecto ry or in the cu rren t d irec to ry if you do no t

specify one."

"Specify the ta rg e t d irectory by supplying a pa th from the

cu rren t d irectory to the ta rg e t d irectory via all the

118

iiuervenmg directories, i.e. man/DUSiness .

S3 worked almost exclusively from the ’home' directory and therefore

was not prone to this misconception. The com mandline interface

implemented in the simulation does not display the cwd name. The user

may be able to infer the cwd from the command history left on the screen

as the display scrolls up but often this information is not absorbed. In the

majority of instances, this problem arose from simple memory lapse in that

a previous directory change was forgotten but S4 also seemed not to

understand that if permission to change directory is denied (because of

access code) the current working directory does not change.

Subjects also complained of not being able to remember where items

were and what the contents of a particular directory were: S I 19.36.45 - "I

can't hold in my head what's in anything at all." As might be expected,

problems of maintaining awareness of highly transient or ephemeral system

states were exacerbated by necessary attention to sub-tasks, especially if

they were unexpectedly encountered. This phenomenon would appear to be

accountable to the characteristics of short term memory.

General M isconceptions

All subjects held misconceptions concerning the correct construction of

pathnames. These included the belief that it is possible to move 'sideways'

in the directory structure, in other words to 'cd' directly to a sibling

directory, the assumption that all pathnames start from the 'home'

directory instead of the cwd and that the current working directory had to

be specified as the start of the pathname. All these led to reference errors

for which the standard 'x not found' error message was received, where 'x'

is the problematic item in the path. This message aided very little in

correcting these misconceptions which meant that they had to be corrected

verbally by a supervisor in order for the subjects to be able to continue

with the task.

119

O JL

nonevent([mv, ' mail, (/), business, (/), busout, (/), enquirout, '

home, (/), 'temp]'], reference, home, home, home, monday, 20,

january, 1992, 19, 14, 6).

D escription: Here, the cwd (’home*) was placed at the head of a path.

Interestingly, the first argument path correctly omits the cwd, indicating

that this was not a genuine misconception. The consequent error message

was greeted with ’"Cos I'm in 'home', stupid girl!" and the error was

quickly detected, which also supports the idea that this was a 'slip'.

C om m entary : The ’undoing' of no single prior action would have

rehabilitated the command, so that state and functional information would

be presented. In this instance, a mere reminder of the identity of the cwd

would have been sufficient but it is better that the user has a little too much

information rather than not enough. QDOS’s error messages would read:

11 The cu rren t d irec to ry is ’home'.**

11 The item you apply the com m and to m ust exist in the

specified d irecto ry or in the cu rren t d irec to ry if you do no t

specify one.11

’’Specify the ta rg e t d irectory by supplying a p a th from the

cu rren t d irectory to the ta rg e t d irectory via all the

in te rven ing d irec to ries, i.e. ’te m p 1.11

S2

nonevent([mv, ' scrap, (/), tojim], reference, persmail, scrap,

persmail, tuesday, 21, january, 1992, 18, 12, 57).

D e s c r ip tio n : This com pound erro r arose from the tw in

misconceptions that (a) all pathnames start from the home directory,

whatever the identity of the cwd and (b) mv is like Is, in that the cwd is the

120

ueiauii argument.

C om m entary: This should also have been signalled as a syntax error

to the effect that mv requires two arguments; one for the source and one

for the destination. The reference error would be dealt with without the

benefit of any evidence from the log and help information would thus be

based on relevant aspects of the current state, such as the cwd and location

of the target, and violated preconditions on referencing via paths thus:

"T he cu rren t d irec to ry is 'p e rsm a il '.11

"T he item you apply the com m and to m ust exist in the

specified d irecto ry or in the c u rre n t d irec to ry if you do no t

specify one."

"Specify the ta rg e t d irectory by supplying a p a th from the

cu rren t d irectory to the ta rg e t d irec to ry via all the

in te rv en in g d irec to ries , i.e. 'p e rso n a l/h o m e /sc rap /to jim '."

S I

nonevent([mv, ' ', complaintin, ' ', temp], duplication, home, temp,

busin, monday, 20, january, 1992, 19, 18, 32).

D escription: Because of the dual function or ambiguity of the 'mv'

command in UNIX; both in moving and renaming items, it is impossible

for the system to tell if this is a duplication or reference error. It is treated

as the former, when in fact it is the latter. This obviously makes for highly

confusing error reports, since the error message bears no relation to the

user's intentions. The subject was attempting to move a file ('complaintin')

from the cwd ('busin') to a 'great uncle' directory ('tem p'), w ithout

supplying the correct ('business/home') path. The system sees this as an

attempt to rename 'complaintin' to 'temp' and rejects this name duplication.

Com m entary: One answer here is to remove the inherent ambiguity,

so that the system at least has access to the meaning of the action. The

121

c i£ i i ia . i . iv ^o u i tuv^ a u u u i i v ^ a n luv^xi u i> a u u i t ^ d & u m u i t a v ^ u i a i . C ' J . j f .

Alternatively, the classification of error type would follow and depend on

the possible worlds analysis, so that both interpretations of the error could

be pursued and compared. In this case, there is no evidence to support

either option over the other, which would lead to information relating to

both being provided as alternative user misconceptions. The user could

then choose the most appropriate interpretation. As it is, QDOS's error

message would address the duplication interpretation with reference to the

prior action creating the original 'temp' directory:

"T h a t com m and failed because a d irectory 'te m p 1 was

crea ted <tim elapse> ago."

S tra ig h tfo rw ard C ontext E rro rs

Many context errors were committed merely because subjects were

unaware of some feature of the system, for example, that some directories

were protected or that an item existed somewhere in the directory structure

with the same name as an item being created. In these cases, subjects simply

assume that an action will succeed, without information to the contrary.

Similarly, without any evidence available for the subjects belief in any but

the most 'obvious' possible world (that closest to the actual world), the

proposed QDOS analysis would default to that world, e.g. the world where

the protected item is unprotected.

S I

nonevent([cd, ' ', persaddr], execute, a d d resses , persaddr,

addresses, monday, 20, january, 1992, 18, 4, 44).

D escrip tion : This was an attempt to make the execute-protected

directory 'persaddr' the working directory. The subject was not aware that

having execute permission is a precondition of this action.

122

^om m en iary : j\ prior acuon m me log, removing execute permission

from the directory would provide evidence for a state misconception here.

However, this mode had been set in the startup file and was not one of the

subject's own actions and is thus misleading. The absence of such evidence

would lead to the provision of state and functional information regarding

the mode set on 'persaddr' and the precondition of execute permission on

directory changes, along with directions for using the 'chmod' command.

Such would seem adequate in the current situation:

" ’p e r s a d d r * execute p ro tec ted ."

"Y ou m ust have execute perm ission on the item for th a t

com m and to succeed. Use the ’chm od1 com m and to gain

execute perm ission ."

S I

nonevent([mkdir, ' ’, business], duplication, home, business, home,

monday, 20, January, 1992, 19, 4, 4).

D escrip tion: This command constituted an attempt to duplicate a

directory name. The subject was unaware of the bar on duplicated names.

C o m m en tary : The existence of an action in the log, creating or

naming the directory 'business' would be taken as evidence for a state

misconception concerning the existence of that directory. This could

produce incorrect diagnoses, in that the creation of an item does not imply

knowledge about mles concerning duplication. This indicates that a possible

extension to the criteria for diagnosis might be some kind of representation

of the implications for user knowledge of the various commands which

might be found in the log. The use of the 'chmod' command might indicate

some familiarity with the use of protection codes and their effects, whereas

the use of 'mkdir' does not indicate any familiarity with the associated rules

of duplication. We have indicated that this kind of inference is rather

123

iv/ixuuuo u u i il v̂ wuxvu p u v w a uouxui ouuiv^b u i ii^gaLi vc- ^ v x u tii^ t/ tu s u p p ita a

incorrect diagnoses, rather than as support for particular diagnoses. As it

is, QDOS would fail to directly address the rule misconception:

11 T h at com m and failed because a d irectory 'business ' was

crea ted <tim elapse> ago."

51

nonevent([rmdir, ’ ', busaddr], nonempty, nul, nul, addresses,

monday, 20, january, 1992, 19, 38, 20).

D escrip tion: The subject was not aware of the rule that a directory

must be empty before it can be deleted.

C om m entary: The 'undoing' of no single event in the log would have

rendered this command executable, therefore state and functional

information would be presented. This would seem to address the problem:

"b u sad d r is not em pty."

"A directory m ust be em pty before it can be deleted."

52

nonevent([cd, ' persaddr], execute, a d d resses , persaddr,

addresses, tuesday, 21, january, 1992, 17, 38, 19).

D escription: An attempt was made to change directory to 'persaddr'

which was execute protected. The user was unaware of this protected state.

It had been set in the startup file as part of the task definition and not set by

the present user.

124

v^uinmemary: m e presence 01 me command m me log, setting me

protection on that directory, would be taken as evidence for psychological

proximity of a possible world in which that command had not occurred and

in which the directory was therefore not protected. It is assumed that the

user himself set this value as the command is in his log. Information

designed to correct this misconception would be presented:

" T h a t com m and fa iled b ecau se 'p e r s a d d r ' w as execu te

p ro tec ted <tim elapse> ago."

S2

nonevent([mkdir, ' busaddr], duplication, business, busaddr,

business, tuesday, 21, january, 1992, 18, 29, 4).

D escrip tion : An attempt to create a directory 'busaddr1 when one

already existed. On encountering this error the user exclaimed "Where?"

and on finding the offending item "...I forgot to take that directory out."

C o m m en ta ry : The creation of the original 'busaddr' would be

evidence for the psychological proximity of a world in which this directory

did not exist. The prior event would be cited, implying the relevant current

state:

"T h a t com m and failed because a d irectory 'b u sa d d r ' was

crea ted <tim elapse> ago."

M is in te rp re ta tio n

On many occasions the problematic situation was not resolved by the

consequent output of an error message. In order to recover, users must be

able to interpret the error correctly. A reference error can occur for many

reasons and the terse UNIX® 'x not found' error message leaves the user

125

i u specuiaie among uiein. m us lypmg errors couia engenaer speculation

about the correctness of the pathname (S4 - 19.10.02).

It was also possible for subjects to infer a correct conclusion for the

wrong reasons: S2 (17.43.51) incorrectly interpreted a reference error

caused by a naming mistake as the (correct) rule that directories cannot be

moved. This resulted in him not noticing the name error (‘address' for

’addresses’) and committing the same name error later on (17.58.21). This

happened again when a path error was interpreted in the same way

(18.12.57). In both cases, the true nature of the error went unnoticed. As

QDOS is not designed for lexical errors in open-class terms, this kind of

error would be assumed to be corrected by a lower level of help function.

Compound Errors

Commands sometimes embody more than one error, while the error

message received would only address the first error to be ’parsed'. This

m eant that on recovery from the signalled error, the subject would

inevitably recommit the others, requiring the same action to be attempted

three or possibly four times instead of just twice. A sim ilar kind of

situation occurs when the user receives a 'permission denied’ error on

trying to enter a directory. In some cases, the user would change the access

code of the directory to x' (execute allowed) but then be thwarted in

listing the directory because of the lack of read access.

Feedback Problems

All subjects were mystified by the system's practice of displaying

nothing on the screen when an empty directory is listed. S4 interpreted this

as meaning that the item was a file until she was disabused of this belief

when she tried to list a file and received the 'x is a file' message (18.39.23).

Subjects often failed to assimilate information which was on the screen,

even though it was directly relevant to the current action and could have

been instrumental in avoiding a subsequently committed error.

126

u i n e r w u s e r v a u o n s

S4 used 'cd x' to check or ensure that 'x' was the cwd and took the fx

not found' as a confirmation of this. This strategy worked most of the time

as she was typically correct in her guess concerning the cwd . However, this

led to a major disorientation later when she had forgotten a previous 'cd'

which took her to the 'home' directory, two levels up from directory 'x'.

Her usual 'cd x' command and its following 'x not found' message

convinced her that 'x' was the cw d but none of x's contents could be

accessed there. (19.44.13) "I'm home!??...How did I get there??" was her

response when she finally discovered why. QDOS's more detailed error

messages would have prevented this strategy's misleading consequences.

The 'Is' command defaults to 'Is cwd ' when no directory is specified but

this is not true for other commands. Another common error was to assume

cwd to be the default if no directory is specified for all commands because

this is true for 'Is1. This misconception presented itself in the form of

syntax errors. One subject used MS DOS command format on one occasion

(18.39.07).

7.12 Summary

There were thirty five context errors in S i 's session log. On three

occasions, the inferences drawn from the diagnostic criteria were

inappropriate to the user's particular situation, in that some of the

information germane to the error would not have been provided or that

some misleading information would have been given. On three occasions,

the user would have received information relating to system rules, as well

as relevant state information, when the misconception was state-based. On

the other twenty nine occasions, the misconception diagnosed via the stated

criteria broadly matched that apparent in the analysis of the recorded

protocol and log file.

There were twenty six context errors in S2's session log. On two

occasions, the inferences drawn from the diagnostic criteria were

inappropriate to the user's particular situation. On seven occasions, the user

127

wouia nave received inrormation relating to system rules, as well as

relevant state information, when the misconception was state-based. On the

other seventeen occasions, the misconception diagnosed matched that

apparent in the analysis of the recorded protocol and log file.

There were eighteen context errors in S3 's session log. On one

occasion, the inferences drawn from the diagnostic criteria were

inappropriate to the user's particular situation. On three occasions, the user

would have received information relating to system rules, as well as

relevant state information, when the misconception was state-based. On the

other fourteen occasions, the misconception diagnosed matched that in the

analysis of the recorded protocol and log file.

There were thirty three context errors in S4's session log. On five

occasions, the inferences drawn from the diagnostic criteria were

inappropriate. On nine occasions, the user would have received

information relating to system rules, as well as relevant state information,

when the misconception was state-based. On the other nineteen occasions,

the misconception diagnosed via the stated criteria broadly matched that

apparent in the analysis.

There were one hundred and twelve context errors in all users' session

logs. On eleven occasions, the inferences drawn from the diagnostic

criteria were inappropriate. On twenty two occasions, the user would have

received excess inform ation. On the other seventy occasions, the

misconception diagnosed via the stated criteria matched that of the analysis

of the recorded protocol and log file. The overall success rate in

approximate percentage terms is thus respectively: fail = 9%, verbose =

21%, correct = 70%.

7.13 C onclusions

As can be seen from the detailed description of context error situations

encountered by the users in this exercise, it is estimated, by comparing the

projected diagnosis from the stated criteria against an appraisal of the

problem, gained from a study of the video tapes and log files, that the

128

prupuseu neip sysiem couiu oe enecuve in accurately aeiermmmg user

misconception in seven out of ten cases. In two out of three of the

remaining cases, information in excess of that required, relating to

preconditions on the command involved, would be generated and in only

one case in ten would a totally spurious diagnosis be made.

Although it is admitted that the given criteria are not invariably

adequate to the task of diagnosing user misconception, it must be said that,

in many cases, it was not possible for a human observer to infer the

underlying problem merely from watching the interaction. It is therefore

concluded that the success rate can be counted as notable and significant.

As they stand, the criteria for diagnosing user misconception mean that

evidence for a state misconception is searched for and, if found, indicates

that the misconception is state-based. As there are, as yet, no positive

criteria for diagnosing function-based misconceptions, errors generating

hypotheses of state-based misconception which are evidentially unsupported

are treated as if possibly state-based and possibly function-based. This is

not an ideal state of affairs, as it means that users will often be presented

with information of which they might already be in possession. Positive

criteria supporting function-based misconception hypotheses would

therefore be extremely useful. It has been shown that the notions of logical

and psychological proxim ity of possible world m odels of user

misconception are useful in the selection of candidate hypotheses. It

remains to be seen if other criteria are available in order to enhance the

design of the help system.

In many instances, the help system is able to reinforce the user’s

understanding of the system in relating, by their effects, past actions to

commands involved in current errors, making explicit the causal relations

between the effects and preconditions of different commands. However, as

a basis for determining misconception, these relationships are not always

reliable, since some of them are less obvious than others. Thus, while it

apparently works well to use the fact that a file was moved and that this

action had been forgotten, in order to explain a failed attempt to access the

129

file in its old location, this strategy fails to produce accurate results where

effects and preconditions are less obvious, such as when the creation of a

directory means that its name cannot be used again (duplication). This

phenomena led to more than one of the erroneous diagnoses in the protocol

analysis exercise.

The experience has also shown how inconsistency and ambiguity can

lead to unfulfilled expectations and greatly complicate the resolution of

error situations. The default arguments for Is and cd caused errors and the

ambiguity of the mv command led to error misinterpretation by effectively

doubling the possible interpretations.

The proposed help system is as accurate as it can be, given the level of

information and evidence to which it has access. The less evidence there is,

the less specific it can be about the misconception and the more generalised

the information it is able to provide. However, this has the beneficial side

effect of rewarding experimental behaviour on the part of the user, since

such behaviour will tend not to relate so much to past actions and therefore

engender more general inform ation in the form of state-based and

function-based diagnoses.

It has been noted that users may entertain general misconceptions,

unrelated to any particular command, for example that pathnames always

start with the 'home' directory or that failed commands somehow still

achieve their intended end. It is feasible that the help system could be

extended to address this kind of misconception, although no attempt is

made to do so here.

It has also been noted that components of compound errors deserve to

be treated concurrently and prioritised so that: a) users are not led to

commit component errors again and b) those which preclude the objective

of another component take priority. For example, an attempt to apply the Is

command to a file, which also embodies a bad reference to that file, should

be failed on logical grounds, rather than referential grounds.

All in all, it is estimated that the evaluation conducted has provided

strong vindication of the proposed approach both in terms of its analysis

130

c u m p i v m m n v u i u i L a a x a ^ i t i i d u t d w u m u i t u u i u p i u i i i U L t u i o r v iu u

of errors discussed and its success in diagnosing many situations of user

misconception. Chapter 8 considers these claims in more detail.

131

8. Conclusion

This chapter attempts to draw together all of the strands of the others

and to evaluate their strengths and weaknesses as they affect the initial aims

of the research.

8.0 Review

The principal aim of this research has been to demonstrate the relevance

of certain characteristics of NL communication to the HCI context,

motivated by a) the conviction that attention to such a relation can help to

improve the usability of computer systems and b) resistance to the idea that

the graphical user interface embodies a type of communication between

user and system which bears no relation to that of NL. It has been an

intention to show that communicational issues in HCI cut across issues of

interface style.

To this end, situations of communication breakdown or dialogue failure

have been suggested as being particularly perspicuous in highlighting

important aspects of dialogue design and a significant class of contextual

error has been identified and analysed by applying certain theoretical

constructs, adapted from NL pragmatics. It has been argued that such

situations occur, regardless of particular interface styles, as a result of the

inability of typical systems to adequately enable the user to build and

maintain an appropriate mental model of the system, owing to the lack of

attention to the principles of cooperative communication. It has also been

argued that, in order to rectify this situation and provide a cooperative

132

response, a degree of intelligence is required in the interface to reason

about the interaction as it proceeds.

A model of user misconception has been proposed, based on the notion

of possible worlds, and mechanisms have been suggested for selection

between alternative candidate possible world models of user misconception,

following Gricean principles o f cooperative com m unication. Such

representations and mechanisms have been combined in the design of a

rule-based system intended to act as an intelligent assistant for the diagnosis

and resolution of contextual errors in interactive command line systems.

The assistant is intended to provide appropriate cooperative responses,

lacking in a typical system’s feedback mechanisms.

A simulation of the UNIX® file system has been described, along with a

restricted implementation of the proposed help system, designed to address

contextual errors arising in users' interactions with the UNIX® file system.

This software was produced for utilisation in evaluative exercises to be

conducted on the proposed help system design and the theory supporting it.

Two evaluative exercises have been conducted in order that some

measure of the effectiveness of the proposed help system design and its

underlying theory might be made. The first of these took the form of a

classical experiment using balanced groups of subjects. The second

involved four subjects and used the method of protocol analysis in order to

gain a more detailed, if more subjective, account of users' interactions in

situations of contextual error.

8.1 The UNIX® E xperience

The experimental exercise cannot be considered as anything but

inconclusive. Even extrapolating the results does not demonstrate their

significance. It is probable that a major contributory factor to this outcome

was the disappointingly low turnout of subjects. However, it must also be

said that the experiment could have been improved if it had been possible

to prolong the subjects' system contact time, to determine some measure of

ease of learning and to use a more developed version of the help system

133

software. On the positive side, useful data on the commission of various

error types was produced.

The protocol analysis was an altogether more successful enterprise,

producing many useful insights into the UNIX® file system design, as well

as users' interaction with it. The detailed analysis contained in Appendix K,

summarised in the last chapter, demonstrates the viability of the proposed

approach to pragmatic error, at least within the context of this application

type. Although it is admitted that the criteria for selecting between

alternative hypotheses of user misconception need strengthening in order to

render this process more robust, the success rate of diagnosis is high, given

the relative simplicity of those criteria.

Hypotheses concerning the causes of context error have, to a large

extent, been confirmed by the exercises here. However, the experience has

also brought to light unexpected interaction behaviour which would

certainly influence any development of the general approach. In particular,

user actions based on 'high-level' or 'generalised' misconceptions about

system functionality, rather than those concerning single commands,

suggest that system responses should reflect this difference, so that users

are not led to believe that general 'rules' apply only to particular

commands.

A point to be made in this regard is that UNIX® error messages do not

always make clear what aspects of the problem are within the user's control

and which are not. For example, in UNIX®, the 'permission denied' error

may be generated when the user has set an access mode or when the system

supervisor has done so. The ability or inability to perform an action and

the responsibility for a problematic state of affairs may or may not be in

the control of the user. Thus it is important that these two cases are

distinguished for users so that they are able to take responsibility for what

they can control and do not attempt to influence matters beyond their

control

It has been confirmed that context errors are caused by the inability of

subjects to maintain an adequate model of transient system states involving,

134

for example, the identity of the cw d , the access protection, existence or

location of items and so on. One possible solution to this kind of problem

involves some method of lessening the burden on users' short term

memory by making it unnecessary to recall such details. To some extent,

this can be achieved in the WIMPS style of interaction (exemplified in the

Macintosh Finder) in that features of the current system state, as mentioned

above, are displayed graphically as icons and their attributes on the

'desktop1, while the direct manipulation style of interaction ensures that the

users' attention is drawn to the relevant information. One of the important

characteristics of the WIMPS interface is that it reduces the 'command

space' to the set of available commands (in the menu system) and changes

the burden of recall to one of recognition for the user.

However, as has been suggested earlier, this approach has its limitations.

Firstly, there will always be a limit to the useful amount of information

that can be displayed at one time and therefore the information lying

outside of the displayed domain is subject to the same recall constraints and

difficulties of the command line interface. An item must be brought into

view before it can be manipulated and so the user must accurately recall

how this is to be achieved if a possibly extensive search is to be avoided. In

the case of a previously deleted or renamed item, a search of the whole file

system might have to be undertaken for the absence of the said item to be

established. A similar story could be told for items having undergone

relocation in the file system. Other criticisms of the WIMPS style interface

can be found in Ehrich et. al. (1986; p. 173).

In short, unlike the command line interface, the state orientated

philosophy does not, in principle, allow for a speculative command. The

problem being that the level of support for such speculation found in the

typical commandline interface is not appropriate for its effective use. Users

are met with negative messages such as 'x not found' or 'permission denied'

instead of information that they really require such as, for example, that

the item has been renamed, deleted or moved, plus its new name or

location.

135

Secondly, the user can usually only really explore WIMPS applications

within the confines of correct usage. It is certainly true that it is possible to

learn as much (if not more) from mistakes than from correct usage but the

philosophy of preclusion of errors (inherent in the WIMPS style)

effectively negates this. Users are (typically) shown the limits on their

potential action but not why those limits are there. Ghosted items in a

menu, at best, inform the user that that selection is not available but do not

explain why. The issue being pursued here is not that of choosing between

interfaces which preclude contextual error and those which do not but

concerns the responsiveness of the dialogue itself with respect to the short

and long term conceptual models which motivate the the user's behaviour.

What these points are intended to convey is not the superiority of one

interface style over another; each has its merits and disadvantages, but that

the problem of context error cuts across issues of interface styles and that

the adoption of a particular style can not be a complete answer. It is

suggested that the approach advocated here has implications for any form

of human-computer interaction which is interpretable as communication

and that this includes most computer systems.

Context errors are also committed because users are not aware of some

permanent feature of the system. For example, it might not be known that

write permission must be granted on a file for it to be possible to delete it.

In contrast to transient system states, such system 'rules' do not need so

much to be continually updated in the user’s mental model of the system,

since they are, by nature, constant.

One of the complications here is that, as far as the system is concerned,

the consequences of unawareness of persistent and of transient system

features can be exactly the same. An attempt to delete a protected file may

arise either from a lack of awareness of the protection on the file or a lack

of awareness that protection is a necessary consideration. If this ambiguity

is to be addressed, there is need to consider all possible means for resolving

it so that all error messages are relevant to the users' current situation. The

presentation of 'catch all' information intended to cover all eventualities

136

will tend to verbosity and risk irritating the user with unnecessary

material.

It is feasible for a context error to occur because the user is not aware

of all of the consequences of a previous action. An example of this in the

study was when S I changed the protection on a directory to gain entry to it

by assigning it execute permission, only to find that it could not be listed

because she had simultaneously removed read permission (18.12.19).

However, this kind of ’diachronic' effect was not much in evidence. It is

contended that this is partly because of the relative functional simplicity of

the system being used. It is to be expected that a more functionally complex

application would increase the possibility for such a problem. Again,

automatic diagnosis of this problem is not a completely straightforward

matter, owing to the sharing of symptoms with other causes.

It is clear from the study that significant problems arise for users from

the failure of the host system to signal errors in such a way as to enable

swift and effective recovery and correction of misconceptions. The

messages generated by the standard UNIX® system do not address the

user's error with any precision or in terms that relate to the user's current

concerns. Nor do they address the question of likely causes. In short, the

host system exhibits a distinct lack of cooperative behaviour, which

accounts, on the whole, for the ease with which it is possible to

misinterpret an error.

This is certainly an area where improvements can be made by

considering the question of what a cooperative response would consist of in

the light of the implications of the user’s command in the context of use.

The approach to this problem proposed here takes the Gricean paradigm as

its starting point and looks at the general requirements stipulated for

cooperative communication. If we imagine that it is a goal and

responsibility of the system to help encourage effective dialogue, then it is

in the system's interest to enable the user to gain optimum benefit from its

own responses. Therefore its responses should be of a nature that the user

might expect in the same situation from a cooperative human interlocutor.

137

If a shopkeeper persisted in refusing your money for some item you were

purchasing, indicating that the amount was wrong but without indicating

the correct amount, you would think him churlish. But this is exactly what

the UNIX® system does with its 'permission denied' and 'x not found' style

of message.

It is interesting that subjects were, on the whole, quite patient with the

system, suggesting, perhaps, that they have come to expect this level of

uncooperative behaviour from computer systems. Error reports in WIMP

style interfaces are often just as uninformative, since, on the whole, they

only depart from the command language dialogue style by presenting the

message in its own window.

It is common for users' commands to embody more than one error. The

host system’s error handling algorithm reacts only to the first error

'parsed' and ignores the rest of the command. This means that, on some

occasions, users correct for a signalled error, only to be told that the

command is still faulty in some way. This situation is rather like

redirecting someone to a shop one knows to be closed! Again, it seems

wholly inappropriate in these circumstances not to attempt to provide the

level of cooperativeness that one would expect from another person. The

comments made above concerning misinterpreted errors apply equally

here.

Although it is difficult to identify examples of a direct link between the

lack of feedback and the commission of context error in the study, the

potential for such a connection is obvious and the conclusion to be drawn

from the incidence of subjects' confusion and misinterpretation when the

system responds to a perfectly acceptable command with nil output (e.g.

when an empty directory is listed) is self evident. Given the system's

practice of merely redisplaying the prompt after the successful execution of

a command, this is roughly equivalent to a 'yes' answer to a 'wh' question.

Again, this is confusing (it is suggested) because this does not follow

conventions of cooperative communication.

It is interesting to note that the appearance of relevant information on

138

the computer monitor is often overlooked. Users appear to assimilate

displayed information that they are specifically looking for, while failing to

notice or comprehend other relevant information presented simultaneously.

For example, directories are often listed in ’long1 format in order to

discover their contents. This command also shows the access modes, the

number of child directories and files for each item and whether the item is

a file or subdirectory.

It is not uncommon for users then to attempt some unnecessary or

incorrect action, such as trying to list a file, which would be avoided had

this information been assimilated (S2 - 17.38.19 "I need to change access

privileges to get into that one... I should have known that!"). This suggests

that the fact that the system presents information is not sufficient for it to

be of use to the user and that a necessary (although not sufficient) condition

on the assimilation of information is that the time, circumstances and focus

of its presentation be appropriate for its intended use. The fact that it is

displayed is not always enough. The user’s attention may have to be drawn

to it at a relevant time for it to be effective.

In the context of the host system, users can be led to expect all

appropriate commands to default to cwd if no directory is specified in the

command. This is a generalisation of the Is command syntax and is not

supported. This inconsistency in the software design can be seen as the

direct cause of these errors. This is an interesting example of how the

functionality of an application influences interface design and the practical

difficulty of separating application and interface. On the one hand, it might

seem to be a positive feature to allow commands with directories as

arguments to default to the cwd if no argument is supplied, since this will

reduce the amount of typing required by the user.

However, the possibility of a directory being execute-protected and thus

not capable of 'entry' means that the strategy of making a directory the

cwd in order to apply certain commands to it may be thwarted in some

circumstances. It would also introduce complications for the rm d ir

command in that the cwd would have to be automatically altered. Failing

139

some other solution, the interface designer is left with the choice of leaving

out what may be a useful default feature or introducing inconsistencies into

the interface because of the functional relations within the application.

Knowledge transfer between systems can be stifled by superficial

differences in command syntax. In UNIX® and other systems, it is possible

to instruct the interface to translate some specified input as a recognised

command. In this way, one can provide oneself (and possibly others) with

shortened or personalised commands or 'aliases'. The error of using

commands from a functionally similar system with differing command

language can easily be given an interpretation by the system if it is

configured to accept certain recognised synonyms such as Is (UNIX®) and

dir (MS DOS).

It is also possible to widen the context of acceptability to natural

language terms, to some extent, so that instead of the negative 'no such

command' type of response, suggestions as to the desired command may be

given, if not a direct interpretation. This provides the user with at least

some avenue of action when held up by the lack of command knowledge or

provides a more cooperative response in circumstances where it might

reasonably be expected.

Again, the static nature of menu systems in WIMPS interfaces leaves no

room for this kind of cooperative response. If users do not recognise the

significance of a particular menu entry, there is no avenue open to them

for applying prior knowledge or speculation. Outside help, in the form of

manuals, on line help or personal consultation, must be sought.The same

can be said of typing mistakes and errors in naming, which accounted for a

number of errors in the study. A cooperative partner would not reject out

of hand a misspelled name.

It is clear that context errors are caused by topological disorientation

and that the command line interface used in the study is poor in supporting

the maintenance of these features of the user's mental model. W e have

argued above that the state orientated display of the WIMPS style interface

is only a partial solution and that it introduces problems and limitations of

140

its own.

Context errors are also caused by users' misconceptions about the

functionality of the system and how it is properly exploited. The common

misconception concerning path names always beginning from the 'home'

directory is an example. We characterise this as a mismatch between the

system and the users functional model of it (or functional features of the

user's model). Again it is suggested that the closure of the set of available

user actions found in the WIMPS philosophy is not an entirely satisfactory

solution.

The misinterpretation of errors, the failure to deal sympathetically and

cooperatively with compound errors and typographical errors can be seen

as a general failure in the system to communicate effectively with the user,

both in terms of attention to the precise nature of the error (let alone its

psychological cause) and consequently in the form and content of the

information presented to the user. Again this cuts across issues of interface

style and demands attention to the quality of the dialogue. It has been

shown that attention to the natural language pragmatics paradigm can

greatly aid in this regard.

It is clear that information is best assimilated if provided at the time

when it is pertinent to the user's current concerns and that its mere

presence is not always sufficient. The problem of determining what

information is pertinent at any particular time is not a trivial one in the

normal course of an interaction. However, the approach advocated

maintains that error situations represent excellent opportunities for

achieving this and stresses the positive benefits that errors can bring.

Of course, it will come as no surprise to anyone with some experience

of the standard UNIX® interface that the problems discussed above exist.

However, the aim of this study is to evaluate a particular analysis of these

problems and their relations to other forms of interaction and styles of

interface and not the interface itself. The UNIX® interface was chosen

because the incidence of context error is strikingly obvious in its use but

this does not mean that the phenomenon is solely a feature of, and therefore

141

only relevant to, that kind of interaction. On the other hand, the study has

provided a systematic analysis of a class of problems which UNIX® users

encounter, in terms of a principled account of cooperative communication,

which furnishes us with a deeper understanding of these problems than that

promoted by the taxonomies of user error or dialogue failure discussed in

Chapter 3 or the statistical studies cited.

8.2 The WIMPS Interface

Although there has not been time to study in any detail the application

of this approach to alternative interaction styles, it is possible to make some

remarks about the WIMPS interface and its relation to the issues we have

been addressing. The WIMPS interface differs from the command line

interface in the following ways:

• Access to commands is via the menu system and thus do not need to be

remembered.

• Arguments are supplied, when necessary, by selecting them with the

mouse pointer prior to selecting a command.

• Parameters are set via dialogue boxes

• The system state is graphically displayed (partially) and so requires

less memorisation.

• Some actions may be carried out by directly manipulating graphical

symbols or icons.

• Commands whose preconditions are unfulfilled are made unavailable

by dimming or ghosting their menu entry.

Apart from direct manipulation, issuing a command in the WIMPS

interface is essentially the same as its command line equivalent. A

command is applied to a certain object, perhaps with certain parameters,

while certain preconditions must be fulfilled. For example, the 'New

Folder', 'Close' and 'Print Directory' commands in the Macintosh Finder

all require the argument's window to be open and selected, while the 'Get

142

Info', 'Duplicate' and 'Put Away' commands require a drive, folder or file

icon to be preselected.

The first thing that might be said about this is that it is not at all obvious

why arguments should have to be specified prior to the selection of

command rather than afterwards. This is merely an aspect of the error

preclusion policy and could be a source of confusion, especially to users

familiar with command line interfaces, which often allow a command to be

specified before prompting the user for arguments and parameters.

Secondly, the obviousness of the requirement of specific preconditions

for a command will vary according to the command and according to the

user. For example, it may seem obvious that the floppy disk drive must be

occupied by a disk for the 'Eject' command to be appropriate but it is

certainly less obvious that a server volume m ust be selected as a

precondition of the 'Get Privileges' option or that a window must be open

before a new folder can be created.

Thirdly, the ghosting out of menu items is totally insensitive to anything

but the presence or absence of specific preconditions. If a user preselects

the wrong kind of object for a particular command, rather than failing to

select one at all, the effect is exactly the same. The system always responds

in its own terms, with regard to its own interests. Users are expected to

infer the aspects in which their conception of the system is erroneous.

Because of its state-based display and the inability to issue commands

whose arguments are not directly accessible, the prospect of state-based

misconception is drastically reduced in the WIMPS environment and the

need for error handling focuses mainly on function or rule-based

misconception. From what has already been said, it will probably be

obvious that the application of the approach proposed in this thesis would

require that the WIMPS system responds more cooperatively to the

selection of ghosted commands both by providing an explanation of the

reasons for the unavailability o f that com mand, in term s of its

preconditions or presuppositions, and by indicating and explaining any

incorrect selection of arguments or parameters in order to directly address

143

users' misconceptions. It also seems clear that this requirement would be

much easier to implement for the same reasons. However, the shortcomings

of this solution, stemming from characteristics inherent in this interface

style, such as the inability to issue a speculative command and thus generate

help information about a deleted item, for example, remain.

8.3 Error Messages

The question of the form and wording of help or error messages has not

been discussed, while it is acknowledged that this is at least as important an

issue as misconception diagnosis. There is little point in being able to

automate the detection of user misconception if the user is unable to

assimilate the resulting messages. It has not been the aim of the present

research to investigate or present recommendations for this aspect of

automated help systems. However, it has been stressed that information

should be presented in terms related to the user's current concerns. That is

to say that reference should be made by name to the objects involved in the

error and to the action associated with the command involved. For

example: "You cannot delete the file 'myfile' because its parent directory

'mydir' was write protected earlier in this session, (command was: chmod

mydir 000)".

No definitive substantiation of the related claims that, a) errors can be

beneficial and b) the preclusion of errors has negative effects on learning,

has been made. Instead, an attempt has been made to persuade the reader of

these points by argument. It is considered that the possibility of providing

conclusive evidence for these claims is fairly remote and well beyond the

scope of this research. However, the thesis presented here does not rely on

their veracity, in as much the approach it advocates is perceived to be an

effective one and it is claimed that this is the case, in that it supplies a

generalisable method for rendering any human-computer dialogue more

cooperative with regard to dialogue responses in a class of situations of

user error.

144

8.4 Possible F u r th e r D evelopm ents

Apart from the application of the current approach to context error to

interfaces other than command line format, there are two other areas

which could reward further investment of research effort. The first is the

strengthening of criteria for misconception diagnosis and the second is the

design of a generic implementation of the assistant.

Thus far we have evinced two criteria for the diagnosis of user

misconception. Logical proximity is the closeness of a particular possible

world to the actual world, in terms of the number of transforming actions

separating them. This criterion represents a general principle of

conservation of the system state, which has the significance of crediting the

user with the ability to track the system state in a mostly accurate manner,

as it evolves throughout the interaction.

A possible world is said to be psychologically proximate to the actual

world if it differs to it in some respect which, had it not, would rehabilitate

the erroneous command. This relates to the user characteristic of distorting

the actual world (in terms of the user's mental model of the system) only in

ways which make sense, given some error in STM or lack of awareness of

the effects of some action.

Thus, these two criteria relate to two of the possible causes of context

error, the third cause being unawareness of the preconditions of some

action. As yet, we have determined no positive criteria for diagnosing

context errors with this cause and have used the lack of evidence under

other criteria to indicate this possibility. This is not an entirely

unsatisfactory state of affairs. While a context error caused by a failure in

STM or lack of awareness of the effects of some action will invariably be

reflected by the presence of a particular action in the interaction history, if

the cause is a lack of awareness of the preconditions of some action, a

causal antecedent action may not be present. However, this cannot be

generally relied upon for accurate diagnostic results and some other,

positive criterion for assessing the hypothesis of this cause would be

welcome.

145

The only available source would appear to be some measure of user

expertise, gained by monitoring user behaviour in the course of the

interaction. One such method would keep counts of successful and

unsuccessful uses of commands and precondition violations and use these to

construct a representation of user expertise across the functionality of the

application. This would, of course, need to be a dynamic user model,

capable of responding to the user’s gain in and loss of expertise over time.

If the Prolog clauses constituting the UNIX® simulation described in

Chapter 6 are read declaratively, they can be seen as a functional

description of (part of) the UNIX® file system. Given this functional

description, a command input, a system state and an interaction history, the

analyser will produce diagnoses of user m isconception and generate

appropriate help messages.

As it stands, the analyser is tied to the particular application but this is

not a necessary condition. The analyser could be made to generate its

hypotheses of user misconception via the functional rule-base defining the

system, since all causal relations between commands and their effects and

preconditions are represented within it. Thus, there is a distinct possibility

of producing a generic assistant which would operate on a rule-base,

system state, interaction log and command description to produce

misconception diagnoses for a range of applications and, although it has

proven to be a non-trivial task (Jackson & Lefrere, 1984), it is also

possible that error or help messages could be generated from the rule-base

and system state description. It is recognised that this would constitute a

fairly ambitious project.

8.5 Concluding Remarks

This research owes much to that of others cited herein. The recognition

of contextual error, the general call for conversationally cooperative

systems and research on NL interfaces in general are only some of the

factors which have been influential. The work represented in this thesis

derives its own achievement and originality from four main areas:

146

1) The detailed exploitation and adaptation of the Gricean Cooperative

Principle, its maxims and inferential processes to non-NL HCI and the

theoretical and practical demonstration of the validity of this endeavour.

2) The analysis of part of the UNIX® interface and its vagaries in terms

of a principled and consistent set of criteria, derived from NL

communication, rather than a simple taxonomy of faults.

3) The identification of context error as a significant class of dialogue

breakdown, the circumstances and incidence of which cuts across issues of

interface style.

4) The application of these ideas, via the notions of possible worlds and

logical and psychological/epistemic proximity as rationalising principles, to

the design and implementation of a prototype system.

147

References
Aaronson, A. & Carroll, J.M., 1986, 'The Answer is in the Question: A
Protocol Study of Intelligent Help', Research Report RC 12034, IBM
Thomas Watson Centre, Yorktown Heights, N.Y. 10598.

Aaronson, A. & Carroll, J.M., 1987, 'Intelligent Help in a One-Shot
Dialogue System', in Carroll, J.M., Tanner, P.P. (eds), Human Factors in
Computing Systems TV, Amsterdam, North Holland, pp. 163-74.

Allen, J., 1983, 'Recognising Intentions from N atural Language
Utterances', in Brady, M. & Berwick, R.C. (eds), Computational Models o f
Discourse, Cambridge, Mass., MIT Press, pp. 107-66.

Austin, J.L., 1962, How to Do Things with Words, Oxford, Clarendon
Press.

Black, J.B. & Carroll, J.M., 1987, 'What Kind of Instruction Manual is the
Most Effective?’, in Carroll, J.M., Tanner, P.P (eds), Human Factors in
Computing Systems TV, Amsterdam, North Holland, pp. 159-62.

Booth, P.A., 1989, An Introduction to Human-Computer Interaction, Hove,
Lawrence Erlbaum.

Booth, P.A., 1990a, 'ECM: A Scheme for Analysing User-System Errors',
International Journal o f Human-Computer Interaction v. 2, n. 4, pp.
307-32.

Booth, P.A., 1990b, 'Identifying and Interpreting D esign E rrors',
Human-Computer Interaction: Proceedings o f Interact '90, Elsevier Science
Publishers, North Holland, pp. 47-60.

148

Booth, P.A., 1990c, 'Approaches to Error Analysis in Human-Computer
Interaction', Proceedings o f 5th European Conference on Cognitive
Ergonomics, pp. 199-213.

Bradford, J. H., Murray, W.D. & Carey, T.T., 1990, 'What Kind of
Errors do UNIX users make?', Human-Computer Interaction : Proceedings
o f Interact '90 , pp. 43-6.

Breuker, J., 1988, ’Coaching in Help Systems', in Self, J. (ed), Artificial
Intelligence and Human Learning: Intelligent Computer-Aided Instruction,
London, Chapman & Hall.

Buxton, W., 1987, 'The "Natural" Language of Interaction: A Perspective
on Non-Verbal Dialogues', Proceedings ofCIPS, Edmonton, pp. 16-9.

Carberry, S., 1988, 'Modelling the User's Plans and Goals', Computational
Linguistics vol. 14, n. 3, Sept.

Card, S.K., Moran, T.P. & Newell, A., 1983, 'The Psychology of
Human-Computer Interaction', Hillsdale, New Jersey, Lawrence Erlbaum.

Carroll, J.M. & Aaronson, A.P., 1988, 'Learning by Doing with Simulated
Intelligent Help', Communications o f the ACM, v.31, n.9, pp .1064-79.

Carroll, J.M. & McKendree, J., 1987, 'Interface Design Issues for
Advice-Giving Expert Systems', Communications o f the ACM, v. 30, n. 1,
pp. 14-31.

Carroll, J.M. & Mack, R.L., 1984, 'Learning to Use a Word Processor: By
Doing, By Thinking and by Knowing', in Thomas, J.C. & Schneider, M.L.
(eds), Human Factors in Computer Systems, Norwood, NJ, Ablex, pp.
13-51.

Carroll, J.M., Kellog, W.A. & Rosson, M.B., 1991, 'The Task-Artifact
Cycle', in Carroll, J.M. (ed), Designing Interaction: Psychology at the
Human-Computer Interface, Cambridge University Press.

Catrambone, R., Carroll, J.M., 1987, 'Learning a Word Processing System
with Training Wheels and Guided Exploration', in Carroll, J.M., Tanner,
P.P (eds), Human Factors in Computing Systems IV, Amsterdam, North
Holland, pp. 169-74.

149

Cham iak, E. & M cDermott, D., 1985, Introduction to A rtific ia l
Intelligence, Addison Wesley.

Chomsky, A.N., 1965, Aspects o f the Theory o f Syntax, Cambridge Mass.,
MIT Press.

Cowan, W. B. & Wein, M., 1990, 'State Versus History in User Interfaces',
Human-Computer Interaction : Proceedings o f In te ra c t90 , pp. 555-60.

Davenport, C. & Weir, G., 1986, 'Plan Recognition for Intelligent Advice
and Monitoring', in Harrison, M.D. & Monk, A.F. (eds), People and
Computers: Designing fo r Usability, Cambridge, Cambridge University
Press, pp. 278-315.

Davidson, D., 1984, Inquiries into Truth and Interpretation, O xford,
Clarendon Press.

Davis, R., 1983a, 'Task Analysis and User Errors: a Methodology for
Assessing Interactions', International Journal o f Man-Machine Studies,
n.19, pp. 561-574.

Davis, R., 1983b, 'User Error or Computer Error? Observations on a
Statistics Package', International Journal o f Man-Machine Studies, n. 19,
pp. 359-376.

Diaper, D., 1989, 'Task Observation for Human-Computer Interaction', in
Diaper, D. (ed), Task Analysis fo r H um an-Com puter In teraction ,
Chichester, Ellis Horwood.

Downton, A., 1991, 'Evaluation Techniques for Human-Computer Systems
Design', in Engineering the Human-Computer Interface, McGraw-Hill.

Edmondson, W.H., 1989, 'Asynchronous Parallelism in Human Behaviour:
A Cognitive Science Perspective on Human-Com puter Interaction ',
Behaviour and Information Technology, v. 8, n. 1, pp. 3-12.

Ehrich, R.W., Johnson, D.H., Roach, J.W., Sanford, D.L. & Narang, P.,
1986, 'Role of Language in Human-Computer Interfaces', in Ehrich, R.W.
& W illiges, R.C. (eds), Advances in Human Factors Ergonom ics:
Human-Computer Dialogue D esign, Am sterdam , E lsevier Science
Publishers.

150

Erlandsen, J. & Holm, J., 1987, 'Intelligent Help Systems', Information and
Software Technology, v.29, n.3, pp .l 15-21.

Finin, T., 1983, 'Providing Help and Advice in Task Orientated Systems',
Proceedings o f the International Joint Conference on Artificial Intelligence,
pp. 176-78.

Flores, F, & W inograd, T., 1986, U nderstanding Com puters and
Cognition: A New Foundation fo r Design, Ablex Publishing, N.Y.

Fountain, A.J. & Norman, M.A., 1985, 'Modelling User Behaviour with
Formal Grammar', in Johnson, P. & Cook, S. (eds), People and
Computers: Designing the Interface., Cambridge University Press.

Frese, M., Brodbeck, F., Heinbokel, T., Mooser, C., Schleiffenbaum, E. &
Thieman, P., 1991, 'Errors in Training Computer Skills: On the Positive
Function of Errors’, Human-Computer Interaction, v. 6, pp. 77-93.

Goldstein, I.P., 1979, 'The Genetic Graph: A Representation for the
E volution of P rocedural K now ledge', In terna tiona l Journa l of
Man-Machine Studies, n. 11, n. 1, pp. 51-77.

Grace, J.E., 1987, 'The Man-Machine Interface: The Natural Language
Barrier', Human-Computer Interaction: Proceedings o f Interact '87,
Elsevier Science Publishers, North Holland, pp. 549-54.

Green, M., 1986, 'A Survey of Three D ialogue M odels', A C M
Transactions on Graphics, v. 5, n. 3, pp. 244-75.

Green, R.G., Schiele, F. & Payne, S.J., 1988, 'Formalisable Models of
User Knowledge in Human-Computer Interaction', in Van der Veer, C.G.,
Green, T.R.G., Hoc, J., Murray, D.M. (eds), Working with Computers:
Theory versus Outcome, San Diego, Academic Press.

Grice, H.P., 1975, 'Logic and Conversation', in Cole, P., Morgan, J.L.
(eds), Studies in Syntax, vol. 3, New York Academic Press.

Hanson, S.J., Kraut, R.E., Farber, J.M ., 1984, 'Interface Design and
Multivariate Analysis of UNIX Commands', ACM Transactions on Office
Information Systems, v. 2, n. 1, pp. 42-57.

151

Harris, L.R., 1983, 'The Advantages of Natural Language Programming',
in Sime, M.E. & Coombs, M.J. (eds), Designing fo r Human-Computer
Communication, London, Academic Press, pp. 73-85.

Hecking, M., 1987, 'How to Use Plan Recognition to Improve the Abilities
of the Intelligent Help System Sinix Consultant', Proceedings o f Interact
'87, Elsevier Science Publishers, North Holland, pp. 657-662.

Hill, I.D., 1983, 'Natural Language versus Computer Language’, Sime,
M.E. & Coombs, M.J., Designing fo r Human-Computer Communication,
London, Academic Press, pp. 55-72.

Houghton, R.C., 1984, ’O nline H elp System s: A C onspectus',
Communications o f the ACM , v. 27 n. 2, pp. 126-33.

Jackson, P. & Lefrere, P., 1984, 'On the Application of Rule-Based
Techniques to the Design of Advice Giving Systems', International Journal
o f Man-Machine Studies, n. 20, pp. 63-86.

Jerrams-Smith, J., 1985, 'Susi - A Smart User-System Interface', in
Johnson, P. & Cook, S. (eds), People and Computers: Designing the
Interface, Cambridge University Press, pp. 211-20.

Johnson, P., 1985, 'Towards a Task Model of Messaging: An Example of
the Application of TAKD to User Interface Design', in Johnson, P. &
Cook, S. (eds), People and Computers: D esigning the In terface ,
Cambridge University Press.

Jones, J. & Virvou, M., 1991, 'User modelling and Advice Giving in
Intelligent Help Systems for UNIX ', In form ation and So ftw are
Technology, v. 33, n. 2, pp. 121-33.

K am m ersgaard , J ., 1990, 'F ou r D iffe ren t P e rsp ec tiv es on
Hum an-Com puter Interaction', in Preece, P. & K eller, L. (eds),
Human-Computer Interaction: Selected Readings, Hemel Hem pstead,
Prentice Hall, pp. 42-64.

Kaplan, J., 1983, 'Cooperative Responses from a Portable N atural
Language Database Query System', in Brady, M. & Berwick, R.C. (eds),
Cambridge, Mass, MIT Press, pp. 107-66.

152

Kass, R. & Finin, T., 1988, 'Modelling the User in Natural Language
Systems', Computational Linguistics, v. 14, n. 3, pp. 5-22.

Kieras, D.E., Bovair, S., 1990, 'The Role of a Mental Model in Learning
to Operate a Device’, in Preece, P. & Keller, L. (eds), H uman-Computer
Interaction: Selected Readings, Hemel Hempstead, Prentice Hall, pp.
205-21.

Kieras, D.E. & Poison, P., 1985, 'An Approach to the Formal Analysis of
User Complexity', International Journal o f Man-Machine Studies, v. 22, n.
4, pp. 365-94.

Kobsa, A. & Wahlster, W., 1986, 'Dialogue-Based User Models’, IE E E
Proceedings, v. 74, n. 7, pp. 948-61.

Konolige, K., 1981, 'A First Order Formalisation of Knowledge and
Action for a Multi-Agent Planning System', in Hayes, J.E., Mitchie, D., &
Pao, Y. (eds), Machine Intelligence (10) Chichester, U.K., Ellis Horwood.

Landauer, T.K., 1990, 'Relations Between Cognitive Psychology and
Computer Systems Design', in Preece, J. & Keller, L. (eds), H u m a n
Computer Interaction: Selected Readings, Hemel Hempstead, Prentice Hall,
pp. 141-60.

Ledgard, H., W hiteside, J.A., Singer, A. & Seymore, W ., 1980, 'The
Natural Language of Interactive Systems', Communications o f the ACM , v.
23, n. 110, pp. 556-63.

Levinson, S. C., 1983, Pragmatics, Cambridge University Press.

Lewis, C. & Norman, D.A., 1987, 'Designing for Error’, in Baeker, R.M.
& Buxton, W.A.S. (eds), Readings in Human-Computer Interaction: A
Multidisciplinary Approach, Los Altos, Morgan Kaufman, pp. 627-38.

Lutze, R., 1987, 'Customising Help Systems to Task Structures and User
Needs', Proceedings o f Interact '87, Elsevier Science Publishers, North
Holland.

McCoy, K., 1988, 'Reasoning on a Highlighted User Model to Respond to
Misconceptions', Computational Linguistics, v. 14, n. 3.

153

Mack, R.L., Lewis, C.H. & Carroll, J.M., 1987, 'Learning to Use Office
Systems: Problems and Prospects', ACM Transactions on O ffice
Automation Systems, 1, 254-71.

Mayes, J.T., Draper, S.W., McGregor, A.M. & Oatley, K., 1990,
'Information Flow in a User Interface: The Effect of Experience and
Context on the Recall of Macwrite Screens', in Preece, P. & Keller, L.,
(eds), Human-Computer Interaction: Selected Readings, Hemel Hempstead,
Prentice Hall, pp. 222-34.

Monk, A., 1986, 'Mode Errors: A User-Centered Analysis and Some
Preventative Measures Using Keying-Contingent Sound', International
Journal o f Man-Machine Studies, n. 24, pp. 313-27.

Monk, A.F. & Wright, P.C., 1991, 'Observations and Inventions: New
Approaches to the Study of Human-Computer Interaction', Interacting with
Computers, v. 3, n. 2, pp. 204-16.

Moran, T.P., 1981, 'The Command Language Grammar: A Representation
for the User Interface of Interactive Systems', International Journal o f
Man-Machine Studies, n. 15, pp. 3-50.

Moran, T.P., 1983, 'Getting into a System: External-Internal Task
Mapping Analysis', CHI '83 Conference o f Human Factors and Computing
Systems, New York, ACM, pp. 45-9.

Murray, D.M., 1987, 'Embedded User Models', Proceedings o f Interact
'87, Elsevier Science Publishers, North Holland, pp. 229-35.

N ielsen, J., 1990, 'The Art of N avigating Through H ypertex t1,
Communications o f the ACM, v. 33, n. 3, pp. 296-311.

Norman, D.A., 1983, 'Design Rules Based on Analyses of Human Error',
Communications o f the ACM, v. 26, n. 4, pp. 254-58.

Norman, D.A., 1983a, 'Some Observations on Mental Models', in Gentner,
D. & Stevens, A.L. (eds), M ental M odels, H illsdale, N .J., Lawrence
Erlbaum.

Norman, D.A., 1986, 'Cognitive Engineering', in Norm an, D.A. &
Draper, S. (eds), User-Centred System Design: New Perspectives on
Human-Computer Interaction, Lawrence Erlbaum, pp. 31-61.

154

Nozick, R., 1981, Philosophical Explanations, Oxford, Open University
Press.

Payne, S.J. & Green, T.R.G., 1986, Task Action Grammars: A model of
the M ental representation of Task Languages', H um an C om puter
Interaction, n. 2, pp. 93-133.

Pinsky, L., 1983, 'What Kind of Dialogue is it when Working with a
Computer?’, Green, T.G., Payne, S.J. & Van der Veer, G.C. (eds), The
Psychology o f Computer Use, London, Academic Press, pp. 29-40.

Prager, J.M., Lamberti, D.M., Gardener, D.L. & Balzac, S.R., 1990,
'Reason: An Intelligent User Assistant for Interactive Environments', IBM
Systems Journal, v. 29, pp. 141-66.

Quilici, A., Dyer, M.G. & Flowers, M., 1988, 'Recognising and
Responding to Plan-Oriented Misconceptions', Computational Linguistics,
v. 14, n. 3, pp. 38-51.

Quine, W.V.O., 1960, Word and Object, Cambridge, Mass., MIT Press.

Reichman, R., 1985, Getting Computers to Talk Like You and Me,
Cambridge, Mass., MIT Press.

Reisner, P., 1984, 'Formal Grammar as a Tool for Analysing Ease of Use:
Some Fundamental Concepts', in Thomas, J.C., & Schneider, M.L. (eds),
Human Factors in Computing Systems, New Jersey, Ablex.

Rich, E., 1979, 'User Modelling via Stereotypes', Cognitive Psychology, 3,
329-45

Sanford, D.L. & Roach, J.W., 1988, 'A Theory of Dialogue Structures to
Help Manage Human-Computer Interaction', IEEE Transactions on
Systems, Man and Cybernetics, v. 18, n. 4, pp. 567-74.

Searle, J., 1969, Speech Acts, Cambridge University Press.

155

Shakel, B., 1990, 'Human Factors and Usability', in Preece, J. & Keller, L.
(eds), Human-Computer Interaction: Selected Readings, Hemel Hempstead,
Prentice Hall, pp. 27-41.

Sutcliffe, A., 1988, Hum an-Com puter Interface D esign, L o n d o n ,
Macmillan.

Thimbleby, H., 1990, User Interface Design, New York, ACM.

Weiskamp, K. & Shammus, N., 1988, Mastering Smalltalk, Wiley.

W hitefield, A., 1987, 'M odels in Hum an-Com puter Interaction: A
C lassification w ith Special Reference to their Uses in D esign',
Human-Computer Interaction: Proceedings o f Interact '87, Elsevier Science
Publishers, North-Holland, pp. 57-63.

Whiteside, J., Bennett, J. & Holtzblatt, K., 1987, 'Usability Engineering:
Our Experience and Evolution', in Helander, M. (ed), H andbook o f
Human-Computer Interaction, North Holland, 791-817.

W ilensky, R., 1983, Planning and Understanding: A Computational
Approach to Human Reasoning, Reading, Mass., Addison-Wesley.

Wilensky, R., Chin, D.N., Luria, M., Martin, J., Mayfield, J. & Wu, D.,
1988, 'The Berkeley UNIX Consultant Project', Computational Linguistics,
v. 14, n. 4, pp. 35-84.

W ilson, M.D., Barnard, P.J., Green, T.R.G. & M aclean, A., 1988,
'Knowledge-Based Task Analysis for Human-Computer Systems’, in Van
der Veer, C.G., Green, T.R.G., Hoc, J., Murray, D.M. (eds), W orking
with Computers: Theory versus Outcome, San Diego, Academic Press.

Winograd, T., 1972, Understanding Natural Language, New York,
Academic Press.

W oodroffe, M.R., 1988, 'Plan Recognition and Intelligent Tutoring
Systems', in Self, J. (ed), Artificial Intelligence and Human Learning:
Intelligent Computer-Aided Instruction, London, Chapman & Hall, pp.
213-25.

156

Woods, W.A., 1972, ’An Experimental Parsing System for Transition
Network Grammars', in Rustin, R. (ed), Natural Language Processing,
New York, Algorithmics Press, pp. 113-54.

Wright, P.C. & Monk, A.F., 1991, 'A Cost-Effective Evaluation Method
for Use by Designers', International Journal o f Man-Machine Studies, (in
Press).

Young, R. L., 1991, 'A Dialogue User Interface Architecture', in Sullivan,
W.S. & Sherman, W.T. (eds), Intelligent User Interfaces, New York, ACM
Press, 157-76.

Young, R.M. & Harris, J.E., 1986, 'A Viewdata-Structure Editor Designed
Around a Task/Action Mapping', in Harrison, M.D. & Monk, A.F. (eds),
People and Computers: Designing fo r Usability, Cambridge University
Press, pp. 435-446.

157

Bibliography

Abrams, K.H., 1987, 'Who's the Boss: Talking to Your Computer in the
A.I. Age', Human-Computer Interaction: Proceedings o f Interact '87,
Elsevier Science Publishers, North Holland, pp. 931-6.

Alexander, H., 1987, 'Executable Specifications as an Aid to Dialogue
Design', Human-Computer Interaction: Proceedings o f Interact '87,
Elsevier Science Publishers, North Holland, pp. 739-44.

Alty, J.L. & McKell, P., 1986, 'Application Modelling in a User Interface
Management System', in Harrison, M.D. & Monk, A.F. (eds), People and
Computers: Designing fo r Usability, Cambridge, Cambridge University
Press, pp. 319-35.

Alty, J.L. & Mullin, J., 1987, 'The Role of the Dialogue System in a User
Interface Management System', Human-Computer Interaction: Proceedings
o f Interact '87, Elsevier Science Publishers, North Holland, pp.1007-12.

Arens, Y., 1986, 'Modelling an Interlocutor’s Perception of Context',
IEEE International Conference on Systems, Man and Cybernetics, pp.
771-5.

Bailey, W.A., Kay, E.J, 1986, 'Toward the Standard Analysis of Verbal
Data', IEEE International Conference on Systems, Man and Cybernetics,
pp. 582-7.

Balzert, H., 1987, 'Objectives for the Humanisation of Software: A New
and Extensive Approach', Human-Computer Interaction: Proceedings o f
Interact '87 Elsevier Science Publishers, North Holland, pp.5-10.

158

Barnard, P., Wilson, M., Maclean, A. 1988, 'Approximate Modelling of
Cognitive Activity with an Expert System : A Theory-Based Strategy for
Developing an Interactive Design Tool', The Computer Journal, v. 31, No.
5, 1988, pp. 445 - 56.

Bennett, J.L., Lorch, D.J., Kieras, D.E., Poison, P.G., 1987, 'Developing a
User Interface Technology for Use in Industry', H u m a n -C o m p u ter
Interaction: Proceedings o f In tera c t '87 Elsevier Science Publishers, North
Holland.

Benyon, D., Innocent, P., Murray, D., 1987, 'System Adaptivity and the
Modelling of Stereotypes', Human-Computer Interaction: Proceedings o f
In terac t'87 Elsevier Science Publishers, North Holland.

Benyon, D., Murray, D., 1988, 'Experiences with Adaptive Interfaces',
The Computer Journal, v.31, n.5, pp. 465-73.

Berwick, R.C., 1983, 'Computational Aspects of Discourse', in Brady, M.,
Berwick, R.C. (eds), Computational M odels o f Discourse, Cam bridge,
Mass., MIT Press.

Bjom-Anderson, N., 1988, 'Are "Human Factors" Human?', The Computer
Journal, v.31, n. 5.

Booth, P.A., 1990, 'Using Errors to Direct Design', K now ledge-B ased
Systems, v.3, n. 2, pp. 67-76.

Brooke, J.B. 1986, 'Usability in Office Product Development’, British
Computer Society Special Interest Group for Computer-Human Interaction
Bulletin Special Issue, April 1986.

Cambridge, E., Browne, D.P. & Mitra, S.K., 1987, 'Application Modelling
for the Provision of an Adaptive U ser Interface', H u m a n -C o m p u ter
Interaction: Proceedings o f Interact '87, Elsevier Science Publishers, North
Holland, pp. 981-7.

Canter, D., Rivers, R., Storrs, G., 1985, 'Characterising User Navigation
through Complex Data S tructures', B ehaviour and In form ation
Technology, v. 4, n. 2, pp. 93-102.

159

Carter, J.A., Schweighardt, M., 1987, T he Basis for User-Oriented,
Context-Sensitive Functions', Human-Computer Interaction: Proceedings of
In terac t187 , Elsevier Science Publishers, North Holland, pp. 1027-32.

Clanton, C., 1983, 'The Future of Metaphor in Man-Computer Systems',
Byte, December, 1983.

Clarke, I.A., 1987, 'Designing a Human Interface by Minimising Cognitive
Complexity', Human-Computer Interaction: Proceedings o f Interact '87
Elsevier Science Publishers, North Holland.

Clowes, I., Cole, I., Arshad, F., 'User M odelling Techniques for
Interactive System s’, in Johnson, P. & Cook, S. (eds), People and
Computers: Designing the Interface, C.U.P., Cambridge.

Cockton, G., 1986, 'Where do we Draw the Line? D erivation and
Evaluation of User Interface Separation Rules’, in Harrison, M.D., Monk,
A.F. (eds), Designing fo r Usability, Cambridge, Cambridge University
Press.

Cockton, G., 1987, 'A New Model for Separable Interactive Systems’,
Human-Computer Interaction: Proceedings o f Interact '87 Elsevier Science
Publishers, North Holland.

Cooper, M., 1988, 'Interfaces that Adapt to the User', in Self, J. (ed),
Artificial Intelligence and Human Learning: Intelligent Computer-Aided
Instruction, London, Chapman & Hall.

Costa, H., Duchenoy, S., Kodratoff, Y., 1988, 'A Resolution-Based Method
for Discovering Students' Misconceptions', in Self, J. (ed), A rtific ia l
Intelligence and Human Learning: Intelligent Computer-Aided Instruction,
London, Chapman & Hall.

Coutaz, J., 1987, 'PAC: An Object-Oriented Model for Dialogue Design',
Human-Computer Interaction: Proceedings o f Interact '87 Elsevier Science
Publishers, North Holland.

Doyle, J.R., 1990, 'Naive Users and the Lotus Interface: A Field Study',
Behaviour and Information Technology, v. 9, n. 1, pp. 81-89.

Drummond, M., 1989, 'AI Planning: Tutorial and review', AIAI-Technical
Report 30, Edinburgh University.

160

Dzida, W., Hoffman, C., Valder, W., 1987, 'Mastering the Complexity of
Dialogue Systems with the Aid of Work Contexts', H um an-C om puter
Interaction: Proceedings o f Interact '87 Elsevier Science Publishers, North
Holland, pp. 29-33.

Elliot, C. 1987, A Critical Survey o f Theories o f Indirect Speech, M .Phil.
Thesis, University of Nottingham.

Elliot, C. 1990, 'Linguistic Models in the Design of Co-operative Help
Systems', Proceedings o f Interact '90, North Holland, Elsevier.

Elsom-Cook, M., 1988, 'Guided Discovery Tutoring and Bounded User
Modelling', in Self, J. (ed), Artificial Intelligence and Human Learning:
Intelligent Computer-Aided Instruction, London, Chapman & Hall.

Fikes, R.E., Nilsson, N.J., 1971, 'STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving’, A r ti f ic ia l
Intelligence, n. 2, pp. 189-208.

Foley, J.D. & Van Dam, A., 1982, Fundamentals o f Computer Graphics,
Philippines, Addison Wesley.

Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T., 1987, 'The
Vocabulary Problem in Human-System Communication’, Communications
o f the ACM, v. 30, n. 11.

Greenberg, S., Witten, I.H., 1985, 'Adaptive, Personalised Interfaces - A
Question of Viability', Behaviour and Information Technology, v. 4, n. 1,
pp. 31-45.

Hart, A., 1985, 'Knowledge Elicitation: Issues and Methods', C om puter
Aided Design, v. 17, n. 9.

Hartley, J.R., Smith, M.J., 'Question Answering and Explanation Giving in
On-line Help Systems', in Self, J. (ed), Artificial Intelligence and Human
Learning: Intelligent Computer-Aided Instruction, London, Chapman &
Hah.

Jeremaes, P., 1987, 'Specifying a Logic of Dialogue', Discussion Paper for
January Meeting of British Computer Society Human-Computer Interaction
Special Interest Group.

161

Jones, J., M illington, M. and Ross, P., 1988, 'Understanding User
Behaviour in Command-Driven Systems', in Self, J. (ed), A rtific ia l
Intelligence and Human Learning: Intelligent Computer-Aided Instruction,
London, Chapman & Hall.

Kautz, H.A., Allen, J.F., 1986, 'Generalised Plan Recognition', A.A.A.I.,
pp. 32-57.

Kohl, A., Rupietta, W., 1987, 'The Natural Language Metaphor: An
Approach to Avoid Misleading Expectations', Proceedings o f Interact '87,
Elsevier Science Publishers, North Holland, pp. 657-662.

Maddix, F., 1990, Human-Computer Interaction: Theory and Practice,
Ellis Horwood, Chichester.

Morris, D., Theaker, C.J., Phillips, R., Love, W., 1988, 'Human-Computer
Interface Recording', The Computer Journal, v. 31, n. 5, pp. 437-44.

Nievergelt, J. & Weydert, J., 1980, 'Sites, Modes and Trails: Telling the
User of an Interactive System Where He Is, What He Can Do and How to
Get Places', Methodology o f Interaction, Guedj, R.A. (ed), North Holland,
pp. 327-338.

Norman, D.A., 1981, 'A Psychologist Views Human Processing: Human
Errors and O ther Phenom ena Suggest P rocessing M echanism s',
Proceedings o f 7th International Jo in t Conference on A rtific ia l
Intelligence, pp. 1097-1101, William Kaufmann, Los Altos.

Ogden, W.C., Sorknes, A., 1987, 'What do Users Say to Their Natural
Language Interface?', Proceedings o f Interact '87, E lsevier Science
Publishers, North Holland.

Payne, S.J., 1991, 'A Descriptive Study of Mental Models', Behaviour and
Information Technology, v. 10, n. 1, pp. 3-21.

Richards, M.A., Underwood, K., 1984, 'Talking to Machines: How are
People Inclined to Speak?', Proceedings o f the Ergonomics Society Annual
Conference, pp. 62-7.

Robson, C., 1983, Experimental Design and Statistics in Psychology,
Harmondsworth, Penguin.

162

Robson, C., 1990, ’Designing and Interpreting Psychological Experiments'
in Preece, J., Keller, L., (eds), Human-Computer Interaction: Selected
Readings, Hemel Hempstead, Prentice Hall, pp. 357-67.

Rubin, K.S., Jones, P.M., Mitchell, C.M., 1988, ’OFMspert: Inference of
O perator Intentions in Supervisory Control Using a B lackboard
Architecture’, IEEE Transactions on Systems, Man and Cybernetics, v. 18,
n. 4.

Sandberg, J., Breuker, J. & Winkels, R. 1988, 'Research on Help Systems:
Empirical Study and Model Construction' Proceedings o f the European
Conference on A.I., Munich, pp. 106-11.

Schroder, M., 1988, 'Evaluating User Utterances in Natural Language
Interfaces to Databases', Computers and Artificial Intelligence, v. 7, n. 4,
pp. 317-37.

Shneiderman, B. 1987, Designing the User Interface: Strategies fo r
Effective Human-Computer Interaction, Menlo Park, Addison-Wesley.

Shrager, J. & Finin, T., 1982, 'An Expert System that Volunteers Help',
Proceedings o f the National Conference on A rtific ia l Intelligence
AAAI-82, P ittsburgh, Pennsylvania, Carnegie-M ellon U niversity ,
pp.339-340.

Snowberry, K., Parkinson, S., Norwood, S., 1985, 'Effects of Help Fields
on Navigating through Hierarchical Menu Structures', International Journal
o f Man-Machine Studies, n. 22, pp. 479-91.

Tauber, M.J., 1988, 'On Mental Models and the User Interface', in Van der
Veer, C.G., Green, T.R.G., Hoc, J., Murray, D.M. (eds), Working with
Computers: Theory versus Outcome, San Diego, Academic Press.

Taylor, C., & Self, J., 1990, 'Monitoring Hypertext Users', In teracting
with Computers, v.2, n.3, pp. 297-312.

Ten Hagen, P.J.W ., 1980, 'Syntactic Structures', Guedj, R.A., (ed),
Methodology o f Interaction, North Holland, pp. 18-24.

163

Totterdell, P., Cooper, P., 1986, 'Design and Evaluation of the AID
Adaptive Front-End to Telecom Gold', in Harrison, M.D. & Monk, A.F.
(eds), Cambridge, Cambridge University Press, pp.435-446.

Totterdell, P.A., Norman, M.A and Browne, D.P., 1987, 'Levels of
Adaptivity in Interface Design', Human-Computer Interaction: Proceedings
o f Interact '87 Elsevier Science Publishers B.V. North Holland, pp .

Waterworth, J. 1982, 'Man-Machine Dialogue Acts', Applied Ergonomics,
vol. 13, pp. 203-7.

Winfield, I., 1986, Human Resources and Computing, Heinemann.

164

/*
a n a ly s e /O s o r t s t h e e r r o r t y p e s , c a l l s t h e a p p r o p r i a t e a n a l y s i n g
r o u t i n e s and g iv e s ad v ice on th e p r e c o n d i t io n s o f commands in v o lv e d in
t r a n s i e n t e r r o r s .
* /

ana ly se %don't a n a ly se good commands
e r r o r (n o e r r o r , $, $) .

ana ly se %or e t e r n a l e r r o r s
e r ro r (E r r o r ty p e , $, $),
i s i n ([syntax , l o g i c a l , ran g e] , E r ro r ty p e) .

ana lyse : -
e r ro r (E r r o r ty p e , $, $) , %what e r r o r ?
k ind (E r ro r ty p e) . %inspect i t

k i n d (r e f e r e n c e) % i t e m was (re)moved
e r r o r ($, Source, E rroneous),
lastrm vcheck,
re fp recond .

k i n d (r e f e r e n c e) % i t e m in l a s t cwd
e r r o r ($, Source, E rroneous),
la s tcd ch eck ,
re fp recond .

k i n d (r e f e r e n c e) % i t e m never e x i s t e d
re fp recond .

k ind(read)
e r r o r ($, Source, E rroneous),
la s t rea d c h ec k ,
readprecond.

k in d (w rite)
e r r o r ($, Source, E rroneous),
la s tw r i te c h e c k ,
w riteprecond .

k ind(execu te)
e r r o r ($, Source, E rroneous),
la s tex ech eck ,
exeprecond.

k in d (d u p l ica t io n)
e r r o r ($, Source, E rroneous),
% w r i t e l i s t ([1" 1, Erroneous, 1" 1, ' : i s a d u p l i c a t e . 1]) , n l ,
lastmkmvcpcheck,
dupprecond.

kind(nonempty)
nonemptypre cond.

/ *
appearance/O d i s g u i s e s th e Mac i n t e r f a c e by h id in g th e menubar and th e
mouse and s e t t i n g th e window t i t l e t o "QDOS"
* /

appearance : -
frontwindow(Query), %get p t r t o f r o n t window
se tw t i t le (Q u e ry , ' \004QDOS')/ %set th e t i t l e o f i t t o < tex t>
h id e cu rso r , %hide mouse cu rso r
clearmenubar, %clear menu l i s t
drawmenubar. %redraw empty menubar

167

/ *
cd /1 perform s d i r e c to r y changes a f t e r checking th e command f o r e r r o r s .
* /

c d ([]) : -
change(home). %no argument means home

c d ([' 1 I []]) : — %a space b u t no argument i s r e j e c t e d
w ri te ('U sa g e : cd [d i r e c t o r y] 1) , n l ,
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

c d ([' ' | P a t h]) : - %syntax ok
cwd(Cwd), g e t cwd
t r a c e d i r (P a th , Cwd). t r a c e th e p a th

t r a c e d i r ([$, ' • | $] , $)
w r i t e l i s t (['P a th s e p a ra to r i s : ' , / , ' . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) , %wrong s e p a ra to r
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

t r a c e d i r ([F i l e] , Cwd):- % item i s a f i l e
f i l e (F i le , $, $),

w r i t e l i s t ([" " , F i l e , ' i s a f i l e . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l o g i c a l , n u l , n u l)) .

t r a c e d i r ([D ir] , Cwd):- % target i s c h i ld o f cwd
d i r (Dir, $, Cwd, $),
ch an g e(D ir) .

t r a c e d i r ([D ir] , Cwd):- % target i s p a re n t o f cwd
dir(Cwd, $, D ir , $),
ch an g e(D ir) .

t r a c e d i r ([Head, ' / ' | T a i l] , Cwd):- %trace upward
dir(Cwd, $, Head, $),
t r a c e d i r (T a i l , Head),

t r a c e d i r ([Head, ' / ' | T a i l] , Cwd):- %trace downward
dir(H ead , $, Cwd, $),
t r a c e d i r (T a i l , Head),

t r a c e d i r ([Head|$], Cwd): -
w r i t e l i s t ([" " , Head, , ' : no t fo u n d ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (r e f e r e n c e , Cwd, Head)).

ch an g e(D ir) : -
xperm (Dir), %protected?
getdatetime(DoW, Day, Month, Year, Hour, Min, S ec) ,
re trac t(cw d(C w d)),
r e t r a c t (prewd (_, _ , _ , _ , _ , _ , _ , _)) , %record l a s t d i r change
assert(prewd(Cwd, Dow, Day, Month, Year, Hour, Min, S e c)) ,
a s s e r t (c w d (D ir)) .

change($) : -
m o d e fa i l (y e s) , % protected t a r g e t
r e t r a c t (m o d e f a i l (y e s)) .

/*
chmod/1 changes th e p r o t e c t i o n code on f i l e s and d i r e c t o r i e s .
* /

chmod([' ' , Mode, ' ' | P a t h]) : -
checkmode(Mode, P a t h) .

chmod($): - %syntax e r r o r
w r i te ('U sa g e : chmod <mode> < p a th > . ') ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

checkmode(Mode, P a t h) : - %correct mode?
i s i n ([000 ,100 ,200 ,300 ,400 ,500 ,600 ,700], Mode),

168

cwd (Cwd),
ge tta rget(M ode, P a th , T arge t, Cwd).

checkmode (Mode, $) : -
w r i t e l i s t ([11,1, Mode, '" ' , ' : I n v a l id mode. 1]) ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r ro r (ra n g e , n u l , n u l)) .

g e t t a r g e t ($, [$, 1 * |$] , $, $) : -
w r i t e l i s t ([’Path s e p a ra to r i s : ' , / , ' . ']) , n l ,
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) . %wrong s e p a ra to r

ge tta rget(M ode, [T a rg e t] , T arge t, Cwd):- % target i s f i l e in cwd
f i l e (T a r g e t , Cwd, $),
changeit(Mode, T a rg e t , Cwd).

ge tta rget(M ode, [T a rg e t] , T arge t, Cwd):- % target i s a d i r in cwd
d i r (T a r g e t , $, Cwd, $) ,
changeit(Mode, T a rg e t , Cwd).

ge tta rget(M ode, [T a rg e t] , T arge t, Cwd):- %t a r g e t i s p a re n t of cwd
dir(Cwd, $, T arge t, $),
changeit(Mode, T a rg e t , Cwd).

ge tta rget(M ode, [Head, ’ / ’ IR es t] , T a rg e t , S o u rc e) : - %trace down
dir(H ead , $, Source, $),
ge tta rget(M ode, R est, T arge t, Head),

ge tta rget(M ode, [Head, ’ / ’ IR es t] , T a rg e t , S o u rc e) : - %trace up
d ir (S o u rc e , $, Head, $),
ge tta rget(M ode, R es t, T arge t, Head).

g e t t a r g e t ($, [Head|$], $, Cwd): -
w r i t e l i s t ([" ” , Head, ' : n o t f o u n d . ']) ,
r e t r a c t (e r r o r (_, _)) ,
a s s e r t (e r r o r (r e f e r e n c e , Cwd, Head)).

c h a n g e i t ($, ro o t , $) : - % can't a l t e r ro o t
w r i t e ('P e rm iss ion den ied . Not o w n e r ') ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (e x e c u te , n u l , n u l)) .

c h a n g e i t ($, home, $) : -
w r i t e ('P e rm iss ion den ied . Not o w n e r ') , % can 't a l t e r home
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r ro r (e x e c u te , nu l , n u l)) .

changeit(Mode, T arge t, Cwd):- %change f i l e mode
f i l e (T a r g e t , Cwd, O ld),
r e t r a c t (f i l e (T a r g e t , Cwd, O ld)) ,
a s s e r t (f i l e (T a r g e t , Cwd, Mode)),

changeit(Mode, T arge t, Cwd):- %change d i r mode
d i r (T a rg e t , Old, Cwd, $),
r e t r a c t (d i r (T a r g e t , Old, Cwd, C o n te n ts)) ,
a s s e r t (d i r (T a r g e t , Mode, Cwd, C o n te n ts)) ,

c h a n g e i t ($, $, $) .

/*
cp /1 d e a l s w ith th e arguments f o r t h e copy command, th e im p o r tan t c a l l s
a r e t o f i n d a r g / 7 w hich t r a c e s t h e p a t h r e f e r e n c e s t o t h e t a r g e t and
d e s t i n a t io n o f th e command and checks f o r v a l i d r e f e re n c e a t each l e v e l .
The changing Cwd i s passed on f o r checking purposes and th e o r i g i n a l Cwd
i s saved in Saver f o r th e s t a r t o f th e second argument t r a c e . Source i s
th e p a re n t d i r e c to r y o f T a rg e t and D est i s th e p a r e n t o f New which may
be a new name o r an e x i s t i n g e n t i t y which i s th e n o v e r w r i t t e n .* /

c p ([]) : -
w r i te ('U sa g e : cp [- i] <path> <path>’) , n l ,
r e t r a c t (e r ro r (_, _)) ,
a s s e r t (e r r o r (s y n t a x , nu l , n u l)) .

cp ([' ’ , L o n e ly | []]) : -

169

w r i t e (’Usage : cp [- i] <path> <path>’) / n l ,
r e t r a c t (e r r o r (_, _ / _)) /
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

c p ([f ' |Arguments]) : -
cwd (Cwd),
findarg l(A rgum ents , Source, T a rge t, D est, New, Cwd, Cwd).

f i n d a r g l ([Target, 1 ’ |Second], Cwd, T a rg e t , D est, New, Cwd, S a v e r) : -
%end o f 1 s t a rg

f i l e (T a r g e t , Cwd, $) , %is t a r g e t a f i l e ?
findarg2(Second, Cwd, T arge t, D est, New, S a v e r) . %get d e s t

f in d a r g l ([Target, ' ’ |$] , $, $, $, $, Cwd, $) : - % targe t i s c h i ld
d i r

d i r (T a rg e t , $, Cwd, $),
w r i t e (' Cannot copy a d i r e c t o r y . 1) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l o g i c a l , _ , _)) .

f in d a r g l ([Target, ' ' |$] , $, $, $, $, Cwd, $) : - % target i s p a re n t
d i r

dir(Cwd, $, T arge t, $),
w r i t e (' Cannot copy a d i r e c t o r y . ’) , n l ,
r e t r a c t (e r ro r (_, _ /_ _)) /
a s s e r t (e r r o r (l o g i c a l , _ , _)) .

f i n d a r g l ([Head, ' / ' IR est] , Source, T a rg e t , Dest, New, Cwd, S a v e r) : -
%trace down

dir(H ead , $, Cwd, $),
f in d a rg l (R e s t , Source, T arge t, D est, New, Head, S a v e r) .

f i n d a r g l ([Head, ' / ' IR es t] , Source, T a rg e t , D est, New, Cwd, S a v e r) : -
%trace up

dir(Cwd, $, Head, $) ,
f in d a rg l (R e s t , Source, T arge t, D est, New, Head, S a v e r) .

f i n d a r g l ([Headl$], $, $, $, $, Cwd, $) : -
w r i t e l i s t ([” ” , Head, ’ : no t f o u n d . ’]) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (r e f e r e n c e , Cwd, Head)).

f in d a r g 2 ([$, ' ' ! $] , $, $, $, $, $)
w r i t e l i s t ([’Path s e p a ra to r i s : ' , / , ' . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , nu l , n u l)) .

f in d a r g 2 ([New], Source, New, Source, New, $) : - %attempted use same
w r i te (’You cannot copy a f i l e onto i t s e l f . ') , n l , %name
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l o g i c a l , Source, New)),

f in d a r g 2 ([New], Source, New, D est, New, $) : - %attempt t o use same
w r i te (’Copy must have new nam e.’) , n l , %name d i f f d i r f o r copy
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (lo g i c a l , Dest, New)),

f indarg2 ([New], Source, Old, Cwd, New, Cwd):- %new i s c h i l d d i r
dir(New, $, Cwd, $) , %don't cp
w rite ('C o p y must have new n a m e . ') , n l ,
r e t r a c t (e r r o r (_, _ / _)) ,
a s s e r t (e r r o r (l o g i c a l , Cwd, New)),

f indarg2 ([New], Source, Old, Cwd, New, Cwd):- %new i s p a r e n t d i r
dir(Cwd, $, New, $) , %don't cp
w r i te ('Copy must have new n a m e . ') , n l ,
r e t r a c t (e r r o r (_, _ , _)) /

a s s e r t (e r r o r (l o g i c a l , New, Cwd)).
f in d a rg 2 ([New], Source, Old, D est, New, Cwd):- %New i s c h i l d f i l e

file(N ew , Cwd, $) , %don’t cp
w r i t e l i s t ([’A f i l e c a l l e d ' , New, ' a l re a d y e x i s t s i n ' ,

Cwd, " ” , ' . ']) , n l ,
r e t r a c t (e r r o r (, ,)) ,

170

a s s e r t (e r r o r (d u p l i c a t i o n , Cwd, New)).
f i n d a r g 2 ([New], Source, Old, D est, New, Cwd) : -

file(N ew , P a re n t , $) ,
w r i t e l i s t (['A f i l e c a l l e d ' , , l l , / New, 111' , 1 a lre a d y e x i s t s in ' ,

P a re n t , ' ’ . ']) / n l , % file e x i s t s g lo b a l ly
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (d u p l i c a t i o n , P a re n t , New)) .

f in d a r g 2 ([New], Source, Old, D est, New, Cwd): -
dir(New, $, P a re n t , $) ,
w r i t e l i s t ([1 There i s a d i r e c to r y c a l l e d 1, *"1, New, ’ " 1, ' . ']) , n l ,

%dir e x i s t s g lo b a l ly
r e t r a c t (e r ro r (_, _ / _)) /
a s s e r t (e r r o r (d u p l i c a t i o n , P a re n t , Head)) .

f i n d a r g 2 ([New], Source, Old, Cwd, New, Cwd):- %no d u p l ic a t io n
copy(Source, Old, Cwd, New).

f i n d a r g 2 ([Head, ' / * IR est] , Source, Old, D est, New, Cwd):- %trace down
d ir(H ead , $, Cwd, $) ,
f in d a rg 2 (R e s t , Source, Old, D est, New, Head).

f in d a r g 2 ([Head, 1/ 1|R e s t] , Source, Old, D est, New, Cwd):- %trace up
dir(Cwd, $, Head, $),
f in d a rg 2 (R e s t , Source, Old, D est, New, Head).

f in d a r g 2 ([Headl$], Source, Old, D est, New, Cwd):- %bad a rg
w r i t e l i s t ([' " ' , Head, ' ’ : n o t fo u n d . ’]) / n l ,
r e t r a c t (e r ro r (_, _ / _)) /
a s s e r t (e r r o r (r e f e r e n c e , Cwd, Head)) .

copy(Source, Old, D est, New): -
d i r (O ld , P r o te c t io n , Source, C o n ten ts) ,
xperm (Source), %check f o r p r o t e c t io n
xperm (Dest),
rperm (Old),
wperm(Dest),
a s se r t (d ir (N ew , 700, D est, C o n te n ts)) , %copy item
d i r (D e s t , $, $, C onts) ,
add(New, Conts, Newconts),
r e t r a c t (d i r (D e s t , P r o te c t , Mum, C o n ts)) ,
a s s e r t (d i r (D e s t , P r o te c t , Mum, Newconts)).

copy(Source, Old, D est, New): -
xperm (Source), %check p r o te c t io n
xperm(Dest),
wperm(Dest),
rperm.(01d),
a s s e r t (f i le (N e w , D est, 700)) ,
d i r (D e s t , $, $, C onts) ,
add(New, Conts, Newconts),
r e t r a c t (d i r (D e s t , P r o te c t , Mum, C o n ts)) ,
a s s e r t (d i r (D e s t , P r o te c t , Mum, Newconts)).

copy($, $, $, $) : —
m o d e fa i l (y e s) , %permission den ied
r e t r a c t (m o d e f a i l (y e s)) .

/*
i n p u t / 1 t a k e s th e keyboard in p u t a t t h e c h a r a c t e r l e v e l and c o n v e r t s
i t i n to a l i s t o f words which form th e command and i t s argum ents.
* /

input(Commandline) : -
getO(Char),
g e t re s t (C h a r , Commandline).

g e t r e s t (1 3 , []) : - !. /* c a r r ia g e r e tu r n * /
g e t r e s t (32, [Word|Commandline]) : - !,

g e tch a rs (3 2 , L e t t e r s , N ex tcha r) ,

171

name(Word, [3 2]) , /*space c h a r a c te r* /
input(Commandline).

g e t r e s t (47, [Word|Commandline]) : - !,
g e tch a rs (4 7 , L e t t e r s , N ex tch a r) ,
name(Word, [47]) , /* ' / ' c h a r a c te r* /
input(Commandline).

g e t r e s t (L e t t e r , [Word|Commandline]) : -
g e tc h a r s (L e t t e r , L e t t e r s , N ex tch a r) ,
name(Word, L e t t e r s) ,
g e t re s t (N e x tc h a r , Commandline).

g e t c h a r s (13, [] , 1 3) : - ! . /*end o f word = r e tu r n * /
g e t c h a r s (32, [] , 3 2) : - ! . /*end o f word = space * /
g e tch a rs (4 7 , [j , 4 7) : - ! . /*end o f word = ' / ' * /
g e tc h a rs (L e t , [L e t |L e t t e r s] , N e x tc h a r) : -

getO(Char),
g e tch a rs (C h ar , L e t t e r s , N e x tch a r) .

/*
l a s t c d c h e c k /1 g e t s th e p re v io u s w orking d i r e c t o r y . I f E rroneous i s i n
th e c o n te n t s o f i t th e n l a s t cd command i s c o n s id e re d r e s p o n s ib l e f o r
th e e r r o r and th e u s e r i s n o t i f i e d o f t h i s .
* /

la s tcd c h ec k : -
prewd(Pwd, Dow, Day, Month, Year, Hour, Min, Sec),
e r r o r ($, Source, E rroneous),
dir(Pwd, $, $, C o n ten ts) , %look in co n ten ts o f l a s t working d i r
i s in (C o n te n ts , E rroneous), %is bad argument i n th e r e ?
cwd (Cwd),
timelapse(Dnow, Hnow, Mnow, Snow, Day, Hour, Min, Sec, D lapse, Hlapse,

Mlapse, S lap se) ,
sysbeep(lO), n l (2) ,
V/rite (* ★★'A’'*:*: 1 J n l ,
w r i t e (’That Command may have f a i l e d ') , n l ,
w r i t e ('because you changed d i r e c t o r y ’) , n l ,
w r i t e l i s t ([' from ’ , ' 111, Pwd, " * ' , ' t o ’ , , Cwd, ’ " ’]) , n l ,
% w r i t e l i s t (['on : ’ , DoW, ' ' , Day, ' ' , Month, ' ']) ,
% w r i t e l i s t ([' a t : ' , Hour, ' : ' , Min, ' : ' , S ec]) , n l ,
w r i t e l i s t ([' (' , H lapse, ' hours ' , Mlapse, ' m inu tes ' ,

S lapse , ' seconds a g o .) ']) , n l ,
w r i t e l i s t ([' " ' , Pwd, , ' c o n ta in s th e item ' , , E rroneous,

' " ' I) , n l ,
wirite (' ‘f c * * *) n i (2)

/*
l a s t e x e c h e c k / 1 s e a r c h e s t h e l o g f i l e f o r t h e l a s t chmod command
i s s u e d by t h e u s e r w hich had E r ro n e o u s a s i t s a rg u m en t and rem oved
execu te p e rm iss io n . I f found, t h a t command i s r e s p o n s ib le f o r th e e r r o r
and th e u se r i s n o t i f i e d o f t h i s .
* /

la s tex ech eck : -
e x e c le a r , %remove o ld l a s t e x e s
a sse r t(la s tex e (m o n d a y , 1, january , 1 9 0 4 ,1 2 ,0 ,0)) , % inse rt a dummy

f a c t
even t ([chmod, ' ’ , Mode, ' ' | Argument], Pwd, Dow, Day, Month, Year,

Hour, Min, Sec),
i s i n ([000,200,400, 600], Mode),
e r r o r ($, $, E rroneous),
i sexematch(Argument, E rroneous) ,
r e t r a c t (la s te x e (_, _ , _ , _ / _)) /
a sse r t(la s tex e (D o w , Day, Month, Year, Hour, Min, S e c)) ,

172

l a s t e x e c h e c k l .
la s te x e c h e c k l

lastexe(m onday, 1, january , 1 9 0 4 ,1 2 ,0 ,0) . %no c an d id a te s found
la s te x e c h e c k l %succeeds when one found

lastexe(DoW, Day, Month, Year, Hour, Min, Sec), n l ,
timelapse(Dnow, Hnow, Mnow, Snow, Day, Hour, Min, Sec, D lapse, Hlapse,

Mlapse, S la p s e) ,
e r r o r ($, $, E rroneous),
sysbeep(lO), n l (2) ,
w r i te ̂t * j n l ,
w r i t e (’That Command f a i l e d b e c a u s e ') , n l ,
w r i t e (' t h e execu te pe rm ission f o r ') , n l ,
w r i t e l i s t ([" " , Erroneous, ' was rem o v ed ']) , n l ,
w r i t e l i s t (['on : ' , DoW, ' ' , Day, ' ' , Month, ' ']) ,
w r i t e l i s t ([' a t : ' , Hour, ' : ' , Min, ' : ' , S ec]) , n l ,
w r i t e l i s t ([' (' , D lapse, ' days ' , H lapse, ' hours ' , Mlapse, ' m inutes

I /
Slapse , ' seconds ago .) ']) , n l ,

% w rite(['U se chmod t o g a in execu te p e r m i s s i o n . ']) , n l ,
Y^jrite (* **), n l (2)

e x e c le a r
e x e c l e a r i t .

e x e c le a r .

e x e c l e a r i t : -
r e t r a c t (la s te x e (_, _ , _ , _ , _ , _)) ,
f a i l .

isex em a tch ([Erroneous I []] , E r ro n e o u s) .
isex e m a tc h ([H e a d |T a i l] , Erroneous)
isex em a tch (T a il , E rroneous).

/*
l a s t m k m v c p c h e c k / 2 s e a rc h e s th e l o g f i l e f o r t h e l a s t rm, rm d ir o r mv
command i s s u e d by th e u s e r whose t a r g e t was S o u rce /E rro n eo u s . Any such
command i s co n s id e red p o s s ib ly r e s p o n s ib le f o r th e d u p l i c a t io n e r r o r and
th e u s e r i s n o t i f i e d o f t h i s .
* /

lastmkmvcpcheck : -
mkmvcpclear, %clear and i n s e r t a dummy can d id a te
assert(lastmkmvcp(command, d e s t , t a r g e t , monday, 1, january ,

1 9 0 4 ,1 2 ,0 ,0)) ,
even t ([Command | Argument], Cwd, Dow, Day, Month, Year, Hour, Min, Sec),
i s i n ([c p , mv, m k fi le , m kd ir] , Command),
mat c h i t l (Argument, P a re n t , A rgl, D est, Arg2, Cwd, Cwd), % re tr iev e th e

even t a rgs
e r r o r ($, Source, E rroneous),
i s i t v a l id (S o u r c e , Erroneous, P a re n t , A rg l, D est, Arg2), %does a rg

match e r ro r?
r e t r a c t (lastmkmvcp (_, _ , _ , _ , _ , _ , _ , _ , _ , _)) ,
a s s e r t (lastmkmvcp (Command, D est, A rg l, Dow, Day, Month, Year, Hour,

Min, S ec)) ,
lastmkmvcpcheckl.

lastmkmvcpcheckl %only dummy found
lastmkmvcp(command, d e s t , t a r g e t , monday, 1, january , 1 9 0 4 ,1 2 ,0 ,0) .

lastmkmvcpcheckl
lastmkmvcp (Command, D est, A rgl, Dow, Day, Month, Year, Hour, Min,

Sec),
i s i n ([mv, c p] , Command),
timelapse(Dnow, Hnow, Mnow, Snow, Day, Hour, Min, Sec, D lapse, H lapse,

173

Mlapse, S la p s e) ,
e r r o r ($, Source, E rroneous),
sysbeep(lO), n l (2) ,

v/jrite ̂ i j n l ,
w r i t e ('T h a t command may have f a i l e d 1) , n l ,
w r i t e (' because ') ,
w r i t e l i s t ([" " , Source, ' / ' , A rg l, " "]) ,
w r i t e l i s t (['was ' , Command, ' - e d ']) , n l ,
w r i t e l i s t ([' t o ' , , D est, ' / * , Erroneous, ' " ']) , n l ,
w r i t e l i s t (['on : ' , Dow , ' ' , Day, ' ' , Month, ' ']) , . n l ,
w r i t e l i s t ([' a t : ' , Hour, Min, S e c]) , n l ,
w r i t e l i s t ([' (' , D lapse, ' days ' , Hlapse, ' hours ' , Mlapse, ' m inutes

I
/

S lapse , ' seconds a g o .) 1]) / n l ,
Y^^itg (* ★★★ • j (2) .

lastmkmvcpcheckl : -
lastmkmvcp(Command, D est, T arge t, Dow, Day, Month, Year, Hour, Min,
Sec),

timelapse(Dnow, Hnow, Mnow, Snow, Day, Hour, Min, Sec, D lapse, Hlapse,
Mlapse, S la p s e) ,

e r r o r ($, Source, E rroneous),
sysbeep(lO), n l (2) ,
wr i t e (* * j f n l ,
w r i t e ('T h a t command may have f a i l e d b e c a u s e ') , n l ,
w r i t e l i s t ([" " , D est, ' / ' , E rroneous, " "]) ,
w r i te ('w a s c r e a te d ') , n l ,
w r i t e l i s t (['on ' , Dow, ' ' , Day, ' ' , Month, ' ']) , n l ,
w r i t e l i s t ([' a t ' , Hour, Min, S e c]) , n l ,
w r i t e l i s t ([' (' , D lapse, ' days *, H lapse, ' hours ' , Mlapse, ' m inutes

V
/

S lapse , ' seconds a g o .) ']) , n l ,
w r i t e ('***'), n l (2)

lastmkmvcpcheckl. %error no t d ia ch ro n ic

m a t c h i t l ([' ' I R e s t] , P a re n t , A rg l, D est, Arg2, Pwd, S a v e r) : - %remove
space

m a tc h i t l (R e s t , P a re n t , A rgl, D est, Arg2, Pwd, S a v e r) .
m a tc h i t l . ([A rg l] , Pwd, A rg l, Pwd, A rg l, Pwd, $) . %single p a th argument
m a tc h i t l ([Argl, ' ' | Second] , Pwd, A rg l, D est, Arg2, Pwd, S a v e r) : - %two
p a th argument

m atchit2(Second, Pwd, A rgl, D est, Arg2, S aver) ,
m a t c h i t l ([Head, ' / ' I R e s t] , P a re n t , A rg l, D est, Arg2, Pwd, S a v e r) : -
%trace p a th

m a tc h i t l (R e s t , P a re n t , Argl, D est, Arg2, Head, S a v e r) .

m a tc h i t2 ([Arg2], P a re n t , A rgl, Pwd, Arg2, Pwd). %end o f second p a th
m a tc h i t2 ([Head, ' / ' | T a i l] , P a re n t , A rg l, D est, Arg2, Pwd):- %trace
p a th

m a tc h i t2 (T a il , P a re n t , A rgl, Pwd, Arg2, Head).

i s i t v a l id (S o u r c e , Erroneous, D est, Erroneous, D est, E r ro n e o u s) . %mk
command c u l p r i t
i s i t v a l i d ($, Erroneous, $, $, $, E r ro n e o u s) . %mv/cp c u l p r i t
i s i t v a l i d ($, Erroneous, $, E rroneous, $, S o u rce) . %mv c u l p r i t

mkmvcpclear : -
m km vcpclearit.
mkmvcpclear.

mkmvcpclearit : -
r e t r a c t (lastmkmvcp (_, _ , _ , _ , _ , _ , _ , _ , _ , _)) ,
f a i l .

174

/*
l a s t r e a d c h e c k / 1 s e a r c h e s t h e l o g f i l e f o r t h e l a s t chmod command
i s s u e d by th e u s e r which had Erroneous as i t s argument and removed read
p e rm is s io n . I f found, t h a t command i s r e s p o n s ib le f o r th e e r r o r and th e
u s e r i s n o t i f i e d o f t h i s .
* /

la s t re a d c h e c k
r e a d c le a r , %remove o ld l a s t r e a d s
a s s e r t (lastread(m onday, 1, january , 1 9 0 4 ,1 2 ,0 ,0)) , % insert a dummy

f a c t
e v e n t ([chmod, 1 ' , Mode, 1 1 |Argument], Pwd, Dow, Day, Month, Year,

Hour, Min, S ec) ,
i s i n ([000,100,200,300], Mode),
e r r o r ($, $, E rroneous),
isexematch(Argument, E rroneous),
r e t r a c t (l a s t r e a d (_ , _ , _ , _ , _ , _ , _)) ,
a s s e r t (la s t re a d (D o w , Day, Month, Year, Hour, Min, S e c)) ,
l a s t r e a d c h e c k l .

l a s t r e a d c h e c k l : -
lastread(m onday , 1 , january , 1 9 0 4 ,1 2 ,0 ,0) . %no c an d id a te s found

la s t r e a d c h e c k l %succeeds when no more found
lastread(D ow , Day, Month, Year, Hour, Min, Sec), n l ,

timelapse(Dnow, Hnow, Mnow, Snow, Day, Hour, Min, Sec, D lapse, H lapse,
Mlapse, S la p se) ,

e r r o r ($, $, E rroneous),
sysbeep(lO), n l (2) ,

wirite ̂i j n l ,
w r i t e ('T h a t Command f a i l e d b e c a u s e ') , n l ,
w r i t e (' t h e re a d p e rm iss ion f o r ') ,
w r i t e l i s t ([" " , Erroneous, " "]) , n l ,
w r i te ('w a s removed on: ') ,
w r i t e l i s t ([DoW, ' ' , Day, ' ' , Month, ' ']) ,
w r i t e l i s t ([' a t : ' , Hour, Min, S e c]) , n l ,
w r i t e l i s t ([' (' , D lapse, ' days ' , H lapse, ' hours ' , Mlapse, ' m inu tes

I
/

S lapse , ' seconds a g o .) ']) , n l ,
% write('Use chmod t o ga in re a d p e r m i s s i o n . ') , n l ,

W rite (• •k 'k -k 'k -k -k -k 'k -k 'k 'k lc k -k -k -k 'k -k -k -k -k 'k -k lc ic -k -k J c k -k -k -k -k -k -k -k -k -k -k -k -k ic -k • J ̂ (2)

r e a d c le a r
r e a d c l e a r i t .
r e a d c l e a r .

r e a d c l e a r i t : -
r e t r a c t (l a s t r e a d (_, _ , _ , _)) ,
f a i l .

/*
la s t rm v c h e c k / 2 s e a r c h e s t h e lo g f o r t h e l a s t rm, rm d ir o r mv command
i s s u e d by th e u s e r whose t a r g e t was S ource /E rroneous. Any such command
i s co n s id e red p o s s ib ly re s p o n s ib le f o r th e r e fe re n c e e r r o r and th e u s e r
i s n o t i f i e d o f t h i s .
* /

lastrm vcheck
rm clear , %clear and i n s e r t a dummy f a c t
assert(lastrm v(com m and, d e s t , t a r g e t , monday, 1 , jan u ary ,

1 9 0 4 ,1 2 ,0 ,0)) ,
even t ([Command | Argument], Cwd, Dow, Day, Month, Year, Hour, Min, S ec) ,
i s i n ([mv, rm, rm d i r] , Command),
e r r o r ($, Source, E rroneous),

175

m atch itl(A rgum ent, P a re n t , A rgl, D est, Arg2, Cwd, Cwd), %get th e
even t a rg s

w a s i t th is (S o u rc e , Erroneous, P a re n t , A rg l) ,
r e t r a c t (las trm v (_, _ , _ , _ , _ , _ , _ , _ , _ , _)) ,
assert(lastrm v(Com m and, D est, Arg2, Dow, Day, Month, Year, Hour, Min,

Sec)) ,
la s t rm v c h e c k l . %search f o r o th e r s

las trm vcheck l : -
lastrmv(command, d e s t , t a r g e t , monday, 1, january , 1 9 0 4 ,1 2 ,0 ,0) , !,
f a i l . %none found fo rc e cd check

lastrm vcheck l : -
e r r o r ($, Source, E rroneous),
lastrmv(mv, D est, T a rg e t , Dow, Day, Month, Year, Hour, Min, S e c) ,
timelapse(Dnow, Hnow, Mnow, Snow, Day, Hour, Min, Sec, D lapse, Hlapse,

Mlapse, S la p s e) ,
sysbeep(lO), n l (2) ,
YJUlte ̂* ■ k 'k 'k lc 'k 'k -k -k 'k -k -k 'k -k -k 'k -k 'k 'k 'k 'k 'k ic 'k -k -k 'k 'k -k -k -k -k 'k 'k -k -k ic 'k -k -k -k 'k -k 'k 1 J n l ,
w r i t e ('T h a t command may have f a i l e d b e c a u se 1) , n l ,
w r i t e l i s t ([1" 1, Source, ' / ' , E rroneous, ' was moved1]) , n l ,
w r i t e l i s t ([' t o 1, ' , Dest, ' / ' , T a rg e t , " ' ']) , n l ,
w r i t e l i s t (['on : ' , Dow , ' ' , Day, ' ' , Month, ' ']) ,
w r i t e l i s t ([' a t : ' , Hour, Min, S e c]) , n l ,
w r i t e l i s t ([' (' , D lapse, ' days ' , H lapse, ' hours ' , Mlapse, ' m inutes

I
/

S lapse , ' seconds a g o .) ']) , n l ,
%write('The item may be accessed t h e r e . ') , n l ,
v ^ i t e ̂ i j (2) .

la s trm vcheck l : -
e r r o r ($, Source, E rroneous),
lastrmv(Command, D est, T arge t, Dow, Day, Month, Year, Hour, Min, Sec),
timelapse(Dnow, Hnow, Mnow, Snow, Day, Hour, Min, Sec, D lapse, Hlapse,

Mlapse, S la p s e) ,
sysbeep(lO), n l (2) ,
v^cite ̂ • j n l ,
w r i t e ('T h a t command may have f a i l e d b e c a u s e ') , n l ,
w r i t e l i s t ([" " , Source, ' / ' , E rroneous, 'was re m o v ed ']) , n l ,
w r i t e l i s t ([' on ' , Dow, ' ' , Day, ' ' , Month, ' ']) ,
w r i t e l i s t ([' a t ' , Hour, Min, S e c]) , n l ,
w r i t e l i s t ([' (’ , D lapse, ' days ’ , Hlapse, ' hours ' , Mlapse, ' m inutes

I /
S lapse , ' seconds a g o .) ']) , n l (2),

w r i te ('*** >), n l (2)

w a s i t th is (S o u rc e , Erroneous, Source, E rroneous). %argl was t a r g e t o f rm
w a s i t th is (S o u rc e , E rroneous, Source, E rroneous). %argl was t a r g e t o f mv

rm clear : -
r m c l e a r i t .

rm clear .

rm c le a r i t : -
r e t r a c t (las trm v (_, _ , _ , _ , _ , _ , _ , _)) ,
f a i l .

/*
l a s t w r i t e c h e c k / 1 s e a r c h e s t h e l o g f i l e f o r t h e l a s t chmod command
is s u e d by th e u s e r which had Erroneous a s i t s argument and removed w r i te
p e rm iss io n . I f found, t h a t command i s r e s p o n s ib le f o r th e e r r o r and th e
u s e r i s n o t i f i e d o f t h i s .
* /

l a s tw r i te c h e c k
w r i t e c l e a r , %remove o ld l a s t w r i t e s

176

a s s e r t (l a s tw r i t e (monday, 1, january , 1 9 0 4 ,1 2 ,0 ,0)) , % insert a dummy
f a c t

e v e n t ([chmod, ' ' , Mode, ' ' |Argument], Pwd, Dow, Day, Month, Year,
Hour, Min, S ec),

i s in ([0 0 0 ,1 0 0 ,4 0 0 ,5 0 0] , Mode),
e r r o r ($, $, E rroneous),
isexematch(Argument, E rroneous),
r e t r a c t (l a s tw r i t e (_, _ , _ , _ , _ , _ , _)) ,
a s s e r t (la s tw r i te (D o w , Day, Month, Year, Hour, Min, S e c)) ,
l a s t w r i t e c h e c k l .

la s tw r i te c h e c k l : -
la s tw rite (m onday , 1, january , 1 9 0 4 ,1 2 ,0 ,0) . %no c an d id a te s found

la s tw r i te c h e c k l %succeeds when no more found
lastwrite(DoW , Day, Month, Year, Hour, Min, Sec), n l ,
timelapse(Dnow, Hnow, Mnow, Snow, Day, Hour, Min, Sec, D lapse, Hlapse,

Mlapse, S lap se) ,
sysbeep(lO), n l (2) ,
wri t e (* ★★★★★★★★ ★ • j n l ,
e r r o r ($, $, E rroneous),
w r i t e ('T h a t Command f a i l e d b e c a u s e ') , n l ,
w r i t e (' t h e w r i te pe rm ission f o r ') , n l ,
w r i t e l i s t ([" " , E rroneous, " "]) ,
w r i te ('w a s removed ') , n l ,
w r i t e l i s t (['on : ' , DoW, ' ' , Day, ' ' , Month, ' ')) ,
w r i t e l i s t ([' a t : ' , Hour, Min, S e c]) , n l ,
w r i t e l i s t ([' (' , Dlapse , ' days ' , H lapse, ' hours ' , Mlapse, '

m inutes ' ,
S lapse , ' seconds a g o .) ']) , n l ,

%write('Use chmod t o g a in w r i te p e r m is s io n . ') , n l ,
w r i t e ('***»), n l (2)

w r i t e c l e a r : -
w r i t e c l e a r i t .

w r i t e c l e a r .

w r i t e c l e a r i t : -
r e t r a c t (l a s tw r i t e (_, _ , _ , _ , _ , _ , _)) ,
f a i l .

/*
l s - 1 / 1 l i s t s t h e s p e c i f i e d d i r e c t o r y c o n t e n t s i n l o n g form a f t e r
checking th e c o r re c tn e s s o f th e command.
* /

l t r a c e p a t h ([] , $) : -
I s ([]) .

l t r a c e p a t h ([$, ' ' | $] , $) : -
w r i t e l i s t (['P a th s e p a ra to r i s : ' , , / , ' . ']) / n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r ro r (s y n ta x , n u l , n u l)) .

l t r a c e p a t h ([F i l e] , S o u rce) : -
f i l e (F i le , Source, $),
w r i t e l i s t ([" " , F i l e , , ' i s a f i l e . ']) ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l o g i c a l , $, $)) .

l t r a c e p a t h ([D ir] , S o u rc e) : - % target i s in source
d i r (D i r , $, Source, C o n ten ts) ,
rpe rm (D ir) ,
xperm (D ir),
lo n g l i s tc o n ts (C o n te n ts , D i r) .

l t r a c e p a t h ([D ir] , S o u rc e) : - % target p a re n t o f source
d ir (S o u rc e , $, D ir , $),
d i r (D i r , $, $, C o n ten ts) ,

177

rp e rm (D ir) /
xperm (D ir),
lo n g l i s tc o n ts (C o n te n ts , D ir) ,

l t r a c e p a t h ([Dir, ' / ' | T a i l] , S o u rc e) : - %trace down
d i r (D i r , $, Source, $) ,
l t r a c e p a t h (T a i l , D ir) ,

l t r a c e p a t h ([D ir, 1/ ' |T a i l] , S o u rc e) : - %trace up
d ir (S o u rc e , $, D ir , $) ,
l t r a c e p a t h (T a i1 , D ir) ,

l t r a c e p a th (P a th , $) : -
m o d e fa i l (y e s) ,
r e t r a c t (m o d e f a i l (y e s)) .

l t r a c e p a t h ([Head|$] , S o u rc e) : - %bad a rg
w r i t e l i s t ([1” 1, Head, ' " ' , ' : no t f o u n d . ']) / n l ,
r e t r a c t (e r ro r (_, _ / _)) /
a s s e r t (e r r o r (r e f e r e n c e , Source, Head)) .

/*
l s / 1 l i s t s t h e s p e c i f i e d d i r e c t o r y co n tem ts a f t e r c h e c k in g t h a t t h e
command i s c o r r e c t .
* /

I s ([]) : -
cwd (Cwd), % lis t cwd
dir(Cwd, $, $, C o n ten ts) ,
rperm(Cwd),
xperm(Cwd),
l i s t c o n t s (C o n t e n t s) .

I s ([]) : -
m o d e fa i l (y e s) ,
r e t r a c t (m o d e f a i l (y e s)) .

l s ([' ' , ' - 1 ']) : - % lo ng lis t cwd
cwd (Cwd),
dir(Cwd, $, $, C o n ten ts) ,
rperm (Cwd),
xperm(Cwd),
lo n g l i s tc o n ts (C o n te n ts , Cwd).

l s ([’ ’ , ’- 1 ’]) : -
m o d e fa i l (y e s) ,
r e t r a c t (m o d e f a i l (y e s)) .

l s ([' ' , ' - 1 ' , ' ' | P a t h]) : - % lo g l is t o th e r d i r
cwd (Cwd),
l t r a c e p a th (P a th , Cwd).

l s ([' ' | P a t h]) : - % lis t o th e r d i r
cwd (Cwd),
t r a c e p a th (P a th , Cwd).

t r a c e p a t h ([] , $) : -
l s ([]) .

t r a c e p a t h ([$, ' 1 | $] , $) : -
w r i t e l i s t (['P a th s e p a ra to r i s : ' , ' " ' , / , , ’ . ']) , n l ,
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

t r a c e p a t h ([F i l e] , S o u rce) : -
f i l e (F i le , Source, $),
w r i t e l i s t ([" " , F i l e , ' i s a f i l e . ']) ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l o g i c a l , n u l , n u l)) .

t r a c e p a t h ([D ir] , S o u rc e) : - % target i s in source
d i r (D i r , $, Source, C o n ten ts) ,
rperm (D ir),
xperm(Dir),
l i s t c o n t s (C o n t e n t s) .

178

t r a c e p a th ([D ir] , S o u rc e) : - % target p a re n t o f source
d ir (S o u rc e , $, D ir , $),
d i r (D i r , $, $, C o n ten ts) ,
rp e rm (D ir) ,
xperm(Dir),
l i s t c o n t s (C o n t e n t s) .

t r a c e p a t h ([Dir, ' / ' | T a i l] , S o u rc e) : - %trace down
d i r (D i r , $, Source, $) ,
t r a c e p a th (T a i l , D i r) ,

t r a c e p a t h ([Dir, ' / ' |T a i l] , S o u rc e) : - %trace up
d ir (S o u rc e , $, D ir , $) ,
t r a c e p a th (T a i l , D ir) ,

t r a c e p a th (P a th , $) : -
m o d e fa i l (y e s) ,
r e t r a c t (m o d e f a i l (y e s)) .

t r a c e p a t h ([Head|$] , S o u rc e) : - %bad argument
w r i t e l i s t ([1" ' , Head, ,,M, ' : n o t f o u n d . ']) / n l ,
r e t r a c t (e r r o r (_, _ / _)) /
a s s e r t (e r r o r (r e f e r e n c e , Source, Head)).

/ *
m k d ir / 1 c r e a t e s a new d i r e c t o r y w i t h t h e s p e c i f i e d name a t t h e
s p e c i f i e d lo c a t io n . The command i s checked f o r e r r o r s which a re a s s e r t e d
so t h a t they can be anaysed by th e a n a ly s e r .
* /

mkdir ([]) : -
w r i te ('U sa g e : mkdir < d irnam e> ') , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

m k d ir ([' ' |Arguments]) : -
cwd (Cwd),
makedir(Arguments, Cwd).

m ak ed ir([$, ' ' ! $] , $) : -
w r i t e l i s t (['P a th s e p a ra to r i s : ' , , / , ' . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

m aked ir([Newdir] , D i r) : -
dir(N ew dir, $, $, $),
w r i te (' D irec to ry e x i s t s . ') , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (d u p l ic a t io n , D ir , N ew dir)) .

m aked ir([Newdir], D i r) : -
f i le (N ew d ir , P a re n t , $),
w r i t e ('F i l e e x i s t s . ') , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (d u p l i c a t i o n , P a re n t , Newdir)) .

m aked ir([Newdir], D i r) : - %make newdir in d i r
xperm(Dir),
wperm(Dir),
a s s e r t (d i r (N e w d ir , 700, D ir , [])) ,
d i r (D i r , $, $, C o n ten ts) ,
add(Newdir, C ontents, N ew contents),
r e t r a c t (d i r (D i r , P ro te c t io n , P a re n t , C o n te n ts)) ,
a s s e r t (d i r (D ir , P r o te c t io n , P a re n t , N ew contents)) .

m ak ed ir([Head, ' / ' | R e s t] , Cwd):- %trace down
dir(H ead, $, Cwd, $),
m akedir(R est, Head).

m ak ed ir([Head, ' / ' | R e s t] , Cwd):- %trace up
dir(Cwd, $, Head, $),
m akedir(R est, Head).

m aked ir($, $) : -
m o d e fa i l (y e s) ,

179

r e t r a c t (m o d e f a i l (y e s)) .

m ak ed ir([H ead|$] , Cwd): -
w r i t e l i s t ([" " , Head, , 1: n o t fo u n d . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (r e f e r e n c e , Cwd, Head)) .

/*
m k f i le / 1 c r e a t e s a f i l e w ith th e g iv en name i n th e s p e c i f i e d d i r e c t o r y
o r in Cwd i f none i s s p e c i f ie d . The command i s f i r s t checked f o r e r r o r s .
* /

m k fi le ([]) : -
w r i te ('U sa g e : m k fi le f i l e . . . ') ,
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

m k f i l e ([' ' |Argument]) : -
cwd (Cwd),
makefile(Argument, Cwd).

m a k e f i le ([$, ' ' |$] , $) : -
w r i t e l i s t (['P a th s e p a ra to r i s : ' , , / , , ' . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) /
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

m a k e f i le ([F i l e] , D i r) : -
f i l e (F i le , P a re n t , $) ,
w r i te ('F i l e e x i s t s . ') , n l ,
r e t r a c t (e r r o r (_, _ / _)) ,
a s s e r t (e r r o r (d u p l i c a t i o n , P a re n t , F i l e)) .

m a k e f i l e ([D ir] , Cwd): -
d i r (D i r , $, P a re n t , $),
w r i t e ('D ire c to ry e x i s t s . ') , n l ,
r e t r a c t (e r r o r (_, _ / _)) /
a s s e r t (e r r o r (d u p l i c a t i o n , P a re n t , D i r)) ,

m a k e f i le ([F i l e] , D i r) : - %make f i l e in d i r
xperm (D ir),
wperm(Dir),
d i r (Dir, Mode, P a re n t , C o n ten ts) ,
a s s e r t (f i l e (F i l e , D ir , 700)) ,
a d d (F i le , C ontents, Newcontents),
r e t r a c t (d i r (D i r , Mode, P a re n t , C o n te n ts)) ,
a s s e r t (d i r (D i r , Mode, P a re n t , N ew contents)) .

m a k e f i l e ([Head, ' / ' | R e s t] , Cwd):- %trace down
dir(H ead , $, Cwd, $) ,
m a k ef i le (R es t , Head).

m a k e f i l e ([Head, ' / ' | R e s t] , Cwd):- %trace up
dir(Cwd, $, Head, $) ,
m a k ef i le (R es t , Head).

m a k e f i l e ($, $) : -
m o d e fa i l (y e s) ,
r e t r a c t (m o d e f a i l (y e s)) .

m a k e f i le ([Head|$] , Cwd) : -
w r i t e l i s t ([" " , Head, ' : no t f o u n d . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (r e f e r e n c e , Cwd, Head)) .

/*
?perm /l checks i f t h e r e i s p r o t e c t i o n on th e t a r g e t o f t h e command. I f
th e r e i s i t f a i l s th e command and a s s e r t s t h i s so t h a t t h e s e r v e r s
know not t o b ack track
* /

180

xperm(Target)
f i l e (T a r g e t , $, Mode),
i s i n ([100 ,300 ,500 ,700], Mode).

xperm(Target)
d i r (T a r g e t , Mode, $, $),
i s i n ([100,300,500, 700], Mode),

xperm(Target)
f i l e (T a r g e t , P a re n t , $),
x r e je c t (T a r g e t , P a re n t) ,

xperm(Target)
d i r (T a r g e t , $, P a re n t , $) ,
x r e je c t (T a r g e t , P a r e n t) .

x r e je c t (T a r g e t , Paren t)
no t m o d e fa i l (y e s) ,
w r i t e ('P e rm iss io n d e n ie d . ') , n l ,
a s s e r t (m o d e f a i l (y e s)) ,
r e t r a c t (e r ro r (_, _)) ,
a s s e r t (e r r o r (e x e c u te , P a re n t , T a r g e t)) , !,
f a i l .

rp e rm (T a rg e t) : -
f i l e (T a r g e t , $, Mode),
i s i n ([400,500,600,700], Mode),

rperm (Target) : -
d i r (T a r g e t , Mode, $, $),
i s i n ([400 ,500 ,600 ,700], Mode),

rperm(Target)
f i l e (T a r g e t , P a re n t , $),
r r e j e c t (T a r g e t , P a re n t) ,

rperm (Target)
d i r (T a r g e t , $, P a re n t , $) ,
r r e j e c t (T a r g e t , P a re n t) .

r r e j e c t (T a r g e t , Paren t)
no t m o d e fa i l (y e s) ,
w r i t e ('P e rm iss ion d e n i e d . ') , n l ,
a s s e r t (m o d e f a i l (y e s)) ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (r e a d , P a re n t , T a r g e t)) , !,
f a i l .

wperm(Target) : -
f i l e (T a r g e t , $, Mode),
i s i n ([200 ,300 ,600 ,700], Mode),

w perm (Target): -
d i r (T a r g e t , Mode, $, $),
i s i n ([200 ,300 ,600 ,700], Mode),

wperm (Target): -
f i l e (T a r g e t , P a re n t , $) ,
w re je c t (T a rg e t , P a r e n t) .

wperm (Target): -
d i r (T a r g e t , $, P a re n t , $) ,
w re je c t (Target, P a re n t) .

w re je c t (T a rg e t , Paren t)
no t m o d e fa i l (y e s) ,
w r i te ('P e rm iss ion d e n ie d . ') , n l ,
a s s e r t (m o d e f a i l (y e s)),
r e t r a c t (e r ro r (_, _ _ , _)) /
a s s e r t (e r r o r (w r i t e , P a re n t , T a r g e t)) , !,
f a i l .

181

/*
mv/ 1 d e a l s w ith th e arguments f o r th e move command, th e im p o r tan t c a l l s
a r e t o g e t a r g (l / 2) / 7 which t r a c e s th e p a th r e f e re n c e s t o th e t a r g e t and
d e s t i n a t io n o f th e command and checks f o r v a l i d r e fe re n c e a t each l e v e l .
The change ing Cwd i s p a s s e d on f o r ch eck in g p u rp o se s and th e o r i g i n a l
Cwd i s saved in Saver f o r th e s t a r t o f th e second argument t r a c e . Source
i s th e p a r e n t d i r e c t o r y o f T a rg e t and D est i s th e p a r e n t o f New which
may be a new name o r an e x i s t i n g e n t i t y which i s th en o v e rw r i t te n .
* /

mv([]) : -
w r i te ('U sa g e : mv [- i] f i l e / d i r d i r ') , n l ,
r e t r a c t (e r ro r (_,
a s s e r t (e r r o r (s y n t a x , nu l , n u l)) .

mv([1 ' , L o n e ly | []]) : -
w r i te ('U sa g e : mv [- i] f i l e / d i r d i r ') , n l ,
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

mv([' ' |Arguments]) : -
cwd (Cwd),
ge targ l(A rgum ents , Source, T arge t, D est, New, Cwd, Cwd) .

g e t a r g l ([T arget, ' ' |R e s t] , Source, T a rg e t , D est, New, Source, S a v e r) : -
%targ i s f i l e
f i l e (T a r g e t , Source, $),
g e ta rg 2 (R es t , Source, T arge t, D est, New, S a v e r) .

g e t a r g l ([T arget, ' ' |R e s t] , Source, T a rg e t , D est, New, Source, S a v e r) : -
%targ i s c h i ld
d i r (T a r g e t , $, Source, $) ,
w r i t e (' Cannot move a d i r e c t o r y . ') , n l .

g e t a r g l ([T arget, ' ' |R e s t] , Source, T a rg e t , D est, New, Source, S a v e r) : -
%targ i s p a re n t
d ir (S o u rc e , $, T a rg e t , $) ,
w r i t e (' Cannot move a d i r e c t o r y . ') , n l .

g e t a r g l ([Head, ' / ' | R e s t] , Source, T a rg e t , D est, New, Cwd, S a v e r) : -
%trace down

d ir(H ead , $, Cwd, $) ,
g e ta r g l (R e s t , Source, T arge t, D est, New, Head, S av e r) ,

g e t a r g l ([Head, ' / ' | R e s t] , Source, T a rg e t , D est, New, Cwd, S a v e r) : -
%trace up

dir(Cwd, $, Head, $) ,
g e ta r g l (R e s t , Source, T arge t, D est, New, Head, S a v e r) .

g e t a r g l ([Head|$] , Source, T arge t, D est, New, Cwd, S a v e r) : - %bad a rg
w r i t e l i s t ([" " , Head, n o t f o u n d . ']) , n l ,
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (r e f e r e n c e , Cwd, Head)).

g e ta r g 2 ([$, ' » ! $] , $, $, $, $, $) : -
w r i t e l i s t (['P a th s e p a ra to r i s : ' , , / , , ' . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , n u l , n u l)) .

g e ta r g 2 ([New], Source, Old, D est, New, D e s t) : - %local f i l e dup
file(N ew , D est, $) , %prevent mv
w r i t e ('F i l e e x i s t s . 1) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (d u p l i c a t i o n , Dest, New)) .

g e ta r g 2 ([New], Source, Old, D est, New, D e s t) : - %move F i l e t o e x ta n t
c h i ld

dir(New, $, D est, $) , %dir
move(Source, Old, New, O ld) .

g e ta r g 2 ([New], Source, Old, D est, New, D e s t) : - %move F i l e t o e x ta n t
p a re n t

182

d i r (Dest, $, New, $) , %dir
move (Source, Old, New, O ld) .

g e ta r g 2 ([New], Source, Old, D est, New, D e s t) : - %global f i l e e x i s t s
file(N ew , $, $),
s o r td u p f i le (S o u rc e , Old, D est, New).

g e ta r g 2 ([New], Source, Old, D est, New, D e s t) : - %global d i r e x i s t s
dir(New, $, $, $),
so r td u p d ir (S o u rc e , Old, D est, New).

g e ta r g 2 ([New], Source, Old, D est, New, D e s t) : - %no d u p l ic a t io n
move(Source, Old, D est, New).

g e ta r g 2 ([Head, ' / ' | R e s t] , Source, Old, D est, New, Cwd):- %trace down
d ir(H ead , $, Cwd, $),
g e ta rg 2 (R es t , Source, Old, D est, New, Head).

g e ta r g 2 ([Head, ' / ’ |R e s t] , Source, Old, D est, New, Cwd):- %trace up
dir(Cwd, $, Head, $),
g e ta rg 2 (R es t , Source, Old, D est, New, Head).

g e ta r g 2 ([Headl$] , Source, Old, D est, New, Cwd):- %bad argument
w r i t e l i s t ([1" 1, Head, ' " ' , ' : not f o u n d . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (r e f e r e n c e , Cwd, Head)).

s o r td u p f i l e (Source, Old, D est, New):- %dup i s th e moved f i l e
file(N ew , Source, $),
move (Source, Old, D est, New).

s o r td u p f i l e (Source, Old, D est, New):- %dup i s no t moved f i l e
file(N ew , P a re n t , $),
w r i t e l i s t ([1" 1, New, ' " ' , ' : e x i s t s . 1]) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (d u p l i c a t i o n , P a re n t , New)) .

s o r td u p d ir (Source, Old, D est, New) : - %dup i s th e moved d i r
dir(New, $, Source, $) ,
move(Source, Old, D est, New).

s o r td u p d ir (Source, Old, D est, New):- %dup i s no t th e moved d i r
dir(New, $, P a re n t , $) ,
w r i t e l i s t ([1" 1, New, ' ” ' , 1: e x i s t s . ’]) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (d u p l i c a t i o n , P a re n t , New)).

move(Source, Old, D est, New): -
i s a n c e s to r (O ld , D est) ,
w r i t e ('D e s t in a t io n i s a d e s c e n d a n t . ') , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l o g i c a l , n u l , n u l)) .

move(Source, Old, Source, New):- %rename d i r
d ir (O ld , $, Source, $),
xperm(Source),
wperm(Source),
r e t r a c t (d i r (O l d , P r o te c t io n , Source, C o n te n ts)) ,
a s se r t (d ir (N ew , 700, Source, C o n te n ts)) ,
d ir (S o u rc e , $, $, C o n tn ts) ,
d e le te (O ld , C ontn ts , Newcontnts),
add(New, Newcontnts, Newconts),
r e t r a c t (d i r (S o u r c e , P r o te c t , Mum, C o n tn ts)) ,
a s s e r t (d i r (S o u r c e , P r o te c t , Mum, N ewconts)),
t e l lk id s (C o n te n t s , New).

move(Source, Old, D est, New):- %move d i r
d i r (O ld , $, Source, $),
xperm(Source),
xperm (Dest),
wperm(Dest),
r e t r a c t (d i r (O l d , P r o te c t io n , Source, C o n te n ts)) ,

183

a ss e r t (d ir (N e w , 700, D est, C o n te n ts)) ,
d ir (S o u rc e , $, $, C o n tn ts) ,
d i r (D e s t , $, $, C onts),
d e le te (O ld , C ontn ts , Newcontnts),
add(New, Conts, Newconts),
r e t r a c t (d i r (S o u r c e , P r o t , Dad, C o n tn ts)) ,
a s s e r t (d i r (S o u r c e , P ro t , Dad, N ew contn ts)) ,
r e t r a c t (d i r (D e s t , P r o te c t , Mum, C o n ts)) ,
a s s e r t (d i r (D e s t , P r o te c t , Mum, Newconts)),
t e l l k id s (C o n te n t s , New).

move(Source, Old, Source, New):- %rename f i l e
xperm (Source),
wperm (Source),
r e t r a c t (f i l e (O l d , Source, P r o t e c t i o n)) ,
a s s e r t (f i le (N e w , Source, 700)) ,
d i r (S o u rc e , $, $, C n tn t s) ,
d e le te (O ld , C n tn ts , Newcntnts),
add(New, Newcntnts, Newconts),
r e t r a c t (d i r (S o u r c e , P r o t , Dad, C n tn t s)) ,
a s s e r t (d i r (S o u r c e , P ro t , Dad, N ewconts)).

move(Source, Old, D est, New):- %move f i l e
xperm (Source),
xperm (D est) ,
wperm(Dest),
r e t r a c t (f i l e (O l d , Source, P r o t e c t i o n)) ,
a s s e r t (f i l e (New, D est, 700)) ,
d i r (S o u rc e , $, $, C n tn ts) ,
d i r (D e s t , $, $, C onts) ,
d e le te (O ld , C n tn ts , Newcntnts),
add(New, Conts, Newconts),
r e t r a c t (d i r (S o u r c e , P ro t , Dad, C n tn t s)) ,
a s s e r t (d i r (S o u r c e , P ro t , Dad, N ew cn tn ts)) ,
r e t r a c t (d i r (D e s t , P r o te c t , Mum, C o n ts)) ,
a s s e r t (d i r (D e s t , P r o te c t , Mum, Newconts)).

move($, $, $, $) : -
m o d e fa i l (y e s) ,
r e t r a c t (m o d e f a i l (y e s)) .

/*
These d e f i n i t i o n s have been a b s t r a c t e d from v a r i o u s P r o lo g i n c l u d e s
header f i l e s . They p ro v id e th e i n t e r f a c e w ith th e o p e r a t in g system rom
r o u t i n e s n e ed e d by Qdos f o r t im e s t a m p in g and w in d o w /m e n u /c u rso r
management. T h is saves on t im e , d i s c space and memory s in c e on ly a few
o f th e many rom r o u t in e s a re used from th e in c lu d e s f o ld e r .
* /

: - definerom(frontwindow, 16 'a924, p t r , []) .
: - d e f in e ro m (s e tw t i t le , 16 'a91a, no, [p t r , s t r i n g]) .
: - de f ine rom (readda te tim e, 16 'a039, in teger+dO , [var+ long in t+aO]) .
: - d e f ine rom (secs2date , 16 'a9c6 , no, [dO+longint, var+record+aO]) .
: - definerom (sysbeep , 16 'a9c8 , no, [i n t e g e r]) .
: - definerom (clearm enubar, 16 'a934, no, []) .
: - definerom(drawmenubar, 16 'a937, no, []) .
: - de f in e ro m (h id ecu rso r , 16 'a852, no, []) .
: - d e f in e ro m (ev en tav a il , 16 'a971, boo lean , [in t e g e r , v a r+ re c o rd]) .
: - de fin e ro m (g e tn ex tev en t, 16 'a970, b o o lean , [in t e g e r , v a r+ re c o rd]) .
: - d e f ine rom (b itand , 16 'a858, lo n g in t , [lo n g in t , l o n g i n t]) .

g e t _ f i e l d (FIELD, TYPE, STRUCT, RESULT) : -
record_fie ld(F IEL D , TYPE, RETTYPE, OFFSET),
access_function(RETTYPE, ACCESSFUNC),
apply(ACCESSFUNC, [STRUCT, OFFSET, RESULT]).

184

access_ func tion (w ord , mempeekword_ptr).
a c c e s s_ fu n c t io n (lo n g , mempeek_ptr).

r e c o r d _ f ie ld (y e a r , d a te t im e rec , word, 0) .
re co rd _ f ie ld (m o n th , d a te t im e rec , word, 2) .
re c o rd _ f ie ld (d a y , d a te t im e rec , word, 4) .
r e c o rd _ f ie ld (h o u r , d a te t im e rec , word, 6) .
re c o rd _ f ie ld (m in u te , d a te t im e rec , word, 8) .
re c o rd _ f ie ld (s e c o n d , d a te t im e rec , word, 1 0) .
reco rd_ fie ld (dayofw eek , d a te t im e rec , word, 1 2) .
re co rd _ f ie ld (m essag e , ev en treco rd , long , 2) .
r e c o rd _ s iz e (e v e n t re c o rd , 16, p t r) .
r e c o rd _ f ie ld (h i lo n g , i n t 6 4 b i t , long, 0) .
r e c o rd _ f ie ld (lo lo n g , i n t 6 4 b i t , long, 4) .

/*
These c la u s e s p ro v id e a l l o f th e UNIX ty p e o u tp u t i n t h e normal cou rse
o f th e i n t e r a c t i o n . T h is i s m ainly d i r e c t o r y l i s t i n g i n lo n g and s h o r t
fo rm ats and th e 'pwd' command
* /

w r i t e l i s t ([]) .
w r i t e l i s t ([H ead]T a il])

w ri te (H ead) ,
w r i t e l i s t (T a i l) .

l i s t c o n t s ([]) .
l i s t c o n t s ([H ead |T a i l])

w ri te (H ead) , n l ,
l i s t c o n t s (T a i l) .

lo n g lis tco n ts(A rg u m en t, Dir)
w r i t e l i s t ([Dir, 1 : ']) , n l ,
w r i t e (1MODE') , t a b to (lO) ,
w r i t e ('OWNER') / t a b t o (2 0) ,
w r i t e (' SIZE ') , t a b t o (30),
w r i t e (' NAME') , n l ,
w r i t e (' ------ ') , t a b to (1 0) ,
w r i te (' ~~---- ') , t a b t o (2 0) ,
w r i t e (' ---- ~ ') , t a b to (3 0) ,
w r i t e (’—— ’) , n l ,
long lis t(A rgum en t, Di r) .

l o n g l i s t ([] , $) .
l o n g l i s t ([H ead |T a i l] , Dir)

owner(Owner),
d ir(H ead , Mode, D ir , C o n ten ts) ,
a rgcoun t(C on ten ts , Number),
w r i t e (' d '),
transmode(Mode) , t a b to (10),
w rite(O w ner), t a b t o (20),
write(Num ber), t a b t o (30),
w ri te (H ead) , n l ,
l o n g l i s t (T a i l , D ir) ,

l o n g l i s t ([H e ad |T a i l] , Dir)
f i le (H e a d , D ir , Mode),
owner(Owner),
transmode(Mode) , t a b t o (10),
w rite(O w ner), t a b t o (20),
w r i te (' O ') , t a b t o (30),
w ri te (H ead) , n l ,
l o n g l i s t (T a i l , Di r) .

185

/*
t r a n s m o d e / 1 c o n v e r t s t h e o u t p u t fo r m a t o f mode c o d in g s t o ' r wx '
i n s t e a d o f numbers. This se rv es th e I s -1 command o p t io n .
* /

transm ode(0 0 0)
w r i te (1---- ’) .

transm ode(1 0 0)
w r i te (’—x ’).

transm ode(2 0 0)
w r i t e (' -w -1) .

transm ode(300)
w r i te (1-wx1).

transm ode(400)
w r i te (' r — 1).

t ransm ode(500)
w r i t e (1r - x 1) .

transm ode(600)
w r i te (' rw -1) .

transm ode(700)
w r i t e (1rwx1).

/*
? p r e c o n d / 0 c o n t a i n s a l l t h e h e l p m e s s a g e s r e l a t i n g t o t h e
p r e c o n d i t i o n s t h a t e ach f a i l e d command e n t a i l s . I n o r d e r t h a t t h e
m essages a r e n o t r e p e a t e d more th a n t h r e e t im e s , a c o u n t i s k e p t f o r
each s e s s io n .
* /

dupprecond
enough(dup),
n l ,
wri t e (* ij ̂ n l ,
w r i t e ('* A ll names must be un ique . * ') / n l ,
v /uite ̂i ̂ ̂ n l ,
n o t e i t (dup).

dupprecond.

nonemptyprecond
enough(nonempt),
n l ,
■̂•£■■̂■£-0 ̂i j ̂ n l ,
w r i t e ('* A d i r e c to r y must be empty * ') / n l ,
w r i t e (** b e fo re i t can be d e le te d . * ') / n l ,
^£^■^0 ̂I ★ ★ ★ ★ Jc ★ ★ - k - k - k " k " k ★ ★ ★ ★ ★ ★ ★ ★ ★ - k -k "k k k ★ ★ I J ̂ n l ,
n o t e i t (nonempt).

nonemptyprecond.

re fp reco n d
en o u g h (re f) ,
n l ,
v /r i te ̂ i j n l ,
w r i te ('* The item you apply th e command t o must e x i s t * ’) , n l ,
w r i te (’* in th e s p e c i f i e d d i r e c to r y o r th e c u r r e n t * ') , n l ,
w r i te (’* d i r e c to r y i f you do not s p e c i fy one. * ') / n l ,
Write ̂I k I) n l ,
n o t e i t (r e f) .

re fp reco n d .

186

readprecond
enough(read) ,
n l ,
w r i te ̂ • j n l ,
w r i t e ('* You must have re a d pe rm ission on th e item * ’) , n l ,
w r i te (’* f o r t h a t command to succeed. Use th e chmod **) , n l ,
w r i t e ('* command t o g a in read p e rm iss io n . * ') , n l ,
W rite ̂I ★★★'A’ I J
n o t e i t (r e a d) .

readprecond.

w ritep reco n d
en o u g h (w rite) ,
n l ,
w r i t e (* i j ̂ n l ,
w r i te (** You must have w r i te p e rm iss ion on th e item **) , n l ,
w r i t e ('* f o r t h a t command to succeed. Use th e chmod * ’) , n l ,
w r i t e (** command t o g a in w r i te p e rm iss io n . * ') , n l ,
w r i t e (1 j r n l ,
n o t e i t (w r i t e) .

w r i te p re cond.

exeprecond
enough(exe),
n l ,
w r i te (* ★ i j n l ,
w r i te (** You must have execu te p e rm iss io n on th e * ') , n l ,
w r i t e (** item f o r t h a t command t o succeed . Use th e * ') , n l ,
w r i t e ('* chmod command t o ga in execu te p e rm iss io n . * ’) , n l ,
W rite ̂I •k 'k -k -k 'k -k 'k -k -k 'k -k -k 'k 'k 'k 'k 'k 'k 'k -k 'k 'k 'k 'k 'k 'k -k -k -k 'k -k -k -k -k -k -k -k 'k -k -k -k -k -k -k -k 1 J ̂ n l ,
n o t e i t (e x e) .

exeprecond.

n o te i t (T y p e) : -
i te r a te (T y p e , 3).

no te it(T ype)
r e t r a c t (i t e r a t e (T y p e , Count)) ,
Newcount i s Count + 1 ,
a s s e r t (i t e ra te (T y p e , Newcount)) .

enough(Type)
i t e r a te (T y p e , Count),
Count < 3.

/*
pwd/ 1 p r i n t s o u t th e p a th from th e r o o t t o t h e cwd i n re s p o n se t o t h e
pwd command.
* /

pwd($)
ni,
cwd (Cwd),
ge tparen ts(C w d), n l .

g e tp a re n ts (D ir)
D ir = ro o t ,
w r i t e (D i r) .

g e tp a re n ts (D ir)
d i r (D i r , $, P a re n t , $),
g e tp a r e n t s (P a r e n t) ,
w r i t e (' / ') ,
w r i te (D ir) .

187

/*
s t a r t / O i s th e main c a l l i n g c la u s e o f th e program. I t c o n s u l t s a l l th e
o th e r program f i l e s and c o n t r o l s th e program flow v i a a r e p e a t c a l l t o
t h e m ain c a l l i n g c l a u s e 'p ro m p t* . I t a l s o r e a d s i n t h e s t a r t i n g
d i r e c to r y s t r u c tu r e f o r th e e v a lu a t io n e x e r c is e s .
* /

['m y l i b .h '] . % reconsult my rom l i b r a r y

[appearance] . % reconsult d i s g u i s e r
appearance. %disguise p ro lo g

[s e rv ic e , in p u t , o u tp u t , precond, % reconsult my system
pwd_Server, cd_Server, ls_ S e rv e r ,
rm _server, rm d ir_ se rv e r , m kd ir_se rver ,
cp _ se rv e r , mv_server, u t i l s , chmod_server,
mode_server, r e c o rd e r , a n a ly s e r , t e l l k i d s ,
t im e , la s tcd _ c h ec k e r , ' l s - l _ s e r v e r ' ,
lastrmv__checker, la s t re a d _ c h e c k e r ,
la s tw r i te _ c h e c k e r , la s tex e _ ch e c k e r ,
lastmkmvcp_checker, m k f i le _ S e rv e r] .

s t a r t : -
[s t a r tu p] , %create s t a r t s i t u a t i o n
getdatetime(Dow, D, Mo, Y, H, Mi, S),
r e t r a c t (s t a r t t im e (_, _ , _ , _ , _ , _ , _)) , % re trac t dummy s t a r t t i m e
a s s e r t (s ta r t t im e (D o w , D, Mo, Y, H, Mi, S)) , %save s t a r t tim e
n l (40),
go.

go
r e p e a t , %loop cycle
prom pt.

prompt : -
n l ,
w r i te (1 DOS: ') ,
input(Commandline),

% w rite l is t(C o m m an d lin e) , n l , %for t e s t h a rn ess work
validcomm(Commandline),
s e r v ic e (Commandline),
re c o rd (Commandline), %record ev en ts

% a n a ly se , %switch o f f h e lp system h ere
r e t r a c t (e r r o r (_, _ , _)) , %reset e r r o r f l a g
a s s e r t (e r r o r (n o e r r o r , n u l , n u l)) ,
I

f a l l .

s t a r t .

/ *
t h i s v e r s io n o f r e c o r d / 1 a s s e r t s t h e lo g i n s t e a d o f r e c o r d in g i t i n a
f i l e . I t re co rd s commandline, c u r r e n t d i r e c to r y and d a te / t im e re c o rd in
i t (o n ly i m p l i c a t i v e s u c c e s s f u l commands i f t h e s e l i n e s a r e n o t
commented out) .
* /

record(Commandline)
%divide (Commandline, Command, Argument),

188

% is in ([cd , mv, rm dir, m k f i le , mkdir, cp, rm, chmod], Command),
%im p l ic a t iv e &

e r r o r (n o e r r o r , $, $) ,
% successful

cwd(Cwd), %commands only
getdatetime(DoW, Day, Month, Year, Hour, Min, S e c) ,
asserta(event(C om m andline , Cwd, DoW, Day, Month, Year, Hour, Min,

Sec)) .
r e c o r d (C o m m a n d l i n e) % r e c o r d e r r o r

cwd(Cwd), % deta ils too
e r r o r (E r r o r ty p e , D ir , A rg),
getdatetime(DoW, Day, Month, Year, Hour, Min, S ec) ,
asserta(nonevent(Com m andline, E r ro r ty p e , D ir , Arg, Cwd, DoW, Day,

Month, Year, Hour, Min, S ec)) .

% logerro r(E rro rtype)
%getdatetime(DoW, Day, Month, Year, Hour, Min, S ec) ,
% assertz (e r ro rc o u n t(E r ro r ty p e , DoW, Day, Month, Year, Hour, Min,

Sec)) .

save_dbase : -
t e l l (f in i s h u p) ,
l i s t in g (o w n e r) ,
l i s t i n g (t o t a l t i m e) ,
l i s t i n g (f i l e) ,
l i s t i n g (d i r) ,
% l i s t in g (e r r o r c o u n t) ,
l i s t i n g (e v e n t) ,
l i s t i n g (n o n e v e n t) ,
t o l d .

/*
r m d i r / 1 rem oves d i r e c t o r i e s from t h e s t r u c t u r e a f t e r c h e c k in g t h e
command f o r any e r r o r s o r o b s ta c le s .
* /

rm dir ([]) : -
w r i t e ('Usage: rm dir d i r e c to r y . . . ') ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , nu l , n u l)) .

r m d i r ([' 1 | L i s t]) : —
cwd (Cwd),
f o l l o w d i r (L i s t , Cwd).

f o l l o w d i r ([$, ’ * | $] , $) : -
w r i t e l i s t (['P a th s e p a ra to r i s : ' , , / , , ' . ']) , n l ,
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (s y n t a x , nu l , n u l)) .

f o l l o w d i r ([D ir] , S o u rc e) : - %cannot rm dir p a re n t
d i r (Dir, $, Source, []) ,
d i r (S o u rc e , $, $, C o n ten ts) ,
xperm (Source),
wperm(Dir),
d e le t e (D i r , C ontents, N e w l is t) ,
r e t r a c t (d i r (S o u r c e , P r o te c t io n , Dad, C o n te n ts)) ,
a s s e r t (d i r (S o u r c e , P ro te c t io n , Dad, N e w l is t)) ,
r e t r a c t (d i r (D i r , $, Source, [])) .

f o l l o w d i r ([F i l e] , S o u rce) : -
f i l e (F i le , Source, $),
w r i t e l i s t ([" " , F i l e , ' i s a f i l e ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l o g i c a l , nu l , n u l)) .

189

f o l l o w d i r ([D ir] , S o u rce) : -
d i r (D i r , $, Source, C onts) ,
no t a rgcoun t(C on ts , 0),
w r i t e l i s t ([1" 1, D ir , ' : no t e mp t y . ']) /
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r ro r (n o n e m p ty , n u l , n u l)) .

f o l l o w d i r ([Head, ' / ' I R e s t] , S o u rc e) : - %trace down
dir(H ead , $, Source, $),
fo l lo w d i r (R e s t , Head),

f o l l o w d i r ([Head, f / ' | R e s t] , S o u rc e) : - %trace up
d ir (S o u rc e , $, Head, $),
fo l lo w d i r (R e s t , Head),

f o l l o w d i r ([D ir] , S o u rce) : -
m o d e fa i l (y e s) ,
r e t r a c t (m o d e f a i l (y e s)) .

f o l l o w d i r ([Head|$] , S o u rce) : -
w r i t e l i s t ([' " 1, Head, ' " ' , ' : not f o u n d . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (r e f e r e n c e , Source, Head)).

/*
rm/ 1 removes f i l e s from th e s t r u c t u r e a f t e r checking th e c o r r e c tn e s s o f
th e command.
* /

r m([]) : -
w r i t e (' Usage: r m < f i l e > . ') ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r ro r (syntax, nu l , n u l)) .

r m([' ' I L i s t]) : -
cwd (Cwd),
f o l lo w (L is t , Cwd).

fo l lo w ([$, » ' ! $] , $) : -
w r i t e l i s t (['P a th s e p a ra to r i s : ' , / , ' . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r ro r (s y n ta x , n u l , n u l)) .

f o l lo w ([D ir] , S o u rce) : -
d i r (D i r , $, Source, $) ,
w r i t e l i s t ([" " , D ir , ' i s a d i r e c t o r y . ']) , n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l o g i c a l , nu l , n u l)) .

f o l l o w ([F i l e] , S o u rc e) : - % target must be f i l e -> c h i l d
f i l e (F i le , Source, $),
xperm (Source),
wperm(Source),
w perm (F ile),
d ir (S o u rc e , $, $, C o n ten ts) ,
d e le t e (F i le , C onten ts , N ew lis t) ,
r e t r a c t (d i r (S o u r c e , P r o te c t io n , Dad, C o n te n ts)) ,
a s s e r t (d i r (S o u r c e , P r o te c t io n , Dad, N e w l is t)) ,
r e t r a c t (f i l e (F i l e , Source, $)) .

f o l lo w ([Head, ' / ' | L i s t] , Cwd): - %trace down
dir(H ead , $, Cwd, $),
f o l lo w (L is t , Head),

f o l lo w ([Head, ' / ' | L i s t] , Cwd):- %trace up
dir(Cwd, $, Head, $),
f o l lo w (L is t , Head),

f o l lo w ($, $) : -
m o d e fa i l (y e s) ,
r e t r a c t (m o d e f a i l (y e s)) .

f o l lo w ([Head|$] , D i r) : -

190

w r i t e l i s t ([1" 1, Head, 1" ' , no t f o u n d . 1]) / n l ,
r e t r a c t (e r ro r (_, _ , _)) ,
a s s e r t (e r r o r (r e f e r e n c e , D ir, Head)).

/*
s e r v i c e / 1 , v a l id c o m m /1 and command/1 a r e p a r t o f t h e p a r s e r . I t
checks th e command l e x i c a l l y pe rfo rm s th e lo g o u t and c a l l s th e c la u s e s
w hich r e c o r d t h e r e q u i r e d p a r t s o f t h e d a ta b a s e l o g . I t c a l l s t h e
i n d i v i d u a l modules which p e rfo rm th e p a r s in g o f a rgum ents f o r each o f
th e commands.
* /

validcomm([])
f a i l .

validcomm([Command|$]) : -
command(Command).

command(logout).
command (chmod) .
command(Is).
command (pwd) .
command (cp) .
command(mv).
command (rm) .
command (rmdir) .
command (m kdir).
command (mkfile) .
command (cd) .
command (Badcommand)

n l ,
r e t r a c t (e r r o r (_, _ , _)) ,
a s s e r t (e r r o r (l e x i c a l , nu l, n u l)) ,
r e c o r d ([Badcommand]) ,
w r i t e l i s t ([* " 1, Badcommand, 1V *, * : no t a v a l i d command’]) / n l , !,
f a i l .

s e r v i c e ([lo g o u t |$])
s tarttim e(D ow , D, M, Y, H, Mi, S) ,
timelapse(Dnow, Hnow, Mnow, Snow, D, H, Mi, S, D lapse, H lapse, Mlapse,

S la p s e) ,
r e t r a c t (to ta l t im e (_, _ , _)) ,
a s s e r t (to ta l t im e (H la p s e , Mlapse, S la p s e)) ,
save_dbase,
e x i t . %quit f o r r e t u r n t o p ro lo g e x i t f o r desk top

s e r v i c e ([Is |A rgum en ts])
I s (Arguments).

s e r v i c e ([pwd|Arguments]) : -
pwd (Arguments) .

s e r v i c e ([cd |Argum ents]) : -
cd (Arguments).

s e r v ic e ([chmod| Arguments])
chmod (Arguments) .

s e r v i c e ([mv|Arguments]) : -
mv(Arguments). %call s e rv ic e r o u t in e f o r each command

s e r v ic e ([rm I Arguments])
rm (Arguments).

s e r v i c e ([rm dir|A rgum ents]) : -
rm dir (Arguments) .

s e r v i c e ([mkdir|Arguments])
mkdir (Arguments) .

s e r v ic e ([m kfile 1 Arguments])
m kfile(A rgum ents).

191

s e r v i c e ([cp|Arguments]) : -
cp (Arguments) .

/*
S t a r t u p
These c la u s e s s e t up a l l o f th e i n i t i a l c o n d i t io n s re q u i r e d f o r th e u se r
t o i n t e r a c t w ith th e system . A ll e r r o r c o u n ts , t im es and th e d i r e c t o r y
s t r u c t u r e a r e s e t t o s t a r t u p v a lu e s and th e e v e n ts which c r e a t e d t h e
i n i t i a l s t r u c t u r e a r e a s s e r t e d so t h a t th e a n a ly s e r has some e v id en ce
f o r e r r o r s having th e s e s ev en ts a s c au sa l a n tec e d en ts .
* /

ow ner(boss) .

m o d e fa i l (n o) . % orig inal s e t t i n g f o r pe rm iss io n v i o l a t i o n

i t e r a t e (r e f , 0) . % s ta r t v a lu e s f o r e r r o r message r e p e a t s
i t e r a t e (d u p , 0) . %no more than 3 r e p e a t s o f each synchron ic
i t e r a t e (r e a d , 0) . %e r r o r message
i t e r a t e (w r i t e , 0) .
i t e r a t e (e x e , 0) .
i te ra te (n o n e m p t, 0) .

e r r o r (n o e r r o r , n u l , n u l) . %no e r r o r s a t s t a r tu p

cwd(home). % sta r t i n home d i r

prew d(nul, monday, 1 ,1 ,1 9 0 0 ,0 ,0 ,0) . %dummy p rev io u s working d i r

s ta r tt im e(m onday , 1 ,1 ,1 9 0 0 ,0 ,0 ,0) . %dummy s t a r t t im e
t o t a l t i m e (0 , 0 , 0) . %dummy e lap se d tim e

/* th e f in i s h u p f i l e from p r o to - s e s s io n c o n ten ts go in h e re t o p ro v id e a
r e a l i s t i c s t a r tu p s i t u a t i o n and a long term i n t e r a c t i o n h i s t o r y f o r th e
a n a ly s e r t o work on. The m akesta rtup f i l e i s seen by Qdos and i t s
f in i s h u p f i l e i s cop ied in to h e r e .* /

f i l e (temp, home, 700) .
f i l e (f ro m j im , p e r s in , 0) .
f i le (f rom m ary , p e r s in , 0) .
f i l e (t o j i m , p e rs o u t , 0) .
f i l e (c o m p la in t in , b u s in , 400).
f i l e (e n q u i r o u t , b usou t, 700) .
f i l e (s u p p a d d r , busaddr, 700) .
f i l e (c u s t a d d r , busaddr, 700) .
f i l e (sm iths, p e rsad d r , 700) .
f i l e (jo n eses , p e rsad d r , 700).
f i l e (b l o g g s , p e rsad d r , 700) .
f i l e (johnsons, p e rsad d r , 700) .
f i l e (f r o m e r i c , m a il , 700) .
f i l e (a d d o u t , busou t, 700) .

/* d i r / 4 * /

d i r (r o o t , 0 , n u l , [home]).
d i r (p e r s i n , 700, p e r s o n a l , [frommary, f rom jim]) .
d i r (p e r s o u t , 700, p e r s o n a l , [t o j i m]) .
d i r (p e r s o n a l , 0 , m a il , [p e rso u t , p e r s i n]) .
d i r (b u s in , 700, b u s in e s s , [c o m p la in t in]) .

192

d i r (a d d r e s s e s , 700, home, [pe rsaddr , b u sad d r]) .
d ir (b u sa d d r , 700, a d d re s se s , [cu s tad d r , suppaddr]) .
d i r (m a i l in , 700, home, []) .
dir(hom e, 700, r o o t , [m a ilin , ad d re sse s , m a il , tem p]),
d i r (m a i l , 700, home, [from eric , b u s in e s s , p e r s o n a l]) ,
d i r (b u s o u t , 700, b u s in e s s , [addout, e n q u i ro u t]) .
d i r (b u s in e s s , 1 0 0 , m a i l , [busout, b u s in]) .
d i r (p e r s a d d r , 2 0 0 , a d d re sse s , [johnsons, b loggs , jo n e se s , s m i th s]) .

event([chmod, 1 *, 200, ' ', home, (/), addresses, (/), persaddr], mail,
Wednesday, 8, jan, 1992,10,26,27).

event([chmod, 1 ’, 100, ' ', business], mail, Wednesday, 8, jan,
1992,10,

26,27).
event([mkfile, 1 *, business, (/), busout, (/), addout], mail,
Wednesday,

8, jan, 1992,10,26,27).
event([mkfile, ' ', fromeric], mail, Wednesday, 8, jan, 1992,10,26,27).
event([cd, 1 ', mail], mail, Wednesday, 8, jan, 1992,10,26,27).
event([mkdir, 1 ', mailin], home, Wednesday, 8, jan, 1992,10,26,27).
event([cd], home, Wednesday, 8, jan, 1992,10,26,26).
event([mkfile, 1 ', johnsons], persaddr, Wednesday, 8, jan, 1992,10,26,

26) .
event([mkfile, 1 ', bloggs], persaddr, Wednesday, 8, jan, 1992,10,26,

26) .
event([mkfile, ' ’, joneses], persaddr, Wednesday, 8, jan, 1992,10,26,

26) .
event([mkfile, 1 ’, smiths], persaddr, Wednesday, 8, jan, 1992,10,26,

26) .
event([cd, * ’, addresses, (/), persaddr], persaddr, Wednesday, 2, may,

1991,10,26,26).
event([mkfile, ' ', custaddr], busaddr, Wednesday, 8, jan, 1992,10,26,

25) .
event([mkfile, 1 ', suppaddr], busaddr, Wednesday, 8, jan, 1992,10,26,

25) .
event([cd, ' *, busaddr], busaddr, Wednesday, 8, jan, 1992,10,26,25).
event([mkdir, * *, persaddr], addresses, Wednesday, 8, jan, 1992,10,26,

25) .
event([mkdir, ' *, busaddr], addresses, Wednesday, 8, jan, 1992,10,26,

25) .
event([cd, ' *, business, (/), mail, (/), home, (/), addresses],
addresses,

Wednesday, 8, jan, 1992,10,26,25).
event([mkfile, 1 ', enquirout], busout, Wednesday, 8, jan, 1992,10,26,

25) .
event([cd, 1 ’, business, (/), busout], busout, Wednesday, 8, jan, 1992,

10.26.24).
event([chmod, 1 ', 400, 1 ’, complaintin], busin, Wednesday, 2, may,

1991.10.26.24).
event([mkfile, 1 1, complaintin], busin, Wednesday, 8, jan, 1992,10,26,

24) .
event([cd, 1 ', busin], busin, Wednesday, 8, jan, 1992,10,26,24).
event([mkdir, 1 *, busout], business, Wednesday, 8, jan, 1992,10,26,24).
event([mkdir, * ’, busin], business, Wednesday, 8, jan, 1992,10,26,24).
event([cd, 1 *, business], business, Wednesday, 8, jan, 1992,10,26,23).
event([chmod, 1 ’,0, 1 ', personal], mail, Wednesday, 8, jan, 1992,10,

26.23).
event([cd, 1 ’, personal, (/), mail], mail, Wednesday, 8, jan, 1992,10,

26.23).
event([chmod, 1 *, 0, 1 ', tojim], persout, Wednesday, 8, jan, 1992,10,

26.23).
event([mkfile, 1 ', tojim], persout, Wednesday, 8, jan, 1992,10,26,23).

193

e v e n t ([cd , ' ' , p e r s o n a l , (/) , p e r s o u t] , p e r s o u t , W e d n e s d a y , 2, m a y ,
1 9 9 1 .1 0 .26 .23) .

event([chmod, ' ' , 0, ' ', frommary], persin, Wednesday, 8 , jan,
1992,10,

26. 23) .
e v e n t ([m k f i l e , 1 ' , f r o m m a r y] , p e r s i n , W e d n e s d a y , 8 , j a n , 1992,10,26,

2 2) .
e v e n t ([c h m o d , * ' , 0, 1 ' , f r o m j i m] , p e r s i n , W e d n e s d a y , 8 , j a n , 1992,10,

26,22) .
e v e n t ([m k f i l e , 1 ' , f r o m j i m] , p e r s i n , W e d n e s d a y , 8 , j a n , 1992 ,1 0 ,2 6 ,2 2) .
e v e n t ([cd , ' ' , p e r s i n] , p e r s i n , W e d n e s d a y , 8 , j a n , 1992 ,1 0 ,2 6 ,2 2) .

' , p e r s o u t] , p e r s o n a l , W e d n e s d a y , 8 , j a n , 1992,10,26,e v e n t ([mkdir,
22) .

e v e n t ([mkdir,
e v e n t ([cd, 1 1
e v e n t ([mkdir,
e v e n t ([mkdir,
e v e n t([c d , ' 1
e v e n t ([mkdir,
e v e n t ([mkdir,

' , p e r s i n] , p e r s o n a l , W e d n e s d a y , 8 , j a n , 1992 ,1 0 ,2 6 ,2 1) .
p e r s o n a l] , p e r s o n a l , W e d n e s d a y , 8 , j a n , 1 9 9 2 ,1 0 ,2 6 ,2 1) .
' , b u s i n e s s] , m a i l , W e d n e s d a y , 8 , j a n , 1992 ,1 0 ,2 6 ,2 1) .
' , p e r s o n a l] , m a i l , W e d n e s d a y , 8 , j a n , 19 9 2 ,1 0 ,2 6 ,2 1) .

m a i l] , m a i l , W e d n e s d a y , 8 , j a n , 1992 ,1 0 ,2 6 ,2 1) .
' , a d d r e s s e s] , h o m e , W e d n e s d a y , 8 , j a n , 1992 ,1 0 ,2 6 ,2 1) .
' , m a i l] , h o m e , W e d n e s d a y , 8 , j a n , 1992 ,1 0 ,2 6 ,2 1) .

/ *
t e l l k i d s / 2 in fo rm s a l l o f th e c h i l d r e c o r d s o f a d i r e c t o r y r e c o r d i f
th e d i r e c to r y i s renamed as each o b je c t r e c o rd has w i th in i t a f i e l d f o r
i t s p a re n t d i r e c to r y .
* /

t e l l k i d s ([] , $) .
t e l l k i d s ([H e ad |T a i l] , Name)

r e t r a c t (d i r (H e a d , Mode, P a re n t , C o n ts)) ,
a s s e r t (d i r (H e a d , Mode, Name, C o n ts)) ,
t e l l k i d s (T a i l , Name),
t e l l k i d s ([H ead |T a i l] , Name)
r e t r a c t (f i l e (H e a d , P a re n t , Mode)) ,
a s s e r t (f i l e (H e a d , Name, Mode)) ,
t e l l k i d s (T a i l , Name).

/ *
g e t d a t e t i m e / 7 g e t s t h e sy s tem t im e and c o n v e r t s i t t o tw e lv e h o u r
c l o c k . The day o f t h e week i s c a l c u l a t e d and a t i m e l a p s e can be
c a l c u l a t e d a l s o . T h is i s f o r t im e s tam p in g u s e r a c t i o n e v e n ts a s th e y
occur.
* /

getdatetim e(Dayofweek, Day, Month, Year, Hour, Minute, Second)
read d a te t im e (S ecs , E rro rc o d e) ,
sec s2 d a te (S ecs , 16'FFFE),
g e t_ f i e ld (y e a r , d a te t im erec , 16’FFFE, Y ear) ,
g e t_ f ie ld (m o n th , d a te t im erec , 16'FFFE, Monthnumber),
g e t_ f ie ld (d a y , d a te t im e rec , 16'FFFE, Day),
g e t_ f ie ld (h o u r , d a te t im erec , 16'FFFE, Hour),
g e t_ f ie ld (m in u te , d a te t im erec , 16'FFFE, M inute),
g e t_ f ie ld (s e c o n d , d a te t im erec , 16'FFFE, Second),
g e t_ fie ld (d ay o fw eek , d a te t im erec , 16'FFFE, Dayofweeknumber),
%twelvehourclock(Hour, H ourl2),
numbertoday(Dayofweek, Dayofweeknumber),
numbertomonth (Month, Monthnumber) .

twelvehourclock(H24, H12)
H24 > 12,

194

HI2 i s H24 - 12.
twelvehourclock(H24, H24) .

numbertoday(sunday, 1) .
numbertoday(monday, 2) .
num bertoday(tuesday, 3) .
numbertoday(Wednesday, 4) .
num bertoday(thursday, 5) .
num bertoday(fr iday , 6) .
numbertoday(Saturday, 7) .

numbertomonth(j anuary , 1) .
numbertomonth(february, 2) .
numbertomonth(march, 3) .
num bertom onth(april, 4) .
numbertomonth(may, 5) .
numbertomonth(june, 6) .
numbertomonth(ju ly , 7) .
numbertomonth(august, 8) .
numbertomonth(September, 9).
numbertomonth(October, 1 0) .
numbertomonth(november, 1 1) .
numbertomonth(december, 1 2) .

/*
t im e la p s e works o u t t h e d i f f e r e n c e betw een a p a s t t im e e v e n t and t h e
c u r r e n t t im e. I f th e two tim es s t r a d d le a month boundary, th e n th e la p se
i n days w i l l be i n c o r r e c t b u t I c o u ld n ’t be b o th e r e d w i th d i f f e r e n t
le n g th months!
* /

timelapse(Dnow, Hnow, Mnow, Snow, Dthen, Hthen, Mthen, S then , D lapse,
Hlapse, Mlapse, Slapse)

g e td a te t im e ($, Dnow, $, $, Hnow, Mnow, Snow),
secslapse(Snow, Sthen, S lapse , S c a r ry) ,
minslapse(Mnow, Mthen, Mlapse, Scarry , M carry),
hourslapse(Hnow, Hthen, Hlapse, Mcarry, H carry) ,
dayslapse(Dnow, Dthen, Dlapse, H c a r ry) .

s e c s la p s e (Snow, Sthen, S lapse , -1)
Sthen > Snow,
S lapse i s Snow - Sthen + 60.

secslapse(Snow, Sthen, S lapse , 0)
S lapse i s Snow - Sthen.

minslapse(Mnow, Mthen, Mlapse, S carry , -1)
Mthen > Mnow,
Mlapse i s Mnow - Mthen + 60 + S ca rry ,

minslapse(Mnow, Mthen, Mlapse, Scarry , 0)
Mlapse i s Mnow - Mthen + Scarry .

hourslapse(Hnow, Hthen, Hlapse, Mcarry, -1)
Hthen > Hnow,
Hlapse i s Hnow - Hthen + 12 + Mcarry.

hourslapse(Hnow, Hthen, Hlapse, Mcarry, 0)
Hlapse i s Hnow - Hthen + Mcarry.

dayslapse(Dnow, Dthen, Dlapse, Hcarry)
Dthen > Dnow,
Dlapse i s Dnow - Dthen + 24 + Hcarry.

dayslapse(Dnow, Dthen, Dlapse, Hcarry)
Dlapse i s Dnow - Dthen + Hcarry.

195

/*
A lo o s e c o l l e c t i o n o f sundry u t i l i t i e s f o r f i n d i n g and d e l e t i n g l i s t
i tem s e tc .
* /

d e le te (I te m , [I t e m |T a i l] , T a i l) ,
d e le t e (Item, [Y |T a i l] , [Y |T a i l l]) : -
d e le te (I te m , T a i l , T a i l l) .

add(Item , L i s t , [I t e m |L i s t]) .

a rg c o u n t ([] , 0) .
a rg c o u n t ([_ |R e s t] , Number): -

a rg co u n t(R es t , Temp),
Number i s 1 + Temp.

i s i n ([Target | _] , T a r g e t) : - ! .
i s i n ([_| T a i l] , Target)

i s i n (T a i l , T a r g e t) .

i s a n c e s to r (T a rg e t , Dest)
d i r (Dest, _ , T a rg e t , _) .

i s a n c e s to r (T a rg e t , Dest)
d i r (D e s t , _ , P a re n t , _) ,
i s a n c e s to r (T a rg e t , P a re n t) .

d iv id e ([Command | Argument], Command, Argument).

196

Appendix C
Task Specification

Appendix C contains the task specification as presented to subjects in all
evaluative exercises. Subjects were advised to create maps for the startup
and target structures to make the task more manageable.

218

The Boss's Memo

Please amend my computerised filing system QDOS as at the moment it

is in a bit of a mess. If the files I mention here already exist, please

preserve them and if they don't, create them. Otherwise, do it any way

you like as long as it ends up according to the following description:

The home directory should contain two subdirectories called 'business'

and 'personal', the latter should have no privileges granted. The

business directory should have in it two subdirectories called 'busmail'

and 'busaddr'. busmail should be read-protected, busaddr should contain

the files 'custaddr', 'suppaddr'. busmail should contain subdirectories

called 'busmailin' and 'busmailout'. busmailin should contain files called

'complaintin' and 'thanksin' and busmailout should contain files called

'inquireout' and 'compreply'. The personal directory should have two

subdirectories called 'persmail' and 'persaddr' and persmail should have

no privileges granted, persmail should contain files called 'tojim ',

'fromjim', 'frommary' and 'tomary'. All the files in persm ail should

have no privileges granted, persaddr should contain files called 'smiths',

'joneses' and 'bloggs'.

P.S. On second thoughts, get rid of the bloggs file and make sure to get

rid of anything I haven't mentioned here. Oh, and add a file called

'accountsaddr' to the busaddr directory and delete the file 'tomary'.

Thanks,

The Boss.

219

Appendix D
Directory Startup Structure

Appendix D shows pictorially the initial directory structure at the start of
the task for all evaluative exercises.

220

mailin home
temp

addresses mail from eric

Johnsons' persaddr busaddr

business iersonal

suppaddrcustaddrbloggs smithsoneses

persoutbusinbusout

addout complaintinenquirout

tojim

persin

f rom m aryfromjim

221

Appendix E
Directory Target Structure

Appendix E shows pictoriaUy the target directory structure as described in
the task specification. Protection modes are not shown.

222

roo t

home

businesspersonal

lersmailtojim lersaddr

busaddrbusmail

from jim from m ary

accountsaddr

cu s tad d r

sm iths joneses

suppaddr

busmailoutbusmailin

thanksin compreplycomplaintin inquireout

223

Appendix F
Tutorial Material

Appendix F contains material used in explanation of the system to all
subjects involved in evaluative exercises. This amounts to a 'script' which
was followed in instructing subjects in the various attributes of the system.
The intention was to ensure that all subjects received the same information
in the same form, thus eliminating any bias that might occur through
variations in tutorial procedure.

224

Introduction
• Before I explain what is going to happen, a few comments.

• Firstly, I very much appreciate your agreeing to take part.

• Secondly, although I would like you to do your best in the task you’re
given, it is the system that is under test, not you. I am only interested in
how easy you found the system to use, not in how well you did.

• And lastly don't be afraid to try things out. You can't break anything!

The System
• The system is a file system called QDOS which is similar in many ways to
MS DOS and others which you may have come across.

W hat's There?
• Files. The system is used to store files in an organised way. Files can be
created, destroyed, moved, renamed, copied and protected. You do not
have to concern yourself with what is inside a file.

• All files are kept in directories.

• The directories are organised hierarchically, a bit like a family tree.

• Each directory may contain other directories or files.

• All directories are themselves items in a parent directory except for the
root directory which has no parent.

• Files cannot be parents.

• Directories can be created, destroyed, listed and protected.

Current W orking Directory
• At any time there is a current working directory. This is the directory
that you are, so to speak, IN and the one to which all of your commands
apply unless you specify otherwise.

• For example, the command 'rm letter 1' assumes that the file letterl is in
the current directory.

• You can make some other directory the current directory using the 'cd'
command.

225

P aths
• If you want a command to apply to a directory other than the current
directory you must specify this by providing a pa th to the target directory
from the current directory.

• You do this by giving a list of the directories 'on the way to' and
including the target, separating each from the next by a stroke 'A

• EG: rm Reps/Sales/Rep 1

• Details of commands and their use are in the handout.

G etting S ta rted
• To start, all you have to do is put your disc into the disc drive and switch
the computer on.

• When a little window opens up in the top left hand comer of the screen,
move the arrow over the QDOS icon, using the mouse, and click the mouse
button twice in quick succession.

• After a short time, the QDOS prompt will appear and you can start
typing in QDOS commands.

The T ask
• Your boss has a QDOS system on which she has created a set of
directories and files. You are to rearrange this as detailed in the handout.

• Please don't logout until you're sure that you have finished the task or I
ask you to stop.

226

Appendix G
Command List

Appendix G contains a copy of the system documentation given as
reference to each subect in all evaluative exercises. Subjects were allowed
to refer to this during task performance.

227

Commands

pwd... Print current Working Directory
cd<path>................................ Change current working Directory
Is [-1] [<path>].......................... LiSt directory contents
mkfile <path>........................ MaKe a FILE
mkdir <path>......................... MaKe a DIRectory
rm <path>............................. ReMove a file
rmdir <path>......................... ReMove a DIRectory
chmod <mode> <path> CHange protection MODe on file or dir.
cp <pathl> <path2>.............. create CoPy of filel as newname 2
mv <pathl> <path2>............. MoVe file 1 to newname or directory 2
logout.................................... leave QDOS

• Anything in square brackets above is optional.

• A path can trace the directory structure upwards, downwards or both.

• The -1 option for Is produces a directory listing which gives full details
about each directory item.

• Is on its own lists the contents of the current directory.

• cd on its own makes the home directory the current directory.

• mv can be used to rename a file without moving it.

• Permission modes are set by numbers in multiples of one hundred from
000 to 700.

000 = no permissions granted
100 = execute permission granted
200 = write permission granted
400 = read permission granted

These are added together to give the various combinations. For example, to
grant only read and execute permission the mode would have to be 100 +
400 = 500:

ie: chmod 500 <path>

This would appear in an 'Is -1' listing as "r-x".

Permission modes determine what you are allowed to do with an item. For
example, you cannot list a directory unless it has execute and read
permissions granted. You cannot delete a file without having write
permission on it etc.

228

• Directories cannot be removed if they are not empty.

• All file and directory names must be unique so a file copy must be given
a new name in addition to any destination directory to which it is to be
copied.

• Directories cannot be moved or copied.

229

Appendix H
Directory Structure Illustration

The diagram in appendix H was used to illustrate the hierarchical nature of
the UNIX directory structure to subjects involved in evaluative exercises.

230

Directory/File Structure

Root

Docs

Mai Mail
o u t , Reps

L etl

Bus Priv Sales

Let2 Let3 Repl Rep2

Diagram to illustrate to subjects the hierarchical directory structure.

231

Appendix I
Experimental Log Files
Appendix I contains the log files for all subjects involved in the
experimental evaluation sessions. These files are generated by the system to
provide an interaction history which can be used by the help system in
reasoning about user errors and to provide the data for statistical analysis
of performance for test and control conditions. Clauses showing the closing
state of the system were used to evaluate the percentage of task completed.
The total time taken is also recorded and taken into account. Records of
error counts form the basis of evaluations of error performance. The event
list of successful commands is used by the help system in determining the
causes of errors.

232

/* owner/1 * /

owner (s i) .

/* f i l e / 3 * /

f i l e (o u s t a d d r , busaddr, 700).
f i l e (s u p p a d d r , busaddr, 700).
f i l e (c o m p la in t in , b u sm ail in , 700).
f i l e (t h a n k s i n , b u sm ail in , 700).
f i l e (e n q u i r o u t , busm ailou t, 700).
f i le (c o m p re p ly , busm ailou t, 700).
f i l e (t o j i m / p e rsm a il , 700).
f i l e (fromjim, p e rsm a il , 700).
f i le (f ro m m ary , p e rsm a il , 700).
f i l e (sm iths , p e rs a d d r , 700).
f i l e (jo n e se s , p e rsad d r , 700).
f i l e (a c c o u n ts a d d r , busaddr, 700).

/* d i r / 4 * /

d i r (r o o t , 0, n u l , [home]).
d i r (b u s in e s s , 700, home, [busaddr, b u sm a i l]) .
d i r (b u s m a i l in , 700, busm ail, [th an k s in , c o m p la in t in]) .
d i r (b u sm a i lo u t , 700, busm ail, [compreply, e n q u i ro u t]) .
d i r (p e r s m a i l , 700, p e r s o n a l , [frommary, fromjim, t o j i m]) .
d i r (b u s a d d r , 700, b u s in e s s , [accoun tsaddr , suppaddr, c u s ta d d r]) .
d i r (b u s m a i l , 200, b u s in e s s , [busm ailout, b u s m a i l in]) .
d i r (p e r s a d d r , 0, p e rso n a l , [jo n eses , s m i th s]) .
d i r (p e r s o n a l , 0, home, [pe rsadd r , p e r s m a i l]) .
dir(hom e, 700, r o o t , [p e rso n a l , b u s in e s s]) .

/* e r ro rc o u n t /2 * /

e r ro rc o u n t(r a n g e , 0) .
e r ro rc o u n t(u n iq u en e ss , 0) .
e r ro rc o u n t (r e a d , 0) .
e r r o r c o u n t (w r i te , 0) .
e r ro rc o u n t(e x e c u te , 0) .
e r r o r c o u n t (l o g ic a l , 7) .
e rrorcount(nonem pty , 2) .
e r ro rc o u n t(s y n ta x , 6).
e r r o r c o u n t (d u p l ic a t io n , 3) .
e r r o r c o u n t (l e x i c a l , 3) .
e r ro r c o u n t (r e f e r e n c e , 26).

/* t o t a l t i m e / 3 * /

t o t a l t im e (1, 21, 11).

/* ev en t /9 * /

e v e n t ([rm dir, 1 ' , h e le n] , home, th u rsd ay , 9, may, 1991, 12, 47, 16).
e v e n t ([c d] , home, th u rsd ay , 9, may, 1991, 12, 47, 7) .
even t([rm , 1 ' , johnsons], h e len , th u rsd a y , 9, may, 1991, 12, 47, 3) .
e v e n t ([rm, ' ' , b lo g g s] , h e len , th u rsd a y , 9, may, 1991, 12, 46, 56).
even t([rm , 1 ' , f ro m e r ic] , h e len , th u rsd a y , 9, may, 1991, 12, 46, 49).
even t([rm , 1 ’ , ad d o u t] , h e len , th u rsd a y , 9, may, 1991, 12, 46, 41).
e v e n t([c d , ' ' , h e le n] , h e len , th u rsd ay , 9, may, 1991, 12, 46, 12).

233

e v e n t ([chmod, 1 ' , 0, * ' , p e r s o n a l] , home, th u rsd a y , 9, may, 1991, 12,
45, 56) .

e v e n t ([chmod, ’ ' , 0 , ' ' , p e r s o n a l , (/) , p e r s a d d r] , home, th u rsd a y , 9,
may, 1991, 12, 45, 43) .

e v e n t ([chmod, 1 ’ , 200, 1 ' , b u s in e s s , (/) , bu sm ail] , home, th u rsd a y , 9,
may, 1991, 12, 44, 59).

e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 44, 12) .
e v e n t ([m k f ile , 1 ' , a c c o u n tsa d d r] , busadd r , th u rs d a y , 9, may, 1991, 12,

43, 59) .
e v e n t ([c d , 1 ' , b u s i n e s s , (/) , b u s a d d r] , b u s a d d r , t h u r s d a y , 9, may,

1991, 12, 43, 37).
e v e n t ([mv, ' ' , h e le n , (/) , j o n e s e s , 1 ' , p e r s o n a l , (/) , p e r s a d d r] ,

home, th u rsd a y , 9, may, 1991, 12, 43, 2) .
e v e n t ([mv, ' ' , h e len , (/) , sm iths , ' ' , p e rso n a l , (/) , p e r s a d d r] , home,

th u rsd a y , 9, may, 1991, 12, 42, 46).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 42, 31).
ev en t([rm , ’ 1, tom ary], p e rsm a il , th u rsd ay , 9, may, 1991, 12, 41, 23).
e v e n t ([m k f i le , 1 ' , to m ary] , p e r s m a i l , th u rs d a y , 9, may, 1991, 12, 41,

3).
e v e n t ([c d , 1 *, p e r s o n a l , (/) , p e r s m a i l] , p e r s m a i l , th u r s d a y , 9, may,

1991, 12, 40, 51).
e v e n t ([mv, 1 ' , h e le n , (/) , frommary, 1 ' , p e r s o n a l , (/) , p e r s m a i l] ,

home, th u rsd a y , 9, may, 1991, 12, 39, 53) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 38, 21).
e v e n t ([c d , ' ' , p e r s o n a l , (/) , p e r s m a i l] , p e r s m a i l , th u r s d a y , 9, may,

1991,12, 37, 29).
e v e n t ([mv, 1 ' , h e le n , (/) , f rom jim , ’ ' , p e r s o n a l , (/) , p e r s m a i l] ,

hom e,thursday , 9, may, 1991, 12, 36, 46).
event([m v, 1 1, h e len , (/) , to j im , 1 *, p e r s o n a l , (/) , p e r s m a i l] , home,

th u rsd a y , 9, may, 1991, 12, 36, 16) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 35, 26).
e v e n t ([m k f ile , 1 *, com preply], bu sm ailo u t, th u rsd a y , 9, may, 1991, 12,

35, 23) .
e v e n t([c d , 1 ' , b u s in e s s , (/) , busm ail, (/) , b u sm ai lo u t] , busm ailou t,

th u rsd a y , 9, may, 1991, 12, 35, 4) .
e v e n t ([mv, ’ ' , h e len , (/) , en q u iro u t , 1 ’ , b u s in e s s , (/) , busm ail, (/) ,

b u s m a i lo u t] , home, th u rsd a y , 9, may, 1991, 12, 34, 33) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 32, 48).
e v e n t ([m k f i le , ’ ' , t h a n k s i n] , b u s m a i l in , th u r s d a y , 9, may, 1991, 12,

32, 45).
e v e n t ([c d , 1 ' , b u s in e ss , (/) , busm ail, (/) , b u sm a i l in] , b u sm ail in ,

th u rsd a y , 9, may, 1991, 12, 32, 33) .
e v e n t ([mv, 1 *, h e le n , (/) , c o m p la in t in , 1 ’ , b u s in e s s , (/) , b u sm a i l ,

(/) , b u sm a i l in] , home, th u rsd a y , 9, may, 1991, 12, 30, 39) .
e v e n t ([mv, ’ ' , h e le n , (/) , su p p ad d r , 1 ' , b u s i n e s s , (/) , b u s a d d r] ,

hom e,thursday , 9, may, 1991, 12, 29, 50) .
e v e n t ([mv, 1 ’ , h e l e n , (/) , c u s t a d d r , ’ ' , b u s i n e s s , (/) , b u s a d d r] ,

home,
th u rsd a y , 9, may, 1991, 12, 29, 17) .

e v e n t ([m kdir, 1 *, p e r s o n a l , (/) , p e r s a d d r] , home, t h u r s d a y , 9, may,
1991,

12, 27, 45).
e v e n t ([m kdir, * ' , p e r s o n a l , (/) , p e r s m a i l] , home, t h u r s d a y , 9, may,

1991,
12, 27, 24).

e v e n t ([m kdir , 1 f , b u s i n e s s , (/) , b u s a d d r] , home, t h u r s d a y , 9, may,
1991, 12, 27, 2) .

e v e n t ([rm dir, 1 ' , b u sad d r] , home, th u rsd a y , 9, may, 1991, 12, 26, 50).
e v e n t ([mkdir, 1 ' , b u sad d r] , home, th u rsd a y , 9, may, 1991, 12, 26, 34).
e v e n t ([mkdir, 1 *, b u s in e s s , (/) , busm ail, (/) , b u sm a i lo u t] , home,

th u rsd a y , 9, may, 1991, 12, 25, 59).
e v e n t ([m k d ir , 1 *, b u s i n e s s , (/) , b u s m a i l , (/) , b u s m a i l i n] , home,

th u rsd a y , 9, may, 1991, 12, 25, 8) .
e v e n t ([mkdir, 1 24, 40).
e v e n t ([mkdir, 1 ' , p e r s o n a l] , home, th u rsd a y , 9, may, 1991, 12, 24, 19) .

234

even t ([rm dir, 1 m a i l] , home, th u rsd a y , 9, may, 1991, 12, 23, 37).
e v en t ([rm d ir , 1 ' , m a i l , (/) , p e r s o n a l] , home, th u r s d a y , 9, may, 1991,

12, 23, 25).
e v e n t ([rm dir , ' ' , m a i l , (/) , b u s in e s s] , home, th u r s d a y , 9, may, 1991,

12, 23, 16).
e v e n t ([rm dir, 1 ' , m a il , (/) , p e r s o n a l , (/) , p e r s i n] , home, th u rs d a y , 9,

may, 1991, 12, 22, 20) .
e v e n t ([rm d ir , 1 ' , m a i l , (/) , p e r s o n a l , (/) , p e r s o u t] , home, th u rs d a y ,

9, may, 1991, 12, 21, 46).
e v e n t ([rm dir, ' *, m a il , (/) , b u s in e s s , (/) , b u s i n] , home, th u rsd a y , 9,

may,
1991, 12, 21, 23) .

e v e n t ([rm dir, ' *, m a il , (/) , b u s in e s s , (/) , b u s o u t] , home, th u rsd a y , 9,
may, 1991, 12, 21, 10).

e v e n t ([rm d ir , ' ' , a d d r e s s e s] , home, th u r s d a y , 9, may, 1991, 12, 20,
47) .

even t ([rm dir, 1 ' , a d d re s s e] , home, th u rsd a y , 9, may, 1991, 12, 20, 36).
e v e n t ([rm d ir , * ' , a d d r e s s e s , (/) , b u s a d d r] , home, th u r s d a y , 9, may,

1991, 12, 20, 24) .
e v e n t ([rm d ir , ' ' , a d d r e s s e s , (/) , p e r s a d d r] , home, t h u r s d a y , 9, may,

1991, 12, 20, 9) .
ev en t([rm , 1 ' , temp], home, th u rsd a y , 9, may, 1991, 12, 18, 47).
e v e n t ([rm dir, 1 ' , m a i l i n] , home, th u rsd a y , 9, may, 1991, 12, 18, 37).
e v e n t ([mv, 1 ' , m a i l , (/) , p e r s o n a l , (/) , p e r s i n , (/) , f rom jim , 1 ' ,

h e l e n] , home, th u rsd ay , 9, may, 1991, 12, 16, 33).
e v e n t ([mv, 1 ’ , m a i l , (/) , p e r s o n a l , (/) , p e r s i n , (/) , frommary, 1 ’ ,

h e l e n] , home, th u rsd ay , 9, may, 1991, 12, 16, 6) .
e v e n t ([mv, * ' , m a i l , (/) , p e r s o n a l , (/) , p e r s o u t , (/) , t o j i m , 1 ' ,

h e le n] , home, th u rsd ay , 9, may, 1991, 12, 15, 37).
event([m v, 1 ' , m a i l , (/) , b u s in e s s , (/) , b u s in , (/) , c o m p la in t in , ’ ’ ,

h e le n] , home, th u rsd ay , 9, may, 1991, 12, 15, 16) .
even t([m v , 1 ' , m a i l , (/) , b u s in e s s , (/) , b u so u t , (/) , e n q u i ro u t , ' ' ,

h e l e n] , home, th u rsd ay , 9, may, 1991, 12, 14, 43).
e v e n t ([mv, ’ ' , m a i l , (/) , b u s i n e s s , (/) , b u s o u t , (/) , a d d o u t , * 1,

h e l e n] , home, th u rsd ay , 9, may, 1991, 12, 14, 6).
e v en t([m v , 1 ' , m a i l , (/) , f r o m e r ic , * *, h e l e n] , home, t h u r s d a y , 9,

may, 1991, 12, 13, 35).
e v en t([m v , 1 ’ , a d d r e s s e s , (/) , b u s a d d r , (/) , su p p ad d r ,

home, th u rsd ay , 9, may, 1991, 12, 13, 18) .
e v e n t ([mv, 1 ' , a d d r e s s e s , (/) , b u s a d d r , (/) , c u s t a d d r ,

home, th u rsd ay , 9, may, 1991, 12, 12, 44).
e v e n t ([mv, 1 ’ , a d d r e s s e s , (/) , p e r s a d d r , (/) , b lo g g s ,

home, th u rsd ay , 9, may, 1991, 12, 11, 58).
e v e n t ([mv, 1 ’ , a d d r e s s e s , (/) , p e r s a d d r , (/) , s m i th s ,

home, th u rsd ay , 9, may, 1991, 12, 11, 35).
e v e n t ([mv, ' ' , a d d re s s e s , (/) , p e r s a d d r , (/) , jo h n so n s ,

home, th u rsd ay , 9, may, 1991, 12, 11, 18) .
e v en t([m v , 1 ’ , a d d r e s s e s , (/) , p e r s a d d r , (/) , j o n e s e s ,

home, th u rsd ay , 9, may, 1991, 12, 10, 50).
e v e n t ([mkdir, 1 ' , h e le n] , home, th u rs d a y , 9, may, 1991, 12, 5, 0) .
e v e n t ([chmod, 1 1, 700, 1 ' , m a i l , (/) , p e r s o n a l] , home, t h u r s d a y , 9,

may, 1991, 11, 52, 40).
e v e n t ([chmod, 1 ' , 700, * ' , m a i l , (/) , b u s i n e s s] , home, th u r s d a y , 9,

may, 1991, 11, 50, 3) .
e v e n t ([chmod, 1 ' , 700, 1 ' , a d d re s s e s , (/) , p e r s a d d r] , home, th u rs d a y ,

9, may, 1991, 11, 47, 46).
e v e n t ([c d] , home, th u rsd ay , 9, may, 1991, 11, 37, 4) .
e v e n t([c d , 1 *, m a i l in] , m a i l in , th u rs d a y , 9, may, 1991, 11, 34, 20) .

/* owner/1 * /

ow ner(s2) .

, h e l e n] ,

, h e l e n] ,

, h e l e n] ,

, h e l e n] ,

, h e l e n] ,

, h e l e n] ,

235

/* f i l e / 3 * /

f i l e (c o m p la in t in , b u sm ail in , 700).
f i l e (t h a n k s i n , b u sm ail in , 700).
f i l e (c u s t a d d r , busaddr, 700).
f i l e (s u p p a d d r , busaddr, 700).
f i l e (a c c o u n ts a d d r , busaddr, 700).
f i l e (e n q u i r o u t , busm ailou t, 700).
f i le (c o m p re p ly , busm ailou t, 700).
f i l e (t o j i m , p e rsm a il , 700).
f i l e (f ro m j im , p e rsm a il , 700).
f i l e (sm iths, p e rs a d d r , 700).
f i l e (j o n e s e s , p e rsad d r , 700).
f i le (f rom m ary , p e rsm a il , 700).

/* d i r / 4 * /

d i r (r o o t , 0, n u l , [home]).
d i r (b u s in e s s , 700, home, [busaddr, b u s m s i l]) .
d i r (b u s m s i l , 700, b u s in e s s , [busm ailout, b u s m a i l in]) .
d i r (b u s m a i l in , 700, busm sil , [th an k s in , c o m p la in t in]) .
d i r (b u sa d d r , 700, b u s in e s s , [accountsaddr, suppaddr, c u s ta d d r]) .
d ir (b u sm a i lo u t , 700, busm sil , [compreply, e n q u i ro u t]) .
d i r (p e r s o n a l , 700, home, [persaddr , p e r s m a i l]) .
d i r (p e r s a d d r , 700, p e rso n a l , [jo n eses , s m ith s]) .
d i r (p e r s m a i l , 700, p e rs o n a l , [frommary, fromjim, t o j i m]) .
dir(hom e, 700, r o o t , [p e rso n a l , b u s in e s s]) .

/* e r ro rc o u n t /2 * /

e r ro rc o u n t(ra n g e , 0) .
e r ro rc o u n t(u n iq u en e ss , 0) .
e r ro rc o u n t (r e a d , 0) .
e r ro rc o u n t (w r i te , 0) .
e r ro rc o u n t (execute, 7)'.
e r ro rc o u n t(s y n ta x , 15) .
errorcount(nonem pty , 2) .
e r r o r c o u n t (lo g ic a l , 10) .
e r r o r c o u n t (l e x i c a l , 6) .
e r ro rc o u n t (d u p l ic a t io n , 5) .
e r ro rc o u n t (r e f e r e n c e , 33).

/* t o t a l t im e /3 * /

t o t a l t i m e (2, 24, 15) .

/* e v en t/9 * /

e v e n t ([c d , 1 *, p e r s o n a l] , p e r s o n a l , t h u r s d a y , 9, may, 1991, 13, 49,
42) .

even t ([rm, 1 ' , addou t] , home, th u rsd a y , 9, may, 1991, 13, 49, 27) .
e v e n t ([rm d ir , 1 ' , a d d r e s s e s] , home, t h u r s d a y , 9, may, 1991, 13, 49,

16).
event([m v, 1 ’ , frommary, * ' , p e r s o n a l , (/) , p e r s m a i l] , home, th u rs d a y ,

9, may, 1991, 13, 48, 43) .
even t ([mv, 1 ’ , jo n e se s , ’ ' , p e r s o n a l , (/) , p e r s a d d r] , home, th u rs d a y ,

9, may, 1991, 13, 48, 5) .
ev en t ([mv, ' ' , sm ith s , 1 ’ , p e r s o n a l , (/) , p e r s a d d r] , home, th u r s d a y ,

9, may, 1991, 13, 47, 49).
even t ([mv, 1 ’ , fromjim, ' ' , p e r s o n a l , (/) , p e r s m a i l] , home, th u r s d a y ,

236

event([m v, ' ' , to j im , ' ’ , p e r s o n a l , (/) , p e r s m a i l] , home, th u rsd a y , 9,
may, 1991, 13, 46, 52).

e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 46, 17) .
e v e n t ([mkdir, 1 1, p e r s a d d r] , p e r s o n a l , th u rsd a y , 9, may, 1991, 13, 46,

11) .
e v e n t ([mkdir, ’ ’ , p e r s m a i l] , p e r s o n a l , th u rsd a y , 9, may, 1991, 13, 46,

0).
e v e n t ([c d , ' ' , p e r s o n a l] , p e r s o n a l , t h u r s d a y , 9, may, 1991, 13, 45,

42) .
e v e n t ([mkdir, 1 ' , p e r s o n a l] , home, th u rsd ay , 9, may, 1991, 13, 45, 31).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 45, 12) .
e v e n t ([m kfile , ' ’ , compreply], bu sm ailo u t , th u rsd a y , 9, may, 1991, 13,

45, 5) .
e v e n t([c d , ' ' , b u s in e s s , (/) , bu sm sil , (/) , b u sm a i lo u t] , busm ailou t,

th u rsd ay , 9, may, 1991, 13, 44, 43).
e v e n t ([mv, ’ ' , e n q u i r o u t , 1 ' , b u s i n e s s , (/) , b u s m s i l , (/) ,

b u sm ai lo u t] , home, th u rsd ay , 9, may, 1991, 13, 43, 41).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 42, 53) .
e v e n t ([c d , * *, b u s i n e s s , (/) , b u s m s i l] , b u s m s i l , t h u r s d a y , 9, may,

1991, 13, 42, 23) .
e v e n t ([m kfile , 1 *, a cco u n tsad d r] , busaddr, th u rsd a y , 9, may, 1991, 13,

41, 15).
e v e n t ([c d , 1 1, b u s i n e s s , (/) , b u s a d d r] , b u s a d d r , t h u r s d a y , 9, may,

1991, 13, 40, 50).
event([m v, 1 ' , suppaddr, 1 ' , b u s in e s s , (/) , b u sad d r] , home, th u rsd a y ,

9, may, 1991, 13, 40, 35).
event([m v, 1 ' , c u s ta d d r , ’ ' , b u s in e s s , (/) , b u sad d r] , home, th u rs d a y ,

9, may, 1991, 13, 40, 11).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 38, 55) .
e v e n t ([c d , 1 ' , b u sad d r] , busaddr, th u rsd ay , 9, may, 1991, 13, 38, 49).
e v e n t ([c d , 1 *, b u s i n e s s] , b u s i n e s s , t h u r s d a y , 9, may, 1991, 13, 37,

48) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 37, 27) .
even t ([mv, * ’ , th a n k s in , ' ' , b u s in e s s , (/) , b u sm sil , (/) , b u s m a i l in] ,

home, th u rsd ay , 9, may, 1991, 13, 37, 21) .
e v e n t ([mv, 1 ' , c o m p l a i n t i n , 1 ’ , b u s i n e s s , (/) , b u s m s i l , (/) ,

b u s m a i l in] , home, th u rsd ay , 9, may, 1991, 13, 36, 56) .
even t ([cd] , home, th u rsd a y , 9, may, 1991, 13, 36, 6) .
e v e n t ([mkdir, 1 ' , b u sm ailo u t] , busm sil , th u rsd ay , 9, may, 1991, 13, 35,

42) .
even t ([mkdir, 1 ' , b u s m a i l in] , busm sil , th u rsd a y , 9, may, 1991, 13, 35,

14) .
e v e n t([c d , 1 *, b u sm sil] , busm sil , th u rsd a y , 9, may, 1991, 13, 34, 25) .
e v e n t ([mkdir, 1 ’ , b u sa d d r] , b u s in e s s , th u rs d a y , 9, may, 1991, 13, 34,

1) .
e v e n t ([mkdir, 1 ' , b u s m s i l] , b u s in e s s , th u rs d a y , 9, may, 1991, 13, 33,

41) .
e v e n t ([c d , ' 1, b u s i n e s s] , b u s in e s s , th u r s d a y , 9, may, 1991, 13, 33,

16) .
even t ([mkdir, 1 ' , b u s in e s s] , home, th u rsd ay , 9, may, 1991, 13, 33, 0) .
e v e n t ([rm dir, 1 ' , l e t t e r s] , home, th u rsd ay , 9, may, 1991, 13, 32, 28) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 32, 19) .
even t ([mv, 1 ' , sm iths , 1 ' , home], l e t t e r s , th u rsd a y , 9, may, 1991, 13,

32, 1) .
e v e n t ([mv, ' ' , jo n e s e s , 1 ’ , home], l e t t e r s , t h u r s d a y , 9, may, 1991,

13, 31, 53) .
e v e n t([c d , 1 ' , l e t t e r s] , l e t t e r s , th u rsd a y , 9, may, 1991, 13, 31, 46) .
e v e n t ([mv, * *, jo n e s e s , 1 ’ , l e t t e r s] , home, th u r s d a y , 9, may, 1991,

13, 31, 10).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 30, 33) .
e v e n t ([c d , 1 ' , l e t t e r s] , l e t t e r s , th u rsd a y , 9, may, 1991, 13, 30, 3) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 29, 39) .
ev en t ([rm dir, ' ' , b u sad d r] , a d d re s se s , th u rsd a y , 9, may, 1991, 13, 29,

34).

237

1 9) .
event([m v, 1 ' , suppaddr, ' ' , a d d re sse s , (/) , home], busaddr , th u rsday ,

9, may, 1991, 13, 29, 4) .
event([m v, 1 ' , cu s ta d d r , 1 ' , ad d re sse s , (/) , home], busaddr , th u rsd ay ,

9, may, 1991, 13, 28, 45).
e v e n t([c d , 1 ' , b u sad d r] , busaddr, th u rsd ay , 9, may, 1991, 13, 28, 0) .
e v e n t ([rm dir, ' ' , p e r s a d d r] , a d d re sse s , th u rsd ay , 9, may, 1991, 13, 27,

52) .
e v e n t ([c d , 1 ' , a d d r e s s e s] , a d d re s s e s , th u r s d a y , 9, may, 1991, 13, 27,

29).
e v e n t ([mv, 1 ’ , jo n e se s , 1 ' , a d d re sse s , (/) , home], p e rs a d d r , th u rsd ay ,

9, may, 1991, 13, 27, 14) .
e v e n t ([c d , 1 ' , p e r s a d d r] , p e r s a d d r , t h u r s d a y , 9, may, 1991, 13, 26,

49) .
e v e n t ([c d , ' ' , a d d r e s s e s] , a d d re s s e s , th u rs d a y , 9, may, 1991, 13, 26,

35) .
e v e n t ([rm dir, ' ' , m a i l] , home, th u rsd a y , 9, may, 1991, 13, 25, 35).
even t ([cd] , home, th u rsd a y , 9, may, 1991, 13, 25, 17) .
e v e n t ([rm dir, ' *, b u s in e s s] , m a il , th u rsd a y , 9, may, 1991, 13, 25, 11).
e v e n t([c d , 1 *, m a i l] , m a il , th u rsd ay , 9, may, 1991, 13, 24, 59).
e v e n t ([rm d ir , 1 ' , b u s o u t] , b u s in e s s , th u r s d a y , 9, may, 1991, 13, 24,

50) .
e v e n t ([c d , ' ' , m a i l , (/) , b u s in e s s] , b u s in e s s , th u rs d a y , 9, may, 1991,

13, 24, 37).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 24, 13) .
e v e n t([c d , 1 *, b u so u t] , busou t, th u rsd a y , 9, may, 1991, 13, 23, 13).
e v e n t([c d , ’ ' , b u s in e s s] , b u s in e s s , th u rsd ay , 9, may, 1991, 13, 23, 0) .
event([m v, 1 ' , e n q u iro u t , ' ' , b u s in e s s , (/) , m a il , (/) , home], busou t,

th u rsd a y , 9, may, 1991, 13, 22, 43).
e v e n t ([mv, * ' , addout, ' ' , b u s in e s s , (/) , m a il , (/) , home], busou t,

th u rsd ay , 9, may, 1991, 13, 22, 23) .
e v e n t([c d , 1 ’ , b u so u t] , busou t, th u rsd a y , 9, may, 1991, 13, 21, 43).
e v e n t ([rm d ir , 1 *, b u s i n] , b u s in e s s , t h u r s d a y , 9, may, 1991, 13, 21,

35) .
e v e n t ([c d , ' ’ , b u s i n e s s] , b u s in e s s , t h u r s d a y , 9, may, 1991, 13, 21,

24) .
e v e n t ([mv, 1 *, th a n k s in , 1 ' , b u s in e s s , (/) , m a i l , (/) , home], b u s in ,

th u rsd a y , 9, may, 1991, 13, 21, 13) .
e v e n t ([mv, 1 ' , c o m p la in t in , ' ’ , b u s i n e s s , (/) , m a i l , (/) , home],

b u s in , th u rsd ay , 9, may, 1991, 13, 20, 55).
e v e n t ([c d , 1 f , m a i l , (/) , b u s in e s s , (/) , b u s i n] , b u s in , th u r s d a y , 9,

may, 1991, 13, 20, 21).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 19, 13) .
e v e n t ([rm dir, ’ 1, p e r s o n a l] , m a il , th u rsd a y , 9, may, 1991, 13, 18, 56).
e v e n t([c d , ' ' , m a i l] , m a il , th u rsd ay , 9, may, 1991, 13, 18, 31).
e v e n t ([rm dir , ' ' , p e r s o u t] , p e r s o n a l , th u rs d a y , 9, may, 1991, 13, 18,

17).
e v e n t([c d , 1 ' , p e r s o n a l] , p e rso n a l , th u rsd ay , 9, may, 1991, 13, 18, 2) .
event([m v, * ' , to j im , ' ' , p e rso n a l , (/) , m a il , (/) , home], p e r s o u t ,

th u rsd ay , 9, may, 1991, 13, 17, 46).
e v e n t ([chmod, 1 f , 700, ' ' , t o j i m] , p e r s o u t , th u r s d a y , 9, may, 1991,

13, 17, 18).
e v e n t([c d , 1 *, p e r s o u t] , p e rs o u t , th u rsd a y , 9, may, 1991, 13, 16, 51).
e v e n t ([rm d ir , 1 ' , p e r s i n] , p e r s o n a l , th u r s d a y , 9, may, 1991, 13, 16,

34).
e v e n t ([c d , ' ' , p e r s o n a l] , p e r s o n a l , t h u r s d a y , 9, may, 1991, 13, 16,

12) .
ev en t ([mv, * ’ , from jim , 1 ' , p e r s o n a l , (/) , m a i l , (/) , home], p e r s i n ,

th u rsd a y , 9, may, 1991, 13, 15, 38) .
even t ([mv, 1 1, frommary, ' ' , p e r s o n a l , (/) , m a i l , (/) , home], p e r s in ,

th u rsd a y , 9, may, 1991, 13, 15, 13).
even t ([cd , 1 ' , m a i l , (/) , p e r s o n a l , (/) , p e r s i n] , p e r s i n , th u rs d a y , 9,

may, 1991, 13, 14, 2) .
even t ([mv, 1 ' , sm ith s , ' ' , l e t t e r s] , home, th u rsd a y , 9, may, 1991, 13,

238

1Z, OU).
even t ([cd] , home, th u rsd a y , 9, may, 1991, 13, 12, 28) .
event([m v, 1 ’ , sm ith s , 1 ' , a d d re s se s , (/) , home], p e r s a d d r , th u rsd a y ,

9, may, 1991, 13, 12, 23) .
e v e n t ([c d , 1 ' , a d d re s s e s , (/) , p e r s a d d r] , p e r s a d d r , th u r s d a y , 9, may,

1991, 13, 11, 54) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 13, 10, 27) .
e v e n t ([c d , 1 ’ , a d d re s s e s , (/) , p e r s a d d r] , p e r s a d d r , th u r s d a y , 9, may,

1991, 13, 9, 35) .
e v e n t ([c d] , home, th u rs d a y , 9, may, 1991, 13, 9, 18) .
e v e n t([c d , 1 ' , p e r s o n a l] , p e rs o n a l , th u rsd ay , 9, may, 1991, 13, 8, 45).
even t ([cd , ' ' , m a i l] , m a il , th u rsd ay , 9, may, 1991, 13, 3, 55) .
e v e n t ([c d , 1 ' , p e r s o n a l] , p e rs o n a l , th u rsd a y , 9, may, 1991, 13, 3, 0) .
e v e n t([c d , 1 ’ , m a i l] , m a il , th u rsd a y , 9, may, 1991, 13, 2, 7) .
e v e n t ([c d] , home, th u rs d a y , 9, may, 1991, 13, 1, 6) .
ev en t([rm , * *, f r o m e r ic] , m a il , th u rsd a y , 9, may, 1991, 12, 59, 48).
e v e n t([c d , 1 ' , m a i l] , m a il , th u rsd a y , 9, may, 1991, 12, 59, 23) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 58, 27) .
even t([rm , 1 ' , b lo g g s] , p e rsad d r , th u rsd ay , 9, may, 1991, 12, 57, 12).
ev en t([rm , 1 ’ , jo h n so n s] , p e rsad d r , th u rsd ay , 9, may, 1991, 12, 57, 4).
e v e n t ([c d , ' ' , a d d re s s e s , (/) , p e r s a d d r] , p e r s a d d r , th u r s d a y , 9, may,

1991, 12, 56, 36) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 55, 5) .
e v e n t ([c d , ' ' , p e r s a d d r] , p e r s a d d r , th u r s d a y , 9, may, 1991, 12, 44,

54) .
e v e n t ([c d , 1 ' , a d d r e s s e s] , a d d re s s e s , th u rs d a y , 9, may, 1991, 12, 44,

43).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 44, 37) .
e v e n t([c d , 1 ’ , l e t t e r s] , l e t t e r s , th u rsd ay , 9, may, 1991, 12, 44, 2) .
even t ([mkdir, ' ’ , l e t t e r s] , home, th u rsd a y , 9, may, 1991, 12, 43, 29) .
ev en t([rm , * ’ , temp], home, th u rsd a y , 9, may, 1991, 12, 41, 30) .
e v e n t ([rm dir, ' ' , m a i l in] , home, th u rsd a y , 9, may, 1991, 12, 37, 46).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 37, 36) .
e v e n t([c d , 1 ’ , m a i l in] , m a i l in , th u rsd a y , 9, may, 1991, 12, 37, 8) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 36, 52) .
e v e n t([c d , 1 ’ , m a i l in] , m a i l in , th u rsd a y , 9, may, 1991, 12, 36, 1) .
e v e n t([c d , 1 ' , p e rs o n a l , (/) , m a il , (/) , home], home, th u rs d a y , 9, may,

1991, 12, 35, 47).
e v e n t([c d , 1 *, p e r s i n] , p e r s in , th u rsd ay , 9, may, 1991, 12, 34, 47).
e v e n t ([c d , 1 ' , p e r s o n a l] , p e r s o n a l , th u r s d a y , 9, may, 1991, 12, 34,

41) .
e v e n t([c d , 1 *, p e r s o u t] , p e rs o u t , th u rsd a y , 9, may, 1991, 12, 34, 0) .
e v e n t ([c d , 1 ' , p e r s o n a l] , p e r s o n a l , th u r s d a y , 9, may, 1991, 12, 33,

33).
e v e n t([c d , ' *, m a i l] , m a il , th u rsd ay , 9, may, 1991, 12, 32, 24) .
even t ([cd] , home, th u rsd ay , 9, may, 1991, 12, 32, 1) .
e v e n t ([c d , 1 *, b u s i n e s s] , b u s in e s s , th u r s d a y , 9, may, 1991, 12, 31,

58) .
e v e n t ([chmod, 1 ’ , 700, 1 ' , c o m p l a i n t i n] , b u s i n , t h u r s d a y , 9, may,

1991, 12, 31, 40).
e v e n t ([m k f i le , ' *, t h a n k s i n] , b u s in , th u r s d a y , 9, may, 1991, 12, 31,

7).
e v e n t([c d , 1 ' , b u s in] , b u s in , th u rsd a y , 9, may, 1991, 12, 30, 0) .
e v e n t ([c d , 1 ' , b u s i n e s s] , b u s in e s s , th u r s d a y , 9, may, 1991, 12, 25,

59) .
e v e n t([c d , ' ' , m a i l] , m a il , th u rsd ay , 9, may, 1991, 12, 25, 43) .
even t ([cd , * ' , m a il , (/) , home], home, th u rsd a y , 9, may, 1991, 12, 22,

44) .
e v e n t ([c d , ' 1, b u s i n e s s] , b u s in e s s , th u r s d a y , 9, may, 1991, 12, 22,

25) .
e v e n t([c d , 1 ' , b u s in] , b u s in , th u rsd a y , 9, may, 1991, 12, 21, 5) .
e v e n t ([c d , 1 *, b u s i n e s s] , b u s in e s s , th u r s d a y , 9, may, 1991, 12, 20,

54) .
e v e n t([c d , 1 ’ , b u so u t] , busou t, th u rsd a y , 9, may, 1991, 12, 20, 15) .
e v e n t ([c d , ' 1, b u s i n e s s] , b u s in e s s , t h u r s d a y , 9, may, 1991, 12, 19,

239

p e r s o n a l] , m a i l , t h u r s d a y , 9, may, 1991,

b u s i n e s s] , m a i l , t h u r s d a y , 9, may, 1991,

b u s i n e s s] , m a i l , th u r s d a y , 9, may, 1991,

b u s i n e s s] , m a i l , th u r s d a y , 9, may, 1991,

H / L) .
e v e n t ([chmod, 1 *, 700,

12, 19, 27).
e v e n t ([chmod, 1 ' , 700,

12, 19, 3) .
e v e n t ([chmod, ' ' , 400,

12, 18, 32).
e v e n t ([chmod, 1 *, 300,

12, 18, 3) .
e v e n t([c d , 1 f , m a i l] , m a il , th u rsd a y , 9, may, 1991, 12, 17, 17) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 16, 34).
e v e n t ([c d , ' *, b u sad d r] , busaddr, th u rsd a y , 9, may, 1991, 12, 15, 43).
e v e n t ([c d , ' ' , a d d r e s s e s] , a d d re s s e s , th u r s d a y , 9, may, 1991, 12, 15,

29) .
e v e n t ([c d , ’ ' , p e r s a d d r] , p e r s a d d r , th u r s d a y , 9, may, 1991, 12, 13,

20) .
e v e n t ([chmod, 1 ’ , 700, 1 ’ , p e r s a d d r] , a d d r e s s e s , th u r s d a y , 9, may,

1991, 12, 12, 57) .
e v en t ([cd , 1 *, a d d r e s s e s] , a d d r e s s e s , th u r s d a y , 9, may, 19.91, 12, 9,

20) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 9, 7) .
e v e n t ([c d , 1 ' , m a i l in] , m a i l in , th u rsd a y , 9, may, 1991, 12, 7, 54) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 12, 7, 23) .
e v e n t ([c d , ' ' , p e r s o n a l , (/) , m a i l] , m a i l , th u rsd a y , 9, may, 1991, 12,

7, 0) .
e v e n t([c d , ’ ' , p e r s o n a l] , m a il , th u rsd a y , 9, may, 1991, 12, 3, 54).
e v e n t([c d , 1 ' , m a i l] , m a il , th u rsd a y , 9, may, 1991, 12, 3, 42) .
e v e n t ([c d , ' *, b u s i n e s s] , b u s i n e s s , t h u r s d a y , 9, may, 1991, 11, 59,

19).
e v e n t([c d , 1 ' , m a i l] , m a il , th u rsd a y , 9, may, 1991, 11, 58, 4) .
e v e n t([c d , 1 ' , a d d re sse s , (/) , home], home, th u rsd a y , 9, may, 1991, 11,

57, 34).
even t ([cd , 1 ' , b u sad d r] , busaddr, th u rsd a y , 9, may, 1991, 11, 55, 47).
e v e n t ([c d , ' ' , p e r s a d d r , (/) , a d d r e s s e s] , a d d re s s e s , th u r s d a y , 9, may

1991, 11, 55, 26) .
e v e n t ([c d , 1 ' , home, (/) , a d d r e s s e s] , a d d r e s s e s , t h u r s d a y , 9, may,

1991, 11, 52, 20) .
e v e n t([c d , ' ' , m a i l in] , m a i l in , th u rsd a y , 9, may, 1991, 11, 51, 48) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 11, 38, 46).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 11, 34, 37).
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 11, 34, 22) .
e v e n t ([c d] , home, th u rsd a y , 9, may, 1991, 11, 34, 8) .

/* owner/1 * /

o w ner(s3) .

/* f i l e / 3 * /

f i l e (f ro m j im , p e r s in , 0) .
f i le (f rom m ary , p e r s in , 0) .
f i l e (to j im , p e rs o u t , 0) .
f i l e (c o m p la in t in , b u s in , 400).
f i l e (e n q u i r o u t , b usou t, 700).
f i l e (s u p p a d d r , busaddr, 700).
f i l e (c u s t a d d r , busaddr, 700).
f i l e (s m i t h s , p e rsad d r , 700).
f i l e (j o n e s e s , p e rs a d d r , 700).
f i l e (b l o g g s , p e rsad d r , 700).
f i l e (johnsons, p e rs a d d r , 700).
f i l e (a d d o u t , b usou t, 700).

/* d i r / 4 * /

240

d i r (r o o t , 0, n u l , [home]).
d i r (p e r s i n , 700, p e r s o n a l , [frommary, f rom jim]) .
d i r (p e r s o u t , 700, p e r s o n a l , [t o j im]) .
d i r (b u s in , 700, b u s in e s s , [c o m p la in t in]) .
d i r (a d d r e s s e s , 700, home, [pe rsadd r , b u sa d d r]) .
d ir (b u sa d d r , 700, a d d re sse s , [cu s tad d r , suppaddr]) .
d i r (b u s o u t , 700, b u s in e s s , [addout, e n q u i ro u t]) .
d i r (p e r s a d d r , 200, a d d re sse s , [johnsons, b loggs , jo n ese s , s m i th s]) .
dir(hom e, 700, r o o t , [ad d resses , m a i l]) .
d i r (m a i l , 700, home, [b u s in ess , p e r s o n a l]) .
d i r (p e r s o n a l , 700, m a il , [p e rso u t , p e r s in])*
d i r (b u s in e s s , 700, m a il , [busout, b u s i n]) .

/* e r ro rc o u n t /2 * /

e r ro rc o u n t(ra n g e , 0) .
e r ro rc o u n t(u n iq u en e ss , 0) .
e r ro rc o u n t (w r i te , 0) .
e r ro rc o u n t(e x e c u te , 0) .
e r ro rc o u n t(sy n ta x , 5) .
e r ro rc o u n t (r e a d , 3) .
e r r o r c o u n t (lo g ic a l , 2) .
errorcount(nonem pty , 5) .
e r ro rc o u n t (d u p l ic a t io n , 5) .
e r r o r c o u n t (l e x i c a l , 8) .
e r r o rc o u n t (r e f e r e n c e , 61).

/* t o t a l t im e /3 * /

t o t a l t i m e (1, 14, 10) .

/* ev en t /9 * /

e v e n t ([mv, 1 ' , b u s in e s s , (/) , b u so u t , ' ' , a d d re s s e s] , m a i l , th u r s d a y ,
16 may, 1991, 15, 34, 25) .

even t [cd, * ’ , m a i l] , m a il , th u rsd ay , 16, may, 1991, 15, 30, 32) .
even t [cd, ' ' , home], home, th u rsd a y , 16, may, 1991, 15, 28, 38) .
ev en t [chmod, 1 *, 700, 1 1, b u s i n e s s] , m a i l , th u r s d a y , 16, may, 1991,

15 26, 3) .
even t [mv, 1 ' , b u s in e s s , ' ' , b u sm a i l] , m a il , th u rsd a y , 16, may, 1991,

15 24, 48)
even t [chmod, * ' , 500, 1 ' , b u s in e s s] , m a i l , th u r s d a y , 16, may, 1991,

15 22, 37)
even t [chmod, 1 », 100, 1 1, b u s in e s s] , m a i l , th u r s d a y , 16, may, 1991,

15 22, 0) .
even t [cd, ' ' , m a i l] , m a il , th u rsd a y , 16, may, 1991, 15, 21, 9) .
event [c d] , home, th u rsd ay , 16, may, 1991, 15, 20, 44) .
event [cd, ’ ' , home], home, th u rsd a y , 16, may, 1991, 15, 19, 12) .
even t [rm, * ' , p e r s i n] , m a il , th u rsd a y , 16, may, 1991, 15, 18, 16) .
even t [chmod, * ’ , 700, 1 1, p e r s o n a l] , m a i l , th u r s d a y , 16, may, 1991,

15 18, 6).
even t [chmod, ' ' , 400, 1 1, p e r s o n a l] , m a i l , th u r s d a y , 16, may, 1991,

15 16, 51).
event [rm, 1 1, p e r s o u t] , m a il , th u rs d a y , 16, may, 1991, 15, 15, 36) .
ev en t [chmod, ' », 700, 1 1, p e r s o n a l] , m a i l , th u r s d a y , 16, may, 1991,

15 14, 56).
even t [rm, ' ' , f r o m e r ic] , m a il , th u rsd a y , 16, may, 1991, 15, 14, 8) .
even t [cd, * ' , m a i l] , m a il , th u rsd a y , 16, may, 1991, 15, 13, 41) .
even t [rm, ' tem p], home, th u rsd a y , 16, may, 1991, 15, 12, 49) .
event [rm dir, ' 1, m a i l i n] , home, th u rsd a y , 16, may, 1991 , 15 , 11, 1) *
ev en t [mv, » », m a i l in , ' 1, p e r s o n a l] , home, th u rs d a y , 16, may, 1991,

241

10,
e v e n t (
e v e n t (
e v e n t (

15,
e v e n t (

15,
e v e n t (
e v e n t (
e v e n t (
e v e n t (
e v e n t (
e v e n t (
e v e n t (
e v e n t (

26)
e v e n t (
e v e n t (

[cd,
[cd,

/* owner/I * /

o w ner(s3).

/* f i l e / 3 * /

’ , b u s in e s s] , m a il , th u rs d a y , 16, may, 1991,

iu, I) .
[c d] , home, th u rsd a y , 16, may, 1991, 15, 9, 36).
[cd, 1 ’ , home], home, th u rsd a y , 16, may, 1991, 15, 4, 54).
[chmod, ' ' , 700, ’ ' , b u s in e s s] , m a il , th u r s d a y , 16, may, 1991,
3, 40).

[chmod, 1 ' , 700,
1 , 57)

[cd,
[rm,
[cd,
[cd,
[cd,
[cd,
[cd,
[cd,

, m a i l] , m a il , th u rsd a y , 16, may, 1991, 15, 0, 30) .
, b u s in e s s] , home, th u rsd a y , 16, may, 1991, 14, 57, 32).
, home], home, th u rsd a y , 16, may, 1991, 14, 51, 36) .
, m a i l in] , m a i l in , th u rsd a y , 16, may, 1991, 14, 51, 16) .
, home], home, th u rsd a y , 16, may, 1991, 14, 51, 11).
, m a i l] , m a il , th u rsd a y , 16, may, 1991, 14, 50, 26) .
, home], home, th u rsd a y , 16, may, 1991, 14, 50, 22) .
, a d d r e s s e s] , a d d re s s e s , th u rsd a y , 16, may, 1991, 14, 48,

, home], home, th u rsd a y , 16, may, 1991, 14, 44, 36) .
, m a i l in] , m a i l in , th u rsd a y , 16, may, 1991, 14, 43, 18) .

f i l e (temp, home, 700).
f i l e (f ro m j im , p e r s in , 0) .
f i l e (frommary, p e r s in , 0) .
f i l e (t o j i m , p e rs o u t , 0) .
f i l e (com pla in tin , b u s in , 400)
f i l e (e n q u i r o u t , bu so u t, 700).
f i l e (s u p p a d d r , busaddr, 700).
f i l e (c u s t a d d r , busaddr, 700).
f i l e (sm iths, p e rsad d r , 700).
f i l e (j o n e s e s , p e rsad d r , 700).
f i l e (b l o g g s , p e rsad d r , 700).
f i l e (johnsons, p e rs a d d r , 700)
f i l e (f r o m e r i c , m a il , 700).
f i l e (a d d o u t , busou t, 700).

/* d i r / 4 * /

d i r (r o o t , 0, nu l , [home]).
d i r (p e r s i n , 700, p e r s o n a l , [frommary, f romj im]) .
d i r (p e r s o u t , 700, p e r s o n a l , [t o j i m]) .
d i r (p e r s o n a l , 0, m a il , [p e rso u t, p e r s i n]) .
d i r (b u s in , 700, b u s in e s s , [c o m p la in t in]) .
d i r (a d d r e s s e s , 700, home, [pe rsadd r , b u s a d d r]) .
d ir (b u sa d d r , 700, a d d re sse s , [c u s tad d r , suppaddr]) .
d i r (m a i l , 700, home, [from eric , b u s in e s s , p e r s o n a l]) ,
d i r (b u s o u t , 700, b u s in e s s , [addout, e n q u i ro u t]) .
d i r (p e r s a d d r , 200, a d d re sses , [johnsons, b loggs , jo n ese s , s m i th s]) ,
d ir(hom e, 700, ro o t , [ad d resses , m a i l , t emp]) ,
d i r (b u s in e s s , 400, m a il , [busout, b u s i n]) .

/* e r ro rc o u n t /2 * /

e r ro rc o u n t(ra n g e , 0) .
errorcount(nonem pty , 0) .
e r ro rco u n t(u n iq u en e ss , 0) .
e r ro rc o u n t(r e a d , 0) .
e r r o rc o u n t (w r i te , 0) .

242

errorcount(execute, 0).
errorcount(duplication, 1).
errorcount(logical, 3).
errorcount(lexical, 8).
errorcount(syntax, 1).
errorcount(reference, 9).

/* totaltime/3 */
totaltime(0, 41, 46).

/* event/9 */
event([cd], home, thursday, 16, may, 1991, 14, 45, 54).
event([chmod, 1 ', 400, 1 ’, mail, (/), business], home, thursday, 16,

may, 1991, 14, 44, 5).
event([cd], home, thursday, 16, may, 1991, 14, 35, 32).
event([rmdir, ' ', mailin], home, thursday, 16, may, 1991, 14, 25, 54).
event([cd], home, thursday, 16, may, 1991, 14, 17, 11).
event([cd, ’ *, mailin], mailin, thursday, 16, may, 1991, 14, 11, 50).
/* owner/1 */
owner(slO) .

/* file/3 */
file (fromjim, persin, 0).
file(frommary, persin, 0).
file (tojim, persout, 0).
file(complaintin, busin, 400).
file(enquirout, busout, 700).
file (smiths, persaddr, 700).
file (joneses, persaddr, 700).
file(bloggs, persaddr, 700).
file(johnsons, persaddr, 700).
file (fromeric, mail, 700).
file(addout, busout, 700).
file(accountsaddr, busaddr, 700).
file (custaddr, busaddr, 700).
file (suppaddr, busaddr, 700).

/* dir/4 */
dir(root, 0, nul, [home]).
dir(persin, 700, personal, [frommary, fromjim]).
dir(persout, 700, personal, [tojim]).
dir(personal, 0, mail, [persout, persin]).
dir(busin, 700, business, [complaintin]).
dir(addresses, 700, home, [persaddr, busaddr]).
dir(mail, 700, home, [fromeric, business, personal]).
dir(busout, 700, business, [addout, enquirout]).
dir(business, 100, mail, [busout, busin]).
dir(persmail, 700, personnel, []).
dir(personnel, 700, home, [persmail]).
dir(home, 700, root, [personnel, addresses, mail]).
dir(busaddr, 700, addresses, [suppaddr, custaddr, accountsaddr]).
dir(persaddr, 700, addresses, [johnsons, bloggs, joneses, smiths]).

/* errorcount/2 */

243

errorcount(range, 0).
errorcount(uniqueness, 0).
errorcount(read, 0).
errorcount(write, 0).
errorcount(duplication, 13).
errorcount(lexical, 9).
errorcount(reference, 29).
errorcount(logical, 4).
errorcount(execute, 4).
errorcount(nonempty, 9).
errorcount(syntax, 12).

/* totaltime/3 */
totaltime(1, 21, 16).

/* event/9 */
e v e n t ([cd, 1 ' , p e r s a d d r] , p e r s a d d r , W e d n e s d a y , 15, m a y , 1991, 18, 51,

11) .
event([chmod, ' ', 700, ' ’, persaddr], addresses, Wednesday, 15, may,

1991, 18, 51, 4) .
event([cd, 1 ', addresses], addresses, Wednesday, 15, may, 1991, 18, 49,

21) .
event([cd, 1 *, home], home, Wednesday, 15, may, 1991, 18, 44, 41).
event ([rmdir, 1 ', addresses], addresses, Wednesday, 15, may, 1991, 18,

43, 42).
event([cd, * ', addresses], addresses, Wednesday, 15, may, 1991, 18, 43,

1) .
event([mkfile, ’ ', suppaddr], busaddr, Wednesday, 15, may, 1991, 18,

42, 17).
e v e n t ([r m , 1 ’ , s u p p a d d r] , b u s a d d r , W e d n e s d a y , 15, m a y , 1991, 18, 42,

0) .
event([mkfile, 1 ’, custaddr], busaddr, Wednesday, 15, may, 1991, 18,

41, 43).
e v e n t ([r m , ' ' , c u s t a d d r] , b u s a d d r , W e d n e s d a y , 15, m a y , 1991, 18, 41,

26) .
e v e n t ([m k f i l e , 1 ' , a c c o u n t s a d d r] , b u s a d d r , W e d n e s d a y , 15, m a y , 1991,

18, 41, 4).
event([cd, 1 ’, busaddr], busaddr, Wednesday, 15, may, 1991, 18, 39,

57).
e v e n t ([cd, 1 ’ , a d d r e s s e s] , a d d r e s s e s , W e d n e s d a y , 15, m a y , 1991, 18, 32,

49) .
event ([rm, 1 1, temp], home, Wednesday, 15, may, 1991, 18, 32, 5).
event ([rmdir, 1 ', mailin], home, Wednesday, 15, may, 1991, 18, 30, 44).
event([cd, 1 ', home], home, Wednesday, 15, may, 1991, 18, 29, 9).
event([cd, 1 ', personnel], personnel, Wednesday, 15, may, 1991, 18, 26,

55) .
e v e n t ([c d , 1 ’ , p e r s m a i l] , p e r s m a i l , W e d n e s d a y , 15, m a y , 1991, 18, 23,

38) .
e v e n t ([c d , ' * , p e r s o n n e l] , p e r s o n n e l , W e d n e s d a y , 15, m a y , 1991, 18, 16,

21) .
e v e n t ([cd, 1 ’ , p e r s m a i l] , p e r s m a i l , W e d n e s d a y , 15, m a y , 1991, 18, 7,

52) .
event([mkdir, 1 ', persmail], personnel, Wednesday, 15, may, 1991, 18,

2, 47).
e v e n t ([cd, ' ’ , p e r s o n n e l] , p e r s o n n e l , W e d n e s d a y , 15, m a y , 1991, 18, 1,

59).
e v e n t ([m k d i r , ' ' , p e r s o n n e l] , h o m e , W e d n e s d a y , 15, m a y , 1991, 18, 0,

58).
event ([cd, 1 ', home], home, Wednesday, 15, may, 1991, 17, 47, 41).
event ([cd, 1 ’, mail], mail, Wednesday, 15, may, 1991, 17, 44, 44).

244

Appendix J
Protocol Log Files
Appendix J contains log files for all subjects involved in the protocol
analysis exercise. The event clauses represent successful commands issued
and the nonevent clauses relate to errors made during task completion. All
events are time stamped in order to enable correlation with simultaneous
video tape recordings and also show the erroneous command, the error
type, the erroneous item and its alleged parent and the current working
directory (cwd).

245

/* owner/1 */

ow ner(S I) .

/* to t a l t im e /3 * /

t o t a l t i m e (2, 9, 44).

/* f i l e / 3 * /

f i l e (sm iths, p e rs a d d r , 700).
f i l e (jo n eses , p e rs a d d r , 700).
f i l e (b l o g g s , p e rs a d d r , 700).
f i l e (johnsons, p e rs a d d r , 700).
f i l e (e n q u i r o u t , temp, 700).
f i l e (c o m p la in t in , temp, 700).
f i l e (c u s t a d d r , busaddr, 700).
f i l e (s u p p a d d r , busaddr, 700).
f i l e (a c c o u n ts a d d r , busaddr, 700).
f i l e (t o j i m , temp, 700).
f i le (from m ary , temp, 700).
f i l e (fromjim, temp, 700).

/* d i r / 4 * /

d i r (r o o t , 0, n u l , [home]).
d i r (p e r s a d d r , 700, ad d re sses , [johnsons, b loggs , jo n e se s , s m ith s]) ,
d i r (a d d r e s s e s , 700, home, [p e rs a d d r]) .
d i r (b u s in e s s , 700, home, [busaddr]) .
d i r (b u sa d d r , 700, b u s in e s s , [accountsaddr, suppaddr, c u s ta d d r]) .
d i r (tem p , 700 , home, [f r o m j i m , fro m m ary , t o j i m , c o m p l a i n t i n ,

e n q u i ro u t]) .
d i r (p e r s o n a l , 700, home, []) .
dir(hom e, 700, ro o t , [pe rsona l , b u s in e s s , temp, a d d re s s e s]) .

/* event/9 */
event([rmdir, 1 ', mail], home, monday, 20, january, 1992, 20, 2, 21).
event([Is, ' ', '-l1, ' ', temp], home, monday, 20, january, 1992, 20,

2, 9).
event([Is, ' ’, '-1']/ home, monday, 20, january, 1992, 20, 1, 53).
event([pwd], home, monday, 20, january, 1992, 20, 1, 48).
event([Is, 1 ’, '-1', 1 ’, mail], home, monday, 20, january, 1992, 20,

1, 29).
event([rm, 1 ', mail, (/), fromeric], home, monday, 20, january, 1992,

20, 1,23).
event([Is, 1 ’, '-l1, 1 *, mail], home, monday, 20, january, 1992, 20,

0, 50) .
event([Is, 1 ', ’-1']/ home, monday, 20, january, 1992, 20, 0, 22).
event([mkdir, 1 ', personal], home, monday, 20, january, 1992, 20, 0,

16) .
event([cd], home, monday, 20, january, 1992, 20, 0, 2).
event([rmdir, 1 ', mail, (/), personal], home, monday, 20, january,

1992, 19, 59, 53) .
event([Is, * ', '-l1, 1 f, mail, (/), personal], home, monday, 20,

january,1992, 19, 59, 34).
event([rmdir, ' ', mail, (/), personal, (/), persin], home, monday, 20,

january, 1992, 19, 59, 18) .
event([Is, ’ *, ’-l1, 1 ', temp], home, monday, 20, january, 1992, 19,

59, 1).
event([mv, 1 ', mail, (/), personal, (/), persin, (/), fromjim, ’ *,

246

uempj, nome, monday, zu, January, ryyz, iy, do, Dbj .
event([mv, 1 ’, mail, (/), personal, (/), persin, (/), frommary, 1 ',

temp], home, monday, 20, january, 1992, 19, 58, 45).
event([rmdir, ' ', mail, (/), personal, (/), persout], home, monday, 20,

january, 1992, 19, 57, 47) .
event([Is, ' ', '-I1, 1 ', temp], home, monday, 20, january, 1992, 19,

57, 18).
event([mv, 1 1, mail, (/), personal, (/), persout, (/), tojim, ' ’,

temp], home, monday, 20, january, 1992, 19, 57, 12).
event([pwd], home, monday, 20, january, 1992, 19, 55, 59).
event([Is, 1 ’, '-1*, 1 ', temp], home, monday, 20, january, 1992, 19,

54, 41) .
event([cd], home, monday, 20, january, 1992, 19, 53, 12).
event([pwd], temp, monday, 20, january, 1992, 19, 53, 9).
event ([cd, 1 temp], temp, monday, 20, january, 1992, 19, 50, 45).
event([cd], home, monday, 20, january, 1992, 19, 49, 19).
event([pwd], busaddr, monday, 20, january, 1992, 19, 49, 6).
event([Is, 1 ', '-I', 1 ', business, (/), busaddr], busaddr, monday, 20,

january, 1992, 19, 46, 50) .
event([mkfile, 1 1, accountsaddr], busaddr, monday, 20, january, 1992,

19, 46, 39).
event([cd, 1 ', business, (/), busaddr], busaddr, monday, 20, january,

1992, 19, 46, 26).
event([pwd], home, monday, 20, january, 1992, 19, 46, 19).
event([Is, ' ', ‘-l1, ' ', business, (/), busaddr], home, monday, 20,

january, 1992, 19, 45, 55).
event([cd], home, monday, 20, january, 1992, 19, 45, 46).
event([pwd], temp, monday, 20, january, 1992, 19, 45, 44).
event([mv, 1 ’, suppaddr, 1 ’, home, (/), business, (/), busaddr], temp,

monday, 20, january, 1992, 19, 45, 37).
event([ls, ’ f, ’-l1]/ temp, monday, 20, january, 1992, 19, 45, 11).
event([cd, 1 ’, temp], temp, monday, 20, january, 1992, 19, 45, 7).
event([pwd], home, monday, 20, january, 1992, 19, 45, 4).
event([Is, 1 ', '-l1, 1 *, temp], home, monday, 20, january, 1992, 19,

44, 31).
event([cd], home, monday, 20, january, 1992, 19, 43, 47).
event([pwd], business, monday, 20, january, 1992, 19, 43, 41).
event([Is, 1 ', ’-I’/ 1 busaddr], business, monday, 20, january,

1992, 19, 43, 28).
event([ls, ' ', '-I']/ business, monday, 20, january, 1992, 19, 43, 19).
event([cd, 1 ', business], business, monday, 20, january, 1992, 19, 43,

17) .
event([ls, 1 ', '-I']/ home, monday, 20, january, 1992, 19, 43, 10).
event ([mv, 1 ', temp, (/), custaddr, 1 1, business, (/), busaddr], home,

monday, 20, january, 1992, 19, 43, 2).
event([cd], home, monday, 20, january, 1992, 19, 42, 14).
event([ls, ’ ', '-1'], business, monday, 20, january, 1992, 19, 41, 56).
event([cd, ’ *, business], business, monday, 20, january, 1992, 19, 41,

53) .
event([pwd], home, monday, 20, january, 1992, 19, 41, 49).
event([ls, 1 ', ’-I’]/ home, monday, 20, january, 1992, 19, 41, 1).
event([cd], home, monday, 20, january, 1992, 19, 40, 56).
event([Is, ' ', ’-l1, * ', addresses], home, monday, 20, january, 1992,

19, 40, 43) .
event([rmdir, 1 *, addresses, (/), busaddr], home, monday, 20, january,

1992, 19, 40, 31).
event([pwd], home, monday, 20, january, 1992, 19, 40, 23).
event([cd], home, monday, 20, january, 1992, 19, 40, 20).
event([ls, ’ ', 1—11], temp, monday, 20, january, 1992, 19, 39, 59).
event([cd, ' ', temp], temp, monday, 20, january, 1992, 19, 39, 54).
event([cd], home, monday, 20, january, 1992, 19, 39, 51).
event([mv, ' ', suppaddr, 1 ’, addresses, (/), home, (/), temp],

busaddr, monday, 20, january, 1992, 19, 39, 48).
event([ls, 1 ', '-1']/ busaddr, monday, 20, january, 1992, 19, 39, 22).
event([cd, ' *, busaddr], busaddr, monday, 20, january, 1992, 19, 39,

247

J - 1) .
event([pwd], addresses, monday, 20, january, 1992, 19, 39, 8).
event([Is, * ', '-1']/ addresses, monday, 20, january, 1992, 19, 38,

14) .
event([cd, ' ', addresses], addresses, monday, 20, january, 1992, 19,

38, 10).
event([cd, ' ', home], home, monday, 20, january, 1992, 19, 38, 4).
event([pwd], business, monday, 20, january, 1992, 19, 38, 1).
event([ls, 1 ', '-I']/ business, monday, 20, january, 1992, 19, 37, 31).
event([cd, 1 ', business], business, monday, 20, january, 1992, 19, 37,

28) .
event([cd], home, monday, 20, january, 1992, 19, 37, 0).
event([pwd], business, monday, 20, january, 1992, 19, 36, 57).
event([ls, ' ', '-I'], business, monday, 20, january, 1992, 19, 36, 44).
event([cd, ' ', business], business, monday, 20, january, 1992, 19, 36,

42) .
event([ls, ' ', ’-I1]/ home, monday, 20, january, 1992, 19, 36, 39).
event([pwd], home, monday, 20, january, 1992, 19, 36, 33).
event([Is, 1 ’, '-l1, 1 *, temp], home, monday, 20, january, 1992, 19,

35, 52).
event([cd], home, monday, 20, january, 1992, 19, 35, 46).
event([mv, ' ', custaddr, 1 ’, addresses, (/), home, (/), temp],

busaddr, monday, 20, january, 1992, 19, 35, 24).
event([pwd], busaddr, monday, 20, january, 1992, 19, 33, 20).
event([ls, * ', '-I']/ busaddr, monday, 20, january, 1992, 19, 33, 1).
event([pwd], busaddr, monday, 20, january, 1992, 19, 32, 20).
event([ls, 1 ’, ’-l1]/ busaddr, monday, 20, january, 1992, 19, 31, 14).
event([cd, 1 ', busaddr], busaddr, monday, 20, january, 1992, 19, 31,

8).
event([ls, 1 ’, ’-l1]/ addresses, monday, 20, january, 1992, 19, 31, 4).
event([cd, 1 ', addresses], addresses, monday, 20, january, 1992, 19,

30, 59).
event([mv, 1 ', addresses, (/), busaddr, ’ ', business], home, monday,

20, january, 1992, 19, 29, 1) .
event([ls, ' ', '-1']/ home, monday, 20, january, 1992, 19, 27, 56).
event([pwd], home, monday, 20, january, 1992, 19, 27, 45).
event([cd], home, monday, 20, january, 1992, 19, 27, 42).
event([ls, 1 ', ’-l1]/ home, monday, 20, january, 1992, 19, 23, 49).
event([mkdir, 1 ', business], home, monday, 20, january, 1992, 19, 23,

45) .
event([cd], home, monday, 20, january, 1992, 19, 23, 40).
event([pwd], mail, monday, 20, january, 1992, 19, 23, 36).
event([ls, 1 ', '-1']/ mail, monday, 20, january, 1992, 19, 23, 26).
event([rmdir, 1 ’, business], mail, monday, 20, january, 1992, 19, 23,

22) .
event([ls, ’ ', ’-I1]/ mail, monday, 20, january, 1992, 19, 23, 16).
event([cd, 1 *, mail], mail, monday, 20, january, 1992, 19, 23, 8).
event([ls, 1 ', '-l'j, business, monday, 20, january, 1992, 19, 23, 1).
event([rmdir, 1 1, busin], business, monday, 20, january, 1992, 19, 22,

58) .
event([ls, 1 ', '-l1], business, monday, 20, january, 1992, 19, 22, 50).
event([cd, ’ ', mail, (/), business], business, monday, 20, january,

1992, 19, 22, 48) .
event([Is, 1 ', '-l1, ' ', temp], home, monday, 20, january, 1992, 19,

22, 19).
event([ls, 1 ', '-1']/ home, monday, 20, january, 1992, 19, 22, 13).
event([cd], home, monday, 20, january, 1992, 19, 22, 5).
event([mv, 1 ', complaintin, 1 *, business, (/), mail, (/), home, (/),

temp], busin, monday, 20, january, 1992, 19, 21, 30).
event([ls, ' ', ’-I1]/ busin, monday, 20, january, 1992, 19, 19, 26).
event([ls, ' *, '-l1], busin, monday, 20, january, 1992, 19, 18, 10).
event([cd, ' ', busin], busin, monday, 20, january, 1992, 19, 18, 7).
event([ls, ' ’, 1—11], business, monday, 20, january, 1992, 19, 17, 56).
event([rmdir, ' ', busout], business, monday, 20, january, 1992, 19, 17,

53) .

248

even tuJ-S , • *, ' - ± ’ 1 , o u s m e s s , monaay, z u , January, 1992, 19, 1 / , 38).
e v e n t ([pwd], b u s in e s s , monday, 20, jan u ary , 1992, 19, 17, 31).
e v e n t([c d , ' ’ , b u s in e s s] , b u s in e s s , monday, 20, jan u ary , 1992, 19, 17,

29) .
e v e n t ([l s , ' ' , ' - 1 1] , busou t, monday, 20, january , 1992, 19, 17, 20).
even t([rm , ' ’ , a d d o u t] , busou t, monday, 20, january , 1992, 19, 17, 17).
e v e n t ([l s , 1 ' , ’- l 1] , busou t, monday, 20, january , 1992, 19, 17, 8) .
e v e n t ([c d , ' ' , m a i l , (/) , b u s in e s s , (/) , b u s o u t] , b u so u t , monday, 20,

january , 1992, 19, 17, 5) .
even t([pw d], home, monday, 20, jan u ary , 1992, 19, 15, 45) .
e v e n t ([I s] , home, monday, 20, january , 1992, 19, 15, 41) .
e v e n t ([c d] , home, monday, 20, january , 1992, 19, 15, 37) .
even t([pw d], temp, monday, 20, jan u ary , 1992, 19, 15, 32) .
even t([pw d], temp, monday, 20, jan u ary , 1992, 19, 15, 24) .
e v e n t ([l s , 1 ' , ' - I '] / temp, monday, 20, january , 1992, 19, 14, 40).
e v e n t([c d , ' ' , temp], temp, monday, 20, january , 1992, 19, 14, 37).
even t([pw d], home, monday, 20, jan u ary , 1992, 19, 14, 34) .
even t([m v, ' ' , m a i l , (/) , b u s in e s s , (/) , b u so u t , (/) , e n q u i ro u t , ' ' ,

temp], home, monday, 20, january , 1992, 19, 14, 29) .
even t([pw d], home, monday, 20, jan u ary , 1992, 19, 12, 58) .
e v e n t ([mkdir, 1 ' , temp], home, monday, 20, january , 1992, 19, 12, 16).
even t([pw d], home, monday, 20, jan u ary , 1992, 19, 11, 57) .
e v e n t ([c d] , home, monday, 20, jan u ary , 1992, 19, 11, 53) .
e v e n t ([rm d ir , 1 ’ , tem p], b u s o u t , monday, 20, ja n u a r y , 1992, 19, 11,

51) .
event([pw d], busout, monday, 20, jan u ary , 1992, 19, 11, 37) .
e v e n t ([l s , 1 ' , ’- 1 '] / busou t, monday, 20, january , 1992, 19, 11, 9) .
e v e n t ([mkdir, ' ' , temp], busou t, monday, 20, january , 1992, 19, 11, 5) .

’- I 1] , busou t, monday, 20, january , 1992, 19, 9, 41).
b u so u t] , busou t, monday, 20, january , 1992, 19, 9, 37).
' - 1 ’] , b u s in e s s , monday, 20, january , 1992, 19, 9, 32).
b u s in e s s] , b u s in e s s , monday, 20, ja n u a ry , 1992, 19, 9,

event([Is,
event ([cd,
event([Is,
event([cd,

29) .
event([Is,
event([cd,
event([Is,
event([Is,
event([pwd]
event([Is,
event ([rm,
event ([Is,

'-1'], mail, monday, 20, january, 1992, 19, 9, 1).
mail], mail, monday, 20, january, 1992, 19, 8, 57).
1 —11], home, monday, 20., january, 1992, 19, 8, 44).
1—11], home, monday, 20, january, 1992, 19, 3, 27).

home, monday, 20, january, 1992, 19, 3, 19).
, ’-l1]/ home, monday, 20, january, 1992, 19, 2, 43).
, temp], home, monday, 20, january, 1992, 19, 2, 39).
, '-1'], home, monday, 20, january, 1992, 19, 2, 7).

event([rmdir, 1 ', mailin], home, monday, 20, january, 1992, 19, 2, 3).
event([cd], home, monday, 20, january, 1992, 18, 56, 52).
event([pwd], persin, monday, 20, january, 1992, 18, 56, 49).
event([Is,
event([Is,

persin], persin, monday, 20, january, 1992, 18, 51, 20).
’-1']/ personal, monday, 20, january, 1992, 18, 51, 15).
personal], personal, monday, 20, january, 1992, 18, 51,

’-I1]/ persin, monday, 20, january, 1992, 18, 56, 44).
1—1 *], persin, monday, 20, january, 1992, 18, 51, 24).

e v e n t ([c d ,
e v e n t ([I s ,
e v e n t ([c d ,

11) .
e v e n t ([I s ,
e v e n t ([c d ,

43) .
e v e n t ([I s ,
e v e n t ([c d ,

18) .
e v e n t ([I s ,
e v e n t ([c d ,
e v e n t ([I s ,
e v e n t ([I s ,

47, 5) .
e v e n t ([l s , 1 ' , ' - l 1] / h o m e , m o n d a y , 20, j a n u a r y , 1992, 18, 46, 45).
e v e n t ([p w d] , h o m e , m o n d a y , 20, j a n u a r y , 1992, 18, 46, 37) .
e v e n t ([I s , ' ' , ’ - 1 ' , 1 ' , a d d r e s s e s , (/) , b u s a d d r] , h o m e , m o n d a y , 2 0 ,

j a n u a r y , 1992, 18, 45, 35) .

’-I1], persout, monday, 20, january, 1992, 18, 50, 47).
persout], persout, monday, 20, january, 1992, 18, 50,
’-1']/ personal, monday, 20, january, 1992, 18, 50, 33).
personal], personal, monday, 20, january, 1992, 18, 50,
’-l1]/ mail, monday, 20, january, 1992, 18, 49, 31).
mail], mail, monday, 20, january, 1992, 18, 49, 23).
’-I1], home, monday, 20, january, 1992, 18, 48, 47).
'-I', ’ ', mail], home, monday, 20, january, 1992, 18,

249

event([Is, * ', '-I1, ' ', addresses], home, monday, 20, january, 1992,
18, 44, 55).

event([ls, ’ ', '-1']/ home, monday, 20, january, 1992, 18, 44, 36).
event([cd], home, monday, 20, january, 1992, 18, 44, 28).
event([ls, 1 ', '-l'], mailin, monday, 20, january, 1992, 18, 44, 16).
event([cd, 1 *, mailin], mailin, monday, 20, january, 1992, 18, 44, 12).
event([ls, 1 ', '-I’]/ home, monday, 20, january, 1992, 18, 43, 34).
event([cd], home, monday, 20, january, 1992, 18, 43, 29).
event([Is, 1 ', '-1’]/ persin, monday, 20, january, 1992, 18, 43, 19).
event([chmod, 1 ', 700, 1 ', fromjim], persin, monday, 20, january,

1992, 18, 43, 15).
event([chmod, ' 1, 700, ’ ', frommary], persin, monday, 20, january,

1992, 18, 43, 6).
event([Is, 1 ', '-1'], persin, monday, 20, january, 1992, 18, 42, 41).
event([cd, 1 ', persin], persin, monday, 20, january, 1992, 18, 42, 35).
event([Is, 1 *, '-I']/ personal, monday, 20, january, 1992, 18, 42, 30).
event([cd, 1 ’, personal], personal, monday, 20, january, 1992, 18, 42,

26) .
event([pwd], persout, monday, 20, january, 1992, 18, 42, 18).
event([ls, 1 ', '-l'], persout, monday, 20, january, 1992, 18, 42, 13).
event([chmod, 1 ', 700, 1 ', tojim], persout, monday, 20, january, 1992,

18, 42, 9).
event([ls, 1 ', '-1’]/ persout, monday, 20, january, 1992, 18, 41, 15).
event([cd, ' ', persout], persout, monday, 20, january, 1992, 18, 41,

11) .
event([ls, 1 ’, ’-I']/ personal, monday, 20, january, 1992, 18, 40, 45).
event([cd, 1 *, personal], personal, monday, 20, january, 1992, 18, 40,

42) .
event([ls, 1 ', '-I'], mail, monday, 20, january, 1992, 18, 40, 37).
event([chmod, 1 ', 700, 1 ', personal], mail, monday, 20, january, 1992,

18, 40, 33).
event([ls, 1 ', ’-I’]/ mail, monday, 20, january, 1992, 18, 40, 7).
event([cd, * ', mail], mail, monday, 20, january, 1992, 18, 40, 3).
event([pwd], business, monday, 20, january, 1992, 18, 40, 0).
event([ls, ’ ', '-l1]/ business, monday, 20, january, 1992, 18, 39, 48).
event([cd, 1 ’, business], business, monday, 20, january, 1992, 18, 39,

45) .
event([ls, ' *, '-1'], busin, monday, 20, january, 1992, 18, 39, 13).
event([chmod, ' ', 700, 1 ', complaintin], busin, monday, 20, january,

1992, 18, 38, 56).
event([pwd], busin, monday, 20, january, 1992, 18, 38, 39).
event([ls, 1 *, '-1']/ busin, monday, 20, january, 1992, 18, 38, 31).
event([cd, 1 ', busin], busin, monday, 20, january, 1992, 18, 38, 27).
event([cd, 1 ', business], business, monday, 20, january, 1992, 18, 38,

23) .
event([ls, 1 ', '-1']/ busout, monday, 20, january, 1992, 18, 38, 2).
event([cd, 1 ', busout], busout, monday, 20, january, 1992, 18, 37, 59).
event([ls, 1 ’, '-I’]/ business, monday, 20, january, 1992, 18, 37, 48).
event([pwd], business, monday, 20, january, 1992, 18, 37, 31).
event([cd, 1 ', business], business, monday, 20, january, 1992, 18, 36,

34) .
event([ls, 1 ', '-1']/ busin, monday, 20, january, 1992, 18, 36, 21).
event([cd, ' ’, busin], busin, monday, 20, january, 1992, 18, 36, 18).
event([chmod, ' *, 700, 1 ', busin], business, monday, 20, january,

1992, 18, 36, 12).
event([cd, 1 ', business], business, monday, 20, january, 1992, 18, 36,

5).
event([pwd], busin, monday, 20, january, 1992, 18, 35, 57).
event([ls, ' ’, ’-I1], busin, monday, 20, january, 1992, 18, 34, 50).
event([cd, 1 ', busin], busin, monday, 20, january, 1992, 18, 34, 45).
event([ls, ' ', '-1']/ business, monday, 20, january, 1992, 18, 34, 39).
event([pwd], business, monday, 20, january, 1992, 18, 34, 34).
event([cd, 1 ', business], business, monday, 20, january, 1992, 18, 34,

32) .
event([ls, 1 ', ’-I1], busout, monday, 20, january, 1992, 18, 34, 7).

250

eventupwaj, ousout, monaay, zu, january, iyyz, lb, 34, l).
event([cd, ’ ’, busout], busout, monday, 20, january, 1992, 18, 33, 55).
event([ls, 1 ’, '-1']/ business, monday, 20, january, 1992, 18, 32, 59).
event([cd, 1 1, business], business, monday, 20, january, 1992, 18, 32,

55) .
event([chmod, ' ’, 700, ' ', business], mail, monday, 20, january, 1992,

18, 32, 49).
event([cd, 1 ', mail], mail, monday, 20, january, 1992, 18, 32, 43).
event([pwd], business, monday, 20, january, 1992, 18, 32, 30).
event([pwd], business, monday, 20, january, 1992, 18, 31, 46).
event([cd, ' *, business], business, monday, 20, january, 1992, 18, 31,

42) .
event([ls, 1 ’, '-l1], mail, monday, 20, january, 1992, 18, 29, 55).
event([cd, ' ', mail], mail, monday, 20, january, 1992, 18, 29, 50).
event([Is, 1 1, ’-1’], home, monday, 20, january, 1992, 18, 29, 32)..
event .([cd], home, monday, 20, january, 1992, 18, 29, 26).
event([ls, 1 ', ’-1']/ busaddr, monday, 20, january, 1992, 18, 28, 11).
event([cd, ' ', busaddr], busaddr, monday, 20, january, 1992, 18, 28,

7).
event([Is, 1 ', ’-l1]/ addresses, monday, 20, january, 1992, 18, 27,

59) .
event([pwd], addresses, monday, 20, january, 1992, 18, 27, 26).
event([cd, 1 ’, addresses], addresses, monday, 20, january, 1992, 18,

27, 15).
event([ls, ' ', '-I'], home, monday, 20, january, 1992, 18, 26, 13).
event([cd], home, monday, 20, january, 1992, 18, 26, 7).
event([pwd], persaddr, monday, 20, january, 1992, 18, 25, 59).
event([ls, 1 ', ’-I1], persaddr, monday, 20, january, 1992, 18, 24, 21).
event([Is, 1 *, '-1']/ addresses, monday, 20, january, 1992, 18, 23,

16) .
event([chmod, 1 ', 700, ' ’, persaddr], addresses, monday, 20, january,

1992, 18, 23, 10).
event([pwd], addresses, monday, 20, january, 1992, 18, 22, 16).
event([Is, ’ ', ’-1']/ addresses, monday, 20, january, 1992, 18, 21,

49) .
event([Is, 1 ', '-I*]/ addresses, monday, 20, january, 1992, 18, 20,

18) .
event([pwd], addresses, monday, 20, january, 1992, 18, 20, 8).
event([chmod, ' ’, 400, 1 ', persaddr], addresses, monday, 20, january,

1992, 18, 20, 4) .
event([pwd], addresses, monday, 20, january, 1992, 18, 19, 43).
event([cd, ' ', addresses], addresses, monday, 20, january, 1992, 18,

19, 40).
event([pwd], persaddr, monday, 20, january, 1992, 18, 17, 24).
event([cd, ’ ’, persaddr], persaddr, monday, 20, january, 1992, 18, 15,

42) .
event([Is], addresses, monday, 20, january, 1992, 18, 15, 31).
event([cd, 1 ’, addresses], addresses, monday, 20, january, 1992, 18,

15, 29).
event([Is], home, monday, 20, january, 1992, 18, 15, 22).
event([pwd], home, monday, 20, january, 1992, 18, 14, 52).
event([cd], home, monday, 20, january, 1992, 18, 14, 48).
event([pwd], persaddr, monday, 20, january, 1992, 18, 12, 15).
event([cd, 1 ', persaddr], persaddr, monday, 20, january, 1992, 18, 12,

11) .
event([Is, 1 ’, '-1']/ addresses, monday, 20, january, 1992, 18, 11,

45) .
event ([chmod, 1 ', 100, 1 1, persaddr], addresses, monday, 20, january,

1992, 18, 11, 35).
event([ls, ' ’-I1]/ addresses, monday, 20, january, 1992, 18, 8, 30).
event([pwd], addresses, monday, 20, january, 1992, 18, 8, 24).
event([Is], addresses, monday, 20, january, 1992, 18, 7, 6).
event([pwd], addresses, monday, 20, january, 1992, 18, 6, 8).
event([ls, 1 ', '-1']/ addresses, monday, 20, january, 1992, 18, 3, 12).
event([Is], addresses, monday, 20, january, 1992, 18, 2, 51).

251

V V.1 1 L. v (_ , o u u j - c o o c c j ; UU UXCO OCO/ 111U1 i'U.o.y , £ . \ J , ja.iiU d.JL y , S .Z 1 Z) Z - ! 0 .0 / £ - 1

48) .
event([Is], home, monday, 20, january, 1992, 18, 2, 40).
event([pwd], home, monday, 20, january, 1992, 18, 2, 34).
event([cd], home, monday, 20, january, 1992, 18, 2, 31).
event([pwd], mailin, monday, 20, january, 1992, 18, 2, 26).
event([ls, 1 *, ’-I1]/ mailin, monday, 20, january, 1992, 17, 59, 48).
event([Is], mailin, monday, 20, january, 1992, 17, 58, 41).
event([pwd], mailin, monday, 20, january, 1992, 17, 58, 7).
event([Is], mailin, monday, 20, january, 1992, 17, 58, 3).
event([pwd], mailin, monday, 20, january, 1992, 17, 57, 46).
event([Is], mailin, monday, 20, january, 1992, 17, 57, 20).
event([cd, 1 ’, mailin], mailin, monday, 20, january, 1992, 17, 57, 14).
event([pwd], home, monday, 20, january, 1992, 17, 55, 49).
event([Is], home, monday, 20, january, 1992, 17, 54, 5).
event([chmod, 1 ’, 200, 1 ', home, (/), addresses, (/), persaddr], mail,

Wednesday, 8, jan, 1992, 10, 26, 27) .
event([chmod, 1 ', 100, 1 ', business], mail, Wednesday, 8, jan, 1992,

10, 26, 27).
event([mkfile, ' ', business, (/), busout, (/), addout], mail,

Wednesday, 8, jan, 1992, 10, 26, 27).
event([mkfile, 1 *, fromeric], mail, Wednesday, 8, jan, 1992, 10, 26,

27) .
event([cd, 1 *, mail], mail, Wednesday, 8, jan, 1992, 10, 26, 27).
event ([mkdir, ' ', mailin], home, Wednesday, 8, jan, 1992, 10, 26, 27).
event([cd], home, Wednesday, 8, jan, 1992, 10, 26, 26).
event([mkfile, 1 ', johnsons], persaddr, Wednesday, 8, jan, 1992, 10,

26, 26).
event([mkfile, 1 ’, bloggs], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([mkfile, 1 f, joneses], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([mkfile, ' ', smiths], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([cd, 1 ', addresses, (/), persaddr], persaddr, Wednesday, 2, may,

1991, 10, 26, 26) .
event([mkfile, ’ ’, custaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([mkfile, ’ 1, suppaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, 1 ’, busaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26, 25).
event([mkdir, ’ ’, persaddr], addresses, Wednesday, 8, jan, 1992, 10,

26, 25).
event ([mkdir, 1 ’, busaddr], addresses, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, 1 ', business, (/), mail, (/), home, (/), addresses],

addresses, Wednesday, 8, jan, 1992, 10, 26, 25).
event ([mkfile, 1 ', enquirout], busout, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, 1 ', business, (/), busout], busout, Wednesday, 8, jan, 1992,

10, 26, 24).
event ([chmod, ’ ’, 400, 1 ', complaintin], busin, Wednesday, 2, may,

1991, 10, 26, 24).
event([mkfile, 1 ', complaintin], busin, Wednesday, 8, jan, 1992, 10,

26, 24).
event ([cd, 1 ', busin], busin, Wednesday, 8, jan, 1992, 10, 26, 24).
event ([mkdir, ’ ', busout], business, Wednesday, 8, jan, 1992, 10, 26,

24) .
event([mkdir, 1 ', busin], business, Wednesday, 8, jan, 1992, 10, 26,

24) .
event([cd, ’ ', business], business, Wednesday, 8, jan, 1992, 10, 26,

23) .
event([chmod, ' 0, 1 ', personal], mail, Wednesday, 8, jan, 1992, 10,

26, 23).
event([cd, 1 ', personal, (/), mail], mail, Wednesday, 8, jan, 1992, 10,

25 2

26, 23).
event([chmod, 1 *, 0, ' tojim], persout, Wednesday, 8, jan, 1992, 10,

26, 23) .
event([mkfile, ' ', tojim], persout, Wednesday, 8, jan, 1992, 10, 26,

23) .
e v e n t ([c d , 1 ' , p e r s o n a l , (/) , p e r s o u t] , p e r s o u t , W e d n e s d a y , 2, m a y ,

1991, 10, 26, 23).
e v e n t ([c h m o d , ' 0, 1 ' , f r o m m a r y] , p e r s i n , W e d n e s d a y , 8, j a n , 1992,

10, 26, 23).
e v e n t ([m k f i l e , 1 \ f r o m m a r y] , p e r s i n , W e d n e s d a y , 8, j a n , 1992, 10, 26,

22) .
event([chmod, 1 ', 0, ’ 1, fromjim], persin, Wednesday, 8, jan, 1992,

10, 26, 22).
e v e n t ([m k f i l e , ' ' , f r o m j i m] , p e r s i n , W e d n e s d a y , 8, j a n , 1992, 10, 26,

22) .
e v e n t ([c d , 1 ' , p e r s i n] , p e r s i n , W e d n e s d a y , 8, j a n , 1992, 10, 26, 22).
event([mkdir, 1 ’, persout], personal, Wednesday, 8, jan, 1992, 10, 26,

22) .
e v e n t ([m k d i r , 1 ’ , p e r s i n] , p e r s o n a l , W e d n e s d a y , 8, j a n , 1992, 10, 26,

21) .
e v e n t ([c d , 1 * , p e r s o n a l] , p e r s o n a l , W e d n e s d a y , 8, j a n , 1992, 10, 26,

21) .
event([mkdir, 1 ', business], mail, Wednesday, 8, jan, 1992, 10, 26,

21) .
e v e n t ([m k d i r , ' ' , p e r s o n a l] , m a i l , W e d n e s d a y , 8, j a n , 1992, 10, 26,

21) .
e v e n t ([c d , 1 * , m a i l] , m a i l , W e d n e s d a y , 8, j a n , 1992, 10, 26, 21).
e v e n t ([m k d i r , 1 ' , a d d r e s s e s] , h o m e , W e d n e s d a y , 8, j a n , 1992, 10, 26,

21) .
event ([mkdir, 1 ', mail], home, Wednesday, 8, jan, 1992, 10, 26, 21).

/* n o neven t/12 * /

n o n e v e n t([mv, 1 ’ , m a i l , (/) , p e r s o n a l , (/) , p e r s o u t , (/) , t o j im , * ’ ,
p e rs o u t , (/) , p e rso n a l , (/) , m a il , (/) , home, (/) , tem p], re fe re n c e ,
home, p e rso u t , home, monday, 20, january , 1992, 19, 55, 18).

non ev en t([mv, 1 ’ , m a il , (/) , p e rso n a l , (/) , p e r s o u t , (/) , to j im , 1 ' , 1
' , p e r s o u t , (/) , p e r s o n a l , (/) , m a i l , (/) , home, (/) , te m p] ,
re fe re n c e , home, 1 ' , home, monday, 20, january , 1992, 19, 54, 25).

n o n e v e n t ([I s , * ' , ' - l '] , r e f e r e n c e , tem p, ’- I ' , tem p, monday, 20,
january , 1992, 19, 50, 51).

n o n e v e n t ([I s , 1 ' , ' - I '] / e x e c u t e , home, tem p, tem p , monday, 20,
january , 1992, 19, 50, 51).

n o n ev en t([I s , ' ' , ' - I '] / l e x i c a l , n u l , n u l , temp, monday, 20, january ,
1992, 19, 50, 50).

n o n ev en t([’ ; s '] , l e x i c a l , nu l, nu l , temp, monday, 20, jan u ary , 1992, 19,
50, 48) .

n o n e v e n t ([m kdir, ' ’ , p e r s o n a l] , d u p l i c a t i o n , home, p e r s o n a l , home,
monday, 20, january , 1992, 19, 49, 24).

n o n e v e n t ([mv, ’ *, temp, (/) , su p p ad r , 1 ' , b u s i n e s s , (/) , b u s a d d r] ,
r e f e r e n c e , temp, suppadr , home, monday, 20, ja n u a ry , 1992, 19, 45,
0).

n o n e v e n t ([cd , 1 ’ , t e p] , r e f e r e n c e , home, t e p , home, monday, 20,
january , 1992, 19, 44, 24).

noneven t ([mv, ’ *, temp, (/) , su p p ad r , ' ' , b u s i n e s s , (/) , b u s a d d r] ,
r e f e r e n c e , temp, suppadr, home, monday, 20, j a n u a ry , 1992, 19, 44,
14) .

nonevent ([mv, 1 ' , home, (/) , temp, (/) , c u s ta d d r , ’ *, b u s in e s s , (/) ,
b u s a d d r] , r e f e r e n c e , home, home, home, monday, 20, ja n u a r y , 1992,
19, 42, 42).

n o n e v e n t ([mkdir, 1 *, b u s in e s s , (/) , b u s a d d r] , w r i t e , home, b u s in e s s ,
home, monday, 20, january , 1992, 19, 41, 30).

n o n ev en t([mkdir, ’ ' , b u s in e s s , (/) , b u sa d d r] , l e x i c a l , n u l , n u l , home,
monday, 20, january , 1992, 19, 41, 29).

253

nonevenr i im a j , l e x i c a l , n u i , n u l , home, monday, 20, ja n u a ry , 1992, 19,
41, 19).

n o n e v e n t ([r m d i r , 1 ' , a d d r e s s e s , (/) , b u s a d d r] , r e f e r e n c e , tem p,
a d d re sses , temp, monday, 20, january , 1992, 19, 40, 14).

n o n e v e n t([mv, ' ' , suppaddr] , sy n tax , n u l , n u l , a d d re s s e s , monday, 20,
january , 1992, 19, 39, 5) .

n o n e v e n t ([rm d ir , 1 ' , b u sa d d r] , nonempty, n u l , n u l , a d d re s s e s , monday,
20, january , 1992, 19, 38, 20).

n o n ev en t([cd, ' ' , a d d re s se s] , r e f e re n c e , b u s in e s s , a d d re s se s , b u s in e s s ,
monday, 20, january , 1992, 19, 37, 55).

n o n ev en t([cd, 1 ' , busadd r] , r e f e re n c e , home, busaddr, home, monday, 20,
january , 1992, 19, 37, 24).

n o n e v en t([I s , 1 ' , ’- 1 ’ , 1 ' , tem p], r e f e r e n c e , busadd r , temp, busaddr,
monday, 20, january , 1992, 19, 35, 41).

n o n e v e n t ([I s , 1 ' , ' - I * , 1 ' , home, (/) , tem p] , r e f e r e n c e , b u s a d d r ,
home, busaddr, monday, 20, january , 1992, 19, 35, 34).

n o n e v e n t ([mv, ' ' , c u s t a d d r , (/) , a d d r e s s e s , ' ' , te m p] , r e f e r e n c e ,
busaddr, cu s tad d r , busaddr, monday, 20, january , 1992, 19, 32, 55) .

n o n e v e n t ([mv, 1 ' , c u s ta d d r , ' ' , a d d r e s s e s , ' ' , tem p], sy n ta x , n u l ,
n u l , busaddr, monday, 20, january , 1992, 19, 32, 42).

n o n e v e n t([mv, ' ' , c u s ta d d r , 1 ' , b u sad d r , (/) , a d d r e s s e s , 1 ' , tem p],
re f e re n c e , busaddr, busaddr, busaddr, monday, 20, jan u a ry , 1992, 19,
32, 6) .

n o n e v en t([cd, ' ' , 1 ' , a d d re sse s , (/) , b u sad d r] , r e f e r e n c e , home, ' ' ,
home, monday, 20, january , 1992, 19, 30, 49).

n o n e v e n t ([I s , 1 ' , ' - I ' , 1 ' , tem p] , r e f e r e n c e , b u s i n , tem p, b u s in ,
monday,- 20, january , 1992, 19, 21, 58) .

n o n e v en t([I s , 1 ' , ' - 1 ' , 1 ' , home, (/) , tem p], r e f e r e n c e , b u s in , home,
b u s in , monday, 20, january , 1992, 19, 21, 53) .

n o n e v e n t ([I s , ' *, ' - 1 '] , r e f e r e n c e , b u s in , ' - l 1, b u s i n , monday, 20,
january , 1992, 19, 20, 3) .

n o n e v e n t([I s , * ' , ’- l 1]/ e x ecu te , b u s in e s s , b u s in , b u s in , monday, 20,
january , 1992, 19, 20, 3) .

n o n ev en t([I s , 1 ' , ' - 1 '] , l e x i c a l , n u l , n u l , b u s in , monday, 20, january ,
1992, 19, 20, 3) .

n o n ev en t([pwd], l e x i c a l , nu l , nu l , b u s in , monday, 20, jan u a ry , 1992, 19,
19, 51).

no n ev en t([pwd], l e x i c a l , nu l , nu l , b u s in , monday, 20, jan u a ry , 1992, 19,
19, 50).

n o n e v e n t([1[wdf] , l e x i c a l , n u l , n u l , b u s in , monday, 20, ja n u a ry , 1992,
19, 19, 48).

n o n ev en t([mv, ' ' , com pla in tin , 1 ' , home, (/) , temp], r e f e r e n c e , b u s in ,
home, b u s in , monday, 20, january , 1992, 19, 19, 9) .

n o n e v e n t ([mv, ' ' , c o m p la in t in , 1 ' , tem p], d u p l i c a t i o n , home, temp,
b u s in , monday, 20, january , 1992, 19, 18, 32).

n o n e v e n t([cd, ' '] , sy n tax , n u l , n u l , temp, monday, 20, ja n u a ry , 1992,
19, 15, 28).

n o n e v e n t([mv, 1 ' , m a i l , (/) , b u s in e s s , (/) , b u so u t , (/) , e n q u i r o u t , '
' , home, (/) , ' t e m p] 1]/ r e f e r e n c e , home, home, home, monday, 20,
january , 1992, 19, 14, 6).

nonevent ([cd, ' '] , syntax , n u l , n u l , bu so u t , monday, 20, jan u ary , 1992,
19, 11, 0) .

n o n e v e n t ([m kdir, 1 ' , b u s i n e s s] , d u p l i c a t i o n , home, b u s i n e s s , home,
monday, 20, january , 1992, 19, 4, 4) .

n o n e v e n t ([m kdir, ' ' , b u s i n e s s] , d u p l i c a t i o n , home, b u s i n e s s , home,
monday, 20, january , 1992, 19, 3, 9) .

n o n e v e n t ([I s , 1 ' , ' - 1 '] , r e f e r e n c e , home, ' - 1 ' , home, monday, 20,
ja n u a ry ,1992, 18, 59, 32).

n o n e v e n t ([I s , ' ' , ' - 1 '] , e x e c u t e , r o o t , home, home, monday, 20,
ja n u a r y ,1992, 18, 59, 31).

n o n e v en t([I s , ' ' , ' - 1 '] , l e x i c a l , n u l , n u l , home, monday, 20, jan u a ry ,
1992, 18, 59, 31).

n o n e v en t([pwd], l e x i c a l , n u l , n u l , home, monday, 20, ja n u a ry , 1992, 18,
56, 57).

n o n e v en t([pwd], l e x i c a l , n u l , n u l , home, monday, 20, ja n u a ry , 1992, 18,

254

Ob, 0/) .
n o n e v e n t(['p w d] '] , l e x i c a l , n u l , n u l , home, monday, 20, ja n u a ry , 1992,

18, 56, 54).
n o n ev en t([cd, ' ' , p e r s in] , re fe re n c e , p e r s o u t , p e r s in , p e r s o u t , monday,

20, january , 1992, 18, 51, 4) .
n o n e v e n t ([I s , ' ' , 1] , r e f e r e n c e , m a i l , 1, m a i l , monday, 20, jan u a ry ,

1992, 18, 49, 26).
n o n e v e n t([cd, ' ' , b u s o u t] , r e f e r e n c e , home, b u so u t , home, monday, 20,

january , 1992, 18, 48, 40).
n o n e v e n t([cd, ' ' , b u s in e s s] , r e f e r e n c e , home, b u s in e s s , home, monday,

20, january , 1992, 18, 48, 37).
n o n e v e n t([cd, ' ' , b u s in e s s] , r e f e r e n c e , b u s in e s s , b u s in e s s , b u s in e s s ,

monday, 20, january , 1992, 18, 37, 38).
n o n e v e n t ([chmod, ' ' , 700, ' ' , c o m p l a i n t i n] , r e f e r e n c e , b u s i n e s s ,

com pla in tin , b u s in e s s , monday, 20, january , 1992, 18, 36, 42).
n o n e v e n t ([I s , ' ' , ' - 1 '] , r e a d , m a i l , b u s in e s s , b u s in e s s , monday, 20,

january , 1992, 18, 31, 59) .
n o n e v e n t ([cd, ’ ' , p e r s a d d r] , e x e c u te , a d d r e s s e s , p e r s a d d r , p e r s a d d r ,

monday, 20, january , 1992, 18, 23, 46).
n o n e v e n t([cd, ' ' , p e r s a d d r] , l e x i c a l , n u l , n u l , p e r s a d d r , monday, 20,

january , 1992, 18, 23, 45) .
n o n e v en t([c h] , l e x i c a l , n u l , n u l , a d d re s s e s , monday, 20, ja n u a ry , 1992,

18, 23, 40).
n o n e v e n t ([cd , ' ' , a d d r e s s e s] , r e f e r e n c e , a d d r e s s e s , a d d r e s s e s ,

ad d re sse s , monday, 20, january , 1992, 18, 22, 4) .
n o n e v e n t([cd, ' ' , p e r s a d d r] , e x e c u te , a d d re s s e s , p e r s a d d r , a d d re s s e s ,

monday, 20, january , 1992, 18, 20, 30).
n o n e v e n t([cd, ' ' , (/) , a d r e s s e s] , r e f e r e n c e , p e r s a d d r , (/) , p e r s a d d r ,

monday, 20, january , 1992, 18, 19, 33).
n o n e v e n t ([cd , ' ' , p e r s a d d r , (/) , a d d r e s s e s] , r e f e r e n c e , p e r s a d d r ,

p e rsad d r , p e rsad d r , monday, 20, jan u ary , 1992, 18, 18, 10).
n o n e v e n t ([cd , ’ ’ , r o o t , (/) , home, (/) , a d d r e s s e s] , r e f e r e n c e ,

p e rsad d r , r o o t , p e rsad d r , monday, 20, january , 1992, 18, 17, 37).
n o n e v e n t([I s , ' ' , ' - 1 '] , r e f e r e n c e , p e r s a d d r , ' - 1 ' , p e r s a d d r , monday,

20, january , 1992, 18, 17, 8) .
n o n e v e n t ([I s , ' ' , ' - 1 '] , l e x i c a l , n u l , n u l , p e r s a d d r , monday, 20,

january , 1992, 18, 17, 7) .
n o n e v e n t([I s] , l e x i c a l , n u l , n u l , p e r s a d d r , monday, 20, ja n u a ry , 1992,

18, 17, 1) .
n o n e v e n t([cd, ' ' , p e r s a d d r] , r e f e r e n c e , p e r s a d d r , p e r s a d d r , p e r s a d d r ,

monday, 20, january , 1992, 18, 16, 34).
n o n e v en t([pwd], l e x i c a l , n u l , n u l , p e r s a d d r , monday, 20, jan u a ry , 1992,

18, 16, 17).
n o n e v en t([pwd], l e x i c a l , n u l , n u l , p e r s a d d r , monday, 20, ja n u a ry , 1992,

18, 16, 17) .
n o n e v e n t([I s] , l e x i c a l , n u l , n u l , p e r s a d d r , monday, 20, ja n u a ry , 1992,

18, 15, 46).
n o n e v e n t ([c d , ' ' , a d d r e s s e s] , r e f e r e n c e , p e r s a d d r , a d d r e s s e s ,

a d d re sses , monday, 20, january , 1992, 18, 14, 40).
n o n e v e n t ([cd , ' ' , a d d r e s s e s] , e x e c u te , home, a d d r e s s e s , a d d r e s s e s ,

monday, 20, january , 1992, 18, 14, 40).
n o n ev en t([cd, ' ' , a d d re s s e s] , l e x i c a l , n u l , n u l , a d d re s se s , monday, 20,

january , 1992, 18, 14, 40).
n o n e v e n t([c h] , l e x i c a l , n u l , n u l , p e r s a d d r , monday, 20, ja n u a ry , 1992,

18,14, 31).
n o n e v e n t ([chmod, ' ' , 400, ' ' , p e r s a d d r] , r e f e r e n c e , p e r s a d d r ,

p e rsad d r , p e rsad d r , monday, 20, jan u a ry , 1992, 18, 13, 17) .
n o n e v e n t([I s , ' ' , ' - 1 '] , re ad , a d d r e s s e s , p e r s a d d r , p e r s a d d r , monday,

20, january , 1992, 18, 12, 19).
n o n e v e n t ([chmod, ' ' , p e r s a d d r] , s y n ta x , n u l , n u l , a d d r e s s e s , monday,

20, january , 1992, 18, 11, 14).
n o n e v e n t ([chmod, ' ' , 100], s y n ta x , n u l , n u l , a d d r e s s e s , monday, 20,

january , 1992, 18, 9, 10).
n o n ev en t([chmod, (/) , home, (/) , a d d re s s e s , (/) , p e r s a d d r] , sy n tax , n u l ,

n u l , ad d re sses , monday, 20, january , 1992, 18, 7, 23) .

255

n o n e v e n t (icnmoa, ■ ■, nome, { /) , a a a r e s s e s , (/)] , s y n ta x , n u l , n u i ,
a d d re sses , monday, 20, january , 1992, 18, 7, 0) .

n o n e v e n t ([chmod, 1 ' , 100, 1 ' , r o o t , (/) , home, (/) , a d d r e s s e s] ,
r e f e r e n c e , a d d r e s s e s , r o o t , a d d r e s s e s , monday, 20, j a n u a ry , 1992,
18, 6, 23).

n o n ev en t([chmod, 1 1, 100, ' '] , range , n u l , nu l , a d d re s s e s , monday, 20,
january , 1992, 18, 6, 1) .

n o n e v e n t ([chmod, * ' , 1 ' , 100], s y n ta x , n u l , n u l , a d d r e s s e s , monday,
20, january , 1992, 18, 5, 38).

n o n e v e n t([cd, 1 ' , p e r s a d d r] , e x e c u te , a d d re s s e s , p e r s a d d r , a d d re s s e s ,
monday, 20, january , 1992, 18, 4, 44).

/* owner/1 * /

owner(S2).

/* to t a l t im e /3 * /

t o t a l t i m e (1, 17, 4) .

/* f i l e / 3 * /

f i l e (sm iths, p e rsad d r , 700).
f i l e (j o n e s e s , p e rsad d r , 700).
f i l e (c u s t a d d r , busaddr, 700).
f i l e (s u p p r a d d r , busaddr, 700).
f i l e (t h a n k s i n , busm ailin , 0) .
f i l e (c o m p la in t in , b u sm ailin , 0) .
f i le (c o m p re p ly , busm ailou t, 0) .
f i l e (i n q u i r e o u t , busm ailou t, 0) .
f i l e (a c c o u n ts a d d r , busaddr, 700).
f ile (f rom m ary , p e rsm a il , 0) .
f i l e (f ro m j im , p e rsm ail , 0) .
f i l e (t o j i m , pe rsm ail , 0) .

/* d i r / 4 * /

d i r (r o o t , 0, nu l , [home]).
d i r (p e r s a d d r , 700, p e rso n a l , [jo n eses , s m ith s]) .
d i r (b u s in e s s , 700, home, [busmail, b u s a d d r]) .
dir(hom e, 700, ro o t , [bus iness , p e r s o n a l]) .
d i r (b u sm a i l in , 700, busm ail, [th an k s in , c o m p la in t in]) .
d i r (b u sm a i lo u t , 700, busm ail, [compreply, in q u i r e o u t]) .
d ir (b u sm a i l , 300, b u s in e s s , [busm ailout, b u s m a i l in]) .
d ir (b u sa d d r , 700, b u s in es s , [accountsaddr, suppraddr, c u s ta d d r]) .
d i r (p e r s m a i l , 0, p e rso n a l , [frommary, fromjim, t o j im]) .
d i r (p e r s o n a l , 0, home, [persaddr , p e r s m a i l]) .

/* e v e n t /9 * /

e v e n t ([l s , 1 ' , ' - 1 '] , home, tuesd ay , 21, january , 1992, 18, 50, 20).
even t ([chmod, 1 *, 0, 1 *, p e r s o n a l] , home, tu e sd a y , 21, ja n u a ry , 1992,

18, 50, 16).
e v e n t ([c d] , home, tuesday , 21, january , 1992, 18, 50, 0) .
e v e n t([c d , 1 ' , p e r s o n a l] , p e rso n a l , tu e sd ay , 21, jan u a ry , 1992, 18, 49,

59) .
e v e n t ([I s , 1 ' , ' - 1 '] , p e r s a d d r , tu e s d a y , 21, j a n u a r y , 1992, 18, 49,

39) .
e v e n t([c d , ’ ' , p e rs a d d r] , p e rsad d r , tu e sd ay , 21, jan u a ry , 1992, 18, 49,

34) .

256

e v e n t ([chmod, ' ' , 0, 1 ' , p e r s m a i l] , p e r s o n a l , tu e s d a y , 21, ja n u a ry ,
1992, 18, 49, 27).

e v e n t([c d , 1 ' , p e r s o n a l] , p e rso n a l , tu esd ay , 21, jan u ary , 1992, 18, 48,
57) .

e v e n t ([I s , 1 ' , ' - I '] , p e r s m a i l , tu e s d a y , 21, j a n u a r y , 1992, 18, 48,
45) .

e v e n t ([chmod, ' 0, 1 ' , to j im] , p e rsm a i l , tuesd ay , 21, january , 1992,
18, 48, 40).

e v e n t ([chmod, 1 ’ , 0, 1 ' , f ro m jim], p e r s m a i l , tu e s d a y , 21, ja n u a r y ,
1992, 18, 48, 32).

e v e n t ([chmod, 1 ’ , 0, 1 ' , frommary], p e r s m a i l , tu e s d a y , 21, ja n u a ry ,
1992, 18, 48, 21).

e v e n t ([I s , ' ' , ' - I '] , p e r s m a i l , tu e s d a y , 21, ja n u a r y , 1992, 18, 47,
59) .

e v e n t([c d , * ' , p e rs m a i l] , p e rsm a il , tu e sd ay , 21, jan u ary , 1992, 18, 47,
56) .

e v e n t([c d , ' ' , p e r s o n a l] , p e rso n a l , tu e sd ay , 21, jan u ary , 1992, 18, 47,
45) .

e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 18, 47, 38).
e v e n t ([l s , 1 *, 1—1 '] , busaddr, tu e sd ay , 21, january , 1992, 18, 47, 30).
e v e n t ([m kfile , ' ' , a cco u n tsad d r] , busadd r , tu e sd ay , 21, jan u ary , 1992,

18, 47, 26).
e v e n t ([l s , ' ' , ' - 1 '] , busaddr, tu e sd ay , 21, january , 1992, 18, 46, 33).
e v e n t ([c d , ' ' , b u sa d d r] , busaddr , tu e s d a y , 21, ja n u a ry , 1992, 18, 46,

30) .
e v e n t ([I s , 1 *, ' - I '] , b u s in e s s , t u e s d a y , 21, ja n u a r y , 1992, 18, 46,

11) .
e v e n t ([chmod, 1 *, 300, 1 ' , b u sm a i l] , b u s in e s s , tu e s d a y , 21, ja n u a ry ,

1992, 18, 46, 7) .
e v e n t([c d , ' ' , b u s in e s s] , b u s in e s s , tu e sd ay , 21, jan u ary , 1992, 18, 44,

23) .
e v e n t ([c d , 1 1, b u s m a i l] , busm ail , tu e s d a y , 21, ja n u a ry , 1992, 18, 44,

11) .
e v e n t ([chmod, 1 *, 0, 1 ' , i n q u i r e o u t] , b u s m a i l o u t , t u e s d a y , 21,

january , 1992, 18, 43, 58).
even t ([chmod, ’ ' , 0, 1 ' , compreply], b u sm ailou t, tu e sd a y , 21, january ,

1992, 18, 43, 45).
e v e n t ([m kfile , ' *, compreply], b u sm ailo u t , tu e sd ay , 21, jan u a ry , 1992,

18, 43, 29).
e v e n t ([I s , ' f , 1—1 1] , bu sm ailo u t , tu e s d a y , 21, ja n u a ry , 1992, 18, 43,

5).
e v e n t([c d , 1 ' , busm ailo u t] , busm ailou t, tu esd ay , 21, jan u ary , 1992, 18,

43, 2) .
e v e n t ([c d , ' ’ , b u sm a i l] , busm ail, tu e sd a y , 21, ja n u a ry , 1992, 18, 42,

46) .
e v e n t ([I s , ' ' , ' - I '] , b u s m a i l in , tu e s d a y , 21, ja n u a ry , 1992, 18, 42,

39) .
e v e n t ([chmod, ' ' , 0, 1 ' , c o m p l a i n t i n] , b u s m a i l i n , t u e s d a y , 21,

january , 1992, 18, 42, 26).
e v e n t ([chmod, ' 0, 1 ' , th a n k s in] , b u s m a i l in , tu e sd a y , 21, ja n u a ry ,

1992, 18, 42, 16).
e v e n t ([I s , 1 ' , ' - 1 '] , b u s m a i l in , tu e s d a y , 21, ja n u a ry , 1992, 18, 41,

41) .
e v e n t ([c d , ' ' , b u s m a i l in] , b u sm a i l in , tu e sd a y , 21, ja n u a ry , 1992, 18,

41, 35).
e v e n t ([c d , 1 ' , b u sm a i l] , busm ail, tu e s d a y , 21, ja n u a ry , 1992, 18, 40,

59) .
e v e n t ([m k f i le , ’ ' , th a n k s i n] , b u s m a i l in , tu e s d a y , 21, j a n u a ry , 1992,

18, 40, 46).
e v e n t ([I s] , busm ailin , tuesday , 21, jan u a ry , 1992, 18, 40, 28).
e v e n t ([c d , ' *, b u s m a i l in] , b u sm a i l in , tu e sd a y , 21, ja n u a ry , 1992, 18,

40, 22).
e v e n t ([I s] , busm ail, tuesday , 21, jan u a ry , 1992, 18, 40, 15).
e v e n t ([c d , 1 ' , b u sm a i l] , busm ail, tu e s d a y , 21, ja n u a ry , 1992, 18, 40,

1 1) .

257

e v e n t (L ls j , b u s in e s s , tu esd ay , 21, january , 1992, 18, 40, 5) .
e v e n t([c d , 1 ' , b u s in e s s] , b u s in e s s , tuesday , 21, january , 1992, 18, 40,

3).
e v e n t ([I s] , home, tu e sd ay , 21, january , 1992, 18, 39, 33).
e v e n t ([c d] , home, tu e sd ay , 21, january , 1992, 18, 38, 57).
e v e n t ([I s] , ad d re sses , tuesd ay , 21, january , 1992, 18, 38, 52).
e v e n t ([c d , ' ' , a d d r e s s e s] , a d d re s s e s , tu e sd a y , 21, ja n u a ry , 1992, 18,

38, 38) .
e v e n t ([I s] , home, tu e sd ay , 21, january , 1992, 18, 38, 25).
e v e n t ([rm d ir , ' *, s c r a p] , home, tu e s d a y , 21, ja n u a r y , 1992, 18, 38,

22) .
e v e n t ([c d] , home, tu e sd ay , 21, january , 1992, 18, 38, 17).
e v e n t ([I s] , sc rap , tu e sd ay , 21, january , 1992, 18, 38, 14).
e v e n t([rm , 1 f , f r o m e r i c] , s c r a p , tu e sd a y , 21, ja n u a ry , 1992, 18, 38,

12) .
e v e n t ([mv, 1 ' , s u p p ra d d r , 1 ' , home, (/) , b u s i n e s s , (/) , b u s a d d r] ,

sc rap , tuesday , 21, january , 1992, 18, 37, 54).
e v e n t ([mv, 1 ' , c u s t a d d r , 1 ' , home, (/) , b u s i n e s s , (/) , b u s a d d r] ,

s c rap , tuesday , 21, january , 1992, 18, 36, 41).
e v e n t ([I s] , sc rap , tu esd ay , 21, january , 1992, 18, 36, 6) .
e v e n t([c d , ’ ' , s c r a p] , sc rap , tu esd ay , 21, january , 1992, 18, 36, 4) .
e v e n t ([rm dir , 1 ' , m a i l i n] , home, tu e sd a y , 21, ja n u a ry , 1992, 18, 35,

54) .
e v e n t ([I s] , home, tu e sd ay , 21, january , 1992, 18, 35, 31).
e v e n t ([mv, 1 ' , i n q u i r e o u t , ' ' , b u s i n e s s , (/) , b u s m a i l , (/)

b u sm ailou t] , home, tu esd ay , 21, january , 1992, 18, 35, 2) .
e v e n t ([mv, 1 ' , c o m p l a i n t i n , ’ ’ , b u s i n e s s , (/) , b u s m a i l , (/) /

b u sm ai l in] , home, tu esd ay , 21, january , 1992, 18, 33, 37).
e v e n t ([I s] , home, tu e sd ay , 21, january , 1992, 18, 33, 8) .
e v e n t ([c d] , home, tu esd ay , 21, january , 1992, 18, 33, 3) .
e v e n t ([c d , 1 ' , b u s m a i l in] , b u sm a i l in , tu e sd a y , 21, ja n u a ry , 1992, 18,

31, 49) .
e v e n t ([mkdir, ' ' , b u sm ailo u t] , busm ail, tuesday , 21, jan u ary , 1992, 18,

31, 22) .
e v e n t ([mkdir, 1 ' , b u s m a i l in] , busm ail, tu e sd ay , 21, jan u a ry , 1992, 18,

31, 3) .
e v e n t ([c d , 1 ’ , b u sm a i l] , busm ail , tu e sd a y , 21, ja n u a ry , 1992, 18, 30,

51) .
e v e n t ([mkdir, 1 ' , b u sm a i l] , b u s in e s s , tu e sd a y , 21, ja n u a ry , 1992, 18,

30, 46) .
e v e n t ([I s] , b u s in e s s , tu esd ay , 21, january , 1992, 18, 30, 38).
e v e n t ([mkdir, 1 ' , b u sa d d r] , b u s in e s s , tu e sd a y , 21, ja n u a ry , 1992, 18,

30, 33) .
e v en t([c d , 1 *, b u s in e s s] , b u s in e s s , tuesd ay , 21, jan u ary , 1992, 18, 30,

14) .
e v e n t ([c d] , home, tu e sd ay , 21, january , 1992, 18, 30, 10).
e v e n t ([rm dir, 1 ' , b u sad d r] , a d d re sse s , tu e sd ay , 21, ja n u a ry , 1992, 18,

30, 8) .
e v e n t ([c d , 1 ' , a d d r e s s e s] , a d d re s s e s , tu e sd a y , 21, ja n u a ry , 1992, 18,

29, 57) .
e v e n t ([I s] , busaddr, tuesd ay , 21, january , 1992, 18, 29, 39).
e v e n t ([c d , 1 ’ , b u s a d d r] , busadd r , tu e sd a y , 21, ja n u a ry , 1992, 18, 29,

35) .
e v e n t ([c d , 1 ’ , a d d r e s s e s] , a d d re s s e s , tu e sd a y , 21, ja n u a ry , 1992, 18,

29, 27).
e v e n t ([c d] , home, tu esd ay , 21, january , 1992, 18, 29, 20).
e v en t([c d , 1 1, b u s in e s s] , b u s in e s s , tuesd ay , 21, jan u ary , 1992, 18, 28,

56) .
e v e n t ([mkdir, 1 b u s in e s s] , home, tu e sd ay , 21, ja n u a ry , 1992, 18, 28,

37) .
even t([rm , 1 ' , temp], home, tuesday , 21, january , 1992, 18, 28, 11).
e v e n t ([l s , ' ' , ' - 1 '] , home, tuesday , 21, january , 1992, 18, 27, 45).
e v e n t ([rmdir, 1 ' , m a i l] , home, tu e sd ay , 21, jan u ary , 1992, 18, 27, 34).
e v e n t ([c d] , home, tu esd ay , 21, january , 1992, 18, 27, 29).
e v e n t ([rm dir, 1 ’ , b u s in e s s] , m a i l , tu e sd ay , 21, jan u a ry , 1992, 18, 27,

258

2 4) .
e v e n t([c d , 1 ' , m a i l] , m a il , tu esd ay , 21, january , 1992, 18, 27, 16).
even t ([rmdir, 1 *, b u s in] , b u s in e s s , tu esd ay , 21, jan u ary , 1992, 18, 27,

12) .
e v e n t ([rm d ir , 1 *, b u s o u t] , b u s in e s s , tu e sd a y , 21, ja n u a ry , 1992, 18,

27, 5) .
e v e n t([c d , 1 ' , b u s in e s s] , b u s in e s s , tuesd ay , 21, january , 1992, 18, 26,

54) .
e v e n t([c d , 1 *, m a i l] , m a il , tu esd ay , 21, january , 1992, 18, 26, 50).
event([m v, * ' , m a il , (/) , b u s in e s s , (/) , b u s in , (/) , c o m p la in tin , 1 ' ,

c o m p la in tin] , home, tuesday , 21, january , 1992, 18, 25, 1) .
even t ([mv, ' ’ , m a i l , (/■), b u s in e s s , (/) , busou t, (/) , in q u i r e o u t , 1 1,

i n q u i r e o u t] , home, tuesday , 21, january , 1992, 18, 24, 33).
e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 18, 23, 54).
e v e n t ([I s] , busout, tu esd ay , 21, january , 1992, 18, 22, 13).
e v e n t ([c d , 1 ' , b u s o u t] , b u s o u t , tu e s d a y , 21, ja n u a r y , 1992, 18, 22,

11) .
e v e n t([c d , 1 ' , b u s in e s s] , b u s in e s s , tu esd ay , 21, january , 1992, 18, 22,

2) .
e v e n t([c d , 1 ' , m a i l] , m a il , tu e sd ay , 21, january , 1992, 18, 21, 57).
even t ([cd] , home, tu esd ay , 21, january , 1992, 18, 21, 46).
e v e n t ([I s] , sc rap , tu esd ay , 21, jan u ary , 1992, 18, 21, 9) .
even t([m v, 1 *, jo n e se s , ' V, home, (/) , p e r s o n a l , (/) , p e r s a d d r , (/) ,

jo n e se s] , sc rap , tuesd ay , 21, january , 1992, 18, 21, 7) .
e v e n t ([mv, ' ' , sm ith s , 1 ' , home, (/) , p e r s o n a l , (/) , p e r s a d d r , (/) ,

s m ith s] , sc rap , tu esd ay , 21, january , 1992, 18, 20, 45).
event([m v, 1 ' , frommary, 1 ' , home, (/) , p e r s o n a l , (/) , p e rsm a i l , (/) ,

frommary], sc rap , tuesd ay , 21, january , 1992, 18, 19, 56).
even t([m v, 1 ' , from jim , 1 ' , home, (/) , p e r s o n a l , (/) , p e r s m a i l , (/) ,

from jim], sc rap , tu esd ay , 21, jan u ary , 1992, 18, 19, 16).
e v e n t ([I s] , sc rap , tu e sd ay , 21, january , 1992, 18, 18, 23).
e v e n t(fe d , 1 ' , s c r a p] , sc rap , tu e sd ay , 21, january , 1992, 18, 18, 20).
e v e n t ([mv, 1 ' , to j im , 1 f , p e r s o n a l , (/) , p e rsm a il , (/) , t o j im] , home,

tuesday , 21, january , 1992, 18, 17, 55).
e v e n t ([I s] , home, tuesd ay , 21, january , 1992, 18, 16, 1) .
e v e n t ([mv, 1 ' , p e r s o n a l , (/) , home, (/) , s c r a p , (/) , t o j i m , ’ ' ,

t o j i m] , home, tu esd ay , 21, january , 1992, 18, 15, 59).
e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 18, 13, 33).
e v e n t([c d , 1 *, p e rs m a i l] , p e rsm a il , tuesd ay , 21, january , 1992, 18, 12,

36) .
e v e n t ([I s , 1 ' , ' - 1 '] , p e r s o n a l , tu e s d a y , 21, ja n u a r y , 1992, 18, 11,

59) .
e v e n t ([mkdir, 1 1, p e r s a d d r] , p e r s o n a l , tu e sd ay , 21, jan u ary , 1992, 18,

11, 51).
e v en t([c d , 1 ' , p e r s o n a l] , p e rso n a l , tu esd ay , 21, jan u ary , 1992, 18, 11,

34) .
e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 18, 11, 28).
e v e n t([c d , 1 *, m a i l] , m a il , tu esd ay , 21, january , 1992, 18, 11, 24).
e v e n t ([c d] , home, tu esd ay , 21, january , 1992, 18, 11, 20).
e v e n t ([rmdir, ’ ' , p e rs a d d r] , a d d re sse s , tuesday , 21, jan u ary , 1992, 18,

11, 17).
e v e n t ([c d , 1 ' , a d d r e s s e s] , a d d re s s e s , tu e sd a y , 21, ja n u a ry , 1992, 18,

11/ 3) .
e v e n t ([c d] , home, tuesday , 21, january , 1992, 18, 10, 48).
e v e n t ([mkdir, * *, p e r s m a i l] , p e r s o n a l , tu e sd ay , 21, jan u a ry , 1992, 18,

10, 20).
e v e n t ([rm dir , ’ ' , p e rm a i l] , p e r s o n a l , tu e sd a y , 21, ja n u a ry , 1992, 18,

10, 13).
e v e n t ([mv, 1 ' , p e rm a il , 1 ’ , p e r s m a i l] , p e rso n a l , tu e sd ay , 21, january ,

1992, 18, 9, 47).
e v e n t ([mkdir, 1 ' , p e rm a i l] , p e r s o n a l , tu e sd a y , 21, ja n u a ry , 1992, 18,

9, 24).
e v e n t([c d , 1 ' , p e r s o n a l] , p e r s o n a l , tu e sd a y , 21, jan u a ry , 1992, 18, 9,

16) .
e v e n t ([mkdir, ' ' , p e r s o n a l] , home, tu e sd a y , 21, ja n u a ry , 1992, 18, 9,

259

O) .
e v e n t ([c d] , home, tu esd ay , 21, january , 1992, 18, 8, 36).
e v e n t ([rm dir, 1 ' , p e r s o n a l] , m a i l , tu e sd a y , 21, ja n u a ry , 1992, 18, 8,

30) .
e v e n t([c d , 1 ' , m a i l] , m a il , tuesd ay , 21, january , 1992, 18, 8, 24).
e v e n t([rm d ir , ' *, p e r s in] , p e rso n a l , tuesd ay , 21, jan u ary , 1992, 18, 8,

17) .
e v e n t ([rm dir , ' ' , p e r s o u t] , p e r s o n a l , tu e sd a y , 21, ja n u a ry , 1992, 18,

8, 9) .
e v e n t([c d , ' ' , p e r s o n a l] , p e r s o n a l , tu e sd ay , 21, jan u a ry , 1992, 18, 7,

56) .
e v e n t ([I s] , p e rs o u t , tuesd ay , 21, jan u ary , 1992, 18, 7, 48).
e v e n t ([c d , ' ' , p e r s o u t] , p e r s o u t , tu e s d a y , 21, j a n u a ry , 1992, 18, 7,

45) .
e v e n t([c d , 1 ' , p e r s o n a l] , p e r s o n a l , tu e sd a y , 21, ja n u a ry , 1992, 18, 7,

35) .
e v e n t([c d , 1 ' , m a i l] , m a il , tu esd ay , 21, january , 1992, 18, 7, 29).
e v e n t ([mv, 1 *, m a i l , (/) , p e r s o n a l , (/) , p e r s i n , (/) , from jim , * ’ ,

sc rap , (/) , from jim], home, tu e sd ay , 21, january , 1992, 18, 7, 20).
e v e n t ([mv, 1 ' , m a i l , (/) , p e r s o n a l , (/) , p e r s i n , (/) , frommary, 1 ! ,

sc rap , (/) , frommary], home, tu e sd ay , 21, january , 1992, 18, 6, 57).
e v e n t ([mv, ' *, m a i l , (/) , p e r s o n a l , (/) , p e r s o u t , (/) , t o j i m , ' ' ,

sc rap , (/) , to j im] , home, tu esd ay , 21, january , 1992, 18, 6, 9) .
e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 18, 5, 15).
e v e n t ([l s , ' ’ , ' - 1 '] , sc rap , tu esd ay , 21, january , 1992, 18, 5, 9) .
e v e n t([c d , ' *, s c r a p] , sc rap , tu esd ay , 21, january , 1992, 18, 5, 4) .
e v e n t ([c d] , home, tu esd ay , 21, january , 1992, 18, 4, 55).
event([mv, * ' , a d d re sses , (/) , busaddr, (/) , suppaddr, 1 ' , s c rap , (/) ,

suppraddr] , home, tuesday , 21, jan u ary , 1992, 18, 4, 52).
event([mv, ' ' , a d d re sses , (/) , busaddr, (/) , c u s ta d d r , 1 ' , s c ra p , (/) ,

c u s ta d d r] , home, tuesd ay , 21, jan u ary , 1992, 18, 4, 3) .
e v e n t ([mv, ' ' , a d d re s s e s , (/) , p e rs a d d r , (/) , sm ith s , 1 *, s c ra p , (/) ,

sm ith s] , home, tuesd ay , 21, january , 1992, 18, 2, 56).
e v e n t ([mv, ' *, m a i l , (/) , f ro m e r ic , ' ' , s c ra p , (/) , f r o m e r i c] , home,

tuesday , 21, january , 1992, 18, 1, 54).
e v e n t ([mv, 1 f , m a i l , (/) , jo n e s e s , 1 ’ , s c r a p , (/) , j o n e s e s] , home,

tuesday , 21, january , 1992, 18, 1, 28).
e v e n t ([mv, 1 ' , m a il , ' *, s c r a p] , home, tu esd ay , 21, ja n u a ry , 1992, 18,

1/ 2) .
e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 18, 0, 50).
e v e n t ([l s , 1 ' , ’- l 1] , m a il , tuesday , 21, january , 1992, 18, 0, 8) .
ev en t([c d , 1 ' , m a i l] , m a il , tuesday , 21, january , 1992, 18, 0, 3) .
event([m v, ' f , a d d re s se s , (/) , p e rs a d d r , (/) , jo n e se s , 1 ' , m a il , (/) ,

jo n e se s] , home, tuesd ay , 21, january , 1992, 17, 59, 57).
e v e n t ([mv, 1 ' , a d d r e s s e s , 1 ' , p e r s a d d r , 1 ' , j o n e s e s , 1 ' , m a i l] ,

home, tuesday , 21, january , 1992, 17, 58, 49).
e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 17, 57, 31).
e v e n t([c d , 1 *, s c r a p] , sc rap , tuesd ay , 21, january , 1992, 17, 57, 24).
e v e n t ([l s , ' ' , ' - 1 ’] , home, tuesday , 21, january , 1992, 17, 57, 11).
e v e n t ([mkdir, ’ ' , s c r a p] , home, tu e sd ay , 21, jan u ary , 1992, 17, 57, 6).
e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 17, 55, 32).
e v e n t ([l s , 1 ' , ' - I '] , b u s in , tuesday , 21, january , 1992, 17, 54, 12).
e v e n t ([chmod, ’ ' , 700, 1 ' , c o m p la in t in] , b u s in , tu e sd a y , 21, jan u a ry ,

1992, 17, 54, 9) .
e v e n t ([l s , ' ’ , ' - l 1] , b u s in , tuesd ay , 21, january , 1992, 17, 53, 47).
ev en t([c d , 1 ' , b u s in] , b u s in , tuesd ay , 21, january , 1992, 17, 53, 42).
ev e n t([c d , 1 ' , b u s in e s s] , b u s in e s s , tu e sd ay , 21, jan u a ry , 1992, 17, 53,

38) .
e v e n t ([I s] , busou t, tuesd ay , 21, january , 1992, 17, 53, 17).
even t([rm , ' ' , ad d o u t] , busou t, tu e sd ay , 21, january , 1992, 17, 53, 2) .
e v e n t ([I s] , busout, tu esd ay , 21, jan u ary , 1992, 17, 52, 31).
e v e n t ([mv, 1 ’ , e n q u i r o u t , ' ' , i n q u i r e o u t] , b u s o u t , t u e s d a y , 21,

january , 1992, 17, 52, 29).
e v e n t ([l s , 1 ' , ' - 1 '] , busou t, tuesday , 21, january , 1992, 17, 50, 44).
e v e n t ([c d , 1 *, b u s o u t] , b u s o u t , t u e s d a y , 21, ja n u a r y , 1992, 17, 50,

260

4 1) .
e v e n t ([I s , 1 ’ , ’- l 1] / b u s i n e s s , t u e s d a y , 21, ja n u a r y , 1992, 17, 50,

22) .
e v e n t([c d , ’ ’ , b u s in e s s] , b u s in e s s , tu esd ay , 21, january , 1992, 17, 50,

18) .
e v e n t([c d , ' ' , m a i l] , m a il , tuesd ay , 21, january , 1992, 17, 50, 12).
e v e n t([c d , 1 ' , p e r s o n a l] , p e rs o n a l , tu esd ay , 21, january , 1992, 17, 50,

9) .
e v e n t ([l s , 1 ’ , ' - 1 '] / p e r s in , tuesd ay , 21, january , 1992, 17, 49, 48).
e v e n t ([c d , 1 ’ , p e r s i n] , p e r s i n , tu e s d a y , 21, ja n u a r y , 1992, 17, 49,

43) .
e v e n t([c d , 1 ' , p e r s o n a l] , p e rs o n a l , tu e sd ay , 21, january , 1992, 17, 49,

31) .
e v e n t ([chmod, 1 ’ , 700, 1 ", t o j i m] , p e r s o u t , tu e s d a y , 21, j a n u a r y ,

1992, 17, 48, 1) .
e v e n t ([I s , ’ ' , ' - 1 '] / p e rs o u t , tu e sd a y , 21, january , 1992, 17, 47, 21).
e v e n t ([c d , 1 ' , p e r s o u t] , p e r s o u t , tu e sd a y , 21, ja n u a ry , 1992, 17, 47,

17) .
e v en t ([I s , 1 ' , ’ - I 1] / p e r s o n a l , tu e s d a y , 21, ja n u a r y , 1992, 17, 46,

57) .
e v e n t([c d , 1 ' , p e r s o n a l] , p e rso n a l , tu e sd ay , 21, january , 1992, 17, 46,

53) .
e v e n t ([chmod, ’ *, 700, 1 ' , p e r s o n a l] , m a i l , t u e s d a y , 21, j a n u a r y ,

1992, 17, 46, 47).
e v e n t ([chmod, 1 ' , 700, 1 ' , b u s i n e s s] , m a i l , tu e s d a y , 21, j a n u a r y ,

1992, 17, 46, 39).
e v e n t ([l s , 1 ' , ' - I '] , m a il , tuesd ay , 21, january , 1992, 17, 45, 45).
e v e n t ([I s] , m a il , tuesd ay , 21, january , 1992, 17, 45, 38).
e v e n t([c d , 1 ' , m a i l] , m a il , tu esd ay , 21, january , 1992, 17, 45, 34).
e v e n t ([c d] , home, tu esd ay , 21, january , 1992, 17, 45, 31).
e v e n t ([I s , 1 *, *-1*], busaddr, tu e sd ay , 21, january , 1992, 17, 45, 3) .
e v e n t ([c d , 1 ’ , b u sad d r] , busaddr , tu e sd a y , 21, ja n u a ry , 1992, 17, 44,

58) .
e v e n t ([I s] , ad d re sses , tuesday , 21, jan u ary , 1992, 17, 44, 51).
e v e n t ([c d , 1 ' , a d d r e s s e s] , a d d re s s e s , tu e sd a y , 21, ja n u a ry , 1992, 17,

44, 47).
e v e n t ([l s , ' ' , ' - I '] , home, tuesd ay , 21, january , 1992, 17, 44, 32).
e v e n t ([c d] , home, tuesd ay , 21, january , 1992, 17, 41, 59).
e v e n t ([I s , ’ 1, ' - 1 '] / p e r s a d d r , tu e s d a y , 21, ja n u a r y , 1992, 17, 41,

26) .
e v en t([rm , ' ’ , b lo g g s] , p e rs a d d r , tu e s d a y , 21, jan u a ry , 1992, 17, 41,

22) .
even t([rm , ' *, johnsons], p e rsad d r , tu e sd ay , 21, january , 1992, 17, 41,

14) .
e v en t ([I s , 1 ’ , ’ - 1 ’] / p e r s a d d r , tu e s d a y , 21, ja n u a r y , 1992, 17, 40,

21) .
ev e n t([c d , 1 *, p e rs a d d r] , p e rsad d r , tu e sd a y , 21, january , 1992, 17, 40,

15) .
e v e n t ([I s , ' ' , ’ - 1 ’] / a d d re s s e s , tu e s d a y , 21, ja n u a ry , 1992, 17, 40,

2) .
e v e n t ([chmod, 1 ' , 700, ' ’ , p e r s a d d r] , a d d re sse s , tu e sd ay , 21, jan u ary ,

1992, 17, 39, 57).
e v e n t ([I s , 1 ’ , ' - I '] / a d d re s s e s , tu e s d a y , 21, ja n u a ry , 1992, 17, 39,

32) .
e v e n t ([chmod, 1 ' , 400, 1 ’ , p e r s a d d r] , a d d re sse s , tu e sd ay , 21, january ,

1992, 17, 39, 28).
e v e n t ([I s , ' ' , ' - 1 '] / a d d re s s e s , tu e s d a y , 21, ja n u a ry , 1992, 17, 37,

42) .
e v e n t ([I s] , ad d re sses , tuesday , 21, jan u a ry , 1992, 17, 37, 23) .
e v e n t ([c d , 1 ’ , a d d r e s s e s] , a d d re s s e s , tu e sd a y , 21, ja n u a ry , 1992, 17,

37, 21) .
e v e n t ([I s] , home, tuesday , 21, january , 1992, 17, 37, 3) .
e v e n t ([c d] , home, tuesday , 21, january , 1992, 17, 37, 1) .
e v e n t ([I s] , m a il in , tuesday , 21, jan u ary , 1992, 17, 36, 44).
e v e n t ([l s , ' ' , ’- l 1]/ m a i l in , tu e sd ay , 21, jan u ary , 1992, 17, 35, 43).

261

event([cd, ' ', mailin], mailin, tuesday, 21, january, 1992, 17, 35,
33) .

event([ls, 1 ', ’-I1]/ home, tuesday, 21, january, 1992, 17, 34, 3).
event([chmod, 1 ’, 200, ' 1, home, (/), addresses, (/), persaddr], mail,

Wednesday, 8, jan, 1992, 10, 26, 27).
event([chmod, ' ', 100, 1 ', business], mail, Wednesday, 8, jan, 1992,

10, 26, 27) .
event([mkfile, * ’, business, (/), busout, (/), addout], mail,

Wednesday, 8, jan, 1992, 10, 26, 27).
event([mkfile, 1 ', fromeric], mail, Wednesday, 8, jan, 1992, 10, 26,

27) .
event([cd, 1 ’, mail], mail, Wednesday, 8, jan, 1992, 10, 26, 27).
event([mkdir, 1 ', mailin], home, Wednesday, 8, jan, 1992, 10, 26, 27).
event([cd], home, Wednesday, 8, jan, 1992, 10, 26, 26).
event([mkfile, 1 1, johnsons], persaddr, Wednesday, 8, jan, 1992, 10,

26, 26).
event([mkfile, ’ ', bloggs], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([mkfile, ' ’, joneses], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([mkfile, ' *, smiths], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([cd, 1 ’, addresses, (/), persaddr], persaddr, Wednesday, 2, may,

1991, 10, 26, 26) .
event([mkfile, ' ', custaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([mkfile, 1 ', suppaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, 1 ', busaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26, 25).
event([mkdir, ' 1, persaddr], addresses, Wednesday, 8, jan, 1992, 10,

26, 25) .
event([mkdir, ' ’, busaddr], addresses, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, ' ', business, (/), mail, (/), home, (/), addresses],

addresses, Wednesday, 8, jan, 1992, 10, 26, 25).
event([mkfile, 1 ’, enquirout], busout, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, ’ ’, business, (/), busout], busout, Wednesday, 8, jan, 1992,

10, 26, 24).
event([chmod, 1 ’, 400, ' ', complaintin], busin, Wednesday, 2, may,

1991, 10, 26, 24).
event([mkfile, 1 ', complaintin], busin, Wednesday, 8, jan, 1992, 10,

26, 24).
event([cd, 1 ', busin], busin, Wednesday, 8, jan, 1992, 10, 26, 24).
event([mkdir, 1 ’, busout], business, Wednesday, 8, jan, 1992, 10, 26,

24) .
event([mkdir, 1 ’, busin], business, Wednesday, 8, jan, 1992, 10, 26,

24) .
event([cd, 1 ’, business], business, Wednesday, 8, jan, 1992, 10, 26,

23) .
event ([chmod, 1 ', 0, 1 ’, personal], mail, Wednesday, 8, jan, 1992, 10,

26, 23).
event([cd, 1 ’, personal, (/), mail], mail, Wednesday, 8, jan, 1992, 10,

26, 23).
event ([chmod, 1 ', 0, 1 ’, tojim], persout, Wednesday, 8, jan, 1992, 10,

26, 23).
event([mkfile, 1 ', tojim], persout, Wednesday, 8, jan, 1992, 10, 26,

23) .
event([cd, 1 ', personal, (/), persout], persout, Wednesday, 2, may,

1991, 10, 26, 23).
event ([chmod, ' 0, 1 ', frommary], persin, Wednesday, 8, jan, 1992,

10, 26, 23).
event([mkfile, 1 1, frommary], persin, Wednesday, 8, jan, 1992, 10, 26,

22) .
event([chmod, 1 ', 0, 1 ', fromjim], persin, Wednesday, 8, jan, 1992,

262

event([mkfile, 1 ', fromjim], persin, Wednesday, 8, jan, 1992, 10, 26,
22) .

e v e n t ([c d , ' * , p e r s i n] , p e r s i n , W e d n e s d a y , 8 , j a n , 1992, 10, 26, 22).
event([mkdir, 1 ', persout], personal, Wednesday, 8, jan, 1992, 10, 26,

22) .
e v e n t ([m k d i r , ’ ' , p e r s i n] , p e r s o n a l , W e d n e s d a y , 8 , j a n , 1992, 10, 26,

21) .
e v e n t ([c d , 1 ' , p e r s o n a l] , p e r s o n a l , W e d n e s d a y , 8 , j a n , 1992, 10, 26,

21) .
event([mkdir, ’ ’, business], mail, Wednesday, 8, jan, 1992, 10, 26,

21) .
e v e n t ([m k d i r , ' ' , p e r s o n a l] , m a i l , W e d n e s d a y , 8 , j a n , 1992, 10, 26,

21).
e v e n t ([c d , 1 ' , m a i l] , m a i l , W e d n e s d a y , 8 , j a n , 1992, 10, 26, 21).
e v e n t ([m k d i r , 1 * , a d d r e s s e s] , h o m e , W e d n e s d a y , 8 , j a n , 1992, 10, 26,

21) .
e v e n t ([m k d i r , 1 1 , m a i l] , h o m e , W e d n e s d a y , 8 , j a n , 1992, 10, 26, 21).

/* nonevent/12 * /

n o n e v e n t ([cd, ’ ' , p e r m a i l] , r e f e r e n c e , p e r s o n a l , p e r m a i l , p e r s o n a l ,
tuesday , 21, january , 1992, 18, 47, 51).

n o n e v e n t ([cd, ' ' , b u s m a i l] , r e f e r e n c e , b u s m a i l , b u s m a i l , b u s m a i l ,
tuesday , 21, january , 1992, 18, 41, 17).

n o n e v en t([rm dir, * ’ , a d d re s s e s] , l e x i c a l , n u l , n u l , home, tu e sd a y , 21,
january , 1992, 18, 39, 29).

n o n e v en t([r d] , l e x i c a l , nu l , n u l , home, tu e sd a y , 21, jan u a ry , 1992, 18,
39, 7) .

n o n e v e n t ([r m d ir , ' ’ , p e r s a d d r] , r e f e r e n c e , a d d r e s s e s , p e r s a d d r ,
ad d re sses , tuesday , 21, january , 1992, 18, 38, 50).

n o n e v e n t ([mv, 1 ' , c u s ta d d r , 1 ' , home, (/) , b u s in e s s , (/) , b u s a d d r] ,
r e f e r e n c e , s c r a p , c u s ta d d r , s c r a p , tu e s d a y , 21, ja n u a ry , 1992, 18,
37, 16).

n o n e v e n t([mv, 1 ’ , busm ail , (/) , b u s in e s s , (/) , home, (/) , s c r a p , (/) ,
co m p la in t in] , r e f e re n c e , sc rap , com p la in tin , b u sm a i l in , tu e sd ay , 21,
january , 1992, 18, 32, 53).

no n ev en t([mv, ’ *, busm ail, (/) , b u s in e s s , (/) , home, (/) , co m p la in t in] ,
re fe re n c e , home, com pla in tin , b u sm ail in , tu e sd ay , 21, january , 1992,
18, 32, 25).

n o n e v e n t ([m k d ir , * ' , b u s a d d r] , d u p l i c a t i o n , b u s i n e s s , b u s a d d r ,
b u s in e s s , tuesday , 21, january , 1992, 18, 29, 4) .

n o n ev en t([mv, 1 *, in q u i r e o u t , 1 ' , s c ra p , (/) , i n q u i r e o u t] , r e f e r e n c e ,
busou t, sc rap , busou t, tuesd ay , 21, january , 1992, 18, 23, 46).

n o n e v e n t([mv, 1 ' , i n q u i r e o u t , 1 ' , home, (/) , i n q u i r e o u t] , r e f e r e n c e ,
b usou t, home, busou t, tuesday , 21, january , 1992, 18, 23, 26).

n o n e v e n t ([mv, 1 ' , t o , 1 ' , j im , 1 ' , p e r s o n a l , (/) , p e r s m a i l , (/) ,
t o j im] , r e f e r e n c e , home, t o , home, tu e sd a y , 21, ja n u a ry , 1992, 18,
17, 32) .

n o n e v e n t([mv, 1 ’ , t o j im , * ' , p e r s o n n a l , (/) , p e r s m a i l , (/) , t o j i m] ,
r e f e r e n c e , home, p e r s o n n a l , home, tu e s d a y , 21, ja n u a r y , 1992, 18,
17, 8) .

n o n e v e n t ([mv, 1 ' , t o j i m , 1 ' , p e r s o n a l , (/) , p e r m a i l , (/) , t o j i m] ,
r e f e r e n c e , p e r s o n a l , p e rm a i l , home, tu e sd a y , 21, ja n u a ry , 1992,18 ,
16, 40).

n o n e v e n t([mv, ' ' , home, (/) , s c ra p , (/) , t o j i m] , r e f e r e n c e , p e r s m a i l ,
home, pe rsm ail , tuesday , 21, jan u ary , 1992, 18, 13, 27).

n o n e v e n t ([mv, ' *, s c r a p , (/) , t o j i m] , r e f e r e n c e , p e r s m a i l , s c r a p ,
p e rsm a il , tuesday , 21, january , 1992, 18, 12, 57).

n o n e v e n t ([m kdir , 1 ' , p e r s a d d r] , d u p l i c a t i o n , p e r s o n a l , p e r s a d d r ,
p e rso n a l , tuesday , 21, january , 1992, 18, 10, 38).

n o n e v e n t ([mv, 1 ' , m a i l , 1 ' , s c r a p] , r e f e r e n c e , m a i l , m a i l , m a i l ,
tuesday , 21, january , 1992, 18, 0, 46).

n o n e v e n t ([mv, ' *, a d d r e s s , 1 *, p e r s a d d r , ' ' , j o n e s e s , 1 ' , m a i l] ,

263

•a. v- j - '—j . / i i u u i ^ / u u u i ^ o o ; H u m e / t u c o u a ^ f £ .s . , j a n u a i y , -L Z7 ;? ai , -L / , J o f

21) .
n o n e v en t([cd, 1 1, b u so u t] , r e f e re n c e , bu so u t , b u so u t , bu so u t, tuesd ay ,

21, january , 1992, 17, 53, 30).
n o n e v en t([cd, 1 ' , m a i l] , r e f e re n c e , p e r s in , m a i l , p e r s in , tu esd ay , 21,

january , 1992, 17, 50, 4).
n o n e v e n t ([cd , ' ’ , p e r s o n] , r e f e r e n c e , p e r s o u t , p e r s o n , p e r s o u t ,

tuesd ay , 21, january , 1992, 17, 49, 23).
n o n e v e n t ([I s , 1 ' , ' - l 1] / l e x i c a l , n u l , n u l , p e r s o u t , t u e s d a y , 21,

january , 1992, 17, 49, 12).
n o n ev en t([c d l s] , l e x i c a l , n u l , n u l , p e r s o u t , tu e sd ay , 21, january , 1992,

17, 49, 8).
n o n e v e n t ([cd , 1 *, p e r s o n] , r e f e r e n c e , p e r s o u t , p e r s o n , p e r s o u t ,

tuesday , 21, january , 1992, 17, 48, 31).
n o n e v e n t ([cd , 1 ' , p e r s i n] , r e f e r e n c e , p e r s o u t , p e r s i n , p e r s o u t ,

tuesd ay , 21, january , 1992, 17, 48, 9).
n o n e v e n t ([m kdir, 1 1, p e r s o n a l] , d u p l i c a t i o n , home, p e r s o n a l , home,

tuesd ay , 21, january , 1992, 17, 44, 22).
n o n e v e n t ([mv, 1 ' , a d d re s s , 1 1, p e r s o n a l] , r e f e r e n c e , home, a d d re s s ,

home, tuesd ay , 21, january , 1992, 17, 43, 51).
n o n e v e n t([cd, * ' , p e r s a d d r] , e x e c u te , a d d re s s e s , p e r s a d d r , a d d re s s e s ,

tuesday , 21, january , 1992, 17, 38, 19).
n o n e v e n t ([cd, 1 ’ , a d d r e s s e s] , r e f e r e n c e , m a i l i n , a d d r e s s e s , m a i l i n ,

tuesday , 21, january , 1992, 17, 36, 34).

/ * o w n e r / I * /

o w n e r (S 3) .

/ * t o t a l t i m e / 3 * /

t o t a l t i m e (0 , 5 9 , 3 4) .

/ * f i l e / 3 * /

f i l e (j o n e s e s , p e r s a d d r , 7 0 0) .
f i l e (s m i t h s , p e r s a d d r , 7 0 0) .
f i l e (c u s t a d d r , b u s a d d r , 7 0 0) .
f i l e (s u p p a d d r , b u s a d d r , 7 0 0) .
f i l e (a c c o u n t s a d d r , b u s a d d r , 7 0 0) .
f i l e (c o m p l a i n t i n , b u s m a i l i n , 7 0 0) .
f i l e (t h a n k s i n , b u s m a i l i n , 7 0 0) .
f i l e (i n q u i r e o u t , b u s m a i l o u t , 7 0 0) .
f i l e (c o m p r e p l y , b u s m a i l o u t , 7 0 0) .
f i l e (f r o m m a r y , p e r s m a i l , 0) .
f i l e (f r o m j i m , p e r s m a i l , 0) .
f i l e (t o j i m , p e r s m a i l , 0) .

/ * d i r / 4 * /

d i r (r o o t , 0 , n u l , [h o m e]) .
d i r (p e r s o n a l , 7 0 0 , h o m e , [p e r s a d d r , p e r s m a i l]) .
d i r (p e r s a d d r , 7 0 0 , p e r s o n a l , [s m i t h s , j o n e s e s]) .
d i r (b u s i n e s s , 7 0 0 , h o m e , [b u s a d d r , b u s m a i l]) .
d i r (b u s a d d r , 7 0 0 , b u s i n e s s , [a c c o u n t s a d d r , s u p p a d d r , c u s t a d d r]) .
d i r (b u s m a i l i n , 7 0 0 , b u s m a i l , [t h a n k s i n , c o m p l a i n t i n]) .
d i r (b u s m a i l o u t , 7 0 0 , b u s m a i l , [c o m p r e p l y , i n q u i r e o u t]) .
d i r (h o m e , 7 0 0 , r o o t , [b u s i n e s s , p e r s o n a l]) .
d i r (b u s m a i l , 3 0 0 , - b u s i n e s s , [b u s m a i l o u t , b u s m a i l i n]) .
d i r (p e r s m a i l , 0 , p e r s o n a l , [f r o m m a r y , f r o m j i m , t o j i m]) .

264

/ * e v e n t / 9 * /

e v e n t ([c h m o d , 1 ’ , 0 , 1 ' , p e r s o n a l , (/) , p e r s m a i l] , h o m e , m o n d a y , 1 0 ,
f e b r u a r y , 1 9 9 2 , 2 0 , 1 6 , 4 8) .

e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 6 , 3 6) .
e v e n t ([c h m o d , 1 ' , 0 , 1 ' , t o j i m] , p e r s m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 ,

2 0 , 1 6 , 3 3) .
e v e n t ([c h m o d , 1 ' , 0 , 1 ' , f r o m j i m] , p e r s m a i l , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 2 0 , 1 6 , 2 6) .
e v e n t ([chmod, 1 ' , 0, ' frommary], p e r s m a i l , monday, 10, f e b ru a ry ,

1992, 20, 16, 18).
e v e n t ([I s] , p e rsm ail , monday, 10, feb ru a ry , 1992, 20, 16, 3) .
e v e n t ([c d , ' ' , p e r s o n a l , (/) , p e r s m a i l] , p e r s m a i l , monday, 10,

fe b ru a ry , 1992, 20, 15, 58).
even t ([chmod, 1 ’ , 700, ' ’ , p e rs o n a l , (/) , p e r s m a i l] , home, monday, 10,

feb ru a ry , 1992, 20, 15, 49).
e v e n t ([chmod, ’ 0, 1 ' , p e r s o n a l , (/) , p e r s m a i l] , home, monday, 10,

fe b ru a ry , 1992, 20, 14, 58).
even t ([chmod, * ' , 300, 1 b u s in e s s , (/) , b u sm a i l] , home, monday, 10,

fe b ru a ry , 1992, 20, 13, 34).
e v e n t ([c d] , home, monday, 10, fe b ru a ry , 1992, 20, 12, 53).
e v e n t ([I s] , busaddr, monday, 10, fe b ru a ry , 1992, 20, 12, 33).
e v e n t ([c d , 1 ' , b u sa d d r] , busadd r , monday, 10, f e b ru a ry , 1992, 20, 12,

30) .
e v e n t ([I s] , b u s i n e s s , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 2 , 2 2) .
e v e n t ([c d , 1 * , b u s i n e s s] , b u s i n e s s , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 2 ,

2 1) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 2 , 1 2) .
e v e n t ([I s] , b u s m a i l o u t , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 2 , 5) .
e v e n t ([c d , 1 ' , b u s m a i l , (/) , b u s m a i l o u t] , b u s m a i l o u t , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 2 0 , 1 2 , 4) .
e v e n t ([I s] , b u s m a i l i n , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 1 , 5 0) .
e v e n t ([c d , 1 ’ , b u s m a i l i n] , b u s m a i l i n , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 ,

1 1 , 4 9) .
e v e n t ([I s] , b u s m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 1 , 4 2) .
e v e n t ([c d , 1 1 , b u s m a i l] , b u s m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 1 ,

3 9) .
e v e n t ([I s] , b u s i n e s s , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 1 , 3 2) .
e v e n t ([c d , ' ' , b u s i n e s s] , b u s i n e s s , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 1 ,

3 0) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 1 , 2 4) .
e v e n t ([I s] , p e r s m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 1 , 1 4) .
e v e n t ([c d , 1 * , p e r s o n a l , (/) , p e r s m a i l] , p e r s m a i l , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 2 0 , 1 1 , 1 3) .
e v e n t ([I s] , p e r s a d d r , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 0 , 4 5) .
e v e n t ([c d , 1 ' , p e r s a d d r] , p e r s a d d r , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 0 ,

4 4) .
e v e n t ([I s] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 0 , 3 3) .
e v e n t ([c d , 1 ' , p e r s o n a l] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 0 ,

3 1) .
e v e n t ([I s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 0 , 1 7) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 0 , 1 3) .
e v e n t ([r m d i r , 1 ' , a d d r e s s e s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 0 ,

7) .
e v e n t ([I s , 1 ' , ' - I 1 , 1 *, a d d r e s s e s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 ,

2 0 , 9 , 5 9) .
e v e n t ([r m d i r , ' ' , m a i l i n] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 9 ,

4 6) .
e v e n t ([I s , 1 ' , ' - I 1 , ’ ' , m a i l i n] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 ,

2 0 , 9 , 2 6) .
e v e n t ([I s , 1 ' , m a i l i n] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 9 , 1 7) .
e v e n t ([I s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 8 , 4 7) .
e v e n t ([r m d i r , ' * , m a i l] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 8 , 4 4) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 8 , 3 9) .

265

cvciiL. v l-liii/ / ii.uiuein;j, itiaix, munuay, iu, xe.uruary, ^u, o, zo; .
e v e n t ([I s] , m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 8 , 4) .
e v e n t ([c d , 1 ' , m a i l] , m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 8 , 2) .
e v e n t ([m v , 1 ' , a d d o u t , 1 ' , b u s i n e s s , (/) , b u s m a i l , (/) , b u s m a i l o u t ,

(/) , c o m p r e p l y] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 7 , 3 1) .
e v e n t ([m v , 1 ’ , e n q u i r o u t , 1 ' , b u s i n e s s , (/) , b u s m a i l , (/) , b u s m a i l o u t ,

(/) , i n q u i r e o u t] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 6 , 4 2) .
e v e n t ([I s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 5 , 1 7) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 5 , 1 4) .
e v e n t ([m k f i l e , 1 ' , b u s m a i l i n , (/) , t h a n k s i n] , b u s m a i l , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 2 0 , 4 , 4 5) .
e v e n t ([m v , 1 ' , b u s i n e s s , (/) , h o m e , (/) , c o m p l a i n t i n , 1 1 , b u s m a i l i n] ,

b u s m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 4 , 1 2) .
e v e n t ([m k d i r , 1 * , b u s m a i l o u t] , b u s m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 ,

3 , 1 9) .
e v e n t ([m k d i r , ' * , b u s m a i l i n] , b u s m a i l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 ,

3 , 1 3) .
e v e n t ([c d , 1 ' , b u s i n e s s , (/) , b u s m a i l] , b u s m a i l , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 2 0 , 3 , 1) .
e v e n t ([m k f i l e , ’ ' , b u s i n e s s , (/) , b u s a d d r , (/) , a c c o u n t s a d d r] , h o m e ,

m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 , 5 3) .
e v e n t ([m v , 1 ' , s u p p a d d r , 1 ’ , b u s i n e s s , (/) , b u s a d d r] , h o m e , m o n d a y ,

1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 0 , 5 3) .
e v e n t ([I s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 9 , 5 7) .
e v e n t ([m v , 1 * , c u s t a d d r , ' b u s i n e s s , (/) , b u s a d d r] , h o m e , m o n d a y ,

1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 9 , 4 6) .
e v e n t ([m k d i r , 1 ' , b u s i n e s s , (/) , b u s a d d r] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 5 8 , 2 6) .
e v e n t ([r m d i r , ' ’ , a d d r e s s e s , (/) , b u s a d d r] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 5 7 , 5 9) .
e v e n t ([m v , 1 ' , a d d r e s s e s , (/) , b u s a d d r , (/) , s u p p a d d r , ' ' , s u p p a d d r] ,

h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 7 , 3 5) .
e v e n t ([I s , ' ' , a d d r e s s e s , (/) , b u s a d d r] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 5 7 , 1 5) .
e v e n t ([m v , ’ ' , a d d r e s s e s , (/) , b u s a d d r , (/) , c u s t a d d r , 1 " , c u s t a d d r] ,

h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 5 , 5 8) .
e v e n t ([m k d i r , ’ 1 , b u s i n e s s , (/) , b u s m a i l] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 5 5 , 2 6) .
e v e n t ([m k d i r , 1 ' , b u s i n e s s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 4 ,

5 0) .
e v e n t ([r m d i r , 1 ' , m a i l , (/) , b u s i n e s s] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 5 4 , 4 0) .
e v e n t ([r m d i r , 1 ’ , m a i l , (/) , b u s i n e s s , (/) , b u s i n] , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 5 4 , 3 2) .
e v e n t ([r m d i r , 1 1 , m a i l , (/) , b u s i n e s s , (/) , b u s o u t] , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 5 4 , 2 2) .
e v e n t ([m v , 1 ' , m a i l , (/) , b u s i n e s s , (/) , b u s o u t , (/) , e n q u i r o u t , 1 ' ,

e n q u i r o u t] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 3 , 5 7) .
e v e n t ([I s , 1 f , m a i l , (/) , b u s i n e s s , (/) , b u s o u t] , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 5 3 , 3) .
e v e n t ([m v , ’ ' , m a i l , (/) , b u s i n e s s , (/) , b u s o u t , (/) , a d d o u t , 1 ' ,

a d d o u t] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 2 , 2 6) .
e v e n t ([m v , ' ' , m a i l , (/) , b u s i n e s s , (/) , b u s i n , (/) , c o m p l a i n t i n , 1 ' ,

c o m p l a i n t i n] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 1 , 5 2) .
e v e n t ([I s , 1 * , m a i l , (/) , b u s i n e s s , (/) , b u s i n] , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 5 1 , 1 0) .
e v e n t ([I s , 1 ’ , m a i l , (/) , b u s i n e s s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 ,

1 9 , 5 0 , 5 8) .
e v e n t ([r m , ' ' , t e m p] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 9 , 0) .
e v e n t ([I s] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 8 , 3 6) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 8 , 3 3) .
e v e n t ([I s , 1 ' , p e r s o n a l , (/) , p e r s m a i l] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 4 7 , 2 3) .
e v e n t ([m v , ' ’ , f r o m m a r y , * ’ , p e r s o n a l , (/) , p e r s m a i l] , h o m e , m o n d a y ,

1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 7 , 4) .

266

c v c m . v Ll u v / / j - x u u i j x i u , , p c i o u n a i ; \ / I r p c i £>iua. j . x , v /) / -L -L U U IJ- l i i i j ,

h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 6 , 3 1) .
e v e n t ([m v , 1 * , t o j i m , 1 ' , p e r s o n a l , (/) , p e r s m a i l , (/) , t o j i m] , h o m e ,

m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 6 , 1 2) .
e v e n t ([m v , 1 ' , s m i t h s , 1 ' , p e r s o n a l , (/) , p e r s a d d r , (/) , s m i t h s] ,

h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 5 , 1 7) .
e v e n t ([m v , 1 ’ , j o n e s e s , 1 ’ , p e r s o n a l , (/) , p e r s a d d r , (/) , j o n e s e s] ,

h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 4 , 5 6) .
e v e n t ([m k d i r , 1 ' , p e r s o n a l , (/) , p e r s a d d r] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 4 3 , 5 2) .
e v e n t ([r m d i r , * ’ , a d d r e s s e s , . (/) , p e r s a d d r] , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 4 3 , 3 0) .
e v e n t ([r m , 1 ’ , a d d r e s s e s , (/) , p e r s a d d r , (/) , j o h n s o n s] , h o m e , m o n d a y ,

1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 3 , 1 1) .
e v e n t ([r m , ’ * , a d d r e s s e s , (/) , p e r s a d d r , (/) , b l o g g s] , h o m e , m o n d a y ,

1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 2 , 5 4) .
e v e n t ([m v , 1 * , a d d r e s s e s , (/) , p e r s a d d r , (/) , s m i t h s , 1 * , s m i t h s] ,

h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 2 , 3 0) .
e v e n t ([m v , 1 * , a d d r e s s e s , (/) , p e r s a d d r , (/) , j o n e s e s , 1 * , j o n e s e s] ,

h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 2 , 1 0) .
e v e n t ([m k d i r , 1 * , p e r s o n a l , (/) , p e r s m a i l] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 4 0 , 3 1) .
e v e n t ([m k d i r , ' ’ , p e r s o n a l] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 9 ,

4 8) .
e v e n t ([r m d i r , 1 * , m a i l , (/) , p e r s o n a l] , h o m e , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 3 9 , 1 6) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 9 , 2) .
e v e n t ([r m d i r , 1 ’ , p e r s o u t] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 ,

3 8 , 4 4) .
e v e n t ([r m d i r , * ’ , p e r s i n] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 ,

3 8 , 3 8) .
e v e n t ([m v , 1 ' , p e r s o u t , (/) , t o j i m , 1 ' , m a i l , (/) , h o m e , (/) , t o j i m] ,

p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 8 , 1 1) .
e v e n t ([m v , 1 ' , p e r s i n , (/) , f r o m j i m , 1 ' , m a i l , (/) , h o m e , (/) ,

f r o m j i m] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 7 , 4 8) .
e v e n t ([m v , 1 ' , p e r s i n , (/) , f r o m m a r y , 1 ' , m a i l , (/) , h o m e , (/) ,

f r o m m a r y] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 7 , 2 1) .
e v e n t ([I s] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 4 , 1 9) .
e v e n t ([c d , 1 ’ , m a i l , (/) , p e r s o n a l] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 3 3 , 5 9) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 1 , 2 4) .
e v e n t ([c d] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 9 , 5 3) .
e v e n t ([I s , 1 ' , ' - l 1 , 1 ' , p e r s o u t] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 2 9 , 4 2) .
e v e n t ([I s , 1 ' , ' - I ' , 1 ' , p e r s i n] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 2 9 , 2 9) .
e v e n t ([I s , 1 ’ , ’ - I 1 , 1 ’ , p e r s i n] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 2 9 , 5) .
e v e n t ([I s , ’ ' , ' - I ’] / p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 8 ,

4 2) .
e v e n t ([c d , 1 ' , m a i l , (/) , p e r s o n a l] , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y ,

1 9 9 2 , 1 9 , 2 8 , 3 5) .
e v e n t ([c h m o d , ' ’ , 7 0 0 , 1 * , m a i l , (/) , b u s i n e s s , (/) , b u s i n , (/) ,

c o m p l a i n t i n] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 8 , 3) .
e v e n t ([I s , ' ' , ' - l 1 , 1 ' , m a i l , (/) , b u s i n e s s , (/) , b u s i n] , h o m e ,

m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 7 , 1 5) .
e v e n t ([I s , 1 ’ , ’ - 1 ’ , 1 ’ , m a i l , (/) , b u s i n e s s , (/) , b u s o u t] , h o m e ,

m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 6 , 3 0) .
e v e n t ([I s , 1 ' , ' - I ' , 1 ’ , m a i l , (/) , b u s i n e s s] , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 2 5 , 5 4) .
e v e n t ([c h m o d , ' ' , 7 0 0 , 1 ' , m a i l , (/) , p e r s o n a l] , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 2 5 , 4 2) .
e v e n t ([c h m o d , 1 * , 7 0 0 , 1 ' , m a i l , (/) , b u s i n e s s] , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 2 5 , 3 1) .
e v e n t ([I s , ' ' , ' - l 1 , ' ' , m a i l] , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 ,

267

+ r •*/ •

event([Is, 1 1, ’-l1, ' 1, addresses, (/), busaddr], home, monday, 10,
february, 1992, 19, 23, 43).

event([Is, 1 ’, addresses, (/), busaddr], home, monday, 10, february,
1992, 19, 22, 33).

event([Is, 1 ', addresses, (/), persaddr], home, monday, 10, february,
1992, 19, 22, 0).

event([chmod, 1 ’, 700, 1 ', addresses, (/), persaddr], home, monday,
10, february, 1992, 19, 21, 50).

event([Is, 1 *, addresses], home, monday, 10, february, 1992, 19, 20,
8).

event([Is, 1 ’, mailin], home, monday, 10, february, 1992, 19, 19, 20).
event([Is], home, monday, 10, february, 1992, 19, 17, 42).
event([chmod, ' ’, 200, 1 ', home, (/), addresses, (/), persaddr], mail,

Wednesday, 8, jan, 1992, 10, 26, 27).
event([chmod, 1 ’, 100, 1 ', business], mail, Wednesday, 8, jan, 1992,

10, 26, 27).
event([mkfile, 1 ', business, (/), busout, (/), addout], mail,

Wednesday, 8, jan, 1992, 10, 26, 27).
event([mkfile, 1 ’, fromeric], mail, Wednesday, 8, jan, 1992, 10, 26,

27) .
event([cd, 1 ', mail], mail, Wednesday, 8, jan, 1992, 10, 26, 27).
event([mkdir, * ', mailin], home, Wednesday, 8, jan, 1992, 10, 26, 27).
event([cd], home, Wednesday, 8, jan, 1992, 10, 26, 26).
event([mkfile, 1 1, johnsons], persaddr, Wednesday, 8, jan, 1992, 10,

26, 26).
event([mkfile, ' *, bloggs], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([mkfile, 1 ’, joneses], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([mkfile, ' *, smiths], persaddr, Wednesday, 8, jan, 1992, 10, 26,

26) .
event([cd, 1 ', addresses, (/), persaddr], persaddr, Wednesday, 2, may,

1991, 10, 26, 26).
event([mkfile, 1 ’, custaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([mkfile, ’ ’, suppaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, ’ ', busaddr], busaddr, Wednesday, 8, jan, 1992, 10, 26, 25).
event([mkdir, 1 ', persaddr], addresses, Wednesday, 8, jan, 1992, 10,

26, 25).
event([mkdir, 1 ', busaddr], addresses, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, 1 f, business, (/), mail, (/), home, (/), addresses],

addresses, Wednesday, 8, jan, 1992, 10, 26, 25).
event([mkfile, 1 ’, enquirout], busout, Wednesday, 8, jan, 1992, 10, 26,

25) .
event([cd, 1 ’, business, (/), busout], busout, Wednesday, 8, jan, 1992,

10, 26, 24).
event([chmod, ' ’, 400, ’ ', complaintin], busin, Wednesday, 2, may,

1991, 10, 26, 24) .
event([mkfile, 1 ', complaintin], busin, Wednesday, 8, jan, 1992, 10,

26, 24).
event([cd, 1 ', busin], busin, Wednesday, 8, jan, 1992, 10, 26, 24).
event([mkdir, 1 ', busout], business, Wednesday, 8, jan, 1992, 10, 26,

24) .
event([mkdir, 1 ', busin], business, Wednesday, 8, jan, 1992, 10, 26,

24) .
event([cd, * ', business], business, Wednesday, 8, jan, 1992, 10, 26,

23) .
event ([chmod, 1 *, 0, * personal], mail, Wednesday, 8, jan, 1992, 10,

26, 23).
event ([cd, * ', personal, (/), mail], mail, Wednesday, 8, jan, 1992, 10,

26, 23).
event([chmod, ’ *, 0, 1 ', tojim], persout, Wednesday, 8, jan, 1992, 10,

268

event([mkfile, ' ', tojim], persout, Wednesday, 8, jan, 1992, M O 26,
23) .

event([cd, 1 ', personal, (/), persout], persout, Wednesday, 2, may
1991, 10, 26, 23).

event([chmod, 1 ', 0, ' *, frommary], persin, Wednesday, 8, jan, 1992
10, 26, 23) .

event([mkfile, '1 ', frommary], persin, Wednesday, 8, jan, 1992, 10, 26
22) .

event ([chmod, 1 ', 0, 1 *, fromjim], persin, Wednesday, 8, jan, 1992
10, 26, 22).

event([mkfile, 1 ', fromjim], persin, Wednesday, 8, jan, 1992, 10, 26
22) .

event([cd, ' ', persin], persin, Wednesday, 8, jan, 1992, 10, 26, 22).
event ([mkdir, ’ ', persout], personal, Wednesday, 8, jan, 1992, 10, 26

22) .
event([mkdir, 1 f, persin], personal, Wednesday, 8, jan, 1992, 10, 26

21) .
event([cd, ’ ', personal], personal, Wednesday, 8, jan, 1992, 10, 26

21) .
event([mkdir, 1 ', business], mail, Wednesday, 8, jan, 1992, 10, 26

21).
event ([mkdir, ' ’, personal], mail, Wednesday, 8, jan, 1992, 10, 26

21) .
event([cd, 1 1, mail], mail, Wednesday, 8, jan, 1992, 10, 26, 21).
event([mkdir, 1 ', addresses], home, Wednesday, 8, jan, 1992, 10, 26

21) .
event ([mkdir, 1 ’, mail], home, Wednesday, 8, jan, 1992, 10, 26, 21)

/ * n o n e v e n t / 1 2 * /

n o n e v e n t ([c d , 1 1 , p e r s o n a l , (/) , p e r s m a i l] , e x e c u t e , p e r s o n a l ,
p e r s m a i l , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 5 , 3 2) .

n o n e v e n t ([c h m o d , 1 1 , 0 , 1 1 , 1 1 , p e r s o n a l , (/) , p e r s m a i l] , r e f e r e n c e ,
h o m e , ' ' , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 2 0 , 1 4 , 2 4) .

n o n e v e n t ([r m , 1 ' , m a i l i n] , l o g i c a l , n u l , n u l , h o m e , m o n d a y , 1 0 ,
f e b r u a r y , 1 9 9 2 , 2 0 , 9 , 3 9) .

n o n e v e n t ([r m d i r , 1 ' , m a i l] , r e f e r e n c e , m a i l , m a i l , m a i l , m o n d a y , 1 0 ,
f e b r u a r y , 1 9 9 2 , 2 0 , 8 , 3 1) .

n o n e v e n t ([m v , ' ' , e n q u i r o u t , 1 ' , b u s i n e s s , (/) , b u s m a i l , (/) , b u s o u t ,
(/) , i n q u i r e o u t] , r e f e r e n c e , b u s m a i l , b u s o u t , h o m e , m o n d a y , 1 0 ,

f e b r u a r y , 1 9 9 2 , 2 0 , 6 , 9) .
n o n e v e n t ([m v , 1 ' , c u s t a d d r , 1 ' , b u s a d d r] , d u p l i c a t i o n , b u s i n e s s ,

b u s a d d r , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 8 , 5 7) .
n o n e v e n t ([r m d i r , 1 1 , a d d r e s s e s , (/) , b u s a d d r] , n o n e m p t y , n u l , n u l ,

h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 6 , 5 8) .
n o n e v e n t ([r m d i r , 1 ’ , b u s a d d r] , r e f e r e n c e , h o m e , b u s a d d r , h o m e , m o n d a y ,

1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 6 , 9) .
n o n e v e n t ([m v , 1 ' , m a i l , (/) , b u s i n e s s , (/) , b u s o u t , (/) , e n q u i r e o u t , 1

' , e n q u i r e o u t] , r e f e r e n c e , b u s o u t , e n q u i r e o u t , h o m e , m o n d a y , 1 0 ,
f e b r u a r y , 1 9 9 2 , 1 9 , 5 3 , 2 9) .

n o n e v e n t ([m v , ' * , m a i l , (/) , b u s i n e s s , (/) , b u s o u t , (/) , e n q o u t , 1 ' ,
e n q o u t] , r e f e r e n c e , b u s o u t , e n q o u t , h o m e , m o n d a y , 1 0 , f e b r u a r y ,
1 9 9 2 , 1 9 , 5 2 , 4 6) .

n o n e v e n t ([m v , 1 ' , m a i l , (/) , b u s i n e s s , (/) , b u s o u t , (/) , a d d o u t] ,
r e f e r e n c e , b u s o u t , a d d o u t , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 2 ,
9) .

n o n e v e n t ([m v , 1 ’ , m a i l , (/) , b u s i n e s s , (/) , b u s i n , (/) , c o m p l a i n t i n] ,
r e f e r e n c e , b u s i n , c o m p l a i n t i n , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 ,
5 0 , 3 6) .

n o n e v e n t ([m v , 1 ' , m a i l , (/) , b u s i n e s s , (/) , i n , (/) , c o m p l a i n t i n] ,
r e f e r e n c e , b u s i n e s s , i n , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 0 ,
2 0) .

n o n e v e n t ([m k d i r , 1 ! , b u s i n e s s] , d u p l i c a t i o n , h o m e , b u s i n e s s , h o m e ,

269

n o n e v e n t ([m v , 1 ’ , t o m a r y , 1 ' , p e r s o n a l , (/) , p e r s m a i l] , r e f e r e n c e ,
h o m e , t o m a r y , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 6 , 4 5) .

n o n e v e n t ([m k d i r , 1 ' , p e r s o n a l , (/) , p e r s a d d r] , d u p l i c a t i o n , p e r s o n a l ,
p e r s a d d r , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 0 , 4 2) .

n o n e v e n t ([r m d i r] , s y n t a x , n u l , n u l , p e r s o n a l , m o n d a y , 1 0 , f e b r u a r y ,
1 9 9 2 , 1 9 , 3 8 , 5 7) .

n o n e v e n t ([m v , ' ' , p e r s i n , (/) , f r o m m a r y , 1 ' , m a i l , (/) , h o m e , (/) ,
t e m p , (/) , f r o m m a r y] , r e f e r e n c e , h o m e , t e m p , p e r s o n a l , m o n d a y , 1 0 ,
f e b r u a r y , 1 9 9 2 , 1 9 , 3 6 , 2 0) .

n o n e v e n t ([m v , 1 V, p e r s o u t , (/) , f r o m m a r y , 1 ' , m a i l , (/) , h o m e , (/) ,
t e m p , (/) , f r o m m a r y] , r e f e r e n c e , p e r s o u t , f r o m m a r y , p e r s o n a l ,
m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 5 , 2 9) .

n o n e v e n t ([m k d i r , 1 ’ , p e r s o n a l] , d u p l i c a t i o n , h o m e , p e r s o n a l , h o m e ,
m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 1 , 4 0) .

n o n e v e n t ([c d , ’ * , t e m p] , l o g i c a l , n u l , n u l , h o m e , m o n d a y , 1 0 , f e b r u a r y ,
1 9 9 2 , 1 9 , 3 0 , 5) .

n o n e v e n t ([c d , ' ' , (/) , t e m p] , r e f e r e n c e , h o m e , (/) , h o m e , m o n d a y , 1 0 ,
f e b r u a r y , 1 9 9 2 , 1 9 , 3 0 , 0) .

n o n e v e n t ([I s , ’ ' , a d d r e s s e s , (/) , b u s a d d r , (/) , c u s t a d d r] , l o g i c a l ,
n u l , n u l , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 3 , 1 6) .

n o n e v e n t ([I s , ' * , a d d r e s s e s , (/) , p e r s a d d r] , r e a d , a d d r e s s e s , p e r s a d d r ,
h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 0 , 5 3) .

n o n e v e n t ([l s a d d r e s s e] , l e x i c a l , n u l , n u l , h o m e , m o n d a y , 1 0 , f e b r u a r y ,
1 9 9 2 , 1 9 , 2 0 , 4 0) .

n o n e v e n t ([I s , 1 ' , (/) , m a i l i n] , r e f e r e n c e , h o m e , (/) , h o m e , m o n d a y , 1 0 ,
f e b r u a r y , 1 9 9 2 , 1 9 , 1 9 , 4) .

n o n e v e n t ([I s , 1 ' , ' - l 1] , l e x i c a l , n u l , n u l , h o m e , m o n d a y , 1 0 , f e b r u a r y ,
1 9 9 2 , 1 9 , 1 8 , 1 5) .

n o n e v e n t ([1l s - 1 1] , l e x i c a l , n u l , n u l , h o m e , m o n d a y , 1 0 , f e b r u a r y , 1 9 9 2 ,
1 9 , 1 7 , 5 6) .

/* owner/1 * /

owner(S4).

/* t o t a l t im e /3 * /

t o t a l t i m e (1, 26, 55).

/* f i l e / 3 * /

f i l e (te m p , home, 700).
f i l e (s u p p a d d r , m a i l in , 700).
f i l e (c u s t a d d r , m a i l in , 700).
f i l e (j o n e s e s , m a i l in , 700).
f i l e (s m i th s , m a i l in , 700).
f i l e (f r o m e r i c , m a i l in , 700).
f i l e (enquirou t, m a i l in , 700).
f i l e (a d d o u t , m a i l in , 700).
f i l e (c o m p la in t in , m a i l in , 700).
f i l e (frommary, m a i l in , 700).
f i le (f ro m jim , m a i l in , 700).
f i l e (t o j i m , m a il in , 700).

/* d i r / 4 * /

d i r (r o o t , 0, nu l , [home]).
d i r (m a i l i n , 700, home, [to j im , from jim , frommary, c o m p la in t in , ad d o u t ,

en q u iro u t , fro m er ic , sm iths , jo n e se s , c u s ta d d r , su p p ad d r]) .
dir(home, 700, ro o t , [m ailin , m a il , tem p]) .

270

/ * e v e n t / 9 * /

e v e n t ([I s] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 8 , 2 3) .
e v e n t ([r m d i r , 1 ' , m a i l , (/) , b u s i n e s s] , b u s i n e s s , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 4 7 , 5 0) .
e v e n t ([c d , 1 ’ , m a i l , (/) , b u s i n e s s] , b u s i n e s s , t u e s d a y , 1 1 , f e b r u a r y ,

1 9 9 2 , 1 9 , 4 7 , 1 4) .
e v e n t ([p w d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 6 , 5 2) .
e v e n t ([r m d i r , 1 ’ , m a i l , (/) , p e r s o n a l] , h o m e , t u e s d a y , 1 1 , f e b r u a r y ,

1 9 9 2 , 1 9 , 4 6 , 3 9) .
e v e n t ([r m d i r , 1 ' , m a i l , (/) , p e r s o n a l , (/) , p e r s o u t] , h o m e , t u e s d a y ,

1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 6 , 1) .
e v e n t ([r m d i r , 1 1 , m a i l , (/) , p e r s o n a l , (/) , p e r s i n] , h o m e , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 4 5 , 2 8) .
e v e n t ([r m d i r , 1 * , m a i l , (/) , b u s i n e s s , (/) , b u s i n] , h o m e , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 4 5 , 1) .
e v e n t ([p w d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 4 , 3 0) .
e v e n t ([r m d i r , 1 ' , m a i l , (/) , b u s i n e s s , (/) , b u s o u t] , h o m e , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 4 3 , 2 2) .
e v e n t ([r m d i r , ’ ' , a d d r e s s e s] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 ,

4 2 , 3 6) .
e v e n t ([r m d i r , 1 ' , a d d r e s s e s , (/) , b u s a d d r] , h o m e , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 4 2 , 2 2) .
e v e n t ([r m d i r , ' ' , a d d r e s s e s , (/) , p e r s a d d r] , h o m e , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 4 1 , 4 9) .
e v e n t ([I s] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 8 , 1 9) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 8 , 1 6) .
e v e n t ([m v , * ' , t o j i m , 1 ’ , p e r s o n a l , (/) , m a i l , (/) , h o m e , (/) ,

m a i l i n] , p e r s o u t , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 7 , 3 0) .
e v e n t ([c d , 1 ' , p e r s o n a l , (/) , p e r s o u t] , p e r s o u t , t u e s d a y , 1 1 , f e b r u a r y ,

1 9 9 2 , 1 9 , 3 6 , 4 8) .
e v e n t ([m v , 1 ' , f r o m j i m , 1 ' , p e r s o n a l , (/) , m a i l , (/) , h o m e , (/) ,

m a i l i n] , p e r s i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 6 , 2 1) .
e v e n t ([m v , ' ' , f r o m m a r y , 1 * , p e r s o n a l , (/) , m a i l , (/) , h o m e , (/) ,

m a i l i n] , p e r s i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 5 , 4 3) .
e v e n t ([c d , 1 ' , m a i l , (/) , p e r s o n a l , (/) , p e r s i n] , p e r s i n , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 3 5 , 5) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 4 , 4 2) .
e v e n t ([m v , 1 ' , c o m p l a i n t i n , 1 ’ , b u s i n e s s , (/) , m a i l , (/) , h o m e , (/) ,

m a i l i n] , b u s i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 4 , 2 2) .
e v e n t ([c d , 1 ' , b u s i n] , b u s i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 3 , 3) .
e v e n t ([c d , 1 ' , b u s i n e s s] , b u s i n e s s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 ,

3 2 , 5 0) .
e v e n t ([m v , 1 ' , a d d o u t , 1 ' , b u s i n e s s , (/) , m a i l , (/) , h o m e , (/) ,

m a i l i n j , b u s o u t , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 2 , 3 3) .
e v e n t ([m v , 1 ’ , e n q u i r o u t , 1 1 , b u s i n e s s , (/) , m a i l , (/) , h o m e , (/) ,

m a i l i n] , b u s o u t , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 1 , 5 0) .
e v e n t ([c d , 1 1 , m a i l , (/) , b u s i n e s s , (/) , b u s o u t] , b u s o u t , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 3 0 , 4 3) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 3 0 , 1 5) .
e v e n t ([m v , ' * , f r o m e r i c , ' ' , h o m e , (/) , m a i l i n] , m a i l , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 3 0 , 5) .
e v e n t ([c d , ' ' , m a i l] , m a i l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 8 , 3 3) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 8 , 2 4) .
e v e n t ([m v , ' ' , s m i t h s , ' * , a d d r e s s e s , (/) , h o m e , (/) , m a i l i n] ,

p e r s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 8 , 1 3) .
e v e n t ([m v , 1 ' , j o n e s e s , ’ ' , a d d r e s s e s , (/) , h o m e , (/) , m a i l i n] ,

p e r s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 7 , 4 5) .
e v e n t ([c d , 1 ' , p e r s a d d r] , p e r s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 ,

2 7 , 2) .
e v e n t ([c d , ' * , a d d r e s s e s] , a d d r e s s e s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 ,

2 6 , 4 8) .

271

e v e n t ([m v , ' ' , c u s t a d d r , ' * , a d d r e s s e s , (/) , h o m e , (/) , m a i l i n] ,
b u s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 6 , 1) .

e v e n t ([p w d] , b u s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 2 , 5 8) .
e v e n t ([m v , 1 ' , s u p p a d d r , ' ' , a d d r e s s e s , (/) , h o m e , (/) , m a i l i n] ,

b u s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 2 , 2 5) .
e v e n t ([I s] , b u s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 1 5 , 3 6) .
e v e n t ([c d , 1 ' , a d d r e s s e s , (/) , b u s a d d r] , b u s a d d r , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 9 , 1 5 , 3 2) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 1 4 , 5 3) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 1 3 , 2 3) .
e v e n t ([I s] , b u s i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 1 2 , 2 9) .
e v e n t ([c d , 1 ' , b u s i n e s s , (/) , b u s i n] , b u s i n , t u e s d a y , 1 1 , f e b r u a r y ,

1 9 9 2 , 1 9 , 1 2 , 2 5) .
e v e n t ([I s] , b u s o u t , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 9 , 2 1) .
e v e n t ([c d , 1 ' , b u s o u t] , b u s o u t , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 9 ,

1 7) .
e v e n t ([I s] , b u s i n e s s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 9 , 6) .
e v e n t ([c d , 1 ' , b u s i n e s s] , b u s i n e s s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 9 ,

3) .
e v e n t ([c d , 1 ’ , m a i l] , m a i l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 8 , 4 7) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 8 , 4 2) .
e v e n t ([I s] , p e r s o u t , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 7 , 3 9) .
e v e n t ([I s] , p e r s o u t , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 7 , 2 6) .
e v e n t ([c d , ' ' , p e r s o u t] , p e r s o u t , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 7 ,

2 2) .
e v e n t ([c d , 1 ' , p e r s o n a l] , p e r s o n a l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 7 ,

1 4) .
e v e n t ([I s] , p e r s i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 6 , 6) .
e v e n t ([c d , * ’ , p e r s i n] , p e r s i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 6 , 2) .
e v e n t ([I s] , p e r s o n a l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 5 , 3 7) .
e v e n t ([c d , 1 ' , p e r s o n a l] , p e r s o n a l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 4 ,

3 2) .
e v e n t ([c h m o d , 1 ’ , 7 0 0 , 1 ' , p e r s o n a l] , m a i l , t u e s d a y , 1 1 , f e b r u a r y ,

1 9 9 2 , 1 9 , 4 , 2 1) .
e v e n t ([c d , ’ ' , m a i l] , m a i l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 , 3 9) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 , 2 9) .
e v e n t ([I s] , b u s i n e s s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 , 8) .
e v e n t ([c d , 1 ’ , b u s i n e s s] , b u s i n e s s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 2 ,

4) .
e v e n t ([c h m o d , 1 1 , 7 0 0 , 1 1 , b u s i n e s s] , m a i l , t u e s d a y , 1 1 , f e b r u a r y ,

1 9 9 2 , 1 9 , 1 , 5 4) .
e v e n t ([c d , 1 ' , m a i l] , m a i l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 1 , 2 4) .
e v e n t ([c d , 1 * , b u s i n e s s] , b u s i n e s s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 9 , 0 ,

1 7) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 7 , 5 1) .
e v e n t ([c d , 1 ' , m a i l] , m a i l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 7 , 3 2) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 7 , 1 5) .
e v e n t ([I s] , b u s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 4 , 2 9) .
e v e n t ([c d , ' ’ , b u s a d d r] , b u s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 4 ,

2 4) .
e v e n t ([I s] , a d d r e s s e s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 4 , 9) .
e v e n t ([c d , ' * , a d d r e s s e s] , a d d r e s s e s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 ,

5 4 , 6) .
e v e n t ([I s] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 3 , 5 4) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 3 , 4 5) .
e v e n t ([r m , 1 * , j o h n s o n s] , p e r s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 ,

5 3 , 1 8) .
e v e n t ([r m , 1 ' , b l o g g s] , p e r s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 2 ,

3 7) .
e v e n t ([I s] , p e r s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 1 , 3 5) .
e v e n t ([c d , ' ' , p e r s a d d r] , p e r s a d d r , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 ,

5 1 , 3 0) .
e v e n t ([c h m o d , 1 7 0 0 , ’ ' , p e r s a d d r] , a d d r e s s e s , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 8 , 5 1 , 2 0) .

27 2

e v e n u ^ L c a , ' , a a a r e s s e s j , a a a r e s s e s , u u e s a a y , ± ± , x e o r u a r y , x o ,
5 1 / 2) .

e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 5 0 , 5 6) .
e v e n t ([c h m o d , 1 * , 4 0 0 , 1 ’ , p e r s a d d r] , a d d r e s s e s , t u e s d a y , 1 1 ,

f e b r u a r y , 1 9 9 2 , 1 8 , 4 9 , 5 4) .
e v e n t ([c d , ' ' , a d d r e s s e s] , a d d r e s s e s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 ,

4 6 , 0) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 5 , 5 0) .
e v e n t ([I s] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 4 , 4) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 4 , 0) .
e v e n t ([l s j , m a i l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 3 , 1 7) .
e v e n t ([c d , 1 ' , m a i l] , m a i l , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 3 , 1 3) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 3 , 8) .
e v e n t ([I s] , m a i l i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 2 , 3 1) .
e v e n t ([c d , ' * , m a i l i n] , m a i l i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 2 ,

2 9) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 2 , 2 0) .
e v e n t ([I s] , a d d r e s s e s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 0 , 4 6) .
e v e n t ([c d , 1 ' , a d d r e s s e s] , a d d r e s s e s , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 ,

4 0 , 4 1) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 4 0 , 3 0) .
e v e n t ([I s] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 3 9 , 4 2) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 3 9 , 3 6) .
e v e n t ([l s j , m a i l i n , t u e s d a y , 1 1 , f e b r u a r y , . 1 9 9 2 , 1 8 , 3 9 , 0) .
e v e n t ([c d , * ’ , m a i l i n] , m a i l i n , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 3 8 ,

5 2) .
e v e n t ([c d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 3 2 , 3 4) .
e v e n t ([p w d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 3 2 , 1 1) .
e v e n t ([I s] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 2 3 , 2 0) .
e v e n t ([p w d] , h o m e , t u e s d a y , 1 1 , f e b r u a r y , 1 9 9 2 , 1 8 , 2 2 , 5 4) .
e v e n t ([c h m o d , ' ' , 2 0 0 , ' ’ , h o m e , (/) , a d d r e s s e s , (/) , p e r s a d d r] , m a i l ,

W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 , 2 7) .
e v e n t ([c h m o d , 1 1 , 1 0 0 , 1 * , b u s i n e s s] , m a i l , W e d n e s d a y , 8 , j a n , 1 9 9 2 ,

1 0 , 2 6 , 2 7) .
e v e n t ([m k f i l e , 1 ' , b u s i n e s s , (/) , b u s o u t , (/) , a d d o u t] , m a i l ,

W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 , 2 7) .
e v e n t ([m k f i l e , 1 ' , f r o m e r i c] , m a i l , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 ,

2 7) .
e v e n t ([c d , ' ' , m a i l] , m a i l , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 , 2 7) .
e v e n t ([m k d i r , 1 * , m a i l i n] , h o m e , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 , 2 7) .
e v e n t ([c d] , h o m e , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 , 2 6) .
e v e n t ([m k f i l e , ' ' , j o h n s o n s] , p e r s a d d r , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 ,

2 6 , 2 6) .
e v e n t ([m k f i l e , 1 ’ , b l o g g s] , p e r s a d d r , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 ,

2 6) .
e v e n t ([m k f i l e , 1 ' , j o n e s e s] , p e r s a d d r , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 ,

2 6) .
e v e n t ([m k f i l e , 1 ' , s m i t h s] , p e r s a d d r , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 ,

2 6) .
e v e n t ([c d , 1 ' , a d d r e s s e s , (/) , p e r s a d d r] , p e r s a d d r , W e d n e s d a y , 2 , m a y ,

1 9 9 1 , 1 0 , 2 6 , 2 6) .
e v e n t ([m k f i l e , ’ ’ , c u s t a d d r] , b u s a d d r , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 ,

2 5) .
e v e n t ([m k f i l e , 1 ' , s u p p a d d r] , b u s a d d r , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 ,

2 5) .
e v e n t ([c d , * ' , b u s a d d r] , b u s a d d r , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 , 2 5) .
e v e n t ([m k d i r , 1 ' , p e r s a d d r] , a d d r e s s e s , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 ,

2 6 , 2 5) .
e v e n t ([m k d i r , * ' , b u s a d d r] , a d d r e s s e s , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 ,

2 5) .
e v e n t ([c d , 1 * , b u s i n e s s , (/) , m a i l , (/) , h o m e , (/) , a d d r e s s e s] ,

a d d r e s s e s , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 , 2 5) .
e v e n t ([m k f i l e , ' ' , e n q u i r o u t] , b u s o u t , W e d n e s d a y , 8 , j a n , 1 9 9 2 , 1 0 , 2 6 ,

2 5) .
e v e n t ([c d , ’ ' , b u s i n e s s , (/) , b u s o u t] , b u s o u t , W e d n e s d a y , 8 , j a n , 1 9 9 2 ,

273

e v e n t ([chmod, ' ', 400, 1 ', complaintin], busin, Wednesday, 2, may,
1991, 10, 26, 24).

e v e n t ([mkfile, 1 ', complaintin], busin, Wednesday, 8, jan, 1992, 10,
26, 24).

event([cd, ’ ’, busin], busin, Wednesday, 8, jan, 1992, 10, 26, 24).
e v e n t ([mkdir, ' ’, busout], business, Wednesday, 8, jan, 1992, 10, 26,

24) .
e v e n t ([mkdir, 1 1, busin], business, Wednesday, 8, jan, 1992, 10, 26,

24) .
event([cd, 1 ', business], business, Wednesday, 8, jan, 1992, 10, 26,

23) .
event([chmod, 1 ',0, * ', personal], mail, Wednesday, 8, jan, 1992, 10,

26, 23).
event([cd, ’ ’, personal, (/), mail], mail, Wednesday, 8, jan, 1992, 10,

26, 23).
event([chmod, ' 0, ’ tojim], persout, Wednesday, 8, jan, 1992, 10,

26, 23).
e v e n t ([mkfile, 1 ', tojim], persout, Wednesday, 8, jan, 1992, 10, 26,

23) .
event([cd, 1 ', personal, (/), persout], persout, Wednesday, 2, may,

1991, 10, 26, 23).
e v e n t ([chmod, * ’, 0, 1 ', frommary], persin, Wednesday, 8, jan, 1992,

10, 26, 23) .
event([mkfile, 1 *, frommary], persin, Wednesday, 8, jan, 1992, 10, 26,

22) .
e v e n t ([chmod, ' 0, * f, fromjim], persin, Wednesday, 8, jan, 1992,

10, 26, 22).
e v e n t ([mkfile, ' ', fromjim], persin, Wednesday, 8, jan, 1992, 10, 26,

22) .
event([cd, 1 ', persin], persin, Wednesday, 8, jan, 1992, 10, 26, 22).
e v ent([mkdir, 1 *, persout], personal, Wednesday, 8, jan, 1992, 10, 26,

22) .
e v e n t ([mkdir, 1 ', persin], personal, Wednesday, 8, jan, 1992, 10, 26,

21) .
event([cd, 1 *, personal], personal, Wednesday, 8, jan, 1992, 10, 26,

21) .
e v e n t ([mkdir, ' ', business], mail, Wednesday, 8, jan, 1992, 10, 26,

21) .
e v e n t ([mkdir, 1 ', personal], mail, Wednesday, 8, jan, 1992, 10, 26,

21).
event([cd, ’ ’, mail], mail, Wednesday, 8, jan, 1992, 10, 26, 21).
e v e n t ([mkdir, 1 ', addresses], home, Wednesday, 8, jan, 1992, 10, 26,

21) .
event([mkdir, 1 ', mail], home, Wednesday, 8, jan, 1992, 10, 26, 21).

/* nonevent/12 * /

no n ev en t([cd] , l e x i c a l , nu l , n u l , home, tuesd ay , 11, fe b ru a ry , 1992, 19,
48, 16).

n o n e v e n t ([pwd], l e x i c a l , n u l , n u l , b u s i n e s s , t u e s d a y , 11, f e b r u a r y ,
1992, 19, 48, 6).

n o n e v e n t ([rm d ir , 1 ’ , m a i l] , r e f e r e n c e , b u s i n e s s , m a i l , b u s i n e s s ,
tuesday , 11, feb ru a ry , 1992, 19, 47, 58).

n o n e v e n t ([rm d ir , ’ ' , m a i l , 1 f , p e r s o n a l] , s y n ta x , n u l , n u l , home,
tuesday , 11, fe b ru a ry , 1992, 19, 46, 24).

n o n ev en t([rm dir, ’ ’ , b u s in] , r e f e r e n c e , home, b u s in , home, tu e sd ay , 11,
feb ru a ry , 1992, 19, 44, 13).

n o n e v en t([rm dir, 1 ' , b u s in e s s , (/) , b u s in] , r e f e r e n c e , home, b u s in e s s ,
home, tuesday , 11, fe b ru a ry , 1992, 19, 43, 50).

n o n ev en t([rm dir, 1 ’ , a d d re s se s] , nonempty, n u l , n u l , home, tu e sd a y , 11,
feb ru a ry , 1992, 19, 40, 45) .

n o n e v e n t ([r m d i r a d d r e s s e s] , l e x i c a l , n u l , n u l , home, t u e s d a y , 11,
fe b ru a ry , 1992, 19, 40, 28) .

274

i i v u t v t a u \ L V U / J r U U U A r a i i u j . / l l U X / J J U O J . 1 1 / u u c o < u d y / X X r X C X J X u c i x y /

1992, 19, 34, 40).
n o n e v e n t ([mv, * ', fromeric, 1 ', mail, (/), home, (/), mailin],

reference, mail, mail, mail, tuesday, 11, february, 1992, 19, 29,
6) .

nonevent([cd, * ’, persaddr], reference, home, persaddr, home, tuesday,
11, february, 1992, 19, 26, 35) .

nonevent([mv, ' ’, custaddr, 1 ’, addresses, (/), root, (/), mailin],
reference, addresses, root, busaddr, tuesday, 11, february, 1992,
19, 25, 28).

n o n e v e n t ([mv, 1 ’, busaddr, ' ', addresses, (/), root, (/), mailin],
reference, busaddr, busaddr, busaddr, tuesday, 11, february, 1992,
19, 24, 32).

nonevent([cd, * ', suppaddr], logical, nul, nul, busaddr, tuesday, 11,
february, 1992, 19, 16, 19) .

nonevent([cd, ' ', custaddr], logical, nul, nul, busaddr, tuesday, 11,
february, 1992, 19, 16, 0) .

n o n e v e n t ([cd, * ', smiths], logical, nul, nul, home, tuesday, 11,
february, 1992, 19, 14, 45).

n o n e v e n t ([cd, 1 ’, addresses, (/), persaddr, (/), joneses], logical,
nul, nul, home, tuesday, 11, february, 1992, 19, 14, 17).

nonevent([cd, 1 ', complaintin], logical, nul, nul, busin, tuesday, 11,
february, 1992, 19, 13, 2).

n o n e v e n t ([cd, ' ', busout, (/), business, (/), busin], reference,
busout, busout, busout, tuesday, 11, february, 1992, 19, 11, 59).

nonevent([cd, ' ', enquirout], logical, nul, nul, busout, tuesday, 11,
february, 1992, 19, 10, 57).

nonevent([cd, * ', busout], reference, busout, busout, busout, tuesday,
11, february, 1992, 19, 10, 20) .

nonevent([cd, ' ', enquireout], reference, busout, enquireout, busout,
tuesday, 11, february, 1992, 19, 10, 2).

n o n e v e n t ([cd, ' ', add o u t] , logical, nul, nul, busout, tuesday, 11,
february, 1992, 19, 9, 44).

n o n e v e n t ([cd, ’ ’, t o j i m] , logical, nul, nul, persout, tuesday, 11,
february, 1992, 19, 8, 1).

n onevent([cd, 1 ’, to, ’ ', jim], syntax, nul, nul, persout, tuesday,
11, february, 1992, 19, 7, 47).

n o n e v e n t ([cd, 1 ', fromjim], logical, nul, nul, persin, tuesday, 11,
february, 1992, 19, 6, 59).

nonevent([cd, ' ’, frommary], logical, nul, nul, persin, tuesday, 11,
february, 1992, 19, 6, 46).

n o n e v e n t ([cd, 1 ', mail], reference, mail, mail, mail, tuesday, 11,
february, 1992, 19, 2, 59).

n o nevent([cd, 1 ’, personal], execute, mail, personal, mail, tuesday,
11, february, 1992, 19, 2, 48).

nonevent([cd, ' ']/ syntax, nul, nul, business, tuesday, 11, february,
1992, 19, 2, 26).

n o n e v e n t ([chmod, 1 ', 700, 1 ’, business], reference, business,
business, business, tuesday, 11, february, 1992, 19, 1, 2) .

nonevent([Is], read, mail, business, business, tuesday, 11, february,
1992, 19, 0, 21).

n o n e v e n t ([cd, 1 ', fromeric], logical, nul, nul, mail, tuesday, 11,
february, 1992, 19, 0, 1).

n o n e v e n t ([cd, ' ', mail], lexical, nul, nul, mail, tuesday, 11,
february, 1992, 18, 59, 53).

nonevent([mkdir], lexical, nul, nul, home, tuesday, 11, february, 1992,
18, 58, 32).

n o n e v e n t ([cd, * ', mail], reference, mail, mail, mail, tuesday, 11,
february, 1992, 18, 57, 47).

n o n event([cd, 1 ', personal], execute, mail, personal, mail, tuesday,
11, february, 1992, 18, 57, 41).

n o n e v e n t ([cd, ' ', addresses], reference, addresses, addresses,
addresses, tuesday, 11, february, 1992, 18, 50, 44).

nonevent([cd, 1 ', persaddr], execute, addresses, persaddr, addresses,
tuesday, 11, february, 1992, 18, 50, 7).

275

nuiicvciiL \ i_uiuuuu; , *njvjj , oynuctii, uux, n u i , a a a r e s s e s , tu e s d a y , J-J-/
feb ru a ry , 1992, 18, 47, 46) .

n o n e v e n t([cd, ' ' , p e r s a d d r] , e x e c u te , a d d re s s e s , p e r s a d d r , a d d re s s e s ,
tuesd ay , 11, feb ru a ry , 1992, 18, 46, 14).

n o n e v e n t ([cd , ' ’ , te m p] , l o g i c a l , n u l , n u l , home, t u e s d a y , 11,
fe b ru a ry , 1992, 18, 44, 20).

n o n e v e n t ([cd, 1 ' , a d d r e s s e s] , r e f e r e n c e , m a i l i n , a d d r e s s e s , m a i l in ,
tuesd ay , 11, fe b ru a ry , 1992, 18, 39, 23).

n o n e v e n t ([cd , * ' , a d d r e s s] , r e f e r e n c e , m a i l i n , a d d r e s s , m a i l i n ,
tuesd ay , 11, fe b ru a ry , 1992, 18, 39, 15).

n o n e v en t([cd, * ' , b u s in e s s] , r e f e r e n c e , home, b u s in e s s , home, tu e sd ay ,
11, fe b ru a ry , 1992, 18, 36, 36) .

n o n e v e n t ([I s , ’ ' , ' - I '] , l e x i c a l , n u l , n u l , home, t u e s d a y , 11,
fe b ru a ry , 1992, 18, 31, 14).

no n ev en t([' l s - l '] / l e x i c a l , n u l , n u l , home, tu esd ay , 11, fe b ru a ry , 1992,
18, 31, 3) .

276

Appendix K
Protocol Analysis Commentaries

Appendix K contains commentaries on all of the context errors committed
by all subjects involved in the protocol analysis evaluative exercise. These
were produced from synchronised video tapes and interaction logs from a
session with each subject. Something in the order of six hours of video tape
was scrutinised, in conjunction with printed versions of the log files, so that
precise descriptions of the error situation could be formulated. Subjects'
comments and replies to questions form ed the basis of judgm ents
concerning misconceptions about system states and functions, which are
used to estimate the accuracy of the stated misconception diagnosis criteria.
An estimation of the likely effectiveness of help information, based on this
diagnosis, is then made.

27 7

O JL

nonevent(Command, Errortype, Parent, Target, Cwd, Day, Date, Month,
Year, Hour, Minute, Second).

nonevent([cd, ' persaddr], execute, addresses, persaddr, addresses,
monday, 20, January, 1992, 18, 4, 44).

D escription: This was an attempt to make the execute-protected directory
'persaddr1 the working directory. The subject was not aware that having
execute permission is a precondition of this action.
C om m entary : A prior action in the log, removing execute permission
from the directory would provide evidence for a state misconception here.
However, this mode had been set in the startup file and was not one of the
subject's own actions and is thus misleading. The absence of such evidence
would lead to the provision of state and functional information regarding
the mode set on 'persaddr' and the precondition of execute permission on
directory changes, along with directions for using the 'chmod' command.
Such would seem adequate in the current situation.

nonevent([chmod, ' 100, ' root, (/), home, (/), addresses],
reference, addresses, root, addresses, monday, 20, January, 1992,
18, 6, 23).

D escription: In trying to remedy the previous error, a reference error
occurred, arising from the (popular) misconception that paths always start
from the home or root directory instead of the cwd.
C om m entary : This reference error would be dealt with without the
benefit of any evidence from the log and help information would thus be
based on relevant aspects of the current state, such as the cwd and location
of the target, and violated preconditions on referencing via paths, such as
that each item in the path list must be the parent or child of its predecessor
in the list and that the first item must be a child or parent of the cwd.

nonevent([ls, ' ', '-I'], read, addresses, persaddr, persaddr, monday,
20, January, 1992, 18, 12, 19).

D escription: In granting execute permission on the directory 'persaddr1
by giving it a code of 100, the subject had removed read permission, which
is a precondition of the 'Is' command.
C om m entary: The prior mode setting action would be taken as evidence
for a state misconception here but it is not clear that this is correct. It is
more likely that the subject was unaware of the precondition of
read-permission on the 'Is' command when the 'chmod' command was
used, as there was probably an intention to list the directory even at that
time. The criteria would suggest a state misconception, when the facts point
to a functional misconception, indicating a weakness in the criteria adopted.

278

wnemer mis Kina or error couia De addressed as a planning error at an
earlier time (when, for example, read permission was removed) would
depend upon whether the intention to list the directory could be reliably
predicted as part of some larger plan.

nonevent([chmod, ' ', 400, ' persaddr], reference, persaddr,
persaddr, persaddr, monday, 20, January, 1992, 18, 13, 17).

D escrip tion : In attempting to reassign read perm ission to ’persaddr1
from within ’persaddr’, this reference error occurred. The error was
greeted with ’’Where am I?".
C om m entary: It seems that the subject had forgotten the identity of the
cwd. The last directory change would be taken as the causal antecedent
action and would thus provide evidence for a state misconception
concerning the cwd, based on the idea that this action had been forgotten.
The criteria of logical and psychological proximity would support this
diagnosis, which in this case, is correct. State information concerning the
cwd, the location of the target and the last directory change would seem
appropriate to addressing this misconception.

nonevent([cd, ' persaddr], reference, persaddr, persaddr, persaddr,
monday, 20, january, 1992, 18, 16, 34).

D escrip tion: ’persaddr’ was already the cwd when the subject tried to
make it so; the classic "please close the window" error.
C om m entary : The error of trying to make a state of affairs the case
which already obtains is a logical error which can be dealt with at a high
level of abstraction, although the reason for the error may require detailed
examination. The previous directory change would operate evidentially in
the same way as in 18:13:17.

nonevent([cd, ' ', root, (/), home, (/), addresses], reference, persaddr,
root, persaddr, monday, 20, january, 1992, 18, 17, 37).

D escrip tio n : Repetition of the reference error stemming from the
misconception that paths must start from the ’home’ or ’root’ directory.
Com m entary: See 18:6:23

nonevent([cd, ' persaddr, {/), addresses], reference, persaddr,
persaddr, persaddr, monday, 20, january, 1992, 18, 18, 10).

D escription: Another attempt to change directory to what was already
the cwd.
C om m entary: See 18:13:17.

279

nonevenmco, ' ', persaddr], execute, addresses, persaddr, addresses,
monday, 20, january, 1992, 18, 20, 30).

D escrip tion : This time, the subject had changed the mode setting on
’persaddr’ to get read-perm ission and, at the same time, removed
execute-permission. This attempt to make ’persaddr' the cwd thus failed;
the reverse of the situation in 18:12:19.
C om m entary: The prior change of mode logged would have suggested a
state misconception and the subject’s prior experience with the precondition
of execute-permission on the ’cd’ command would tend to support this.
Information concerning the current mode setting on 'persaddr' would thus
be provided. See 18:12:19.

nonevent([cd, ' ', addresses], reference, addresses , addresses,
addresses, monday, 20, january, 1992, 18, 22, 4).

D escription: Another example of locational disorientation with regard to
the cwd.
C om m entary: See 18:13:17.

nonevent([ls, ’ ’4], read, mail, business, business, monday, 20,
january, 1992, 18, 31, 59).

D escrip tion : An attem pt to list 'business’ w ithout the presupposed
read-permission.
Com m entary: See 18:4:44.

nonevent([chmod, ’ ', 700, ' ’, complaintin], reference, business,
complaintin, business, monday, 20, january, 1992, 18, 36, 42).

D escription: Here, the subject had moved up a level in the hierarchy and
then tried to access a child of the previous cwd.
C om m entary: This state misconception would be identified on the basis
of the last directory change, which, had it not occurred, would have
rehabilitated this command. Information on the relative positions of the
relevant items would be provided. Details of the presum ed causal
antecedent action would reinforce the subjects understanding of the causal
relationships between actions.

nonevent([cd, ’ business], reference, business, business, business,
monday, 20, january, 1992, 18, 37, 38).

D escrip tion : Another case of attem pting to bring about something
already obtaining.
Com m entary: See 18:13:17.

280

nonevenmca, ’ ', ousmessj, reference, nome, business, home, monaay,
20, january, 1992, 18, 48, 37).

D escrip tion : Here, the subject had presumed that she had changed
directory to 'mail', when this was not the case. Consequently, she tried to
change directory to ’business' from 'home1, without supplying 'mail' in the
path. "I forgot I'd not gone into it [mail]", she said.
C om m entary: No single, prior action in the log constitutes evidence for a
forgotten change in state, in this instance. Locational inform ation
concerning relevant items and rules concerning accessing remote items
would therefore be provided here.

nonevent([cd, ' ', busout], reference, home, busout, home, monday, 20,
january, 1992, 18, 48, 40).

D escription: This is really the same error as the previous one, committed
immediately after it.
C om m entary: See 18:48:37.

nonevent([cd, ' ’, persin], reference, persout, persin, persout, monday,
20, january, 1992, 18, 51, 4).

D escrip tion : An attempt to move laterally in the directory structure
without supplying the path. It seems that the last directory move from the
parent had been forgotten.
Com m entary: Again the last change of directory in the log provides good
evidence for the state misconception of assuming a prior state to obtain.
Details of the current state and the action which transformed it from the
presumed state are pertinent here.

nonevent([mkdir, ' ', business], duplication, home, business, home,
monday, 20, january, 1992, 19, 3, 9).

nonevent([mkdir, ’ ', business], duplication, home, business, home,
monday, 20, january, 1992, 19, 4, 4).

D escrip tion : Both of these commands were attempts to duplicate a
directory name. The subject was unaware of the bar on duplicated names.
C om m entary: The existence of an action in the log, creating or naming
the directory 'business' would be taken as evidence for a state
misconception concerning the existence of that directory. This could
produce incorrect diagnoses, in that the creation of an item does not imply
knowledge about mles concerning duplication. This indicates that a possible
extension to the criteria for diagnosis might be some kind of representation
of the implications for user knowledge of the various commands which
might be found in the log. The use of the 'chmod' command might indicate

281

u \ s j l a i v x u i i i A x i u i i k j Tf n i l t i i v U O V / V i \ J I W l i U l l V U U V ^ O d l l VJ- l l i V ^ X l W X X t ^ l t / C l O

the use of 'mkdir' does not indicate any familiarity with the associated rules
of duplication. We have indicated that this kind of inference is rather
tenuous but it could prove a useful source of negative evidence to suppress
incorrect diagnoses, rather than as support for particular diagnoses.

nonevent([mv, ' mail, (/), business, (/), busout, (/), enquirout, ’ ',
home, (/), 'temp]1], reference, home, home, home, monday, 20,
january, 1992, 19, 14, 6).

D escription: Here, the cwd ('home') was placed at the head of a path.
Interestingly, the first argument path correctly omits the cwd, indicating
that this was not a genuine misconception. The consequent error message
was greeted with "'Cos I'm in 'home', stupid girl!" and the error was
quickly detected, which also supports the idea that this was a 'slip'.
C o m m en tary : The 'undoing' of no single prior action would have
rehabilitated the command, so that state and functional information would
be presented. In this instance, a mere reminder of the identity of the cwd
would have been sufficient but it is better that the user has a little too much
information rather than not enough.

nonevent([mv, ' ', complaintin, ' temp], duplication, home, temp,
busin, monday, 20, january, 1992, 19, 18, 32).

D escrip tion : Because of the dual function or ambiguity of the 'mv'
command in UNIX; both in moving and renaming items, it is impossible
for the system to tell if this is a duplication or reference error. It is treated
as the former, when in fact it is the latter. This obviously makes for highly
confusing error reports, since the error message bears no relation to the
user's intentions. TTie subject was attempting to move a file ('complaintin')
from the cwd ('busin') to a 'great uncle' directory ('temp'), w ithout
supplying the correct ('business/home') path. The system sees this as an
attempt to rename 'complaintin' to 'temp' and rejects this name duplication.
C om m entary: One answer here is to remove the inherent ambiguity, so
that the system at least has access to the meaning of the action. The
pragmatics of the action can then be addressed more accurately.
Alternatively, the classification of error type would follow and depend on
the possible worlds analysis, so that both interpretations of the error could
be pursued and compared. In this case, there is no evidence to support
either option over the other, which would lead to information relating to
both being provided as alternative user misconceptions. The user could
then choose the most appropriate interpretation.

nonevent([mv, ’ ', complaintin, ’ ’, home, (/), temp], reference, busin,
home, busin, monday, 20, january, 1992, 19, 19, 9).

282

in s c r ip t io n : /u io tner attempt to acnieve me intention or me last
erroneous command. Again, the destination path was given incorrectly. It
was not clear to an observer whether this stemmed from a lack of
awareness of the structure of the hierarchy or was an instance of the
function misconception that paths start from the 'home' directory (or
both).
C om m entary : In the event, no evidence for a state misconception is
available, so both kinds of information would be presented.

nonevent([ls, ' home, (/), temp], reference, busin, home,
busin, monday, 20, january, 1992, 19, 21, 53).

D escription: A path error related to the previous one.
Com m entary: See 19:19:9.

nonevent([ls, ’ ', '-I', ' ’, temp], reference, busin, temp, busin, monday,
20, january, 1992, 19, 21, 58).

D escription: D itto.
Com m entary: See 19:19:9.

nonevent([mv, ' custaddr, ' ', busaddr, (/), addresses, ' temp],
reference, busaddr, busaddr, busaddr, monday, 20, january, 1992, 19,
32, 6).

D escrip tio n : The cw d given as the head of the path. The subject
expressed general confusion about the constmction of paths and it could be
that some of these errors resulted from ’experiments' in path construction.
C om m entary: Trying out different 'rules' would tend to provoke the help
system to generate state and functional information, since it would tend to
imply no particular state misconception. Part of the rationale of the
approach here is that the user should be rewarded for experimentation,
rather than deterred from it. Thus, it is appropriate for experimental
behaviour to engender the production of information, both on aspects of
the current state of the system and rules relating to the correct use of the
command.

nonevent([ls, ' home, (/), temp], reference, busaddr, home,
busaddr, monday, 20, january, 1992, 19, 35, 34).

nonevent([ls, * temp], reference, busaddr, temp, busaddr,
monday, 20, january, 1992, 19, 35, 41).

nonevent([cd, ' busaddr], reference, home, busaddr, home, monday,
20, january, 1992, 19, 37, 24).

283

nonevenmca, , aoaressesj, rererence, Dusmess, aaaresses,
business, monday, 20, january, 1992, 19, 37, 55).

D escription: Again, general confusion concerning the construction of
paths resulted in these four errors.
Commentary: Rules of path construction would be provided here, since
no causal antecedent actions were present in the log. See 19:19:9.

nonevent([rmdir, ' ', busaddr], nonempty, nul, nul, addresses, monday,
20, january, 1992, 19, 38, 20).

Description: The subject was not aware of the rule that a directory must
be empty before it can be deleted.
Commentary: The 'undoing' of no single event in the log would have
rendered this command executable, therefore state and functional
information would be presented. This would seem to address the problem.

nonevent([rmdir, ' ', addresses, (/), busaddr], reference, temp,
addresses, temp, monday, 20, january, 1992, 19, 40, 14).

Description: The subject had forgotten the prior directory change to
'temp' from 'home' and so tried to access 'addresses' as a sibling of the
cwd , without the necessary path 'home'.
Commentary: The directory change stands as good evidence in detecting
this misconception, since its undoing would rehabilitate the command. The
state information, along with a reminder of the antecedent action would be
given to remedy the misconception.

nonevent([mv, ' home, (/), temp, (/), custaddr, ' business, (/),
busaddr], reference, home, home, home, monday, 20, january,
1992,19, 42, 42).

D escription: Locational disorientation concerning the cwd.
Commentary: See 18:13:17.

nonevent([mv, ' , temp, (/), suppadr, ' ', business, (/), busaddr],
reference, temp, suppadr, home, monday, 20, january, 1992, 19, 44,
14).

Description: 'suppadr' used for 'suppaddr'.
Commentary: Spell checking would have dealt with this error. As it was,
the subject took it as a genuine reference error, rather than a typographical
one and was consequently puzzled as to the exact nature of the error.

nonevent([cd, ' ’, tep], reference, home, tep, home, monday, 20,
january, 1992, 19, 44, 24).

284

D escription: 'tep' used for 'temp'.
C om m entary: See 19:44:14.

nonevent([mv, ’ ', temp, (/), suppadr, ' business, (/), busaddr],
reference, temp, suppadr, home, monday, 20, january, 1992, 19, 45,
0).

D escription: ’suppadr’ used for ’suppaddr’.
Com m entary: See 19:44:14.

nonevent([mkdir, ’ ', personal], duplication, home, personal, home,
monday, 20, january, 1992, 19, 49, 24).

D escrip tio n : Here, the subject had forgotten the existence of the
directory ’personal’ and tried to create another directory of that name.
C om m entary: See 19:3:9.

nonevent([mv , ' ', mail, (/), personal, (/), persout, (/), tojim, '

persout, (/), personal, (/), mail, (/), home, (/), temp], reference,
home, persout, home, monday, 20, january, 1992, 19, 55, 18).

D escription: In this case, the destination path was given in reverse; from
target to cw d. The subject had not really grasped the rules of path
construction throughout the session.
Com m entary: See 18:6:23. Even verbal explanations proved unsuccessful
here and so automated help would stand little chance of success. It could be
that the pressure of the situation exacerbated this confusion and that the
opportunity to explore the system in less stressful circumstances would
have provided a remedy, so long as the system rewarded such exploration
by providing information relevant to it.

Sum m ary: There were thirty five context errors in this user's session log.
On three occasions, the inferences drawn from the diagnostic criteria were
inappropriate to the user's particular situation, in that some of the
information germane to the error would not have been provided or that
some misleading information would have been given. On three occasions,
the user would have received information relating to system rules, as well
as relevant state information, when the misconception was state-based. On
the other twenty nine occasions, the misconception diagnosed via the stated
criteria broadly matched that apparent in the analysis of the recorded
protocol and log file.

285

nonevent([cd, ’ addresses], reference, mailin, addresses, mailin,
tuesday, 21, january, 1992, 17, 36, 34).

Description: This was an attempt to change the cwd to a sibling directory
’addresses’ from 'mailin', without supplying the parent as the path. The
user said at this point "I think I've lost where I am” indicating that he did
was unsure of identity of the cwd at this point.
C o m m en ta ry : The last change of directory from 'home' to 'mailin’
would be taken as evidence for the diagnosis of the misconception that
'home' was the cwd. The present cwd and the location of 'addresses' would
thus be deemed as sufficient information to enable the user to recover and
correct the misconception. Otherwise, the violated precondition governing
directory changes would also be signalled.

nonevent([cd, ' persaddr], execute, addresses, persaddr, addresses,
tuesday, 21, january, 1992, 17, 38, 19).

D escrip tion : An attempt was made to change directory to ’persaddr’
which was execute protected. The user was unaware of this protected state.
It had been set in the startup file as part of the task definition and not set by
the present user.
C om m en tary : The presence of the command in the log, setting the
protection on that directory, would be taken as evidence for psychological
proximity of a possible world in which that command had not occurred and
in which the directory was therefore not protected. It is assumed that the
user himself set this value as the command is in his log. Information
designed to correct this misconception would be presented. If no causal
antecedent were present, information regarding preconditions on directory
changes would also be presented.

nonevent([mv, ' address, ' personal], reference, home, address,
home, tuesday, 21, january, 1992, 17, 43, 51).

D escription: ’address’ was used for 'addresses'.
C om m entary: A spell checker would tackle this error prior to it being
interpreted as a context error. If there were causal antecedents relating to
an item of that name, for example, a previous deletion, then a state
misconception would be diagnosed on the basis of this evidence for
psychological proximity of the possible world in which the deletion had not
occurred. Absence of such evidence would lead to the presentation of state
information, ie: that the item does not exist, along with the relevant
precondition of existence on the command.

286

tuesday, 21, january, 1992, 17, 44, 22).

D escrip tion : An attempt was made to create a duplicate directory
'personal'. The user was not aware of the presence of this directory at a
lower level.
C om m entary: See 17:38:19.

nonevent([cd, ’ ’, persin], reference, persout, persin, persout, tuesday,
21, january, 1992, 17, 48, 9).

D esc rip tio n : An attempt was made to move directly to a sibling
directory. The user said at this point "That failed 'cos I can’t hop
directories" indicating that the user was unsure of and testing the
preconditions on directory changes and also that an earlier diagnosis
(17:36:34) may have been unsound.
C om m entary: Here a previous directory change would have indicated a
state misconception rather than the apparent functional one, confirming
that the stated criteria for diagnosis need strengthening.

nonevent([cd, ’ ', person], reference, persout, person, persout,
tuesday, 21, january, 1992, 17, 48, 31).

D escription: 'person' was used for 'personal'.
Com m entary: See 17:43:51.

nonevent([cd, ' ', person], reference, persout, person, persout,
tuesday, 21, january, 1992, 17, 49, 23).

D escription: Another use of 'person' for 'personal'.
Com m entary: See 17:43:51.

nonevent([cd, ' ', mail], reference, persin, mail, persin, tuesday, 21,
january, 1992, 17, 50, 4).

D escription: An attempt was made to move directly to a grandparent
directory. The user had forgotten which directory was the cwd.
C om m entary : If the last directory change had been from the parent or
child of the target, this would have indicated a state misconception and
prompted the provision of relevant state information. The absence of such
a prior action would necessitate inform ation regarding the violated
preconditions on directory changes, which would have been superfluous in
this instance.

287

------- 7 ------------------------------------ j j ' — - — — 7 — ------------ “ * J w w w w . ,

27 , january, 1992, 17, 53, 30).

D escription: This is a classic ’please close the window’ example, where a
command is issued in order to achieve a state which actually already
obtains. An attempt is made to move to what is already the cwd.
C om m entary : The move to ’busout’ must, by definition, have been the
last directory change. This would be taken as evidence for the
psychological proximity of a possible world where that change had not
occurred and a state misconception to that effect would be diagnosed. Thus,
state information indicating the cw d would be presented, along with
information relating to the action which brought about that state. This
would seem to be exactly what was required in this instance.

nonevent([mv, ' ', mail, ' scrap], reference, mail, mail, mail,
tuesday, 21, january, 1992, 18, 0, 46).

D escription: Here again, the user had forgotten the identity of the cw d
and attempted to access it from within it. There is a complication in that the
command also attempted to move a directory, which is not allowed in this
simulation. The latter error was repeated once the user had recovered from
the reference error.
C om m entary : For the reference error see 17:50:4. Compound errors
such as this ought to be dealt with simultaneously in a ”by the way...” sort
of manner, so that users are not forced to repeat errors in order to
discover them. Unless there were evidence to support the idea that the user
believed there to be a file called ‘m ail’ to which he was referring, the
interpretations available are the state misconception that the directory
’mail’ is thought to be a file or the functional misconception that directories
can be moved. Information regarding these two facts is sufficient to
remedy this situation.

nonevent([mkdir, ' ', persaddr], duplication, personal, persaddr,
personal, tuesday, 21, january, 1992, 18, 10, 38).

D escription: An attempt to duplicate the directory ’persaddr’.
C om m entary: See 17:38:19.

nonevent([mv, ' ', scrap, (/), tojim], reference, persmail, scrap,
persmail, tuesday, 21, january, 1992, 18, 12, 57).

D escription: This compound error arose from the twin misconceptions
that (a) all pathnames start from the home directory, whatever the identity
of the cwd and (b) mv is like Is, in that the cwd is the default argument.
C om m entary : See 18:0:46 on compound errors. This should also have
been signalled as a syntax error to the effect that m v requires two

288

error would be dealt with without the benefit of any evidence from the log
and help information would thus be based on relevant aspects of the current
state, such as the cwd and location of the target, and violated preconditions
on referencing via paths, such as that each item in the path list must be the
parent or child of its predecessor in the list and that the first item must be a
child or parent of the cwd.

nonevent([mv, ' home, (/), scrap, (/), tojim], reference, persmail,
home, persmail, tuesday, 21, january, 1992, 18, 13, 27).

Description: This is a repeat of the last error.
Commentary: See 18:12:57.

nonevent([mv, ’ tojim, ' personal, (/), permail, (/), tojim],
reference, personal, permail, home, tuesday, 21, january, 1992, 18,
16, 40).

Description: A use of ’permail’ for ’persmail’.
Commentary: See 17:43:51.

nonevent([mv, ", tojim, ' personnal, (/), persmail, (/), tojim],
reference, home, personnal, home, tuesday, 21, january, 1992, 18,
17, 8).

Description: A use of ’personnal’ for ’personal’.
Commentary: See 17:43:51.

nonevent([mv, ' t o, ' jim, ' ', personal, (/), persmail, (/), tojim],
reference, home, to, ome, tuesday, 21, january, 1992, 8, 17, 32).

Description: A use of ’to jim ’ for ’tojim’.
Commentary: See 17:43:51.

nonevent([mv, ' inquireout, ' ', home, (/), inquireout], reference,
busout, home, busout, tuesday, 21, january, 1992, 18, 23, 26).

Description: This error again arose out of the misconception that paths
begin from the ’home’ directory.
Commentary: See 18:12:57.

nonevent([mv, ' inquireout, ' scrap, (/), inquireout], reference,
busout, scrap, busout, tuesday, 21, january, 1992, 18, 23, 46).

Description: D itto.
Commentary: See 18:12:57.

289

nonevent([mkdir, ' busaddr], duplication, business, busaddr,
business, tuesday, 21, january, 1992, 18, 29, 4).

D escription: An attempt to create a directory 'busaddr' when one already
existed. On encountering this error the user exclaimed "Where?" and on
finding the offending item "...I forgot to take that directory out."
Com m entary: See 17:44:22.

nonevent([mv, ' ', busmail, (/), business, (/), home, (/), complaintin],
reference, home, complaintin, bus mail in, tuesday, 21, january, 1992,
18, 32, 25).

D escription: Another instance of the 'default' misconception.
Com m entary: See 18:12:57.

nonevent([mv, ’ ', busmail, (/), business, (/), home, (/), scrap, (/),
complaintin], reference, scrap, complaintin, busmailin, tuesday, 21,
january, 1992, 18, 32, 53).

D escription: D itto.
C om m entary: See 18:12:57.

nonevent([mv, ' ', custaddr, ' ', home, (/), business, (/), busaddr],
reference, scrap, custaddr, scrap, tuesday, 21, january, 1992, 18,
37, 16).

D escrip tion : Another 'please close the window' example. The file
'persaddr' had been moved and the move was attempted again.
C om m entary: See 17:53:30.

nonevent([rmdir, ' ', persaddr], reference, a ddresses , persaddr,
addresses, tuesday, 21, january, 1992, 18, 38, 50).

D escription: This time, the directory 'persaddr', which had been deleted,
was 're-deleted'.
Com m entary: See 17:53:30.

nonevent([cd, ' ', busmail], reference, busmail, busmail, busmail,
uesday, 21, january, 1992, 18, 41, 17).

D escription: 'busmail' used for 'busmailin'
Com m entary: See 17:43:51.

290

/ i u i i c v c i u [i k j u , , f j c i u i a u j , / c / c ? / c ? / / o c ? , j j c i z > u i i a i , f j e i u i d i i , f j c i o u i l a i ,

tuesday, 21, january, 1992, 18, 47, 51).

D escription: 'permail' used for 'persmail'.
C om m entary: See 17:43:51.

Sum m ary: There were twenty six context errors in this user's session log.
On two occasions, the inferences drawn from the diagnostic criteria were
inappropriate to the user's particular situation, in that some of the
information germane to the error would not have been provided or that
some misleading information would have been given. On seven occasions,
the user would have received information relating to system rules, as well
as relevant state information, when the misconception was state-based. On
the other seventeen occasions, the misconception diagnosed via the stated
criteria broadly matched that apparent in the analysis of the recorded
protocol and log file.

S3

nonevent([ls, ' ', addresses, (/), persaddr], read, addresses, persaddr,
home, monday, 10, february, 1992, 19, 20, 53).

D e s c r ip tio n : Here, an attempt was made to list the read-protected
directory 'persaddr'. The user was unaware of this protection, which had
been set prior to the session.
C om m entary : The most logically proximate possible world compatible
with this command is one in which the directory had not been
read-protected. A state misconception of read-permission on the directory
would have been diagnosed on the basis of a previous action setting this
protection, recorded in the interaction log, having been forgotten. The state
information relevant to remedying this misconception would have been
displayed, ie: that the directory had been read protected and when. This
interpretation assumes that the user had set the protection on the directory
himself, as the record is in his log. If there were no such record, other
interpretations are available, for example, that the user is unaware of the
presupposition of read-permission on the Is command. In this case, that
information would also be imparted.

nonevent([mkdir, ' ', personal], duplication, home, personal, home,
monday, 10, february, 1992, 19, 31, 40).

D escription: Here, the user was unaware of the presence of a directory
with the same name as that which he was trying to create (no duplicate
names are allowed in the structure).
C om m entary : Again, the log provides evidence that the prior creation of
this directory had been forgotten, supporting a belief in the possible world

291

-------------------------- a a 1 1 1 1 U v v . l W h U v n A O U l W W V / l t / A A A V A A ^ t i U ^ V * .

The absence of such evidence would allow an interpretation of functional
misconception regarding the duplication restrictions of the system.
Information presented then would concern the existence and provenance of
the original item and the presupposition of non-duplication attaching to the
mkdir command.

nonevent([mv, ' ', persout, (/), frommary, ' mail, (/), home, (/),
temp, (/), frommary], reference, persout, frommary, personal,
monday, 10, february, 1992, 19, 35, 29).

Description: Here, an attempt was made to access a file in the wrong
directory, 'frommary' was not in 'persout' but in 'persin' at this point.
Commentary: This was obviously a state misconception and, as the most
logically proximate possible world is one in which 'frommary' is in
'persout', this would be the inference here and state information regarding
the location of 'frommary' would be indicated.

nonevent([mv, ' ', persin, (/), frommary, ' ', mail, (/), home, (/), temp,
(/), frommary], reference, home, temp, personal, monday, 10,
february, 1992, 19, 36, 20).

Description: Here, the file 'temp' was assumed to be a directory and
placed in the destination path. In fact, this fact had emerged earlier and the
'"temp" is a file' message was still visible on the display, exemplifying what
has been said regarding users' interests effectively filtering out available,
relevant information and indicating the importance of timing in delivering
information.
Commentary: The logically closest possible world compatible with this
command is one in which 'temp' is a directory, rather than one in which
files have children and so a state misconception concerning this fact would
be diagnosed. If a directory of that name had been deleted at some point
prior to the creation of the file 'temp', this would add weight to the
inference, in the form of evidence for psychological proximity.

nonevent([mkdir, ' personal, (/), persaddr], duplication, personal,
persaddr, home, monday, 10, february, 1992, 19, 40, 42).

Description: An attempt to duplicate the directory 'persaddr'.
Commentary: See 7:31:40.

nonevent([mv, ' ', tomary, ' ', personal, (/), persmail], reference,
home, tomary, home, monday, 10, february, 1992, 19, 46, 45).

Description: Here 'tomary' was typed for 'frommary'.
Commentary: It is unlikely that a spell checking algorithm would catch

2 9 2

UAAU VAAVSA U1AVA U V A t TT V /U X V i U V U V U I V U CIO Cl C 'U l l l U A l ’ 1 1 1 U l l d C/CIOW) U lV ^ iC ' ID

no evidence for the psychologically proximity of any particular possible
world but logically, the closest world is one in which a file called 'tomary'
exists in the home directory and so this would be the chosen inference. The
information that no file of that name exists in that location would be given,
prompting the user to check the file name. This is no more than the
standard UNIX response, of course, but it is, in this instance, all that is
required or possible.

nonevent([mkdir, ' ', business], duplication, home, business, home,
monday, 10, february, 1992, 19, 49, 11).

D escription: An attempt to duplicate the directory 'business'.
C om m entary: See 7:31:40.

nonevent([mv, ' ', mail, (/), business, (/), in, (/), complaintin],
reference, business, in, home, monday, 10, february, 1992, 19, 50,
20).

D escription: 'in' was used for 'busin'.
C om m entary: See 19:46:45.

nonevent([mv, ' ', mail, (/), business, (/), busout, (/), enqout, ' ',
enqout], reference, busout, enqout, home, monday, 10, february,
1992, 19, 52, 46).

D escription: 'enqout' was used for 'enquirout'.
C om m entary: See 19:46:45.

nonevent([mv, ’ ', mail, (/), business, (/), busout, (/), enquireout, ' ',
enquireout], reference, busout, enquireout, home, monday, 10,
february, 1992, 19, 53, 29).

D escription: 'enquireout' was used for 'enquirout'.
C om m entary: See 19:46:45, although a spelling checker would probably
catch this as a lexical error.

nonevent([rmdir, ' ', busaddr], reference, home, busaddr, home,
monday, 10, february, 1992, 19, 56, 9).

D escription: Here, the user forgot to specify the path and gave only the
target name. Thus the directory 'busaddr' was not found in the 'home'
directory.
C o m m e n ta ry : There is no evidence here for the prior existence of a
directory of that name in 'home'. Neither is there any to support the idea
that a directory change (from 'addresses', which contains 'busaddr') has

293

U W 11 X V ig V k lW l* JLJVglVUXXJ 9 b ilv V1VUVUX j^ V U J ll / lV VV ViX U) All o IU IV tv ixxxo^ AO VX1V

in which the current working directory is 'addresses'. This would be an
incorrect diagnosis of the user's system state model, confirming that logical
proximity alone is not a reliable source of evidence. As has been indicated
elsewhere, such cases would necessitate the provision of relevant state and
functional information, in the form of the identity of the cwd, the location
of 'busaddr' and a statement of the presuppositions governing the access of
items relative to the cwd.

nonevent([rmdir, ' addresses, (/), busaddr], nonempty, nul, nul,
home, monday, 10, february, 1992, 19, 56, 58).

D escription: This was an attempt to remove a non-empty directory. The
user thought that he had previously cleared this directory.
C om m entary: Obviously, failure to perform an action cannot be recorded
or used as evidence in determining a user's misconception. There will also
be no unique single event establishing the occupied state of a directory,
except where just one item has been introduced into it. In its lifetime, a
directory's contents may change a great many times and, consequently,
there is no obvious psychological relation between the events which effect
these changes and the user's current system state model and thus no clear
way of establishing psychological proximity of alternative possible worlds.
However, the only possible worlds compatible with the command are ones
in which the directory is empty and ones where the precondition of
emptiness on the rmdir command does not prevail. It seems clear then that
inform ation regarding the non-em ptiness of the directory and the
presupposition or precondition of emptiness would be sufficient in dealing
with this particular kind of context error.

nonevent([mv, ' ', custaddr, ' ', busaddr], duplication, business,
busaddr, home, monday, 10, february, 1992, 19, 58, 57).

Description: This is an interesting case, again involving the ambiguity of
the mv command. The user was attempting to move the file 'custaddr' into
the directory 'busaddr' but failed to give the path required which was
'business/busaddr'. This is interpreted in the rules governing UNIX as an
attempt to rename the file 'custaddr' to 'busaddr' and, since there was a
directory of that name present, the command failed. Because the user
thought that he was moving, rather than renaming, an item, the consequent
error message concerning duplication was very confusing to him.
C om m entary: To some extent, this situation arises from the ambiguity in
the UNIX mv command. The possible worlds approach would give a much
broader interpretation to this command instead of assuming an attempted
renaming. Possible worlds compatible with the command are ones in which
the directory 'busaddr' does not exist, ones in which it resides in the 'home'
directory, ones in which 'business' is the cwd and so on. The proliferation
of interpretations again arises form the inherent am biguity of the

294

renam e, then the logically closest possible world would be one in which
'busaddr' was a child of 'home', there being no evidence for psychological
proximity. This would lead to state information being given about the cwd,
the location of 'busaddr' and the preconditions relating to access, which
would at least have been adequate in addressing the user's problem.

nonevent([mv, ' ', enquirout, ' ', business, (/), busmail, (/), busout, (/),
inquireout], reference, busmail, busout, home, monday, 10, february,
1992, 20, 6, 9).

D escription: Here, the name 'busout' was used for 'busmailout'.
C om m entary: See 7:46:45.

nonevent([rmdir, ' ', mail], reference, mail, mail, mail, monday, 10,
february, 1992, 20, 8, 31).

D escription: The user forgot which directory was the cwd and tried to
access the cwd from within itself.
C om m en tary : Any causal antecedent action, such as a directory change
from the parent or child of the cw d , would indicate a system state
misconception and state information would be provided. A lack of such
evidence for psychological proximity would also prompt the provision of
the relevant information regarding the violated preconditions operating on
the command, eg: that the directory being removed must be a descendant of
the cwd.

nonevent([cd, ' personal, (/), persmail], execute, personal,
persmail, home, monday, 10, february, 1992, 20, 15, 32).

D escription: Here, the attempt to make 'persmail' the cwd failed because
the user had previously removed execute permission from it. In this case,
the 'permission denied' error message was sufficient to enable the user to
recover. However, it did take time for the 'penny to drop' as to the cause
of the problem.
Com m entary: A system state misconception about the mode setting on the
directory would be diagnosed on the basis of the evidence of psychological
proximity of that possible world, in the form of the (assumed forgotten)
prior chm od command. It is often useful for users, in structuring their
task, as well as understanding the functioning of the system, to know why
something has occurred as well as knowing what has occurred.

S um m ary : There were eighteen context errors in this user's session log.
On one occasions, the inferences drawn from the diagnostic criteria were
inappropriate to the user's particular situation, in that some of the
information germane to the error would not have been provided or that
some misleading information would have been given. On three occasions,

295

as relevant state information, when the misconception was state-based. On
the other fourteen occasions, the misconception diagnosed via the stated
criteria broadly matched that apparent in the analysis o f the recorded
protocol and log file.

S4

nonevent([cd, ' business], reference, home, business, home, tuesday,
11, february, 1992, 18, 36, 36).

D escription: The subject attempted to change directory from ’home’ to
’business’ without supplying the correct path. She was expecting the
command ’cd’ to find the directory for her, which amounts to a functional
misconception concerning the rules for accessing the directory structure.
C om m entary: The particular precondition violated is that an item in the
path must be a parent or child of its predecessor (the cwd being assumed to
be the path start). There is no evidence to support the idea that the subject
held any particular state misconception and so both forms of correction are
indicated. Assuming that the inform ation on relevant system states
(locations of cwd and target items) and rules for path construction could be
assimilated, the problem could be overcome.

nonevent([cd, ’ address], reference, mailin, address, mailin,
tuesday, 11, february, 1992, 18, 39, 15).

D escription: ’address’ used for ’addresses’.
C om m entary: Spell checking could handle this error if it is treatable as a
nam ing error. If the user rejected this in terpretation , then the
misconception that a directory called ’address’ existed would be dealt with
on the basis of the rule precondition that a directory must exist before it
can be made the cwd and the state information that no such directory exists.

nonevent([cd, ' ', addresses], reference, mailin, addresses, mailin,
tuesday, 11, february, 1992, 18, 39, 23).

D escription: Here, the subject forgot a previous directory change to a
child and so effectively attempted to directly access a sibling directory.
C om m entary: The previous directory change provides evidence in the
log that supports this interpretation in that the command would have
succeeded had that action not occurred. Current state information and its
provenance would seem to be adequate to correct matters in this case.

nonevent([cd, ' ', temp], logical, nul, nui, home, tuesday, 11, february,
1992, 18, 44, 20).

296

attempt to make a file the cwd , which is never possible. It could also be
viewed as a context error, if duplicate names were allowed and 'temp' was
seen as a non-existent or deleted/renamed directory, or as a compound
error, where both the preconditions of existence and duplication were
being violated. In the event, the subject appeared not to know whether
'tem p' was a file or directory, rather than holding a functional
misconception concerning directory changes.
C om m entary: There being no evidence in the log to support the idea that
the subject believed there to be a directory called ’temp’, the fact that
'temp' was a file, along with the (violated) precondition that the target item
must be a directory would be the information, indicated by the given
criteria, which would be provided.

nonevent([cd, ’ ', per sad dr], execute, addresses, persaddr, addresses,
tuesday, 11, february, 1992, 18, 46, 14).

D escription: Here, the subject was unaware of the execute protection on
the directory ’persaddr’ but quickly realised that she needed to change its
mode setting.
Com m entary: As with other subjects, the action setting execute protection
on 'persaddr' was in the log but had not been performed by this subject.
N orm ally, its presence would be taken as evidence for a state
misconception, based on the idea that this action had been performed by the
subject and subsequently forgotten. This would lead to information
regarding the protected state of the directory being presented, along with a
reminder of the action which achieved this.

nonevent([cd, ’ ', persaddr], execute, addresses, persaddr, addresses,
tuesday, 11, february, 1992, 18, 50, 7).

D escription: Here, the attempt to cd to 'persaddr' failed again. This was
because the subject had (correctly) decided that the mode setting needed to
be changed but had then changed it to 400, which does not remove execute
protection.
C om m entary : There is obviously an error at the planning level here,
which could conceivably been detected and dealt with at the mode setting
stage. The stated criteria would lead to the diagnosis, made on the basis of
the mode setting action in the log, that the subject had forgotten this action
and information concerning the mode state of 'persaddr' and its provenance
would be provided. While this might be helpful, it does not address the
actual misconception regarding which mode settings grant execute
permission. Clearly, the criteria do not, in themselves, adequately handle
this situation. However, as the approach is intended to operate in
conjunction with plan and spelling based systems, this is not necessarily a
major drawback.

297

 - | I ---------7 7 J 7 ' — ' — ' — ' 7

addresses, tuesday, 11, february, 1992, 18, 50, 44).
$

D escrip tion: An attempt to change directory to what was already the
cwd. Here, the subject appeared not to understand that if the cd command
failed (to change directory from 'addresses' to 'persaddr'), its intended
effects would not be realised. She therefore expected to have to "...go
back" to the parent 'addresses' (actually the cwd) in order to be able to
reset the mode.
C om m entary: This highlights the notion of misconceptions concerning
general principles of system functionality, as opposed to specific
implications for particular commands. In this instance, our criteria might
give a diagnosis of state misconception concerning the identity of the cwd,
based on a logged directory change and perhaps a functional misconception
regarding access preconditions on directory changes. However, this
situation raises the possibility of reasoning about the user's understanding
of general principles of system function. For example, that any failed
command leaves the system state unchanged. Using failed commands from
the interaction log could therefore also be used as a source of evidence to
support hypotheses of user misconception of a more general kind. For
example, a number of erroneous commands, compatible with system states
which were the intended target of the preceding (contextually) erroneous
command, could indicate a general misconception of this type. Having said
that, no attempt has been made to accommodate this level of misconception
but the approach adopted would have handled the 'local' misconception,
had the last diectory chage been from the child or parent of the target of
this command.

nonevent([cd, ’ ', personal], execute, mail, personal, mail, tuesday,
11, february, 1992, 18, 57, 41).

D escription: Here, the subject was unaware of the execute protection on
the directory 'personal'.
Com m entary: See 18:46:14.

nonevent([cd, ' ', mail], reference, mail, mail, mail, tuesday, 11,
february, 1992, 18, 57, 47).

Description: By this time, the subject had developed the strategy of using
'cd (x)' to check if x was the cwd. She took the UNIX style 'x not found'
error message to be confirmation.
C o m m en tary : Any log evidence would have prom pted a 'genuine'
confirmation of system state regarding the cwd and the target, whereas a
lack of it would also engender the provision of information regarding the
precondition regarding directory changes. The subjects strategy would
therefore prove more reliable than it was under the prevailing
circumstances, as can be seen later in the session.

298

nonevent([cd, ' fromeric], logical, nul, nul, mail, tuesday, 11,
february, 1992, 19, 0, 1).

D escription: This was an attempt to !cdf to a file. The subject developed a
strategy of using the 'cd' command to check if an item was a file or
directory.
C om m entary: See 18:44:20.

nonevent([ls], read, mail, business, business, tuesday, 11, february,
1992, 19, 0, 21).

D escrip tion : The subject was unaware of the read-protection on the
directory ’business'.
Com m entary: See 6:46:14.

nonevent([chmod, 1 ', 700, ' business], reference, business,
business, business, tuesday, 11, february, 1992, 19, 1, 2).

D escription: An attempt to reset the mode on 'business' from within it.
The subject was apparently aware of the identity of the cw d but there
seemed to be some confusion, bound up with the default status given to the
cwd for the 'Is' command, resulting in a misconception concerning the
specification of targets which happen to be the cwd.
Com m entary: The previous directory change to 'business' would be taken
as evidence for a state misconception regarding the identity of the cwd and
information relating to these facts would be presented, under the given
criteria. This might help indirectly but does not address the subject's
functional misconception. The inconsistency in the way that UNIX treats
default arguments is implicated in the probable cause of this misconception
but information regarding the preconditions governing access to the
structure is also required in this instance, which the stated criteria fail to
recommend.

nonevent([cd, ’ ’, personal], execute, mail, personal, mail, tuesday,
11, february, 1992, 19, 2, 48).

Description: The subject was unaware of the execute protection on ’mail’
and tried to make it the cwd.
C om m entary: See 18:46:14.

nonevent([cd, 1 ’, mail], reference, mail, mail, mail, tuesday, 11,
february, 1992, 19, 2, 59).

Description: An attempt to make the cwd the cwd.
Com m entary: See 18:50:44.

299

nonevent([cd, ' frommary], logical, nul, nul, persin, tuesday, 11,
february, 1992, 19, 6, 46).

D escription: An attempt to make a file the cwd.
C om m entary: See 18:44:20.

nonevent([cd, ' fromjim], logical, nul, nul, persin, tuesday, 11,
february, 1992, 19, 6, 59).

D escription: An attempt to make a file the cwd.
C om m entary: See 18:44:20.

nonevent([cd, ' ', addout], logical, nul, nul, busout, tuesday, 11,
february, 1992, 19, 9, 44).

D escription: An attempt to make a file the cwd .
C om m entary: See 18:44:20.

nonevent([cd, ' enquireout], reference, busout, enquireout, busout,
tuesday, 11, february, 1992, 19, 10, 2).

D escription: ’enquireout’ used for ’enquirout’. A compound error also,
since enquirout was a file.
Com m entary: See 18:39:15.

nonevent([cd, ’ ', busout], reference, busout, busout, busout, tuesday,
11, february, 1992, 19, 10, 20).

D escrip tion: When this error occurred, the subject exclaimed "I’m in
’busout’...I coudn’t have been in enquirout...I spelled it wrong.” There are
two things to note here. Firstly, the hypothesis mentioned earlier, that the
subject did not understand that an error message such as ’file not found1
means that the command has failed, seems to be confirmed by this protocol.
Secondly, the ’cd’ command was being used to check the identity of the cwd
(see 18:57:47).
C om m entary: See 18:50:44.

nonevent([cd, ’ ', enquirout], logical, nul, nul, busout, tuesday, 11,
february, 1992, 19, 10, 57).

D escrip tion: The second error component of 19:10:2 comes home to
roost now that the spelling error is resolved. These should be treated
concurrently in a cooperative dialogue.
Com m entary: See 18:44:20.

300

i i i / m w u i h ^ u u , , u u o u u i , v / f (/ / , k S U J I I I J , I C 7 / C 7 I C?/ I O C ? , U U O U U l ,

busout, busout, tuesday, 11, february, 1992, 19, 11, 59).

D escrip tion : Here, the cwd was placed at the head of the path. The
subject knew the identity of the cwd and so this appears to be a functional
misconception regarding path constmction.
C om m entary: See 19:1:2.

nonevent([cd, ' ’, complaintin], logical, nul, nul, busin, tuesday, 11,
february, 1992, 19, 13, 2).

D escription: An attempt to make a file the cwd.
C om m entary: See 18:44:20.

nonevent([cd, ’ ’, addresses, (/), persaddr, (/), joneses], logical, nul,
nul, home, tuesday, 11, february, 1992, 19, 14, 17).

D escription: D itto.
C om m entary: See 18:44:20.

nonevent([cd, ' ’, smiths], logical, nul, nul, home, tuesday, 11,
february, 1992, 19, 14, 45).

D escription: D itto.
Com m entary: See 18:44:20.

nonevent([cd, ' custaddr], logical, nul, nul, busaddr, tuesday, 11,
february, 1992, 19, 16, 0).

D escription: Ditto.
Com m entary: See 18:44:20.

nonevent([cd, ' suppaddr], logical, nul, nul, busaddr, tuesday, 11,
february, 1992, 19, 16, 19).

D escription: D itto.
C om m entary: See 18:44:20.

nonevent([mv, ' busaddr, ' addresses, (/), root, (/), mailin],
reference, busaddr, busaddr, busaddr, tuesday, 11, february, 1992,
19, 24, 32).

D escription: Use of ’busaddr’ for ’custaddr’ and ’root* for ’home’. Both
of these appeared to be ’slips’. There are also the compound component
error in that ’busaddr’ is a directory and cannot be moved.

301

J V A. AAV AAAUV X/A MAVUW V11V1U JU ilgAlk OUU11HW IU O ^ ^ l l W llU V IV illg

procedures but the second would not. No evidence was available in the log
to support a relevant state misconception hypothesis and so relevant state
and functional information would be generated regarding the 'root' error.
If spell checking did not recommend the target ’custaddr’, then the fact that
’busaddr’ was a directory would be the major obstacle, rather than its
location relative to the cwd. This demonstrates the need to rank errors with
regard to their precedence and also to take account of when an error
obviates the need to pursue lower ranking compound component errors.
For example, logical errors would outrank and obviate the pursuance of
reference errors. If directories cannot be moved, then there is no point in
telling the user where to find the directory for a mv operation.

nonevent([mv; ' ', custaddr, ' addresses, (/), root, (/), mailin],
reference, addresses, root, busaddr, tuesday, 11, february, 1992,
19, 25, 28).

D escription: Repeat of ’root’ for ’home’ error.
C om m entary: See 19:24:32.

nonevent([cd, ' persaddr], reference, home, persaddr, home, tuesday,
11, february, 1992, 19, 26, 35).

D escription: The subject thought ’persaddr’ to be in the directory ’home’
when it was in ’addresses’, a child of ’home’. The error was quickly
recognised from the ’x not found’ error message.
C om m entary: No evidence existed in the log to support a hypothesis of
this misconception above any others but the relevant state information
would include the identity of the cw d and the relative location of
’persaddr’. Presented along w ith preconditions concerning path
construction, this would seem to be pertinent to the situation.

nonevent([mv, ’ ’, fromeric, ’ ', mail, (/), home, (/), mailin], reference,
mail, mail, mail, tuesday, 11, february, 1992, 19, 29, 6).

Description: The cwd was placed at the head of the path.
Com m entary: See 19:11:59.

nonevent([rmdir, ' ', addresses], nonempty, nul, nul, home, tuesday,
11, february, 1992, 19, 40, 45).

D escrip tio n : Here, the subject attem pted to remove a non-em pty
directory.
C om m entary : Any particular action creating contents in the directory
could be taken as evidence for the hypothesis that a misconception that the
directory was empty was held. In that case, only relevant state and

302

V T ***̂ - »f VMJ.V* w ^/AVUVUi.VU« X iiiO 1J VXVU11J U llO U k lO lU ^ lU i J 9

in that the creation of items in a directory does not imply knowledge about
directory deletion and its preconditions, any m ore than it implies
knowledge of the system rules regarding duplication. The question of the
implications for knowledge that the various kinds of action have needs to
be addressed in order to strengthen the basis of evidence for selecting from
alternative hypotheses of user misconception.

nonevent([rmdir, ’ ', business, (/), busin], reference, home, business,
home, tuesday, 11, february, 1992, 19, 43, 50).

D escription: The subject had been specifying the intended path correctly
prior to this error and then missed out the ’mail' path component.
Com m entary: One would think that no detailed help information is really
necessary here but see the next entry. In any event, the situation would be
treated as if it were not a 'slip' and relevant state and functional
information provided. It might be possible to distinguish between 'slips'
and misconceptions by looking for recent successful commands in the log
which have the same path specification. However, as the directory structure
is inherently unstable, it is not obvious that this would be a trivial task or a
reliable method.

nonevent([rmdir, ' ', busin], reference, home, busin, home, tuesday,
11, february, 1992, 19, 44, 13).

D escription: Here, the subject had wrongly interpreted the cause of the
last error as being the fact the 'business’ was the cwd and that the error was
the specification of ’business' at the start of the path. "I'm in ’business’."
She thus tried to access 'busin' directly as a child of what she thought was
the cwd. When the true identity of the cwd was realised, she said "I'm
home... how'd I get there?"
C om m entary: This demonstrates the importance of the precise handling
of errors. An error may be caused by a simple 'slip' but its interpretation
by the user is another matter. Error messages need to be as precise and
accurate as possible, in order to avoid this kind of misinterpretation. For
this error, state and functional information would be presented if the stated
criteria were followed.

S u m m ary : There were thirty three context errors in this user's session
log. On five occasions, the inferences drawn from the diagnostic criteria
were inappropriate to the user’s particular situation, in that some of the
information germane to the error would not have been provided or that
some misleading information would have been given. On nine occasions,
the user would have received information relating to system rules, as well
as relevant state information, when the misconception was state-based. On
the other nineteen occasions, the misconception diagnosed via the stated
criteria broadly matched that apparent in the analysis of the recorded

303

F '5

G eneral Sum m ary: There were one hundred and twelve context errors
in all users' session logs. On eleven occasions, the inferences drawn from
the diagnostic criteria were inappropriate to the user's particular situation,
in that some of the information germane to the error would not have been
provided or that some misleading information would have been given. On
twenty two occasions, the user would have received information relating to
system rules, as well as relevant state information, when the misconception
was state-based. On the other seventy occasions, the m isconception
diagnosed via the stated criteria broadly matched that apparent in the
analysis of the recorded protocol and log file. The overall success rate in
approximate percentage terms is thus respectively: fail = 9%, verbose =
21%, correct = 70%.

304

