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Abstract

A key feature of osteoarthritis (OA) is the loss of articular cartilage. Cartilage 
breakdown is mediated by complex interactions of proinflammatory cytokines 
such as interleukin 1|3 (IL-1P) and proteases including matrix metalloproteinases 
(MMPs).

Cannabinoids have been shown to reduce joint damage in animal models of 
arthritis and have also been shown to prevent IL-1 induced matrix breakdown of 
collagens and proteoglycans, suggesting a chondroprotective effect of these 
compounds. Cannabinoids mediate their effects via putative cannabinoid 
receptors and activation of these receptors has been shown to display anti
inflammatory activities and inhibition of destructive factors in human OA 
chondrocytes and synovial fibroblasts.

This thesis demonstrates that the synthetic cannabinoid WIN-55 inhibits the 
expression of ECM degrading enzymes MMP-3 and MMP-13 both at the mRNA 
and protein level in human OA chondrocytes. WIN-55 also decreased the 
expression of MMP inhibitors: tissue inhibitors of matrix metalloproteinases -1 
and -2 (TIMP-1 and -2). WIN-55 inhibited IL-1 p induced signalling pathways 
including ERK1/ERK2, c-Jun and IkB but not p38, these findings suggest a 
possible mechanism via which WIN-55 decreases the expression MMPs.

The classical cannabinoid receptors cannabinoid receptors 1 and 2 (CB1 and 
CB2), G protein-coupled receptor 55 (GPR55), G protein-coupled receptor 18 
(GPR18), transient receptor potential vanilloid 1 (TRPV1) and peroxisome 
proliferator activated receptor alpha, delta and gamma (PPARa, 5 and y) were 
expressed by OA chondrocytes and osteocytes in the underlying bone, with a 
decrease in GPR18, TPRV1 and PPARy in specific zones of the osteochondral 
compartment associated with an increase in grade of degeneration.

Selective cannabinoid receptor agonists were used to determine the receptor(s) 
via which WIN-55 may mediate its effects in human OA chondrocytes. Agonists 
for CB1, CB2 and PPARa, 5 and y used in combination inhibited IL-1 (3 induced 
MMP-3 or -13 mRNA expression, suggesting that WIN-55 may mediate its effects 
via activation of multiple cannabinoid receptors or via a novel cannabinoid 
receptor.

Pro-inflammatory cytokine IL-1 p is a well-known mediator of cartilage 
degradation, thus the inhibition of IL-1 p induced expression of MMPs and 
intracellular signalling pathways shown here by WIN-55 suggests that 
cannabinoids could provide a model for the development of novel therapeutic 
agents for arthritis via preventing cartilage degradation.
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1.1 The Human Knee

In the musculoskeletal system the human knee is a biomechanical organ that 

transits loads between bones, enables movement and supports the body weight. 

The femur and the tibia, in addition to smaller bones, including the fibula and the 

patella, compose the bones of the knee joint (Figure 1.1). The knee is composed 

of two articulations the tibiofemoral and the patellofemoral which are covered by 

articular cartilage allowing smooth movement of the joint (Flandry and Hommel

2011). The anterior cruciate ligament and the posterior cruciate ligament are 

found inside the knee joint where they connect the bones of the knee and cross 

thus stabilising the structure (Amis et al, 2006). The meniscus is a crescent 

shaped fibrocartilage that increases the stability of the femoral tibial articulation in 

addition to distributing the axial load, absorbing shock and providing lubrication to 

allow smooth movement of the knee joint (Fox et al, 2012). The synovial 

membrane encapsulates the knee joint and is found between the joint capsule 

and the joint cavity.

Figure 1.1 The structure of the human knee. The femur and the tibia, in addition to 
smaller bones, including the fibula compose the knee joint. The medial and lateral 
condyles are found on the lower extremity of the femur and are covered by articular 
cartilage. The meniscus is a crescent shaped fibrocartilage that acts to increases the 
stability of the femoral tibial articulation, distribute the axial load, absorb shock and 
provide lubrication. The patella intersects with the femur and protects the anterior 
articulating surface of the knee joint and the cruciate ligaments act to stabilise the joint.
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1.2 Structure and Function of the Articular Cartilage

Articular cartilage covers the ends of bones within the joints. The function of the 

articular cartilage is to provide smooth movement of the articulating joints, 

allowing the transmission of loads with a low frictional coefficient (Buckwalter and 

Mankin 1998). The strength of the articular cartilage is dependent on the 

extensive cross-linking of the collagen fibres in addition to the organisation of the 

fibrillar architecture within the different zones of the tissue (Eyre 2002). Cartilage 

is structured into four distinct zones consisting of the superficial tangential zone, 

the middle transitional zone, the deep radial zone and the calcified zone, with 

each zone differing in its collagen fibril organisation (Figure 1.2) (Eyre 2002). The 

superficial zone is composed of collagen fibrils, which are arranged in a 

tangential array, parallel to the plane of the articulating surface of the cartilage. 

The middle zone is composed of radial collagen bundles and the deep zone 

contains, thick radial collagen bundles (Goldring and Marcu 2009). The tidemark 

is situated in-between the calcified cartilage zone and the subchondral bone 

acting as a mechanical barrier between the two (Goldring and Marcu 2009).

Articular
Surface Superficial Zone 

'  (10-20%)

Chondrocyte
Middle Zone 

- (40-60%)

Deep Zone 
‘ (30-40%)

Tidemark — 
Calcified Zone

Subchondral,
Bone

>

Figure 1.2. Collagen fibre architecture and chondrocyte organisation in articular 
cartilage zones. The superficial zone is composed of collagen fibrils arranged in a 
tangential array, parallel to the plane of the articulating surface of the cartilage and 
chondrocytes are of a flattened morphology. The middle zone is composed of radial 
collagen bundles and chondrocytes appear rounded. The deep zone is composed of 
thick radial collagen fibres and the chondrocytes are present in a column formation. The 
tidemark is situated between the calcified zone and the subchondral bone.

28



1.2.1 Cartilage Extracellular Matrix
Articular cartilage is composed of a rich extensive collagen matrix, particularly 

type II, but also types VI, IX and XI (Poole et al, 2001). The collagen network is 

held under high tension by proteoglycans, principally aggrecan (Poole et al, 

2001). The large aggregating proteoglycan, aggrecan, is retained by the matrix of 

collagen fibres. This specialized extracellular matrix (ECM) is maintained and 

synthesised by chondrocytes, the highly differentiated cellular component of the 

cartilage (Goldring and Marcu 2009). The ECM provides compressive resistance, 

tensile strength and allows mechanical loading of the joint (Sun 2010). Together 

the collagen and proteoglycan network maintain articulating cartilage integrity.

1.2.1.1 Collagens
Collagen type II has a half-life of over 100 years and is the most abundant ECM 

protein in articular cartilage (Verzijl et al, 2000). The cross-linked network of 

collagen and the fibrillar organisation provides cartilage tissue with its tensile 

strength (Eyre 2002). Collagen fibres are composed of three alpha helices in the 

conformation of left-handed polyproline II type (PPII) helices. The PPII helical 

conformation coils in a right-handed formation, with a one-residue stagger to form 

the triple collagen helix (Eyre 2002). The collagen network within the cartilage 

changes throughout and the type of collagen and the structural arrangement of 

collagen fibrils is dependent on the zone and the proximity to the chondrocytes. 

The ECM network in the interterritorial zone is comprised of mainly type II 

collagens with other collagens including XI and IX within and on the surface 

respectively (Goldring and Marcu 2009). The pericellular matrix surrounding the 

chondrocytes contains primarily type VI collagen microfibrils and allows for the 

interaction of chondrocytes with the macromolecules of the ECM (Buckwalter and 

Mankin 1998; Goldring and Marcu 2009).

1.2.1.2 Proteoglycans
Proteoglycans of which aggrecan is the major proteoglycan of cartilage, protect 

the collagen network. The half-life for aggrecan core protein is between 3 and 24 

years (Maroudas et al, 1998). Aggrecan's core protein is composed of three 

globular domains, G1, G2 and G3 (Figure 1.3). The large extended region 

between G2 and G3 allows for the binding of glycosaminoglycans (GAGs) (Kiani 

et al, 2002). Aggrecan monomers are attached to hyaluronic acid (HA) polymers 

via the G1 domain and link protein. Aggrecan provides articular cartilage with its
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osmotic properties because of its high polyanionic charge allowing the retention 

of water thus providing the articular cartilage with the ability to resist compressive 

loads (Roughley and Lee 1994). Smaller proteoglycans including biglycan, 

decorin and fibromodulin bind to other matrix macromolecules to stabilise the 

ECM (Buckwalter and Mankin 1998). The ECM is also composed of other non- 

collagenous molecules including, matrillins, cartilage oligomeric matrix protein 

(COMP) and elastin (Goldring and Marcu 2009).

1GD
G2

G3G1

Link
Protein

Keratan Sulphate 
Rich Region

Chondroitin Sulphate 
Rich Region

Hyaluronan

Figure 1.3 The structure of aggrecan linked to hyaluronic acid and stabilised by 
link protein. Modified from Porter etal, (2005).

1.2.2 Chondrocytes
Chondrocytes are the only cellular component of adult articular cartilage and are 

fully differentiated cells that remain after the formation of the articular cartilage 

matrix. In normal cartilage the chondrocytes are in a quiescent state with little 

turnover of the ECM (Loeser et al, 2012). These specialised cells reside in an 

avascular environment within the joint and depend on the diffusion of nutrients 

through the ECM to survive in their harsh environment (Goldring 2000). Their role 

is to maintain the balance between the rate of synthesis of ECM and its 

degradation and subsequent loss into the synovial fluid (Goldring 2000).

The chondrocyte's role, morphology and organisation differ in each zone of the 

cartilage (Figure 1.2). These changes may be attributed to different mechanical 

influences. The chondrocytes that reside in the superficial zone are of a flattened 

morphology, the middle zone chondrocytes are rounded and the deep zone 

chondrocytes are present in stacked groups (Goldring and Marcu 2009). In
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addition to having different organisation within the cartilage, chondrocytes have 

also been shown to have different gene expression profiles (Fukui et al, 2008). 

Chondrocytes that reside in the superficial zone of the cartilage produce lubricin 

a glycoprotein which crossed-links with HA to provide lubrication, allowing 

smooth movement of the joint at the articular surface, in addition to providing 

protection from mechanical forces and loads (Greene etal, 2011).

1.3 Extracellular Matrix Turnover in Articular Cartilage
Factors that maintain ECM turnover in articular cartilage are poorly understood, 

since the chondrocytes do not divide rapidly and the ECM isolates them from 

each other (Goldring and Marcu 2009). However, ECM turnover in cartilage is 

thought to be maintained by chondrocytes via the production of matrix degrading 

enzymes, the matrix metalloproteinases (MMPs) and the ‘a disintegrin and 

metalloproteinase with thrombospondin motifs’ (ADAMTSs) which cleave 

collagens and proteoglycans which are subsequently released into the synovial 

fluid (Murphy and Nagase 2008). The activity of matrix degrading enzymes is 

tightly regulated by tissue inhibitors of matrix metalloproteinases (TIMPs). During 

normal cartilage ECM matrix turnover there is thought to be a balance in the 

levels of MMPs and TIMPs (Burrage et al, 2006a; Martel-Pelletier et al, 1994b). 

Under normal homeostatic conditions proteases combine to form complex 

regulatory networks in order to maintain ECM turnover and under normal 

physiological conditions MMPs are involved in cartilage ECM turnover, 

remodelling and repair (Goldring and Marcu 2009).

1.3.1 Matrix Metalloproteinases
MMPs are family of 23 active zinc-dependent proteinases that at neutral pH 

specifically degrade triple helical collagens and proteoglycans (Burrage et al, 

2006a; Murphy et al, 2002; Cawston and Young 2010). MMPs share a common 

domain structure and have a catalytic domain, a hinge region, a signal peptide, a 

propeptide and a C-terminal domain (Clark et al, 2008). MMPs are secreted from 

the chondrocyte in latent form as pro-MMPs requiring activation extracellularly 

(Murphy et al, 2002). Zinc is present in the catalytic domain and pro-MMPs are 

maintained in a latent form by interaction of a conserved cysteine residue in the 

pro-domain with the catalytic zinc in the active site (Cawston and Young 2010). 

All MMPs except MMP-7, -23 and -26 have a hinge region which links to a 

haemopexin-like C-terminal domain that is involved in the substrate and inhibitor
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binding specificity (Clark et al, 2008). In addition to cleaving ECM molecules, 

MMPs also cleave other proteinases. MMP-3 is able to activate MMP-1 via 

cleavage of the pro-domain (Vincenti and Brinckerhoff 2002). MMPs are divided 

into groups depending on the ECM substrates they cleave and include the 

stromelysins, collagenases, gelatinases and membrane type MMPs (Clark et al,

2008).

1.3.2 ADAMTSs
The ADAMTS family is composed of 19 members, and are secreted 

metalloproteinases containing a signal peptide, a prodomain, a thrombospondin 

type I motif, a cysteine rich domain, a spacer domain and a second 

thrombospondin motif (Porter et al, 2005). ADAMTS-1, -4, -5, -8 ,-9, -15, -16 and 

-18 all have the ability to cleave aggrecan, in addition to other proteoglycans 

including versican and brevican of which ADAMTS-4 and -5 are most active in 

the degradation of aggrecan (Murphy and Nagase 2008;Gendron etal, 2007).

1.3.3 Tissue Inhibitors of Matrix Metalloproteinases
TIMPs are a family of 21-30 kDa proteinase inhibitors that are produced by 

chondrocytes and fibroblasts and regulate the activity of MMPs (Burrage et al, 

2006). The TIMP family of inhibitors consists of 4 members including TIMP-1, -2, 

-3 and -4. Between the four isoforms TIMPs have high levels of sequence 

divergence, however all TIMPs bind to and inhibit MMPs (Brew et al, 2000). 

TIMP inhibition of MMPs requires the non-covalent binding to the MMPs active 

site with a 1:1 stoichiometry and interactions between MMPs and TIMPs are 

irreversible under physiological conditions (Burrage et al, 2006). In addition to 

inhibiting MMPs, TIMP-1 also inhibits ADAMTS-10 and TIMP-3 inhibits ADAMTS- 

1,-4, -5 -10, -12 and -17 (Baker etal, 2002).

1.3.4 Chondrogenesis
During skeletal development chondrogenesis is the process via which cartilage is 

developed. Chondrogenesis involves the biological process of endochondral 

ossification, which leads to the formation of the skeleton (Goldring et al, 2006). 

The early limb bud forms as mesoblast, undifferentiated mesenchymal cells 

migrate to the limb bud and condense to form the cartilage anlage (Goldring

2012). Condensation of mesenchymal cells expressing collagens I, III and V and 

chondroprogenitor cell differentiation with cells expressing cartilage specific 

genes including collagens II, IX and XI results in chondrogenesis (Goldring 2012).
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Mesenchymal condensation is followed by chondrocyte differentiation, 

chondrocyte proliferation, development of the cartilage template and chondrocyte 

hypertrophy (Zuscik et al, 2008). During chondrocyte hypertrophy the cells 

enlarge and terminally differentiate, mineralise and finally undergo apoptosis thus 

permitting endochondral ossification, a process that involves the formation of 

bone via resorption of the calcified hypertrophic cartilage (Zuscik et al, 2008). 

Replacement of cartilage with bone requires angiogenesis mediated by vascular 

endothelial growth factor (VEGF) (Goldring et al, 2006). A similar process also 

occurs in the postnatal growth plate and is termed secondary centre of 

ossification as opposed to primary ossification, which occurs during fetal 

development in the central part of the developing bone (Zuscik et al, 2008). The 

secondary centre for ossification separates the articular cartilage and the mature 

growth plate cartilage.

Chondrogenesis is under tight regulation and involves cellular interactions with 

the surrounding matrix, growth and differentiation factors, the initiation and 

suppression of cellular signalling pathways and the recruitment of transcription 

factors to control and orchestrate the expression of specific genes in a temporal 

and spatial pattern (Goldring et al, 2006). The transcription factors Sox-9 and 

Runx2 play a role in the formation of mesenchymal condensation, maintaining 

the chondrocyte phenotype, control of chondrogenic differentiation and regulating 

the expression of ECM genes particularly cartilage specific collagen type II 

(Lefebvre et al, 1997; Akiyama et al, 2002). Furthermore, Sox-9 and Runx2 

determine the fate of the chondrocytes to remain within the articulating cartilage 

or undergo ossification respectively (Goldring and Marcu 2009).

1.3.5 Vasculature
Articular cartilage is an avascular tissue with low availability of oxygen and 

glucose. Since the chondrocytes reside in an avascular and aneural environment 

they rely on the diffusion of nutrients from the surrounding tissue and express 

glucose transporter proteins GLUT3 and GLUT7 to facilitate in the transport of 

glucose (Mobasheri et al, 2005). Chondrocytes reside at a low oxygen tension 

with less than 1% oxygen present in the deep zones of the articular cartilage and 

chondrocytes adapt to their low oxygen environment via the upregulation of 

hypoxia-inducible factor-1-alpha (HIF-1a), a transcription factor which is known to 

induce the expression of GLUTs and angiogenic factors including VEGF (Pfander
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and Gelse 2007). In addition, in normal articular chondrocytes DNA damage 45 

beta (GADD45P) acts as a survival factor in addition to regulating chondrocyte 

homeostasis and promoting collagen expression (Ijiri et al, 2008). Therefore, 

chondrocytes residing in an avascular environment survive by modulating the 

intracellular expression of survival factors to maintain the ECM (Goldring and 

Marcu 2009).

1.3.6 Cytokines
Cytokines are a large group of peptides with a diverse range of biological actions 

and are produced by a variety of cell types in response to different stimuli. 

Cytokines can be proinflammatory, anti-inflammatory and involved in the 

proliferation, differentation and activation of immune cells and hematopoiesis 

(Dinarello 2007).

1.3.6.1 lnterleukin-1
Interleukins are a family of secreted proteins, which bind to specific receptors, 

expressed on numerous cell types (Akdis et al, 2011). lnterleukin-1 beta (IL-1 |B) 

is secreted in pro-form (pro-IL-1 p) as a biologically inactive precursor requiring 

post-translational cleavage by the intracellular IL-ip-converting enzyme 

(caspase-1), generating the mature active cytokine (Mosley et al 1985). IL-1 p 

induces its biological effects via binding to the IL-1 cell surface receptor IL-1 

receptor type I (IL-1R1). In addition a second agonist IL-1a also has activity at IL- 

1R1. Similarly, IL-1 a is secreted in pro-form as a precursor however in contrast to 

IL-1 p pro-IL-1 a is biologically active (Mosley et al 1985). Following IL-1 a/p 

binding specifically to the extracellular ligand binding chain, a second accessory 

chain is recruited and IL-1R1 forms a heterodimeric complex with IL-1 receptor 

accessory protein (IL-1 RAcP) to allow signal transduction (Figure 1.4) (Boraschi 

and Tagliabue 2013). The ligand binding chain and accessory chains are 

composed of a cytosolic Toll-IL-1-receptor (TIR) domain (Boraschi and Tagliabue

2013). IL-1 p also binds to a second cell surface receptor IL-1RII which is a decoy 

receptor as it is unable to transduce a signal. An endogenous inhibitor of IL-1 p 

induced responses is IL-1 receptor antagonist (IL-1Ra), which binds to both IL- 

1R1 and IL-1RII without inducing a signal (Arend etal, 1998).
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1.3.7 Tumour Necrosis Factor a

Tumour Necrosis Factor alpha (TNFa) is pro-inflammatory cytokine and is 

produced by many cell types, in response to a broad range of stimuli. TNFa is 

synthesised as a biologically active protein and is displayed on the extracellular 

membrane and exists as a soluble form, proteolytically shed from the plasma 

membrane via cleavage by the TNFa converting enzyme (TACE/ADAM-17) a 

member of the A Disintegrin And Metalloprotease enzymes (Black 2002). TNFa 

induces its effects via binding to cell membrane surface receptors including, 

TNF receptor I (TNFRI or p55) and TNF receptor II (TNFRII or p75) (Idriss and 

Naismith 2000). Both receptors exist in cell-associated and soluble forms also 

shed by TACE/ADAM-17. Furthermore, both receptors are shed by MMPs and 

receptors are involved in signal transduction, however TNFRI is thought to be 

primarily involved in TNFa induced activity in joint cells (Kapoor etal, 2011).

1.4 Rheumatoid Arthritis
Rheumatoid arthritis (RA) is predominantly an inflammatory joint disease, 

characterised by inflammation of the synovium which lines the joint cavity with 

infiltration of inflammatory cells into the synovial fluid. The enlarged synovium 

becomes vascularised and may extend over other joint tissues such as cartilage 

and bone, forming a pannus that produces degradative enzymes and 

inflammatory cytokines, which leads to the breakdown of the ECM of the 

articular cartilage (Otero and Goldring 2007;Rannou etal, 2006).

1.5 Osteoarthritis
Osteoarthritis (OA) is the most common form of arthritis and is a major cause of 

pain and disability in older adults with around 8 million people in the UK 

suffering from symptomatic OA (Arthritis Research UK, 2012). OA constitutes a 

significant economic burden, which is increasing with an ageing population 

(Arthritis Research UK, 2012). OA is a progressive degenerative disease of the 

joint and a key pathological feature of OA is loss of articular cartilage, which 

contributes to the pain and joint deformity experienced by patients (Goldring 

and Goldring 2007). The aetiology of OA is poorly understood and it is thought 

to involve multiple factors including, mechanical, inflammatory, genetic and 

metabolic. Inflammation of the synovium also occurs during OA and contributes
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to cartilage breakdown but to a lesser degree than seen in RA. Although OA 

and RA have different cellular mechanisms, cartilage breakdown is a key 

feature of both diseases. OA affects multiple joints including hands, knees, the 

spine and hips (Goldring and Goldring 2007). To date treatments for OA mainly 

address the symptoms, therefore, it is important to develop more effective 

disease modifying agents in order to prevent disease progression (Goldring

2006).

1.6 Pathogenic Factors in OA
Cartilage degradation is the main pathological feature of arthritis however it is 

now evident that other joint tissues including the subchondral and trabecular 

bone, the synovium and calcified bone are affected and involved in the 

pathogenesis (Goldring and Goldring 2010). OA is often considered as a 

degenerative joint disease; however other processes including mechanical, 

biochemical factors and the remodelling of joint tissue due to inflammation are 

involved. Factors that may lead to the onset of OA include; obesity, sex, age, 

genetics, abnormal loading of the joint and previous injury (Zhang and Jordan 

2010).

Multiple changes in the pathological features of joint structures can be seen in 

OA. These changes encompass the whole of the joint and include degradation 

of the cartilage, thickening of the subchondral bone, osteophyte formation, and 

the formation of pannus (Loeser etal, 2012). OA is now seen as a multifactorial 

disease involving multiple tissues, with changes also observed in nerves, 

periarticular muscle, bursa and fat pads (Loeser etal, 2012).

1.6.1 Chondrocyte Metabolism in OA

During OA the chondrocytes become activated in response to mechanical

stress, abnormal loading of the joint and inflammatory cytokines and there is a

shift in the equilibrium between anabolic and catabolic activities which maintains

the ECM in healthy cartilage (Goldring and Marcu 2009; Patwari et al, 2003;

Goldring and Berenbaum 2004). Factors that contribute to changes in

chondrocyte metabolism during OA include: increased stress during aging,

abnormal mechanical loading of the joint, changes in the surrounding ECM and

the up regulation of proinflammatory mediators (Goldring and Goldring 2010).

Primary human chondrocytes derived from OA cartilage and non-arthritic aged
37



cartilage proliferate at a slower rate compared to chondrocytes derived from 

young normal cartilage and display senescence (Price et al, 2002). The 

morphology of the chondrocytes is also altered in OA and non-arthritic aged 

cartilage compared to young normal cartilage derived chondrocytes (Dozin et al, 

2002). During OA chondrocytes proliferate, form clusters and increase their 

production matrix degrading enzymes. This switch from normal quiescent 

resting chondrocytes may be attributed to an injury response, which involves a 

recapitulation of processes that are usually only activate during fetal 

development, leading to the remodelling of the ECM, hypertrophy and cartilage 

calcification (Figure 1.5) (Aigner et al, 2007).
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Figure 1.5 Chondrocyte behaviour during the development process and 
osteoarthritis. Processes that occur during fetal chondrogenesis are also thought to 
occur during osteoarthritis such as changes in chondrocyte differentiation, anabolism, 
proliferation, catabolism, hypertrophy, cartilage calcification and apoptosis. These 
changes are identified by changes in genes that are also related to events during fetal 
development including sox-9 indicating chondrocyte differentiation, collagen type II a 
cell marker for chondroprogenitors, collagen type X a marker for hypertrophic 
chondrocytes and MMP-13 also linked to hypertrophy in addition to matrix breakdown. 
Although these processes are similar, chondrogenesis is a tightly controlled and 
structured development process, whilst osteoarthritis is an uncoordinated degenerative 
process. (Modified from Aigner et al (2007)).
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1.6.2 Anabolic Metabolism

A decrease in ECM production particularly collagen type II and aggrecan during 

OA induces changes in the biomechanical properties of the tissue. IL-1 p is 

known to affect anabolic metabolism in OA, reducing the expression of collagen 

type II and aggrecan (Goldring et a/,1994; Chadjichristos etal, 2003; Stove etal, 

2000). Interestingly, during early OA, chondrocytes are known to increase their 

synthesis of cartilage ECM components including collagens type II, IX and X, 

aggrecan and pericellular collagen type VI, a process is thought to be an 

attempt to regenerate the cartilage matrix (Goldring and Goldring 2007). This 

process is thought to involve similar molecular mechanisms to those occurring 

during fetal development (Aigner et al, 2007) (Figure 1.5). However, unlike 

chondrogenesis, which is a highly regulated process, similar pathways activated 

during OA are uncoordinated degenerative processes.

1.6.3 Catabolic Metabolism
During OA there is an increase in catabolic factors produced by the 

chondrocytes in addition to cells of the synovium compared to normal. During 

disease progression there is inappropriate elevation in the expression of matrix 

degrading enzymes predominantly MMP-1, -3 and -13 without an increase in 

their inhibitors TIMPs, which in part is thought to contribute to cartilage 

degradation (Martel-Pelletier et al, 1994). MMPs are involved in tissue 

remodelling, repair and the formation of the surrounding ECM under normal 

conditions (Burrage et al, 2006). However a shift in equilibrium between 

anabolic and catabolic activities occurs in OA, favouring the catabolic processes, 

resulting in net cartilage breakdown.

1.6.3.1 Cytokines and Chemokines in OA
During OA proinflammatory cytokines are predominantly involved in the 

disruption of metabolism and the upregulation of catabolic factors. IL-1 (3 and 

TNFa are thought to be the main cytokines involved in the pathogenesis of OA, 

however other cytokines including IL-6, IL-15, IL-17, IL-18 and IL-21 and 

chemokines IL-8, CCL5 (RANTES), CCL2 and CXCL 1 are known to contribute 

to the disease progression (Table 1.1) (Kapoor etal, 2011).
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1.6.3.2 lnterleukin-1 p in OA

Pro-inflammatory cytokine IL-1 p plays a major role in the pathogenesis of OA 

(Kapoor et al, 2011). Although cells of the joint residing in normal tissue 

produce low levels of IL-1 (3, increased levels of IL-1 p have been identified in the 

cartilage, synovial fluid, synovial membrane and subchondral bone in patients 

with OA (Fernandes et al, 2002). Interestingly elevated levels of IL-1 p were 

found in the superficial zone of articular cartilage (Fan et al, 2007), furthermore 

increased IL-1 p levels are associated with an increase in IL-1 (3-converting 

enzyme in human OA tissues (Saha et al, 1999). Although chondrocytes are 

known to produce IL-1 (3, increased levels in the upper zones of the cartilage 

may also indicate diffusion of IL-1 (3 from the synovial fluid (Fan et al, 2007). 

However it is evident that inflammatory responses during OA are also attributed 

to the autocrine production of IL-1 (3 by chondrocytes (Attur et al, 1998). Human 

OA chondrocytes secrete sufficient amounts of functionally active IL-1 (3, to 

induce pro-inflammatory mediators including nitric oxide (NO), and 

prostaglandin E2 (PGE2) compared to normal chondrocytes (Attur et al, 1998). 

During OA IL-1 (3 stimulates chondrocytes to secrete matrix-degrading enzymes 

principally MMP-1, -3 and -13, inducing cartilage degradation (Figure 1.6) 

(Lefebvre etal, 1990; Reboul etal, 1996; Mengshol etal, 2000).

Chondrocytes and synovial cells are known to produce IL-1 Ra and it has been 

shown to protect against inflammatory and catabolic responses (Seitz et al, 

1994; Palmer etal, 2002). In addition, OA joint cells are more responsive to IL- 

1(3 stimulation, since IL-1R1 expression is increased in OA chondrocytes and 

synovial fibroblasts compared to normal non-arthritic cells (Martel-Pelletier et al, 

1992; Sadouk etal, 1995).

In addition to inducing catabolic factors during OA, IL-1 (3 also suppresses 

anabolic activities of chondrocytes and reduces the expression of collagen II 

and aggrecan (Goldring et al, 1994; Chadjichristos et al, 2003; Stove et al, 

2000). In human OA cartilage explants, IL-1 (3 reduced the synthesis of both 

TIMP-1 and -2 (Martel-Pelletier et al, 1994). Although playing a significant role 

in cartilage degradation the importance of IL-1 (3 in maintaining cartilage 

homeostasis has been highlighted, as IL-1 (3 gene deletion accelerated the 

development of OA lesions in a mouse model (Clements etal, 2003).
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Figure 1.6 Processes of cartilage breakdown in osteoarthritis. External and 
internal stimuli induce catabolic cytokines including interleukin 1 beta (IL-1 (3) and 
tumour necrosis factor alpha (TNFa) which are secreted by cells of the synovium or 
chondrocytes resulting in the upregulation of matrix degrading enzymes including 
matrix metalloproteinases (MMPs) and ADAMTSs. Matrix breakdown products can 
feedback and regulate these cellular events further inducing cartilage breakdown. 
Anabolic factors including BMPs and TGFp are increased and lead to the formation of 
osteophytes. Other changes including increased chondrocyte proliferation and 
hypertrophy increase cartilage calcification with advancement of the tidemark occurring. 
Angiogenesis occurs at the osteochondral junctions mediated by vascular endothelial 
factor (VEGF), in addition to nerve growth factor (NGF) contributing to OA pain.
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1.6.3.3 Tumour Necrosis Factor a in OA
During OA TNFa is associated with mediating the inflammatory response 

(Kapoor et al, 2011). TNFa is synthesised by chondrocytes, bone cells and 

synovial cells and is elevated in the cartilage, synovium membrane, synovial 

fluid and subchondral bone in patients with OA. Furthermore TNFRI expression 

is increased in human OA chondrocytes and synovial fibroblasts compared to 

normal cells (Alaaeddine et al, 1997). TNFa induces chondrocytes to produce 

MMP-1, -3 and -13, thus contributing to cartilage breakdown. Additionally, TNFa 

inhibits the synthesis of proteoglycan and stimulates resorption in cartilage 

explants (Saklatvala 1986).

1.6.3.4 Chemokine IL-8 in OA
Chondrocytes express chemokines and chemokine receptors, which may in part 

contribute to the induction of cartilage breakdown by the induction of catabolic 

factors (Borzi et al, 2000). Chemokine IL-8 is thought to contribute to cartilage 

breakdown in OA and is elevated in human OA chondrocytes and the synovial 

fluid of OA patients (Kaneko etal, 2000; Attur etal, 1998). In human and bovine 

chondrocytes MMP-13 secretion is up-regulated by IL-8 (Merz et al, 2003), 

suggesting IL-8 plays a role in cartilage breakdown via the upregulation of 

matrix degrading enzymes. In addition IL-1 p has a direct effect on chemokine 

production; in human articular chondrocytes IL-113 induces the production of 

chemokine IL-8 that is thought to contribute to cartilage breakdown and 

inflammation via the recruitment and degranulation of neutrophils (Lotz et al, 

1992; Elford and Cooper 1991). Furthermore, in human OA synovial fibroblasts 

IL-8 synergises with TNFa to increase PGE2 secretion and COX-2 synthesis 

(Alaaeddine et al, 1999). These findings suggest that IL-8 interacts with pro- 

inflammatory cytokines to induce inflammatory responses in OA.

1.6.3.5 Nitric Oxide

NO is synthesised from L-arginine oxidiation by inducible nitric oxide synthase 

(iNOS) (Abramson et al, 2001). An increase in IL-1 p and TNFa during OA 

stimulates the up-regulation of proinflammatory NO via iNOS, resulting in 

damage to surrounding cells and tissue and induction of apoptosis (Abramson 

etal, 2001). NO is thought to be involved in mediating IL-1 (3 induced responses 

including the upregulation of MMPs and inhibition of collagen and aggrecan 

expression (Abramson 2008). Therapies, which target inhibition of iNOS, have
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been shown to reduce joint damage and inflammation in animal models of 

adjuvant-induced arthritis (AIA) and collagen-induced arthritis (Pelletier et al,

1999).

1.6.3.6 Prostaglandin E2

Cyclooxygenases (COX) enzymes of which there are two isoforms COX-1 and - 

2, catalyse the conversion of arachidonic acid to prostaglandins including the 

pro-inflammatory mediator PGE2 (Martel-Pelletier et al, 2003). Prostaglandins 

are elevated in the synovial fluid and cartilage from patients with OA (Martel- 

Pelletier etal, 2003; Hardy etal, 2002). During OA IL-1 (3 and TNFa increase the 

synthesis of PGE2 by chondrocytes via the upregulation of COX-2 (Martel- 

Pelletier et al, 2003). Furthermore, in human cartilage explants PGE2 inhibited 

proteoglycan synthesis and induced cartilage degradation, in addition, PGE2 

augmented IL-1 (3 induced MMP-13 expression (Attur et al, 2008), suggesting 

that PGE2 contributes to cartilage breakdown during OA.

1.6.4 IL-1 p Signalling in OA
The pro-inflammatory and catabolic actions of IL-1 p are mediated by the 

activation of mitogen activated protein kinases (MAPKs) including, Jun N- 

terminal kinase (JNK), the extracellular signal-regulated kinases (ERKs) and the 

p38 kinases and nuclear factor kB (NFkB) signalling pathways during OA 

(Goldring et al, 2008). Activation of these signalling pathways leads to the up

regulation of catabolic genes, including genes for MMP-1, -3 and -13 and 

inflammatory genes including iNOS and COX-2 (Kapoor et al, 2011; Burrage et 

al, 2006).

1.6.4.1 Mitogen Activated Protein Kinases
The MAPKs are a family of serine/threonine protein kinases and during OA they 

mediate IL-1 p induced intracellular signalling pathways. In MAPK mediated 

signalling pathways JNK and p38 are primarily phosphorylated in response to 

external stimuli including proinflammatory cytokines, apoptotic signals and 

osmotic stress and the ERKs in reponse to proinflammatory cytokines and 

growth factors (Davis 2000; Garrington and Johnson 1999; Vincenti and 

Brinckerhoff 2002). Following IL-113 stimulation the MAPK kinase kinases 

(MAPKKK, MEKK or MKKK) are activated and in turn phosphorylate other 

MAPK kinases (MAPKK, MEK or MKK) that subsequently phosphorylate and
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activate MAPKs including JNK, ERK1/ERK2 and p38 (Figure 1.7) (Vincenti and 

Brinckerhoff 2002). MAPKs translocate to the nucleus activating a number of 

transcription factors involved in the pathogenesis of OA (Figure 1.7).

MMP synthesis is tightly regulated at the gene level leading to cell and tissue 

specific expression. During OA MMP-1, -3, -9 and -13 genes are induced by IL- 

1p and TNFa. MMP-1, -3, -7, -9, -10, -12, -13, -19 and -26 are regulated by 

similar mechanisms at the transcription level and their promoters contain an 

activator protein 1 (AP-1) binding site which is -73 bp up stream of the 

transcriptional start site and a TATA box located at -30 bp (Benbow and 

Brinckerhoff 1997; Yan and Boyd 2007). JNKs and ERKs phosphorylate c-Jun, 

which in turn forms c-fos/c-Jun heterodimers, or c-Jun/c-Jun homodimers that 

together compose the AP-1 protein complex (Figure 1.7) (Burrage et al, 2006). 

AP-1 proteins cooperate with other transcription factors including 

erythroblastosis twenty-six (Ets) proteins, which are also activated by ERK to 

induce the transcription of MMPs (Vincenti and Brinckerhoff 2002; Janknecht et 

al, 1995). Furthermore, p38 phosphorylation induces the c-Jun promoter via the 

activation of activating transcription factor 2 and the ternary complex factor Elk- 

1 leading to the activation of c-fos promoter (Davis 2000).
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1.6.4.2 Nuclear Factor kB
NFkB is a transcription factor and its activation regulates the expression of 

cytokines and chemokines, inflammatory mediators and matrix degrading 

enzymes associated with the pathogenesis of OA (Marcu et al, 2010). IL-1 p 

activity is also regulated by NFkB and is required for chondrocytes to initiate the 

expression of genes involved in OA pathogenesis (Goldring and Otero 2011). 

The activity of NFkB is tightly regulated and is dependent on its cellular 

localisation. NFkB mediated transcription control is via the assembly of 

homodimers and heterodimers of 5 different NFkB proteins including RelA/p65, 

RelB, cRel, NFKB/p105, and NFKB/p100 (Marcu etal, 2010). NFkB is held in the 

cytoplasm of unstimulated cells via direct interaction with different inhibitory 

kappa B (IkB) proteins of which kBa and kB(3 predominantly bind to NFkB 

containing p65 (Valovka and Hottiger 2011). Following stimulation from pro- 

inflammatory or stress-like responses, IkB kinase (IKK) phosphorylates the site 

specific amino-terminal of IkB, targeting it for ubiquitination and subsequent 

proteasome degradation, thus, allowing the translocation of NFkB to the 

nucleus, where it binds to kB consensus sequences inducing the expression of 

target genes including MMPs (Figure 1.7) (Hayden and Ghosh 2008). NFkB 

orchestrates inflammatory responses of chondrocytes leading to cartilage 

degradation in OA and directly regulates the expression of catabolic and 

inflammatory genes including MMP-1, -3 and -13, COX-2, iNOS, IL-6, IL-1 and 

TNF (Marcu etal, 2010).

1.6.5 Matrix Metalloproteinases in OA
During the pathogenesis of OA MMPs are produced by chondrocytes and 

synovial cells in response to IL-1 (3 stimulation. MMPs are secreted into the ECM 

where they actively cleave all matrix components including collagens and 

proteoglycans, resulting in cartilage resorption (Burrage et al, 2006). There are 

a number of MMPs implicated in the pathogenesis of OA and include the 

collagenases MMP-1, MMP-8 and MMP-13 which degrade interstitial collagens 

including collagen type I, II and III, the gelatinases MMP-2 and MMP-9 which 

degrade collagen type IV, the stromelysins MMP-3, -10 and -11 which degrade 

a broad range of matrix molecules and membrane type I (MT1) MMP-14 

(Goldring and Marcu 2009) (Table 1.2).
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MMP-1 is a key collagenase involved in the breakdown of ECM components 

including collagens principally type III but also types II and I in addition to 

proteoglycans. During OA its activity has been shown to increase in relation to 

human OA lesions (Pelletier et al, 1983; Martel-Pelletier et al, 1984) 

Collagenase MMP-8 primarily cleaves collagen type I (Burrage et al, 2006). 

MMP-3 degrades a broad spectrum of substrates including aggrecan; however 

it does not have the ability to cleave triple helical collagens (Murphy et al, 2002) 

In addition, MMP-3 has the ability to cleave and activate pro-MMPs including 

MMP-1 (Unemori et al, 1991). In vivo, MMP-10 is present in OA synovial fluid 

and joint tissues, is induced by IL-1 p in chondrocytes and synovial cells in vitro 

and activates pro-collagenases (Barksby et al, 2006). Collagenase 3 (MMP-13) 

is a key enzyme involved in collagen II breakdown with the ability to cleave 

triple helical collagens into 3A and % fragments (Murphy et al, 2002; Knauper et 

al, 1996). MMP-13 also breaks down aggrecan, giving it a dual role in ECM 

degradation (Burrage et al, 2006). MMP-13 displays 5 to 10 times more activity 

than MMP-1 on collagen type II cleavage; however MMP-1 is expressed at 

higher levels than MMP-13 (Burrage etal, 2006). Both MMP-3 and MMP-13 are 

expressed at higher levels in RA and OA cartilage and synovial tissue 

compared to normal joint tissues (Davidson et al, 2006; Bau et al, 2002; 

Hembry et al, 1995; Okada et al, 1992; Wolfe et al, 1993; Chubinskaya et al, 

1999; Yoshihara etal, 2000; Koshy etal, 2002; Tetlow etal, 2001). Both MMP-3 

and -8 have been shown to be expressed predominantly in the superficial zone 

of the cartilage, which may indicate diffusion from the synovial fluid, whilst 

MMP-13, which is predominantly expressed by chondrocytes, has been 

identified in the deep zone of the cartilage (Fernandes etal, 1998; Moldovan et 

al, 1997). However, in early stage OA denatured and cleaved collagen II 

epitopes localise with MMP-1 and MMP-13 predominately within the articular 

surface (Wu et al, 2002). MMP-14 is secreted by OA chondrocytes and 

activates pro-MMP-13, which also cleaves pro-MMP-9 (Dreier etal, 2004).

1.6.6 ADAMTSsinOA
Aggrecanases were first described by Sandy et al (1991) when IL-1 (3 treatment 

of bovine articular cartilage was shown to breakdown aggrecan at the Glu373- 

Ala374 bond in the interglobular domain, but not at the Asn^-Phe342 MMP site. 

During OA both ADAMTS-4 and -5 are thought to play an important role in
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cartilage degradation and actively cleave proteoglycans (Table 1.2). Studies 

using both ADAMTS-4 and ADAMTS-5 knockout mice demonstrated that 

cartilage degradation is prevented following surgical induced joint instability of 

the meniscus in ADAMTS-5 but not ADAMTS-4 mice, suggesting the former is 

primarily involved in OA in murine models (Glasson et al, 2004; Glasson et al, 

2005). Interestingly, IL-1(3 and TNFa induced the expression of ADAMTS-4 but 

not ADAMTS-5 in human cartilage explants (Tortorella et al, 2001). Similarly, in 

human OA synovium ADAMTS-4 expression was dependant on IL-ip and 

TNFa however neutralisation of IL-1 p or TNFa had no effect on ADAMTS-5 

expression, suggesting ADAMTS-5 expression in not dependent on these 

cytokines in humans (Bondeson et al, 2006). In addition ADAMTS-9, -15 and - 

16 are produced by chondrocytes during OA and ADAMTS-16 levels are 

elevated in OA cartilage compared to non-arthritic cartilage (Surridge etal, 2009; 

Kevorkian, 2004).

1.6.7 TIMPsinOA
It has been demonstrated that TIMP-1 levels are higher that those of MMPs in 

non-arthritic cartilage, however during OA there is a decrease in TIMP 

expression over MMPs, which in part contributes to cartilage breakdown (Dean 

etal, 1989; Martel-Pelletier etal, 1994). In addition a decrease in TIMP-1 and -2 

expression has been associated with an increase in IL-1 p expression as shown 

in human OA cartilage explants (Martel-Pelletier etal, 1994).

1.6.8 Cartilage Degradation
The factors that initiate the onset of cartilage breakdown during OA have not 

been identified; however some studies suggest that during early stages of OA, 

aggrecan is initially degraded by matrix degrading enzymes MMP- 3 and 

ADAMTS-5 followed by an increased activity of collagenases such as MMP-13, 

which is highly efficient in the cleavage of collagen type II, this is thought to be 

the point of irreversible cartilage degradation (Loeser et al, 2012). Aggrecan is 

thought to protect collagen from breakdown and thus its breakdown is a pre

requisite for collagen breakdown (Little et al, 2007). Collagenases, principally 

MMP-13, initially cleave the collagen triple helix between Gly775 and Leu776 

resulting in the unwinding of the collagen chain, finally other MMPs including 

MMP-2 and -9 further degrade the collagen molecule (Burrage et al, 2006). 

During proteoglycan breakdown, MMPs cleave the aggrecan core protein at the
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Asn341-Phe342 site at the N-terminal end of the interglobular domain between 

G1 and G2, resulting in the dissociation of G1 from HA and link protein (Fosang 

eta l, 1991; Fosang etal, 1992). Aggrecan breakdown by ADAMTS involves the 

proteolytic cleavage at the core protein Glu373-Ala374 bond within a conserved 

region of the interglobular domain, resulting in the separation of G1 (Sandy etal, 

1991). ECM breakdown products are released from the cartilage and 

subsequently diffuse into the synovial fluid.

Degradation initially occurs at the articular surface of the superficial zone, 

progressing into the middle and deep zones of the cartilage with increasing 

degradation correlating with the Mankin histological grade of the cartilage 

degeneration with evidence of pericellular degradation in the deeper zones of 

the cartilage also present with progression of the cartilage lesion (Wu et al, 

2002; Hollander et al, 1995). An increase in MMP synthesis is induced by an 

increase in pro-inflammatory cytokines namely IL-1 (3 and TNFa, which are 

produced by the chondrocytes during OA (Mengshol et al, 2000; Reboul et al, 

1996). Furthermore an increase in MMPs over TIMPs during OA is thought to 

contribute to cartilage breakdown (Martel-Pelletier etal, 1994).

1.6.9 Chondrocyte death

Chondrocytes rarely divide in adult articular cartilage and thus there is little 

cellular turnover. Furthermore, cartilage has no germinal cell layer therefore 

dead or damaged cells cannot be readily replaced by new cells (Aigner et al,

2007). Chondrocyte death is a feature of OA and may occur via apoptosis, 

necrosis or chondroptosis. Chondrocytes that undergo chondroptosis display 

features including increased expansion of the endoplasmic reticulum, increase 

in Golgi apparatus, autophagic vacuoles and extrusion of cellular material into 

the extracellular space (Roach et al, 2004). Furthermore chondrocyte apoptosis 

has been associated with a decrease in cartilage matrix synthesis and the 

accumulation of cartilage ECM proteins in the intracellular components of the 

chondrocytes including the endoplasmic reticulum and the Golgi; these may be 

attributed to oxidant stress during aging (Yang et al, 2005). During OA a 

combination of these processes is thought to contribute to cartilage breakdown. 

However, whether apoptosis is a cause or an effect of OA remains to be 

determined (Zamli and Sharif 2011).
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1.6.10 The Synovium and Inflammation in OA
The synovium is composed of a thin layer of cells that are characterised as 

having pheynotypic features of fibroblasts (Type B synoviocytes) and 

macrophages (Type A synoviocytes) and are often termed ‘fibroblast like cells’ 

(Scanzello and Goldring 2012). Like, chondrocytes, the cells of the synovium 

also produce lubricin and HA to provide lubrication allowing smooth movement 

of the joint and maintain the integrity of the articular surface (Hui et al, 2012). 

During OA there is a decrease in both HA and lubricin leading to increased 

friction at the articular surface, which in part may contribute to cartilage 

breakdown (Scanzello and Goldring 2012). Synovitis is not only a feature of RA, 

but also occurs in OA and is thought to contribute to symptoms of OA and 

increased cartilage degradation (Scanzello and Goldring 2012). Magnetic 

resonance imaging (MRI) of OA joints has demonstrated the presence of 

synovial inflammation and is a pathological feature in approximately 50% of OA 

patients although tends to be more focal in nature (Hayashi etal, 2011).

Inflammation of the synovium is a source of pro-inflammatory cytokines, NO, 

PGE2 and neuropeptides which all contribute to cartilage degradation (Sellam 

and Berenbaum 2010; Sutton et al, 2009). Other studies have also shown 

synovitis to be present in early stage OA with an increase in pro-inflammatory 

cytokines IL-1 (3 and TNFa along with nuclear transcription factors NFKB/RelA 

and inflammatory mediator COX-2 and increased macrophage infiltration in 

synovial tissue (Benito et al, 2005). Increases in vascular proliferation markers 

including VEGF, adhesion molecule intercellular adhesion molecule 1 (ICAM-1) 

and factor VIII have also been identified in synovial tissue derived from patients 

with early OA (Benito et al, 2005). In addition IL-1 (3 also induces the production 

of the inflammatory mediator PGE2 by inducing the expression of COX-2 (Amin 

et al, 2000). Both mediators increase the inflammatory reaction impacting on 

cartilage degradation. Increases of pro-inflammatory cytokines by the inflamed 

synovium in OA induce the expression of MMPs by chondrocytes (Figure 1.8) 

therefore it is seen as an important target in the treatment of OA.
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1.6.11 Chondrocytes in Ageing Cartilage

There is a strong association between ageing and OA. Although during ageing 

there are changes to the structure of the ECM the development of OA is not 

always present. During cartilage ageing there is a change in the content of 

proteoglycans and collagens, changes to the articular surface including 

softening and surface irregularities and loss of ECM tensile strength and 

stiffness (Martin and Buckwalter 2002). Changes in the structural organisation 

of proteoglycan during aging includes a decrease in the molecular size of 

aggrecan and an increase in matrix protein modification via the formation of 

advanced glycation end products (AGEs) (Verzijl et al, 2003). AGEs are 

irreversible chemical protein modifications that are known to accumulate with 

age and in tissue that contain proteins with long half lives such as collagens 

present in articular cartilage (Verzijl et al, 2000). AGEs result in increases in 

collagen cross-linking, which contributes to the stiffness of the cartilage and 

also effects the biomechanical and biochemical properties of the tissue (Verzijl 

et al, 2003; Chen et al, 2002). Recently, the accumulation of AGEs in 

chondrocytes has been shown to induce endoplasmic reticulum stress 

ultimately leading to apoptosis (Yamabe et al, 2013). During aging there is a 

decrease in the chondrocyte's anabolic activities and the cell has limited ability 

to repair and remodel the ECM, which further diminishes with age. Furthermore 

there is an increase in the number of senescent chondrocytes during aging 

which has been associated with a decrease in telomere length (Martin et al, 

2004).

1.7 Mechanical Loading
Increased load transfer or altered patterns of loading on articular cartilage due 

to mechanical factors including injury, obesity or joint instability is thought to 

play a role in the initiation of osteoarthritis (Guilak et al, 2004). There are two 

key mechanisms that can contribute to mechanically induced cartilage 

breakdown: abnormal loading on normal cartilage or normal loading on 

abnormal cartilage. However, multiple factors may contribute to abnormal 

cartilage including aging and genetics, which may predispose the joint to 

mechanically induced cartilage breakdown (Goldring and Goldring 2007). 

Studies have shown that dynamic compression increases matrix synthesis, in 

contrast injurious static compression results in the depletion of proteoglycans in
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addition to damage to the collagen network (Guilak et al, 2004). Furthermore 

static compression of cartilage explants induces the expression of matrix 

degrading genes including MMP-3, -9 and -13 and inflammatory mediators 

including COX-2 (Fitzgerald etal, 2004).

Chondrocytes are able to respond to mechanical stimuli via receptors for ECM 

components including integrins and discoidin domain receptors (DDR) 

(Millward-Sadler and Salter 2004). Abnormal loading of the joint leads to 

activation of the receptors, which in turn initiate the production of matrix 

degrading enzymes. Information between the ECM and chondrocytes is 

transmitted via integrins, which are membrane bound receptors expressed by 

chondrocytes. Integrins respond to mechanical stimuli and bind ECM fragments 

including collagens and fibronectin (Goldring and Goldring 2007). Activation of 

TLR induces the production of cytokines including IL-1, IL-6 and TNF and 

chemokines including IL-8 (Akira and Takeda 2004). Moreover, TLR-2 and TLR- 

4 are expressed in OA lesion and activation of these receptors was shown to 

induce catabolism in murine cartilage explants by MMP-3 and -13 (Liu-Bryan 

and Terkeltaub 2010). DDR-2 receptor expression is increased in OA and the 

receptors bind collagen type II fibrils, inducing the expression of MMP-13 (Xu et 

al, 2007). These signals provide important information to the chondrocytes; 

regulating matrix remodelling, cell differentiation, survival and proliferation. 

Inappropriate activation of integrins during OA can induce the production of 

matrix degrading enzymes, inflammatory cytokines and chemokines and 

intracellular pathways leading to cartilage degradation (Shakibaei etal, 2008).

1.8 Bone
Bone remodelling occurs during OA at sites of bone damage (Loeser et al,

2012). A contributing factor to bone damage and remodelling is thought to be

the abnormal mechanical loading of the joint, which occurs during OA. Loss of

cartilage is also exacerbated by changes in the bone in OA (Loeser etal, 2012).

Increased subchondral bone thickening may alter the biomechanical forces on

the cartilage causing damage (Goldring and Goldring 2007). Although alteration

in the bone occurs in OA, bone mass is maintained, however the altered

activities of osteoclasts and osteoblasts result in remodelling of the subchondral

and trabecular bone changing its shape and structure (Goldring and Goldring

2010). During OA multinucleated osteoclasts are activated and produce
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proteinases including MMP-3, -9, -10,-12 and cathepsin K which are thought to 

contribute to bone remodelling and erosions (Murphy and Nagase 2008). Bone 

remodelling and the formation of new bone occurs at the joint margins and 

entheseal sites in a process which occurs by endochondral ossification which is 

thought to recapitulate the cellular mechanism involved in skeletal growth (van 

der Kraan and van den Berg 2007). Osteophyte formation is a pathological 

feature of OA formed by the process of inappropriate endochondral ossification 

and is driven by the production of anabolic factors including transforming growth 

factor (TGFP) and bone morphogenetic factor protein 2 (BMP-2) (Zoricic et al, 

2003; Blaney Davidson et al, 2007). Interestingly, there is also evidence to 

suggest that the formation of osteophytes is a mechanism to restore joint 

stability (van der Kraan and van den Berg 2007).

The subchondral bone is separated from the articular cartilage by the zone of 

calcified cartilage and encompasses the tidemark. During disease progression 

there is notable changes in the calcified cartilage zone. The calcified cartilage 

progresses into the deep zone of the cartilage with duplication of the tidemark 

often observed (Loeser et al, 2012). Cartilage calcification is driven by the 

increased production of collagen type X a hypertrophic marker during OA which 

has been shown to directly correlate with mineralization in patients with late OA 

(Fuerst et al, 2009). In addition, vascular invasion of the cartilage at the 

osteochondral junction, in part in response to VEGF production by chondrocytes, 

may provide an additional source of catabolic cytokines and proteinases 

(Murata et al, 2008; Loeser et al, 2012).

1.9 Pain
The osteochondral junction is thought to be the major source of pain in OA. 

During OA there is ingrowth of blood vessels which have been shown to localise 

with nerves which infiltrate from the subchondral bone into the articular cartilage 

where the tide mark integrity is lost (Walsh et al, 2010). These painful stimuli 

are further exacerbated by the production of nerve growth factors and 

neurotrophins including: nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF) and substance P by articular chondrocytes, which can be 

regulated by proinflammatory cytokines (Gigante et al, 2003; Grimsholm et al, 

2008; Forsgren 2009). As the cartilage tissue is avascular and aneural it is 

important to understand the pain associated with OA, however to date, there is
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little knowledge as to what initiates the vascularisation and innervation into the 

articular cartilage.

1.9.1 Nerve Growth Factor
NGF is a secreted growth factor and a regulator of nociceptive pain and plays a 

role in the differentiation, development and signalling of neurons (Fiore et al,

2009). NGF mediates its effects via two membrane receptors including the low 

affinity receptor p75 NGFR which shares sequence homology with the TNF 

receptors and the high affinity receptor transmembrane kinase p140 TrkA 

(Mallett and Barclay 1991; Kaplan et al, 1991). NGF and TrkA expression is 

increased in human OA chondrocytes compared to normal cells, suggesting 

that NGF may play a role in the pathogenesis of OA (lannone et al, 2002). 

There is also evidence to suggest that cytokines are involved in pain signalling 

during OA as NGF is released by synovial fibroblasts following treatment with 

IL-1 (3 and TNFa (Manni et al, 2003). The role of NGF in OA pain has recently 

been demonstrated; sensory nerve fibres expressing NGF were found 

associated with blood vessels in osteochondral angiogenesis (Walsh et al,

2010). Furthermore, subchondral bone marrow replacement by fibrovascular 

tissue expressing VEGF was associated with an increased in NGF (Walsh etal, 

2010). These findings suggest that that osteochondral angiogenesis and NGF 

may be associated with OA pain.

1.9.2 Substance P
Substance P is a neuropeptide involved in pain signalling and is secreted by 

nerves where it acts as a neurotransmitter and neuromodulator and by 

inflammatory cells acting as a proinflammatory mediator (O'Connor et al, 2004). 

Substance P mediates its effects via binding to the neurokinin-1 receptor (NK1R) 

and is thought to be associated with the progression of OA as infusion of 

substance P into the knee joint in animal models of arthritis increased the 

severity of arthritis (Levine et al, 1984). Furthermore IL-1 (5 has been shown to 

increase substance P levels in human chondrocytes (Im et al, 2008) suggesting 

that IL-1 p plays a role in pain signalling in cartilage degeneration.

1.10 Genetic Factors
There is evidence to suggest that genetic factors are involved in the 

pathogenesis of OA. Genome wide association studies have identified

59



polymorphisms and mutations in genes encoding ECM and signalling molecules 

including IL-1 gene cluster, IL-4 receptor alpha chain (IL4R), frizzled-related 

protein 3, aspirin (ASPN) and collagen type II (COL2AI) (Loughlin 2005; Valdes 

et al, 2007). More recently loci associated with the risk of developing OA have 

been identified and include genes involved in the regulation of body weight 

(Valdes et al, 2007;arcOGEN Consortium et al, 2012). Thus there is increasing 

evidence to suggest that gene defects may contribute to the early onset of OA 

(Goldring and Goldring 2007).

1.11 Epigenetics
Epigenetic changes are thought to play a role in the development of arthritis. 

Studies have shown that DNA methylation, histone modification and microRNAs 

(miRNAs) all play a role in cartilage degradation during OA (Reynard and 

Loughlin 2012) In late OA, reduced methylation of specific CpG islands within 

the promoters of MMP-13 and ADAMTS-4 has been demonstrated leading to an 

increased expression of these genes due to hypomethylation (Roach et al, 2005; 

da Silva et al, 2009; Cheung et al, 2009). miRNAs are a family of non-coding 

RNAs that bind to target mRNA and decrease or inhibit the expression of genes. 

A number of miRNAs are differentially expressed in OA and normal cartilage 

(Reynard and Loughlin 2012). miR-146a is increased by IL-1 (3 in human OA 

cartilage, however it was also demonstrated that miR-146a may decrease IL-1 (3 

induced MMP-13 expression via downregulation of IRAKI and TRAF6, 

suggesting that miR-146a is a negative feedback regulator in OA cartilage 

(Yamasaki et al, 2009). In vivo studies have shown that targeted deletion of 

miR-146a in mice resulted in age-related OA phenotypes and mice over 

expressing miR-146a were resistant to antigen-induced arthritis (Miyaki et al,

2010).

1.12 Arthritis Therapies

1.12.1 RA Therapies
A number of disease modifying anti-rheumatic drugs (DMARDs) have been 

used in the treatment of RA, which include cytotoxic, immunosuppressive and 

antimalarial drugs (Doan and Massarotti 2005). Currently early aggressive 

treatment of RA with DMARDs is used, often deploying methotrexate alone or in 

combination with other DMARDs such as sulphasalazine and or
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hydroxychloroquine (Sokka et al, 2008; Gaujoux-Viala et al, 2010). Although 

there are therapies that are effective in targeting structural damage associated 

with RA, there are no current therapies to prevent the disease progression in 

OA and ultimately patients often undergo total joint replacements.

Biological therapies have developed as a result of increasing knowledge of the 

pathogenesis of RA. They target proinflammatory cytokines, principally TNF, IL- 

1 and IL-6 and also T and B cells that are involved in the disease processes. 

TNF inhibitors include infliximab, a chimeric monoclonal antibody to TNF, 

etanercept, a soluble TNF receptor construct and adalimumab, a humanised 

monoclonal antibody to TNF (Tak and Kalden 2011). Anakinra, a recombinant 

human IL-1 receptor antagonist, is used to inhibit IL-1, though is not always as 

effective as the TNF inhibitors due to systemic application (Mertens and Singh

2009) and tocilizumab a humanised IL-6 receptor antibody to inhibit IL-6 (Tak 

and Kalden 2011; Nurmohamed 2009). Newer biological therapies target B and 

T cells and include rituximab which is a chimeric monoclonal antibody to CD20 

expressed on B cells and abatacept which is an anti-cytotoxic T lymphocyte 

antigen 4 (CTLA-4) antibody which blocks the activation of T cells (Tak and 

Kalden 2011; Nurmohamed 2009). In addition, non-steroidal inflammatory drugs 

(NSAIDs) and glucocorticoids may be used to help control inflammation (Doan 

and Massarotti 2005). These may be used in both RA and OA.

1.12.2 Anti-Cytokine OA Therapies
The success of some of the anti-cytokine therapies in RA has prompted 

investigation of their effectiveness in OA. There have been a number of anti

cytokine therapies tested in clinical trials and animal models of OA. Anti-IL-1 

therapies tested include: Anakinra, a recombinant IL-1Ra and IL-1Ra gene 

therapy using retroviral or adenoviral vectors. In vivo, intra-articular injections of 

IL-1Ra protected against the development of cartilage lesions in OA, in part by 

a reduction in MMP-1 expression (Caron et al, 1996). In clinical trials 

intraarticular injections of recombinant human IL-1Ra in patients with knee OA 

was well tolerated with no acute inflammatory reaction, however in a 12 week 

randomised trials Anakinra failed to provide effective relief from knee OA 

symptoms compared to placebo controls suggesting that IL-1 Ra is ineffective in 

treating OA (Chevalier et al, 2009) IL-1Ra gene therapy delivered by
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intraarticular injections in animals models of OA reduced the severity of 

cartilage lesions, disease progression and activity (Pelletier et al, 1997; 

Fernandes etal, 1999; Frisbie etal, 2002; Zhang etal, 2004). Furthermore anti

inflammatory drug licofelone displayed cartilage protective effects and reduced 

the volume of cartilage loss in patients with symptomatic OA (Raynauld et al,

2009). Anti-TNF therapies include Adalimumb and Infliximab both are 

monoclonal anti-TNF antibodies. In clinical trials patients with hand OA treated 

with Adalimumb failed to display signs of improved OA symptoms (Magnano et 

al, 2007). However, intra-articular injections of Infliximab reduced pain 

symptoms and lesion progression in patients with hand OA whilst displaying no 

systemic adverse reactions (Fioravanti etal, 2009).

Development of disease modifying drugs for the treatment of osteoarthritis 

(disease modifying anti osteoarthritic drugs (DMAODs)) is not as advanced as 

for RA. Treatments tend to target pain and inflammation rather than the 

underlying disease mechanisms. They include the use of NSAIDs and COX-2 

inhibitors and intra-articular injections of corticosteroids and hyaluronic acid. 

Nutraceuticals such as glucosamine sulphate are also in common usage but 

their efficacy is uncertain (Goldring 2006). There is therefore a need to develop 

effective DMAODs, targeting key events such as cartilage breakdown, which 

may involve inhibiting cytokine actions, informed by use of these therapies in 

RA, or actions of catabolic enzymes such as selected MMPs and ADAMTSs 

(Murphy and Nagase 2008; Goldring 2006).

1.12.3 Targeting MMPs and ADAMTS
The inhibition of MMPs is an attractive target for OA therapy, since IL-1 p and 

TNFa increase the expression of a number of MMPs involved in the 

pathogenesis of OA. However, the use of broad-spectrum MMP inhibitors has 

had little success, due to their toxicity caused by non-selectivity of MMP 

inhibition (Murphy and Nagase 2008; Krzeski etal, 2007; Tu etal, 2008). Other, 

more specific inhibitors of MMPs are now being investigated, that have different 

Zn-binding groups (Tu et al, 2008; Clutterbuck et al, 2009). The main target for 

MMP inhibition is MMP-13 as it is predominantly up-regulated in OA cartilage 

and has the ability to cleave triple helix collagens and aggrecan (Dahlberg et al,

2000). In vivo studies have shown that inhibition of MMP-13 using a highly
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selective inhibitor reduced cartilage degradation without inducing fibroplasias in 

a rat model of musculoskeletal syndrome side effects (Johnson et al, 2007). 

The inhibition of ADAMTS-4 is another possible therapeutic target for 

preventing cartilage breakdown in OA, and unlike MMPs; ADAMTSs have a 

narrower substrate selectivity (Tortorella etal, 2009).

1.12.4 Targeting OA Signalling Pathways
Inhibition of IL-1 p signalling pathways is another potential target for OA 

therapies. Since NFkB activation regulates the expression of cytokine and 

chemokines, inflammatory mediators and matrix degrading enzymes in OA, 

inhibition of this pathway may be of therapeutic value in the treatment of OA 

(Marcu et al, 2010). The inhibition of NFkB in animal models of RA was shown 

to reduce inflammation and cartilage breakdown, however the significance of 

this in OA models has yet to be determined (Marcu et al, 2010). Furthermore 

other signalling pathways including MAPK may also provide new therapeutic 

targets in the treatment of OA (Kapoor etal, 2011).

1.13 Cannabinoids
Cannabis, from the plant Cannabis sativa, has been used medicinally and 

recreationally for many years because of its anti-inflammatory, analgesic and 

psychoactive properties (Joy et al, 1999). It is the source of 60 different 

pharmacologically active cannabinoids of which A9-tetrahydrocannabinol (A9- 

THC) is the major psychoactive component. Other phytocannabinoids include 

A8-tetrahydrocannabinol (A8-THC), a weak psychoative cannabinoid cannabinol 

(CBN) and non-psychoactive cannabidiol (CBD) and cannabigerol (CBG) 

(Pertwee et al, 2010). In addition to phytocannabinoids synthetic cannabinoids 

have been developed as research tools and include (-)-11-hydroxy-A8-THC- 

demethylheptyl (HU210), CP55,940 and R(+)WIN 55, 212-2 (WIN-55). Lastly, 

endogenous cannabinoids (endocannabinoids) are produced by mammalian 

tissues and include anandamide (arachidonoylethanolamide (AEA)) and 2- 

arachidonoylglycerol (2-AG) (Pertwee 2005; Pacher et al, 2006). Cannabinoids 

produce their effects by binding to and activating receptors found in cell 

membranes or intracelluarly. The two classical cannabinoid receptors include 

cannabinoid receptor 1 and 2 (CB1 and CB2) (Matsuda etal, 1990; Munro etal, 

1993).
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1.13.1 Classical Cannabinoids
The classical group of cannabinoids includes both phytocannabinoids and 

synthetic cannabinoids and are dibenzopyran derivatives (Pertwee et al, 2010; 

Howlett et al, 2002). Classical cannabinoids include the phytocannabinoids A9- 

THC, A8-THC and synthetic cannabinoid HU210. A9-THC binds both CB1 and 

CB2 receptors with similar affinity with Kis of 5.05 to 80.3 nM and 3.13 to 75.3 

nM respectively and also acts as a partial agonist at these receptors (Pertwee 

et al, 2010). HU210 is a potent agonist at both CB1 and CB2 and has higher 

binding affinity than THC and displays long-lasting in vivo pharmacological 

effects with Kis of 0.06 to 0.73 nM and 0.17 to 0.52 mM receptively (Pertwee et 

a/,2010).

1.13.2 Non-Classical Cannabinoids
Non-classical cannabinoids have a similar structure to the classical group of 

cannabinoids and are analogues of A9-THC but lack a pyran ring (Pertwee et al, 

2010). CP55,940 belongs to the non-classical group of cannabinoids and binds 

CB1 with a Ki of 0.5 to 5 nM and CB2 with a Ki of 0.69 to 2.8 nM (Pertwee et al,

2010).

1.13.3 Aminoalkylindole
WIN-55 is an aminoalkylindole and is widely used in cannabinoid research and 

does not share the same structure as other cannabinoids. WIN-55 binds to the 

classical receptors CB1 with a Ki of 1.89 to 123 nM and is thought to display a 

slightly greater affinity for CB2 with a Ki of 0.28 to 16.2 nM (Pertwee etal, 2010).

1.13.4 Endocannabinoids
Mammalian cells can synthesise and secrete endogenous cannabinoids which 

activate cannabinoid receptors (Pertwee 2006). Endocannabinoids are a sub 

group of eicosanoids and include AEA and 2-AG (Burstein and Zurier 2009). 

The endocannabinoid system is thought to be immunomodulatory and also 

autoprotective (Pertwee 2005). AEA binds to both CB1 and CB2 receptors, 

although has a slightly higher affinity for CB1 (Pertwee 2006). Similarly, 2-AG 

has affinities for both CB1 and CB2 receptors (Pertwee 2006). Other 

endogenous cannabinoids include 2-arachidonolyglycerol ether (noladin ether), 

O-arachidonoyl ethanolamine (virodhamine), N-dihomo-y-linolenoyl 

ethanolamine, N-docosatetraenoyl ethanolamine, oleamide, N-arachidonoyl
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dopamine (NADA) and N-oleoyl dopamine (OLDA) (Pertwee et al, 2010). Other 

structurally related endogenous fatty acid compounds which do not bind to the 

classical cannabinoid receptors but are thought to facilitate the actions of 

endocannabinoids and modulate the endocannabinoid system include oleoyl 

ethanolamide (OEA) and palmitoyl ethanolamide (PEA) (Mechoulam et al, 

1998;Lambert and Di Marzo 1999). The endocannabinoid receptor system 

includes receptors CB1 and CB2, endogenous ligands and the enzymes that 

breakdown endogenous cannabinoids (Mackie and Stella 2006). The production 

of endogenous cannabinoids is tightly regulated, they are synthesised on 

demand in response to elevated intracellular calcium and can act in an 

autocrine manner intracellularly or are secreted from the cell and act in an 

autocrine or paracrine fashion (Di Marzo et al, 1999; Piomelli et al, 1998). They 

are rapidly broken down by intracellular endogenous cannabinoid degrading 

enzymes including fatty acid amide hydrolase (FAAH), which readily degrades 

AEA, and monoacylglycerol lipase (MAGL), which degrades 2-AG (Dinh et al, 

2002; Deutsch et al, 2002).

1.14 Cannabinoid receptor 1 and 2
CB1 and CB2 are G-protein coupled receptors (GPCRs) with an extracellular N- 

terminal and an intracellular C-terminal domain with seven transmembrane 

hydrophobic alpha chains. CB1 receptors are expressed in the central nervous 

system and are associated with decreasing neuronal excitability and are known 

to mediate the psychoactive effects of cannabinoids such as THC (Howlett et al,

2002). CB2 receptors are mainly expressed in immune cells (Howlett 2002) 

where they have been found to modulate cytokine release and are associated 

with a decrease in immune cell function (Pertwee 2006). Not all the 

physiological effects observed with cannabinoid ligands, both exogenous and 

endogenous are mediated by CB1 and CB2 receptors. As well as the two 

classical cannabinoid receptors there is evidence to suggest that cannabinoids 

can produce their effects via other receptors including G protein-coupled 

receptor 55 (GPR55), G protein-coupled receptor 18 (GPR18), transient 

receptor vanilloid 1 (TRPV1) and peroxisome proliferator activated receptors 

alpha and gamma (PPARa and y) (Figure 1.9). Phytocannabinoids: CBN and 

CBD and endogenous cannabinoids OEA and PEA, which are structural 

analogues of AEA, have no binding affinity to CB1 or CB2 (Brown 2007)
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suggesting that these cannabinoids mediate their effects via a non-CB1/CB2 

receptor.
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1.14.1 CB1 and CB2 Receptor Signalling
CB1 and CB2 receptors are coupled through Gj/0 proteins (Gi1, 2 and 3 and 

Go1 and 2) at their intracellular surface and ligands that bind these receptors 

activate transducing G-proteins (Howlett 2005). Following ligand binding, signal 

transduction via G-proteins inhibits adenylyl cyclase, causing decreased 

intracellular cyclic AMP and increases intracellular Ca2+. CB1 is involved in the 

control of neurotransmission via the modulation of ion channels (Figure 1.10) 

(Howlett 2005). In addition activation of cannabinoid receptors leads to the 

phosphorylation and activation of MAPKs including ERK1/ERK2, p38 and JNK 

signalling pathways, resulting in the regulation of nuclear transcription factors 

(Figure 1.10). Pertussis toxin is used to study the activation of GPCRs via 

preventing the interaction of G proteins, thus inhibiting the induction of 

intracellular signalling pathways following ligand binding (Howlett 2005).
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1.14.2 G-protein coupled receptor 55
The orphan G-protein coupled receptor GPR55 has been identified as a 

cannabinoid receptor, however it has low sequence homology with CB1 and 

CB2 (McPartland et al, 2006; Sharir and Abood 2010). GPR55 lacks the 

classical cannabinoid binding pocket that is present in both the CB1 and CB2 

receptors (Petitet et al, 2006). Recent studies have shown that the GPR55 

binding pocket consists of many hydrophilic residues, which is in contrast to the 

CB1 and CB2 receptor's highly hydrophobic cannabinoid binding pocket 

(Kotsikorou et al, 2011). The structure of the GPR55 consists of a deep vertical 

and highly hydrated binding pocket that allows ligands to bind vertically 

(Kotsikorou et al, 2011). In contrast to the CB1 and CB2 receptors, the third 

extracellular loop of GPR55 is longer and is composed of many charged amino 

acids (Kotsikorou et al, 2011). Together these findings suggest that GPR55 is 

structurally distinct from CB1 and CB2 and thus may bind distinct cannabinoid 

ligands.

Interest in GPR55 as a cannabinoid receptor was first recognised by 

GlaxoSmithKline when it was expressed in yeast (Brown 2001). Interestingly the 

CB1 antagonist AM251 activated GPR55 acting as an agonist for this receptor 

(Brown 2001). GPR55 was also expressed in HEK293 cells and cannabinoids 

including endogenous, synthetic and natural, stimulated binding of GTPyS to 

the receptor (Drmota E 2004). GPR55 has now been found to bind a number of 

cannabinoid ligands (Ryberg et al, 2007) (Figure 1.9). Endocannabinoids AEA, 

PEA, OEA, 2-AG, virodhamine norladin ether, the natural cannabinoids THC 

and abnormal CBD and synthetic cannabinoids: CPR55940, 0-1602, HU210 

and AM251 a CB1 antagonist which also activates GPR55, bind to GPR55 

stimulating GTPyS binding (Ryberg et al, 2007). However synthetic 

cannabinoids WIN-55 and CB1 antagonist AM281 are inactive at GPR55 and 

CBD antagonized the agonist effects of CPR55940. In a more recent study, p- 

arrestin green fluorescent chimeras were used to study GPR55 agonists and 

antagonists. These are intracellular proteins which bind directly to activated 

GPCRs and desensitize them enabling a fluorescent signal to be detected from 

the receptor-arrestin complex (Kapur et al 2009). In this study AM251 and 

rimonabant (SR141716A), CB1 and CB2 antagonists, were shown to acts as 

GPR55 agonists activating protein kinase signalling. However CP55940 acted
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as an antagonist and partial agonist preventing the internalization of GPR55 

(Kapur et al, 2009). Studies propose that GPR55 is a cannabinoid receptor 

which produces responses different from those of CB1, and CB2 receptors. 

However there is conflicting data which suggests GPR55 may not be a specific 

cannabinoid receptor. It has been shown that a number of endogenous and 

synthetic cannabinoid ligands do not activate GPR55 and suggested that 

lysophosphatidylinositol (LPI) is the natural endogenous ligand of GPR55 

receptors (Oka et al, 2007). Interestingly, similar to CB1 and CB2 induced 

intracellular signalling pathways GPR55 activation induces the phosphorylation 

of MAPKs including ERK1/ERK2 and p38 and the release of Ca2+ stores 

(Nevalainen and Irving 2010; Oka et al, 2010). Although not clear cut, overall 

evidence suggests that GPR55 interacts with different cannabinoid ligands and 

may activate signalling pathways other than those induced by CB1 and CB2.

1.14.3 G-protein coupled receptor 18
GPR18 has been identified as a receptor for cannabinoids and was initially 

cloned from a human T-cell line (Kohno et al, 2006). Cannabinoid ligands, 

which have been shown to be full agonists at GPR18, include endogenous 

cannabinoid anandamide, N-Arachidonylglycine (NAGIy), the metabolite of 

anandamide and phytocannabinoid THC (Figure 1.9). In addition 

phytocannabinoid CBD was shown to have low binding affinity at GPR18 

(McHugh et al, 2012). Interestingly, both AEA and THC were both shown to be 

partial agonists at CB1 and have low binding affinity to CB2 (Pertwee et al,

2010) as determined by the activation of GPR18 heterologously expressed in 

HEK293 cells producing phosphorylation of ERK1/ERK2. Furthermore, NAGIy 

induced release of Ca2+ stores and inhibited cyclic adenosine 3’, 5’- 

monophosphate (cAMP) formation, effects that were shown to be pertussis 

toxin sensitive (Kohno et al, 2006). Although sharing structural similarity to 

anandamide, NAGIy has been shown to be inactive at both CB1 and CB2 

receptors (Sheskin et al, 1997). Under physiological conditions, NAGIy initiates 

microglial migration in the central nervous system via GPR18 activation 

(McHugh et al, 2012; McHugh 2012). GPR18 has little primary sequence 

homology with CB1 and CB2 receptors, suggesting that distinct cannabinoid 

ligands bind and activate it.
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1.14.4 Transient Receptor Potential Vanilloid 1
TRPV1 is an ion channel linked receptor composed of six transmembrane 

domains with cytosolic C- and N- terminal domains and a pore forming 

hydrophobic region between the fifth and sixth transmembrane domains 

(Tominaga and Tominaga 2005). TRPV1 is involved in peripheral nociception 

and is activated by capsaicin in addition to heat, acid and lipids (Tominaga and 

Tominaga 2005). TRPV1 is primarily expressed by sensory neurons and acts as 

an endogenous cannabinoid receptor for AEA and has also been shown to bind 

phytocannabinoids, including CBD (Figure 1.9) (Bisogno etal, 2001; Smart and 

Jerman 2000).

1.14.5 Peroxisome Proliferator-Activated Receptors (PPARs)
Cannabinoids are also thought to activate PPARs. PPARs are ligand-activated 

nuclear transcription factors which on activation heterodimerise with the retinoid 

X-receptor (RXR) and bind to the PPAR response elements of target genes 

involved in regulation of metabolism, particularly lipid metabolism, cell 

differentiation and inflammation (O'Sullivan and Kendall 2010; Desvergne and 

Wahli 1999). There are three main isoforms of PPAR including PPARa, 5 and y 

of which PPARy is best characterised for its anti-inflammatory effects and is 

most extensively studied. PPARy has two isoforms PPAR-y1 and PPAR-y2 

formed by alternative splicing and promoter usage (Fajas et al, 1997). All 

subtypes of PPARs are widely expressed, particularly in the central nervous 

system (CNS) and peripheral nervous system (O'Sullivan 2007).

PPARs have been shown to be activated by a number of cannabinoids 

including the synthetic cannabinoid ajulemic acid (AJA), which has been shown 

to bind to the ligand binding domain of human PPARy (Ambrosio et al, 2007). 

Furthermore, endogenous cannabinoids AEA, 2-AG and NADA, 

phytocannabinoid A9-THC and synthetic cannabinoids WIN-55, CP55,940, 

HU210 have been shown to bind to and activate PPARy receptors (O'Sullivan 

and Kendall 2010; O'Sullivan 2007; Bouaboula et al, 2005) (Figure 1.9). 

Endogenous cannabinoid AEA, OEA, PEA, noladin ether and virodhamine and 

synthetic cannabinoid WIN-55 display PPARa binding and promote 

transcriptional activity (Sun et al, 2006; Lo Verme et al, 2005; Fu et al, 2003)

72



and OEO increased transcriptional activity of PPARS (Fu et al, 2003) (Figure

1.9).

1.15 Cannabinoid Receptor Expression in Joint Cells
The expression of cannabinoid receptors in joint cells has been identified (Table 

1.3) and there is evidence to suggest that activation of these receptors by 

cannabinoid and non-cannabinoid ligands may display chondroprotective and 

anti-inflammatory effects.

1.15.1 Cannabinoid Receptor 1 and 2
CB1 and CB2 receptors have been shown to be expressed in bovine articular 

chondrocytes (Mbvundula et al, 2006) and have been detected in the synovium 

and fibroblast like synovial cells of OA and RA patients and human 

chondrocytes (Richardson et al, 2008; Andersson et al, 2011). Furthermore, 

CB1 and CB2 are expressed by bone cells including osteoclasts, osteoblasts 

and osteocytes and are thought to play a role in bone metabolism as 

demonstrated by In vivo knockout mice studies (Idris and Ralston 2010).

1.15.2 G Protein-Coupled Receptor 55
Recently GPR55 expression has been demonstrated in both normal and OA 

human chondrocytes, however its role in chondrocyte metabolism is unknown 

(Andersson et al, 2011). Furthermore GPR55 has been shown to be expressed 

in human and mouse osteoclasts and osteoblasts and activation of GPR55 with 

cannabinoid CBD which is known to act as an antagonist at this receptor, was 

shown to regulate osteoclast number and function (Whyte etal, 2009).

1.15.3 G Protein-Coupled Receptor 18
Currently there is no published data on the expression of GPR18 in cells of the 

joint. GPR18 is primarily expressed in the testes and spleen and other tissues 

and cells involved in endocrine and immune functions including, peripheral 

blood leukocytes, the small intestine and the thymus (Gantz etal, 1997).

1.15.4 Transient Receptor Potential Vanilloid 1
TRPV1 expression has been identified in human OA chondrocytes and OA and 

RA synovial fibroblasts (Gavenis et al, 2009; Engler et al, 2007). Furthermore, 

TRPV1 is expressed by bone tissue and human osteoclast cultures (Rossi etal, 

2009).
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1.15.5 Peroxisome Proliferator Activated Receptors
PPARy has been shown to be expressed in rat chondrocytes as well as in 

human chondrocytes and human synovial fibroblasts (Bordji et al, 2000; Shao et 

al, 2005; Fahmi et al, 2001; Fahmi et al, 2002). PPARy has been found to be 

mainly located in superficial zone of human cartilage tissue and studies also 

suggest that these receptors are involved in the modulation of cartilage 

metabolism in arthritic diseases as protein expression of PPARy was 

significantly lowered in human OA cartilage compared to normal human 

cartilage and was also decreased during the OA progression in animal models 

(Afif et al, 2007; Nebbaki et al, 2013). Recently studies have demonstrated that
i

PPARy knockout mice develop OA, suggesting that PPARy plays an important 

role in normal ECM turnover (Vasheghani et al, 2013). Furthermore IL-1 (3 has 

been shown to down-regulate the expression of PPARy in human OA 

chondrocytes and rat synovial fibroblasts (Afif et al, 2007; Moulin et al, 2005; 

Boyault etal, 2001).

PPARa is expressed by human OA chondrocytes, rat, dog and guinea pig 

chondrocytes and rat synovial fibroblasts (Bordji et al, 2000; Shao et al, 2005; 

Afif etal, 2007; Nebbaki et al, 2013; Moulin etal, 2005; Clockaerts et al, 2011). 

Similarly, PPAR5 is expressed by human OA chondrocytes, rat, dog and guinea 

pig chondrocytes and rat synovial fibroblasts (Bordji et al, 2000; Shao et al, 

2005; Afif et al, 2007; Nebbaki et al, 2013; Moulin et al, 2005). All three 

subtypes of PPARs are expressed by bone cells (Giaginis etal, 2007).
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1.15.6 Cannabinoids and Cannabinoid Receptor Activation in OA
Cannabinoids are produced by a number of cell types including, bone and 

synovial cells (Richardson etal, 2008; Buckley 2008). In view of their analgesic, 

anti-inflammatory and immunomodulatory properties (Mbvundula et al, 2004; 

Croxford and Yamamura 2005; Klein 2005), the effects of cannabinoids have 

been studied in animal models of arthritis. Synthetic cannabinoid AJA, a 

synthetic derivative of A9-THC, reduced inflammation and the severity of 

adjuvant-induced arthritis (Zurier et al, 1998). Non-psychoactive cannabinoid: 

cannabidiol reduced joint damage and inflammation in murine collagen induced 

arthritis in a dose-dependent manner (Malfait et al, 2000). Similarly, HU-320 a 

metabolite of a synthetic homologue of cannabidiol reduced joint damage in 

collagen-induced arthritis (Sumariwalla et al, 2004). Together these studies 

suggest that cannabinoids have potential as therapeutic agents for arthritis.

In vitro studies have also demonstrated the anti-inflammatory and potential 

chondroprotective effects of cannabinoids. AJA reduced IL-1 p production in 

lipopolysaccharides (LPS) stimulated human peripheral blood mononuclear 

cells and synovial monocytes and IL-1 a or TNF-stimulated release of MMP-1, -3 

and -9 from fibroblast-like synovial cells (Johnson et al, 2007;Zurier et al, 2003). 

It has been shown that synthetic cannabinoids CP55, 940 and WIN-55 reduced 

IL-6 and IL-8 production in IL-1(3-stimulated human RA and OA fibroblast-like 

synovial cells and (Selvi et al, 2008). Furthermore, synthetic cannabinoids 

WIN-55 and HU210 prevented IL-1a-stimulated proteoglycan and collagen 

breakdown in bovine nasal cartilage explants suggesting direct effects on 

chondrocytes (Mbvundula et al, 2006). In addition, WIN-55 also inhibited IL-1 a- 

stimulated production of NO and PGE2 production, the induction of iNOS and 

COX-2 expression and NFkB activation in bovine articular chondrocytes 

(Mbvundula et al, 2006; Mbvundula et al, 2005). Cannabis-based therapies 

have also been trialled for relief of pain in RA and were shown to reduce 

disease activity (Blake etal, 2006).

GPR55 receptor activation with 0-1602 a synthetic cannabinoid related to 

abnormal cannabinoid cannabidiol was found to reduce nociception in a rat 

model of arthritis (Schuelert and McDougall 2011). In addition 0-1602 has also



been found to inhibit osteoclast formation in vitro in a mouse model (Whyte et al, 

2009).

TRPV1 is thought to be associated with OA pain as shown by TRPV1 knockout 

mice, which have reduced thermal hyperalgesic sensitivity in an adjuvant- 

induced arthritis model (Keeble et al, 2005). Cannabinoid CBD demonstrated 

anti-inflammatory effects in a rat model of acute inflammation, effects that were 

thought to be mediated by TPRV1 (Costa et al, 2004). Furthermore, TRPV1 is 

thought to activate osteoclasts thus inducing bone resorption (Rossi et al, 2009).

There is growing evidence to suggest that activation of PPARs with both 

cannabinoid and non-cannabinoid agonists may be a potential target for the 

treatment of OA and RA via preventing catabolic pathways (O'Sullivan and 

Kendall 2010; Fahmi et al, 2001; Fahmi et al, 2002; Johnson et al, 2007; 

Clockaerts et al, 2011; Fahmi etal, 2011; Giaginis et al, 2009). Several studies 

have demonstrated that AJA displays anti-inflammatory effects in animal 

arthritis models and inhibits the promoter activity of IL-8 (Ambrosio et al, 2007; 

Zurier et al, 2003). These effects in part may be PPARy mediated (Liu et al,

2003). Furthermore, the synthetic cannabinoid AJA has been shown to increase 

the production of 15d-PGJ2 a product of anandamide cleavage (Stebulis et al, 

2008). 15d-PGJ2 is a ligand of PPARy and was shown to counteract IL-1 p 

induced COX-2, and iNOS expression and also the production of NO and the 

decrease in proteoglycan in human chondrocytes (Boyault et al, 2001). 15d- 

PGJ2 also inhibited the activation of NFkB and attenuated AP-1 binding to DNA 

in human chondrocytes (Boyault et al, 2001). Conversely, PPARy agonist 

troglitazone, used in the treatment of type 2 diabetes, had no significant 

inhibitory effects on IL-ip-stimulated iNOS and COX-2 expression indicating the 

actions of 15d-PGJ2 may be PPARy independent (Boyault et al, 2001; Bianchi 

etal, 2005). Furthermore, 15d-PGJ2 decreased IL-1 (3 induced NO and MMP-13 

production in chondrocytes and also inhibited IL-1 (3 induced MMP-1 production 

in human synovial cells (Fahmi etal, 2001; Fahmi etal, 2002).

In animal models of arthritis non-cannabinoid PPARy agonist piogitazone 

reduced the development and severity of cartilage lesions (Kobayashi et al, 

2005; Boileau et al, 2007). Activation of PPARy may therefore inhibit the actions
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of IL-1 p in matrix degradation by reducing pro-inflammatory mediators and 

matrix degrading enzymes. There is increasing evidence to show that these 

receptors are also involved in inflammation and cytokine modulation by 

inhibiting the expression of NF-kB, which induces pro-inflammatory responses 

(O'Sullivan 2007).

Activation of PPARa using a selective PPARa agonist Wy-14643, reduced IL-1 p 

stimulated production of MMPs and the production of inflammatory mediators 

NO and PGE2 in human OA cartilage explants, however there were no effects 

on collagen type II or aggrecan expression (Clockaerts et al, 2011) suggesting 

that these receptors could play a role in the inflammatory process of arthritic 

disease when activated by specific ligands. In another study activation of 

PPARa using a specific agonist increased the production of IL-1 Ra in 

chondrocytes indicating that activation of these receptors may protect 

chondrocytes against IL-1 (3 induced responses (Francois et al, 2006). PPAR 

activation induced by cannabinoids may also have effects on inflammatory 

mediators involved in the pathogenesis of OA. An example of this is 

endogenous cannabinoid PEA, which mediates its anti-inflammatory effects by 

activating PPARa (Lo Verme et al, 2005). WIN-55 also binds to and increases 

the transcriptional activity of PPARa (Sun et al, 2006) and AEA binds to and 

activates both PPARa and PPARy (Bouaboula et al, 2005; Sun et al, 2006; Sun 

and Bennett 2007).

There is little knowledge regarding the chondroprotective activities of PPAR5 

however, activation of PPAR5 in rat synovial fibroblasts was shown to stimulate 

production of IL-1Ra, suggesting that PPAR5 may have potential anti-arthritic 

properties (Moulin etal, 2005).

Endogenous cannabinoids AEA and 2-AG have been detected in the synovial 

fluid of OA and RA patients, however these endogenous cannabinoids were not 

detected in the synovial fluid of normal patients (Richardson et al, 2008) 

indicating upregulation of their expression in arthritis. Interestingly, PEA and 

OEA levels were decreased in the synovial fluid of patients with OA and RA 

compared to controls (Richardson et al, 2008). Furthermore, AEA has been 

shown to have anti-inflammatory effects via suppressing TNF induced NF-kB
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activation by inhibiting IkB kinase independent of CB1 and CB2 receptors 

(Sancho et al, 2003). These studies suggest that the endogenous cannabinoid 

system may also be a target for anti-arthritic therapies.

1.16 Summary

A key pathological feature of OA is cartilage degradation. ECM breakdown in 

OA is primarily driven by the pro-inflammatory cytokine IL-1 p that induces the 

upregulation of MMPs (Kapoor et al, 2011). In addition IL-1 (3 inhibits anabolic 

activities of chondrocytes decreasing collagen type II and aggrecan (Goldring et 

al, 1994; Chadjichristos etal, 2003; Stove et al, 2000). Thus IL-1 (3 significantly 

contributes to the dysregulation of ECM turnover during OA. Currently there are 

no therapies to prevent cartilage degradation in OA, ultimately leading to total 

joint replacements. Targeting inhibition of IL-1 (3 signalling pathways 

inappropriately activated during OA is therefore a key therapeutic target.

Cannabinoids have been shown to reduce joint damage in animal models of 

arthritis and present therapeutic possibilities in the prevention of cartilage 

breakdown (Figure 1.11) (Malfait etal, 2000; Sumariwalla et al, 2004; Zurier et 

al, 1998). Furthermore, the activation of certain cannabinoid receptors namely 

PPARa and y display anti-inflammatory properties in addition to inhibiting 

destructive pathways in OA (Fahmi et al, 2001; Boyault et al, 2001; Clockaerts 

etal, 2011). Improved understanding of how cannabinoids such as WIN-55 may 

act to prevent cartilage breakdown will identify potential therapeutic agents. In 

addition, identification of cannabinoid receptors within different grades and 

zones of OA cartilage will provide insight into the expression patterns of 

cannabinoid receptors during disease progression.
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1.17 Aims and Objectives
Global Aim/ Hypothesis: This thesis aimed to test the hypothesis i) that 

synthetic cannabinoid WIN-55 inhibits IL-1 (3 induced catabolic pathways in OA 

chondrocytes; ii) that cannabinoid receptors are expressed in OA cartilage and 

bone cells and their expression is altered in different grades of disease and iii) 

activation of cannabinoid receptors with selective agonists decreases IL-1 p 

induced catabolic pathways in OA chondrocytes.

Objectives:

• To determine the effects of synthetic cannabinoid WIN-55 on IL-1 p 

induced expression of MMP-3 and -13 within different grades of OA 

chondrocytes.

• To determine the effects of synthetic cannabinoid WIN-55 on TIMP-1 and 

-2 expression within different grades of OA chondrocytes.

• To determine effects of WIN-55 on IL-1 (3 signalling pathways

• To identify the expression and modulation of putative cannabinoid 

receptors within distinct histological grades of OA cartilage and cartilage 

zones and underlying bone.

• To determine which cannabinoid receptors mediate WIN-55 induced 

responses in OA chondrocytes based on selective agonist receptor 

activation.
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2 The Effects of WIN-55 on IL-1p 
Induced Catabolic Pathways
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2.1 Introduction

During OA there is a shift in the equilibrium between catabolic and anabolic 

activities in cartilage (Goldring and Marcu 2009). As a result the breakdown of 

collagen and proteoglycans may exceed the rate of synthesis of new matrix 

molecules resulting in cartilage degradation. Another contributing factor in 

cartilage breakdown in OA is an increase in inflammatory cytokines particularly 

IL-1 p and TNFa produced by the articular chondrocytes or cells of the synovium 

(Goldring and Otero 2011). This results in an increase in MMPs particularly 

MMP-1, -3 and MMP-13, which are expressed in OA cartilage and synovial 

tissue, (Davidson et al, 2006; Bau et al, 2002; Hembry etal, 1995; Okada et al, 

1992; Wolfe etal, 1993; Chubinskaya et al, 1999; Yoshihara et al, 2000; Koshy 

et al, 2002; Tetlow et al, 2001) without an increase in their inhibitors TIMPs 

(Dean etal, 1989; Martel-Pelletier etal, 1994). During OA an increase in MMPs 

over TIMPs leads to cleavage of ECM molecules principally aggrecan and 

collagen type II. MMP inhibition has been proposed as a possible mechanism to 

prevent breakdown of cartilage tissue in arthritis, provided the necessary 

functional specificity can be achieved (Murphy and Nagase 2008).

Cannabis-based medicine Sativex has been shown to have analgesic effects 

and to suppress disease activity in patients with RA (Blake et al, 2006). 

Cannabinoids also have anti-inflammatory effects and reduce joint damage in 

animal models of arthritis (Malfait et al, 2000; Sumariwalla et al, 2004; Zurier et 

al, 1998). In vitro studies have shown that cannabinoids reduce cytokine 

production from OA and RA fibroblasts and the release of matrix MMPs from 

fibroblast-like synovial cells (Johnson et al, 2007; Zurier etal, 2003; Selvi et al, 

2008). They also have direct effects on cartilage ECM breakdown; reducing IL- 

1a induced proteoglycan and collagen degradation in bovine cartilage 

(Mbvundula et al, 2006). There is thus increasing evidence to suggest that 

cannabinoids have chondroprotective effects and may be of value in the 

treatment of arthritis (Dunn etal, 2012).

2.1.1 WIN-55
The synthetic cannabinoid WIN-55 is known to activate the classical

cannabinoid receptors CB1 and CB2 in addition to the nuclear cannabinoid

receptors including PPARa and y (Pertwee et al, 2010; O'Sullivan 2007;Sun et
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al, 2006). WIN-55 has been shown to display anti-inflammatory affects in 

human OA and RA synovial fibroblasts via reducing the secretion of IL-6 and IL- 

8 (Selvi et al, 2008). In bovine chondrocytes, WIN-55 was shown to prevent the 

IL-1 a induced breakdown of proteoglycan and collagen (Mbvundula etal, 2006). 

Furthermore, in human astrocytes, WIN-55 has also been shown to modulate 

the activities of IL-1 via inhibition of NFkB (Curran et al 2005). Collectively, 

these findings suggest that WIN-55 displays both anti-inflammatory and anti- 

catabolic activities in a number of cell types.

2.1.2 Model Culture Systems
In monolayer, chondrocytes redifferentiate into fibroblast-like cells and change 

their matrix synthesis from collagen type II and aggrecan to collagen type I and 

X (Mayne et al, 1976; von der Mark et al, 1977; Benya etal, 1978). Phenotypic 

features of chondrocytes can be reversed and maintained when cultured in 

three-dimensional (3D) culture of alginate beads and cell pellets. Alginate is 

derived from brown seaweed as a polymer of (3-D mannuronic acid and a-L- 

guluronic acid (Hauselmann et al 1996). Cells can be suspended in viscous 

alginate solution prior to polymerisation. In the presence of divalent ions 

including calcium, alginate forms a semi-solid gel-like matrix in which cells can 

be embedded to redifferentate them back to their native phenotype 

(Hauselmann et al, 1996). As the alginate is negatively charged it is thought to 

mimic the in vivo properties of the ECM of proteoglycans. Chondrocytes 

cultured in alginate beads produce a matrix of collagen type II and aggrecan 

(Hauselmann et al, 1996). The properties of alginate beads allows for live cells 

to be easily isolated from the matrix by the addition of chelating agents (De 

Ceuninck et al, 2004). Chondrocytes embedded and cultured in alginate beads 

are able to respond to stimulation from growth factors and cytokines allowing for 

the study of chondrocyte metabolism using various molecular techniques, 

including PCR (Beekman etal, 1998; Lemare etal, 1998; Loeser etal, 2003).

Cell pellets are another form of 3D culture system used to redifferentiate

chondrocytes, which are formed by pelleting cells in conical tubes by

centrifugation (Schulze-Tanzil et al, 2002). Cell pellets have been used for the

redifferentation of primary chondrocytes to study the effects of growth factors

and cytokines (Xu et al, 1996). Moreover histological analysis of cell pellets
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show chondrocytes form lacunae and produce an extracellular matrix of 

collagen II and proteoglycans.(Dozin etal, 2002).

2.2 Aims and Objectives
Aim: This study aimed to investigate the effects of synthetic cannabinoid WIN- 

55 on MMP-3 and -13, TIMP-1 and -2 expression human OA chondrocytes in 

the presence of IL-1 p.

• To determine the time-dependent effects of WIN-55 on the mRNA 

expression of MMPs and TIMPs.

• To determine the concentration-dependent effects of WIN-55 on the 

mRNA expression of MMPs and TIMPs.

• To investigate the effects of WIN-55 on the mRNA expression of MMPs 

and TIMPs in the presence of pro-inflammatory cytokine IL-ip in 

chondrocytes isolated from different macroscopic grades of OA cartilage 

both in monolayer and 3D culture.

• To determine the effects of WIN-55 on MMP-3 and -13 protein release 

into culture media following IL-ip stimulation in both monolayer and 3D 

culture.

2.3 Experimental Design
The effects of WIN-55 on matrix degrading enzymes MMP-3 and -13 and their 

inhibitors TIMP-1 and -2 in chondrocytes obtained from different grades of OA 

cartilage were investigated. Cartilage tissue was graded macroscopically 0-4 

using the Outerbridge classification (Cameron et al, 2003). Chondrocytes were 

isolated from grade 0, 2 and 3 cartilage tissue as representative of non

degenerate, low degenerate and intermediate degenerate cartilage tissue. 

Cartilage from grade 4, severe degenerate tissue, was not used in the study as 

the cell yield obtained was not sufficient. Chondrocytes were cultured in 

monolayer and then transferred to alginate beads and cell pellets to 

redifferentiate chondrocytes back to their native phenotype for four weeks. Cells 

were stimulated with IL-1 p to induce catabolic responses. Chondrocytes were 

also treated with WIN-55 with and without IL-1 p and the gene expression of

85



MMP-3, -13, TIMP-1 and -2 investigated using real-time PCR. In order to 

determine the effects of WIN-55 on IL-1 (3 stimulated MMP-3 and -13 protein 

production, enzyme-linked immunosorbent assay (ELISA) was used to measure 

the amount of active and pro-MMP-3 released from cells into the culture media 

from chondrocytes cultured in monolayer and alginate beads and the total and 

pro-MMP-13 released into the culture media from chondrocytes cultured in 

alginate beads following IL-1 p and WIN-55 treatment. An MMP-3 enzyme 

activity assay was also used to measure MMP-3 activity in the conditioned 

culture media following IL-1 (3 and WIN-55 treatment.

2.4 Methodology

2.4.1 Human OA Cartilage Samples

Primary Human chondrocytes were obtained from the articular cartilage 

removed from patients with symptomatic OA at the time of total knee 

replacement (Ethical approval gained through Sheffield Musculoskeletal 

Biobank). All patients provided written, informed consent prior to participation 

and tissue samples were supplied by the Sheffield Biorepository. Cartilage 

blocks were taken from each anatomic compartment within the knee (n=5-7 per 

patient) (medial and lateral tibio-femoral and patello-femoral compartments) 

(Appendix 1) and transported in Dulbecco's modified Eagle's medium 

(DMEM)/F-12 (1:1) (Invitrogen) supplemented with 2mM glutamine (Invitrogen), 

100 U/ml penicillin, 100 pg/mI streptomycin (Invitrogen), 2.5 pg/ml amphotericin 

B (Sigma-Aldrich) and 50 pg/ml ascorbic acid (Sigma-Aldrich) (serum free 

media).

2.4.2 Macroscopic Grading of Cartilage Tissue
Cartilage tissue was macroscopically graded 0-4 using the Outerbridge 

Classification at time of surgery by Prof J.M.Wilkinson, orthopaedic surgeon 

prior to isolation of chondrocytes (Cameron etal, 2003). Cartilage was classified 

into macroscopic grades (Table 2.1).
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Macroscopic Grade Cartilage Features

Grade 0 Normal

Cartilage with softening and swelling

A partial thickness defect with fissures on the

surface that do not reach subchondral bone or

exceed 1.5 cm in diameter

Fissures that reach the level of subchondral bone

in an area with a diameter of more than 1.5 cm

Exposed subchondral bone

Grade I
Grade II

Grade III

Grade IV
Table 2.1 Outerbridge Classification of human cartilage tissue at time of total 
knee replacement

2.4.3 Isolation of OA Chondrocytes
Cartilage was removed from the bone, finely dissected and washed twice in 

Ixphosphate buffered saline (PBS) (Invitrogen). Cartilage was digested in 0.25% 

trypsin (Sigma-Aldrich) at 37°C for 30 minutes followed by digestion in 3 mg/ml 

collagenase type I (Sigma-Aldrich) in DMEM/F-12 (1:1) supplemented with 10% 

heat-inactivated fetal bovine serum (FBS) (Invitrogen), 2mM glutamine, 100 

U/ml penicillin, 100 pg/ml streptomycin, 2.5 pg/ml amphotericin B and 50 pg/ml 

ascorbic acid (complete media), at 37°C for 16 hours. The resulting cell 

suspension was passed through a 70 pm cell strainer (Fisher Scientific) and 

centrifuged at 400g for 10 minutes; the cell pellet was then washed twice in 

serum free media, followed by centrifugation at 400g for 10 minutes. The cell 

pellet was resuspended in complete media. Cells were counted and the viability 

checked using trypan blue exclusion on the Countess cell counter (Invitrogen) 

(approximately 5x105 cells/ml of directly extracted cells). Cells were seeded in a 

T75 flask (Nunc) and maintained in DMEM/F12 complete media in a humidified 

atmosphere of 5% C02 and the culture media changed every other day.

2.4.4 OA Patient Samples
Chondrocytes cultures were derived from OA patient samples; HC1(1), HC4(2) 

HC5(2), HC5(4), HC6(1), HC7(1), HC11(3), HC15(4), HC16(4), HC17(4), 

HC20(1) and HC23(4) (Table 2.1). HC is human cartilage with sample number 

and the anatomic compartment code in brackets. Full patient sample 

information can be found in Appendix 1.
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2.4.5 Monolayer Culture: Cell Passaging
Cells were cultured in monolayer until 80% confluent before passaging. At 

passage 0 chondrocytes display a rounded morphology, by passage 1 and 2 

the chondrocytes are flatter with a fibroblast-like elongated morphology (Figure 

2.1). Culture media was removed and cells were washed twice in 1X PBS and 

incubated with trypsin/ethylenediamine tetraacetic acid (trypsin-EDTA) 

(Invitrogen) at 37°C for 5 minutes to detach cells. The trypsin-EDTA was 

inactivated by the addition of complete culture media and centrifuged at 400g 

for 10 minutes and resuspended in complete culture media. Cells were split at a 

ratio of 1:3 into T75 flasks and maintained in culture until passage 2 in complete 

culture media in a humidified atmosphere of 5% C02 and the culture media 

changed every other day prior to IL-1 (3 and WIN-55 treatment as outlined in 

sections 2.4.6 and 2.4.7.

2.4.6 IL-1 p and WIN-55 Treatment of OA Chondrocytes Cultured in 

Monolayer for Investigation of Time and Concentration Dependent 
Effects

Chondrocytes were cultured in monolayer until 80% confluent at passage 2. 

Following trypsinisation as outlined in section 2.4.5, cells were centrifuged at 

400g for 10 minutes and resuspended in complete media. Cells were counted 

using trypan blue exclusion on the Countess cell counter. Cells were seeded in 

6 well culture plates at a cell density of 5x105 per well. Cells were allowed to 

adhere overnight at 37°C in a humidified atmosphere of 5% C02. Complete 

media was removed and cells washed twice with 1xPBS. Media containing 500 

pg/ml bovine serum albumin (BSA) (Sigma-Aldrich), 2mM glutamine, 100 U/ml 

penicillin, 100 pg/ml streptomycin, 2.5 pg/ml amphotericin B and 50 pg/ml 

ascorbic acid (Serum free media+BSA) supplemented with 10 ng/ml IL-113 

(Peprotech) with and without 1 pM, 2.5 pM, 5 pM, 7.5 pM and 10 pM WIN-55 

(Sigma-Aldrich) was added to the cells and they were incubated for 48 hours at 

37°C. Chondrocytes in monolayer were also treated alone with 10 pM WIN-55 

for 3, 6 24 and 48 hours at 37°C. Dimethyl sulfoxide (DMSO; Sigma-Aldrich) 

(0.1%) was used as vehicle control at the same concentration present in 10 pM 

WIN-55 treatment. Each treatment was performed in triplicate in grade 0 

chondrocytes (Table 2.2).
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2.4.7 IL-ip and WIN-55 Treatment of OA Chondrocytes Cultured in
Monolayer Isolated from Different Macroscopic Grades of Cartilage

Chondrocytes were seeded in 6 well culture plates at a cell density of 5x105 per 

well as described in section 2.4.6. Serum free media + BSA supplemented with 

10 ng/ml IL-1 p with and without 10 pM WIN-55 was added per well for 48 hours. 

DMSO (0.1%) was used as vehicle control at the same concentration present in 

10 pM WIN-55 treatment. Each treatment was performed in triplicate on grade 0, 

2 and 3 isolated chondrocytes (Table 2.2). Following treatment, conditioned 

culture media was stored at -20° for MMP-3 and -13 cell based5 ELISA and 

MMP-3 enzyme activity assay analysis (sections 2.4.22 and 2.4.24).
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2.4.8 Alginate Bead Culture
Cells cultured in monolayer were harvested at passage 2 and transferred into 

alginate beads. Chondrocytes suspended in alginate beads regain their 

rounded morphology (Figure 2.1). Following trypsinisation as outlined in section 

2.3.5. cell suspensions were centrifuged at 400g for 10 minutes and the 

resulting cell pellet was resuspended in 10 ml of complete culture media and 

the cell number determined using trypan blue exclusion and the Countess cell 

counter. Following further pelleting the chondrocytes were resuspended in 1.2% 

medium viscosity sodium alginate (Sigma-Aldrich) in 0.15M sodium chloride 

(NaCI) at a cell density of 2x106 per ml of alginate. The resulting cell suspension 

was passed through a 19 gauge needle into a 12 well plate containing 2 ml of 

200 mM calcium chloride (CaCI2) solution, where each drop was instantly 

polymerised forming semisolid microspheric beads. The beads were 

polymerised at 37°C for 10 minutes and then washed twice with 0.15M NaCI 

and twice in serum free media. Alginate beads were cultured in complete media 

in a humidified atmosphere of 5% C02 at 37°C and the media changed every 

other day (Figure 2.1). Alginate beads were redifferentiated in culture for 4 

weeks in 2 ml complete media prior to IL-1 p and WIN-55 treatment (section

2.4.9).
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Figure 2.1 Primary human chondrocytes cultures. (A) Monolayer culture 
Passage 0 (PO) (B) Passage 1 (P1) (C) Passage 2 (P2) and (D) alginate 
bead culture. At PO chondrocytes display a rounded morphology, by P1 and 
P2 the chondrocytes are flatter with a fibroblast-like elongated morphology. 
Following suspension in alginate beads chondrocytes regain their rounded 
morphology. Cultures obtained from patient sample HC20(1).

93



2.4.9 IL-1 p and WIN-55 Treatment of Chondrocytes Cultured in Alginate 

Beads.
2 alginate beads were placed per well in 12 well plates (Nunc). Beads were 

washed with serum free media and 2 ml serum free+BSA media supplemented 

with 10 ng/ml IL-1 (3 with or without 10 pM WIN-55 added per well and incubated 

for 48 hours. DMSO (0.1%) was used as a vehicle control at the same 

concentration present in 10 pM WIN-55 treatment. Each treatment was 

performed in triplicate on grade 0, 2 and 3 isolated chondrocytes (Table 2.2). 

Following treatment, conditioned culture media was stored at -20°C for cell 

based ELISA analysis (section 2.4.22).

2.4.10 Cell Pellet Culture
Cells cultured in monolayer were harvested at passage 2 and transferred to cell 

pellets. Following trypsinisation as outlined in section 2.3.5 cells were 

centrifuged at 400g for 10 minutes and the resulting cell pellet was 

resuspended in 10 ml of complete culture media and the cell number counted 

using trypan blue exclusion on the Countess cell counter. Chondrocytes were 

centrifuged at 400g for 10 minutes at a cell density of 2x105 cells/pellet in 2 ml 

of complete culture media. The resulting cell pellets were cultured in 15 ml 

falcon tubes (Fisher Scientific) in a humidified atmosphere of 5% CO2 at 37°C, 

and the media changed every other day. Cells were redifferentiated in cell 

pellets for four weeks prior to IL-1 p and WIN-55 treatment (section 2.4.11).

2.4.11 IL-1 p and WIN-55 Treatment of Chondrocytes Cultured in Cell 
Pellets.

Cell pellets were washed with 1xPBS and 1 cell pellet was used per treatment. 

2 ml serum free media+BSA supplemented with 10 ng/ml IL-1 p with or without 

10 pM WIN-55 was added per 15 ml falcon tube and incubated for 48 hours. 

DMSO (0.1%) was used as vehicle control at the same concentration present in 

10 pM WIN-55 treatment. Each treatment was performed in triplicate on grade 0, 

2 and 3 isolated chondrocytes (Table 2.2).

2.4.12 Cytotoxicity Studies MTS Assay
The CellTiter 96® AQue0us One Solution Cell Proliferation Assay (MTS)

(Promega) was used to determine the effects of 10pM WIN-55 on the cell

viability of human chondrocytes. At passage 2 cells, trypsinised as outlined in
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section 2.4.5, were centrifuged at 400g for 10 minutes and the resulting cell 

pellet resuspended in 10 ml of complete culture media and the cell number 

counted using trypan blue exclusion on the Countess cell counter (Invitrogen). 

Cells were seeded at a cell density of 1x105 cells per well in a 96 well culture 

plate and cells were allowed to adhere overnight in a humidified atmosphere of 

5% CO2 at 37°C. Serum free media+BSA (200 pi) supplemented with 10 ng/ml 

IL-1 p with and without 10 pM WIN-55 was added to each well and incubated for 

48 hours at 37°C. DMSO (0.1%) was used as vehicle control at the same 

concentration present in 10 pM WIN-55 treatment. Each treatment was 

performed in triplicate using two patient samples (Table 2.2). Following 

treatments 40 pi of MTS solution was added to each well and incubated at 37°C 

for 4 hours. The absorbance was read at 490 nm using the Wallac Victor 1820 

plate reader. Average absorbances were taken for each reading and the results 

expressed as percentage cell viability compared to control cells.

2.4.13 RNA Extraction from Cells Cultured in Monolayer
Culture media was removed from cells and 1 ml of TRIzol (Ambion) reagent 

was added to each well and incubated at room temperature for 5 minutes. The 

resulting TRIzol/cell suspensions were transferred to 1.5 ml Eppendorfs, 200 pi 

of chloroform added to each sample and then vortexed for 15 seconds and 

incubated at room temperature for 3 minutes. The samples were centrifuged at 

12,000g for 15 minutes at 4°C and the aqueous phase transferred to a fresh 1.5 

ml Eppendorf to which 500 pi of isopropanol was added and the samples 

incubated at room temperature for 10 minutes and then incubated at -80°C for 

at least 1 hour. The resulting RNA precipitate was centrifuged at 12,000g for 30 

minutes at 4°C. The RNA pellet was washed with 80% ethanol and centrifuged 

at 7,500g for 15 minutes at 4°C and the RNA pellet air dried on ice for 30 

minutes and resuspended in 14 pi of sterile deionised water (sdH20). RNA 

purity was determined using a Nanodrop (Thermo Scientific).

2.4.14 RNA Extraction from Alginate Beads using TRIzol and Qiagen RNA 

Clean-up Column
Following treatments RNA extraction from alginate beads was performed using 

TRIzol reagent for measurement of MMP-3, -13, TIMP-1 and -2 mRNA. Alginate
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beads were removed from the cell culture media and transferred to 1.5 ml 

Eppendorfs and incubated in 1 ml dissolving buffer (55 mM sodium citrate, 

30mM Ethylenediaminetetraacetic acid (EDTA), 0.15M NaCI, pH 6) at 37°C for 

20 minutes. The resulting cell suspension was centrifuged at 600g for 15 

minutes and the supernatant discarded. The cell pellet was resuspended in

0.06% collagenase type I v/v in complete culture media and incubated at 37°C 

for 20 minutes and centrifuged at 600g for 15 minutes forming at cell pellet. The 

resulting cell pellet was incubated with 1 ml of TRIzol reagent for 5 minutes at 

room temperature, 200 pi of chloroform was added to each sample and vortexed 

for 15 seconds. The samples were incubated at room temperature for 3 minutes 

and then centrifuged at 12,000g for 15 minutes. The aqueous phase was 

transferred to a new tube and 500 pi of isopropanol added and incubated at 

room temperature for 10 minutes. The samples were centrifuged at 12,000g for 

30 minutes and the supernatant removed. The resulting RNA was resuspended 

in 100 pi of sterile deionised water and the RNA was purified using RNeasy clean 

up columns (Qiagen) according to the manufacturer's instructions. RNA purity 

was determined using a NanoDrop.

2.4.15 RNA Extraction from Cells Cultured in Pellets using TRIzol.
RNA extraction from cells cultured in cell pellets was performed using TRIzol 

reagent for the measurement of MMP-3 and -13 mRNA. Cell pellets were 

removed from culture media and transferred to 1.5 ml Eppendorfs. Cell pellets 

were incubated in 0.06% collagenase type I (Sigma-Aldrich) at 37°C for 15 

minutes and centrifuged at 600g for 15 minutes, forming a cell pellet. The 

resulting cell pellets were incubated with 1 ml of TRIzol at room temperature for 

5 minutes and RNA extracted as outlined in section 2.4.13.

2.4.16 Reverse Transcription
RNA was denatured at 60°C for 5 minutes. Reverse transcription (RT) of RNA 

to cDNA was performed using Bioscript reverse transcriptase (Bioline) prior to 

real-time polymerase chain reaction (PCR). RT mastermix was added to each 

sample (Table 2.3). Reverse transcription was performed at 42°C for 1 hour 

followed by 10 minutes at 80°C. cDNA was stored at -20°C for use in real-time 

PCR.
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Reagent for 1 reaction Ml
Reverse transcriptase enzyme 0.5

dNTPs (40 nM) 1

Random Hexamers (50 pM) 1.5

Sterile deionised water 28
Table 2.3 Reverse transcription mastermix

2.4.17 The Principle of Taqman Real-Time PCR
Real-time PCR allows the quantitation of gene expression. Taqman real-time 

PCR utilises fluorescent probes that bind to specific sequences on target genes. 

The probe has a fluorescent reporter dye attached to it 5’ end and a quencher 

dye at its 3’ end (Figure 2.2). During extension of the primers the 5’ 

exonuclease activity of Taq DNA polymerase cleaves the probe releasing the 

fluorescent reporter dye from the quencher dye, thus resulting in an increase in 

fluorescence, which is detected by the StepOnePlus ABI PCR machine. The 

baseline defined as the reporter fluorescent signal, which is below the limits of 

detection of the instrument. The baseline is subtracted from the fluorescent data 

and the measured fluorescence is expressed as an amplification plot (Figure 

2.3). The Cj value is defined as the PCR cycle number at which the reporter 

fluorescent is greater than that of the fixed threshold for each gene which is set 

in the exponential region of the amplification plot (Figure 2.3). The presence of 

more cDNA template at the start of the reaction results in a lower C j value as 

there are less cycles required for the fluorescent signal to reach the threshold.
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PolymerisationA R=Reporter 
\  Q=Quencher

Forward
Primer Probe

3’

5’

Strand displacement and cleavage
Reverse
Primer
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Primer

Probe
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5’

Reverse
Primer
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3’
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Forward
Primer

Probe
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3’

Reverse
Primer

Figure 2.2 Real-time PCR principle. (A) The primers and probes containing a reporter 
and a quencher anneal to the complementary sequence of the target gene. Whilst in 
close proximity, the quencher, quenches the reporters fluorescence. (B) A Taq 
polymerase extends the forward primer sequence, as it reaches the annealed probe 
sequence it degrades the probe therefore releasing the reporter dye from the quencher 
and emitting a fluorescent signal which is directly detected by the Step One Plus ABI 
real-time PCR machine. (C) As the reaction continues Taq Polymerase further 
degrades the probe and completes the extension of the primers. This process is 
repeated for each PCR cycle.
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Figure 2.3 PCR amplification plot showing the threshold and baseline settings.
Following amplification the base line was set for each target gene at two cycles prior to 
the first amplification curve. Thresholds were set in the exponential phase of the curve 
for each target gene. The red arrow indicates baseline setting of 9 for 18S gene 
amplification and a threshold of 0.75 within the exponential phase of the curve. The 
blue arrow indicates the baseline setting of 17 for glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) gene amplification and a threshold of 0.5 within the 
exponential phase of the curve.

2.4.18 Real-time PCR
Taqman PCR was performed on cDNA samples from monolayer, alginate 

beads and cell pellets using pre-designed Taqman Gene Expression Assays 

(Table 2.4; Life Technologies). Gene expression was normalised to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic 18S 

rRNA (18S) housekeeping genes (Table 2.4; Life Technologies). cDNA was 

diluted 1:10 prior to real-time PCR analysis and 2 pi was used in duplicate in 96 

well Fast Optical Density PCR plates (Life Technologies). Real-time PCFi 

master mix was prepared using 8 pi per reaction/well (Table 2.5).

Separate mastermix was loaded for each target gene and housekeeping gene. 

PCR plates were sealed with Fast Optical Adhesive Covers (Life Technologies) 

and PCR was run on an Applied Biosystems StepOnePlus Real-Time PCR
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machine for 40 cycles of denaturation at 95°C for 1 second followed by 

annealing and extension at 60°C for 20 seconds.

Taqman Gene Expression Assay Assay ID

GAPDH Hs9999905_m1

18S Hs99999901_s1

MMP-3 Hs00968305_m1

MMP-13 Hs00233992_m1

TIMP-1 Hs00171558_m1

TIMP-2 Hs00234278_m1

Table 2.4 Taqman gene expression assay IDs

For 1 Reaction Ml

Taqman Gene Expression Assay 0.5

Taqman FAST Mastermix 5.0

Sterile deionsed H20 2.5

Total 8.0

Table 2.5 Taqman FAST mastermix

2.4.19 Analysis of Real-Time PCR
Following amplification, the baseline was set up to 2 cycles prior to the first 

amplification for each target and housekeeping gene (Figure 2.3). The threshold 

for each was set within the exponential phase of the PCR amplification curve 

(Figure 2.3). The same threshold was used for each individual target. The C j 

values were exported to excel and the data analysed using the 2*MCT method 

(Livak and Schmittgen 2001) to determine target mRNA expression relative to 

the internal housekeeping gene reference.
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2.4.20 2‘aact Analysis
The 2'aact is a relative quantification method that relates the PCR cycle number 

of the target gene in a treatment group to that of another treatment group (or 

untreated control) (Lival&Schmittgen 2001).

1. Cy value duplicates were averaged for all target genes and 

housekeeping genes (GAPDH & 18S).

2. The housekeeping genes C j values (GAPDH and 18S) were averaged.

3. ACt values were calculated by subtracting the averaged housekeeping 

gene C j value from the target gene Cj value.

ACt = CT (target gene) -  C j (mean reference gene)

4. Averages and the standard error of each data set were calculated.

5. AACy values were calculated

AACj = mean ACT (treatment group) -  mean ACT (untreated control)

6. Target gene expression relative to the internal reference gene and 

control expression was calculated

Relative gene expression = 2 'MCT

7. Error bars representing standard error of ACt values were calculated

Positive Error = 2 ( aACT+aCTSE) -  2 'MCT 

Negative Error = 2 'AACT -  2(‘MCT'ACT SE)

2.4.21 Taqman Primer/Probes Design and Optimisation
For each set of Taqman assays the efficiency of the amplification was

determined. Following serial dilutions of cDNA template (1:10, 1:100, 1:1000,

1:10,000), cDNA was amplified in triplicate. The logio of the cDNA concentration

was applied and the amplification efficiency of the slope was calculated using
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the line of best fit. A slope of 1 corresponded to one additional PCR cycle 

required to reach threshold, demonstrating 100% efficiency. Efficiency graphs 

with slopes between 0.9 and 1.1 with a correlation co-efficient (R2) of at least 

0.9 were accepted as efficient. All primer efficiencies are shown in Appendix 2.

2.4.22 MMP-3 and -13 Enzyme Linked Immunosorbent Assay (ELISA)
Pro-MMP-3 and total and pro-MMP-13 release into cell culture media from 

grade 3 chondrocytes cultured in monolayer and alginate beads following 

treatment with WIN-55 and IL-ip for 48 hours was determined using R&D 

Systems Quantikine ELISA kit (Table 2.2) (Figure 2.4). Briefly, samples were 

centrifuged at 400g for 10 minutes to remove particulates and were diluted 

accordingly with calibrator diluent RD5-10 (Table 2.6). MMP-3 standards of 10, 

5, 2.5, 1.25, 0.625, 0.312 and 0.156 ng/ml from a stock solution of 100 ng/ml 

and MMP-13 standards of 5000, 2500, 1250, 625, 313, 156 and 78 pg/ml from 

a stock solution of 50,000 pg/ml were produced. Calibrator diluent served as the 

zero control standard (0 ng/ml). To the pre-coated wells 100 pi of assay diluent 

RD1-52 was added to each well and 100 pi of standard, control or sample was 

then added and incubated at room temperature for 2 hours on an orbital 

microplate shaker at 500 rpm. Each well was washed four times with 400 pi of 

wash buffer and 200 pi of MMP-3 or MMP-13 conjugate was added to each well 

and incubated at room temperature for 2 hours on an orbital microplate shaker 

at 500 rpm. Each well was washed four times in Ixwash buffer and 200 pi of 

substrate solution was added to each well and incubated at room temperature 

for 30 minutes protected from light. 50 pi of stop solution was then added to 

each well and the absorbance read at 450 nm and at 570 nm using the Wallac 

Victor 1820 plate reader (PerkinElmer).
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Analyte
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o

Antibody 
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Figure 2.4 Principle of R&D Systems MMP-3 and -13 ELISA. (A) Samples are 
added to the microplate pre-coated with capture antibody, any analyte present is bound 
to the immobilised capture antibody. (B) A second horse radish peroxidase (HRP)- 
conjugated antibody is added and binds to the captured analyte. (C) 
Tetramethylbenzidine (TMB) substrate is added to each well and a blue colour 
develops, colour development is stopped and the absorbance is read at 450 nm.
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Culture media sample Dilution Factors

Control 
DMSO (0.1%)
IL-1p (10 ng/ml)+DMSO 

(0.1%)

WIN-55 (10 pM)+ IL-1p 

(10 ng/ml)
WIN-55 (10 pM)

Monolayer
MMP-3

1:50

1:50

1:1500

1:10

1:2

Alginate
MMP-3
Not tested

1:50

1:200

1:1

1:1

Alginate
MMP-13
Not tested

Neat

Neat

Neat

Neat

Table 2.6 MMP-3 and MMP-13 sample dilutions for ELISA analysis

2.4.23 MMP-3 and -13 ELISA analysis
The readings at 570 nm were subtracted from the readings of 450 nm to correct 

for optical imperfections in the plate. Each absorbance reading was averaged 

and the average zero standard optical density subtracted. A log/log standard 

curve was produced and a best fit line produced and the concentration of MMP- 

3 or MMP-13 in each sample determined. Each sample concentration was 

multiplied by the dilution factor for the individual samples and further normalised 

to the untreated control or DMSO control. For alginate beads, data was 

expressed as amount of protein production per alginate bead.

2.4.24 MMP-3 Activity Assay
The activity of MMP-3 released into the culture media from grade 2 isolated 

chondrocytes (Table 2.2) was measured using the BioVision MMP-3 Activity 

Assay Kit (Cambridge Bioscience, Cambridge, UK). During MMP-3 activity 

assay, MMP-3 hydrolyses a specific fluorescence resonance energy transfer 

(FRET) substrate to release the quenched fluorescent group methyl cumaryl 

amide (Mca), which can be detected fluorometrically. Mca standards were made 

of 0.5, 0.4, 0.3, 0.2 and 0.1 nM made from a 1 nM MMP-3 Mca stock. MMP-3 

assay buffer served as the 0 nM standard. The standards were read
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fluorometrically with the excitation at 325 nm and emission at 393 nm using the 

Tecan Infinite 200 Pro. Samples were centrifuged at 400g for 10 minutes to 

remove particulates and 50 pi of each sample added to a 96 well plate in 

duplicate. The provided MMP-3 served as a positive control and 10 pi was 

added to each well in duplicate and the final volume adjusted to 50 pi with 

MMP-3 assay buffer. Reaction mix was added to each well containing 2 pi of 

MMP-3 substrate and 48 pi of MMP-3 assay buffer. The samples and positive 

control were read fluorometrically with the excitation at 325 nm and emission at 

393 nm at 4 minutes and the reaction was read again following incubation at 

room temperature for 1, 15, 20, 30, 40, 50, 60, 120, 180, 240, 300 and 360 

minutes protected from light using the Tecan Infinite 200 Pro.

2.4.25 MMP-3 Activity Assay Analysis
The optimal incubation time was determined and fluorescence, measured in 

relative fluorescene units (RFU), was generated by the hydrolysis of the FRET 

substrate to release the quenched Mca fluorescent group to produce ARFU = 

R2-R1. The 0 standard was subtracted from the standard readings to produce 

the standard curve. The ARFU was applied to the standard to curve to get B nM 

of Mca (amount of unquenched Mca generated between Ti and T2) (Figure 2.5).

MMP-3 Activity = = (f ^ 1)xVx sample dilution factor=nM/min/ml = mU/ml

B is nM Mca determined from the MMP Mca standard curve.

Ti is the time of the first reading (Ri) (in min).

T2 is the time of the second reading (R2) (in min).

V is the pre-treated sample volume added to the reaction well (in ml).

2.5 Statistical Analysis
Data was shown to be non-parametric via a Shapiro-Wilk test hence statistical 

testing using Kruskal-Wallis multiple comparisons test was used to determine 

significance between DMSO vehicle control samples and IL-ip with and without 

WIN-55 treatment. The Conover-lnman post-hoc analysis was used to test 

when a significant difference was observed between different treatment groups. 

Statistical analysis was performed using StatsDirect software (StatsDirect Ltd).
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Figure 2.5 MMP-3 positive control activity overtime. The exponential phase of the 
reaction for the positive control is between 120 and 300 minutes as indicted by the red 
arrows, therefore these time points were used in the analysis of MMP-3 enzyme 
activity as outlined in section 2.4.25
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2.6 Results

2.6.1 The Effects of WIN-55 on Chondrocyte Viability
WIN-55 treatment in combination with IL-1 (3 for 48 hours reduced cell viability 

by 4% and WIN-55 treatment alone reduced cell viability by 7% compared to 

untreated control (Figure 2.6), however this was not significant (p>0.05), 

indicating that the concentration of WIN-55 used in this study did not 

significantly affect chondrocyte viability.

150-
o
co

Treatment (48 hours)

Figure 2.6 The effects of WIN-55 on chondrocyte 
viability. n=6 obtained from 2 patient samples. Data 
represents mean percentage of control under treatment 
conditions ± SEM.
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2.6.2 The Time-Dependent Effects of WIN-55 on MMP-3, -13, TIMP-1 and - 
2 Gene Expression

Following WIN-55 treatment for 3 hours there was a significant increase in 

MMP-3 expression compared to DMSO control (p<0.01) and MMP-13 remained 

at basal levels (Figure 2.7A). Following 6 hours WIN-55 treatment MMP-3 and 

MMP-13 expression remained at basal levels. Significant decreases in MMP-3 

and MMP-13 mRNA expression (p<0.001) were shown following 24 hour WIN- 

55 treatment compared to DMSO control (Figure 2.7A). The largest significant 

decrease in MMP-3 and MMP-13 mRNA expression was observed following 

WIN-55 treatment for 48 hours compared to DMSO vehicle control (p<0.001) 

(Figure 2.7A).

Following 3 hours WIN-55 treatment both TIMP-1 and TIMP-2 mRNA 

expression remained at basal levels (Figure 2.7B). After 6 hours of WIN-55 

treatment there was a significant decrease in TIMP-2 gene expression 

compared to DMSO control (p<0.05) and TIMP-1 remained at basal levels 

(Figure 2.7B). Significant decreases in TIMP-1 and TIMP-2 mRNA expression 

(p<0.01) were shown following 24 hour WIN-55 treatment compared to DMSO 

control (Figure 2.7B). The largest significant decrease in TIMP-1 and TIMP-2 

mRNA expression was observed following WIN-55 treatment for 48 hours 

compared to DMSO control (p<0.001) (Figure 2.7B).
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2.6.3 The Concentration-Dependent Effects of WIN-55 on MMP-3 and -13 

Gene Expression

Following IL-ip stimulation both MMP-3 and MMP-13 expression was 

significantly increased (p<0.001) (Figure 2.8). IL-ip stimulation in combination 

with 1 pM WIN-55 had no effect on MMP-3 and MMP-13 mRNA expression. IL- 

1(B stimulation in combination with 2.5 pM WIN-55 had no effect on MMP-3 

mRNA expression but significantly reduced MMP-13 mRNA expression below 

basal levels compared to DMSO alone (p<0.05) and IL-ip stimulation alone 

(p<0.001) (Figure 2.8). IL-1p stimulation in combination with 5 pM WIN-55 

significantly reduced MMP-3 and MMP-13 mRNA expression below basal levels 

compared to DMSO alone and IL-1p alone (p<0.001) (Figure 2.8). IL-1p 

stimulation in combination with 7.5 pM WIN-55 significantly reduced MMP-3 

mRNA expression below basal levels compared to DMSO alone (p<0.05) and 

IL-1 p alone (p<0.001) and MMP-13 mRNA expression below basal levels 

compared to DMSO alone and IL-1 p alone (p<0.001) (Figure 2.8). Following 10 

pM WIN-55 treatment in combination with IL-1 (3 stimulation there was a 

significant decrease in MMP-3 mRNA expression to basal levels compared to 

IL-1 |B stimulation alone (p<0.001) and MMP-13 mRNA expression was 

significantly reduced below basal levels compared to both DMSO alone and IL- 

1P stimulation alone (p<0.001) (Figure 2.8). MMP-3 mRNA expression 

remained at basal levels following 1 pM WIN-55 treatment and MMP-13 mRNA 

expression was significantly decreased to below basal levels compared to 

DMSO alone (p<0.05) (Figure 2.8). Both MMP-3 and MMP-13 mRNA levels 

were significantly reduced below basal levels following 2.5, 5, 7.5 and 10 pM 

WIN-55 treatment alone compared to DMSO alone (p<0.001) (Figure 2.8).
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Figure 2.8 The concentration-dependent effects of WIN-55 on IL-1 p 
induced MMP-3 and -13 gene expression in OA chondrocytes cultured in 
monolayer. IL-1 (3 induced the gene expression of MMP-3 and -13. WIN-55 
decreased the expression of both MMP-3 and -13 in a concentration dependent 
manner both alone and in combination with IL-1 p. Data represents mean fold 
change of mRNA expression normalised to internal reference gene and 
untreated control ± SEM.*p<0.05, ***p<0.001 compared to DMSO control and 
+++p<0.001 compared to IL-1 (3 treatment. n=3 samples for each treatment 
group obtained from one patient sample, macroscopic grade 0 (HC20(1)).
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2.6.4 The Concentration-Dependent Effects of WIN-55 on TIMP-1 and -2 
Gene Expression.

IL-1 p stimulation had no effect on TIMP-1 and TIMP-2 mRNA expression. IL-1 p 

stimulation in combination with 1 pM WIN-55 significantly reduced TIMP-1 

mRNA expression compared to DMSO alone (p<0.05) and IL-1 (3 stimulation 

alone (p<0.01) and TIMP-2 mRNA expression compared to DMSO alone 

(p<0.001) and IL-1 p stimulation alone (p<0.01) (Figure 2.9). IL-1 p stimulation in 

combination with 2.5, 5, 7.5 and 10 pM WIN-55 significantly reduced both 

TIMP-1 and TIMP-2 mRNA expression below basal levels compared to DMSO 

alone and IL-1 p stimulation alone (p<0.001) (Figure 2.9). Following 1 pM WIN- 

55 treatment alone both TIMP-1 and TIMP-2 mRNA expression remained at 

basal levels (Figure 2.9). Following 2.5, 5, 7.5 and 10 pM WIN-55 treatment 

both TIMP-1 and TIMP-2 mRNA expression was significantly reduced below 

basal levels compared to DMSO alone (p<0.001) (Figure 2.9).
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Figure 2.9 The concentration-dependent effects of WIN-55 and IL-1 p on TIMP- 
1 and -2 gene expression in OA chondrocytes cultured in monolayer. IL-1 (3 
had no effect on TIMP-1 and -2. TIMP-1 and -2 gene expression is decreased in a 
WIN-55 concentration dependent manner both alone and in combination with IL-1 p. 
Data represents mean fold change of mRNA expression normalised to internal 
reference gene and untreated control ± SEM. *p<0.05, **p<0.01, ***p<0.001 
compared to DMSO control and ++p<0.01, +++p<0.001 compared to IL-1 p 
treatment. n=3 samples for each treatment group obtained from one patient sample, 
macroscopic grade 0 (HC20(1)).

113



2.6.5 The Effects of WIN-55 on IL-1p Induced MMP-3 and MMP-13 mRNA
Expression in Chondrocytes Cultured in Monolayer

In monolayer cultures IL-1 p stimulation significantly induced MMP-3 gene 

expression in chondrocytes isolated from grade 0, 2 and 3 cartilage (p<0.001) 

and MMP-13 in chondrocytes isolated from grade 0 (p<0.001), grade 2 (p<0.05) 

and grade 3 cartilage (p<0.001) compared to DMSO vehicle control (Figure 2A 

& 2B). Treatment with WIN-55 in combination with IL-1 p significantly reduced 

MMP-3 and -13 gene expression in chondrocytes derived from grade 0, 2 and 3 

cartilage compared to IL-1 (3 stimulation alone (p<0.001) (Figure 2A & 2B). WIN- 

55 treatment in combination with IL-1 (3 also significantly reduced MMP-3 gene 

expression in chondrocytes isolated from grade 0, 2 and 3 cartilage and MMP- 

13 gene expression in chondrocytes isolated from grade 0 (p<0.001), grade 2 

(p<0.01) and grade 3 (p<0.001) compared to DMSO vehicle control (p<0.001) 

(Figure 2A & 2B). WIN-55 treatment alone significantly reduced MMP-3 gene 

expression in grade 0, 2 and 3 cartilage derived chondrocytes below basal 

levels compared to DMSO vehicle control (p<0.001) (Figure 2A). WIN-55 

treatment alone also significantly decreased MMP-13 gene expression in grade 

0 and 3 cartilage derived chondrocytes compared to DMSO control (p<0.001) 

(Figure 2A). MMP-13 was only expressed in two samples in chondrocytes 

derived from grade 2 cartilage following WIN-55 treatment therefore statistical 

analysis could not be performed.
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2.6.6 The Effects of WIN-55 on IL-1 p Induced MMP-3 and MMP-13 mRNA

Expression in Human Chondrocytes Cultured in Alginate Beads

IL-1 p stimulation of cells cultured in alginate beads significantly induced MMP-3 

mRNA expression in chondrocytes from grade 0, 2 and 3 cartilage (p<0.001) 

and MMP-13 mRNA expression in grade 0 (p<0.05), 2 and 3 (p<0.001) cartilage 

derived chondrocytes compared to DMSO control (Figure 11A & 11B). Similarly 

WIN-55 treatment in combination with IL-1 p significantly reduced MMP-3 mRNA 

expression in grade 0, 2 and 3 cartilage derived chondrocytes (p<0.001) and 

MMP-13 mRNA expression in grade 0 and 3 cartilage derived chondrocytes 

compared to IL-1 (3 stimulation alone (p<0.001) (Figure 11A & 11B). MMP-13 

was not expressed in chondrocytes from grade 2 cartilage treated with IL-1 p in 

combination with WIN-55 (Figure 11B). WIN-55 treatment in combination with 

IL-1 f3 significantly reduced MMP-3 (p<0.05) and MMP-13 (p<0.01) mRNA 

expression in chondrocytes from grade 0 chondrocytes compared to DMSO 

control (Figure 11A & 11B). WIN-55 treatment in combination with IL-1 p 

reduced MMP-3 mRNA expression in chondrocytes from grade 2 cartilage and 

both MMP-3 and MMP-13 mRNA expression in chondrocytes from grade 3 

cartilage compared to DMSO control; however this was not significant (Figure 

11A & 11B). There was no significant difference from basal levels of MMP-3 

mRNA expression in grade 0 and 3 cartilage derived chondrocytes when 

treated with WIN-55 alone (Figure 11 A). MMP-3 was not expressed in grade 2 

cartilage chondrocytes treated with WIN-55 alone (Figure 11 A). MMP-13 was 

abolished in chondrocytes from grade 0, 2 and 3 cartilage treated with WIN-55 

alone (Figure 11B).
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2.6.7 The Effects of WIN-55 on IL-1 p Induced MMP-3 and MMP-13 Gene

Expression in Chondrocytes Cultured in Cell Pellets

IL-1 p stimulation of cells cultured in pellets significantly induced MMP-3 mRNA 

expression in chondrocytes isolated from grade 0, 2 and 3 (p<0.001) cartilage 

and MMP-13 mRNA expression in chondrocytes isolated form grade 0 (p<0.01) 

and 3 (p<0.001) but not grade 2 cartilage compared to DMSO alone (Figure 

2.12A & B). WIN-55 treatment in combination with IL-1 p significantly reduced 

MMP-3 mRNA expression in chondrocytes isolated from grade 0, 2 and 3 

(p<0.001) cartilage and MMP-13 mRNA expression in chondrocytes isolated 

from grade 0 (p<0.01), and 2 (p<0.05) cartilage compared to IL-1 p stimulation 

alone (Figure 2.12A & B). WIN-55 treatment in combination with IL-1 p 

significantly reduced MMP-3 mRNA expression in chondrocytes isolated from 

grade 0 (pcO.001), 2 (p<0.05) and 3 (p<0.001) cartilage below basal levels 

compared to DMSO control and reduced MMP-13 mRNA expression in grade 0 

and grade 2 isolated chondrocytes compared to DMSO control; however this 

was not significant (Figure 2.12A & B). MMP-13 mRNA was not expressed in 

grade 3 chondrocytes treated with WIN-55 in combination with IL-1 p (Figure 

2.12B). WIN-55 treatment alone significantly reduced MMP-3 mRNA expression 

(p<0.001) in chondrocytes extracted from grade 2 cartilage below basal levels 

compared to DMSO control (Figure 2.12A). WIN-55 treatment alone reduced 

MMP-13 gene expression in grade 2 chondrocytes; however this was not 

significant (Figure 2.12B). Both MMP-3 and MMP-13 mRNA was not expressed 

in chondrocytes isolated form grade 0 and 3 cartilage when treated with WIN-55 

alone (Figure 2.12A & B).
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2.6.8 The Effects of WIN-55 on TIMP-1 and 2 mRNA Expression in

Chondrocytes Cultured in Monolayer

In cells cultured in monolayer, IL-1 (3 stimulation had no significant effect on 

TIMP-1 and TIMP-2 mRNA expression in chondrocytes derived from grade 0, 2 

and 3 cartilage (Figure 2.13A & B). However WIN-55 treatment in combination 

with IL-1 (3 resulted in a significant decrease in TIMP-1 gene expression 

compared to DMSO control and IL-1 p stimulated chondrocytes isolated from 

grade 0 (p<0.001), 2 (p<0.001) and 3 cartilage (p<0.01) (Figure 2.13A). WIN-55 

alone also significantly reduced TIMP-1 mRNA expression in chondrocytes 

derived from grade 0 and 2 cartilage (p<0.001) below basal levels (Figure 

2.13A). TIMP-1 mRNA expression was decreased in chondrocytes derived from 

grade 3 cartilage following WIN-55 treatment however this was not significant 

(Figure 2.13A). TIMP-2 mRNA expression was significantly reduced following 

WIN-55 treatment in combination with IL-1 (3 compared to DMSO control and IL- 

1(3 stimulation in chondrocytes derived from grade 0, 2 and 3 cartilage 

(p<0.001) (Figure 2.13B). WIN-55 alone significantly reduced the mRNA 

expression of TIMP-2 below basal levels in chondrocytes isolated from grade 0, 

2 and 3 cartilage (p<0.001) (Figure 2.13B).
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2.6.9 The Effects of WIN-55 on TIMP-1 and -2 Gene Expression in

Chondrocytes Cultured in Alginate Beads

TIMP-1 mRNA expression was significantly increased in grade 2 (p<0.001) and 

3 cartilage derived chondrocytes (p<0.05) following IL-1 (3 stimulation but not in 

grade 0 cartilage chondrocytes compared to DMSO control (Figure 2.14A) in 

cells cultured in alginate beads. In contrast TIMP-2 mRNA expression was 

significantly decreased following IL-1 (3 treatment in chondrocytes extracted from 

grade 0 (p<0.01), 2 (p<0.01) and 3 (p<0.001) cartilage compared to DMSO 

control (Figure 2.14B). WIN-55 treatment in combination with IL-1 (3 resulted in a 

significant decrease in TIMP-1 and TIMP-2 mRNA expression in chondrocytes 

derived from grades 0, 2 and 3 cartilage compared to IL-1 (3 stimulation and 

DMSO control (p<0.001) (Figure 2.14A & B). WIN-55 treatment alone 

significantly reduced both TIMP-1 and TIMP-2 gene expression in chondrocytes 

derived from grade 0, 2 and 3 cartilage below basal levels compared to DMSO 

control (p<0.001) (Figure 2.14A & B).
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2.6.10 The Effects of WIN-55 on IL-1 p Induced Pro-MMP-3 Protein Release 

from Chondrocytes Cultured in Monolayer

Following IL-1 p stimulation of cells cultured in monolayer, pro-MMP-3 release 

into culture media was significantly increased compared to DMSO control 

(p<0.01) (Figure 2.15A). WIN-55 treatment in combination with IL-1 p 

significantly reduced the release of pro-MMP-3 compared to IL-1 (3 treatment 

alone (p<0.001) and DMSO control (p<0.01) (Figure 2.15A). WIN-55 treatment 

alone significantly reduced pro-MMP-3 release from chondrocytes below basal 

levels compared to DMSO control (p<0.001) (Figure 2.15A).

2.6.11 The Effects of WIN-55 on Pro-MMP-3 and Total and Pro-MMP-13 

Release From Chondrocytes Cultured in Alginate beads

Following stimulation of chondrocytes cultured in alginate beads with IL-1 (3 

there was a significant increase in MMP-3 (p<0.001) and MMP-13 (p<0.05) 

protein release into the media compared to DMSO control (Figure 2.15B & C). 

Treatment of chondrocytes with WIN-55 in combination with IL-1 p significantly 

reduced both MMP-3 and MMP-13 protein compared to IL-1 p treatment alone 

(p<0.001) (Figure 2.15B & C). WIN-55 treatment alone significantly reduced 

MMP-3 protein release to below basal levels compared to DMSO control 

(p<0.05) and MMP-13 protein levels remained at basal level (Figure 2.15B & C)
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2.6.12 The Effects of WIN-55 on IL-1 p Induced MMP-3 Activity

The optimal incubation time was determined to be between 60 (R-i) and 300 (R2) 

minutes (Figure 2.16A). MMP-3 enzyme activity remained at similar levels 

following stimulation with IL-1 (3 and WIN-55 both alone and in combination with 

IL-1 p having no significant effect on MMP-3 enzyme activity, compared to 

DMSO control (Figure 2.16B). Levels of MMP-3 activity were low in culture 

media.
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Figure 2.16 The effect of WIN-55 on MMP-3 enzyme activity in monolayer 
culture media. (A) The exponential phase of the reaction time for MMP-3 
activity was determined to be between 120 and 300 minutes (red arrows). (B) 
MMP-3 enzyme activity in chondrocytes cultured in monolayer. Data 
represents mean enzyme activity ± SEM. n=3 obtained from one 
macroscopic grade 2 cartilage sample (HC5(4)).

126



2.7 Discussion

The aim of this study was to determine the effects of synthetic cannabinoid 

WIN-55 on the expression of MMPs and TIMPs in the presence of the catabolic 

cytokine IL-1 p, in different grades of macroscopically grade OA cartilage.

The present study demonstrated that treatment of articular chondrocytes from 

human OA cartilage with synthetic cannabinoid WIN-55 reduced or abolished 

the mRNA or protein expression of MMP-3 and MMP-13 in the presence of IL- 

ip . Cartilage degradation is a pathological feature of both OA and RA (Goldring 

and Marcu 2009) and the catabolic cytokine IL-1 p plays a key role in cartilage 

destruction and stimulates increased production of MMPs by chondrocytes, 

resulting in the breakdown of collagen and proteoglycan (Burrage et al, 2006). 

Reduction or abolition of MMP-3 and -13 expression by cannabinoids may be a 

mechanism by which they may protect against cartilage damage.

Both monolayer and 3D culture systems for culture of chondrocytes were used.

Chondrocytes that have been isolated from articular cartilage dedifferentiate in

monolayer culture changing their matrix synthesis, with a decrease in type II

collagen and aggrecan synthesis and developing a fibroblast like phenotype

and an increase in collagen type I (Mayne etal, 1976; von der Mark et al, 1977;

Benya et al, 1978). Dedifferentiation can be reversed with the key phenotypic

features of chondrocytes being preserved when cultured in a 3D system such

as alginate beads and cell pellets (Caron et al, 2012). In this study,

chondrocytes were treated with IL-1 p to mimic inflammatory processes in an in

vitro model of OA (Goldring 2000). IL-1 p increased both MMP-3 and -13 mRNA

and protein expression by cells in both monolayer and 3D culture of alginate

beads and MMP-3 and -13 mRNA expression in cell pellets, however MMP-3

gene expression was more responsive to IL-1 (3 in all the culture systems. MMP-

3 is expressed at higher levels compared to MMP-13 in vivo (Bau et al, 2002).

In addition the response of MMP-13 gene expression to IL-1 p shown here in

alginate beads and cell pellets was lower compared to monolayer. The varying

expression levels of MMP-3 and MMP-13 following IL-1 p stimulation are

comparable with observations in other studies where IL-1 (3 has been used to

stimulate human cartilage explants obtained from OA cartilage, used to emulate

in vivo conditions (Clockaerts et al, 2011). Factors that may contribute to
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varying MMP expression in vivo include; the grade of cartilage tissue, the stage 

of the disease and the location of the chondrocytes within the different zones of 

cartilage (Freemont etal, 1997).

Only very low levels of MMP-3 activity were detected in culture media from cells 

in monolayer treated with IL-1 p and WIN-55 alone or in combination. This may 

reflect actual low levels of enzyme present, even after IL-1 (3 treatment or may 

be the result of loss of activities from long term storage or freezing and thawing 

of culture media samples retained from cell culture treatments. In addition, no 

activation of pro-MMP-3 was carried out by treatment of samples with activating 

agents such as aminophenylmercuric acetate (APMA). This requires further 

investigation.

During OA there is thought to be an imbalance between MMP and TIMP 

expression, which in part contributes to cartilage breakdown (Dean et al, 1989). 

Gene expression profiling of cells directly extracted from human OA cartilage 

have shown that TIMP-1 is decreased with no significant changes in TIMP-2 

gene expression, in contrast TIMP-2 is up-regulated with no significant changes 

in TIMP-1 gene expression in cells directly extracted from OA synovium 

(Davidson et al, 2006). TIMPs are regulated at the transcription level by 

cytokines including IL-1 (3 and in human RA fibroblast like synovial cells IL-1 p 

induces TIMP-1 mRNA expression (Vincenti 2001; Page etal, 2010). In contrast, 

here it was shown that IL-1 (3 stimulation has no effect on TIMP-1 and TIMP-2 

gene expression in human OA chondrocytes cultured in monolayer. 

Interestingly when chondrocytes were re-differentiated in alginate beads there 

was a significant increase in TIMP-1 gene expression in chondrocytes isolated 

from grade 2 and 3 cartilage and a significant decrease in TIMP-2 gene 

expression below basal levels in chondrocytes extracted from grade 0, 2 and 3 

cartilage in response to IL-1 (3 stimulation, suggesting that re-differentiation of 

chondrocytes back to their native phenotype is an important factor when 

determining the response of chondrocytes to different stimuli. In addition it was 

shown that WIN-55 both alone and in combination with IL-1 (3 significantly 

reduces the gene expression of TIMP-1 and TIMP-2 to below basal levels.
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Synthetic cannabinoids WIN-55 and HU-210 reduce IL-1 a induced proteoglycan 

and collagen degradation in bovine nasal cartilage tissue suggesting a 

chondroprotective effect of these compounds (Mbvundula et al, 2006). Here a 

possible mechanism by which WIN-55 may prevent IL-1 (3 induced ECM 

breakdown in OA cartilage tissue was demonstrated via inhibition of MMPs at 

both the mRNA and protein level. In addition chondrocytes from different grades 

of OA cartilage were shown to modulate MMP-3 and MMP-13 expression in 

response to WIN-55 with and without IL-1 p stimulation. These findings together 

with others, suggest that cannabinoids may be of importance in the treatment of 

arthritis (Malfait et al, 2000; Sumariwalla et al, 2004; Johnson et al, 2007; Selvi 

etal, 2008; Zurier etal, 1998). Previous in vitro studies demonstrated that WIN- 

55 and CB1 receptor agonist CP55,940 inhibited IL-1 p induced secretion of IL-6 

and IL-8 in RA fibroblast like synovial cells, suggesting an anti-inflammatory 

activity of cannabinoids (Selvi et al, 2008) and non-psychoactive cannabinoid 

AJA reduced MMP-1, MMP-3 and MMP-9 release from fibroblast like synovial 

cells stimulated with IL-1 a and TNFa (Johnson et al, 2007). In vivo, AJA has 

also been shown to reduce the severity of adjuvant-induced arthritis (Zurier et al, 

1998) and other non-psychoactive cannabinoids, CBD and HU-320 reduced 

inflammation and joint damage in murine collagen-induced arthritis (Malfait etal, 

2000; Sumariwalla et al, 2004).

The effects of WIN-55 on articular chondrocytes did not appear to be influenced 

by the grade of the cartilage they were isolated from when cultured in 

monolayer. Chondrocytes cultured in monolayer express MMP-3 and MMP-13 

at very low levels following WIN-55 treatment, but greater inhibitory effects were 

observed in 3D cultures. Interestingly a biphasic expression pattern of MMP-3 

and MMP-13 in response to WIN-55 was observed in 3D culture of both cell 

pellet and alginate beads. MMP-3 and MMP-13 genes were expressed at low 

levels in grade 2 chondrocytes and were not expressed in grade 0 and grade 3 

chondrocytes cultured in cell pellets following WIN-55 stimulation. In contrast 

MMP-3 was expressed in grade 0 and grade 3 chondrocytes and not in grade 2 

tissue and MMP-13 was not expressed in any of the grades of chondrocytes 

cultured in alginate beads following WIN-55 stimulation. These varying 

responses to WIN-55 treatment in alginate bead culture may indicate that the
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expression of MMPs may be differentially regulated depending on the grade 

and extent of cartilage degradation and the culture method utilised. Studies 

have shown that cartilage tissue derived from different OA grades or normal 

aged cartilage may influence the response of the chondrocytes to different 

treatments (Dozin et al, 2002; Hickery et al, 2003; Fan et al, 2005). Moreover 

biphasic effects have also been seen with other cannabinoids namely AJA 

(Burstein 2005).

The data presented shows that WIN-55 inhibits expression of both destructive 

MMPs and protective TIMPs involved in the pathogenesis of OA, indicating that 

inhibition may occur via a signalling pathway which regulates both at the 

transcription level. Human MMPs and TIMPs share a common AP-1 site in their 

promoters that regulates their transcription (Vincenti and Brinckerhoff 2002; 

Borden and Heller 1997). WIN-55 may have a differential effect on AP-1 

activation via PPARs. WIN-55 has been shown to activate AP-1 via PPARa. In 

addition AP-1 may be involved in the activation of interferon (3 (IFN(3) (Downer 

et al, 2012). Production of IFNp may result in reduced levels of MMPs and 

TIMPs as IFNp reduced MMP-1, -3 and TIMP-1 in fibroblast-like synovial cells 

both with and without IL-1 p stimulation and synovial tissue from patients with 

RA, treated with IFNp, showed reduced levels of MMP-1 and TIMP-1 (Smeets 

et al, 2000). Furthermore IFNp has been shown to have anti-inflammatory 

properties in the treatment of arthritis (Tak et al, 1999; van Holten et al, 2002; 

van Holten et al, 2004). Conversely PPARy agonists have been shown to 

reduce IL-1 p induced MMP-1 expression in human synovial fibroblasts via 

inhibiting DNA binding of AP-1 (Fahmi et al, 2002). WIN-55 also binds to 

PPARy so could also act in this way (O'Sullivan 2007).

2.7.1 Summary

In OA chondrocytes, the synthetic cannabinoid WIN-55 inhibits the expression

of matrix degrading enzymes MMP-3 and -13 both at the mRNA and protein

level and their inhibitors TIMP-1 and -2 at the mRNA level in the presence or

absence of inflammatory cytokine IL-1 p, in a concentration and time dependent

manner. This suggests a possible mechanism by which cannabinoids may act

to prevent ECM breakdown in arthritis. Since TIMP-1 and -2 are also decreased
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by WIN-55 in human OA chondrocytes it is unclear whether there is a change in 

MMP and TIMP balance following cannabinoid treatment. However the 

inhibitory effect of WIN-55 on MMP-3 and -13 expression would indicate a 

possible role of cannabinoids in supressing IL-1 p induced ECM degradation by 

MMPs.
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3 Effects of WIN-55 on other 

Catabolic Events Induced by IL -ip
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3.1 Introduction

3.1.1 Chemokines in OA
Chemokines are known to be involved in cartilage degradation and their 

expression leads to the induction of MMPs by chondrocytes (Borzi et al, 

2000;Borzi et al, 2004). In human and bovine chondrocytes MMP-13 secretion 

is up-regulated by IL-8 (Merz et al, 2003), suggesting IL-8 plays a role in 

cartilage breakdown via the upregulation of matrix degrading enzymes, thus 

directly contributing to cartilage breakdown. Furthermore, IL-8 induced the 

expression of hypertrophic markers including collagen type X in addition to 

cartilage calcification (Merz et al, 2003). The highly selective IL-8 receptor 

(CXCR1) is expressed at a higher level in OA cartilage compared to normal 

cartilage, suggesting IL-8 has direct effects on chondrocytes (Borzi etal, 2000). 

IL-1 (3 has direct effects on chemokine production; in human articular 

chondrocytes IL-1 (3 induces the production of chemokine IL-8 that is thought to 

contribute to cartilage breakdown and inflammation via the recruitment and 

degranulation of neutrophils (Lotz et al, 1992; Elford and Cooper 1991). 

Collectively, these finding suggest that IL-8 is involved in the inflammatory 

process of OA in addition to altered differentiation of articular chondrocytes. IL-8 

is also produced by other joint cells involved in the pathogenesis of OA 

including, synovial cells (Kaneko et al, 2000). Inhibition of IL-8 production may 

therefore be an important target in the treatment of OA. Previous studies have 

shown that cannabinoids display anti-inflammatory properties and WIN-55 

reduced IL-1 (3 induced secretion of IL-8 from human OA and RA synovial like 

fibroblasts (Selvi et al, 2008) suggesting that WIN-55 displays anti-inflammatory 

effects in arthritic joints via the reduction of IL-8.

3.1.2 Pain Related Peptides in OA
Nerve growth factors including NGF, brain-derived neurotrophic factor (BDNF) 

and neurotrophin-3, -4 and -5 (NT-3, -4 and-5) and neuropeptides substance P 

and calcitonin gene related peptide (CGRP) have been associated with pain in 

OA (Walsh etal, 2010;Keeble and Brain 2004). The subchondral junction is the 

site of innervation and NGF expression has been associated with angiogenesis 

in human OA (Walsh et al, 2010). Substance P is thought to play a dual role in 

arthritis contributing to both nociception and inflammation (Keeble and Brain
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2004; Seidel et al, 2013). Moreover, substance P has been associated with the 

progression and pathogenesis of arthritis as in vivo studies showed infusion of 

substance into the knee joint increasing the severity of arthritis (Levine et al, 

1984). In addition endogenous levels of substance P are increased in the 

synovial fluid obtained from patients with OA and RA (Im etal, 2008).

Human chondrocytes have been shown to express NGF and substance P and 

in OA chondrocytes expression of NGF and substance P and their receptors 

high affinity receptor p140 tyrosine kinase a Trka and NK-1 respectively, are 

increased compared to normal chondrocytes (lannone et al, 2002; Im et al, 

2008; lannone and Lapadula 1998; Millward-Sadler etal, 2003). Targeting NGF 

for analgesic effects in OA has recently been reviewed (Seidel etal, 2013).

During OA an increase in IL-1 (3 is associated with increases in NGF and in 

human synovial fibroblasts IL-1 (3 induced an increase of NGF levels (Manni et 

al, 2003; Manni and Aloe 1998). IL-1 p up regulates BDNF, NT-3 and neuropilin 

2 mRNA expression and NGF production in annulus pulposus cells of the 

intervertebral disc (Gruber et al, 2012). In addition IL-1 (3 also induces the 

expression of substance P in human chondrocytes (Im etal, 2008). Collectively, 

these finding suggest that IL-1 p plays a role in pain signalling in degeneration of 

cartilaginous tissue.

There is evidence to suggest that cannabinoids may have potential to be 

chondroprotective via inhibiting MMP-3 and -13 (Chapter 2, Dunn et al, 2013) 

however cannabinoids may also have a dual role in the treatment of OA via the 

inhibition of pain signals. In support of this, cannabinoids have been shown to 

have analgesic properties in animal models of arthritis and cannabis based 

medicine Sativex has analgesic effects in patients with RA (Blake et al, 2006; 

Schuelert and McDougall 2011; Smith etal, 1998; Cox and Welch 2004; Cox et 

al, 2007; Schuelert and McDougall 2008). In addition, WIN-55 has been shown 

to have analgesic activities and reduce nociception in animal models of 

inflammatory pain (Ebrahimzadeh and Haghparast 2011; Burgos et al, 2010). 

Moreover cannabinoids have been shown to inhibit substance P release from 

primary afferent terminals (Zhang et al, 2010). Together these finding suggest 

that cannabinoids may be of value in the treatment of OA pain via the inhibition
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of production of pain related peptides and growth factors associated with the 

pathogenesis of OA.

3.2 Aims and Objectives
Aim: To investigate the effects of WIN-55 on the expression of chemokine IL-8, 

growth factor NGF and neuropeptide substance P in human OA chondrocytes 

in the presence of IL-1 (3.

Objectives:

• To determine the effects of WIN-55 on IL-1 (3 induced production of 

chemokine IL-8 mRNA

• To determine the effects of WIN-55 on pain related neuropeptide 

substance P and nerve growth factor NGF mRNA in the presence IL-1 (3.

3.3 Experimental Design
The effects of WIN-55 on chemokine IL-8, growth factor NGF and neuropeptide 

substance P in OA chondrocytes were investigated. Cartilage tissue was 

graded macroscopically 0-4 using the Outerbridge classification (Cameron et al, 

2003). Chondrocytes were isolated from grade 2 or 3 cartilage tissue as 

representative of low degenerate and intermediate degenerate cartilage tissue. 

Cartilage from grade 4, severe degenerate tissue, was not used in the study, as 

the cell yield obtained was not sufficient. Chondrocytes were cultured in 

monolayer and cells were stimulated with IL-1 (3 to induce catabolic responses. 

Chondrocytes were also treated with WIN-55 with and without IL-1 p and the 

gene expression of IL-8, NGF and substance P were investigated using real

time PCR.

3.4 Methodology

3.4.1 Human OA Cartilage Samples
Primary Human chondrocytes were obtained from the articular cartilage 

removed from patients with symptomatic OA at the time of total knee 

replacement as described in section 2.4.1.

135



3.4.2 Macroscopic Grading of Cartilage Tissue
Cartilage tissue was macroscopically graded 0-4 using the Outerbridge 

classification at time of surgery prior to isolation of chondrocytes (Cameron et al, 

2003) as described in section 2.4.2.

3.4.3 Isolation of Human Chondrocytes
Human chondrocytes were isolated from cartilage as described in section 2.4.3.

3.4.4 OA Patient Samples
Chondrocytes cultures were derived from OA patient samples of macroscopic 

grades 2 or 3; HC5(1), HC11(3), HC15(4), HC16(4), and HC23(4) (Table 3.1). 

Full patient sample information can be found in Appendix 1.

Analysis Performed Monolayer Culture
Grade 2 Grade 3

IL-8 mRNA Expression HC5(1), HC23(4) HC11(3), HC15(4),
HC16(4)

Nerve growth factor mRNA HC5(1), HC23(4) HC11(3), HC15(4),
Expression HC16(4)
Substance P mRNA HC5(1), HC23(4) HC11(3), HC15(4),
Expression HC16(4)

Table 3.1 The patient samples used for each analysis performed on chondrocytes 
obtained from different macroscopic grades of OA cartilage. Full details of samples 
used in these investigations can be found in Appendix 1. The patient samples used for 
investigation of gene expression isolated from grade 2 and 3 cartilage were combined for 
real-time PCR analysis.

3.4.5 WIN-55 and IL-1 p Treatment of OA Chondrocytes Cultured in 
Monolayer for Real-time PCR Analysis.

Cells were cultured in monolayer until 80% confluent before passaging as

described in section 2.4.5. Chondrocytes were seeded in 6 well culture plates at 

a cell density of 5x105 cells per well as described in section 2.4.6. Cell 

treatments were performed as outlined in section 2.4.7. Treatments were 

performed in triplicate on chondrocytes isolated from macroscopic grade 2 or 

grade 3 cartilage (Table 3.1).
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3.4.6 RNA Extraction from Cells Cultured in Monolayer
Isolation of RNA was performed as described in section 2.4.13.

3.4.7 Reverse Transcription and Real-time PCR
RNA was reversed transcribed to cDNA as described in section 2.4.16. Taqman 

PCR was performed on cDNA as described in section 2.4.18. using pre

designed Taqman Gene Expression Assays (Table 3.2, Life Technologies).

3.4.8 Real-time PCR Analysis
The data obtained from chondrocytes isolated from grade 2 and 3 cartilage 

were combined prior to analysis (Table 3.1). Real-time PCR data was analysed 

using the 2 'MCT (Livak and Schmittgen 2001) (section 2.4.20).

3.4.9 Statistical Analysis
Statistical analysis was performed as outlined in section 2.5.

Taqman Gene Expression Assay Assay ID 
l t -8  ~ ~ ~ H s 0 0 1 7 4 1 0 3 _ m 1
Nerve Growth Factor Hs01113193_m1
Substance P (Tak1) Hs00243225_m1
Table 3.2 Taqman gene expression IDs
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3.5 Results

3.5.1 The Effects of WIN-55 on IL-1 p Induced IL-8, NGF and Substance P 
mRNA Expression

3.5.1.1 IL-8
Following IL-1 p stimulation for 48 hours there was a significant increase in IL-8 

mRNA expression compared to DMSO control (p<0.001) (Figure 3.1) WIN-55 

treatment in combination with IL-1 (3 for 48 hours significantly reduced IL-8 

mRNA expression compared to IL-1 (3 treatment alone (p<0.001), however 

expression remained above basal levels compared to DMSO control (p<0.001) 

(Figure 3.1). IL-8 mRNA expression alone remained at basal levels following 

WIN-55 treatment for 48 hours (Figure 3.1).

3.5.1.2 NGF
Following IL-1 p stimulation for 48 hours there was a significant increase in NGF 

mRNA expression compared to DMSO control (p<0.001) (Figure 3.2). WIN-55 

treatment in combination with IL-1 (3 for 48 hours significantly reduced NGF 

mRNA expression compared to IL-1 (3 treatment alone (p<0.001), however 

expression remained above basal levels compared to DMSO control (p<0.05) 

(Figure 3.2). WIN-55 treatment alone for 48 hours induced a significant increase 

in NGF mRNA expression compared to DMSO alone (p<0.01) (Figure 3.2).

3.5.1.3 Substance P
Following IL-1 (3 stimulation for 48 hours there was a significant increase in 

substance P mRNA expression compared to DMSO control (p<0.001) (Figure 

3.3). WIN-55 treatment in combination with IL-1 (3 for 48 hours significantly 

induced substance P mRNA expression compared to DMSO control and IL-1 (3 

treatment alone (p<0.001) (Figure 3.3). WIN-55 treatment alone for 48 hours 

induced a significant increase in substance P mRNA expression compared to 

DMSO alone (p<0.001) (Figure 3.3).
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Figure 3.1 The effects of WIN-55 on IL-1 (3 induced IL-8 gene expression. IL-1 (3 
stimulation for 48 hours significantly induced the mRNA expression of IL-8. WIN-55 
treatment in combination with IL-1 (3 for 48 hours significantly reduced IL-8 mRNA 
expression compared to IL-1 (3 stimulation alone, however IL-8 gene expression 
remained significantly above basal levels compared to DMSO alone. Following WIN- 
55 treatment for 48 hours IL-8 mRNA expression remained at basal levels. Data 
represents mean fold change of mRNA expression normalised to internal reference 
gene and untreated control ± SEM. ***p<0.001 compared to DMSO control, 
+++p<0.001 compared to IL-1 (3 stimulation. n=15 obtained from 5 patient samples.
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Treatment (48 hours)

Figure 3.2 The effects of WIN-55 on IL-1 p induced NGF mRNA expression. IL-1 (3 
stimulation for 48 hours induced the mRNA expression of NGF. WIN-55 treatment in 
combination with IL-1 (3 for 48 hours significantly reduced NGF mRNA expression 
compared to IL-1 (3 stimulation alone, however NGF mRNA expression remained 
significantly above basal levels compared to DMSO alone. Following WIN-55 
treatment for 48 hours NGF mRNA expression was significantly increased above 
basal levels. Data represents mean fold change of mRNA expression normalised to 
internal reference gene and untreated control ± SEM. *p<0.05, **p<0.01 ***p<0.001 
compared to DMSO control, +++p<0.001 compared to IL-1 (3 stimulation. n=15 
obtained from 5 patient samples.



Treatment (48 hours)

Figure 3.3 The effects of WIN-55 on IL-1 p induced Substance P mRNA 
expression. IL-1 (3 stimulation for 48 hours significantly induced the mRNA expression 
of substance P. WIN-55 treatment in combination with IL-1 (3 for 48 hours significantly 
induced substance P mRNA expression compared to IL-1 (3 stimulation alone and 
DMSO alone. Following WIN-55 treatment for 48 hours substance P mRNA expression 
was significantly increased above basal levels. Data represents mean fold change of 
mRNA expression normalised to internal reference gene and untreated control ± SEM. 
***p<0.001 compared to DMSO control, +++p<0.001 compared to IL-1 (3 stimulation. 
n=15 obtained from 5 patient samples.



3.6 Discussion

This study aimed to investigate the effects of WIN-55 on IL-1 (5 induced IL-8 

expression in human OA chondrocytes in order to determine the anti

inflammatory potential of cannabinoids during the pathogenesis of OA. In 

addition the effects of WIN-55 on NGF and substance P, which are thought to 

be involved in pain signalling pathways during the progression of OA were 

investigated.

3.6.1 Chemokine IL-8

IL-1 p is known to induce the secretion of IL-8 from human chondrocytes 

subsequently inducing inflammation by neutrophil infiltration and cartilage 

breakdown (Lotz etal, 1992). Other studies support the findings presented here, 

that WIN-55 can inhibit IL-1 (3 induced chemokine production. In human 

fibroblast-like synoviocytes obtained from patient with OA and RA, WIN-55 

reduced IL-1 p stimulated secretion of IL-8 (Selvi etal, 2008). In agreement with 

this study, WIN-55 treatment alone did not reduce IL-8 secretion below basal 

levels in both OA and RA patient samples (Selvi et al, 2008). In earlier studies 

WIN-55 inhibited TNFa induced IL-8 release via inhibiting the degradation of 

kBa complex and ultimately the activation of NFkB signalling (Mormina et al, 

2006). WIN-55 has also been shown to inhibit IL-1 p induced IL-8 mRNA 

expression via blocking IL-1 (3 activation of its promoter (Curran etal, 2005).

Studies have shown that IL-8 has binding sites in its promoter for NFkB and AP- 

1 (Mukaida et al, 1994; Kunsch and Rosen 1993; Roebuck 1999). The present 

study has shown that WIN-55 decreased IL-1 (3 induced IkB phosphorylation 

(Chapter 4), therefore preventing the translocation of NFkB to the nucleus to 

induce target genes. In addition WIN-55 reduced IL-1 (3 induced c-Jun 

phosphorylation (Chapter 4), which is required for the activity of AP-1 

transcription factor (Karin etal, 1997). Data presented here suggests a possible 

mechanism via which WIN-55 may act to prevent IL-1 p induced IL-8 expression 

via inhibition of its transcriptional regulation by NFkB and AP-1. Interestingly in 

RA synovial fibroblasts, IL-1 (3 induced activation of IL-8 was shown to be 

regulated by NFkB but not c-Jun (Georganas etal, 2000).
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3.6.2 NGF

WIN-55 has been shown to have analgesic activities and reduce nociception in 

animal models of inflammatory pain (Ebrahimzadeh and Haghparast 2011; 

Burgos etal, 2010). In addition other cannabinoid agonists have been shown to 

have antinociceptive effects in animal models of arthritis (Schuelert and 

McDougall 2011; Smith et al, 1998; Cox and Welch 2004; Cox et al, 2007; 

Schuelert and McDougall 2008). This study has shown that IL-1 p induced both 

NGF and substance P mRNA expression; conversely WIN-55 both alone and in 

combination with IL-1 (3 produced unexpected findings. WIN-55 reduced IL-1 |B 

induced NGF mRNA expression however expression levels remained above 

basal levels. Interestingly, WIN-55 treatment alone increased NGF expression 

above basal levels.

NGF is thought to contribute to the inflammatory process during RA, as NGF 

secreted by fibroblast like synovial cells promotes the survival of activated 

autocrine T cells and the proliferation of synovial cells, a process which is also 

thought to occur in OA synovium (Raychaudhuri et al, 2011). Signalling 

pathways initiated by NGF include MAPKs and NFkB pathways, which activate 

genes involved in neurite outgrowth, neuronal differentiation and neuronal 

survival (Reichardt 2006). Increases in NGF have been associated with 

increased levels of IL-1 (3 as shown in animal models of arthritis (Manni and Aloe 

1998). Furthermore, treatment of human synovial fibroblasts with IL-1 p 

increased NGF levels, however in the same study NGF was shown to reduce 

IL-1 (3 induced expression of TNF and iNOS, concluding that NGF may be 

involved in modulating the inflammatory response in joints (Manni et al, 2003). 

In the present study it was shown that WIN-55 reduced IL-1 p induced mRNA 

expression of NGF but these levels remained above basal levels. WIN-55 

treatment alone also increased NGF mRNA expression. In contrast, 

endogenous cannabinoid PEA inhibited the release of NGF from human mast 

cells (Cantarella etal, 2011), suggesting that distinct cannabinoid ligands or cell 

types may induce differential effects on NGF expression.

Other studies have found that NGF may possess anti-inflammatory actions as 

blocking endogenous NGF in animal models induced joint inflammation (Manni 

et al, 2002). Moreover it has been postulated that NGF may have protective 

properties in human OA chondrocytes (lannone et al, 2002). Chondrocytes
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obtained from higher grades of degenerative cartilage have increased levels of 

NGF expression compared to chondrocytes obtained from non-degenerative 

cartilage, it was therefore proposed that NGF stimulates chondrocyte 

metabolism and promotes cartilage repair (lannone et al, 2002). These findings 

suggest that NGF produced by chondrocytes may be involved in processes that 

differ from those of NGF found at the site of innervation at the subchondral 

junction which is thought to be associated with pain in OA (Walsh et al, 2010). 

To identify the role of NGF in regulating chondrocyte metabolism in addition to 

the effects of WIN-55 on its expression requires further investigation.

3.6.3 Substance P

Substance P plays an important role in pain signalling and has proinflammatory 

effects in arthritis (Keeble and Brain 2004). Substance P is released along with 

glutamine after nociceptive fibres are stimulated (Keeble and Brain 2004). 

Nerve fibres positive for substance P have been shown to be present in cells 

lining the synovium with evidence of some nerve fibres branching towards the 

joint (Iwasaki et al, 1995). Infusion of substance P into the knee joint increases 

the severity of arthritis and endogenous substance P is elevated in the synovial 

fluid of OA and RA patients (Levine etal, 1984; Im et al, 2008). Furthermore, in 

OA chondrocytes expression of substance P and its receptor NK-1 are 

increased suggesting that it may play a role in the pathogenesis of arthritis (Im 

etal, 2008).

A possible mechanism via which cannabinoids are thought to have analgesic 

effects is via inhibition of substance P release from primary afferent terminals 

(Zhang et al, 2010). In an in vivo study on mouse spinal cord, CB1 antagonist 

SR141716A increased capsaicin induced substance P release and endogenous 

cannabinoid AEA inhibited these effects suggesting that CB1 plays a role in 

inhibiting substance P release (Lever and Malcangio 2002). Conversely at high 

concentrations AEA has been shown to induce the release of substance P via 

activation of vanilloid VR1 receptor (Tognetto etal, 2001), suggesting that AEA 

antinociceptive actions at cannabinoid receptors are concentration dependent. 

Endocannabinoids in particular AEA, are readily hydrolysed by FAAH and 

inhibition of this enzyme in animal models of osteoarthritis was shown to reduce 

nociception (Schuelert et al, 2011). In contrast, FAAH1 inhibitor PF-04457845 

was trialed in patients with knee OA, and whilst the inhibitor increased
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endogenous cannabinoid AEA and related FAA, PEA, OEA and 

linoleoylethanolamide (LEA), it failed to produce analgesia (Huggins et al, 

2012).

This present study showed that IL-1 (3 induced the mRNA expression of 

substance P in human chondrocytes, an observation also made by Im et al 

(2008). The effects of WIN-55 on the release of substance P from chondrocytes 

were also determined and showed that WIN-55 both alone and in combination 

with IL-1 (3 induced mRNA expression of substance P.

Other studies that have investigated the effects of substance P on 

chondrocytes, have shown that it may not act as a classic neuropeptide but may 

have distinct chondroprotective activities (Opolka et al, 2012). Intracellular 

levels of substance P are increased in both OA lesions and in active 

proliferating human fetal chondrocytes, suggesting that substance P is involved 

in the stimulation of chondrocyte proliferation (lannone and Lapadula 1998). 

Whilst having no effect on ECM production, substance P increased chondrocyte 

proliferation and cell adhesion contacts via its receptor NK-1 (Opolka et al, 

2012). In addition another neurotransmitter, norepinephrine, decreased the 

apoptosis rate of chondrocytes (Opolka etal, 2012). Conversely, (Im et al, 2008) 

showed that in human chondrocytes, substance P increases protein secretion 

of MMP-13 via the ERK1/2 and NFkB pathways, in addition to decreasing 

proteoglycan production, suggesting catabolic actions of this peptide in articular 

cartilage. In addition other functions of substance P have also been identified, it 

has also been suggested that substance P plays a role in the response of 

chondrocytes to mechanical stimulation via the NK-1 receptor (Millward-Sadler 

et al, 2003). Together these studies suggest that in chondrocytes, substance P 

plays a role independent of pain signalling and has a potential role in 

chondrocyte metabolism and cell function. To determine the effects of 

substance P in response to WIN-55 and or IL-1 (3 stimulation in human 

chondrocytes requires further investigation.

3.7 Summary

The study has demonstrated that WIN-55 decreased IL-1 p induced IL-8 mRNA 

expression, suggesting that cannabinoids display anti-inflammatory properties 

during OA. Furthermore, WIN-55 also reduced IL-1 p induced NGF mRNA
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expression, however conversely WIN-55 treatment alone significantly induced 

an increase in basal levels of NGF. In addition, WIN-55 alone and in 

combination with IL-1 (3 induces the gene expression of substance P. The 

significance of this requires further investigation since differential roles of NGF 

and substance P, independent of pain signalling in chondrocytes, has been 

demonstrated.
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4 The Effects of WIN-55 on IL-1p 
Signalling Pathways
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4.1 Introduction

There is increasing evidence to suggest that IL-1 (3 plays a role in the initiation 

and subsequent progression of OA, making it a key therapeutic target. IL-1 p is 

induced during OA and is synthesised by chondrocytes, cells of the synovium 

and subchondral bone (Kapoor et al, 2011). Increases in IL-1 p results in an 

increase in MMPs and a decrease in the synthesis of cartilage ECM 

macromolecules via the inhibition of anabolic metabolism by chondrocytes 

(Goldring et al, 1994; Mengshol et al, 2000; Mengshol et al, 2001; Goldring 

1996).

Inflammation is evident in both the early and late stages of OA, and is 

predominantly driven by IL-1 [3 and TNF with the involvement of other 

proinflammatory cytokines including IL-6 and chemokines such as IL-8 (Kapoor 

et al, 2011). Reduction of IL-1 (3 expression in chondrocytes using RNA 

interference resulted in a decrease in mRNA levels of inflammation related 

genes including cytokines, chemokine IL-8, MMP-3, MMP-2, IFNy and iNOS, 

suggesting that knockdown of IL-1 p may be chondroprotective (Santangelo and 

Bertone 2011). Conversely IL-1 p gene knockdown in a mouse model of OA 

showed accelerated development of lesions, these findings suggest that IL-1 (3 

also plays an important role in maintaining cartilage ECM turnover and 

homeostasis under normal physiological conditions (Clements etal, 2003).

4.1.1 IL-1 (3 Signalling Pathways in OA
IL-1 p initiates its effects via binding to its receptor IL-1 Rl, a cell surface receptor 

expressed by chondrocytes and synovial fibroblasts (Martel-Pelletier et al, 1992; 

Sadouk et al, 1995). During OA, IL-1 Rl expression is increased on human 

chondrocytes and synovial fibroblasts making these cells more responsive to IL- 

1(3 stimulation (Martel-Pelletier et al, 1992; Sadouk et al, 1995). Consequently 

less IL-1 (3 is required to induce MMP secretion in OA chondrocytes compared 

to normal chondrocytes (Martel-Pelletier etal, 1992).

Signalling pathways direct an extracellular signal from the cell membrane to the 

cell nucleus. Ligands bind to receptors expressed on the cell surface, which 

induces interaction of the receptors intracellular domain with intracellular 

signalling proteins (Cooper 2000). These interactions induce a cascade of 

protein interactions and phosphorylation events, subsequently leading to the
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translocation of transcription factors to the nucleus (Cooper 2000). Transcription 

factors recognise and bind to specific DNA-binding elements in the promoter 

regions of target genes either inducing or suppressing the expression of mRNA 

(Handel and Girgis 2001).

WIN-55 inhibits the IL-1 (3 induced mRNA and protein expression of MMP-3 and 

-13 and mRNA expression of their inhibitors TIMP-1 and -2 (Chapter 2, Dunn et 

al, 2013). It is important to elucidate a possible mechanism via which this may 

occur to enable the potential use of cannabinoids, possibly based on WIN-55, in 

OA therapies to be assessed. During OA IL-1 p induces a cascade of 

intracellular signalling pathways, which initiate the expression of matrix

degrading enzymes (Mengshol etal, 2000). c-Jun, p38, ERK1/2 and NFkB are

activated by IL-1 p stimulation in both normal and OA cartilage particularly in the 

upper zones of the cartilage (Fan etal, 2007). In addition, IL-1 (3 stimulation was 

shown to reduce collagen type II expression via p38 MAPK activation in human 

chondrocytes (Robbins etal, 2000).

During OA IL-1 (3 induces the phosphorylation, ubiquitination and subsequent 

degradation of inhibitory protein (IkB) allowing NFkB to translocate to the

nucleus of chondrocytes, where it regulates the expression of other

proinflammatory mediators such as iNOS, COX-2 and matrix degrading 

enzymes MMP-1, MMP-9, MMP-13 and ADAMTS-4 (Hayden and Ghosh 2008; 

Roman-Blas and Jimenez 2006). As well as orchestrating multiple inflammatory 

responses in OA, NFkB is involved in the differentiation of chondrocytes to a 

more hypertrophic like phenotype (Marcu et al, 2010). Thus targeting the NFkB 

signalling pathway has been suggested as a therapeutic strategy in the 

treatment of OA and RA (Marcu et al, 2010; Roman-Blas and Jimenez 2006). 

Pharmacological inhibitors of the NFkB signalling pathway have been shown to 

have protective properties in animal models of RA (Marcu etal, 2010). However 

NFkB or MAPK inhibition has received little attention in OA models (Kapoor etal, 

2011; Marcu etal, 2010; Saklatvala 2007).
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4.2 Aims and Objectives:

Aim: To determine the effects of WIN-55 on IL-1(B signalling pathways MAPKs 

and NFkB in human OA chondrocytes

Objectives:

• To determine the effects of WIN-55 on IL-1 p induced phosphorylation of 

NFkB using immunocytochemistry

• To determine the time dependent effects of WIN-55 on the classical IL- 

1P signalling MAPK, ERK1/ERK2.

• To determine the effects of WIN-55 on ERK1/ERK2, IkB, p38 and c-Jun 

phosphorylation in the presence of IL-ip using cell based ELISA.

• To determine the effects of WIN-55 on the phosphorylation of 46 different 

protein kinases in the presence of IL-1 p using a proteome array.

4.2.1 Experimental design

The effects of WIN-55 on IL-1p induced signalling pathways in chondrocytes 

obtained from OA cartilage were investigated. Cartilage tissue was graded 

macroscopically 0-4 using the Outerbridge classification (Cameron et al, 2003). 

Chondrocytes were isolated from grade 2 or 3 cartilage tissue as representative 

of low degenerate and intermediate degenerate cartilage tissue. Cartilage from 

grade 4, severe degenerate tissue, was not used in the study, as the cell yield 

obtained was not sufficient. Chondrocytes were cultured in monolayer and cells 

were stimulated with IL-1 p to induce catabolic responses. Chondrocytes were 

expanded in monolayer to passage 2 and stimulated with 10 ng/ml IL-1 p to 

induce intracellular signalling cascades. Chondrocytes were pre-treated or co

treated with 10 pM WIN-55 with and without 10 ng/ml IL-1 p. 

Immunocytochemistry was used to investigate the phosphorylation of NFkB. 

Cell based ELISA was used to measure the phosphorylation of cell signalling 

molecules p38, ERK1/ERK2, IkB and c-Jun and the phosphorylation of 46 

different kinases was investigated using a protein array.
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4.3 Methodology

4.3.1 Human OA Cartilage Samples
Primary Human chondrocytes were obtained from articular cartilage removed 

from patients with symptomatic OA at the time of total knee replacement as 

described in section 2.4.1.

4.3.2 Macroscopic Grading of Cartilage Tissue
Cartilage tissue was macroscopically graded 0-4 using the Outerbridge 

classification at time of surgery prior to isolation of chondrocytes (Cameron et al, 

2003) as described in section 2.4.2.

4.3.3 Isolation of Human Chondrocytes
Human chondrocytes were isolated from cartilage as described in section 2.4.3.

4.3.4 OA Patient Samples
Chondrocytes cultures were derived from OA patient samples of macroscopic 

grades 2 or 3; HC3(3), HC3(4), HC5(1) HC11(3), HC15(4), HC16(4), HC21(4), 

HC22(4) and HC23(4) (Table 4.1). Full patient details are shown in Appendix 1.

Analysis Performed Monolayer

NFkB
Immunocytochemistry 
Cell based ELISA 
(ERK1/ERK2, c-Jun, 
p38, IkB
Phosphorylation) 
Protein array

Grade 2
HC3(3)

HC3(4), HC5(1), 
HC23(4), HC21 (4)*

Not investigated

Grade 3
Not investigated

Not investigated 

HC22(4)
Table 4.1 The patient samples used for each analysis performed on 
chondrocytes obtained from different macroscopic grades of OA cartilage. Full 
details of samples used in these investigations can be found in Appendix 1. *lndicates 
the patient sample used for the time course investigation of ERK1/ERK2 
phosphorylation following WIN-55 treatment (section 4.3.9.1).
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4.3.5 Culture of OA Chondrocytes for NFkB Immunocytochemistry
Chondrocytes were cultured in monolayer until 80% confluent at passage 2. 

Following trypsinisation, as outlined in section 2.4.5, cells were centrifuged at 

400g for 10 minutes and resuspended in complete media. Cells were counted 

using trypan blue exclusion using the Countess cell counter. Chondrocytes 

were seeded at 1x104 cells per well in 8 well chamber slides in complete media. 

Cells were allowed to adhere overnight at 37°C in a humidified atmosphere of 5% 

CO2 prior to IL-ip and WIN-55 treatment.

4.3.6 WIN-55 and IL-1p Treatment of OA Chondrocytes for NFkB 

Immunocytochemistry
Cells were washed twice in 1xPBS and complete media replaced with 200 pi 

serum free media+BSA per well supplemented with 10 pM WIN-55 for 1 hour 

both with and without 10 ng/ml IL-1p for the last 30 minutes of stimulation and 

incubated at 37°C. DMSO (0.1%) was used as a vehicle control at the same 

concentration present in 10 pM WIN-55. Untreated cells were used as control.

4.3.7 NFkB Immunocytochemistry
Culture media was removed and cells washed twice in 1xPBS. Chambers were 

removed from slides and cells were fixed and permeablised in ice-cold 

methanol at -20°C for 4 minutes followed by incubation in ice-cold acetone at - 

20°C for 2 minutes. Cells were washed in IxTris buffered saline (TBS; Fisher 

Scientific) for 5 minutes. Non-specific binding sites were blocked with 25% v/v 

goat serum (Abeam) in 1% BSA in 1xTBS for 1 hour at room temperature. Cells 

were incubated with rabbit polyclonal antibody (Abeam) against p65 NFkB (1/50) 

overnight at 4°C in a humidified chamber. For negative controls, cells were 

incubated without primary antibody. Cells were washed 3 times in 0.1% Tween 

20 in 1xTBS for 5 minutes each to remove unbound primary antibody. Following 

washing cells were incubated with FITC conjugated goat anti-rabbit IgG (1/250) 

(Abeam) at room temperature for 30 minutes. Cells were washed 3 times in 0.1% 

Tween 20 in 1xTBS for 5 minutes each to remove unbound secondary antibody. 

Slides were mounted with Vectorshield hardset mounting medium with 4',6- 

diamidino-2-phenylindole (DAPI) (Vector Laboratories).
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4.3.8 Immunocytochemistry Visualisation

Cells were visualised and images captured on the Zeiss laser scanning confocal 

microscope at a magnification of 630X magnification using the Zen 2009 

operating system. Due to limitations of the confocal microscope DAPI stain 

could not be visualised. The percentage of positive cells was determined by 

counting 200 cells per well. Positive staining for NFkB was observed in both the 

cytoplasm and nucleus, thus a separate percentage for each cellular 

localisation was determined (Figure 3.2A).

4.3.9 Cell Based ELISA on Cultured OA Chondrocytes.
Chondrocytes were cultured in monolayer until 80% confluence at passage 2. 

Following trypsinisation, as outlined in section 2.4.5, cells were centrifuged at 

400g for 10 minutes and resuspended in complete media. Cells were counted 

using trypan blue exclusion on the Countess cell counter (Invitrogen). 

Chondrocytes were seeded at 1x105 cells per well in a black 96 well microplates 

(R&D Systems) in complete media. Cells were allowed to adhere overnight at 

37°C in a humidified atmosphere of 5% C02 prior to IL-1(3 and WIN-55 

treatment.

4.3.9.1 Cell Based ELISA ERK1/ERK2 WIN-55 and IL-1 (3 Time Course 
Treatment

Cells were washed twice in 1xPBS and the complete media replaced with 200 

pi serum free media+BSA. Cells were treated with 10 ng/ml IL-1 p for 30 

minutes or 1 hour. Cells were treated with 10 pM WIN-55 for 30 minutes, 1, 3, 6, 

24 or 48 hours alone and in combination with 10 ng/ml IL-1 (3 for the last 30 

minutes of the WIN-55 treatment. 0.1% DMSO was used as a vehicle control at 

the same concentration present in 10 pM WIN-55 and cells were treated for 30 

minutes, 1, 3, 6, 24 or 48 hours. Untreated cells in culture for 48 hours were 

used as control.

4.3.9.2 Cell Based ELISA optimised WIN-55 and IL-1 [3 treatments of OA 
Chondrocytes

Cells were washed twice in 1xPBS and the complete media replaced with 200 

pi serum free media+BSA per well supplemented with 10 pM WIN-55 for 48 

hours both with and without 10 ng/ml IL-1 p for the last 30 minutes of the 

stimulation. 0.1% DMSO was used as a vehicle control at the same
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concentration present in 10 pM WIN-55. Untreated cells in culture for 48 hours 

were used as control.

4.3.9.3 Cell Based ELISA Principle
The Cell Based ELISA allows for the fluorogenic detection of phosphorylated 

ERK1/ERK2, c-Jun, IkB and p38 in whole cells (Figure 4.1). Cells are cultured 

in 96-well plates and stimulated with ligands. Following stimulation cells are 

fixed and permeabilsed. The assay involves the use of double 

immunoenzymatic labels to measure protein phosphorylation. The cells are 

simultaneously incubated with two primary antibodies for phosphorylated and 

total protein (Table 4.2). The two primary antibodies recognising the different 

primary antibody species are labelled with HRP or alkaline phosphatase (AP). 

Two spectrally different fluorogenic substrates are used for detection of HRP or 

AP.

4.3.10 Cell Based ELISA

4.3.10.1 Fixing and Blocking Cells
Following treatment as outlined in section and 4.3.9.1 and 4.3.9.2 culture media 

was removed and the cells were fixed in 4% formalin v/v in 1xPBS. The amount 

of phosphorylated c-Jun, IkB, p38 or ERK1/ERK2 was measured using a cell 

based ELISA (R&D systems, UK). The formalin was removed and each well 

washed 3 times with 200 pi 1x wash buffer for 5 minutes each on an orbital 

shaker. The wash buffer was removed and 100 pi of quenching buffer (0.6% 

hydrogen peroxide (H20 2)) was added to each well and incubated at room 

temperature for 20 minutes. The quenching buffer was removed and each well 

washed 3 times with 200 pi 1x wash buffer for 5 minutes each on an orbital 

shaker. The wash buffer was removed and 100 pi of blocking buffer (10%FBS) 

was added to each well and incubated at room temperature for 1 hour. The 

blocking buffer was removed and the cells washed 3 times with 200 pi 1x wash 

buffer for 5 minutes each on an orbital shaker.

4.3.10.2 Binding of Primary and Secondary Antibodies
The wash buffer was removed and primary antibodies were diluted 1:100 in 

blocking buffer immediately prior to use (Table 4.2) and 100 pi was added to 

each well and incubated for 16 hours at 4°C. Cells were incubated with blocking 

buffer alone which served as the negative control. The primary antibody was
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removed and the cells washed 3 times with 200 pi 1x wash buffer for 5 minutes 

each on an obital shaker. HRP-conjugated IgG and AP-conjugated IgG 

secondary antibodies (Table 4.2) were diluted 1:100 in blocking buffer 

immediately before use and 100 |il was added to each well including the 

negative control wells and incubated at room temperature for 2 hours.

4.3.10.3 Fluorogenic Detection

The secondary antibody was removed and the cells washed 2 times with 200 pi 

1x wash buffer and 2 times with 200 pi 1xPBS for 5 minutes each on an orbital 

shaker. The wash buffer was removed and 75 pi of Substrate F1 (substrate for 

HRP) was added to each well. Following incubation with Substrate F1 for 60 

minutes at room temperature protected from light, 75 pi of Subtrate F2 

(substrate for AP) was added to each well and incubated at room temperature 

for a further 20 minutes protected from light. The plate was read fluorometrically 

using the Tecan Infinite 200 Pro with excitation at 540 nm and emission at 600 

nm, then with excitation at 360 nm and emission at 450 nm. The readings at 

600 nm represented the amount of phosphorylated protein and the readings at 

450 nm represented the amount of total protein regardless of its 

phosphorylation status.
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A B

CTi

C D
HRP600 nm AP 450 nmIRP AP

CTi

Figure 4.1 The Principle of Cell Based ELISA. (A) Cells are seeded in a 96-well plate 
and stimulated with ligands (WIN-55 +/- IL-1 (3). Cells are fixed, permeablised and 
blocked. (B) Primary antibodies are added and incubated overnight at 4°C. (C) 
Secondary antibodies are incubated with primary antibodies conjugated to HRP and 
AP. (D) Fluorogenic substrate F1 and F2 are added and the fluorescence measured.
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4.3.11 Principle of the Protein Array
The human Phospho-Kinase Array (R&D Systems) allows for the simultaneous 

detection of relative levels of phosphorylation of 46 kinase phosphorylation sites. 

Nitrocellulose membranes are spotted with capture and control antibodies in 

duplicate. Cell lysates are incubated with the membranes to allow the binding of 

target proteins. Membranes are incubated with a cocktail of biotinylated 

detection antibodies. Streptavidin-HRP and chemiluminescent detection 

reagent are used to detect the signal produced at each capture spot 

corresponding to the amount of phosphorylated protein bound.

4.3.11.1 Protein Array WIN-55 and IL-1p Treatments of OA 

Chondrocytes
Chondrocytes were cultured in monolayer until 80% confluent at passage 2 in 

T75 culture flasks as described in section 2.4.5. Cells were washed twice in 

1xPBS and the complete media replaced with 10 ml serum free media+BSA 

supplemented with 10 pM WIN-55 and incubated for 48 hours both with and 

without 10 ng/ml IL-1 (3 for the last 30 minutes of stimulation. DMSO (0.1%) was 

used as a vehicle control at the same concentration present in 10 pM WIN-55.

4.3.11.2 Protein Extraction
Following treatment of cells as outlined in section 4.3.11.1 cells were washed 

twice in 1xPBS and incubated with 500 pi cell lysis buffer (R&D systems) with 

10% protease inhibitor cocktail (Sigma-Aldrich) for 30 minutes at 4°C with 

gentle agitation. Samples were centrifuged at 14,000g for 5 minutes and the 

supernatant transferred to a clean Eppendorf. Protein concentration was 

determined using the Bio-rad protein Assay (Bio-rad). Briefly protein standards 

of 1.44, 0.72, 0.36, 0.18, 0.09, 0.045, 0.025 and 0.01125 mg/ml were produced 

from a stock of 1.44 mg/ml BSA. 5 pi of sample, standard or lysis buffer 

(negative control) was added to a 96 well plate, 250 pi of protein assay dye 

diluted 1/5 in deionised H20  was added to each well and the absorbance read 

at 570 nm using the Wallac Victor 1820 plate reader. The amount of protein in 

each sample was determined using the standard curve and linear regression 

analysis (y=mx+c where y=absorbance; m=gradient; x=protein concentration; 

c= y intercept).
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4.3.11.3 Protein Array
The protein Array was used as per the manufacturer's instructions (R&D 

Systems). Briefly, 1ml of Array Buffer 1 was added to each membrane 

(membrane A and B each containing different capture antibodies) and 

incubated at room temperature for one hour on a flat bed shaker. Cell lysates 

were diluted 1:5 with Array Buffer 1 to give a final concentration of 55 pg of 

protein per membrane. Array Buffer 1 was removed from each membrane and 1 

ml of prepared sample added to both of the corresponding part A and part B 

membrane and incubated overnight at 4°C on a flat bed shaker. Membranes 

were washed for 10 minutes in IxWash Buffer for a total of three washes. 

Detection Antibody Cocktail A and B were reconstituted in 100 pi deionised 

water. Following reconstitution 20 pi of detection antibody cocktail A was diluted 

in 1 ml of IxArray Buffer 2/3 and 1 ml of the diluted detection antibody cocktail 

was added to membrane A and 20 pi of detection antibody cocktail B was 

diluted in 1 ml of IxArray Buffer 2/3 and 1 ml of the diluted detection antibody 

cocktail was added to membrane B. Detection antibody cocktails were 

incubated with their appropriate membranes at room temperature for 2 hours on 

a flat bed shaker. Membrane part A and part B were washed separately in 

IxWash Buffer for 10 minutes for a total of three washes. Streptavidin-HRP was 

diluted 1/2000 in IxArray Buffer 2/3 and 1 ml was added to each well with 

membranes A and B and incubated for 30 minutes at room temperature on a 

orbital shaker. Both membranes were washed in IxWash Buffer for 10 minutes 

for a total of three washes. Membranes were incubated with 1 ml of 

chemiluminescent reagent for detection of phosphorylated target proteins for 5 

minutes.
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4.3.11.4 Protein Array Analysis

The chemiluminescent signals from the membrane were detected using the 

UVP transilluminatior and Labworks version 3.0 image analysis software. 

Multiple exposure times were applied and the pixel dot intensities on each 

membrane along with background values were exported to Excel. The average 

signal of the pair of duplicate spots, representing each phosphorylation kinase 

protein was determined along with the averages for the positive controls. The 

averaged background signal from each spot was subtracted from each of the 

signal spots. Signal spots were normalised to the positive control and then 

further normalised to the DMSO control and data expressed as relative protein 

expression.

4.3.12 Statistical Analysis
Statistical analysis was performed as outlined in section 2.5 for cell based 

ELISA and protein array analysis. Statistical analysis could not be performed on 

immunocytochemistry data as only one repeat from one patient sample was 

investigated.
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4.4 Results

4.4.1 The Effects of WIN-55 on IL-1 p Induced NFkB Phosphorylation
Following IL-1 (3 stimulation for 30 minutes there was an 88% increase in 

positive staining for nuclear NFkB compared to DMSO control indicated by the 

blue arrow (Figure 4.2B(c)). Following 1 hour pre-treatment with WIN-55 prior to 

30 minute IL-1 p stimulation there was an 81% increase in positive staining for 

nuclear NFkB compared to DMSO control as indicated by the blue arrow 

(Figure 4.2B (d)), in addition there was cytoplasmic staining observed as 

indicated by the red arrow (Figure 4.2B (d)). WIN-55 treatment alone resulted in 

77% of cells staining positively for cytoplasmic NFkB compared to DMSO 

control (Figure 4.2B(e)).
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4.4.2 The Time-dependent Effects of WIN-55 on IL-1 p Induced 

ERK/1ERK2 Phosphorylation.

The effects of WIN-55 on IL-1 (3 induced ERK1/ERK2 phosphorylation was 

investigated using cell-based ELISA. Since a pre-treatment of WIN-55 for 1 

hour had no effect on IL-1 (3 induced phosphorylation of NFkB (section 4.4.1) a 

time-course of WIN-55 treatments was investigated. DMSO treatment alone at 

0.1% for 30 minutes, 1, 3, 6 and 24 hours had no effect on ERK1/ERK2 

phosphorylation compared to untreated control (Data not shown). ERK1/ERK2 

phosphorylation was significantly induced by IL-1 p stimulation for 10 or 30 

minutes (p<0.001 and p<0.01) but not following 1 hour IL-1 (3 stimulation 

compared to the appropriate DMSO control of 10 or 30 minutes and 1 hour 

respectively (Figure 4.3). WIN-55 treatment for 30 minutes in combination with 

IL-1 p stimulation for 30 minutes did not counteract the effects on ERK1/ERK2 

phosphorylation compared to IL-1 (3 stimulation alone for 30 minutes (Figure 4.3). 

Pre-treatment of chondrocytes with WIN-55 for 1, 3, 6 and 24 hours prior to 30 

minute IL-1 p stimulation did not reduce ERK1/ERK2 phosphorylation compared 

to IL-1 (3 stimulation alone for 30 minutes (Figure 4.3). However WIN-55 pre

treatment for 48 hours significantly reduced IL-1 (3 induced phosphorylation to 

basal levels compared to IL-1 p stimulation alone for 30 minutes (p<0.01) 

(Figure 4.3). ERK1/ERK2 phosphorylation remained at basal levels following 

WIN-55 treatment for 30 minutes, 1, 3, 6 and 24 hours. WIN-55 treatment alone 

for 48 hours significantly reduced ERK1/ERK2 phosphorylation below basal 

levels compared to DMSO treatment alone for 48 hours (p<0.05) (Figure 4.3).
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Figure 4.3 The effects of WIN-55 on IL-1 p induced ERK1/ERK2 
phosphorylation over time. IL-1 p stimulation for 10 or 30 minutes but not 1 
hour significantly induced ERK1/ERK2 phosphorylation. WIN-55 pre-treatment 
for 48 hours significantly reduced IL-1 p induced ERK1/ERK2 phosphorylation. 
WIN-55 treatment for 48 hours significantly reduced ERK1/ERK2 
phosphorylation below basal levels compared to DMSO control. Data 
represents mean fold change of phosphorylation normalised to internal total 
unphosphorylated protein and untreated control ± SEM.*p<0.05, **p<0.01 
***p<0.001 compared to DMSO control, ++p<0.01 compared to IL-1 (3 
stimulation for 30 minutes. n=3 obtained from one patient sample (HC21(4)).



4.4.3 The Effects of WIN-55 on IL-1 (3 Induced Signalling Pathways
As 48-hour pre-treatment was determined to be the time point at which WIN-55 

reduced IL-1 (3 induced ERK1/ERK2 phosphorylation, a 48 hour pre-treatment 

was used to investigate the effects of WIN-55 on IL-1 p induced ERK1/ERK2, 

IkB, c-Jun and p38 phosphorylation on further patient samples using the cell 

based ELISAs.

4.4.3.1 ERK1/ERK2
IL-1 (3 stimulation for 30 minutes significantly increased ERK1/ERK2 

phosphorylation compared to DMSO control (p<0.001) (Figure 4.4). WIN-55 

pre-treatment in combination with IL-1 p for the last 30 minutes significantly 

reduced ERK1/ERK2 phosphorylation below basal levels compared to DMSO 

control and IL-1 (3 stimulation alone (p<0.001) (Figure 4.4). WIN-55 treatment 

alone for 48 hours significantly reduced ERK1/ERK2 phosphorylation below 

basal levels compared to DMSO alone (p<0.001) (Figure 4.4).

4A.3.2 IkB
IL-1 p stimulation for 30 minutes significantly increased IkB phosphorylation 

compared to DMSO control (p<0.05) (Figure 4.5). WIN-55 pre-treatment in 

combination with IL-1 (3 for the last 30 minutes significantly reduced IkB 

phosphorylation below basal levels compared to DMSO control and IL-1 p 

stimulation alone (p<0.001) (Figure 4.5). Phosphorylation of IkB was reduced 

below basal levels compared to DMSO control following WIN-55 treatment for 

48 hours (p<0.001) (Figure 4.5).
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Figure 4.4 The effects of WIN-55 on IL-1p induced ERK1/ERK2 
phosphorylation. IL-1 [3 stimulation for 30 minutes induced phosphorylation of 
ERK/ERK2. WIN-55 pre-treatment for 48 hours in combination with IL-1 (3 
stimulation for the last 30 minutes significantly reduced phosphorylation of 
ERK1/ERK2 compared to 30 minute IL-1 (3 stimulation alone. WIN-55 treatment 
alone for 48 hours significantly reduced ERK1/ERK2 phosphorylation below 
basal levels. Data represents mean fold change of phosphorylation normalised 
to internal total unphosphorylated protein and untreated control ± 
SEM.**p<0.01, ***p<0.001 compared to DMSO control and +++p<0.001 
compared to IL-1 p alone. n=9 obtained from 3 macroscopic grade 3 patients.
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Figure 4.5 The effects of WIN-55 on IL-1 (3 induced IkB phosphorylation. IL-1 (3 
stimulation for 30 minutes induced phosphorylation of IkB. WIN-55 pre-treatment 
for 48 hours in combination with IL-1 (3 for the last 30 minutes significantly reduced 
phosphorylation of IkB compared to 30 minutes IL-1 (3 stimulation alone. WIN-55 
treatment for 48 hours alone significantly reduced IkB phosphorylation below basal 
levels. Data represents mean fold change of phosphorylation normalised to internal 
total unphosphorylated protein and untreated control ± SEM. *p<0.05, ***p<0.001 
compared to DMSO control and +++p<0.001 compared to IL-1 p alone. n=9 
obtained from 3 macroscopic grade 3 patients.



4A.3.3 c-Jun
IL-1 (3 stimulation for 30 minutes significantly increased c-Jun phosphorylation 

compared to DMSO control (p<0.001) (Figure 4.6). Following WIN-55 pre

treatment in combination with IL-1 p for the last 30 minutes c-Jun 

phosphorylation was significantly reduced to basal levels compared to IL-1 p 

treatment alone (p<0.001) (Figure 4.6). Phosphorylation of c-Jun remained at 

basal levels following WIN-55 treatment alone for 48 hours (Figure 4.6).

4A.3.4 p38
IL-1 (3 stimulation for 30 minutes significantly increased p38 phosphorylation 

compared to DMSO control (p<0.001) (Figure 4.7). WIN-55 pre-treatment for 48 

hours in combination with IL-1 (3 for the last 30 minutes did not completely 

counteract the effects of IL-1 (3 alone and p38 phosphorylation remained 

significantly higher than DMSO control (p<0.05) (Figure 4.7). Phosphorylation of 

p38 remained at basal levels following WIN-55 treatment alone for 48 hours 

(Figure 4.7).
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Figure 4.6 The effects of WIN-55 on IL-1 (3 induced c-Jun phosphorylation.
IL-1 (3 stimulation for 30 minutes induced phosphorylation of c-Jun. WIN-55 pre
treatment for 48 hours in combination with IL-1 (3 stimulation for the last 30 
minutes significantly reduced phosphorylation of c-Jun to basal levels compared 
to 30 minute IL-1 (3 stimulation alone. Following WIN-55 treatment alone for 48 
hours c-Jun phosphorylation remained at basal levels. Data represents mean 
fold change of phosphorylation normalised to internal total unphosphorylated 
protein and untreated control ± SEM. ***p<0.001 compared to DMSO control 
and +++p<0.001 compared to IL-1 (3 alone. n=9 obtained from 3 macroscopic 
grade 3 patients.
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Figure 4.7 The effects of WIN-55 on IL-1 p induced p38 phosphorylation.
IL-1 (3 stimulation alone for 30 minutes and in combination with WIN-55 for 48 
hours induced the phosphorylation of p38. Following WIN-55 treatment alone 
for 48 hours p38 phosphorylation remained at basal levels. Data represents 
mean fold change of phosphorylation normalised to internal total 
unphosphorylated protein and untreated control ± SEM.*p<0.05 ***p<0.001 
compared to DMSO control. n=9 obtained from 3 macroscopic grade 3 
patients.



4.4.4 The Effects of WIN-55 and IL-1 p on the Phosphorylation of Protein 

Kinases
The overall effects of WIN-55 and IL-1 (3 on the phosphorylation of 46 different 

protein kinases are shown in Table 4.3. WIN-55 and IL-1 f3 treatment both alone 

or in combination induced significant effects on HSP27, c-Jun, ERK1/2, Hck, 

Fyn, Stat2 and Stat5a protein kinases (Figure 4.8-4.10).

IL-1 p stimulation for 30 minutes significantly induced the phosphorylation of 

HSP27 and c-Jun (p<0.05) and decreased the phosphorylation of ERK1/ERK2 

(p<0.01) compared to DMSO control (Figure 4.8). WIN-55 pre-treatment for 48 

hours in combination with IL-1 (3 for the last 30 minutes significantly induced the 

phosphorylation of HSP27 and c-Jun phosphorylation (p<0.01) compared to 

DMSO control (Figure 4.8). WIN-55 pre-treatment for 48 hours in combination 

with IL-1 p for the last 30 minutes significantly decreased the phosphorylation of 

ERK1/ERK2 (p<0.05) compared to DMSO control. HSP27 and c-Jun 

phosphorylation remained at basal levels following WIN-55 treatment alone for 

48 hours and ERK1/ERK2 phosphorylation was significantly reduced below 

basal levels compared to DMSO control (p<0.001) (Figure 4.8).

IL-1 p stimulation for 30 minutes reduced the phosphorylation of Hck, though not 

significantly and significantly reduced that of Fyn (p<0.01) compared to DMSO 

control (Figure 4.9). Phosphorylation of Fyn and Hck remained at basal levels 

following WIN-55 pre-treatment for 48 hours in combination with IL-1 p treatment 

for the last 30 minutes; however Fyn phosphorylation was significantly 

increased compared to IL-1 p stimulation alone (p<0.05) (Figure 4.9). WIN-55 

treatment alone for 48 hours induced the phosphorylation of Hck (p<0.05) but 

not Fyn compared to DMSO control (Figure 4.9).

Following IL-1 p stimulation for 30 minutes STAT2 and STAT5a phosphorylation 

remained at basal levels. WIN-55 pre-treatment in combination with IL-1 (3 for 

the last 30 minutes significantly reduced STAT2 phosphorylation (p<0.05) 

compared to DMSO control and STAT5a phosphorylation remained at basal 

levels (Figure 4.10). WIN-55 treatment alone for 48 hours induced a significant 

increase in STAT5a phosphorylation (p<0.05) compared to DMSO control and 

STAT2 remained at basal levels (Figure 4.10).
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4.5 Discussion
This work aimed to identify a mechanism via which WIN-55 may act to decrease 

IL-1 p induced expression of MMP-3 and -13 and their inhibitors TIMP-1 and 2. 

The intracellular signalling cascades initiated by IL-1 (3 upon chondrocyte 

stimulation ultimately causes the translocation of transcription factors to the 

nucleus where they induce the expression of target genes involved in the 

pathogenesis of OA (Vincenti and Brinckerhoff 2002).

4.5.1 NFkB and IkB

Transcription factor NF-kB is activated by IL-1 (3 and induces the expression of 

MMPs in chondrocytes (Mengshol et al, 2000). Liacini et al (2002) showed that 

inhibition of IL-1 p induced NF-kB pathway reduced the expression of MMP-3 

and MMP-13 in human and bovine chondrocytes (Liacini et al, 2002). In the 

present study, IL-1 (3 increased nuclear immunolocalisation of phosphorylated 

NFkB following 30 minute stimulation and a 1 hour pre-treatment with WIN-55 

did not counteract this effect, but produced phosphorylation of NFkB observed 

in the cytoplasm of the cell in addition to the nucleus. WIN-55 treatment alone 

also increased phosphorylation of NFkB however with predominant cytoplasmic 

immunolocalisation. In previous studies, WIN-55 treatment for 48 hours was 

shown to inhibit IL-1 a induced NF-kB nuclear translocation in bovine 

chondrocytes (Mbvundula et al, 2006). Moreover activation of cannabinoid 

receptor PPARa using the selective agonist Wy14643 was shown to reduce IL- 

1(3 induced NFkB p65 phosphorylation as shown by reduced nuclear 

immunolocalisation in OA chondrocytes, this response was observed following 

a 1 hour co-treatment (Clockaerts et al, 2011). Furthermore selective inhibition 

of NFkB in human OA chondrocytes was shown to reduce IL-1 (3 induced 

expression of MMP-1 and -13 and repression of collagen II (Fan etal, 2006).

Other studies have investigated the effect of WIN-55 on NFkB phosphorylation 

in human astrocytes (Curran et al, 2005). Using a reporter gene assay, WIN-55 

has been shown to inhibit IL-1 (3 induced activation of NFkB however the exact 

mechanism by which WIN-55 produced these effects could not be identified 

(Curran et al, 2005). WIN-55 was shown not to inhibit IL-1 (3 induced NFkB 

translocation to the nucleus and WIN-55 also had no effect on NFkB DNA 

binding capacity (Curran et al, 2005). In addition WIN-55 did not inhibit IL-1 (3 

induced degradation of kBa, concluding that IKKs which directly phosphorylate
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IkB, are not direct targets of WIN-55 and that inhibition of NF-kB transactivation 

by WIN-55 occurs by a novel mechanism (Curran et al, 2005). In contrast here it 

was shown that pre-treatment of chondrocytes for 48 hours with WIN-55 

reduced IL-1 (3 induced phosphorylation of IkB, ultimately retaining NFkB in the 

cytoplasm thus preventing the translocation to the nucleus. Collectively, findings 

presented here suggest that a 48 hour WIN-55 pre-treatment is required for 

inhibition of IL-1 p induced IkB phosphorylation in human OA chondrocytes. 

However the mechanism by which WIN-55 mediates these effects remains to 

be determined.

4.5.2 MAPK signalling pathways

Although inhibition of NF-kB may in part contribute to a decrease in MMP gene 

expression, other inflammatory pathways induced by IL-1 (3 including MAPKs 

may be involved and inhibitors of these pathways have been shown to block 

MMP activity in articular cartilage (Sondergaard et al, 2010). During OA IL-1 (B is 

up regulated and initiates a cascade of intracellular signalling pathways, which 

result in the induction of MMPs genes. Liacini et al (2002b) showed that 

inhibition of IL-1 p stimulated JNK, p38, ERK1/2 and AP-1 phosphorylation using 

specific inhibitors resulted in a decrease in MMP-3 and -13 expression in 

human OA chondrocytes. In a later study Fan et al (2006) showed that inhibition 

of ERK1/2 using specific inhibitors could reduce IL-1 p induced expression of 

MMP-1 and -13 and repression of collagen II. Similarly, inhibition of p38 also 

resulted in a down-regulation of MMP-1 and -13 but had no effect on collagen II 

expression (Fan et al, 2006). During arthritis there is an increase JNK in 

response to inflammatory cytokines, which directly phosphorylates c-Jun 

leading to the induction MMP genes (Vincenti and Brinckerhoff 2002). 

Interestingly inhibition of JNK signalling had no effect on MMP-1, -3 or collagen 

II expression in human articular chondrocytes (Fan et al, 2006). Since WIN-55 

decreased the expression of gene for both MMPs and MMP inhibitors (Chapter 

2) it was important to elucidate a possible mechanism via which this may occur.

4.5.2.1 ERK1/ERK2
This study has shown that a 48-hour WIN-55 pre-treatment of human OA 

chondrocytes was able to counteract IL-1 (B induced phosphorylation of 

ERK1/ERK2 using cell based ELISAs. In agreement with this work, WIN-55 was 

shown to inhibit IL-2 expression via inhibition of ERK1/ERK2 phosphorylation in
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mouse splenocytes; furthermore, WIN-55 was shown to reduce inflammatory 

responses in mouse macrophages by inhibition of ERK1/ERK2 activity; however 

in contrast to the present study inhibition occurred following 10 minutes 

treatment (Hao et al, 2010). Activation of classical cannabinoid receptors CB1 

and CB2 induces phosphorylation of ERK1/ERK2 (Howlett 2005), however in 

the present study WIN-55 has no effect on basal levels of ERK1/ERK2 at any of 

the time points investigated (section 4.4.2), suggesting that signalling pathways 

induced by cannabinoids through GPCRs may be more specific or produce 

distinctive effects in different types of cells (Luttrell and Luttrell 2003). However, 

this study has demonstrated that cannabinoid WIN-55 can disrupt IL-1 (3 induced 

ERK1/ERK 2 signalling pathways and in human OA chondrocytes, thus 

providing a mechanism for the inhibition of MMP expression (Chapter 2).

4.5.2.2 p38
This study has shown that WIN-55 did not counteract the effects of IL-1 p 

induced p38 phosphorylation. In rat and mouse hippocampus WIN-55 has been 

shown to induce p38 phosphorylation in a CB1 dependent manner as 

incubation with CB1 antagonist SR141716A reversed the effects of WIN-55 and 

stimulatory responses were absent in CB1-/- mice (Derkinderen et al, 2001). 

WIN-55 was also shown to inhibit IL-1 (3 induced p38 phosphorylation in a CB2 

dependent manner in human astrocyte cultures (Sheng et al, 2009). However, 

as shown in the present study, in human chondrocytes p38 phosphorylation 

may not be a direct target of WIN-55. Since each MAPK is regulated differently, 

depending on substrate specificity and each MAPK can be activated by a 

number of different MKKs or MKKKs, these findings suggest that WIN-55 may 

selectively regulate MAPKs (Thalhamer etal, 2008).

4.5.2.3 c-Jun
MMP-3, -13 and their inhibitors TIMP-1 and -2 all have promoter regions 

containing AP-1 transcription factor binding sites, which play a pivotal role in 

their regulation (Mengshol et al, 2000; Vincenti 2001; Borden and Heller 1997; 

Mengshol etal, 2001; Vincenti and Brinckerhoff 2002; Goldring etal, 2011). AP- 

1 complex is composed of fos and Jun families of DNA binding proteins (Karin 

et al, 1997). Fos and Jun proteins form homodimers and heterodimers 

comprising the AP-1 complex, which binds directly to promoter and enhancer 

regions on target genes (Karin etal, 1997).
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Selective JNK inhibitor SP600125 reduced expression of MMP-1 and 

suppressed c-Jun phosphorylation and AP-1 binding in IL-1 p stimulated human 

fibroblast like synoviocytes (Han et al, 2001). In the same study JNK knockout 

mice showed a decrease in bone and cartilage degradation (Han et al, 2001). 

Together these findings suggest that targeting JNK and subsequently the 

phosphorylation of c-Jun, may be a therapeutic target in OA. In the present 

study it was demonstrated that WIN-55 inhibited IL-1 p induced phosphorylation 

of c-Jun in OA chondrocytes using cell based ELISAs. Thus, the WIN-55 

induced decrease of MMP-3, -13, TIMP-1 and -2 mRNA expression shown in 

chapter 2 may be via a decrease in the AP-1 complex, since the abundance of 

phosphorylated c-Jun directly affects the activity of this transcription factor 

(Karin et al, 1997). Conversely, in HEK293 cells, WIN-55 induced the 

expression of IFNp via up regulation of JNK and AP-1; these effects were 

shown to be dependent on activation of PPARa (Downer etal, 2012). In another 

study using mouse splenocytes, phytocannabinoid CBN inhibited AP-1 binding 

to the IL-2 promoter region by decreasing the nuclear expression of c-fos and c- 

Jun (Faubert and Kaminski 2000). Although, AP-1 in part is involved in the 

transactivation of MMPs and TIMPs, interaction of AP-1 with other transcription 

factors including epithelial-specific ETS is required (Vincenti 2001). IL-1 p 

induced MMP-13 expression in chondrocytes requires the convergence of AP-1 

with ETS/PEA-3 and RUNX (Mengshol et al, 2001; Goldring et al, 2011). 

Furthermore, the induction of MMP-13 is thought to be dependent on p38, JNK 

and NFkB but not ERK1/2 signalling (Mengshol et al, 2000; Han et al, 2001). 

Conversely, inhibition of JNK in human articular chondrocytes had no effect on 

IL-1 (3 induced MMP-13 expression (Fan et al, 2006). Interestingly, studies have 

shown that WIN-55 has no effect on JNK phosphorylation in rat and mouse 

hippocampus (Derkinderen et al, 2001). In order to fully elucidate the effects of 

WIN-55 on transcription factor activation and binding to target genes involved in 

OA requires further investigation.

It is important to note, the present study has only determined the 

phosphorylated amount of ERK1/ERK, c-Jun, p38 and IkB it is therefore 

possible that IL-1 (3 or WIN-55 may also affect the total amount of these kinases 

present within the cell.
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4.5.3 Protein Kinases
Preliminary studies showed significant changes in phosphorylation levels 

following IL-1 p and WIN-55 stimulation included, ERK1/ERK2, c-Jun, HSP27, 

Fyn, Hck, STAT2 and STAT5a.

In the present study, proteome array analysis of c-Jun phosphorylation at S63 

demonstrated that IL-1 p stimulation for 30 minutes induced phosphorylation. 

These findings are in agreement with cell based ELISA where an increase in c- 

Jun phosphorylation at the same site following IL-1 (3 stimulation was 

demonstrated (section 4.4.3.3). However, in contrast to the cell based ELISA 

methodology (section 4.4.3.1), ERK1/ERK2 phosphorylation at T202/Y204 was 

decreased following IL-1 p stimulation as demonstrated using the proteome 

array. Furthermore, WIN-55 pre-treatment for 48 hours in combination with IL- 

1P for 30 minutes induced c-Jun and decreased the phosphorylation of 

ERK1/ERK2. c-Jun phosphorylation remained at basal levels and ERK/12 

phosphorylation was reduced following WIN-55 treatment alone for 48 hours 

(section 4.4.3.1 and 4.4.3.3). Contrasting findings shown in the present study 

may be a result of different methods of analysis, in addition the proteome array 

data was obtained from one patient sample, therefore analysis is required on 

further patient samples to verify these findings.

Here, HSP27 phosphorylation was induced by IL-1 (3 alone and in combination 

with WIN-55, with phosphorylation remaining at basal levels when treated with 

WIN-55 alone. HSP27 is induced by IL-1 p and is thought to play a role in IL-1 (3 

induced expression of pro-inflammatory mediators involved in OA including IL-6 

(Freshney etal, 1994; Lambrecht etal, 2010). However in the present study IL- 

1p induced HSP27 phosphorylation was not counteracted by WIN-55 treatment.

Fyn and Hck belong to the Src family of kinases (Bursell et al, 2007). IL-1 p 

reduced the phosphorylation of Fyn and slightly reduced the phosphorylation of 

Hck. The effects of IL-1 p were counteracted upon WIN-55 treatment. Fyn 

phosphorylation remained at basal levels upon WIN-55 treatment alone whilst 

Hck phosphorylation was induced. To date little is known about the effects of 

Src kinases in OA, although one study suggested that inhibition of Src might be 

of therapeutic value in the treatment of skeletal diseases and inhibition of Src in
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bovine cartilage explants reduced IL-1 p induced MMP production (Sondergaard 

etal’ 2010; Bursell etal, 2007).

Janus kinases and signal transducer and activator of transcription (JAK/STAT) 

are a family of transcription factors involved in cytokine induced signalling 

pathways (Imada and Leonard 2000). In OA, upon chondrocyte stimulation with 

IL-1 p, STAT1 and STAT3 are phosphorylated and translocate to the nucleus 

where they induce IL-6 expression (Kapoor et al, 2011). Although other 

members of the STAT family have been shown to be involved in the 

pathogenesis of OA (Kapoor et al, 2011), the roles of STAT2 and STAT5a as 

shown in this study have not been identified. In the present study IL-1 p had no 

effect on STAT2 or STAT5a phosphorylation, WIN-55 in combination with IL-1 p 

reduced STAT2 phosphorylation and WIN-55 alone induced STAT5a 

phosphorylation, the significance of this remains to be determined.

In order to determine fully the effects of IL-1 p and WIN-55 on the protein 

kinases investigated here using a proteome array would require additional 

analysis to be performed on further patient samples.

4.5.4 Summary

This study has demonstrated that WIN-55 may prevent IL-1 p mediated cartilage 

breakdown by inhibiting the intracellular phosphorylation of key kinases 

involved in the induction of MMPs and other catabolic events triggered in OA. 

Cannabinoid agonists have been shown to signal through MAPK activation 

upon binding to their respective cannabinoid receptors (Howlett 2005; Demuth 

and Molleman 2006). In contrast in the present study, WIN-55 did not affect the 

basal levels of ERK1/2, c-Jun or p38 phosphorylation following 48 hour 

treatment. MAPK phosphorylation is often used to determine the presence of 

active G-protein coupled receptors following stimulation with various ligands 

(Luttrell and Luttrell 2003). Varying results on the signalling pathways 

cannabinoids induce when obtained from different tissue and cell types suggest 

that signalling through GPCRs may be more specific or indeed produce 

distinctive effects in different types of cells (Luttrell and Luttrell 2003).

In the present study a pre-treatment of WIN-55 for 48 hours was required to 

prevent IL-1 p induced c-Jun, p38, ERK1/ERK2 and IkB phosphorylation. 

Collectively these findings suggest that WIN-55 indirectly inhibits the
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phosphorylation of kinases investigated here via the modulation of a yet 

unidentified pathway possibly by the increase in synthesis of a specific protein 

over 48 hours, however in order to fully elucidate the mechanism of WIN-55 

requires further investigation
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5 Cannabinoid Receptor Expression 
in OA Cartilage
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5.1 Introduction

Cannabinoids have been investigated in animal models of arthritis where they 

have been shown to reduce joint damage and inflammation, suggesting that 

activation of cannabinoid receptors may be of therapeutic value in the treatment 

of arthritis (Malfait etal, 2000; Sumariwalla etal, 2004; Zurier etal, 1998; Dunn 

etal, 2012).

During the pathogenesis of arthritis a number of cell types are involved, 

including synoviocytes and chondrocytes but also bone cells and inflammatory 

cells (Loeser et al, 2012). Cannabinoid receptors have been shown to be 

expressed within these cell types suggesting these cells are likely to play a role 

in cannabinoid mediated effects in the arthritic joint (Table 1.3).

Cannabinoids produce their effects by binding to and activating a number of 

cannabinoid receptors (Pertwee et al, 2010). CB1 and CB2 were originally 

identified as the classical cannabinoid receptors (Matsuda etal, 1990; Munro et 

al, 1993). However, it is now apparent that not all physiological effects of 

cannabinoid receptor ligands are mediated by CB1 and CB2 receptors (Pertwee 

et al, 2010). Phytocannabinoids: CBN and CBD and endogenous cannabinoids 

OEA and PEA, which are structural analogues of endogenous cannabinoids 

AEA, display no binding affinity at CB1 or CB2 indicating that these 

cannabinoids mediate their effects via a non-CB1/CB2 receptor mechanism 

(Brown 2007). Other receptors including GPR55, GPR18, TRPV1 and PPARs 

have now been identified as cannabinoid receptors as they have been shown to 

bind a number of endogenous, synthetic and phytocannabinoids (Pertwee et al, 

2010).

5.1.1 CB1 and CB2

CB1 and CB2 receptors are expressed by bovine and human articular 

chondrocytes (Mbvundula et al, 2006; Andersson et al, 2011) and have been 

detected in the synovium and fibroblast like synovial cells of OA and RA 

patients (Richardson etal, 2008; Selvi etal, 2008). In bovine cartilage, synthetic 

cannabinoids HU210 and WIN-55 were shown'to reduce IL-1 a induced 

proteoglycan and collagen degradation, effects that were thought to be 

mediated by CB1 and CB2 receptors (Mbvundula et al, 2006). Moreover, in OA 

and RA derived synovial fibroblast like cells WIN-55 was shown to inhibit IL-1 (3
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induced secretion of IL-6 and IL-8 suggesting anti-inflammatory actions are also 

mediated by CB1 and CB2 receptors (Selvi etal, 2008).

5.1.2 GPR55
GPR55 has recently been identified as a cannabinoid receptor, however it has 

low sequence homology with CB1 and CB2 (McPartland et al, 2006; Sharir and 

Abood 2010). GPR55 is activated by a number of exogenous and endogenous 

cannabinoid ligands (Ryberg et al, 2007; Kapur et al, 2009;Johns et al, 2007). 

Moreover, GPR55 is expressed in both normal and OA human chondrocytes 

(Andersson et al, 2011) and abnormal cannabinoid 0-1602 was shown to 

reduce inflammatory pain in a rat model of arthritis, effects that are thought to 

be mediated by GPR55 (Schuelert and McDougall 2011).

5.1.3 GPR18
Phytocannabinoid THC and endogenous cannabinoids AEA and the AEA 

metabolite NAGIy are ligands of GPR18, suggesting that GPR18 may also act 

as a cannabinoid receptor (McHugh etal, 2012; McHugh etal, 2010). GPR18 is 

primarily expressed in tissues and cells involved in endocrine and immune 

functions (Gantz et al, 1997) and has yet to be identified in articular cartilage 

chondrocytes or bone cells.

5.1.4 TPRV1
Cannabinoid receptor TRPV1 is expressed by human OA chondrocytes and 

human OA and RA synovial fibroblasts (Gavenis etal, 2009; Engler etal, 2007). 

TRPV1 acts as an endogenous cannabinoid receptor for AEA and has also 

been shown to bind phytocannabinoid CBD (Bisogno et al, 2001; Smart and 

Jerman 2000). Furthermore, CBD has been shown to have anti-inflammatory 

and anti-hyperalgesic in a rat model of acute inflammation, effects that were 

thought to be mediated by TRPV1 (Costa etal, 2004; Costa etal, 2007).

5.1.5 PPARs
The PPAR nuclear receptor family have been shown to bind a number of 

different cannabinoid ligands, which are thought to have anti-inflammatory 

properties mediated primarily by PPARy activation (O'Sullivan and Kendall 

2010). All three subtypes of PPAR are expressed at the mRNA or protein level 

in rat growth plate chondrocytes and human chondrocytes. (Bordji et al, 2000; 

Shao et al, 2005; Fahmi et al, 2001; Afif et al, 2007; Boyault et al, 2001;
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Clockaerts et al, 2011). PPAR activation by both cannabinoid and non- 

cannabinoid ligands display chondroprotective activities in both OA and RA 

(O'Sullivan and Kendall 2010; Fahmi et al, 2001; Fahmi etal, 2002; Johnson et 

al, 2007; Clockaerts et al, 2011; Fahmi et al, 2011; Giaginis et al, 2009).

Although previous studies have shown that cannabinoids and cannabinoid 

receptors display chondroprotective properties, the expression and localisation 

of cannabinoid receptors within OA cartilage and bone is poorly defined. 

Furthermore, WIN-55 is an agonist at the classical cannabinoid receptors CB1 

and CB2, but also has been shown to activate PPARa and y (Pertwee et al, 

2010; O'Sullivan and Kendall 2010; Sun et al, 2006). WIN-55 may also display 

activities at TRPV1 (Jeske et al, 2006). WIN-55 is thought to display no 

activities at the GPR55 receptor (Kapur et al, 2009) and there is no current 

knowledge as to its effects at PPAR5 or GPR18 receptors. Furthermore, 

plasma membrane cannabinoid receptors including CB1, CB2, GPR55 and 

TRPV1, upon ligand binding are known to internalise and undergo cellular 

redistribution and nuclear receptors PPARa and y have also been shown to 

shuttle between the nucleus and cytoplasm following external stimulation 

(Kapur etal, 2009; Hsieh etal, 1999; Shenoy and Lefkowitz 2003; Abood 2005; 

Atwood et al, 2012; Sanz-Salvador et al, 2012; Umemoto and Fujiki 2012), 

suggesting that a process of cellular redistribution may regulate or contribute to 

the effects of cannabinoid receptor mediated chondroprotection.
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5.2 Aims and Objectives

Aim: To investigate the expression and modulation of cannabinoid receptors in 

human OA cartilage.

Objectives:

• To investigate the expression of cannabinoid receptors CB1, CB2, 

GPR55, GPR18, TRPV1 and PPARa 5 and y within different microscopic 

grades of OA cartilage immunohistochemically.

• To determine if cannabinoid receptor expression was grade and cartilage 

zone specific.

• To determine the effects of WIN-55 on CB1, CB2, GPR55, GPR18, 

TRPV1 and PPARa, 5 and y receptor expression and localisation in 

chondrocyte monolayer cultures.

• To determine the effects of WIN-55 and IL-1 p on PPARa, 5 and y mRNA 

expression in chondrocytes in monolayer culture.

5.3 Experimental design

Cartilage tissue blocks obtained from each anatomic compartment within the 

knee (medial and lateral tibio-femoral and patello-femoral compartments) (See 

Appendix 1) were used to investigate the expression and localisation of 

cannabinoid receptors CB1, CB2, GPR55, GPR18, TRPV1 and PPARa, 5 and y 

within different microscopic grades of OA cartilage. Tissue was fixed, processed 

to paraffin and cut into sections. Sections were stained with haematoxylin and 

eosin, alcian blue and Masson Trichrome for microscopic grading. OA cartilage 

was graded microscopically and the total score of each cartilage section was 

determined. Patient samples from each grade were used for 

immunohistochemical analysis of cannabinoid receptors within chondrocytes in 

each of the cartilage zones (superficial, middle, deep and clusters) and 

osteocytes in the bone. In addition ICC was used to investigate the effects of 

WIN-55 on cannabinoid receptors CB1, CB2, GPR55, GPR18, TRPV1 and 

PPARa 5 and y expression and localisation in OA chondrocytes in monolayer 

culture. Finally, the effects of WIN-55 and IL-1 (3 on PPARa, 6 and y mRNA 

expression, in OA chondrocytes in monolayer culture was investigated using 

real-time PCR.
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5.4 Methodology

5.4.1 Paraffin-Wax Embedding of Cartilage Tissue

Cartilage blocks were fixed in 10% formalin (Sigma-Aldrich,UK) followed by 

EDTA decalcification (Leica). Cartilage samples were processed to wax using 

an automated process with graded solutions of industrial methylated spirits 

(IMS;Fisher Scientific), used to dehydrate samples followed by hydration in 

SUB-X solution (Leica). Cartilage samples were immersed in molten paraffin 

wax twice; full wax processing details are given in Appendix 3. Samples were 

transferred to fresh molten wax in a JeioTech OV-11 vacuum oven and 

incubated at 60°C and 60 cmHg for 1 hour to allow for complete penetration of 

wax through the cartilage samples. Cartilage samples were then transferred to 

moulds containing molten wax and orientated as desired and the wax allowed 

to set on a cold plate to form blocks. Tissue blocks were removed from moulds 

and stored at room temperature prior to sectioning as described in section 5.4.2.

5.4.2 Sectioning and Mounting
Tissue sections were cut using a Leica SM2400 sledge microtome to 4 pm 

thickness. Tissue sections were placed onto water containing 0.01% v/v gelatin 

solution (Sigma-Aldrich) at 45°C and mounted onto positively charged slides 

(Leica). Sections were allowed to dry on a drying rack at 40°C and were then 

transferred to an oven at 37°C for further drying until use.

5.4.3 Haematoxylin and Eosin
Sections were de-waxed in SUB-X (Leica) for 5 minutes in triplicate, rehydrated 

in IMS (Fisher Scientific) for 4 minutes in triplicate and immersed in deionised 

water for 5 minutes. Sections were stained with Mayer’s Haematoxylin (Leica) 

for 1 minute and blued in running tap water for 5 minutes. Sections were then 

counterstained in eosin (Leica) for 1 minute, dehydrated in IMS for 4 minutes in 

triplicate and cleared in SUB-X (Leica) for 5 minutes in triplicate. Sections were 

mounted in Pertex (Leica).

5.4.4 Alcian Blue Staining

Sections were de-waxed and rehydrated as outlined in section 5.3.3. Tissue 

sections were stained in 1% w/v acid alcian blue in 3% v/v acetic acid (pH 2.4) 

(Sigma-Aldrich) for 15 minutes and counter stained in 1% w/v aqueous neutral 

red in deionised water (Sigma-Aldrich) for 1 minute. Sections were dehydrated
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in IMS for 4 minutes in triplicate and cleared in SUB-X (Leica) for 5 minutes in 

triplicate. Sections were mounted in Pertex (Leica).

5.4.5 Masson Trichrome
Sections were de-waxed and rehydrated as outlined in section 5.4.3. Sections 

were stained with Masson Trichrome (Leica) according to the manufacturer’s 

instructions. Sections were dehydrated in IMS for 4 minutes in triplicate and 

cleared in SUB-X (Leica) for 5 minutes in triplicate. Sections were mounted in 

Pertex (Leica).

5.4.6 Cartilage Microscopic Grading
Cartilage tissue sections were visualised and graded microscopically using an 

Olympus BX60 microscope. Each section was given a grade between 0 and 22 

based on the presence of histological features that are associated with OA. The 

method of tissue grading was developed by Dr Christine Le Maitre, using 

previously published histological grading methods (Mankin et al, 1971 ;Pritzker 

et al, 2006). A score of 0-6 indicated non-degenerate cartilage, 7-12 low- 

degeneration, 13-17 intermediate degeneration and 18-22 severe degeneration. 

Two observer’s graded all sections independently and the average of the two 

observers grades was assigned to each cartilage tissue section. Sections were 

graded on the basis of different histological features including the structure and 

thickness of the cartilage, the chondrocytes' organisation, the proteoglycan 

content, the integrity of the tidemark and abnormal features including bone 

remodelling, as shown in Table 4.1. The histological appearance of cartilage 

tissue following staining as outlined in sections 5.4.3, 5.4.4 and 5.4.5 obtained 

from non-degenerate, low-degeneration, intermediate degeneration and severe 

degeneration can be seen in Figures 5.1 to 5.4.
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Item Classification Score
Structure Normal 0
(H&E/MT) Superficial fibrillation surface irregularities 1

Pannus and surface irregularities 2
Clefts to Transitional zone 3
Clefts to Radial zone 4
Clefts to Calcified zone 5
Complete disorganisation 6

Cells (H&E/MT) Normal 0
Diffuse hypercellularity (<25%) 1
Clusters (25-75%) 2
Hypocellularity (>75%) 3

Proteoglycan Normal 0
content (Alcian Slight reduction (surface zone loss) 1
Blue) Moderate reduction (Upper 1/3 loss) 2

Severe reduction (Into upper 2/3 deep zone) 3
No staining present or very limited in bottom 
1/3

4

Tidemark Intact 0
Integrity Crossed by blood vessels 1
(H&E/MT)
Abnormal None 0
features Denudation: Surface sclerotic bone or 2
(H&E/MT) reparative tissue including fibrocartilage 

microfractures with limited repair to bone 
surface
Deformation: Bone remodelling (more than 
osteophyte formation) Includes microfracture 
with fibrocartilaginous and osseous repair 
extending above previous surface

4

Cartilage Normal smooth articulating surface 0
thickness Thinning of superficial zone 1
(H&E/MT) Thinning into Middle Zone (>25% surface area) 2

Thinning into Deep Zone (>25% surface area) 3
Areas where bone exposed (>25% surface 
area)

4

Table 5.1 Histological Grading of Cartilage Sections. H&E; haematoxylin and eosin; 
MT; Masson Trichrome
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5.4.7 Immunohistochemistry (IHC)

5.4.7.1 The principle of IHC
IHC is a technique, which uses antibodies to detected target antigens in tissue. 

A primary antibody is incubated with the tissue followed by the addition of a 

secondary antibody, which is directed against the species of the primary 

antibody. The secondary antibody is conjugated to biotin, an enzyme or 

fluorophore. The conjugated label allows for the detection and localisation of 

the bound primary antibody within the tissue, which can be visualised by the 

addition of a substrate or by fluorescent emission.

5.4.7.2 IHC using Streptavidin-Biotin-HRP DAB detection
This study used streptavidin-biotin-HRP 3,3’-diaminobenzidine 

tetrahydrochloride (DAB) detection in IHC for the visualisation and localisation 

of cannabinoid receptors within OA cartilage and bone. The secondary 

antibody used against the bound primary antibody was conjugated to biotin to 

detect the target antigens. The Avidin/Biotin complex (ABC) reagent was 

added with horseradish peroxidase bound to the biotinylated secondary 

antibody formed an enzyme complex. The addition of DAB, a substrate of the 

enzyme complex, produced a brown polymerised precipitate where the 

secondary antibody was bound. The endogenous peroxidases present in the 

tissue were blocked to prevent non-specific staining (section 5.4.12).

5.4.7.3 Antigen Retrieval Optimisation
Tissue fixation, processing and embedding masks antigens within the tissue 

and affects protein antigenicity. Antigen retrieval (AR) increases the sensitivity 

of IHC, allowing for improved detection of epitopes. AR may be obtained by 

heat-based methods or enzymatic epitope retrieval.

In this study a number of different antigen retrieval methods were used 

including enzymatic and heat treatment of tissue to achieve optimal antigen 

retrieval (Table 5.2). The optimum method determined and used for all 

subsequent IHC was enzymatic digestion using 0.01% chymotrypsin.
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5.4.8 Titration of Primary Antibodies
In order to achieve optimal IHC staining without background or non-specific 

staining, primary antibody titration is required for each application and each 

set of experimental conditions. In this study each primary antibody was 

titrated to determine the optimal dilution for the experimental conditions (Table 

5.3).

Target Antigen Clonality Titration
Range

Optimal
Concentration
(Dilution)

CB1 (Abeam) Rabbit Polyclonal 1:25-1:500 1:100 (8 pg)
CB2 (Abeam) Rabbit Polyclonal 1:25-1:1000 1:50 (10 pg)
GPR55 (Acris) Rabbit Polyclonal 1:50-1:1000 1:100 (10 pg)
GPR18 (Acris) Rabbit Polyclonal 1:50-1:1000 1:200 (2.5 pg)
TRPV1 (Abeam) Rabbit Polyclonal 1:250-1:3000 1:1000 (Concentration

not determined)
PPARa (Abeam) Rabbit Polyclonal 1:50-1:1000 1:250 (4 pg)
PPAR5 (Abeam) Rabbit Polyclonal 1:50-1:1000 1:150 (6.6 pg)
PPARy (Abeam) Rabbit Polyclonal 1:25-1:500 1:50 (4 ug)

Table 5.3 Primary Antibodies. The optimal concentration of the primary antibodies was 
determined by titration

5.4.9 Isotype, Negative and Labelling Controls
In addition to primary antibody titration (section 5.3.10), IgG control tissue 

sections were run for each primary antibody at the same protein concentration. 

The absence of staining in the IgG control tissue sections confirmed the 

specificity of the primary antibody.

For negative control sections, primary antibody was replaced with 1 % BSA in 

1xTBS. The absence of staining in these tissue sections confirmed that the 

binding of the secondary antibody was specific to the primary antibody.

For labelling controls, both primary and secondary antibodies were replaced 

with 1% BSA in 1xTBS. The absence of staining in these tissue sections 

confirmed that immunopositivity observed was not a result of the presence of 

endogenous peroxidases present.
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5.4.10 IHC Methodology
Cartilage samples were sectioned and mounted as outline in section 5.3.2. 

Cartilage samples used for IHC are shown in Table 5.4. Sections were de- 

waxed and rehydrated as outlined in section 5.3.4. Sections were incubated in 

3% v/v hydrogen peroxide (Sigma-Aldrich) in IMS (Fisher-Scientific) for 30 

minutes to block endogenous peroxidases. Sections were washed in 

deionised water for 5 minutes followed by two washed in 1xTBS.

5.4.11 Antigen Retrieval

Sections were incubated with 1xTBS which had been pre-warmed to 37°C 

prior to incubation in 0.01% w/v chymotrypsin (Sigma-Aldrich) with 0.1% w/v 

CaCb solution in 1xTBS for 20 minutes at 37°C. Sections were washed in 

1xTBS to inactivate the chymotrypsin.

5.4.12 Binding of Primary and Secondary Antibodies
Non-specific binding sites were blocked as described in section 2.3.12. 

Blocking solution was removed and primary antibodies were diluted in 1% w/v 

BSA in 1xTBS (Table 5.3) and 100 pi of primary antibody, isotype control or 

blocking solution alone, which served as the negative control were applied to 

the sections and incubated on the sections overnight at 4°C. The optimal 

concentration for each primary antibody was determined by titration as 

described in section 5.3.10 (Table 5.3). Sections were washed three times in 

1xTBS and 100 pi of biotinylated goat anti rabbit secondary antibody (Abeam) 

diluted 1/300 in 1% w/v BSA in 1xTBS was applied to each section and 

incubated at room temperature for 30 minutes.

5.4.13 Detection of Secondary Antibodies

Sections were washed three times in 1xTBS and 2 drops of A.B.C Elite 

Reagent (Vector Laboratories) was applied to each section and incubated at 

room temperature for 30 minutes. Sections were washed three times in 

1xTBS and 100 pi of DAB (Sigma-Aldrich) solution containing 0.03% v/v 

hydrogen peroxide (Sigma-Aldrich) was applied to each section and incubated 

at room temperature for 20 minutes. Sections were washed in deionised water 

for 2 minutes and then counterstained in Mayer’s Haematoxylin (Leica) for 1 

minute and blued in running water for 5 minutes.
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5.4.14 Mounting of Sections
Sections were dehydrated, cleared and mounted as described in section 5.4.3.

5.4.15 Microscopy and Image Capture
All cartilage tissue sections were visualised using the Olympus BX60 

microscope and images were captured using the QCapture Pro V8.0 software 

(MediaCybernetics).

5.4.16 Analysis of Immunohistochemistry

Percentage immunopositivity of target antigens was determined by counting 

200 cells in each of the cartilage zones as shown in Figure 5.5.

5.4.17 Statistical Analysis
Data was combined for each of the tissue zones and for non-degenerate, low 

degeneration, intermediate degeneration and severe degeneration. The data 

obtained was non-parametric, so Kruskal Wallis with Dunn’s Multiple 

Comparisons Test or Mann Whitney statistical testing was used to compare 

between non-degenerate, low degeneration, intermediate degeneration and 

severe degeneration sample groups within the different zones of tissue. Data 

was represented graphically and statistical testing was performed using Prism 

v5 (GraphPad Software Inc).

Linear regression analysis was used to identify correlation between percentage 

immunopositivity and microscopic grade of degeneration determined 

histologically. Data was represented graphically and Linear Regression analysis 

was performed using Prism v5 (GraphPad Software Inc).

203



t «*•

Js Z':̂ Ê
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5.4.18 Human OA Cartilage Samples
Primary Human chondrocytes were obtained from the articular cartilage 

removed from patients with symptomatic OA at the time of total knee 

replacement as described in section 2.4.1.

5.4.19 Macroscopic Grading of Cartilage Tissue
Cartilage tissue was macroscopically graded 0-4 using the Outerbridge 

Classification at time of surgery prior to isolation of chondrocytes (Cameron et 

al, 2003) as described in section 2.4.2

5.4.20 Isolation of Human Chondrocytes
Human chondrocytes were isolated from cartilage as described in section 2.4.3.

5.4.21 OA Patient Samples
Chondrocytes cultures were derived from OA patient samples of macroscopic 

grades 2 or 3 (Table 5.5). Full patient sample information can be found in 

Appendix 1.

5.4.22 Culture of OA Chondrocytes for Cannabinoid Receptor 
Immunocytochemistry

Chondrocytes were cultured in monolayer until 80% confluent at passage 2. 

Following trypsinisation as outlined in section 2.4.5 cells were centrifuged at 

400g for 10 minutes and resuspended in complete media. Cells were counted 

using trypan blue exclusion using the Countess cell counter (Invitrogen). 

Chondrocytes were seeded at 1x105 cells per well in 8 well chamber slides in 

complete media. Cells were allowed to adhere overnight at 37°C in a humidified 

atmosphere of 5% C02 prior to WIN-55 treatment.
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Analysis Performed Monolayer Culture

Grade 2 Grade 3
Cannabinoid Receptor HC21(4), HC23(4) HC5(1), HC3(4),

Immunocytochemistry

PPARa, 5 and y mRNA HC13(1), HC23(4) HC15(4), HC11(3),

expression HC16(4)

Table 5.5 The patient samples used for each analysis performed on chondrocytes 
from different macroscopic grades of OA cartilage. Full details of samples used in 
these investigations can be found in Appendix 1.

5.4.23 WIN-55 treatment of OA Chondrocytes for Cannabinoid Receptor 
Immunocytochemistry

Cells were washed twice in 1xPBS and the complete media replaced with 200 pi 

serum free media+BSA per well supplemented with 10 pM WIN-55 and 

incubated at 37°C for 48 hours. 0.1% DMSO was used as a vehicle control at the 

same concentration present in 10 pM WIN-55.

5.4.24 Cannabinoid Receptor Immunocytochemistry
Culture media was removed and cells washed twice in 1xPBS. Cells were fixed 

in 4% formalin v/v in 1xPBS at room temperature for 30 minutes. Chambers were 

removed from slides and cells were permeablised and non-specific binding sites 

were blocked as outlined in section 5.4.12. Blocking solution was removed and 

primary antibodies were diluted in 1% w/v BSA in 1xTBS (Table 5.4) and 100 pi 

of primary antibody or IgG control was applied to each section and incubated 

overnight at 4°C. Cells were washed and secondary antibody was applied and 

detected as described in section 5.4.13. Slides were cleared, dehydrated and 

mounted as outlined in section 5.4.3.

5.4.25 Immunocytochemistry Visualisation
Cells were visualised and images captured as outlined in section 5.4.15.
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5.4.26 WIN-55 and IL-1 p Treatment of OA Chondrocytes Cultured in 

Monolayer for Real-time PCR Analysis.
Cells were cultured in monolayer until 80% confluent before passaging as 

described in section 2.3.5. Chondrocytes were seeded in 6 well culture plates at 

a cell density of 5x105 as described in section 2.4.6. Cell treatments were 

performed as outlined in section 2.4.7. Treatments were performed in triplicate 

on chondrocytes isolated from macroscopic grade 2 or grade 3 cartilage (Table 

5.1).

5.4.27 RNA Extraction from Cells Cultured in Monolayer
Isolation of RNA was performed as described in section 2.4.13.

5.4.28 Reverse Transcription and Real-time PCR
RNA was reversed transcribed to cDNA as described in section 2.3.16. Taqman 

PCR was performed on cDNA as described in section 2.4.18. using pre-designed 

Taqman Gene Expression Assays (Table 5.6; Life Technologies).

5.4.29 Real-time PCR Analysis
The data obtained from chondrocytes isolated from grade 2 and 3 cartilage were 

combined prior to analysis (Table 5.1). Real-time PCR data was analysed using 

the 2 'AACT (Livak and Schmittgen 2001) as described in section 2.4.20.

Taqman Gene Expression Assay Assay ID 

PPARa 

PPAR5 

PPARy
Table 5.6 Taqman Gene Expression IDs

5.4.30 Statistical Analysis
Statistical analysis was performed as described in section 2.5.

Hs00947539_m1

Hs00606407_m1

Hs01115513_m1
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5.5 Results

5.5.1 Cannabinoid Receptor Expression in Cartilage and Bone

5.5.1.1 CB1 Expression

CB1 receptor expression was observed in all cartilage and bone samples. 

Positive staining was observed in the cytoplasm and nucleus of the chondrocytes 

in all the zones of the cartilage and the osteocytes in the bone (Figure 5.6).

There was no significant difference between CB1 immunopositivity in 

chondrocytes in the superficial zone, middle zone, deep zone, clusters or 

osteocytes in the bone with grade of degeneration (Figure 5.7A-E). There was a 

significant decrease in CB1 immunopositivity in osteocytes compared to CB1 

expression in chondrocytes in the superficial zone (p<0.01), middle zone 

(p<0.001), deep zone (p<0.001) and clusters (p<0.001) (Figure 5.7F). However, 

there was no significant difference in CB1 percentage immunopositivity between 

the superficial zone, middle zone, deep zone or clusters (p>0.05) (Figure 5.7F).

Regression analysis of CB1 immunopositivity and the microscopic grade of 

degeneration confirmed that there was no relationship between CB1 expression 

and grade of degeneration in the chondrocytes of the cartilage in the superficial 

zone, middle zone, deep zone or clusters or the osteocytes in the bone (Data not 

shown).
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5.5.1.2 CB2 Expression

CB2 receptor expression was observed in all cartilage samples. Positive 

staining was observed in the cytoplasm and nucleus of the chondrocytes in all 

the zones of the cartilage including the osteocytes in the bone (Figure 5.8). 

Staining was less intense in the deep zone and osteocytes (Figure 5.9C&E).

There was no significant difference between CB2 immunopositivity in the 

superficial zone, middle zone, deep zone, clusters or osteocytes with grade of 

degeneration (Figure 5.9A-E). There was a significant decrease in CB2 

immunopositivity in osteocytes compared to CB2 expression in chondrocytes in 

the superficial zone, middle zone, deep zone and clusters (p<0.001) (Figure 

5.9F). There was no significant difference in CB2 expression between the 

superficial zone, middle zone, deep zone or clusters (p>0.05) (Figure 5.9F).

Regression analysis of CB2 immunopositivity and the microscopic grade of 

degeneration confirmed that there was no relationship between CB2 expression 

and grade of degeneration in the chondrocytes of the cartilage in the superficial 

zone, middle zone, deep zone or clusters or the osteocytes in the bone (Data 

not shown).
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5.5.1.3 GPR55
GPR55 receptor expression was observed in all cartilage samples. Positive 

staining was observed in the cytoplasm and nucleus of the chondrocytes in all 

the zones of the cartilage including the osteocytes in the bone (Figure 5.10).

There was no significant difference between GPR55 immunopositivity in the 

superficial zone, middle zone, deep zone, clusters or osteocytes with grade of 

degeneration (Figure 5.11A-E). There was a significant decrease in GPR55 

immunopositivity in osteocytes compared to GPR55 expression in chondrocytes 

in the superficial zone, middle zone, deep zone and clusters (p<0.001) (Figure 

5.11F). There was no significant difference in GPR55 percentage 

immunopositivity between the superficial zone, middle zone, deep zone or 

clusters (p>0.05).

Regression analysis of GPR55 immunopositivity and the microscopic grade of 

degeneration confirmed that there was no relationship between GPR55 

expression and grade of degeneration in the chondrocytes of the cartilage in the 

superficial zone, middle zone, deep zone or clusters or the osteocytes in the 

bone (Data not shown).
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5.5.1.4 GPR18 Expression

GPR18 receptor expression was observed in all cartilage samples. Positive 

staining was observed in the cytoplasm and nucleus of the chondrocytes in all 

the zones of the cartilage (Figure 5.12). GPR18 receptor expression in 

osteocytes was observed in 10 out of the 34 samples (Figure 5.12).

There was no significant difference between GPR18 immunopositivity in the 

superficial zone, middle zone, clusters or osteocytes with grade of degeneration 

(Figure 5.13A,B,D,E). However in the deep zone of the cartilage there was a 

significant decrease in GPR18 immunopositivity in the severe degeneration 

samples compared to the low degeneration samples (p<0.05) (Figure 5.13C). 

Increased immunopositivity of GPR18 was detected in the middle (p<0.001) and 

deep zone (p<0.05) compared to the superficial zone (Figure 5.13F).

Regression analysis of GPR18 immunopositivity and the microscopic grade of 

degeneration confirmed that there was a relationship between GPR18 

expression and grade of degeneration in the chondrocytes in the deep zone of 

the cartilage (Figure 5.14). However, there was no relationship between GPR18 

expression and grade of degeneration in the chondrocytes of the superficial 

zone, middle zone or clusters, or the osteocytes in the bone (Data not shown).
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5.5.1.5 TRPV1 Expression

TRPV1 receptor expression was observed in all cartilage samples. Positive 

staining was observed in the cytoplasm and nucleus of the chondrocytes in all 

the zones of the cartilage (Figure 5.15). TRPV1 receptor expression in 

osteocytes was observed in all but three samples (two low-degenerate and one 

intermediate).

There was no significant difference between TRPV1 immunopositivity in the 

superficial zone, middle zone, clusters or osteocytes with grade of degeneration 

(Figure 5.16 A,B,D,E). However in the deep zone of the cartilage there was a 

significant decrease in TRPV1 immunopositivity in the severe degeneration 

samples compared to the low degeneration samples (p<0.05) (Figure 5.16C). 

There was a significant decrease in TRPV1 immunopositivity in osteocytes 

compared to TRPV1 expression in chondrocytes of the superficial zone, middle 

zone, deep zone and clusters (p<0.001) (Figure 5.16F). There was no 

significant difference in TRPV1 percentage immunopositivity between the 

superficial zone, middle zone, deep zone or clusters (p>0.05).

Regression analysis of TRPV1 immunopositivity and the microscopic grade of 

degeneration demonstrated that there was no relationship between TRPV1 

expression and grade of degeneration in the chondrocytes of the cartilage in the 

superficial zone, middle zone, deep zone or clusters, or the osteocytes in the 

bone (Data not shown).
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5.5.1.6 PPARa

PPARa expression was observed in all cartilage samples. Positive staining was 

observed in the cytoplasm and nucleus of the chondrocytes in all the zones of 

the cartilage (Figure 5.17). PPARa expression in osteocytes was observed in all 

but one intermediate degenerate sample.

There was no significant difference between PPARa immunopositivity in the 

superficial zone, middle zone, deep zone, clusters or osteocytes with grade of 

degeneration (Figure 5.18A-E). There was a significant decrease in PPARa 

immunopositivity in osteocytes compared to PPARa expression in chondrocytes 

in the superficial zone (p<0.01), middle zone, deep zone and clusters (p<0.001) 

(Figure 5.18F). There was no significant difference in PPARa percentage 

immunopositivity between the superficial zone, middle zone, deep zone or 

clusters (p>0.05).

Regression analysis of PPARa immunopositivity and the microscopic grade of 

degeneration confirmed that there was no relationship between PPARa 

expression and grade of degeneration in the chondrocytes of the cartilage in the 

superficial zone, middle zone, deep zone or clusters or the osteocytes in the 

bone (Data not shown).
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5.5.1.7 PPAR5

PPAR5 expression was observed in all cartilage samples. Positive staining was 

observed in the cytoplasm and nucleus of the chondrocytes in all the zones of 

the cartilage and the osteocytes of the bone (Figure 5.19).

There was no significant difference between PPAR5 immunopositivity in the 

superficial zone, middle zone, deep zone, clusters or osteocytes with grade of 

degeneration (Figure 5.20A-E). There was a significant decrease in PPAR5 

immunopositivity in osteocytes compared to PPAR5 immunopositivity in 

chondrocytes in the superficial zone, middle zone, deep zone and clusters 

(p<0.001) (Figure 5.20F). There was no significant difference in PPAR5 

immunopositivity between the superficial zone, middle zone, deep zone or 

clusters (p>0.05).

Regression analysis of PPAR6 immunopositivity and the microscopic grade of 

degeneration confirmed that there was no relationship between PPAR5 

expression and grade of degeneration in the chondrocytes of the cartilage in the 

superficial zone, middle zone, deep zone or clusters or the osteocytes in the 

bone (Data not shown).
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5.5.1.8 PPARy

PPARy expression was observed in all cartilage samples. Positive staining was 

observed in the cytoplasm and nucleus of the chondrocytes in all the zones of 

the cartilage and the osteocytes of the bone (Figure 5.21).

There was no significant difference between PPARy immunopositivity in the 

superficial zone, middle zone or deep zone with grade of degeneration (Figure 

5.22A-C&E). There was a trend towards decrease in PPARy immunopositivity in 

the clusters with grade of degeneration; however this was not significant (Figure 

5.22D). In the osteocytes there was a significant decrease in PPARy 

immunopositivity in the severe degeneration samples compared to non

degenerate (p<0.05) (Figure 5.22E). There was a significant decrease in 

PPARy immunopositivity in osteocytes compared to PPARy immunopositivity in 

chondrocytes in the superficial zone and middle zone (p<0.001) (Figure 5.22F). 

There was no significant difference in PPARy immunopositivity between the 

superficial zone, middle zone, deep zone or clusters (p>0.05), however PPARy 

immunopositivity staining appeared to be more intense in the superficial zone 

compared to the middle and deep zone (Figure 5.22).

Regression analysis of PPARy immunopositivity and the microscopic grade of 

degeneration confirmed that there was a relationship between PPARy 

expression and grade of degeneration in the osteocytes (Figure 5.23). However, 

there was no relationship between PPARy expression and grade of 

degeneration in the chondrocytes of the superficial zone, middle zone, deep 

zone or clusters (Data not shown).
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5.5.2 The Effects of WIN-55 on Cannabinoid Receptor Localisation in OA

Chondrocytes

5.5.2.1 CB1 Expression

CB1 expression was localised to the cytoplasm of the chondrocytes in the 

DMSO control (Figure 5.24A). Following WIN-55 treatment for 48 hours CB1 

expression was localised to the nuclei of the chondrocytes (Figure 5.24B). The 

intensity of CB1 expression was increased following WIN-55 treatment (Figure 

5.24B)

5.5.2.2 CB2 Expression

CB2 expression was localised to the cytoplasm of the chondrocytes in the 

DMSO control (Figure 5.25A). Following WIN-55 treatment for 48 hours CB2 

expression was localised to the cytoplasm and nuclei of the chondrocytes (5.25 

B).

5.5.2.3 GPR55 Expression

GPR55 expression was localised to the cytoplasm of the chondrocytes in the 

DMSO control (Figure 5.26A). Following WIN-55 treatment for 48 hours there 

was no change in GPR55 localisation in the chondrocytes (Figure 5.26B).

5.5.2.4 GPR18 Expression

GPR18 expression was localised to the cytoplasm of the chondrocytes in the 

DMSO control (Figure 5.27A). Following WIN-55 treatment for 48 hours GPR18 

expression was localised to both the nuclei and the cytoplasm of the 

chondrocytes (Figure 5.27B).

5.5.2.5 TRPV1 Expression

TRPV1 expression was localised to the cytoplasm of the chondrocytes in the 

DMSO control (Figure 5.28A). Following WIN-55 treatment for 48 hours TRPV1 

expression was localised to the nuclei of the chondrocytes (Figure 5.28B). The 

intensity of TRPV1 expression was increased following WIN-55 treament 

(Figure 5.28B)
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5.5.2.6 PPARa Expression

PPARa expression was localised to both the cytoplasm and nucleus in the 

chondrocytes of the DMSO control (Figure 5.29A). Following WIN-55 treatment, 

PPARa expression was localised primarily to nuclei with cytoplasmic positivity 

also observed (Figure 5.29B). The intensity of PPARa expression was 

increased following WIN-55 treatment (Figure 5.29B)

5.5.2.7 PPAR5 Expression

PPAR5 expression was localised to primarily to the cytoplasm in the 

chondrocytes of the DMSO control with nuclei staining also observed (Figure 

5.30A). Following WIN-55 treatment PPAR5 expression was localised to the 

nuclei (Figure 5.30B). The intensity of PPAR5 expression was increased 

following WIN-55 treatment (Figure 5.30B)

5.5.2.8 PPARy Expression

PPARy expression was localised to the cytoplasm of the chondrocytes in the 

DMSO control (Figure 5.31 A). Following WIN-55 treatment for 48 hours PPARy 

expression was still localised to cytoplasm, however a small number of cells 

also displayed nuclei staining (Figure 5.31 B).
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5.5.3 The Effects of WIN-55 on PPAR mRNA expression

5.5.3.1 PPARa
IL-1 p stimulation for 48 hours had no significant effect on PPARa mRNA 

expression (Figure 5.32A). WIN-55 in combination with IL-1 (3 for 48 hours 

significantly increased PPARa mRNA compared to DMSO control and IL-1 (3 

treatment alone (p<0.001) (Figure 5.32A). WIN-55 treatment alone for 48 hours 

significantly increased PPARa mRNA expression compared to DMSO control 

(p<0.001) (Figure 5.32A).

5.5.3.2 PPAR5
IL-1 (3 stimulation for 48 hours had no significant effect on PPAR5 mRNA 

expression (Figure 5.32B). WIN-55 in combination with IL-1 (3 for 48 hours 

significantly increased PPAR5 mRNA compared to DMSO control and IL-1 p 

treatment alone (p<0.001) (Figure 5.32B). WIN-55 treatment alone for 48 hours 

significantly increased PPAR5 mRNA expression compared to DMSO control 

(p<0.001) (Figure 5.32B).

5.5.3.3 PPARy
IL-1 p stimulation for 48 hours had no significant effect on PPARy mRNA 

expression (Figure 5.32C). WIN-55 treatment both alone and in combination 

with IL-1 p for 48 hours had no significant effect on PPARy mRNA expression 

(Figure 5.32C).
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5.5.4 Summary of Results
The summary of the findings presented in this chapter for immunohistochemical 

analysis of cannabinoid receptors in microscopically graded OA tissue and the 

effects of WIN-55 on cannabinoid receptor localisation in OA chondrocyte 

cultures and PPARa, 5 and y expression are shown in Tables 5.7 and 5.8.

Cannabinoid
Receptor

Superficial
Zone

Middle
Zone

Deep
Zone

Clusters Osteocytes

CB1 - - - - -

CB2 - - - - -

GPR55 - - - - -

GPR18 - - * - -

TRPV1 - - * - -

PPARa - - - - -

PPAR5 - - - - -

PPARy - - - - *

Table 5.7 Summary of cannabinoid receptor expression in human OA cartilage in 
different zones of cartilage. -  Indicates no change in receptor expression associated 
with grade of degeneration and ^  indicates decrease in receptor with increasing grade 
of degeneration.

Cannabinoid
Receptor

Cellular 
localization in 
DMSO control

Cellular localization 
following WIN-55 
treatment

mRNA
expression

CB1 Cytoplasm Nucleus Not investigated
CB2 Cytoplasm Cytoplasm and 

nucleus
Not investigated

GPR55 Cytoplasm Cytoplasm Not investigated
GPR18 Cytoplasm Cytoplasm and 

nucleus
Not investigated

TRPV1 Cytoplasm Nucleus Not investigated
PPARa Cytoplasm and 

nucleus
Cytoplasm and 
predominantly nucleus

*

PPAR5 Cytoplasm and 
nucleus

Predominantly nucleus *

PPARy Cytoplasm and 
nucleus

Cytoplasm and 
nucleus

Table 5.8 Summary of cannabinoid receptor localisation in OA chondrocyte 
cultures and the mRNA expression of PPARs following 10pM WIN-55 stimulation 
for 48 hours. -  Indicates no change in mRNA expression compared to DMSO control 
and ^  indicates a significant increase in mRNA expression compared to DMSO 
control.
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5.6 Discussion

This work aimed to determine the expression of putative cannabinoid receptors 

in human articular chondrocytes and to identify if the expression of cannabinoid 

receptors within OA cartilage was grade and zone specific. In addition the 

effects of WIN-55 on the expression and localisation of cannabinoid receptors in 

OA chondrocytes cultured in monolayer was investigated. Finally, the effects of 

WIN-55 and IL-1 (3 on PPARa, 5 and y mRNA expression in OA chondrocytes 

was also investigated.

Cells of the joint including chondrocytes, synovial fibroblasts, osteoblasts, 

osteoclasts and osteocytes express cannabinoid receptors including, CB1, CB2, 

GPR55, TRPV1 and PPARa 5 and y (Mbvundula et al, 2006; Richardson et al, 

2008; Andersson et al, 2011; Whyte et al, 2009; Gavenis etal, 2009; Bordji etal, 

2000; Shao et al, 2005; Fahmi et al, 2001; Fahmi et al, 2002; Afif et al, 2007; 

Moulin etal, 2005; Boyault etal, 2001; Selvi etal, 2008; Clockaerts etal, 2011a; 

Idris et al, 2005; Idris et al, 2009). Furthermore, activation and signalling 

mediated by cannabinoid receptors and cannabinoid agonists display 

chondroprotective and anti-arthritic activities both In vivo and in vitro 

(Mbvundula et al, 2006; Fahmi et al, 2001; Fahmi et al, 2002; Boyault et al, 

2001; Zurier etal, 1998; Malfait etal, 2000; Sumariwalla etal, 2004; Mbvundula 

et al, 2005; Clockaerts et al, 2011; Bianchi et al, 2005; Kobayashi et al, 2005; 

Boileau et al, 2007; Francois et al, 2006; Lee et al, 2007; Poleni et al, 2010). 

Although cannabinoid receptors are expressed by joint cells involved in the 

pathogenesis of OA their expression levels in different cartilage zones and bone 

during degradation is poorly defined.

5.6.1 CB1 and CB2
In the present study the expression of both classical cannabinoid receptors CB1

and CB2 in human OA cartilage was observed, although their percentage

immunopositivity did not change with grade of degeneration within

chondrocytes in the different zones of cartilage or osteocytes. Interestingly, both

CB1 and CB2 expression was significantly higher in chondrocytes within the

different zones of cartilage compared to osteocytes and immunopositivity of

CB2 was less than that of CB1 in both chondrocytes and osteocytes. CB1 and

CB2 receptors have previously been shown to be expressed by bovine articular

chondrocytes (Mbvundula et al, 2006). In addition CB1 and CB2 are expressed
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at similar levels both at the protein and RNA level in synovia of patients with OA 

and RA and their expression is thought to play a role in the pathology of joint 

disease (Richardson et al, 2008). Other studies have shown that both CB1 and 

CB2 are expressed at the protein level in human chondrocytes and fibroblast

like synoviocytes, although the role of these receptors in modulating 

chondrocyte metabolism in unknown (Andersson et al, 2011; Selvi et al, 2008). 

CB2 expression is increased in chronic pain models associated with peripheral 

nerve injury; principally in the spinal cord suggesting that it may be a 

therapeutic target (Zhang et al, 2003; Wotherspoon et al, 2005; Yiangou et al,

2006). However, here it was shown that the expression of CB2 did not change 

in OA chondrocytes or osteocytes with grade of degeneration.

Immunohistochemical staining demonstrated that CB1 and CB2 expression was 

localised to the nucleus and perinucleus of chondrocytes. Although, CB1 and 

CB2 are cell membrane receptors, they have been shown to redistribute and 

traffick to different cellular components following ligand binding (Abood 2005). 

Endocannabinoids including AEA and 2-AG are found in the synovial fluid of 

human OA but not normal patients (Richardson et al, 2008). Therefore, it is 

possible that endogenous cannabinoid ligands present in the synovial fluid may 

activate cannabinoid receptors expressed by chondrocytes in OA articular 

cartilage, subsequently inducing their internalisation and redistribution under 

pathological condtions. However, whether the classical cannabinoid receptors 

are expressed in the nucleus or perinuclear at basal levels, under non-ligand 

activated conditions in chondrocytes remains to be determined.

Bone remodelling occurs in OA at sites of bone damage and thickening of the 

subchondral bone plate is a pathological feature of OA (Goldring and Goldring

2010). This study has shown that both the classical cannabinoid receptors CB1 

and CB2 are expressed by OA osteocytes; however expression in osteocytes 

did not change with OA grade of degeneration. Studies have shown the 

importance of cannabinoid receptors and cannabinoid ligands in the regulation 

of bone metabolism. Both CB1 and CB2 are involved in bone metabolism, 

regulating bone mass and loss via the modulation of cell function (Idris and 

Ralston 2010). CB1 and CB2 receptors have previously been shown to be 

expressed by mouse and human osteoclasts, osteoblasts and osteocytes (Idris 

et al, 2005; Ofek et al, 2006; Rossi et al, 2009; Whyte et al, 2012). CB1
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knockout mice have increased bone density but develop age related 

osteoporosis and both CB1 and CB2 knockout mice are protected against 

ovariectomy induced bone loss compared to wild type mice (Idris et al, 2005; 

Idris et al, 2009; Idris et al, 2008). Ofek et al (2006) demonstrated that CB2 

deficient mice had increased bone turnover and mice developed age related 

osteoporosis. The CB1 selective antagonist AM251 and the CB2 selective 

antagonists AM630 and SR144528, when used in the nanomolar range, 

inhibited osteoclast formation (Idris et al, 2005; Idris et al, 2008). Osteoclast 

cultures from CB1 knockout mice were found to be resistant to the inhibitory 

effects of AM251 on osteoclast activity, suggesting that osteoclast inhibition is 

mediated by CB1 (Idris et al, 2005). Moreover CB1 and CB2 receptor agonists 

AEA, CP55940, HU308 and JWH133 stimulated osteoclast formation thus 

suggesting that cannabinoid receptor agonists may stimulate bone resorption 

thus enhancing bone loss (Idris et al, 2005; Idris et al, 2008). In contrast, CB2 

antagonist AM630 used at higher concentrations in human osteoclast cultures 

stimulated osteoclast formation and CB2 agonist HU308 inhibited receptor 

activator of nuclear factor kappa-B ligand (RANKL) induced osteoclast 

formation (Ofek et al, 2006; Rossi et al, 2009). In a later study, human 

osteoclast differentiation was found to be associated with a decrease in CB2 

receptor and endogenous cannabinoid 2-AG and an increase in endogenous 

cannabinoid AEA (Whyte et al, 2012). Moreover 2-AG and AEA were found to 

stimulate bone resorption in human osteoclast cultures (Whyte et al, 2012). In 

vivo, CB2 specific inverse agonist Sch.036 prevented bone damage in a rat 

model of arthritis (Lunn et al, 2007). Such conflicting findings on CB1 and CB2 

expression in bone suggest that the actions of cannabinoid agonists or 

antagonist at receptors expressed by bone cells may be species specific or 

produce different effects depending on the concentration used.

Previous studies have focused on expression and function of cannabinoid 

receptors and agonists in osteoclasts. However, studies have shown that 

osteocytes embedded within the bone matrix signal to osteoblasts and 

osteoclasts, regulating their activity in bone turnover and remodelling 

(Manolagas 2000; Sims and Gooi 2008). In the present study the percentage 

expression of cannabinoid receptors in osteocytes during cartilage 

degeneration has been determined. Here it was shown that there was a higher

2 4 9



percentage of CB1 positive osteocytes compared to CB2 positive osteocytes in 

OA bone. In contrast previous studies have shown that CB2 is expressed at 

higher levels in osteoclasts, osteoblasts and osteocytes compared to CB1 (Idris 

et al, 2005; Ofek et al, 2006; Rossi et al, 2009; Whyte et al, 2012). During OA 

osteoblasts anabolic activity associated with bone remodelling is increased 

compared to that of normal osteoblasts, thus contributing to increases in 

subchondral bone thickness and the formation of osteocytes (Hilal et al, 1998; 

Truong et al, 2006). CB1 knockout mice displayed decreased osteoblast 

differentiation resulting in a decrease in age-related bone loss (Idris etal, 2009). 

Together these finding suggest that targeting the cannabinoid system may be of 

therapeutic value in the treatment of bone diseases such as osteoporosis via 

the modulation of osteoclast and osteoblast activity. However, the relevance of 

CB1 and CB2 expression by bone cells during OA, where an increase in bone 

formation and remodelling is a pathological feature, has yet to be determined.

In monolayer culture of DMSO control cells, immunopositivity of CB1 was 

observed in the cytoplasm. Upon stimulation with WIN-55 for 48 hours, CB1 

expression was predominately localised to the nucleus. Upon binding of 

agonists, GPCRs are rapidly desensitised and internalised (Abood 2005). 

Trafficking of GPCRs involves phosphorylation of the receptor, the binding of 

the cytoplasmic scaffold protein p-arrestin with the receptor which results in the 

recruitment of clathrin-coated pits, followed by endocytosis (Shenoy and 

Lefkowitz 2003). The receptors are finally recycled and re-distributed to the 

membrane or are degraded by lysosomal enzymes (Shenoy and Lefkowitz

2003). WIN-55 activates CB1 and CB2 with Kis of 1.89-123 nM and 0.28-16.2 

nM respectively (Pertwee etal, 2010). Hsiesh efa/(1999) showed that following 

WIN-55 stimulation CB1 was internalised as indicated by punctated 

immunopositivity inside the pituitary cell line AtT20 stably expressing CB1 and 

internalisation was blocked using CB1 antagonist SR141716A. Internalisation of 

CB1 by WIN-55 was found to be rapid, occurring 5 minutes after stimulation, 

however after 60 minutes WIN-55 stimulated intracellular staining was 

decreased suggesting degradation of CB1 (Hsieh et al, 1999). The removal of 

WIN-55 following short periods of stimulation resulted in the re-distribution of 

CB1 to the cell membrane; however following long periods of stimulation the 

synthesis of new CB1 protein is required as shown by a decrease in intracellular
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staining (Hsieh et al, 1999). Interestingly, in the present study, nuclear 

localisation of CB1 following WIN-55 treatment was observed following 48 hours 

stimulation, therefore the mechanism of this observed cellular re-distribution 

remains to be determined.

WIN-55 also binds to and activates CB2 receptors (Howlett et al, 2002) 

Interestingly CB2 agonist CP55-940 but not WIN-55 induced CB2 internalisation 

in HEK293 cells stably expressing CB2 (Atwood et al, 2012). Moreover WIN-55 

antagonised CP55-940 induced CB2 internalisation (Atwood et al, 2012). 

However, WIN-55 was shown to activate CB2 as shown by ERK1/ERK2 

phosphorylation and (3-arrestin2 membrane recruitment, suggesting that WIN-55 

displays functional selectivity at CB2 (Atwood et al, 2012). Data presented in 

this study showed that following WIN-55 stimulation of OA chondrocytes for 48 

hours CB2 expression appeared to be localised to both the cytoplasm with 

nuclear staining also observed, although cellular re-distribution of CB2 was not 

as predominant as that of CB1. Further investigation is required in order to fully 

elucidate the mechanism via which WIN-55 induces CB1 and CB2 cellular 

redistribution and localisation in human OA chondrocytes.

5.6.2 GPR55
GPR55 has been identified as a possible cannabinoid receptor as it is activated 

by a number of cannabinoid receptor agonists (Ryberg et al, 2007). In the 

present study GPR55 was ubiquitously expressed by both chondrocytes and 

osteocytes. In addition both osteoclasts and osteoblasts expressed GRP55, 

however this was not quantified. GPR55 is expressed by both normal and OA 

chondrocytes (Andersson et al, 2011), however, there is little knowledge 

regarding its role in chondrocyte metabolism. Interestingly in this present study 

there was no significant change in GPR55 expression with grade of 

degeneration in the different zones of the cartilage or the bone. Similarly, as 

shown with CB1 and CB2 expression, GPR55 immunopositivity in osteocytes 

was significantly less than expression in the chondrocytes of the middle and 

deep zone and clusters of the cartilage.

In addition to CB1 and CB2, GPR55 is thought to play a role in bone 

metabolism (Idris and Ralston 2010). GPR55 is expressed in human and mouse 

osteoclasts and osteoblasts (Whyte et al, 2009). Adult GPR55 deficient mice
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have an osteoclastogenesis defect resulting in increased peak bone mass, 

without changes in osteoblast number (Whyte et al, 2009). Moreover 

cannabinoid agonist 0-1602 and non-cannabinoid ligand LPI were found to 

inhibit osteoclast formation in an in vitro mouse model; however these ligands 

also stimulated osteoclast function (Whyte et al, 2009). Interestingly GPR55 

antagonist phytocannabinoid CBD reduced bone resorption in a mouse model 

(Whyte etal, 2009).

GPR55 has been identified as a possible cannabinoid receptor as it is activated 

by a number of cannabinoid receptor agonists (Ryberg et al, 2007). Moreover, 

GPR55 has been shown to internalise following incubation with CB1 antagonist 

AM251 and SR141716A and non-cannabinoid ligand LPI (Kapur etal, 2009). In 

the present study, WIN-55 stimulation had no effect on GPR55 localisation or 

redistribution in OA chondrocytes in monolayer culture compared to the DMSO 

control. Findings presented here are in agreement with other studies which 

have shown WIN-55 does not display activities at GPR55 (Kapur et al, 2009; 

Pertwee 2007).

5.6.3 GPR18
Recently GPR18 has been shown to be activated by endogenous cannabinoid 

AEA, NAGIy a metabolite of AEA and phytocannabinoid THC in HEC-1B cells 

(McHugh et al, 2012; McHugh et al, 2010). GPR18 is primarily expressed in 

testes and spleen and in addition is expressed in other tissues and cells 

involved in endocrine and immune functions including, peripheral blood 

leukocytes, small intestine and the thymus (Gantz et al, 1997). In the present 

study it is shown that GPR18 was expressed by chondrocytes in OA cartilage 

and osteocytes and in the deep zone of the cartilage GPR18 expression was 

decreased with grade of degeneration. In addition there was a significant 

increase in the percentage of chondrocytes expressing GPR18 in the middle 

and deep zone compared to the superficial zone of the cartilage. These findings 

indicate GPR18 may play a role in the pathogenesis of OA and may have 

different functions in the middle and deep zone of the cartilage, as 

chondrocytes in different zones are known to express different molecules and 

display distinct functions (Goldring and Marcu 2009).
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Immunocytochemical studies here have shown that in DMSO control 

chondrocytes, GPR18 expression is localised to the cytoplasm of the cells and 

following WIN-55 treatment a small proportion of cells displayed nuclear 

staining. Interestingly cannabinoid WIN-55 had no effect on GRP18 signalling in 

previous studies (McHugh etal, 2012). Data presented here is the first reported 

finding of GPR18 in cartilage and bone tissue and its role in chondrocyte and 

bone metabolism under both physiological and pathological conditions remains 

to be investigated.

5.6.4 TRPV1
TRPV1 acts as an endogenous cannabinoid receptor for AEA and has also 

been shown to bind phytocannabinoids including CBD (Bisogno et al, 2001; 

Smart and Jerman 2000). TRPV1 was mainly expressed by nociceptive 

neurons and is activated by noxious heat and capsaicin (Caterina et al, 1997; 

Benham et al, 2003). Interestingly TRPV1 expression has been associated with 

arthritis pain in animal models. TRPV1 was increased in a rat OA model 

compared to control animals (Fernihough et al, 2005). Furthermore, TRPV1 

knockout mice have reduced thermal hyperalgesic sensitivity in an adjuvant- 

induced arthritis model (Keeble et al, 2005). TRPV1 is expressed in human OA 

chondrocytes at the mRNA level and human OA and RA synovial fibroblasts at 

both the mRNA and protein level (Gavenis et al, 2009; Engler et al, 2007). 

TRPV1 is associated with pain in OA as shown by animal models (Keeble et al, 

2005; Fernihough et al, 2005). It may be postulated that an increase in TRPV1 

expression would be associated with OA disease progression particularly in the 

deep zone of the cartilage since the osteochondral junction is thought to be the 

source of pain in OA and angiogenesis has been associated with NGF 

expression in human OA patients (Walsh eta l, 2010). Interestingly, in the 

present study it was shown that TRPV1 expression was significantly decreased 

in the deep zone of the cartilage in severe degeneration when compared to low 

degeneration OA patient samples. However, a decrease in TRPV1 expression 

has been associated with a differentiated phenotype in human OA 

chondrocytes cultures (Gavenis et al, 2009), suggesting that a decrease in 

TRPV1 expression observed in OA cartilage here may be due to more 

differentiated chondrocytes in the deep zone in severe degeneration in OA 

(Goldring 2012).
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TRPV1 expression has also been associated with bone metabolism. TRPV1 is 

expressed in human osteoclast cultures and human bone tissue and TRPV1 

agonists resin if eratoxin (RTX) and capsaicin increased osteoclast number and 

intracellular Ca2+ in human osteoclast cultures (Rossi et al, 2009). Interestingly 

TRPV1 was found to be co-localised with CB1 and CB2 receptors, suggesting 

cross talk occurs between these receptors in osteoclasts (Rossi et al, 2009). 

These findings suggest that TRPV1 may be involved in osteoclast activity and 

bone resorption. The role of TRPV1 in cartilage breakdown and bone resorption 

in OA has yet to be determined.

In the present study, in monolayer culture, TRPV1 was expressed in the 

cytoplasm of the chondrocytes. Following WIN-55 treatment, expression was 

predominantly localised to the nuclei compared to the DMSO control, 

suggesting that WIN-55 induced the cellular redistribution of TRPV1 expression 

in human OA chondrocytes. In primary rat trigeminal ganglion cultures, WIN-55 

treatment lead to the dephosphorylation of TRPV1 at Thr144 and Thr370 

resulting in the desensitization of TRPV1 (Jeske et al, 2006), suggesting that 

WIN-55 induces analgesic activities via TRPV1 activation and desensitization 

(Jeske et al, 2006). Moreover, desensitization of TRPV1 occurs via the 

internalisation of the receptor by endocytosis and lysosomal degradation, 

independent of the clathrin pathway (Sanz-Salvador et al, 2012). Therefore 

internalisation of TRPV1 by WIN-55 treatment in the present study, as shown by 

intracellular immunopositivity, suggests that WIN-55 may reduce the levels of 

TRPV1 expressed on the membrane of cells resulting in reduction of pain 

signalling.

5.6.5 PPARa, 5 and y
Other candidates for cannabinoid receptors include the PPARs. Targeting 

PPARs using specific agonists and cannabinoid agonists for the treatment of 

OA and RA has been reported previously (O'Sullivan and Kendall 2010; Fahmi 

et al, 2001; Fahmi et al, 2002; Johnson et al, 2007; Clockaerts et al, 2011; 

Fahmi etal, 2011; Giaginis et al, 2009). Endogenous cannabinoid ligands AEA, 

OEA, PEA, noladin ether and virodhamine and synthetic cannabinoid WIN-55 

display PPARa binding and promote transcriptional activity (Sun et al, 2006; Lo 

Verme et al, 2005; Fu et al, 2003). Little is known regarding the effects of 

cannabinoids on PPAR5, however, OEO increased transcriptional activity of
254



PPAR5 (Fu et al, 2003). Cannabinoid AJA, a THC analogue, has been shown 

to bind to the ligand-binding domain of human PPARy (Ambrosio et al, 2007). 

AJA also reduced joint damage in an animal arthritis model (Zurier et al, 1998) 

and has been shown to have anti-inflammatory effects by inhibiting the 

promoter activity of IL-8 (Liu et al, 2003). These effects may be PPARy 

mediated, suggesting a role for the involvement of these receptors in 

cannabinoid-mediated chondroprotection.

In the present study, there was a trend towards increased expression of PPARy 

in chondrocytes in the superficial zone of cartilage and immunopositivity was 

predominantly localised to the nucleus. In agreement with the current study, 

PPARy was previously shown to be predominantly expressed in the superficial 

zone of human OA cartilage and PPARy expression has been shown to be 

nuclear in rat cartilage (Bordji et al, 2000; Afif et al, 2007). However increased 

staining for PPARy observed in the superficial zone of the cartilage may be due 

to increased cellularity compared to the middle and deep zone. Interestingly, 

PPARy expression has been shown to be down regulated in human OA 

cartilage compared to normal cartilage, suggesting that PPARy is involved in 

cartilage ECM metabolism (Afif et al, 2007). In addition, In vivo, PPARy 

expression is decreased during the progression of OA (Nebbaki et al, 2013). In 

contrast we have shown that there was no significant difference in PPARy 

expression in OA cartilage with grade of degeneration.

In animal models of arthritis the PPARy agonist piogitazone reduced the 

development and severity of cartilage lesions (Kobayashi et al, 2005; Boileau et 

al, 2007) and the importance of PPARy in cartilage development and 

homeostasis has recently been investigated (Vasheghani et al, 2013; 

Monemdjou etal, 2012). In cartilage specific PPARy knockout in newborn mice, 

ablation of PPARy resulted in reduced skeletal growth, body weight and length 

of long bones compared to control mice (Monemdjou et al, 2012). In addition, 

mice demonstrated growth plate defects, delayed ossification and reduced 

cellularity of the cartilage, loss of columnar organisation, altered chondrocyte 

shape and a shorter hypertrophic zone compared to control mice (Monemdjou 

etal, 2012). Reduced chondrocyte proliferation, differentiation, hypertrophy and 

vascular invasion were also demonstrated by a decrease in 

immunohistochemical markers: Sox-9, BrdU, p27 and collagen type X
255



compared to control mice (Monemdjou etal, 2012) Moreover, chondrocytes and 

cartilage explants isolated from PPARy knockout newborn mice showed a 

decrease in expression of aggrecan and collagen type II and increased 

expression of MMP-13 compared to control mice (Monemdjou et al, 2012). In 

another study by the same group, adult PPARy cartilage-specific knockout mice 

exhibited a spontaneous OA phenotype (Vasheghani et al, 2013). PPARy 

cartilage-specific knockout mice displayed histological features of OA including, 

cartilage degradation, increased proteoglycan loss, hypocellularity, calcified 

cartilage, fibrillation, synovial inflammation and fibrosis compared with age- 

matched controls (Vasheghani et al, 2013). Immunohistochemical analysis of 

PPARy deficient cartilage demonstrated an increase in collagen and aggrecan 

neoepitopes C1-2C and VDIPEN respectively indicative of ECM breakdown, in 

addition an increase in MMP-13 and HIF2a expression was observed 

(Vasheghani et al, 2013). The mRNA for catabolic markers associated with OA 

was also increased in PPARy knockdown cartilage-specific explants including, 

MMP-13, COX-2, NO and ADAMTS-5 but interestingly not ADAMTS-4 

(Vasheghani et al, 2013). Together these findings suggest that PPARy plays an 

important role in cartilage metabolism.

All three subtypes of PPARs have been identified in bone cells (Giaginis et al, 

2007). Although in the present study there was no significant change in PPARy 

expression in OA cartilage associated with grade of degeneration, it was shown 

that there was a significant decrease in PPARy expression in osteocytes with 

increasing grade of degeneration. Cartilage specific PPARy deficient mice 

displayed bone defects including reduced length of long bones, bone density 

and trabecular bone thickness (Monemdjou etal, 2012), suggesting that PPARy 

is involved in bone metabolism. However, PPARy agonists rosiglitazone and 

pioglitazone reduced bone erosions and inflammatory bone loss in a collagen 

induced arthritis model (Koufany et al, 2008) and PPARy signalling pathway 

genes are up-regulated during the osteoblast mineralisation process (Staines et 

al, 2013). Although reduced expression of PPARy is thought to play a role in the 

pathogenesis of OA (Afif et al, 2007; Nebbaki et al, 2013; Vasheghani et al, 

2013), its role in bone metabolism during OA remains to be defined.

The present study has shown that both PPARa and 5 are ubiquitously 

expressed by human OA chondrocytes and osteocytes. There was no
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significant difference in PPARa or 5 expression observed between different 

microscopic grades of OA cartilage. In agreement with our study, Afif et al (2007) 

showed that PPARa or 5 was expressed by human articular chondrocytes and 

no differences in expression were observed in different grades of OA. In vivo 

studies have also shown that PPARa and 5 expression levels did not changes 

during the progression of OA in animal models (Nebbaki et al, 2013).

This study showed that human OA osteocytes expressed both PPARa and 5, 

however no changes in PPAR a or 5 positivity in osteocytes were observed with 

increasing degradation. PPARa deficient mice display no apparent bone 

abnormalities, suggesting PPARa is not involved in bone metabolism (Wu et al, 

2000). However, PPARa agonists are known to increase bone density and 

stimulate osteoblast proliferation and differentiation (Still et al, 2008; Syversen 

et al, 2009). Furthermore, in vivo PPAR5 agonists up-regulate osteoblast 

differentiation and induced periosteal bone formation (Still etal, 2008). However 

the role of PPARs in regulating bone metabolism in OA has yet to be 

determined.

In the present study, IL-ip had no effect on mRNA expression of PPARa, 5 or y 

in human OA chondrocytes. In agreement with these findings, IL-1p stimulation 

had no effect on PPARa in human OA cartilage explants, rat chondrocytes or 

rat synovial fibroblasts (Bordji et al, 2000;Moulin et al, 2005;Clockaerts et al, 

2011). In addition IL-1 p had no effect on PPAR5 expression in rat synovial 

fibroblasts (Moulin et al, 2005). However, in contrast, IL-1 p decreased PPARy 

expression in OA chondrocytes and rat synovial fibroblasts (Afif et al, 

2007;Moulin etal, 2005;Boyault etal, 2001). In OA chondrocytes, reporter gene 

assays showed that down-regulation of PPARy by IL-1 p was at the transcription 

level and activation of c-Jun, p38 and NFkB signalling pathways by IL-1 p 

induced a decrease in PPARy expression (Afif et al, 2007). In contrast, IL-1 p 

induced PPARy expression in human articular chondrocytes (Shan etal, 2004).

PPARy is known to play a role in modulating catabolic factors in OA and 

targeting this receptor with specific ligands has been investigated. 15d-PGJ2a 

ligand for PPARy decreased or abolished IL-1 p induced mRNA expression of 

COX-2 and iNOS and release of prostaglandins and NO in human 

chondrocytes (Boyault et al, 2001). Furthermore, WIN-55 is known to activate
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PPARy (O'Sullivan and Kendall 2010; O'Sullivan 2007). Interestingly, in the 

present study, WIN-55 had no effect of PPARy mRNA expression or cellular 

localisation in human OA chondrocytes. Immunocytochemical staining 

presented here showed that expression of PPARy appeared to be both 

cytoplasmic and nuclear. Although PPARy is a nuclear receptor, it is now 

evident that expression in not exclusively in the nucleus. Recent studies have 

shown that PPARy shuttles between cellular compartments. Upon mitogen 

stimulation MEKs translocate to the nucleus, bind to PPARy via interaction of 

the basic D domain of MEK and the AF2 domain of PPARy and transport it to 

the cytoplasm of the cells (Umemoto and Fujiki 2012; Burgermeister etal, 2007). 

However, in this study PPARy cytoplasmic staining was observed in 

unstimulated cells, suggesting that cytoplasmic PPARy is also present without 

ligand activation, although cytoplasmic staining could also be due to 

endogenous ligands present at basal levels.

Activation of PPARa in human OA cartilage explants using a specific agonist 

Wy14643 resulted in a decrease in IL-1 (3 induced expression of 

proinflammatory mediators MMP-1, -3 -13, NO and PGE2 (Clockaerts et al,

2011). Moreover Wy14643 decreased IL-1 (3 induced NFkB phosphorylation and 

translocation in OA chondrocytes (Clockaerts et al, 2011). These findings 

suggested that activation of PPARa may be chondroprotective and decrease 

both destructive and inflammatory factors in OA. In the present study an 

increase in nuclear PPARa positivity and mRNA expression was observed in 

OA chondrocytes treated with WIN-55. This finding was in agreement with Sun 

et al (2006) who showed that WIN-55 binds to and increases the transcriptional 

activity of PPARa. Similar to PPARy, expression of PPARa is also 

predominantly localised to the cytoplasm of the chondrocytes. PPARs are 

nuclear receptors however studies have shown that the localisation of PPARa 

in chondrocytes is also cytoplasmic (Bordji et al, 2000). Furthermore, like 

PPARy, PPARa also shuttles between the cytoplasm and nucleus following 

ligand activation (Umemoto and Fujiki 2012). The findings in the present study 

suggest that WIN-55 treatment retains PPARa in the nucleus. Consequently, 

since chondroprotective activities have been shown to be mediated by PPARa 

activation (Clockaerts et al, 2011), an increase in its mRNA expression and
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nuclear localisation induced by WIN-55 may further reduce the expression of 

catabolic and inflammatory mediators in chondrocytes.

PPAR 5 expression has previously been reported in rat and human cartilage, 

although there is little known about its role in chondrocyte metabolism (Shao et 

al, 2005; Afif et al, 2007). Interestingly, activation of PPAR5 in rat synovial 

fibroblasts was shown to stimulate production of IL-1Ra, suggesting that PPARS 

may have potential anti-arthritic properties (Moulin et al, 2005). The present 

study has shown that WIN-55 increases the mRNA expression of PPARS in 

human OA chondrocytes. Moreover WIN-55 increased the intensity of PPARS 

immunopositivity and an increase in nuclear staining was observed. However 

the effects of PPARS activation on chondrocyte metabolism have yet to be 

determined.

5.6.6 Summary
The present study has demonstrated that cannabinoid receptors CB1, CB2, 

GPR55, GPR18, TRPV1 and PPARa, S and y are expressed by chondrocytes 

and osteocytes in OA cartilage and bone tissue respectively. Cannabinoid 

receptor expression in cartilage does not appear to be associated with grade of 

degeneration. Multiple studies have shown the potential of cannabinoid receptor 

activation to provide chondroprotective activities in arthritis. Maintenance of 

cannabinoid receptor expression shown in this study during OA suggests these 

cells would remain responsive. The present study showed that cannabinoid 

receptors exist in both the cartilage and bone; it is therefore possible that one or 

more of the cannabinoid receptors shown to be expressed here or indeed a yet 

unidentified cannabinoid receptor may mediate cannabinoid ligand actions. In 

this study, WIN-55 affected the cellular localisation and protein expression of 

CB1, CB2, GPR18, TRPV1 and PPARa and 5 in OA chondrocyte cultures. It 

appeared to have affects on internalisation and trafficking of a number of 

cannabinoid receptors. Finally we have shown that WIN-55 induces the mRNA 

expression of PPARa and 5, therefore WIN-55 may have an additive effect on 

the PPAR receptor agonists, which have previously been shown to mediate 

chondrocyte protective activities. However, in order to further elucidate the 

effects of WIN-55 on cannabinoid receptor expression, cellular localisation and 

activation within OA chondrocytes further investigation is required.
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6 Cannabinoid Receptor Agonists
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6.1 Introduction

WIN-55 was shown to inhibit IL-1 p induced MMP-3 and MMP-13 mRNA and 

protein expression and IL-1 (3 induced phosphorylation of ERK1/ERK2, c-Jun 

and IkB in human OA chondrocytes (Chapter 2 and 3). In addition cannabinoid 

receptors CB1, CB2, GPR55, GPR18, TRPV1 and PPARa, 5 and y were shown 

to be expressed in OA cartilage (Chapter 4). Thus, the present study aimed to 

investigate if specific agonists for cannabinoid receptors could induce 

responses previously observed with WIN-55, in order to determine the receptors 

via which WIN-55 may mediated its effects.

6.1.1 CB1 and CB2 Receptor Agonists: ACEA and HU308
Endogenous cannabinoid AEA analogue, arachidonyl-2’-chloroethylamide 

(ACEA) is a selective agonist at the CB1 receptor which, similar to AEA 

undergoes enzymatic hydrolysis (Pertwee 2006). HU308 is a CB2 selective 

agonist and in vivo, is known to exhibit anti-inflammatory and peripheral 

analgesic properties (Hanus et al, 1999). In bovine chondrocytes, activation of 

CB1 and CB2 using synthetic agonist HU210, which is known to activate both of 

the classical receptors, was shown to inhibit IL-1 a induced ECM degradation 

(Mbvundula et ai, 2006). These findings suggest that activation of CB1 or CB2 

may prevent ECM breakdown.

6.1.2 GPR55 Receptor Agonist: LPI
The natural ligand of GPR55 is thought to be LPI (Kapur et ai, 2009). LPI 

induced the formation of (3-arrestin-GPR55 complex and ERK1/ERK2 

phosphorylation in GPR55-HEK293 (Kapur et al, 2009) and in contrast to CB1 

and CB2 receptors, which involve Gi/o coupling, activation of GPR55, by LPI is 

thought to involve the coupling of Ga13 in GPR55-HEK293 cells (Henstridge et 

al, 2009). There is currently no information as to the effects of GPR55 activation 

on chondrocyte metabolism, although, the role of GPR55 has been investigated 

in inflammatory and neuropathic pain (Staton et al, 2008). These investigations 

demonstrated that in GPR55 knockout mice mechanical hyperalgesia was 

absent following intraplantar Freund’s complete adjuvant and partial nerve 

ligation compared to wild-type mice, furthermore there was an increase in anti

inflammatory cytokines IL-4, IL-10 (Staton etal, 2008). Collectively these finding 

suggest that GPR55 modulation may be a target for inflammation and 

neuropathic pain.
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6.1.3 GPR18 Receptor Agonist: NAGIy
NAGIy is a full agonist at GPR18 as shown by MAPK induction in HEC-1B 

GPR18 transfected cells. These effects were antagonised by pertussis toxin, 

suggesting Gj coupling (McHugh et al, 2012). NAGIy is formed by the 

metabolism of AEA by FAAH (Burstein et al, 2000). Interestingly, AEA is a full 

agonist at both CB1 and CB2 receptors (Burstein and Zurier 2009) however; 

NAGIy has no activity at either CB1 or CB2 receptors (Sheskin et al, 1997). 

Studies have suggested that NAGIy may display anti-inflammatory properties 

via the reduction of pro-inflammatory macrophages (McHugh 2012) however 

the role of GPR18 in chondrocyte metabolism is unknown.

6.1.4 TRPV1 Receptor Agonist: OLDA
N-oleoyldopamine (OLDA) is an endogenous selective agonist at TRPV1 and In 

vivo, has been shown to have negative effects via inducing hyperalgesia (Chu 

et al, 2003). Activation of TRPV1 with vanilloid agonist capsaicin, induced the 

secretion of IL-6 from OA and RA synovial fibroblasts; these effects were 

attenuated by incubation with TRPV1 antagonist capsazepine (Engler et al,

2007). In contrast, activation of TRPV1 with cannabinoid ligand CBD induced 

anti-inflammatory effects in a rat model of acute inflammation (Costa et al,

2004). Together these findings suggest activation of TRPV1 may induce distinct 

responses depending on the agonist utilised.

6.1.5 PPARa Receptor Agonist: WY14643
Wy14643 is a selective PPARa agonist (Willson et al, 2000) and is thought to 

display anti-inflammatory properties mediated by the activation of PPARa 

(Clockaerts et al, 2011; Yoo et al, 2013). In vivo, Wy14643 attenuated LPS 

induced infiltration of inflammatory cells in a mouse model of acute lung injury, 

effects that were not seen in PPARa knockout mice (Yoo et al, 2013). 

Furthermore in human OA cartilage explants, Wy14643 reduced IL-1 (3 induced 

MMP-1, -3 and -13 mRNA expression and the release of GAGs, NO and PGE2, 

suggesting that activation of PPARa may be a therapeutic target for OA via the 

inhibition of catabolic processes (Clockaerts etal, 2011).

6.1.6 PPAR5 Receptor Agonst: GW0742
Finally, GW0742 is a selective PPAR5 agonist which displays over 1000 fold 

selectivity over PPARa and y receptors (Sznaidman et al, 2003). In vivo,
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GW0742 was shown to have anti-inflammatory effects in mouse models of 

acute lung injury or inflammation via the reduction of pro-inflammatory 

mediators (Di Paola etal, 2010;Galuppo et al, 2010). However, little is known 

regarding the effects of PPAR5 activation on chondrocyte metabolism, although 

activation of this receptor is known to increase the expression of IL-1Ra in rat 

synovial fibroblasts (Moulin et al, 2005), suggesting it may have anti-arthritic 

properties.

6.1.7 PPARy Receptor Agonists: Rosiglitazone and Troglitazone
Rosiglitazone and troglitazone are anti-diabetic drugs belonging to the drug 

class thiazolidinediones, and are both agonists at PPARy (Murphy and Holder 

2000). In rabbit articular chondrocytes rosiglitazone reduced IL-1 [3 stimulated 

expression of MMP-1, -3 and -13 (Francois et al, 2004). Furthermore, 

rosiglitazone was shown to inhibit IL-1 (3 induced MMP-1 expression in human 

synovial fibroblasts (Fahmi et al, 2002). Troglitazone inhibited the production of 

TNFa, IL-6, IL-8 and MMP-3 in RA fibroblast-like synovial cells (Yamasaki etal,

2002). Together these findings suggest that activation of PPARy may be of 

therapeutic value in the treatment of OA, by reducing both inflammatory and 

destructive pathways.

6.1.8 WIN-55
WIN-55 is known to activate both CB1 and CB2 receptors, with Kis of 1.89-123 

nM and 0.28-16.2 nM respectively (Pertwee et al, 2010). In addition, WIN-55 

has been shown to bind to and increase the transcriptional activity of both 

PPARa and y (O'Sullivan and Kendall 2010; Sun et al, 2006). Currently there is 

no reported evidence that WIN-55 activates PPAR5, however WIN-55 

significantly induced the mRNA expression of PPAR5 in human OA 

chondrocytes (Chapter 4, section 5.5.3.2). WIN-55 is also known to desensitize 

TRPV1, suggesting that WIN-55 binds to TRPV1 and attenuates its biological 

actions (Jeske et al, 2006). Finally, WIN-55 is thought to display no activity at 

GPR55 as would be shown by the formation of (3-arrestin-GPR55 complex and 

ERK1/ERK2 phosphorylation (Kapur et al, 2009) and the effects of WIN-55 at 

GPR18 have yet to be determined. Although WIN-55 is known to activate 

certain cannabinoid receptors, it has been suggested that WIN-55 may 

mediated its effects via a non-cannabinoid receptor mechanism or a yet 

unidentified receptor (Selvi etal, 2008; Curran etal, 2005; Tauber etal, 2012).
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6.2 Aims and Objectives

Aim: To determine the receptors responsible for the inhibition of IL-1 (3

mediated MMP production and IL-1 (3 signalling, a potential means by which

cannabinoids may exert chondroprotective effects

Objectives:

• To investigate the effects of cannabinoid receptor agonists on IL-1 (3 

induced mRNA expression of MMP-3 and -13 in human OA 

chondrocytes.

• To investigate the effects of a combination of cannabinoid receptor 

agonists on IL-1 [3 induced mRNA expression of MMP-3 and -13 in 

human OA chondrocytes.

• To determine the effects of cannabinoid receptor agonists used in 

combination on IL-1 (3 induced phosphorylation of c-Jun, p38, 

ERK1/ERK2 and IkB in human OA chondrocytes.

6.3 Experimental Design

The effects of specific cannabinoid receptor agonists on IL-1 (3 induced MMP-3 

and MMP-13 mRNA expression and signalling pathways in chondrocytes 

obtained from human OA cartilage were investigated. Cartilage tissue was 

graded macroscopically 0-4 using the Outerbridge classification (Cameron et al,

2003). Chondrocytes were isolated from grade 2 or 3 cartilage tissue as 

representative of low degenerate and intermediate degenerate cartilage tissue. 

Cartilage from grade 4, severe degenerate tissue, was not used in the study, as 

the cell yield obtained was not sufficient. For investigation of mRNA expression, 

chondrocytes were expanded in monolayer to passage 2 and stimulated with 10 

ng/ml IL-113 to induce the expression of MMP-3 and -13. Chondrocytes were 

treated with cannabinoid receptor agonists individually or in combination, both 

with and without 10 ng/ml IL-1 (3 stimulation. Real-time PCR was used to 

investigate the effects of cannabinoid receptor agonists on MMP-3 and -13 

mRNA expression. For signalling pathway investigation chondrocytes were 

expanded in monolayer to passage 2 and pre-treated with cannabinoid receptor
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agonists in different combinations with and without 10-ng/ml IL-13 stimulation. 

Cell based ELISAs were used to measure the phosphorylation of cell signalling 

molecules p38, ERK1/ERK2, IkB and c-Jun.

6.4 Methodology

6.4.1 Human OA Cartilage Samples
Primary Human chondrocytes were obtained from articular cartilage removed 

from patients with symptomatic OA at the time of total knee replacement as 

described in section 2.4.1.

6.4.2 Macroscopic Grading of Cartilage Tissue
Cartilage tissue was macroscopically graded 0-4 using the Outerbridge 

Classification at the time of surgery prior to isolation of chondrocytes (Cameron 

etal, 2003) as described in section 2.4.2

6.4.3 Isolation of human chondrocytes
Human chondrocytes were isolated from cartilage as described in section 2.4.3.

6.4.4 OA Patient Samples
Chondrocyte cultures were derived from OA patient samples of macroscopic 

grades 2 or 3 (Table 6.1). Full patient sample information can be found in 

Appendix 1.

Analysis Performed Monolayer Cultures
Macroscopic grade 2 or 3

MMP-3 and -13 mRNA expression HC5(1)*, HC21(5), HC23(4)*

Cell based ELISA HC21 (4)

MTS Cell Viability Assay HC21(4), HC23(4)
Table 6.1 The patient samples used for each analysis performed on 
chondrocytes obtained from macroscopic grade 2 and 3 OA cartilage. "Indicates 
samples used for agonist combination treatments. Full patient details can be found in 
Appendix 1
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6.4.5 Cannabinoid Receptor Agonist Concentrations
The concentration of cannabinoid receptor agonists tested can be seen in Table 

(6.2). Agonists were used at concentrations that would retain receptor selectivity 

and did not affect chondrocyte viability.

6.4.6 Cannabinoid Receptor Agonist Treatments
Cells were cultured in monolayer until 80% confluent before passaging as 

described in section 2.4.5. Chondrocytes were seeded in 6 well culture plates at 

a cell density of 5x105 cells per well as described in section 2.4.6. Cells were 

treated with a range of receptor agonists both alone and in combination with 10 

ng/ml IL-1 p for 48 hours (Table 6.2).

6.4.7 Cannabinoid Receptor Agonist Combination Treatments
Cells were cultured in monolayer until 80% confluent before passaging as 

described in section 2.3.5. Chondrocytes were seeded in 6 well culture plates at 

a cell density of 5x105 cells per well as described in section 2.4.6. Cells were 

treated with agonists for CB1 and CB2 followed by the addition of PPARa, 5 or 

y both with and without 10ng/ml IL-1 (3 stimulation for 48 hours (Table 6.2). Cells 

were also treated with CB1, CB2, PPARa, 5 or y agonists in combinations both 

with and without of 10 ng/ml IL-1 p for 48 hours (Table 6.2).

6.4.8 Cytotoxicity Studies MTS Assay
The effects of agonist treatments both alone and in combination on chondrocyte 

cell viability was performed as outlined section 2.4.12.

6.4.9 WIN-55 cell treatment
Since WIN-55 was shown to inhibit IL-1 p induced MMP-3 and -13 mRNA 

expression (Chapter 2), WIN-55 was used as a positive control for MMP-3 and - 

13 mRNA expression. Cells were cultured in monolayer until 80% confluent 

before passaging as described in section 2.4.5. Chondrocytes were seeded in 6 

well culture plates at a cell density of 5x105 cells per well as described in 

section 2.3.6. Cells were treated as outlined in section 2.4.7.

6.4.10 RNA Extraction from Cells Cultured in Monolayer
Isolation of RNA was performed as described in section 2.4.13.
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6.4.11 Reverse Transcription and Real-time PCR
RNA was reversed transcribed to cDNA as described in section 2.4.16. Taqman 

PCR was performed on cDNA as described in section 2.4.18. using pre

designed Taqman Gene Expression Assays (Table 2.4, Life Technologies).

6.4.12 Real-time PCR Analysis
Real-time PCR data was analysed using the 2 'MCT (Livak and Schmittgen 2001) 

as described in section 2.4.2

6.4.13 Cell Based ELISA Agonist Treatments
Cells were cultured in monolayer until 80% confluent before passaging as 

described in section 2.4.5. Chondrocytes were seeded in a 96 well culture plate 

at a cell density of 1x105 per well as outlined in section 4.3.9. Since a pre

treatment of WIN-55 was required for the inhibition of IL-1 p induced 

phosphorylation of ERK1/ERK2, c-Jun, and IkB (Chapter 4), cells were pre

treated for 48 hours with different combinations of receptor agonists alone or in 

the presence of 10 ng/ml IL-1 p stimulation for the last 30 minutes of agonist 

treatment (Table 6.2).

6.4.14 Cell Based ELISA
Cell based ELISA’s were performed at described in section 4.3.10.

6.4.15 Statistical Analysis
Statistical analysis was performed as described in section 2.5.
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6.5 Results

6.5.1 Cell Viability MTS assay
No effects on cell viability following treatments with ACEA at a concentration of 

0.002 to 20 |jM, HU308 at a concentration of 0.005 to 50 pM, LPI at a 

concentration of 0.1 to 10 pM, NAGIy at a concentration of 5 to 30 pM, OLDA at 

a concentration of 0.03 to 30 pM, Wy14643 at a concentration of 0.5 to 250 pM, 

GW0742 at a concentration 0.001 to 10 pM, troglitazone at a concentration of 

0.5 to 10 pM and rosiglitazone at a concentration of 10 to 100 pM for 48 hours 

was observed (Data not shown).

Combination treatments of 20 pM ACEA and 10 pM HU308 together or with the 

addition of 100 pM Wy14643, 10 |jM troglitazone or 100 pM rosiglitazone for 48 

hours had no effect on cell viability (Figure 6.1). All the agonists used in 

combination at a lower concentration of 2 pM ACEA, 1 pM HU308, 10 pM 

Wy14643, 1 pM troglitazone and 10 pM rosiglitazone for 48 hours had no effect 

on cell viability (Figure 6.1). A combination of all the agonists at the higher 

concentration of 20 pM ACEA, 10 pM HU308, 100 pM Wy14643, 10 pM 

troglitazone and 100 pM rosiglitazone for 48 hours reduced cell viability to 71 % 

compared to untreated control cells (p<0.05) (Figure 6.1). All concentrations of 

agonists were tested in combination with IL-1 (3 and no significant effect on cell 

viability was observed for individual agonists, however combination of all the 

agonists at a higher concentration of 20 pM ACEA, 10 pM HU308, 100 pM 

Wy14643, 10 pM troglitazone and 100 pM rosiglitazone in combination with IL- 

1(3 for 48 hours reduced cell viability to 80 % compared to untreated control 

cells (p<0.05) (Data not shown).
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6.5.2 Individual Cannabinoid Receptor Agonists

6.5.2.1 Effects o f IL-1 p on MMP-3 and -13 mRNA expression

Following IL-1 (3 stimulation for 48 hours there was a significant increase in 

MMP-3 and -13 expression compared to DMSO or ethanol control (p<0.001) 

(Figure 6.2-6.10).

6.5.2.2 GPCR Agonist Effects on IL -ip  induced MMP-3 and -13 mRNA 

Expression

IL-1 (3 induced MMP-3 and -13 mRNA expression was not significantly affected 

by any dose of CB1 agonist (ACEA) (Figure 6.2), CB2 agonist (HU308) (Figure 

5.3), GPR55 agonist (LPI) (Figure 6.4) or GPR18 agonist (NAGIy) (Figure 6.5) 

(p<0.05) compared to IL-1 (3 stimulation alone (p>0.05) for 48 hours. Treatment 

of 10 pM CB2 (HU308) agonist in combination with IL-1 p has a slight 

stimulatory effect on MMP-13 expression compared to IL-1 p treatment alone, 

however this was not significant (Figure 6.3).

6.5.2.3 TRPV1 Agonist Effects on IL-1p induced MMP-3 and -13 mRNA 

Expression

IL-1 p induced MMP-3 and -13 mRNA expression was not significantly affected 

by any dose of TRPV1 agonist (OLDA) compared to IL-1 (3 stimulation alone 

(p>0.05) (Figure 6.6). However, OLDA treatment at a concentration of 0.3 and 3 

pM in combination with IL-1 (3 further increased MMP-13 mRNA expression 

compared to IL-1 (3 (p<0.05 and p<0.001) (Figure 6.6).

6.5.2.4 PPAR Agonist Effects on IL -ip  induced MMP-3 and -13 mRNA 

Expression

IL-1 p induced MMP-3 and -13 mRNA expression was not significantly 

decreased by any dose of PPARa agonist (Wy14643) (Figure 6.7), PPAR5 

agonist (GW0742) (Figure 6.8) or PPARy agonists (troglitazone or rosiglitazone 

(Figure 6.9 & 6.10) compared to IL-1 p stimulation alone (p>0.05). However, 

PPARa agonist (Wy14643) treatment at a concentration of 100 pM in 

combination with IL-1 p further increased MMP-13 mRNA expression compared 

to IL-1 p stimulation alone (p<0.01) (Figure 6.7).
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Figure 6.2 The effects of CB1 receptor agonist ACEA on MMP-3 and MMP-13 
mRNA expression in human OA chondrocytes cultured in monolayer. IL-1 (3 
stimulation both alone and in combination with 0.2, 2 and 20 pM the CB1 agonist 
(ACEA) induced MMP-3 and -13 mRNA expression. 0.2, 2 and 20 pM CB1 agonist 
(ACEA) treatment alone had no effect on MMP-3 or -13 mRNA expression. Data 
represents mean fold change of mRNA expression normalised to internal reference 
gene and untreated control ± SEM. **p<0.01 and ***p<0.001 compared to solvent 
control. n=3 obtained from one macroscopic grade 3 patient sample (HC21(5)).
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Figure 6.3 The effects of CB2 receptor agonist HU308 on MMP-3 and MMP- 
13 mRNA expression in human OA chondrocytes cultured in monolayer. IL-
ip  stimulation both alone and in combination with 0.1, 1 and 10 pM the CB1 
agonist (HU308) induced MMP-3 and -13 mRNA expression. 0.1, 1 and 10 pM 
CB2 agonist (HU308) treatment alone had no effect on MMP-3 or -13 mRNA 
expression. Data represents mean fold change of mRNA expression normalised 
to internal reference gene and untreated control ± SEM. **p<0.01 and ***p<0.001 
compared to solvent control. n=3 obtained from one macroscopic grade 3 patient 
sample (HC21(5)).
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Figure 6.4 The effects of GPR55 receptor agonist LPI on MMP-3 and MMP-13 
mRNA expression in human OA chondrocytes cultured in monolayer. IL-1 (3 
stimulation both alone and in combination with 0.1, 1 and 10 pM with GPR55 
agonist (LPI) induced MMP-3 and -13 mRNA expression. 0.1, 1 and 10 pM 
GPR55 agonist (LPI) treatment alone had no effect on MMP-3 or -13 mRNA 
expression. Data represents mean fold change of mRNA expression normalised to 
internal reference gene and untreated control ± SEM. **p<0.01 and ***p<0.001 
compared to DMSO control. n=3 obtained from one macroscopic grade 3 patient 
sample (HC21(5)).
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Figure 6.5 The effects of GPR18 receptor agonist NAGIy on MMP-3 and 
MMP-13 mRNA expression in human OA chondrocytes cultured in 
monolayer. IL-1 (3 stimulation both alone and in combination with 0.3, 3 and 30 
pM GPR18 agonist (NAGIy) induced MMP-3 and -13 mRNA expression. 0.3, 3 
and 30 pM GPR18 (NAGIy) treatment alone had not effect on MMP-3 or -13 
mRNA expression. Data represents mean fold change of mRNA expression 
normalised to internal reference gene and untreated control ± SEM. **p<0.01 
and ***p<0.001 compared to DMSO control. n=3 obtained from one 
macroscopic grade 3 patient sample (HC21(5)).
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Figure 6.6 The effects of TRPV1 receptor agonist OLDA on MMP-3 and MMP- 
13 mRNA expression in human OA chondrocytes cultured in monolayer. IL-1f3 
stimulation both alone and in combination with 0.03, 0.3 and 3 pM OLDA increased 
MMP-3 and -13 mRNA expression. TRPV1 agonist (OLDA) treatment at a 
concentration of 0.3 and 3 pM in combination with IL-1 (3 increased MMP-13 
expression compared to IL-1 (3 treatment alone. TRPV1 agonist (OLDA) treatment at 
a concentration of 0.03, 0.3 and 3 pM alone had no effect on MMP-3 or -13 mRNA 
expression. Data represents mean fold change of mRNA expression normalised to 
internal reference gene and untreated control ± SEM. ***p<0.001 compared to 
DMSO control and +p<0.05, ++0.01 compared to IL-1 (3 treatment alone. n=3 
obtained from one macroscopic grade 3 patient sample (HC21(5)).
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Figure 6.7 The effects of PPARa receptor agonist Wy14643 on MMP-3 and 
MMP-13 mRNA expression in human OA chondrocytes cultured in 
monolayer. IL-1 (3 stimulation both alone and in combination with 1,10 and 100 pM 
PPARa agonist (Wy14643) induced MMP-3 and -13 mRNA expression. PPARa 
agonist (Wy14643) treatment at a concentration of 100 pM in combination with IL- 
1(3 significantly induced MMP-13 expression compared to IL-1 (3 treatment alone. 
PPARa (Wy14643) treatment at a concentration of 1, 10, and 100 pM alone had 
not effect on MMP-3 or -13 mRNA expression. Data represents mean fold change 
of mRNA expression normalised to internal reference gene and untreated control ± 
SEM. **p<0.01, ***p<0.001 compared to DMSO control and ++0.01 compared to 
IL-1 [3 treatment alone. n=3 obtained from one macroscopic grade 3 patient sample 
(HC21 (5)).
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Figure 6.8 The effects of PPAR5 receptor agonist GW0742 on MMP-3 and 
MMP-13 mRNA expression in human OA chondrocytes cultured in 
monolayer. IL-1 p stimulation both alone and in combination with 0.02, 0.2 and 2 
pM PPAR5 agonist (GW0742) induced MMP-3 and -13 mRNA expression. PPAR5 
agonist (GW0742) treatment at a concentration of 0.02, 0.2, and 2 pM alone had 
no effect on MMP-3 or -13 mRNA expression. Data represents mean fold change 
of mRNA expression normalised to internal reference gene and untreated control ± 
SEM. *p<0.05, **p<0.01 and ***p<0.001 compared to DMSO control. n=3 obtained 
from one macroscopic grade 3 patient sample (HC21(5)).
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Figure 6.9 The effects of PPARy receptor agonist troglitazone on MMP-3 and 
MMP-13 mRNA expression in human OA chondrocytes cultured in 
monolayer. IL-1 (3 stimulation both alone and in combination with 0.1, 1 and 10 
pM PPARy agonist (troglitazone) induced MMP-3 and -13 mRNA expression. 
PPARy agonist (troglitazone) treatment at a concentration of 0.1, 1 and 10 pM 
alone had no effect on MMP-3 or -13 mRNA expression. Data represents mean 
fold change of mRNA expression normalised to internal reference gene and 
untreated control ± SEM. ***p<0.001 compared to DMSO control. n=3 obtained 
from one macroscopic grade 3 patient sample (HC21(5)).
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Figure 6.10 The concentration effects of PPARy receptor agonist 
rosiglitazone on MMP-3 and MMP-13 mRNA expression in human OA 
chondrocytes cultured in monolayer. IL-1 (3 stimulation both alone and in 
combination with 1 and 10 pM PPARy agonist (rosiglitazone) induced MMP-3 and - 
13 mRNA expression. PPARy agonist (rosiglitazone) treatment at a concentration 
of 1 and 10 pM alone had no effect on MMP-3 or -13 mRNA expression. Data 
represents mean fold change of mRNA expression normalised to internal reference 
gene and untreated control ± SEM. ***p<0.001 compared to DMSO control. n=3 
obtained from one macroscopic grade 3 patient sample (HC21(5)).
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6.5.3 Cannabinoid Receptor Agonists Combination Treatments.
Cannabinoid receptor agonists for CB1 (ACEA), CB2 (HU308), GPR55 (LPI), 

GPR18 (NAGIy), TRPV1 (OLDA), PPARa (Wy14643), PPAR5 (GW0742) and 

PPARy (troglitazone or rosiglitazone) used individually failed to counteract IL-1 (3 

induction of MMP-3 and -13 mRNA expression. Thus, a combination of agonists 

for CB1, CB2 and PPARa, 5 and y were investigated including ACEA, HU308, 

Wy14643, GW0742, troglitazone and rosiglitazone (Table 6.2).

6.5.3.1 Effects o f IL-1 p on MMP-3 and -13 mRNA expression

Following IL-1 (3 stimulation for 48 hours there was a significant increase in 

MMP-3 and -13 expression compared to DMSO and ethanol control (p<0.001) 

(Figure 6.11-6.15).

6.5.3.2 Effects o f Receptor Agonists Combination Treatments

CB1 (ACEA) and CB2 (HU308) agonist treatment in combination with either 

PPARa agonist (Wy14643) PPAR5 agonist (GW0742) or PPARy agonists 

(troglitazone or rosiglitazone) with IL-1 (3 for 48 hours failed to counteract the 

effects of IL-1 (3 on both MMP-3 and -13 induction (Figure 6.11-6.15). CB1 

(ACEA), CB2 (HU308) and PPARy (troglitazone or rosiglitazone) agonist 

treatments in combination with IL-1 (3 for 48 hours induced a non-significant 

reduction in MMP-13 mRNA expression compared to IL-1 (3 stimulation alone 

(Figure 6.14 and 6.15). CB1 (ACEA) and CB2 (HU308) agonist treatment in 

combination with either PPARa agonist (Wy14643), PPAR5 agonist (GW0742) 

or PPARy agonists (troglitazone or rosiglitazone) for 48 hours had no significant 

effect on MMP-3 or -13 mRNA expression compared to DMSO control (Figure 

6.11-6.15).
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Figure 6.11 The effects of CB1 and CB2 receptor agonists ACEA and HU308 
on MMP-3 and -13 mRNA expression in OA chondrocytes cultured in 
monolayer. IL-1 (3 stimulation both alone and in combination with CB1 (ACEA) and 
CB2 (HU308) agonists significantly induced MMP-3 and -13 mRNA expression. 
CB1 (ACEA) and CB2 (HU308) agonist treatment in combination had no significant 
effect on MMP-3 or -13 mRNA expression. Data represents mean fold change of 
mRNA expression normalised to internal reference gene and untreated control ± 
SEM. ***p<0.001 compared to DMSO control. n=6 obtained from two patient 
samples.
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Figure 6.12 The effects of CB1, CB2 and PPARa receptor agonists ACEA, 
HU308 and Wy14643 on MMP-3 and -13 mRNA expression in OA chondrocytes 
cultured in monolayer. IL-1 (3 stimulation both alone and in combination with CB1 
(ACEA), CB2 (HU308) and PPARa (Wy14643) agonists significantly induced MMP-3 
and -13 mRNA expression. CB1 (ACEA), CB2 (HU308) and PPARa (Wy14643) 
treatment in combination had no significant effect on MMP-3 or -13 mRNA 
expression. Data represents mean fold change of mRNA expression normalised to 
internal reference gene and untreated control ± SEM. ***p<0.001 compared to 
DMSO control. n=6 obtained from two patient samples.
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Figure 6.13 The effects of CB1, CB2 and PPAR5 receptor agonists ACEA, 
HU308 and GW0742 on MMP-3 and -13 mRNA expression in OA chondrocytes 
cultured in monolayer. IL-1 (3 stimulation both alone and in combination with CB1 
(ACEA), CB2 (HU308) and PPAR5 (GW0742) agonists significantly induced the 
expression of MMP-3 and -13 mRNA expression compared to the DMSO and 
ethanol control. CB1 (ACEA), CB2 (HU308) and PPAR5 (GW0742) agonists 
treatments in combination had no significant effect on MMP-3 or -13 mRNA 
expression. Data represents mean fold change of mRNA expression normalised to 
internal reference gene and untreated control ± SEM. ***p<0.001 compared to 
DMSO and ethanol control. n=6 obtained from two patient samples.
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Figure 6.14 The effects of CB1, CB2 and PPARy receptor agonists ACEA, 
HU308 and troglitazone on MMP-3 and -13 mRNA expression in OA 
chondrocytes cultured in monolayer. IL-1 (3 stimulation both alone and in 
combination with CB1 (ACEA), CB2 (HU308) and PPARy (troglitazone) agonists 
significantly induced the expression of MMP-3 and -13 mRNA expression compared 
to the DMSO and ethanol control. CB1 (ACEA), CB2 (HU308) and PPARy 
(troglitazone) treatment in combination had no significant effect on MMP-3 or -13 
mRNA expression. Data represents mean fold change of mRNA expression 
normalised to internal reference gene and untreated control ± SEM.***p<0.001 
compared to DMSO and ethanol control. n=6 obtained from two patient samples.
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Figure 6.15 The effects of CB1, CB2 and PPARy receptor agonists ACEA, 
HU308 and rosiglitazone on MMP-3 and -13 mRNA expression in OA 
chondrocytes cultured in monolayer. IL-1 p stimulation both alone and in 
combination with CB1 (ACEA), CB2 (HU308) and PPARy (rosiglitazone) agonists 
significantly induced the expression of MMP-3 and -13 mRNA expression 
compared to the DMSO and ethanol control. CB1 (ACEA), CB2 (HU308) and 
PPARy (rosiglitazone) treatment in combination had no significant effect on 
MMP-3 or -13 mRNA expression. Data represents mean fold change of mRNA 
expression normalised to internal reference gene and untreated control ± SEM. 
***p<0.001 compared to DMSO and ethanol control. n=6 obtained from two 
patient samples.



6.5.3.3 CB1 and CB2 Receptor Agonists and WIN-55 Combination 
Treatments

IL-1 (3 stimulation for 48 hours significantly induced the mRNA expression of 

MMP-3 and -13 (p<0.001) (Figure 6.16). CB1 (ACEA), CB2 (HU308) and WIN- 

55 agonist treatment in combination with IL-1 (3 for 48 hours significantly 

reduced MMP-3 and -13 mRNA expression compared to IL-1 (3 stimulation alone 

and DMSO control (p<0.001) (Figure 6.16). CB1 (ACEA), CB2 (HU308) and 

WIN-55 agonist treatments alone for 48 hours significantly reduced MMP-3 and 

-13 mRNA expression below basal levels compared to DMSO control (p<0.001) 

(Figure 6.16). WIN-55 treatment in combination with IL-1 (3 for 48 hours 

significantly reduced both MMP-3 and -13 mRNA expression compared to IL-1 p 

stimulation alone and DMSO control (p<0.001) (Figure 6.16). WIN-55 treatment 

alone for 48 hours significantly reduced the MMP-3 mRNA expression (p<0.001) 

compared to DMSO control and abolished MMP-13 mRNA expression (Figure 

6.16).
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Figure 6.16 The effects of CB1, CB2 agonists ACEA, HU308 and WIN-55 on 
MMP-3 and -13 mRNA expression in OA chondrocytes cultured in monolayer.
IL-1 (3 stimulation induced MMP-3 and -13 mRNA expression. CB1 (ACEA), CB2 
(HU308) and WIN-55 treatment in combination both alone and in the presence of 
IL-1 (3 reduced of MMP-3 and -13 mRNA expression below basal levels. WIN-55 
both alone and in combination with IL-1 (3 reduced or abolished MMP-3 and -13 
mRNA expression. Data represents mean fold change of mRNA expression 
normalised to internal reference gene and untreated control ± SEM. ***p<0.001 
compared to DMSO control and +++p<0.001 compared to IL-1 p stimulation. n=6 
obtained from two patient samples.
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6.5.3.4 CB1, CB2 and PPARa, 5 and y Receptor Agonist Combination 

Treatments.

IL-113 stimulation for 48 hours significantly induced the mRNA expression of 

MMP-3 and -13 (p<0.001) (Figure 6.18). All agonists combined at a lower 

concentration of 2 pM, 1 pM, 10 pM, 0.2 pM, 1 pM and 10 pM for CB1 (ACEA), 

CB2 (HU308), PPARa (Wy14643), PPAR5 (GW0742) and PPARy (troglitazone 

and rosiglitazone) respectively in combination with IL-1 (3 for 48 hours did not 

counteract the effects of IL-1 (3 on induction of MMP-3 and -13 mRNA 

expression (p>0.05) (Figure 6.17). All agonists at a higher concentration of 20 

pM, 10 pM, 100 pM, 2 pM, 10 pM and 100 pM for CB1 (ACEA), CB2 (HU308), 

PPARa (Wy14643), PPAR5 (GW0742) and PPARy (troglitazone and 

rosiglitazone) respectively in combination with IL-1 p for 48 hours significantly 

reduced the expression of both MMP-3 (p<0.01) and -13 (p<0.001) mRNA 

expression compared to IL-1 p stimulation alone (Figure 6.18). Following 

treatment with all agonists at lower concentrations for 48 hours there was no 

significant effect on MMP-3 or -13 mRNA expression, however treatment with 

agonists at higher concentrations for 48 hours resulted in a significant decrease 

in both MMP-3 and MMP-13 mRNA expression compared to DMSO control 

(p<0.001) (Figure 6.18).
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Figure 6.17 The effects of CB1, CB2 and PPARa, 5 and y agonists ACEA, 
HU308, Wy14643, GW0742, Troglitazone and Rosiglitazone on MMP-3 and -13 
mRNA expression in OA chondrocytes cultured in monolayer. IL-1 [3 stimulation 
induced MMP-3 and -13 mRNA expression. All agonists at a lower concentration of 2 
pM, 1 pM, 10 pM, 0.2 pM, 1 pM and 10 pM for CB1 (ACEA), CB2 (HU308), PPARa 
(Wy14643), PPAR5 (GW0742), PPARy (troglitazone and rosiglitazone) respectively 
both alone and in combination with IL-1 (3 had no effect on MMP-3 or -13 mRNA 
expression compared to DMSO control or IL-1 (3 stimulation alone. All agonists at a 
higher concentration of 20 pM, 10 pM, 100 pM, 2 pM, 10 pM and 100 pM for CB1 
(ACEA), CB2 (HU308), PPARa (Wy14643), PPAR6 (GW0742), PPARy (troglitazone 
and rosiglitazone) respectively both alone an in combination with IL-1 p reduced the 
expression of both MMP-3 and -13 mRNA expression compared to DMSO control 
and IL-1 p stimulation alone. Data represents mean fold change of mRNA expression 
normalised to internal reference gene and untreated control ± SEM.***p<0.001 
compared to DMSO control and ++p<0.01, +++p<0.001 compared to IL-1 p 
stimulation. n=6 obtained from two patient samples.
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6.5.4 The Effects of Cannabinoid Receptor Agonists on ERK1/ERK2
Phosphorylation

6.5.4.1 The Effect o f IL -ip  on ERK1/ERK2 Phosphorylation

IL-13 stimulation for 30 minutes significantly induced ERK1/ERK2 

phosphorylation compared to DMSO control (p<0.001) (Figure 6.18A-C, 6.19A- 

C).

6.5.4.2 The Effects o f CB1, CB2 and PPAR Agonists on ERK1/ERK2 

Phosphorylation

CB1 agonist (ACEA) and CB2 agonist (HU308) pre-treatment for 48 hours with 

the addition of PPARa (Wy14643), PPAR5 (GW0742), PPARy (troglitazone) or 

PPARy (rosiglitazone) agonists in combination with IL-1 (3 for the last 30 minutes 

significantly reduced ERK1/ERK2 phosphorylation compared to IL-1 p 

stimulation alone for 30 minutes (p<0.05) and DMSO control (p<0.05) (Figure 

6.18A). CB1 (ACEA) and CB2 (HU308) agonist treatment in combination for 48 

hours reduced ERK1/ERK2 phosphorylation compared to DMSO control, 

however this was not significant (Figure 6.18A). CB1 (ACEA) and CB2 (HU308) 

agonist treatment in combination for 48 hours with the addition of PPARa 

(Wy14643), PPAR6 (GW0742), PPARy (troglitazone) or PPARy (rosiglitazone) 

agonists reduced ERK1/ERK2 phosphorylation compared to DMSO control 

(p<0.05) (Figure 6.18A-C, 6.19A-C). Pre-treatment for 48 hours with all agonists 

combined at a lower concentration in combination with IL-1 p for the last 30 

minutes induced a significant increase in ERK1/ERK2 phosphorylation 

compared to DMSO control (p<0.05) (Figure 6.19C). Pre-treatment for 48 hours 

with all agonists at a higher concentration in combination with IL-1 p significantly 

reduced the phosphorylation of ERK1/ERK2 compared to IL-1 p stimulation 

alone and DMSO control (p<0.05) (Figure 6.19C). Following treatment with all 

agonists for 48 hours at a lower concentration there was no significant effect on 

ERK1/ERK2 phosphorylation compared to DMSO control (Figure 6.19C). 

Treatment with all agonists for 48 hours at a higher concentration resulted in a 

significant decrease in ERK1/ERK2 phosphorylation compared to DMSO control 

(p<0.05) (Figure 6.19C).
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CB1 20 îM (ACEA)
CB2 10 nM (HU308) 
PPARa 100nM (Wyl4643) 
PPARS 2jxM (GW0742)

Treatment

Figure 6.18 The effects of cannabinoid receptor agonists (A) CB1 (ACEA) and CB2 
(HU308), (B) CB1 (ACEA) CB2 (HU308) and PPARa (Wy14643), (C) CB1 (ACEA) CB2 
(HU308) and PPAR5 (GW0742) on ERK1/ERK2 phosphorylation. IL-1 (3 stimulation for 
30 minutes induced the phosphorylation of ERK1/ERK2. CB1 (ACEA) and CB2 (HU308) 
pre-treatment for 48 hours with the addition of PPARa (Wy14643) or PPAR5 (GW0742) 
in combination with IL-1 (3 for the last 30 minutes reduced ERK1/ERK2 phosphorylation 
compared to basal and IL-13 levels. CB1 (ACEA) and CB2 (HU308) treatment for 48 
hours with the addition of PPARa (Wy14643) or PPAR5 (GW0742) reduced the basal 
levels of ERK1/ERK2 phosphorylation. Data represents mean fold change of 
phosphorylation normalised to internal total unphosphorylated protein and untreated 
control ± SEM. **p<0.01 ***p<0.001 compared to DMSO control, +++p<0.001 compared 
to IL-1 p stimulation for 30 minutes.
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Figure 6.19 The effects of cannabinoid receptor agonists (A) CB1 (ACEA) and CB2 
(HU308), (B) CB1 (ACEA) CB2 (HU308) and PPARy (troglitazone), (C) CB1 (ACEA) 
CB2 (HU308) and PPARy (rosiglitazone) on ERK1/ERK2 phosphorylation. IL-1 (3 
stimulation for 30 minutes induced the phosphorylation of ERK1/ERK2. CB1 (ACEA) and 
CB2 (HU308) pre-treatment for 48 hours with the addition of PPARy (troglitazone or 
rosiglitazone) in combination on with IL-1 (3 for the last 30 minutes reduced ERK1/ERK2 
phosphorylation compared to basal and IL-1 (3 levels. CB1 (ACEA) and CB2 (HU308) 
treatment for 48 hours with the addition of PPARy (troglitazone or rosiglitazone) reduced 
the basal levels of ERK1/ERK2 phosphorylation. All agonists pre-treatment at a lower 
concentration in combination with IL-1 [3 stimulation for the last 30 minutes had no effect 
on basal ERK1/ERK2 phosphorylation. All agonist pre-treatment at a higher concentration 
in combination with IL-1 (3 stimulation for the last 30 minutes reduced ERK1/ERK2 
compared to basal and IL-1 (3 levels. All agonists at a lower concentration had no effect on 
ERK1/ERK2 phosphorylation. All agonists at a higher concentration treatment for 48 
hours reduced ERK1/ERK2 phosphorylation below basal levels. Data represents mean 
fold change of phosphorylation normalised to internal total unphosphorylated protein and 
untreated control ± SEM. ***p<0.001 compared to DMSO control, +++p<0.001 compared 
to IL-1 (3 stimulation for 30 minutes.
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6.5.5 The Effects of Cannabinoid Receptor Agonists on c-Jun
Phosphorylation

6.5.5.1 The Effect o f IL-1p on c-Jun Phosphorylation

IL-1 (3 stimulation for 30 minutes significantly induced c-Jun phosphorylation 

compared to DMSO control (p<0.001) (Figure 6.20A-D 6.21 A & B).

6.5.5.2 The Effects o f CB1, CB2 and PPAR Agonists on c-Jun 

Phosphorylation

CB1 (ACEA) and CB2 (HU308) agonist pre-treatment for 48 hours in 

combination with IL-1 (3 for the last 30 minutes significantly reduced c-Jun 

phosphorylation compared to IL-1 p stimulation alone (p<0.01), however 

phosphorylation remained significantly higher than DMSO control (p<0.01) 

(Figure 6.20 A). CB1 (ACEA) and CB2 (HU308) agonist treatment in 

combination for 48 hours significantly induced c-Jun phosphorylation compared 

to DMSO control (p<0.01) (Figure 6.20A). CB1 (ACEA), CB2 (HU308) and 

PPARa (Wy14643) agonist pre-treatment for 48 hours in combination with IL-1 (3 

stimulation for the last 30 minutes significantly reduced c-Jun phosphorylation 

compared to IL-1 (3 alone (p<0.001) but not DMSO control (Figure 6.20B). CB1 

(ACEA), CB2 (HU308) and PPARa (Wy14643) agonist treatment for 48 hours 

had no significant effect on c-Jun phosphorylation (Figure 6.20B). CB1 (ACEA), 

CB2 (HU308) and PPAR5 (GW0742) agonist pre-treatment for 48 hours in 

combination with IL-1 (3 stimulation for the last 30 minutes reduced c-Jun 

phosphorylation compared to IL-1 (3 alone however statistical analysis could not 

be performed as phosphorylation was only detected in two of the repeats. CB1 

(ACEA), CB2 (HU308) and PPAR5 (GW0742) agonist treatment for 48 

significantly induced c-Jun phosphorylation compared to DMSO control (Figure 

6.20C).

CB1 (ACEA), CB2 (HU308) and PPARy (troglitazone or rosiglitazone) agonist 

pre-treatment for 48 hours in combination with IL-1 p stimulation for the last 30 

minutes significantly reduced c-Jun phosphorylation compared to IL-1 (3 alone 

(p<0.01, p<0.001), but not below basal levels (Figure 6.21 A&B). CB1 (ACEA), 

CB2 (HU308) and PPARy (troglitazone or rosiglitazone) agonist treatment for 

48 hours had no significant effect on c-Jun phosphorylation compared to DMSO 

control (Figure 6.21 A&B).
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Pre-treatment for 48 hours with all agonists combined at a lower concentration 

in combination with IL-1 (3 for the last 30 minutes induced a significant increase 

in c-Jun phosphorylation compared to DMSO control (p<0.05) (Figure 6.21 C). 

Pre-treatment for 48 hours with all agonists at a higher concentration in 

combination with IL-1 (3 for the last 30 minutes significantly reduced the 

phosphorylation of c-Jun compared to IL-1 (3 stimulation alone and DMSO 

control (p<0.05) (Figure 6.21 C). Following treatment with all agonists for 48 

hours at a lower concentration there was no significant effect c-Jun 

phosphorylation compared to DMSO control (Figure 6.21 C). Treatment with all 

agonists for 48 hours at a higher concentration slightly reduced c-Jun 

phosphorylation compared to DMSO control, however statistical analysis could 

not be performed as phosphorylation was only detected in one of the repeats 

(Figure 6.21 C).
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Figure 6.20 The effects of cannabinoid receptor agonists (A) CB1 (ACEA) and CB2 
(HU308), (B) CB1 (ACEA) CB2 (HU308) and PPARa (Wy14643), (C) CB1 (ACEA) CB2 
(HU308) and PPAR6 (GW0742) on c-Jun phosphorylation. IL-1 p stimulation for 30 
minutes induced the phosphorylation of c-Jun. CB1 (ACEA) and CB2 (HU308) pre
treatment for 48 hours in combination with IL-1 p for the last 30 minutes reduced c-Jun 
phosphorylation compared to IL-1 (3 levels. CB1 (ACEA) and CB2 (HU308) treatment for 48 
hours induced c-Jun phosphorylation. CB1 (ACEA) and CB2 (HU308) agonist pre
treatment for 48 hours with the addition or PPARa (Wy14643) or PPAR5 (GW0742) 
agonists in combination with IL-1 p for the last 30 minutes reduced c-Jun phosphorylation 
compared to IL-1 p levels. CB1 (ACEA) and CB2 (HU308) agonist treatment for 48 hours 
with the addition or- PPARa (Wy14643) or PPAR5 (GW0742) agonists had no effect or 
induced c-Jun phosphorylation respectively. Data represents mean fold change of 
phosphorylation normalised to internal total unphosphorylated protein and untreated 
control ± SEM. **p<0.01, ***p<0.001 compared to DMSO control, ++p<0.01, +++p<0.001 
compared to IL-1 (3 stimulation for 30 minutes.
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Figure 6.21 The effects of cannabinoid receptor agonists (A) CB1 (ACEA) and CB2 
(HU308), (B) CB1 (ACEA) CB2 (HU308) and PPARy (troglitazone), (C) CB1 (ACEA) CB2 
(HU308) and PPARy (rosiglitazone) on c-Jun phosphorylation. IL-1 [3 stimulation for 30 
minutes induced the phosphorylation of c-Jun. CB1 (ACEA) and CB2 (HU308) pre-treatment 
for 48 hours with the addition of PPARy (troglitazone or rosiglitazone) in combination on with 
IL-1 p for the last 30 minutes reduced c-Jun phosphorylation compared to IL-1 (3 levels. CB1 
(ACEA) and CB2 (HU308) treatment for 48 hours with the addition of PPARy (troglitazone or 
rosiglitazone) had no effect on basal c-Jun. All agonists pre-treatment at a lower 
concentration in combination with IL-1 (3 stimulation for the last 30 minutes induced c-Jun 
phosphorylation. All agonists pre-treatment at a higher concentration in combination with IL- 
1 [3 stimulation for the last 30 minutes abolished c-Jun phosphorylation. All agonists at a lower 
concentration had no effect on basal c-Jun phosphorylation. All agonists at a higher 
concentration treatment for 48 hours reduced c-Jun phosphorylation below basal levels. Data 
represents mean fold change of phosphorylation normalised to internal total 
unphosphorylated protein and untreated control ± SEM. *p<0.05, ***p<0.001 compared to 
DMSO control, ++p<0.01, +++p<0.001 compared to IL-1 (3 stimulation for 30 minutes.
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6.5.6 The Effects of Cannabinoid Receptor Agonists on p38
Phosphorylation

6.5.6.1 The Effect o f IL -ip  on p38 Phosphorylation

IL-1 p stimulation for 30 minutes significantly induced p38 phosphorylation 

compared to DMSO control (p<0.01) (Figure 6.22 A-D 6.23 A & B).

6.5.6.2 The Effects o f CB1, CB2 and PPAR Agonists on p38 

Phosphorylation

CB1 (ACEA) and CB2 (HU308) agonist pre-treatment for 48 hours in 

combination with IL-1 (3 for the last 30 minutes significantly reduced p38 

phosphorylation compared to IL-1 p stimulation alone (p<0.01) (Figure 6.22A). 

p38 phosphorylation remained at basal levels, following CB1 (ACEA) and CB2 

(HU308) agonist treatment both alone for 48 hours and in combination with IL- 

1(3 for the last 30 minutes (Figure 6.22A). CB1 (ACEA), CB2 (HU308) and 

PPARa (Wy14643) agonist pre-treatment for 48 hours in combination with IL-1 (3 

stimulation for the last 30 minutes reduced p38 phosphorylation compared to IL- 

ip  alone and DMSO alone, however p38 phosphorylation was only detected in 

one of the repeats, therefore statistical analysis could not be performed (Figure 

6.22B). CB1 (ACEA), CB2 (HU308) and PPARa (Wy14643) agonist treatment 

for 48 hours had no significant effect on p38 phosphorylation (Figure 6.20C). 

CB1 (ACEA), CB2 (HU308) and PPAR6 (GW0742) agonist pre-treatment for 48 

hours in combination with IL-1 p stimulation for the last 30 minutes induced an 

increase in p38 phosphorylation compared to DMSO alone, however p38 

phosphorylation was only detected in one of the repeats, therefore statistical 

analysis could not be performed (Figure 6.22C). CB1 (ACEA), CB2 (HU308) 

and PPAR5 (GW0742) agonist treatment for 48 hours had no significant effect 

on p38 phosphorylation (Figure 6.22C). CB1 (ACEA), CB2 (HU308) and PPARy 

(troglitazone) agonist pre-treatment for 48 hours in combination with IL-1 p 

stimulation for the last 30 minutes decreased p38 phosphorylation compared to 

IL-1 (3 alone and DMSO alone, however p38 phosphorylation was only detected 

in two of the repeats, therefore statistical analysis could not be performed 

(Figure 6.23A). CB1 (ACEA), CB2 (HU308) and PPARy (troglitazone) agonist 

treatment for 48 hours abolished p38 phosphorylation (Figure 6.23A). CB1 

(ACEA), CB2 (HU308) and PPARy (rosiglitazone) agonist pre-treatment for 48

298



hours in combination with IL-1 p stimulation for the last 30 minutes decreased 

p38 phosphorylation compared to IL-1 (3 alone and DMSO alone, however p38 

phosphorylation was only detected in one of the repeats, therefore statistical 

analysis could not be performed (Figure 6.23B). CB1 (ACEA), CB2 (HU308) 

and PPARy (rosiglitazone) agonist treatment for 48 hours had no effect on p38 

phosphorylation compared to DMSO control, however p38 phosphorylation was 

only detected in one of the repeats, therefore statistical analysis could not be 

performed (Figure 6.23B). Pre-treatment for 48 hours with all agonists 

combined at a lower concentration in combination with IL-1 p for the last 30 

minutes induced a significant increase in p38 phosphorylation compared to 

DMSO control (p<0.01) (Figure 6.23C). Following treatment with all agonists for 

48 hours at a lower concentration there was no significant effect p38 

phosphorylation compared to DMSO control (Figure 6.23C). Pre-treatment for 

48 hours with all agonists at a higher concentration in combination with IL-1 (3 for 

the last 30 minutes abolished p38 phosphorylation (Figure 6.23C). Treatment 

with all agonists for 48 hours at a higher concentration abolished p38 

phosphorylation (Figure 6.23C).
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Figure 6.22 The effects of cannabinoid receptor agonists (A) CB1 (ACEA) and CB2 
(HU308), (B) CB1 (ACEA) CB2 (HU308) and PPARa (Wy14643), (C) CB1 (ACEA) CB2 
(HU308) and PPAR6 (GW0742) on p38 phosphorylation. IL-1 (3 stimulation for 30 
minutes induced the phosphorylation of p38. CB1 (ACEA) and CB2 (HU308) pre
treatment for 48 hours in combination with IL-1 (3 for the last 30 minutes reduced p38 
phosphorylation compared to IL-1 (3 levels. CB1 (ACEA) and CB2 (HU308) treatment for 
48 hours had no effect on basal p38 phosphorylation. CB1 (ACEA) and CB2 (HU308) 
agonist pre-treatment for 48 hours with the addition or PPARa (Wy14643) agonist in 
combination with IL-1 (3 for the last 30 minutes reduced p38 phosphorylation compared to 
IL-1 (3 levels. CB1 (ACEA) and CB2 (HU308) agonist pre-treatment for 48 hours with the 
addition PPAR5 (GW0742) agonist in combination with IL-1 p for the last 30 minutes 
induced p38 phosphorylation. CB1 (ACEA) and CB2 (HU308) agonists treatment for 48 
hours with the addition of PPARa (Wy14643) or PPAR5 (GW0742) had no effect p38 
phosphorylation. Data represents mean fold change of phosphorylation normalised to 
internal total unphosphorylated protein and untreated control ± SEM. **p<0.01 compared 
to DMSO control, ++p<0.01 compared to IL-1 (3 stimulation for 30 minutes.
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Figure 6.23 The effects of cannabinoid receptor agonists (A) CB1 (ACEA) and CB2 
(HU308), (B) CB1 (ACEA) CB2 (HU308) and PPARy (troglitazone), (C) CB1 (ACEA) CB2 
(HU308) and PPARy (rosiglitazone) on p38 phosphorylation. IL-1p stimulation for 30 
minutes induced the phosphorylation of p38. CB1 (ACEA) and CB2 (HU308) pre-treatment 
for 48 hours with the addition of PPARy (troglitazone or rosiglitazone) in combination with IL- 
1p for the last 30 minutes reduced p38 phosphorylation compared to IL-1p levels. CB1 
(ACEA) and CB2 (HU308) treatment for 48 hours with the addition of PPARy (troglitazone or 
rosiglitazone) had no effect or abolished p38 phosphorylation respectively. All agonists pre
treatment at a lower concentration in combination with IL-1p stimulation for the last 30 
minutes induced p38 phosphorylation. All agonists pre-treatment at a higher concentration in 
combination with IL-1p stimulation for the last 30 minutes abolished p38 phosphorylation. All 
agonists at a lower concentration had no effect on basal p38 phosphorylation. All agonists at 
a higher concentration treatment for 48 hours abolished p38 phosphorylation. Data 
represents mean fold change of phosphorylation normalised to internal total 
unphosphorylated protein and untreated control ± SEM. **p<0.01 compared to DMSO 
control.
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6.5.7 The Effects of Cannabinoid Receptor Agonists on IkB
Phosphorylation

6.5.7.1 The E ffect o f IL-1p on IkB Phosphorylation

IL-1p stimulation for 30 minutes had no significant effect on IRB phosphorylation 

compared to DMSO control (Figure 6.24 A-D 6.25 A & B).

6.5.7.2 The Effects o f CB1, CB2 and PPAR Agonists on IkB 

Phosphorylation

CB1 (ACEA) and (CB2) HU308 agonist pre-treatment for 48 hours in 

combination with IL-1p for the last 30 minutes reduced IkB phosphorylation, 

compared to IL-ip alone and DMSO alone, however statistical analysis could 

not be performed as phosphorylation was only detected in two of the repeats 

(Figure 6.24A). There was no significant effect on IkB phosphorylation following 

CB1 (ACEA) and CB2 (HU308) agonist treatment alone for 48 hours compared 

to DMSO control (Figure 6.24A). CB1 (ACEA), CB2 (HU308) and PPARa 

(Wy14643) agonist pre-treatment for 48 hours in combination with IL-ip for the 

last 30 minutes abolished IkB phosphorylation (Figure 6.24B). CB1 (ACEA), 

CB2 (HU308) and PPARa (Wy14643) agonist treatment for 48 hours reduced 

IkB phosphorylation below basal levels, however statistical analysis could not 

be performed as phosphorylation was only detected in two of the repeats 

(Figure 6.24B). CB1 (ACEA), CB2 (HU308) and PPAR5 (GW0742) agonist pre

treatment for 48 hours in combination with IL-1 p for the last 30 minutes 

significantly decreased IkB phosphorylation compared to IL-1 p stimulation alone 

and DMSO control (p<0.01) (Figure 6.24C). CB1 (ACEA), CB2 (HU308) and 

PPAR5 (GW0742) agonist treatment for 48 hours significantly reduced IkB 

phosphorylation compared to DMSO control (p<0.01) (Figure 6.24C). CB1 

(ACEA), CB2 (HU308) and PPARy (troglitazone) agonist pre-treatment for 48 

hours in combination with IL-1 (3 for the last 30 minutes decreased IkB 

phosphorylation compared to IL-1 (3 stimulation alone and DMSO control, 

however IkB phosphorylation was only detected in two of the repeats, therefore 

statistical analysis could not be performed (Figure 6.25A). CB1 (ACEA), CB2 

(HU308) and PPARy (trogliazone) agonist treatment for 48 hours abolished IkB 

phosphorylation (Figure 6.25A). CB1 (ACEA), CB2 (HU308) and PPARy 

(rosiglitazone) agonist pre-treatment for 48 hours in combination with IL-1 p for 

the last 30 minutes significantly decreased IkB phosphorylation compared to IL-
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1(3 stimulation alone (p<0.01) and DMSO control (p<0.05) (Figure 6.25B). CB1 

(ACEA), CB2 (HU308) and PPARy (rosiglitazone) agonist treatment decreased 

IkB phosphorylation, however IkB phosphorylation was only detected in one of 

the repeats, therefore statistical analysis could not be performed (Figure 6.25B). 

Pre-treatment for 48 hours with all agonists combined at a lower concentration 

in combination with IL-1 (3 for the last 30 minutes had no significant effect on IkB 

phosphorylation compared to IL-1 p stimulation alone and DMSO control (Figure 

6.25C). Pre-treatment for 48 hours with all agonists at a higher concentration in 

combination with IL-1 (3 for the last 30 minutes reduced IkB phosphorylation, 

however statistical analysis could not be performed as phosphorylation was 

only detected in one sample repeat (Figure 6.25C). Following treatment with all 

agonists for 48 hours at a lower concentration there was no significant effect on 

IkB phosphorylation compared to DMSO control (Figure 6.25C). Following 

treatment with all agonists for 48 hours at a higher concentration significantly 

reduced IkB phosphorylation compared to DMSO control (p<0.05) (Figure 

6.25C).
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Figure 6.24 The effects of cannabinoid receptor agonists (A) CB1 (ACEA) and CB2 
(HU308), (B) CB1 (ACEA) CB2 (HU308) and PPARa (Wy14643), (C) CB1 (ACEA) CB2 
(HU308) and PPAR5 (GW0742) on IkB phosphorylation. IL-1 p stimulation for 30 
minutes had no effect on IkB phosphorylation. CB1 (ACEA) and CB2 (HU308) pre
treatment for 48 hours alone or in combination with IL-113 for the last 30 minutes reduced 
IkB phosphorylation compared to basal or IL-1 (3 levels. CB1 (ACEA) and CB2 (HU308) 
agonist pre-treatment for 48 hours with the addition or PPARa (Wy14643) or PPAR5 
(GW0742) agonists in combination with IL-1 p for the last 30 minutes abolished or reduced 
IkB phosphorylation compared to IL-1 (3 levels repectively. CB1 (ACEA) and CB2 (HU308) 
agonists treatment for 48 hours with the addition of PPARa (Wy14643) or PPAR5 
(GW0742) reduced basal IkB phosphorylation. Data represents mean fold change of 
phosphorylation normalised to internal total unphosphorylated protein and untreated 
control ± SEM. **p<0.01 compared to DMSO control, ++p<0.01 compared to IL-1 p 
stimulation for 30 minutes.
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PPARy 1 nM or 10 (Troglitazone) 
PPARy 10 or 100 nM (Rosiglitazone)

Figure 6.25 The effects of cannabinoid receptor agonists (A) CB1 (ACEA) and CB2 
(HU308), (B) CB1 (ACEA) CB2 (HU308) and PPARy (troglitazone), (C) CB1 (ACEA) CB2 
(HU308) and PPARy (rosiglitazone) on IkB phosphorylation. IL-1 [3 stimulation for 30 
minutes had no effect on IkB phosphorylation. CB1 (ACEA) and CB2 (HU308) pre-treatment 
for 48 hours with the addition of PPARy (troglitazone or rosiglitazone) in combination on with 
IL-1 p for the last 30 minutes reduced IkB phosphorylation compared to IL-1 (3 levels. CB1 
(ACEA) and CB2 (HU308) treatment for 48 hours with the addition of PPARy (troglitazone or 
rosiglitazone) reduced or abolished IkB phosphorylation respectively. All agonists pre
treatment at a lower concentration both alone and in combination with IL-1 (3 stimulation for the 
last 30 minutes had no effect on IkB phosphorylation. All agonists pre-treatment at a higher 
concentration, both alone and in combination with IL-1 p stimulation for the last 30 minutes 
decreased IkB phosphorylation. Data represents mean fold change of phosphorylation 
normalised to internal total unphosphorylated protein and untreated control ± SEM. *p<0.05, 
compared to DMSO control, ++p<0.01 compared to IL-1 (3 stimulation for 30 minutes.
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6.5.8 Summary of Results
The summary of the findings presented in this chapter for the affects of 

cannabinoid receptor agonists on IL-1 (3 induced MMP-3 and -13 mRNA 

expression and phosphorylation of signalling kinases analysis in OA 

chondrocyte cultures are shown in Tables 6.3 and 6.4.
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6.6 Discussion
This study aimed to determine which cannabinoid receptor(s) shown to be 

expressed by OA chondrocytes (Chapter 5), mediate WIN-55 induced reduction 

of MMP-3 and -13 in the presence of IL-1 p.

6.6.1 Individual Cannabinoid Receptor Activation

6.6.1.1 CB1 and CB2
In the present study, ACEA or HU308 treatments for 48 hours did not 

counteract the effects of IL-1 p on induction of MMP-3 and -13 mRNA 

expression in OA chondrocytes. This may suggest that although having activity 

at CB1 and CB2 receptors (Pertwee et al, 2010). WIN-55 does not mediate its 

effects via these receptors alone in human OA chondrocytes. Interestingly in 

another study, WIN-55 was shown to inhibit IL-1 p induced activation of NFkB 

and chemokine IL-8 expression in human astrocytes, however these effects 

were shown to be independent of CB1 and CB2 receptors as antagonists 

SR14176A and SR144528 or pertussis toxin had no effect on WIN-55 actions 

(Curran et al, 2005). Furthermore, in RA and OA fibroblast-like synoviocytes 

WIN-55 reduced IL-ip induced IL-6 and IL-8 secretion, similarly these effects 

were shown to be via a non CB1 or CB2 receptor mediated mechanism, as CB1 

and CB2 antagonists AM281 and AM630 failed to affect the inhibitory actions of 

WIN-55 (Selvi et al, 2008). In addition, incubation of RA and OA fibroblast-like 

synoviocytes with CB1 agonist ACEA and CB2 agonist JWH-015 also had no 

effect on IL-1 |B induced IL-6 and IL-8 secretion (Selvi et al, 2008). In another 

study, using mouse macrophages, WIN-55 down regulated MMP-9 expression 

via reduction in ERK1/ERK2 signalling pathways. These effects were found to 

be independent of CB1 and CB2 receptors since AM51 and AM630 antagonist 

and pertussis toxin failed to inhibit WIN-55 induced effects (Tauber et al, 2012). 

Further, in bovine chondrocytes, CB1 and CB2 synthetic agonist HU210 along 

with WIN-55 were shown to inhibit IL-1 a stimulated collagen and proteoglycan 

degradation, these effects were suggested to be mediated by CB1 and CB2, 

however, it is likely that these effects may also be mediated by other 

cannabinoid receptors expressed by chondrocytes since AM281 and AM630 

(CB1 and CB2 cannabinoid receptor antagonists respectively) failed to 

counteract WIN-55 activities (Mbvundula etal, 2006).
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6.6.1.2 GPR55
GPR55 has been identified as a possible cannabinoid receptor as it is activated 

by a number of cannabinoid receptor agonists (Ryberg et al, 2007). However 

there is conflicting data as to which cannabinoid ligands activate GPR55. 

Ryberg et al 2007 demonstrated using GTPyS binding assays that CB1 ligand 

CP55940, endogenous cannabinoid ligands AEA and 2-AG and 

phytocannabinoid THC bind to and activate GPR55. In addition 

phytocannabinoid ligands CBD and abnormal CBD, which display no activities 

at CB1 and CB2, were shown to act on GPR55 as an antagonist and agonist 

respectively (Ryberg et al, 2007). Laucke et al 2009 also demonstrated that 

THC and AEA activated GPR55, however in contrast 2-AG, CP55940, CBD and 

abnormal CBD were shown not to activate GPR55 as determined by 

intracellular calcium levels (Lauckner et al, 2008). Lastly, Kapur et al 2009 

demonstrated, using the formation of (3-arrestin-GPR55 complex and 

ERK1/ERK2 phosphorylation as indicators of GPR55 activation readouts that 

CB1 antagonists AM251 and SR141716A and the non-cannabinoid ligand LPI 

acted as GPR55 agonists. Moreover it was demonstrated that CP55940 acted 

as a GPR55 antagonist and partial agonist (Kapur et al, 2009). These 

conflicting findings may therefore be dependent on the assay system used to 

study the activation of GPR55.

In the present study it was shown that LPI had no effect on IL-1 (3 induced MMP- 

3 or -13 mRNA expression, suggesting that WIN-55 does not mediate its effects 

via GPR55. In agreement with the findings presented here, Kapur et al (2009) 

demonstrated that WIN-55 displayed no activities at GPR55. Interestingly, 

abnormal CBD analogue 0-1602 was shown to reduce inflammatory pain in a 

rat model of acute arthritis (Schuelert and McDougall 2011). These effects were 

thought to be mediated by GPR55, as GPR55 antagonist 0-1918 blocked the 

effects of 0-1602. Interestingly CB1 and CB2 antagonists AM281 and AM630 

had no effect on 0-1602 nociception activities, indicating that the effects were 

CB1 and CB2 independent (Schuelert and McDougall 2011).Together, these 

findings suggested activation of GPR55 although not reducing destructive 

pathways in OA, may modulate analgesic effects, however the significance of 

this remains to be determined.
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6.6.1.3 GPR18

GPCR GPR18, although structurally different from the classical CB1 and CB2 

receptors (Pertwee et al, 2010) is thought to play a role in endocannabinoid 

signalling in microglial-neuronal communication and migration in the CNS 

(McHugh 2012). In BV-2 microglia, HEK293-GRP18 and HEC-1B-GPR18 

transfected cells, abnormal CBD and NAGIy endogenous metabolite of AEA, 

induced cellular migration and MAPK signalling (McHugh et al, 2012; McHugh 

et al, 2010). Moreover, in siRNA GPR18 knockdown studies, NAGIy induced 

cell migration in BV-2 cells was attenuated (McHugh et al, 2012) GPR18 is 

activated by other cannabinoid receptor agonists AEA and THC inducing 

migration and ERK1/ERK2 phosphorylation in HEC-1B cells, effects that were 

antagonised by pertussis toxin, AM251 and CBD (McHugh etal, 2012).Together 

these findings suggested that GPR18 plays a role in cannabinoid signalling 

independent of CB1 or CB2 receptors and GPR18 may be a therapeutic target 

in neurodegenerative diseases. However, in the present study NAGIy failed to 

reduce IL-1 (3 induced MMP-3 and -13 mRNA expression, suggesting WIN-55 

does not mediate its effects via activation of GPR18.

6.6.1.4 TRPV1
In the present study it was shown that TRPV1 receptor agonist OLDA did not 

counteract the effects of IL-13 induced MMP-3 and -13 mRNA expression. In 

contrast, at 0.3 and 3 pM OLDA further increased IL-1 (3 induced MMP-13 

mRNA expression, however when used alone had no effect on basal levels of 

MMP-3 or -13. Interestingly, activation of TRPV1 with vanilloid agonist capsaicin 

induced the secretion of IL-6 from OA and RA synovial fibroblasts, these effects 

were attenuated by incubation with TRPV1 antagonist capsazepine (Engler etal,

2007). Conversely, cannabinoid agonist CBD induced anti-inflammatory effects 

in a rat model of acute inflammation, where the TPRV1 antagonist capsazeoine 

(CPZ) reversed the effects of CBD, whereas SR141716 and SR144528 CB1 

and CB2 specific antagonists respectively had no effect (Costa et al, 2004). 

Together these findings suggest that activation of TRPV1 may have opposing 

effects depending on the agonists used. Interestingly, WIN-55 was shown to 

reduce IL-6 and IL-8 secretion from IL-13 stimulated OA and RA fibroblast-like 

synoviocytes via a non-TRPV1 mediated manner, since incubation with TRPV1 

antagonist capsazepine failed to modify WIN-55 inhibitory effects on cytokine
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production (Selvi et al, 2008). In an animal model of lung inflammation using 

monocyte-macrophages, WIN-55 was shown to inhibit MMP-9 secretion, effects 

that were thought to be mediated by TRPV1, since TRPV1 antagonist 

capsazpine also inhibited MMP-9 secretion (Tauber et al, 2012). In addition, 

WIN-55 actions were antagonised by TPRV1 agonist capsaicin (Tauber et al, 

2012).

6.6.1.5 PPARa
In vivo pre-treatment with PPARa selective agonist Wy14643 inhibited LPI 

induced secretion of pro-inflammatory cytokines IL-6 and IFNy and attenuated 

LPI induced infiltration of inflammatory cells in a mouse model of acute lung 

injury, these effects were not observed in PPARa knockout mice, suggesting 

that activation of PPARa displays anti-inflammatory properties (Yoo etal, 2013). 

In addition to anti-inflammatory properties activation of PPARa with Wy14643 

was shown to have chondroprotective effects in OA (Clockaerts et al, 2011). In 

contrast, in the present study 1, 10 and 100 pM Wy14643 failed to counteract 

IL-1 (3 induced MMP-3 or -13 mRNA expression in monolayer cultures of human 

OA chondrocytes, and when used at 100 pM in combination with IL-1 p further 

increased MMP-13 mRNA expression compared to IL-1 (3 stimulation alone. In 

other studies, in OA cartilage explants, 100 pM Wy14643 decreased IL-1 (3 

induced mRNA expression of MMP-1, -3 and -13 and secretion of NO and 

PGE2 and release of GAGs, whilst having no effect on the expression of 

collagen type II or aggrecan (Clockaerts et al, 2011). Of note when used at a 

lower concentration of 10 pM, Wy14643 had no effect on MMPs, GAGs, NO or 

PGE2 (Clockaerts et al, 2011). In another study, using rabbit articular 

chondrocytes, PPARa agonist clofibrate, counteracted the IL-1 (3 induced mRNA 

expression of MMP-1, -3 and -13 and induced the expression of IL-1Ra 

(Francois et al, 2006). To fully elucidate the effects of PPARa activation on 

catabolic pathways in OA requires further investigation.

6.6.1.6 PPAR5
There is little known regarding the effects of PPAR5 activation in OA. In the 

present study, activation of PPAR5 using the selective agonist GW0742 at a 

concentration of 0.02, 0.2 or 2 pM respectively, failed to counteract the effects 

of IL-1 (3 on induction of MMP-3 and -13 mRNA expression in human OA 

chondrocytes. In rat synovial fibroblasts, rosiglitazone, although being a
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selective PPARy agonist, stimulated production of IL-1Ra via a PPAR5 

dependent mechanism, as the rosiglitazone induced expression of IL-Ra was 

abolished by transfection with a dominant negative form of PPAR5 (Moulin et al,

2005). In vivo, GW0742 was shown to have anti-inflammatory effects in a 

mouse model of acute lung injury via the reduction of iNOS, TNFa, neutrophil 

infiltration and IkB-o degradation (Di Paola et al, 2010). Recently, activation of 

PPAR5 with GW0742 in human chondrocytes stimulated with IL-1, decreased 

NO and IL-6 production (Paukkeri etal, 2013). In support of the findings present 

here GW0742 had no affect on MMP-3 production (Paukkeri etal, 2013). These 

findings suggest that PPAR5 activation may have potential anti-arthritic 

properties via the upregulation of IL-1Ra and the modulation of anti

inflammatory mediators; however this remains to be determined in human OA.

6.6.1.7 PPARy
PPARy is known to play a role in modulating catabolic factors in OA and 

targeting this receptor with specific ligands has been investigated (Fahmi et al,

2011). In the present study, PPARy agonists troglitazone and rosiglitazone 

failed to counteract IL-1 (3 induced expression of MMP-3 and -13 in human OA 

chondrocytes. In contrast previous studies have shown that low concentrations 

of rosiglitazone (0.1-1pM) reduced IL-1 p induced MMP-1, -3 and -13 expression 

and GAG release in rabbit articular chondrocytes, in a PPARy dependent 

manner (Francois etal, 2004). Furthermore, it was demonstrated that the MMP- 

1 promoter contained a PPARy binding site and that the inhibitory effect of 

rosiglitazone on IL-1 p induced MMP-1 gene expression was via the binding of 

PPARy (Francois etal, 2004). In RA fibroblast-like synovial cells, 1 or 10 pM of 

troglitazone inhibited the production of TNFa, IL-6, IL-8 and MMP-3 and 

supressed TNFa or IL-1 (3 induced NFkB activation (Yamasaki et al, 2002). In 

contrast, 15d-PGJ2 an endogenous ligand for PPARy but not troglitazone 

decreased or abolished IL-1 p induced mRNA expression of COX-2 and iNOS 

and release of prostaglandins and NO in human chondrocytes (Boyault et al,

2001). In vivo, PPARy ligand pioglitazone reduced the development of cartilage 

lesions in a dog model of OA via the reduction of MMP-1, ADAMTS-5 and iNOS 

(Boileau et al, 2007). Pioglitazone also reduced the severity of OA in a guinea 

pig model via the reduction of MMP-13 and IL-1 (3 (Kobayashi et al, 2005). 

Findings presented in this study are in contrast to previous studies and
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demonstrate that activation of PPARy does not inhibit IL-1 (3 induced MMP-3 or - 

13 mRNA expression, therefore PPARy receptors alone may not mediate the 

actions of WIN-55 in human OA chondrocytes. Interestingly, WIN-55 was also 

shown to mediate anti-inflammatory effects in OA and RA fibroblast-like 

synoviocytes via a PPARy independent mechanism, since incubation with 

PPARy antagonist GW9662 failed to mediate WIN-55 inhibitory effects on IL-1 (3 

induced IL-6 and IL-8 secretion (Selvi etal, 2008). Similarly, WIN-55 was shown 

to reduce MMP-9 expression in mouse macrophages in a PPARy independent 

manner as antagonist GW9662, had not effect on WIN-55 actions (Tauber etal,

2012), suggesting that WIN-55 does not mediate inhibition of MMP-3 and -13 

mRNA expression via an individual cannabinoid receptor expressed by OA 

chondrocytes. Other studies have supported the suggestion that WIN-55 

mediates its effects via a novel cannabinoid receptor in joint cells. Selvi et al 

(2008) demonstrated that WIN-55 inhibitory effects on IL-8 and IL-6 secretion 

from OA and RA synovial fibroblasts were independent of CB1, CB2, PPARy or 

TRPV1 receptors. Although in the present study activation of a single 

cannabinoid receptor using selective agonists had no effect on IL-1 (3 induced 

MMP-3 or -13 mRNA, it may also be proposed that WIN-55 activates multiple 

cannabinoid receptors, which are co-expressed in OA chondrocytes (Chapter 5).

6.6.2 Cannabinoid Receptor Agonists Combination Effects.
Since individual activation of CB1, CB2 or PPAR a, 5 and y failed to reduce IL- 

1(3 induced MMP-3 and -13 expression in the present study, it is possible that 

WIN-55 may first activate CB1 and CB2 receptors expressed on the cell 

membrane which then leads to the activation of the nuclear receptors PPAR a, 

5 or y individually or in combination (O'Sullivan and Kendall 2010) in order to 

induce its inhibitory effects on MMP-3 and MMP-13 expression and IL-1 (3 

signalling pathways. Combination treatments of selective agonists for CB1 and 

CB2 receptors were used in the present study to target cannabinoid receptors 

that are expressed on the cell membrane of OA chondrocytes (Chapter 5) and 

are receptors WIN-55 is know to activate (Pertwee et al, 2010). The addition of 

nuclear receptor agonists for PPAR a, 5 and y used individually or in 

combination with CB1 and CB2 receptors agonists were used as WIN-55 has 

been shown to activate PPARa and y (O'Sullivan and Kendall 2010; Sun et al,

2006). WIN-55 also induced mRNA expression of PPAR5 in human OA
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chondrocytes (Chapter 3, section 5.5.3.2). Furthermore, it was shown that these 

cannabinoid receptors co-exist in OA chondrocytes (Chapter 5), suggesting 

these receptors are available for WIN-55 binding and activation.

Preliminary studies here have shown that treatment of human OA chondrocytes 

with CB1 and CB2 agonists ACEA and HU308 in combination or with the 

addition of either PPARa, 5 and y agonists Wy14643, GW0742, troglitazone or 

rosiglitazone respectively failed to counteract the effects of IL-1 (3 induced MMP- 

3 or -13 mRNA expression, suggesting that WIN-55 does not mediate its effects 

via CB1 or CB2 receptors or one of the PPAR receptors alone. Interestingly, 

although having no effect on MMP-3 or -13 expression, pre-treatment of OA 

chondrocytes with CB1 and CB2 receptor agonists ACEA and HU308 for 48 

hours counteracted the effects of IL-113 induced phosphorylation of ERK1/ERK2, 

c-Jun, p38 and IkB and treatment with ACEA and HU308 in combination 

reduced ERK1/ERK2 and IkB phosphorylation below basal levels, whilst having 

no effect on p38 phosphorylation. Interestingly ACEA and HU308 treatment 

induced c-Jun phosphorylation above basal levels. Previously, activation of CB1 

with phytocannabinoid THC induced the phosphorylation of c-Jun as shown in 

CB1 transfected CHO cells, however, phosphorylation occurred within 30 

minutes of stimulation (Rueda et al, 2000) which in contrast to the present study 

was shown following 48 hours of treatment. Cannabinoid agonists have been 

shown to signal through MAPK activation upon binding to their respective 

cannabinoid receptors (Howlett 2005; Demuth and Molleman 2006). 

Furthermore, in human synovial fibroblast-like cells obtained from patients with 

OA and RA, HU210 a CB1 and CB2 receptor agonist induced a time-dependent 

phosphorylation of ERK1/ERK2 and p38 following up to 10 minutes stimulation. 

Effects were reversed by the addition of pertussis toxin suggesting these effects 

were mediated by CB1 and CB2 receptors (Richardson et al, 2008). 

Phosphorylation of ERK1/ERK2 and p38 was used to identify functional CB1 

and CB2 receptors in synovial fibroblast-like cells, however only a short 

incubation time was investigated (Richardson et al, 2008). In contrast in the 

present study, CB1 and CB2 receptor agonists reduced ERK1/ERK2 and p38 

signalling, however, since in the present study 48 hours incubation time was 

investigated it is possible that phosphorylation occurs rapidly or signalling
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through G-protein coupled receptors may produce distinctive effects in different 

types of cells (Luttrell and Luttrell 2003).

In this study, pre-treatment of OA chondrocytes with CB1, CB2 and PPARa 

receptor agonists ACEA, HU308 and Wy14643 repectively for 48 hours 

counteracted the effects of IL-1 (3 induced phosphorylation of ERK1/ERK2, c-Jun, 

p38 and abolished IkB phosphorylation, furthermore treatment alone with ACEA, 

HU308 and Wy14643 reduced ERK1/ERK2 phosphorylation and IkB 

phosphorylation below basal levels. The chondroprotective activities of PPARa 

activation are in part thought to be mediated by the inhibition of N F kB by 

increasing the expression of IkB (Crisafulli and Cuzzocrea 2009). Furthermore 

PPARa agonist clofibrate decrease LPS stimulated phosphorylation of ERK, 

JNK and p38 in peritoneal mice macrophages, effects that were not seen in the 

absence of functional PPARa gene (Crisafulli and Cuzzocrea 2009). 

Interestingly ACEA and HU308 in combination with Wy14643 reduced IL-1 (3 

induced c-Jun phosphorylation, however ACEA and HU308 used in 

combination without Wy14643 induced c-Jun phosphorylation, these findings 

suggest that Wy14643 may counteract the effects of ACEA and HU308 induced 

c-Jun phosphorylation. Previous studies have shown that activation of PPARa 

reduces c-Jun and c-fos phosphorylation (Li et al, 2009). In addition, in the 

present study Wy14643 used in combination with ACEA and HU308 reduced 

IkB phosphorylation. In other studies, treatment with Wy14643 alone inhibited 

IL-1 (3 induced translocation of N F kB to the nucleus in monolayer-cultured 

chondrocytes (Clockaerts et al, 2011). In the present study, whether the effects 

observed were mediated by activation of CB1, CB2 or PPARa individually or in 

combination remains to be determined.

Pre-treatment of OA chondrocytes with CB1, CB2 and PPAR5 receptor agonists

ACEA, HU308 and GW0742 for 48 hours counteracted the effects of IL-1 (3

induced phosphorylation of ERK1/ERK2, c-Jun and IkB phosphorylation, whilst

having no effect on p38 phosphorylation. Furthermore treatment alone with

ACEA, HU308 and GW0742 reduced ERK1/ERK2 phosphorylation and IkB

phosphorylation below basal levels, whilst having no effect on p38

phosphorylation, but increased c-Jun phosphorylation. However, whether these

effects were mediated by activation of CB1, CB2 or PPAR5 individually or in

combination remains to be determined. Interestingly activation of PPAR5 alone
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using selective agonist GW501516, induced the phosphorylation of p38 and 

JNK in hepatic stellate cells and GW0742 reduced ERK1/ERK2 phosphorylation 

in a human keratinocyte cell line (Kostadinova et al, 2011; Burdick et al, 2007). 

Although PPAR6 may mediate its effects via MAPK signalling, there is little 

knowledge as to the effects of PPAR6 mediated MAPK signalling in OA 

chondrocytes. Furthermore, whether the effects demonstrated in the present 

study were mediated by activation of CB1, CB2 or PPAR5 individually or in 

combination remains to be investigated.

Here, preliminary studies have shown that pre-treatment of OA chondrocytes 

with CB1, CB2 and PPARy receptor agonists ACEA, HU308 and troglitazone for 

48 hours counteracted the effects of IL-1 p induced phosphorylation of 

ERK1/ERK2, c-Jun, p38 and IkB phosphorylation, furthermore treatment alone 

with ACEA, HU308 and troglitazone reduced ERK1/ERK2 phosphorylation 

below basal levels, abolished p38 and IkB phosphorylation whilst having no 

effect on the basal levels of c-Jun. Pre-treatment of OA chondrocytes with CB1, 

CB2 and PPARy receptor agonists ACEA, HU308 and rosiglitazone for 48 

hours counteracted the effects of IL-1 p induced phosphorylation of ERK1/ERK2, 

c-Jun, p38 and IkB phosphorylation. Furthermore treatment alone with ACEA, 

HU308 and rosiglitazone reduced ERK1/ERK2 phosphorylation and IkB 

phosphorylation below basal levels, whilst having no effect on the basal levels 

of c-Jun or p38 phosphorylation. Together these findings suggest that activation 

of cannabinoid receptors with agonists reduces the phosphorylation of protein 

kinases involved in IL-1 p signalling pathways whilst having no effect on MMP-3 

or -13 mRNA expression. In vivo, using a dog model of OA, PPARy agonist 

pioglitazone inhibited ERK1/ERK2, p38 and NFkB phosphorylation, although in 

contrast to the present study, where no effect on MMP-3 or MMP-13 mRNA 

expression was observed, a reduction of MAPK signalling resulted in a 

decrease in MMP-1 expression (Boileau et al, 2007). In the present study, CB1 

and CB2 agonists ACEA and HU308 induced c-Jun phosphorylation when 

treated in combination, however the addition of rosiglitazone, troglitazone or 

Wy14643 but not GW0742, counteracted these effects, suggesting that alone 

PPARy or a but not 5 can reduce the phosphorylation of c-Jun.

Fahmi et al 2002 demonstrated that activation of PPARy with rosiglitazone or

15d-PGJ2 in human synovial fibroblasts reduced IL-1 (3 induced expression of
317



MMP-1, furthermore 15d-PGJ2 reduced IL-1 p induced binding of AP-1 to the 

promoter region of MMP-1 (Fahmi et al, 2002). In human chondrocytes, 

rosiglitazone was shown to inhibit MMP-1 expression via PPARy by the 

induction of DNA binding competition on a composite PPRE/AP-1 site within the 

MMP-1 promoter (Francois et al 2004). Since c-Jun phosphorylation is needed 

for the formation of the AP-1 complex it is possible that rosiglitazone in this 

study may also reduce AP-1 formation, although the significance of this needs 

to be investigated further, since both MMP-3 and -13 contain AP-1 binding sites 

(Mengshol et al, 2000; Vincenti 2001; Borden and Heller 1997; Mengshol et al, 

2001; Vincenti and Brinckerhoff 2002; Goldring et al, 2011) and in the current 

study rosiglitazone failed to reduce IL-1 (3 induced MMP-3 or MMP-13 mRNA 

expression. Interestingly, in rabbit articular chondrocytes rosiglitazone treatment 

alone was shown to have no effect on IL-13 induced NFkB activity following 18 

hours treatment (Francois et al, 2004). In the present study, rosiglitazone used 

in combination with CB1 and CB2 receptor agonists ACEA and HU308 

respectively, reduced IkB phosphorylation below basal levels, however whether 

these effects were induced by CB1, CB2 or PPARy activation, remains to be 

determined.

All agonists for CB1, CB2 and PPARa, 5 and y including ACEA, HU308, 

Wy14643, GW0742 and troglitazone and rosiglitazone when used at a lower 

concentration failed to counteract the effects of IL-1 (3 induced MMP-3 and -13 

mRNA expression and ERK1/ERK2, c-Jun and p38 phosphorylation. However, 

when used at a 10 fold higher concentration all agonists combined reduced IL- 

ip  induced MMP-3 and -13 mRNA expression. Other studies have shown that 

activation of PPARa or PPARy alone using selective agonists reduced the 

expression of MMP-1, -3 and -13 in human OA cartilage and synovial fibroblasts 

(Fahmi et al, 2002; Clockaerts et al, 2011). In contrast here it was shown that 

activation of multiple cannabinoid receptors is required to reduce MMP-3 and - 

13 mRNA expression in human OA chondrocytes. Furthermore, in order for 

lipophilic cannabinoids, to activate PPARs, they need to pass through the cell 

membrane and the hydrophilic cytosol; the mechanism via which this occurs is 

unclear (O'Sullivan and Kendall 2010). However it has recently been suggested 

that fatty acid binding proteins FABP5 and FABP7 act as intracellular 

transporters for endogenous cannabinoid anandamide (Kaczocha et al, 2009),
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suggesting that a similar mechanism for the transport of cannabinoids to PPARs 

may be present. Since WIN-55 is know to activate CB1, CB2 and PPARa and y 

and data presented in Chapter 4 demonstrated that cannabinoid receptors co

exist in OA cartilage, it is possible that WIN-55 may mediate its effects via a 

number of receptors, firstly activating CB1 and CB2 cell surface receptors and 

initiating a cascade of intracellular signalling pathways resulting in the indirect 

activation of PPARs (O'Sullivan and Kendall 2010).

WIN-55 was shown to increase the expression of PPARa and 5 (section 5.5.3.1 

and 5.5.3.2). Interestingly, PPARy has been shown directly interact with c-Jun 

preventing the formation of AP-1 complex thus having transcriptional 

suppressive effects on target genes such as MMPs (Vincenti and Brinckerhoff 

2002; Delerive et al, 1999). In human chondrocytes, gel mobility and supershift 

assays demonstrated that PPARy and c-fos/c-Jun proteins bind to the cis-acting 

element a composite of PPRE/AP1 site in the MMP-1 promoter thus preventing 

IL-1 (3 induced expression (Francois et al 2004). Furthermore transactivation 

studies using c-Jun and c-fos plasmids have shown that activation of PPARa 

with Wy-14643 and PPARy with troglitazone and rosiglitazone agonists interfere 

negatively with AP-1 transcription activity (Delerive et al, 1999). Therefore it is 

possible that an increase in PPARa and 5 mRNA expression by WIN-55 is a 

prerequisite for the indirect inhibition of c-Jun phosphorylation via PPAR 

interaction. This is also supported by the findings that a 48 hour pre-treatment 

of WIN-55 is required for inhibition of IL-1 (3 induced c-Jun phosphorylation 

(section 4.4.3.3) suggesting that an increase in PPAR mRNA expression 

induced by WIN-55 occurring following 48 hours (section 5.5.3.1 and 5.5.3.2). 

may be required to inhibit IL-1 p induced c-Jun phosphorylation and activation 

which was shown to occur within 30 minutes of chondrocyte stimulation (section 

4.4.3.3).

Together these findings suggest that WIN-55 may activate the classical 

cannabinoid receptors CB1 and CB2 expressed on the cell membrane followed 

by the direct or indirect activation of intracellular PPAR cannabinoid receptors. 

However, in order to determine fully the effects of cannabinoid receptor 

activation on MMP expression and MAPK signalling would require additional 

analysis to be performed on further patient samples. In addition, the effects of 

individual receptor agonists on ERK1/ERK2, c-Jun, p38 and IkB would need to
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be investigated to determine if a combination of cannabinoid receptors or 

individual cannabinoid receptors mediate the reduction of MAPK and IkB 

signalling demonstrated in the present study. Furthermore, the effects of 

receptor agonists on the level of unphosphorylated total levels of MAPKs and 

IkB remain to be determined. The findings presented in this study need to be 

interpreted with caution since at high concentrations of cannabinoid agonists 

used in combination induced a significant reduction in cell viability.

6.6.3 Summary
WIN-55 is known to activate CB1, CB2 and PPARa and y receptors (Pertwee et 

a\, 2010; O'Sullivan 2007; Sun et al, 2006). The data presented here suggests 

that WIN-55 may activate a number of cannabinoid receptors including CB1, 

CB2 and all three subtypes of PPARs to inhibit IL-1 p induced MMP-3 and -13 

mRNA expression. However, at present this work does not identify which 

receptors need to be activated by WIN-55, directly or indirectly to produce the 

inhibition of MMP expression observed (Chapter 2, Dunn et al, 2013). Further 

investigation is therefore needed to identify specifically which receptors are 

involved in WIN-55 mediated effects in human OA chondrocytes. This works 

also suggests that WIN-55 may be mediating its effects via a yet unidentified 

novel receptor a possibility also reported in other studies (Selvi et al, 2008; 

Curran etal, 2005).
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7 General Discussion and Future 
Directions
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A key pathological feature of OA is cartilage degradation. The pro-inflammatory 

cytokine IL-1 (3 plays a major role in pathogenesis of OA via the upregulation of 

matrix degrading enzymes principally MMP-1, -3 and -13 (Lefebvre et al, 1990; 

Mengshol etal, 2000; Reboul etal, 1996). IL-1 p is synthesised by chondrocytes 

during OA and acts in an autocrine and paracrine manner binding to IL-1R1 

expressed by chondrocytes inducing a cascade of intracellular signalling 

pathways, including MAPKs and NFkB (Attur et al, 1998; Martel-Pelletier et al, 

1992; Vincenti and Brinckerhoff 2002). These pathways lead to the activation 

and translocation of transcription factors to the nucleus of stimulated cells 

inducing the expression of MMPs (Vincenti and Brinckerhoff 2002). In addition 

to inducing catabolic processes during OA, IL-1 p also decreases the expression 

of anabolic genes including aggrecan and collagen II further contributing to 

cartilage loss (Goldring etal, 1994; Chadjichristos etal, 2003; Stove etal, 2000). 

Therefore, IL-1 p signalling inhibition is thought to be an important target in the 

treatment of OA to prevent cartilage degradation (Kapoor et al, 2011).

Previous studies have shown that cannabinoids have protective activities in 

animal models of arthritis. Non-psychoactive synthetic cannabinoid AJA, 

reduced the severity of adjuvant-induced arthritis in addition to displaying anti

inflammatory properties (Zurier et al, 1998). Non-psychoactive 

phytocannabinoid CBD blocked the progression of collagen-induced arthritis 

and displayed anti-inflammatory properties via the reduction of IFN-y and TNFa 

(Malfait et al, 2000) and HU-320 a metabolite of a synthetic homologue of 

cannabidiol reduced joint damage in collagen-induced arthritis (Sumariwalla et 

al, 2004).

The overall aim of this study was to determine the effects of synthetic 

cannabinoid WIN-55 on chondrocyte catabolic pathways and to investigate a 

possible mechanism via which its effects are mediated. The present study has 

shown a possible mechanism by which WIN-55 may act to prevent cartilage 

breakdown during OA via the inhibition of IL-1 p induced MMP-3 and -13 at both 

the mRNA and protein level in a time and concentration dependent manner 

(Chapter 2). Interestingly, WIN-55 also decreased the expression of MMP 

inhibitors TIMP-1 and -2 in a time and concentration dependent manner 

suggesting that inhibition occurred via a signalling pathway common to both 

MMPs and TIMPs.
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Cannabinoids have been shown to have anti-inflammatory effects in vitro 

(Mbvundula et al, 2004; Croxford and Yamamura 2005; Klein 2005). 

Furthermore studies have demonstrated that cannabinoids display analgesic 

activities in animal models of arthritis and cannabis based medicine Sativex has 

analgesic effects in patients with RA (Blake et al, 2006; Schuelert and 

McDougall 2011; Smith et al, 1998; Cox and Welch 2004; Cox et al, 2007; 

Schuelert and McDougall 2008). Therefore, the effects of WIN-55 on other OA 

targets including pro-inflammatory chemokine IL-8, the pain related peptide 

substance P and the neurotrophin NGF were investigated in human OA 

chondrocytes (Chapter 3).

IL-8 has been shown to play a role in cartilage degradation during OA via the 

upregulation of MMP-13 as shown in human and bovine chondrocytes and IL-8 

has been shown to be increased in human OA chondrocytes and the synovial 

fluid of OA patients (Kaneko et al, 2000; Merz et al, 2003; Attur et al, 1998). 

Furthermore, IL-1 (3 has been shown to induce the expression of IL-8 in human 

chondrocytes and IL-8 is thought to be involved in the inflammatory process of 

OA by the recruitment of neutrophils to the joint (Lotz et al, 1992; Elford and 

Cooper 1991). The present study has demonstrated that WIN-55 may also 

display anti-inflammatory effects in human OA chondrocytes as shown by the 

reduction of IL-1 (3 induced IL-8 mRNA expression (Chapter 3). In agreement 

with findings presented here, previous studies have shown that WIN-55 

inhibited IL-1 (3 induced IL-8 secretion in human OA and RA synovial fibroblasts 

(Selvi etal, 2008).

Both NGF and substance P have been associated with pain in OA and the 

subchondral junction is the site of innervation where angiogenesis has been 

associated with the expression of NGF (Walsh et al, 2010; Keeble and Brain 

2004). WIN-55 has been shown to have analgesic activities and reduce 

nociception in animal models of inflammatory pain (Ebrahimzadeh and 

Haghparast 2011; Burgos etal, 2010). Conversely, in the present study WIN-55 

was shown to induce mRNA expression of neuropeptides NGF and substance 

P (Chapter 3). Although, substance P and NGF are known to be involved in 

pain signalling there is evidence to suggest differential roles for these factors in 

chondrocytes. NGF may possess anti-inflammatory actions as blocking of 

endogenous NGF in animal models induced joint inflammation (Manni et al,
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2002). Moreover, NGF may have protective properties in human OA 

chondrocytes and has been suggested to stimulate chondrocytes metabolism 

and promote cartilage repair (lannone et al, 2002). Other studies have shown 

that substance P may be involved in chondrocyte proliferation and cell adhesion 

contacts (lannone and Lapadula 1998; Opolka et al, 2012). However, in 

contrast studies have shown a negative role of substance P in human OA 

chondrocytes via the up-regulation of MMP-13 (Im etal, 2008).

The effects of WIN-55 on IL-1 (3 induced signalling pathways including MAPKs 

and NFkB were investigated to elucidate a possible mechanism via which WIN- 

55 inhibits MMPs (Chapter 4). WIN-55 was shown to inhibit IL-1 p induced 

ERK1/ERK1, c-Jun and IkB but not p38. These findings suggest that WIN-55 

inhibits distinct MAPK phosphorylation in human OA chondrocytes. Since both 

MMPs and TIMPs share a common AP-1 binding site in their promoters, it may 

be suggested that inhibition of IL-1 (3 induced c-Jun phosphorylation 

demonstrated by WIN-55 in the present study reduces the formation of the AP-1 

complex thus reducing the activation of both MMP and TIMP genes (Vincenti 

and Brinckerhoff 2002; Borden and Heller 1997). Further, data presented here 

suggests a possible mechanism via which WIN-55 may act to prevent IL-1 (3 

induced IL-8 expression via inhibition of its transcriptional regulation by NFkB 

and AP-1. Studies have shown that IL-8 has binding sites in its promoter for 

NFkB and AP-1 (Mukaida etal, 1994; Kunsch and Rosen 1993; Roebuck 1999). 

The present study has shown that WIN-55 decreased IL-1 (3 induced IkB and c- 

Jun phosphorylation (Chapter 4), therefore potentially preventing the 

translocation of NFkB to the nucleus to induce target genes and the the activity 

of AP-1 transcription factor (Karin etal, 1997).

Cannabinoids were thought to mediate their effects via CB1 and CB2 receptors 

(Pertwee et al, 2010; Matsuda et al, 1990; Munro et al, 1993). It is now 

apparent that not all actions of cannabinoids are mediated via these receptors. 

Endogenous cannabinoid AEA and phytocannabinoid CBD are also known to 

act via TRPV1 and other GPCRs including GRP55 and GPR18 have been 

shown to bind a number of cannabinoid ligands (Figure 1.8) (McHugh et al, 

2012; Bisogno et al, 2001; Smart and Jerman 2000; Kapur et al, 2009). In 

addition nuclear receptors PPARa and y are known to be activated by 

cannabinoids (O'Sullivan 2007). In the present study it was shown that
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cannabinoid receptors CB1, CB2, GPR55, GPR18, TRPV1 and PPARa, 5 and y 

are co-expressed in human OA articular cartilage and osteocytes (Chapter 5). 

Furthermore, cannabinoid receptors have been previously shown to be 

expressed by a number of joint cells including, chondrocytes, synoviocytes and 

bone cells (Table 1.3). In the present study the expression of putative 

cannabinoid receptors was investigated to determine if receptor expression was 

modulated in relation to grade of degeneration in different cartilage zones.

Immunohistochemical studies presented here showed that PPARy expression 

was significantly decreased in osteocytes with increasing grade of cartilage 

degeneration. Furthermore, PPARy was predominantly expressed in the 

superficial zone of the cartilage and a trend towards decrease in the 

chondrocytes present in proliferating clusters was observed although this did 

not reach significance. The importance of PPARy in normal cartilage 

homeostasis has recently been described; in vivo studies in PPARy cartilage 

specific knockout mice developed a spontaneous OA phenotype, as shown by 

an increase in cartilage degradation, hypocellularity, synovial inflammation, 

increase in MMP-13 and increased staining of MMP generated aggrecan and 

collagen type II neo-epitopes VDIPEN and C1-2C respectively (Vasheghani et 

al, 2013). Collectively these findings suggest PPARy plays a role in ECM 

turnover under physiological conditions and a decrease in this receptor may be 

involved in the pathogenesis of OA.

GPR18 expression was increased in the middle and deep zone of the cartilage 

compared to the superficial zone, these findings suggest that GPR18 may 

display differential roles within different zones of the cartilage. There is evidence 

to suggest that chondrocytes display zonal differences as shown by in vitro 

studies in which chondrocytes isolated from the superficial zone and deep zone 

express different molecules such as lubricin and PTHrP expressed by 

superficial zone chondrocytes and Indian hedgehog and Runx-2 expressed by 

deep zone chondrocytes (Cheng etal, 2007; Eleswarapu etal, 2007; Chen etal,

2008). In addition TRPV1 was reduced in the deep zone of the cartilage with 

increasing grade of degeneration and previous studies have shown a decrease 

in TRPV1 expression to be associated with a differentiated phenotype in human 

OA chondrocytes cultures (Gavenis etal, 2009).
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This study has demonstrated that WIN-55 treatment of human OA chondrocyte 

cultures induced the re-localisation/trafficking of cannabinoid receptors, 

including, CB1, CB2, GRP18, TRPV1 and PPARa and 5 as shown by nuclear 

immunopositivity compared to cytoplasmic staining in control cells. These 

findings may indicate the rapid desensitisation and internalisation of GPCRs 

following agonist binding, principally CB1 and CB2 (Abood 2005). In addition, 

WIN-55 treatment is known to lead to the dephosphorylation of TRPV1, which 

has been shown to occur via the internalisation of the receptor (Jeske et al, 

2006; Sanz-Salvador et al, 2012). Furthermore, PPARa has been shown to 

shuttle between the cytoplasm and nucleus following ligand activation 

(Umemoto and Fujiki 2012). These findings suggest that a process of cellular 

redistribution may regulate or contribute to the effects of cannabinoid receptor 

mediated chondroprotection.

There is increasing evidence to show activation of PPARs may modulate the 

anti-inflammatory response by inhibiting inflammatory mediator production and 

catabolic factors (O'Sullivan and Kendall 2010; Fahmi et al, 2001; Fahmi et al, 

2002; Johnson etal, 2007; Clockaerts etal, 2011; Fahmi etal, 2011; Giaginis et 

al, 2009), suggesting that PPARs may be important in the development of new 

treatments for OA. The present study has demonstrated that WIN-55 

significantly increased the mRNA expression of both PPARa and 5 in human 

OA chondrocytes (Chapter 5), suggesting that WIN-55 may further reduce the 

expression of catabolic and inflammatory mediators in chondrocytes via the 

upregulation of these receptors.

The present study has shown that activation of individual cannabinoid receptors 

using selective agonists for CB1, CB2, GPR55, GPR18, TRPV1 and PPARa, 5 

and y failed to counteract IL-1p induction of MMP-3 and -13 (Chapter 6), 

suggesting that WIN-55 does not mediate its effects via activation of an 

individual cannabinoid receptor. However, activation of cannabinoid receptors 

CB1, CB2 and PPARa, 5 and y using selective agonists in combination resulted 

in a significant decrease in IL-1p induced MMP-3 and -13 mRNA expression in 

human OA chondrocytes (Chapter 6). Preliminary investigations also 

demonstrated that a combination of cannabinoid receptor agonists reduced 

MAPKs and IkB signalling pathways (Chapter 6). WIN-55 is known to activate

326



CB1 and CB2 receptors in addition to PPARa and y and the present study has 

demonstrated that WIN-55 induces the mRNA expression of PPAR5 (Pertwee 

et al, 2010;O'Sullivan 2007;Sun et al, 2006). These findings suggest that WIN- 

55 may activate multiple cannabinoid receptors expressed by chondrocytes first 

on the cell membrane including CB1 and CB2 then directly or indirectly via the 

activation of PPARs expressed on the nuclear membrane (Figure 7.1).

IL-1
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effect
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Figure 7.1 The potential effects of WIN-55 on IL-1 p induced signaling pathways in 
human OA chondrocytes. WIN-55 binds to and activates the classical cannabinoid 
receptors CB1 and CB2 expressed on the cell membrane inhibiting the phosphorylation of 
MAPK signalling pathway JNKs and ERKs and IkB preventing the translocation of 
transcription factors to the nucleus thus preventing the expression of MMPs. WIN-55 may 
also induce the increased mRNA expression of PPARs principally PPARa, 5 increasing 
PPAR/c-jun interaction thus having transcriptional suppressive effects on target genes 
such as MMPs.
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Although WIN-55 is known to activate both CB1 and CB2 receptors with similar 

affinity (Pertwee et al, 2010) other studies have suggested that WIN-55 may 

mediate its effects via a mechanism(s) independent of the classical CB1 and 

CB2 receptors. Previous studies have shown that WIN-55 reduced IL-6 and IL-8 

secretion from human OA and RA synovial fibroblasts; however CB1, CB2, 

PPARy and TRPV1 antagonists failed to counteract WIN-55 effects suggesting 

WIN-55 mediates its effects independently of these receptors (Selvi etal, 2008). 

Furthermore in human astrocytes WIN-55 was shown to inhibit IL-1 p signalling 

pathways in a CB1 and CB2 independent manner (Curran et al, 2005). 

Collectively, these findings suggest that WIN-55 may mediate its effects via a 

yet unidentified cannabinoid receptor or a receptor independent mechanism.

WIN-55 induces increases in intracellular calcium via CB1 activation, however 

these findings have been shown to be independent of Gj/0 coupling suggesting 

that WIN-55 activates CB1 via a novel mechanism. It has been proposed that 

WIN-55 stabilises the conformation of CB1, which couples to G q/11 (Lauckner 

et al, 2005). WIN-55 is also thought to release calcium from intracellular stores 

via Gq/11 in contrast to the classical Gj/0coupling (Lauckner etal, 2008). These 

findings indicate that WIN-55 mediates differential activation of CB1 and the 

intracellular signalling pathways induced by cannabinoid receptor activation are 

dependent on the agonist which binds and the conformation of G-protein 

coupling which is induced.

Recent studies have identified a possible mechanism via which cannabinoids 

namely AEA, are transported intracellularly via fatty acid binding protein, FABP5 

and FABP7 (Kaczocha et al, 2009). This may provide a possible mechanism via 

which WIN-55 is transported to PPARs expressed on the nuclear membrane 

directly activating them. However, further investigation is required to establish 

how WIN-55 activates PPARs. In addition WIN-55 may indirectly activate 

PPARs. In the present study WIN-55 was shown to inhibit IL-1 (3 induced c-Jun 

phosphorylation, which is required for the formation of the AP-1 complex, a key 

regulator of MMP gene expression. Interestingly, PPARy is known to physically 

interact with c-Jun (Delerive et al, 1999), therefore it may be suggested that 

WIN-55 induces an AP-1 /PPARy association which is transcriptionally
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repressive, thus decreasing the expression of MMP-3 and -13 (Vincenti and 

Brinckerhoff 2002). Furthermore transactivation studies have shown that 

activation of PPARa with Wy-14643 and PPARy with troglitazone and 

rosiglitazone agonists interferes negatively with AP-1 transcription activity 

(Delerive et al, 1999). Since WIN-55 induces the mRNA expression of PPARa 

and 5 (Chapter 5), this may be a possible mechanism via which MMP gene 

expression is decreased in human OA chondrocytes. Furthermore, PPARy 

agonists have been shown to reduce IL-1 [3 induced MMP-1 expression in 

human synovial fibroblasts and chondrocytes via inhibiting DNA binding of AP-1 

(Fahmi et al, 2002).

7.1 Future Directions

Previously, broad range MMP inhibitors trialled for the treatment of OA have 

failed due to toxicity issues inhibition of MMP-1 is thought to contribute to 

skeletal deformities and lack of selectivity (Murphy and Nagase 2008; Krzeski et 

al, 2007; Tu et al, 2008). The present study has shown that WIN-55 inhibits 

both MMP-3 and -13 in a time and concentration dependent manner at the 

mRNA level. Since this study has only focused on inhibition of MMP-3 and -13 it 

would be interesting to determine the effects of WIN-55 on other MMPs which 

are thought to contribute to OA pathogenesis (Table 1.2) using a broader 

approach to analyse the expression of multiple MMPs with the use of mRNA 

and protein arrays. Interestingly, Tauber et al (2012) showed that WIN-55 had 

no effect on MMP-12 expression suggesting that MMP inhibition by WIN-55 

may be selective; however this requires further investigation in human OA 

chondrocytes. Furthermore, the decrease in IL-1 (3 induced pro-MMP-3 and pro- 

MMP-13 release from chondrocytes demonstrated by WIN-55 in the present 

study does not necessarily equate to a reduction in active MMPs which degrade 

proteoglycans and collagens, therefore further studies into MMP activity 

following WIN-55 treatment is required. It would also be interesting to 

investigate the effects of WIN-55 on ADAMTS-4 and -5 expression in human 

OA chondrocytes as these enzymes are important in the breakdown of 

proteoglycans principally aggrecan, which protects the ECM network from 

breakdown and thus its breakdown is a pre-requisite for collagen breakdown 

(Little etal, 2007).
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Interestingly, studies have demonstrated that MMP-1 and MMP-13 expression 

requires differential-signalling pathways in articular chondrocytes (Mengshol et 

al, 2000). MMP-13 expression was shown to require NFkB, JNK and p38 

phosphorylation and MMP-1 expression was dependent on p38 and 

ERK1/ERK2 phosphorylation (Mengshol et al, 2000). In the present study WIN- 

55 inhibited both IL-1 p induced MMP-3 and -13 mRNA expression and IL-1 p 

induced c-Jun, ERK1/ERK2 and IkB phosphorylation but failed to counteract IL- 

1P induction of p38 phosphorylation. These finding may indicate that WIN-55 

inhibits distinct IL-1 p signalling pathways and may therefore display selective 

inhibition of MMPs, however this requires further investigation as many MMPs 

in addition to ADAMTSs are involved in the pathogenesis of OA.

In this study WIN-55 was also shown to decrease the mRNA expression of 

TIMP-1 and -2 in a time and concentration dependent manner. These findings 

suggest that TIMPs and MMPs share a common expression pathway. Both 

MMPs and TIMPs share a common AP-1 binding site in their promoters and the 

AP-1 complex is formed by c-fos and c-Jun heterodimers or c-Jun and c-Jun 

homodimers (Borden and Heller 1997; Vincenti and Brinckerhoff 2002). 

Findings presented in this study have shown that WIN-55 significantly reduced 

IL-1 p induced c-Jun phosphorylation therefore possibly reducing the amount of 

c-Jun available for the formation of AP-1. Although this is a possible mechanism 

via which WIN-55 mediates its effects, further investigation using transcription 

factor binding studies is required. Since, PPARs are thought to interact with c- 

Jun to prevent the formation of the AP-1 complex thus having transcriptionally 

suppressive activities (Delerive et al, 1999) it is necessary to elucidate the 

effects of WIN-55 on PPARs/c-Jun interactions in human OA chondrocytes. In 

the present study a pre-treatment of WIN-55 for 48 hours was required to inhibit 

IL-1 p induced IkB, c-Jun and ERK1/ERK2 phosphorylation. These findings 

suggest that WIN-55 may be acting via an indirect pathway to inhibit IL-1 p 

signalling. In addition, WIN-55 has been shown to increase the mRNA 

expression of PPARa and 5 following 48 hours treatment (Chapter 5). Therefore 

PPARs may interact with other kinases in addition to c-Jun, thus acting to 

suppress their phosphorylation and subsequent activation of target genes 

following IL-1 (5 stimulation, this requires further investigation.
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In human OA cartilage, miR-146a may decrease IL-1 (3 induced MMP-13 

expression via downregulation of IRAKI and TRAF6, (Yamasaki et al, 2009). 

Furthermore up-regulation of MMPs in human OA chondrocytes was shown to 

be associated with demethylation of specific CpG sites in the promoter regions 

(Roach et al, 2005). WIN-55 may also have effects at the DNA level to prevent 

MMP expression, including induction of histone deacetylases such as SIRTI or 

modulation micro-RNAs. In order to identify the effects of WIN-55 on micro- 

RNAs and DNA methylation would require further investigation using In situ 

hybridization and methylation-sensitive restriction enzymes respectively. In 

addition WIN-55 may affect the binding of AP-1 to consensus sequences in the 

MMP promoter, effects that have been shown by gel mobility and supershift 

assays in human synovial fibroblasts and chondrocytes on activation of PPARy 

with selective agonists (Fahmi et al, 2002; Francois et al, 2004). Since WIN-55 

is known to bind to PPARy (O'Sullivan 2007), it is possible that WIN-55 induces 

similar actions at this receptor thus inhibiting MMP expression.

Cannabinoids have been shown to prevent joint damage in vivo and in bovine 

nasal chondrocytes WIN-55 and HU210 were shown to inhibit IL-1 a induced 

proteoglycan and collagen degradation (Mbvundula et al, 2006; Malfait et al, 

2000; Sumariwalla et al, 2004; Zurier et al, 1998). These findings suggest that 

WIN-55 may also prevent cartilage breakdown in human OA chondrocytes via 

preventing the resorption of collagens and proteoglycans, therefore it would be 

important to investigate the effects of WIN-55 on ECM molecules, in human OA 

chondrocytes principally collagen type II and aggrecan.

In the present study activation of individual cannabinoid receptors failed to 

reduce IL-1 (3 induced MMP-3 and -13 expression in human OA chondrocytes. 

However when used in combination activation of cannabinoid receptors CB1, 

CB2 and PPARa, 5 and y reduced IL-1 p induced MMP-3 and -13 expression. 

These findings suggest that WIN-55 may mediated its effects via the activation 

of multiple cannabinoid receptors, which could be investigated using 

cannabinoid receptor antagonists. It is possible that WIN-55 may induce its 

effects in human OA chondrocytes by a yet unidentified cannabinoid receptor 

as also suggested by others (Selvi et al, 2008; Curran et al, 2005). In addition 

different combinations of agonists which target other cannabinoid receptors
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were not investigated in this study but have been shown here to be expressed 

by chondrocytes including GPR55, GPR18 and TRPV1. There may also have 

effects on MMP-3 and -13 expression. The preliminary data obtained using 

combinations of cannabinoid receptor agonists on the IL-1 p signalling pathways 

should be interpreted with caution, since these treatments resulted in a 

significant decrease in cell viability. Furthermore the effects of WIN-55 in 

addition to selective agonists on the total amount of (unphosphorylated) c-Jun, 

IkB, p38 and ERK1/ERK2 requires further investigation.

In this study, WIN-55 treatment appeared to affect the cellular localisation and 

protein expression of CB1, CB2, GPR18, TRPV1 and PPARa and 5 in OA 

chondrocyte cultures. In order to further elucidate the effects of WIN-55 on 

cannabinoid receptor expression, cellular localisation and activation within OA 

chondrocytes requires further investigation.

Endogenous cannabinoids AEA and 2-AG bind to cannabinoid receptor CB1 

and CB2 and have been identified in the synovial fluid of OA patients (Pertwee 

2005; Richardson et at, 2008). Modulation of endogenous cannabinoids in the 

joint may be of therapeutic value in the treatment of arthritis. Since, 

endogenous cannabinoids including AEA and 2-AG are readily broken down by 

FAAH and MAGL respectively, inhibition of this process may lead to increased 

expression of endogenous cannabinoid within the joint (Pertwee 2005), 

however the effects of endogenous cannabinoids on chondrocyte metabolism 

requires further investigation.

Although cartilage breakdown is a key pathological feature of OA, other tissues 

of the joint are also involved including the bone and synovium, which together 

contribute to the disease progression (Loeser et at, 2012). Since cannabinoid 

receptors are thought to be involved in bone metabolism as shown by in vivo 

animal models (Idris and Ralston 2010) and here it is shown that cannabinoid 

receptors are expressed by osteocytes in OA bone it is also important to 

determine the effects of cannabinoids on bone remodelling during OA.

7.2 Conclusions

The present study has shown that cannabinoids may be of therapeutic value in 

the treatment of arthritis via inhibiting IL-1 (3 induced MMP expression and IL-1 (3
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signalling pathways. Data presented here shows that cannabinoid receptors, 

are expressed by OA chondrocytes in all zones of articular cartilage and 

receptor expression of CB1, CB2, GPR55 and PPARa and 5 did not appear to 

be associated with grade of degeneration, suggesting that cannabinoid receptor 

targeted therapy may be effective even in higher grades of degeneration. 

However decreases in GPR18 and TPRV1 expression in the deep zone of 

cartilage and PPARy expression in osteocytes was associated with grade of 

degeneration suggesting these receptors may be involved in the pathogenesis 

of OA.

Furthermore, co-expression of cannabinoid receptors in OA cartilage suggests 

that WIN-55 may mediate its effects via multiple receptors. The combinational 

use of cannabinoid receptor agonists for CB1, CB2 and PPARa, 6 and y 

reduced IL-1 (3 induced expression of MMP-3 and -13 in human OA 

chondrocytes suggesting that WIN-55 may mediate its effects via activating 

multiple cannabinoid receptors. Collectively, these findings provide insight into 

the chondroprotective effects of activation of cannabinoid receptors expressed 

by chondrocytes and suggest cannabinoids may present a possible therapy in 

the prevention of cartilage breakdown in OA.
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Appendix 1 Human OA Patient Samples

Patient
Sample

Gender Age Sample
ID

Anatomical
Compartment

Macroscopic
Grade

HC1 Male 64 HG1 (1) Left knee femoral 2
condyle

HC2 Female 79 HC2(3) Posterior condyle 3-4

HC3(3) Posterior condyle 2

HC3 Female 73
HC3(4) Tibia 3

HC3(6) Trochlea 3
HC4(1) Posterior femoral 3

condyle
HC4 Female 67

HC4(2) Posterior femoral 3
condyle

HC4(3) Medial femoral 1
condyle

HC4(6) Medial femoral 3
condyle

HC5(1) Medial femoral 2-3
condyle

HC5 Female 57 HC5(2) Posterior femoral 0
condyle

HC5(4) Lateral femoral 2
condyle

HC5(5) Medial Tibial 1
Plateau

HC5(7) Femoral trochlea 3-4

HC6(1) Lateral Tibial 0
HC6 Female 72 Plateau

HC6(2) Lateral Femoral 1
Condyle

HC6(3) Medial Femoral 2
Condyle
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HC6(4) Lateral Femoral 2
Condyle

HC6(5) Femoral Trochlea 3-4
HC6(6) Medial Tibial 3-4

Plateau
HC7 Male 72 HC7(1) Posterior femoral 0

condyle
HC7(6) Medial femoral 4

condyle
HC9 Female 82 HC9(1) Posterior femoral 0

condyle
HC9(3) Posterior femoral 2
HC9(7) condyle 4

Medial femoral
condyle

HC10 Male 73 HC10(1) Trochlear 0
HC10(6) Medial femoral 4

condyle
HC11 Male 72 HC11(1) Posterior condyle 0

HC11 (2) Tibia 2-3
HC11(3) Posterior condyle 3
HC11(4) Lateral condyle 3
HC11(6) Medial condyle 4

HC12 Female 67 HC12(5) Lateral tibial plateau 4

HC13 Female 83 HC13(2) Medial tibial condyle 2
HC13(4) Lateral posterior 3

condyle
HC14 Female 89 HC14(3) Trochlea 2

HC15 Female 74 HC15(3) Trochlea 3
HC15(4) Medial femoral 3

condyle
HC16 Male 81 HC16(2) Posterior femoral 1

condyle
HC16(4) Posterior femoral 3

condyle
HC16(6) Tibia 3

HC17 Female 60 HC17(1) Medial femoral 0
condyle

HC17(4) Trochlea 2
HC17(6) Posterior condyle 3

HC18 Male 65 HC18(1) Laterial posterior 1
femoral condyle
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HC18(4) Lateral tibial condyle 2-3
HC19 Female 57 HC19(1) Lateral femoral 0

condyle
HC19(2) Posterior condyle 0
HC19(3) Tibia 2

HC20 Male 77 HC20(1) Posterior condyle 0

HC21 Female 64 HC21 (4) Lateral femoral 2
condyle

HC21 (5) Medial femoral 2-3
condyle

HC22 Male 59 HC22(4) Posterior femoral 3
condyle

HC23 Female 73 HC23(4) Posterior condyle 2
femoral medial

HC: Human cartilage
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Appendix 2 Primer Efficiency’s

Taqman
Gene
Expression
Assay

Assay ID Threshold Amplification Primer 
Factor efficiency 

(%)

GAPDH Hs9999905 ml 0.5 1.95 95
18S Hs99999901 s1 0.75 1.93 93.50
MMP-3 HS00968305 ml 0.5 1.97 96.90
MMP-13 HS00233992 ml 0.5 1.99 98.68
TIMP-1 HS00171558 ml 0.75 2 99.7
TIMP-2 HS00234278 ml 0.75 1.95 95.30
IL-8 HS00174103 ml 0.5 1.94 94.11
NGF Hs01113193 ml 0.5 1.80 80.37
Substance P Hs00243225 ml 0.5 Not Determined
PPARa Hs00947539 ml 0.5 1.74 74.03
PPARS Hs00606407 ml 0.5 1.97 97.49
PPARy Hs01115513 ml 0.5 Not Determined
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Appendix 3 Automatic Wax Processing Schedule

50% IMS 90 min
70% IMS 60 min
99% IMS 60 min
99% IMS 60 min
99% IMS 60 min
99% IMS 90 min
99% IMS 90 min
SUBX 90 min
SUBX 90 min
SUBX 90 min
Molten Wax 90 min
Molten Wax 120 min
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Appendix 4 Suppliers Details

Abeam

Acris Antibodies

Ambion

Bioline

Cayman Chemical

Fisher Scientific

Graphpad Software Inc

Invitrogen

JeioTech

Lecia

Life Technologies 

Nunc

Olympus Corporation

Peprotech

PerkinElmer

Promega

Qiagen

R&D systems

Sigma-Aldrich

StatsDirect Ltd

Thermo Scientific

Tocris

Vector Laboratories

Cambridge, UK 

Herford, Germany 

Paisley, UK 

London, UK 

Tallin, Estonia 

Loughborough, UK 

San Diego, USA 

Paisley, UK

Jencons, East Grinstead, UK 

Milton Keynes, UK 

Paisley, UK 

(Fisher Scientific)

Tokyo, Japan 

London, UK 

Massachusetts, USA 

Southampton, UK 

Crawley, UK 

Minneapolis, USA 

Dorset, UK 

Altrinham, UK 

Hemel Hampstead, UK 

Bristol, UK 

Peterborough, UK
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