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Abstract

The Work in this thesis is concentrated on the study of discrete curvature as an important 

geometric property of objects, useful in describing their shape. The main focus is on the 

study of the methods to measure the discrete curvature on polyhedral surfaces. The curva

tures associated with a polyhedral surface are concentrated around its vertices and along 

its edges. An existing method to evaluate the curvature at a vertex is the Angle Deficit, 

which also characterises vertices into flat, convex or saddle. In discrete surfaces other 

kinds of vertices are possible which this method cannot identify. The concept of Total 

Absolute Curvature (TAC) has been established to overcome this limitation, as a mea

sure of curvature independent of the orientation of local geometry. However no correct 

implementation of the TAC exists for polyhedral surfaces, besides very simple cases.

For two-dimensional discrete surfaces in space, represented as polygonal meshes, the 

TAC is measured by means of the Polyhedral Gauss Map (PGM) of vertices. This is a rep

resentation of the curvature of a vertex as an area on the surface of a sphere. Positive and 

negative components of the curvature of a vertex are distinguished as spherical polygons 

on the PGM. Core contributions of this thesis are the methods to identify these polygons 

and give a sign to them. The PGM provides a correct characterisation of vertices of any 

type, from basic convex and saddle types to complex mixed vertices, which have both 

positive and negative curvature in them.

Another contribution is a visualisation program developed to show the PGM using 3D 

computer graphics. This program helps in the understanding and analysis of the results 

provided by the numerical computations of curvature. It also provides interactive tools to 

show the detailed information about the curvature of vertices.

Finally a polygon simplification application is used to compare the curvature measures 

provided by the Angle Deficit and PGM methods. Various sample meshes are decimated 

using both methods and the simplified results compared with the original meshes. These 

experiments show how the TAC can be used to more effectively preserve the shape of an 

object. Several other applications that benefit in a similar way with the use of the TAC as 

a curvature measure are also proposed.
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Chapter 1 

Introduction and problem statement

The shape of an object is an important geometrical property to differentiate it from other 

objects. The human eye is trained to recognise shapes, but for some computational appli

cations it is necessary to give a numerical value to the shape of objects. The curvature is 

a measure that describes the shape of curves and surfaces. Loosely speaking, it describes 

how a curve differs from a straight line and how a surface in space differs from a plane. If 

a curve is nearly straight, its curvature will be close to zero, while if it has a pronounced 

bending, the curvature will be larger. In the most general terms, curvature can be seen as 

a function of the angles between tangent lines to a curve at different points.

The theory of curvature for smooth surfaces is already well established, in the realm of 

differential geometry. It involves definitions of curvature based on the I st and 2nd deriva

tives of the underlying surface, which can be represented in a parametric or functional 

form. This requires a certain degree of continuity (at least C 2) of the surfaces. However, 

many natural shapes are non-regular, and in particular the computer representations of 

objects very often lack the required smoothness.

Various methods to extract the curvature of discrete surfaces have been in development 

in recent times. The initial attempts tried to approximate the discrete data by a smooth 

surface, and then use partial differential equations to extract geometrical properties. This 

approach, however, is complex and requires conversions between smooth and discrete 

input and output. Methods that apply directly to discrete surfaces are needed. In the 

last decades several attempts have been made to develop discrete methods that would be 

capable of dealing with non-regular objects. Among these methods are adaptations of 

the concepts of the theory of polyhedral metrics and non-regular surfaces (Aleksandrov 

and Zahlgaller 1967), (Banchoff 1970), (Burago 1970), (Brehm and Kiihnel 1982) and 

(Aleksandrov and Reshetnyak 1989). A new method to evaluate (discrete) Mean curvature 

has been proposed in (Bobenko 2005).
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This thesis concentrates on the study of the discrete analogue of Total Absolute Cur

vature. It deals with the theoretical background and computational algorithms to compute 

and evaluate the curvature of discrete objects. Based on the concept of orientation a sign 

can be given to the curvature at every point. However, a drawback of the signed curvatures 

is that positive and negative curvatures will cancel each other out, thus hiding important 

features of the object. Under this consideration all closed surfaces of the same genus 

possess the same global curvature measure, regardless of their geometric complexity (i.e. 

how are they embedded in space).

The concept of Total Absolute Curvature refers to the consideration of the changes in 

the turn of a curve at a point or in the walk around a point on a surface, which can be 

expressed by using the concept of orientation. This concept has been studied before in 

(Brehm and Kiihnel 1982) and (Kuiper 1970). The absolute value of the angles provides a 

more complete representation of the underlying geometry. The Total Absolute Curvature 

of a curve is a global property, which can describe how non-convex an object is. It is an 

important fact that it reaches its minimum value with convex curves, while non-convex 

curves will have larger curvature values.

In computer science, objects are represented as discrete approximations of real sur

faces. These are obtained from sampled data that represent the real object and only con

sist of a reduced and limited amount of interconnected points (known as vertices). While 

vertices have a direct correspondence to points on the actual surface, the structures that 

link them are simplified approximations of the shape. Discrete approximations of curves 

are composed of vertices and the edges that connect them. Closed curves in the plane 

are analogous to planar polygons. Surfaces are represented in discrete form as polygonal 

meshes, consisting of vertices, edges, and faces that make up the surface delimited be

tween edges and vertices. These discrete representations do not possess the same degree 

of continuity as their smooth counterparts. This affects how the curvature can be mea

sured, and demands the implementation of analogous methods that provide equivalent 

results to those for smooth objects.

The concept of curvature for non-regular curves and surfaces has been established in 

(van Rooij 1965) and (Aleksandrov and Zahlgaller 1967). With the prevalence of com

puters, the study of geometry for discrete surfaces has gained importance. Research on 

discrete curvatures is of growing interest in geometric modelling (an overview is given in 

(Alboul 2003)).

However there are particular considerations to make during the transition from smooth 

to discrete methods. In the smooth case the curvature measures create a characterisation
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of the surface into two types, according to the sign of the local curvature, either positive 

or negative. The regions of positive and negative curvature are clearly identified and never 

overlap. In contrast, discrete surfaces have features which are not found in their smooth 

counterparts, for instance, vertices that incorporate both positive and negative curvature. 

We will refer to such vertices as mixed vertices. Because of these cases, methods that 

are direct analogues of those for smooth surfaces are inadequate in dealing with all kinds 

of polyhedral surfaces. This is the case with the Angle Deficit method for measuring 

the analogue of the (integral) Gaussian curvature around a vertex. It can provide a char

acterisation of the vertices by positive or negative curvature, in accordance with smooth 

surfaces. But to correctly characterise different vertex types it is necessary to develop 

methods aimed directly at discrete surfaces. This will present a wider array of vertex 

types, all of which will be analysable.

The research question that arises is how to recognise these vertices, and to obtain 

reliable computations of their curvature. This can be presented as our main research 

topic:

• To find a procedure that correctly measures the curvature for the different types of 

vertices in a discrete polyhedral surface.

In order to fulfil this task we propose a discrete version of the Gauss Map, called 

the Polyhedral Gauss Map. We study the structure of the Polyhedral Gauss Map in all 

detail, as an extension of the method of Total Absolute Curvature. This will permit us 

to measure curvature and characterise the geometry of vertices of any type, including 

complex mixed vertices, vertices with self-intersections in their neighbourhoods and some 

kinds of degenerate vertices. The proposed method considers the connectivity of the 

neighbourhood of the vertex. It measures not only positive and negative curvature parts 

incorporated at the vertex, but also separates these parts in atomic subparts that provide 

a complete characterisation of the complex geometry around the vertex. A polyhedral 

Gauss map has been used by some authors to underline the curvature of a vertex (Kilian 

2004), (Maltret and Daniel 2002), but its application has been limited to simple cases, and 

without the detailed study of its structure.

The vertex characterisation is also important in determining a region segmentation of 

a surface, where vertices of the same curvature sign are grouped together in represen

tative regions. This is used in various applications to identify the different parts of an 

object, such as the nose in a human face or the wings of an aeroplane. The considerations 

previously presented for the Total Absolute Curvature allow a more complete region seg

mentation that includes the areas where positive and negative curvature are both present.
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The research questions investigated in this thesis can be extracted from the previous 

discussions as:

1. To what extent is a discrete curve or surface characterised by its Total Absolute 

Curvature?

2. How can the Total Absolute Curvature of a discrete surface be measured with a 

discrete version of the Gauss Map?

This problem can be subdivided as follows:

(a) How to recognise all the curvature components of a vertex.

(b) How can the correct curvature measure for all possible vertices, including 

non-manifold ones, be obtained?

(c) Can the curvature measures of individual vertices provide a classification for 

regions of the mesh?

3. How can practical applications benefit from the additional measurement accuracy 

provided by Total Absolute Curvature? We explore the following applications as 

test environments:

(a) Curve reconstruction (Amenta et al. 1998), (Althaus and Mehlhom 2000)

(b) Surface characterisation (Li and Gu 2004)

(c) Face recognition (Grodon 1991), (Tanaka et al. 1998)

(d) Terrain navigation (Falcidieno and Spagnuolo 1991), (Lee et al. 2001)

(e) Decimation: (Schroeder etal. 1992), (Kim e ta l . 2002)

The research presented in this thesis is considered from a Computer Science point of 

view, while presenting all necessary mathematical background. Most proofs given are 

of pure geometric nature. Visualisation and graphical illustration of results represent an 

important part of the thesis. The computer and advanced computer graphics are central 

components in this work.

1.1 Aims of the research project

From a Computer Science point of view, the analysis of curvature presents various new 

challenges: complex objects are composed of thousands or even millions of vertices, 

each of which has to be analysed individually. The practical aim of the project is to 

obtain algorithms that can perform curvature measures of polyhedral surfaces, based on 

simple geometrical properties and calculations. The term polyhedral surface is used in 

a generalised sense, which includes self-intersecting and non-manifold surfaces. The 

curvature of any kind of vertex should be correctly evaluated.
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A second aim for the project is to develop computer graphic techniques into a tool to 

visualise an abstract concept, such as curvature, in order to better understand its behaviour. 

The elements that affect the curvature of a vertex are difficult to imagine, or to draw 

in the plane. A three-dimensional visualisation permits a proper understanding of the 

properties of the vertices and surfaces. The visualisation can reflect immediate changes in 

the object and its curvature and provides interactive tools to aid in analysing the geometric 

properties.

We first study the concept of curvature on closed planar polygonal curves (polygons) 

and later on polyhedral surfaces. Initial analysis of curvature is done on curves lying in the 

plane. This research provides insight on how the shape and the curvature are related, and 

outline the properties of the Total Absolute Curvature. Analysis of planar polygons also 

provides a starting point for the concept of the Gauss Map, as a graphical representation 

of the measure of Total Absolute Curvature.

The research on planar curves also provides a good starting point for studying the 

properties of curvature in the case of polyhedral surfaces in three dimensions. However 

in this case the ordering and linking of the data are not unique, even for the simplest 

cases. While for a planar polygon the segments that join the vertices can only have one 

orientation and direction, this is not true for faces in 3D. This generates several more cases 

to consider when stepping up to a higher dimension. Some of the curvature properties 

observed on planar polygons can be immediately translated to three-dimensional surfaces. 

Others require a certain extension to function properly. The work on this thesis will 

explain the relationship between the two cases.

The main part of the research deals with the computation of the Polyhedral Gauss 

Map of vertices in a polyhedral surface. The Gauss Map of surfaces is well known, and 

has received some attention in the past (Banchoff et al. 1982), (Rodriguez and Rosenberg 

2000) and (Grinspun and Schroder 2001), however it has never been studied extensively 

for all cases of polyhedral vertices. The curvature of a polygonal mesh is obtained from 

the spherical representation of the features of each individual vertex. This spherical rep

resentation is the Gauss Map, and is based on the normal vectors of the faces around 

each vertex. However, previous attempts at finding the Gauss Map of vertices have been 

limited to the simplest configurations available. Other more complex vertices are gen

erally ignored or considered impossible to analyse (Lowekamp et al. 2002), (Yamauchi 

et al. 2005). The methods presented in this research seek to obtain an accurate measure

ment of curvature for all possible kinds of polyhedral surfaces, including non-convex and 

non-manifold surfaces.
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An innovation of the Polyhedral Gauss Map method is that it allows the ‘separation’ 

of positive and negative curvature ‘parts’ incorporated at a polyhedral vertex of a complex 

geometry, and thus provides a complete characterisation of the shape of a vertex. Positive 

and negative curvature ‘parts’ are represented as spherical polygons on the surface of 

the sphere. The difficulty lies in separating the spherical polygons and determining their 

corresponding sign. The signed curvatures allow for clear identification of vertices that 

would not be valid according to other methods, or that would not be possible to correctly 

distinguish. Also, because of the use of the novel methods, more features of a vertex can 

be recognised.

The final objective is to indicate practical applications where the curvature informa

tion is useful to identify, classify or modify the polyhedral representation of an object. 

The computations required for the Polyhedral Gauss Map are relatively simple and fast, 

allowing for the method to be used in a variety of applications. Some examples are feature 

recognition, face recognition, computer vision, terrain navigation, mesh optimisation, and 

others.

We implement an application on mesh simplification using the Polyhedral Gauss Map 

to measure curvatures and assign an importance weight to vertices. Those with a small 

weight are removed from the polygonal mesh, in a way that will preserve the original 

shape of the object. This experiment provides a numerical proof that the Polyhedral Gauss 

Map method provides better curvature measures with respect to the Angle Deficit method.

The main research objectives of this thesis can be summarised as follows:

• Study the properties of the Total Absolute Curvature on planar polygons

• Obtain accurate measurements of the curvature of vertices in a polygonal mesh

• Characterise the vertices according to their curvature signs

• Visualise the Polyhedral Gauss Map of vertices using computer graphics

• Apply the curvature measures and characterisation for practical applications and 

further processing of the data, such as optimisation, simplification or subdivision

1.2 Experimental methodology

The experiments presented in this research were performed using two main programs, 

developed to test the theoretical principles and to have a visual point of reference for 

the results. The applications were created using the C programming language and the 

OpenGL libraries for graphical display. The first such program is designed to fit curves 

over point clouds on the plane, and is called r e c o n s t r u c t o r .  Its purpose is to study
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how curvature could be used to determine the usefulness of curve-fitting algorithms. An 

example of the results produced by this program is shown in Figure 1.1. Several curves 

are generated from each dataset by minimisation of various parameters. The curvature of 

the generated curves is used at later stages to evaluate the results.

♦  ♦
♦

♦ ♦
♦  ♦  ♦

♦  ♦

♦

♦  ♦

(a) Point cloud (b) Reconstructed curve

Figure 1.1: Example of curve-fitting using the reconstructor program.

The second program is focused on finding the curvature of vertices in a polyhedral 

mesh by means of the Polyhedral Gauss Map and is called gaussMap. Figure 1.2 ex

hibits a screenshot of this program showing the Polyhedral Gauss Map of a vertex in a 

simple mesh. It incorporates the concepts of Total Absolute Curvature to obtain correct 

measurements for every vertex and for whole surfaces.

The gaussMap program is later extended to perform mesh simplification, using the 

curvature measures to select vertices to be removed from the mesh. This second version of 

the program is called decimator, and retains the same basic functions of gaussMap. 
Figure 1.3 shows the results of this implementation of polygon simplification.

Various weighted combinations of Total Absolute Curvature and areas are used to 

measure the importance of vertices to the shape of the object. The decimated meshes

ihowing vert ' 
:u rva tu re  (PC 0.890728

Figure 1.2: Example of Polyhedral Gauss Map of a vertex from the gaus sMap program.
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(a) O riginal (16,944 vertices)

(b) 97.1 % decimation (494 vertices)

Figure 1.3: Example of polygon simplification with the d e c i m a t o r  program.

obtained with various parameters are compared using the Metro program (Cignoni et al. 

1998), to evaluate their usefulness and quality.

Additional programs developed include scripts in Perl that generate source data for 

testing, and the ob j Vi ewer program, created to visualise polyhedral meshes stored in 

the OBJ format. This file format is also employed by gaussMap and decimator 
programs.

1.3 Main research contributions

In general terms, the most important contribution of this research consists of providing a 

pure geometric background and developing computer algorithms to measure and visualise 

the curvature of discrete objects. These new methods are simple to compute and do not 

require the evaluation of computationally expensive differential geometry procedures.

A list of contributions is presented here and all of them will be explained extensively 

in later chapters.

•  Computation of the Polyhedral Gauss Map for vertices in a polyhedral mesh



-  Algorithms to detect the intersection of arcs on the surface of a sphere

-  Algorithm to split a series of ordered arcs on a sphere into non-intersecting 

spherical polygons

-  Methods to determine the orientation of a spherical polygon related to a vertex

-  Identification of positive and negative components of the curvature of a vertex

-  Classification of vertices into the following types: flat, convex, saddle and 

mixed

-  Computation of complete curvature for any kind of vertex, including non- 

convex and non-manifold vertices

•  Visual display of the Gauss Map using OpenGL

-  Methods to draw the spherical indicatrix of vertices

-  Algorithm to draw spherical triangles in OpenGL using clipping planes

-  Algorithm to triangulate spherical polygons for display in OpenGL

• Use of Total Absolute Curvature for polygon simplification

-  Proposal of new vertex weight parameters, based on curvature and areas, to 

determine the importance of a vertex

-  Use of Total Absolute Curvature to optimise local triangulations by edge flip

ping

• Algorithms for curve reconstruction from a disorganised point cloud in the plane

-  Algorithm to construct curves with one ‘deviation’ from the convex hull

-  Algorithm to construct curves with multiple ‘deviations’ from the convex hull

-  Evaluation of multiple minimisation criteria for vertex insertion in recon

structed curves. Criteria based on geometric parameters, such as local or 

global curvature, distances and combinations of them

-  Methods to detect and correct self-intersecting polygonal curves

1.4 Organisation of the thesis

The following is the description of the contents of each chapter. Chapter 2 is an intro

duction to the main concepts of Total Absolute Curvature. The main contributions of this 

thesis are included in Chapter 3, Chapter 4 and Chapter 5. A relevant literature review is 

given at the beginning of each corresponding chapter.

The structure of the thesis is the following:
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C hapter 2 presents some basic geometrical concepts and theoretical background used 

during the thesis. Afterwards it introduces the concept of Total Absolute Curvature 

for polygonal curves in the plane, demonstrates its validity and its relation with the 

spherical image of a curve, as a precursor of the Gauss Map.

C hapter 3 presents the curvature measures for smooth surfaces, including the Gauss 

Map, and explains analogous methods for discrete surfaces. It presents a descrip

tion of the Total Absolute Curvature of vertices, and the characterisation of vertices 

into four basic types. The method to compute the Polyhedral Gauss Map is intro

duced, and its validity in evaluating the Total Absolute Curvature is demonstrated. 

Finally this new method is compared with the Angle Deficit method.

C hapter 4 presents the computational algorithms developed to generate the Polyhedral 

Gauss Map of a vertex. It describes the process of constructing the spherical poly

gons and extracting the curvature information from them, including all the special 

cases and particular considerations that need to be observed. The chapter presents 

. the results of the algorithm on various types of vertices, and a comparison of the 

characterisation obtained with this and the Angle Deficit method.

C hapter 5 describes the techniques used to display the Polyhedral Gauss Map in 3D 

using OpenGL.

C hapter 6 shows a practical application of the Polyhedral Gauss Map used in polygon 

simplification. A vertex decimation program is used as a test platform to produce 

simplified meshes with various curvature parameters. The results are compared 

to determine the effectiveness of Total Absolute Curvature to guide simplification 

algorithms.

C hapter 7 contains the conclusions and further research directions.

Finally, in Appendix A we present additional experiments on the measures of To

tal Absolute Curvature for planar polygons. This section deals with a problem that is 

loosely related to the main research. It describes in detail an application developed for 

curve-fitting, which incorporates two different algorithms. The curves generated by the 

minimisation of various parameters are evaluated and compared by means of their Total 

Absolute Curvature.
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Chapter 2

Geometric concepts and discrete 
curvature in two dimensions

2.1 Introduction

Curves are fundamental objects in geometry, that can be used to build more complex 

objects of any shape. In this chapter we consider curves that lie only in the plane R 2. 

The concept of curvature is a common geometric property of curves that describes how a 

line in the plane bends at any given point. Research about the properties of curvature has 

been very extensive, especially in differential geometry (van Rooij 1965), (Kuiper 1970), 

(Ujiie and Matsuoka 2003), (Sullivan 2006). For smooth curves, the curvature can be very 

accurately represented by the rate of change of the angle between tangent lines at different 

locations of a curve. Obtaining the curvature of a single point p  of the curve requires the 

tangent lines at two other points at either side of p. Making the distance between these 

points and p  as small as possible we get a close approximation of the curvature at p. Thus 

the curvature is obtained as a limit, involving the second order derivatives of the curve.

An additional property associated to curvature is the direction of the change in the 

tangents, used to give a sign to the curvature at any given point, classifying it as positive 

or negative. This direction is referred to as the orientation of the curve at a vertex.

We focus on the representation of curves most commonly used in computer science, 

as a piecewise linear approximation composed of vertices and edges. We refer to this 

representation as a discrete curve. Vertices are points sampled from a smooth curve or 

other data source, and are defined by their coordinates. The sampling frequency of these 

points depends on the origin of the information, which can provide vertices at regular 

intervals or at important feature points of the original object. Edges are straight line seg

ments that connect the vertices in a certain order, and provide the shape of the information 

represented by the isolated points.

The concepts of curvature can be translated from the smooth to the discrete case with
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a few considerations. In the case of a discrete curve the changes in curvature occur ex

clusively at the vertices, since all the points of a single edge have the same curvature, 

equal to zero. We can determine that, for a polygonal curve, the curvature at a vertex is 

measured by the angle between the two edges incident on it. Integral curvature in the case 

of a smooth curve can be expressed as a turn, i.e. the angle between tangent lines at two 

points on the curve. Whereas in the case of a polygonal curve is just a turn of the curve, 

manifested by the angle at a vertex (Aleksandrov and Reshetnyak 1989).

In this research the study of the two-dimensional version of curvature provides useful 

insights for research on triangulations in three-dimensional space: the requirements for 

computing curvature, its relationship with the shape of the object, and identification of the 

special cases that require more particular treatments. Note also that the study of polygonal 

curves with respect to their total absolute curvature is also interesting for its own sake, as 

the total absolute curvature is related to the global properties of the curve and might be 

used to characterise diverse curve profiles (Ujiie and Matsuoka 2003).

This chapter begins by presenting the basic theoretical concepts, (mainly of geomet

rical nature) to be used in the consequent chapters. Secondly we deal with the analysis of 

curvature properties and derive the discrete method to measure the curvature of a polygon. 

Finally the concepts described are explained in the context of curve reconstruction.

2.2 Basic geometric concepts and computational implementa
tions

This section describes several basic geometric concepts and their implementation in the 

computer programs developed. We will refer to a piecewise linear approximation of a 

smooth curve as a discrete curve, that is composed of points or vertices and line segments 

or edges connecting vertices together. Let a vertex be a tuple v  =  (x, y) G R 2. Given 

a collection of vertices V  =  { v ^ i  =  1 , 2 , . . . ,  n}, we define a curve P (V )  as a planar 

polygon that connects all vertices ^  G V  in a specific order. An edge can be represented 

as a line segment connecting two vertices, for example the edge between vertices v\ and 

v2 is denoted as v iv2. The two vertices are known as the endpoints of the edge.

We will additionally provide the definitions for operations on vertices and vectors 

in three dimensions, where a vertex is denoted with v  =  (x, y , z) G R 3. The vector 

operations can also be carried out for vertices in the plane, by setting the third coordinate 

equal to zero, in order to maintain the consistency of all results.
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Vector from two vertices

Given two vertices Vi =  (a?i, yi, z{) and u2 = (x2 , 2/2 , z2) we can define a vector v  =  

(u, v, w) with origin at V\ and endpoint at v2 as:

unit vector. The method to normalise a vector is to divide each of its components by the 

magnitude of the vector, as such:

Dot product of two vectors

The dot product is a binary operation defined over two vectors that returns a scalar value. 

Given two vectors Vi =  (ui, vf, wi) and v 2 =  (u2, v2, w2), their dot product is given by:

The angle 9 is limited to a range between 0 and 7r radians. It can be used to obtain the 

relative direction of the vectors with respect to each other.

Cross product of two vectors

The cross product is a binary operation defined over two vectors that returns another 

vector. The resulting vector will be normal to both original vectors, that is, it will be at 

right angles to both. Given the two vectors Vi and v 2, their cross product is given by:

V = v2 - v 1 = (x2 -  x u  y 2 -  2/1 , z2 -  Zi). (2.2.1)

The magnitude of a vector v  =  (u, v, w) is obtained as:

v | =  y/u2 +  v 2 +  w 2. (2.2.2)

A vector is said to be normalised if its magnitude is equal to 1. This is also called a

(2.2.3)

V i  • V 2  =  U i U 2 +  V i V 2 +  W i W 2 . (2.2.4)

An alternate definition of the dot product is:

v i  • v 2 =  |v i | |v 2| cos 9, (2.2.5)

and from this we can find the angle between the two vectors as:

9 =  arccos (2.2.6)

Vi x v 2 =  {(yiw2 -  w iv2), {wiu2 -  u iw 2), (u iv2 -  v xu2) ) . (2.2.7)
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Angle at a vertex

We measure the angle at a single vertex based on the dot product of two vectors. To know 

the angle 9 at vertex i/iy we need its two neighbour vertices z^_! and vi+1. We define two 

vectors Vi =  v{ — Vi-\, and v 2  =  ^ + 1  — i/». Then the cosine of the angle between the 

vectors is obtained from Equation 2.2.6:

cosfl =  r~1 ,',V2,-. (2 .2 .8 )
M M

The resulting cos 9 will have a value between —1 and 1, and can be used to determine 

the relative positions of the points i and vi+1 with respect to If cos 6  = 0 then the 

vectors Vi and v 2  are at right angles. If cos 0 =  1 the vectors are collinear and point in the 

same direction. If cos 6  =  — 1 the vectors are collinear but point in opposite directions. In 

general if cos 9 <  0  the vectors point in opposing directions with respect to i/*.

Distance from a vertex to a line segment

We establish a particular constraint for computing the distance from a vertex to a segment 

as a special case of measuring the distance from a vertex to a line. Following the notation 

for the Euclidean distance between two vertices as d{vl5 u2), we denote the distance from 

a vertex v  to a segment uipi+i as d(v, i/iU{+1 ).

Definition 2.2.1. Given an edge e =  i, we can sweep e along a line perpendicular 
to itself. We define the sweep region R  as the area in 2D space that is covered during the 
sweep.

Using this definition we can consider two different cases to measure the distance from 

a point v  to a segment e:

•  If v  lies inside of the sweep region R, then the distance is measured as the length 

of a segment of a line perpendicular to e that passes through the vertex v. This line 

will intersect e at a new point vx. The distance is measured from u to vx.

•  If v  lies outside of R, then the distance is measured from u to the closest endpoint 

of e.

In Figure 2.1 vertex v\ is inside of the sweep region of the segment e =  F3F4 , while vertex 

v2 is not.

For the computational implementation of this distance two vectors are created to iden

tify whether the point v  is within the sweep region R  of the segment e. One vector is 

parallel to e and the second vector goes from any one of the endpoints of e to the point v.
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Figure 2.1: Distance from a point to a segment. Sweep region R  shown in grey.

This is explained using the vertices in the example of Figure 2.1, the two vectors would 

be: Vi =  z/ 4 — z/3, and v 2  =  — v,3 . We obtain the dot product of these two vectors as:

a =  v  1 • v 2. (2.2.9)

If a < 0 then 1/ lies outside of R. If a =  0 then v  lies on a line perpendicular to e that 

passes over the endpoint In both of these cases the distance from v  to e is measured 

as the distance from v  to u3.

Next we compute the dot product of the vector Vi with itself:

6 =  V i - V i .  ( 2 .2 .1 0 )

If 6 <  a then v  is outside of R. If b = a then v  lies on a line perpendicular to e that passes 

over the endpoint ^4 . In both of these cases the distance from v  to e is measured as the 

distance from v  to ^4.

Otherwise, if b > a then v  is located inside of R  in a line perpendicular to e that 

intersects the segment at a new point vx. The coordinates of this new point are obtained 

by:

VX = V3 - ( ^ ) v ! .  (2.2.11)

The distance from the point to the segment is measured as the Euclidean distance from 

point v  to the new point vx, as shown in Figure 2.1.

Orientation

Any simple closed curve can be assigned an orientation, depending on the direction the 

curve is traversed. In general, if a walk along the curve keeps the interior of the curve to
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the left, the orientation is positive, and negative if the interior is to the right. This can also 

be expressed in terms of the right hand rule for a planar graph. Imagine that, using the 

right hand, one follows the direction of the curve with the index finger, while the middle 

finger points to the interior of the curve; if the thumb points upwards, the orientation is 

positive; if the thumb points downwards the orientation is negative.

In a smooth curve, the orientation at any given point is defined as the direction in 

which the curve turns at that point. According to (Borowski and Borwein 2002), this ori

entation can be either Clockwise (CW), Counter-Clockwise (CCW) or Collinear (COL). 

The same definition can be applied in the case of a planar polygon, using the angle formed 

by the two converging segments at that point. This concept of orientation can also be as

signed to a pair of vectors that originate at the same point.

In any planar polygon P (V ), the orientation at point i/f is denoted with p fc )  and 

it is determined by using the two neighbouring points: and vi+i. The three points

have coordinates: =  (aj.—i, 2/*_ 1 ), Vi =  ( z i , 2/») and ui+1 =  (xi+i , y i+i), as shown in

Figure 2.2. At vertex ^  the orientation p (^ )  is defined as:

C W ’ if r(vi) <  0,

p fa )  =  C O L , if r(vi) =  0, (2.2.12)

 ̂ C C W , if r{ui) > 0,

where r(i/i) is given by the formula (Crepeau 2004):

r iyi) =  ((2/* -  2/i-i)(z*+i -  X i ) )  -  ((y i+ 1  -  yi){xi -  ^ _ i ) ) .  (2.2.13)

"i+1

CCW
orientation

Figure 2.2: Finding the orientation of a vertex.

The whole polygonal curve P (V ) also has an orientation, determined by the indi

vidual orientations found for each of the vertices. This is obtained by adding the signed 

angles at the vertices, where the sign will be determined by the orientation at the corre

sponding vertex.
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For the implementation of the computation of orientation there is an issue that must 

be considered. The rounding of floating point numbers done by the computer may lead to 

problems when calculating the orientation of three points, since it may erroneously find 

that two points are collinear when they are not, or vice versa. This problem may severely 

impair the results, because many operations and comparisons used in the implementation 

are based on orientation. For this reason, a rounding tolerance is introduced, to accept 

very small values to be considered equal to zero, and thus allowing the program to have

more consistent results, at the expense of precision in the measurements.

Intersection of segments on a plane

The edges of a curve can intersect, and it is necessary for our purposes to identify when 

these intersections occur. In the current implementation the exact location of the inter

section of two segments is of no importance. Orientation can be used to detect segment 

intersections, by comparing the orientation of the points of one segment with respect to 

the other, and vice versa. Since the vertices of two segments may not be consecutive, we 

can refer to the orientation of an arbitrary vertex va as p(vb, iva, uc), where the orientation 

is determined by the two segments F&Fa and Iv 'c , in that order. There are two cases to 

consider:

G eneral Case: Given two segments Vivi and they will intersect if

p(y  1, ^2, ^3 ) 7̂  p{y 1, ^2 , ^4 ) (2.2.14)

and

p(y.3 , ^4 , v\) ^  Pi"3 , ^4 , ^2 )- (2.2.15)

The segments shown in Figure 2.3 intersect each other, while those in Figure 2.4 do not 

intersect, since the orientations piyz, v±,vi) and p{v3 , z/4, v2) are equal.

Special Case: If the orientation for all the points is collinear, then both segments 

lie in the same line. To test if there is an intersection of the segments we measure the 

Euclidean distances from V\ to the other vertices v2, and z/4. If any of the points V3 or 

V4 is closer to v\ than v2 and in the same direction, then the segments overlap and there is 

an intersection, as shown in Figure 2.5, where d(iq, z/3 ) <  d{v 1, v2).

In some situations, it is necessary to compute the intersection of two segments includ

ing the endpoints of the segments, while sometimes the intersection at the endpoints is 

not considered. In these latter cases an extra comparison is done to verify that none of 

the endpoints of a segment is equal to those on the other segment. There are thus two 

functions to test for an intersection of two segments, one which includes the endpoints 

and another which does not.
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p(u  1, i/2, 1/3 ) = C W  p(i/3, 1/4 , 1/1 J =  C C W
p{v1, z/2, 1/4 ) =  C C W  p(i/3, z/4, i/2) =  C W

Figure 2.3: Determining self-intersections based on orientation.

- ■ • 1/4

PW1 W 2 W 3
PW1 W 2 W 4

= C W
= c w

PW3, "4, Vi 
p \y 3 W 4 W2

c c w
c c w

Figure 2.4: Non-intersecting segments.

v\ 1/3 v2 1/4
•  •  •  •

I---------d(i/i, i/2) --------- 1

I d(v  1 , t/4) -------------------- 1

Figure 2.5: Self-intersection of collinear segments.

Convex hull

The convex hull of a dataset V  is a curve that joins a certain subset V Ch  of the vertices 

in V . We call this the CH-curve. Its requirement is that any line segment joining two 

points in the dataset will lie in the interior of the convex hull (de Berg et al. 1997) (see
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Figure 2.6).

^5

Figure 2.6: Convex hull of a point cloud.

The convex hull of V  can be computed by using the orientation of the points i / j G V .  

An important property of the convex hull is that all of its points have the same orientation, 

both with respect to the rest of the convex hull, and to the points inside (Crepeau 2004). 

Under these considerations, the computational implementation of the algorithm to obtain 

the convex hull of a dataset is described as follows:

•  Initially all points will be in a list Ar of remaining points, and will be deleted from 

it if they are identified to belong to the convex hull. Since the points in the list are 

already ordered by increasing value of the X  coordinate, the first point will always 

belong to the convex hull, being the vertex at the left-bottom. This point is used as 

the first reference point vr.

•  To locate the next point to be added to the convex hull, all points in Ar are tested 

against each other, by using orientation. The value for the orientation of each point 

Vi is obtained from two line segments, one going from vr to viy and another segment 

from Vi to any other point Vj. See Figure 2.7(a).

•  The point v{ will be considered to belong to the convex hull if the orientation with 

respect to all other points in Ar is Counter-Clockwise, as shown in Figure 2.7(b), or 

when it is Collinear with other points that also belong to the convex hull. In the case 

of collinear points, the one closest to the current reference point is considered first. 

In this way, all of the points that lie on the convex hull will be included, regardless 

of whether the points are vertices of the polygon or not.

•  Each time a new point is added to the convex hull curve, it becomes the new refer

ence point vr, and it is used to test the remaining points, as in Figure 2.7(c). It is 

also removed from the list Ar and inserted at the end of the list Xch that corresponds 

to the convex hull.
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• This process continues until the next point found to be inserted into the convex 

hull is equal to the first point used as a reference point. At that moment the curve 

has been closed, and all the remaining points are inside of the convex hull. The 

program stops evaluating any more points when this condition is reached, otherwise 

it would continue and produce spiral-like open curves that include all the points in 

the sample.

Figure 2.7: Selection of vertices belonging to the convex hull of a dataset, based on orientation.

2.3 Notions related to the concept of curvature

2.3.1 Formulae and definitions

The definition of the curvature of a curve is in general given under the assumption that 

the curve is of C 2- class, so that the 1st and 2nd derivatives are continuous. However, the 

notion of curvature can be generalised to the class of curves which possess continuous 

second derivatives except at a finite number of points where a jump discontinuity in the 

first derivative can occur. Such a curve can be seen as the sum of a finite number of

(a) Vertex Vi rejected (b) Vertex i>i accepted

(c) Continue with new vr
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C'2-curves, joined together at n  discontinuity points s0, s i , . . . ,  sn. Figure 2.8 shows a 

diagram of a curve of this kind.

Figure 2.8: A curve with discontinuity points s i and S2 .

We can introduce the exterior angle a(si)  formed by the right and left tangents at

a point of discontinuity s{ (van Rooij 1965). The total curvature o  of the curve is then 

defined as the sum of the integral curvatures k(s) of the smooth segments, plus the sum 

of the exterior angles at all discontinuity points. We then have the following formula for 

the curvature of an open curve:

where X) a (si) is the sum of all exterior angles enclosed by the right and left tangents at 

points of discontinuities between s0 and sn.

In the case of a discrete curve the points of discontinuity are its vertices, while the 

smooth curves are straight line segments that have curvature equal to zero. (Sullivan 

2006) gives a description of some properties of curvature and the relationship between 

the smooth and discrete cases. We then have that for the discrete case the curvature is 

reduced to the sum of the angles at the vertices. Let us denote with a(z^) the exterior 

angle at the vertex i \  of a curve. Then the expression

represents the total curvature of a closed polygonal curve. If this curve is the boundary of 

a closed simple polygon, u  is always equal to 2n (an elementary case of the Gauss-Bonnet 

theorem). The following expression:

is called the Total Absolute Curvature of a curve, abbreviated as the TAC. An important 

fact is that Cj reaches its minimum value 27t on convex curves (polygons). We can show 

this by using a rectangle, as depicted on Figure 2.9. The angles in each of its four vertices 

are equal to 7t/2 ,  making the total sum of the four angles equal to 2tt.

(2.3.1)

n

(2.3.2)

n

(2.3.3)
i=1



Figure 2.9: The TAC of a convex curve is always equal to 27r.

The convex hull of any curve is by definition a convex curve, and thus has a curvature 

equal to 2 tt. Any concave vertex in the curve will increase the TAC and make it larger 

than 27r. So we have that for any given simple closed curve the following hold:

n

uj = ^>2 a^Vi) = 2ir (2.3.4)
i=l

and: n

u) = ^ 2  H " i) \  >  27t. (2.3.5)
2—1

Therefore for a non-convex curve the excess in the Total Absolute Curvature with 

respect to 27t can be used as a measure of deviation from the convex curve. Given the 

dataset V , we take as a convex curve o f reference the boundary of the convex hull of the 

data, (referred to as the CH-curve).

Definition 2.3.1. We call a deviation region or simply a deviation the connected vertices 
and edges of a curve P (V ) that do not belong to the convex hull of the dataset V . Every 
deviation is connected to the convex hull at both of its ends, at what we call deviation 
vertices.

We want to determine the measure of curvature added to a curve P (V ) by its devia

tions with respect to the CH-curve. For the problem of curve reconstruction, if our aim is 

to generate curves of minimum curvature, it is clear that we should minimise the amount 

of curvature contributed by reflex vertices. Let us make this assumption more precise.

It is possible for a discrete curve to have self-intersections, but in this chapter we 

presume that polygonal curves represent boundaries of simple polygons, i.e. are not self-

intersecting. Furthermore we consider a simple polygonal curve P (V ) as a set of line
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segments TWi+i that join the vertices Vi, i/2, . . . ,  vn- 1 5 vn in a specific order. We consider 

only closed curves, therefore the line segment belongs to the curve P (V ). For each 

individual vertex we define:

Definition 2.3.2. The star of a vertex in a curve is the union of the vertex and its two 
adjacent line segments and 1̂ + 1 .

In the following explanations of the measurement of the Total Absolute Curvature we 

will consider the absolute values of all the angles, both convex and concave (reflex). We 

designate the vertices that lie on the CH-curve with V c h >  and with 7 i t i =  1, . . . ,  q the 

exterior angles at these vertices with respect to the CH-curve. It is clear that

Let us denote with V COnv the convex vertices of P (V ) and with otj,j =  1, . . . ,  r the 

exterior angles at these vertices with respect to P (V ), and with V reflex the reflex vertices 

of P (V ) and with /3k, k =  1 , . . . ,  5 , the corresponding exterior angles at these vertices 

with respect to P (V ); where r +  s = n. Figure 2.10 shows the location of these vertices 

in a polygon.

(2.3.6)

Figure 2.10: General case with several convex and concave angles.

For a simple closed polygon the following equality holds:
r s

OLj -  > p k  =  2tt. (2.3.7)
j= i fc=i

Since to = aj +  ]C Pk* the total absolute curvature of a polygonal closed simple 

curve can be represented as



The set of convex vertices V COnv can be further split into three disjoint subsets, 

namely, the subset V COn v - C H  of vertices that lie on the CH-curve and such that their 

stars also belong to the CH-curve; the subset V conv-int of vertices that are convex but 

do not belong to the CH-curve; and the subset V conv_dev of vertices that lie on the C H - 

curve but their stars do not belong to the CH-curve. Vertices of the last type are called 

deviation vertices as at these vertices the curve is deviated from the CH-curve. The cor

responding exterior angles are denoted as a f H, I =  1 , . . . ,  t, a™1, m  =  1 , . . . ,  u  and 

apev, V — 1> • • • 5v * respectively. We also have that l + m  + p = r. Obviously, any part of 

the curve that is deviated from the CH-curve starts and ends at the neighbouring vertices 

of V COnv—devj since our curve has no self-intersections. Segments that have a deviation 

vertex as an end-vertex, but do not belong to the CH-curve, are called deviating segments.

Therefore, Equation 2.3.7 can be rewritten as:

t U V s

X  “ f "  +  £  <*£* +  £  -  £ >  =  2tt. (2.3.9)
1=1 m = 1 p = 1 k = 1

Each ctpev is equal to +  6 P\ where by 6 P we denote the angle at a deviation vertex 

of the curve P (V ) with respect to the CH-curve, or in other words, the angle between 

the deviating segment of P (V ) that has this deviation vertex as one of the end-vertices 

and the (imaginary) segment of the CH-curve, that would have the same deviation vertex 

as one of the end-vertices. We call such an angle a deviating angle, as illustrated in 

Figure 2.11.

Figure 2.11: Deviation angles in a non-convex curve. The deviating angle at vertex is formed 
by the deviating segment P4 P5  and the (imaginary) segment P4 F1 belonging to the CH-curve. At 
vertex v\ the deviation angle is formed by segments F4 F1 and viViq.

The above-mentioned considerations transform Equation 2.3.9 into the following one:

t  U V V s

£ a f "  +  £ < ‘ +  £ 7 p  +  I > f - - £ &  =  2,r- (2.3.10)
1=1 m = 1 p =  1 p= 1 k= 1
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The sum Y?i=i a ?H +  S p = i I p can be rewritten as Yli=i 7* and, as shown in Equa

tion 2.3.6, is equal to 2ir. Taking this into consideration, we obtain the following expres

sion: u V S

+  =  °- (2.3.11)
771=1 p = l  k = 1

This expression can be rewritten as:

u V S

E a S f  +  E  *■> =  ! > •  (2-3.12)
771=1 p — 1 fc=l

Therefore, to find the curve (or curves) of minimum total absolute curvature among 

all curves that span the given data, it is sufficient to minimise either the sum of exterior 

angles at reflex vertices or the sum of exterior angles at the internal convex vertices and 

the deviating angles.

From Equation 2.3.12 it follows that if the curve does not have internal convex vertices 

then the amount of deviation of the curve from the CH-curve is concentrated in deviating 

angles, and we can extract the following theorem:

Theorem 2.3.1. The total absolute curvature o f a non-convex polygon without self-inter
sections is equal to the curvature o f its convex hull plus the absolute value o f the curvature 
o f the deviation regions.

Proof: We will use a certain property of the sums of the angles around a triangle. From 

basic trigonometry we know that in the triangle of Figure 2.12:

P = tt- P '  (2.3.13)

and

P' + 01 + e2 = 7r. (2.3.14)

Substituting to solve for /3 we have that:

/? =  0i +  02. (2.3.15)

These concepts are used to measure the curvature of the polygon in Figure 2.13. We 

observe that: a \ =  f  +  0!, a 2 =  § +  d2, |  and a 4 =  | .  Computing the absolute

curvature of the polygon we have:

Cj =  a i + a 2 +  a 3 +  a 4 + (5
71 7TT 7T 7i

=  2  +  2  +  2  + 0 1 +  2 + $ 2  + P- (2.3.16)
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Figure 2.12: Relationship between internal and external angles in a triangle.

a 3

Figure 2.13: Sum of angles of a polygon with one deviation and no internal convex vertices.

Applying Equation 2.3.15 to the sum of the angles, we get:

UJ =  27T -f- (5 +  0\ +  02 

=  27T + /3 + P

=  27T +  2/?, (2.3.17)

which verifies the result presented in Equation 2.3.8. ■

We must note that deviating angles always appear in pairs and each pair indicates

a deviation of the curve from the reference convex curve. Each deviated part P ( V ) d, 

d =  1 contains in its turn some convex internal vertices V{?onv (its number may be 

equal to zero) and reflex vertices V{?eflex.

Taking into consideration that the reflex vertices may be split into the disjoint subsets, 

corresponding to the deviated parts of the curve, we can transform Equation 2.3.8 into:

/  Sd

cu =  2tt +  2 J 2  E  (2-3-i8)
d= 1 kd=1 
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Equation 2.3.12 holds for each deviated part:

ud vd sd

E  “ $  +  E  v  =  E  <2-3-19)
md=1 pd=1 kd=1

We now consider the case when extra vertices are inserted to the polygonal curve. A 

vertex vx will be inserted into the segment z ^ + i ,  creating new segments v{vx and vxVi+\. 

This will affect the curve by changing the angles at vertices i and i/i+i, and adding a new 

angle at vertex vx. This is shown in Figure 2.14.

a ( ^ + i )

a(yi)

(a) Initial polygon (b) After insertion of vertex ux 

Figure 2.14: Changes in the angles of a polygon due to the insertion of a new vertex.

Let us define a convex region R conve® as a part i/*, vi+i , . . . ,  isi+j  of a curve P (V ) 

that satisfies the condition that each vertex that belongs to R convex is convex, but vertices 

Vi-i and Vi+j+i are reflex. A concave region R c<mcave is defined analogously. Both are 

illustrated in Figure 2.15.

(a) Convex region R, (b) Concave region R,

" 2

Figure 2.15: Convex and concave regions, shown in grey.

Those segments of a curve whose vertices are of different types ( i.e. one is reflex, 

and another convex) are called separating segments. For any region we can extend the 

delimiting separating non-parallel segments until they intersect. The curvature of the
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region will be equal to the angle at the intersection point, regardless of the number of 

vertices in the region. We call this the incorporated curvature of the region, shown in 

Figure 2.16(a).

From the above mentioned we get the following statement:

Lemma 2.3.2. Suppose we construct a curve P i ( V )  which has g convex regions and h 
concave ones. I f  we add new vertices to these regions in such a way that the number and 
type o f regions o f each kind are preserved, then the new curve P 2 (V) will possess the 
same total absolute curvature as P i(V ) .

Proof: Consider the convex region in Figure 2.16(a). For a vertex to be inserted in this 

region without creating new regions, it must be inside of the grey area shown in the figure. 

The curvature u j r  of the original region is:

l u r  =  +  ol 2 . (2.3.20)

The insertion of a new vertex changes two of the angles in the existing curve {ot\ and 0 :2 ), 

and adds a new angle (a 3). The new curvature is

U J r  =  +  0 /2  +  CX- 3j (2.3.21)

where a i =  +  6 \ and a 2 = a '2 + 92. From Equation 2.3.15 we know that a 3 = 61 +  02,

thus the curvature of the region becomes

U)r =  Oq +  ol2 +  Q\ +  02

= ol\ +  ol2. (2.3.22)

The same applies for any number of insertions, both in convex or concave regions. ■

\  ✓N /
\  /

\  /\ /✓\
/  \

✓ \
/  \

/  \
✓ \

(a) Convex region (shown in

\  /  
s  ✓\  ✓N ✓\ /✓S

(b) After insertion of a vertex
grey)

Figure 2.16: Insertion of a vertex into a convex region.



2.3.2 Spherical image of a curve and curvature identical curves

The spherical image of a curve illustrates graphically the concept of Total Absolute Cur

vature. The spherical image for a polygonal curve is constructed by means of outwards 

unit normals to the line segments of the curve. All of them are translated to the same 

origin such that their endpoints will lie on the unit circle. Let us suppose that we walk 

around the boundary of a polygon, for example, in Counter-Clockwise direction starting 

from vertex i/i, passing through all the vertices according to their order until we arrive 

again at the vertex U\. From this walk, a corresponding walk on the circle is generated, 

where some parts of the circle are traversed several times for a non-convex curve. The 

length of this walk is equal to the Total Absolute Curvature of a curve.

The spherical image provides a vertex classification of the curve as for a reflex vertex 

the direction will be opposite to the chosen orientation. The spherical images can be put in 

one-to-one correspondence for two curves of the same dataset if the numbers of concav

ities/convexities and corresponding incorporated curvatures for both curves are the same. 

We say in this case that two curves are curvature identical. If the total absolute curvatures 

are equal for two curves, but they are not curvature identical, their spherical images will 

be different; because in this case either the numbers of concavities ( i.e. concave regions 

of a curve) will be different or the incorporated curvatures will be different. Therefore, 

the spherical image can be used as a representative of any subset of curvature identical 

curves that span the same dataset.

Examples of two curvature identical curves and their corresponding spherical images 

are given in Figure 2.17 and Figure 2.18. The spherical images are represented as starting 

from the normal vector of the segment For the sake of clarity, the normal vectors 

are shown growing outwards in the circle.

z'e

v\

v7 V8

^2 Vh

(a) Fitted curve

^3 I/4

J'lO

(b) Spherical image

Figure 2.17: Curve fitted over a ten-point dataset, with its spherical image.

If we change the starting point of our walk in one of the polygons, the spherical 

images of both polygons can be put in one-to-one correspondence. From the definition
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^6 J'S

U3 VA

V\ v2 ^5 ^10

(a) Fitted curve (b) Spherical image

Figure 2.18: Different curve fitted over the ten-point dataset, with its spherical image.

of the spherical image it follows that in order to determine the excess of total absolute 

curvature of a given curve with respect to the convex curve, it is sufficient to reconstruct 

the outwards normals only to separating and deviating segments. Then the length of the 

walk on a circle that the endpoints of these normals generate, by observing the proper 

ordering, will be equal to this excess.

We are interested in determining the general properties of discrete curves of minimum 

Total Absolute Curvature. As we saw in the previous subsection, a curve of minimum 

TAC spanning the data may not be unique. An open problem is, given a curve of min

imum Total Absolute Curvature that spans a given dataset, determine other curves also 

of minimum TAC spanning the same data. This problem can be reformulated in a more 

general form as determining the subset of curves that span the data and also have the same 

Total Absolute Curvature, equal to a certain value Qa.

In general, we can assume that the set P (V )n of all admissible curves that span the 

same finite discrete data is divided into a finite number of disjoint subsets, each subset 

P (V )^  containing curves with the same value of Total Absolute Curvature Qa i.

Curves with the Total Absolute Curvature equal to f lQi might be not curvature iden

tical. It might be the case that the subset of curves with the same lj are further divided 

into several disjoint sub-subsets of curvature identical curves. The curve that has the 

minimum Total Absolute Curvature with respect to all admissible curves, is denoted with

P (V )min.

2.4 Potential applications of TAC

This section presents two practical applications where the concepts previously described 

for the Total Absolute Curvature of discrete curves can be used.
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2.4.1 Curve reconstruction from point clouds

From the results in Section 2.3, we can conclude that in order to obtain a curve of min

imum Total Absolute Curvature that spans a given data set V , three parameters may be 

minimised: the number o f deviations of a curve from the CH-curve, the number o f convex 

regions in a deviation, and the amount o f curvature contributed by reflex vertices in each 

deviation. The dependence among these parameters is not straightforward. We need to 

decrease the amount of curvature contributed by all the reflex vertices in a curve, and a 

curve with only one deviation does not guarantee to be a curve of minimum TAC. How

ever, the above remarks give us an indication on how to approach the study of properties 

of discrete curves with respect to their Total Absolute Curvature and how to design ap

propriate algorithms.

In order to minimise Total Absolute Curvature on curves that span the given data, we 

designed several algorithms. The algorithms serve also to understand better the properties 

of curves of minimum TAC, given the data. They can be divided in two groups, algorithms 

of the first group search for a curve with minimum TAC among curves with only one 

deviation, and in the second group among curves that allow multiple deviations. We first 

describe the properties of curves with one deviation.

If we have the data set V  in a non-convex position, then we can determine the layers 

of this set by repeatedly removing all convex hull elements and considering the convex 

hull of the remaining set. The set V  has k  layers if this process terminates after precisely 

k  steps. So the first layer is the convex hull of the whole dataset, and subsequent layers 

are nested convex hulls (see Figure 2.19).

depth 2

depth 1

depth 0

Figure 2.19: Nested convex hulls of a dataset.

Given a curve that covers a dataset with k  layers, a segment of the curve whose end

points belong to two different layers is known as a link segment. Two link segments form 

a bridge if they belong to the same deviation and both segments are connected to at least
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one layer in common. Figure 2.20 illustrates link segments and bridges.

Bridge

Link segments

Figure 2.20: A bridge delimited by two link segments, in a dataset with two layers.

If both link segments of a bridge connect successive layers, the bridge is called short. 

To preserve a simple closed curve, no two bridges can have endpoints that belong to the 

same layers. The following statements are valid:

Lem ma 2.4.1. Given a dataset with k layers, the limits on the number o f link segments n  
necessary to join all layers is as follows: I f  k = 1 the dataset is convex, and there is no 
need fo r  link segments, n  =  0. For non-convex curves, k > 1 and n >  k.

Proof: To join all layers with one segment between each pair we need k —1 link segments. 

In the minimum case, we need one additional link segment that joins the innermost layer 

with the outermost one, thus making the minimum number of link segments n  = k. A 

curve with this configuration is shown in Figure 2.21 ■

Figure 2.21: Curve with minimum amount of link segments. In the data k = 3, and there are 3 
link segments.

Lem ma 2.4.2. The maximal number o f bridges in a curve with one deviation does not 
exceed k — 1 where k  is the number o f layers. The maximal number o f link segments in a 
curve with one deviation is equal to 2 (k — 1).

Proof: The maximum number of bridges is necessary when all of them are short, as in 

the curve on Figure 2.22. Each bridge completely joins two layers. In a dataset of k  layers 

there are only k — 1 pairs of successive layers. ■
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C 3 :
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Figure 2.22: Curve with maximum amount of link segments. In the data k =  3, and there are 4 
link segments.

Lem ma 2.4.3. The total curvature o f a curve with one deviation does not exceed 2tv +  
47v(k — 1), where k is the number o f layers. This bound is exact.

Proof: The curvature of the convex hull is 2n for the whole dataset. Every convex layer 

inserted increases the curvature by an additional 27t. Each link segment contributes to the 

curvature with a maximum of 7r at its endpoints, and in the worst case two link segments 

are necessary to join every pair of layers. Thus for every layer added, the curvature 

increases by a maximum of 47r. ■

From the previous proof we can conclude that having less link segments can produce 

curves with smaller curvature. From Lemma 2.4.1 we know that k is the minimum number 

of link segments in a dataset with k  layers.

We next investigate how multiple deviations influence the TAC. This difficult problem 

is still under study, but we can make several observations. First is that any new deviation 

may contribute to TAC up to 2tt +  £ir(k — 1). Adding new bridges may also contribute to 

curvature. So, a heuristic idea is to keep deviations as simple as possible, and deviating 

angles as small as possible. Appendix A describes two algorithms to reconstruct curves 

from a point cloud. One of them builds curves with a single deviation, and the other 

generates curves with multiple deviations. Below we briefly illustrate how these ideas 

work in practice.

Two examples are offered, in which the data consist of two layers. For simplicity, 

we assume that the data lie on two concentric circumferences, of radii router and r inner 

correspondingly. We denote a curve of minimum TAC with P (V )min, and with P ( V ) ^ in 

the curve with one deviation that has the minimum TAC with respect to all curves with 

one deviation that span the given data.

Example 1: In this example the data is situated so that if we connect the centre point O 

with a vertex vQ on the outer circumference, there is another vertex ^  that lies on 

the inner circumference and that belongs to the segment 0 v o. Each circumference
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is composed of 10 points. This example clearly shows that the concept of ‘near

ness’ between two sample points is not essential for changing the Total Absolute 

Curvature of a curve. We can show that the curvature Qa of a curve that spans 

this data with multiple deviations is always larger than the P (V )^ in curve for the 

same data. Moreover, keeps the same value no matter how small is the distance 

St touter tinner (soe Figure 2.23).

(a) Curve P (V )V n that 
is also P (V )7

'  mm  

' mm

(b) Curve of minimum 
TAC among curves with 
multiple deviations

Figure 2.23: Concentric circles with vertices aligned.

This example also shows that a global minimum to a discrete optimisation prob

lem might be very far indeed from the input configuration. For example, we can 

assume that sample points were originally taken from the curve P (V )sau; presented 

in Figure 2.24.

Figure 2.24: Original source of the data: curve P (V )

In these points high values of curvature are ‘incorporated’, and therefore they are 

considered as significant for shape description. The curve in Figure 2.23(b) might 

be served as an initial approximation of P (V )sau;, but not the curve in Figure 2.23(a).

Example 2: In this example also each circumference has 10 points. The points on the 

inner circumference are slightly rotated with respect to the outer circle, so that no

point on the inner circumference belongs to the segment 0 u o. In this case we can 

show that by decreasing the distance Sr = router — rinner at a certain moment the
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curve of minimum TAC among curves with multiple deviations becomes P (V )min 

and its TAC tends to 2n.

The curve in Figure 2.25(a) has one deviation and is P (V )^ in and also P (V )min, 

while Figure 2.25(b) is the curve of minimum TAC among curves with multiple 

deviations. Both of them are generated using the same dataset.

A new dataset, where the radius of the inner circle has been increased, produces the 

curves in Figure 2.26. Here Figure 2.26(a) is P(V )JCn but it is no longer P (V )min, 

and the curve in Figure 2.26(b) is now P (V )min.

(a) TAC = 16.3287 (b) TAC = 24.1451

Figure 2.25: Concentric circles with inner circle rotated.

(a) TAC = 16.3167 (b) TAC = 16.2223

Figure 2.26: Rotated concentric circles with smaller Sr.

Appendix A shows the experiments done using various algorithms to fit a curve over 

a dataset. The algorithms presented generate curves with one or various deviations, as the 

one shown in the previous examples. The principles presented in this chapter are used as 

a parameter to evaluate the curves generated.

2.4.2 Face recognition by curvature of face profiles

A practical application of curvature measures is their use in the field of face recognition. 

Such an idea has been previously explored in (Thodberg and Olafsdottir 2003), where 

curvature measures are used to determine feature points on curves representing the profile
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of faces. This section presents the experiments carried on using measurements of Total 

Absolute Curvature of polygonal curves to perform face recognition.

Face data was obtained from a structured light scanner developed in-house at Sheffield 

Hallam University (Robinson et al. 2004), (Robinson 2005). The scanner generates an 

approximate three-dimensional model of a human face from a single picture, when a pat

tern of structured light (multiple stripes) is being projected on a target. In theory, the 3D 

object can be recovered from the captured data in all cases. But in practice, due to varying 

lighting conditions, occlusions, and pixel noise in the 2D image, the generated 3D data 

can have inconsistencies.

For the purpose of comparing acquired 3D faces, a transversal section of the face 

is obtained from the single vertical stripe that covers the tip of the nose. This yields 

a number of points on the profile of the face. A curve is then fitted over the vertices, 

and the curvature measures of the discrete curve obtained are used to differentiate the 

faces. Initially the data is simplified by removing vertices with a curvature less than a 

certain threshold, keeping only important features of the face. The curve is closed to 

make a consistent ordering of the vertices and to enable measurements of the area of 

the polygons. This is done by adding a vertex at the back of the profile, in a position 

at the middle of the distance between the first and last vertices in the dataset, and that 

same distance perpendicularly to the back of the profile. As an example, Figure 2.27 

shows the closed polygons for two face profiles. The measures obtained for the curve in 

Figure 2.27(a) are:

The results of these partial experiments are of limited use because of the lack of a 

large enough sample population. However further work on this area is suggested, since 

curvature measures of the faces can be consistent even for different scans of the same 

person under various conditions.

Curvature = 
Curvature squared 
Length =
Area =

1 9 . 2 5 0 5 5 0
1 6 . 7 4 1 6 7 8
2 6 . 7 1 9 9 1 6
3 6 . 6 8 9 4 2 4 '

and for the curve in Figure 2.27(b), the following results were obtained:

Curvature = 
Curvature squared 
Length =
Area =

1 9 . 5 3 1 3 8 4
1 7 . 7 5 4 0 1 7
2 6 . 3 4 4 6 0 8
3 7 . 2 1 6 3 5 3
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(a) M ale face profile (b) Fem ale face profile

Figure 2.27: Example profiles used for face recognition by curvature measures.

2.5 Conclusions

The discrete analogues of curvature for a piecewise linear approximation of a curve have 

been presented in this chapter as the sum of the angles at the vertices of a polygonal curve. 

By considering the absolute values of these angles, regardless of the direction of the turn, 

we get the Total Absolute Curvature of a polygon. We classify the vertices of a discrete 

curve according to their location with respect to the convex hull. A distinction is made 

between vertices that lie on the convex hull of the dataset, and interior vertices, that lie in 

what we call deviations. The relationship between the angles of each type of vertex and 

their curvature is developed to demonstrate that a convex curve has the TAC equal to 27t, 

and non-convex curves will have curvatures larger than 27t dependent on the inner angles 

at the deviations. From these results we can conclude that the curvature of a curve is 

highly dependent on the curvature of the deviations. An extension of these concepts will 

be used in the next chapter to measure the curvature of vertices in a polyhedral surface.

The spherical image of a curve has been presented as an alternative method to measure 

the Total Absolute Curvature of a polygon, based on the normal vectors to the edges of the 

curve. We have shown how this method can be used to clearly identify curves that have 

the same curvature but different geometries. This is the basis of the Polyhedral Gauss 

Map method that will be presented in Chapters 3 and 4.

The concepts of deviations and layers presented in this chapter can be applied to curve 

reconstruction algorithms. Some initial experiments on how this can be done are ex

plained in Appendix A. Based on these concepts we have shown that, given the data, a 

curve of minimum TAC may not be unique, and that a solution to a discrete optimisation 

problem may lead to an unexpected curve and might be very far from the source of the 

data samples. The research on the discrete optimisation problem provides the foundation 

for the research on the curvature of surfaces in three-dimensions.
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Chapter 3 

Discrete curvature in three dimensions

3.1 Introduction

In many applications a physical object is represented by discrete data, commonly obtained 

by some measurement system to record the coordinates of sample points on its surface. 

Triangular or polygonal meshes ( i.e. piecewise linear surfaces) are commonly used in 

modem computer-related applications to represent surfaces in three-dimensional space, 

which cover the sampled points. Therefore, there is a substantial need for accurate es

timates of geometric attributes that are directly computed from a mesh, such as surface 

area, normal vectors, and curvatures. In recent years significant efforts have been made 

to define the analogues of differential geometry concepts on meshes, which imitate those 

of a smooth surface (Dyn et al. 2001), (Meyer et al. 2002), (Borrelli et al. 2003) and 

(Eastlick 2006). Among these concepts surface curvatures are particularly important, as 

they are basic measures to describe the local shape of a smooth surface. However, the 

surface of a triangle mesh is not smooth, and there is still no consensus about the most 

appropriate way of estimating geometric quantities such as curvature. Additionally, var

ious methods are being developed to capture curvature information without referring to 

higher-order formulae of differential geometry. These methods are based on the discrete 

curvature concepts and are of growing interest for geometric modelling. They permit the 

discrete curvatures to be computed directly from triangle meshes using their intrinsic in

formation. The principal difference between a polyhedral and a smooth surface is that the 

discrete curvatures in a polyhedral surface are concentrated around the vertices and along 

the edges.

Measures of curvature in a piecewise linear setting should be analogues of integral 

formulae for curvature in a smooth setting and should preserve the integral relations for 

curvature, such as the Gauss-Bonnet theorem (Polya 1954), (Banchoff 1970), (Brehm 

and Kiihnel 1982). Such analogues exist and were introduced long ago in relation to
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the theory of non-regular surfaces (see an overview in (Alboul and van Damme 1994)). 

These analogues were discussed in detail in (Brehm and Kiihnel 1982), where the authors 

also compare discrete curvatures with their smooth counterparts.

In the last decade the number of papers that explore discrete curvatures within cer

tain contexts has increased significantly. Much attention is paid to the discrete Gaussian 

curvature, known also as the Angle Deficit. It has also been referred to as angular de

fect and abbreviated in this thesis as the AD. The concept was brought to the attention of 

the geometric modelling community in (Calladine 1986), where the author listed several 

applications of the angle deficit in surface modelling, mostly in the the context of the me

chanics of thin-shell structures. Nowadays, the angle deficit is used to evaluate curvature 

information directly from a mesh, as well as to estimate the Gaussian curvature and derive 

principal curvatures of the underlying smooth surface, assuming that the mesh samples 

the surface in a certain way (Peng et al. 2003), (Meyer et al. 2002).

In (Borrelli et al. 2003) the problem of the correct estimation of the Gaussian curva

ture is investigated in detail, and they argue, on the basis of several approximation results, 

that approaches based on the use of normalised angular deficits are often erroneous, and 

can be applied correctly only if the geometry of meshes is precisely controlled. We advo

cate these conclusions, and in the following chapters we highlight why the angular deficit 

is sufficient neither to estimate the Gaussian curvature of the underlying smooth surface 

nor to capture the curvature information of a polyhedral surface. Loosely speaking, the 

reason is that there are more curvatures for polyhedral surfaces than for smooth ones. This 

fact is still not fully acknowledged, but without addressing it, it is impossible to develop 

correct curvature estimates.

In the smooth case, the Gauss Map and related shape operator completely determine 

the shape of the original surface (Kiihnel 2002). Therefore, efforts have been made to 

use analogues of the Gauss Map to explore shape characteristics of a complex polyhe

dral surfaces. For example, an analogue such as the extended Gaussian image is used 

in Computer Graphics and Vision to compare objects and to illuminate the structure of 

surface shape (Little 1985), (Lowekamp et al. 2002). However, the extended Gaussian 

image and its generalisations construct only normals to the faces of the polyhedral sur

face without indicating their connectivity. There exist few attempts to create the Gauss 

map directly from the mesh, but the results are still scarce and ambiguous for non-convex 

objects (Lowekamp, Rheingans, and Yoo 2002).
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Our method constructs a polyhedral analogue o f the Gauss map directly from a polyg

onal mesh and uses this map to characterise surface shape. We believe that such an algo

rithm is developed here for the first time. We also give a definition of the Polyhedral Gauss 

Map (PGM) and show its conformity with the smooth case. The resulting PGM provides 

a description of the surface by determining its curvature domains, that is, flat, convex or 

saddle regions, with respect to incorporated curvatures. These domains are often only im

plicitly present in a polyhedral surface, and cannot be determined by the sign of the angle 

deficit only. Each domain can be split up into uniquely determined sub-domains; there

fore each surface can be associated with the collection of these sub-domains. The method 

provides also a better insight into the geometric structure of complex triangle meshes, by 

describing various vertex types, some of them with a very complex PGM.

A good understanding of the geometry of meshes is a step towards more robust mesh 

manipulation algorithms. The PGM method besides shape recognition and description 

can be used for optimisation of the underlying model or for developing subdivision schemes 

Finally, the proposed PGM is computationally viable, can be viewed dynamically, and is 

effective in visualising curvature features of complex polyhedral surfaces. The theory 

and algorithms in this and the next chapter have been partially presented in (Alboul et al. 

2005) and (Alboul and Echeverria 2005).

3.1.1 Previous research on Gauss Maps

The papers (Banchoff 1967) and (Banchoff 1970) present the analogous to the G auss- 

Bonnet theorem for the curvature of polyhedral surfaces. Banchoff draws directly from 

the method described by Gauss to find the curvature of a surface, and presents the Gauss 

Map of vertices in a polyhedral surface, using the normal vectors of the faces around a 

vertex. He proves how the curvature of a vertex can be measured in an analogous way 

to the methods for a smooth surface. He points out the relationship between the critical 

points of a surface and the types of vertices that can be identified with the Gauss Map. 

This is also the case in (Brehm and Kiihnel 1982), where curvature measures are expressed 

in terms of the number of critical points.

One of the first studies on using Gaussian Images to identify objects is presented in 

(Horn 1983). The method used is described as Extended Gaussian Images (EGI) and is 

based, for the discrete polyhedral case, on projecting the normal vectors of the face of the 

polyhedron into a sphere, and assigning to each of these normals a density directly related 

to the corresponding face area. The resulting Gaussian image is considered as a weighed 

mass, with a centre of mass always located at the centre of the sphere. In this report, Horn
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also demonstrates the relationship between the computation of curvature for the discrete 

and smooth cases. Further analysis is made there for the best possible tesselation of the 

sphere in order to group the Gaussian image in cells. Useful tesselations need to have cells 

of similar area and shape, have regular shapes and provide good resolution on the surface 

of the sphere. The best tesselations found are obtained from the projection of regular or 

semi-regular polyhedra onto the sphere, and then further subdividing them into triangles. 

In another section, Horn deals with curvature measures of solids of revolution, including 

a torus, which is a non-convex object but can have its curvature measured using EGI.

(Little 1985) uses a slightly different definition of the EGI, where each of the normal 

vectors has a length proportional to the area of its corresponding face. He investigates how 

this form of EGI, being unique for every convex polyhedron, can be used to reconstruct 

the original object, according to the Minkowski theorem (Lyustemik 1963). This approach 

requires a definition of the orientation of the faces of the object, known as a combinatorial 

type, which describes the adjacency relationship between faces and edges. The technique 

can be directly used to reconstruct an object in 2D thanks to the inherent definition of 

orientation, but in the case of 3D it requires an iterative process to approximate the target 

shape. This is because of the disconnected nature of the normals. Reconstructing a 3D 

surface requires extra data structures that relate to the connectivity of normal vectors of 

adjacent faces.

Another estimation of the curvature of a polygonal surface is obtained in (Cohen- 

Steiner and Morvan 2003) based on the normal cycle at vertices, edges and triangles. An 

error bound is proven from the curvature of a discrete surface obtained as a restricted 

Delaunay triangulation of the smooth surface.

We will present a novel approach to measuring curvature that has not been explored 

before. The understanding of positive and negative components of curvature permits the 

correct characterisation of vertices, impossible using previous methods. Additionally the 

Polyhedral Gauss Map proposed makes use of the correlation of the normal vectors di

rectly from the polygonal mesh. It reflects more accurately the geometry of the vertices 

and their local neighbourhoods on the surface.

3.1.2 Existing applications using Gauss Maps

The Gauss Map has been used in the past to aid in the solution to several different prob

lems. The way to compute it varies as well. Here we present some applications and 

explain the methods used to find it.

An analysis on the treatment of spherical polygons is found in (Chen et al. 1993)
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for an application on automatic machining of mechanical parts. The problem tackled is 

identifying optimal orientations of pieces in a cutting machine to perform the most piece 

cuts in one single setup. They use the Gauss Map of the pieces, where the aim of the 

algorithms is to identify the areas of the sphere where most of the spherical polygons are 

situated, as the optimal orientations of the pieces in the cutting machine. They define 

operations of the surface of the sphere to determine the intersections of spherical poly

gons with a great circle, and then find the hemisphere with the most number of spherical 

polygons.

The Gauss Map of a vertex is computed and used in (Rodriguez and Rosenberg 2000) 

to extend the Cauchy theorem related to the rigidity of convex polyhedra in R 3. By 

using only face orientations they are able to define the ‘Gaussian image’ in such a way 

that for certain non-convex vertices this image represents a convex spherical polygon. 

They explore the different vertex configurations, such as: convex cone, non-convex cone, 

saddle and figure-eight. In their approach the Gauss Map for a given vertex is obtained 

from the normal vectors of the incident faces, which are projected to the surface of a 

sphere and joined with geodesic arcs. The direction of these vectors can be changed so as 

to get a convex projection on the surface of the sphere. If such a convex geodesic polygon 

can be found for all the vertices in the polyhedron, then it is qualified as rigid, including 

polyhedra with figure-eight vertices. The authors do not intend their version of Gauss 

Map to be used as a measurement of curvature. The algorithm used for the Gauss Map 

avoids intersecting geodesic arcs by changing the direction of the normal vectors, and 

hence it does not really reflect the amount of curvature incorporated in a vertex.

The work of (Grinspun and Schroder 2001) makes use of the Gauss Map of subdivi

sion surfaces to detect self-intersections of the surface when it is subjected to deforma

tion. The test implemented here requires placing a plane between the centre of the sphere 

and the Gauss Map area on the surface of the sphere. If such a plane exists, then it is 

assumed that there is no intersection. This approach uses a different version of the Gauss 

Map for whole patches of the surface, while each vertex contributes only with one vector 

to the Gauss Map, in a manner similar to the smooth case.

In (Yamauchi et al. 2005) the Gauss Map is used to determine a more adequate mesh 

segmentation to do texture mapping without deformations. They define a segmentation 

that distributes curvature evenly among every patch. The iterative growing process for 

the patches places constraints on how fast they can develop, so that they remain balanced 

in curvature. The curvature measure is used both to decide when a vertex, edge or face 

is incorporated into a patch, and to balance the growth of the larger patches with respect
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to their Gauss area. Their choice of using Gauss Map to obtain the curvature is based 

on mathematical robustness. In their implementation, the Gauss Map provides curvatures 

in the range [0, 4tt\. The Gauss Map of vertices is obtained using the normal vectors of 

adjacent faces, while the Gauss Map for edges and faces is computed using the normal 

vectors of the incident vertices. Again this approach does not consider the case of non- 

convex vertices.

3.2 Basic concepts and definitions

For the purpose of this thesis we are interested only in discrete curvatures related to the 

integral Gaussian curvature, i.e. those that are supported on the vertices. In what follows 

we give a brief comparative analysis between the known integral relations for curvature 

for smooth surfaces and their discrete counterparts.

3.2.1 Polyhedral surface

By a polyhedral surface we understand a triangulated polyhedral surface. Let a vertex 

be a triple: v =  (x , y , z ) G M3. We design V  as a finite point set in three-dimensional 

space, V  =  {v i,i =  1 , 2 , . . . ,  n}, we denote by P (V ) a polyhedral surface with the 

vertex set V . The term polyhedron refers to a closed polyhedral surface. In such a setting 

a polyhedron is bounded, but might be non-homeomorphic to a sphere. Also it might 

be multi-connected and self-intersecting, and its interior volume is not necessarily part 

of the polyhedron. Therefore, a polyhedron is not necessarily a solid body. A triangle 

mesh is a particular case of a polyhedral surface. Therefore, all properties of a polyhedral 

surface discussed below are applicable to a mesh.

Given a polyhedron P (V ), the set of its vertices is denoted by V , the edges by E , and 

the faces by F.

Definition 3.2.1. The star o f a vertex v, denoted as star(y), is the union of all the faces 
and edges that contain the vertex. The link o f the vertex (the boundary of the star) is the 
union of all those edges of the faces of the star(v)  that are not incident to v. It is denoted 
as link{u).

For simplicity we will make an initial distinction between vertices.

Definition 3.2.2. We refer as manifold vertices to those vertices for which their star maps 
one-to-one to an open disc. Vertices for which such relationship cannot be found will 
be called non-manifold vertices. These are vertices with self-intersections of the faces in 
their star.
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3.2.2 Integral Gaussian curvature and the angle deficit

For a domain U of a smooth surface S  the Gauss map N (U ) is the map assigning to 

each point p  G U the point on the unit 2-sphere S 2 E M3, by translating the unit normal 

vector N (p) to the origin (Kiihnel 2002). The endpoints of normals, therefore, will cover 

a certain region on S 2 (see Figure 3.1). This method is an extension of the one presented 

in Section 2.3,2 for the spherical image of a planar curve.

Figure 3.1: Gauss Map of a smooth surface.

Given a neighbourhood U (p) on S , the ratio of the area N(U (p)) to the area of U(p) 

can be considered as a measure of the amount of curvature of the surface S  near the point 

p. Then the Gaussian curvature K (p) is defined by setting

z . .. area(N (U (p))) . . . . .
K (p) =  lim ------ - 7 r-77-TT Z (3-2.1)u(P)ip area(U (p))

where the limit is taken as the neighbourhood U(p) contracts down to the point p  (do 

Carmo 1976).

If a neighbourhood U(p) is sufficiently small such that the map N (U (p)) is one-to - 

one and orientation-preserving (outward normals at corresponding points on S  and S 2 

correspond), then the area N(U (p)) is considered positive, and the corresponding region

U(p) is said to be strictly convex and K (p) > 0. If the map N (U (p)) is one-to-one but

orientation reversing, then the area N (U (p)) is considered to be negative, p  is a saddle 

point and K (p) < 0. Of course, different regions of S  can be mapped to the same region 

on the unit sphere, which results in multiplicities of the Gauss map.

Therefore for a region U(p), for which the map N (U (p)) might not be one-to-one, 

the integral Gaussian curvature (K int) is understood as the integral of the area of the image 

of U(p) under the Gauss mapping:

K in t= [  K dA . (3.2.2)
Ju
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For an entire closed smooth surface the previous formula turns into the mathematical 

expression of the Gauss-Bonnet theorem (Bloch 1998):

[  K d A  =  2ttX(S), (3.2.3)
Js

where x ($ )  is the Euler characteristic of S. The discrete analogue of Equation 3.2.2 is 

known as the Angle Deficit (shown in Figure 3.2), first introduced by Descartes, and which 

measures the discrete Gaussian curvature u  around vertex u:

lj = 2tt- 9 ,  (3.2.4)

where 6 = Y l a i is the total angle around vertex u, and are those angles of the faces in

star(v)  that are incident on v. This is a polygonal analogue of the Gauss-Bonnet theorem

(Banchoff 1970).

Figure 3.2: Computation of the Gaussian curvature (co) around vertex v.

For any non-vertex point in the surface p  G P (V ), ihe curvature u> is identically equal 

to zero. Hence, for a domain U C P (V ) the total curvature is determined as the sum

of the curvature of every vertex:

n u = ^ 2 u ( v ) .  (3.2.5)
veu

For an oriented closed polyhedral surface P (V ) of genus g the total curvature fip(yj is 

equal to (1 — g )4 7 r , s o  the analogue of the integral relation for the Gaussian curvature is 

preserved (Alboul and van Damme 1994), (Banchoff and Kiihnel 1998).

3.2.3 Integral absolute curvature and its discrete analogue

The following measure which we determine is an analogue of the integral absolute curva

ture for a polyhedral domain. The most obvious candidate for this measure seems to be 

the sum of absolute values of the angle deficits around the vertices in the domain.
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However, in Figure 3.3 we can see that in both polyhedra all curvatures u(y i)  are 

positive. In the depicted polyhedra the curvatures uj(ui) are actually equal for every cor

responding vertex, i.e. for all corresponding vertices ^  £  P\ and Ui £  P2 , the curvature 

u fa )  is the same. Therefore, we have:

n(Pl) = n(p2) = Y  H")l = Y  I^MI = 4n- (-32-6')
vePi v&P2

The left polyhedron in Figure 3.3 is non-convex, but Equation 3.2.6 does not reflect this 

fact.

v9

V5

Vi

Figure 3.3: Two polyhedra with similar Gaussian curvatures.

The total absolute curvature K abs = f s  |7f|cL4 for a closed non-convex smooth sur

face S  is greater than 4 7 t; therefore, Y^vep I ^MI  is not an appropriate analogue of K abs. 

The problem is that the curvature u  around a vertex may consist of positive and negative 

components that are ‘glued’ together, and the task is to separate them.

For any given vertex v  we can imagine the convex hull of the subset of vertices in

cluded in star(y). If the vertex v  belongs to the convex hull of its star, then we can define 

another star, denominated s ta r+(u), which contains the vertex v  and the faces and edges 

of the convex hull that are incident on the vertex. We refer to s ta r+{u) as the convex cone 

of vertex u. Then, using a variation of Equation 3.2.4, the positive (extrinsic) curvature 

lo+ is defined as:

uj+ = 2tt — 9+ (3.2.7)

where 6+ is the sum of angles of the faces incident on u in s ta r+(v). The positive curva

ture uj+ is equal to zero if the vertex v  and all the vertices in link(v)  lie in the same plane. 

If the convex cone around v  does not exist, i.e. v  lies inside the convex hull of star(u), 

then uj+ is, by definition, equal to zero.

The negative (extrinsic) curvature u~  of lj is determined as the complement of the 

positive curvature:

lu~ =  uj+ — u . (3.2.8)
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The absolute (extrinsic) curvature u  is defined as:

LJ (jJ+  LJ . (3.2.9)

The word ‘extrinsic’ in the introduced curvatures is used due to the fact that they reflect 

how a vertex is embedded in space, while the angle deficit, computed only by using the 

angles around a vertex remains an intrinsic measure.

Four basic types of vertices for an embedded polyhedral surface are then distin

guished, using the positive and negative components of curvature u + and u~ . We call 

a vertex:

•  Flat if l j  =  0;

•  Convex if u +  = l j ;

• Saddle if u j ~  =  — l j ;

•  Mixed if l j +  > 0 and l j +  7^ l j .

In other words, convex vertices have a curvature which is entirely positive, saddle ver

tices have entirely negative curvature, and mixed vertices have both kinds of curvature. 

Examples of these kinds of vertices are shown in Figure 3.4.

(a) Flat vertex

/

(b) Convex vertex

(c) Saddle vertex (d) Mixed vertex

Figure 3.4: Vertex types identified using the Total Absolute Curvature.

We now establish an analogy between the measure of the curvature of a planar poly

gon, as presented in Section 2.3.1, and the curvature of a vertex in a two-dimensional
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triangulated polyhedral surface. The curvature of a planar polygon is obtained from the 

sum of angles at the vertices. For the curvature of a vertex in space we measure the sum 

of the angles of the incident faces.

For a vertex v, we can split the set F  of faces in star(v) into two disjoint subsets: The
N

faces that belong to the convex cone s ta r+{v) are placed in the set F +, and the angles of 

these faces at the vertex v  are denoted with a j, j  =  1 , . . . ,  r. The faces that do not belong 

to star+(v) are placed in F dev, and the angles of these faces at the vertex v  are denoted 

with (3k, k  =  1 , . . . ,  s. If n  is the number of faces in star{v), then r +  s = n. We can then 

expand Equation 3.2.4 into:

Note that all the edges of s ta r+(y) are also edges of star(v), and if star(v)  is not convex,

planar polygons). The deviation edges occur always in pairs. The dihedral angle at the

First we analyse the case of vertices where the faces in F dev all have one edge that 

belongs to sta r+(v), as is the case of the vertex in Figure 3.5(a). For simplicity we draw 

the link{y) from a top-down perspective, as in Figure 3.5(b). In it every edge corresponds 

to a face in star{v), and edges are labelled with the angle of the face at v.

r s

(3.2.10)

then its deviation from the convex star occurs at an edge of st,ar+{u). We call such an 

edge a deviation edge (analogous to the deviation vertex presented in Section 2.3 for

deviation edge in star{v) is sharper than the corresponding dihedral angle in s ta r+(y).

(a) Mixed vertex (b) Top-down view of the link

Figure 3.5: Mixed vertex where all faces have at least one deviation edge.

We can designate with V the faces of the convex hull that do not belong to star{y). 

The angles of these faces are designated 7 *, i =  1 , . . . ,  q. Equation 3.2.10 is rewritten as:



We can then split Equation 3.2.11 into two parts:

£  =  2ti- -  I +  +  ( ' (3.2.12)
\ j = i  i= i  /  \ i = i  k= i  )

The first part corresponds to the positive curvature:

o;+ =  2 7 r -  ( X ^ a i +  ] L 7 i ) ’ (3.2.13)
\ j = i  i = i  )

and then the remaining part is the negative curvature:

(3.2.14)
\ i = l  fc=l J

The value of (—uj~) will always be negative, since the sum of (3 will always be larger than 

the sum of 7 . The minus sign before a;-  is used in order to keep its value positive. If the 

sums were equal, then the faces would be part of the convex hull.

As was shown in Section 2.3.1 for the curvature of planar polygons, the curvature of 

a vertex can be determined as the sum of the convex curvature plus the curvature of the 

deviations, which are convex regions themselves, but with opposite orientation. Using this 

principle we can deconstruct the stars of mixed vertices where not every face in star(u ) 

has deviation edges.

For each ‘deviation’ from the convex hull, we can define a second cone, consisting of 

the faces that belong to that single deviation (a subset of F dev), and closed by one face 

that belongs to the s ta r+(v) but not to st,ar(y). The new cone corresponds to a negative 

part of the curvature of v. This new cone is not necessarily convex, but can be ‘separated’ 

into a number of convex cones, by inserting ‘imaginary’ faces inside of it. The set of 

imaginary faces is denoted with T ', and the faces have angles 7 [,l =  1 , . . . ,  t incident on 

v. The curvature of the deviation is measured by the sum of angles of the faces of each 

of the individual convex cones thus obtained. Such a vertex is illustrated in Figure 3.6. In 

this example, the negative curvature is measured as:

=  (7 ; - 0 2 -  Pi) +  (71 -  01 -  Yi) • (3.2.15)

The total absolute extrinsic curvature Cl is defined then as the sum of absolute extrinsic 

curvatures of all the n  vertices of a polyhedral surface P (V ):
n n

Cl =  = ^ 2  (^+( )̂ (3.2.16)
i = l  i= 1

The total absolute extrinsic curvature Cl produces different values on the polyhedra 

that are depicted in Figure 3.3. It is equal to An on the right polyhedron (as it represents
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(a) Mixed vertex (b) Top-down view of the link

Figure 3.6: Mixed vertex where some faces do not have any deviation edges.

a convex body), and is greater than 4 7 t on the left polyhedron, which is not convex. This 

example illustrates the fact that the total absolute extrinsic curvature of a polyhedral sur

face is an adequate analogue of Total Absolute Curvature of a smooth surface. The Total 

Absolute Curvature identifies hidden folds in the stars of the vertices that Angle Deficit 

ignores.

3.3 The Polyhedral Gauss Map

Separation of the positive and negative parts of the curvature for a mixed vertex can also 

be carried out using an analogue of the Gauss map for a polyhedral surface, which we 

call the Polyhedral Gauss Map. For a polyhedral surface curvatures are concentrated 

around vertices, so we need to be able to construct the PGM for an individual vertex, and 

the union of the Polyhedral Gauss Maps for all vertices determines the Total Absolute 

Curvature of a polyhedral surface. Assuming that the surface is oriented, we can construct 

an outward unit normal to any point of a face except at vertices and edges, and all these 

normals are parallel to one another. By translating them to the same origin, we get a 

unique unit vector. Applying the same procedure to each face of star(y)  we get a bundle 

of unit vectors. The endpoints of these vectors lie on the unit sphere. Without loss of 

generality, we assume that no two neighbouring faces lie in the same plane, then each 

endpoint corresponds to a face. By analogy with the smooth case seen in Section 3.2.2 

we can make the following definitions:

Definition 3.3.1. The bundle of unit normals, corresponding to star(v)  is called the nor
mal star of v. The endpoints of the vectors in the normal star are joined, in order around 
the vertex, by geodesic arcs of the unit sphere. We will refer to the collection of these 
geodesic arcs as the spherical indicatrix of a vertex u.

The construction of the spherical indicatrix from the normal vectors of a convex vertex



is illustrated in Figure 3.7.

(a) Normal vectors of each face (b) Vectors joined by geodesic arcs

Figure 3.7: Construction of the spherical indicatrix of a convex vertex.

The spherical indicatrix can be also used to determine the Mean curvature H  of a 

polyhedral surface P (V ), which is a discrete analogue of the integral mean curvature for 

smooth surfaces. The Mean curvature H  is determined along the edges, and for an edge 

e, H(e) is equal to (half) the oriented exterior angle (3(e) between the faces adjacent to 

e. The absolute value of (3(e) is equal to the length of the geodesic arc that connects two 

normals to the faces adjacent to e. This is true since the arcs lie on a unit sphere. In this 

research we are interested only in analogues of the Gaussian curvature, and therefore we 

only consider the Mean curvature H  in special cases.

In the simplest cases the arcs of the PGM will not intersect and draw a single spherical 

polygon on the surface of the sphere. This is the case for flat, convex or simple saddle 

vertices, as defined in Section 3.2.3, which have only positive or negative curvature com

ponents, but not both. In the case of a mixed vertex, there will be self-intersections in the 

indicatrix. Figure 3.8 shows the spherical indicatrices with and without self-intersections.

The spherical indicatrix also delimits the area of one or more spherical polygons. The 

ordering of the vectors with respect to their corresponding faces is used to determine the 

sign of the spherical polygons. Figure 3.9 exemplifies this idea, showing a convex and a 

saddle vertex from a top-down view. When the order of the faces and normal vectors is 

the same (Figure 3.9(a)), we say the spherical polygon is positive. When the order of the 

faces and normals is reversed (Figure 3.9(b)), the curvature of the spherical polygon is 

negative. In the case of mixed vertices (Figure 3.9(c)), the concavities causes the normals 

of the faces to switch directions temporarily and turn Clockwise with respect to the vertex, 

opposite to the direction of their corresponding faces. When this occurs, two of the arcs 

intersect, signifying a change in the sign of the curvature. The intersection point is where
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Showing vertex 1 735.2 tps Showing vertex 1 729.0 fps

(a) Convex vertex (b) Mixed vertex

Figure 3.8: Two kinds of vertices with their spherical indicatrices.

two separate spherical polygons of opposite sign meet. In mixed vertices this produces 

what we call ‘hidden’ saddles, or negative curvature components.

The sum of the areas of the spherical polygons is equal to the absolute curvature of the 

vertex. Using this sign we are not only able to separate u (y )  for a vertex v  into positive 

and negative components u +(v) and co~(u), but can also recognise individual parts of 

each sign, represented by individual spherical polygons. The Polyhedral Gauss Map of a 

vertex represents, therefore, a set of spherical polygons equipped with a positive or neg

ative sign. The sum of the signed areas of the polygons is equal to the discrete Gaussian 

curvature, or Angle Deficit, of the vertex. The sum of the absolute areas represents the 

measure of Total Absolute Curvature associated with this vertex. Each spherical polygon 

of the negative sign represents a potential (hidden) saddle region.

The PGM visualisation of the basic vertex types is shown in Figure 3.10. The images 

present two different views, or scenes: the left scene shows the model of the vertex star 

and the right scene shows the spherical polygons of the Gauss Map. Positive areas in the 

PGM are shown in red, while negative areas are displayed in blue. The vertices in the 

meshes are coloured according to their vertex type as such: flat vertices are white, convex 

vertices are red, saddle vertices are blue and mixed vertices are green.

3.4 Analysis of the validity of the Polyhedral Gauss Map

This section will present the demonstration of the soundness of the PGM method for 

measurements of curvature. First a few concepts have to be introduced in order to give 

a proof of the validity of the computations obtained with the PGM. Then each different 

case of vertex is analysed in analogy with the concepts of the Total Absolute Curvature.

For every vertex v, we can compute the vertex normal, N„, as an average of the
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Show ing vertex  1 
C urvatu re  (PGM): 0.445364

(a) Faces and normals in the same di- (b) Faces and normals in reverse direc-
rection (convex vertex) tion (saddle vertex)

(c) Normals changing direction at inter
section point (mixed vertex)

Figure 3.9: Ordering of the faces and corresponding normal vectors around a vertex.

product of the normals of the faces in star(is) and their corresponding areas. If we call 

N , the normal vectors to the triangles G Tv, then Nj, is obtained as (Schroeder et al. 

1992):

N ,=  ^ NiarCf f . (3.4.1)
2^i=1 areayti)

The vertices in link(is) are projected onto the plane P0 defined by N „ that passes 

through u. The projection will draw a planar polygon called the projected link of v. For

every vertex iSj G link  (is), the procedure to project it on P0, following a line parallel to

the vector N„ (see Figure 3.11 for reference), is as follows:

We can obtain the projected vertex is'- as a displacement of isj along the direction of 

the normal vector N^, adjusted by a scalar L, thus:

is' = iSj -  LN„. (3.4.2)

The value of L is determined as the projection of the vector along the edge (isj — is) on
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(b) Convex

(c) Saddle (d) Mixed

Figure 3.10: PGM of the basic types of vertices.

the vector
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Figure 3.11: Projection of a neighbour vertex on a plane.

N^. This is given by the dot product:

L =  N„ • (isj -  is). (3.4.3)



Finally we can substitute Equation 3.4.3 in Equation 3.4.2 to get:

i s ' ^ i s j - ^ ^ i s j - i s ) ) ^ .  (3.4.4)

When all the vertices in link(is) have been projected to a plane, they can be joined by 

line segments that correspond to the edges in link(is).

Definition 3.4.1. For a vertex is we define its projected link as the planar polygon gener
ated by the projection of the vertices and edges in link(is), into the plane determined by 
v  and its normal vector N„.

For the analysis of the PGM we will make a further distinction of two types of vertices, 

depending on the location of a vertex v  within its convex star s ta r+(is).

Definition 3.4.2. If is belongs to the convex hull of star (is), then it is said to be a cone- 
star vertex. Otherwise, if is lies inside of the convex hull, then it will be a saddle-star 
vertex. This classification is know as the star type of the vertex.

For the following discussion we will consider that vertices of the basic types: flat, 

convex and mixed fall into the cone-star type. The various possible saddle vertices are of 

the saddle-star type.

We now have the necessary tools to present the main theorem of this chapter, regarding 

the validity of the Polyhedral Gauss Map as a measure of discrete curvature.

Theorem 3.4.1. The absolute curvature u(is) o f a vertex is determined from  the Polyhedral 
Gauss Map as the sum o f the total area o f the closed spherical polygon(s) inscribed on 
the surface o f the sphere by the arcs o f the indicatrix.

Proof: Given that the curvature is computed as the sum of separate areas, we can say 

that it is an additive property, meaning that it can be seen as the sum of the curvatures 

of individual features of a vertex star. This property will be used to construct the proofs 

of Theorem 3.4.1 for increasingly complex vertices. We split the proof of the PGM for 

cone-star vertices (case 1 ) and saddle-star vertices (case 2 ), as follows:

1. PGM  of cone-star vertices

(a) F lat vertices: All the faces around the vertex have the same normal vector, 

which maps to a single point on the sphere, as shown in Figure 3.10(a). This 

results in an area, and a curvature, equal to zero.

Proof: When all the faces in star (is) lie on the same plane, the sum of their 

angles equal to 2n, making the curvature u(is) = 2n — a  = 0. ■
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(b) Convex vertices: If star(v) is convex then the area of the spherical polygon 

(cut out by the normal star of v  in the unit sphere, as in Figure 3.10(b)) gives 

the measure of curvature around v ,  equal to l o ( v ) .

Proof: This is known from the theory of convex polyhedra (Aleksandrov

2005). ■

(c) M ixed vertices: If star{v) is the star of a mixed vertex then the PGM of 

v  is not a convex spherical polygon. Moreover the spherical indicatrix has 

self-intersections, partitioning the PGM into several simple polygons, pos

sibly overlapping. However, the convex normal star, i.e. the normal star of 

s ta r+(is), will give us the measure of the positive curvature uo+. This is in 

conformity with the smooth case.

Indeed, if v  is a simple mixed vertex then the areas of the PGM that represent 

the parts of negative curvature do not overlap with the area of positive curva

ture. This can be seen in Figure 3.10(d). The area of the positive curvature in 

this case represents a convex simple polygon, which is unique.

Therefore in the PGM, for all the faces that do not belong to s ta r+(v) but are 

incident on a deviation edge, their normals will lie outside the spherical poly

gon formed by the convex normal star. The intersection points of the spherical 

indicatrix, which separate the positive area of the PGM from negative parts, 

correspond to those faces of sta r+(v ) that are not faces of star(v).

Proof: We will use the vertex from Figure 3.12(a). The method for this ex

ample can be used to analyse more complex mixed vertices. In Figure 3.12(b) 

the faces are labelled around the vertex. Faces A 1: A 2, A3 G F + have normals 

n A i ,  n A a  anc* n A 3 ; B i , B 2 G F dev have normals iiBi and iib2; and G  G T 

with normal n G. In the figure, the face G is delimited by vertices v, V\ and vz. 

The deviation edges are vv\ and vvi.

We can imagine a rotation of the face B \ around the edge Vv{. The rotation 

goes from 0  radians, when of nAx and n Bl are pointing in opposite directions, 

until a maximum rotation of 7r when the normals of both faces coincide and 

are equal. Throughout this rotation 1^  and riBi will always lie in the same 

plane, defining an arc (iiA ^nE i). The normal vector n G also lies in this 

plane, at the point where the rotation of B i makes it coincide with G.

The same rotation can be imagined for B 2 around the edge FF3 . Again the 

normal vector n G will lie in the arc defined by riA2 and n B2. Thus the vector 

n G belongs to the intersection of the arcs (n A 15 n B l) and (riA2, n B2).
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(a) Mixed vertex (b) Top-down view of the ver
tex

Figure 3.12: Mixed vertex and top-down view showing the faces and vertices.

So we find that the indicatrix of the vertex includes the normal vectors of 

star+(v), thus providing from Equation 3.2.13.

Next we demonstrate that the remaining vectors draw a spherical polygon 

whose area is equal to oj~ { v ) .  We imagine an extension of the edge vv2 in 

the direction opposite to v. Let us insert a new vertex v'2 in this new edge. 

We can create two new imaginary faces B[ = (a, v2, vf) and B'2 =  (V, ^3 , v'f), 

where nBx =  and nB2 =  n B'2, as in Figure 3.13. The faces B[, B 2 and 

G  form a new convex cone, with correctly oriented normals that are ordered 

Clockwise around 1/. We call this cone the dual convex cone o f a saddle.

Figure 3.13: Convex cone representing the negative part of the curvature of a mixed vertex. 

The curvature of this cone is:

oj = 2tt — (3[ — P2 — 7 . (3.4.5)
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But in this case = ir  — fa  and similarly p'2 = ir — /32. This gives us:

UJ =  27T — 7T +  /?1—7T +  /?2 —7

=  A  +  02 -  7- (3.4.6)

Since the order of the normals around the cone is Clockwise, the curvature is 

identified as negative, resulting in:

This is equal to the result obtained in Equation 3.2.14.

Some mixed vertices will yield negative spherical polygons that are non- 

convex (for example, the vertex in Figure 3.6). These spherical polygons 

can be subdivided into convex spherical polygons (not necessarily triangles), 

where each of them corresponds to a ‘hidden’ saddle part of the vertex. In this 

case the total negative curvature is the sum of the smaller parts, similar to the 

example in Equation 3.2.15. ■

(d) C one-star vertices with self-intersections: We will sketch a proof of the 

curvature of non-manifold vertices with self intersections. This can be justi

fied by the following considerations of possible vertex links link{y): Imagine 

the polygon generated by the projected link of v. The projected link of a 

mixed vertex with no self-intersections has ‘concavities’ at the vertices that 

do not belong to the convex hull of the star(y). If the vertices in the concavity 

are translated, a self-intersection can be produced, but the orientation of the 

normals is maintained with respect to the vertex. For example, the vertex v2 in 

the link of the cone in Figure 3.12 can be moved in such a way that it will take 

a new position i/2 on the other side of the edge F4F5 but all other vertices will 

keep their positions. We then get the vertex in Figure 3.14. This will cause 

two face intersections, defining two intersection lines. We call such type of 

self-intersections removable.

Vertices with self-intersections can be considered in the opposite way. If their 

star presents two intersection lines, they can be transformed into vertices with

out intersections by moving the vertices in their link. If the transformed part 

of the link of the vertex remains isotopic to the original part, then this oper

ation is valid, and the computation of the curvature is the same as for mixed 

vertices. The result is a larger negative component to the curvature, as shown 

in Figure 3.15.

- u  =  7  -  (3i -  p2- (3.4.7)
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^3
(a) Normal mixed vertex (b) Mixed vertex with self

intersection

Figure 3.14: Self-intersecting mixed vertex and top-down view showing the vertices.

Nevertheless, when there is only one single intersection line it is impossible 

to move the vertices in the link without producing a singularity, known as a 

‘beak’, where the property of isotopy is not preserved. Such types of self

intersections are called non-removcible. This fact is known from the theory of 

homotopy, but the exact proof for it is outside of the scope of this thesis. This 

condition occurs in the vertices known as ‘figure-8’. They receive that name 

because of the shape of their projected link, illustrated in Figure 3.16. In this 

example, if vertex u2 were to be moved below the edge VfiTl to remove the 

self-intersection, the normals would loose consistency.

Imagine a walk around the link of a ‘figure-8’ vertex. The orientation of 

the normals is always consistent with that of the faces, suggesting a positive 

curvature. When it is no longer possible to remove intersections by moving 

vertices, the cone of the vertex can be separated into two simple cones along 

the single intersection line. Both of the convex cones will have positive cur

vature, and the sum of both curvatures is equal to the one for the ‘figure-8’ 

vertex.

\: 3.237744

€
Figure 3.15: Mixed vertex with self-intersection.
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^3
(a) Figure-8 vertex (b) Top-down view showing 

the face normals

Figure 3.16: A ‘figure-8’ vertex.

Another case when this occurs is what we call a 4pinch vertex’, shown in 

Figure 3.17. The projected link of the vertex turns twice around the vertex, 

generating two loops. In the PGM each loop will produce a spherical polygon 

of positive orientation, and the two polygons will overlap.

Any mixed vertex with an arbitrary number of self-intersections can be seen as 

a combination of the previous cases. Theoretically a mixed vertex v  could be 

simplified, by moving the vertices in link(v), to remove the self-intersections 

that cause two intersection lines, until the link of the vertex is shaped as a 

‘figure-8’, a ‘pinch’, a circle (the case of a vertex without self-intersections) 

or the union of these. The PGM of any cone-star vertex with self-intersections 

can be produced by decomposing the vertex in this way.

2. PGM  of sadd le-star vertices

(a) Basic saddle vertices: The curvature of basic saddle vertices is found in a

i/4
(a) Figure-8 vertex (b) Top-down view showing 

the face normals

Figure 3.17: A ‘pinch’ vertex.
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similar way as for convex vertices. For basic saddles the spherical polygon 

will also be convex, as is the case in Figure 3.10(c), but in this case the orien

tation of the normals will be inverted, producing a negative curvature.

Proof: The same case as for the negative part of mixed vertices can be applied 

to saddle vertices. Figure 3.18(a) shows a basic saddle. In Figure 3.18 the 

edges vvi and TnT̂  have been extended to generate the vertices v[ and v'z. As 

before, the new faces form the dual convex cone of the saddle. The normal 

vectors of the faces remain the same as in the saddle, but the direction of the 

turn of the normals around the vertex is opposite to that of the faces, thus 

giving a negative sign to the curvature. ■

j/i /' 1 /■',(

Figure 3.18: Extension of the faces in a saddle vertex to create its dual convex cone.

For more complex saddle vertices with non-convex spherical polygons, the 

same procedure can be followed to group and extend the faces of star{y), so 

that the PGM is split into convex spherical polygons. Again the total negative 

curvature is the sum of the areas of the convex spherical polygons, in a similar 

way as in the example of Equation 3.2.15.

Some saddles-star vertices will also present self intersections in their indica

trix, either removable or not. Vertices with non-removable self-intersections 

have a positive curvature component, and can be treated the same way as 

mixed vertices.

(b) N on-basic saddle vertices: More complex saddle-star vertices, such as the 

monkey-saddles, present several overlapping areas of negative curvature. These 

can be completely or only partially overlapping. When a monkey-saddle has 

pairs of non-adjacent coplanar faces, their normals will produce a loop in 

the spherical indicatrix. These loops need to be identified to extract the two 

independent and overlapping spherical polygons. The area of each of these

^ 2

(a) Saddle vertex
^2

(b) ‘Dual’ convex vertex
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polygons can be evaluated in the same manner as for basic saddles.

(c) S addle-star vertices with non-rem ovable self-intersections: In these ver

tices the complexity of the PGM may cause several spherical polygons to 

overlap. If the signs of these polygons are opposite, the areas may cancel 

each other and disappear from the PGM. As in the case of cone-star vertex, 

these vertices can be split along the line of the self intersection. The sum of 

the curvatures of the new split vertices will be equal to the total curvature of 

the original vertex.

This is the end of the general proof of Theorem 3.4.1. ■

3.5 Conclusions

This chapter has presented the methods to measure the curvature of discrete surfaces. The 

method of Angle Deficit has been shown as an analogue of the Gaussian curvature a; at a 

vertex. We have further expanded the concepts of Total Absolute Curvature for a vertex 

by defining the positive and negative components of curvature. The positive curvature uj+ 

of a vertex is measured from the convex cone around its star, and then the total negative 

curvature u r  is the difference between uj and uj+.

Using the concepts of positive and negative curvature we can characterise four basic 

types of vertices: Flat vertices have curvature equal to zero. Convex vertices have only 

positive curvature. Saddle vertices have only negative curvature. An additional type of 

vertices, denominated ‘mixed’, combine both components of curvature. Identification of 

these vertices is not possible using existing methods based on the discrete case, due to the 

fact that mixed vertices do not exist in smooth surfaces.

The discrete version of the Gauss Map has been shown as a method to measure both 

the positive and negative components of the curvature of a vertex, thus providing a com

plete representation of the Total Absolute Curvature of the vertex. The main contribution 

of this chapter is the demonstration of the validity of the curvature computed by the Poly

hedral Gauss Map, demonstrated under the different types of vertices previously men

tioned. Using the Polyhedral Gauss Map we can clearly characterise all types of vertices, 

not possible with other methods to measure discrete curvatures, such as the Angle Deficit. 

This includes vertices with self-intersections.

From the experiments performed with a variety of vertices it is possible draw the fol

lowing conclusions on the properties of the Polyhedral Gauss Map for discrete surfaces:

•  The positive spherical polygons should be always convex. In the special case of a
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‘figure-8’ vertex, its PGM seems to have one large non-convex spherical polygon. 

This however can be described as two convex spherical polygons that appear to be 

glued together. This is demonstrated by splitting the ‘figure-8’ vertex along the 

intersection of the faces to form two convex cones. The sum of the PGM of both 

cones will be equal to the PGM of the single ‘figure-8’ vertex. Considering these 

cases, all positive spherical polygons will have zero or two concave angles.

•  The cone-star vertices can be segregated according to the shape of their projected 

link as: circle, ‘pinch’ or ‘figure-8' shapes. The projected link of all cone-star 

vertices can be developed into one of these kinds by unwinding them. However, 

it is impossible to transform a ‘figure-8’ or a ‘pinch’ vertex into a vertex without 

self-intersections, without producing a ‘beak’ type singularity.

•  The Polyhedral Gauss Map of a vertex with self-intersecting faces should be equal 

to the sum of the Gauss Maps of the individual cones obtained by splitting the star 

of the vertex along the intersections.

From the results obtained in this chapter we can conclude that the method of the 

Polyhedral Gauss Map is a valid and correct measure of the curvature of a vertex in a 

discrete surface. We have also shown that it can identify hidden features in the shape of 

the star of the vertex.
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Chapter 4

Computational implementation of the 
Polyhedral Gauss Map

4.1 Introduction

This chapter presents the computational algorithms and methods developed to determine 

the Polyhedral Gauss Maps of vertices in a polygonal mesh. The method is based on the 

analysis of each individual vertex of the mesh, and the normal vectors of the faces in its 

star. The Total Absolute Curvature of the object can be determined as the sum of the 

curvature values of all vertices.

Existing applications that make use of the Gauss Map to compute the curvature of a 

discrete object are limited to dealing with vertices that lie on a cone or a saddle (Grinspun 

and Schroder 2001), (Yamauchi et al. 2005). In these papers, other types of vertices are 

either assumed to be impossible to correctly analyse or simply ignored. This excludes 

the vast majority of the possible vertex configurations, and is ultimately not more useful 

than the traditional method to find the curvature via Angle Deficit. There are also some 

theoretical works dealing with more complex vertices such as ‘figure-8’ (Rodriguez and 

Rosenberg 2000), but they do not use the Gauss map in a classical way, but transforms it 

in order to get certain results in the rigidity theory of polyhedra.

The procedure to compute the Polyhedral Gauss Map proposed here aims to analyse 

any kind o f vertex and to construct unambiguous Gauss maps fo r  polyhedral surfaces o f  

complex shape, o f various genera, self-intersecting and even non-manifold surfaces. We 

construct the Gauss Map in the classical sense, by correctly identifying each normal with 

respect to a chosen orientation, and preserving the adjacency of faces by connecting the 

corresponding normals by a geodesic on the sphere. The algorithm is relatively straight

forward for simple embedded vertices, but a sound computation of more complex vertices 

requires thorough analysis of the geometry of a vertex as well as intricate computational 

techniques. These techniques constitute the main novel contributions brought forward in
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this chapter. They deal mostly with the projection of the normal vectors onto a sphere, 

and the correct identification of the individual areas that compose the Polyhedral Gauss 

Map of a vertex.

The contributions are mentioned here for reference, and will be explained later in the 

chapter:

•  Preservation of the ordering of the normal vectors: The order of the faces and cor

responding vectors around a vertex provide the orientation for the Polyhedral Gauss 

Map. The sequence of faces around a vertex is represented in the PGM by connect

ing vectors with geodesic arcs.

•  Detection of arc intersections: Several geodesic segments on the surface of the 

sphere must be checked for intersections with the other arcs. These intersections can 

happen at various points along the arcs, and all cases must be dealt with accordingly.

•  Splitting of the spherical polygons: Determining which of the arc intersections are 

actually the meeting point of two spherical polygons, or whether they are points 

where spherical polygons overlap. Determining where the overlapping may cause 

positive and negative areas to cancel each other.

•  Identification of the orientation of the polygons: Each spherical polygon obtained 

splits the sphere in two regions, and can be interpreted in two ways, either a positive 

area, or its negative complement. Several parameters are tested to determine the 

correct orientation, based on the properties observed for each kind of area. This is 

complicated by positive and negative regions that overlap and can even cancel each 

other.

•  Classification of vertices according to the signed components of their PGM, into 

flat, convex, mixed or saddle.

From this point onward the focus is on the procedures and applications of the Poly

hedral Gauss Map on discrete polygonal meshes. To simplify the explanations, the term 

Gauss Map will refer to the Polyhedral Gauss Map, abbreviated as the PGM, unless stated 

otherwise. The term Gaussian curvature will be used to represent the discrete analogue of 

the integral Gaussian curvature.

4.2 Overview of the gaussM ap program

The g au ssM ap  program was developed for the purpose of studying the Polyhedral Gauss 

Map of various types of vertices. It receives as an input a polygonal mesh, and produces a 

Polyhedral Gauss Map for all vertices. It receives as a parameter the name of the file that
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stores the mesh information. A second optional parameter is a vertex number. If present, 

the program will analyse that single vertex and ignore the rest.

The polygonal mesh used represents an orientable surface in three-dimensional space, 

and therefore we can determine a coherent orientation on the whole mesh (Alboul 2003). 

We have chosen to use meshes with a Counter-Clockwise orientation. That is, the vertices 

that define each face are ordered in the Counter-Clockwise direction around the face. 

Such faces will have a normal vector that points outwards from the mesh. This direction 

is considered to be the positive direction of the normal vector.

4.2.1 Data input

The information about the polygonal mesh is read from files in the Wavefront OBJ for

mat (Murray and VanRyper 1996). This format contains the description of an object in 

three-dimensional space in terms of vertices and faces. Optional details such as normal 

vectors, texture coordinates and object materials can also be included in the files but are 

disregarded by our implementation.

The OBJ file format requires no header information. In its most basic form the de

scription of an object is done in two sections:

•  The first section specifies the vertex coordinates. Each line has the descriptor char

acter “v” to signify a vertex, followed by the 3 coordinates of the vertex.

•  Faces are indicated with the descriptor “f ’, arid the indices of the vertices that com

pose the face. The vertex indices are numbered according to the order in which they 

are defined before, beginning at index number 1.

The following code listing shows a sample OBJ file describing a cube made up of 12 

triangles:

# 8 vertices
V -1.0 -1.0 1.0
V 1.0 -1.0 1.0
V -1.0 1.0 1.0
V 1.0 1.0 1.0
V -1.0 1.0 -1.0
V 1.0 1.0 -1.0
V -1.0 -1.0 -1.0
V 1.0 -1.0 -1.0

# 12 faces
f 1 2  4
f 1 4  3
f 3 4 6
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f 3 6 5 
f 5 6 8 
f 5 8 7 
f 7 8 2 
f 7 2 1 
f 2 8 6 
f 2 6 4 
f 7 1 3 
f 7 3 5

Vertex coordinates are read from the input file and stored temporarily in a linked list. 

After reading all the vertices from the file, the list is converted into an array for storage in 

the object structure. Similarly the faces of the object are read and stored in a list during 

the parsing of the file and then transferred into an array. The following information is also 

extracted during the parsing of the input file: For every vertex a linked list is created with 

the faces incident on it. The number of incident faces on each vertex is also stored in an 

array. This effectively represents the star of each vertex. Finally, the normal vector for 

every face is computed as the cross product of two of its edges. After parsing the input 

file the procedure to compute the Gauss Map is carried out individually for every vertex 

in the polygonal mesh. The whole process is done in stages, obtaining and storing new 

data at every step.

4.2.2 Program output

The g au ssM a p  program generates the PGM of all the vertices in the mesh or of the 

single selected vertex. The results are shown in a graphical interface, and the numerical 

computations of the curvature are also printed on the screen.

The curvature measures of a vertex are obtained as the areas of the spherical polygons 

in its PGM. In the simplest case, the spherical indicatrix presents no self-intersections, 

and a single spherical polygon determines the curvature of a vertex, as in the case of 

convex (Figure 4.1(a)) and simple saddle (Figure 4.1(b)) vertices. Mixed vertices present 

intersection of the arcs in the indicatrix, producing more than one spherical polygon, as 

shown in Figure 4.1(c).

The numerical measures of the curvature are extracted from the areas of all the spher

ical polygons and printed on screen. The absolute curvature is obtained as the sum of the 

positive and negative components. Gaussian curvature is obtained using the Angle Deficit 

method, and is equal to the positive curvature minus the negative one. These computa

tions are printed on the console. The absolute curvature of the vertex is also shown on the 

graphical visualisation of the PGM. Figure 4.2 shows the example of a vertex whose PGM
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SurvaPuteffijRl]: 0.445364 BurvatlSeffijivlj: 0.805432

(a) Convex (b) Saddle (c) Mixed

Figure 4.1: Simple vertices and their spherical indicatrices.

0.890728

Figure 4.2: A vertex with positive and negative areas in its Gauss Map.

has various areas of both positive and negative sign. The gaussMap program presents 

the following measures of curvature for the selected vertex:

ABSOLUTE CURVATURE 
POSITIVE CURVATURE 
NEGATIVE CURVATURE 
GAUSSIAN CURVATURE

0 . 8 9 0 7 2 8  
0 . 4 4 5 3 6 4  
0 . 4 4 5 3 6 4  
0 . 0 0 0 0 0 0

This particular example showcases the advantage of the PGM over the Angle Deficit 

methods. According to the AD computation the Gaussian curvature of the vertex is zero, 

and hence the vertex is classified as flat. The gaussMap program gives a complete char

acterisation of any vertex v. It identifies all folds in slar{y), thus emphasising ‘hidden’ 

curvature regions. It can analyse non-manifold vertices with intersecting faces.

4.2.3 Algorithm to compute the Polyhedral Gauss M ap

The process of obtaining the Polyhedral Gauss Map for a single vertex v is summarised 

as follows:

• The faces in s ta r(v ) are visited in the Counter-Clockwise direction around v. Ad

jacent normal vectors that are equal are discarded. The remaining normal vectors 

are stored in a list, in the same order as the faces are visited.
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• All the normals are translated to the same origin, forming the normal star of the 

vertex. Their endpoints will lie on the surface of a unit sphere.

•  The endpoints of the normals are joined together, respecting their order in the list. 

The shortest line between two endpoints is a segment (arc) of a great circle of the 

sphere.

• The arcs thus defined form the spherical indicatrix, and will delimit an area on the 

surface of the sphere, which is composed of one or more spherical polygons.

•  If the spherical indicatrix is self-intersecting, then there are more than one spherical 

polygon. In this case, new vectors must be added, that will have their end-points 

at the intersection points of the arcs. The set of the face normal vectors plus these 

new intersection vectors is called the extended normal star of the vertex.

•  The new vectors identify points where curvature components of different sign meet 

on the Polyhedral Gauss Map. These intersection vectors are shared by two or more 

spherical polygons.

•  The orientation of each of the spherical polygons is determined by following the 

corresponding loop of the spherical indicatrix, in the order already established for 

the normals (by visiting the faces around the vertex in Counter-Clockwise order). 

The orientation will be positive if the walk along the loop is Counter-Clockwise 

(CCW), and negative if the loop is Clockwise (CW). Accordingly, the area of a 

polygon of the positive orientation is considered as positive, and of the negative 

orientation as negative.

•  The PGM of a single vertex can have all of its areas positive, or all negative, or have 

spherical polygons with both orientations. The vertex is then classified as positive, 

negative or mixed, respectively. A flat vertex will present a PGM with only one 

point on the sphere, and area equal to zero.

•  The area of the Gauss Map is computed as a sum of the areas of the individual 

spherical polygons. For simple manifold vertices, the area of each individual spher

ical polygon will be less than 2ir. On non-manifold vertices with self-intersecting 

faces the polygons are more complex and their areas can be larger than 27r.

Algorithm 4.1 shows the pseudo-code representation of the main program to compute 

the PGM of a mesh.
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Algorithm 4.1 Polyhedral Gauss Map.

For each vertex i /G V  
{

faceJist <— Get list of faces in star (is).
Order faceJist in CCW direction around v.
normal Jist <— List of the normals from faceJist.
extended -normal Jist <— Find arc intersections in normal Jist.
If there are any arc intersections, then
{

polygon J ist <— Divide into areas using extended-normal Jist.
}
Else check for the special case of the ‘monkey saddle’
{

polygon J ist <— Check for duplicate normals in normal Jist.
}
polygon-count = number of polygons in polygonJist.
Determine the sign of the polygons in polygonJist.
For each spherical polygon Pi E polygonJist
{

If Pi is positive, then 
{

Positive-Curvature <— Positive-Curvature + area(Pi). 
positive .count <— positive .count + 1.

}
If Pi is negative, then 
{

Negative-Curvature <— Negative-Curvature + area(Pi). 
negative .count negative .count + 1.

}
}
Classify the type of vertex:

If polygon-count = 0, then 
Vertex v  is flat.

Else If polygon jcount = positive .count, then 
Vertex u is positive.

Else If polygon-count = negative .count, then 
Vertex u is negative.

Else
Vertex v  is mixed.

Absolute .Curvature <— Positive .Curvature + Negative .Curvature. 
Gaussian.Curvature <— Positive .Curvature - Negative .Curvature.

}
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4.3 Step-by-step explanation of the algorithm

This section describes in detail the main steps of the Polyhedral Gauss Map algorithm, and 

the techniques used for its programming implementation in the C programming language.

4.3.1 Face ordering around is

For every vertex v  we define TV as the list of the n  triangles in star (is), with TV =  {U; i =  

1 ,2 , . . .  ,n}  The initial step in analysing is is sorting the faces in T „ in the Counter- 

Clockwise order. The faces are ordered so that the vertices in link  (is) are in a Counter- 

Clockwise sequence with respect to is. This step is of paramount importance to obtain 

the correct representation of the Gauss Map of the vertex, because the algorithm assumes 

a Counter-Clockwise ordering to determine the orientation of the spherical polygons. 

When all faces are in order, star(is) is updated to reflect the changes. Simultaneously 

with the ordering of the faces, we compute the Gaussian curvature of the vertex, by adding 

together the angles incident on is of every face ti G T„, and using the Angle Deficit 

formula: n

uj = 2ir — (4.3.1)
2=1

In the case of a vertex lying on the boundary of an open mesh, the formula is modified to 

be (Brehm and Kiihnel 1982):
n

UJ =  7T —  QZi. (4.3.2)
i=l

4.3.2 Normal s ta r and spherical indicatrix

The normal star of a vertex is consists of all the normal vectors Ni of the faces in s tar (is). 

We create a list Ajv to store these normal vectors, respecting the order of the corresponding 

faces. The spherical indicatrix is constructed from the list of vectors. However it is 

necessary to eliminate some of the normal vectors in order to obtain a correct PGM. The 

vectors are discarded on the following conditions:

•  If two adjacent faces are nearly coplanar with nearly equal normals, one of the nor

mals will be eliminated, within a certain tolerance. The selection of this threshold 

is of importance since vectors that are very close together may produce ambiguity 

at later stages when detecting arc intersections. We define an allowed difference e 

between two vectors. If all three of the coordinates of the first vector are within a 

range [—e, e] from the coordinates of the second vector, both of them are considered 

to be equal. This reduces slightly the precision of the Gauss Map measurements, 

but makes the computation more robust in the presence of noise.
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•  Another case where normal vectors are dropped from the list A^ is when three or 

more adjacent vectors lie in the same plane. This would result in two or more arcs 

lying along the same great circle, complicating the detection of arc intersections. 

Figure 4.3 shows this case, using a planar representation of the spherical indicatrix. 

In the figure, the vertices of the spherical indicatrix are the endpoints of the face 

normal vectors, and are denoted as the corresponding normal vectors (i.e. n i) .

ni

ni+3

Figure 4.3: Special case of three vectors forming a line in the spherical indicatrix.

The spherical indicatrix of v  is constructed by joining the ordered normal vectors by 

geodesic arcs. Every pair of vectors lies along a great circle of the sphere, so there will be 

two possible geodesic arcs to join them. It is not possible to have an angle larger than it 

between two faces. Because of this, in all cases the smallest of the two arcs between the 

normal vectors is chosen.

A special case occurs if star{y) includes two adjacent faces that are coplanar but 

opposite to each other, that is, the normal vectors of the faces are separated by an angle of 

7r radians, and the endpoints of the normals are antipodal to each other. In this case, there 

is an infinite number of arcs of the same length that can connect the two vectors, but only 

one correctly represents the shape of the vertex. To clarify the direction of the arc, we add 

an extra vector, normal to the edge that connects the two faces, and that lies in the same 

plane as these faces. This extra vector will single out the direction of the arc that joins the 

two normal vectors. The example shown in Figure 4.4 requires two extra vectors, one for 

each edge of this degenerated star, to determine the arcs to join the face normals.

4.3.3 Detection of arc intersections

Except in the cases of perfect cone or basic saddle vertices, there will be intersections 

of some of the arcs in the spherical indicatrix of the vertex. The procedure to determine 

whether two arcs intersect is the following:

Every arc is a segment of a great circle, and in turn these great circles are defined
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3.141593

Figure 4.4: Gauss map of a vertex with two coplanar faces.

by the intersection of the sphere with a plane that passes through the origin of the sphere. 

Thus two arcs will only intersect at the location where their defining planes and the sphere 

intersect. The intersection of the planes determines an intersection line, and the two an

tipodal points where this line crosses the sphere are the only places where an intersection 

of the arcs can occur. We have to note that, since the arcs are limited to a length of 7r, two

of them can only intersect once on the sphere, at one of the antipodal points.

Given two arcs defined by the vectors at its endpoints: A = (n k, n k+i) and B = 

(nk+h, n k+h+i) (as shown in Figure 4.5), we obtain the vectors perpendicular (normal) to 

each arc, by computing the cross product of the two endpoint vectors:

nA = nk x nk+i (4.3.3)

and

nB = nk+h x nk+h+i- (4.3.4)

Figure 4.5: Intersection of two arcs defined by the normal vectors at their endpoints.

The cross product of the arc normals determines the intersection vector. We assign 

one such vector to each arc, thus having:

ia =  1b =  n A x n B, (4.3.5)
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where iA and iB are the intersection vectors for arcs A  and B, respectively. These will be 

used to determine the correct antipodal point. Figure 4.6 shows a diagram with the planes 

defined by the arcs, and the line of intersection that determines the two antipodal points 

on the sphere.

Figure 4.6: Intersection of two arcs. The planes defined by the arcs are shown. The vectors, the 
arc and the plane use the same colour. The intersection line is shown in red.

If the intersection vectors are equal to zero, then the arcs lie in the same plane. There 

should be no intersections caused by coplanar arcs, since this case is eliminated when 

creating the list of vectors.

If the intersection vector of an arc is equal to any of the endpoint vectors of the corre

sponding arc, then it must be handled as a special case. The binary variable endpoint 
is used to keep track of which endpoints are intersecting. The endpoint variable is 

treated as a binary number of four bits, all of them initially equal to zero. Each of the bits 

represents one of the vectors of the arcs, as represented in Figure 4.7. If the intersection 

vector is equal to any of the vectors, the corresponding bit is set to 1. At most two of the 

bits will be equal to 1, since the intersection vector cannot be equal to the two vectors in 

the same arc.

23 22 21 2°

nk+h+l Hk+h nk+l nk

Figure 4.7: The e n d p o i n t  variable as a four bit number, representing the four vectors involved 
in an arc intersection.

If endpoint is still equal to zero, then we need to determine if the intersection 

vectors lie within the arcs. If the intersection vectors lie outside of the arcs, then the arcs
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are not intersecting each other. See Figure 4.8 for reference. For each arc, we compute

the cross products of the endpoint vectors and the intersection vector. That is, for arc A

we compute the vectors:

Ci — n k x iA (4.3.6)

and

c 2 =  iA x n k+i. (4.3.7)

If c i =  c2 then the intersection vector iA lies within the segment of the great circle 

covered by the arc A.

Figure 4.8: Arcs that do not intersect. In this case the intersection line is outside of at least one of 
the arcs.

It is possible that the intersection vector is pointing in the opposite direction of the arc. 

We use the dot products of the intersection vector and the endpoint vectors to identify if 

iA points in the correct direction. The integer value d, computed as:

d =  (iA • n k) +  (iA • n k+i ) , (4.3.8)

will determine the direction of the intersection vector with respect to the arc. If d is 

negative, then iA must be inverted. Otherwise the intersection vector is already in the 

correct direction.

The same procedure is done for arc B  to determine if its intersection vector is valid. 

Finally, if all previous tests are passed and the correct direction is determined for both 

intersection vectors, then iA and iB must be equal in order to conclude that the two arcs 

do intersect each other.

Both the normal vectors and the new intersection vectors represent the extended nor

mal star of the vertex, and are stored in a list, represented as Aa . The order of the vectors 

in this list is still the same as in the original XN, plus the intersection vectors in their 

corresponding position.
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4.3.4 Matching of intersection vectors

Every arc in the spherical indicatrix will be tested for intersections against all other arcs. 

While this may not seem like an optimal solution, it has a side effect than can be effec

tively exploited when identifying the spherical polygons of the Gauss Map: Each inter

section is detected once for each of the arcs involved. For the process of splitting the 

spherical polygons, at the location of arc intersections we need to have a vector for each 

of the spherical polygons that meet at that point.

Let n  be the number of vectors in Ajv- If n  < 4 there can be no intersections, so no 

checks are performed. Each arc is represented by its two endpoint vectors: (iik, nk+i), 

which are normal vectors of adjacent faces.

New intersection vectors are added to the normal list as they are detected. Consider 

the arcs A  =  (nk, n k+i) and B  =  (nk+h, nk+h+i), where h > 1. If arcs A  and B  

intersect at the vector ii ,  then this new vector will be inserted in the list of the extended 

normal star (A*), after vector rik. An equal intersection vector i2 will be identified later 

on when testing for the intersection of B  with A, and then the vector i2 will be inserted 

after vector rik+h-

This is best explained with an example. We will use a planar representation of the 

spherical indicatrix of the vertex shown in Figure 4.1(c). With the vector names in Fig

ure 4.9 the algorithm would start by testing arc A  =  (n i, n 2) for intersection against 

all other arcs. The first intersection would happen with arc C  =  (n3,n 4) at the new 

vector ii. The same intersection point will be found when comparing C  with A. At the 

end, the list of the extended normal star would have the vectors in the following order: 

n i ,  ii , n 2, n 3, i2, n 4, n 5.

Figure 4.9: Planar representation of the spherical indicatrix, showing the intersection vectors.

The intersection vectors are determined by the four normal vectors corresponding to 

the endpoints of the intersecting arcs, in the given example both i4 and i2 are determined
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by the vectors n i ,  n 2, n 3 and n 4. These vectors are used to match the intersections into 

pairs. These pairs of intersections are the ones used to split the spherical polygons.

The list of vector pairs Xpairs stores the indices of the matching intersection vectors, 

as well as the vectors before and after the intersection for both arcs. In this case there will 

be an entry in Apairs containing the reference indices to the intersection vectors i i  and i2, 

and also the endpoint vectors n i ,  n 2, n 3 and n 4.

It is possible for an arc to be intersected more than twice. The endpoint vectors 

stored in Apairs  are used to identify these cases. In this situation the intersection vec

tors must be ordered to follow the same sequence as the rest of the vectors in the extended 

list. An extreme case of this is when an arc is intersected by several other arcs at the 

same point. This is a point where more than two spherical polygons meet in the PGM. 

To correctly split these polygons, each of the intersection vectors found has a variable 

n u m . in t e r  s e c t  i o n s  that serves as a counter of how many pairs of arcs intersect at its 

locations.

If the intersection of the arcs occurs precisely at the endpoint of one of both of the 

arcs, then a special treatment is necessary to maintain the consistency of the lists. Nor

mally such intersections would be detected 3 or four times by the algorithm, creating too 

many intersection vectors at the same location. The possible intersections are shown in 

Figure 4.10:

nk+h+i

nk+h+i

(a) Normal case (b) Invalid case

<> nk+h+i o Hk+h+2

■nk+i
Hk+h+l

(c) Intersection at one endpoint (d) Intersection at two end
points

Figure 4.10: Different cases of arc intersections.
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The integer value of the e n d p o i n t  variable is used to determine which of these cases 

occurs. Only three possible values of e n d p o i n t  need to be considered, while the others 

are simply ignored:

•  e n d p o i n t  =  0: This is the normal case explained before. Intersections of this 

kind are matched in pairs with other intersection vectors of the same type.

•  e n d p o i n t  =  1: Intersection occurs at the first endpoint of the first arc (nk). It has 

to be matched to an intersection with e n d p o i n t  =  3.

•  e n d p o i n t  =  3: Intersection occurs at the first endpoint of the second arc (n k+h)* 

It has to be matched to an intersection with e n d p o i n t  =  1.

•  e n d p o i n t  =  5: This represents the case of an intersection at the first endpoint of 

both arcs (nk and n k+h). Intersections of this kind are matched in pairs with other 

intersection vectors also with e n d p o i n t  =  5.

As new intersection vectors are detected, they are compared to previously found inter:- 

sections to match them in pairs. The list of vector pairs \ pairs  will contain the previously 

found vectors. When a new vector is found that matches one already in the list, it is added 

as the matching pair of that other vector.

For the cases when an intersection occurs at the first endpoint of the first arc, the 

insertion of the intersection vectors into the extended list A* will only be done when the 

intersection is matched for the first endpoint of the second arc. That is, an intersection 

with e n d p o i n t  =  1 can only match an intersection with e n d p o i n t  =  3 and vice versa. 

A similar treatment is done for the cases of an intersection at the first endpoint of the two 

arcs. While the intersection will be detected by all four of the involved arcs, it should only 

be stored twice. Only when e n d p o i n t  is equal to 5 is it registered as a valid intersection.

All other possible values for e n d p o in t :  2, 6, 8, 9, or 10, are always discarded, 

to avoid unnecessary duplication of intersection vectors. All intersections are correctly 

handled with the cases explained above.

When the intersection happens at one of the endpoints, then that vector becomes an 

intersection vector, and no new vectors are inserted into A*. The vector which becomes 

an intersection also gets a counter n u m _ i n t e r s e c t io n s .  In this case the two adjacent 

vectors become the endpoints of the arc it intersects. This information is stored in the 

list A pairs- In the example shown in Figure 4.10(c), the entry on the list would have the 

intersection vectors n k+i and i2, and the endpoint vectors n k, n k+2, n k+h and n k+h+i- 

This is necessary to match the vector pairs in the case of multiple intersections at the same 

location.
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4.3.5 Splitting into spherical polygons

After building the extended normal list, it is necessary to separate the individual spherical 

polygons that meet at the intersection points.

While there may be many intersecting arcs in the spherical indicatrix of a vertex, 

not all of the arc intersections found correspond to the meeting point of two spherical 

polygons. Many of the intersections detected mark only the place where two spherical 

polygons overlap. Such is the case of the vertex shown in Figure 4.11.

Showing vertex 1 
Curvature: 1.800421

Q

Figure 4.11: Gauss Map of a cone with several intersections on the spherical indicatrix and over
lapping spherical polygons.

The procedure to identify the spherical polygons determined by the indicatrix consists 

on making a walk around the vectors in Ax in accordance to their order. All the intersec

tion vectors found are stored in a list, and every time a new intersection vector is met, it 

is checked against the previously visited intersections. If there is a match, all the vectors 

visited in between are removed from Ax and stored into a new list Xsp, that represents a 

new spherical polygon.

For all the intersection vectors moved to Xsp, their matching vectors are located in 

the Ax and marked as visited, so that they will not trigger another match. All of these 

pairs and the one that triggered the match have their num_inter sect ions variable 

decreased by one. A vector is removed from Xpairs when its num_inter sect ions 
counter reaches zero. This procedure continues until the list Xpairs is empty. At that point, 

the reminder of Ax is also inserted as the final spherical polygon.

The cone-star vertex in Figure 4.11 will be used to exemplify this. Again using a 

planar representation, the indicatrix of the cone is shown in Figure 4.12, together with the 

normal vectors and the intersection vectors named in the order they are found.

A walk around the indicatrix would start at vector n i.  The first intersection found is 

ii. It is stored in a temporary list. Next i3 is found. Since it is not the pair of i l5 it is 

also stored in the temporary list, and the same occurs for intersection vectors i2, 14 and
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Figure 4.12: Planar representation of the spherical indicatrix, showing the intersection vectors.

i5. When i6 is found, it matches i1? so a spherical polygon has been identified, defined by 

the vectors: ii , i3, i2, n 2, i s ,  n 3. These are removed from Xx  and inserted into the list 

for the first spherical polygon Xspi. The intersection vectors that match those removed are 

marked as visited, removed from the list Xpairs and their intersection counts are reduced by 

one. In this case it is vectors: i6, iio, is, i9 , i n ,  and since they only have one intersection 

each, their intersection counter n u m _ i n t e r s e c t i o n s  is left equal to zero, meaning 

that they are no longer valid intersection vectors and only treated as normal vectors. The 

result is shown in Figure 4.13.

n 7

Figure 4.13: Indicatrix after the removal of the first spherical polygon.

The process begins again from the vertex where the last spherical polygon was split,
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in this case i6. Intersection vector i7 is found first. There are no more valid intersections, 

except for its pair, i i2 . This removes a second spherical polygon: i7, n 4, i8, ig, n 5, in ,  i i0, 

which is stored as Xsp2. After removing the pair just matched, the list A pairs is now empty. 

Thus all the vectors left in Ax form the final spherical polygon Xsp3, shown in Figure 4.14, 

ending the polygon splitting process.

Figure 4.14: Indicatrix after the removal of the second spherical polygon. There are no more 
intersections, thus the indicatrix represents now the last spherical polygon.

4.3.6 Area of the spherical polygons

After splitting the indicatrix into individual spherical polygons, we compute the area of 

each polygon to find the curvature of the vertex. To do this we require a measurement 

of the angles between arcs on the surface of the sphere. The arcs cover segments of 

geodesics, or great circles, which correspond to the intersection between the sphere and 

a plane. The measure of an angle between two great circles is thus the same as the angle 

between two planes. In our implementation, we have arcs defined by two vectors, and we 

need to measure the angle between two adjacent arcs. Computing the cross product of 

the two vectors that define an arc we determine a vector normal to the plane of the arc. 

The angle between the normal vectors of the planes is the same as the angle between the 

planes.

The area of a spherical polygon is related to the number of vertices of the polygon and 

the angles at said vertices. The normal and intersection vectors used to build the indicatrix 

now become the vertices of the spherical polygons. Given a spherical polygon Pt with 

n  vertices, its area is computed using the spherical excess formula  (Weisstein 1999b) as 

such:

where a j is the angle at the vertex j  of the spherical polygon. When using a unit sphere, 

as is our case, the square of the radius is equal to one. Thus the last multiplication can be

area(Pi) =  j ^  a j — (n — 2)n \ radius2 (4.3.9)
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safely ignored.

4.3.7 Determining the orientation of a spherical polygon

We need to know the orientation of a spherical polygon to compute the sum of its angles 

and find its area. Any spherical polygon will split the sphere into two areas, giving two 

possible ways to interpret it. One area will be oriented Counter-Clockwise and is posi

tive, according to our implementation; the complementary area is negative and oriented 

Clockwise.

Only one of these areas correctly describes the curvature of a vertex in the polygon 

mesh. It is of great importance to select the correct one. We have determined that if the 

ordering of the faces and their normal vectors around the vertex is consistent, the area is 

positive; if the ordering of faces and normals is reversed, the area is negative. However, 

due to the potential complexity of the vertex stars, the identification of these orderings 

represents a non-trivial task. The approach taken to determine the sign of spherical poly

gons is to initially consider them as being positive. After that some tests are performed to 

decide if the orientation of a polygon must be changed to be negative. The initial approach 

at identifying the appropriate area is based on the areas of the spherical polygons.

Lemma 4.3.1. For any manifold vertex (without any self-intersections) the maximum 
area o f any o f its individual spherical polygons will always be less than 2ir (half o f  a 
sphere).

Proof: For a convex-star vertex, there are two extreme cases:

•  A flat vertex, where the sum of the angles of the faces in star (v) is 2n , and thus the

curvature is:

ujfiat =  27T -  2tt =  0. (4.3.10)

• A ‘needle’ like vertex, where for every face ti G star(u) the angle incident on v

is less than e, and approximating zero. In this case the curvature is:

n

^ needle =  2?T -  ^  €{ <  27T. (4.3.11)
i=1

Thus the curvature of every individual spherical polygon of a convex-star vertex is in the 

range 0 <  u  < 2ir. The same can be said of the dual convex cone of basic saddle-star 

vertices. ■

Based on this fact we compute the area of a spherical polygon with the assumption 

of it being oriented Counter-Clockwise. If the resulting area is larger than 2tt, then the
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orientation of the polygon is switched to negative, and the area recomputed for the com

plement of the polygon. This approach will find the correct orientation of the spherical 

polygons in meshes without non-manifold vertices.

Experiments with ‘figure-8' vertices with sharp cones show that it is possible to have 

a single spherical polygon with an area larger than 2 t y ,  as is the case of the vertex in 

Figure 4.15(a). The selection of the sign based on areas smaller than would select the 

inverse of the area, resulting in an incorrect negative curvature. The resulting Polyhedral 

Gauss Map is shown in Figure 4.15(b). For these complex vertices it becomes necessary 

to employ other geometrical properties of the vertex to determine the correct orientation 

of spherical polygons.

ihowing verti 
.u rva tu re  (PC

(a) ‘Figure-8’ vertex and PGM with (b) Incorrect result using the inverse
area larger than 2-k area

Figure 4.15: Gauss Map of a vertex with a self-intersection.

From the division of curvature into positive and negative components uj+ and co~, 

we have determined in Section 3.2.3 that the positive components correspond to convex 

cones, and thus that they are themselves convex spherical polygons. We use this knowl

edge as a second discriminating parameter to determine the sign of spherical areas.

Lem ma 4.3.2. The maximum perimeter o f a convex spherical polygon will be 2n, and 
this corresponds to a polygon covering half o f the unit sphere, that is, with an area o f 2n.

Proof: The proof of for this follows from the proof of Lemma 4.3.1. ■

For the special case of a ‘figure-8’ vertex the area of a positive spherical polygon is 

greater than 27r, then its perimeter must also be greater than 2n, otherwise we can assume 

the polygon should be inverted and turned into a negative one.

In the case when both the area and the perimeter are larger than 2n, the sign of the

» r e V̂ eja
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polygon is still unclear. Additional information about the star type of the vertex a, de

scribed in Definition 3.4.2, can partially help clarify the orientation of the spherical poly

gons. Separate parameters must be compared to determine the orientation of spherical 

polygons for either cone-star vertices or saddle-star vertices.

As explained in the previous chapter, the ‘figure-8’ vertices can be considered as two 

independent convex cones sharing one edge, where the faces of the vertex star intersect. 

This results in a PGM consisting of two convex spherical polygons also glued together at 

one shared edge. The combined spherical polygon will have exactly two concave angles. 

Thus, if a is a cone-star vertex, then its spherical polygons with area larger than 2n must 

have exactly two concave angles to remain positive. If there are more or less concave 

angles, then the spherical polygon must be inverted and become negative. However, if a 

is a saddle-star vertex this condition can not always be used. These vertices present the 

possibility of positive and negative polygons cancelling each other. In such cases, positive 

polygons become non-convex, and can have any number of concave angles. For saddle- 

star vertices with self-intersections the correct sign of the spherical polygons is not always 

found. These vertices can have spherical indicatrices with multiple arc intersections and 

overlapping spherical polygons. More work needs to be done to determine a correct 

parameters to identify the sign of spherical polygons for complex vertices, as the ones in 

Figure 4.16.

l » r e V?^9.130837 12.200121

Figure 4.16: Vertices with overlapping and cancelling spherical polygons.

Another method proposed to determine the correct polygons is to select those that 

include the normal vector of the vertex itself. However, for self-intersecting vertices this 

method does not work, and hence this method is not considered useful. Figure 4.17 shows 

a counter example, where the normal vectors of the vertices are shown in magenta. The 

normal of the selected vertex is shown in the PGM, and it lies outside of the spherical 

polygons that represent the curvature of the vertex.
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Figure 4.17: PGM of a vertex, showing the normal of the vertex in magenta colour.

4.3.8 Special cases

There are several special cases, but they belong mostly to one of the types listed below, or 

a combination of these types; each case is dealt with in a different way:

• A vertex with pairwise coinciding normals, related to non-adjacent faces. An

example is a vertex of the configuration commonly known as the monkey saddle, 

with its 6 faces equally sized. It has three pairs of pairwise coinciding normals. 

This gives us three pairs of identical vectors, and the PGM has, therefore, two over

lapping identical areas. But in its spherical indicatrix there is no clear intersection 

of the arcs between the normal vectors. This case is solved by an initial step that 

will look for groups of normal vectors that begin and end with a vector at the same 

location. These are known as vector loops.

•  A vertex with the spherical indicatrix self-intersecting several times a t the 

same point. An example is a vertex that can be constructed by adding two more 

faces to a monkey saddle. The star of such a vertex has four convex edges and four 

concave edges. Let us also assume that all convex edges lie in the same plane. It 

means that the star of the vertex has a degenerated convex cone, i.e. it represents 

a plane. Therefore the positive curvature is equal to zero. We call such a vertex a 

tulip. The arcs of its spherical indicatrix intersect themselves four times precisely 

at the same point. This new point will be common to four different spherical poly

gons. Our approach at detecting arc intersections allows us to keep several equal 

intersection vectors at this point. They will later be distributed among the four 

spherical polygons.

•  The area of a simple spherical polygon is greater than 27r. This case arises only 

if two simple spherical polygons are ‘glued’ together, i.e. have a common boundary. 

This is the case of vertices in the ‘figure-8’ configuration. This requires additional 

checks, as described before.

85



4.3.9 Computational complexity of the algorithm

The segmentation of the spherical indicatrix into individual polygons requires the com

parison of all the face normals and intersection vectors against each other. This operation 

is the most computationally expensive and will be used to show an upper bound on the 

complexity of the algorithm.

For a closed triangular mesh of n  vertices, it is known that the number of faces is 

2n  — 4 and the number of edges is 3n  — 6. In all cases there will then be 2n — 4 face nor

mals, and additionally non-convex polyhedra will have intersection vectors because of the 

mixed vertices. Only a small number of the intersection vectors actually correspond to the 

point where two spherical polygons meet, as was shown in the example in Section 4.3.5. 

We will call these the real intersection vectors, denoted with R\ the intersection vectors 

produced by the overlapping of two spherical polygons will be called virtual intersection 

vectors, and denoted with V. The total number of vectors in the indicatrix is denoted as 

P  = R  + V.

The real intersection vectors are generated by deviation edges in the mesh, i.e. where 

a convexity changes to a concavity or vice versa. If a concavity is formed by several 

concave edges, in this analysis it is equivalent to a concavity with only one concave edge. 

Taking this into consideration, we can estimate the upper bound of such deviations as half 

the number of edges in the mesh. But each such edge is incident on two vertices, and thus 

will be used twice. Assuming the worst case, in which every concave edge produces a 

real intersection vector, we have that R  = 3n — 6.

Now the number of virtual intersections needs to be determined. Every pair of spher

ical polygons can intersect in at most 4 points. The number of spherical polygons is 

determined by the number of convex cones that can be extracted from the decomposition 

of mixed vertices. In the worst case (not achievable) where all the concavities are incident 

on a single mixed vertex, the negative part of the PGM is made up of a spherical polygon 

of (3n  — 6) — 1 +  2 vertices. Any polygon with m  vertices can be split into m  — 2 trian

gles. Again using the worst case scenario, the maximum number of spherical triangles is 

t =  3n — 5.

Each pair of triangles can intersect up to 4 times. The number of possible triangle 

pairs is obtained by a permutation as:

(4.3.12)
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Substituting the value of t to get V  we have:

K 1 ( 3 n - 5 ) ( 3 n - 4 )
2

(4.3.13)

The total number of vectors in the indicatrix is then:

p  = R  +  V  =  (3n -  6) +  2{2>n -  5)(3ra -  4). (4.3.14)

This is a highly pessimistic upper bound on the number of vectors that must be analysed, 

and so the program can be considered to be order 0 ( n 2).

In normal polyhedral meshes the connectivity of the vertices is much simpler, and 

these worst case scenarios are impossible to achieve. In a real application the complexity 

can be considered to be much lower. However the complexity is highly dependant on the 

connectivity of the mesh, and it is difficult to make a correct practical estimation.

4.4 Examples of curvature measures using PGM

In this subsection we present examples of PGM of several types of vertices. The images 

show two different views, or scenes: the left scene shows the model of the vertex star and 

the right scene shows the spherical polygons of the Gauss Map. Positive areas in the PGM 

are shown in red, while negative areas are displayed in blue. The vertices in the meshes 

are coloured according to their vertex type as such: flat vertices are white, convex vertices 

are red, saddle vertices are blue and mixed vertices are green.

Figure 4.18 shows the PGM of a complex mixed vertex. In the left picture the vertex 

is presented with its spherical indicatrix, and in the right picture the spherical polygons 

representing positive and negative curvature can be seen. The positive area is clearly sep

arated from the negative ones, which are overlapping. Two simple spherical polygons of 

negative area represent the ‘concavities’ in the cone of the vertex. The curvature measures 

of this vertex, as provided by the program, are the following:

In Figure 4.19 the PGM of the monkey saddle is presented. The PGM looks similar to 

the one for a simple saddle vertex, but consists eventually of two completely overlapping 

spherical polygons. The indicatrix of the monkey saddle has no additional intersection 

vectors, so the face normals must be used as intersection vectors as well. The curvature 

of this vertex is measured as:

ABSOLUTE CURVATURE 
P O S IT IV E  CURVATURE 
NEGATIVE CURVATURE 
GAUSSIAN CURVATURE

1.619293
1.359348
0.259945
1.099403
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Figure 4.18: A complex mixed vertex and its spherical indicatrix (left) and PGM (right).

=== ABSOLUTE CURVATURE: 4.657674 ===
  POSITIVE CURVATURE: 0.0 00000  
  NEGATIVE CURVATURE: 4.657674 --
  GAUSSIAN CURVATURE: -4.657674---

» 3 eV? ® :  4 657674 4.657674

Figure 4.19: PGM of the monkey saddle.

PGM visualisations of a generalised monkey saddle are shown in Figure 4.20. This 

kind of vertex also has two loops of completely overlapping spherical polygons, in a more 

complex configuration. The curvature measures obtained by the program for this vertex 

are:

=== ABSOLUTE CURVATURE
  POSITIVE CURVATURE
  NEGATIVE CURVATURE
  GAUSSIAN CURVATURE

6.686595 === 
0 . 0 0 0 0 0 0  -----
6.686595 --
-6.686595 --

In Figure 4.21, PGM of the ‘tulip’ vertex is presented. Its PGM consists of four equal 

spherical polygons, pairwise adjacent to each other, which are revealed by the spherical 

indicatrix. However the coloured PGM looks like one spherical polygon with four sides. 

The curvature measures for the ‘tulip’ vertex are:

=== ABSOLUTE CURVATURE: 0.805432 ===
  POSITIVE CURVATURE: 0.000000----
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Figure 4.20: PGM of a generalised monkey saddle.

0.805432

Figure 4.21: PGM of the tulip vertex.

  NEGATIVE CURVATURE: 0.805432---
  GAUSSIAN CURVATURE: -0.805432 --

The vertices presented in Figures 4.18^4.21 have no self-intersecting faces, and their 

Gauss maps are in conformity with curvature characterisations for embedded polyhedral 

surfaces given in (Banchoff 1970). In the next few examples we present PGM visualisa

tions of vertices with self-intersections. This provides curvature characterisation of more 

complex surfaces, which are neither embedded nor immersed. It can be observed that, for 

these vertices, the Gaussian curvature measures are no longer equal to the positive minus 

the negative curvature components, as the AD has problems with such vertices.

Figure 4.22 and Figure 4.23 show the PGM of two vertices, which we call a pinch 

vertex and a reverse pinch vertex, respectively. In order to understand the difference 

between a pinch vertex and a reverse pinch vertex, imagine a walk along the link of the 

star of a vertex v. In the case of the pinch vertex the walk makes two full turns around the 

vertex, both turns having the same orientation (for example, Counter-Clockwise). In the 

case of the reverse pinch point, the walk makes also two full turns, one in the Clockwise- 

Direction, and the second one in the inverse direction (i.e. Clockwise). The Gauss map 

of the pinch vertex, presented in Figure 4.22, has two overlapping areas, each of positive 

sign, which is a case not previously met. One area is equal to the curvature of the convex
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star of the pinch vertex.

=== ABSOLUTE CURVATURE
  POSITIVE CURVATURE
  NEGATIVE CURVATURE
  GAUSSIAN CURVATURE

6.358589 ===
6.358589 --
0 . 0 0 0 0 0 0  -----
0.075404 --

Show ing vertex  1 
C urvatu re  (PGM): 6.358589 6.358589

Figure 4.22: Pinch vertex with the corresponding Gauss Map.

The Gauss map of the reverse pinch vertex, shown in Figure 4.23, has also two areas 

of positive curvature, but they are non-overlapping and separated by an area of negative 

curvature.

=== ABSOLUTE CURVATURE
  POSITIVE CURVATURE
  NEGATIVE CURVATURE
  GAUSSIAN CURVATURE

5.992379 ===
5.940217 --
0.052161 --
-0.395130 --

g » e V? W :  5.992379 5.992379

Figure 4.23: Reverse pinch vertex with the corresponding Gauss Map.

Finally, we show the Gauss map visualisation of the figure-8 vertex. Such a vertex can 

also be considered as the ‘extreme’ case of the reverse pinch vertex, when the negative 

curvature part has disappeared. The two remaining positive parts are ‘glued’ together. 

Figure 4.24 presents the PGM of three figure-8  vertices with a cone of increasing height. 

We can see that as the height grows, so does the area of the PGM. The curvature of the 

first vertex is:
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ABSOLUTE CURVATURE 
POSITIVE CURVATURE 
NEGATIVE CURVATURE 
GAUSSIAN CURVATURE

4.723622 =
4.723622 - 
0 . 0 0 0 0 0 0  - 
-1.559563

In the middle image the area is 2tt (half the sphere):

=== ABSOLUTE CURVATURE
  POSITIVE CURVATURE
  NEGATIVE CURVATURE
  GAUSSIAN CURVATURE

6 .283185 
6.283185 
0 . 0 0 0 0 0 0  
0 . 0 0 0 0 0 0

In the third image the PGM covers a large part of the surface of the sphere:

=== ABSOLUTE CURVATURE
  POSITIVE CURVATURE
  NEGATIVE CURVATURE
  GAUSSIAN CURVATURE

10.988695 ===
10.988695 —
0 . 0 0 0 0 0 0  -----
4.705510 --

8 & G U V & I  : 6.283185

Figure 4.24: Cone-eight vertices of increasing height.

4.5 Results and potential applications

This section presents the advantages of the method of Polyhedral Gauss Map to measure 

Total Absolute Curvature of discrete surfaces, as opposed to the Gaussian curvature mea

sured by the Angle Deficit method. A number of potential applications that can benefit 

from the new method are outlined as well.

4.5.1 Comparison of the Angle Deficit and the Polyhedral Gauss M ap

The Gaussian curvature measured by the AD method is capable of clearly identifying 

three kinds of vertices: flat, convex or saddle. However, vertices which do not fit into these 

categories will present problems to the algorithm. This was illustrated previously with the 

polyhedra in Figure 3.3. The left polyhedron has vertices that are non-convex. However 

the AD method will recognise them as convex, and will measure the same curvature for 

each corresponding vertex in both objects.
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The Total Absolute Curvature provides a better understanding of the geometry of an 

object than the Gaussian curvature alone. The PGM method allows for clear distinction of 

the vertices into four basic types: flat, convex, saddle and mixed. This information can be 

used to completely characterise an object. The vertex characterisation can be refined, by 

identifying convex vertices or the cones of mixed vertices that are concave with respect to 

the object, increasing the vertex classes to six, thus including convex-concave vertices and 

splitting the mixed vertices into two types: mixed-convex and mixed-concave vertices. 

The curvature domains of a discrete surface can be recognised by colouring the vertices 

according to their type. In the following images we show polyhedral meshes with colour 

coding to represent the identified vertex curvatures, using both the AD and PGM meth

ods. Vertex colours by type are: flat (white), convex (red), saddle (blue), mixed-convex 

(green), convex-concave (magenta) and mixed-concave (brown).

For the example of the two polyhedra, using the PGM method to determine the cur

vature immediately shows a difference in the shape of the vertices at the top comers of 

both objects. Figure 4.25 shows the vertex characterisation of the two objects using AD 

and PGM. The images highlight one of the vertices that have equal AD but distinct TAC. 

The curvature measure of the selected vertex is displayed in the images, as well as its 

corresponding Polyhedral Gauss Map.

The curvature visualisation of a discrete toms is presented in Figure 4.26. We see the 

wireframe of the mesh, the surface shaded according to the vertex characterisation pro

vided by Angle Deficit, and the surface shading using the vertex characterisation obtained 

with the PGM method. Both visualisations are presented with the PGM of a selected ver

tex, and the numerical value of the curvature of the vertex, as determined by each method. 

It is clear that the curvature visualisation by means of the Angle Deficit does not reflect 

the irregularity on the surface of the toms. The vertex, classified as a vertex of positive 

curvature by means of the Angle Deficit, has two hidden domains of negative curvature, 

and is a mixed vertex, which is clearly seen in the curvature visualisation by means of the 

PGM method. The PGM visualisation indicates that the mesh may not be optimal.

By applying the optimisation method based on the minimisation of total absolute ex

trinsic curvature, introduced in (Alboul and van Damme 1994) and later further developed 

in (Dyn et al. 2001), (Alboul 2003) and (Netchaev 2004), we obtain an optimised mesh 

for this toms. The optimisation method preserves the location of all the vertices, and 

only flips the edges to reduce the curvature of the whole mesh. The visualisations of the 

optimised mesh are given in Figure 4.27. Again, as in Figure 4.26, we see the surface 

coloured based on the curvature characterisation. We can see that now the two curvature

92



Ihowing verti 
lu rva tu re  (PC

(a) Convex object

1.682137

(b) Non-convex object

Figure 4.25: Vertex classification of the two polyheclra. Left: Angle Deficit classification. Right: 
Polyhedral Gauss Map classification.

visualisations are more similar. In the PGM view, mixed vertices form a thin circular 

domain (shown in green colour) that separates the domains of positive and negative cur

vature. This domain is not present in the AD view. The PGM of a vertex situated in this 

domain reflects the almost symmetrical distribution of negative and positive curvatures in 

this vertex.

Another optimisation of the torus can be obtained by minimisation of the Willmore 

energy, as presented in (Brink and Alboul 2006). The new optimised torus is shown 

in Figure 4.28. It provides a more regular distribution of the triangles that results in a 

smoother surface than the previous cases. The PGM of the vertices in the mixed domain 

are simpler, reflecting the regularity of the surface.

Figure 4.29 shows the visualisation of the curvature domains in a simplified venns 

mesh. Figure 4.30 has the same visualisations on a triceratops model. In both cases the 

curvature domains of mixed vertices can be seen on the PGM. Also the vertices selected 

show a difference in the curvature measured by these two methods.
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(a) Wireframe (b) AD colouring (c) PGM colouring

Figure 4.26: Visualisations of the initial torus, coloured by curvature, highlighting the curvature 
of a selected vertex.

8M ,W -S.c

a A
(a) Wireframe (b) AD colouring (c) PGM colouring

Figure 4.27: Visualisations of the optimised torus, coloured by curvature, highlighting the curva
ture of a selected vertex.

4.5.2 Object recognition based on curvature

Various applications can benefit from a more accurate measurement of curvature and ver

tex classification. In (Li and Gu 2004) the curvature is used to compare a design model 

of an object with a mesh scanned from the production object. The measurements of both 

Mean and Gaussian curvature are used to characterise the vertices of the meshes. Two 

distinct approaches are described, and then the third method is introduced that benefits 

from the other two. The first approach is to classify vertices by the measured value of the 

curvatures. The second one uses the sign of the curvatures, and the third uses both value 

and sign. If both curvature and sign agree, then the vertex is clearly identified. Otherwise 

a weight parameter is defined to choose the parameter that is less ambiguous. With this 

approach four types of curvature are found: convex, concave, saddle and flat. As well 

as in object identification, measurements of curvature have previously been used in face 

recognition (Grodon 1991), (Tanaka et al. 1998). However, these applications use the 

EGI and AD to compute curvature, and could be improved with the proposed PGM.

In Figure 4 .31 we show meshes showing the vertex classification obtained using both 

the AD and the PGM. Regions of similar curvature are clearly seen from the images, and
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Figure 4.28: Another optimised torus, coloured by curvature, highlighting the curvature of a se
lected vertex.

Show ing vertex: 
C urvaiU re (AD):

398
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Figure 4.29: AD and PGM visualisations of a simplified venus model.

their identification can be of particular use in many applications of object identification or 

face recognition.

4.5.3 Terrain description and navigation

Another use of vertex characterisation using the PGM is the identification of terrain fea

tures. This information can be applied for the navigation of a discrete representation of 

a surface (Falcidieno and Spagnuolo 1991). A common representation of terrain is by 

the use of height maps, where a coordinate grid over the terrain references the altitude at

0.036340

Figure 4.30: AD and PGM visualisations of a triceratops model.
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(a) Venus model

(b) Face model

(c) Casting model

Figure 4.31: Various meshes with vertices colour coded according to their characterisation using 
the two methods. Measures of curvature using Angle Deficit (centre) and Polyhedral Gauss Map
(Right).

every corresponding point of the surface. From these maps it is straightforward to create 

a polyhedral mesh.

Measurements of curvature over a mesh are used in (Lee et al. 2001) to simulate the 

spreading of a fire that consumes the surface of an object. This application is useful in 

computer graphics and simulations. Information about the geometry of the terrain is also 

employed for terrain reasoning in 3D action games (Van der Sterren 2001), for example, 

for path finding on a terrain, which satisfies certain requirements. One requirement might 

be to minimise the energy that a game object needs to apply to navigate on the surface, or 

that the path chosen should go over the tops of mountains.

96



The use of the PGM for terrain navigation has been explored in (Echeverria et al. 

2005). A terrain can be viewed as an irregular surface, and it is possible to determine 

areas of the surface with similar values of curvature, by grouping together vertices of 

the same type. Areas of positive curvature would represent mountains or valleys, while 

areas with mixed curvature are rugged terrain. The border between mountains and valleys 

would be composed of saddles, and thus have a negative curvature.

Some experiments have been carried out on the use of the PGM to characterise the ter

rain to be navigated. The aim is to find a path from an origin vertex to a destination vertex. 

Our approach is to generate paths that stay within regions of the same kind of vertices, 

preferably of saddle type (regions of negative curvature), to avoid obstacles and navigate 

around them, based on the features of the surface. Figure 4.32 shows the comparison of 

using a direct path approach against the use of curvature information to navigate around a 

mountain in the terrain. The examples shown make use of these algorithms to create two 

different paths over each surface:

•  The direct path, where at each vertex the next step is to go directly to the vertex that 

is closest to the destination.

•  A path that considers the curvature of the neighbour vertices and will give prefer

ence to vertices of negative curvature for the next step.

By keeping within regions of negative curvature the paths produced are not much 

longer than taking a direct route, however we avoid going over the peaks of the mountains. 

Thus there are less climbs and descents, resulting in a smaller change in height (Ah). 

This is important as a means of minimising the energy required to traverse the terrain. 

In the experiments, for each path we measure the length I and the height difference A h. 

Figure 4.32 shows two examples of terrain and the paths generated using both approaches.

4.5.4 Polyhedral mesh subdivision o r simplification

A possible application of the PGM is to use it in mesh subdivision, by modifying the 

existing vertices and adding new ones in a way that will remove all mixed vertices and 

leave only convex or saddle vertices. In this case the PGM will determine the point where 

a vertex has to be modified. A simple example of this is shown in Figure 4.33. The new 

saddle vertex must be located in a point that belongs to the convex hull of the original 

vertex. For more complex vertices more care is required to select the location of new 

vertices.

Another application for measures of curvature can be found in polygonal mesh sim

plification. We will elaborate on the use of the PGM for that purpose in Chapter 6.
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(e) Length: 4.96, Ah: 0.91 (f) Length: 5.99, Ah: 2.25

Figure 4.32: Use of curvature for terrain navigation. Top: Terrain meshes. Middle: Direct path. 
Bottom: Path based on curvature.
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(a) Original mixed vertex (b) Modified vertex now (c) New saddle vertex
convex

Figure 4.33: Subdivision of a mixed vertex to generate two vertices, one positive and one negative.

4.6 Conclusions

We have presented a novel method to construct Gauss maps directly from a polyhedral 

surface. The method is theoretically valid and robust in implementation. It constructs 

complete curvature representations for a very large class of polyhedral surfaces, including 

certain non-manifold surfaces.

The Polyhedral Gauss Map enables us to reveal all existing domains of positive and 

negative curvature of a surface, which can not be correctly revealed by means of the Angle 

Deficit. An advantage of the PGM method is the capability of splitting the curvature 

domains of the same sign into sub-domains, each represented by a spherical polygon. 

This gives us a more complete description of geometric features of the surface.

The methods described in this chapter for the generation of the PGM include the 

detection of arc intersections in the spherical indicatrix, the splitting of the indicatrix into 

simple spherical polygons and the selection of the correct sign for each of the spherical 

polygons.

For cone-star vertices, the PGM algorithm can handle non-manifold surfaces, cor

rectly identifying the curvature of vertices with self-intersecting faces. These vertices 

will produce larger than normal areas in the Gauss Map. The PGM method might be 

useful to check the validity of the mesh, since it is capable of identifying undesired self

intersections.

In the case of self-intersecting saddle-star vertices, positive and negative areas can 

overlap or cancel each other out in some cases. These cases may cause the program to 

confuse the areas and signs of the spherical polygons, because of the many intersecting 

arcs in the indicatrix. Further research is needed to determine the correct parameters to 

obtain the sign of spherical polygons.

Several potential applications for the new vertex characterisation have been presented.
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The vertices of a polyhedral can be coloured according to their type. Grouping together 

vertices of the same type permits the visualisation of regions of equal curvature on a 

surface. This is useful in identification of manufactured pieces, face recognition, terrain 

description and operations on polygonal meshes. We demonstrated the advantages of 

PGM in these applications by comparing polygonal meshes that are characterised using 

either the Gaussian or the Total Absolute Curvature.

4.7 Future research directions

The method developed is very sensitive to noise in the data. Every feature of the mesh 

contributes to the total curvature, and noisy data can generate very large curvatures. This 

produces a large variation on the vertex types, and makes recognition of curvature do

mains difficult. An approach to solving this problem would be to expand the analysis of a 

vertex star to include also the stars of the neighbours. Thus for the PGM of a vertex, the 

normal vectors of the faces incident on it and its neighbours could be used. This would 

increase the tolerance to noise, but also reduce the accuracy of the measurements and 

increase the computational cost of the algorithm.

Another alternative solution to identify curvature domains is based on the results ob

served from the mesh simplification application, to be presented in Chapter 6. In a sim

plified mesh the vertices with small curvature are removed, leaving only those with the 

largest contribution to the shape of the object. Using our simplification method, the ver

tices that remain provide a clearly defined characterisation of the curvature domains.

With the current algorithm, the splitting of the indicatrix to find individual spherical 

polygons varies depending on the order of the triangles in the source data ( i.e. the OBJ 

file). This may cause spherical polygons to be incorrectly identified, and in some cases the 

correct version can only be found from a very specific ordering of the faces. One solution 

implemented is to cycle through the possible orderings for each vertex, and finally choose 

one according to certain parameters. These parameters can be a minimisation of the area 

or the arc length of spherical polygons. However, the correct parameters have not been 

clearly defined, and the process of cycling the faces is time consuming. More research 

needs to be done to determine the correct parameters to find the correct representation of 

the PGM that can be obtained from all the possible vertex orderings.
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Chapter 5

Visual display of the Polyhedral Gauss 
Map with 3D graphics

5.1 Introduction

When dealing with abstract mathematical concepts in three-dimensional space it is often 

very difficult to imagine the behaviour of all the elements involved and their spatial re

lationships. Even drawing the expected results on paper is often unclear and ambiguous. 

The best possible solution to these problems is visualisation in three dimensions. Modem 

computer graphics provide an ideal platform to represent the mathematical concepts in a 

graphical form that helps to understand these concepts better and facilitate proofs. The 

graphical representation also is capable of revealing ‘hidden’ associations and relations 

between these concepts, which may manifest in creating new techniques and concepts 

otherwise impossible.

For the research presented in this thesis, the visualisation of the Polyhedral Gauss 

Map in three dimensions is a reliable tool to properly evaluate the results obtained. This 

particular construction requires the projection of complex structures onto the surface of 

a sphere. A two-dimensional drawing would never suffice, since the entire surface of a 

sphere cannot be adequately mapped into a plane without distortion and without losing 

the connectivity of the objects on the sphere. The use of computer graphics to represent 

the sphere in 3D allows viewing from any angle, zooming into particular features, and fil

tering information to simplify the analysis of the data. Additionally, a 3D display can also 

show the results of the curvature measures directly on the source mesh being analysed. It 

permits visualising regions of similar curvature and selection of each individual vertex to 

analyse its Gauss Map.

The program for visualisation of the Gauss Map was developed exclusively for this 

project, dealing with very particular issues associated with this specific problem. Most
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of the programming used implements new ideas which comprise the contributions men

tioned in this chapter, such as the display of spherical polygons by first triangulating them, 

and then drawing them using clipping planes in OpenGL.

OpenGL was chosen to implement the visual display of the PGM because of its flexi

bility and simplicity to program. It enables the creation of specialised functions required 

for the projection of structures on a sphere and dealing with the resulting spherical poly

gons. It also integrates well with the rest of the program and the data structures im

plemented, allowing for the visualisation to be used since the very early stages of the 

development of the algorithm. This is a valuable tool to simplify the understanding of 

the concepts behind the theory and provides a point of reference for comparison of the 

numerical results obtained. An additional advantage is the capability to visually identify 

problems and errors in the algorithm. For these reasons, it is desirable to have as accurate 

a representation of the results as possible.

The visual display is independent and not necessary for the measurement of the Gauss 

Map areas, since all the required curvature computations are performed before invok

ing any functions of OpenGL. The development of the 3D visualisation is a process that 

has been improved gradually, at each step adding new features and providing a better 

interface, as well as solving the problems found. This chapter will present the major 

milestones reached to obtain the current visualisation system. It describes the tasks per

formed to draw the Gauss Map for a single vertex in the polygon mesh, the same process 

is repeated for each of the vertices that compose the object.

5.2 Other visualisations of the Gauss Map

In (Horn 1983) the representation for the Gaussian Images is done using simple flat draw

ings to illustrate the presented concepts. In all cases the figures show simple objects 

and their corresponding Extended Gaussian Images (EGI). Since the graphics are done in 

two dimensions a circle is used to represent the sphere. The normal vectors of faces are 

roughly represented as points in the circle, with the same shape as that of the correspond

ing face. This initial representation is not very clear and ill suited to demonstrate more 

complex objects. The difficulties in dealing with non-convex objects are explained, but 

no solutions or illustration of these cases are given.

The work of (Banchoff et al. 1982) presents a graphical visualisation of the Gauss 

Map for smooth surfaces. Using computer graphics they produce the Gauss Map of vari

ous smooth surfaces, such as a handkerchief surface, a torus surface and a monkey saddle. 

The visualisation is created along whole patches of the surfaces, but not for the vertices
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in a polyhedral surface.

(Lowekamp et al. 2002) presents a visualisation of the Gauss Map using computer 

graphics and a modification of the EGI. In this application two views are presented to the 

user, one with the polygonal mesh and a second with the Gaussian Images. Both views are 

linked, so that they can be rotated simultaneously. The authors call this visualisation the 

Interactive Gaussian Image (IGI). The connection of the vertices in the mesh is translated 

into the IGI by connecting the normal vectors of the vertices in the same way as the 

vertices are connected in the mesh. Colour is used to relate the vertices on the mesh to 

their vectors on the Gaussian Image. When dealing with non-convex objects, the IGI 

presents overlapping patches on the sphere, which are difficult to tell apart. A partial 

solution provided is to permit the user to select patches of the mesh to visualise the IGI of 

a group of vertices simultaneously.

Our approach also makes use of two viewports to show both the mesh and the PGM at 

once, allowing the same transformations on both simultaneously. We also provide a better 

way to analyse the curvature of vertices individually, and can show the star of a vertex and 

its corresponding normals and spherical indicatrix directly on the view of the mesh. Our. 

PGM visualisation program also provides other options to select the information to be 

displayed.

5.3 Display of the PGM with OpenGL

The display program used throughout this project is based on a simple graphic engine in 

OpenGL by Christophe Devine. This initial application already provides the basic tools 

required to draw objects in three dimensions. Rendering of a polygonal mesh requires the 

specification of faces as groups of 3 vertices. The OBJ format selected for the input files 

provides the required information about vertices and faces. A simple parser reads the OBJ 

file and creates the data structures that store the data.

The display lists of OpenGL are used to preprocess the objects to display, and speed 

up the visualisation. These lists are created immediately after the curvature computations. 

The first such list is created for the whole polyhedral mesh. For every vertex, additional 

display lists are created for the vertex star, normal star and spherical polygons on the 

PGM.

5.3.1 Visualisation of the spherical indicatrix

The first application to display the PGM used only one viewport to show both the poly

hedral surface and the PGM. In the initial stages, only the PGM of the first vertex in the
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input file was generated. The normal vectors in star(y) were translated to the centre of 

the coordinate system. Being unit vectors, the endpoints lie on the surface of a sphere, 

as shown in Figure 5.1. This corresponds roughly to the Extended Gaussian Images ap

proach. A sphere is drawn as a reference, with the same radius as the length of the normal 

vectors.

j

(a) Vertex with a non-convex neigh
bourhood

Figure 5.1: Visualisation of the normal star of a vertex.

The initial representation of the indicatrix was produced by joining together pairs of 

vectors with a straight line from the endpoint of the first vector to the endpoint of the 

second one. Repeating the same process for every pair of vectors in the appropriate order 

yields a crude representation of the indicatrix, as shown in Figure 5.2(a). This visuali

sation presents a very vague and deformed preview of the areas of the Polyhedral Gauss 

Map. The straight lines used to join the vectors do not always intersect each other, even if 

the arcs they represent would actually intersect on the surface of the sphere. Figure 5.2(b) 

evidences this difference when using a sphere as a point of reference.

Using the normal vectors linked this way, an approximation of the areas of the Gauss 

Map can be drawn as flat polygons in 3D space. Again this representation is ambiguous 

and does not show the real shape of the polygons on the sphere, as shown in Figure 5.3.

The next step was to substitute the straight lines for real arcs. To do this, the OpenGL 

function gluPartialDisk was the most adequate option. It draws a flat area delimited 

by two circles, and two angles, effectively a segment of a disc, on the X Y  plane. It takes 

as parameters a pointer to a GLUquadric structure, the radii of the outer and inner 

circles of the disc, the initial and final angles around the X Y  plane (specified in degrees), 

and two other parameters for the subdivision of the arcs (Figure 5.4 shows the arc and 

the related parameters). These will determine how many polygons compose the arcs. The 

function specification is the following (Schreiner et al. 1999):

(b) Normal vectors to the faces, trans
lated to the centre of a sphere
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(a) Normal vectors joined by straight (b) Wireframe sphere for reference
segments

Figure 5.2: Initial visualisation of the spherical indicatrix.

Figure 5.3: Initial visualisation of the areas of the Polyhedral Gauss Map.

void gluPartialDisk(
GLUquadricObj *qobj,
GLdouble innerRadius,
GLdouble outerRadius,
GLint slices,
GLint loops,
GLdouble startAngle,
GLdouble sweepAngle )

Using this function to draw an arc between two vectors requires setting the parameters 

for the angles correctly. In our implementation, the startAngle will always be equal 

to 0, while sweepAngle is the angle between the two vectors. The outerRadius is 

equal to the length of the vectors, while the innerRadius is a slightly smaller, to make 

it possible to identify each individual arc. Each arc in the indicatrix is coloured differently 

to distinguish them and identify the sequence order. The subdivision parameters slices 
and loops are set according to the length of the arc to make them look smooth without 

using too many polygons.

The first problem before using this function effectively is defining the orientation of
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Figure 5.4: The parameters for the gluPartialDisk function.

the arc. The function gluPartialDisk will always generate the disc on the plane 

defined by the default X  and Y  axis in OpenGL. Placing the arc correctly requires calling 

the function once the appropriate transformations have been executed in the OpenGL 

scene to match the internal X Y  plane to the plane defined by the two vectors. This 

is done in OpenGL by using a rotation matrix. To do this we create a new function, 

called rotateToXYplane. It will also be useful later to draw the areas of the spherical 

polygons.

5.3.2 The rotateToX Y plane function

The function takes as parameters the two vectors (v i and v 2) that define a plane. It will 

generate the rotation matrix M r that will match the X Y  plane in OpenGL space with the 

plane specified by the two vectors.

Inside the function two vectors are defined to represent the Y  and Z  axis: a y  =  

(0,1 ,0) and az  =  (0,0,1). We compute a vector perpendicular to both a y  and Vi as 

n i  =  a y  x Vi. The angle eg between a y  and v i  is measured in radians. Next we 

compute a 3 by 3 rotation matrix M i that specifies a rotation of eg radians around vector 

n i ,  where ig  =  (u, v, w), ip =  sin eg and (p =  cos eg (Baker 2007):

M i  =

u2 +  (1 — u2)(p —imp +  (1 — (p)uv vip -+- (1 — (p)uw 

imp +  (1 — <p)uv v2 +  (1 — v2)(p —uip +  (1 — (p)vw 

—vip +  (1 — (p)uw uip {1 — (p)vw w 2 +  (1 — w 2)(p

An inverse rotation matrix M'x is computed analogous with a rotation of —eg around the 

same vector. When v x is equal to the negative Y  axis, the angle eg will be equal to 7r, 

and there are infinitely many rotation matrices. However in this case it is not necessary to 

have a rotation around ig ,  as the vectors are already aligned. In this case M i and M 'i are



converted to the identity matrix.

The vector v 2 must be readjusted to the new coordinate system. This is done by 

multiplying the vector by the inverse rotation matrix, as follows:

v'2 =  M'lV2. (5.3.1)

After this we find n 2 =  V2 x aY, and the angle a 2 between az and n 2 is calculated. 

A second rotation matrix M 2 is computed with a rotation of a 2 around ay- Finally the 

desired rotation matrix M r is obtained from the multiplication of the previous two rotation 

matrices, as such:

M r =  M xM 2 (5.3.2)

This process is done for every pair of vectors in the normal star of the vertex. The 

resulting rotation matrix M r is used to transform coordinate system of OpenGL, so that 

the function gluPartialDisk will generate the arcs in the correct locations. The 

results can be seen in Figure 5.5.

Figure 5.5: Using arcs to join the normal vectors.

5.3.3 Spherical polygons with OpenGL

With the Indicatrix in place it is possible to visualise the spherical polygons on the surface 

on the sphere. However it is still necessary to fill in the appropriate areas, and assign to 

them a colour corresponding to the orientation of the curvature to completely represent 

the curvature of the mesh vertex being analysed.

As is the case for the computation of the PGM presented in Chapter 4, the vertices of 

the spherical polygons are in fact the normal vectors of the faces around a vertex in the 

mesh. Thus the vertices of spherical polygons are represented with the same notation as 

for the normal vectors ( i.e. n i).

OpenGL has no predefined functions to draw a spherical polygon. The method that 

can be used to generate spherical polygons is to use clipping planes (Woo et al. 1999)
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to ‘cut’ them out from a sphere. A clipping plane splits space into two regions, where 

only the objects in one of these two regions will be drawn, and objects on the other 

side will be ignored during the rendering process. OpenGL relies normally on clipping 

planes to delimit an area in 3D space that will be rendered. In any scene there are six 

default clipping planes that define the viewing volume (Watt and Watt 1999). Besides 

these, additional clipping planes can be defined. These can be enabled temporarily before 

drawing an object, and disabled afterwards. An object drawn while the clipping planes 

are active will be ‘cut’ by the planes.

The function glClipPlane has the following specification:

void glClipPlane(
GLenum plane,
const GLdouble ^equation )

It receives as a parameter a plane,

A x  +  B y  +  C z  +  D =  0, (5.3.3)

as an array containing the four coefficients (A , B , C , D). The plane defines the half space 

that will be hidden. The new viewing volume will be specified by the intersection of the 

default viewing volume and the half space determined by the plane. By default the plane 

equation of all clipping planes is (0,0,1,0), equivalent to the X Y  plane. Using the function 

rotateToXYplane, the spherical polygons are drawn by aligning the X Y  plane with 

each of the arcs that delimit the sides of the polygon.

However, there are immediate drawbacks to drawing a full spherical polygon using 

clipping planes for each of its sides. Firstly, it is only possible to define a limited number 

of additional clipping planes, normally six, in OpenGL. This limits the number of sides 

a spherical polygon could have. Secondly, non-convex polygons are impossible to draw, 

since the clipping planes of the concavities would remove other parts of the polygon. Such 

non-convex spherical polygons are present in the PGM of some saddle vertices, such as 

the one in Figure 5.6.

The solution to both of these problems is to triangulate the spherical polygons before 

drawing, and then render them as several individual spherical triangles. This requires 

only 3 clipping planes per triangle, which can be reused for all triangles. Any spherical 

polygon of any complexity can be triangulated regardless of it being convex or not.

5.3.4 Triangulation of spherical polygons

The triangulation of spherical polygons is a modification of the ear-slicing triangulation 

algorithm for flat polygons in 2 dimensions (Fournier and Montuno 1984), (Elgindy et al.
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Figure 5.6: Truncated saddle vertex. Its PGM has a non-convex spherical polygon.

1989). The main difference when applying this algorithm to a spherical polygon is the 

computation of the angles at the vertices. Our implementation consists of the two func

tions:

• triangulateSphericalPolygon
• divideSphericalPolygon

The former receives the list of vertices of the spherical polygon and returns a list of 

triangles that form the polygon. Each triangle is itself a list of three vertices. The latter 

function takes as a parameter the list of vertices of the spherical polygon and returns 

two smaller lists of vertices that separate the input polygon in two parts. This is done 

by finding three adjacent vertices n i, n 2 and n 3 that form a convex angle at n 2. They 

represent a triangle and the algorithm next checks if there are any other vertices inside the 

triangle. The function point InsideSphericalTriangle checks if a vertex ni is 

inside the triangle by using the concept of orientation. If all three orientations p(rii, n i, 

n 2), p{rii, n 2, n 3), p(rii, n 3, n i) are equal then rij is inside. If any of them is different, 

then rii must be outside the triangle.

If there are no vertices inside, the triangle is cut from the polygon along a new edge 

n !n 3. If there are any vertices inside, the one closest to n 2 is chosen as n 4 and the 

triangle is split along the edge n 2n4. Every time a triangle is split from the polygon, the 

two vertices on the shared edge will be duplicated. Figure 5.7 shows both cases, using 

planar polygons for simplicity.

Initially the function triangulateSphericalPolygon makes a call to func

tion divideSphericalPolygon and then recursively calls itself with each of the 

two smaller polygons returned. When triangulateSphericalPolygon receives 

a polygon with three vertices, it inserts the triangle into the final list of triangles and 

returns that list.
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n 3

(a) No points inside initial triangle

n 3

(b) Points inside

Figure 5.7: Two cases of ear-slicing for polygon triangulation.

With the final list of triangles the spherical polygon is drawn one triangle at a time. 

rotateToXYplane is called for each pair of vertices in in every triangle, followed by 

the enabling of a clipping plane. With the three clipping planes in place drawing a sphere 

will result in only the spherical triangle being rendered, as shown in Figure 5.8. In this 

manner all possible spherical polygons can be accurately visualised.

4
; :;£V

Figure 5.8: A triangle on a sphere, drawn using 3 clipping planes to segment a red sphere.

5.4 Interaction with the display

The visualisation program includes various functions to provide a better understanding of 

the PGM. Here we mention some of these features of the program.

• The user has the possibility to rotate, scale or translate the object being analysed, 

within the display space. This allows viewing particular details of the mesh or 

PGM.

• The screen space is split into two viewports, as allowed by OpenGL. The left view

port shows the polygonal mesh, and the vertex selected, if any. The right viewport
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displays either the Polyhedral Gauss Map of the mesh, or of the selected vertex. 

Both viewports are subjected to the same transformations, thus rotation, translation 

or scaling affect both the mesh and the PGM.

• The vertices of the mesh are coloured according to the type of vertex as determined 

by the program. This permits the visualisation of the object in regions of curvature. 

The types of vertices detected are of positive, negative, mixed and zero curvature.

• Additionally the program can display the vertices coloured according to the vertex 

classification provided by the Angle Deficit method, which consists only of vertices 

of zero, positive and negative curvature.

• The user can select any vertex for individual analysis. When a vertex is selected, 

its measured TAC is printed on the screen, the star of the vertex is highlighted as 

wireframe, and the PGM is shown for that particular vertex.

• To better identify normal vectors and faces, the ID numbers for both can be shown 

on the screen. The mesh in the left viewport shows the ID numbers of the faces, and 

the PGM in the right shows the numbered normal and intersection vectors. This can 

be seen in Figure 5.9, where intersection vectors have a negative ID to distinguish 

them from face normals.

•howing vertex  1 
lurvatUre: 1.497827

Figure 5.9: Showing the ID numbers of faces and vectors. Intersection vectors have negative ID 
numbers.

• Since the curvature components of different sign in a PGM can overlap, the pro

gram permits toggling on or off the display of spherical polygons depending on 

their sign. It is possible to show either only positive, only negative, both kinds of 

polygons or none. This reveals sections of curvature that may be hidden, as shown 

in Figure 5.10.

• The program can show the projection of a vertex link into a plane, obtained with 

the procedure explained for Definition 3.4.1. Figure 5.11 shows a vertex and its 

projected link.

• There are many other options of data to display. It is possible to toggle the display
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Showing vertex  1 
C ur va t lire: 8.422314

(a) Both curvature components

Show ing vertex  1 
C urvatifte: 8.422314Show ing vertex  1 

u rvatu re: 8.422314

(b) Only positive polygons (c) Only negative polygons

Figure 5.10: Toggling of the display of spherical polygons according to their sign.

Show ing v ertex  1 
C urvatu re: 3.748109

S how ing vertex  1 
CurvatUre: 3.748109

(a) Vertex star (b) Projected link

Figure 5.11: Display of the projected link of a vertex.

of normal vectors on the mesh, the display of the indicatrix for a vertex in the left 

viewport, or the PGM in the right viewport. With some modifications the program 

can show only one viewport with either the mesh or the PGM.
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5.5 Solving problems of the Gauss Map using the visualisation

The ability to visually analyse the Polyhedral Gauss Map of vertices is very valuable to 

evaluate the numerical results obtained from the algorithm. It was also used during the 

development of the algorithms to show problems and errors in the computations. Since 

the graphics generated are based on the data structures, they are an entirely reliable rep

resentation of the results obtained. Errors in the display can be traced back to incorrect 

computations.

The first problems detected with the visualisation were the cases when various face 

normals around a vertex would lie in the same plane. This creates degenerate spherical 

polygons, which in the display appear in the opposite side of the sphere as the normal 

vectors.

The multiple cases of arc intersections would also produce visual errors. If the in

tersections at the arc endpoints are not correctly handled, the PGM would show missing 

spherical polygons that were being delimited in the indicatrix.

Initial problems with the splitting of the spherical polygons were identified by visually 

inspecting the results presented by the program. In many cases as well, the spherical 

polygons were drawn on the opposite side of the sphere as the spherical indicatrix. This 

problem occurred when the areas had been given an incorrect sign, and the indicatrix was 

analysed in the inverse order. In this way both the detection of arc intersections and the 

separation of the individual polygons were improved after analysing the images produced.

The solutions to the special cases mentioned in the previous chapter were determined 

based on the visual observations. Such is the case for the ‘figure-8’ vertices and the 

various types of arcs intersections at the location of multiple vectors. The visualisation 

also made clear the condition when positive and negative areas cancel each other, thus 

reducing the total curvature computed for a vertex.

For the application of the curvature for mesh simplification that will be introduced in 

Chapter 6 the visual display of the PGM immediately reflects the changes on the proper

ties of a vertex affected by the simplification. The information of the mesh is recomputed 

after each step and graphically reflects the changes made. The visualisation permits iden

tification of the problem if the decimated mesh is not correctly reconnected. Through 

this procedure, the need for an inverse edge flip function (explained in Section 6.4.1) was 

identified and implemented.
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5.6 Conclusions

We have presented the development of a visualisation program for the Polyhedral Gauss 

Map. The program has been progressively improved to give an accurate representation of 

the spherical polygons on the PGM. The difficulties to generate the spherical polygons in 

OpenGL have been explained, and also the techniques employed to solve the problem.

Spherical polygons are created by the use of clipping planes and a function that gen

erates a rotation matrix to match the X Y  plane in OpenGL space with any plane defined 

by two vectors. Additionally the spherical polygons are triangulated to cope with the lim

itations of the clipping planes. These methods prove to be very effective at reproducing 

all possible spherical polygons correctly.

The interactive capabilities of the program have been presented. The visualisation 

permits selecting the information to be displayed. It shows both the object and the Poly

hedral Gauss Map of selected vertices. Colours are used to distinguish vertices according 

to their type classification.

Graphical visualisation simplifies the understanding of complex concepts, such as the 

Polyhedral Gauss Map. In this particular case even a 2D representation is difficult to 

achieve and is generally incomplete. A 3D display allows viewing the projection of the 

PGM on a sphere from any angle, which gives the user a full scope of the indicatrix 

and the spherical polygons. The Polyhedral Gauss Map visualisation helps to correctly 

identify not only the curvature of a vertex but also to analyse the structure of its star, as in 

the case, for example, of ‘figure-8’ vertices.

The visualisation presented in this chapter is effective and accurate, and allows the 

validation of the numerical results computed by the g au ssM ap  program. The curvature 

measures for any vertex are immediately reflected in the visualisation. This also helps 

with the identification and correction of errors in the algorithm.

5.7 Future research directions

While the program currently allows the user to select the display of positive, negative or 

both kinds of spherical polygons at once, at some points it is helpful to have it show indi

vidual areas identified for the curvature of a vertex. A minor modification to the program 

can be used to show all areas with a slight scaling to separate them from the surface of 

the sphere, so that it is possible to identify them. However this solution is not ideal, as the 

areas often overlap, or become so many that they cannot be shown simultaneously (see 

Figure 5.12).
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Figure 5.12: Separation of the spherical polygons by scaling them by a small factor.

A better solution would be to implement a mechanism to toggle the display of indi

vidual areas on or off. This implies having separate storage for each area, and generating 

individual display lists for each. This could possibly impact the performance of the pro

gram.
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Chapter 6

Triangle mesh simplification using the 
Polyhedral Gauss Map

6.1 Introduction

Many applications of computer graphics rely heavily on polygonal meshes to represent 

objects. They provide great flexibility in representing a variety of shapes, from simple 

to very complex ones, and in varying degrees of detail. Modem methods for generating 

3D meshes of objects involve high definition scanning of data, providing very detailed 

meshes of the source objects. Often this produces an enormous amount of data, which 

is difficult to handle by current computer systems for real time applications. Meanwhile, 

the data acquired with these methods may be redundant or excessive to portray the basic 

shape of the object.

For these reasons, it is desirable to simplify the polygonal geometry in a model. Mesh 

simplification is the process of decreasing the number of components from a polygonal 

mesh, reducing its overall complexity, while at the same time still providing a good visual 

representation of the original object. The necessity to simplify a model may come from 

limited resources: either storage, transmission bandwidth, processing power or the re

quirement to display in real time. All of these problems are solved or lessened by having 

a smaller mesh that still appropriately represents the original object.

Several different techniques already exist to simplify a polygonal mesh. The ap

proaches taken vary greatly from one method to another, however a common trait to all of 

them is that they must identify which parts of the object are important to the shape, and 

which can be safely removed. This is generally done by assigning a relevance weight to 

the elements of the mesh, that is, to vertices, edges or faces. The curvature of an object is 

a good measure of the behaviour of the shape, and thus an important characteristic to con

sider when modifying a mesh model. Curvature can be calculated for the whole object, 

specific regions, or individual vertices or edges.
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The most commonly used measure of curvature in existing simplification algorithms 

is the Angle Deficit method. However, as previously explained, it suffers from not fully 

reflecting the local shape structure around vertices and therefore is not adequately suited 

for decimation based on curvature. This chapter presents the use of the Polyhedral Gauss 

Map method as a better tool to guide mesh simplification algorithms. The Total Absolute 

Curvature thus measured is an ideal measure for correctly determining the importance of 

a vertex for the shape of the mesh. Figure 6.1 shows an example of mesh decimation 

using the TAC.

vertices)

(b) 88.3 % decimation (332 vertices)

Figure 6.1: Triceratops model: shaded (left), wireframe (right).

We present a set of weight values for the vertices of a polygonal mesh to specify how 

relevant each vertex is to the overall shape of the object. All of these weights are based 

on the TAC and in most cases also include the area around the vertex. In general we 

refer to this set of vertex weights as the Weighted Total Absolute Curvature, abbreviated 

as WTAC. These measures weigh the complexity of the vertex with the visual impact it 

has on the overall surface of the object. We present the reasoning behind the selection 

of four different weights, and compare the obtained results when using them to guide the 

simplification process.

(a) Original (2,832
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We also use the TAC to optimise the corresponding region in the simplified mesh after 

a vertex removal by using edge flipping, as presented in (Alboul 2003). This procedure 

ensures a further optimisation of the mesh with respect to curvature, since the higher 

TAC yields more complex mesh geometry. As the TAC of a mesh region is computed by 

summing the TAC of the vertices belonging to this region, our method can be considered 

also as shape-preserving. It emphasises domains of the most prominent curvature of 

the region, that is either positive or negative, while decreasing or completely eliminating 

curvature domains of the opposite sign.

We also compare the results obtained using either the common Angle Deficit method 

or the new PGM. We show how using the TAC curvature improves the results when using 

only the Gaussian curvature obtained with AD. We produce simplified meshes using both 

measures, and the results are compared numerically against the original models to draw a 

conclusion.

The measurement of vertex weights presented here can be applied to various mesh 

simplification algorithms based on decimation or edge collapse to improve their selection 

of the vertices to simplify. To demonstrate the advantages of using the TAC in a simpli

fication algorithm we have implemented a simple vertex decimation program to test and 

compare the obtained results on different models.

The main contributions are the application of the TAC measure to a mesh simplifi

cation algorithm, proving its advantages over decimation algorithms based on existing 

curvature measurement methods. The TAC is also used to optimise the simplified mesh 

by means of edge flips.

The structure of the chapter is as follows: Section 2 presents the existing research in 

the field of mesh simplification. Section 3 shows the selection of the vertex weight mea

sures and compares them. The details of our decimation program are given in Section 

4, followed by experimental results in Section 5. Section 6 deals with potential applica

tions of the developed techniques, Section 7 presents the conclusions and future research 

directions are pointed at in Section 8.

6.2 Previous research on mesh simplification

Extensive research has already been carried out in this field. There are several different 

approaches to simplify a polygonal mesh. The papers (Cignoni et al. 1998) and (Luebke 

2001) review the most important of these methods, and compare their advantages and 

shortcomings.

Cignoni et al. do a comparison of the error difference, from the original models to the
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simplified ones, and the time taken to obtain the results, using several different algorithms. 

In order to achieve this, they created the M e tro  tool (Cignoni et al. 1998), which has 

since been used by others to compare any new algorithms with existing ones.

As explained in these papers, simplification techniques vary in: optimisation goal, 

which can be size minimisation given an error bound, or error minimisation given a target 

object size; local or global optimisation', preservation o f the original object’s topology, 

maintaining the original vertices or remeshing the model. Some simplification methods 

also perform view dependent decimation. That is, a model is decimated more in areas far 

away or hidden from the current perspective. This permits a larger reduction of the mesh, 

but requires that the mesh be re-simplified if the view direction changes.

The algorithms tested in the aforementioned works include Mesh Decimation, Simpli

fication Envelopes, Multiresolution Decimation, Mesh Optimization, Progressive Meshes 

and Quadric Error Metric Simplification. A detailed description of these methods can be 

found in the aforementioned papers. In the tests, Mesh Decimation produces the largest 

error with respect to the original model, although it is by far the fastest algorithm. Other 

techniques perform better in most respects, specifically Quadric Error Matrix (QEM) 

(Garland and Heckbert 1997), which is generally considered as a very effective simplifi

cation method and used as a parameter of comparison for newer techniques.

The first method for decimation was proposed by (Schroeder et al. 1992), and is 

based on progressive removal of specific vertices from a mesh. All vertices are classified 

according to their local topology, and are handled accordingly. Vertices are labelled as 

‘simple’, ‘complex’ or ‘boundary’. Complex ones are generally non-manifold vertices, 

and are left untouched. Simple and boundary vertices are treated differently. Simple 

vertices are further classified according to the number of feature edges connected to the 

vertex. Vertices are selected for decimation according to a distance metric. For simple 

vertices the parameter is the distance from an average plane; for boundary vertices, it is 

the distance to the line connecting the neighbours along the boundary. The vertex with 

the shortest distance is selected for removal, along with the triangles surrounding it. The 

hole produced in the mesh is filled using a recursive splitting of the remaining region into 

triangles. This method generates a subset of the original vertices, not adding any new 

ones. It also preserves the topology of the object.

A scheme to re-tile a polygonal mesh with less vertices was proposed by (Turk 1992). 

Here a new set of vertices is distributed over the original model, the new vertices will repel 

one another to adequately cover the whole surface. Next the surface is retriangulated using 

both new and old vertices to preserve the shape, and later the old vertices are removed.
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An extra step is also included which uses an estimation of the curvature to aid in the 

distribution of the new vertices over the surface.

(Cohen et al. 1998) developed a method to preserve more accurately the appearance 

of a simplified model, by using texture and normal maps, in addition to the polygonal 

mesh. They initially compute the shading colours and the normals of the full model, 

and convert this information into maps that contain this important visual information. 

Then the mesh can be simplified to several levels of detail. Applying the maps with the 

original information will make the model look very similar to the full detail version. The 

main improvement for this method is the texture deviation metric which is used to assign 

texture coordinates to the remaining vertices in their corresponding position with respect 

to previous vertices. This metric can also be used to guide the simplification algorithm.

(Lindstrom and Turk 1998) implemented an algorithm using edge collapses where 

the position of new vertices is obtained from the optimisation of a few simple geometrical 

properties of the local neighbourhood of the edge. They use preservation and optimisation 

of the volume and boundary related to the edge. The same optimisations are used to give 

weights to the edges for the selection of the collapses.

A probabilistic approach is employed by (Wu and Kobbelt 2002) to reduce resource 

requirements of a simplification algorithm. They use a Multiple-Choice Algorithm to 

randomly select a few candidate edges and select from those the best option. This avoids 

having to keep an updated queue of the best possible option at all times. Doing so they 

significantly speed up the simplification process and reduce the memory requirements, 

while obtaining a good degree of simplification, comparable to the QEM method.

In (Kim et al. 2002) a measure based on curvature is used to assign a cost to the 

edges, and to select the ones to be collapsed. The authors make use of both the Gaussian 

and mean curvatures on the mesh. After deciding on an edge to collapse, a new vertex is 

generated in place of the two edge vertices. The location of this new vertex is found using 

a butterfly subdivision mask. Using curvature to decide on the geometry to eliminate, they 

prove that important features of the object are preserved after heavy simplification.

(Hussain et al. 2004) propose a simplification driven by half-edge collapses that 

keep at least one of the vertices of the edge removed. They use a metric based on the 

angle difference from the original faces to the ones that will be created after the collapse; 

effectively an approximation of the curvature of the region, although not very accurate, 

but useful again in preserving important geometry. This implementation competes in 

performance with QEM but claims to require less memory to store data.

Our method can be considered, to a certain extent, as a generalisation of the one
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proposed by Schroeder et al. We also present a novel contribution to the selection of 

vertices, based on curvature measures, used to drive decimation methods. This research 

has been partially presented in (Echevenia and Alboul 2006).

6.3 Curvature as decimation parameter

Most mesh simplification algorithms based on vertex decimation assign a weight to each 

individual vertex, further referred to as the relevance weight, that signifies its importance 

to the shape of the object. If the value is smaller than a certain threshold, then the vertex 

can be removed without significantly altering the mesh, while if the weight is larger than 

the threshold, the vertex must be kept.

The values used as weights for the vertices are different for each implementation, 

but generally are based on the geometrical properties of the surrounding region, such as 

distances, areas or measures of curvature. We present a set of new vertex weight mea

surements to guide the decimation procedure, based on the Total Absolute Curvature. We 

refer to these measurements in general as the Weighted Total Absolute Curvature, denoted 

as WTAC. The WTAC measures consist of multiplying the TAC by some factor that repre

sents the geometrical area of each vertex. Four different weights are tested and compared 

in our decimation program. We first present definitions of the area computations used as 

factors for the WTAC.

Definition 6.3.1. Cone area: We define Tv as the list of the n  triangles in sta r{v ), so 
that t{ G Tu, then the cone area of vertex v  is the sum of the areas of all the triangles in 
star(y), and is denoted as A c{u). Thus,

n

=  y ^a rea (ti) . (6.3.1)
i=l

Definition 6.3.2. Projected area: We define a planar polygon Pu as the projection of the 
link of v  into the plane defined by the vertex v  and its normal vector N „. The projection of 
the vertices in link(u) is obtained according to the method described in Definition 3.4.1. 
The projected area of vertex u is computed as the area of the planar polygon Pu, and is 
denoted as A p(v).

It is possible, however, that the plane chosen for the projection will lead to self

intersections in the polygon Pu, specially when dealing with very complex saddle type 

vertices. In these cases the area computed will be unreliable. In order to overcome the 

aforementioned difficulties and shortcomings related to the determination of the flat pro

jection, we also use the well-known isoperimetric inequality (Osserman 1978) L 2/47r >
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A  (where L  is the perimeter length of the polygon in the plane, and A  is its area) in order 

to get an approximated area of the flat projection. In our case we use as L  the length of 

the link(is).

Definition 6.3.3. Length-area inequality: We define E v as the list of the n  edges in 
link(is), so that e* E E v, then the length-area of vertex is is obtained by using the formula:

Using these definitions of the areas around a vertex, the four versions of WTAC are as 

follows:

6.3.1 TAC weight

This parameter uses exclusively the Total Absolute Curvature of the vertex is as its rel

evance weight, denoted as T A C  (is). In this case other properties of the vertex are dis

carded, and only the curvature has an effect on its importance.

6.3.2 ATAC weight

Multiplication of the TAC by the cone area around vertex is:

This measure takes into account the complexity of the vertex and its visual importance 

in terms of the area and curvature simultaneously. It gives more priority to vertices with 

large incident triangles making them less susceptible to elimination, but those with small 

stars are more likely to be removed.

6.3.3 PTAC weight

Knowing the cone and projected areas we can use a normalised area of is as the parameter 

to multiply TAC:

An important feature of this parameter is that the values of the factor will always lie 

in the half-open interval (0,1]. It is clear that if the vertex is in a flat region, both the cone 

and projected areas will be the same, making the factor 1. If the vertex has a very sharp 

cone, the projected area will be much smaller than the cone area, making the factor close 

to 0.

The PTAC weight therefore considers the local properties of the neighbourhood around 

the vertex, but disregards the size of the region. It ensures that vertices with similar stars

(6.3.2)

ATAC (is) = T A C  (is) • A c (is). (6.3.3)

P T A C  (is) = TAC(is) • 4 4 4 (6.3.4)
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at different scales will be treated in the same way. This may result in the removal of a 

vertex in a relatively flat region that leaves a very large hole in the mesh. Such a hole 

can be difficult to properly retriangulate and lead to a more expensive optimisation of the 

initial triangulation.

As mentioned before the computation of the projected area is not always reliable, 

depending on the plane chosen for the projection of the vertices.

6.3.4 LTAC weight

Using the projected area and the length-area inequality, we establish an alternative version 

of the normalised area:

L T A C M  =  T A C M  ■ p p .  (6.3.5)
A c {v)

This weight measure attempts to solve the shortcomings of the PTAC, by computing 

a planar area by means of the perimeter of the star instead of the projection into a plane. 

This avoids any self-intersections in the projection. In this case the factor is not guar

anteed to lie in the interval (0,1]. However this weight also disregards the scale of the 

neighbourhood of the vertex.

The M e tro  tool was also used to compare the different weights used to guide the 

decimation. Various polygonal meshes were increasingly simplified using the four vertex 

weights. Then each of the decimated meshes was compared to the original. The Hausdorff 

distance is measured as the maximum difference between the original and the simplified 

mesh. A smaller distance indicates a closer shape to the original. Figure 6.2 shows 

the M e tro  results for three different meshes using the various vertex weights. In the 

tables the X  axis represents the number of vertices in the simplified mesh, and the Y  axis 

shows the value of the Hausdorff distance. The Decimation % parameter shown refers 

throughout this chapter to the percentage of the vertices removed during the decimation.

The results from this comparison, both visually and numerically indicate that the best 

results are produced by using the ATAC weight. Using normalised areas, as in the PTAC 

and the LTAC, preserves better the finer detail in the mesh, but produces much larger 

errors in the areas of small curvature. This is due to the fact that areas of relatively 

small curvature will eventually be reduced to a single vertex with small curvature and 

several very large incident triangles. This single vertex represents the shape previously 

represented by the whole region. If it is removed, the appearance of the object is altered 

significantly. This is illustrated in Figure 6.3.
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Figure 6.2: Comparison of the vertex weight parameters: TAC, ATAC, PTAC and LTAC.
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(a) Vertex with many large incident 
faces

(b) Removal of the vertex changes the 
shape

Figure 6.3: Triceratops model simplified with LTAC to 84.4%.

6.4 Implementation of a vertex decimation algorithm

For the purpose of testing the curvature metric on simplification, a simple vertex decima

tion algorithm is used, similar to the one used by Schroeder et al.

The algorithm makes several passes over the whole dataset, removing each time the 

vertex with the smallest weight. After removing the vertex it updates the mesh by re- 

triangulating the ‘hole’ in the mesh. The retriangulation is done in such a way that the 

curvature of the mesh does not increase.

The process of vertex decimation is as follows:

• The polygonal mesh to be decimated is analysed as presented in Chapter 4. This will 

provide the arrays of vertices and faces, the TAC for each vertex and all the extra 

information needed: Angle Deficit, list of triangles in the star, list of neighbours, 

artificial vector normal to the vertex, projection of the neighbours and feature edges.

• After gathering all the above-mentioned information, an extra parameter is assigned 

to each vertex: the relevance weight, described in general as the WTAC. A vertex v 

will be selected for removal if it has the smallest WTAC value from all the remain

ing vertices in the mesh. The WTAC value is computed according to the criteria 

selected. For the special case of vertices on the boundary of an open object, the 

parameter used for selection also considers the Angle Deficit, since the Gauss Map 

area at these vertices can be equal to zero.

• All vertices are sorted by increasing value of the WTAC, to simplify the process of 

selecting the next vertex for decimation. To this end, two new arrays are created. 

One of them has the vertices ordered by WTAC, and includes the vertex ID number 

and the value assigned to it. The other array is ordered by vertex ID numbers, and
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contains the index location of each vertex in the other array. This second array is 

used to simplify searching for other vertices.

Vertices to delete are taken from the top of the array. The removed vertices have 

their index changed to a negative sign, to indicate they are no longer valid for the 

next decimations. After each removal the WTAC array is updated with the new 

values for the affected neighbour vertices. For each of the affected vertices the new 

WTAC value is computed, then the displacement on the array is measured. All the 

entries in the array between the original and new positions are shifted one index, 

and finally the affected vertex is re-inserted in its new position.

•  Two different approaches were taken to updating the geometry of the region around 

the vertex removed. The first method involves removing all the faces incident on 

the deleted vertex and retriangulating the hole left. The second technique is more 

similar to the half-edge collapse, where only two triangles are removed and the rest 

are modified to fill the gaps.

For the hole retriangulation algorithm, when a vertex v  is selected for decimation, 

itself and all the triangles ti E star(v)  are marked as deleted. Then, for each 

Vj E link(i/), the triangles t { are removed from the lists of their corresponding 

stars.

The hole left in the place of star{y) is then retriangulated using the projection of 

the star. The ear-slicing algorithm for planar polygons is used to produce new 

triangles on the projection (Fournier and Montuno 1984), (Elgindy et al. 1989). 

The resulting list of planar triangles is then translated to the coordinates of the 

corresponding neighbours in 3D space, to create a new set of triangles in the mesh. 

Using the projected polygon, the problem of triangulating is significantly simpli

fied over doing it directly in 3D space. However, the same drawback previously 

mentioned is found when the projection plane is not properly chosen and self

intersections occur on the projected polygon. In these cases the computation of 

the area of the polygon will be incorrect and the triangulation will consequently 

produce non-manifolds, which will require a few more tests to identify such oc

currences and correct them, making the program more complex and error prone. 

This problem is recognised in (Lee et al. 1998), and an alternative projection into a 

conformal map is proposed.

To avoid the retriangulation, a second approach was taken, consisting of performing 

half-edge collapses. Here another vertex vc is chosen from the neighbours of the 

deleted vertex v. Only the two triangles that share the edge TnTc are deleted, and
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the rest of the triangles incident on v  are updated to be now incident on vc. This 

automatically takes care of closing the hole, and does not require the creation of 

new triangles in the program. This method is also likely to create some degenera

cies, mainly in the form of adjacent triangles facing opposite directions but lying 

in the same plane. The program will check that two identical faces are not facing 

in opposite directions. There is no check in the case the triangles share only two 

vertices, however these cases are easily taken care of by optimising the curvature of 

the triangulation.

•  Once the initial retriangulation is complete, the curvature data for all the neighbour 

vertices Vj is recalculated using the new triangles.

•  An additional step optimises the resulting triangulation using edge flips. The ob

jective is to reduce the curvature of the proposed triangulation. A list of edges is 

created only for the triangles in the polygon that now replace the previous s tar(y), 

the edges on the boundary of the polygon are then discarded and only the edges 

lying inside the polygon are kept. Each edge structure contains the two vertices that 

define it (its endpoints ve\ and z/e2), the two incident triangles ( / i  and / 2) and the 

two opposite vertices (vopi and ^op2). These elements can be seen in Figure 6.4. For 

each edge, the current curvature is measured as the sum of the curvatures at four 

vertices: the two endpoints and the two opposite vertices. After a flip, the curvature 

of these four vertices is recomputed. The flip is accepted if the sum of curvatures is 

smaller than the original, otherwise the edge and incident triangles and vertices are 

returned to the previous state. This process is repeated until none of the edges will 

flip to a smaller curvature configuration. Further details of the edge flip procedure 

are given in Section 6.4.1.

•  The mesh is now in a stable condition, and a new vertex can be selected for removal.

6.4.1 Optimisation of the triangulation using edge flips

We optimise the initial retriangulation of the hole by using edge flips to minimise the 

TAC of the mesh. This preserves topology as well as the shape up to extreme levels of 

decimation.

The technique of edge flipping was first presented in (Lawson 1972), has been exten

sively explored in (Choi et al. 1988), (Dyn et al. 1993), (Alboul et al. 1999), (Morris 

and Kanade 2000) and (Aichholzer et al. 2002). It has also been studied in (George and 

Borouchaki 2003) and (Aloupis et al. 2004). In this latter work it is proved that it is 

possible to go from any triangulation in the plane to any other using edge flips and point
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moves. (Brink and Alboul 2006) use edge flips to optimise the shape of a polygon mesh 

by minimisation of the Willmore energy, which is a function of the Gaussian and Mean 

curvatures that measures the deviation of a surface from a sphere.

In our implementation, when performing a flip, the opposite vertices are switched with 

the endpoints, and the incident triangles are updated, rotating their vertices in the Counter- 

Clockwise direction. If a flip is found to be invalid, then an inverse flip is performed that 

will restore the endpoints and opposite vertices to their original order. The vertices of the 

incident faces are rotated in clockwise direction to maintain consistency with the other 

edges. This will avoid producing non-manifold edges shared by more than two faces 

(Baerentzen 2006). If the flip is valid, the edges around the incident triangles must be 

updated as well, setting the correct opposite vertices. Also the indices of the incident 

triangles may change and have to be updated too. Figure 6.4 illustrates how the vertices 

and triangles of an edge are updated after a flip or inverse flip.

Ve2 Vop2

Edge flip 
= = >

Inverse flip

Figure 6.4: Edge flip and inverse edge flip of an edge.

Figure 6.5 shows an example of the removal of a vertex and how edge flipping can 

reduce the curvature of the resulting object. In the figure the original mesh is shown to 

the left, followed by two possible retriangulations after the removal of a vertex. Regard

less of what the initial triangulation may be, both results are tested using edge flips, and 

ultimately the program will select the third mesh because of the smaller curvature.

Once a valid triangulation has been obtained, for every vertex Vj the curvature and 

areas are updated according to the new mesh. The decimation procedure then continues 

until a termination condition is met. Otherwise, the algorithm continues until the shape 

of the object is completely lost. In the case of a genus 0 mesh the final 3D figure left is 

a tetrahedron. Termination condition for the decimation can be selected according to the 

requirements of the final mesh. It can be chosen as a maximum value of WTAC of the 

vertices to be deleted. Since all vertices are sorted by their WTAC value, once a certain 

threshold is reached, the decimation stops. Alternatively, the termination condition can be
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(a) Original mesh 
TAC = 13.817166

(b) Before flip 
TAC = 14.177234

(c) After flip 
TAC = 12.566371

Figure 6.5: Comparison of the triangulations obtained after removal of a saddle vertex.

a maximum error difference between original and decimated model, to avoid losing detail 

in the mesh. If the requirement is to reach a certain file size for the model, the limit can 

be set to a decimation percent or a set number of faces/vertices in the final model.

6.5 Experimental results

The resulting simplified meshes generated by the program are also stored as OBJ files 

that can later be compared with the original files, and also be used as input for the Gauss 

Map program to analyse their curvature. By changing the settings of the program, we 

determine what curvature measure will be used (AD or PGM) and also the WTAC for 

each simplification.

Figure 6.6 shows the results of using both curvature measures to decimate a polygonal 

mesh. The top row has the original mesh, while the centre row has the mesh decimated 

using PGM and the mesh in the bottom row was obtained using the AD. In the right col

umn of images all vertices are colour coded according to the value of PGM, shown in red 

for positive curvature, blue for negative, and green for mixed (both positive and negative) 

curvature. Regions of similar curvature can be distinguished where several vertices of 

the same kind are linked together. It is noticeable how the model decimated using the 

AD presents more regions of mixed curvature, which represents irregular geometry. The 

mesh decimated based on the PGM presents more clearly defined areas of either positive 

or negative curvature that mimic those in the original mesh.

We evaluate numerically the benefit of using the PGM instead of the AD to guide a 

mesh simplification algorithm. The decimation algorithm was applied to various models 

using both curvature measures to assign the relevance weight to vertices and to select 

optimal edge flips. In both cases the formula to compute the weight for the vertices is 

the ATAC, but substituting the TAC with the Gaussian curvature and multiplying by the
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(a) Original (11,362 vertices)

(b) 96.8 % decimation with PGM (362 vertices)

(c) 96.8 % decimation with AD (362 vertices)

Figure 6.6: Venus model: shaded (left), wireframe (centre), curvature coded (right).

cone area A c(v). The resulting simplified models were compared using the Metro tool. 

Figure 6.7 shows the results of using the decimation program on three different meshes.

As can be seen from the results, the use of the PGM instead of the AD produces a 

smaller error, and the difference in performance increases as the decimation progresses. 

We have not performed tests to compare the time difference to do similar levels of dec

imation using both measures. Constructing the PGM is more complex than the Angle 

Deficit computation. As we showed above the upper bound for its complexity is quadratic, 

however in practice the algorithm to produce the PGM is close to linear. Currently our 

application computes both the PGM and the AD simultaneously, and thus the time taken 

is the same in both cases.
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Rockerarm model
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Decimation %and vertices
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-♦-AT AC 
AD

Venus model

Decimation %and vertices

Figure 6.7: Comparison of the results obtained using PGM or AD as a measure for curvature in 
decimation.
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During the decimation process the geometric properties of the mesh are altered in 

differing ways. Table 6.1 and Table 6.2 show the values of the curvature as computed 

with the PGM and the AD, total surface area of the object and Hausdorff distance to the 

original mesh. The TAC and the area both decrease with the loss of geometry, but the 

change in the TAC is more dramatic, because it is more sensitive to the changes in the 

geometry of the object. On the other hand, the Gaussian curvature of the whole mesh, 

as represented by the AD remains the same, at a value equal to 47r for closed meshes of 

genus 0.

Decimation Vertices TAC AD Surface Area Hausdorff
0%  

17.60 % 
35.21 %
52.81 % 
70.41 % 
88.01 %
96.81 %

11,362
9.362
7.362
5.362
3.362
1.362 

362

77.045602
69.976640
68.334118
66.487840
63.640547
57.489905
47.290207

12.566380
12.566385
12.566394
12.566390
12.566383
12.566375
12.566365

30.136994
30.136968
30.136956
30.136331
30.136502
30.123395
30.005538

0
0.002301
0.003741
0.004303
0.007639
0.021712
0.076089

Table 6.1: Comparison of the curvature of the venus model with increasing decimation.

Decimation Vertices TAC AD Surface Area Hausdorff
0 % 33,587 730.119954 12.566346 23505.330791 0

11.91 % 29,587 706.423968 12.566354 23505.398398 0.108923
23.82 % 25,587 703.362744 12.566344 23504.541003 0.153921
35.73 % 21,587 652.604403 12.566359 23503.028226 0.164336
47.64 % 17,587 587.653313 12.566370 23501.645275 0.164336
59.55 % 13,587 513.781304 12.566373 23500.950160 0.242121
71.46% 9,587 442.974448 12.566368 23499.417764 0.247055
83.37 % 5,587 340.123710 12.566366 23498.766032 0.390726
95.27 % 1,587 175.379923 12.566375 23450.253691 1.292738
98.25 % 587 71.259997 12.566376 23343.561350 1.499396

Table 6.2: Comparison of the curvature of the igea model with increasing decimation.

Some of the existing mesh simplification algorithms produce a polygonal mesh with 

evenly distributed triangles around the final model, particularly those that re-sample the 

mesh and use new vertices. This presents some advantages, specially for more even tex

ture mapping. However, some of the finer detail is lost from the original shape. The use of 

curvature to drive a simplification algorithm ensures that the reduced mesh will have more 

triangles where the shape changes more rapidly, and less triangles in flatter areas. As an 

example, we use the ‘rockerarm’ model in Figure 6.8. As can be seen in the close-ups 

of the decimated ‘rockerarm’ in Figure 6.9 the finer detail of the model is preserved even 

after several steps of decimation.



(a) Original (10,000 vertices)

(b) 95 % decimation with PGM (500 vertices)

Figure 6.8: Rockerarm model: shaded (left), wireframe (right).

6.6 Potential applications of a curvature guided simplification

The field of medical visualisation can greatly benefit from strong simplification algo

rithms that preserve the features of the object. It is common in medical imaging that the 

capture systems can obtain large amounts of data for an object. Mesh simplification can 

permit a real time visualisation of the data. (See Figure 6.10 for an example).

A simplification algorithm using curvature tends to maintain the shape of an object, in 

particular of curved, smooth surfaces. Most organic material presents this kind of shape, 

and will be accurately simplified using the techniques presented here.

Another field where mesh simplification is extensively used is on video games. These 

require very fast visualisation of objects in motion, and in increasingly complex environ

ments. To make processing faster, it is common to have varying levels o f detail of the 

meshes, which are selected depending on the distance of the objects from the camera. 

Our simplification method can be used to generate several intermediate meshes with in

creasing decimation. Figure 6.11 shows a textured triceratops at three different levels of 

detail.
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Figure 6.9: Detail of the decimated rockerarm model at 95 % decimation.

In (Hubeli and Gross 2000) the focus of the research is on fairing of collections of 

non-manifold meshes. They propose the use of non-manifolds as a more intuitive mod

elling tool for design. They also use mesh simplification to better determine the inter

sections of very complex meshes, and later perform fairing on them. We believe that in 

this case a simplification algorithm that preserves the shape of the separate elements will 

produce better results.

6.7 Conclusions

We have implemented a vertex decimation program that bases its selection of vertices 

for removal on the curvature and area of the vertex. The program progressively removes 

vertices from the mesh, choosing the next vertex with the smallest relevance weight. The 

changes made to the local geometry are optimised using again the curvature measures of 

the affected vertices.

Experimental results have shown how the use of the Total Absolute Curvature of a 

vertex provides significantly improved results in polygonal mesh simplification over the 

use of the more common Gaussian curvature computation. This is due to the fact that the 

TAC provides a more detailed description of the neighbourhood of a vertex and can distin

guish features that Gaussian curvature would not. Both curvature measures are employed 

to assign relevance weights to vertices and to optimise the triangulation of affected areas 

using edge flips.

We have experimented with different parameters to determine the importance of a 

vertex in the mesh. A set of vertex weights based on the TAC were presented, generally 

referred to as WTAC. These involve various measures of the area of the neighbourhood 

of the vertex. From the results obtained, the best overall factor is the one known as the 

ATAC, where the TAC is multiplied by the surface area of the triangles incident on the 

vertex. Other weights are better at preserving the smaller details of the object, but alter
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(a) Original (2,154 vertices)

(b) 85.4 % decimation with PGM (314 vertices)

Figure 6.10: Skeletcilfoot model: shaded (left), wireframe (right).

Figure 6.11: Textured triceratops at three levels of detail. Mesh simplified, from front to back, at 
0, 70.6 and 88.3 % decimation, respectively.

significantly the shape of the object in the regions where vertices have smaller curvature.
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6.8 Future research directions

At the moment the algorithm works progressively vertex by vertex. The next step is 

to move from vertices to regions, by grouping together regions of similar curvature and 

removing all vertices within that region if it has minimal WTAC. The Gauss Map allows 

us to identify such regions. This however would imply a graph theoretical problem to 

navigate around the mesh analysing the regions.

After the removal of a vertex, the current policy for the optimisation of the modified 

region focuses only on minimisation of the local curvature. In some cases this may ac

tually alter the shape of the object, since important feature edges may be flipped for the 

sake of a smaller curvature. It is necessary to identify these edges and ensure they are not 

flipped during the optimisation phase. One way to address this problem is to also use as 

a parameter to select vertices for decimation the difference between the curvature of the 

region before and after the removal of the vertex. This requires extra computational load 

to compute the cost of removing every single vertex, but may produce better results.

Currently the proposed ATAC weight gives the best results, but at the loss of some 

detail in the mesh, while the other three weights tested are better at preserving such detail. 

An implementation that can keep the shape of the object on both large and small features 

would be desirable. This could be possible by selecting an appropriate weight measure 

for each individual vertex according to the properties of its neighbourhood.

An interesting side effect of the decimation algorithm is that the curvature domains of 

an object become better defined after simplification, even in the case of fairly noisy data 

or uneven surfaces. The reduction of complexity in the mesh translates in a reduction in 

the number of curvature domains, and the removal of mixed vertices with small positive 

or negative curvature components. According to our observations, it would be possible to 

use decimation as a preparation step before doing feature identification: the mesh is first 

simplified, then the features regions are recognised on the surface, and finally they are 

related back to the original mesh.

136



Chapter 7 

Conclusions and further research

7.1 Conclusions

This thesis has presented a new method to compute the Total Absolute Curvature of poly

hedral meshes from the Polyhedral Gauss Map. This new technique is analogous to the 

methods to compute curvature for smooth surfaces. As a main contribution, the approach 

introduced here can distinguish between separate signed components of the curvature for 

each vertex. This distinction permits a better characterisation of vertices into representa

tive types, and their correct handling in diverse applications.

Chapter 2 presented the basic geometric concepts used in the computational imple

mentations. It also described the discrete analogues of curvature for the two-dimensional 

case, and exposed the relationship between the curvature and the direction of the angles. 

From these concepts, the definition of Total Absolute Curvature is extracted. It is also 

demonstrated how the curvature of a planar polygon is dependent on the local curvature 

of the deviations from the convex hull.

Chapter 3 introduced the main concepts behind the discrete methods to measure the 

curvature of a surface in space. The concept of Total Absolute Curvature is presented as 

an extension of the Gaussian curvature, using the definitions of positive and negative com

ponents. The Polyhedral Gauss Map is introduced as a method to extract all components 

of positive and negative curvatures from the vertices of a polyhedral mesh. This method 

can characterise any kind of vertex in a discrete surface, including self-intersecting ob

jects. The validity of the curvature computations using the Gauss Map is demonstrated 

for the various types of vertices.

Chapter 4 presented in detail the algorithm used to construct the Polyhedral Gauss 

Map of vertices. The methods and algorithms presented comprise the central contributions 

of this thesis. The methods developed are capable of correctly estimating the curvature of 

a polyhedral vertex of any kind, including non-convex and non-manifold vertices. The

137



main innovations are:

•  The methods to construct the spherical indicatrix of a vertex, by considering the 

connection of the faces around a vertex.

•  The detection of arc intersections in the various cases that occur.

•  The splitting of the spherical indicatrix into individual spherical polygons.

•  The selection of the sign corresponding to each spherical polygon.

•  The measure of the absolute curvature of a vertex as the sum of the areas of the 

spherical polygons in its PGM.

A comparison is made between the use of Total Absolute Curvature versus Gaussian 

Curvature in several practical applications. The PGM presents advantages over AD in 

better identifying features of the shape of an object. This can be used to more adequately 

deal with differently shaped polyhedra.

Chapter 5 describes the techniques developed to visualise the PGM of individual ver

tices and whole surfaces. The main development here is the techniques used to display 

the spherical polygons of complex Gauss Maps. Three-dimensional computer graphics 

are used to generate a practical and interactive tool to study the Polyhedral Gauss Map. 

This can be used to corroborate the numerical curvature measures and to improve the 

understanding of the properties of complex objects.

Finally, Chapter 6 used the example of polygonal mesh simplification to demonstrate 

the advantages of the Polyhedral Gauss Map method over the Angle Deficit on a practical 

application. A vertex decimation algorithm is implemented, which makes use of curvature 

measures to determine the vertices to remove from the mesh. New parameters to assign 

a relevance weight to vertices are introduced. They use combinations of curvature and 

area to give valid weights. Various sample meshes are simplified, and then numerically 

compared with the un-simplified versions. The results obtained show that the use of the 

PGM to select vertices for decimation can preserve better the details of an object without 

altering its shape.

We note that in Appendix A we will report two algorithms developed to fit curves over 

disorganised point clouds. These algorithms are guided by minimisation of curvature and 

other geometric parameters to generate adequate curves where no or limited information 

is available about the source of the data. The aim of these algorithms is the search and 

identification of the parameters that contribute the most to the curvature of a polygon, 

when used as energy functionals for curve reconstruction. These experiments need to be 

extended, to evaluate the usefulness of the algorithms presented therein.
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7.2 Future research directions

The majority of the programs developed for this research have useful potential applica

tions, and need to be extended. This is the case for curve reconstruction (Section 2.4.1), 

face recognition (Section 2.4.2), terrain description (Section 4.5.3) and so on.

Furthermore the computational implementations are not optimal, and would require 

extensive work to interface with other programs. We would suggest the use of optimised 

functions available in a computational geometry repository, such as the CGAL project 

(CGAL Editorial Board 2006), to improve the proposed methods.

Finally, the new measures of curvature using the Polyhedral Gauss Map can be used 

to extend research on optimisation of a polygonal mesh based on curvatures. Measures 

of Gaussian curvature have been used in (Alboul 2003) and (Netchaev 2004) to optimise 

a mesh using edge flips. Using this method, it is common to find vertices with self in

tersecting faces through the middle stages of the optimisation. The better computation of 

TAC should improve the obtained results, even in the case of complex vertices.
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Appendix A 

Curve-fitting over datasets on a plane

A .l Introduction

This chapter deviates from the main research topic of the thesis, but is based on the cur

vature principles studied in it. It presents the experiments performed to analyse the rela

tionship between the curvature and the shape of a polygon in R 2. The concepts of Total 

Absolute Curvature presented in Chapter 2 are applied to solve the problem of curve re

construction from a unorganised point cloud: Given a set of vertex coordinates as input, 

the objective is to generate a simple closed curve that joins all points. By simple closed 

curve we mean it must be possible to go from any point in the data to another by traversing 

the curve, and there should be no self-intersections.

The problem of reconstructing curves arises in various domains such as Computer 

Vision, Computer Graphics, Reverse Engineering, Image Processing, Mathematics and 

Chemistry, among others. The vertex information can originate from various sources, 

such as image processing, medical scanning, physical data or others. In many applica

tions the data are presumed to be taken from a known, often smooth, curve and the task is 

to reconstruct this curve from the given data. In general, the first step of the curve recon

struction process, is to build up a polygonal curve that spans the given data points, in such 

a way that it approximates the original curve in the best possible way. The accuracy of 

this approximation can be measured, for example, by the least square method. The idea 

behind the approximation is that if further processing is made, for example by applying a 

subdivision, the original curve may be completely recovered (Sabin and Dogson 2005).

Our particular focus is on the discrete case of curves represented as polygons, com

posed of vertices and edges. In this chapter, two new algorithms are introduced for the 

generation of polygonal curves. Both are based on the convex hull of the dataset, but

148



differ in the number of deviations permitted. The implementation presented here recon

structs curves by minimisation of various combinations of curvature and distances as en

ergy functionals. The curves reconstructed are evaluated by means of the Total Absolute 

Curvature, presented in the Chapter 2. The objective is to determine which algorithms 

and parameters are better suited to reconstruct particular curves, for the cases when some 

information is known about the source of the data.

The idea behind minimisation of a certain energy is to obtain a fair curve, i.e. a correct 

representation of the underlying real continuous curve. However, the ‘correct’ curve is 

often not defined. Another problem is that energy functionals can have multiple local 

minima. In general, any local minimum of energy is considered as a solution to the 

optimisation problem, mostly because the global minimum is hard to reach. However, the 

global minimum might also be not unique, moreover, it might be far away from the input 

configuration (Friedel et al. 2003). A local minimum, which is as close as possible to the 

initial configuration, might be more meaningful.

Three algorithms are used to produce curves with different parameters and restrictions:

•  Simple closed curves: Created with a basic algorithm using the principle of orien

tation. This method permits the creation of several different curves from the same 

data. It does not incorporate any optimisation, and may produce polygons of large 

curvature.

•  Curves with only one deviation from the convex hull: This is done by recursively 

creating nested convex hulls and later joining them together in a single curve, using 

different parameters to identify where to join the hulls. The aim of this approach 

is to minimise the number of deviation vertices and find out how this affects TAC. 

This algorithm represents a new contribution on curve-fitting algorithms.

•  Curves with several deviations from the convex hull: The CH-curve is obtained 

first, using the method described in Chapter 2, and the remaining vertices are added 

to the curve one by one by minimising an insertion cost. The cost is assigned to 

vertices depending on where they will be inserted. The insertion cost is obtained 

from various combinations of geometrical parameters of the curve. This method of 

adding vertices to the convex hull is also considered as a new contribution.

All three algorithms presented are susceptible to certain kinds of self-intersections 

during the reconstruction process. This chapter describes the methods developed to detect 

such intersections and correct the curve. These methods vary according to the algorithm 

used.
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The research in this chapter has been partially presented in (Alboul et al. 2004a) and 

(Alboul et al. 2004b).

A.2 Previous research on curve reconstruction

An important characteristic used to classify curve reconstruction algorithms is the sam

pling rate required to produce an adequate result. Some algorithms take data sampled 

at regular intervals from the original source. Others require only non-uniform sampling, 

that is, few points have to be taken from straight parts of the original curve, and more 

points are needed from sharp comers.

Many algorithms are based on the computations of the Voronoi diagram and the De

launay triangulation. For example the algorithms of Crust and J3-Skeleton, described in 

(Amenta et al. 1998) as:

•  Crust algorithm: Given a set S  of points in the plane and let S ' be the union of S  

with the vertices of its Voronoi diagram. An edge in the Delaunay triangulation of 

S ' belongs to the crust of S  if both of its endpoints belong to S.

•  /^-Skeleton algorithm: Let (3 >  1 be a constant. Let p  and q be a pair of points in 

the plane at distance \p — q\. The edge pq is in the /2-skeleton if the union of the 

two balls of diameter /2|p — q\ tangent to p and q is empty. It was first described 

in (Kirkpatrick and Radke 1985), and here an adequate value for (3 was chosen to 

obtain correct reconstmctions.

The authors also define the concepts of medial axis and feature size. The medial axis of 

a curve is the set of points on the plane which have more than one closest point in the 

curve. The feature size is defined for each point in the curve as the distance to the closest 

point in the medial axis. These algorithms depend on a certain sampling rate of the data 

to produce a good reconstruction. The sampling rate is chosen as a value dependent on 

the feature size.

In his PhD thesis, (Giesen 2000) does a review of the existing algorithms for the recon

struction of a curve in 2D and presents a new approach that is a mixture of other methods. 

He gives mathematical proofs of the most important geometric properties of curves: the 

measurements of length and curvature. He classifies curve reconstruction algorithms into 

filter or optimisation techniques. Filter techniques are those which construct a curve out 

of a subset of the Delaunay graph, such as the Crust and (3-Skeleton algorithms. Giesen 

proves that these algorithms are not reconstruction schemes for polygons, that is, they will
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not correctly reconstruct curves which have sharp comers at some vertices. This is be

cause at this points the medial axis crosses the curve, requiring near infinite sampling near 

comer vertices. Optimisation techniques include Minimum Spanning Tree and Travelling 

Salesman Path, and these are proven to be reconstruction schemes for curves, but not for 

polygons. He proposes a new filtering technique called A -Filter to be used together with 

an optimisation technique to drive a more robust curve reconstruction algorithm, where 

the filtering stage would identify independent clusters of points and then the optimisation 

algorithm will do the reconstruction for each of those clusters.

(Kindratenko 1997) studies image analysis for the purpose of identification of micro

scopic particles. The Part 2: Shape analysis, does an extensive review of the methods used 

to obtain further information from the boundary of an object. The contour of the object 

is treated as a 2D continuous curve. The author describes several different approaches to 

shape analysis. Th & functional approach consists of identifying a function that represents 

the shape of the object, with the advantage that the correct function can simplify the data 

representation of the object, and be used to obtain further information about the object. 

The set theory approach is based on common geometric properties of an object, combined 

together for further insight on the properties of a curve. The basic parameters used are 

area, perimeter, the diameters of circles with the same area or perimeter as the curve, or

thogonal projections of the shape on the X , Y  or other significant directions, diameters of 

the figure, the convex hull, radial distances from an arbitrary centre of the figure, lengths 

of the semi-axes the ellipse with the same area and perimeter as the original curve, and 

several other measures. All these are also combined to obtain aspect ratios with different 

applications.

(Dey and Wenger 2000) propose a method that is capable of reconstructing curves 

with very sharp comers. The sampling rate they define is dependent on comer vertices. 

Additionally a normal for each vertex is computed, and vertices are connected with the 

two neighbours at either side of their normal. Some heuristic restrictions make this ap

proach robust even at sharp comers.

The Travelling Salesman Path (TSP) is another common algorithm for curve recon

struction, where all vertices are inserted by selecting the next closest point to the partial 

curve under constmction. Normally TSP algorithms have two main drawbacks:

•  They treat the whole dataset as a single object and do not identify separate compo

nents.

•  They are very sensitive to noise in the data, since they blindly incorporate all points 

into the reconstmcted curve.
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The paper (Althaus and Mehlhom 2000) shows that under certain sampling conditions the 

Travelling Salesman Path can be obtained in polynomial time. The methods proposed in 

the following sections are all designed to generate a simple closed curve that includes all 

vertices in the dataset. They can be seen as a specific class of TSP algorithms, with the 

main difference being that our methods begin the reconstruction from the convex hull of 

the dataset.

A.3 Details of the implementation

For the purpose of testing the curve-fitting algorithms, a computer program was devel

oped, called r e c o n s t r u c t o r .  The program will receive a set of vertex coordinates, 

and produce as output a curve that fits over the dataset received. The program allows the 

user to select among various algorithms and minimisation parameters to generate differ

ent curves. The resulting polygons are evaluated in terms of their curvature, perimeter 

and area. This section describes the data structures, input and output files used in the 

r e c o n s t r u c t o r  program.

A.3.1 D ata input

The program takes as input a text file with the NODE format, which specifies the number 

of vertices, and the coordinates of each of them. It does not provide other information on 

the structure of the data. The format of the file is:

•  The first line contains an integer indicating the number of vertices in the sample, and 

optionally another integer representing the number of coordinates of each vertex.

•  Each line after that contains the floating point numbers, representing the X , Y  and 

Z  coordinates of the vertex. Since the program currently only works with vertices 

on the plane, the values for Z  can be omitted, and will be assumed to be equal to 

0.0

Example:

10 2 
-4.5 -2.0 oo

-1.5 -2.0 0.0IT)\—1 1 1.0 0.0
1.5 1.0 0.0
1.5 -2.0 0.0

-4.5 2.0 0.0
-1.5 2.0 0.0
1.5 2.0 0.0
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4.5 2.0 0.0
4.5 -2.0 0.0

After reading the input file the vertices are stored in a list, ordered according to their 

X  coordinate in ascending order; that is, vertices are sorted from left to right. If more than 

one vertex has the same value for their X  coordinate, then they are ordered by increasing 

value of Y . This ordering step facilitates the construction of curves, guaranteeing that the 

first vertex in the list will be located in one of the comers and will belong to the convex 

hull (de Berg et al. 1997). Also as the list is traversed the vertices will go from left to 

right on the plane, simplifying the process of finding the next vertex to add to a curve 

when using certain algorithms.

It is always assumed that no two vertices will have the same coordinates. In its current 

state, the program does no check for duplicated vertices. In such a case the program will 

treat the vertices separately, which will lead to the curve having self-intersections.

A.3.2 Program  output

The program generates various curves, according to the algorithm chosen. All curves are 

represented internally as an ordered list of vertices, with Counter-Clockwise orientation. 

The r e c o n s t r u c t o r  program can display the resulting curves using OpenGL, showing 

the vertices and the segments that join them. It will also show the measurements obtained 

for each curve.

Additionally, the best curve generated will be saved as an OFF file that can be read 

using the Geomview program (Geomview 1996). This file contains the coordinates of the 

vertices, plus the edges that make up the curve represented as pairs of vertices. A sample 

output file looks like this:

OFF
8 8 0
4.000000 0.000000 0.000000
0.000000 4.000000 0.000000
-4.000000 0.000000 0.000000
-0.000000 -4.000000 0.000000
1.131371 1.131371 0.000000
-1.131371 1.131371 0.000000
-1.131371 -1.131371 0.000000
1.131371 -1.131371 0.000000
2 2 6 
2 6 3 
2 3 7 
2 7 0 
2 0 4
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2 4 1 
2 1 5
2 5 2 .

The format of these files is the following:

•  The first line is a header, indicating the file type as an “OFF” file.

•  The second line contains the number of vertices, faces, and edges in the object.

•  The first data section contains the X , Y  and Z  coordinates of the vertex.

•  The second section has the faces, indicating first the number of vertices of each 

face, followed by the indices of the corresponding vertices.

The OFF format is generally used for 3D geometry, specifying the faces as triangles 

or quadrilaterals delimited by three or four vertices. In our application, however, we 

delimit the faces by two vertices and Geomview will display the faces as line segments 

and appropriately show the result as a discrete curve.

The following sections present the several curve-fitting algorithms. We use the data 

samples shown in Figure A. 1 to demonstrate the curves produced by each algorithm. The 

TAC of all the generated curves are shown for reference. TAC is measured as an angle in 

radians, and shown as a decimal number. The datasets consist of the following:

(a) Five independent circles. Figure A. 1(a)

(b) Two non-smooth curves. A semicircle on top and a curve with a sharp angle in the 

shape of the letter “v”. Figure A. 1(b)

(c) Points sampled from an hypotrochoid (Weisstein 1999a). The formulas used to 

create the data are:

(A.3.1) 

and

y  = (r2 -  ri)  cos 0 — c cos ^ ’ (A.3.2)

with ri =  0.5, r 2 =  1.5 and c =  0.7. Figure A. 1(c)

(d) The vertices from two triangles and one hexagon nested within each other. Fig

ure A. 1(d)

A.4 Simple closed curves by orientation

The first curve-fitting algorithm is used as a reference point to compare the new algo

rithms. The vertices in the dataset are added to the curve in a specific order, determined
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Figure A. 1: The four datasets used for the curve reconstruction algorithms.

by sweeping a line over the point cloud in Counter-Clockwise direction, and inserting the 

vertices as they are covered by the line. The implementation of this algorithm is very sim

ilar to that of the convex hull, explained in Section 2.2. However in this case the reference 

point vr remains the same during the construction of the whole curve.

Given a dataset V  consisting of n  vertices, the algorithm selects a vertex vr G V  as the 

reference point, and then finds a line that passes through vr and has all of the remaining 

points in the dataset on one side. This line is chosen as the reference axis, and represented 

as A r . The order in which new vertices are inserted into the curve is determined by the 

angle formed between the reference axis and the line segment V~Ui joining each vertex z/* 

with the reference point vr. The point with the smallest angle is the next one added to 

the curve (see Figure A.2). This is equivalent to rotating the reference axis 360 degrees 

around the reference point in a Counter-Clockwise direction and adding vertices to the 

curve in the order in which they are found as the line sweeps the plane.

Instead of computing the angles for each vertex, the concept of orientation is used 

to find the next point to add. At each moment considering only the points not yet allo

cated into the curve, the vertex with the smallest angle will be the one whose orientation 

with respect to all other vertices is Counter-Clockwise. A line joining this point and the

Figure A.2: Generation of a simple closed curve based on orientation.



reference point will always have all the remaining vertices on one side.

Since the reference point remains the same during the whole process, given a dataset 

V  consisting of n  vertices, the algorithm can generate n  different curves P r (V), by se

lecting each individual vertex as the starting reference point vr. Each of these curves is 

stored in an array. After all the n  curves have been generated, the program will compare 

the curvatures and present the polygon with the smallest curvature. All the other curves 

can also be displayed for reference.

The program makes use of two lists of vertices: Xp contains all the pending vertices not 

added yet to the curve, ordered by increasing values of the X  coordinate, and Ac has the 

ordered list of vertices that already belong to the new curve P r (V). Initially Xp contains 

all vertices in V , and Ac is empty. As the algorithm progresses, vertices are removed from 

Xp and inserted into Ac in the corresponding order. Algorithm A .l shows the pseudo-code 

of the method to select the order of insertion of the vertices.

Algorithm A .l Curve-fitting based on orientation.

For each vertex isr £  V  
{

Create list Xp with all vertices in V. 
failed  <— FALSE.
While Xp not empty
{

Get next evaluation vertex ve £ Xp.
For each vertex Vi £  Xp 
{

Get orientation p(ve) from the vertices (vr, ve, Vi). 
If p =  C W ,  then

failed  <— TRUE.
If p = C O L  and d(vr, i/*) <  d(vr, ve), then 

failed  <— TRUE.
}
If not failed, then 
{

Insert ve in Ac.
Remove ve from Xp.

}
}

}

For the computational implementation two techniques are used to simplify the algo

rithm and reduce the number of comparisons made:
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1. When evaluating a point ve to determine whether it should be added to the curve 

next, all the points that have already been discarded as the new insertion vertex are 

no longer considered when testing other vertices i/*. This permits the algorithm to 

obtain curves with no self-intersections even for points that are inside the convex 

hull of the dataset, since it will ignore some of the points, facilitating the identifica

tion of a reference axis to begin the creation of the curve.

2. Since this is a greedy algorithm, the first point that satisfies the condition of having 

CCW orientation with respect to all other vertices in Xp will be inserted into the 

curve, and the rest of the points are not tested, even if they would be a better op

tion. This last condition, coupled with the previous assumption, can produce special 

cases in which self-intersections may occur, when vr does not belong to the convex 

hull. These cases are dealt with in a special way.

This algorithm is simple to implement and also very fast even for large datasets. It will 

produce a valid closed curve for each of the points in the sample. However, it includes no 

restrictions for the shape of the curve produced. In many cases the generated curve will 

be very irregular, especially in the vicinity of the vertices most distant from vT. Because 

of this, the curves constructed are generally not optimal, and their curvature may be very 

large.

There are several cases in which self-intersections can be produced when more than 

one vertex in the dataset are collinear with the reference point, and also when the reference 

point does not belong to the convex hull of the sample. For some of these vertices it will 

be impossible to find a reference axis that contains all of the remaining vertices on one 

side. This is solved by ignoring some of the other vertices before establishing a reference 

axis.

A.4.1 Self-intersections

There are four different cases for self-intersections caused by collinearity, and each is 

handled independently:

•  Groups of vertices collinear with vr are situated in the middle of the dataset: These 

create an ambiguity in the basic algorithm, because all the collinear points will have 

the same angle with respect to the reference axis. In these cases the point that is 

closest to vr is inserted first. This case is exemplified in Figure A.3

•  All the vertices at the end o f the dataset are collinear: This happens when more 

than one vertex are left in Xp and all of them are collinear with vr, as shown in
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"v A r

Figure A.3: Special case of vertices collinear with ur.

Figure A.4. In these cases the order of the vertices in Xp must be reversed, thus 

giving preference to the points that are farther away from ur. When these cases are 

identified, and after the algorithm has proposed a point ve to be added next, another 

function validates whether ve is the one farthest from vr, and if not then the point 

with the largest distance to vr is returned instead.

Figure A.4: Self-intersection caused by collinear points at the end of the dataset.

•  Collinear vertices parallel to the X  axis are at the rightmost of the dataset: Since 

the vertices are ordered by increasing X  value, all of the points with the same X  

coordinate will be grouped together in Xp, and the last of these points will also have 

the highest value for Y . When there are more than two collinear vertices at the end 

of the dataset and vr is neither the first nor the last of these points, there will be a 

self-intersection. The normal algorithm will discard all of the vertices before the 

final group of collinear points, and then tests these vertices against themselves. The 

result is that these points will be added to the curve before any other, and since the 

reference point is in the middle, the new segments will eventually overlap, as shown 

in Figure A.5.
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Figure A.5: Self-intersection caused by collinear points at the right of the dataset.

To solve this problem, the X  coordinate of the reference point is compared to that 

of the last vertex. If they are the same, then all the points also having the same X  

value are moved from the end of the list to the front, except for the last point. This 

will cause the algorithm to test those vertices against more points, and discard them 

early on, so they will not be inserted into the curve until the end. The drawback of 

this technique is that these points will be tested each time, only to be rejected again.

•  Reference point does not belong to the convex hull: This special case was men

tioned earlier. The cause of this problem is that the algorithm will always insert the 

first vertex that satisfies the required conditions, regardless of whether other vertices 

are better options. This will produce a self-intersection if the first point chosen for 

insertion is to the left of the reference point, as shown in Figure A.6.

To solve these cases, it is necessary to force the algorithm to always choose the first 

point to be either below or to the right of the reference point. This check will be

/
/

/

Figure A.6: Self-intersections in the curve created.

159



enforced until the next vertex us inserted is to the right and above vr. After inserting 

va it is safe to add points to the left of vr without producing self-intersections. The 

points that are discarded because of this condition are also moved to the beginning 

of Xp, so that they will not be eligible again until the end of the algorithm.

Figure A.7 shows the results of using this algorithm on the datasets presented before. 

For each dataset a curve was generated for every vertex. In the figure only the curve with 

the smallest curvature is shown.

9  > -
(a) TAC = 105.495 (b) TAC = 14.555 (c) TAC = 49.998 (d) TAC = 16.543

Figure A.7: Curves obtained using the orientation algorithm.

A.5 Curves with one deviation from the convex hull

An algorithm proposed for creating curves with small curvature is to reconstruct them 

starting from the convex hull and allowing only one deviation with respect to the convex 

hull. In a curve with one deviation, only one of the segments of the convex hull will be 

open and all other points inside will be connected to the convex hull through that single 

gap. This would minimise the amount of deviation vertices.

The approach taken to link all internal points in a single deviation is to iteratively 

generate convex hull curves with the remaining points within the previous convex hull. 

This will produce a number of nested convex curves as shown in Figure A.8. Each new 

inner hull is identified by an index, referred to as the layer depth of the hull, where the 

outermost layer is number 0, the next one has depth 1, and so on until the final layer k. 

We will refer to these nested hulls as such: CH0, C H i , ... , CHk. Figure A.9 shows the 

layers in the sample datasets being used. Inner layers have a lighter colour.

All of these layers are joined together to form a single curve by inserting the whole 

list of vertices of an inner layer into the outer layer. To obtain a correct ordering for the 

vertices in a single curve, the vertices in the list of an inner convex hull must be in the 

inverse order as the vertices in the immediate outer hull. In this implementation the even 

numbered layers will have a Counter-Clockwise orientation, while the odd numbered
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depth 2

depth 1

depth 0

Figure A.8: Nested convex hulls of a dataset.

f W )
♦  ♦  
♦ ♦ ♦ ♦ ♦ w CJ&
(a) (b) (c) (d)

Figure A.9: The four test datasets showing the layers with different colours.

ones will be oriented Clockwise.

New inner convex hulls are inserted between segments of the outer hulls. The two 

segments where the insertion is done are removed, one from the outer and one from the 

inner hull. These are called blank segments. Afterwards two new segments are created to 

join the now open curves, and these are called link segments.

The curve being generated has an associated list of all the blank segments that have 

already been removed. Each time a new inner hull is inserted in the curve, there are two 

more entries in the list of blank segments, one for each of the hulls involved in the linking 

(see Figure A. 10). When all the layers have been added there will be two blank segments 

for each layer, except for the first and the last one, which only have one blank segment.

The link segments used to join outer hulls can be eligible to insert the new inner layers 

on them and become in turn blank segments. In this way a curve can be generated with 

the minimum number of link segments, thus generating curves with smaller curvature (see 

Lemma 2.4.3 in Chapter 2). However inserting new vertices at previous link segments can 

produce self-intersections in the curve. These cases must be verified before continuing 

adding more inner hulls. We explain later how to deal with these self-intersections.

To keep track of the segments that have been removed from each convex hull, there is
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Link segments 

Blank segments

Figure A. 10: Breaking the hulls at blank segments and joining them with link segments.

another list that contains segment structures for each of the depth levels. As the convex 

hulls are iteratively created, all the vertices are registered with the depth level to which 

they belong. This is used to identify when a new link segment is going over one or more 

intermediate hulls, when validating the curves generated. The method to build curves 

with one deviation is outlined in Algorithm A.2.

An important feature of this approach is that every time an inner layer is inserted, 

several possible curves can be generated, depending on the insertion points. Even by using 

varying parameters for selection, it is possible to find various points that produce the same 

initial results. As new hulls are inserted, the number of curves available branches out in 

a tree-like manner. Consequently, a large amount of curves can be generated from the 

same data. The program can find several of these curves, but is limited by the increasing 

memory requirements as the data grows. Some solutions have been proposed to limit the 

number of options available and are described later. The drawback is that the minimisation 

of parameters will be local, and the final solutions found may not be the optimal ones.

We implement two different methods to identify where to insert the inner layers into 

the outer curve: by measuring the distances between the layers or the angles formed by 

the new link segments.

A.5.1 By distances

For this method we pick the vertices closest to each other in contiguous layers, and insert 

the inner hull after the closest vertex of the outer layer. To compare the distances, all the 

vertices in either of the two convex hulls can be used as the reference. By using the hull 

with the most vertices we can measure all the distances in a single pass, and have the most 

options available for the insertions.

Using the sample data from Figure 2.6, we can determine two layers as shown in 

Figure A .l l ,  C H 0  =  {z^, v2l Vz, ^4 , ^5 , M  and C H i =  {z/7, v8, i/9}.
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Algorithm A.2 Curve-fitting with one deviation.

Ap <- G V . 
k < - 0.
While Ac not empty 
{

CHk <- v  e C H ( \ P).
CH(XP). 

k *— k + 1 .
}
Xc <- CH0.
For each pair of convex layers C H k and CH k+i 
{

'Wmin * 
index  <— 1 . 
i <— 1 .
For each segment G C H k

{
Compute cost /(z) of inserting C H k+i in z ^ + i .  
If /(z) <  wmin, then
{

^min < f  (O '
index  <— i.

}
i <— i +  1 .

}
Insert CHk+i in Ac after vertex index.

}

^5

Figure A .ll:  Dataset with two layers of nested convex hulls.

The smallest distance between vertices of different layers is d(v4, is9), so the points 

of C H i are inserted in the segment F4F5 . When inserting them into the outer hull, 

the resulting closed curve will consist of the vertices in the following order: P (V )  =
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{^i, ^2 , ^3 j ^4 ? Vi, ^5 5 ^6 > ^i}- Note that the order of the vertices in the inner layer 

was changed, to maintain the general orientation of the curve. Figure A. 12 shows the 

resulting polygon.

z's

Figure A. 12: Convex hull layers linked to form a single curve.

In this example, there would be two new entries into the blank segments list, which 

would be segments F4F5 of the outer hull, and Fpv ° f  the inner one. The new link seg

ments are i/4 z/ 9 and v5is7. While the first of these segments has the minimal length, the 

length of the latter one is not considered.

There is a variation of this method, where the distances of both new link segments are 

added and used to do the selection of the insertion point. Figure A. 13 shows the curves 

obtained using only one distance to join the layers, while the curves in Figure A. 14 make 

use of two distances to determine where to join the hulls.

(a) TAC = 47.647 (b) TAC = 13.356 (c) TAC = 40.387 (d) TAC = 15.577

Figure A. 13: Curves with one deviation. The layers are joined using one distance.

Since this method relies on the distance between vertices of different hulls, it will not 

obtain all possible curves with one deviation for some datasets. It is possible for pairs of 

vertices in two layers to be so far away that they will always be discarded, even if joining 

the hulls at those vertices may prove to generate a polygon with smaller curvature, as in 

the example shown in Figure A. 15.
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9 ^ 1

(a) TAC = 56.259 (b) TAC = 13.356 (c) TAC = 44.693 (d) TAC = 15.577

Figure A. 14: Curves with one deviation. The layers are joined using two distances.

Point too far

Figure A. 15: Curve not found by the algorithm.

There are three possible scenarios for self-intersections, which must be considered for 

this algorithm. There can be self-intersections between the new link segments joining two 

convex hulls, or the link segments could intersect either the inner hull or, when joining 

two non-contiguous hulls, any of the intermediate hulls.

A.5.2 By angles

The other method for joining the concentric convex hulls is to measure the angles in the 

interior of each hull, always looking for the ordering of the vertices that will produce the 

least curvature. This will ensure a small curvature overall for the whole curve, once all 

the inner hulls have been integrated into the curve.

The vertices in a closed curve are considered as an open curve, with one segment 

missing from the hull. The sum of the angles for these curves is computed, each time 

removing a different segment from the hull. Finally, the curve with the smallest curvature 

is chosen to be inserted into the outer hull (see Figure A. 16).

Other two angles are of importance when inserting the minimal curvature curve into 

the outer hull. Those are the angles at the joining vertices. They must also be minimised 

in order to obtain the curve with the least curvature.
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Smaller
curvature

Figure A. 16: Joining hulls by angles, the curve with the smallest curvature is chosen.

This latter condition can also lead to curves which have self-intersections, since the 

segment which minimises the angle of the new linking segments may be in the opposite 

side of the outer hull, creating self-intersections, as in Figure A. 17.

Figure A.17: Self-intersection when joining two hulls.

The algorithm creates other curves as well to have more options in the case the optimal 

segment to join the hulls produces such a self intersection. These other curves may not be 

locally optimal but have no self-intersections.

Since this approach relies on minimisation of the angles, it is capable of finding curves 

with curvature smaller than using distances to join the layers. However only the angles 

forming the curvature of the inner hull are minimised, while the angles at the link seg

ments may be non-optimal, and can increase the curvature of the final polygon. Examples 

of obtained curves using this algorithm are shown in Figure A. 18.

It is possible to reduce the number of curves generated with this algorithm by also 

considering the angle of the vertices that join two hulls. This will find the best curve that



(a) TAC = 50.548 (b) TAC = 13.093 (c) TAC = 48.337 (d) TAC = 15.577

Figure A. 18: Curves with one deviation. The layers are joined using two distances.

can be produced at each level depth, but will ignore other alternatives. Doing this it is 

possible that in future iterations a self-intersection will be found, caused by a previous 

choice. Unless previous choices of curves are stored, the algorithm has no means of back

tracking, meaning some datasets would not produce a valid curve at all when performing 

this kind of simplification.

A.5.3 Self-intersections

For the single deviation technique, three cases were found which could produce self

intersections in the generated curves:

• Segments linking the same hulls

When joining two contiguous convex hulls, the two segments linking them could in

tersect each other in some special cases. This is solved by testing for an intersection 

of the two segments, and discarding the resulting curve.

In the example of Figure A. 19, C H 0 is formed by the sequence of vertices from 

Ui to z/6, while CHx is made up of vertices and i/8. The segments that link both 

hulls are and i/8i/4, and they create a self-intersection.

j ^8 *  ̂  y ^ 7
I
1 I
I

(I---------------- 1------------- 4 "'I.
vx v2 vz

Figure A. 19: Intersection of the link segments joining two layers.

• Intersection of the inner hull
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In some cases, the link segment may come across another segment of the inner 

hull. If the inner hull will be inserted after vertex vQ\ of the outer hull, then Vo\v0i 

is the blank segment that will be removed from the outer hull when inserting the 

inner layer, and the inner hull will be inserted between the vertices vQi and vo2 by 

new link segments. For example, in Figure A.20 C H i =  {z/i, i/2, . . . ,  vn- i i  vn} 

and the new link segments are Voi^i and z/n^o2. Since u0\ and v\ are the closest 

points, their segment will not intersect any other, however the segment VnV02 can 

have intersections.

Figure A.20: Intersection of the inner convex hull with a new link segment.

To detect this kind of intersections, a triangle is formed using vertices: v0\, vo2 and 

vn (see Figure A.21). It is then tested whether t/n- i  lies inside or outside of this 

triangle. If it is inside there will be a self-intersection at some point in the inner 

convex hull.

Figure A.21: Test triangle to identify self-intersections.
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There are also some special cases when some of the vertices involved are collinear. 

In these cases, the order of the vertices is obtained from their distances. If the 

vertices lie in an incorrect order, then the linking segments may touch each other, 

producing an invalid curve.

• Intersection with interm ediate convex hulls 

When there are three or more layers, it is possible that the endpoints of new link 

segments do not belong to contiguous layers. This happens when the segment where 

an inner hull is inserted into the curve is itself a link segment of outer layers. In such 

cases, a new link segment may go across one or more of the intermediate layers and 

produce an intersection.

Because of the ordering of the vertices and hulls, this kind of intersection occurs 

only for the link that goes back from the inner hull to the outer one. The first point 

in the inner hull is always connected to a point in the immediately outer hull (see 

Figure A.22).

Blank segm en ts

Figure A.22: Intersection of an intermediate convex hull.

There are valid cases where the link segment goes across several layers without 

producing self-intersections. This happens when the link goes through a blank 

segment that was removed when linking the previous layers. Thus the list of blank 

segments is used to identify this kind of self-intersections. When two hulls need to 

be linked across several intermediate layers, the new link is tested for intersection 

with the blank segments of the outer layers. If they intersect, then the new link will 

pass through an empty space, and thus will not produce a self intersection on the 

curve. Otherwise, if the new link does not intersect with the empty segments of 

all the convex hulls it crosses, then we conclude there will be a self-intersection at
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some point.

For each depth level, there are two entries in the blank segment list, but only the 

segment that corresponds to the link with the outer hull is tested, since the space left 

by this removed segment is the one that a new link can safely use without producing 

a self-intersection.

The endpoints of the blank segments are not considered when testing for intersec

tion with the segments, since those vertices belong not only to the blank segment, 

but also to some other segment. If the new link passes over such point, then it will 

create a self-intersecting curve, as in Figure A.23.

Self Intersection with 
segment endpoints

Figure A.23: Intersection of an intermediate hull at one of the vertices.

A.6 Curves with multiple deviations

The second new algorithm generates curves with multiple deviations using the convex hull 

as the starting point, and subsequently adding all of the remaining vertices individually. 

We use several different parameters to assign an insertion cost f ( y )  to every vertex with 

respect to each segment of the curve where it can be inserted. Vertices with the smallest 

cost are inserted first.

The algorithm begins from the convex hull of the dataset, as explained in Section 2.2. 

The vertices that do not belong to the CH-curve are kept in the list Xp. Initially the list 

for the new curve Ac is a copy of the CH-curve. Then each one of the remaining vertices 

is tested for insertion at every segment of the current curve Ac. Algorithm A.3 presents 

this curve-fitting method. The combination of a vertex z/e and a segment 1 with the 

smallest cost identifies the next vertex to be inserted and the location in the curve where 

it will be added. The vertex is then deleted from the list Xp, and inserted into the final 

curve list Ac. This continues until all the vertices in the dataset have been added to the
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final curve.

Algorithm A.3 Curve-fitting with multiple deviations.

Ac <- V  £ C H (V ).
A C H ( V ) .
For each vertex ve £ Xp
{

W m in * GO.

index  1. 
i <— 1.
For each segment Tw+T £ Ac 
{

Compute insertion cost f ( v e) for ViVi+1 . 
If f ( v e) < wmin, then
{

'Wmin * f{y e )‘ 
index  <— i.

}
i <— i +  1.

}
Insert ve in Ac after vertex index.
Remove ue from Xp.

}

Every time a new vertex ve is added to the current curve at a location i, the insertion 

segment ViVi+\ is removed. It is replaced by two new link segments, joining the vertices 

and vei/i+i. Both of the new segments must be tested for intersections, either with the 

rest of the segments of the existing curve, or with the remaining vertices in Xp. The way 

to deal with these cases is explained in Section A.6.1. Figure A.24 shows an example of a 

curve constructed using this method, starting from the convex hull and gradually adding 

the rest of the vertices.

In general, the disadvantage of this approach is that it looks for the local minimum, 

but does not check for globally better alternatives. Each point chosen for insertion is the 

best given the current curve generated at the moment, but it is not possible to determine if 

the vertex chosen will be the best overall option after the insertion of all the vertices.

This technique will only generate one curve for each dataset by inserting at each mo

ment the vertex with minimal cost. It does not keep track of the decisions taken before 

and cannot do backtracking. The number of different possibilities available at each point 

impose a very large requirement of computer resources to track the operations performed, 

in a manner that would permit backtracking.
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♦  ♦

♦ ♦

(a) (b)

(d)

(e) (f)

Figure A.24: Adding vertices to the convex hull to fit a curve over the whole dataset. Point cloud 
(a), convex hull (b), points added in sequence (c-e) and final curve (f).

The vertex cost parameters are based on local geometric properties of the vertices 

and edges affected during an insertion. All the different measures used are shown in 

Figure A.25. The vertex costs presented later refer to the names shown in these figures.

The following are the various parameters used to assign the insertion weight f( i /)  to 

a vertex v:

Total curvature: cu: This is a brute force technique, it involves actually creating all the

(C )
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(a) Distance (b) Angles

 h ----
(c) Lengths

+- Ia H

Figure A.25: Measurements used as minimisation parameters for the selection of vertices.

possible curves by comparing the difference in curvature resulting from inserting 

every possible vertex into every possible segment. At every step the insertion that 

produces the smallest curvature is kept and the rest are discarded.

Each unallocated vertex ve G Xp is inserted in every segment T^i+i of the current 

curve Ac. We measure the TAC of the resulting curve and remove the vertex. After 

all the tests, the option with minimal curvature is kept and the vertex chosen is 

inserted again in the corresponding segment. The results of applying this algorithm 

to the test datasets can be seen in Figure A.26.

Since this method directly minimises the curvature of the whole curve being created 

it will generally produce curves with a small TAC. However it is not guaranteed to 

find the curve with minimum curvature P (V )min, since it still focuses on local 

minima. The disadvantage of this test is that it is slower than the methods that will 

be presented next. To reduce the computation time, and avoid measuring all of the 

angles in the curve each time it is changed, we make use of the results presented in 

Section 2.3.1, and update the curvature of a new polygon by subtracting the value 

of the two angles that are modified by the insertion, and adding the value of the 

three new angles formed.

Distance from  the insertion segment: de: In this method, the vertex selected to for in

sertion is the one with the smallest distance to any of the segments in the current
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(a) TAC = 39.794 (b) TAC = 14.556 (c) TAC = 14.722 (d) TAC = 16.070

Figure A .26: Curves with multiple deviations using / ( ^ e) =  Cj .

curve. The distance from a vertex to a segment is measured using the method shown 

in Section 2.2. Using the distances shown in Figure A.25 we define the vertex in

sertion cost of a vertex ve as:

f ( v e) = de. (A.6.1)

Figure A.27 shows the polygons generated with this algorithm. The use of a single 

parameter as the cost makes it simpler and faster than the previous method. This 

approach does not minimise the curvature directly, but does produce polygons with 

small curvature because of the small triangles formed by the inserted vertex ve and 

the endpoints of the insertion segment, and ui+i.

(a) TAC = 52.738 (b) TAC = 14.556 (c) TAC = 30.226 (d) TAC = 16.070

Figure A.27: Curves with multiple deviations using /( i'e )  = de.

Distance from segment de and curvature <2>: This is an extension of the previous method 

that uses the distance de to assign vertex insertion costs. Only in the cases where 

more than one vertex produce the smallest distance to any segment, then the curva

ture of the candidate insertions is measured and the vertex that produces the curve 

with smaller TAC will be selected. Using this method the TAC does not need to 

be computed at every step, but only as a deciding factor in the case of a ‘draw’ of 

two or more vertices with the same distance. The resulting curves can be seen in 

Figure A.28.
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(a) TAC = 43.459 (b) TAC = 14.556 (c) TAC = 33.266 (d) TAC = 16.070

Figure A.28: Curves with multiple deviations using /(t'e ) =  de and Co.

Ratio of distance and the sum of both link segments: The vertex insertion cost in this 

method is the division of the distance from the vertex to a segment, over the sum 

of the lengths of the new segments produced by the insertion of the vertex in the 

selected location. The ratio to be minimised is obtained with the formula:

/ K )  =  r z r -  (A-6-2)n T* h
Figure A.29 shows the polygons generated with this algorithm.

(a) TAC = 43.982 (c) TAC = 19.738 (d) TAC = 16.070(b) TAC = 14.556

Figure A.29: Curves with multiple deviations using / ( ^ e) =

Ratio of distance and length of blank segment: A similar approach is to use the length 

of the blank segment instead of the new link segments. In this case the cost is 

computed as:

f ( u e) f . (A.6.3)
‘5

The curves generated are shown in Figure A.30.

New angle cvi: The vertex selected for insertion will be the one that adds the smallest 

concave angle when inserted in the curve. From Figure A.25 we use the angle a \ 

as the cost. This angle is obtained from three vertices: the two endpoints of the 

insertion segment, ^  and vi+i, and the new vertex ve being tested.

This algorithm is very simple, since it only requires the computation of one angle. 

It is very fast and directly optimises curvature. However, it does not consider the
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(a) TAC = 43.982 (b) TAC = 14.556 (c) TAC = 19.738 (d) TAC = 16.070

Figure A.30: Curves with multiple deviations using / ( ^ e) = de
h *

9
(a) TAC = 39.793 (b) TAC = 14.556 (c) TAC = 14.722 (d) TAC = 16.070

Figure A.31: Curves with multiple deviations using f ( ve) —

orientation of the angles produced. Figure A.31 shows the polygons generated with 

this algorithm.

When a new vertex is inserted, there are a total of three angles that are modified 

from the curve. The previous approach only uses the angle at the inserted vertex ve, 

however also the angles at the vertices and vi+i are modified and also affect the 

resulting curve. To address this problem we can extend this method to include the 

other two angles in the cost function, to make it:

/(^e) —  a l  T CX.2 +  a 3- (A.6.4)

The curves generated using this variation are presented in Figure A.32.

(a) TAC = 40.841 (b) TAC = 18.343 (c) TAC = 14.722 (d) TAC = 16.070

Figure A.32: Curves with multiple deviations using / ( ^ e) =  +  &2 + ^ 3 -
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Product (ai(Zi +  h))'* This method uses the angle at the new inserted vertex and the 

lengths of the new link segments. The angle is multiplied by the sum of lengths of 

both link segments:

/(^e) =  a i{h  +  h)- (A.6.5)

Figure A.33 shows the polygons generated with this algorithm.

(a) TAC = 67.021 (b) TAC = 30.489 (c) TAC = 42.839 (d) TAC = 16.070

Figure A.33: Curves with multiple deviations using /(z'e) =  o i ( / i  +  h)-

This algorithm can also be extended to make use of the three angles modified and 

including also the length of the segments adjacent to the insertion segment. In this 

case the cost function is:

J iye) — (a i{h  +  h ))  +  {a 2{h +  3̂ )) +  (<23(^ 2  +  U))- (A.6.6)

The curves generated using this variation are presented in Figure A.34.

(a) TAC = 48.496 (b) TAC = 28.085 (c) TAC = 22.246 (d) TAC = 15.577

Figure A.34: Curves with multiple deviations using / ( ^ e) =  ^ 1(^1 +  h)  for three angles.

Product (o r(M 2 )): This is obtained by multiplying the angle at the new vertex with the 

product of the lengths of the link segments. The product to be minimised is obtained 

with the formula:

f ( v e) = a , (A.6.7)

Figure A.35 shows the polygons generated with this algorithm.
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(a) TAC = 67.021 (b) TAC = 20.676 (c) TAC = 33.957 (d) TAC = 16.070

Figure A.35: Curves with multiple deviations using f (ve) =  v-iihh)-

Again this method can be extended to include the two adjacent angles and segments, 

making the cost function:

/(^e) — {a i{h h ))  +  (^2 (M 3 )) +  {a 3{hU))- (A.6.8)

The curves generated using this variation are presented in Figure A.36.

(a) TAC = 49.826 (b) TAC = 25.377 (c) TAC = 33.266 (d) TAC = 15.577

Figure A .36: Curves with multiple deviations using f{ise) =  ®i{hh)  for three angles.

I 1+ I 2Ratio ( I: The ratio to be minimised is obtained with the formula:

Ot.\

h  +  h
(A.6.9)

Figure A.37 shows the polygons generated with this algorithm.

(a) TAC = 59.143 (d) TAC = 16.070(a) TAC = 59.143 (b) TAC = 22.246 (c) TAC = 14.722 (d) TAC = 16.070

Figure A.37: Curves with multiple deviations using f ( ve) —
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Considering the three angles:

- (iT t) + (ilTi;) + (srs) ■ (AA10)
The curves generated using this variation are presented in Figure A.38.

(a) TAC = 80.693 (b) TAC = 15.840 (c) TAC = 30.390 (d) TAC = 18.408

Figure A.38: Curves with multiple deviations using f ( ve) — f°r three angles.

Ratio ( ±aix - : The ratio to be minimised is obtained with the formula:
h +h )

f  ( \
m )  =  x x x -

h “l~ h

Figure A.39 shows the polygons generated with this algorithm.

(A.6.11)

(a) TAC = 45.719 (b) TAC = 14.556 (c) TAC = 33.266 (d) TAC = 16.070

Figure A.39: Curves with multiple deviations using f{ye) — X t •

Considering the three angles:

M  =  x f r ) + x f r  + X T X  
V h ^  h J  \ h  ^  h J  \  h ^  k

(A.6.12)

The curves generated using this variation are presented in Figure A.40.

Product (“‘ (x)) : The product to be minimised is obtained with the formula:

/ ( ^ e ) = « l  (rPj- (A -6 1 3 >
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(a) TAC = 46.567 (b) TAC = 25.377 (c) TAC = 24.367 (d) TAC = 15.577

Figure A.40: Curves with multiple deviations using / ( ^ e) =  for three angles.
—  4-  —  i i h

(a) TAC = 73.490 (b) TAC = 21.641 (c) TAC = 14.722 (d) TAC = 16.070

Figure A.41: Curves with multiple deviations using f(ise) =  cn\

Figure A .41 shows the polygons generated with this algorithm.

Considering the three angles:

f M ~ ai(̂ )+Q2 Hi)+03 {hi
The curves generated using this variation are presented in Figure A.42.

(A.6.14)

(a) TAC = 80.723 (b) TAC = 36.063 (c) TAC = 39.619 (d) TAC = 19.455

Figure A.42: Curves with multiple deviations using f ( v e) =  f°r three angles.

f ( v e) =  a \  +  a \  +  a\.

Square sum of three angles: The product to be minimised is obtained with the formula:

(A.6.15)

Figure A.43 shows the polygons generated with this algorithm.
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(a) TAC = 39.793 (b) TAC = 27.115 (c) TAC = 14.722 (d) TAC = 16.070

Figure A.43: Curves with multiple deviations using f{ue) =  af  +  +  a 3 -

Square angles over sum of lengths: The product to be minimised is obtained with the 

formula:

/("«) =
a  I (y.c'

+
OL\

j l  + ^ 2 /  V ^ l + ^ 3 /  ^4

Figure A.44 shows the polygons generated with this algorithm.

(A.6.16)

(a) TAC = 39.793 (b) TAC = 16.574 (c) TAC = 14.722 (d) TAC = 18.340

Figure A.44: Curves with multiple deviations using / ( ^ e) =  f°r three angles.

Square angles over sum of inverse lengths: The product to be minimised is obtained 

with the formula:

/( " • )  =  T ^ T  +  T ^ T  +  h-  4- — h ^  h
(A.6.17)

Figure A.45 shows the polygons generated with this algorithm.

Product of square angles and product of inverse lengths: The product to be minimised 

is obtained with the formula:

1 1

Figure A.46 shows the polygons generated with this algorithm.

1 1 1 1
(A.6.18)

Product of square angles and product of lengths: The product to be minimised is ob

tained with the formula:

f(ye) — {a l(,hh)) +  (<*2 ( ^ 3 )) +  {a l{hU))- (A.6.19)
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(a) TAC = 44.115 (b) TAC = 25.047 (c) TAC = 14.722 (d) TAC = 15.577(a) TAC = 44.115 (b) TAC = 25.047 (c) TAC = 14.722 (d) TAC = 15.577

Figure A.45: Curves with multiple deviations using f ( ve) =  ( X T X  ) f°r three angles.
ll l2

(a) TAC = 39.793 (b) TAC = 26.617 (d) TAC = 18.408(a) TAC = 39.793 (b) TAC = 26.617 (c) TAC = 14.722 (d) TAC = 18.408

Figure A.46: Curves with multiple deviations using f (ae) =  f° r three angles.

Figure A.47 shows the polygons generated with this algorithm.

(d) TAC = 15.577(a) TAC = 40.841 (b) TAC = 30.749 (c) TAC = 14.722

Figure A.47: Curves with multiple deviations using f (ae) =  (<*1 ( ^ 2 )) for three angles.

Sum of total curvature and curve length over diam eter: This measure makes use of 

the main features of the curve: the curvature and the total length. The length of 

the curve is normalised by dividing it over the diameter of the polygon. Here the 

diameter d is defined as the longest distance between any two vertices in the convex 

hull of the curve.

The minimisation parameter is obtained as:

n /  sr^m 1

/ ( „ e) =  5 > +  iff
i= i  \

(A.6.20)
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where n  is the number of vertices already inserted in the curve and m  is the number 

of line segments in the curve. Figure A.48 shows the polygons generated with this 

algorithm.

(d) TAC = 16.070(b) TAC = 14.556(a) TAC = 39.793 (c) TAC = 14.722

— ) •

A.6.1 Self-intersections

To avoid self-intersections, each new segment added to the curve is tested for two cases:

• Intersection of existing segments

New segments added to the curve have the risk of crossing over the current curve. 

The likelihood of this happening depends on the parameter being used for minimi

sation. There is no simple way to detect these cases, since vertices can be inserted 

anywhere and in any order. The only way to detect self-intersections is by testing 

each of the segments.

The amount of tests is reduced by first comparing the projections on the Y  axis of 

the segments involved. The actual testing for self-intersections will be carried out 

only when these projections overlap at some point for the segments being tested (de 

Berg et al. 1997).

• Overlapping of unallocated vertices

A new segment may go over an unallocated vertex Vj E Ap. This would create 

a problem when finally inserting Vj, since it could create overlapping segments or 

intersections.

To identify these cases, new segments are tested for collinearity with the vertices in 

Ap, and if they are, then another evaluation is done to check if the vertex lies inside 

of the segment.

When an intersection of this kind occurs, the point that is closest to the original 

curve is inserted instead of the new point proposed by the normal algorithm. This
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will eliminate the problem but, depending on the choice of the minimisation param

eter, may not keep the optimisation done by the algorithm.

A.7 Results and evaluation of the algorithms

All the curves generated by our algorithms are closed polygons with n  vertices and n  

edges. They are connected in Counter-Clockwise direction. The main parameter used 

to evaluate and discriminate curves is their Total Absolute Curvature, measured from the 

external angles at each vertex. The best curve is considered to be the one with the smallest 

TAC.

The algorithm of reconstruction based on orientation has limited capability to cor

rectly reconstruct the source curve from the point cloud. Only for very particular cases 

it will get the correct result, as shown in Figure A.7. In general the best curves are those 

generated by choosing a reference point vr on the convex hull of the dataset.

In general, the behaviour of the algorithm based on one deviation is very dependant 

on the data. It is capable of finding curves with very small curvature, specially when 

the data can be described with two layers, or when the lengths of the blank segments is 

small. However, when there are more than two layers and the length of blank segments is 

very large, then the curvature of the polygons generated is much bigger than what can be 

obtained with the multiple deviation algorithms.

For the algorithm to generate curves with multiple deviations, several insertion cost 

functions were presented. The best results are obtained by minimisation of the weights

■y J . This last parameter is computationally 

more demanding, but can give better results in a wider range of data. Minimisation of the 

single angle, on the other hand, is fast and gives a good approximation of the data in most 

cases.

The source for the data in Figure A. 1(c) is an hypotrochoid. None of the algorithms 

was able to exactly recreate the original curve, since it contains self-intersections. How

ever, a good approximation is obtained using many of the parameters presented. For the 

five point dataset in Figure A. 1(a), since the algorithms are based on the convex hull of 

the point cloud, in all cases the result is a single closed curve, and it is not possible to 

identify independent shapes.

The algorithms developed do not require a specific sampling rate to correctly estimate 

the curve. A closed curve will always be generated, regardless of the point density in the 

dataset. This contrasts with other methods, like the Crust and (5-Skeleton, that demand 

denser sampling at sharp comers. However, our algorithms are unable to distinguish
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separate elements in a point cloud, and will treat all vertices as belonging to the same 

object.

A.8 Conclusions

This chapter has presented two new algorithms for curve reconstruction, based on the 

convex hull. The first algorithm generates curves with one deviation from the convex 

hull, by successively generating nested convex hulls and joining them into a single curve. 

The second algorithm progressively adds vertices to the convex hull until all vertices in 

the dataset are included. The insertion of the vertices is made by minimisation of various 

criteria of angles and distances in the affected neighbourhood.

The results of the reconstruction algorithms are compared by means of the Total Ab

solute Curvature. From the results we observe that smoother curves have smaller TAC. 

However a curve with minimum TAC is not necessarily the most adequate for all datasets.

Using the methods presented, it is possible to obtain a large amount of different curves 

for every dataset. The results described here are not final yet, as this is an ongoing research 

project. Further evaluation of the reconstruction algorithms is necessary to determine 

their usefulness in various applications, where the vertex coordinates come from different 

sources. This requires a measure of the similarity of the curves generated with the original 

data, in terms of curvature and other shape parameters, like area and perimeter.

The methods described here for reconstruction of planar curves could be extended 

to perform reconstruction of surfaces in three-dimensional space. Several techniques 

exist for the computation of the convex hull of a three-dimensional object. The main 

requirement for an extension of the algorithms presented here is a measure of curvature 

at the vertices in space.
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