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Abstract

The principle objective of the work presented in this thesis is to investigate and 

demonstrate the possibility of utilising the inherent properties of long-period gratings 

(LPGs) to detect the existence and concentration of a given gas in the region 

immediately surrounding the fibre cladding. The principle and the viability of using 

LPGs for sensor applications is supported by the preliminary results reported here. 

However, the sensitivity of the sensor requires further improvement before it can in 

any way challenge the existing sensors in this field.

The operational characteristics and limitations of existing optical sensors are reviewed 

and the advantages of a LPG based optical sensor highlighted. Thorough 

explanations of the theory and principles of light propagation, mode formation, and 

mode coupling in optical fibres are presented.

Computer simulations predicting the optical effects due to changes in ambient indices 

from theoretical conditions are successfully derived, confirming the results obtained 

by experimental investigation.

Various established coating methods are investigated and utilised in the application of 

optically sensitive compounds adsorbed onto the cladding with different levels of 

success, the poly-electrolyte self assembly (PESA) and evaporation methods proving 

most suitable. A novel method of monitoring the build up of PESA layers in-situ 

using surface plasmon resonance (SPR) methods is introduced.



The coating chemicals used in this investigation showed some optical sensitivity at 

the optimum wavelengths used in optical fibres to the various gases being monitored, 

in most cases causing a detectable change in the optical characteristics of the modes in 

the LPG.

This study has shown the possibility of using a suitably prepared LPG as a gas sensor. 

The LPG is coated with a chemical whose refractive index is changed by absorption 

of a given gas and thus the change in the coupling wavelengths being caused by the 

existence of the gas. Maximum shifts in coupling wavelength of ±1.5 nm for 

relatively high gas concentrations are observed.

The possibility of using a coating material which absorbs water, or surrounding the 

LPG with a suitable liquid is also demonstrated, the refractive index of the coating or 

liquid and thus the coupling wavelength shift being affected by the reaction of the gas.

The possibility of using a single temperature immune LPG for ambient index sensing 

by observing different coupling wavelengths in the same grating is also reported.
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Glossary of Abbreviations
CCD Charged coupled device

Chromo 1 Cyclo-tetrachromotropylene

CuPc' (C(CH3 ) ) 4  Copperllphthalocyanine-tetra-tert-butyl

CuPc' (S0 3 'Na+) 4  Copperllphthalocyanine-tetra-sulphuric-sodium salt

EELED Edge emitting light emitting diode

EMI Electro-magnetic interference

FBG Fibre Bragg grating

LB Langmuir-Blodgett

LED Light emitting diode

LP Linearly polarised

LPG Long period grating

n 2 Nitrogen

n o 2 Nitrogen Dioxide

OSA Optical spectrum analyser

PESA Polyelectrolyte self-assembly

PAA Poly-alylamine hydrochloride

PPI Planar polarized interferometer

PPS Poly-phenylsulphide

SPR Surface plasmon resonance

TE Transverse electric

TIR Total internal reflection

TM Transverse magnetic

UV Ultra-violet



Glossary of Symbols
B Magnetic induction

D Electric displacement

dp Penetration depth of evanescent field

E  Electric field

/  Frequency

Im mth order modified Bessel function of the second kind

J  mth order Bessel function of the first kindm

J 'm First derivative (wrt radius) of the mth order Bessel function of the first

kind

k  Wave number

Km mth order modified Bessel function of the first kind

K'm First derivative (wrt radius) of the mth order modified Bessel function

of the first kind 

/ Radial mode number

Lg Grating length

m Azimuthal mode number

n Refractive index

neff Effective refractive index

Nm mth order Bessel function of the second kind

R Reflectance

Rz(r) Radial field function

r Radius

T Transmittance



t Time

u Normalised transverse phase constant (normalised propagation

constant) in the guiding medium 

w Normalised transverse attenuation constant (normalised propagation

constant) in the surrounding medium 

P  Propagation constant

pt Transverse propagation constant

5ncore Difference in refractive indices of core and grating

Eo Free space permittivity

$ Phase shift

K  Coupling coefficient

A  Grating period

X Wavelength

A b r a g g  Coupling wavelength in FBG

Xcup LPG coupling wavelength

fi0 Free space permeability

0 Incident angle at the refractive index boundary of the guiding medium

6C Critical angle

p  Reflection coefficient

pc Current density

T Transmission coefficient

(D Angular frequency

'P Total electric field of a 2 wave guide coupler

\f/ Wave displacement of electric field vector
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Chapter 1

Introduction

1.1 Importance and Relevance of Gas Sensors

There are many industrial and commercial situations where it is important to be aware 

of the presence and concentration of various gases. These situations may include 

emissions of waste gases into the atmosphere, human exposure to ambient gases or 

fumes in industrial, commercial or public environments, or the build up of gases in 

potentially volatile environments. Detection of the types and concentrations of these 

various gases will allow the control of emission rate and safe working conditions or 

exposure limits to be determined and implemented. Gas sensing is currently 

performed using electrical and/or optical techniques, which offer limited accuracy and 

reliability.
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1.2 Limitations of Electronics Based Gas 
Sensors

Existing electrical sensors are sensitive to electro-magnetic interference from 

electrical or magnetic equipment in the vicinity of the sensor or the cables carrying 

the information to the processing mechanism. This interference may swamp the low 

level signal detected by the sensor-receiver. The electrical connections may also be 

close to the sensing head, which would be undesirable in a potentially volatile 

environment.

1.3 Limitations of Existing Optical Based Gas 
Sensors

Optical Sensors are inherently immune to electro-magnetic interference and can 

therefore be used more effectively in such environments. Optical sensors which rely 

on variations in the intensity of the input signal can be affected by fluctuations in the 

light source due to internal or external conditions. For accurate intensity detection it 

is therefore imperative to employ a high stability light source with compensating 

equipment for ambient variations. The most effective optical methods of gas 

detection include interferometric devices or optical fibres, as in fibre Bragg gratings 

(FBGs). These optical methods do not rely on intensity of the signal from the 

detector, but use a more reliable and accurate measurement of wavelength shift. While
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the optical signal can be transported far away from any volatile environment before 

any electrical connections are made, the interferometric devices require intricate 

positioning of the optical components, whilst the optical fibre devices may require 

accurate modifications to the cladding, which reduce the strength and integrity of the 

fibre.

1.4 Advantages of using Long Period Gratings 
as Gas Sensors

The spectral response of a long period grating (LPG) is dependant among other 

considerations on the medium surrounding the cladding and thus overcomes the 

problems associated with the previously mentioned types of sensors, requiring no 

electrical connections anywhere near the sensing environment or any intricate 

positioning or modifications to the cladding. To use an LPG as a gas sensor therefore 

requires only that the refractive index of the medium around the cladding change 

adequately in the presence of a given gas. This refractive index change may be 

caused by coating the cladding with a chemical whose refractive index will change on 

contact with that gas. Research into the possibilities of the LPG as such a sensor is 

the subject of this thesis.
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1.5 Research Objectives

The fundamental objective of the work presented in this thesis is to investigate the 

suitability of utilising a suitably adapted long period grating for use as a gas sensor, 

which can overcome the inherent problems of existing gas sensors whilst providing 

equal or improved levels of reliability, accuracy and sensitivity. In order to achieve 

this, the following objectives have been identified:

• Review existing extrinsic and intrinsic fibre sensors, the production of fibre 

gratings, and the operational characteristics of fibre Bragg gratings and long 

period gratings.

• Review the equations and computer programs used to simulate light 

propagation, the formation of modes, and mode coupling in optical fibres.

• Review the existing optical detection techniques and the suitability of each for 

processing the optical signals received from the sensor.

• To gain a thorough understanding of the characteristics of light propagation 

within an optical wave guide, mode formation , classification and coupling in 

optical fibres, including derivation and applications of the relevant equations 

and theories.
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• To create computer simulation programs to predict the light propagation, 

mode formation and mode coupling in optical fibres and long period gratings, 

with which to compare the experimental findings.

• To investigate existing methods of thin film coating procedures and optically 

sensitive compounds and the suitability of each for coating the fibre cladding.

• To gain experience, confidence and proficiency in handling, cleaving, coating, 

illuminating, and working with optical fibres.

• To experimentally confirm and reproduce existing theory and reported results 

in long period grating applications.

• To experimentally investigate the viability of using a suitably coated long 

period grating as a gas sensor and the possibility of inherent temperature 

compensation.

1.6 Order of Thesis Presentation

This thesis is divided into eight chapters beginning with an introduction in Chapter 1.
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Chapter 2 is a literature review which details the history and development of optical 

fibre technology, from uses as merely a light guiding medium to the concepts of stand 

alone sensors such as interferometry, fibre Bragg gratings (FBGs), and long period 

gratings (LPGs). This chapter also discusses existing techniques available to process 

the optical signals into electronic information for storage or visual display, and the 

progress of computer simulation in this field.

Chapter 3 explains the theoretical aspects of optical fibre technology, from the 

conditions required for simple light guidance, through the derivation of equations 

describing the properties of the various guided modes, to the operational 

characteristics of the LPGs.

Chapter 4 describes the computer programs written as part of this investigation to 

simulate and compare to the results obtained by experiment, utilising the formulae 

derived in the previous chapter.

Chapter 5 explains various chemical coating procedures and the methods used to 

investigate the feasibility of these procedures for the coating of the fibre cladding.

Chapter 6 describes the experimental section of the investigation, drawing 

conclusions as to the practical possibility of using a suitably coated LPG as a gas or 

temperature sensor, and as a multi parameter sensor with its own integral immunity or 

compensation to the effects of the unwanted measurand.

Chapter 7 outlines the major contributions of this thesis and the conclusions reached.
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Chapter 8 discusses the direction in which further investigation may be taken, to 

possibly allow the long period grating to be ultimately used as a gas sensor.

1.7 Original Contributions

During the course of this work the author has:

1. Gained a thorough understanding of the principles of optical fibres, with special 

focus on long period gratings, allowing the application of these principles towards 

the investigation into the suitability of using such gratings in the monitoring of 

gaseous environments.

2. Derived and modified existing equations describing and predicting the 

propagation of light, mode formation and mode coupling in long period gratings, 

and the effects of external influences on each.

3. Designed computer simulations to predict, verify, and compare with, the results 

obtained experimentally.
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4. Determined suitable methods of coating the fibre cladding, including a novel 

method of monitoring the build up of in-situ polyelectrolyte self assembly 

coatings using surface plasmon resonance techniques.

5. Demonstrated for the first time the principle and the viability of utilising a 

suitably prepared LPG for gas sensing applications, the temperature dependence 

of the directional shift in coupling wavelength on the grating period, and thus the 

possibility of the inherent temperature immunity of this and other types of LPG 

sensors.
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Chapter 2

Literature Review

2.1 Introduction

The use of light in communication and sensing mechanisms is growing rapidly due to 

the comparatively limitless speed of information transfer and the immunity to most 

types of interference. Optical fibres are proving to be a most efficient medium in the 

field of optical systems development.

An optical fibre consists of a central cylindrical glass core and a surrounding 

cylindrical glass cladding as shown in Figure 2.1, the core being of slightly higher 

refractive index than the cladding [1-3].
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C o r e

C l a d d i n g

Figure 2.1: Optical fibre structure

The history of integrated optics began in December 1969 with a paper published in 

the Bell Technical Journal [4], discussing the idea of integrated circuits using 

photons instead of electrons [5-9]. The designs of today’s optical fibre technology 

have differed very little from these original proposals [10]. Since then optical fibre 

technology has not only taken over a major share of the communication market, due 

mainly to its much greater bandwidth availability, but has also branched out into other 

fields such as signal processing [11-16], amplification [17-19], and sensors [20-33] to 

name but a few.

Optical fibre is a physical medium and as such is affected by various external 

influences such as heat [34-39], stress, [40-45] etc., each of which, to some degree, 

will affect the propagation of the light within the fibre. These are undesirable 

consequences in communication systems, but can be effectively utilized in sensor 

applications [46,47]. Advantages of optical fibre sensors over most conventional 

sensors include greater sensitivity, electrical passiveness, wide dynamic range,
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multiplexing capabilities, small physical size and weight, robust, corrosion resistance, 

fast response times and less susceptibility to electro-magnetic interference (EMI) [48- 

50]. Both point and distributed configurations and simultaneous sensing of more 

than one parameter are possible [51-63].

This chapter is a review of the existing types of sensors which utilise the light guiding 

capability and the intrinsic and extrinsic qualities of optical fibres. The inherent 

advantages and disadvantages of each type of sensor are highlighted. Section 2.2 is 

an overview of the different types of sensors explaining the characteristics of the fibre 

which are utilised and the disadvantages for use as a gas sensor inherent to their 

design. Section 2.3 describes the history and concept of fibre gratings and production 

methods. Section 2.4 briefly explains the theory of fibre Bragg gratings and their uses 

and limitations as sensors. Section 2.5 introduces the concept of the long period 

grating and its greater suitability over previous types of optical fibre based sensors for 

use as a gas/chemical sensor. Section 2.6 discusses suitable methods for capturing 

and processing the output signal from a long period grating sensor. Section 2.7 covers 

the background and the origins of the equations used in the computer programs 

written as part of this research to simulate the actual results obtained experimentally.
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2.2 Review of Optical Fibre Sensors

Existing optical fibre and integrated optics are classified as:

(i) extrinsic sensors where an unmodified fibre is used as the sensing medium or to 

transport light to and from an external sensing mechanism [64-66],

(ii) intrinsic sensors where the sensing mechanism is an integral part of the modified 

fibre [67,68],

2.2.1 Typical Examples of Extrinsic Optical Fibre Sensors

(i) Current Sensors [69-71]

Current carrying  
conductors

Optical fibre

Polarisation o f light

M agnetic 
field lines

Figure 2.2: Effect of electric/magnetic field on light polarization
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Linearly polarised light is transmitted through a fibre which is in close proximity to a 

current carrying medium. The magnetic field associated with this current will affect 

the polarisation of the light in the fibre as shown in Figure 2.2. Thus the comparative 

change in polarisation of the light at the detector will be an indication of the existence 

and strength of the current in the medium under test. This effect obviously cannot be 

utilized for gas sensing of any kind.

(ii) Interferometric Sensors

Input
W avelength

^  ^  M easureand

Output Light 
Intensity

Input Light 
Intensity

Reference

Figure 2.3: Operation of interferomic sensor

Interferometric methods [72-87] involve the sensing of changes to the refractive index 

or dimensions of the fibre as in strain or temperature sensing. Interferometry utilises 

two identical fibres connected in parallel to the same light source and detector as 

shown in Figure 2.3. Only one of the fibres is exposed to a measurand, while the 

other is used as a reference. As a result the optical properties of only the exposed 

fibre change, resulting in an optical phase or polarisation shift between the two fibres
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at their output ends and thus an intensity change in the interfering rays in the detected 

signal. The degree of phase shift indicates the stress or temperature change being 

measured. This process can also be used to detect ambient index changes (due to a 

gaseous or chemical environment) by removal of the cladding allowing the ambient 

conditions into direct contact with the core and thus to directly affect the mode 

structure of the core [88,89], The limitations of this method are the reduction in the 

strength and integrity of the fibres due to the removal of the cladding, the intricate 

positioning of the sensor and the fact that the interference is cyclic. This means that a 

phase shift of 2n would have the same interference effect on the output signal as 

phase shifts of 471, 6n, or any whole number of 271. Allowing for this cyclic effect 

would involve complicated modifications to the detected signal [90].

(iii) Selective absorption sensors [91,92]

Absorbing M edium

Optical Fibre

Collim ating Lens Focussing Lens 

Figure 2.4: Operation of selective absorption gas sensor

The fibre is used merely as a light guide as shown in Figure 2.4 to route the light to 

the sensing position, perhaps emitting the light through a gaseous environment where
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selective absorption will take place, and returning the resulting light back to a detector 

where the absorption spectrum will be processed. The fact that the light is not 

confined in the fibre core, the need for intricate positioning and the inflexibility of the 

associated optical components, and the possibility of contamination of the absorption 

spectrum by unwanted scattering prevents the use of this type of sensor in many 

applications.

2.2.2 Typical Examples of Intrinsic Optical Fibre Sensors

(i) Ambient Index (Evanescent Field) Sensors [93-111 ]

Chem ical / gas

Evanescent Field

cladding

core

cladding 

\  \

Light
transm itted

Chem ical / gas

Figure 2.5: Operation of ambient index (evanescent field) sensor

If the fibre cladding is removed to a thickness where the evanescent field will 

penetrate into the surrounding atmosphere as shown in Figure 2.5, selective 

absorption of the energy in the evanescent field and thus the light in the core will take 

place. The absorbed radiation will show a reduction in intensity when observed in the 

transmission spectrum, the wavelength o f which will be dependent on the gas or
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chemical surrounding the reduced cladding. Different gases/chemicals may absorb 

different wavelengths but again, the reduction of the cladding is intricate, time 

consuming and severely reduces the strength and integrity of the fibre.

(ii) Fibre Bragg Grating Based Sensors [112-122]

Light
Reflected

Grating Period
' \ K---------

Grating Length

Cladding

Cladding

Core

Light 
Transm itted

Figure 2.6: Operation of fibre Bragg grating sensor

Fibre Bragg gratings (FBGs), which are refractive index perturbations produced in the 

core by lithographic methods, reflect the wavelengths of incident radiation which are 

half the length of the grating period, whilst transmitting all other wavelengths as 

shown in Figure 2.6. FBG based sensors therefore only can be used to sense such 

effects as strain or temperature changes, as only a change in the period of the grating 

or the refractive index of the core in the region of the grating will result in a shift in 

the Bragg wavelength absent at the output of the fibre. They cannot be used to sense 

any measureand which does not directly affect these parameters and thus cannot
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easily be adapted to detect changes in gas/chemical concentrations in the region 

surrounding the cladding

(iii) Integrated Interferometric Methods [123-125]

These methods involve wave guide interferometers which are permanently integrated 

onto a chip, the operational characteristics and limitations being as in extrinsic 

interferometric methods.

2.3 Fibre Gratings

The concept of the fibre grating was demonstrated in 1978 by Hill et-al at the 

Canadian Communications Research Centre [126,127]. Launching intense blue light 

with a wavelength of 488 nm from an Argon ion laser into a germanium doped fibre 

core, it was observed that the fraction of the light intensity reflected increased with 

time, until virtually all of the light was being reflected. Further investigation led to 

the conclusion that the standing wave produced by the fraction of the light reflected 

from the end of the fibre had interfered with the forward travelling wave causing 

refractive index perturbations at the points of constructive interference in the core 

[128]. These refractive index perturbations themselves also effect fractional 

reflections creating further standing waves in phase with the original standing waves 

and compounding the effect on the refractive index perturbations, hence the gradual 

increase in the reflected fraction of the light towards saturation. These first



experiments resulted in the formation of gratings of approximately 90% reflectivity, 

but they could only operate at the writing wavelength. The increase in the refractive 

index with exposure time led to the discovery of a new non-linear effect in the fibres 

now known as photosensitivity [129].

The limitations of the Hill gratings to operational wavelengths at or close to the 

writing wavelength were overcome about 10 years later by Meltz et-al [130]. They 

demonstrated a method of writing a grating into a fibre core using ultraviolet radiation 

at 244 nm, whereby the radiation was made to form a holographic interference pattern 

through the cladding, which is essentially transparent to ultra violet radiation, on to 

the side of the core which is highly absorbing in the ultra violet. This meant that the 

gratings could be written into a core without the need for the removal of the cladding, 

and that the period could be controlled by the separation of the interference pattern 

maxima. The reflected wavelength was no longer limited to the writing wavelength 

but could be made to reflect almost any wavelength, including the longer wavelengths 

used in communications and sensors applications at which the transmission windows 

are situated [131-140].

Further improvements to the writing method have led to the phase mask technique in 

which a length of silica glass, periodically etched using photolithographic techniques 

is placed between the UV source and the side of the fibre [141-144]. The resulting 

diffraction pattern on the side of the fibre determines the grating period, which can 

therefore be controlled by the period and position of the mask and the writing 

wavelength. A typical phase mask writing technique is shown in figure 2.7. [145].
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Piezzo Electric Stage Translating Fibre 
at Pre-determ ined Rate

Optical Fibre

Phase M ask

Diffracted UV Light Alters 
Refractive Index o f Fibre Core at 
Selected Positions to Create Grating

244 nm UV Light Source
M irror Translating along Fibre 
at Pre-dertmines Rate

Figure 2.7: Phase mask writing technique for fibre grating

2.4 Fibre Bragg Gratings

Fibre Bragg gratings (FBGs) are usually written into the core of a single mode fibre 

using the phase mask method [78,146]. A typical fibre Bragg grating is shown in 

figure 2.8.
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Figure 2.8: Design and principle of operation of fibre Bragg grating

Cladding

Typical specifications of a fibre Bragg grating [147-149] are shown in Table 2.1.

Parameter Typical Value
core radius(rcore) 2-5 pm
cladding radius (rciaci) 50-75pm
grating period (A) 200-1000 nm
overall grating length ( L a ) 1 - 5 cm
index modulation of grating (6/w<?)
(difference in refractive index between grating and core)

10'4

core refractive index ( n COre) 1.480
cladding refactive index (nciac/) 1.458

Table 2.1: Typical specifications of fibre Bragg grating

The period of the grating is designed to reflect a required wavelength when the fibre 

is unperturbed [125,150,151]. This is achieved by selecting an appropriately spaced 

phase mask and finely adjusting the position and thus the separation of the diffraction 

maxima, whilst monitoring the output or reflected spectrum of the fibre. The
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conditions which must be met for a given wavelength (X bragg)  to experience 

maximum reflection are given by (2.1) [152-154]:

X bragg  -  2 nef/A  (2.1)

where ne/f is the refractive index of the core allowing for the angle of propagation of 

the radiation. This equation shows that only wavelengths which have an effective 

axial optical path length equal to twice the grating period will experience maximum 

reflection. This is because successive reflections will only be in phase if the extra 

optical path length travelled between periods is a multiple of whole wavelengths 

[155]. As the extra distance travelled will be twice the grating period, then a 

wavelength which is equal to twice the period will interfere totally constructively on 

reflection and destructively on transmission, effectively disappearing from the 

transmission spectrum as the phase imbalance compounds over successive reflections 

along the grating length [156]. So far only the reflection properties from successive 

periods have been considered. By treating the grating as a diffraction grating rather 

than a series of partially reflecting mirrors, the FBG condition can also be explained 

by diffraction theory. Thus the effect can be understood and the resulting formula 

proved using both theories as will be explained in the theory section. In both cases 

the forward propagating mode at which a given wavelength matches the 

aforementioned condition is said to couple into a reverse propagating mode at that 

wavelength. The fibre Bragg grating can be used in the reflection mode where only 

the coupling wavelength is present in the observed spectrum, or in the transmission 

mode where the coupling wavelength is absent from the observed spectrum, or both 

[151,152,157-159]. If an external measureand, for example temperature or strain, 

causes a change in either the grating period, the dimensions of the core, or the 

refractive index of the core or cladding, then the coupling wavelength will change
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proportionally thus allowing the FBG to be used as a sensor [160-162]. As shown in 

figure 2.8, since both reflected/diffracted and transmitted light rays are confined to the 

core then the characteristics of the resulting transmission or reflected spectra will not 

be affected by the medium surrounding the cladding [163,164]. To use a fibre Bragg 

grating as a gas/chemical sensor it is essential that all of the cladding is etched away 

at the sensor position allowing the effect of the gas/chemical on the ambient refractive 

index to interact with the light propagation and thus the modal structure in the core 

[88,163] (see figure 2.9).

Light
in

cladding

Light
reflected

core

cladding

Chem ical / gas

C hemical / gas

cladding

Light
transm itted

cladding

Figure 2.9: Design and operation of the FBG as ambient index sensor

The wavelength of interaction depends on the refractive index and thus the 

concentration or constitution of the surrounding medium. Fabrication of such sensors 

are rather complex and costly, and at the position where the cladding has been 

removed the mechanical strength and flexibility of the fibre is considerably reduced 

[165]. To overcome this difficulty there exists an alternative fibre grating design 

known as the long period grating (LPG).
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2.5 Long Period Gratings

Long period gratings (LPGs) can be written into the core of a single mode fibre by the 

same method as for an FBG [166-173]. A typical long period grating is shown in 

Figure 2.10.

Grating
Period Surrounding Medium

( H ambient)

Cladding
( f t clad)

Light
Core Radius
(f'core)

L ight 
/  transmitted

Cladding Radius
(rclad)

Cladding
( ft clad)

Surrounding M edium

Figure 2.10: Design and principle of operation of long period grating

Typical specifications of a long period grating are shown in table 2.2 [174,175].

Parameter Typical Value
core radius(rcort>) 2-5 pm
cladding radius { r ciad) 50-75 pm
grating period (A) 5-500 pm
overall grating length (Ls) 1 - 5 cm
index modulation of grating (8ncore)
(difference in refractive index between grating and core)

10'4

core refractive index (ncore) 1.480
cladding refactive index (nciad) 1.458
Table 2.2: Typical specifications of long period grating
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As shown in figure 2.10, specific wavelengths of the light propagating within the 

single mode core are coupled (diffracted) into one or more of the forward propagating 

cladding modes according to the LPG coupling formula, (2.2) [166,174-176]:

where the effective refractive indices are quoted as functions of the mode cladding 

number / and coupling wavelength X. On entering the cladding these wavelengths are 

attenuated due to further multiple partial reflections at the refractive index boundaries 

and imperfections at the cladding / air boundary, resulting in a detectable intensity 

loss of the affected wavelengths in the transmission spectrum at the output of the 

fibre. The wavelength and intensity of this coupling is determined by the refractive 

index of the medium surrounding the cladding [166,174-177]. The refractive index of 

the surrounding medium n ambient will only affect the effective refractive index of the 

cladding, whilst the core mode for each transmitted wavelength will remain 

unaffected. However, in order to escape from the core the wavelengths in the core 

mode must couple to a suitable cladding mode [177-179], thus any change in the 

cladding modes will cause a different core wavelength to match the coupling 

conditions in (2.2) and hence will determine the wavelengths at which core to 

cladding coupling will take place [180-183].

(2.2)
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Figure 2.11: Wavelength dependency of ray paths and critical angles of light
propagating through a fibre core.

As shown in Figure 2.11, the longer wavelengths in the core traverse at steeper 

reflection angles than the shorter wavelengths, since they are refracted less than the 

shorter wavelengths on entering the fibre core and have smaller critical angles 0C 

(allowing steeper incidence angles for total internal reflection) [184]. Longer 

wavelengths are also diffracted through greater angles than shorter wavelengths and 

thus they will be incident on the core/cladding interface at steeper angles [185], 

causing them to couple to the higher order cladding modes, which themselves have 

steeper directions of propagation in the cladding [186-189]. As the reflectivity of the 

core/cladding interface reduces with the angle of incidence [190], these steeper rays 

will be attenuated more than the shorter wave lengths as a greater percentage of the 

energy will be transmitted out of the core into the more dispersive cladding. This 

condition and the fact that the propagation constants of the higher order cladding
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modes are affected to a greater degree by ambient index change [191], generally leads 

to utilization of the higher order mode coupling in long period sensors [192].

It has been shown that the coupling wavelengths display greater shifts in the higher 

order cladding modes as the ambient index approaches the cladding index, than when 

the ambient index is much less than the cladding index [165,193]. When the ambient 

index reaches that of the cladding the attenuation of the longer core wavelengths 

which couple to the higher order cladding modes is greatly reduced to almost 

negligible proportions, (as in this situation there are then no existing cladding modes 

into which the wavelengths in the core mode can couple) not increased as would be 

expected for a now almost infinite cladding. However, as the ambient index 

increases above that of the cladding, the coupling wavelengths again begin to be 

attenuated, but can be seen to have shifted back to values similar to the coupling 

wavelengths in air. As the ambient refractive index increases further a slight red shift 

is evident, but the greatest detectable effect is the gradual increase in the attenuation 

of these coupling wavelengths.

Another aspect of the LPG has been reported where the LPG is utilized in the 

reflective mode, using higher order harmonics of the broadband source [194]. This 

allows more tolerance in the source wavelength range and more selectivity of the 

wavelength(s) to be monitored, rather than the more accurate matching of wavelength 

and grating as in normal fibre Bragg grating reflective strain or temperature sensing. 

But as the light is confined to the core, the ambient refractive index should not affect 

these propagation conditions, a consideration which may prevent the use of this in the 

development of a gas sensor.
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2.6 Signal Processing

The vast majority of the published data are based on laboratory experiments where the 

wavelength shifts using an optical spectrum analyzer have been detected. No 

references as to how the signal would be processed for an actual operational sensor 

are provided. Methods proposed for capturing and processing the output signal 

include the use of:

i) optical filters [195] in which a wavelength band of the transmitted radiation 

will be selected via an optical filter placed at the exit of the fibre and directed 

onto an optical detector. Thus any shift in the transmitted wavelength will 

result in a change in the flux density of the radiation incident on the detector 

and a corresponding change in detector current. The problem with this 

method is that there may be uncertainty in the direction of shift, and if the shift 

is too great the signal may disappear entirely.

ii) wavelength selective optical detectors [196,197]which would show a change

in detector current as the transmitted wavelength shifts.

iii) charged coupled device (CCD ) arrays [198-200] in which each CCD detector

would be positioned such that it would detect the intensity of a given 

wavelength after the transmitted light has been split into its spectrum via a 

diffraction grating or prism.

iv) co-ordinated wavelength sweeping lasers with broad sensitivity optical

detectors [201], in which the laser wavelength would be swept over a given 

range whilst the detector current output is coordinated with the wavelength of 

the transmitted radiation.
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2.7 Computer Simulations

Several papers [202,203] show comparisons between computer simulated results and 

the actual experimental results, but give very little information on what methods were 

used in the simulation calculations. Analytical techniques used to model the modes in 

the core and cladding, which may be used in computer simulations seem to be split 

into two schools of thought. The first [204,205] treats the cladding as a multimode 

fibre core when calculating the properties of the cladding modes, whilst the other 

[206] takes the refractive indices of both the core and the cladding into account. The 

former method uses a much simpler expression than the latter, accepting and allowing 

for the errors introduced by the fact that the effect of the core index on the cladding 

modes is ignored. The latter, however, is a more accurate but far more complicated 

expression. Attempts have been made to reproduce the results from one of the few 

papers found which actually shows the calculations used to determine the mode 

coupling wavelengths and attenuation. However, errors were uncovered in the quoted 

expression [207], and corrected by inspection of another publication [205] referenced 

by the author.
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2.8 Summary

This chapter has reviewed the existing types of sensors highlighting the advantages 

and disadvantages of each, explaining the characteristics of the fibre which are 

utilised and the disadvantages for use as a gas sensor inherent to their design. The 

theory of fibre Bragg gratings, the long period grating, and suitable methods of signal 

processing have been briefly discussed. Finally the equations used in the computer 

programs designed as part of this investigation were introduced.
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Chapter 3

Theory

3.1 Introduction

The following chapter explains the theory of light propagation in optical fibres and 

the effects any inconsistencies in the optical or physical parameters may have on the 

propagation characteristics.

Section 3.2 gives the requirements which need to be met for light to undergo total 

internal reflection (TIR) and therefore be guided along the fibre length. Section 3.3 

explains how modes are formed in the fibre, the classification of these modes being 

discussed in Section 3.4. In Section 3.5 the equations predicting the characteristics of
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light propagation are derived from Maxwell’s Equations. These equations are then 

applied to the light rays in optical fibres in Section 3.6, and the mathematical 

derivation progresses to mode classification in Section 3.7. Section 3.8 explains the 

concept of the evanescent field which is an important consideration in light 

propagation in optical fibres. Section 3.9 briefly introduces coupled mode theory, 

which is the concept used to explain energy transfer between modes in fibre gratings. 

Fibre Bragg grating theory is discussed in Section 3.10, one major aspect of which, 

the effective refractive index, being covered thoroughly in Section 3.11. Finally, 

Section 3.12 introduces the theory behind long period gratings, with the effect of 

changes in ambient index on the mode coupling and the intensity of this coupling 

being explained in Sections 3.13 and 3.14 respectively.

3.2 Light Propagation Within an Optical Wave 
Guide

An optical wave guide consists of a central glass core and a surrounding glass 

cladding, the core being of slightly higher refractive index than the cladding [175,208] 

as shown in Figure 3.1.
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Figure 3.1: Incident angle dependency of ray paths in optical fibre

As light is launched into the core it will enter the core at a continuum of incident 

angles limited only by the solid angle between the source and the fibre aperture [209- 

214], Light entering the core which is incident on the core/cladding interface at 

angles less than the critical angle will be partially reflected back into the core and 

partially transmitted into the cladding [215], whilst light incident on the core cladding 

interface at angles greater than the critical angle will undergo total internal reflection 

(TIR) and remain within the core [216]. The partially reflected light remaining in the 

core will undergo the same partial effects each time it meets the core cladding 

interface as it travels along the fibre until, after only a short distance, the reflected 

fraction of the light is negligible within the core. The partially transmitted light in the 

cladding will undergo a similar process as the light within the core. Depending on the 

critical angle at this interface, it will undergo TIR or be partially reflected back into 

the cladding and partially transmitted into the air. The light leaving the cladding is 

immediately lost from the fibre, whilst the partially reflected light will again undergo 

the same effect each time it meets the cladding/air interface until the reflected fraction 

is again negligible. The light in the cladding which experiences TIR at the
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cladding/air boundary, however, will travel along the wave guide being partially 

transmitted and partially reflected to and from the core and the cladding each time it is 

incident on the core/cladding interface. The cladding is more dispersive than the core 

[177] and as such each time the light re-enters the cladding more and more will be 

attenuated until its effect is negligible in the wave guide [217]. Thus, after only a 

very short distance, the only guided rays travelling along the wave guide are those 

which enter the core at angles greater than the critical angle of the core/cladding 

interface.

3.3 Formation of Modes

The guided radiation propagating along the fibre core reflects back and forth from the 

core/cladding interfaces thus experiencing interference as shown in Figure 3.2.

Cladding

Core

W avelength (A,)

W ave
Front

Cladding

Figure 3.2: Mode formation in optical wave guides
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If the optical path length (a to b) after reflections from 2 successive boundaries is a 

whole number of wavelengths, then the interference will be totally constructive and 

the light will travel through the fibre at this angle of propagation [218]. However, if 

the distance is not a whole number of wavelengths then the interference will be 

destructive. The light intensity attenuates at each reflection until after a short 

distance no light will be evident at any angle of propagation other than the angles at 

which constructive interference occurs. Depending on the diameter and optical 

properties of the core and cladding, the core may allow the possibility of one or many 

directions in which this condition may be satisfied. These directions are known as 

modes [46] and are given numerical values from 0 for the first mode to one less than 

the maximum number existing in the core. As the numerical value increases the angle 

of incidence at the core cladding boundary decreases [219] (the ray follows a steeper 

path within the core). Thus the light forms travelling waves reflecting back and forth 

in modes along the length of the wave guide [220]. As the light propagates, however, 

interference will not only occur between the rays reflected from successive interfaces 

to form the modes, but also between those incident and reflected from the same 

interface in each modal direction [220]. This will form a standing wave across the 

core as shown in Figures 3.3 and 3.4 and its electric field intensity pattern will depend 

on the mode number. The mode number is determined by the number of times the 

transverse standing wave pattern contains zero amplitude across the fibre [218,221- 

224].
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W ave Front 
M axim a

W ave Front 
M inim a
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3.4 Mode Classification in Optical Fibres

Since the fibres utilised in long period gratings are single mode, understanding of the 

modal structure is an important part of this report.

Light travels through a medium as an electromagnetic disturbance that has both 

electric (E) and a magnetic (H) fields which are orthogonal to each other and to the 

direction of propagation [225-229], as shown in Figure 3.5.

A x  (E field)

y (H field)

Figure 3.5: Electro-magnetic wave propagation

As light enters the fibre core in the form of a conical beam it will propagate over a 

range of 360° about the core axis [209-214], The magnetic and electric field vectors 

will therefore be in various orientations perpendicular to the actual direction of travel. 

As the light is reflected back and forth along the core, the overall direction of the ray
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is along the core axis, thus the electric and magnetic vectors may not necessarily be 

perpendicular to this direction of propagation. These field directions (with respect to 

the general direction of propagation) determine the classification of the mode [230].

i) Transverse electric (TE) modes:

Modes in which the electric vector has no component along the fibre axis as shown in 

Figure 3.6.

#  E field

H field

Core

Figure 3.6: Transverse electric (TE) mode field orientation

ii) Transverse magnetic (TM) modes:

Modes in which the magnetic vector has no component along the fibre axis as shown 

in Figure 3.7.

E field

0  H field

Core

Figure 3.7: Transverse magnetic (TM) mode field orientation

37



The probability of a mode having its electric or magnetic vector exactly transverse to 

the fibre axis as shown in Figures 3.6 and 3.7 is extremely slight (unless polarised 

light is used). Effectively the modes split into TE and TM components, length of 

each component determining the intensity of each. The path of the two different 

modes will differ due to the fact TE and TM modes experience different phase 

changes on reflection at the core/cladding boundary [231].

iii) Skew modes:

TE and TM modes intersect the core axis as they reflect back and forth along the core. 

But there are other paths within the guided modes of the core which never cut the axis 

and which will be much more prevalent than the TE or TM modes [232] due to the 

greater range of possible propagation angles available. Obviously these modes will 

never have either field totally orthogonal to the core axis (as the electric and magnetic 

vectors must always be orthogonal to the direction of propagation). They will always 

have components in both the transverse and longitudinal directions in the core. These 

are known as skew modes or hybrid modes and are designated as HE (if the magnetic 

field has a greater value in the direction orthogonal to the core axis) and EH (if the 

electric field has a greater value in the direction orthogonal to the core axis) modes 

[188,233,234].

iv) Linearly Polarised (LP) modes:

If the refractive index difference between the core and the cladding is very small 

(A n « l)  the radiation in the core is said to be weakly guided and the ‘weakly guiding 

approximation’ can be used to describe the modes [235-237]. In this approximation 

the differences between the phase changes on reflection at the optical boundary of
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certain types of modes are so small that they may effectively be neglected, and modes 

for which the components of the electric field in the transverse direction are of the 

same distribution are grouped together as a family of linearly polarised modes [238]. 

For the weakly guiding condition each family of LP modes have the same intensity 

distribution of the electric field across the core and hence the same intensity pattern.

v) Mode indexing (mode designation):

Modes in slab wave guides are effectively infinite in one of the transverse directions 

(x or y) and therefore will have no mode component in that direction [239,240]. 

These have only one subscript number to signify the mode number, such as TEm and 

TMm. The lowest mode which travels at the shallowest grazing angle is labelled as m 

-  0. Figures 3.3 and 3.4 show the standing waves perpendicular to the fibre core 

formed by the first two TEm modes, TEo and TEj.

In optical fibres, having cylindrical geometry, light propagates in all directions of 

360° through the core, therefore it is necessary to use two subscript values to identify 

the modes such as: LPmi, TEmi, TMmi, HEmi, and EHmi. When using the LP notation, 

the M subscript signifies half the number of field maxima in a 360° rotation about the 

core axis, while the 1 subscript signifies the number of field maxima along a radius 

[241].

39



M
Half No of 
Maxima In 
360°
0

1 LP mode
No of Ml
Maxima along 
Radius
1 LPoi

Actual Mode 
ml

HE!,

E Field Pattern

TEm

HE;

EH

HE

Figure 3.8: Mode patterns and designations for different types of modes

Figure 3.8 shows the mode patterns of the first six modes in a fibre and the notation 

used to describe them [242]. The subscripts on the traditional mode notation can be 

converted to the LP notation by the following [241,243]:

For HEmi modes M = m-1 so HEml —> LPmi LPm-i i

For EHnj modes M = m+1 so EH^ —> LPmi -  LPm+i

For TEnm & TMmi modes M = m+ 1 so TEml -> LPmi -  LPm+i

TMm, —> LPmi -  LPm+i
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In TE and TM modes m and M can only have a value of 0 and 1 respectively [244]. 

The number of modes available within a fibre and their respective directions of 

propagation is predicted by (3.1) [245-247] and can be derived from first principles 

using Maxwell’s equations given as shown in section 3.7:

+  • n. ---------- h n1 2 uJm(u) wKm(w) -T  + - r )  (3-1)
w  JuJm(u) wKm(w) 

where :

Jm is the mth order Bessel function of the first kind

J'm  is the first derivative (wrt radius) of the mth order Bessel function of the first

kind

Km is the mth order modified Bessel function of the first kind

K'm  is the first derivative (wrt radius) of the mth order modified Bessel function of

the first kind

nx is the refractive index of the guiding medium

n2 is the refractive index of the surrounding medium

u is the normalised transverse phase constant (normalised propagation constant)

in the guiding medium (= r^kn l -  p )  

w is the normalised transverse attenuation constant (normalised propagation

constant) in the surrounding medium (= r ^ jp -k n 2 )

P  is the propagation constant in the guiding medium (= knx sin 0 )

k  is the wave number (= 2n  / X )

0 is the incident angle at the refractive index boundary of the guiding medium

r is the radius of the guiding medium

m is the mode number
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The formulae describing each family of modes in the core and cladding can be 

derived by manipulation of (3.1) as outlined in Section 3.5. As previously stated, the 

diameter and characteristics of the core and the wavelength of the light determine how 

many modes can exist in the core. Fibres which can support more than one mode at a 

given wavelength are known as multimode fibres, and those that can support only one 

mode are known as single mode or monomode at a given wavelength.

The HEi i mode (m=l —> Jm_i —> Jo) is the only mode which will generate the Jo Bessel 

function, as the TE, TM, and EH modes all involve the Jm+i Bessel function, the 

subscipt of which can never be 0 as m cannot be a negative value. This Jo Bessel 

function has no cut off value and will therefore always exist within a fibre regardless 

of core size, and therefore this mode must be the only mode in existence in a single 

mode fibre [242,248,249]. Also as the difference between the core and cladding 

indices is very small the weakly guiding approximation can be used when calculating 

this core mode, (3.1) can be manipulated to generate equation (3.2).

J'm(u) t K'm(w) nf J'm(u) _ K'm(w) 
---------- 1--------------- —------------ h
11 T m f n \

^  O  w < ( n \  V *  w i ( n A  ^ \ f  r *  w i ( n \  w i ( i / t A  )  w  ^

~~ 2 
y V1

n„fr m 1 1 i
T  + —  (3-2>

\ U  w  JuJm(u) wKm(w))^n2 uJm(u) wKm(w)

The equation in this form allows the following weakly guiding approximation (3.3) to 

be introduced into the standard equation describing the propagation of modes in a 

fibre [250,251]:

2 2 nf np
as 2 ~ ~ ^T  ~ 1 (3 3 >

This allows (3.2) to be reduced to the much simpler (3.4) for weakly guided core 

modes, where the right hand side can have positive or negative values [252-254].
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f  J ' m(u) K'm(w) ^
uJm(u) wKm(w)

= ±m
1 1 \

~~2+ 2 
\ U  W  J

(3.4)

The formulae describing each family of modes in the core can be derived by 

manipulation of this weakly guiding equation as shown in Section 3.5.

A fibre normally stated to be single mode at a given wavelength (^o) will also be 

single mode at wavelengths longer than that wavelength, but at a certain shorter 

wavelength (cut off wavelength) it will become possible for more than one mode to 

exist [255-260]. The number of possible modes increases as the wavelength 

decreases below the cut off wavelength. Since the refractive index and the allowed 

angles of propagation of the light in a fibre core (modes) are wavelength dependent, 

then the fibre can be single mode for all wavelengths greater than the cut-off 

wavelength and the allowed angles of propagation (modes) will be different for each 

wavelength. Since no light source can be truly monochromatic [261] the light 

launched into a fibre will consist of a range of wavelengths, each of which will have 

different mode angles of propagation, even though the fibre is still operating in single 

mode. Thus the single mode fibre can be thought to transmit one mode of light, 

effectively separated into submodes for each wavelength for which the fibre operates 

as single mode. Core modes may be considered as the allowed angles at which light 

within a core will propagate [262], suggesting that the modes only exist in a fibre 

when the light is actually travelling in those modes. However, it may be more 

convenient to think of modes as allowed paths which light of a given wavelength 

would follow if that wavelength were present in the core. Thus in a core of given 

characteristics there are quantized directions which are always available for a given 

wavelength whether that wavelength is contained in the spectrum of the light in the
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core or not. Even though the light which enters the fibre cladding will be quickly 

attenuated as previously explained, it follows from the previous paragraph that the 

cladding will also have allowed paths which light of a given wavelength may take if it 

were present in the cladding. As the cladding is of much greater diameter than the 

core, it will always be multimode even for wavelengths at which the core is single 

mode.

In an ideal fibre the individual modes should travel indefinitely along the length of the 

fibre without affecting each other. However, in a real fibre, bends, or dimensional or 

material inconsistencies can cause the light to couple between the various modes 

[263]. In a monomode core the light has no further forward propagating core modes 

into which it can couple, but a change in the core or cladding parameters will cause 

the direction in which constructive interference at each wavelength occurs and thus 

the angle of propagation of the modes. It is possible therefore to modify the core or 

cladding in order to promote mode coupling. One method is to create a periodic 

refractive index perturbation in the core, of such spacing that it will diffract the 

incident radiation through a given angle. If the period of the grating is around half of 

a wavelength in the transmission spectrum, it will diffract that wavelength into its 

reverse propagating core mode. As the period is increased the angle of diffraction 

will decrease causing the core mode to couple into reverse propagating cladding 

modes, radiation modes, and finally forward propagating cladding modes [264]. The 

first and last conditions in the above order of mode coupling are used in the fibre 

Bragg grating and the long period grating respectively. It is logical therefore to 

conclude that any coupling between core and cladding modes will be dependent on 

the modal structure in the cladding, as well as that of the core. The refractive index of
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the medium surrounding the cladding will not only determine the critical angle at that 

interface [265], but more importantly the phase change on reflection [266] which will 

affect the optical path lengths of each wavelength and the directions in which 

constructive interference will take place, and therefore control the mode structure. 

This will in turn determine the wavelengths at which core to cladding mode coupling 

will occur. The ambient index dependency of the mode coupling in this long period 

diffraction grating is the underlying aspect of this thesis.

3.5 Derivation of Light Propagation Equations 
from Maxwell’s Equations

The derivations in this section and sections 3.6 and 3.7 follow that of Okushi [204], 

with more in depth explanations of the relevant aspects. Maxwell’s Equations for 

isotropic, linear, non-conducting, and non-magnetic medium are given in the 

following four definitions [267-271]:

Maxwell’s first equation (Gauss’s Law for Electricity):

V.E = V.D = —  = 0 for non-conducting medium 
£

(3.5)

Maxwell’s second equation (Gauss’s Law for magnetism)

V.£ = 0 or V.tf = 0 (3.6)

Maxwell’s third equation (Faradays Law of Induction)

(3.7)
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Maxwell’s fourth equation (Amperes Law)

„  dD 2 dE dD 2 dEV x H  = —  = e0n ‘ —  or V x B  = //„ —  =//„£„«* —  (3.8)
at at at at

where

2 • 7E -  electric field = D/£(>n~ D = electric displacement = E£0n~

B = magnetic induction = fj.oH jUo = free space permeability

H -  magnetic intensity = B/fio -  free space magnetic permeability Ns2C'2 

£o  -  free space permittivity £ o n  -  dielectric permittivity of medium

pc -  current density

The equations describing the electric and magnetic fields of light take the form [272- 

277]:

Ea = Ett0EXP[i{kr -  cot)] and Ha = Ha0EXP[i(k.r -  cot)] 

where o t -  (x,y,z), k -  (kx,ky,kz), r -  (x,y,z) and k.r — (kxx+kvy+kzz).

Fibre
Core

Ray Path

Figure 3.9: Cartesian coordinates of light in optical fibre

The cartesian components of the electric (EX,EV,EZ) and magnetic {Hx,Hy,Hz) vectors as 

shown in Figure 3.9 can be obtained by examination of Maxwell’s third and fourth 

equations, equations (3.7) and (3.8).
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Maxwell’s 3rd Equation (3.7) expands to give:

( d  9 d )  _ _  9 „
dx’d y’dz J (w )  ^  dt (w )

9£ 9E„ 3E 9£ 9£„ dE.

where

3z dz dx dx dy

Ex-E x0Qxp[i(k. r- (Ot)]

-M
fd H , dHy dH,') 

dt ’ dt ’ 9 /

Hx-H x0Qxp[i (kr- cot)]

Ey=Eyoexp[i(k.r- cot)] Hy=Hyoexp[i(k. r- cot)]

Ez-E zoQXp  [ i (k. r- cot) ] Hz-H zoQXp [ i (k. r- cot) ]

Most applications of Maxwell’s Equations assume that the ray is travelling axially in 

the z direction. If this were the case there would be no variation in the electric field in 

any direction (x ory) perpendicular to the axis (z), and the differentials with respect to 

x  and y  would be zero

^ = 3^  =  0
dx dy

Also there would be no component of the electric or magnetic fields along the axis in 

the z direction and the z components of the electric field would also be zero

dE, dE, dH ,

dy dx dx 

This would reduce the previous equation to:

= 0

(  to ,  'I
9z ’ 9z = ~M dt dt y

In optical fibres the ray is not travelling directly along the fibre axis in the z direction, 

Thus the change in the electric field in the transverse x  and y  directions will not be 

zero as they would for axial rays and all components must be accounted for in this 

special case.
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Equating components in each of the brackets gives

dy dz 

dE, dE,
dz dx

dEy dEx

=  -M o

= ~Mo

dt

dJ L
dtdx dy

Differentiating Ey wrt z and Hx wrt t in equation (3.9) yields:

dE,
dy

+ ipE= -ia> fi0Hx

where p - k z

Differentiating Ex wrt z and Hy wrt t in equation (3.10) results in:

dE,
dx

+ tfiEx = -ico/i0H

Differentiating Hz wrt t in equation (3.11) gives:

— = -/fiJu0H 2
dx dy

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Similarly Maxwell’s 4th equation (3.8) expands to give:

 ̂9 9 9 'l __ 2 9 rx H { w )  = e0n j E (w )
^ J x ’ dy’dz

(dH z dHy dHx dHz dHy — —£,n2(dEx dEy a O
dy dz dz dx dx dy

C.Q tl
K dt 9 dt 9/ J

Equating components in each of the brackets gives

dHz dHy 2 dEx
   = £,yi — -

dy dz dt
(3.15)
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= £0w2 — (3.17)
9H  dHx 2 9£
 - --------  =  £ j l   :

dx dy dt

Differentiating Hy wrt z and Ex wrt t in equation (3.15) gives:

dH_ + i/3E = ico£Qn Ex (3.18)
dy

Differentiating Hx wrt z and Ey wrt t in equation (3.16) gives:

dH_^  -  ifiHx = -iO)£aEy (3.19)

Differentiating Ez wrt t in equation (3.17) gives

dHv dH
- ^ - - ^  = -iCO£,Ez (3.20)

dx dy

The x  and y  components of both the electric and magnetic fields may now be 

expressed in terms of their respective z components by combinations of the equations 

(3.12), (3.13), (3.14), and (3.18), (3.19), (3.20).

To find Ex in terms of Ez and Hz, manipulating (3.13) to make Hy the subject and 

substituting into (3.18) gives the following result:

/ (  „dE, dH_\
Ex -  r  ~s ' wro

Pt v y  j
(3.21)

where = ^ k 2n2 -  2 is the transverse propagation constant (the component of the 

wave vector kn in the radial direction) [278], as shown in Figure 3.10.
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(kn)
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Figure 3.10: Transverse propagation constant of light in fibre core

To find Ey in terms of Ez and Hz , manipulating (3.12) to make Hx the subject and 

substituting into (3.19) gives the following result:

E.  =—
A 21 P '* y

(Oil,
dx

(3.22)

To find Hx in terms of Ez and Hz, manipulating (3.19) to make Ey the subject and 

substituting into (3.12) gives the following result:

r dH. dE. 'i
H.  =  —

A,2
B    + CO£{)
H dx 0 dy

(3.23)

To find Hy in terms of Ez and Hz, manipulating (3.19) to make Ey the subject and 

substituting into (3.13) gives the following result:

H  =— -

y A,2 f
m ,

dx
(3.24)

All components describing the electric and magnetic fields are now expressed in 

terms of the axial direction of propagation z.

Solutions of Ez and Hz are obtained by solutions to the differential equations 

previously derived as follows:

Substituting (3.23) and (3.24) into (3.20 ) and differentiating gives
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Substituting (3.23) and (3.24) into (3.14) and differentiating gives

(3.25)

9 *H, 9 2H 2 _ (3.26)

The equations (3.21) to (3.26) describe the three dimensional wave propagation in 

cartesian coordinates. As the fibre is of cylindrical geometry these equations can be 

expressed in cylindrical coordinates [279-282], as shown below:

i (  0 dEz 1 dH2

A21 r  99Ee = — r t\
9H, 
9 r

H. = —
f t

i ( a 9Hz 1 9E.

V dr dO y

d E .'i f  R \ d H z
W -rl?-m°Tr

d2E„ 1 dE. 1 d2E,
+  ■

dr2 r dr r2 dO2

d2H z 1 dHx 1 d2H z
dr2 r dr r2 dO2

+ t f H z =0

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

Solving equations (3.31) and (3.32) by separation of variables of the 

formi^ = Rz(r)Qz(0) results in:

d 2R 1 dR+ ------ + R
dr r dr

.2 \
Pf - —j- = 0  Oz(#) = cosmO or sinmO (3.33)

This is known as a Bessel differential equation which has the solutions given as:

Rz(r) = AJm(Ptr) + A'Nm{Ptr ) for real pt (3.33a)
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Rz{r) = CKm(\p\r)+ C lJ \p ,\r )  for imaginary (3.33b)

where Rz(r) = the radial field function 

m -  the azimuthal mode number 

A,A ’,C,C’ = arbitrary constants 

Jm, -  mth order Bessel function of the first kind 

Nm -  mth order Bessel function of the second kind 

Km -  mth order modified Bessel function of the first kind 

lm -  mth order modified Bessel function of the second kind

Bessel functions of the first kind are oscillatory (with gradual damping) with respect 

to the radius, whereas the modified Bessel functions of the first kind decay 

exponentially with respect to the radius. Bessel functions of the second kind are not 

significant in the theory of uniform fibres [204].

3.6 Application of Propagation Equations to 
Optical Fibres

The light propagation equations can be applied to the determination of the modal 

structure of an optical fibre providing the boundary conditions of the optical fibre are 

observed.
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 ̂ R e f r a c t i v e  
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n(cladding)
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F i b r e R a d i u s  ( r )

Figure 3.11: Refractive index profile of an optical fibre core and cladding

Figure 3.11 shows a graphical representation of the refractive index profile of an 

optical fibre. The boundary conditions at the core/cladding interface apply to all 

optical fibres and are as follows:

• Axial electric and magnetic field components in the core and cladding must be 

of equal magnitude at the core/cladding boundary:

j^ co re _ j^ c la d  j_ jc o re __ j^ c la d

• Electric and magnetic field components in the propagation direction in the 

core and cladding must be of equal magnitude at the core/cladding boundary:

1 7  core T?clad jr c o r e  r jc la d
^ 0 ~ A? > e ~~

• Electric and magnetic field components in the radial direction in the core and 

cladding are dependent on the permittivity and permeability of the media and must 

be of equal magnitude at the core/cladding boundary:

£xE c; re = £2E cr,ad, jixH c; re = jii2H crlad
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In Cladding

For light energy to propagate axially (in z direction) in a uniform cylindrical 

waveguide core, being confined radially, the radial field function Rz(r) must 

exponentially decay outside the core and in the cladding must therefore be of the 

form:

RXr) = CK,n\l} \r )+ C I m(\p,\r)

Since C* diverges as r tends to infinity it can then be discarded leaving

Rz{r) = CKm<\p\r) (3.34)

In Core

In the core region, solutions proportional to Nm or Km cannot be present as they both 

diverge on the axis. Also as the boundary conditions require the core and cladding 

fields to be continuous, any Im dependency in the core would prevent this condition. 

Thus the radial field function Rz(r) in the core must therefore be of the form:

R , { r ) = A J M  (3.35)

The dependency of the radial field function can be seen to be:

U r )  oc J m in core

U r )  OC Km in cladding

As P, = i jk 2n2 -  p 2

For guided radiation in the core kncore > fl > knclad 

Thus,

Pt{core) -  yjk2nLre ~ p 1 always be real as ft will always be less than kncore 

and
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• Pt[clad\ = -yj k 2 n2;ltJ(l -  p 1 will always be imaginary as p  will always be greater 

than knciad

To give the core and cladding transverse propagation constants radial dependency let

U — oPt(core) and W Ci\Pt(clad)\ •>

thus pt(core) = u/a and \ p t(Ciad) I = w/a

so u = a ^ k 2n2core -  p~ and w = a^jp2 - k 2n 2clad

where u and w are the normalized transverse propagation constant and the normalized 

transverse attenuation constant in the core and cladding regions respectively and a is 

the radius.

3.7 Mode Classification

Cladding

- '

i
■ i

Core
e  i 7f\  a

- >  z
Ray Path

Cladding

Figure 3.6.1: Ray path of guided mode in optical fibre core
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For Transverse Magnetic (TM) modes the electric and magnetic fields in the core and 

cladding can be described as follows:

U Y
E z(a>re) = A J m ~ S ' 11 r ^  °  (3.36a)a

= CKm — sin mO r > a  (3.36b)
a

Hz(mrc) = 0 (3.36c)

% , )  = 0 (3.36d)

For Transverse Electric (TE) modes the electric and magnetic fields in the core and 

cladding can be described as follows::

E z(core) = 0 (3.37a)

E!(clad) = 0 (3.37b)

U Y
H:{a>re) = BJm — cosm 6 r < a (3.37c)

a

HjtuD = DKm — sin m6 r > a  (3.37d)
a

The sin term in the TM equations and the cos term in the TE equations allows for the 

connection of the fields at the core and cladding interface for hybrid modes.

In optical fibres TE and TM modes can only exist when m -  0, otherwise the 

boundary conditions at the core cladding interface can only be satisfied when one 

linear combination of TE and TM modes exists in the core and a different linear 

combination of TE and TM modes exists in the cladding. These linear combinations 

of modes are known as hybrid modes.
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Combinations of (3.36a) to (3.37d) with (3.27) to (3.30) allow the determination of 

expressions for the general field components incorporating all the TE, TM and hybrid 

(HE, EH) modes.

3.7.1 Cylindrical Components of Electric and Magnetic 
Fields In the Core

The Ez and Hz dependencies are given in (3.36a) and (3.37c). The Er and 76- 

dependencies are obtained by substituting (3.36a) and (3.37c) into (3.27) and (3.29) 

respectively and differentiating to obtain:

’■(core)
*P n ( UA ,  d  >Wo m
U
a

r ur^

a  J u \ 2  m\  V* \ a  J
smmO (3.38)

77. (core)
A iC0£corem j

\ a  J

\ a a

\

a J
cos m6  (3.39)

where the prime symbol (‘) is the differentiated form of the function with respect to r

The E q and 77# dependencies are obtained by substituting both (3.36a) and (3.37c) into

(3.27) and (3.30) respectively and differentiating to get

J0(core)
4 'P m ,

/  \ 2 " r
ruA ] ^ i CO/lp j ,  (ur
\ a  J

a

\

a )
cos mO (3.40)
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H,6 {core)

 ̂i m core 
u " 
a

f u r \  „ iB m _ r
\ a  J V ) 2 r

a

ur
sin mO (3.41)

3.7.2 Cylindrical Components of Electric and Magnetic 
Fields In the Cladding

The Ez and Hz dependencies are given in (3.36b) and (3.37d). The Er and Hr 

dependencies are obtained by substituting these equations into equations (3.26) and 

(3.29) respectively and differentiating to obtain

r(clad)
r ,  f w r') D ‘W 0 ™K  ( wrC — K

w

a
V a

\a .

a
s i n m O

H. {clad)
_ Q]^dad_ m K..

w
cos mO

(3.42)

(3.43)

The E q and He dependencies are obtained by substituting both (3.36a) and (3.37c) into

(3.27) and (3.30) respectively and differentiating to get

J0{clad) /  \  2 »t w \ r
\ a j

(
\ a  )  w 

a
a

cos mO (3.44)
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H 6 (clad) c i cosclad K \
w

a
a

f - Y r
{ a )

sin mO
\ a  J

(3.45)

3.7.3 Mode Propagation Constants

Propagation constants are determined by the boundary conditions, which are the 

conditions for continuity of the fields at the core/cladding boundary (r = a).

Thus at r -  a:

E z(c o r e )  E z (c la d )  H z  (care) H z (clad)

E  0(core) ~  E $ (c la d )  H ty c o r e )  ~  H d (c la d )

S (co re )E r(co re) £ (c la d )E r(c o re ) / - l o H r(core) /- lo H r(c la d )  *

*as Hcore -  l̂ ciad = fio for non magnetic media.

Substituting (3.36a) to (3.45) into the above boundary conditions gives:

E z(co r e )  ~  E z (cla d) g i v e s

AJm(u)-C K m(w) = 0 (3.46)

H z (c o re )  H z (c la d )  g i v e s

BJm(u )-D K m(w) = 0 (3.47)

E n c o r e )  E 0 (c la d )  g i v e s

A ^ - J M - B ^ J ' M + C ^ - K m(W) - D l- ^ K ' m(w) = 0 (3.48)
' ” u ( a wu ] a ( w

a )  a \ a j a

H ty c o r e )  ~  H $ (c la d )  § iv e S
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£(core)Er(core) £(clad)Ey(core) gives

eccrA l̂ J \ { u ) - e my ^ - J M + e M C l̂ K \ M - e M D ^ - K m{w) = Q 
H ( u \  a ■
a

iJLr,
w

a a
f  \ 2 ' w a

(3.50)

(J-oHr(core) f-U)Hr(clcid) gives

Mod
i m m  .  / x „ i P  .. / \ ~i ®£ciad ™ v  (  ̂ f# ^ij3

a
d m{u) MoB _ d  m {u)+ ̂ LqC-W T \

u 
a

^ w V  a

a

i „ H - A D 4 r , H = o

(3.51)

To arrive at a general equation describing all modes it is necessary to unity four of 

these equations in matrix form [283]:

[M

A
B
C
D

=  0

For the solution to be nontrivial the determinant of the matrix Mmust be zero.

Okushi [204] uses (3.46), (3.47), 3.48) and (3.51) to form the matrix, while Yariv 

[205] uses (3.46), (3.47), 3.48) and (3.49).

Following the Okushi method the general equation for all types of mode becomes as:



As m >0 for HE and EH modes (3.52) describes both the HEW/ and EHW/ modes. At 

this point this derivation can’t be separated to give different values for each of the two 

families.

For TEm/ and TMm/ modes m can only be zero thus (3.52) becomes:

J ' M  , , K'm(w)
+  ■

v J jp )  wKm{w)/' V ̂ clad uJm(u) wKm(w)J
=0 (3.53)

The subscript m denotes the azimuthal (angular) variation of Ez within a 360° rotation 

around the core axis, and the number of roots of the propagation constant P  which will 

satisfy the condition is the number of radial variations of Ez and is denoted as 

subscript /

TMm/ modes are described by the second term on the left hand side only, and are 

given by:

+•
V£c «  u J j u )  w K m{ w \

=  0 (3.54)

TEm/ modes are described by the first term on the left hand side only, and are given 

by:

> , ( « )  , g ’. M 'L
yuJm(u) wKm{w)

= 0 (3.55)

Since the difference between the core and cladding refractive index is very small 

(A n « \)  one can use the weakly guiding approximation ( £core = £dad), the equation

describing the HEW/ and EHm/ modes can be given as:

t i j j u )  wKm{w) V « 2 w 1 J
(3.56)
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Given the fact that H E m o d e s  use the negative term on the RHS of (3.56) this 

becomes

(3.57)

and that EHm/ modes use the positive term on the RHS of (3.56) this becomes

J 'M  , k '.M  ( i
uJm(u) wKm(w)

(3.58)

In the weakly guiding approximation the propagation constants of each of the TE and 

TM modes degenerate to become effectively equal, reducing (3.54) and (3.55) to a 

single equation which describes both modes,

^ 4 4  + ̂ M  = ° (3.59)
u j j u )  wKm{w)

Unfortunately in this derivation the expression for the HEm/ cladding modes (3.52) is 

the same as that of the EHmi cladding modes and the two cannot be distinguished until 

the weakly guiding approximation is assumed. As the radiation in the cladding cannot 

be assumed to be weakly guided, due to the large difference between the cladding and 

ambient refractive indices, this equation is deemed unsatisfactory to predict the HEm/ 

cladding modes, and the following Yariv derivation was utilised in all further 

calculations.

Following the Yariv method the general equation becomes

Yl core “ t “ t l  clad
u j j u )  wKm{w) I  u jm(u) wKm{w)

/
m 1 1

\ 2

~ + 2 
\ U  W  J

(3.60)

Equation (3.60) can be seen to be a quadratic in ^  , solving for this gives
uJm(u)
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1

J ' M  _ (n 2 + n2 1core T nclad K ' M  + ( n2 - n2 Y"core nclad (  K ' M ]
2

+ r Pm 7  i i y
\ ~  + ~T \w  u yuJm(u) v ^ncore >wKm(w) 2 n2V core J J™care >
(3.61)

Again the HEmi modes are described by the negative term on the RHS of (3.61)

J ' M ( yp- +»72 ^,core clad
2 n.

K ' M

core J wKjyv) 2 ncore J

K ' M
wKm{w)

V (
+

pm

\^ ncore J
f - L  -

\ 2

u1 J

(3.62)

and the EHW/ modes are described by the positive term on the RHS of (3.61)

J ' M

u JM 2  nV core J mwKm(w)
+

( n 2 -  n 2 \  f  V* A . A  'N"’core clad
2 n2V core

K'm(w ) ) , f  pm

\ wKmM ;
+

V^core y w u

(3.63)

For TEm/ and TMW/ modes, as m = 0 (3.61) reduces to

j \  («) ^  n L e  + Kla,!

2  ni
K ' M
wKm{w)

+ f n2 - n :’ core clad
2n2 wKm(w)'

(3.64)

where TEm/ modes are described using the positive sign on the right of (3.64)

j ' m (») _
uJm{u)

2 A
ĉore ĉlad

2 n
K ' m (w)

core J wKm{w)
+

f  i _  2 \ l r
ĉore ĉlad

2>1„,e J
E M } 1 (3.65)

and TMm; modes are described using the negative sign on the right of (3.64)

J \  (»)
uJm(u)

(  J*- 2 Ancore + Uclad
2 ncore J

K ' M
wKm(w)

( . . 2 i2 ^clad
2 ncore J

K ' M
wKm(w)

(3.66)

Again, in the core the weakly guiding approximation assumptions that

nCOre ~ nciad and p  ~ k in (3.60), can be made leading to the same equation as in the

Okushi derivation:
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^M +I±M =±J ± +±)
u J jj t)  wKm(w) U2 w2 J

(3.56)

and hence the same equations to predict the HEW/, EHW/, TEW/, and TMW/, core modes.

Thus it can be seen that the two routes lead to the same equations to describe the 

modes families in the weakly guiding core, but different equations to describe the 

modes families in the cladding. This derivation gives an equation which uniquely 

describes the HEm/ cladding modes and is one of the two used in the programming 

codes in Chapter 4.

3.8 Evanescent Field

When radiation is incident on a refractive index boundary under the condition of total 

internal reflection, the associated EM fields do not cease at that boundary but will 

enter the adjacent medium, where they will decay exponentially [283]. This creates an 

evanescent field around the guiding core in a fibre which carries no power in the 

direction perpendicular to the core axis, as shown in Figure 3.13
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Cladding

Core

Ray Path

Figure 3.13: Evanescent field in optical fibre

The depth of penetration dp of the evanescent field is described as the distance at 

which the amplitude of the field has reduced to e"1 of its value at the boundary [284], 

and is given by the Goos-Haenchen shift [285]:

d p =   = ----=  (3.67)
W " L sin’ 6* - ')L

where X  is the wavelength of radiation, and 0  is greater than the critical angle

Figure 3.14 shows the evanescent field penetration depth over the range of incident 

angles up to the critical angle, 6C for an interface with the following values, ncore : 2, 

nciad : 1.46, X : 630nm. The dependence of the penetration depth of the evanescent 

field can be seen to decrease rapidly with the angle of incidence.
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Figure 3.14: Dependence of penetration depth of evanescent field
on incident angle

If the medium into which the field extends is absorbing at the transmitted wavelength 

some of the energy in the evanescent field will be absorbed according to the 

absorptivity of the medium, and the intensity of the guided radiation will be reduced 

accordingly. Thus the intensity of a higher order mode will be reduced by a greater 

margin than that of a lower order mode due to the difference in the penetration depth 

of the respective evanescent fields into the absorbing medium. If the medium is not 

absorbing then the energy in the evanescent field will remain constant and the 

intensity of the guided radiation will ideally not be affected.
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3.9 Coupled Mode Theory

Coupled mode theory describes the coupling of energy between modes due to the 

influence of one mode on another and is popularly used to describe mode coupling in 

fibre gratings [152,286,287]. Section 3.9.1 follows the derivation of coupled mode 

theory from Maxwell’s Equations as described by Ghatak [288], expanding various 

aspects where necessary for a more complete and comprehensible result. The basic 

theory is then adapted to include explanations of mode coupling in fibre gratings in 

section 3.9.2.

3.9.1 Derivation of Coupled Mode Equations from 
Maxwell’s Equations

From Maxwell’s equations for isotropic, linear, non-conducting, non-magnetic 

medium, given in section 3.5 the third equation (Faraday’s Law of induction) is used 

in this derivation.

Taking the curl of (3.68) in order to remove the magnetic vector dependency, leaving 

only the electric vectors components

(3.68)

(3.69)

and using the following identities
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as / / 0 £ 0 = - i-  and if/ is the wave displacement of the electric field vector E  of the
c2

wave travelling in the z direction, (3.69) can be re-written as the3D wave equation

< « >

which has solutions of the form

yr = y/0el̂ ’- a 'l (3.71)

Substituting (3.71) into (3.70) and differentiating with respect to t yields the result for 

the 3D wave equation with x,y,z, dependence.

n 2 d2 
dt

. 2  , J 2

V IV  = 1r h : V « e i(kr-‘’)c dt

V72 n  COv y  = — — y
c

V 2y/ = - k 2n 2y/ as — = k (3.72)

As consideration only involves the transverse field vectors, the z dependency can be 

removed, giving

V,V = V V - | ^  = - * 2« V - | - y -  (3-73)dz dz

V,V = -e n 2w-T-T¥^kJ~‘x)
dz

V f y  = -p(/c2n2 - j 3 2) (3.74)

where p  is the z component of the wave vector k:



So for 2 separate wave guides A & B with no interaction the transverse mode patterns 

of each may be written as:

V ,V , = - y A{k2n 2 - P a )=Wa{Pa ~ k 2n2A) (3.75)

v > 6  = -W b{k2" l  ~ P l)  = V Bip l - k 2nl ) (3.76)

The total field of a 2 wave guide coupler which will be dependent on the progression 

of the 2  fields along the z axis defined as ^  , can be represented by the same type

of equation as (3.70).

n2 d2x¥  
c2 dt2V2'P = ̂ - ^ r f  (3-77)

which has solutions of the form

'P = 'P0e'(4'"“ ) (3.78)

substituting (3.78) into (3.77) and differentiating wrt t as before gives

V2>P + k 2n2yV = 0 (3.79)

or V2lP0elit-'-m) + k 2n 2 x = 0  (3.80)

T^can be approximated by a superposition of the fields in the 2  wave guides with 

amplitudes A(z) and B(z) such that

= A z )wA^ y ) e~lpAZ -^B{z )¥B{x ^y)e~ipBZ (3.8i)

Substituting (3.81) into (3.80) gives

v 2 \a (z^ ta (x,y)e~,l>Az + B (z)yB (x,y)e~‘h! ]

+ k 2n 2(x,y%A{z)yA{x,y)e~ ‘f i 2 + B{z)y B (x, y)e~‘l,,r' ] = 0

and differentiating gives

Ae~'Az(v? yA - P 2aWa + k2n 2y/A)+Be-‘l)’I {v2y/B -  P l y B + k 2n 2y A)~

^ P AVAe ‘̂ A2 -  2iPBy Be >hz + Wa^  |p r  + Wb^  |^ f  = 0
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The second differential of A and B with respect to z are slowly varying functions and 

as such can be ignored in the context of this derivation leaving

Ae-,p“ ^ 2,yrA - P W a + k 2n 2yrA)+Be-“l‘z(V fy B- p 2By/B + k 2n 2y/A)~

2 i p j r s * *  f t  -  2ipt v Be « *  | p  = 0  (3'82)
dz dz

Substituting for V f^from  (3.75) and (3.76) into (3.82) gives

A k2 An2Ay/A + B k2An2Bv BeIAIi- 2 ip A^ y A = 0  (3.83)
dz dz

where AnA = n2 - n 2A\An2B = n2 - n 2B;A/3 = —fiB.

Multiplying by the complex conjugate y/*A a n d ^  in turn and integrating both in x  and 

y  produces

A k2\  iA n2iyAi/fAdxdy B e ^ k 2 f f An2By/By/’Adxdy \ \y/By/'Adxdy
9 A _  J 1 _____________, _____________ ______________________
3z 00 00 dz B °°

2 iPA\ \ y / Ay/’Adxdy 2 i/3Aj  j y Ay/Adxdy 71 j \ y Ay'Adxdy

(3.84)

A k2j  jA n 2ty/Ai//'Bdxdy B k2 j  $ An2By/By/’Bdxdy ^  j  j iy Ayr'Bdxdy

dz °° » 0 ^ Q 00
Z 2ifiBeiA/h 1 1 y/By/*Bdxdy 2 i/3B J  J y/By/*Bdxdy B J  J y/By/*Bdxdy

(3.85)

As \ \ V bW*ad * d y \ W a¥*adxdy, and J  J y/Ay/*Bdxdy «  J  j' \]/By/*Bdxdy, the last

term in each differential equation known as the overlap integrals can be neglected in 

weakly coupling conditions. Letting coupling coefficients /rbe represented as

Ar2J J A n2A\jfA\ff'Adxdy k 2\ \  An2ByrByr'Adxdy

k aa = ------  » and k ab = ------^ -----------------
2 Pa |  J VAv\dxdy 2pA\  J y/Ay/Adxdy
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A:2 11A n 2Ay/Ay/*Bdxdy &2J |A n 2By/By/*Bdxdy
and k ba

2Pb\  \w B¥\dxdy 2iPB\\vBW*Bdxdy

then the coupled mode equations are given by:

(3.86)

—  = -HcBBB - iK BAAe-iA/k (3.87)

3.9.2 Using Coupled Mode Equations to Describe Mode 
Coupling in an Optical Fibre

Letting a(z,t) = A(z,t)el('(a' ^  and b(z,t) = B(z,t)eli"(0t~ ^  represent 2 modes 

travelling along the fibre core and cladding respectively, and differentiating wrt z to 

predict the interaction along the fibre:

The constants k m  and k bb are modifications to the modes in one wave guide due to 

the locality of the other, and are negligible compared to the cross coupling constants 

k ab and k ba , so the coupled mode equations predicting the effect of one mode on the 

other as they propagate in the z direction may be written as

da _ j  d ci(iu-0Az)
dz dz

(3.88)
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=  - i f iBb -  ifCBAa (3.89)
oz

where the cross coupling constants kab and kba determine the amount of coupling 

between the 2  modes and are dependent on the wave guide parameters, and the 

operating wavelength. If the differential propagation constant Aft in (3.86) and (3.87) 

matches the condition

Ap  = /}A- P B ^
A

maximum energy will be transferred between modes.

3.10 Fibre Bragg Grating Theory

A Fibre Bragg grating (FBG) is a periodic array of refractive index perturbations 

(grating elements) along a very short length of the single mode fibre core [128,152]. 

The principle behind the operation of the FBG can be explained by either of the two 

following theories.
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i) Considering the Grating as a Diffraction Grating

I n c i d e n t

r a y

G r a t i n g

0  o r d e r  d i f f r a c t i o n  

7M=0

1 st o r d e r  d i f f r a c t i o n  

111 = - 1

Figure 3.15: Zeroth and first order diffraction of radiation incident on a
diffraction grating

As shown in Figure 3.15, from diffraction theory the angle of diffraction Qj, of a ray 

of angle of incidence 0/ = 0°, is given by the formula [289]:

s in ^  = —  (3.90)
A

where m is the order of diffraction and A  is the grating period.

For a ray of incident angle #  ^  0° then the refracted angle will be offset by the value

of the incident angle [290], thus:

sin 6d = sin 0t + (3.91)
A

If the medium through which the light is propagating is not air (or a vacuum) then the 

refractive index of the medium (the fibre core) must be accounted for as [290]:

1 7 1 / 1

nan sin = ncm  sin eco„ + —  (3-92)A

which can be used to derive the FBG coupling equation as outlined below.
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Figure 3.16: FBG as a diffraction grating

From Figure 3.16 equation (3.92) can be written as:

YYl?i
"core Sil1 Q,! = "cor. S™ 0 i + ~ T ~  (3-93)A

As the m = -1 order is the most prominent order of diffraction at the grating [290], 

then (3.93) becomes:

"cor. S'n ° . l  = "cor. S' n X  <3 94)A

Recognizing that ^ i s  in the opposite direction to0f, and 6d will therefore be

negative, the wavelength at which forward propagating modes will be coupled into 

reverse propagating modes can be written as:

A  =  ("coreS'" S i +  "coreS'n )A (3 '9 5 )

Since the absolute value of 6d is equal to that of 0i , and 6j is the same as the incident 

angle at the core/cladding boundary 6 , then the FBG coupling wavelength (A5)is 

given as [152]:

K  = 2ncoreA s 'n 8 (3.96)
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For example, in order to satisfy the FBG coupling equation, an FBG with a period A  

of lOOOnm, in a core of n core = 1.5, a cladding of n ciad  -  1.49 and at a incident angle 6  

of 84° (just greater than the critical angel (for TIR), where 6 c  — sin' 1 n ciad /n Core — 

83.38°) Xb = 2xl.5xsin84xl000*10'9

Xb -  2983.6nm

thus an FBG with the above parameters will couple light from a forward propagating 

core mode to a backward propagating core mode at a wavelength of 2983.6 nm.

To show that this wavelength at the above parameters will cause the diffracted ray 

angle to be the same (but negative) as the incident angle the diffraction grating 

formula is utilized:

mX
sin ft +

A

6d = sin -i
*«w sin 0 / +

mX

core

\  J

6d = sin -i
1.5 sin 8 4 -

2983.6x10
1000

- 9  \

1.5

6h=-84°

So, it can be seen that wavelengths which are diffracted through a fibre grating to give 

the first negative maxima at an angle equal to that of the angle of incidence will be 

diffracted back along the core at successive grating elements, and will interfere 

constructively as it does so.
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ii) Considering the Grating as a Series of Resonant Cavities [291,292] 

(3.92) can be used to derive the FBG coupling equation as outlined below.

cladding n dad

core radiationcore

cladding n ci„a

Figure 3.17: FBG as a resonant cavity for axial direction of propagation

When light travelling through the fibre is incident on the grating elements it will be 

partially reflected and partially transmitted at each successive element as shown in 

Figure 3.17, due to the refractive index difference between the core and the element. 

Any wavelengths in the incident radiation for which the optical path length of grating 

period is equal to a whole number of half wavelengths will interfere constructively on 

reflection, and destructively on transmission from successive elements. All other 

wavelengths which do not match this criteria will interfere constructively on 

transmission and destructively on reflection from successive elements. Thus the 

constructively reflected wavelengths will be absent from the transmission profile 

detected at the end of the fibre, and will be the only wavelengths evident in the 

reflection profile detected at the input of the fibre [157]. The reflectivity of an 

element will be almost the same for every wavelength (except for slight variations due 

to the wavelength dependency of the refractive index difference between the element 

and the core). It is therefore preferable to have many elements of low reflectivity,
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rather than few elements of high reflectivity, as the reflected fraction from the first 

period will be lost for all transmitted wavelengths, reducing the detected intensity by 

that amount.

FBGs are mainly used as strain [86,100,293-295] or temperature [38,118,296] 

sensors, where the measurand affects the grating period and/or the refractive index of 

the core, either of which will alter the optical path length of the reflected rays from 

successive grating elements, and thus the wavelength which matches this new path 

length will also change. The degree to which this reflected wavelength changes will 

determine the degree of change in the measurand. As rays never travel parallel to the 

core axis, their angle of propagation must be taken into account as they are reflected 

from successive grating elements. If a ray did travel along the axis then the condition 

for constructive interference on reflection would simply be:

= (3.97)

where X is the wavelength of constructive interference on reflection.

This shows that the wavelengths for which the partial reflections from successive 

grating elements are in phase, will have a difference in optical path length of a whole 

number of wavelengths. However, if the ray is travelling through the core at an angle 

0 as shown in Figure 3.18, the optical path length between the first and second 

reflections that the ray must travel in order to be in phase will no longer be the same 

as double the grating period.
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cladding n dad

core

cladding n dad

Figure 3.18: FBG as a resonant cavity for non-axial direction of propagation

Considering a ray undergoing TIR at an angle of incidence at the core/cladding 

boundary of 6\ then for constructive interference of the two partially reflected rays, 

the extra distance travelled by the part of the ray reflected from the second grating 

must be equal to a whole number of wavelengths (see Figure 3.9.3). 

i.e. mXccr, = x  + y

A .,.
Note A n .  = X n —> X =fill- fill-air air core core

Thus
mX.

= x + y

As x = and y = x - w  , where w = 2 z cos6 and z = — ■
sin 0 tan 0

So for m =1, from (3.97) it can be shown that the reflected wavelength is given as:

X . = 2 n n A sin 6air core

This can be seen to be the same as the formula for the diffracted wavelength for a 

fibre Bragg grating (3.96), however this manipulation has shown that the sin# 

component in the formula is used to convert the optical path length of a non axial ray 

into terms of the axial period of the grating.
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3.11 Effective Refractive Index

Even in optical fibres with no grating the sin# factor is used to convert the rays 

travelling at an angle # into the component of these rays travelling axially [297-300], 

to allow comparisons between the core and cladding propagation constants P  in the 

axial plane of the fibre. «sin#is known as the effective refractive index (ne/f) [301], 

thus the Bragg wavelength can be written as [152-154]:

K  -  2 n e //coreA (3.98)

The term effective refractive index is somewhat misleading, as the refractive index is 

a scalar quantity in a step index fibre and as such is not affected by the direction of the 

ray travel within what is assumed at this stage of the calculation to be an isotropic 

medium (other factors involving non-linearities in the refractive index profile etc. may 

be allowed for in separate calculations if necessary). It would therefore seem more 

appropriate to mentally connect the sin# factor of the Bragg wavelength to the 

effective period of the grating as seen by the rays of incident angle #, and thus the 

propagation constant p  than with the term effective refractive index.

The concept of the effective refractive index is often utilised to explain the 

confinement limitations of radiation within the core and cladding, as explained below. 

As stated previously the ‘effective refractive index’ of the core is given as

" ‘ffco re  =  Sil1 9  W h e r e  0 0  -  9  “  9 0 °  ( 3 ' " )

79



It can be seen that the maximum value of neffcore occur when the ray is travelling

parallel to the fibre axis, thus the incident angle 0 is  90° (i.e. sin 0 -  1) and will be 

equal to ncore. The minimum value of will occur when the ray is incident on the

core cladding boundary at the critical angle Qc.

From Snell’s law of refraction, ncore sin Qcore = nclad sin 6clad at the critical angle 0core is 

Qc,, and the ray is refracted parallel to the core/cladding interface into the cladding, so

Yl
Qciad is 90°, thus as sin Qc = , it follows that neffcore = nciad • Therefore when the

ĉore

ray is incident on the core/cladding boundary at an angle equal to the critical angle Qc 

the effective refractive index is equal to the refractive index of the cladding. This is 

as would be expected since the ray will no longer undergo total internal reflection 

within the core and will enter the cladding. As the incident angle gets smaller the rays 

will be refracted at the core/cladding boundary through angles of 0° to 90°. The 

cladding also has an effective refractive index given as:

neffda(l = > w sin 6 > where 0C < 0 < 90° (3.100)

It follows therefore that the maximum value ofneffcJad will occur when the ray is

travelling parallel to the fibre axis, thus the incident angle 0 is 90° (i.e. sin#= 1) and 

will be equal to ncia</• Also the minimum value of will occur when the ray is

incident on the core cladding boundary at the critical angle Qc. Thus when the ray is 

incident on the core/cladding boundary at an angle equal to the critical angle 6C the 

effective refractive index is equal to the refractive index of the surrounding air. This 

is again as expected as the ray will no longer undergo total internal reflection within 

the cladding and will escape into the air.
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If the previous explanation is undertaken using the propagation constant, however, the 

confusion of the refractive index being direction dependent is removed as shown in 

Figure 3.19.

Cladding n rla(i

corecore 'core

fcore

Cladding n ctad

Figure 3.19: Propagation constants ([$) in optical fibre

ficore is the propagation constant of the radiation of a given wavelength within the

2 k  . . . .  . .
core, and is the component of the wave vector k = —  (which is in the actual direction

X

of propagation of the ray) in the axial plane of the core, and from Figure 3.19 can be 

seen to be defined as p  -  kn sinO. It can be seen that shorter wavelengths (X) will 

have larger wave vectors (k), and thus larger propagation constants (fi). The 

maximum value of pcore must occur when the wave vector k is parallel to the core axis 

and 6 is 90°, thus, pcore = knCOre■ The minimum value of pcore must occur when the 

wave vector k is propagating at the critical angle 0C to the core/cladding boundary, 

thus, pcore -  kncore sin 6C 

since sinOc — nciac/ /n core [302]

Pcore ~  k n clad

From Figure 3.19 the propagation constant in the cladding pdad is given as:
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Pclad ktltfad S M @

If the ray is propagating within the cladding parallel to the core axis (as is the ray 

incident at the critical angle on the core /cladding interface) then 0will be 90°, thus

Pclad kftclad

Again when the ray is incident on the core/cladding boundary at the critical angle the 

propagation constant in the core is equal to the propagation constant in the cladding, 

which would be expected as the ray is no longer confined to the core, and is escaping 

into the cladding. The possible range of values of the propagation constant in the 

core, pcore is therefore,

kftclad — Pcore — kncore

The magnitude of pcore reduces as the angle of incidence at the core/cladding interface 

decreases (gets steeper), until the angle reaches the critical angle, beyond which the 

magnitude of pCOre is smaller than the minimum value allowed in the core, thus 

becoming within the range of the cladding propagation constant as the ray escapes the 

core into the cladding.

The alterative FBG coupling equation given in terms of the propagation constants in 

the core and the cladding is shown as [303]:

1*400=  (3101)

This formula can be easily derived from (3.98)
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3.12 Long Period Grating Theory

The long period grating sensor (LPG) is a variation on the fibre Bragg grating (FBG) 

sensor, and as its name suggests differs in construction from the FBG by the length of 

the grating period. FBG grating periods are typically less than 1pm whereas LPG 

grating periods are typically in the range of hundreds of pm [304]. The greater period 

spacings in the LPG result in much smaller diffraction angles, eliminating the 

possibility of the ray being diffracted in the opposite direction to the incident ray. The 

FBG utilises the reflections from (or diffraction by) successive grating elements in the 

sensing mechanism, with all of the radiation remaining in forward or reverse 

propagation modes within the core. The LPG, however, can only be explained using 

the diffraction properties of the grating, with the guided radiation undergoing 

diffraction on contact with the grating. The angle of this diffraction results in a 

modification of the propagation constant pcore, of the core mode of each wavelength, 

which in turn affects the coupling conditions of those wavelengths. Thus unlike the 

FBG there is no reflected (reverse diffracted) radiation due to this effect (but there 

may be some reflected radiation of higher harmonics from the FBG effect of the 

grating) [194], and only transmission profiles may be observed.

The ith coupling wavelength for LPG’s is given as [32,47,166,175,305-309]:

( / ^ ( A ,  )core / ^ ( A ,  )clad )
(3.102)

or ^7  k / / ( A ,  )core ^  A , )cladL,. )core (3.103)
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Figure 3.20: Operation of LPG as diffraction grating

Referring to Figure 3.20, when the mode in the core is incident on the grating at an 

angle 0core it is diffracted through an angle 0C/. The angle 0cj is determined by [107]:

„  . _ mA
ncore Sin °d = ncore Sln 6core + ~A

where m is the order o f diffraction

transposing ncoresin 9core = sin -
A

for the 1st order diffraction, m -  -1, so:

ncore Sin 6core = "core 0d + ~  (3-1 04)A

To explain the operation o f the LPG coupling equation the angle o f the diffracted ray 

can be related to the angle o f the refracted ray from the core/cladding boundary, using

(3.103) for the core to cladding coupling where neff = ns\w6

A
ncore sm 0core -  nclad sin 0dad = — (3.105)

A

substituting (3.104) into (3.105) results in:

sin d:, = ndad sin 0dad (3.106)
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Thus the LPG coupling equations (3.102) and (3.103) are merely Snell’s law using the 

original propagation angle of the core mode before the point of diffraction at the 

grating. So the propagation constant of the core mode after diffraction must be equal 

to that of a cladding mode for core to cladding coupling to occur.

k
Since n sin 0 = = neff, (3.106) can be re-written as:

j )core{d)  )clad

^ eff(Xj)core(d )  ^ eff(Xj)cIad

As the angle of diffraction is wavelength dependent, each wavelength of radiation in 

the core will have a different incident angle on the core / cladding interface, and thus 

a different propagation constant pcore• The cladding will in effect be a multimode 

fibre and thus will have a range of allowed propagation angles (and therefore a range 

of propagation constants p ciad) available for each wavelength within the core.

Only if the angle of the propagation constant of a given wavelength within the core is 

modified by the angle of diffraction at the grating such that its propagation constant 

{pcore) is equal to that of a propagation constant for that wavelength in the cladding 

(Pciad) will that wavelength transfer (couple) from the core into the cladding and be 

quickly attenuated. As the allowed angles (directions) of propagation (modes) in the 

cladding are dependent on the refractive index of both the cladding and the medium 

immediately surrounding the cladding, any change in this surrounding refractive 

index will result in changes in the allowed propagation directions (modes) within the 

cladding. While a change in the refractive index of the surrounding medium will not 

alter the optical properties of the cladding, it will cause a change in the critical angle
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thereby possibly changing the number of modes within the cladding. More 

importantly it will also alter the phase change of the rays at reflections from this 

interface [207], resulting in a change in the ray directions at which constructive 

interference will occur and thus the allowed possible propagation directions (modes) 

within the cladding. The allowed angles (directions) of propagation (modes) in the 

core will not be affected by the change in refractive index of the medium immediately 

surrounding the cladding, but the wavelengths at which coupling from core to 

cladding occurs will change as different wavelengths of the radiation within the core 

will match the coupling conditions given in (3.102) or (3.103) and couple into the 

modified allowed propagation directions within the cladding. This phenomena allows 

the long period fibre grating to be used as an ambient refractive index sensor, and thus 

a gas or chemical sensor as different types or concentrations of the gas/chemical 

surrounding the cladding will change this ambient refractive index and therefore 

change the wavelength at which core to cladding coupling occurs.

Examination of the derivation of the LPG coupling equation highlights an anomaly 

that has never been covered in any literature on the subject, and therefore requires 

explanation. Referring to (3.102) (3.103) and Figure 3.20, as n ef f Core is determined by 

the angle of travel of the mode in the core and given as n core s i n 0 COre, the range of 

angles over which a core mode may be ‘guided’ through the core are from 90° for 

modes which travel parallel to the axis to those which travel at the critical angle (6C). 

Thus the range of n ef f COre values for a ‘guided’ core mode is given by:

ft core '■> fteff core ^  ft clad (3.107)

By the same reasoning the range of n effc ia d  values for a ‘guided’ cladding mode is 

given by:
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Mclad -> Meff clad '> nambient (3.108)

In (3.103) nef fCore refers to the angle of travel of the mode before being diffracted by 

the grating and is guided in the core. It can be written in terms of the diffracted ray

as: n eff(d) ~  n ef f Ciad (3.109)

As the effective indices of the cladding modes are unaffected by the grating, the 

effective index of the core mode must be changed by the grating (as expected due to 

the now steeper angle of the modal path after diffraction at the grating). Thus n ef f Core  

has reduced to such a value that it is now equal to a value in the range of the cladding 

effective indices as shown in (3.109).

Given the allowed ranges of effective refractive indices for ‘guided’ core and ‘guided’ 

cladding modes predicted in (3.107) and (3.108), there is no possibility of a guided 

core mode having the same effective index of any of the cladding modes. Thus if the 

effective index of the core mode after diffraction by the grating is now within the 

range of the cladding effective indices, the core mode can no longer be guided and 

must therefore be incident on the core cladding interface at an angle less than the 

critical angle of the core. As the minimum limit of ncore s in 0 COre ( = nefj) for guided 

core modes is nciad , Qd must be less than or equal to 6C and the coupling core mode 

can therefore no longer be guided.

The fibre core is single mode but as the light source consists of a range of 

wavelengths, e.g. AA ~ 30nm for typical LED, each wavelength will have its own 

propagation constant, ft. When a propagation constant of one of these wavelengths in 

the core and the propagation constant of that wavelength in one the many cladding
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modes matches the condition set by (3.102), this wavelength will be coupled into that 

forward propagating mode in the cladding. As any core propagation constant p core 

only has a range of kncore to knc\ad {fic ia d  max) and the cladding propagation constants 

only have a range of knciad to knambient (greater pciad values will become radiation 

modes), the only value at which Pcore(d) can be the same as p ciad  is when the radiation 

in the core is incident on the core cladding boundary at an angle equal to or less than 

the critical angle of the core. If this is the case then it would be expected that once a 

wavelength on the shorter side of the transmitted spectrum has overcome its critical 

angle all longer wavelengths should also have overcome their critical angles as 

depicted in Figure 3.21, so by Snells law it would be expected that they also should 

escape the core.

Cladding

Blue

Core

W hite
Light

Cladding

Figure 3.21: Critical angles of shorter wavelength (blue) and longer
wavelength (red) of radiation in fibre core

This would create a continuum of radiation absent in the transmission spectrum of all 

wavelengths greater than the minimum coupled wavelength. As this is not the case, 

and only selected wavelengths where the core and cladding propagation constants are 

comparable escape into the cladding, coupled mode theory must be considered to



account for the selective escape of radiation into the cladding as explained in Section 

3.9.

Coupled mode theory works on the evanescent field principle, and states that when 

the propagation constants, /?, of two wave guides in close proximity are equal then the 

radiation from one guide will pass totally into the other [310]. If the propagation 

constants are almost equal then a proportional fraction of the radiation will pass into 

the other wave guide. This would account for the wavelength selective nature of the 

LPG and also the width of the coupling wavelength dip, as the propagation constants 

of the wavelengths each side of the actual coupling wavelength approach and then 

exceed those of the cladding propagation constants for those wavelengths. In the case 

of the optical fibre the core can be classed as one wave guide whilst the cladding 

classed as the other in close proximity and core to cladding coupling will therefore 

take place as previously described.

It can be seen from (3.102) and (3.103) that the wavelength at which coupling will 

occur depends on the propagation constants of that wavelength matching these 

formulae. As previously stated, the propagation constant of the core mode depends 

only on the core and cladding properties (refractive index, diameter), the modes of 

each wavelength in the core will not alter due to changes in refractive index of the 

ambient medium immediately surrounding the cladding, so these will be constant. 

However, as the propagation constants of each wavelength in the multimode cladding 

depend on the properties of the cladding (refractive index, diameter) and coating 

(ambient refractive index), any change in the ambient refractive index will cause a 

corresponding change in the propagation constants of all of the modes for each
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wavelength in the multimode cladding. This will result in a different wavelength in 

the core matching the above conditions and thus coupling from the core into the 

cladding.

On inspection of (3.102) and (3.103) it may appear to be a simple conclusion to state 

that as pcore, A, and k are constant for a given wavelength, the change in coupling 

wavelength must be due to a change in pciad at that wavelength (i.e. subtracting a 

greater or lesser value of pciad from the existing p core will give a lesser or greater value 

of X). This conclusion would be in error as a change in coupling wavelength will 

mean that the p core and p ciad values would both need to be changed in (3.102), as 

would the value of k {=2n IX). To remove all wavelength dependent variables except 

the p  values (3.102) can be transformed to become:

Thus if the coupling wavelength decreases as the ambient refractive index increases

coupling wavelength corresponding to the new shorter coupling wavelength, it has not 

changed in value itself, as it was always that value for this new wavelength, but pciad 

has changed to a higher value itself due to the new allowed propagation directions 

(modal changes) at all wavelength as well as being a higher value than for the original 

coupling wavelength corresponding to the new shorter coupling wavelength). Thus 

both pcore and pciad will increase in value, but as the difference between them is always 

I n  IA, they must each increase by the same amount.

( / ^ ( A ,  )core )clad )

(as experimental and simulated results show it does), and as P 'core

and Pdad must both be of a higher value. (p core is a higher value than for the original
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Returning to the original LPG equation (3.102), as the value (/? (Ai)core - fytydad) is 

always constant {-2n!A) when coupling occurs, then the change in the resulting 

coupling wavelength must be totally dependent on k,, which will be different for each 

wavelength.

3.13 Effect of Change in Ambient RI on 
Coupling

As the ambient index increases from nambient to n amb ie n t’ the following effects will 

occur in the cladding:

i) The critical angle, 6c = sin -i ambient 

V Uclad J
[301], increases proportionally from 9C to 6C’

Cladding

........ 7 .......................... ..
Core

Ray
Path

Cladding , ■ . : ' • ■■ ' . ' ' ■ ■ ■ : ■ - 
■ - . ■ ' ■ :

Figure 3.22: Increase in critical angle due to increase in ambient index
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It can be seen in Figure 3.22 that this will reduce the amount of light that will be 

guided by the cladding. As the critical angle is slightly different for each wavelength 

(due to wavelength dependence of the refractive index), the amount of light guided 

and therefore the number of modes at each wavelength will be reduced. It will have 

no effect however on the direction and therefore the {$ values of the TIR rays in the 

cladding as the angle of reflection will equal the angle of incidence whatever the 

ambient index is.

As the cladding can (and does) contain hundreds of modes and as core to cladding 

coupling is normally designed to utilize only the first ten or so cladding modes [302] 

the loss of these higher order modes will have no appreciable effect on the observed 

output spectrum of the fibre core.

ii) The phase change on reflection at the cladding/ambient boundary is dependent on 

the angle of incidence (which will not change with ambient RI) and the RI difference 

at that boundary [265]. As the modes only exist under TIR conditions, the phase shift 

at angles greater than the critical angle need only be determined, which will be 

different for TE and TM modes [231 ]. The phase shift $ is given by [311 -314]:

'V sin 16 - N 2''
For TE modes (f)TE = 2 tan-i

cos#

For TM modes (f)TM = 2  tan-i Vsin 20 - N 2 
N 2 cos#

Where N  =
Yl  ambient :, i.e. N<1

n clad

The phase changes versus the incident angle for both TE and TM rays are shown in 

Figures 3.23 to 3.26 for various values of n ciaej  and n ambient-
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+H

Figure 3.23: Phase changes versus the incident angle for both TE and TM rays
With f t d a d  — 1.5, f t a m b i e n t  — 1*0

Figure 3.24: Phase changes versus the incident angle for both TE and TM rays
with nciad= 1.5, W  a m b ie n t — 1 »2

 !__

Figure 3.25: Phase changes versus the incident angle for both TE and TM rays
with f t  d a d — 1.5, f t  a m b ie n t  1*4

93



iK-rT~T~Tfrt-’4- 4> 
80 90

Figure 3.26: Phase changes versus the incident angle for both TE and TM rays
With ft d a d  — 1.5, f t  a m b ie n t  — 1.45

Incident Angle Phase Shift ({) at given ambient index n3

n3 = 1 n3 = 1.2 n3 = 1.4 n3 = 1.45
TE TM TE TM TE TM TE TM

oO00 153.1 167.8 146.3 158.1 122.1 128.6 94.6 98.5 |
81° 155.8 169.1 149.8 160.4 128.3 134.3 104.7 108.4

1 82° 158.5 170.3 153.2 162.6 134.4 139.8 114.1 117.6

oCOOC 161.2 171.6 156.6 164.9 140.3 145.1 123.2 126.3

oo 4̂ o 163.9 172.8 160.9 167.1 146.1 150.3 131.8 134.6

OO
o 166.6 174.0 163.3 169.3 151.9 155.4 140.2 142.6

8 6 ° 169.3 175.2 166.6 171.4 157.6 160.4 148.4 150.4

or-oo 171.9 176.4 170.0 173.6 163.2 165.4 156.4 157.9

ooooo 174.6 177.6 173.3 175.7 168.8 170.3 164.3 165.3

oO
n

OO 177.3 178.8 176.7 177.9 174.4 175.1 172.2 172.7

sO o o 180 180 180 180 180 180 180 180
Table 3.1: Summary of phase changes versus the incident angles between

80° and 90° for both TE and TM rays at a range of ambient 
indices

As can be seen from Figures 3.23 to 3.26 and Table 3.1, as the ambient index is 

increased the critical angle increases as stated in (i), and the phase change of any 

given wavelength which remains within the critical angle decreases as stated in (ii). 

As the ambient index approaches that of the cladding, the difference between the TE
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and TM phase changes decreases. This fact is utilised in the weakly guiding 

approximation discussed in Section 3.4 of this thesis.

Thus as the ambient index increases towards that of the cladding the phase change on 

reflection at each cladding to ambient interface decreases, altering the optical path 

length of each wavelength, and thereby altering the angles at which constructive 

interference will occur at that wavelength (and therefore the ft values of the modes). 

This will result in the wavelengths coupling from the core to the cladding given in 

(3.102) changing also.

3.14 Intensity Profile of Coupled Radiation

The intensity of the radiation coupled between core and cladding modes is dependent 

on the coupling coefficient as explained in section 3.9. This section uses ray theory to 

give a more intuitive description of the concepts.

As shown in Figure 3.27, when radiation enters the fibre aperture the longer 

wavelengths will be refracted less than the shorter wavelengths, and will therefore be 

incident on the core/cladding boundary at a smaller (steeper) angle than the shorter 

wavelengths.
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Cladding n dad

Core n,

Cladding n dad

Figure 3.27: Refraction and diffraction of different wavelengths of light at
refractive index boundaries

When the rays encounter the grating the longer wavelengths will be diffracted through 

a greater angle than the shorter wavelengths. Both these effects ensure that the longer 

wavelengths in the spectrum within the fibre core will be incident on the 

core/cladding boundary at steeper angles than the shorter wavelengths after diffraction 

by the grating. As previously stated the core/cladding incident angle of the coupling 

wavelength paths after diffraction by the grating is less than the critical angle at that 

wavelength. As such the radiation will be partially reflected back into the core and 

partially diffracted into the cladding at core/cladding interface. The fraction of the 

radiation which will be reflected or transmitted will depend on the angle of incidence. 

The reflection coefficient p  determines the fraction of the electric field reflected at a 

boundary, for normal incidence ( 9 -  0°) [315]:

n. — rz0
p =-— ^nx + rij

If U2 is greater than nj, (external reflection, no TIR possible) p  will be negative, 

indicating that there is a 180° phase shift on reflection between the incident and 

reflected electric fields.
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Reflectance R is the fraction of the incident beam intensity which is reflected at a

boundary, and is equal to (?, for normal incidence (0= 0°) [316]

_  (»i ~ n 2fi n .  — n .  
R  =  / v

(w, + n 2)

If the angle of incidence is not normal to the surface then the polarisation of the 

radiation will affect the reflection coefficient p  as predicted in (3.110) and (3.111) 

(see Appendix 1 for derivation) [317-319]:

For parallel polarisation (TE)

_ ------1 v —  if-'jE I---------------
cos6j + ^ N 2 -  sin2 07 

For perpendicular polarisation (TM)

cos Or - J n 2 - s in 2 Or
 7 (3.110)

/ AT2 _ o m 2 Q

 ̂ _ N 2cos01 - ^ N 1 - s m 2e,
P ™  ~  9 I— ;------ — :------  (3.111)

N  cos 6j + y N  -  sin 07

By the same theory the transmission coefficients for TE and TM polarisations are 

predicted in (3.112) and (3.113) (see Appendix 1 for derivation) [319,320]:

For parallel polarisation (TE)

(3.1.2)
cosO j+ ^ N  - s in  07

For perpendicular polarisation (TM)

2N cos 0j
ttm =  , ..=  (3.113)

N 2 cos9j + N 2 -  sin2 07

where N  = ^££r£-
nclad

It is logical also to state that r=  1 - p  [321]
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Reflectance (R) is the fraction of power in the incident wave which is reflected from

the surface [322]:

° T E  =  P T E  

RjM = PYM~

Transmittance (7) is not equal to the square of the transmission coefficient but can be 

shown to be [323]:

Tje — 1 - Rte 

Ttm = 1 ~ 7?tm

The Reflectance, R, and Transmittance, 7, are shown in Figure 3.28 for a fibre/air 

interface of n core = 1.5, nambient -  10, resulting in a critical angle (0C) of 41.81° and a 

Brewster angle (Oh) of 33.69°.

Rp (TM) 
Rs (TE) 
Tp(TM) 
Ts(TE)

0.9 --

0.5 ~

0.4 --

0.3 --

0.2  -

)»0|<>000|&<>60|000<i|&0<>0|00<><])t>000|000<)tt>0ĉ  I
100Oh 40 Qc20

Incident Angle

Figure 3.28: Reflectance & transmittance for ncore > nciad

It can be seen that for the TE rays as the incident angle increases from zero the 

reflectance increases and the transmission decreases, until TIR is achieved at the
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critical angle. For TM rays however, it can be seen that as the incident angle initially 

increases from zero the reflectance decreases and the transmission increases until the 

Brewster angle is reached at which all of the light is transmitted across the interface 

and none reflected (due to the polarising effect at the Brewster angle, see Appendix 

2). For incident angles greater than the Brewster angle it can again be seen that the 

reflectance increases and the transmission decreases, until TIR is achieved at the 

critical angle. Thus as the longer coupling wavelengths in the core which are incident 

on the core cladding interface at the steepest (smallest) angles (the incident angles 

being just less than the critical angle after diffraction by the grating) will experience a 

greater fraction of transmitted radiation than the shorter wavelengths which will be 

incident at shallower angles. This will result in a greater dip in the transmission 

spectrum for longer coupling wavelengths than the shorter ones as confirmed by 

theory [142,324-326].

It can be seen that the reflectance increases as the incidence angle increases (rays 

incident at shallower angles), until the critical angle is reached, thus more 

transmission occurs across the core/cladding interface at longer wavelengths. The 

LPG spectra show this as the shorter wavelengths couple to the lower order cladding 

modes with the intensity of the coupling reducing as the core wavelength and 

cladding mode order decreases.

For incident angles greater than the critical angle, 0t > 6C in the reflection coefficient 

equations, where nj> n2 , nj2sin2$i > n2 (guided waves) causing the rooted term to 

become negative and thus imaginary, resulting in the reflection coefficients being 

given by equations of the form [327]:
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\p \ J A z J A
|P| \A + jB  |

As the magnitudes of |A -  jB\ and |A + jB\ are both (A2 + B2)112, the magnitude of p  

will be unity (1), with the associated angle giving the phase shift of the reflected wave 

relative to the incident wave. The Reflectance (R - f f )  will therefore also be total 

(unity) for all incident angles greater than the critical angle.

3.15 Summary

This chapter has introduced the concepts of light guidance, mode formation and 

mode classification in optical fibres. The equations predicting the characteristics of 

light propagation are derived from Maxwell’s Equations and subsequently applied to 

the light propagation in optical fibres and mode classification. The concept of the 

evanescent field, coupled mode theory, fibre Bragg gratings, effective refractive 

index, long period gratings, and the relevant effects of changes in ambient index have 

been discussed.
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Chapter 4

Computer Simulations

4.1 Introduction

A major part of this research was to develop a mathematical model to predict the core 

and cladding mode propagation constants in fibres of given optical and physical 

parameters, to allow comparison with the results obtained experimentally. Computer 

programs were developed to determine HEn core modes and HEmi cladding modes 

from expression (3.4) developed in section 3.5 to 3.7, and by Erdogan [278]. The 

program is also used to predict various outcomes which could not be verified 

experimentally due to lack of resources etc.
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Section 4.2 introduces the equations used to predict the modes in the core and 

cladding. Section 4.3 shows the program constructed to predict the number of modes 

and their optical constants in an ideal fibre core and cladding. The code is expanded 

in section 4.4 to predict a grating period which would couple the core mode to a 

specific cladding mode, and thus predict further coupling of all shorter wavelengths in 

the core into the lower order cladding modes. Section 4.5 shows how this program 

code can be used to design an optical fibre grating period to couple a selected 

wavelength from the core into a specific cladding mode. The simulation in section 4.6 

predicts the coupling wavelength shifts with a range of ambient indices up to that of 

the cladding using the actual parameters of the fibres involved in the experimental 

investigations, and the simulation in section 4.7 adapts the previous code to determine 

the coupling wavelength shifts for ambient indices greater than that of the cladding.

4.2 Equations Used to Predict Core and 
Cladding modes

In the simulation using the derived expression (3. 4) [205] the cladding is treated as a 

multimode fibre core and takes no account of the effect which the refractive index of 

the actual core would have on the mode formation in the cladding. Simulations based 

on the expression developed by Erdogan [328] did include the core when predicting 

the cladding mode formation and was therefore expected to give more accurate
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representations of the actual effects observed. In both cases the HEn core mode is 

described in equation (3.57)

The simulations are carried out using matlab, but matlab cannot operate on the 

differential form of the Bessel functions (denoted by the prime sign). Therefore 

(3.57) is converted into non differential values to predict the propagation constants of 

the core modes and becomes equation (4.1) [329-331]:

,41)
uJm(u) wKm{w)

which was used to predict the propagation constants of the core modes in both sets of 

programs.

Similarly, converting equation (3.65) describing the HEmi cladding modes derived in 

section 3.7 into non-differential form gives [332]:

j „- i(») 
uJm(u)

^n2 —n

^  n  c o re +  H d a d  

^ n c o r e

+? L _
2 wKm(w)

2 A2
co re  c la d

In 1V c o re y 2 wKm(w)
+

pm

\k ncoreJ

1 1
2 +~  

W  U

(4.2)

Here the cladding is treated as a multimode core, thus the cladding specifications are 

represented by the core subscript and the ambient specifications are represented by the 

cladding subscript.

The alternative program utilises the equation describing the HEmi, cladding modes 

taken from Erdogan [328]:

<To = C  (4-3)

103



where

Co =
W2V 2 j

<7, "32 J _ 3 L K  ,  ( r  ) + i ^ 9  (r  )  +  i ^ r  (r  )

\ n 2 r 2 n \ T\ J
Yl~Y 
n \ 2

2 wj Wj/J

fo = 0 i
\ V2 Yl̂ T2 1  y

Pm (r2 )■- —  1m(r2 ) “  ~ r„ )
'0 ” 1 C  2

u '
3_ j r j £  t J i<^*2^21^32

w? w,2r;roV 2
( n ) - ^ r  KVm (r2 ) + K  (r2) -  j„ (r2)

*1 ' 1 '2
2 m 'nl u1

where

imnn
cr, =

cr2 = imneffz0

z„ = /£».=  377£2

1 1
W 21 ~  2  2W, W-,

1 1
Z/00 —32 2 2Wo Wo

2
ambient

uj = ^ k 1n2] - P  

wj = i j f i2 ~ k 2n,

j  _ ■/ m-i("i'l)~-/ »t i(»i'l)
2V » .( " i 'i )

2w2A:„(w2r2)

Pn, W = ) -  J m (U2ri )N m W )

q J r ) =

rm(r)=^

s  ( r ) _ f  ■/ , „ - l ( » 2 ' ' ) - - / , ^ l ( » 2 ' ' ) Y  ^ m- l ( » 2 ' i ) - A fm tl ( » 2 ' i ) N|

J m - \  ( V l  ) ~ J m*  1 )  Y ^ - 1  (“ 2 ' ' ) -  ^ .< - 1  (" 2 '')

A

subscripts 1,2, 3, represent core, cladding and ambient values respectively.
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The simulation is designed to perform the following tasks over the range of 

wavelengths specified:

• Ensure the core will only support one mode

• Determine the value of the propagation constant of that core mode

• Determine the number of cladding modes

• Determine the propagation constants of each cladding mode

• Find at which wavelengths coupling between core and any cladding mode will 

occur.

As the propagation constants of the determined core and cladding modes are required 

to be used in the coupling equation, and all of the above equations are functions of the 

propagation constants of the selected wavelengths in the core and cladding, rather 

than attempt to perform very involved mathematics to make p  the subject, the 

program was designed to perform the calculations over a range of p  values and select 

the ones which matched the conditions and hence represented the modes. In all cases

the right hand side of the equations were subtracted from the left, and the solutions to

the equations therefore occurred at p  values at which zero values were obtained.

105



4.3 Simulation 1: Determination and 
Comparison of Optical Constants of Fibre 
Core and Cladding using Equations 4.2 & 
4.3

The first programs (Appendix 3 and Appendix 4) were designed to test equations 4.2 

and 4.3, and consequently to determine the propagation constants (/5), and propagation 

angles (6), for the core and cladding modes of a fibre using the parameters shown in

table 4.1.

Parameter Value
Core refractive index (n COr e ) 1.458
Cladding refractive index (nciad) 1.455
Ambient refractive index (n a m b ie n t ) 1.000
Core radius (rcore) 2.625pm
Cladding radius (rciad) 62.5pm
Operational wavelength (A) 1550nm

Table 4.1: Optical and Physical parameters used in simulation 1

Figures 4.1 to 4.4 show the shape of the graphs of the solutions to the HEmi equations 

as functions of propagation constant in the core and the cladding. Figures 4.1 and 4.2 

show that the line crosses zero only once, thus there is only 1 solution to (4.1) and the 

fibre core is operating in single mode.
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Figure 4.1: Graph of solution to core mode equation 4.1

HE 1,1 Core Mode

0.6

0.4

0.2

- 0.2

-0.4

- 0.6
5.89875.89865.8984

Propagation Constant / rads/m
5.89855.89835.8982

x 10

Figure 4.2: Magnified graph of solution to core mode equation 4.1

Figures 4.3 and 4.4 show that the line crosses zero many times, thus there are many 

solutions to (4.2) and the fibre cladding is operating in multimode.
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HEml Cladding Modes
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HE1.1HE1.23
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Propagation Constant / rads/m
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Figure 4.3: Graph of solution to cladding mode equation 4.2 showing first 23
cladding modes

Cladding Modes

HE1.6
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Propagation Constant / rads/m

Figure 4.4: Magnified graph of solution to cladding mode equation 4.2
showing first 6 cladding modes
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Table 4.2 and Figures 4.5 and 4.6 show the simulated results for radiation of 

wavelength 1550 nm for the core mode and the first 10 cladding modes using (4.2)

and (4.3).

Mode P  value rads m"1 Propagation Angle (P
Equ 4.2 Equ 4.3 Equ 4.2 Equ 4.3

HE,., (core) 5898568.726564 5898568.726564 86.397437 86.397437
HEU (clad) 5897510.471958 5897765.001768 89.198985 89.401435
HE,.2 (clad) 5896540.307610 5897517.849634 88.687882 89.204129
HE,.3 (clad) 5895140.393655 5896899.969298 88.188867 88.850541
HE,,4 (clad) 5893308.885675 5896556.907380 87.693609 88.694943
HE,,5 (clad) 5891045.783669 5895577.520938 87.200087 88.328615
HEi.6 (clad) 5888351.087638 5895171.748777 86.707492 88.198530
HEi,7 (clad) 5885224.797580 5893814.256457 86.215433 87.819007
HE,.8 (clad) 5881665.069079 5893360.529405 85.723455 87.706109
HE,,9 (clad) 5877673.746552 5891610.175856 85.231718 87.314668
HEi.io(clad) 5873247.141161 5891121.404845 84.739732 87.215166

Table 4.2: /?and lvalues for core and first 10 cladding modes

5900000

5895000

5890000

5885000

5880000
CD

CL 13 values (Equ 4.2) 

P  values (Equ 4.3)
5875000

5870000

Cladding Mode Number Subscript

Figure 4.5: Propagation constants of first 10 cladding modes using equations

4.2 & 4.3
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Figure 4.6: Propagation angles of first 10 cladding modes using equations 4.2
& 4.3

The programs were designed to locate the values of ft at which the lines of the 

equation crossed zero. In order to perform this computation, the solutions to the 

relevant mode equations were sampled to find the positions at which one value was 

positive and the following value negative. The p  value of the mode was taken as the 

average of these two p  values. Ideally these values should be of equal magnitude, but 

this was not always the case and errors are therefore introduced into the solutions at 

this point. In an attempt to minimise these errors the sampling rate was increased to a 

point where the computation time did not become a burden. Using one million 

samples of propagation constant values each simulation took about a day to complete.

The p  values and the propagation angles shown in table 4.2 can be seen to decrease as 

the mode number increases as expected from theory. It can also be seen from figure 

4.3 that the modes become more widely separated as the mode number increases.
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Table 4.2 and figures 4.5 and 4.6 show the mismatch between the 2 formulae. As

(4.3) is a more accurate representation of the core and cladding geometry it is adopted 

in further analysis.

4.4 Simulation 2: Operation of Simulation Code 
Using Ideal Parameters

This part of the program code was written to ensure the completed part of the code 

would operate properly and to allow debugging and accurate results on ideal 

parameters which were calculated to match coupling conditions. The programs were 

then modified to allow for the fibre specifications used in the experiments.

In order to ensure selection of the correct wavelengths, the program was modified to 

use values calculated and matched by itself.

The first part of the program was designed to determine the propagation constants of 

the core and first ten cladding modes at a given wavelength (1550 nm). The grating 

periods required to couple the core mode to each of the cladding modes were then 

calculated using the manipulated LPG coupling equation given as:

(4.4)
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The second part of the program was designed to determine the propagation constants 

of the core and first six cladding modes over a range of wavelengths and compare 

them with the LPG coupling equation using the previously selected (6 ) grating

t l iperiod. The fact that the 1550 nm wavelength was predicted to couple to the 6 

cladding mode suggested that the programs were operating properly. Other 

wavelengths in the selected range at which the coupling equation was satisfied were 

stored along with their p  values and the HEm/ cladding mode number to which they 

would couple. The program is given in Appendix 5.

Using the same parameters given in Table 4.1, ft  values of the core and cladding 

coupling modes for a range of cladding mode numbers and coupling wavelengths are 

tabulated in table 4.3. It can be seen that the simulation predicts the core mode at 

1550 nm will couple to the 6th cladding mode (HEi6) and that the wavelengths which 

will couple to the previous five cladding modes are also predicted. This suggests that 

the program is operating properly.

Cladding 
Mode No

Coupling Wavelength/ 
nm

pcore rads/m Pciad rads/m

HE„ 1425 6405229.246017 6393223.172390
HE12 1439 6342687.849250 6330685.685971
h e 13 1453 6281354.041903 6269351.380686
h e 14 1480 6166350.885864 6154357.189382
h e 15 1508 6061447.316717 6039455.320071
h e 16 1550 5886893.070433 5874893.487724
Table 4.3: Coupling wavelengths and propagation constants for the first 6

cladding modes
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4.5 Simulation 3: Prediction of Grating Periods 
Required to Couple Selected Wavelengths 
into a Given Cladding Mode

It is possible, using the above program, to predict the grating periods required to 

couple a selected wavelength to a given cladding mode in a fibre with arbitrary optical 

and physical properties. This is a very useful set of results, as shown in figure 4.7, to 

allow gratings to be designed to operate at a required wavelength.

For example, at a wavelength of 1550 nm the grating period required to couple the 

core mode to the HEu or the HEuo cladding modes can be seen to be 675pm and 

390pm respectively.

1 7 0 0  T
HEfio

1 6 0 0
HE

1 5 0 0

1 4 0 0

c  1 3 0 0

>  1200 -4 - —

1100

1000 ii

9 0 0  +

1 5 0  2 0 0  2 5 0  3 0 0  3 5 0  4 0 0  4 5 0  5 0 0  5 5 0  6 0 0  6 5 0  7 0 0  7 5 0  8 0 0  8 5 0  9 0 0  9 5 0
P e r io d  / u m

Figure 4.7: Determination of period designed to couple a selected wavelength
into a given cladding mode
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4 . 6  Simulation 4: Prediction of Shifts in 
Coupling Wavelengths Using the Actual 
Parameters of the Fibres and Gratings Used 
in Experimental Investigations for Ambient 
Indices up to that of the Cladding.

As most of the experiments involving coating of the fibre and thus changing of the 

ambient refractive index were performed using the fibre C l, the optical and physical 

parameters of this fibre shown in table 4.4 were used in this program to predict the 

coupling wavelengths in air and compare them to the experimental values.

Parameter Value
Core refractive index ( n core) 1.4535
Cladding refractive index (nciad) 1.4483
Ambient refractive index (n ambient) 1

Core radius (rcore) 4.1 pm
Cladding radius (rciacj) 62.5 pm
Operational wavelength (X) 1550 nm
Grating period (A) 280 pm
Wavelength range (AX) 900-1600 nm

Table 4.4: Optical and Physical parameters used in simulation 4

For a range of coupling modes, the predicted and measured coupling wavelengths are 

shown in table 4.5. The range for the wavelengths is simply limited by the non­

availability of a broadband light source. The code was modified, removing the 

section which predicted the period of the LPG, the period of the Cl LPG being used 

from the outset and can be seen in Appendix 6 .
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Simulated results Experimental results
Coupling

mode
Coupling wavelength / 

nm
Coupling mode Coupling wavelength / 

nm
HEU 995.0 Unknown 1281.0
HEU 1001.5 Unknown 1297.5
HEU 1007.0 Unknown 1317.0
HEm 1019.0 Unknown 1407.0
HE1.5 1029.0 Unknown 1426.5
HEi,6 1046.5 Unknown 1447.0
HEi.v 1064.0 Unknown 1468.5
HE,.8 1087.0 Unknown 1493.0
HE,.9 1117.0 Unknown 1525.5
H Euo 1148.0 Unknown 1590.0
HE,.,, 1203.0
HEi.,2 1246.0
H Ei. ,3 1372.0
HEU 4 1452.0

Table 4.5: Simulated and experimental coupling wavelengths for fibre Cl

Table 4.5 shows that the predicted and measured coupling wavelengths are very 

different with none of the values matching. The program predicts no coupling at 

wavelengths between 1452nm and 1600nm, where as the experimental findings show 

four coupling wavelengths in that range. The cladding modes into which the 

wavelengths were found to couple in the actual fibre are unknown and cannot be 

determined by practical methods available in this investigation, as a broadband source 

covering a lower wavelength range was not available. This is not a totally unexpected 

outcome as the actual refractive index profile along the grating is not linear, as the 

program code assumes it to be. As stated in the experimental section, the refractive 

index profile of the grating section approximates a Gaussian profile, the separation of 

the maxima of which are known, but the width of the profile, depends on many factors 

and properties of the fibre. Some of these properties can only be estimated and can 

never be accurately modelled without empirical adjustment of the parameters until the 

model fits the measured results as close as possible. This adjustment would have to be
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performed as fibres of different properties were used, making the actual accuracy of 

any predicted values suspect. The simulation was repeated for a range of ambient 

refractive indices (air to cladding) to determine the change in coupling wavelengths. 

The results are shown in Table 4.6 and Figure 4.8.

Cladding coupling 
mode

Coupling wavelengt i  at ambient index / nm
1 1.3 1.35 1.4 1.44 1.445

HEU 995 995 995 995 995 995
HE , .2 1001.5 1001.5 1001.5 1001.5 1001.5 1001.5
HE, , 3 1007 1007 1007 1007 1007 1006.5
HE , .4 1019 1019 1019 1018.5 1018.5 1017.5
HEi.5 1029 1029 1028.5 1028.5 1028.5 1027.5
HEi.6 1046.5 1046.5 1046.5 1045.5 1045.5 1043.5
HE , , 7 1064 1063.5 1063.5 1062.5 1062.5 1059.5
HEi,8 1087 1086.5 1086.5 1086 1085.5 1081.5
HEi,9 1117 1116.5 1116 1115.5 1114.5 1108.5
HE, . ,0 1148 1147 1146.5 1145.5 1144.5 1136.5
HE,.,, 1203 1 2 0 2 1 2 0 1 1199 1197.5 1183.5
HEi,12 1246 1244 1243.5 1241 1239 1 2 2 1

HE, , 13 1372 1367 1364.5 1359.5 1355.5 1313
HE , . , 4 1452 1444.5 1440.5 1433.5 1426.5 1368

Table 4.6: Coupling wavelength or a range of ambient refractive indices

For a given ambient index, the longer wavelengths can be seen to couple to higher 

order cladding modes. Increasing the ambient index has no effect on the coupling 

wavelengths to the first three cladding modes. However, an increase in the ambient 

index shows a general decrease in coupling wavelength to all higher cladding modes. 

These results confirm the trend of the results obtained experimentally.
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Figure 4.8: Coupling wavelength versus the coupling mode for a range of
ambient refractive indices

Further simulations carried out confirmed the following features of LPGs

1. As the radius of the cladding increases the total number of cladding modes 

increases linearly (shown in figure 4.9), as predicted by theory due to the greater 

volume of the cladding.
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Figure 4.9: Number of cladding modes as a function of cladding radius

117



2. As the ambient index increases from that of air (1) to around 1.4 the total number 

of cladding modes decreases linearly. As the ambient index increases beyond 1.4 

to that of the cladding (1.4483) there is a sharp fall in the number of cladding 

modes (see figure 4.10) due to the increase in the critical angle as a function of 

ambient index change.
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Figure 4.10: Number of cladding modes as a function of ambient index

4.7 Simulation 5: Prediction of Shifts in 
Coupling Wavelengths Using the Actual 
Parameters of the Fibres and Gratings Used 
in Experimental Investigations for Ambient 
Indices Beyond that of the Cladding

Experimental results and literature [193] showed that the coupling wavelengths 

decrease as the ambient index increases up to that of the cladding at which point no
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coupling is evident as the dips on the output spectrum disappear. Above the index of 

the core, however, coupling is again evident, but this time returning immediately to 

the coupling wavelength in air, and increasing as the ambient index increases. This 

effect could not be modelled using (4.7) since it is only valid for ambient indices 

lower than the cladding index. However, (4.6) can be used to predict coupling 

wavelengths at indices higher than the cladding index. Using (4.6), the coupling 

wavelength versus ambient index for different cladding modes are shown in figure 

4.11 (see Appendix 7 for code).
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Figure 4.11: Coupling wavelength versus ambient refractive index for the first
eight cladding modes

The graph confirms the effects observed in the experimental procedures with respect 

to the ambient index profiles of LPGs. It can be seen that the coupling wavelengths 

decrease steeply as the ambient index approaches that of the cladding (1.4483), the 

effect being more prevalent as the cladding mode order to which each wavelength will 

couple increases. When the ambient index reaches that of the cladding no mode
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coupling occurs due to the absence of mode formation in the now effectively infinite 

cladding. The coupling wavelengths can be seen to jump back to the same values as 

were predicted in air for all modes as soon as the ambient index is greater than that of 

the cladding, increasing only slightly from that value as the ambient index increases to 

2 .

4.8 Summary

This chapter has explained the basis of the equations used to predict the modes in the 

core and cladding. These equations have been used in the programs written to predict 

the number of modes and their optical constants in an ideal fibre core and cladding, 

and to predict a grating period which would couple the core mode to a specific 

cladding mode. This program code was used to design an optical fibre grating period 

to couple a selected wavelength from the core into a specific cladding mode, and 

modified to predict the coupling wavelength shifts with a range of ambient indices up 

to that of the cladding using the actual parameters of the fibres involved in the 

experimental investigations. The code was then adapted further to determine the 

coupling wavelength shifts for ambient indices greater than that of the cladding.
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Chapter 5

Fibre Coating Procedures

5.1 Introduction

In order to use an LPG as a gas/chemical sensor it was necessary that the ambient 

index outside the cladding should change when the measureand is present As the 

gas/chemical under investigation is unlikely to noticeably affect the ambient index on 

contact with the cladding, a coating, whose refractive index would change with a 

given measureand was investigated.

Section 5.2 describes the compounds used in the coating experiments, their functions 

and the gases to which they are optically sensitive. Section 5.3 introduces the
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Polyelectrolyte Self-Assembly (PESA) coating method, while Section 5.4 explains 

how automated method of PESA was utilized to coat the glass slides and the planar 

polarized interferometers (PPIs) used in the determination of the absorption spectrum 

and the sensitivity to NO2 of CuPc as described in sections 6.5.3 and 6.5.4 

respectively. Section 5.5 describes the method used to investigate the adaptability of 

PESA to in-situ coating using surface plasmon resonance (SPR) to monitor the build 

up of the layers, with Section 5.6 progressing to the coating of the LPGs in-situ. 

Section 5.7 explains the final coating method used in these investigations, by 

immersion in solutions of chemicals.

5.2 Compounds Used in the Coating Procedures

The following compounds shown in Figures 5.1 to 5.10 [333-340] were involved in 

this investigation. Their functions are listed in Table 5.1.
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Figure 5.5: Chromo 1 Figure 5.6: NO2 Nitrogen Dioxide
Cyclo-tetrachromotropylene
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Compound Function
CuPc (S03“Na+)4 Sensitive to NO2

CuPc (C(CH3))4 Sensitive to NO2

Chromo 1 Sensitive to Ammonia
Calixarene Sensitive to Hexane, Toluene, Benzene

PAA Electrostatic Bonding
PPS Electrostatic Bonding

Table 5.1: Compounds used in the coating process and the gases to which
they are optically sensitive

5.3 Polyelectrolyte Self-Assembly (PESA) Coating 
Method

The technique of depositing multilayer coatings by the adsorption of consecutively 

alternating layers of anionic and cationic bipolar amphiles and/or polyelectrolytes was 

developed as a method of thin film coating by Lvov et al in 1993 [341]. It has proved 

to be a simple and efficient method of applying thin films onto various substrates. A 

glass slide will have a negative charge at its surface due to the discontinuity of the 

structure at that point. If the slide is immersed in a solution of positive (cationic) 

polyelectrolyte a layer of this polycation will be adsorbed onto the glass surface, 

leaving the surface of this new layer with a positive charge. If, after thorough rinsing 

with water to remove all of the unbonded polycations, the slide is then immersed in a 

solution of negative (anionic) polyelectrolyte a layer of this polyanion will be 

adsorbed onto the surface of the polycation layer. Cyclic repetition of these 2 steps 

will allow the build up of multilayers of the 2 polyelectrolytes to the required coating 

thickness [342-347].
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For the first series of experiments, poly(alylamine hydrochloride) (PAA) was used as 

the positive (cationic) polyelectrolyte (polycation) and copper phthalocyanine-tetra 

sulphonic sodium salt (CuPc'(SC>3 'Na+)4) was used as the negative (anionic) 

polyelectrolyte (polyanion). Both compounds are water soluble allowing solutions of 

2 mg/ml of PAA in water and 0.5 mg/ml of CuPc'(SCVNa+) 4  in water to be produced 

and used as the polyelectrolytes in the PESA coating method.

Figure 5.11 shows an experimental set up adopted to investigate the absorption and 

coating thickness dependency of PAA/ CuPc'(S0 3 *Na+) 4 . It was possible to coat the 

slides and planar polarisation interferometer (PPI) chips using the fully automatic, 

computer controlled set up which had previously been designed and produced in 

house.

Figure 5.11: PESA coating set up
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Two beakers, one containing the polycation solution and the other containing the 

polyanion solution are positioned alternately with two beakers of millipore de-ionised 

water on a rotating disc. The sample to be coated is mounted in a clamp, the vertical 

movement of which is controlled in time and distance by the computer program as is 

the rotational position of the beakers. The program allows accurate setting of the 

immersion time into each polyelectrolyte, the number of immersions into the rinsing 

water for removal of excess unbonded ions, coordination of the immersion and 

rotation of the disc, and the number of cycles (bi-layers) required.

5.4 Coating of Glass Slides and Planar Polarisation 
Interferometers Using Automatic PESA Set Up

A glass slide, previously coated with 100 nm thick layer of aluminium by thermal 

evaporation (PVD), was mounted in the above set up. The number of cycles (bi­

layers), immersion duration, and wash duration were entered into the computer, and 

the system was activated. Starting with the PAA cation polyelectrolyte solution the 

slide was sequentially immersed in PAA and CuPc'(S0 3 “Na+) 4  solutions for 20 minute 

durations, the excess unbonded ions of the previous solution being rinsed off in 

millipore water before immersion in the proceeding solution, until the required 

number of bi-layers were attained. Figure 5.12 shows a schematic diagram of the 

build up of the alternate layers of PAA and CuPc'(S(>3'Na+) 4  on the glass slide [348].
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Figure 5.12: Build up of consecutive layers of PAA/ CuPc'(S0 3 "Na+) 4  on glass
slide using PESA method

The same procedure was performed on the PPI chips, with the difference being that 

the surface of the silicon nitride ( S i .^ )  window on which the coating was to be 

applied has an overall positive charge, resulting in the immersion cycle beginning 

with the negative CuPc'(S0 3 _Na+ ) 4  anion polyelectrolyte. The coating of the fibre 

cladding in the LPG region of the core could not be performed using the automatic 

computer controlled set up for reasons that are explained in the experimental section 

(Chapter 6). This led to an investigation into the possibility of coating the fibre 

cladding in the surroundings in which the sensing experiments would be performed, to 

allow continuous monitoring of the coating and gas exposure procedures at all stages 

of the experiment.
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5.5 Investigation into Adaptability of PESA Method 
to In-Situ Coating of Fibre Using Surface 
Plasmon Resonance (SPR)

This experiment was performed to determine if the PESA method would be effective 

when a body was maintained in a cavity, which would be filled with the various 

polyelectrolytes in sequence, with intermediate flushing with water to remove the 

unbonded ions, and to monitor the build up of the coating due to the resulting shift in 

coupling wavelength observed on the OSA as it occurred. In order to carry out this 

investigation surface plasmon resonance (SPR) [349-351] was utilised to monitor the 

in situ PESA coating of a gold coated slide. Surface plasmon resonance is a well 

known and widely used technique to investigate the properties of thin films [352,353]. 

Plasmons at the surface of gold will have a resonant frequency at which they will 

vibrate. If a thin layer of gold is deposited onto the surface of a glass slide and a 

narrow beam of light is made incident on the under-side of the gold film, wavelengths 

for which the component of the wave vector k in the direction of the plasmon 

vibration are equal to the resonant frequency will be significantly absorbed by the 

gold film, whilst other wavelengths will be reflected. A coating on the surface of the 

film will affect the resonant frequency of the surface plasmons and therefore the 

wavelength of incident light which will be absorbed. It follows, therefore, that the 

underside of the gold film can be interrogated by a single wavelength (known to be 

close to the resonant frequency of the plasmons) made incident over a range of angles, 

or by a range of wavelengths made incident at a given angle, both of which methods 

will modify the component of the incident wave vector in the direction of the plasmon
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vibration. The build up of coating layers can therefore be monitored by this procedure 

as they are applied. The experimental set up is shown in Figure 5.13. The prism and 

the slide thickness combine to form a homogenous semicircle of glass. The point of 

incidence of the ray on the gold surface is at the centre of the semi-circle ensuring the 

ray is not refracted on entering or leaving the medium.

Figure 5.13: Optical set up for SPR investigation of in-situ PESA coatings
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Light from a 633 nm helium-neon laser source was initially made incident on the 

under-side of the gold coating over a range of angles from 0° to 90°, and the reflected 

intensity monitored in increments of 0.1°, to determine the angle of greatest 

absorption. The procedure was then focussed around the observed intensity dip over 

a range of 65° to 80° in increments of 0.05°. The intensity of the SPR reflection 

spectrum at each angular iteration was detected using a silicon photodiode and 

recorded in Lab View. The cavity was filled with PAA solution of the previously 

stated constituency and left for twenty minutes to allow bonding of the PAA cations 

to the surface of the gold. The cavity was then flushed thoroughly with de-ionised
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millipore water and the underside of the gold coating scanned over the previously 

stated range of angles. The cavity was then filled with CuPcXSO.fNa ) 4  and the same 

procedure carried out. This was repeated until three bi-layers of PAA/CuPcXSCV 

Na+ ) 4  had been applied, the reflection intensity observed and recorded as each part of 

the procedure was completed. The resulting intensity traces can be seen in Figure 

5.14, and the changes in resonance matching angle are shown in Figure 5.15.
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Figure 5.14: Set of SPR curves showing in-situ growth of successive layers of 
PAA and CuPc'(SC>3 'Na+)4  onto gold coated slide
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Figure 5.15: Shift in resonant angle of incident radiation with number of bi­
layers growth

The change in the resonance wavelength due to the change in the resonant frequency 

of the surface plasmons, suggests the PAA/CuPc‘(S0 3 'Na+ )4  coating is bonding 

successfully as successive solutions are inserted into the cavity. This seems to 

confirm the adaptability of the PESA method to in-situ coating and will be adopted as 

the method used to coat the fibre cladding in the same cavity as will be used for the 

gas exposures. This will also allow the continuous monitoring of both the coating and 

exposure procedures in a consistent set up.

132



5.6 Coating of the Fibre Cladding Using In-Situ 
PESA Method

The LPG section of the fibre was clamped under slight tension in a purpose built 

coating/gas cell as shown in Figure 5.16.

_  . ,  G a s  O u t l e t
G a s  i n l e t

C l a m p e d

p o s i t i o n
C l a m p e d

p o s i t i o n

F i b r e

D r a i n

H o l e
L P G

Figure 5.16: Purpose built cell made in house for in-situ PESA coating and gas
Exposure

The top and bottom sections of the cell were made from separate pieces of perspex as 

shown in Figure 5.17, to allow the fibre to be easily positioned, reducing the risk of 

breaking, which would be evident if the fibre had to be threaded through a small 

water-tight hole at each end of the cell. Rubber gaskets were positioned between the 

mating surfaces of the top and bottom halves of the cell, with the fibre sandwiched in
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between, before ten screws were sequentially tightened to form a water/gas tight seal 

between the two sections and around the fibre entry and exit points.
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Figure 5.17: Plan view of the LPG and the separate halves of coating cell

The fibre was connected to a light source and the OSA throughout the procedure to 

allow any shift in coupling wavelength due to the applied coatings to be observed.

The drain hole was blocked and the cavity was filled with PAA solution and left for 

20 minutes to allow the PAA cations to bond to the surface of the cladding, after 

which time the cell was flushed with de-ionised millipore water to remove the 

unbonded ions. The cell was then filled with CuPc'(SO.fNa+ ) 4  solution, left as 

previously for the bonding to take place and again flushed with de-ionised water.
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This procedure was repeated until the desired number of bi-layers was achieved, at 

which point the drain hole was opened and the cavity was flushed with N2 to remove 

as much moisture as possible. A visible shift in coupling wavelengths observed on 

the OSA suggested that the fibre was successfully coated. The fibre remained in-situ 

for the gas exposure part of the experiment as reported in Chapter 6.

This method was repeated in Experiment 2 but with a solution of 2 mg/ml of Chromo 

1 in water instead of the CuPc'(S0 3 ’Na+) 4  solution.

5.7 Coating of the Fibre Cladding by Immersion in 
Solutions of Chemicals

A further method of coating was utilsed to allow the LPG to be coated with a gas 

sensitive compound, calixarene, whose refractive index is known to change on contact 

with hexane, toluene, and benzene vapours [354], which was not suitable for use in 

the PESA method.

The fibre was again connected to a light source and the OSA throughout the 

procedure to allow any shift in coupling wavelength due to the applied coatings to be 

observed.
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The LPG section o f the fibre was held under slight tension above a glass slide placed 

on a moveable platform immediately beneath. The slide was raised until it was 

almost, but not quite in contact with the LPG, at which point a solution of 10 mg/ml 

o f calixarine in chloroform was ‘pooled’ onto the slide to totally immerse the LPG 

section o f the cladding as shown in Figure 5.18. Removing the fibre from the solution 

before total evaporation o f the chloroform allowed maximum bonding o f the 

calixarene to the cladding without allowing the fibre to adhere to the slide.

P o o le d  c a l ix a r e n e  s o lu t io n
L P G

G la s s  s l id e

A d j u s t a b le  p la t f o r m

Figure 5.18: Coating LPG by immersion in calixarene solution

5.8 Summary

This chapter has introduced the compounds used in the coating experiments and the 

gases to which they are optically sensitive. Automated polyelectrolyte self-assembly
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(PESA) coating used to coat glass slides and planar polarized interferometers (PPIs) 

were discussed and investigations into the adaptability of PESA to in-situ coating 

using surface plasmon resonance (SPR) were reported. Finally the application of the 

various coating method to LPGs are explained.
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Chapter 6

Experimental Investigations

6.1 Introduction

This chapter describes the experimental investigations performed in order to verify 

existing principles and to expand these principles in order to investigate the possibility 

of using an LPG as a stand alone gas sensor. As a result of preliminary experiments 

performed to gain familiarity with optical fibres, experiments were also carried out to 

investigate the possibility of multi-parameter sensing using different mode coupling 

wavelengths in the same grating to simultaneously observe temperature and ambient 

refractive index changes.
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Section 6.2 lists the optical and physical specifications of all LPGs and the optical 

spectrum analyser (OSA) and light source used in these experiments. Section 6.3 

describes the preliminary experiments performed to gain familiarity with usage of 

LPGs, which led to further experiments into the temperature sensitvity of LPGs. 

Section 6.4 covers the experimental investigation into the difference between the 

ambient index and temperature profiles of LPGs of various periods. Section 6.5 

details the investigations performed in the determination of the methods and 

compounds to be used to coat the cladding most effectively. Sections 6.6 and 6.7 

cover the experimental investigations into using an LPG as a gas sensor after coating 

the cladding with a suitable compound by the poly-electrolyte self assembly (PESA) 

method and the solvent evaporation method respectively.

6.2 Specifications of Long Period Gratings Used 
in Experimental Investigations

Table 6.1 lists the optical and physical specifications of the LPGs used in the 

experimental investigations described in this chapter.

LPG No SI S2 S3 S4
Core radius / pm 3.9 3.9 3.9 3.9
Cladding radius / pm 62.5 62.5 62.5 62.5
Core refractive index * 1.4499 1.4499 1.4499 1.4499
Cladding refractive index * 1.4441 1.4441 1.4441 1.4441
Grating period / pm 700 700 700 700
Approx Grating length/cm 3 3 3 3
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LPG No S5 S6 S7 S8 Cl
Core radius / pm 3.9 3.9 3.9 3.9 4.1
Cladding radius / pm 62.5 62.5 62.5 62.5 62.5
Core refractive index * 1.4499 1.4499 1.4499 1.4499 1.4535
Cladding refractive index * 1.4441 1.4441 1.4441 1.4441 1.4483
Grating period / pm 700 700 450 450 280
Approx Grating length/ cm 3 3 3 3 4.5

LPG No A400 A403 A407 A410 A416
Core radius / pm 4.5 4.5 4.5 4.5 4.5
Cladding radius / pm 62.5 62.5 62.5 62.5 62.5
Core refractive index * 1.4487 1.4487 1.4487 1.4487 1.4487
Cladding refractive index * 1.4440 1.4440 1.4440 1.4440 1.4440
Grating period / pm 400 403 407 410 416
Approx Grating length/ cm 3 3 3 3 3

*before writing of grating
Table 6.1: Optical and physical specifications of LPGs used in experimental

investigations

The LPGs listed in the Table 6.1 were obtained from production facilities in 

Singapore, Canada, and Aston University, and are identified by the initials S, C and A 

respectively. LPGs SI to S8 are written into a boron doped silica single mode core 

with a cladding of pure silica, LPG Cl is written into a Coming SMF 28 fibre core 

and LPGs A400 to A416 are written into standard low germanium doped (approx. 

3%) silica core.

Initial transmission profiles of all of these fibres except SI and S2 were taken in air at 

room temperature and can be seen in Appendix 8. To allow a more in depth study 

over a broader wavelength range both the 1300nm and 1550nm integral light sources 

of the OSA were utilised. The OSA used to observe the transmission spectra in each 

experiment was a HP86142A and the light source was the integral 1550nm edge 

emitting light emitting diode (EELED) of the OSA.
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6.3 Preliminary Experiments, Results and 
Conclusions

Initial experiments were performed using LPGs SI and S2 mainly to gain familiarity 

in handling and connecting the fibres between the light source and the OSA, and to 

observe the sensitivity of the spectrum to connection losses, bending, tension, 

temperature, and ambient index variations. The relevant results are tabulated and 

displayed in graphical form. The grating section of these fibres had been supplied 

fixed into a v-groove to protect the section which may be weakened due to the 

removal of the plastic fibre coating when the grating was written. This v-groove also 

keeps the grating section straight removing the possibility of any bending effect on 

the coupling wavelengths.

The fibres were connected in turn between the light source and the OSA using bare 

fibre connectors and the transmission spectrum of each was observed at room 

temperature.

The first thing to be noticed was that, even though the fibres have the same 

specifications, the wavelengths at which coupling occurs are not the same, where SI 

shows a coupling wavelength of 1548nm and S2 shows a coupling wavelength of 

1551.5nm. This is the first indication that writing of two identical gratings may 

involve more accurate control of the writing parameters than first expected.
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The second noticeable result was the difference in the intensity between the two 

transmission spectra, the shorter fibre, S2 showing around twice the intensity of the 

longer fibre, SI. It is well known that transmission intensity reduces as length of fibre 

increases, but the amount of signal reduction in this case is far too great to be 

accounted for by this reasoning. Re-cleaving and adjustment of the fibre end faces in 

the bare fibre adapter showed significant changes in the transmitted intensity of both 

spectra, suggesting that inconsistencies in positioning, and the condition of the 

cleaved face of the fibre are more likely to be the cause of this intensity mismatch. 

Intensity changes observed in further experiments must allow for this potential 

problem, which must always be evident when bare fibre connectors are used.

It was also noticed that slight deformation of the grating section caused shifts in the 

coupling wavelength of each of the fibres as predicted by theory, but deformation of 

fibre itself had no noticeable effect on the transmission spectrum. It was therefore 

deemed necessary that the grating must be kept straight, under constant tension for all 

further experiments to eliminate the spurious bend/strain induced coupling shifts.

6.3.1 Initial Investigation into Temperature and Ambient 
Refractive Index Effects on LPG S2

Preliminary investigations into the temperature and ambient index characteristics of 

LPGs were undertaken using LPG S2, after noticing a blue shift in the coupling 

wavelength when the palm of the hand was in contact with the grating section of the 

fibre. In this initial investigation water was used due to the simplicity of temperature 

range and regulation, and of its function as the surrounding heat transfer medium.
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The grating was clamped under slight tension in a purposely designed bath as shown

in Figure 6.1 and the transmission profile of the LPG was taken in air at room

temperature. A .r  w  clamp

----------------  fibre

LPG

A
2 cm

V

Figure 6.1: Temperature controlling water bath used to investigate coupling
wavelength over a range of temperatures in air

10cm

The bath was filled with water at a temperature of 8 °C and the coupling wavelength 

shift was noted at various intervals as the water temperature was increased slowly to 

40°C, the wavelength shifts being shown in figure 6.2.

A cup / nm
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Figure 6.2: Shift in coupling wavelength with increase in temperature of water
around LPG
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The coupling wavelength in water at room temperature of 28°C can be read from the 

graph in Figure 6.2 or calculated from the equation of the trend line:

Xatp =-0.24197 + 1556.6

to be 1549.8 nm, which is less than the coupling wavelength at room temperature in 

air of 1551.5 nm. This is to be expected from theory as the higher refractive index of 

the water will result in a shift to shorter coupling wavelengths than in air. It is 

understood from theory and can be seen by inspection of the LPG coupling equation

(3.102) that there are two parameters which are affected by the ambient temperature, 

the effective refractive indices of the core and cladding which are dependent on the 

radial dimensions and the (density related) refractive indices of each, and also the 

period of the grating. Further investigation and analysis of this effect will be 

documented later in this chapter. At this point it suffices to deduce that there is a 

linear negative temperature profile of this LPG with a change in coupling wavelength 

of approximately -0.25 nm for every 1°C rise in temperature, or a temperature 

increase of 4°C is required to reduce the coupling wavelength by 1 nm.

To determine whether the ambient index of the heat transfer medium was an integral 

function of the coupling wavelength shift (causing an increase in the rate of change of 

wavelength with temperature) or merely an offset value, the previous experiment was 

repeated in air. A second purpose built heat chamber was produced and can be seen 

in Figure 6.3:
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Heat chamber produced to investigate coupling wavelength over a 

range of temperatures in air

The coupling wavelengths were recorded at various temperature intervals between the 

room temperature of 24°C and the temperature at the maximum voltage of the 

resistors of 74°C, and are displayed in Figure 6.4. It was not possible at this point to 

reduce the air temperature below the room temperature.

Figure 6.4: Shift in coupling wavelength with increase in air temperature
around LPG
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Again an expected negative temperature profile is evident with a very similar gradient 

to the profile in ambient water, the equation of the trend line being

Xcup = -0.2569T + 1557.2

A combination of the two graphs extrapolated over the same temperature range can be 

seen in Figure 6.5
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Figure 6.5: Comparison between the shift in coupling wavelengths with
increase in temperature of water and air around LPG

It can be seen that each line is within the error bars of the other over the range 

investigated. The effect on the coupling wavelength of the greater refractive index of 

the water seems negligible for the LPG used is this experiment. This negligible effect 

of quite a large change in ambient index lead to the following investigation into the 

refractive index profile of the LPG.
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6.3.2 Preliminary Experiment to Determine Ambient 
Refractive Index Profile of LPG S2

As no index matching gels were available at this stage of the research program, saline 

solutions of various salt concentrations ranging from 0 to 25% weight were produced 

and the refractive indices determined using an Atago refractometer with a range from 

1.333 to 1.360 and a resolution of 0.0005. The 25% saline solution was found to be 

out of the range of the refractometer, so a graph of the refractive indices as a function 

of salt concentration was produced and extrapolated using an empirically fitted trend 

line as shown in figure 6 . 6  to estimate this refractive index. The value was also 

calculated using the equation of the trend line:

RI = 0.0015c+ 1.3368

Figure 6.6: Graph to determine relationship of salt concentration to refractive
index of saline solution at room temperature

LPG S2 was clamped under slight tension in the purpose built bath and the coupling 

wavelength in air recorded. The LPG was then immersed in each solution
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concentration maintained at a constant temperature, and the coupling wavelengths 

recorded as shown in Table 6.2

% Salt in Solution ±0.1% RI of Solution ± 0.0025 Coupling Wavelength / ± 
0.3 nm

Air 1.0000 1551.9
0 1.3365 1551.3

1.1 1.3380 1551.3
3.1 1.3410 1551.3
5.1 1.3450 1551.3

9.15 1.3510 1551.3
11.15 1.3530 1551.3
15.0 1.3580 1551.3
25.0 1.3743* 1550.7

*value read from extrapolated graph in Figure 6.6 and calculated from equation of 
line.

Table 6.2: Coupling wavelengths when LPG immersed in selected
concentrations of saline solution

The difference in the coupling wavelengths in air and in water between this and the 

previous experiment may be due to differences in room temperature and clamping 

tension of the fibre in each case.

The results show a blue shift of 0.6nm as the ambient refractive index is increased 

from 1 (air) to 1.3365 (water), no discernible shift from 1.3365 (water) to 1.3580 

(15% salt) and a further blue shift of 0.6nm as the ambient index is raised to 1.3743 

(25% salt). Literature [164, 165, 172] has demonstrated blue shifts of between 5 and 

30nm when changing the ambient index from that of air (1) to that of water (1.33). 

The much smaller shift in this experiment may be due to 2 factors:

1. A red shift due to the difference in temperature between the air and the water 

could reduce the blue shift caused by the ambient index increase by 0.25nm per 

degree C drop in temperature. However, to make up for the reduction from -5nm to -

148



0.6nm, a temperature change of -18°C would be required, which certainly did not 

occur. A more realistic figure would be a maximum of -2 °C which would allow a 

possible blue shift of 1.1 nm.

2. The grating period of this LPG was almost twice as long as those in which the 

greater shifts were observed. From theory this would mean that each wavelength 

would experience a smaller angle of diffraction by the grating, resulting in all of the 

coupling modes moving to longer wavelengths. Thus the 1550nm radiation is 

coupling to lower order cladding modes in this longer period LPG than in the shorter 

period LPGs reported in literature [172]. As the lower order cladding modes are 

much less affected by change (less sensitive) in the ambient index this would better 

explain the discrepancies in the results.

The conclusions drawn from these preliminary experiments are that LPGs SI and S2 

display very poor sensitivity to ambient index changes over the range of indices used 

in this preliminary investigation, due to the periodicity of the grating. Investigations 

into ambient indices greater than 1.3743 were carried out later in the program as index 

matching gels from 1.4 to 1.456 became available.

6.3.3 Preliminary Experiment to Determine the Viability of 
Long Period Gratings for Use as Gas Sensors

Observation of the spectral profiles of each of the Singapore gratings (Appendix 8) 

showed that the repeatability of process of writing the gratings seems to have its
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limitations as it can be seen that even though fibres originally had the same optical 

and physical parameters, and each of the grating lengths was written using the same 

respective phase masks, exposure time, light source and intensity, the wavelengths at 

which core to cladding mode coupling occurs differs in each grating of the same 

period. The differences in coupling wavelengths in LPGs S3, S4, S5, and S6  with the 

same period and optical and physical parameters are shown in Figure 6.7 and in LPGs 

S7 and S8  in Figure 6 .8 , the dips in the spectra showing the wavelengths at which 

coupling occurs.

LPG S4

Figure 6.7: Spectral profiles of LPGs S3, S3, S5, and S6 with identical optical
and physical parameters and grating periods of 700 pm

LPG S3 can be seen to have coupling wavelengths at 1552.8 nm and 1570.0 nm. LPG 

S4 can be seen to have coupling wavelengths at 1258.5 nm, 1525.5 nm, 1556.5 nm 

and 1572.5 nm. LPG S5 can be seen to have coupling wavelengths at 1335.0 nm,

1558.5 nm, and 1604.0 nm. LPG S6  can be seen to have coupling wavelengths at

1329.5 nm, 1556.0 nm and 1601.5 nm.
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LPG S7

S8

Figure 6.8: Spectral profiles of LPGs S7 and S8 with identical optical and
physical parameters and grating periods of 450 pm

LPG S7 can be seen to have coupling wavelengths at 1311.5 nm, 1516.0 nm and

1550.0nm. LPG S8  can be seen to have coupling wavelengths at 1317.5 nm, 1520.0

nm, and 1558.0 nm.

The peak intensity differences must not be considered as these may be caused by the 

inconsistency of the condition of the ends of the fibres and the positioning of the fibre 

ends in the bare fibre adapters which connect into the light source and the OSA. The 

resonant wavelengths at which core to cladding mode coupling occurs appear as the 

dips in the transmission spectrum. The position of these dips is not affected by the 

connection limitations affecting the intensity, but is determined by the optical and 

physical characteristics of the fibre, and by the temperature and the ambient refractive 

index around the cladding. Care was taken that the temperature, ambient conditions 

and the tension of the fibre in the grating region were the same for each set o f initial 

profiles. The differences must therefore be due to inconsistencies in the writing 

procedure. As stated in the theory, as the grating is written the diffraction pattern 

formed on the side of the core is not a step profile along the core but tends to be more
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of a raised sine or Gaussian profile [355], as can be expected from the intensity profile 

of any diffraction pattern as shown in Figure 6.9.
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Figure 6.9: Refractive index profile of an LPG in the writing process

This results in a peak refractive index change in the core at the points of maximum 

constructive interference, with a gradual reduction to the minimum refractive index 

change at the centre of successive peaks. The position of these maxima form the 

grating and their separation is the period of the grating. The intensity and exposure 

time of the writing optical source determines the degree by which the refractive index 

of the grating lines exceed that of the core, but this will only affect the intensity of the 

affected wavelength, not its position in the spectrum. However, the path length and 

diffraction properties of the grating determine the modified core modal structure 

required for core to cladding mode coupling to occur. This gradually changing 

refractive index profile along the core between the peak values will therefore strongly 

affect the wavelengths at which this coupling will occur [169,170, 173,356,357].
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Any slight discrepancy in exposure time, light intensity, scanning rate, fibre to mask 

separation, ambient temperature, fibre strain etc. could therefore cause different 

refractive index profiles between the peaks and thus affect the coupling wavelengths 

in the fibre gratings. The refractive indices used to calculate the coupling wavelength 

from the LPG coupling equation will not be the same as the original refractive indices 

of the core and cladding and must therefore be modified to allow for the above effect. 

Ideally some function should be determined which takes into account the gradual 

change in refractive index along the grating. The change in refractive index along the 

core can only be assumed, and a trial and error procedure performed until the 

mathematical model is as close as possible to the experimental findings.

The availability of fibres with the same optical and physical specifications, but with 

two different grating periods allowed investigation into the period dependency of the 

temperature and ambient index profiles of LPGs. Previous reports have shown the 

effects of different types of fibres with LPGs of different periodicities on the ambient 

index and temperature profiles [193,325,358]. These reports, however, were usually 

concerned with fibres of different consistencies, and with period changes of around 1 

to 5% of the initial value not 64% as in this case, or comparisons made between the 

LPG and FBG sensitivity [324]. As the ambient temperature of the environment in 

which a sensor may be situated may affect the coupling wavelength shift due to 

ambient index variations, the period dependency of the temperature profile of the 

LPG may be of considerable importance, and will be investigated as an integral part 

of this research.

The two main experimental routes of this research will therefore be:
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1. To investigate the temperature dependence of LPGs of different period and to 

predict a suitable method of compensation for this effect.

2. To investigate the possibility of utilising the ambient index sensitivity of an 

LPG as a gas sensor, by coating the fibre cladding in the vicinity of the LPG with a 

chemical whose refractive index is known to be affected by a given gas.

6.4 Investigation into the Ambient Refractive 
Index and Temperature Dependence of 
LPGs of Different Periods

6.4.1 Experimental Procedure

___________________ Pooled Index _______________

Light

M atching Gel

OSA

—  ... - . LH'V  -
Source

Glass Slide

Figure 6.10: Experimental set-up for the determination of the ambient 
refractive index profiles of the LPGs

Refractive index profiles and temperature profiles of the LPGs used in this part of the



investigation were taken prior to starting any experiments and can be seen in 

Appendices 9 and 10. LPGs S3, S4, S5, S6, S7 and S8 were in turn clamped under 

slight tension above a moveable platform. The ends of each fibre were connected into 

the light source and detector inputs of the OSA using bare fibre connectors and the 

spectral profile in air was recorded. A glass slide was placed on the platform and the 

platform raised until it was almost touching the grating. A range of index matching 

gels were then ‘pooled’ over the fibre as shown in Figure 6.10 until it was completely 

immersed and the spectral profile recorded. Previous traces of gel were removed 

using acetone, ensuring that the profile returned to that in air, before the next gel was 

applied. The ambient temperature of the room was monitored and controlled to 

minimise the possibility of spurious results due to temperature changes.

T h e r m o m e t e r

H e a t  C h a m b e r

L P G

L i g h t

S o u r c e

O S A

Figure 6.11: Experimental set-up for the determination of temperature profiles
of the LPGs

To obtain the temperature profiles of the gratings each grating in turn was again 

clamped under slight tension above the moveable platform as shown in Figure 6.11. 

The ends of each fibre were connected into the light source and detector inputs of the
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OSA using bare fibre connectors as previously described. The purposely designed 

heat chamber as described earlier in this chapter was fitted around the grating section 

of the fibre and clamped securely to the platform. The spectral profile was recorded 

at room temperature, then at selected temperatures up to a maximum of around 80°C 

as the heating chamber was activated. Care was taken that a steady temperature had 

been evident for at least 15 minutes before each spectral profile was taken to ensure 

constant temperature along the grating section of the fibre.

Further temperature profiles of the fibres A400-A416 and Cl were taken. Although 

these LPGs were not of the same optical and physical parameters as the previous 

LPGs, they did have periods comparable to LPGs S7 and S8. This would allow the 

comparison of LPGs of different parameters but of similar periodicities, and the effect 

of these parameters on the temperature profiles.

6.4.2 Results and Discussion

The ambient refractive index spectral profiles of all six fibres (Appendix 9) showed 

shifts to shorter wavelengths of each modal coupling as the ambient refractive index 

was increased. All six spectral ambient index profiles showed the degree of shift in 

coupling wavelength to increase as the ambient refractive index approached that of 

the cladding as summarized in Figures 6.12 to 6.17, agreeing with findings in 

previously referenced literature [164, 165,172].
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Figure 6.12: Relative change in coupling wavelength with ambient refractive
index for LPG S3
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Figure 6.13: Relative change in coupling wavelength with ambient refractive
index for LPG S4
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Figure 6.14: Relative change in coupling wavelength with ambient refractive
index for LPG S5
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Figure 6.15: Relative change in coupling wavelength with ambient refractive
index for LPG S6
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Figure 6.17: Relative change in coupling wavelength with ambient refractive
index for LPG S8
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Previous reports [193] have shown that when the ambient refractive index reaches 

that of the cladding, the cladding effectively becomes infinite and as such will have 

no mode structure and therefore no core to cladding mode coupling can occur. As the 

ambient refractive index exceeds that of the cladding leaky cladding modes are 

formed due to the partial internal reflection at the cladding/ambient interface and 

coupling will again take place but will occur at wavelengths greater than coupling 

wavelengths in air. Due to the limitations of the light source range available at this 

stage of the research, some of the coupling wavelengths moved out of range as the 

higher ambient indices were applied, but where visible, the coupling wavelengths 

showed a positive shift to values greater than in air as an ambient refractive index of 

1.452 was exceeded. The range of index matching gels used in this investigation did 

not include a gel of the same refractive index as the core as the coupling wavelengths 

were not seen to disappear, but as the coupling wavelengths shifted immediately to 

higher values when an ambient index of 1.456 was applied this suggests that the 

refractive index of the cladding is between 1.452 and 1.456. The refractive indices of 

the cladding (nciacj) and the core (ncore) before the grating was written was stated to be 

1.4441 and 1.4499 respectively. If this was still the case then the jump in the 

coupling wavelength to values greater than in air should have occurred at the next 

higher ambient index in the range of 1.448. It seems then that the process of writing 

the grating in the core does not only increase the core refractive index in and around 

the grating but also the refractive index of the cladding around the grating. If this is 

the case the minimum possible value of the cladding index is 1.452 and has increased 

by 0.0079. The core index which was originally 0.0058 greater than the cladding 

index must also have increased to a value greater than 1.452 for guided modes to exist 

in the core. This change in the respective refractive index values will have a
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considerable effect on the mode coupling shifts and again must be taken into account 

in any computer simulations.

The fibres containing the gratings of around 450 pm period, which are in the period 

range used in most previously reported experiments [197,325,326,359-362], seem to 

react as predicted. The longer wavelengths which couple to the higher order cladding 

modes are more sensitive to ambient refractive index changes than the shorter 

wavelengths which couple to the lower order cladding modes. The fibres containing 

the longer period of 700 pm however, do not all seem to follow this trend on first 

inspection of the results. While LPG S3 and LPG S4 responded as expected with the 

longer wavelengths generally showing greater sensitivity to the ambient index 

changes, LPG S5 and LPG S6 showed the shortest visible coupling wavelength to be 

around six times more sensitive than the longer coupling wavelengths. When the 

guided radiation transmitted along the core is incident on the grating the longer 

wavelengths will undergo a greater angle of diffraction than the shorter wavelengths. 

A minimum wavelength will exist therefore at which the core mode will couple to the 

first cladding mode. The cladding modes into which subsequent core wavelengths 

couple will increment as the modified mode paths of certain wavelengths in the core 

meet the coupling condition in (3.102). An increase in the grating period would result 

in a smaller angle of diffraction of all wavelengths in the transmitted spectrum. This 

would result in an increase in the wavelength which would couple to the first cladding 

mode, and therefore subsequent core to cladding mode coupling would also be at 

longer wavelengths. In the gratings with the 450 pm period the cladding modes into 

which the respective wavelengths are coupling will be a higher order than for the 

gratings with the 700 pm period. This would explain the greater sensitivity of the
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shorter period gratings to the ambient refractive index, as sensitivity is known to 

increase as the coupling mode increases [193]. This does not explain the high 

sensitivity of the 1310 nm coupling wavelength in LPGs S5 and S6  however, as this 

wavelength range should be of a low order mode coupling and thus less sensitive than 

the coupling wavelengths in the 1500 to 1600 nm region in the same fibre. The high 

sensitivity of this wavelength suggests that this may be a higher harmonic of the 

grating period as reported by [170,171] and this higher order of diffraction is actually 

coupling to a much higher cladding mode than the wavelengths in the 1500 to 1600 

nm region.

The ambient temperature spectral profiles of all six LPGs are shown in Appendix 10.

The coupling wavelength shifts are summarized in Figures 6.18 to 6.23.
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Figure 6.18: Relative change in coupling wavelength with temperature for LPG
S3

The equations of the trend lines for LPG S3 are:

^ 525) = -0-2277’ +4.856 

^ ( . 5 5 ,) = -0.38377’ + 8.3979 

^ ( , 5,0) =-0.27347’+ 5.5415
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Figure 6.19: Relative change in coupling wavelength with temperature for
LPG S4

The equations o f the trend lines for LPG S4 are:

dKuP(,285) = -0 .2 5 4 4 7  + 4.5523 
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*4*0555) = -0 .28537  + 5.769 
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Figure 6.20: Relative change in coupling wavelength with temperature for
LPG S5

The equations o f the trend lines for LPG S5 are:

^ ( ,3 3 5 )  = -0 .39617 +8.4255
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Figure 6.21: Relative change in coupling wavelength with temperature for
LPG S6

The equations of the trend lines for LPG S6 are:

^ < 1330) = -0.35737’ + 8.2543 

^ 5,5) = "0-2827’ + 6.6855 

^ ( ,6 0 0 ,=  -0.27857- + 5.9323

Figure 6.22: Relative change in coupling wavelength with temperature for
LPG S7
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The equations of the trend lines for LPG S7 are:

< ^ , , 0 , = 0.10037--2.1971 

^ ( , 5 2o) = 0.06287 -1.4665 

^ ( i s s o )  = 0.13987--3.104
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Figure 6.23: Relative change in coupling wavelength with temperature for
LPG S 8

The equations of the trend lines for LPG S8  are:

^ ( 1320) = 0.08157-2.2914 

^(■52o) = 0.05977--1.5448

The main feature of this investigation is the fact that all of the LPGs with 700pm 

periods have a negative temperature profile whilst all of the LPGs with 450 pm 

periods have a positive temperature profile. The LPG coupling equations (3.102) and

(3.103) consist of 2 parameters, the period of the grating (A) and the refractive indices 

of the core (ncore) and cladding (nciaddmg)-> both of which are temperature dependent.
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The effect on the coupling wavelength with temperature can be shown if these 

equations are differentiated with respect to temperature resulting in [363]:

dX dX ( dnef f core dneffdJ \  | ^ d X  1 d l
dT d{Sneff)

or
d T ~  k

dX

dT

( d f i c o r e  d f r

dT d k L d T

d m
'dad  I | dX 1 dL

(6. 1)

(6. 2)
dT dT J d k L d T  

where L is the length of the grating, Sneff is the difference between the core and 

cladding effective indices, 8p is the difference between the core and cladding 

propagation constants, and A  is the grating period. The first term on the right hand 

side of these equations represents the temperature effect on the refractive indices or 

propagation constants of the core and cladding, while the second term represents the 

temperature effect on the grating periodicity.

The increase in temperature will cause expansion of the fibre and hence an increase in 

the grating length. This increase will cause different wavelengths to satisfy the 

coupling equations (3.102) and (3.103) and, as is evident from the previous reasoning 

will cause the coupling wavelengths to shift to longer wavelengths.

The shift to higher or lower values of the coupling wavelength due to the change in 

refractive indices of the core and the cladding caused by the temperature change is not 

as obvious to deduce. As there is a shift to shorter wavelengths in the LPGs with 700 

jLim periods this suggests that the effect of temperature change on the refractive index 

causes a shift to shorter wavelengths, but the exact change of the refractive indices 

cannot be easily explained. Firstly, as previously stated, the increase in grating period 

due to the temperature increase would result in coupling to longer wavelengths. As 

these new wavelengths have their own individual modal paths in both the core and the



cladding, and the effective refractive indices are dependent on the modal path (unlike 

actual refractive index which ideally has no directional dependence), this factor will 

itself cause different effective refractive indices in both media to be considered. Thus 

a change in only the period of the grating has caused every value in the formula to 

change.

The LPG coupling formula (3.102) can be manipulated to give

(6-3)A

where p  is the propagation constant (= knsinO). Shorter wavelengths have higher 

wave numbers (k = 2n/X) than the longer wavelengths and the mode paths travel in 

the core at shallower angles. Thus the propagation constants of the shorter 

wavelengths will be greater than those of the longer wavelengths in any given fibre. 

As the right hand side of this equation involves only constants this manipulation 

shows that the difference between the propagation constants in the core and cladding 

of any given wavelength must be equal to this constant value for coupling to occur. It 

is not obvious therefore whether the propagation constants would increase or decrease 

as the refractive indices change and this factor may depend on the optical and physical 

parameters of any given fibre [364].

The increase in temperature expands the fibre resulting in a decrease in refractive 

index as the medium becomes less dense. This in turn reduces the optical path length 

and modifies the phase change on reflection at the refractive index boundaries of each 

wavelength in the core and cladding. The ray paths in which constructive interference 

will occur and therefore the modal paths will also change. As the propagation 

constants (J3) are the components of the modal wave vector in the axial plane of the
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fibre these will change proportionally also, resulting in the difference between core 

and cladding propagation constants of a different set of given wavelengths matching 

the coupling condition 2k /X.

The coupling wavelengths were seen to decrease with increasing temperature and thus 

decreasing refractive indices in the 700 |im LPGs, but were seen to increase with 

increasing temperature and thus decreasing refractive indices in the 450 pm LPGs. 

As the refractive indices of the core and cladding are ideally the same for all of the 

fibres the effect of the temperature should also be constant in all the fibres and will 

have the same shift to shorter wavelengths for both 450 pm and 700 pm LPGs. The 

expansion coefficient should also ideally be constant in all the fibres and the LPGs 

should therefore expand by the same degree. However, a given expansion length per 

°C will increase the period of the 450 pm LPG by a much larger fraction than the 700 

pm LPG, causing a much greater shift to longer wavelengths in the former case.

The shift to shorter wavelengths effected by the refractive index change will 

counteract this positive shift due to the period increase. The negative shift due to the 

refractive index decrease is great enough to overcome the smaller positive shift in the 

700 pm LPGs, but not the larger positive shift in the 450 pm LPGs. This introduces 

the possibility of the existence of an intermediary period at which the 2 opposite 

effects would cancel each other and the LPG would be insensitive to temperature 

changes at one or more of the coupling wavelengths. The results show a much greater 

negative coupling wavelength shift in the 700 pm LPGs than the positive shift in the 

450 pm LPGs. This suggests that the period required for the 2 shifts to match will be 

closer to the 450 pm value than the 700 pm value. The ambient index experiment



shows the sensitivity to increase with mode order and the rate of change of each mode 

order to increase with increasing ambient refractive index (for values of ambient 

refractive index less than that of the cladding). The temperature profiles of all the 

LPGs show a linear change in coupling wavelength within the temperature range 

utilised, and there is no correlation between mode order and sensitivity in either of the 

sets of LPGs. In some cases the lower order modes showed greater sensitivity and in 

others the middle or higher order modes showed greater sensitivity.

Comparison of the temperature profiles of the A400, A403, A407, A410, A416 andCl 

LPGs (Appendix 5) show that they too have all a positive profile. As they are of 

different optical and physical specifications to the Singapore LPGs this suggests that 

the period length has the greater effect on the sense of the temperature profile than the 

properties of the fibre, unlike the assumptions made in a previous report [363]. It may 

be possible therefore to select a coupling wavelength and design a period at which the 

temperature effect on the period and the refractive indices are matched. This would 

allow the monitoring of ambient index changes and remove the problems of spurious 

results due to temperature effects. It may also be possible to monitor any temperature 

changes by focussing on a different coupling wavelength in the same grating if the 

ambient index profile has previously been determined for that wavelength.

6.4.3 Conclusions

The direction of the temperature gradient of an LPG has been shown to depend on the 

period of the grating, for fibres with identical optical and physical properties. If the
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period can be designed to be of a length where the fractional increase in length 

counteracts the effects on the refractive index changes the LPG may become immune 

to limited changes in temperature. It may be possible therefore to use a single LPG of 

optimum period to allow temperature immunity and reasonable sensitivity to ambient 

index changes at selected wavelengths, or to simultaneously sense changes in both 

ambient index and temperature by observation of different selected wavelengths.

6.5 Experimental Investigations into the 
Method of Coating and the Types of 
Chemicals to be Used

6.5.1 Coating Methods Investigated

Various chemicals and methods of coating the fibre cladding were investigated as the 

research progressed.

6.5.1.1 Langmuir-Blodgett (LB) Coating

Langmuir-Blodgett (LB) coating [252,253,365-367] was the first method to be 

attempted. This method would have allowed monitoring of the number of mono­

layers and accurate repeatability of the coating thickness in order to determine an 

optimum thickness for the greatest reaction to the gas. Unfortunately, the dimensions

169



of the trough into which the grating was to be immersed as part of the coating 

procedure meant that the fibre had to be severely deformed in order to fit. Also to 

ensure consistency of the coating along the length of the grating the grating had to be 

as straight as possible as it entered the trough. Initial attempts with ordinary single 

mode fibres resulted in a number of breakages due to this deformation as the fibre was 

being mounted in the LB equipment. For fibres which were successfully mounted it 

was discovered that the surface tension of the fluid in the trough was such that the 

fibre did not always manage to attain full immersion on every cycle. This would 

make any accurate determination of the number of layers impossible, and as the fibres 

were easily broken whilst mounting them in the equipment, this method of coating 

was abandoned.

6.5.1.2 Poly-Electrolyte-Self-Assembley (PESA) Coating

The next method to be investigated was poly-electrolyte-self-assembley (PESA) [341- 

347]. As in the LB method this would allow accurate monitoring of the thickness 

and repeatability, but this again involve deformation of the fibre to allow the grating 

to be straight when immersed in the coating solution, a problem which again could 

not be overcome with the equipment available.

For the first time tests were performed on the viability of applying PESA methods in 

situ to allow the LPG to be coated in the same environment as would be used for the 

gas detection experiment itself. These proved successful and are covered in Chapter 5 

of this thesis.
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6.5.2 Gas Sensitive Coating Chemicals Investigated

It is well known that the optical properties of CuPc compounds are affected by 

absorption of NO2 [368-370], the optical properties of Chromo 1 are affected by 

absorption of ammonia [335] and that the optical properties of calixarene are affected 

by absorption of hexane, toluene and benzene [354,371].

As CuPc and Chromo 1 are suitable for use in PESA coating methods, and immersion 

of a body in a solution of calixarene in chloroform will leave a coating of calixarene 

on the body as the chloroform evaporates, these chemicals were used in the following 

investigations.

6.5.3 Background Experiment 1: To Determine the 
Absorption Spectrum of CuPc"(S03"Na+)4

6.5.3.1 Experimental Procedure

The spectrum analyser used in this experiment was the Ocean Optics S 2000 

Spectrometer which has a range of 200 -  1100 nm and the light source used was the 

integral tungsten halogen 360 -  2000 nm broadband source. This experiment was 

carried out as part of a totally separate investigation into the properties of CuPc 

compounds, but the results are appropriate to this thesis.
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A special cell was designed and produced in house which allowed accurate 

positioning of the apparatus involved in the experiment, and prevented ambient light 

from entering the system, producing a good level of repeatability of the procedures.

A  glass slide was scribed into 14 mm square sections to enable accurate insertion into 

the mounting position in the cavity. One side of the slide was coated with aluminium 

to a thickness of 100 nm using P V D , to form a highly reflective surface on the glass. 

20 bi-layers of C u P c"(S 03 ~Na+)4 /P A A  were then deposited on the aluminium surface 

using the P E S A  method as described in Chapter 5 before the slide was finally cut into 

the previously scribed dimensions. One of the 14 mm square sections o f the slide was 

placed in the cell as shown in Figure 6.24.

Aluminium
C o a t in g

F r o m  L ig h t  S o u r c e C u P c /P A A  C o a t in g

S lid eA d j u s t a b le  C o l la rT o  O S A

Figure 6.24: Experimental set up for absorption of light by CuPc"(S0 3 "Na+)4
Coating

This set up allowed the incident radiation to pass through the CuPc‘(S0 3 'Na+ ) 4  layer 

twice giving double the absorption, allowed accurate re-positioning of the apparatus 

as other slides were tested, and removed the inherent effects of absorption, scattering, 

surface reflections etc. evident if the radiation was made to travel through the glass.
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The surface of the coated slide was illuminated with the integral broadband source of 

the Ocean Optics S 2000 spectrometer and the reflection spectrum recorded using the 

corresponding software. Attempts to investigate absorbance as a function of coating 

thickness were aborted when inspection of the slides showed inconsistencies in the 

aluminium coating due to the application of the CuPc'(S0 3 'Na+)4/PAA bi-layers, 

which would itself affect the reflected fraction of the incident radiation.

6.5.3.2 Results & Discussion
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Figure 6.25: Absorption spectrum of CuPc'(S(>3 'Na+)4

Figure 6.25 shows spectrum of the broadband light source and the CuPc"(S0 3 ’Na+ ) 4  

absorbance spectrum centring at 625 nm with a spread of ± 80 nm.
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6.5.4 Background Experiment 2: To Determine the 
Sensitivity of CuPc"(S03" Na+)4 to N 0 2

These experiments were performed on planar polarisation interferometer (PPI) wave 

guides [372,373] firstly to investigate the effect of the number of layers of CuPcXSCV 

Na+) 4  on the transmission spectrum and then to observe the effect on the transmission 

spectrum of exposure of the coated planar guide to NO2 . The guided radiation will 

undergo TIR at each reflection from the core/cladding boundary. The evanescent 

field associated with the guided mode [283-285] will penetrate a short distance into 

the medium surrounding the core, which in the position of the window will be coated 

with CuPc'(S0 3 'Na+)4 . As CuPcXSCffNa4̂  absorbs radiation at a wavelength of 

625nm some of the radiation on the evanescent field will be absorbed, reducing the 

intensity of the transmitted signal. The optical properties of CuPc'(S0 3 “Na+) 4  are 

sensitive to NO2 , changing its refractive index, reducing the absorption and therefore 

increasing the intensity of the transmitted radiation.

6.5.4.1 Experimental Procedure

Planar polarised interferometer (PPI) wave guides were used in these experiments and 

were of the following specifications as shown in Figure 6.26.
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Figure 6.26: Planar polarised interferometer (PPI) wave guide

To confirm that the wave guide was operating in single mode at the operating 

wavelength the following formula was used (see Appendix 11 for derivation):

m = — (it cos 6 + 2<p) (6.4)
A

where m = no of modes

A = wavelength of radiation: 625nm

t -  thickness of core: 0 .19jim

6 -  angle of incidence at core / cladding boundary

(J) -  phase change on reflection at core / cladding boundary given by [311 -314]
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where ni -  core refractive index: 2

n2 -  cladding refractive index: 1.46

To make 6 the subject of the formula would make the final equation too complicated 

to compute, so incremental values of 9 starting at the critical angle were entered into 

a spreadsheet until the calculated value of m was seen to be 1 , 2 , 3  etc. The resulting 

graphs can be seen in Figures 6.27 and 6.28.
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Figure 6.27: Graph to show mode characteristics in wave guide
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Figure 6.28: Graph magnified to show incident angle required to excite the
single mode in wave guide

The critical angle for the guiding layer of the chip is 46.89° and the specifications of 

this waveguide means that it should be operating in single mode at 630nm, with a 

mode angle of 47.17°. However it can be seen that, using Snell’s Law, the range over 

which the radiation can travel through the waveguide is limited by the refractive index 

difference at the entrance to the waveguide as shown in Figure 6.29.
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Figure 6.29: Range of angles possible for radiation to be incident on the
guiding layer/cladding boundary
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Thus the range of angles over which any ray entering the guiding layer can be 

incident on the core cladding boundary is 60° to 90°. It is therefore not possible, due 

to the high refractive index of the core for the mode path to be excited by any angle of 

incidence on the entrance plane of the waveguide. However, as the experiments 

progress it can be seen that light is travelling through the waveguide, which can only 

be due to the light scattering due to imperfections at that boundary. Microscopic 

inspection of the edges of the PPI show the edges to be very uneven. The only way in 

which the PPIs could be modified to allow the modes to be excited properly would be 

to shamfer the entry and exit faces to a predetermined angle, which was not possible 

in house. Initial attempts to accurately investigate the effect of the number of layers 

on the transmission spectrum of a PPI wave guide were aborted when the 

transmission spectra of 12 uncoated PPIs were seen to vary randomly, the intensity of 

the lowest transmission being around 20% of the highest transmission. Also it was 

discovered that the positioning of the PPI in the optical set up was very critical and 

not repeatable to an accuracy required to enable fine intensity comparisons before and 

after the PPI was removed from the set up in order to be coated.

The experimental set up is shown in Figure 6.30



Gas Inlet & outlet

Laser

PPI

PPI Holder

Figure 6.30: Experimental set up to observe transmission intensities and
absorption of CuPc'(SC>3 'Na+ )4  coatings of different thickness 

on PPIs when exposed to gas

The transmission intensities of the 12 uncoated PPIs were observed and recorded. 

They were then separated into four sets of three and each set coated with 1,2,3 and 4 

layers of CuPc"(S0 3 'Na+)4/PAA using the PESA method in the clean room facility. 

After coating the transmission intensities of all the PPIs were seen to reduce to 

between 1% and 6% of the uncoated values. However, due to the previously 

mentioned limitations no correlation between coating thickness and intensity 

reduction could be ascertained. A PPI coated with 1 bi-layer was placed in the set up 

as shown in Figure 6.30, the PPI holder being a purposely designed gas cell which 

allowed the window of the PPI to be in contact with a through flow of gas. The 

intensity of the transmitted signal was recorded and NO2 was then made to flow over 

the surface of the coated window at 400ppm concentration, the change in intensity 

being noted over time. After a predetermined time the NO2 supply was terminated 

and the cell flushed with N2 until the intensity change seemed to level out. This 

procedure was carried out on all of the PPIs and the change in intensity values 

observed and recorded.
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6.5.4.2 Results and Discussion

Graphs of transmission intensity of PPI with increasing thickness of CuPc'CSCV 

Na+)VPAA coatings after exposure to NO2 and flushing with N2 are shown in Figures 

6.31 and 6.32.
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Figure 6.31: Typical transmission intensity with time of PPI with 1 bi-layer of
CuPc (S0 3 'Na+)4/PAA during exposure to NO2 and flushing with

N2
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Figure 6.32: Typical transmission intensity with time of PPI with 2 bi-layers of
CuPc"(SC>3 'Na+)4/PAA during exposure to N 0 2 and flushing with

N2
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It can be seen from Figures 6.31 and 6.32 that transmission intensity of the PPI before 

gas exposure (7=0) seems to have some dependency on the number of bi-layers of 

C u P c '(S 0 3 _N a+)4/PA A  in this case. The change in transmitted intensity can be seen to 

decrease as the number of bi-layers increases, and the radiation was totally absorbed 

when more than 2 bi-layers were applied.

Due to the dimensions of the PPIs as shown in Figure 6.26 and the mode angle at 

which the radiation must travel through the wave guide the number of reflections m , 

at the core/cladding boundaries can be determined by dividing the window length by 

the distance between successive reflections. For a ray propagating at the previuosly 

determined angle of 47.17°.

6  X 1 0  3 rx •
m —------------------------  ~ 14637 reflections

2x0.19xl0_6xtan 47.17

Thus the severity of the incident angle means that the mode undergoes approximately 

14637 reflections from the absorptive surface which accounts for the severe reduction 

in transmitted intensity with increase in layer thickness.

Figures 6.31 and 6.32 show a gradual increase in intensity with the time of exposure 

to NO2 for 1 and 2 bi-layers respectively confirming the sensitivity of the CuPc~(SCV 

Na+) 4  to the gas. At the end of each procedure the apparatus was left untouched for 

24 hours to allow the coating to recover as much as possible. The intensity of the 

transmitted signal was seen to level out at about 50% of the peak value in both 

waveguides, thus recovery is not total, suggesting that the chemical change of the 

coating is partially permanent.
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As the radiation is still guided the increase in the transmitted intensity must be due to 

the reduction in absorbance of the evanescent field of the guided mode. The gas, 

which is absorbed due to electron transfer, changes the absorbtivity of the coating to 

radiation at 630nm. This may not affect the absorption at 1550nm, but it may alter the 

physical structure of the CuPc'(SC>3 'Na+) 4  coating which, it is assumed for the 

purposes of this investigation, will alter the refractive index of the coating to some 

degree. This refractive index change due to gas absorption will affect radiation at 

1550nm also and it is therefore feasible to use CuPcXSCVNa^to coat the cladding of 

an LPG. If the change in refractive index due to the NO2 is sufficient it may be 

possible to detect the subsequent change in the coupling wavelength. Experiments on 

the LPGs will therefore be carried out, coating the cladding with up to 4 layers of 

CuPc'(S0 3 lSfa+)4 , exposing to NO2 and observing the resulting shift in coupling 

wavelength.

6.6 Investigations into Utilising a Suitably 
Coated Long Period Grating as a Gas 
Sensor Using an In Situ PESA Method of 
Coating

LPG Cl was used in this investigation as it contained the shortest period of the LPGs 

available. This LPG should therefore be operating at higher order coupling modes 

than the others, and should be the most sensitive to changes in ambient index, as
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shown if the changes in coupling wavelength are compared in the ambient index 

profiles of all LPGs (Appendix 9). The transmission spectra of LPG Cl were 

observed and recorded using a HP 86142A Optical Spectrum Analyser, the light 

source used being the integral 1330nm and 1550nm EELED sources of the OSA. 

Ambient refractive index and ambient temperature profiles of LPG Cl under 

investigation were produced before the experimental procedure began in order to 

allow interpretation of any coupling wavelength shifts observed during the experiment 

and can be seen in Appendices 9 and 10.

6.6.1 Experiment into Applying CuPc"(S03"Na+)4 by In-Situ 
PESA Coating Method and N 0 2 as the Gas to be 
Detected

6.6.1.1 Experimental Procedure

The fibre was connected to the light source and optical input of the OSA using bare 

fibre connectors and the optical transmission spectrum observed through all stages of 

the procedure. The grating section of the fibre was clamped under slight tension in a 

second purpose built cavity, as shown in Figure 6.33, which was air-tight except at 

designed entry and exit points to allow the injection and extraction of the coating 

chemicals and the flow of the gas.
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Figure 6.33: Purpose-built cavity in which coating and exposure of the LPG
could be performed

The cladding of the LPG was coated in situ by the PESA method as explained in 

chapter 5 with one bi-layer of PAA/ CuPc'(SC>3'Na+)4. The water was removed from 

the cavity, the cavity was flushed with N2 to dry the fibre between each coating layer, 

and the transmission spectrum recorded. A steady flow of 400 ppm of NO2 was 

introduced into the cavity for two minutes, and then flushed using N2 to ensure that all 

NO2 was removed and to observe any recovery made in the coating. The apparatus 

was then left untouched for four days to observe any recovery which may occur over 

time. The shift in coupling wavelength was observed and noted at each stage. The 

fibre was disconnected from the OSA and removed from the gas cell. The CuPc‘(S0 3 _ 

Na+) 4  coating was removed by immersion of the grating section in sulfo-chromic acid, 

and the fibre reconnected to the OSA ensuring that the spectrum had returned to its 

original pre-coated position This procedure was then repeated using 2, 3, and 4 bi­

layers of PAA/ CuPc'(S03’Na+)4.

6.6.1.2 Results and Discussion

From experimentally measured SPR curve fitting the refractive index of PAA/ CuPc' 

(S0 3 'Na+) 4  bi-layer coatings was found to be 1.3 ± 0.05. This value is very different

184



to previous reported findings of around 1 . 8  for phthalocyanine compounds in general 

[374]. The coupling wavelength shifts observed as the coatings were applied should 

help to confirm or deny this result.

The shift in coupling wavelength as each bi-layer was applied to the required 

thickness, exposed to NO2 and then flushed with N2 are shown in Figures 6.34 to 

6.41.
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Figure 6.37: Coupling wavelength shift of LPG Cl as 2 coatings of PAA/CuPc'
(SC>3 'Na+) 4  applied and exposure to NO2
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It can be seen from Figures 6.34 to 6.41 that the coupling wavelengths returned to the 

value in air at the beginning of each part of the experiment, suggesting that the 

previous coating had been completely removed at the end of each stage prior to the 

beginning of the subsequent stage. There are very similar shifts in coupling 

wavelength in all cases as the first coating of PAA/ CuPc'(SC>3'Na+) 4  is applied, the 

shift being greater as the order of coupling mode increases, as expected. The coupling 

wavelengths show very little shift as further bi-layers are applied which may be 

expected as refractive index is independent of thickness. The coupling wavelength 

shifts due to exposure to NO2 seem to increase with number of bi-layers and mode 

order up to a maximum of 3 bi-layers at which point the gas seems to have no effect 

on the coupling wavelengths. This suggests that as the thickness of the coating 

increases the gas may not be penetrating deep enough to affect the refractive index of 

the coating closer to the cladding.

The results suggest that 3 bi-layers of PAA/ CuPc'(SC>3’Na+) 4  is the optimum coating 

thickness for best reaction to the gas exposure. As the most sensitive condition was 

observed at the highest order visible coupling mode of 1590nm when the LPG was 

coated with 3 bi-layers of PAA/ CuPc'(S0 3 'Na+)4 , the following results are focussed 

on observation of the modal shift at this wavelength and coating thickness.

188



1 0 0 0 0 0  -jp

9 0 0 0 0  \ \  

Q- 8 0 0 0 0  \ \  

~  7 0 0 0 0CO
I  6 0 0 0 0  i i  

^  5 0 0 0 0

co 4 0 0 0 0CO
£  3 0 0 0 0  iE

Air
( P A A / C u P c ) 3  
N 0 2  
N2 f lush

co 20000 c:i—t-

1 5 0 0 1 5 2 0  1 5 4 0  1 5 6 0  1 5 8 0  1 6 0 0

W a v e l e n g t h  / nm

1 6 2 0 1 6 4 0

Figure 6.42: Spectrum of C l around 1590 nm as 3 coatings of PAA/ CuPc'
(SC>3 'N a +) 4  applied and exposure to NO2

CD

4daysAir NO;
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As can be seen in Figures 6.42 and 6.43, when the cavity contained only air the 

coupling wavelength was 1590 ± 0.5 nm. As the first bi-layer was applied to the 

cladding in the cavity the coupling wavelength was seen to move by -27  ± 0.5 nm to 

1563 ± 0.5 nm, remaining at this value as successive bi-layers were applied. As the
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refractive index of the coating is greater than air but less than the cladding the 

coupling wavelength can be seen to shift to shorter values as expected freom theory. 

As refractive index is independent of thickness, it can be expected to remain virtually 

constant as the number of bi-layers increases.

From the previously determined ambient index profile (Appendix 9), a shift from 

1590 ± 0.5 nm in air to 1563 ± 0.5 nm when coated shows the refractive index of the 

coating to be 1.3015 ± 0.005 as shown in Figure 6.44.

29 6

Figure 6.44: Section of ambient refractive index profile of LPG corresponding
to 1563 ± 0.5 nm coupling wavelength of PAA/ CuPc"(SC>3 'Na+)

coating

When the cavity was filled with NCF the coupling wavelength was seen to shift by 

+ 1.5 nm to 1564.5 ± 0.5 nm and remain at that value even after flushing with N 2 . 

This positive shift in coupling wavelength suggests that the refractive index of the 

coating has decreased due to the exposure to NO2 , and that this is a permanent effect 

with no recovery observed of the CuPc'(SC>3 'Na+ ) 4  coating after flushing with N2 or 

with time. Information taken from the previously determined ambient refractive
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index profile of the grating leads to the conclusion that a shift in coupling wavelength 

of +1.5 nm from 1563 nm to 1564.5 nm would be caused by a change in coating 

refractive index of -0.0147 from 1.3015 to 1.2868 as shown in Figure 6.45.

Figure 6.45: Section of ambient refractive index profile of LPG corresponding
to 1564.5 ± 0.5 nm coupling wavelength of PAA/ CuPc"(S0 3 'Na+)4  

coating after exposure to NO2

It can be seen from the ambient index profile (Appendix 9) that the sensitivity to 

changes in ambient refractive index of LPGs increases more as the ambient index 

approaches that of the cladding. The fact that the refractive index of the PAA/ CuPc' 

(SO_fNa+ ) 4  coatings of around 1.3 is considerably lower than that of the cladding and 

is situated on the more linear section of the profile may explain why the coupling 

wavelength shift is so small. To increase the sensitivity of the LPG either a coating 

with refractive index approaching that of the cladding, or a chemical with a higher 

sensitivity to a given gas must be used. If a suitable coating could be found with a 

refractive index around 1.44 then a change o f -0.0147 to 1.4253 would result in a 

much greater coupling wavelength shift of 12.5 nm as shown in Figure 6.46.
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Figure 6.46: Change in coupling wavelength with ambient refractive index for
LPG magnified in 1.44 region

As stated earlier in this report, all traces of the previous coating layers were removed 

by immersion of the grating section in sulfo-chromic acid after removing the fibre 

from the OSA. It was decided to monitor the removal of the final coating of 4 bi­

layers by leaving the fibre connected to the OSA and observe the shift as it occurred. 

However, when the LPG was removed from the cavity whilst the transmission 

spectrum was still being monitored the spectrum and the coupling wavelengths were 

seen to shift back to the original positions in air before removal of the coating. This 

suggested that the observations made during the experiment were not due to the 

effects originally assumed, though it is quite certain that the sulfo-chromic acid had 

removed the previous coating between stages. Examination of the cavity showed a 

small amount of water in the bottom, but it is doubtful if there was enough to be in 

contact with the LPG. The diameter of the cavity and the inlet and outlet holes must 

not be big enough to allow the water inside to evaporate even after flushing with N2
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and standing for four days. Previous experiments carried out as part of this research 

have shown that water vapour condensing on the LPG will cause a shift to shorter 

wavelengths comparable to the shift due to water emersion. The determined refractive 

index of the PAA/ CuPcXSCL'Na4̂  coatings from the ambient index profile of 1.3015 

shows that it cannot be only the effect of the water around the cladding which is being 

observed as the refractive index of water as determined by the ‘Atago’ refractometer 

is 1.3365. The refractive indices of the PAA and CuPcXSCVNa4̂  solutions were 

investigated using the refractometer and were found to be the same as water, 

suggesting that remnants of the coating solution was not the ambient medium being 

observed either. This introduces the possibility that the PAA/ CuPcXSCVNa+) 4  bi­

layers are retaining the water molecules or that the atmosphere in the small cavity is 

such that the water droplets in the bottom are cyclically evaporating and condensing 

on the LPG cladding. When the NO2 is introduced into the cell it is reacting with the 

water droplets around or within the coating and changing the refractive index of the 

coating.

The experiment was repeated, coating the LPG with 3 bi-layers of PAA/ CuPcXSCV 

Na+)4 , but this time removing the grating from the gas cell to ensure it was completely 

dry before replacing it in the dry cell, exposing to NO2 and flushing with N 2 . The 

transmission spectrum showed no appreciable change in coupling wavelength at any 

stage in the proceedings.

The fact that the coating with a refractive index previously determined as 1.3 by SPR 

curve fitting, does not cause a coupling wavelength shift may be explained by either 

or all of the following:
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• the thickness of the 3 bi-layers alone is not enough to be ‘seen’ by the incident 

radiation as a refractive index boundary

• the coating procedure is not as effective in this situation as it was in the SPR 

setup

• the refractive index of the coatings determined by SPR is in error and the 

refractive index is greater than that of the cladding agreeing closer to recorded 

previous work of around 1.8 [374], which suggests that the SPR determined 

index may also be affected by the water surrounding or absorbed by the 

coating on the slide.

As the results from this part of the investigation show that the CuPc'(S0 3 *Na+) 4  

coating will not be suitable to commercial use due to its lack of sensitivity, it was not 

deemed worthwhile to perform further experiments to try to determine the optimum 

thickness of CuPc'(S0 3 *Na+) 4  at which the refractive index of the coating will cause a 

shift in the coupling wavelength whilst not being too thick for the gas to penetrate far 

enough to cause significant change in refractive index.

6.6.2 Experiment Applying Chromo 1 by In Situ PESA 
Coating Method and Ammonia as the Gas to be 
Detected

6.6.2.1 Experimental Procedure

The fibre was connected to the light source output and optical input of the OSA using 

bare fibre connectors and the optical transmission spectrum observed through all
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stages of the procedure. The grating section of the fibre was clamped under slight 

tension in a second purpose built cavity, as in the previous experiment.

The cladding of the LPG was coated in situ by the PESA method as explained in 

chapter 5 with 20 bi-layer of PAA/Chromol, care being taken that the coating was 

completely dry, and the transmission spectrum recorded as each dry bi layer was 

produced. The grating was removed from the gas cell after 20 layers to allow total 

drying of the coating. It was then replaced in the cell, exposed to a steady flow of 

ammonia for twenty minutes, and flushed using N2 to ensure that all ammonia was 

removed and to observe any recovery made in the coating.

6.6.2.2 Results and Discussion
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Figure 6.47: Refractive index profile of LPG Cl as coatings of (PAA/Chromol)!
are applied and exposure to ammonia
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Positions 21, 22, 23 are after removal from cavity and allowed to dry in air, after 20 

minutes exposure to ammonia and after flushing with N2 respectively.

Figures 6.47 and 6.48 show the changes in coupling wavelengths as the coating was 

built up, after drying in air, after exposure to ammonia and after flushing with N2 . 

The transmission spectrum corresponding to NH3 exposure is almost identical to that 

of the N2 exposure and can be seen just above the N2 peaks in the region between 

1300 nm and 1350 nm.

It can bee seen from the results that the shift at any point in the proceedings is 

negligible. Even the application of 20 bi-layers of PAA/Chromo 1 has no significant 

effect on the transmission spectra. This may be due to the coating having a higher 

refractive index than the cladding, the coating not being of sufficient thickness to be 

‘seen’ by the transmitted radiation, or that the coating is not bonding properly to the 

surface of the cladding.
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It was decided to abort this method in favour of a less accurate coating method in 

which the number of layers of the coating material cannot be monitored, but is a 

proven method of chemical deposition. Attempts were made to coat the cladding by 

mixing 1 part CuPc' (C(CH3 ) ) 4  to 4 parts PPS in solution with chloroform at 5mg per 

ml. The mixture was pooled around the grating until the chloroform evaporated, 

leaving the PPS/ CuPc' (C(CH3 ) ) 4  coated to the fibre in alternate layers as they bond 

to the each other due to opposing polarity of charges. This again proved unsuccessful 

and the coating did not cause any significant shift in the coupling wavelengths. The 

shift was therefore investigated concentrating the OS A around the 1550nm band, but 

the noise level on the signal resulted in more than one minimum value at the coupling 

wavelength dip, preventing accurate determination of the actual wavelength shift.

6.6.3 Conclusions to Experiments in Sections 6.6.1 and 6.6.2 
Utilising the In-Situ PESA Coating Methods

Coating of the cladding using the in situ PESA method proved unsuccessful in both 

previous experiments. These results also suggest that the CuPC and Chromo 1 

coatings have refractive indices greater than that of the cladding. This would result in 

very slight shifts to longer coupling wavelengths as predicted by simulation (Chapter 

4), which may be too small to be detected at the resolution used in this experiment. 

Again, as the shifts were never going to be great enough to allow this method to be 

utilised as a practical sensor, this experiment was taken no further and other coating 

chemicals were investigated.
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6.7 Investigations into Utilising a Suitably 
Coated Long Period Grating as a Gas 
Sensor Using Evaporation Method of 
Coating

In this experiment calixarene was used as the gas sensitive coating and hexane, 

toluene, and benzene as the gases to be detected.

6.7.1 Experimental Procedure

Again the fibre was connected to the OSA using bare fibre connectors at the start of 

proceedings to allow observation of the effects of each stage of the experiment on the 

transmission spectrum. During the time between this experiment and the previous 

experiment a broadband light source became available, allowing observation of the 

coupling shifts at intermediate wavelengths.

The grating section of the fibre was coated by evaporation methods as described in 

Chapter 5, clamped under slight tension in the purpose built cavity and saturated 

vapour of hexane was injected into the cavity using a syringe. The cavity was then 

flushed with N2 to ensure that all hexane vapour was removed and to observe any 

recovery made in the coating. The shift in coupling wavelength was observed and 

noted at each stage. The coating was removed using chloroform until the spectrum
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returned to that of air and the coating and exposure procedure repeated using toluene 

and benzene saturated vapours.

6.7.2 Results and Discussion

The shift in coupling wavelength as the calixarene coating was applied, exposed to the 

relevant vapours and then flushed with N2 are shown in Figures 6.49 to 6.54.
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Figure 6.49: Transmission spectra of LPG Cl after coating of calixarene, 
exposure to saturated hexane vapour and flushing with N2
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Figure 6.50: Shift in coupling wavelength with calixarene coating, exposure to 
saturated hexane vapour and flushing with N2 for LPG Cl
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Figure 6.51: Transmission spectra of LPG C l after coating of calixarene,
exposure to saturated toluene vapour and flushing with N2
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Figure 6.52: Shift in coupling wavelength with calixarene coating, exposure to 
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Figure 6.53: Transmission spectra of LPG Cl after coating of calixarene, 
exposure to saturated benzene vapour and flushing with N2
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Figure 6.54: Shift in coupling wavelength with calixarene coating, exposure to 
saturated benzene vapour and flushing with N2 for LPG Cl

The fact that the coupling wavelength values in air are the same at the beginning of 

each coating (within uncertainty limits) show that the previous possibly contaminated 

coatings were successfully removed at the end of each stage. The change in coupling 

wavelength when the calixarene is applied is again virtually constant, suggesting 

regular consistency of each coating in each section of the experiment. All coupling 

wavelengths can be seen to remain stationary (at the shorter wavelengths) or to 

decrease (at the longer wavelengths) as the coatings are exposed to the various 

saturated vapours. As expected the most sensitive coupling occurs in the 1590 nm 

band, which couples to the highest order cladding mode available for the range of the 

light source. Figure 6.55 shows the shift in coupling wavelength due to the calixarene 

coating in the highest visible wavelength range, froml590±0.5 nm to 1560.5±0.5 nm, 

a shift of-29.5±0.5 nm.
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Figure 6.55: Shift in coupling wavelength when calixerine coating applied to
cladding of LPG C l

The 1560 nm-1561 nm section of the ambient refractive index profile of LPG C l from 

Appendix 9 shown in Figure 6.56 shows the refractive index of the calixerine coating 

to be 1.3254 ± 0.005 nm.
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Figure 6.56: 1560 nm-1561 nm section of the ambient refractive index profile of
LPG Cl
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Figures 6.57 to 6.59 focus on the coupling wavelength shifts in the 1590 nm band 

at each step of the procedure for each saturated vapour exposure.
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Figure 6.57: Coupling wavelength shifts in 1590 nm band as LPG Cl is coated 
with calixarene, exposed to hexane saturated vapour and flushed

with N2

1 5 9 0

1 5 8 5

1 5 8 0

1 5 7  5

1 5 7 0

1 5 6 5

1 5 6 0

FlushTolueneCalixareneAir
C o a t ing

Figure 6.58: Coupling wavelength shifts in 1590 nm band as LPG Cl is coated
with calixarene, exposed to toluene saturated vapour and flushed 

with N2
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Figure 6.59: Coupling wavelength shifts in 1590 nm band as LPG Cl is coated 
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Table 6.3 shows shifts in coupling wavelengths with exposure to the three 3 types of

saturated vapours.

Gas Coupling X of calixarene 
coating ± 0.005nm

Coupling X after gas 
exposure ± 0.005nm

Coupling X shift ± 
0.005nm

Hexane 1560.5 1559 -1.5
Toluene 1560.5 1559.5 -1
Benzine 1560.5 1559.5 -1

Table 6.3: Shifts in coupling wavelength with exposure to each vapour

Figures 6.60 to 6.62 show the sections of the ambient index profiles corresponding to 

the coupling wavelengths after each vapour exposure.
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Figure 6.60: Section of LPG Cl ambient index profiles corresponding to the
coupling wavelength of 1559 nm after exposure to hexane 

saturated vapour.
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Figure 6.61: Section of LPG Cl ambient index profiles corresponding to the
coupling wavelength of 1559.5 nm after exposure to toluene 

saturated vapour.

204



1 yJV\J \ i
i u o y . y  ■ 
15 59 .8  - 

g 15 59 .7  - 

£  15 59 .6  -
CT>

I_ " ....I •

^  I o o y  .0 ~ 

> 15 59 .4  - 

^  15 59 .3  - 

1559 .2  -

I
1 ---------4---------

] I j I

r ....' t  J
i o D y . i _

! i

39
i o o y  ~i 

1.3 29 1.:

i i i i i

33 1.331 1 .332  1.3 33 1 .334 1 .335  1 .336 1 .337 1 .338 1.3 
A m b i e n t  Rl

Figure 6.62: Section of LPG Cl ambient index profiles corresponding to the
coupling wavelength of 1559.5 nm after exposure to benzene 

saturated vapour.

The corresponding refractive index changes of the calixarene coating due to the

various vapour exposures are summarised in Table 6.4.

Gas Coupling X after gas 
exposure ± 0.005 nm

Modified RI of 
calixarene coating ± 

0.005

Change in RI of 
calixarene coating ± 0.005

Hexane 1559 1.339 +0.014
Toulene 1559.5 1.335 +0.009
Benzine 1559.5 1.335 +0.009

Table 6.4: Refractive index changes of the calixarene coating due to the
various vapour exposures

6.7.3 Conclusions to Experiments Utilising the Evaporation 
Method of Coating

As in the first experiments the shift is small even though the gas concentration is high, 

and therefore detection of small traces of gas would not be possible using these 

coating chemicals. The previously determined temperature profile of the LPG 

(Appendix 10) shows the temperature sensitivity of this coupling mode to be linear
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between 20°C and 80°, with a sensitivity of 0.07 nm/°C (the temperature must change 

by 14°C to cause a shift of 1 nm). This rules out any relevant effects of temperature 

on the results as the room temperature was constant to ± 1°C throughout all 

experiments. Also strain inconsistencies can be ignored as the fibre was maintained 

in the same position throughout each experiment. The effect of the coatings and gas 

exposures was also observed at the lower coupling modes, which as expected were 

not as sensitive as the higher mode related in these experiments. Even though the 

shifts were smaller, in some cases less than the resolution setting (0.5 nm) of the OS A 

they were still seen to move in the same direction as the highest observable mode. 

This constant trend suggests that the shifts were not due to random effects but were 

due to the effect being investigated. In all three cases a degree of recovery was 

observed after flushing the cavity with N2 . The hexane exposure showed only slight 

recovery of 0.25 nm, but the toluene and benzene exposures showed full recovery of 

the calixarene coating, which suggests if the sensitivity aspect can be dealt with then 

it may be possible to re-use the gas sensor for multiple exposures.

6.8 Summary

This chapter has described the experimental investigations into using an LPG as a gas 

sensor and a multi-parameter sensor. Experiments into the difference between the 

ambient index and temperature profiles of LPGs of various periods have been 

described. Coating methods and compounds to be used to coat the cladding have been
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investigated and experimental investigations into using suitably coated LPG as a gas 

sensor have been explained.
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Chapter 7

Conclusions

The principle objective presented in this thesis was to investigate the possibility of 

utilising a suitably adapted LPG as a gas sensor.

In order to perform the investigations successfully it was necessary to investigate the 

operational characteristics and limitations of existing optical sensors and the 

advantages which an LPG based optical sensor would incorporate, which the literature 

review reported in chapter 2 confirms.

A thorough understanding of the theory and principles of light propagation, mode 

formation, and mode coupling in optical fibres discussed in chapter 3 allowed their 

effective application to the computer simulations described in chapter 4, and the 

development and limited success of the LPG as a gas sensor as reported in chapter 6.
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The coating procedures undertaken in this investigation described in chapter 5 were 

shown to be reasonably successful, a novel method of monitoring the build up of 

layers in-situ using SPR methods being introduced.

The coating chemicals used in this investigation showed some optical sensitivity at 

the optimum wavelengths used in optical fibres to the various gases being monitored, 

in most cases causing a detectable change in the optical characteristics of the modes in 

the LPG as described in chapter 6.

This study has shown that it may be possible to use a suitably prepared LPG as a gas 

sensor. The LPG can be coated with a chemical whose refractive index can be 

changed by absorption of a given gas. It may also be possible to utilise a coating 

material which absorbs water, the refractive index of the coating being affected by the 

reaction of the gas with the water in the coating.

The possibility has been suggested also to surround the LPG with a suitable liquid in a 

gaseous atmosphere, the change in the refractive index of the liquid due to absorption 

of the gas giving the required shift in coupling wavelength.

The possibility of using a single temperature immune LPG for ambient index sensing 

by observing different coupling wavelengths in the same grating has also been 

demonstrated.

The maximum shift in coupling wavelength in both investigations of ±1.5 nm for such 

high gas concentrations suggests that the sensitivity of the sensor requires further
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improvement before it can in any way challenge the existing sensors in this field. The 

principle and the viability of using LPGs for sensor applications however, has been 

supported by the preliminary results reported here.
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Chapter 8

Further Work

As stated in the previous chapter, the maximum shift in coupling wavelength of ±1.5 

nm for such high gas concentrations suggests that the sensitivity of the sensor requires 

further improvement to become a viable gas sensor.

Investigations should continue into other chemicals with greater optical sensitivity to 

a given gas, or with an initial refractive index closer to that of the cladding, which will 

show much greater shifts for the same level of optical sensitivity.

Other coating methods may also have to be investigated by which these chemicals 

may be applied to the fibre cladding, perhaps by modifying the existing LB or PESA 

coating procedures to allow for the physical constraints of immersing the grating 

section in the solution.
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LPGs manufactured with grating periods designed to couple higher orders of 

diffraction or higher harmonics of the same order of diffraction into the core may 

also be a route to follow in an attempt to improve the sensitivity of the sensor

Further work is suggested to investigate an optimum period length at which 

temperature will have negligible effect on the optical profile of one or more of the 

coupling modes, but is still of a period length which is sensitive enough to detect 

small changes in ambient indices.

Further investigations into coating materials which absorb water may also be 

undertaken, the refractive index of the coating and thus the shift in coupling 

wavelength being affected by the reaction of the gas with the absorbed water.

The final aspect of further investigation adapted from this study is to surround the 

LPG with a suitable liquid in a gaseous atmosphere, the change in the refractive index 

of the liquid due to absorption of the gas giving the required shift in coupling 

wavelength.
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Appendix 1

Reflection / Transmission at an 
Optical Interface

For transverse electric (TE) waves

(core)
(rfaddoing) Electric 

Field  
Parallel 

0  Polarisation (TE)

t
M agnetic
Field
Perpendicular
Polarisation

Figure A l.l:  Reflection and transmission of a TE wave at a refractive index boundary

239



If the electric field component of a TE wave incident on the boundary as shown in Figure 

A 1.1 is described by [272-277]:

E  = E0ei(k'r~6*) (Al .1)

then the electric field components E r and E t  of the reflected and transmitted waves 

respectively can be described by

Er = EQRei(k«-r-°}«t) (A 1.2)

Et = E (XTeKkr'~ait) (A1.3)

Electric 
Field  

^  Perpendicular 
Polarisation

M agnetic 
r \ Field  
U  Parallel

Polarisation (TM)

Figure A1.2: Reflection and transmission of a TM wave at a refractive index
Boundary

The same assumption can be made for the magnetic field components of a TM wave as 

shown in Figure A1.2 [272-277]:

B = (A 1.4)

then the magnetic field components B r and B t of the reflected and transmitted waves 

respectively can be described by

For transverse magnetic (TM) waves

(core)
(claddoing)



BR =Bm!ei(S«r-'"*') (A1.5)

Bt = B0Tel(kTr~0,,,) (Al .6)

At the interface of the 2 media where all 3 waves coincide Maxwell’s equations give the 

boundary conditions that the components of the electric and magnetic fields parallel to the 

interface should be continuous at each side of the boundary.

Thus for TE waves 

as E is parallel to the interface

Ej +Er =E t (A1.7)

or Er - E t - E j (A1.7a)

as the component of B parallel to the interface is BcosO

Bj cos6j + (~Br c o s 0r ) = Bt  c o s 0t  

As 0i = 0r , and B = nE/c, this can be re-written in terms of the electric field as:

nx Ej cos 6j -  nx ER cos 0j - n 2ET cos 0T (A 1.8)

For TM waves by the same reasoning 

as B is parallel to the interface

Bj + Br = BT

n^Ej + nlER = n2ET (Al .9)

or = n2ET - n f i j  (A1 9a)
n

as the component of E parallel to the interface is EcosO

-  Ej cos Qj + Er c o s  0r =  —E t  c o s  0t  (A l. 10)
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To determine an equation for TE waves involving only the incident angle, substituting 

(A1.7) into (A1.8) to eliminate Et

nxEj cos#, - n xER cos#, -  n2(Ej + E R) cos GT 

nxEj cos#, - n xER cos#, = n2Ej cos0T +n2ER cos0T 

nxEj cos#7 —n2Ej cos0T = niER cos#, +n2ER cos0T 

Ej(nx cos#, - n2 cos0T) = ER(nx cosGj + n2 cos0T)

E r _  (nx cos#, —n2 cos6T)

E j  («j c o s  #, + n2 cos 0T )

As reflection coefficient p = E r  /  Ei

(cos#, — — cos 0T ) 
n \

Pte -  „
(cos #, + — cos#r )

(A l.ll)

To remove the 0t term 

As cos0T = V l-s in 2 # ;

cos#, -^1-sin2 0T 
P te =  ^  (A1.12)

Yl I- - - - - - - - - - - -
cos#, + — y l - s in 2#,

As Snell's law states nisin0i = n2sin0x, and letting —  = N  (relative refractive index)

(A 1.12) can be re-written in terms of the incident angle only as:

pTE = COS0‘ - f t ! E E £ L  (A l. 13)
cos#, + tJn 2 -  sin2#,
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To determine an equation for TM waves involving only the incident angle 

Substituting (A1.9) into (A1.10 ) to eliminate Et gives

-  Ej cos Qj +  Er cos Oj =  - ^n^ 1 +/7l^ /?̂ -cos 0T
n2

~ n 2Ej cos Oj +n2ER cos Oj = - n xEj cos 0T - n xER cosOT

n2Ej cos Oj - n xEj cos 0T = n2ER cos Oj +nxER cosOT

Ej (n2 cos Oj -  nx cos 0T) - E R {n2 cos Oj + nx cos 0T)

Er _  (n2 cos Oj - n x cos 0T)
Ej (n2 cos Oj + nx cos 0T )

As reflection coefficient p = Er /  Ei

To remove the 0j term

As cos0r -  Vl — sin2 0

— cos Oj - c o s # 7

P tm  ~
_ VW1

—  COS O j +  COS Oj

Knx

P tm

— cosOj -  J l - s in 2 Oj 
Jh___________________
Yl I-------------------
— cos Oj+yj I -  sin2 Oj

— cosOj - y j l - s i n 2 Oj
i

P tm  ~

— cosOj -t--y/l — sin2 Oj
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(A 1.14)

Yl0
As Snell's law states nisinOi = n2sin0x, and letting —  = N  (relative refractive index)

(A 1.14) can be re-written in terms of the incident angle only as:

N 2 cos6j - ^ N 2 -  sin2 Oj
(A1.15)

Thus (A1.13) and (A1.15) predict the reflection coefficients for TE and TM waves 

[319,320].

The Transmission coefficient can be similarly determined using equations (A1.7) to 

(A 1.10), but this time eliminating E r rather than Ey 

For TE, substituting (A1.7a) into (A1.8)

nxEj cos Oj —nxET cos Oj + nxEj cos Oj = n2ET cosOT

nxEj cos 6j +nxEj cos Oj = nxET cos 6j +n2ET cos0T 

Ej («j cos Oj + nx cos Oj ) = Et  (nx cos Oj + n2 cos 0T) 

Et  _  (2«jCOs^7)
Ej (nx cos Oj + n2 cos 0T)

As transmission coefficient x = Ey / Ei

2 cos Oj

To remove the 0y term, as cos^r = V1 -  sin2 0 T
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tte —
2 cos Oj

cos Oj +.
\ n\ j \ nxj

sin2 6T

as Snell's law states nisin0i = n2sin0x

tte —
2 cos Oj

cos07 +.
\ n \ J \ nxJ

sin2 Oj

Tte —
2 cos Oj

cos Oj + -yJN2 -  sin2 Oj

For TM

Substituting (A1.9a) into (A1.10)

_  E cos 0, + L =  _ £ r cos e T
nx nx

n.ErCOsOj  „  _ n , E RcosOj
E j  c o s  O j + - l - 1  L = cos0r +  - 2 — *--------

«i nx

nxEj  cos Oj + n 1E I cos Oj = cos#r + n2E R cos Oj

Ej (2 «j cos O j )  = Et  (nY cos 0 T + cos Oj) 

Et  (2»j cos Oj )
is7 (wj cos + n2 cos Oj) 

As transmission coefficient t  =  E t /  E i

2Cos0j
I'TM

cos 0T + — cos Oj

To remove the 0t term, as cos#r = 's/I- sin2 0

(A1.16)

245



I'TM ~
2Cos6j

V l-s in 2 6 T + — cos Oj

as Snell's law states nisinGi = n2sin0T, so SinGj = nisinGi / n2

2Cos6j
'TM

cos 6j + J l -
\ n 2 J

sin2 Oj

(2 CosOj)

T'tm — 2

cos 0 7 + ,
(  \  

n2
2 2

U J VU J U J U2J
sin2 Oj

I'TM
2 N C o s 0 j

N 2 cos Oj +-y]N2 -  sin2 Oj

Thus (A1.16) and (A1.17) predict the transmission coefficients for TE and TM waves 

[318,319].

(A1.17)
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Appendix 2

Brewster Angle

(core) m2  (doddoing)

t Electric
Field
Perpendicular 
Polarisation (TM)

Electric 
Field 

O Parallel
Polarisation (TE)

Figure A2.1: Brewster angle of electro-magnetic wave at refractive index boundary

When the light is incident on the core/cladding interface at the Brewster angle as shown in

Figure A2.1, the reflected light has only the parallel (TE) component, while the transmitted
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light has only the perpendicular (TM) component. Thus if the incident light is polarised 

parallel (TE) to the surface of the boundary there will be no transmitted component, only 

reflection and if the incident light is polarised perpendicular (TM) to the surface of the 

boundary there will be no reflected component, only transmission. Total transmission or 

zero reflection occurs therefore only for perpendicular polarisation (TM), thus the Brewster 

angle is useful for transmitting light across a boundary (in either direction) without 

reflection losses. The Brewster angle is greater for light travelling from low (cladding) to 

high (core) RI than for high (core) to low (cladding) RI. When light is incident on a 

boundary travelling from a higher RI (core) to a lower RI (cladding) a critical angle is 

reached at which TIR occurs. When light is incident on a boundary travelling from a lower 

RI (cladding) to a higher RI (core), TIR will not occur. TIR occurs for both polarisations 

at the same angle.
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Appendix 3

Program Code to Determine 
Propagation Constants, p, and 
Propagation Angles, 0, in Core 
and Cladding Using Equation 4.2

%DETERMINTAION OF PROPAGATION CONSTANTS (Bel) FOR CORE &
CLADDING OF SINGLE MODE FIBRE
%for HEml where m = 1
%Matlab file: HecladmodesthesisYariv
clear all
format long
Fid =
fopen('d :\PaulDowker\Matlab\PaulD\results.txt' , 'w 1);

%OPEN FILE
fprintf('\nHecladmodesthesisYariv'); 
fprintf(Fid,1\nHecladmodesthesisYariv');
fprintf('\nProg to find coupling from HEll (LP01) core to 
HEml Cladding modes (where m = 1)');
fprintf(Fid,1\nProg to find coupling from HEll (LP01) 
core to HEml Cladding modes (where m = 1)');
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L = 1 5 0 0 * 1 0 A ( - 9 )  ; %START 
WAVELENGTH

while L<1551*10A(-9); %OPEN WAVELENGTH 
LOOP

k=2*pi/L; 
rl=2.625*10A(-6); 
r2=62.5*10A(-6); %CLADDING RADIUS 

%CORE RI

%WAVE NUMBER 
%CORE RADIUS

nl=l. 458 ; 
n2=l.455; 
n3=l ;

%CLADDING RI 
%AMBIENT RI

determination of core modes
Bc= k * n l ( (k. *nl) - (k. *n2) )/10A (6) :k*n2; %Pcore

uc=rl*sqrt((k*k*nl*nl)-(Be.*Bc)); 
wc=rl*sqrt((Be.*Bc)-(k*k*n2*n2));
M=0; 
if M==0

fl =BESSELJ(M,uc)./(uc.*BESSELJ(M+l,uc)); 
f2 =BESSELK(M,we)./(we.*BESSELK(M+l,we)); 

else
f1 =BESSELJ(M,uc)./(uc.*BESSELJ(M-l,uc)); 
f2 =-BESSELK(M,wc)./(wc.*BESSELK(M-l,wc));

f = f 1 - f 2 ;
%PLOT GRAPH OF CORE MODES 
figure(1) 
plot(Be,f,1b 1)
Title('Core modes') 
xlabel('Be') 
ylabel('f') 
grid

%when f = 0 this is the value of Bel which is correct 
%for both equations, fl and f2, and is thus the value 

of Bel for the
%single mode (HEll or LP01)in this core. 
al=0 ;
%TEST TO FIND VALUES OF CORE MODES 
indexl=l;
for a2=l:length(Be)-1

if ((f(a2)*f(a2+l)<0)&((f(a2)A2)+(f(a2+l)A2)<0.1))

RANGE 
TO TEST

end

Beore(indexl)=(Be(a2)+Bc(a2+l))/2;
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Bangl(indexl)=(asin(Bcore(indexl)/(k*nl)))*360/(2*pi); 
fvall(indexl)= (f(a2)+f(a2+l))/2; 
al=al+l;
indexl=indexl+l;

end
end

no_of_core_modes=al

%PRINT INFO TO SCREEN & FILE 
for a3 = 1:length(Bcore)

fprintf('\nFor L = %.2fnm: Bcore value %d: %f,
Bcore angle %d: %f, F value %d:
%0.4f\n',((L*10A(9))), a3,Bcore(a3) , a3 ,Bangl(a3),a3,fvall( 
a3) ) ;

fprintf(Fid,1\nFor L = %.2fnm: Bcore value %d:
%f, Bcore angle %d: %f, F value %d:
%0.4f\n',((L*10A (9))),a3,Bcore(a3),a3,Bangl(a3),a3,fvall( 
a3) ) ; 

end
Bcl=k.*n2:-(((k.*n2)-(k.*n3)) .*10A (-6) ) :0.98.*k.*n2;

%Pclad RANGE TO TEST
u=r2.*sqrt((k*k*n2 *n2)-(Bel.*Bcl)) ; 
w=r2.*sqrt((Bel.*Bcl)-(k*k*n3 *n3)) ; 
m=l ;

JHE=(BESSELJ(m+l,u))./(u.*BESSELJ(m,u));
KlHE=-(((n2*n2)+(n3*n3)).*(-BESSELK(m-l,w)- 

BESSELK(m+l,w)))./((2.*w.*BESSELK(m,w)).*(2*n2*n2));
K2HE=(((n2*n2)-(n3*n3))/((2*n2*n2)*(2*n2*n2) )) .* ( ( ( (- 

BESSELK(m-l,w)-
BESSELK(m+l,w) ) ) ./(2.*w.*BESSELK(m,w) )).*(( (-BESSELK(m- 
1,w)-BESSELK(m+l,w)))./(2.*w.*BESSELK(m,w))));

K3HE=((m*m.*Bcl.*Bcl)./(n2*n2*k*k)).*(((1./(w.*w))+(1./(u 
.*u))).*((l./(w.*w)) + ( ! . / (u.*u))));

KHE=K1HE+(1./(u.*u))-( (K2HE+K3HE) .A (0.5) ) ;

fHE=JHE-KHE;

%PLOT GRAPH OF CLADDING MODE 
figure(2)
plot(Bel,fHE,'r ');
Title('Cladding modes') 
xlabel(’Bel’) 
ylabel(’fHE’) 
grid
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%Bcl values are obtained where f crosses Bel axis, 
(i.e.f=0)

zerosHE=0; 
index3 = 1;
for a5=l:length(Bel)-1 

if
((fHE(a5)*fHE(a5 + l)<0)&((fHE(a5)A2) + (fHE(a5 + 1)A2)<0.01) ) 

zerosHE=zerosHE+l;

BcladHE(index3) = (Bel(a5)+Bcl(a5 + l))/2 ;

BangHE(index3) = (asin(BcladHE(index3)/(k*n2)))*3 60/(2*pi) ; 
fvalHE(index3)=(fHE(a5)+fHE(a5+l))/2;
PHE(index3)=(k.*L./(Bcore- 

BcladHE(index3))) .*10A ( 6) ;

i ndex3 =i ndex3 +1;
e n d

e n d
no_of_HE_modes=zerosHE

%PRINT INFO TO SCREEN & FILE 
for f = 1:length(BcladHE)

fprintf('Bclad value HEl%d: %f, Bel angle HEl%d:
%f, F value HEl%d: %0.4f,Period %d: %f
um\n1,f,BcladHE(f),f,BangHE(f),f,fvalHE(f),f,PHE(f));

fprintf(Fid,'Bclad value HEl%d: %f, Bel angle 
HEl%d: %f, F value HEl%d: %0.4f,Period %d: %f 
um\n',f,BcladHE(f),f,BangHE(f),f,fvalHE(f),f,PHE(f));

e n d

L=L+1*10A-(9) %INCREMENT WAVELENGTH
End %CLOSE WAVELENGTH LOOP

return
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Appendix 4

Program Code to Determine 
Propagation Constants, (3, and 
Propagation Angles, 0, in Core 
and Cladding Using Equation 4.3

%DETERMINAION OF PROPAGATION CONSTANTS (Bel) FOR CORE & 
CLADDING OF SINGLE MODE FIBRE 
%for HEml where m = 1
%Matlab file: HEcladmodesthesisErdogan

clear all, clc;

fid = fopen(’d:\PaulDowker2\Matlab\results.d o c w ');
%OPEN FILE

fprintf(fid,'\HEcladmodesthesisErdogan'); 
fprintf('\n HEcladmodesthesisErdogan \n') 
fprintf('\n %s \n',date) 
fprintf(fid,1\n %s\n',date);
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fprintf('\nProg to find coupling from HEll (LP01) core to 
HEml Cladding modes (where m = 1)');
fprintf(fid,'\nProg to find coupling from HEll (LP01) 
core to HEml Cladding modes (where m = 1)*);

L=150 0*10A-9; %WAVELENGTH
rl=2.625*10A (-6) ; %CORE RADIUS
r2=62.5*10A(-6) ; %CLADDING
RADIUS
nl=l.4 5 8 ; %CORE RI
n2=l.4 5 5 ; %CLADDING RI
n3=l; %AMBIENT RI
Z o = 3 7 7 ; %CONSTANT
k=2 *pi./L; %WAVE NUMBER

index3=0;

while L<1551*10A-9; %OPEN
WAVELENGTH LOOP

%determination of core modes at nth wavelength
Bc=k.*nl:-( (k. *nl) - (k. *n2) ) /10A (6) :k.*n2; %Pcore RANGE

TO TEST
neffl=Bc./k;
u=rl.*sqrt((k.*k.*nl*nl)- (Be.*Bc)); 
w=rl.*sqrt((Be.*Bc)-(k.*k.*n2*n2));
M=0 ;

fl =BESSELJ(M,u)./(u.*BESSELJ(M+l,u)); 
f2 =BESSELK(M,w)./(w.*BESSELK(M+l,w));

f=f1-f2;

%PLOT GRAPH OF CORE MODES 
figure(1) 
plot(Be,f,'b ')
Title('Core modes') 
xlabel(1 Be') 
ylabel(1f') 
grid
indexl=0;

%TEST TO FIND VALUES OF CORE MODES 
for al=l:length(Be)-1 

if
((f(al).*f(al+l)<0)&((f(al)A2)+(f(al+1)A2)<0.01)) 

indexl=indexl+l;
Bcore(indexl)=(Be(al)+Bc(al+1))./2;
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Bangl(indexl)=(asin(Bcore(indexl)./(k.*nl)))*36 
0/(2*pi); 
fvall(indexl)=(f(al)+f(al+1)). /2 ;

end
end
fprintf('\n\n\nThe following info is for wavelength 

%.2 fnm' , (L*10A(9) ))
fprintf(fid,1\n\n\nThe following info is for 

wavelength %.2fnm',(L*10A(9)));

%%PRINT NO OF CORE MODES TO SCREEN & FILE 
fprintf('\nno_of_core_modes = %d',indexl) 
fprintf(fid,'\nno_of_core_modes = % d indexl);

PRINT INFO TO SCREEN & FILE 
for a2 = 1:length(Bcore(indexl))

fprintf('\nBcore value %d: %f, Bcore angle %d: %f,
F value %d: %0.4f\n' ,a2,Bcore(a2),a2,
Bangl(a2);a2,fval1(a2) ) ;

fprintf(fid,1\nBcore value %d: %f, Bcore angle %d: 
%f, F value %d: %0.4 f \ n a2,Bcore(a2),a2,
Bangl(a2),a2,fval1(a2));

%disp(sent);
end

%CLEAR USED VALUES TO SAVE MEMORY 
clear Be 
clear neffl 
clear u 
clear w 
clear fl 
clear f2 
clear f

Bcl=k.*n2:-((k.*n2)-(k.*n3))./10A ( 6 ) : 0 . 98.*k.*n2; % P c l a d

RANGE TO TEST

neff2=Bcl./k;
ul=sqrt((k.*k.*nl*nl)-(Bel.*Bcl)); 
u2=sqrt((k.*k.*n2*n2)-(Bel.*Bcl)); 
wl=sqrt((Bel.*Bcl)-(k.*k.*n2 *n2)); 
w2=sqrt((Bcl.*Bcl)-(k.*k.*n3 *n3));

m=l ;
s l = ( j * m . * n e f f 2 ) ./Zo;
s2=(j*m.*neff2).*Zo;
u 2 1 = ( 1 . / ( u 2 . * u 2 ) ) - ( 1 . / ( u l . * u l ) ) ;
u 3 2 = ( 1 . /(w2. * w 2 ))+( 1 . / ( u 2 . *u2));
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J=((BESSELJ(m-1,(ul.*rl)))- 
(BESSELJ(m+l,(ul.*rl))))./(2.*ul.*BESSELJ(m,(ul.*rl)));

K=((-BESSELK(m-l,(w2.*r2)))- 
(BESSELK(m+l,(w2.*r2))))./(2.*w2.*BESSELK(m,(w2.*r2)));

p=(BESSELJ(m,(u2.*r2)).*BESSELY(m,(u2.*rl)))- 
(BESSELJ(m,(u2.*rl)).*BESSELY(m,(u2.*r2)));

q=(BESSELJ(m,(u2.*r2)).*((BESSELY(m-l,(u2.*rl))- 
(BESSELY(m+l, (u2.*rl))) )/2) )- ( ( (BESSELJ(m-l, (u2.*rl))- 
BESSELJ(m+l,(u2.*rl)))./2).*BESSELY(m,(u2.*r2)));

r=(((BESSELJ(m-l,(u2.*r2)))- 
(BESSELJ(m+l,(u2.*r2) ) ) ) / 2 )  . *BESSELY(m,(u2.*rl))- 
(BESSELJ(m,(u2.*rl)) . * ((BESSELY(m-l,(u2.*r2))- 
(BESSELY(m+l,(u2.*r2))))/2));

s — ((((BESSELJ(m-l,(u2.*r2)))- 
(BESSELJ(m+l,(u2.*r2))))/2).*((BESSELY(m-l,(u2.*rl))- 
(BESSELY(m+l,(u2.*rl))))/2))-(((BESSELJ(m-l,(u2.*rl))- 
(BESSELJ(m+l,(u2.*rl))))/2).*((BESSELY(m-l,(u2.*r2))- 
(BESSELY(m+l,(u2.*r2))))/2));

topi— (u2.*((J.*K)+((si.*s2.*u21.*u32)./(n2*n2*rl*r2))).*p 
)-(K.*q)+(J.*r)-(s./u2);

botl=((-u2.*(((u32.* J )  ./(n2*n2 *r2))- 
((u21.*K)./(nl*nl*rl))).*p)+((u32.*q)./(nl*nl*r2))+((u21. 
*r)./(nl*nl*rl)));

top2=((u2.*((u32.*J./r2)- 
((n3 *n3 *u21.*K) ./(n2*n2*rl))) .*p)-(u32.*q./r2)- 
(u21.*r./rl));

bot2=(u2.*(((n3*n3.*J.*K)./(n2*n2))+((si.*s2.*u21.*u32)./ 
(nl*nl*rl*r2))).*p)-((n3*n3.*K.*q)./(nl*nl))+(J.*r)- 
((n2 *n2.*s) ./(nl*nl.*u2)) ;

Go=topl./botl;
Go2=(m^(2) ) .*(neff2./N(2) ) .*( top2 . /bot2) ;
G=Go+Go2;

%PLOT GRAPH 
figure(2) 
plot(Bel,G,'r ');
Title('Cladding modes') 
xlabel('Bel') 
ylabel('G ’) 
grid
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%CLEAR USED VALUES TO SAVE MEMORY
clear nef f 2
clear ul
clear u2
clear wl
clear w2
clear si
clear s2
clear u21
clear u3 2
clear J
clear K
clear P
clear q
clear r
clear s
clear topi
clear botl
clear top2
clear bot2
clear Go
clear Go 2
index2: = 0;

%TEST TO FIND VALUES OF CLADDING MODES 
for a3=l:length(Bel)-1 

if
((G(a3)*G(a3+l)<0)&((abs(G(a3)))<5)&((abs(G(a3+1)))<5)) 

i ndex2=i ndex2 +1;
BcladHE(index2)=(Bel(a3)+Bcl(a3+l))/2;

BcladangHE(index2)= (asin((BcladHE(index2))/(k*n2)))*360/( 
2 *pi);

GcladHE(index2)=(G(a3)+G(a3+l))/2;
P(index2)=L*k./(Bcore-BcladHE(index2));

end
end
clear Bel

%PRINT INFO TO SCREEN & FILE
fprintf(*\nno_of_cladding_modes = %d',index2) 
fprintf(fid, *\nno_of_cladding_modes - %d’,index2); 
for a4=l:length(BcladHE)

fprintf('\nB value %d: %f, B angle %d: %f, G value 
%d: %0.4f1,a4,BcladHE(a4),a4,
BcladangHE(a4),a4,GcladHE(a4));

fprintf(fid,'\nB value %d: %f, B angle %d: %f, G 
value %d: %0.4f',a4,BcladHE(a4),a4,
BcladangHE(a4),a4,GcladHE(a4)); 

end
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clear index2
L=L+1*10A-(9

End

%INCREMENT 
WAVELENGTH LOOP 

%CLOSE WAVELENGTH LOOP

return
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Appendix 5

Program Code to Determine 
Coupling Wavelength Shifts Using 
Ideal Fibre Parameters

clear all, clc;

%THIS PART OF PROGRAM DETERMINES THE GRATING PERIOD
REQUIRED TO COUPLE WAVELENGTH
%OF 1550nm into the 6th CLADDING MODE
Q____________________________________________________________________________________________________X>--------------------------------------------------------------------------------------------------------------------------------

Fid = fopen('d:\PaulD\Paul.doc','w '); %OPEN FILE 
fprintf(Fid,1\nActualprog2’); 
fprintf('\n Actualprog2 \n')

L=1550*10A-9; 
k=2 *pi./L; 
rl=2.625*10A ( -6) ; 
r2 = 62.5*10A (-6) ;

%WAVELENGTH 
%WAVE NUMBER 
%CORE RADIUS 
%CLADDING RADIUS
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nl=l.458; %CORE RI
n2=l.45; %CLADDING RI
n3=l; %AMBIENT RI
Zo = 3 7 7; %CONSTANT

%determination of core modes
Bc=k*n2:((k.*nl)-(k.*n2))/ 1 0 A(6):k*nl; %CORE PROPAGATION

CONSTANT RANGE
neffl=Bc./k; %CLADDING EFFECTIVE RI
u=rl*sqrt((k.*k.*nl*nl)-(Be.*Bc)); %CORE u VALUE
w=rl*sqrt((Be.*Bc)-(k.*k.*n2 *n2)) ; %CORE w VALUE

M=0 ;
fl =BESSELJ(M,u)./(u.*BESSELJ(M+l,u)); %LHS OF EQU
f2 =BESSELK(M,w)./(w.*BESSELK(M+l,w)); %RHS OF EQU

f=f1-f2; %GIVES BN VALUES WHICH SATISFY BOTH SIDES

indexl=0;
for al=l:length(Be)-1 %FIND ZERO CROSSINGS

if ( (f(al)*f(al + 1)<0)&((f(al)A2) + (f(al+1)"2)<0.01)) 
indexl=indexl+1;
Bcore(indexl)=(Be(al)+Bc(al+1))./2; %FIND ZERO

CROSSING B VALUES
Bangl(indexl)=(asin(Bcore(indexl)./(k.*nl)))*360/(2 
*pi); %FIND MODE ANGLES
fvall(indexl) = (f(al)+f(al + 1) ) ./2 ; %FIND ACCURACCY

OF ZERO CROSSING PT

end
end

%PRINT INFO TO SCREEN & FILE
fprintf(’\nThe following info is for wavelength of 
%.2fnm1,L*1CT (9))
fprintf('\nno_of_core_modes = %d',indexl) 
fprintf(Fid,'\nno_of_core_modes = %d',indexl);

for a2 = 1:length(Bcore) 
nefflc=Bcore./k;
fprintf(1\nBcore value %d: %f, Bcore angle %d: %f; F 

value %d:
%0.4f\n',a2,Bcore(a2),a2,Bangl(a2),a2,fvall (a2)) ;

fprintf(Fid,'\nBcore value %d: %f, Bcore angle %d: %f, 
F value %d:
%0.4f\n',a2,Bcore(a2),a2,Bangl(a2),a2,fvall(a2));
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%disp(sentl);
end

%determination of cladding modes
B=k*n2:-((k.*n2)-(k.*n3))/10A(6):0.998*k.*n2; %CLADDING

PROPAGATION CONSTANT RANGE

sl=(j*m.*neff2)./Zo;
s2=(j*m.*neff2).*Zo;
u21=(1./(u2.*u2) ) - { ! . / (ul.*ul));
u32=(1./(w2.*w2))+(1./(u2.*u2));

J=((BESSELJ(m-l,(ul.*rl) ) ) -
(BESSELJ(m+l,(ul.*rl))))./(2.*ul.*BESSELJ(m,(ul.*rl))); 
K=((-BESSELK(m-l,(w2.*r2)))-
(BESSELK(m+l,(w2.*r2))))./(2.*w2.*BESSELK(m,(w2.*r2))); 
p=(BESSELJ(m,(u2.*r2)).*BESSELY(m,(u2.*rl)))- 
(BESSELJ(m,(u2.*rl)).*BESSELY(m,(u2.*r2))); 
q=(BESSELJ(m,(u2.*r2)).*((BESSELY(m-l,(u2.*rl))- 
(BESSELY(m+l, (u2.*rl))) )1 2))- ( ( (BESSELJ(m-l, (u2.*rl))- 
BESSELJ(m+l,(u2.*rl)))./2).*BESSELY(m,(u2.*r2))); 
r = (((BESSELJ(m-l,(u2.*r2)))-
(BESSELJ(m+l,(u2.*r2)) ) ) / 2 ) . *BESSELY(m,(u2.*rl))- 
(BESSELJ(m,(u2.*rl)).*((BESSELY(m-l,(u2.*r2))- 
(BESSELY(m+l,(u2.*r2))))/2)); 

s = ((((BESSELJ(m-l,(u2.*r2)))-
(BESSELJ(m+l,(u2.*r2))))/2).*((BESSELY(m-l,(u2.*rl))- 
(BESSELY(m+l,(u2.*rl))))/2))-(((BESSELJ(m-l,(u2.*rl))- 
(BESSELJ(m+l,(u2.*rl))))/2).*((BESSELY(m-l,(u2.*r2))- 
(BESSELY(m+l,(u2.*r2))))/2));

topi=(u2.*((J.*K)+((si.*s2.*u21.*u32)./(n2*n2*rl*r2))).*p
)-(K.*q)+(J.*r)-(s./u2);
botl=((-u2.*(((u32.*J)./(n2*n2*r2))-
((u21.*K)./(nl*nl*rl))).*p)+((u32.*q)./(nl*nl*r2))+((u21. 
*r)./(nl*nl*rl)));

neff2=B./k; CLADDING EFFECTIVE RI 
%CORE u VALUE 

%CLADDING u VALUE 
%CORE w VALUE 

%CLADDING w VALUE

ul=sqrt((k.*k.*nl*nl)-(B.*B)) 
u2=sqrt((k.*k.*n2*n2)-(B.*B)) 
wl=sqrt((B.*B)-(k.*k.*n2*n2)) 
w2=sqrt((B.*B)-(k.*k.*n3*n3))
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top2=((u2.*((u3 2 . * J . /r2 ) -
((n3*n3*u21.*K)./(n2*n2*rl))).*p)-(u32.*q./r2)- 
(u21.*r./rl));
bot2=(u2.*(((n3 *n3.*J.*K) ./(n2*n2)) + ((si.*s2.*u21.*u32) ./ 
(nl*nl*rl*r2))).*p)-((n3*n3.*K.*q)./(nl*nl))+(J.*r)- 
((n2 *n2.*s) ./(nl*nl.*u2)) ;
Go=topl./botl;

Go2 =(mA(2)).*(neff2.A(2)).*(top2./bot2);

G=Go+Go2;

index2= 0;

for a3=l:length(B)-1 %FIND ZERO CROSSINGS FOR CLADDING 

i f
((G(a3)*G(a3+l)<0)&((abs(G(a3)))<5)&((abs(G(a3+l)))<5)) 

index2=index2+l;
Bval(index2)=(B(a3)+B(a3+l))/2; %FIND ZERO CROSSING

B VALUES

Bang(index2) = (asin(Bval(index2)/(k*n2)))*360/(2 *pi);%FIND
MODE ANGLES

Gval(index2)=(G(a3)+G(a3+l))/2; %FIND ACCURACCY OF
ZERO CROSSING PT

P (index2)=L*k./(Bcore-Bval(index2)); %FIND MATCHING
PERIOD FOR EACH MODE

end

end

%PRINT INFO TO SCREEN & FILE
fprintf ( ' \nno_of_cladding__modes = %df , index2) 
fprintf(Fid,'\nno_of_cladding_modes = %d',index2);

for a4 = 1:length(Bval)
fprintf('\nB value %d: %f, B angle %d: %f, G value %d: 

% 0 . 4 f ,  Period %d:
%fum',a4,Bval(a4),a4,Bang(a4),a4,Gval(a4),a4,(P(a4)*10A6)
) ;

fprintf(Fid,'\nB value %d: %f, B angle %d: %f, G value 
%d: % 0 . 4 f ,  Period %d:
%fum',a4,Bval(a4),a4,Bang(a4),a4,Gval(a4),a4,(P(a4)*10A6)
) ;

%disp(sent2);
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e n d
fprintf(’\n\nPeriod required to couple 1550nm tO 6th 
cladding mode = %f',P(6))
fprintf(Fid,'\n\nPeriod required to couple 1550nm tO 6th 
cladding mode = %f';P(6))

%using period which will couple 1550nm to 6th clad mode, 
check that 1550nm couples to 6th clad mode

%CALC WAVELENGTH WHICH WILL COUPLE USING LPG EQU 

Pg=P(6)

for a5=l:length(Bval)
Ll(a5)=((Bcore)-(Bval(a5))).*Pg./k; 
x(a5)=round(Ll(a5) .*10A (9)); 
y (a5)=round(L.* 10 A (9 ));
X ( a 5 ) = x ( a 5 ) - y ( a 5 ) ;
fprintf('\nX value %d: %.2fnm,',a5,X(a5));%PRINT TO

SCREEN & FILE 
fprintf(Fid,’\nX value %d: %.2fnm,',a5,X(a5));

%disp(sent);
end

for a6=l:length(X)

if (X(a6)==0) %IF WAVELENGTHS MATCH ENTERED L WILL
COUPLE TO THIS MODE 

fprintf('\nwavelength: %.2fnm, Coupling mode :
%d',L*10A(9),a6);

fprintf (Fid,'\nwavelength: %.2fnm, Coupling mode 
: %d’ ,L*10A(9) ,a6) ;

%disp(sentl);
end

end

clear Bval

%FIND WHICH WAVELENGTHS WILL COUPLE TO OTHER 5 LOWER 
CLADDING MODES

%Start loop to find which core wavelengths will couple to 
cladding modes 1-5
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period=Pg 
index6=l; 
index7=0;

L=1425*10A-9;

while L<1560*10A-9; 
k=2 *pi./L; 
rl=2.625*10"(-6); 
r2=62.5*10A(-6); 
nl=l.458; 
n2=1.45; 
n3 = 1 ;
Zo=3 77;
B=k*n2:-((k.*n2)-(k.*n3))/10A(6):0.999*k.*n2; 
neff2=B./k;
ul=sqrt((k.*k.*nl*nl)-(B.*B)); 
u2=sqrt((k.*k.*n2*n2)-(B.*B)); 
wl=sqrt( (B.*B)-(k.*k.*n2 *n2)); 
w2=sqrt((B.*B)-(k.*k.*n3 *n3)) ;

%determination of core modes at nth wavelength

Bc=k*nl:-((k.*nl)-(k.*n2))/10A(6):0.995*k*nl; 
neffl=Bc./k;
u=rl*sqrt((k.*k.*nl*nl)-(Be.*Bc)); 
w=rl*sqrt((Be.*Bc)-(k.*k.*n2 *n2));
M=0;
fl =BESSELJ(M,u)./(u.*BESSELJ(M+l,u)); 
f2 ^BESSELK(M,w)./(w.*BESSELK(M+l,w));

f=f 1 - f 2 ; 
index3=0;
for a7=l:length(Be)-1

if ((f(a7)*f(a7+l)<0)&((f(a7)A2)+(f(a7+l)"2)<0.01)) 
index3=index3+l;
Bcore(index3)=(Be(a7)+Bc(a7+l))./2;

Bangl(index3) = (asin(Bcore(index3)./(k.*nl)))*360/(2 *pi) ;

Dang(index3) = (asin(((nl*sin(Bangl(index3)*2 *pi/3 60))- 
(L/(period)))/nl))*360/(2*pi);

Critang(index3)=asin(n2/nl)*3 60/(2*pi); 
fvall(index3)=(f(a7)+f(a7+l))./2;

end
end
fprintf('\n\n\nThe following info is for wavelength 

%.2fnm’,(L*10A(9)))
fprintf(Fid,'\n\n\nThe following info is for 

wavelength %.2fnm', (L*10A(9))) ;
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sprintf('\nno_of_core_modes = %d' ,index3) 
fprintf(Fid,'\nno_of_core_modes = %d’,index3); 
for a8 = 1:length(Bcore(index3)) 

nefflc=Bcore(index3)./k;
fprintf('\nBcore value %d: %f, Bcore angle %d: %f, 

Diff Angle %d: %f, Crit Angle: %fF value %d:
%0.4f\n',a8,Bcore(a8),a8,Bangl(a8), a8,Dang(a8) ,Critang(a8 
) , a8,fvall(a8));

fprintf(Fid,'\nBcore value %d: %f, Bcore angle %d: 
%f, Diff Angle %d: %f, Crit Angle: %fF value %d:
%0.4f\n1,a8,Bcore(a8),a8,Bangl(a8),a8,Dang(a8),Critang(a8 
),a8,fvall(a8)); %disp(sent);

end

% d e t e r m i n a t i o n  o f  c l a d d i n g  modes  a t  n t h  w a v e l e n g t h  

m=l ;
s l = ( j  * m . * n e f f 2)  . / Zo ;
s 2 = ( j  * m . * n e f f 2) . * Z o ;
u 2 1 = ( l . / ( u 2 . * u 2 ) ) - ( 1 . / ( u l . * u l ) ) ;
u 3 2 = ( 1 . / ( w2. *w2) ) + ( ! . / ( u 2 . * u 2 ) ) ;

J=((BESSELJ(m-1,(ul.*rl)))- 
(BESSELJ(m+l,(ul.*rl))))./(2.*ul.*BESSELJ(m,(ul.*rl)));

K=((-BESSELK(m-l,(w2.*r2)))- 
(BESSELK(m+l,(w2.*r2))))./(2.*w2.*BESSELK(m,(w2.*r2)));

p=(BESSELJ(m,(u2.*r2)).*BESSELY(m,(u2.*rl)))- 
(BESSELJ(m,(u2.*rl)).*BESSELY(m,(u2.*r2)));

q=(BESSELJ(m,(u2.*r2)).*((BESSELY(m-l,(u2.*rl))- 
(BESSELY(m+l,(u2.*rl))))/2))-(((BESSELJ(m-l,(u2.*rl))- 
BESSELJ(m+l,(u2.*rl)))./2).*BESSELY(m,(u2.*r2)));

r =(((BESSELJ(m-l,(u2.*r2)))- 
(BESSELJ(m+l,(u2.*r2)) ) ) / 2 ) . *BESSELY(m,(u2.*rl))- 
(BESSELJ(m, (u2.*rl) ) .* ( (BESSELY(m-l, (u2.*r2))- 
(BESSELY(m+l,(u2.*r2))))/2));

S— ((((BESSELJ(m-l,(u2.*r2)))- 
(BESSELJ(m+l,(u2.*r2))))/2).*((BESSELY(m-l,(u2.*rl))- 
(BESSELY(m+l,(u2.*rl))))/2))-(((BESSELJ(m-l,(u2.*rl))- 
(BESSELJ(m+l,(u2.*rl))))/2).*((BESSELY(m-l,(u2.*r2))- 
(BESSELY(m+l,(u2.*r2))))/2));

topl—(u2.*((J.*K)+((si.*s2.*u21.*u32)./(n2*n2*rl*r2))).*p 
)-(K.*q)+(J.*r)-(s./u2);

botl=((-u2.*(((u32.*J) ./(n2*n2 *r2))- 
((u21.*K) ./(nl*nl*rl))) .*p) + ((u32.*q) ./(nl*nl*r2)) + ((u21. 
*r)./(nl*nl*rl)));
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top2=((u2.*((u32.*J./r2)- 
( (n3 *n3 *u21. *K) ./(n2 *n2 *rl) ) ) .*p)-(u32.*q./r2)- 
(u21.*r./rl));

bot2 =(u2.*(((n3 *n3.*J.*K) ./(n2*n2)) + ((si.*s2.*u21.*u32) ./ 
(nl*nl*rl*r2))).*p)-((n3*n3.*K.*q)./(nl*nl))+(J .*r)- 
((n2 *n2.*s) ./(nl*nl.*u2)) ;

Go=topl./botl;
Go2=(mA(2) ) .*(neff2.//s(2) ) . * (top2 . /bot2) ;
G—Go+Go2 j 
index4=0;

for a9=l:length(B)-1

if
((G(a9)*G(a9+l)<0)&((abs(G(a9)))<5)&((abs(G(a9+1)))<5)) 

index4=index4+l;
Bval(index4)=(B (a9)+B(a9+l))/2;

Bang(index4) = (asin((Bval(index4))/(k*n2)))*3 60/(2 *pi); 
Gval(index4)=(G(a9)+G(a9+l))/2;

end
end
fprintf(1\nno_of_cladding_modes = %d1,index4) 
fprintf(Fid,1\nno_of_cladding_modes = %d’,index4);

for al0=l:length(Bval)

fprintf(’\nB value %d: %f, B angle %d: %f, G value 
%d: %0.4f',alO,Bval(alO),alO,Bang(alO),alO,Gval(alO));

fprintf(Fid,’\nB value %d: %f, B angle %d: %f, G 
value %d:
%0.4f',alO,Bval(alO),alO,Bang(alO),alO,Gval(alO));

%disp(sent);
end

%find if this wavelength will couple into any of the 
cladding modes available

%for this wavelength (ie. if L(calc)=L(entered))

for all=l:length(Bval)
Ll(all)=((Bcore-(Bval(all)))).*Pg./k; 
x(all)=round(Ll(all) .*10A(9)) ; 
y(all)=round(L.*10^(9));
X(all)=x(all)-y(all);
fprintf(’\nX value %d: %.2fnm,',all,X(all));%PRINT

TO SCREEN & FILE 
fprintf(Fid,'\nX value %d: %.2fnm/',all,X(all));
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end

al2=0; 
index5=0;

for al3=l:length(X)

if ((X(al3)>=-l)&(X(al3)<=l)) %IF WAVELENGTHS MATCH
ENTERED L WILL COUPLE TO THIS MODE 

index5=index5+l; 
index7=index7+l;
fprintf('\nwavelength: %.2fnm/ Coupling mode :

%d1,L*10A(9),al3);
fprintf (Fid,’\nwavelength: %.2fnm, Coupling 

mode : %d’,L*10A(9),al3);
Lcup(index5)=L;
Bcup(index5)=Bval(al3); 
mode(index5)=al3;
Bcorecup(index5)=Bcore; 
store_Lcup(index7)=Lcup(index5); 
store_Bcup(index7)=Bcup(index5); 
store_mode(index7)=mode(index5); 
store_Bcorecup(index7)=Bcorecup(index5);

store(index7, : ) =[store_Lcup(index7),store_Bcup(index7),

store_Bcorecup(index7)];

index6=index6+l;

else
al2—al2+l;

end
end

if al2==al3 %IF WAVELENGTHS NOT MATCH ENTERED L
PRINT ’NO COUPLING’ 

fprintf(1\nno mode coupling at wavelength 
%.2fnm’,L*10A(9));

fprintf (Fid,’\nno mode coupling at wavelength 
%.2fnm1,L*10A(9)) ; 

else
fprintf(’\n\n\n 

L%d=%f,Lcup%d=%f,Bcup%d=%f,mode%d=%d,Bcorecup%d=%f 
\n’,(index7),L*10A(9),(index7),Lcup(index5)*10A(9),(index 
7),Bcup(index5)*10A(6),(index7),mode(index5),(index7),Bco 
recup(index5)*10A(6)) ;
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fprintf (Fid,'\n\n\n 
L%d=%f,Lcup%d=%f,Bcup%d=%f,mode%d=%d,Bcorecup%d=%f 
\n', (index7),L*10A (9), (index7),Lcup(index5)*10 A (9), (index 
7),Bcup(index5)*10A (6),(index7),mode(index5),(index7),Bco 
recup(index5)*10A ( 6)) ; 

end

index6=index6+l; 

increase=l*10A(-9);
L=L+increase; %END OF WAVELENGTH LOOP

end

store
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Appendix 6

Program Code to Determine 
Coupling Wavelength Shifts Using 
Actual Fibre Parameters for 
Ambient Indices Less than 
Cladding

%Erdogan3Layer 
clear all, clc; 
fid =
fopen(1d:\PaulDowker\Matlab\PaulD\results.doc','w ');

%OPEN FILE
fprintf(fid,'\nErdogan3Layer); 
fprintf('\n Erdogan3Layer \n') 
fprintf('\n %s \n',date) 
fprintf(fid,1\n %s\n',date);
fprintf('\nProg to find coupling from HE11 (LP01) core to 
HEml Cladding modes (where m = 1)’);
fprintf(fid,’\nProg to find coupling from HEll (LP01) 
core to HEml Cladding modes (where m = 1)');
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L = 9  9 5 * 1 0 A- 9 ;

rl=4.1*10A(-6); 
r2 = 62 .5*10"(-6) ; 
nl=l.453 5; 
n2=l.4483; 
n3 = l ;
Zo=377;
period=280*10A(-6); 

index3=0;

while L<1700*10A-9;
%determination of core modes at nth wavelength 
k=2*pi./L;
Bc=k*nl:-((k.*nl)-(k.*n2))/10A(6):k*n2; 
neffl=Bc./k;
u=rl*sqrt((k.*k.*nl*nl)-(Be.*Bc)); 
w=rl*sqrt((Be.*Bc)-(k.*k.*n2 *n2));
M=0;
f1 =BESSELJ(M,u)./(u.*BESSELJ(M+l,u)); 
f2 =BESSELK(M,w)./(w.*BESSELK(M+l,w));

f=f 1 - f 2 ; 
indexl=0;
for al=l:length(Be)-1

if ((f(al)*f(al+l)<0)&((f(al)A2)+(f(al+1)A2)<0.01)) 
indexl=indexl+l;
Bcore(indexl)=(Be(al)+Bc(al+1))./2;

Bangl(indexl)=(asin(Bcore(indexl)./(k.*nl)))*360/(2*pi); 
fvall(indexl)=(f(al)+f(al+1)). 12]

end
end
fprintf('\n\n\nThe following info is for wavelength 

%.2fnml, (L*10A (9)))
fprintf(fid,'\n\n\nThe following info is for 

wavelength %.2fnm’,(L*10A(9)));

fprintf(!\nno_of_core_modes = %d!,indexl) 
fprintf(fid,'\nno_of_core_modes = %d',indexl);

for a2 = 1:length(Bcore(indexl)) 
nefflc=Bcore(indexl)./k;
fprintf('\nBcore value %d: %f, Bcore angle %d: %f,

F value %d: %0.4f\n',a2,Bcore(a2),a2,
Bangl(a2),a2,fval1(a2));

fprintf(fid,'\nBcore value %d: %f, Bcore angle %d: 
%f, F value %d: %0.4f\n',a2,Bcore(a2),a2,
Bangl(a2),a2,fvall(a2));

%disp(sent);
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end

%determination of cladding modes at nth wavelength 
Bcl=k*n2:-((k.*n2)-(k.*n3))/10A(6):0.998*k.*n2; 
neff2=Bcl./k;
ul=sqrt((k.*k.*nl*nl)-(Bel.*Bcl)); 
u2=sqrt((k.*k.*n2 *n2)-(Bel.*Bcl) ); 
wl=sqrt((Bel.*Bcl)-(k.*k.*n2*n2)); 
w2=sqrt((Bel.*Bcl)-(k.*k.*n3 *n3));

m=l ;
sl=(j *m.*neff2) ./ Z o ;
s2=( j *m.*neff2).*Zo;
u21=(1./(u2.*u2))-(1./(ul.* u l ) );
u32=(1./(w2.*w2))+(1./(u2.*u2));

J=((BESSELJ(m-1,(ul.*rl)))- 
(BESSELJ(m+l,(ul.*rl)) ) ) . / ( 2 . *ul.*BESSELJ(m,(ul.*rl)));

K=((-BESSELK(m-1,(w2.*r2) ) ) - 
(BESSELK(m+l,(w2.*r2))))./(2.*w2.*BESSELK(m,(w2.*r2)));

p=(BESSELJ(m,(u2.*r2)).*BESSELY(m,(u2.*rl) ) ) -  
(BESSELJ(m,(u2.*rl)).*BESSELY(m,(u2.*r2)));

q=(BESSELJ(m,(u2.*r2)).*((BESSELY(m-1,(u2.*rl))- 
(BESSELY(m+l,(u2.*rl))))/2))-(((BESSELJ(m-1,(u2.*rl))- 
BESSELJ(m+l,(u2.*rl) ) ) . / 2 ) . *BESSELY(m,(u2.*r2)));

r=(((BESSELJ(m-1,(u2.*r2)))- 
(BESSELJ(m+l,(u2.*r2))))/2).*BESSELY(m,(u2.*rl))- 
(BESSELJ(m,(u2.*rl)).*((BESSELY(m-1,(u2.*r2))- 
(BESSELY(m+l,(u2.*r2))))/2));

S—((((BESSELJ(m-1,(u2.*r2)))- 
(BESSELJ(m+l,(u2.*r2))))/2).*((BESSELY(m-1,(u2.*rl))- 
(BESSELY(m+l,(u2.*rl))))/2))-(((BESSELJ(m-1,(u2.*rl))- 
(BESSELJ(m+l,(u2.*rl))))/2).*((BESSELY(m-1,(u2.*r2))- 
(BESSELY(m+l,(u2.*r2))))/2));

topl=(u2.*((J.*K)+((si.*s2.*u21.*u32)./(n2*n2*rl*r2))).*p 
)-(K.*q)+(J.*r)-(s./u2);

botl=((-u2.*(((u32.*J) ./(n2*n2 *r2))- 
((u21.*K)./(nl*nl*rl))).*p)+((u32.*q)./(nl*nl*r2))+((u21. 
*r)./(nl*nl*rl)));

top2=((u2.*((u32.*J ./r2)- 
((n3 *n3 *u21.*K) ./(n2*n2*rl))) .*p)-(u32.*q./r2)- 
(u21.*r./rl));

bot2=(u2.*(((n3*n3.*J.*K)./(n2*n2))+((si.*s2.*u21.*u32)./
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(nl*nl*rl*r2))).*p)-((n3*n3.*K.*q)./(nl*nl))+(J.*r)- 
((n2 *n2.*s) ./(nl*nl.*u2)) ;

Go=topl./botl;
Go2=(mA(2)) .*(neff2.A(2)) . * ( top2 . /bot2 ) ;
G=Go+Go2;
%plot(B, G,'r '),grid; 
index2=0;
for a3=l:length(Bel)-1 

i f
((G(a3)*G(a3+l)<0)&((abs(G(a3)))<5)&((abs(G(a3+l)))<5)) 

index2=index2+l;
BcladHE(index2)=(Bel(a3)+Bcl(a3+l))/2;

BcladangHE(index2) = (asin((BcladHE(index2))/(k*n2)))*3 60/( 
2 *pi);

GcladHE(index2)=(G(a3)+G(a3+l))/2;
P(index2)=L*k./(Bcore-BcladHE(index2));

end
end

%PRINT INFO TO SCREEN & FILE
fprintf('\nno_of_cladding_modes = %d',index2) 
fprintf(fid,'\nno_of_cladding_modes = %d‘,index2); 
for a4=l:length(BcladHE)

fprintf(*\nB value %d: %f, B angle %d: %f, G value 
%d: %0.4 f a4,BcladHE(a4),a4,
BcladangHE(a4),a4,GcladHE(a4));

fprintf(fid,1\nB value %d: %f, B angle %d: %f, G 
value %d: %0.4f',a4,BcladHE(a4),a4,
BcladangHE(a4),a4,GcladHE(a4)); 

end

%find if this wavelength will couple into any of the 
cladding modes available

%for this wavelength (ie. if L(calc)=L(entered))

for a5=l:length(BcladHE)
Ll(a5)=((Bcore-(BcladHE(a5)))).*period./k; 
x (a5)=round(Ll(a5) .*10A (9)); 
y (a5)=round(L.*10A(9));
X(a5)=x(a5)-y(a5);
fprintf('\nX value %d: %.2fnm,',a5,X(a5));%PRINT TO

SCREEN & FILE 
fprintf(fid,'\nX value %d: %.2fnm,',a5,X(a5));

end
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a6 = 0 ;

for a7=l:length(X)
if ((X(a7)>=-l)&(X(a7)<=l)) %IF WAVELENGTHS MATCH

ENTERED L WILL COUPLE TO THIS MODE 
index3=index3+l;
fprintf('\nwavelength: %.2fnm, Coupling mode 

:HEl,%d',L*10 A(9), a7);
fprintf (fid,'Xnwavelength: %.2fnm, Coupling 

mode :HEl, %d' ,L*10 A(9) ,a7) ;
Lcup(a7)=L;
Bcladcup(a7)=BcladHE( a l ); 
mode( a l )= a l ;
Bcorecup( a l )=Bcore;
fprintf('\n\n\n coupling mode=HEl,%d,

LcupHEl,%d=%f, BcladcupHEl,%d=%f, BcorecupHEl,%d=%f
\n',mode( a l ) , a l , Lcup( a l ) *10 A ( 9 ) , a l , Bcladcup(a7) , a l , Bcorec
up(a7)) ;

fprintf (fid,'\n\n\n coupling mode^HEl,%d, 
LcupHEl,%d=%f, BcladcupHEl,%d=%f, BcorecupHEl,%d=%f 
\n',mode(a7),a7,Lcup(a7)*10A(9),a7,Bcladcup(a7),a7,Bcorec 
up(a7)) ;

store_mode(index3)=mode( a l ) ; 
store_Lcup(index3)=Lcup( a l ) ; 
store_Bcladcup(index3)^Bcladcup(a7); 
store_Bcorecup(index3)=Bcorecup(a7);

store(index3,:)=[store_mode(index3),store_Lcup(index3),st 
ore_Bcladcup(index3),store_Bcorecup(index3)];

else
a 6 =a6 +1;

end
end

if a6==a7 %IF WAVELENGTHS NOT MATCH ENTERED L PRINT
'NO COUPLING' 

fprintf(*\nno mode coupling at wavelength 
%.2fnm’,L*10A(9));

fprintf (fid,1\nno mode coupling at wavelength 
%.2fnm’,L*10A(9)); 

end

L=L+1*10A(-9); %END OF WAVELENGTH LOOP
end
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for a8 = l:size(store)
fprintf('\n\ncoupling mode=HEl, %d, LcupHEl,%d - %4fnm, 

BcladcupHEl,%d = %f, BcorecupHEl,%d =
%f' , store (a8 , 1) , store (a8,1) , store (a8,2)*10/'"(9), store (a8,1 
),store(a8,3),store(a8,1),store(a8,4));

fprintf(fid,’\n\ncoupling mode=HEl,%d, Lcup %d =
%4fnm/ Bcladcup %d = %f, Bcorecup %d =
%f',store(a8,1),store(a8,1),store(a8,2)*10A(9),store(a8,1
) , store(a8, 3),store(a8,1),store(a8,4));
end

fclose(fid); 

return
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Appendix 7

Program Code to Determine 
Coupling Wavelength Shifts Using 
Actual Fibre Parameters For 
Ambient Indices Greater Than 
Cladding

%Yarivbign3multithesis 
clear all,clc; 
format long 
Fid =
fopen('d:\PaulDowker\Matlab\PaulD\results.txt1,'w ');

%OPEN FILE
fprintf('\nYarivbign3multithesis'); 
fprintf(Fid,'\nYarivbign3multithesis1); 
fprintf(’\n %s \n’,date) 
fprintf(Fid,1\n %s\n',date);
fprintf('\nProg to find coupling from HEll (LP01) core to 
HEml Cladding modes (where m = 1)');
fprintf(Fid,'\nProg to find coupling from HEll (LP01) 
core to HEml Cladding modes (where m = 1)');
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%start wavelength loop

index4=0;

L=990 *10A-9; %WAVELENGTH

while L<1600*10A-9;

k = 2*pi./L; 
rl=4.1*10A(-6); 
r2=62.5*10A(-6); 
nl=l.4535; 
n2=l.4483; 
n3=l
period=2 80*10A(-6);

%WAVE NUMBER 
%CORE RADIUS 

%CLADDING RADIUS 
%CORE RI 
%CLADDING RI 
%AMBIENT RI

%determination of core modes

Bc=k*nl:-((k.*nl)-(k.*n2))/10A (4):k*n2;
%CORE PROPAGATION CONSTANT RANGE 

neffl = B c . / k ;  %CORE EFFECTIVE RI
ul=rl*sqrt((k.*k.*nl*nl)-(Be.*Bc)); %CORE u VALUE
wl=rl*sqrt((Be.*Bc)-(k.*k.*n2*n2)) ; %CORE w VALUE

M=0 ;
fl =BESSELJ(M,ul)./(ul.*BESSELJ(M+l,ul)); %LHS OF EQU 
f2 =BESSELK(M,wl)./(wl.*BESSELK(M+l,wl)); %RHS OF EQU

f=fl-f2; %GIVES BN VALUES WHICH SATISFY BOTH SIDES

indexl=0;
for al=l:length(Be)-1 
%FIND ZERO CROSSINGS

if ((f(al)*f(al+l)<0)&((f(al)A2)+(f(al+1)A2)<0.01)) 
indexl=indexl+l;
Bcore(indexl)=(Be(al)+Bc(al+1))./2; %FIND ZERO

CROSSING B VALUES 
Bangl(indexl)=(asin(Bcore(indexl)./(k.*nl)))*360/(2*pi);

%FIND MODE ANGLES 
fvall(indexl)=(f(al)+f(al+1))./2; %FIND

ACCURACCY OF ZERO CROSSING PT

e n d
e n d

%PRINT INFO TO SCREEN & FILE
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fprintf('\nThe following info is for wavelength of 
%.2 fnm' ,L*10A(9))

fprintf('\nno_of_core_modes = %d',indexl) 
fprintf(Fid,’\nno_of_core_modes = %d',indexl);

for a2 = 1:length(Bcore) 
nefflc=Bcore./k;
fprintf('\nBcore value %d: %f, Bcore angle %d: %f, 

F value %d:
%0.4f\n’,a2,Bcore(a2),a2,Bangl(a2),a2,fvall(a2));

fprintf(Fid,’\nBcore value %d: %f, Bcore angle %d: 
%f, F value %d:
%0.4f\n1,a2,Bcore(a2),a2,Bangl(a2),a2,fvall(a2));

%disp(sentl);
end

%determination of cladding modes

Bclmax=n2 *k;
Bclmin=0.997.*k.*n2;
Bclstep=(Bclmax-Bclmin)*10A(-4) ;

Bcl=Bclmax:-Bclstep:Bclmin; %CLADDING PROPAGATION
CONSTANT RANGE 

neff2=Bcl./k; %CLADDING EFFECTIVE RI
u2=r2.*sqrt( (k.*k.*n2 *n2)-(Bel.*Bcl) ) ; %CLADDING u

VALUE
w2=r2.*sqrt( (Bel.*Bcl)-(k.*k.*n3 *n3)); %CLADDING w

VALUE

m=l ;

JHE=(BESSELJ(m-1,u2))./(u2.*BESSELJ(m,u2));
K1HE=-((((n2*n2)+(n3*n3))/(2*n2*n2)) . * ((-BESSELK(m- 

1,w2)-((m./w2).*BESSELK(m,w2)))./(w2.*BESSELK(m,w2))));

K2HE=((((n2*n2)-(n3*n3))/(2*n2*n2))*(((n2*n2)- 
(n3*n3))/(2*n2*n2))).*(((-BESSELK(m-1,w2)- 
((m./w2).*BESSELK(m,w2)))./(w2.*BESSELK(m,w2))).* ((-
BESSELK(m-1,w2)-
((m./w2).*BESSELK(m,w2)))./(w2.*BESSELK(m,w2))));

K3HE=((m*m.*Bcl.*Bcl)./(n2*n2*k*k)).*(((1./(w2.*w2))+(1./ 
(u2.*u2))).*((1./(w2.*w2))+(1./(u2.*u2))));

KHE=KlHE+(m./(u2.*u2))-((K2HE+K3HE).A(0.5)); 
GHE=JHE-KHE;

%Bcl values are obtained where GHE crosses Bel axis, 
(i.e.GHE=0)
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index2=0;
for a3=l:length(Bel)-1 

if
((real(GHE(a3))*real(GHE(a3 +1))<0)&(((real(GHE(a3)))A2) + ( 
(real(GHE(a3+l)))A2)<0.001))%FIND ZERO CROSSINGS FOR

CLADDING

i ndex2=i ndex2 +1;
BcladHE(index2)=(Bel(a3)+Bcl(a3+l))/2; %FIND

ZERO CROSSING Bclad VALUES

BcladangHE(index2) = (asin(BcladHE(index2)/(k*n2)))*3 60/(2 * 
pi); %FIND MODE ANGLES

GcladHE(index2)=(GHE(a3)+GHE(a3+l))/2; %FIND
ACCURACCY OF ZERO CROSSING

PT
P(index2)=L*k./(Bcore-BcladHE(index2)); %FIND

MATCHING PERIOD FOR EACH MODE

end
end

%PRINT INFO TO SCREEN & FILE
fprintf('\nno_of_cladding_modes = %d',index2) 
fprintf(Fid,'\nno_of_cladding_modes = %d',index2);

for a4=l:length(BcladHE)
fprintf('\nB value HEl%d: %f, Bel angle HEl%d: %f,

G value HEl%d: %0.4f, Period HEl%d:
%fum',a4,BcladHE(a4),a4,BcladangHE(a4),a4,GcladHE(a4),a4, 
(P(a4)*10A ( 6) )) ;

fprintf(Fid, ’ \nB value HEl%d: %f, Bel angle HEl%d: 
%G, F value HEl%d: %0.4f, Period HEl%d:
%fum' , a4,BcladHE(a4),a4,BcladangHE(a4),a4,GcladHE(a4) ,a4 , 
(P(a4)*10A(6))); 

end

for a5=l:length(BcladHE)

%find which Bclad modes match conditions for coupling 
from core mode

Ll(a5)=((Bcore- 
(BcladHE (a5 ) ) ) ) . *period./k;%CALCULATE VALUE OF COUPLING

EQU FOR EACH CLAD MODE 
x(a5)=round(Ll(a5).*10A(10));%ROUND THIS VALUE TO

Idp
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y(a5)=round(L.*10A(10)); %ROUND ACTUAL
WAVELEENGTH VALUE TO 1 dp 

X(a5)=(x(a5)-y(a5))/10; %FIND DIFFERENCE BETWEEN 
CALCULATED & ACTUAL WAVELENGTH VALUE 

fprintf('\nX value %d = %.2fnm,',a5,X(a5));%PRINT
TO SCREEN & F I L E  

fprintf(Fid,1\nX value %d: %.2fnm,',a5,X(a5));
end

%COUNTS NO OF COUPLING CLADDING MODES

a6 = 0 ; 
index3=0;

for a7=l:length(X)

if ((X(a7)>=-l)&(X(a7)<=l)) %IF WAVELENGTHS MATCH 
ENTERED L COUPLING TO THIS MODE WILL OCCUR 

index3 =index3 + l; 
index4=index4+l;
fprintf('\nwavelength: %.2fnm, Coupling mode 

:HEl,%d1 ,L*10A(9) ,a7) ;
fprintf (Fid,'\nwavelength: %.2fnm, Coupling 

mode :HEl,%d',L*10A(9),a7);
Lcup (index3 ) =L*10A9;
Bcladcup(index3)=BcladHE(a7); 
mode(index3)=a7;
Bcorecup(index3)=Bcore; 
store_Lcup(index4)=Lcup(index3); 
store_Bcladcup(index4)=Bcladcup(index3); 
store_mode(index4)=mode(index3); 
store_Bcorecup(index4)=Bcorecup(index3);

else
a6—a 6 +1j

end

end

if a6==a7
fprintf(’\nNo Coupling at wavelenght %d',L); 
fprintf(Fid,'\nNo Coupling at this wavelenght 

% d  ' , L ) ; 
else

fprintf('\n wavelength %dnm, cladding mode HE l%d 
',Lcup(index3)*10A9,mode(index3));

fprintf(Fid,'\n wavelength %d, cladding mode HE l%d 
',Lcup(index3)*10A9,mode(index3));
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store(index4,:)=[store_Lcup(index4),store_Bcladcup(index4 
),store_Bcorecup(index4)];

end

L=L+1*10A (-9);

end
store
fclose(Fid);
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Appendix 8

Transmission Profiles of LPGs in 
Air at Constant Room 
Temperature
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Figure A8.1: Transmission profile of LPG S3 in air at room temperature
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Figure A8.2: Transmission profile of LPG S4 in air at room temperature
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Figure A8.4: Transmission profile of LPG S6 in air at room temperature
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Figure A8.5: Transmission profile of LPG S7 in air at room temperature
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Figure A8.6: Transmission profile of LPG S8 in air at room temperature
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Appendix 9

Ambient Refractive Index Profiles 
of All LPGs
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Figure A9.1: Ambient refractive index profile of LPG S3

Figure A9.2: Ambient refractive index profile of LPG S3 at selected values to
allow clearer observation of shifts
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Figure A9.18: Ambient refractive index profile of LPG S7 at selected values to
allow clearer observation of shifts

35000

30000

25000

20000

15000

10000

5000

 n3=1
n3=1.333

 n3=1.4
n3=1.408 
n3=1.420

 n3=1.432
 n3=1.440
 n3=1.444
 n3=1.448

n3=1.452 
n3=1.456

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
Wavelength / nm

297



1650

1600 -5E-

1550
O)
|  1500
CD>
CD
^  1450
CDC
3 . 1400do
°  1350

1300

Xcup(1335)
?icup(1555)
A.cup(1600)

J I I L_

1.1 1.2 1.3
A m b i e n t  R e f r a c t i v e  I n d e x

1.4 1.5

Figure A9.19: Change in coupling wavelength with ambient refractive index
for LPG S7

£  -10
C D

20
CD

Cl

°  -30

35
A m b i e n t  R l

Figure A9.20: Relative change in coupling wavelength with ambient refractive
index for LPG S7

2 9 8



900000

800000

^  700000
Q _

S ' 600000
CO

I  500000 

.1 400000in
<n

|  300000
c

200000

100000

— n 3 = t-  
n3=1.333

 n3=1.4
n3= 1.408 
n3=1.420

 n3= 1.432
 n3= 1.440
 n3=1.444
 n3= 1.448

n3= 1.452 
n3= 1.456

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
W avelength  /  nm
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Figure A9.46: Ambient refractive index profile of LPG A416 at selected values to
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Figure A10.17: Ambient temperature profile of LPG S7
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Figure A t0.18: Ambient temperature profile of LPG S7 at selected values to
allow clearer observation of shifts
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Figure A10.21: Ambient temperature profile of LPG S8
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Figure A10.22: Ambient temperature profile of LPG S8 at selected values to
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Figure A 10.26: Ambient temperature profile of LPG Cl at selected values to
allow clearer observation of shifts
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allow clearer observation of shifts

328



1550

E
-  1500
-C-4—*D)CQ)
CD
> 1450

D)
_C

§■ 1400
o
O

1350
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Temp / C

M—Mr

4-

Acup(1360)
Acup(1515)

A =  0.0898T +1513

A, = 0.0557T + 1359.5

x—x-

Figure A10.31: Change in coupling wavelength with ambient temperature
for LPG A400

dA = 0.0898T - 2.491
CD'

> 3 --

dA = 0.0557T -1.4839Q 1 -

Temp / C

Figure A10.32: Relative change in coupling wavelength with ambient
temperature for LPG A400

329



— T =27C
T = 81C

— T =64 C
T =54 C
T = 41.5 C

— T = 34.5 C
— T = 29.5 C
—  T = 27 C

140000

120000

100000

V)
S  80000
c
c
■i 60000
CO

40000

20000

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
W avelength / nm
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Figure A10.34: Ambient temperature profile of LPG A403 at selected values to
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Figure A 10.38: Ambient temperature profile of LPG A407 at selected values to
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Figure A t0.42: Ambient temperature profile of LPG A410 at selected values to
allow clearer observation of shifts
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Figure A10.46: Ambient temperature profile of LPG A416 at selected values to
allow clearer observation of shifts
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Appendix 11

Number of Modes in Fibre

A ll . l  For Light Rays Incident on Refractive 
Index Boundary at Angles Less than 
45°

f t  cladding

Wave Front

__________ __ _ __

f t r f a d d in g

Figure A 11.1: Conditions for interference in fibre for incident angle, 0, less than 
45°
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For constructive interference optical path length (a+b+2</>) between 2 wave fronts as 

shown in Figure A11.1 must be a whole number of wavelengths, therefore:

= a + b + 2(f) (A ll . l )

. ZAIR t /cos 2#
where /L = —— , a =   and b ------------

1 nx cos 6 cos 6

r\
so (A11.1) becomes: AIR = —-— (l + cos 26) + 2(f)

nx cos 6

as cos26 = 2 cos2 0 - 1

m^AIR ~~ n\ cos 6
(l + 2cos2< 9-l)+ 20

thus: m -  ^  (2/ cos 6> + 20) (A11.2)0
AIR

A11.2 For Light Rays Incident on Refractive Index Boundary 
at Angles Greater than 45°

'cladding

''Core

Wave Front

mmm m

Figure A11.2: Conditions for interference in fibre for incident angle, 0, greater 
than 45°
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For constructive interference optical path difference (b-a+2<j)) between 2 wave fronts 

as shown in Figure A11.2 must be a whole number of wavelengths, therefore:

m / = b - a  + 2(f) (A11.3)

where Xn = —=— , a = —-— cos[2(90 -  #)] and b = —-—
1 nx cos 9 cos 9

*

so (A11.3) becomes: m AIR = — - cos{2(90 -#)}] + 2(f)

as cos20 = cos2 9 -  sin2 9

= — —  [l -  cos2 (90 - e)+ sin2 (0 -  90)]+20 
nx — 71

asl - c o s 2 9 = sin2 9

n l cos 9

9

m ^ A IR t

n i cos 9

m ^ A lR t ,
nx cos 9

sin(9O-#) = cos0

thus: m = - ^ —(2t cos 6 +2(f) (A11.4)
A'AIR
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