Effect of pomegranate extracts on apoptosis and cell cycle in haematological malignancies.

DAHLAWI, Haytham.

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/19527/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Effect of Pomegranate Extracts on Apoptosis and Cell Cycle in Haematological Malignancies

Haytham Dahlawi

A Thesis submitted in partial fulfilment of the requirements of Sheffield Hallam University for the degree of Doctor of Philosophy

September 2013
Dedications

This thesis is lovingly dedicated to my wife, Rana, who supported me each step of the way of my research.

To my parents

For their love, endless support and prayers, here's to the first Dr. in the family.

To my brother,

Ismail

Whose words of encouragement and push for insistence ring in my ears especially this past year.

To my lovely daughters,

Sarah and Lara

For being my inspiration.
Acknowledgement

Foremost, I would like to express my honest gratitude to my supervisors Dr. Christine Le Maitre and Dr. Nikki Jordan-Mahy for the continuous support throughout my PhD study and research, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis.

My sincere thanks also go to all my colleagues and friends in the BMRC.
Abstract

Leukaemia is a complex form of blood malignancy characterized by the uncontrolled proliferation of haematopoietic cells and progressive accumulation of these cells within the bone marrow (BM) and secondary lymphoid tissues. The exact cause of leukaemia remains unknown. Leukaemia is a major problem worldwide affecting many people each year. However, current treatment options still have several limitations not least, the cytotoxicity of these therapies to normal cells and the fact that certain chemotherapy agents may cause bone marrow toxicity and organ damage.

Several epidemiological studies have shown that high intake of fruit and vegetables are associated with low incidence of a number of human cancers. Researchers suggest that pomegranates contain bioactive chemicals with potential for treatment and prevention of cancer. Pomegranate juice (PJ) have been shown to inhibit cellular proliferation and tumor growth and induce cell death via apoptosis in a number of cancer cell lines. However, to date, few studies have investigated the potential of PJ in the treatment of Leukaemia.

Here, PJ significantly induced apoptosis in 8 leukaemia cell lines and non tumour control cells although the lymphoid and 2 myeloid cell lines were affected to a greater extent than non-tumour control cells and 2 of the myeloid cell lines. Furthermore, PJ induced cell cycle arrest. These results provide evidence that PJ contain bioactive compounds that could be used in the treatment of Leukaemia.

Treatment of four Leukaemia cell lines with five fractions obtained from PJ by solid phase extraction demonstrated that only the acetonitrile fractions decreased adenosine triphosphate (ATP) levels in all Leukaemia cell lines. Acetonitrile fractions also significantly activated caspase-3 and induced nuclear morphology characteristic of apoptosis. S phase arrest was induced by acetonitrile fractions which matched S phase arrest seen previously following whole PJ treatments. The acetonitrile fractions contained higher phenol content than whole PJ whereas only low levels of phenols were seen in any other fraction. Liquid chromatography mass spectrometry (LC–MS)
analysis demonstrated that acetonitrile fractions were enriched in ellagitannins, ellagic acid, and hydroxycinnamic acid derivatives but depleted in anthocyanins.

The potential protective effect of a number of pure compounds that were either identified in the acetonitrile fraction of PJ were present in the other fractions of PJ or have been identified as PJ components in previous studies were studied on ATP levels in four human leukaemia cell lines. Among the 26 naturally occurring pomegranate compounds investigated, only seven compounds: delphinidin; cyanidin; pelargonidin; EGCG; gallic acid; ellagic acid; quercetin; and punicalagin induced 50% decrease in ATP levels in the studied leukaemia cell lines.

To compare the chemoprotective properties of anthocyanins found in PJ and to understand the relationship between anthocyanin chemical structure and chemoprotective activity, the inhibition of cell proliferation and induction of apoptosis in leukaemia cell lines was measured. Anthocyanins activity was found to be dependent on the ortho-hydroxyphenyl structure and the most potent glycosidic form of the anthocyanins with proliferation and apoptosis effects seen in anthocyanins with greatest hydroxyl groups and least glycosidic form, namely delphinidin. Delphinidin induced apoptosis through intrinsic and extrinsic pathways. Suggesting that delphinidin may have potential for use as a chemotherapeutic agent against leukaemia. Furthermore, EGCG, gallic acid, quercetin, and punicalagin induced apoptosis and resulted in cell cycle arrest in the majority of the leukaemia cell lines.

Together this study has shown that PJ is a rich source of bioactive compounds which could hold promise for treatment of leukaemia. The most promising compounds found within PJ were delphinidin, gallic acid, and punicalagin. Further investigation into these agents in the treatment and prevention of leukaemia are essential to develop these potential agents as future treatments.
Dissemination

Published papers

Papers in Preparation:

2. Dahlawi H, Jordan-Mahy N, Clench M, Le Maitre CL. Effect of different compounds found in pomegranate juice extracts on the inhibition of cell proliferation and induction of apoptosis leukaemia cell lines.

Conference Presentations

3. National Cancer Research Institution (NCRI): 5 November (2012): Effect of different compounds found in pomegranate juice extracts on the inhibition of cell proliferation and induction of apoptosis leukaemia cell lines. Liverpool, UK.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM</td>
<td>Micro molar /</td>
</tr>
<tr>
<td>ABC</td>
<td>Avidin-Biotin-peroxidase Complex /</td>
</tr>
<tr>
<td>Abs</td>
<td>Antibodies /</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate /</td>
</tr>
<tr>
<td>AIF</td>
<td>Apoptosis inducing factor /</td>
</tr>
<tr>
<td>AIP</td>
<td>Apoptosis inducing protein /</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute lymphoid leukaemia</td>
</tr>
<tr>
<td>AML</td>
<td>Acute myeloid leukaemia</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>Apaf-1</td>
<td>Apoptosis protease activation factor-1</td>
</tr>
<tr>
<td>Apo2L</td>
<td>Apoptosis ligand 2L</td>
</tr>
<tr>
<td>Apo3L</td>
<td>Apoptosis ligand 3L</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>Bad</td>
<td>Bcl-2-antagonist of cell death</td>
</tr>
<tr>
<td>Bak</td>
<td>Bcl-2-antagonist/killer</td>
</tr>
<tr>
<td>Bax</td>
<td>Bcl-2-antagonist X protein</td>
</tr>
<tr>
<td>BB</td>
<td>Binding buffer</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B-cell leukaemia/lymphoma 2</td>
</tr>
<tr>
<td>Bcl-xl</td>
<td>B-cell lymphoma extra large</td>
</tr>
<tr>
<td>BH-3</td>
<td>Bcl-2 homology domain 3</td>
</tr>
<tr>
<td>Bid</td>
<td>BH3 interacting domain death agonist</td>
</tr>
<tr>
<td>BM</td>
<td>Bone marrow</td>
</tr>
<tr>
<td>CAD</td>
<td>Caspase activated DNase</td>
</tr>
<tr>
<td>Caspase</td>
<td>Cysteine-aspartic-acid-protease</td>
</tr>
<tr>
<td>CDKIs</td>
<td>Cyclin-dependent kinases inhibitors</td>
</tr>
<tr>
<td>CDKs</td>
<td>Cyclin-dependent kinases</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>c-FLIP</td>
<td>Caspase-FLICE like inhibitor protein</td>
</tr>
<tr>
<td>CIAP2</td>
<td>Baculoviral IAP repeat-containing protein 3</td>
</tr>
<tr>
<td>Cip/Kip</td>
<td>Kinase inhibitor protein</td>
</tr>
<tr>
<td>CLL</td>
<td>Chronic lymphoid leukaemia</td>
</tr>
<tr>
<td>CML</td>
<td>Chronic myeloid leukaemia</td>
</tr>
<tr>
<td>Ct</td>
<td>Cycle threshold</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3'-Diaminobenzidine</td>
</tr>
<tr>
<td>DAF</td>
<td>DNA fragmentation factor</td>
</tr>
<tr>
<td>DAPI</td>
<td>4, 6-Diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DISC</td>
<td>Death inducing signaling complex</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxy ribo nucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>DPBS</td>
<td>Dulbecco's phosphate buffered saline</td>
</tr>
<tr>
<td>DPPH</td>
<td>Free radical scavenging capacity by 2,2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>DR4</td>
<td>Death receptor 4</td>
</tr>
<tr>
<td>DR5</td>
<td>Death receptor 5</td>
</tr>
<tr>
<td>EGC</td>
<td>Epigallocatechin 3-gallate</td>
</tr>
<tr>
<td>FAB</td>
<td>French-American-British</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-associated death domain</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant power</td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Galyceradehyde 3-phosphate dehyrogenasae</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulocyte colony stimulating factor</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HSCs</td>
<td>Haematopoietic stem cells</td>
</tr>
<tr>
<td>HtrA2/Omi</td>
<td>High temperature requirement protein A2 (Omi)</td>
</tr>
<tr>
<td>IC50</td>
<td>Median inhibition concentration or inhibit cellular proliferation by 50%</td>
</tr>
<tr>
<td>ICC</td>
<td>Immunocytochemistry</td>
</tr>
<tr>
<td>INK4</td>
<td>Inhibitor of CDK4</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography mass spectrometry</td>
</tr>
<tr>
<td>Pi</td>
<td>Microliter</td>
</tr>
<tr>
<td>MDR</td>
<td>Development of multidrug resistance</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>MMLV</td>
<td>Moloney Murine Leukaemia Virus</td>
</tr>
<tr>
<td>MPT</td>
<td>Mitochondrial permeability transition</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>MTS</td>
<td>3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>p53</td>
<td>Tumour suppressor protein</td>
</tr>
<tr>
<td>PARP</td>
<td>Nuclear enzyme poly ADP-ribose polymerase</td>
</tr>
<tr>
<td>PB</td>
<td>Peripheral blood</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDAD</td>
<td>Pump and photo diode array detector</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PJ</td>
<td>Pomegranate juice extract</td>
</tr>
<tr>
<td>PS</td>
<td>Phospholipid phosphatidylerine</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Quantitative real Time polymerase chain reaction</td>
</tr>
<tr>
<td>Rb</td>
<td>Retinoblastoma</td>
</tr>
<tr>
<td>REAL</td>
<td>Revised European-American Lymphoma</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcription</td>
</tr>
<tr>
<td>Smac/Diablo</td>
<td>Second mitochondria-derived activator of capsase/Direct IAP binding protein</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>TEAC</td>
<td>Trolox equivalent antioxidant activity</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TNFR</td>
<td>TNF receptor</td>
</tr>
<tr>
<td>TORC</td>
<td>Total oxygen radical absorbance capacity</td>
</tr>
<tr>
<td>TRAIL</td>
<td>Tumour necrosis related apoptosis inducing ligand</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WM</td>
<td>Waldenstrom macroglobulinemia</td>
</tr>
<tr>
<td>XIPA</td>
<td>X-linked inhibitor of apoptosis protein</td>
</tr>
</tbody>
</table>
Table of contents

1. General Introduction: ...30

1.1 Normal Regulatory Cellular Pathways ..31

1.1.1 Normal Haematopoiesis ..31

1.1.2 Cell Cycle ..32

1.1.3 Programmed Cell Death (Apoptosis) ...37

1.2 Hallmarks of Cancer ...44

1.2.1 Resisting Cell Death ...45

1.2.2 Evading Growth Suppressors ...45

1.2.3 Sustaining Proliferation Signalling ...45

1.3 Leukaemia ...46

1.3.1 Causes of Leukaemia..46

1.3.2 Incidence of Leukaemia ...48

1.3.3 Leukaemia Classification ..49

1.3.4 Leukaemia Treatment ..50

1.3.5 Complications associated with common leukaemia therapy53

1.4 Potential for Naturally Sourced Bioactive Compounds ..55

1.4.1 Dietary compound overview ..55

1.8.2 Targeting cell cycle ...56

Table 1.7: Effect of Natural dietary bioactive compounds on cell cycle58

1.8.3 Targeting apoptotic cell death ...59

1.9 Aim and objective: ..63

2. Standard Materials and Methods ..64

2.1 Preparation of Pomegranate Juice Extracts (PJ) ...65

2.2 Cell lines and Culture ...65

2.2.1 Cell Lines ..65
2.2.2 Culture ... 69
2.2.3 Mycoplasma Testing .. 70
2.3 Assays of Cell Proliferation ... 71
2.3.1 Trypan Blue Exclusion Assay .. 71
2.3.2 CellTiter-Glo* Luminescent Cell Viability Assay .. 73
2.3.3 MTS Assay .. 74
2.4 Assays of Apoptosis ... 76
2.4.1 Annexin V/PI FITC Flow Cytometry Assay .. 76
2.4.2 DAPI Staining .. 79
2.4.3 Caspase-3 Activity .. 81
2.5 Cell cycle Analysis by Flow Cytometry .. 83
2.5.1 Method .. 84
2.5.2 Analysis .. 84
2.5.3 Statistical Analysis .. 85

3. Bioactive Actions of Pomegranate Juice Extracts on Leukaemia Cell Lines *in vitro* 86

3.1 Introduction .. 87
3.1.1 Pomegranate .. 87
3.2 Objective ... 95
3.3 Experimental Design ... 95
3.3.1 Treatment .. 95
3.3.2 Assessment of Apoptosis ... 96
3.3.3 Cell viability Assay .. 96
3.3.4 Cell Cycle Analysis ... 97
3.3.5 Statistical Analysis ... 97
3.4 Results ... 98
3.4.1 Effect of PJ on Induction of Apoptosis Using Annexin V-FITC/PI based on Flow Cytometry .. 98

3.4.2 Effect of PJ on Induction of Apoptosis Using DAPI for Morphology Assessment ... 109

3.4.3 Effect of PJ on Cell Viability ... 119

3.4.4 Effect of PJ on Cell Cycle Using Flow Cytometry ... 125

3.4.5 Effect of Isotonic/Osmolarity and pH Changes on Induction of Apoptosis .. 130

3.5 Discussion .. 136

3.6 Conclusion .. 139

4. Identification of potential active compounds within PJ ... 140

4.1 Introduction .. 141

4.2 Materials and Methods .. 142

4.2.1 Sample Preparation and Fraction Separation from PJ .. 142

4.2.2 Cell lines and Culture .. 143

4.2.3 Cell Viability .. 144

4.2.4 Annexin V-FITC/PI Flow Cytometry assay .. 144

4.2.5 Caspase-3 Activity .. 144

4.2.6 Hoechst 33342 and Propidium Iodide (PI) staining .. 144

4.2.7 Cell Cycle .. 146

4.2.7 Liquid Chromatography Mass Spectrometry (LC-MS) .. 146

4.2.8 Determination of Total Phenolics .. 147

4.2.9 Statistical analysis: .. 148

4.3. Results: .. 149

4.3.1 Differential Effects of Pomegranate Fractions on ATP Levels .. 149

4.3.2 Effect of Acetonitrile Fraction from Pomegranate Juice on Cell Cycle Arrest Within Leukaemia Cell Lines .. 151

4.3.3 Induction of Apoptosis by Acetonitrile SPE Fraction from Pomegranate Extracts within Leukaemia Cell Lines .. 153
4.3.4 Phenolic Content of SPE Fractions ... 160
4.3.5 LC-MS of Whole PJ and SPE Fractions .. 161
4.4 Discussion ... 166

5. Anti-proliferative activity of pomegranate pure compounds in leukaemia cell lines ... 169
 5.1 Introduction ... 170
 5.2 Objective ... 170
 5.3 Material and Methods ... 175
 5.3.1 Cell Culture ... 175
 5.3.2 Treatment of Cells ... 175
 5.4 Results: .. 176
 5.4.1 Effect of Pomegranate Compounds in Leukaemia Cell Lines; on ATP Levels as an Indicator of Total Viable Cells ... 176
 5.4.1.6 Ellagitannins .. 196
 5.4.2 Summary of Results ... 207
 5.4.3 Anti-proliferative effect of Pomegranate Compounds in Non-Tumour CD133+ HSCs ... 208
 5.4 Discussion .. 210
 5.4.1 Phenolic Acids ... 210
 5.4.2 Flavan-3-ols .. 211
 5.4.3 Flavanoids ... 212
 5.4.4 Ellagitannins ... 213
 5.4.5 Anthocyanins ... 213
 5.4.6 Tumour Cell Selectively .. 214
 5.5 Conclusion ... 215

6. Impact of Anthocyanin Chemical Structure on Leukaemia Treatment 216
 6.1 Introduction .. 217
 6.1.1 Chemistry of Anthocyanins ... 217
6.1.2 Anthocyanins Found in Pomegranate Juice ... 219
6.1.3 Anthocyanins Bioactivity .. 219
6.2 Objective ... 223
6.3 Material and Methods .. 223
6.3.1 Cell Culture ... 223
6.3.2 Treatment of Cells .. 223
6.3.3 Cell Viability ... 225
6.3.4 Annexin V- FITC /PI Flow Cytometry Assay .. 225
6.3.5 Caspase-3 Activity .. 225
6.3.6 DAPI Stain .. 225
6.3.7 Cell Cycle .. 226
6.3.8 Caspase-8 and -9 ... 226
6.3.9 Immunocytochemistry ... 227
6.3.10 Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) 230
6.3.10.3 Statistical Analysis ... 235
6.4 Results ... 236
6.4.1 Effect of Anthocyanidins and Anthocyanins on ATP Levels as an Indicator of Total Viable Cells .. 236
6.4.2 Effect of anthocyanidins and anthocyanins found in PJ on induction of cell death ... 248
6.4.3 Effect of Anthocyanidins (Delphinidin, Cyanidin, and Pelargonidin) on Caspase-3 Activity ... 255
6.4.4 Effect of Delphinidin on Induction of Apoptosis Using DAPI for Morphology Assessment ... 257
6.4.5 Effect of Delphinidin on Cell Cycle Arrest within Leukaemia Cell Lines 262
6.4.6 Effect of Delphinidin on Activities of Caspase-8 and -9 in HL-60 and MOLT-3 .. 264
6.4.7 Effect of Delphinidin on Expression of Cytochrome C in HL-60 and MOLT-3 Cells .. 267

14
6.4.8 Effect of Delphinidin on Expression of Smac/Diablo in HL-60 and MOLT-3 Cells ..267

6.4.9 Effect of Delphinidin on the Expression of Pro-Apoptotic Proteins (BAX and BAD) and Anti-Apoptotic Proteins (Bcl-2 and Bcl-xl) ..273

6.5 Discussion: ...275

6.5.1 Delphinidin is the most active Anthocyanin on Leukaemia Cells ..275

6.5.2 Effect of Sugar Molecules ...276

6.5.3 Regulation of Cell Cycle by Delphinidin ...277

6.5.4 Molecular Mechanism of Apoptosis Induction by Delphinidin ..277

6.6 Conclusion...278

7. Induction of apoptosis and cell cycle arrest following stimulation ith EGCG, Gallic acid, querticin and punicalagin. ..279

7.1 Introduction...280

7.2 Materials and Methods...281

7.2.1 Cell Culture ..281

7.2.2 Treatment of Cells ..281

7.2.3 Annexin V- FITC /PI Flow Cytometry Assay ...282

7.2.4 Caspase-3 Activity ...282

7.2.5 DAPI Stain ..282

7.2.6 Cell Cycle ..283

7.3 Results...284

7.3.1 EGCG ..284

7.3.1.2 Effect of EGCG on Cell Cycle: ..290

7.3.2 Gallic acid ..292

7.3.3 Quercetin ...300

7.3.3.2 Effect of Quercetin on Cell Cycle ...306

7.3.4 Punicalagin ..308

7.4 Discussion ...316
7.4.1 EGCG .. 316
7.4.2 Gallic Acid... 317
7.4.3 Quercetin ... 318
7.4.4 Punicalagin... 319
7.5 Conclusion... 319

8. General discussion .. 321

8.1 Key Findings ... 322
8.2 Future Directions ... 323
8.2.1 In vitro Studies ... 324
8.2.2 In vivo Studies .. 326
8.2.3 Clinical Trials .. 327
8.3 Final Conclusions... 327
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Haematopoiesis and differentiation of myeloid stem cells and lymphoid stem cell.</td>
<td>32</td>
</tr>
<tr>
<td>1.2</td>
<td>The four separate phases of cell cycle process; G1 phase, S (synthesis) phase, G2 phase and M phase (mitosis).</td>
<td>33</td>
</tr>
<tr>
<td>1.3</td>
<td>The positive and negative regulatory proteins that are involved in cell cycle progression. Modified from Dai and Grant, 2003</td>
<td>36</td>
</tr>
<tr>
<td>1.4</td>
<td>Morphological changes of apoptotic cells at different stages.</td>
<td>38</td>
</tr>
<tr>
<td>1.5</td>
<td>The intrinsic and extrinsic pathways of apoptosis.</td>
<td>39</td>
</tr>
<tr>
<td>1.6</td>
<td>The ten hallmarks of cancer.</td>
<td>44</td>
</tr>
<tr>
<td>1.7</td>
<td>Luminescent reaction to detect ATP in mycoplasma test.</td>
<td>70</td>
</tr>
<tr>
<td>1.8</td>
<td>Cell countess analysis image comparing live and dead cells.</td>
<td>72</td>
</tr>
<tr>
<td>1.9</td>
<td>The luciferase reaction. Mono-oxygenation of luciferin is catalyzed by luciferase in the presence of Mg2+, ATP and molecular oxygen.</td>
<td>73</td>
</tr>
<tr>
<td>1.10</td>
<td>Schematic representation of phospholipid phosphatidylserine (PS) translocate to outside leaflet of the membrane.</td>
<td>78</td>
</tr>
<tr>
<td>1.11</td>
<td>Flow cytometry analysis of Annexin V-FITC/PI.</td>
<td>79</td>
</tr>
<tr>
<td>1.12</td>
<td>Analysis of apoptosis of HL-60 cell line using DAPI staining.</td>
<td>81</td>
</tr>
<tr>
<td>1.13</td>
<td>Schematic showing the principle of intracellular caspase-3 detection using NucView™ 488 caspase-3 substrate.</td>
<td>82</td>
</tr>
<tr>
<td>1.14</td>
<td>Flow cytometry histograms of caspase-3 activation using FlowJo software.</td>
<td>83</td>
</tr>
<tr>
<td>1.15</td>
<td>Cell cycle analysis based on flow cytometry using flowJo software.</td>
<td>87</td>
</tr>
<tr>
<td>1.16</td>
<td>Pomegranate in coats of arms of the British medical society and three royal colleges.</td>
<td>88</td>
</tr>
<tr>
<td>1.17</td>
<td>Illustrated pomegranate fruit and tree.</td>
<td>88</td>
</tr>
<tr>
<td>1.18</td>
<td>Illustrates pomegranate fruit parts (peel, arils and seeds).</td>
<td>90</td>
</tr>
<tr>
<td>1.19</td>
<td>Increase in the number of scientific papers on pomegranate and its constituents from 2000 to 2012.</td>
<td>92</td>
</tr>
<tr>
<td>1.20</td>
<td>Functional and medicinal effect of pomegranate.</td>
<td>94</td>
</tr>
<tr>
<td>1.21</td>
<td>Annexin V-FITC/ PI of live cell populations normalized to untreated controls in 4 lymphoid leukaemia cell lines (CCRF-CEM, JURKAT, MOLT-3, SUP-B15), 4 myeloid leukaemia cell lines (KG-1a, HL-60, K562, THP-1), and non-tumour hematopoietic stem cells (CD133) following treatment PJ for 24 h.</td>
<td>99</td>
</tr>
<tr>
<td>1.22</td>
<td>Annexin V-FITC/ PI of live cell populations normalized to untreated controls in 4 lymphoid leukaemia cell lines (CCRF-CEM, JURKAT, MOLT-3, SUP-B15), 4 myeloid leukaemia cell lines (KG-1a, HL-60, K562, THP-1), and non-tumour hematopoietic stem cells (CD133) following treatment PJ for 48 h.</td>
<td>99</td>
</tr>
<tr>
<td>1.23</td>
<td>Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on CCRF-CEM.</td>
<td>100</td>
</tr>
<tr>
<td>1.24</td>
<td>Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on Jurkat.</td>
<td>101</td>
</tr>
<tr>
<td>1.25</td>
<td>Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on MOLT-3.</td>
<td>102</td>
</tr>
<tr>
<td>1.26</td>
<td>Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on SUP-B15.</td>
<td>103</td>
</tr>
</tbody>
</table>
Figure 3.12: Annexin V-FITC/PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on KG1a. ... 104

Figure 3.13: Annexin V-FITC/PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on HL-60. Mean ± SEM. * indicates significant difference (P ≤ 0.05) vs. untreated control. n= 3. ... 105

Figure 3.14: Annexin V-FITC/PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on K562. ... 106

Figure 3.15: Annexin V-FITC/PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on THP-1. ... 107

Figure 3.16: Annexin V-FITC/PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on CD133 positive hematopoietic stem cells (non-tumour HSC) ... 108

Figure 3.17: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. .. 110

Figure 3.18: (1) Morphological staining analysis of Junket with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. .. 111

Figure 3.19: (1) Morphological staining analysis of MOLT-3 with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. .. 112

Figure 3.20: (1) Morphological staining analysis of SUP-B15 with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. .. 113

Figure 3.21: (1) Morphological staining analysis of KG-1a with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. .. 114

Figure 3.22: (1) Morphological staining analysis of HL-60 with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. .. 115

Figure 3.23: (1) Morphological staining analysis of K562 with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. .. 116

Figure 3.24: (1) Morphological staining analysis of K562 with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. .. 117

Figure 3.25: Analysis of DAPI staining of apoptotic cell populations normalized to untreated controls in 4 lymphoid leukaemia cell lines (CCRF-CEM, JURKAT, MOLT-3, SUP-B15), 4 myeloid leukaemia cell lines (KG-1a, HL-60, K562, THP-1), and non-tumour hematopoietic stem cells (CD133) following treatment PJ for 24 h. .. 118

Figure 3.26: Analysis of DAPI staining of apoptotic cell populations normalized to untreated controls in 4 lymphoid leukaemia cell lines (CCRF-CEM, JURKAT, MOLT-3, SUP-B15), 4 myeloid leukaemia cell lines (KG-1a, HL-60, K562, THP-1), and non-tumour hematopoietic stem cells (CD133) following treatment PJ for 48 h. .. 118

Figure 3.27: Effect of pomegranate juice extract (PJ) on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on CCRF-CEM. ... 120

Figure 3.28: Effect of pomegranate juice extract (PJ) on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on CCRF-CEM. ... 120

Figure 3.29: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on MOLT-3. ... 121

Figure 3.30: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on SUP-B15. ... 121

Figure 3.31: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on KG-1a. ... 122
Figure 3.32: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on HL-60... 122
Figure 3.33: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on K562.. 123
Figure 3.34: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on K562.. 123
Figure 3.35: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on K562.. 123
Figure 3.36: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on CCRF-CEM................. 126
Figure 3.37: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on Jurkat.................. 126
Figure 3.38: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on MOLT-3.................. 127
Figure 3.39: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on SUP-B15................. 127
Figure 3.40: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on KG-1a...................... 128
Figure 3.41: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on HL-60..................... 128
Figure 3.42: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on K562.......................... 129
Figure 3.43: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on THP-1....................... 129
Figure 3.44: Annexin V-FITC/PI g based on flow cytometry. CCRF-CEM treated in pH adjusted media for 48 h.. 131
Figure 3.45: Annexin V-FITC/PI based on flow cytometry. MOLT-3 treated in pH adjusted media for 48 h.. 131
Figure 3.46: Annexin V-FITC/PI based on flow cytometry. HL-60 treated in pH adjusted media for 48 h.. 132
Figure 3.47: Annexin V-FITC/PI based on flow cytometry. THP-1 treated in pH adjusted media for 48 h.. 132
Figure 3.48: Annexin V-FITC/PI based on flow cyotmetry.CD133 treated in pH adjusted media for 48 h.. 133
Figure 3.49: Annexin V-FITC/PI based on flow cytometry. CCRF-CEM treated in equivalent concentration of water for 48 h.. 133
Figure 3.50: Annexin V-FITC/PI based on flow cytometry. MOLT-3 treated in with equivalent concentration of water for 48 h. Mean ± SEM. *indicates significant difference (P ≤ 0.05) vs. untreated control. n= 3... 134
Figure 3.51: Annexin V-FITC/PI based on flow cytometry. HL-60 treated in equivalent concentration of water for 48 h. Mean ± SEM. * indicates significant difference (P ≤ 0.05) vs. untreated control. n= 3... 134
Figure 3.52: Annexin V-FITC/PI based on flow cytometry. THP-1 treated in equivalent concentration of water for 48 h. Mean ± SEM. * indicates significant difference (P ≤ 0.05) vs. untreated control. n= 3... 135
Figure 3.53: Annexin V-FITC/PI based on flow cytometry. CD133 treated in equivalent concentration of water for 48 h. ... 135

Figure 4.1: Illustrates fractions generated from PJ using SPE. A: Unbound fraction, B: water fraction, C: acetonitrile fraction, D: acetone fraction, and D: ethyl acetate fraction. 142

Figure 4.2: Analysis of apoptosis of HL-60 cell line using Hoechst and PI staining. Live cells indicated by blue arrow, early apoptotic cells indicated by green arrows, dead and late apoptotic cell indicated by red arrows, and necrotic cell indicated by purple arrow. 146

Figure 4.3: Effect of water, unbound, acetonitrile, acetone, and ethyl acetate fractions generated by SPE of PJ together with whole PJ in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells were treated for 48 h with all fractions at concentrations equivalent to the concentration of compounds within 6.25%, 12.5%, and 25% whole PJ. ATP levels were investigated using the Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ... 150

Figure 4.4: Effect of acetonitrile fraction generated by SPE of PJ on cell cycle phase distribution in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 48 h with acetonitrile fraction at concentrations equivalent to those found in 6.25%, 12.5%, and 25% whole PJs. .. 152

Figure 4.5: Effect of acetonitrile fraction generated by SPE of PJ on induction of apoptosis in leukaemia cell lines CCRF-CEM and MOLT-3. Cells treated for 24, 48, and 72 h with acetonitrile fraction at concentration equivalent to those found in 6.25%, 12.5%, and 25% whole PJ. Induction of apoptosis was determined by Annexin V-FITC/PI based on flow cytometry analysis. ... 154

Figure 4.6: Effect of acetonitrile fraction generated by SPE of PJ on induction of apoptosis in leukaemia cell lines HL-60 and THP-1. Cells treated for 24, 48, and 72 h with acetonitrile fraction at concentration equivalent to the concentrations of compounds found in 6.25%, 12.5%, and 25% whole PJ. Induction of apoptosis was determined by Annexin V-FITC/PI based on flow cytometry analysis. ... 155

Figure 4.7: Effect of acetonitrile fraction generated by SPE of PJ on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24, 48, and 72 h with acetonitrile fraction equivalent to the concentrations of compounds found in 6.25%, 12.5%, and 25% whole PJ. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis. ... 156

Figure 4.8: Effect of acetonitrile fraction generated by SFE of PJ on morphology of apoptotic cells in HL-60. Cells treated for 48 h at concentration 6.25%, 12.5% and 25%. Apoptotic morphology was determined by Hoechst 33258 and PI staining using fluorescence microscope at magnification of x40. ... 157

Figure 4.9: Percentage of Live, apoptotic, and necrotic in CCRF-CEM and MOLT-3 cells determined from Hoechst 33258 and PI morphological assessment following treatment with acetonitrile fraction generated by SPE of PJ at concentration 6.25%, 12.5% and 25% for 24 158

Figure 4.10: Percentage of Live, apoptotic, and necrotic in HL-60 and THP-1 cells determined from Hoechst 33258 and PI morphological assessment following treatment with acetonitrile fraction generated by SPE of PJ at concentration 6.25%, 12.5% and 25% for 24. 159

Figure 4.11: Estimated total level of phenolic compounds of PJ fractions (unbound, water, acetonitrile, acetone, and ethyl acetate) generated by SPE and whole PJ. 160

Figure 4.12: LC–MS chromatographs of whole PJ (A) and acetonitrile (B), acetone (C) and ethyl acetate fractions (D) from solid phase extraction of PJ LC–MS performed on samples containing
20 µg GAE/mL by follen assay. LC–MS, liquid chromatography mass spectrometry; PJ, pomegranate juice extract; GAE, gallic acid equivalent.

Figure 4.13: LC–MS chromatographs of whole PJ (Black) and acetonitrile solid phase fraction from PJ (Blue) demonstrating peak differences within negative ion mode.

Figure 4.14: LC–MS chromatographs of whole PJ (Black) and acetonitrile solid phase fraction from PJ (Blue) demonstrating peak differences within positive ion mode.

Figure 5.1: Effect of citric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.2: Effect of malic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.3: Effect of Tartaric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.4: Effect of Fumaric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.5: Effect of succinic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.6: Effect of ascorbic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.7: Effect of gallic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.8: Effect of ellagic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.9: Effect of caffeic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.

Figure 5.10: Effect of p-cuamric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 µM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers.
Figure 5.11: Effect of quinic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 188

Figure 5.12: Effect of catechin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ... 190

Figure 5.13: Effect of epicatechin on cell proliferation at concentrations 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ... 191

Figure 5.14: Effect of EGCG on cell proliferation at concentrations 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ... 192

Figure 5.15: Effect of quercetin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 194

Figure 5.16: Effect of rutin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ... 195

Figure 5.17: Effect of punicalagin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 197

Figure 5.18: Effect of proline on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3. ... 198

Figure 5.19: Effect of valine on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ... 199

Figure 5.20: Effect of methionine on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 200

Figure 5.21: Effect of tryptamine on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 201
Figure 5.22: Effect of serotonin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 202

Figure 5.23: Effect of melatonin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 203

Figure 5.24: Effect of delphinidin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 204

Figure 5.25: Effect of cyanidin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 205

Figure 5.26: Effect of pelargonidin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 206

Figure 5.27: Effect of delphinidin, cyanidin, pelargonidin, gallic acid, quercetin, EGCG, and punicalagin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in non-tumour HSC (CD133) following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 209

Figure 6.1: Basic chemical structure of common anthocyanidins. .. 218

Figure 6.2: Caspase-8 or -9 cleavage of the proluminogenic substrates containing LETD or LEHD, respectively. Following caspase cleavage, a substrate for luciferase (aminoluciferin) is released, resulting in the luciferase reaction and production of light. .. 226

Figure 6.3: Illustration of the indirect method of immunocytochemistry............................... 228

Figure 6.4: Illustrates analysis of cytochrome C expression in HL-60 cells following treatment with delphinidin for 3 h using Olympus light microscope (X100). ... 230

Figure 6.5: Illustration of how TaqMan reagent works. Modified from Applied Biosystenms. 231

Figure 6.6: Illustrates qRT-PCR amplification plot. .. 232

Figure 6.7: Effect of Delphinidin, Delphinidin-3-O-glucose, and delphinidin-3,5-di-O-glucose on ATP levels proliferation at concentrations 10, 25, 50, and100 μM on CCRF-CEM leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 236

Figure 6.8: Effect of Delphinidin, Delphinidin-3-O-glucose, and delphinidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on MOLT-3 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 237

Figure 6.9: Effect of Delphinidin, Delphinidin-3-O-glucoside, and delphinidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on HL-60 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. .. 238
Figure 6.10: Effect of Delphinidin, Delphinidin-3-O-glucoside, and delphinidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on THP-1 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ..239

Figure 6.11: Effect of cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on CCRF-CEM leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ..240

Figure 6.12: Effect of cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on MOLT-3 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ..241

Figure 6.13: Effect of cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on HL-60 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ..242

Figure 6.14: Effect of cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on THP-1 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ..243

Figure 6.15: Effect of pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on CCRF-CEM leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ..244

Figure 6.16: Effect of pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on MOLT-3 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ..245

Figure 6.17: Effect of pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on HL-60 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ..246

Figure 6.18: Effect of pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 μM on THP-1 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P \(\leq \) 0.05) vs. untreated control. n= 3.247

Figure 6.19: Annexin V-FITC/ PI based on flow cytometry following treatment with delphinidin, delphinidin-3-O-glucoside, and delphinidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 μM) for 24 h on CCRF-CEM and MOLT-3. ..249

Figure 6.20: Annexin V-FITC/ PI based on flow cytometry following treatment with delphinidin, delphinidin-3-O-glucoside, and delphinidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 μM) for 24 h on HL-60 and THP-1. ..250

Figure 6.21: Annexin V-FITC/ PI based on flow cytometry following treatment with cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 μM) for 24 h on CCRF-CEM and MOLT-3. ..251
Figure 6.22: Analysis of Annexin V-FITC/PI based on flow cytometry following treatment with cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 μM) for 24 h on HL-60 and THP-1. 252

Figure 6.23: Annexin V-FITC/PI based on flow cytometry following treatment with pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 μM) for 24 h on CCRF-CEM and MOLT-3. ... 253

Figure 6.24: Annexin V-FITC/PI based on flow cytometry following treatment with pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 μM) for 24 h on HL-60 and THP-1. .. 254

Figure 6.25: Effect of delphinidin, cyanidin, and pelargonidin on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24 h at concentrations 10, 25, 50, and 100 μM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis. ... 256

Figure 6.26: (1) Morphological staining analysis of HL-60 with DAPI treated with delphinidin 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at concentration 25, 50, and 100 μM for 24 h. ... 258

Figure 6.27: (1) Morphological staining analysis of MOLT-3 with DAPI treated with delphinidin 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at concentration 25, 50, and 100 μM for 24 h. ... 259

Figure 6.28: (1) Morphological staining analysis of HL-60 with DAPI treated with delphinidin 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at concentration 25, 50, and 100 μM for 24 h. ... 260

Figure 6.29: (1) Morphological staining analysis of THP-1 with DAPI treated with delphinidin 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at concentration 25, 50, and 100 μM for 24 h. ... 261

Figure 6.30: Analysis of cell cycle based on flow cytometry using FlowJo software following treatment with delphinidin at concentration 25, 50, and 100 μM for 24 h incubation on four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). .. 263

Figure 6.31: Effect of delphinidin on activation of caspase-8 (A) and caspase-9 (B). HL-60 cells were treated with delphinidin at concentration 25 and 50 μM for 3, 6, and 24 h. Caspase-8 and -9 activities were investigated using Caspase-Glo™ 8 and 9 Assays. ... 265

Figure 6.32: Effect of delphinidin on activation of caspase-8 (A) and caspase-9 (B). MOLT-3 cells were treated with delphinidin at concentration 25 and 50 μM for 3, 6, and 24 h. Caspase-8 and -9 activities were investigated using Caspase-Glo™ 8 and 9 Assays. ... 266

Figure 6.33: Effect of delphinidin (50 μM) on the expression of cytochrome C on HL-60 leukaemia cells following 3, 6, and 24 h treatment.

Figure 6.34: Effect of delphinidin (50 μM) on the expression of cytochrome C on MOLT-3 leukaemia cells following 3, 6, and 24 h treatment.
Figure 6.35: Morphological analysis of effect of delphinidin (50 μM) on the expression of SMAC/DIABLO on HL-60 leukaemia cells following 3, 6, and 24 h treatment. ... 270

Figure 6.36: Effect of delphinidin (50 μM) on the expression of Smac/DIABLO on MOLT-3 leukaemia cells following 3, 6, and 24 h treatment. The result of untreated cells was normalized to 1.

Figure 6.37: Percentage of active cytochrome C in HL-60 and MOLT-3 cells determined from ICC morphological assessment following treatment with delphinidin at 50 μM for 3, 6, and 24 h normalized to untreated controls. .. 272

Figure 6.38: Percentage of active Smac/DIABLO in HL-60 and MOLT-3 cells determined from ICC morphological assessment following treatment with delphinidin at 50 μM for 3, 6, and 24 h normalized to untreated controls. .. 272

Figure 6.39: Effect of delphinidin (50 μM) on the mRNA expression of pro-apoptotic protein (BAX and BAD) and anti-apoptotic proteins (Bcl-2 and Bcl-xl) on HL-60 leukaemia cells following 6 h treatment. ... 274

Figure 6.40: Effect of delphinidin (50 μM) on the mRNA expression of pro-apoptotic protein (BAX and BAD) and anti-apoptotic proteins (Bcl-2 and Bcl-xl) on MOLT-3 leukaemia cells following 6 h treatment. ... 274

Figure 7.1: Annexin V-FITC/ PI based on flow cytometry following treatment with EGCG (0, 10, 25, 50, 75, and 100 μM) for 24 h on CCRF-CEM, MOLT-3, HL-60, and THP-1. .. 284

Figure 7.2: Effect of EGCG on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24 h at concentrations 10, 25, 50, 75 and 100 μM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis. .. 285

Figure 7.3: (1) DAPI Morphological staining analysis of CCRF-CEM with DAPI treated with EGCG at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. ... 286

Figure 7.4: (1) Morphological staining analysis of MOLT-3 with DAPI treated with EGCG at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. ... 287

Figure 7.5: (1) Morphological staining analysis of HL-60 with DAPI treated with EGCG at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. ... 288

Figure 7.6: (1) Morphological staining analysis of THP-1 with DAPI treated with EGCG at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. ... 289

Figure 7.7: Cell cycle based on flow cytometry using FlowJo software following treatment with EGCG at concentration 25, 50, and 100 μM for 24 h incubation on four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, AND THP-1) .. 291
Figure 7.8: Annexin V-FITC/PI based on flow cytometry following treatment with gallic acid (0, 10, 25, 50, 75, and 100 μM) for 24 h on CCRF-CEM, MOLT-3, HL-60, and THP-1. Mean ± SEM. * indicates significant difference (P ≤ 0.05) vs. untreated control. n= 3. 292

Figure 7.9: Effect of gallic acid on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24 at concentrations of 10, 25, 50, 75 and 100 μM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate assay based on flow cytometry analysis. ... 293

Figure 7.10: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with gallic acid at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. .. 294

Figure 7.11: (1) Morphological staining analysis of MOLT-3 with DAPI treated with gallic acid at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. .. 295

Figure 7.12: (1) Morphological staining analysis of HL-60 with DAPI treated with gallic acid at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. .. 296

Figure 7.13: (1) Morphological staining analysis of THP-1 with DAPI treated with gallic acid at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. .. 297

Figure 7.14: Cell cycle based on flow cytometry using FlowJo software following treatment with gallic acid at concentration 25, 50, and 100 μM for 24 h incubation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, AND THP-1). ... 299

Figure 7.15: Annexin V-FITC/PI based on flow cytometry following treatment with quercetin (0, 10, 25, 50, 75, and 100 μM) for 24 h on CCRF-CEM and MOLT-3..300

Figure 7.16: Effect of punicalagin on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24 at concentrations 10, 25, 50, 75 and 100 μM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis. ... 301

Figure 7.17: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with quercetin at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. .. 302

Figure 7.18: (1) Morphological staining analysis of MOLT-3 with DAPI treated with quercetin at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h. .. 303
Figure 7.19: (1) Morphological staining analysis of HL-60 with DAPI treated with quercetin at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h..304

Figure 7.20: (1) Morphological staining analysis of THP-1 with DAPI treated with quercetin at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h..305

Figure 7.21: Cell cycle based on flow cytometry using FlowJo software following treatment with quercetin at concentration 25, 50, and 100 μM for 24 h incubation on four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, AND THP-1)..307

Figure 7.22: Annexin V-FITC/ PI based on flow cytometry following treatment with punicalagin (0, 10, 25, 50, 75, and 100 μM) for 24 h on CCRF-CEM and MOLT-3..308

Figure 7.23: Effect of punicalagin on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24h at concentrations of 10, 25, 50, 75 and 100 μM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis...309

Figure 7.24: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with punicalagin at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h..310

Figure 7.25: (1) Morphological staining analysis of MOLT-3 with DAPI treated with punicalagin at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h..311

Figure 7.26: (1) Morphological staining analysis of HL-60 with DAPI treated with punicalagin at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h..312

Figure 7.27: (1) Morphological staining analysis of THP-1 with DAPI treated with punicalagin at concentrations 25, 50, and 100 μM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 μM for 24 h..313

Figure 7.28: Cell cycle based on flow cytometry using FlowJo software following treatment with punicalagin at concentration 25, 50, and 100 μM for 24 h incubation on four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, AND THP-1)..315
List of Tables

Table 1.1: Cell cycle progression is promoted by Cyclins binding to CDKs at different stages... 35
Table 1.2: Summary of proteins involved in apoptosis... 43
Table 1.3: Genetic abnormalities associated with certain types of leukaemia......................... 47
Table 1.4: UK leukaemia incidence (2009) and mortality (2010)... 49
Table 1.5: Apoptosis drugs targets ... 52
Table 1.6: Cell cycle drugs targets.. 53
Table 1.7: Effect of Natural dietary bioactive compounds on cell cycle.................................. 58
Table 1.8: Effect of natural dietary bioactive compounds on induction of apoptosis................. 62
Table 2.1: CCRF-CEM cell line description.. 65
Table 2.2: SUP-B15 cell line description... 66
Table 2.3: MOLT-3 cell line description... 66
Table 2.4: Jurkat cell line description.. 67
Table 2.5: HL-60 cell line description... 67
Table 2.6: KG-1a cell line description.. 68
Table 2.7: THP-1 cell line description... 68
Table 2.8: K562 cell line description... 69
Table 2.9: CD133 cell line description.. 69
Table 2.10: Comparison of cell proliferation assay; Trypan blue exclusion assay, CellTiter-
Glo® Luminescent Cell Viability Assay and CellTiter 96®Aqueous One solution Cell Proliferation
Assay.. 76
Table 3.1: Summary of studies of pomegranate different cancers.. 95
Table 3.2: Experimental design for Chapter 3... 96
Table 4.1: Experimental design for Chapter 4.. 143
Table 4.2: The IC₅₀ of PJ and acetonitrile fractions on leukaemia cell lines (CCRF-CEM, MOLT-3,
HL-60, and THP-1) following 24 h treatment. ... 149
Table 4.3: Putative identification of phenolic components... 165
Table 5.1: Summarised pomegranate compounds found in PJ and their chemical structure.. 174
Table 5.2: Experimental design for Chapter 5... 175
Table 5.3: IC₅₀ values of compounds found in PJ in CCRF-CEM, MOLT-3, HL-60, and THP-1
leukaemia cells following 24 and 48 h treatments. NR= IC₅₀ not reached...................... 208
Table 6.1: Illustrates distribution of the six most common anthocyanidins in edible parts of
plants... 219
Table 6.2: Impact of anthocyanins in different cancer models in term of induction of apoptosis
inhibition of cell proliferation and cell cycle ... 223
Table 6.3: Experimental design for chapter 6... 224
Table 6.4: The source and dilution factors used for the primary antibodies......................... 228
Table 6.5: The source and dilution factors used for the secondary antibodies...................... 229
Table 6.6: RT Mastermix .. 233
Table 6.7: Real-Time PCR Mastermix... 234
Table 6.8: The IC₅₀ of anthocyanins and anthocyanidins on leukaemia cell lines (CCRF-CEM,
MOLT-3, HL-60, and THP-1) following 24 h treatment ... 248
Table 7.1: Experimental design for chapter 7.. 282
1. General
1.1 Normal Regulatory Cellular Pathways

1.1.1 Normal Haematopoiesis

Haematopoietic stem cells (HSCs) are found in abundance within the bone marrow (BM) and have the ability to proliferate and differentiate into a variety of lineages (Congdon, 2008; Kondo, 2009). HSCs can generate lymphoid and myeloid precursors (Figure 1.8) (Kendo et al, 2003; Kondo, 2010). The lymphoid lineage produces T cells, B cells and natural killer (NK) cells. While the myeloid lineage produces red blood cells (erythrocytes), mast cells, megakaryocytes, granulocytes (neutrophils, eosinophils and basophils) and monocytes which go on to form macrophages (Figure 1.1). In addition HSC have been shown to give rise to cell types not directly associated with the haematopoietic system, such as osteoclasts (Kendo et al, 2003; Gabrilovich and Nagaraj, 2009; Kondo, 2010).

T lymphocytes play an essential part in antigen-recognition in the body's immunity (Alegre et al, 2001). The proliferation, differentiation and acquisition of effector functions of T cells requires the recognition of specific antigens, this is also important to provide help to other cell types which participate in the immune response, such as B cells and NK cells (Alegre et al, 2001). B lymphocytes respond to foreign particles, which are recognised by membrane bound IgM, upon binding they divide and differentiate into plasma cells (also called plasma B cells, effector B cells and plasmocytes), which produce large volumes of antibodies (Abs) with the same specificity as the original B-cell (Bernasconi et al, 2002) (Figure 1.1). B-cells are synthesized in the BM prior to release into the circulation where they migrate to secondary tissues such as the lymph nodes where differentiation to terminally differentiated plasma cells takes place (Calame, 2001). In healthy individuals, the proliferation, differentiation and release of cells from the BM is highly controlled, if defects arise in these processes this can lead to a number of human diseases such as leukaemia (Zone, 2001).
1.1.2 Cell Cycle

The cell cycle is the process by which a cell replicates its DNA and divides in a tightly control process that involves five separate phases: G0, G1, S (DNA synthesis), G2 and M (mitosis) (Figure 1.2) (Nurse, 2000). Firstly, in the G0 phase (quiescence cellular arrest) the cell arrests leaving the cell cycle and stops growing. However, even after long period of quiescence, cells are able to re-enter the cell cycle and proliferate (Heinrichs, 2008). Cyclins and cyclin-dependent kinases are not expressed during this phase (Nurse, 2000; Blagosklonny, 2011). Growth phase 1 (G1) is the first stage of interphase and during this stage proteins and enzymes are synthesized preparing cells for DNA synthesis in S phase (Park and Lee, 2003). During S phase the quantity of chromosomal DNA is replicated to create exactly two identical chromosomes. Synthesis is completed as quickly as possible, because during synthesis the exposed base pairs are sensitive to
external factors, and hence carcinogenic agents can induce mutation in the DNA (Figure 1.1) (Roger and King, 2006). Finally, during M phase the cell splits into two identical daughter cells (Vermeulen et al, 2003; Gwyneth et al, 2003) (Figure 1.1). The process of mitosis is fast, complicated and involves two processes; mitosis and cytokinesis. During mitosis the cellular chromosomes are divided between the two daughter cells in a highly controlled manner. Mitosis consists of four stages: prophase, metaphase, anaphase, and telophase (Figure 1.2). In contrast, cytokinesis is a separate process which starts at the same time as telophase in this stage the cells cytoplasm divides into half between two daughter cells (Vermeulen et al, 2003).

![Cell Cycle Phases](image)

Figure 1.2 The four separate phases of cell cycle process; G1 phase, S (synthesis) phase, G2 phase and M phase (mitosis).
1.1.2.1 Regulation of Cell Cycle

The regulation of cell cycle is critical to ensure faithful segregation of genetic material and thus allow normal development and maintenance of multicellular organisms (Vermeulin et al, 2003). Failure to coordinate such process can result in genomic instability, which may lead to cancer. Therefore, during the cell cycle there are a number of checkpoints which monitor and regulate the timing and progression though cell cycle, these take place at the G1/S phase boundary, in S phase, and during G2/M phases. These checkpoints ensure that the correct sequence of events in particular the phase of cell cycle is completed successfully before a new phase is initiated (Harbour and Douglas, 2000; Meeran and Katiyar, 2008). The regulation of cell cycle involves two main protein families; the cyclin-dependent kinases (CDK) and the cyclins (Figure 1.3).

1.1.2.1.1 Cyclin-Cyclin-Dependent Kinases (Cyclin-CDKs)

The cyclin-dependent kinases (CDKs) are small serine/threonine protein kinases that play a critical role in triggering cell cycle events (Meeran and Katiyar, 2008). CDKs consist of a conserved catalytic kinase core of about 34 kDa, which is inactive by itself. Their activation requires association with regulatory subunits known as cyclins which lead to CDKs phosphorylation providing decisions for the cell to proceed though G1 into S phase, and from G2 to M phases (Table 1.1) (Schwartz and Shah, 2005; Meeran and Katiyar, 2008). CDK4 or CDK6 regulate events in the early G1 phase of the cell cycle; CDK2 triggers entry into S phase when phosphorylated with cyclin E; CDK2 binding to cyclin A and CDK1 to cyclin A regulate the completion of the S phase while CDK1 binds to its specific cyclin partners cyclin B and is responsible for mitosis (Table 1.1) (Boxem et al, 1999; Boxem and van den Heuvel, 2001). However, CDK-4 activity has a limited effect on the G1/S phase of the cell cycle (Van den Heuvel, 2005; Meeran and Katiyar, 2008). CDK-4 is also responsible for the phosphorylation of retinoblastoma gene product (Rb), which is a tumour suppressor protein (See section 1.1.2.1.3). A number of other CDKs are found to work indirectly to regulate the cell cycle including CDK-5, (Cruz and Tasi, 2004) and two other CDKs: CDK-8 and -9 which are involved specifically in regulating transcription (Shim et al, 2002; Schwartz and Shah, 2005; Meeran and Katiyar, 2008).
CDK4 Cyclin D1, D2, D3 G$_r$ phase
CDK6 Cyclin D1, D2, D3 G$_r$ phase
CDK2 Cyclin E G S phase transition
CDK2 Cyclin A S phase
CDK1 Cyclin A G2-M phase transition
CDK1 Cyclin B M phase
CDK7 Cyclin H All cell cycle phases

Table 1.1 Cell cycle progression is promoted by Cyclins binding to CDKs at different stages.
Modified from Meeran and Katiyar, 2008

1.1.2.1.2 Cyclin-Dependent Kinase Inhibitors (CDKIs)

Cell cycle is negatively regulated by cyclin-dependent kinases inhibitors (CDKIs) which are small inhibitory proteins (Meeran and Katiyar, 2008). There are two major families of CDKIs: the INK4 (inhibitor of CDK4) family and the Cip/Kip (kinase inhibitor protein) family (Vermeulen et al, 2003; Dai and Grant, 2003; Meeran and Katiyar, 2008). The INK4 family consists of four members including: p_{15} mk_{4b}; p_{16} mk_{4a}; p_{18} mk_{4c} and p_{19} mk_{4d} which specifically bind to CDK4 and CDK6 and inhibit their activity. Each member of the INK4 family is encoded by a unique gene and there are 15- to 19-kDa polypeptides that share approximately 40% homology with one another (Vermeulen et al, 2003). The Cip/Kip family, includes; p_{21} $cilpl/waf1$; p_{27} $Kipl$ and p_{57} $Kip2$, which inhibit the activities of most CDKs (Vermeulen et al, 2003). Dis-regulation of molecules controlling the cell cycle plays an important role in tumour pathogenesis (Meeran and Katiyar, 2008). For example, alterations within CDKIs (e.g. p_{16} and p_{21}) have also been found in many human cancers (Dai and Grant, 2003; Vos et al, 2006). Because CDK dis-regulation is reported in most human tumour cells, pharmacological CDK inhibition has become an attractive approach regarding non-genotoxic and mechanism-based therapies in oncology (Figure 1.3) (Fischer and Gianella, 2003).

1.1.2.1.3 Retinoblastoma (Rb)

Retinoblastoma is an essential tumour suppressor protein, which inhibits cell cycle progression and blocks cell growth via preventing their entry to S phase, and is often referred to as the gatekeeper of the cell cycle (Giacintiand Giordano, 2006; Burkhart and Sage, 2008). There are three members of the Rb family including; Rb/p_{105}, p_{107}...
and Rb2/p130, collectively referred to as 'pocket proteins'. The negative regulation of cellular transition from Gi to S phase can be inhibited when Rb protein is hypophosphorylated and then directly binds to the transactivation domain of E2F (group of genes of transcription factors that are involved in cell cycle regulation) (Qian et al., 1992; Stevaux and Dyson, 2002; Dimova et al., 2003; Burkhart and Sage, 2008). However, when it's a time for the cell to enter S phase the phosphorylation of Rb by CDK2/cyclin 2, preventing their inhibitory action and binding to the E2F domain. Thus, loss of Rb function may induce cell cycle dis-regulation and so lead to a tumour phenotype. Chromosomal mutations and inactivation of Rb is often considered a crucial component in the development of cancer (Giacinti and Giordano, 2006). Indeed alterations of the Rb gene are common in human cancers including; lung (Wikenheiser-Brokamp, 2006), brain (Jacks, et al., 1992), liver (Hui et al., 1999) and leukaemia (Krug et al., 2002). Interestingly Rb inactivation is more frequently seen in acute myeloid leukaemia than in acute lymphocytic leukaemia (Tang et al., 1992).

Figure 1.3 The positive and negative regulatory proteins that are involved in cell cycle progression. Modified from Dai and Grant, 2003
1.1.3 Programmed Cell Death (Apoptosis)

Apoptotic cell death occurs as a homeostatic mechanism to maintain cell populations in tissues throughout development and aging (Elmore, 2007). Apoptosis also takes place as a protective process when cells are damaged by disease or during immune reactions (Norbury and Hickson, 2001). There are a number of different conditions which are able to initiate apoptosis, including: cell stress and DNA damage, however, not all cells will undergo apoptosis in response to these stimuli (Elmore, 2007). A number of classical morphological changes characterise the stages of apoptosis (Figure 1.4) (Hacker, 2000). These changes include: cell shrinkage; membrane blebbing; nuclear DNA fragmentation; chromatin condensation and formation of apoptotic bodies (Figure 1.4) (Saraste and Pulkki, 2000). Apoptotic bodies then are rapidly phagocytosed by neighbouring macrophages, providing non-inflammatory clearance of cancerous and pre-cancerous cells, which reduces the chance of tissue damage resulting from inappropriate autoimmune responses (Ren and Savill, 1998; Hoffmann et al, 2001).
There are two major molecular signalling pathways for apoptosis which are highly complex, sophisticated and involve an energy-dependent cascade of molecular events, known as the extrinsic and intrinsic pathways (Figure 1.5). Both pathways are associated with enzymatic caspase activation (Brady, 2003; Martin, 2006; Ashkenazi, 2008).
1.1.3.1 The Intrinsic Pathway

In the intrinsic pathway, apoptosis is initiated from inside the cell when pro-apoptotic stimuli, such as the absence of certain growth factors; cytokines; hormones; hypoxia or infections lead to initiation of death programs, this in turn causes activation of apoptosis (Saelens et al., 2004; Elmore, 2007; Yip and Reed, 2008). Commonly, these stimuli activate the expression of pro-apoptotic members of Bcl-2 family, such as Bax, leading to their transportation to the outer membrane of mitochondria. Alterations in the inner mitochondrial membrane lead to changes in the mitochondrial permeability transition (MPT) pore; loss of the mitochondrial transmembrane potential and release of mitochondrial pro-apoptotic proteins such as: cytochrome C; Second mitochondria-derived activator of capsase/Direct IAP binding protein SMAC/Diablo and the serine protease HtrA2/Omi from the intermembrane space into the cytosol (Hill et al., 2004; Saelens et al., 2004; Garrido et al., 2006) (Figure 1.5). These proteins activate the caspase-dependent mitochondrial pathway. Upon the release of cytochrome C, it binds and activates Apoptotic protease activating factor 1 APAF-1) as well as procaspase-9, forming an "apoptosome" (Figure 1.5) (Hill et al., 2004; Khan (1) et al, 2006).
procaspase-9 cluster causes caspase-9 activation by self-cleavage which in turn activates the executioner caspase-3 (Figure 1.5).

1.1.3.1.1 Regulation of the Intrinsic Pathway

1.1.3.1.1.1 Bcl-2-Family

The Bcl-2-family includes a group of structurally similar proteins which play an important role in the regulation of the intrinsic pathway by controlling mitochondria membrane permeability and the release of pro-apoptotic factor: cytochrome c. Bcl-2 proteins can divided into three groups: those that promote apoptosis (Bak, Bax, Bcl-rambo, Bcl-xs, BOK/Mtd); those that inhibit apoptosis (Bcl-2, Bcl-xl, Bcl-w, Mcl-1, Bcl-10, and Bcl-2 related protein A1); and the pro-apoptotic BH-3, the proteins which bind to and regulate the anti-apoptotic Bcl-2 proteins (Bad, Bid, Bik/Nbk, Bim, Blk, Bmf, Hk/DPS) (Table 1.2) (Cory and Adams, 2002; Elmore, 2007; Yip and Reed, 2008). The ratio between anti- and pro-apoptotic family members controls whether or not cells will undergo apoptosis (Elmore, 2007).

1.1.3.1.1.2 Non-Bcl2 Family Proteins

In addition to the Bcl-2 family proteins, Apoptotic inducing factor (AIF), endonuclease G and caspase-activated DNAse (CAD) are other proteins which have a pro-apoptotic function and are released from the mitochondria during the late stages of apoptosis (Table 1.3). AIF and endonuclease G translocate from the mitochondria and move to the nucleus and to induce DNA fragmentation and chromatin condensation (Joza et al, 2001; Li et al, 2001). AIF and endonuclease G both function in a caspase-independent manner (Enari et al, 1998). In addition, caspase 3 is able to cleave the inhibitor of caspase activated DNAse (CAD) and allows CAD to cleave the DNA at random points between individual nucleosomes (Larsen et al, 2010). In contrast, there are some proteins which act as inhibitors including intracellular apoptosis inhibitor proteins (IAP) which regulate caspase activity by binding and inhibiting the activation of pro-caspases and the activity of mature caspases (Khan (1) et al, 2006) (Table 1.3). Some of these inhibitors are X-linked inhibitor of apoptosis protein (XIAP), Baculoviral IAP repeat-containing protein 3 (CIAP2) and Survivin (van Loo et al, 2002). SMAC/Diablo and
HtrA2/Omi are described to stimulate apoptosis by inhibiting the activity of IAP (Table 1.3) (van Loo et al, 2002). SMAC/Diablo proteins are activated by the effect of apoptosis inducing factor (AIF) (Khan et al, 2006; Martin, 2006).

1.1.3.2 The extrinsic Pathway

Extrinsic apoptosis is initiated from outside the cell, when an apoptotic signal is received by binding of pro-apoptotic ligands such as: Apo2L (apoptosis ligand 2); Apo3L (apoptosis ligand 3); TRAIL (tumour necrosis factor-related apoptosis-inducing ligand); Fas Ligand and TNF α to their specific pro-apoptotic membrane death receptors such as DR4 (death receptor 4); DR5 (death receptor 5); Fas and TNF RII (Figure 1.5) (Rodriguez et al, 2005; Martin, 2006; Ashkenazi, 2008). Upon binding, the death domain of each receptor (which is cytoplasmic domain of about 80 amino acids) react with Fas-associated death domain (FADD) (cytoplasmic domain which works as a bridge between the receptor and pro-caspase8) leading to recruitment and formation of the death-inducing signalling complex (DISC) (Figure 1.6) (Ashkenazi and Dixit, 1998; Locksley et al, 2001). Formation of the DISC can be initiated independently by recruiting the adapter FADD and activates the initiator caspases-8 and -10 (Figure 1.5) (Kischkel et al, 2000; Rodriguez et al, 2005; Elmore, 2007; Ashkenazi, 2008). Activated caspase 8 then in turn activates the executioner caspase 3. The activation of this effector caspase is essential for DNA fragmentation and chromosomal condensation. The cross linking between extrinsic and intrinsic pathway occurs when the active caspase 8 activates the pro-apoptotic member Bid (Bcl-2 interacting domain), to trigger the release of cytochrome C (Fadeel and Orrenius, 2005; Martin, 2006; Elmore, 2007). This pathway can be inhibited by cellular FADD-like interleukin-1β-converting enzyme inhibitory protein (c-FLIP) (Figure 1.5).

1.1.3.3 The Tumour Suppressor Protein p53

Additionally, the tumour suppressor protein p53 can directly or indirectly regulate the expression and/or release of pro-apoptotic and anti-apoptotic proteins and proteins that control mitochondrial membrane permeability and therefore, can modulate the release of mitochondrial proteins within intrinsic apoptosis (Hofseth et al, 2004; Elmore, 2007). In addition, within the intrinsic pathway p53 increasing the expression
of APAF-1, a crucial component of the apoptosome. Interestingly, p53 is also involved in regulation of extrinsic apoptosis through increasing the expression of cellular death receptors such as DR5. p53 can be induced as a result of many signals including; telomere shortening; DNA damage; oncogene activation and over expression of tumour suppressor genes (Miura et al, 2004). Thus, it is apparent that p53 is a key tumour suppressor protein at the crossroads of cellular stress response pathways. Though these pathways, it can initiate cell-cycle arrest, DNA repair, chromosomal segregation, cellular senescence and differentiation (Hofseth et al, 2004). The different functions of activated p53 are complex and highly dependent on co-expression of other factors which vary by cell type as well as by the severity and persistence of conditions of cell stress and genomic damage (Hanahan and Weinberg, 2011). It has been shown that the loss of p53 in myeloid progenitor cells is associated with a high risk of developing AML, since p53 has a role in controlling cell proliferation though limiting self-renewal of normal HSCs (Zhao et al, 2010). Apoptosis mechanisms are highly complex and associated by complex cascades of intracellular events that include activation of pro-apoptotic Bcl-2 family, member of the caspase family and several nucleases. Table 1.2 summarizes important proteins that involve in apoptosis.

Death receptors (Fas, TNFRII, DR3, DR4, DR5)	These are effective in the extrinsic pathway of apoptosis. The extrinsic pathway is initiated by interaction be Elmore, 2007; Reuter et al, 2008.
Death ligand (FasL, TNFa, TRAIL)	Caspases are a family of cytosolic aspirate-specific cysteine protease, play an important role in the initiation and execution of apoptosis. Holdenrieder and Stieber, 2004.
Caspase family (e.g. caspase 2, 3, 6, 7, 8, 9,10)	IAPs are inhibit apoptosis though inhibition pro-panoptic members of the caspase family Debatin et al, 2004; Duberz Daloz et al, 2008.
Inhibitor of apoptosis (IAP) (e.g. Survivin, (IXAP)	

42
<table>
<thead>
<tr>
<th>Table (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2 family (e.g. Bcl-2, Bcl-xl, Bax, Bad, Bak, Bid)</td>
</tr>
<tr>
<td>Cytochrome c</td>
</tr>
<tr>
<td>Apoptosis inducing factor (AIF)</td>
</tr>
<tr>
<td>SMAC/Diablo</td>
</tr>
<tr>
<td>Caspase-activated DNAse (CAD)</td>
</tr>
<tr>
<td>Apaf-1</td>
</tr>
<tr>
<td>p53</td>
</tr>
</tbody>
</table>

Table 1.2: Summary of proteins involved in apoptosis.

Deregulation within one or more of the normal regulatory pathways including; cell proliferation, differentiation, and apoptosis could result in cancerous cells developing, proliferating and evade death which can lead to the formation of cancer. These aspects are components of the hallmarks of cancers which are required for malignant transformation. Here the key hallmarks, which this study targets for potential treatments for leukaemia will be discussed further.
1.2 Hallmarks of Cancer

Hanahan and Weinberg (2011) initially defined six essential hallmarks of cancer, required for cells to become malignant and these included: (1) evading growth suppressors; (2) resisting cell death (apoptosis); (3) sustaining proliferative signalling; (4) inducing angiogenesis; (5) enabling replicative immortality and (6) activating invasion and metastasis (Pietras and Ostman, 2010; Hanahan and Weinberg, 2011). In 2011, they added four new hallmarks: (1) abnormal metabolic pathways; (2) evading the immune system; (3) chromosome abnormalities and unstable DNA, and (4) inflammation (Figure 1.6). Hallmarks which act as targets for new leukaemia therapies will be discussed further here. These include: resisting cell death, evading growth suppressors, and sustain proliferation signalling.

Figure 1.6 The ten hallmarks of cancer. Modified from Hanahan and Weinberg, 2011.
1.2.1 Resisting Cell Death

Resisting programmed cell death plays a key role in cancer cell survival. The most common mechanism by which cancer cells resist apoptosis is by modulation of p53 either though gene deletions or mutations (Bouillet and Strasser, 2002; Junttila et al, 2009). Alternative mechanisms include the over expression of anti-apoptotic proteins such as Bcl-2, and Bcl-xL or by down regulating pro-apoptotic proteins such as Bax. Modulation of extrinsic apoptosis is also seen via decreased expression of death receptors (Hanahan and Weinberg, 2011).

1.2.2 Evading Growth Suppressors

Within normal healthy cells proliferation is tightly controlled by the CDK and CDKI. Particularly during G₁ stage which is an essential checkpoint where the anti-proliferation signals produce their activity to prevent further cell proliferation such as Rb. The Rb protein (see section 1.1.1.1.3) actively inhibits cell passage though the restriction (R) point in the G₁ phase and decides whether or not a cell should proceed (Sherr and McCormick, 2002; Burkhart and Sage, 2008). Thus, cancer cells with mutated Rb remove this gatekeeper and allow ongoing cell proliferation. On the other hand, p53 functions to arrest the cell cycle once DNA damage is detected and acts as a central regulator of apoptosis (Hanahan and Weinberg, 2011; Hofseth et al, 2004). p53 mutation is important in a number of cancers and is linked to poor prognosis in chronic lymphocytic leukaemia (CLL) patients (Zenz et al, 2010), and associated with the aggressive forms of Acute myeloid Leukaemia (AML) (Zaho et al, 2010).

1.2.3 Sustaining Proliferation Signalling

In normal cells, cell signalling is a highly controlled process; however this regulation is compromised during cancer (Hanahan and Weinberg, 2011). One of the important behaviours of tumour cells is their ability to proliferate uncontrolled. This can be achieved though; stimulating and sending signals to normal cells in the microenvironment to provide cancer cells with additional growth factors; increasing growth factor production by the cancerous cells and increasing the number of growth factor receptors expressed on the cell surface leading to auto proliferation stimulation (Korpal and Kang, 2010; Hanahan and Weinberg, 2011).
1.3 Leukaemia

Leukaemia is a complex form of blood malignancy characterized by the uncontrolled proliferation of haematopoietic cells and progressive accumulation of these cells within the BM and secondary lymphoid tissues, which can spill over into the peripheral blood and other organs. This accumulation prevents the production of other vital normal blood cells such as red blood cells and platelets resulting in anaemia, bleeding and immunodeficiency (Buffler and Kwan, 2005; Alitheen et al, 2011).

1.3.1 Causes of Leukaemia

The exact cause of leukaemia remains unknown (Greaves, 1997; Buffler and Kwan, 2005; Buffler et al, 2005; Eden, 2010). Leukaemia is thought to have multifactorial causes which involve interaction between different aspects originating from the environmental as well as human genetics (Buffler et al, 2005). However there are a number of factors involved which increase the chance of leukaemia developing.

Exposure to Certain Chemicals: The risk of leukaemia may be increased by exposure to certain chemicals. For example long-term exposure to high levels of benzene is a risk factor for AML (Weng et al, 2004; Buffler and Kwan, 2005; Rossi et al, 2000). In addition, Smoking is known to be linked to cancers of the mouth, lung, and throat, but studies have shown that it can also affect cells which do not come into direct contact with smoke (Weng et al, 2004; Buffler and Kwan, 2005).

Age and Gender: Leukaemia is more common in men than women and the risk of getting leukaemia increases with age, but the reasons for this are not clear (Weng et al, 2004).

Family History: Most cases of leukaemia are not thought to have a strong genetic linkage; however having a close relative in some types of leukaemia enhances the risk of getting the disease. For example, in identical twins, where one developed AML before they were a year old increased the risk of the second twin developing AML demonstrating a genetic linkage (Amigou et al, 2011).

High-Dose Radiation Exposure: Exposure to high-dose radiation (for example as being a survivor exposed to the Hiroshima and Nagasaki atomic bombs or nuclear factor
accident) is known to be associated with increased risk of leukaemia such as CLL (Weng et al, 2004; Buffler and Kwan, 2005; Rossi et al, 2000).

Viral infection: Epstein-Bar virus (EBV) and human T-cell lymphoma leukemia virus (HTLV-1) have been implicated in the development of leukaemia. The EBV is a herpsivirus that can inhibit B-lymphocytes and nasopharyngeal cells. The HTLV-1 virus is closely associated with T-cell lymphocytic leukaemia found in Japan, Africa (Lackritz, 2000).

Genetic abnormalities: Genetic defects and abnormalities are key risk factors associated with the incidence of certain types of leukaemia (Table 1.3) (Buffler and Kwan, 2005; Rossi et al, 2000; Amigou et al, 2011). A number of syndromes that result from genetic mutations present at birth seem to increase the risk of leukaemia. These include; bloom syndrome, blackfan-diamond syndrome, and fanconi anaemia. Down syndrome and trisomy 8 which are caused by chromosome problem present at birth are also linked to raise the risk of leukaemia (Weng et al, 2004; Buffler and Kwan, 2005; Rossi et al, 2000).

<table>
<thead>
<tr>
<th>Genetic Abnormality</th>
<th>Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exportin 1 (XPOI) mutation</td>
<td>CLL</td>
<td>Puente et al, 2011</td>
</tr>
<tr>
<td>JAK2 mutation</td>
<td>Acute leukaemia</td>
<td>Biondi et al, 2000; Peacock, 2000; Deschle et al, 2006; Deschler and Lubbert, 2006; Malinge et al, 2007</td>
</tr>
<tr>
<td>Loss or deletion of chromosome 5,7, Y, and 9, translocations</td>
<td>AML</td>
<td>Deschler and Lubbert, 2006</td>
</tr>
<tr>
<td>Notch1 mutation</td>
<td>ALL</td>
<td>Weng et al, 2004; Mansour et al, 2007</td>
</tr>
<tr>
<td>PAX5 mutation</td>
<td>ALL</td>
<td>Mullighan et al, 2007</td>
</tr>
<tr>
<td>Philadelphia (Ph) chromosome translocation</td>
<td>90% CML</td>
<td>Fainstein, et al, 1987</td>
</tr>
<tr>
<td>between chromosome 9 and 22</td>
<td>30% ALL</td>
<td></td>
</tr>
<tr>
<td>t (15; 17) translocation</td>
<td>AML</td>
<td>Kakizuka et al, 1991</td>
</tr>
</tbody>
</table>

Table 1.3 Genetic abnormalities associated with certain types of leukaemia.
1.3.2 Incidence of Leukaemia

Leukaemia is a major problem worldwide affecting many people each year. It is estimated that more than a quarter of million people died from leukaemia in 2008. Leukaemia is the ninth most common cancer death in the UK (Table 1.4) and the fifth in the USA. About 4,500 people died from leukaemia in the UK in 2010 and 23,540 in USA in 2012 (Cancer Research UK, 2013; Leukaemia & Lymphoma Research, 2013). In France, during the period 2000 to 2004, leukaemia and lymphoma was the most frequent cancer accounting for 41% of the total diagnosed malignancies (Lacour et al, 2010). In 2013, around 4,800 people are expected to be diagnosed with leukaemia and more than 23,000 people expected to die from leukaemia in USA (Siegel et al, 2012).

Generally leukaemia occurs with varying frequencies at different ages and is more common in adults than children. Overall leukaemia is more common in males than females (Table 1.4). Leukaemia causes about one-third of all cancer deaths in children. Acute lymphoblastic leukaemia (ALL) is the most common type in children. More than 50% of all leukaemia diagnosed in children are ALL and the risk for getting it, is highest in children under 5 years old (Cancer Research UK, 2013). In the USA, ALL accounted for 74% of new leukaemia cases in children (Leukaemia & Lymphoma Research, 2013). AML and CLL are the most common type in adults (Table 1.4) (Cancer Research UK, 2013; Leukaemia & Lymphoma Research, 2013). In USA, more than 14,500 new cases of AML were reported in adult and 10,370 deaths from this blood malignancy (American cancer society, 2013). Moreover, according to Leukaemia & Lymphoma Research around 2200 people are diagnosed with AML in the UK annually.

In Leukaemic relative survival rate vary according to patient’s age at diagnosis, gender, and type of leukaemia (Leukaemia & Lymphoma Research, 2013). The death rates from leukaemia are very low in people under age of 50 years old, but rise dramatically in the over 60's (Cancer Research UK, 2012). In the USA, the mortality rate from chronic myeloid leukaemia (CML) showed a decrease in 2005 comparing to the five years before while the AML showed a significant increase in the same period of time (Radich, 2010). In the UK, between 2005 and 2009, 44% of people survived from leukaemia for at least five years post diagnosis (Cancer Research UK, 2013). Moreover, mortality rates for both men and women from leukaemia shows a very gradual decline between
the late 1970's and 2008 in the UK (Leukaemia & Lymphoma Research, 2012). Therefore an improved understanding of the pathogenesis of leukaemia and the development of novel drugs is essential to improve the prognosis of leukaemia patients.

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
<th>Persons</th>
<th>Male</th>
<th>Female</th>
<th>Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>391</td>
<td>311</td>
<td>702</td>
<td>125</td>
<td>93</td>
<td>218</td>
</tr>
<tr>
<td>CLL</td>
<td>1931</td>
<td>1206</td>
<td>3137</td>
<td>673</td>
<td>463</td>
<td>1136</td>
</tr>
<tr>
<td>AML</td>
<td>1399</td>
<td>1164</td>
<td>2563</td>
<td>1253</td>
<td>1057</td>
<td>2310</td>
</tr>
<tr>
<td>CML</td>
<td>364</td>
<td>274</td>
<td>638</td>
<td>113</td>
<td>115</td>
<td>248</td>
</tr>
</tbody>
</table>

Table 1.4: UK leukaemia incidence (2009) and mortality (2010). Modified from Cancer Research UK.

1.3.3 Leukaemia Classification

A number of classifications for hematopoietic blood malignancies have been identified such as French-American-British (FAB), Revised European-American Lymphoma (REAL) and 2001 and 2008 World Health Organization (WHO) classifications. These classification systems were based on the identification of distinct tumours using clinical features, immunophenotype, genetic information, molecular and morphological investigation of the peripheral blood (PB) and BM specimens (Gralnick et al, 1977; Neame et al, 1989 and Vardiman et al, 2009). In addition, these classification have some similarity, for example the diagnosis of AML is usually dependant on the level of blast cells as in the blood or bone marrow smears, however, the most important difference between the 2001 WHO system and FAB classifications for the diagnosis of this disorder was the lowering of the blast threshold from 30% to 20% in the PB or BM smears (Vardiman et al, 2002). According to the 2008 WHO classification, the name myeloid includes all granulocytic cells (neutrophil, eosinophil, basophil), monocytic/macrophage, erythroid, megakaryocytic and mast cell lineages, while the lymphoid malignancies include T-cell and B-cell lineages (Figure 1.1) (Vardiman, 2010). Moreover, within the updated WHO classification the definitions of some well-established disorders such as CLL, plasma cell neoplasm's and Waldenstrom macroglobulinemia (WM) were improved (Morgan, 2003; Owen et al, 2003; Hallek et
al, 2008; Vardiman, 2010) and tumour location and age groups, such as the elderly and children were linked to the incidence of certain types of leukaemia (Campo et al, 2011). Leukaemia classification is important to determine the cellular maturation degree and origin of the leukaemia cells from where they were originated which is an important tool to determine therapeutic choices and patient’s survival.

However in this thesis the four main classification of leukaemia were used to describe the types of cells studied as most research studies related to leukaemia treatment are based on this classification and by using such classification we can identify stage of cellular maturation and the origin of the leukaemic cells. Within this thesis the classification system divides leukaemia into four large groups, including: acute, which is a rapidly progressing disease that results in the accumulation of immature cells in the bone marrow and blood, or Chronic, which progresses more slowly and allows partially mature cells to form. These can be either myeloid or lymphoid origin (Peacock, 2000; Leukaemia & Lymphoma Research, 2012). If leukaemia begins in early forms of myeloid cells including red blood cells, platelets or white blood cells (but not T, B, lymphocytes, or NK cells) this is considered as myeloid leukaemia. Conversely, in lymphoblastic leukaemia the cancer starts in early form of lymphocytes in bone marrow. Therefore, there are generally four types of leukaemia commonly termed: AML, ALL, CML and CLL (Peacock, 2000). The first three of these types arise from HSCs whilst CLL is derived from mature B lymphocytes.

1.3.4 Leukaemia Treatment
The goal of current leukaemia treatments is to kill the leukaemic cells and allow normal cells to form in the BM. The treatment depends on a number of factors such as histologic type of leukemia, its stage, and prognostic features (patient’s age and overall health) (Appelbaum et al, 2006). Chemotherapy is the most common treatment for most types of leukaemia and their side effects vary depending on the type of therapy. Bone marrow transplantation is a relatively straightforward medical procedure. Diseased or damaged bone marrow can be replaced by donated bone marrow from healthy patient, which helps treat, and often cure, many serious, life-threatening conditions, including leukaemia (Laughlin et al, 2004). This choice of leukaemia treatment provides a very high rate of success (Laughlin et al, 2004).
Radiotherapy can be used as part of the preparation for BM transplantation to destroy the cancerous BM with the leukaemia cells using very high level of energy (Walch et al, 2013). Radiation may also use as single therapy for different types of malignant diseases such as breast cancer (Radiation et al, 2006). In addition, growth factor treatments such as granulocyte colony stimulating factor (G-CSF) may be used to stimulate the BM to synthesis more blood cells to decrease the risk of infection that is generated as a result of low level of WBC following the chemotherapy (Dombret et al, 1995; Löwenberg et al, 2003). The survival rate in patients with AML was about 9% higher following the treatment with chemotherapy plus G-CSF than patients who did not receive G-CSF (Löwenberg et al, 2003).

Targeted cancer therapy is a type of medical treatment designed to treat cancer by blocking the growth and spread of cancer by interfering with specific target molecules involved in tumour growth and progression rather than simply interfering with rapidly dividing cells (e.g. chemotherapy). Targeted therapies can cause cancer cell death by inducing apoptosis or arresting cell cycle.

1.3.4.1 Targeting Apoptosis

To date, many of the crucial players in the system of apoptosis regulation are identified and can be targeted by therapeutic strategies which include Bcl-2 proteins, caspases, and death receptors. Therefore, identification of the major regulators increases research into developing therapeutic approaches to intervene either in a pro- or anti-apoptotic direction (Ghobrial et al, 2005). Another approach is to classify the agents as those that target the extrinsic pathway, intrinsic pathway, or the proteins regulating apoptosis (Ghobrial et al, 2005). In addition some drugs aimed to control apoptosis indirectly by targeting protein kinases, transcriptional factors, phosphatases, proteasomes and cell surface receptors (Ghobrial et al, 2005) (Table 1.5).
Extrinsic pathway

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Receptor</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoclonal antibodies agonist to Dr4 and Dr5 (HGS-ETR1, HGS-ETR2, and HGS-TR2J)</td>
<td>DR4 and DR5</td>
<td>Havell et al, 1988</td>
</tr>
</tbody>
</table>

Intrinsic pathway

<table>
<thead>
<tr>
<th>Compound</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arensic trioxide</td>
<td>Direct effect on the mitochondria inner membrane</td>
<td>Zangemeister-Wittke et al, 2000</td>
</tr>
<tr>
<td>Lonidamine</td>
<td>Direct effect on the mitochondria inner membrane</td>
<td>Oudard et al, 2003</td>
</tr>
<tr>
<td>G31S9</td>
<td>Bcl-2</td>
<td>O’Brein et al, 2007</td>
</tr>
<tr>
<td>Antisense Bcl-xl</td>
<td>Bcl-xl</td>
<td>Zangemeister-Wittke et al, 2000</td>
</tr>
</tbody>
</table>

The common pathway

<table>
<thead>
<tr>
<th>Drug</th>
<th>Effector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoptin</td>
<td>Caspases</td>
</tr>
<tr>
<td>Survivin</td>
<td>IAP</td>
</tr>
</tbody>
</table>

Table 1.5: Apoptosis drugs targets

<table>
<thead>
<tr>
<th>Target</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAIL</td>
<td>DR4 and DR5</td>
</tr>
<tr>
<td>DR4 and DR5</td>
<td>Havell et al, 1988</td>
</tr>
</tbody>
</table>

1.3.4.2 Targeting Cell Cycle

The cell cycle is a series of events which allow the cell to grow and proliferate. Important parts of the cell cycle mechanism are the CDKs which, when activated, provide a means for the cell to move from one phase of the cell cycle to the next (Section 1.1.2.1) (Schwartz and Shah 2005). The CDKs are regulated positively by cyclins and regulated negatively by naturally occurring CDKIs (Section 1.1.2.1.1 and 1.1.2.1.2). Cancer is characterised by a dysregulation of the cell cycle such that cells overexpress cyclins or do not express CDKIs and thus, continue to undergo unregulated cell growth (Section 1.1.2.1). The cell cycle also works to protect the cell from DNA damage. Therefore, cell cycle arrest is a survival mechanism which gives the cancer cells the opportunity to repair their damaged DNA. Recently, in clinical trials are a series of targeted agents that directly inhibit CDKs, inhibit unrestricted cell growth, and induce growth arrest (Schwartz and Shah 2005). In addition the aim of a number of studies has focused on these drugs as inhibitor transcriptions. A number of targeting cell cycle cancer therapies are summarise in table 1.6.
Flavopiridol classified as CDKI because of its high affinity for CDKs and its ability to induce cell cycle arrest. It has been shown to inhibit CDK1, CDK2, CDK4, and CDK6.

Losiewicz et al, 1994; Carlson et al, 1996

UCN-01 Associated with G1/S cell cycle arrest, associated with induction of p21CIP/Waf1, and desphosphorylation of CDK2.

Kawakami et al, 1996

CYC202 a potent inhibitory of CDK2

Affect the cell cycle at G1 and G2/M phases

SncClue et al, 2002

N-acyl-2-aminothiazole analog Is selective inhibitory for CDK2/cyclin E

Shapiro et al, 2003

E7070 Targets the G1 phase of the cell cycle by depleting cyclin E and inducing p53 and p21.

Terret et al, 2003

Imidazopyridines Is selective inhibitory for CDK2

Byth et al, 2003

Bryostatin-1 Produces transient induction of p21 and subsequent dephosphorylation, inactivation of CDK2, and inhibition of tumour cell growth

Asiedu et al, 1995

Table 1.6: Cell cycle drugs targets

1.3.5 Complications associated with common leukaemia therapy

1.3.5.1 Cancer recurrence

Recurrence of cancer, is when tumour comes back again commonly when the therapy is completed. Moreover, no signs or symptoms for the disease are seen during a period of weeks, months or years. In some types of tumour the recurrence is expected and considered as a part of the disease cycle such as CML (Kantarjian et al, 2002).

Remission, a state in which no cancerous cells can be found in the body, can be either temporary or permanent. Sometimes remission is temporary, and patients relapse and cancer recurs in the same place where the disease first began (primary site) or in different places in the body (secondary site). Unfortunately, the most frequent causes of treatment failure and drug resistance are associated with relapse where curing the cancer becomes more difficult (Giralt et al, 1994; Leukaemia and Lymphoma Research, 2013). Moreover, patient’s survival after relapse is poor and ranges from 21% to 33%

53
The rate of complete remission (CR) is related to patient age, for example, patients with AML younger than 60 years have remission rates of 60–80% (Lowenberg et al, 1999), whereas remission rates of 40–65% was seen in those 60 years and older, who represent the majority of the AML population (Hiddemann et al, 1999; Leopold et al, 2002). A number of studies have shown that combination therapies between two chemotherapies agents induced higher rates of CR, for example, more than 40% of patients with AML achieved a CR and long-term survival following the treatment with cytosine arabinoside and an anthracyclin (Juliussson et al, 2005).

1.3.5.2 Resistance to chemotherapy
Development of multidrug resistance (MDR) against anti-cancer drugs is a serious problem during the treatment of leukaemia and other cancers (Gottesman, 2002; Luqmani, 2008). Once MDR develops, using high doses of chemotherapy agents to overcome resistance is ineffective and may lead to further toxic effects and resistance are more stimulated (Ozben, 2006). Multidrug resistance severely limits the effectiveness and inhibits cytotoxic effects of chemotherapy in a number of common tumours and is responsible for the overall poor efficacy of cancer chemotherapy (Liscovitch et al, 2002; Akan et al, 2005). The resistance can be either acquired as a cellular response to drug exposure or inherited in some cancerous cells leading to altered target enzyme; increased drug degradation, decrease drug absorption and/or enhanced DNA repair (Luqmani, 2008). Mutations within some vital genes such as p53 (tumour suppression gene) have been reported to play an important role in multidrug resistance via inhibiting apoptotic production within tumour cells (Gottesman et al, 2002).

1.3.5.3 Side effects
It is very common for patients to experience side effects as a direct result of cancer treatments. The occurrence of side effects following the anti-cancer agent treatment are varies depending on different factors such as patient's age, overall health, type of cancer, its size and how close the cancer to other important organ such as the brain (Cancer Research UK, 2013). However, there are a number of common side effects associated with the majority of chemotherapies including; nausea, sickness, vomiting,
feeling weak, tiredness, hair loss, depression and low white blood cell count (Cancer Research UK, 2013). In addition, high dose chemotherapy or radiotherapy is associated with ovarian failure and infertility as a result of ovarian damage following the treatment; however, this depends on patient’s age and treatment protocol (Meirow and Nugent, 2001). Some side effects are serious medical conditions that need to be treated whereas; many side effects are inconvenient or upsetting but are not harmful to the patient’s health and disappear when the treatment finished (Leukaemia and Lymphoma Research, 2013).

Because blood cancer treatments have become more aggressive during the last 20 years (Redd et al, 2001), the need for new treatments for leukaemia to improve patient’s health and reduce the side effects associated with such therapy has become essential.

1.4 Potential for Naturally Sourced Bioactive Compounds

1.4.1 Dietary compound overview

Cancer is a complex disease, in which there is genetic variability among not only different types of cancer but also among different patients with the same type of cancer, and even among different cells within same tumor. As a consequence, the targeting of a single molecular target for therapeutic purposes might not be sufficient to elicit the desired outcome. Different nutrients, specifically dietary botanicals, can play a role in the regulation of both normal and pathologic process (Aggarwal and Shishodia, 2006). An improved understanding of the regulatory role of these nutrients may help in the prevention and treatment of various cancers. For more than a decade, there has been considerable interest in the use of naturally occurring botanicals for prevention of disease including prevention of various cancers (Aggarwal and Shishodia, 2006). Several epidemiological studies have shown that high intake of fruit and vegetables are associated with low incidence of a number of human cancers (Neuhouser, 2004; Pavia et al, 2006; Boffetta et al, 2010; Key, 2010). Fruits and vegetables are excellent source of fibre, vitamins, and minerals, but they also contain bioactive compounds including polyphenols. Polyphenols are an integral part of human diet flavonoids and phenolic acids representing the majority of polyphenols present in fruits and vegetables such as pomegranate. These compounds have been shown to
have anti-carcinogenic effects *in vitro* and *in vivo* models by modulating important cellular and molecular mechanisms related to carcinogenesis such as modulation cell cycle and induction of apoptosis (Ahn *et al.*, 2003; Brusselmans *et al.*, 2003; Miyoshi *et al.*, 2003; Roy *et al.*, 2005; Hafeez *et al.*, 2008; Zaini *et al.*, 2011). Therefore, apoptotic induction and cell cycle arrest within tumour cells has become excellent targets for potential cancer treatments and are proposed to decrease mortality from malignancy (Paschka *et al.*, 1998; Brady, 2003; Dorai and Aggarwal, 2004).

1.8.2 Targeting cell cycle

Disruption of the normal regulation of cell cycle progression and division are important events in the development of cancer. For more than a decade, there has been significant interest in the use of naturally occurring botanical agents for the prevention of disease including preventing of cancers. Several dietary agents or nutrients have been shown to affect the cell cycle regulation on the treatment of cancer (Table 1.7).

<table>
<thead>
<tr>
<th>Substance</th>
<th>Plant Source</th>
<th>Phase(s)</th>
<th>Cancer Cell Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apigenin</td>
<td>Cereals and herbs</td>
<td>G2/M</td>
<td>Human colon carcinoma cell lines (SW480, HT-29, and Caco-2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>Leukaemia cell lines (Jurkat and MOLT-3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Go/Gi</td>
<td>Leukaemia cell lines (HL-60 and CCRF-CEM)</td>
</tr>
<tr>
<td>Chrysin</td>
<td>Passion flowers</td>
<td>Go/Gi</td>
<td>Leukaemia cell lines (Jurkat, CCRF-CEM, THP-1, U937, KG-la, and K562)</td>
</tr>
<tr>
<td>Cis-Stilbene</td>
<td></td>
<td>Go/Gi</td>
<td>Leukaemia cell lines (Jurkat, CCRF-CEM, THP-1, and U937)</td>
</tr>
<tr>
<td>Acidic bogs</td>
<td>Cranberry</td>
<td>G0 phase</td>
<td>Human breast cancer cells (MCF-7)</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Turmeric, curry and mustard</td>
<td>G2/M and S phase</td>
<td>Glioma cell line (U251)</td>
</tr>
</tbody>
</table>

56
<table>
<thead>
<tr>
<th>Table (continued)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EGCG</td>
<td>Green tea</td>
<td>G0/G1 phase</td>
<td>Human Ovarian Carcinoma Cell Line(SKOV-3 and OVCAR-3)</td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>Avocado, red berries, grapes, strawberries, raspberries</td>
<td>G1 phase</td>
<td>Human bladder cancer Cells (T24) and cervical carcinoma (CaSki)</td>
</tr>
<tr>
<td>Emodin</td>
<td>Rhubarb</td>
<td>G2/M phase</td>
<td>Human promyelocytic leukaemia cells (HL-60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G0/G1 phase</td>
<td>Leukaemia cell lines (Jurkat, CCRF-CEM, and THP-1)</td>
</tr>
<tr>
<td>Falcarinol</td>
<td>Carrots</td>
<td>S phase</td>
<td>Leukaemia cell lines (CCRF-CEM and MOLT-3)</td>
</tr>
<tr>
<td>Flavones and flavonols</td>
<td>green tea, chocolate, red wine</td>
<td>G2/M phase</td>
<td>Human esophageal squamous carcinoma cell line (KYSE-510)</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>Guava, geraniaceae</td>
<td>G2/M</td>
<td>Human prostate carcinoma cell (DU145)</td>
</tr>
<tr>
<td>Glycyrrhetinic acid</td>
<td>Licorice root</td>
<td>G0/G1 phase</td>
<td>Human hepatoma cell (HepG2)</td>
</tr>
<tr>
<td>Hydroxytyrosol</td>
<td>Virgin olive oil</td>
<td>Go/Gx phase</td>
<td>Human promyelocytic leukaemia cells (HL-60)</td>
</tr>
<tr>
<td>Luteolin</td>
<td>Celery and green pepper</td>
<td>G0/Gx phase</td>
<td>Human colon cancer cell line (HT-29)</td>
</tr>
<tr>
<td>Lycopene</td>
<td>Tomatoes and tomato products</td>
<td>G2/M phase</td>
<td>Human prostate cancer cells (LCPaN)</td>
</tr>
<tr>
<td>Parthenolide</td>
<td>Feverfew</td>
<td>G1/G0 phase</td>
<td>Hepatocellular carcinoma lines (HepB, HepG2,)</td>
</tr>
<tr>
<td>Natural dietary bioactive compounds</td>
<td>Cell cycle phase</td>
<td>Human cell line</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Quercetin Apple, onion, black and green tea and cranberry</td>
<td>S phase and G_2/M phase</td>
<td>Human acute lymphoblastic leukaemia T precursor (MOLT-4) and Human lung cancer cell line (NCI-H20)</td>
<td>Mertens-Talcott and Percival, 2005; Yang et al, 2006</td>
</tr>
<tr>
<td>Resveratrol grapes and red wine</td>
<td>S phase</td>
<td>Human prostate cancer cells (LCNaP)</td>
<td>Benitez et al, 2007</td>
</tr>
<tr>
<td>Resveratrol Rhubarb</td>
<td>G_0/G_1 phase</td>
<td>Leukaemia cell lines (CCRF-CEM, MOLT-3, and HL-60)</td>
<td>Mahbub et al, 2013</td>
</tr>
<tr>
<td>Resveratrol Silymarin/silibinin</td>
<td>G_2/M phase</td>
<td>Human prostate carcinoma cell (DU145)</td>
<td>Deep and Agarwal (2), 2006</td>
</tr>
<tr>
<td>Resveratrol Silymarin/Flavonoid</td>
<td>M phase</td>
<td>Human pancreatic cancer cell lines (MIA PaCa-2 and PANC-1)</td>
<td>Pham et al, 2004</td>
</tr>
<tr>
<td>Resveratrol Tannic acid Oak park and leaves</td>
<td>G_0/G_1 phase</td>
<td>Human leukaemia cell (Jurkat)</td>
<td>Nam et al, 2001</td>
</tr>
</tbody>
</table>

Table 1.7: Effect of Natural dietary bioactive compounds on cell cycle
1.8.3 Targeting apoptotic cell death

Apoptosis helps to establish a natural balance between cell death and cell renewal in mature animals by destroying excess, damaged, or abnormal cells. However, the balance between survival and apoptosis often tips towards the former in cancer cells. Dis-regulation in pro-apoptotic or anti-apoptotic proteins can inhibit the apoptotic process and allow cells to proliferate. Leukaemia cells could cause this imbalance and evade apoptosis though numerous mechanisms (see section 1.2.1) (Lessene et al, 2008; Hanahan & Weinberg, 2011). Several naturally occurring bioactive chemicals have been shown to induce apoptosis (Table 1.8) though both intrinsic and extrinsic pathways (Vermeulen et al, 2005; Khan et al, 2006).

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Source</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Colon cancer cells (HT-29, APC, HT-29-GAL)</td>
<td>Release cytochrome c, up-regulation Bax</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prostate cancer cells (22Rvl, PC-3)</td>
<td>Induced apoptosis, decrease levels of Bcl-xl, Bcl-2</td>
</tr>
<tr>
<td>Acidic bogs</td>
<td>Cranberry</td>
<td>Human breast cancer cells (MCF-7)</td>
<td>Cell cycle arrest and apoptosis</td>
</tr>
<tr>
<td>Chrysine</td>
<td>Passion flowers, Rhubarb</td>
<td>Leukaemia cell lines (Jurkat, CCRF-CEM, THP-1, U937, KG-1a, and K562)</td>
<td>Induced apoptosis</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Turmeric, curry, mustard</td>
<td>Lung cancer cell line (H1299)</td>
<td>Induce Bax, inhibit NF-KB and activation of caspases</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Daidzein</td>
<td>Soybean</td>
<td>Breast cancer cells (MCF-7, MDA-MB-453)</td>
<td>Down-regulation of Bcl-2, up-regulation of Bax, and release of cytochrome C from the mitochondria into the cytosol, Activation caspase-3,-9,-7 Jin et al, 2010; Hsu et al, 2010; Choi and Kim, 2008</td>
</tr>
<tr>
<td>Delphinidin</td>
<td>Strawberry and pomegranate</td>
<td>Human prostate cancer cells (PC3)</td>
<td>Activation of caspases, increase in Bax, decrease in Bcl-2, nuclear condensation and fragmentation. Lazze et al, 2004; Hafeez et al, 2008</td>
</tr>
<tr>
<td>EGCG</td>
<td>Green tea</td>
<td>Cervical cancer cell line (CaSki) Human cervical cancer cell line (HeLa)</td>
<td>Induced apoptosis by TRAIL sensitization Ahn et al, 2003; Brusselmans et al, 2003; Zou et al, 2010</td>
</tr>
<tr>
<td>Falcarinol</td>
<td>Carrots</td>
<td>Leukaemia cell lines (CCRF CEM and MOLT-3)</td>
<td>Induced apoptosis, increase caspase 3,8 and 9 activity, release cytochrome c from mitochondria Zaini et al, 2013</td>
</tr>
<tr>
<td>Flavones</td>
<td>Green tea, chocolate, red wine</td>
<td>Human esophageal squamous cell carcinoma cell line (KYSE-510)</td>
<td>Cleavage of caspase-9 and caspase-3 Zhang et al, 2009</td>
</tr>
<tr>
<td>Flavonols</td>
<td>Source</td>
<td>Effects</td>
<td>Reference(s)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Flavonols</td>
<td>Green tea, chocolate, red wine</td>
<td>Human esophageal squamous cell carcinoma cell line (KYSE-510)</td>
<td>Cleavage of caspase-9 and caspase-3</td>
</tr>
<tr>
<td>Gingerol</td>
<td>Ginger</td>
<td>Human T lymphoma cells (Jurkat)</td>
<td>Release of cytochrome C from mitochondria, down regulation of Bcl-2 and enhancement of Bax</td>
</tr>
<tr>
<td>Genistein</td>
<td>Soy beans, Chickpea</td>
<td>Breast cancer (MDA-MB-231, MCF-7) and colon cancer (SW480, HT-29)</td>
<td>Induced apoptosis, induced caspase-3 activity, increased cytochrome c release; down-regulation of Bcl-2 and up regulation of Bax</td>
</tr>
<tr>
<td>Rhubarb</td>
<td>Leukaemia cell lines (CCRF-CEM, MOLT-3, and HL-60)</td>
<td>Induced apoptosis</td>
<td>Mahbub et al, 2013</td>
</tr>
<tr>
<td>Liquiritigenin</td>
<td>Licorice</td>
<td>Human cervical cancer cell line (HeLa)</td>
<td>Up-regulation of p53 and Bax, along with down-regulation of Bcl-2 and survivin.</td>
</tr>
<tr>
<td>Luteolin</td>
<td>Tea, fruits, vegetables, celery,</td>
<td>Colon cancer cells (HT-29, HCT116)</td>
<td>Induced apoptosis</td>
</tr>
<tr>
<td>Lycopene</td>
<td>Tomatoes and tomato products</td>
<td>Breast cancer cells (MCF-7 and MDA-MB-231)</td>
<td>Induced apoptosis, down-regulation of Bcl-2, up regulation of Bax</td>
</tr>
<tr>
<td>lycopene</td>
<td>Tomatoes and tomato products</td>
<td>Human promyelocytic leukaemia cells (HL-60)</td>
<td>Loss of mitochondrial transmembrane potential</td>
</tr>
<tr>
<td>phytocomplex (LycoC)</td>
<td>Tomatoes and tomato products</td>
<td>Human lung cancer cell line (NCI-H209)</td>
<td>Decrease of the mitochondrial membrane potential, release of cytochrome C, up-regulation of Bax, down-regulation of Bcl-2</td>
</tr>
<tr>
<td>Bioactive Compound</td>
<td>Plant Source</td>
<td>Effect</td>
<td>Ref.</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Resveratrol</td>
<td>Grapes</td>
<td>Induced apoptosis by TRAIL sensitization and release of cytochrome C from mitochondria, activation of caspases, and induction of p53-dependent transcriptional activation.</td>
<td>Clement et al., 1998 & Ding and Adrian, 2002; Pozo-Guisado et al, 2005</td>
</tr>
<tr>
<td>Sulforaphane</td>
<td>Cauliflower, broccoli, and Brussels sprouts</td>
<td>Increase in the protein levels of both Bax and Bak</td>
<td>Choi and Singh, 2005</td>
</tr>
</tbody>
</table>

Table 1.8: Effect of natural dietary bioactive compounds on induction of apoptosis.
1.9 Aim and objective:

The aim of this study was to test the hypothesis that extracts from pomegranate contain bioactive compounds with strong anti-proliferative effects, and induce apoptosis in human leukaemia cell lines. The specific objectives for this study were to:

A) Investigate the effect of whole PJ on human myeloid and lymphoid leukaemia cell lines and non-tumour control cells in terms of induction of apoptosis and inhibition of cell cycle.

B) Identify active compounds within PJ which are inducers of apoptosis and/or inhibitors of cell cycle.
2. Standard Materials and Methods
2.1 Preparation of Pomegranate Juice Extracts (PJ)

Fresh pomegranates were purchased from Sainsbury's (Sainsbury's, Sheffield, UK) which were originally cultivated in India. Pomegranates were washed, peeled and edible parts separated from the pith. Edible parts were juiced using a pulp ejector juicer (L'EQUIP). The pomegranate juice extract (PJ) was then centrifuged at 1000 g for 35 minutes and filtered through 0.22pm sterile syringe filters (Invitrogen, Paisley, UK) to remove any fibre. The filtered juice was stored at -80°C. Before treatment PJ was diluted (1:1) with complete media and recentrifuged at 1000g for 15 minutes to remove any precipitate.

2.2 Cell lines and Culture

2.2.1 Cell Lines

In this study, four human lymphoid cell lines; CCRF-CEM (Table: 2.1), SUP-B15 (Table: 2.2), MOLT-3 (Table: 2.3), Jurkat (Table: 2.4) and four myeloid human leukaemia cell lines; HL-60 (Table: 2.5), KG1a (Table: 2.6), THP-1 (Table: 2.7), and K562 (Table: 2.8) together with non-tumour CD133 positive haematopoietic stem cells (Table: 2.9) (LONZA) were used.

<table>
<thead>
<tr>
<th>Organism:</th>
<th>Homo sapiens (Human)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ:</td>
<td>Peripheral blood</td>
</tr>
<tr>
<td>Disease:</td>
<td>Acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>Morphology</td>
<td>Lymphoblast</td>
</tr>
<tr>
<td>Cell type:</td>
<td>T lymphoblast</td>
</tr>
<tr>
<td>Tumour source:</td>
<td>Primary</td>
</tr>
<tr>
<td>Age:</td>
<td>4 years juvenile</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
</tr>
<tr>
<td>Growth properties</td>
<td>Suspension</td>
</tr>
<tr>
<td>Expression of p53:</td>
<td>Null</td>
</tr>
<tr>
<td>Comment:</td>
<td>CCRF-CEM is a lymphoblast cell line derived by G.E. Foley, et al. Cells were derived from peripheral blood buffy coat of a child (CEM) with acute lymphoblastic leukaemia who had originally presented with lymphosacroma in 1964 (Foley et al, 1965).</td>
</tr>
</tbody>
</table>

Table 2.1: CCRF-CEM cell line description. LGC Standards, 2013.
SUP-B15 cell line was derived from malignant cells collected from a bone marrow of an 8 year old child with Philadelphia chromosome positive B cell ALL. The cells express multiple B lineage markers, but do not express T cell marker (Fainstein. et al, 1987).

Table 2.2: SUP-B15 cell line description. LGC Standards, 2013.

MOLT-3 was derived from the same patient as the MOLT-4 cell line (ATCC: CRL-152). The MOLT-4 cell line was established from cells taken from a patient in relapse who had received multidrug chemotherapy (Minowada et al, 1972).

Table 2.3: MOLT-3 cell line description. LGC Standards, 2013.
<table>
<thead>
<tr>
<th>Organism:</th>
<th>Homo sapiens (Human)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ:</td>
<td>Peripheral blood</td>
</tr>
<tr>
<td>Disease:</td>
<td>Acute T cell leukaemia</td>
</tr>
<tr>
<td>Morphology:</td>
<td>Lymphoblast</td>
</tr>
<tr>
<td>Cell type:</td>
<td>T lymphocyte</td>
</tr>
<tr>
<td>Age:</td>
<td>14 years</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
</tr>
<tr>
<td>Growth properties:</td>
<td>Suspension</td>
</tr>
<tr>
<td>Doubling time:</td>
<td>24 h</td>
</tr>
<tr>
<td>Expression of p53:</td>
<td>Null</td>
</tr>
</tbody>
</table>

Comment: This is a clone of the Jurkat-FHCRC cell line, a derivative of Jurkat cell line. The Jurkat cell line was established from the peripheral blood of a 14 year old boy by Schneider, *et al* (1972) and was originally designated JM (Schneider *et al*, 1977).

Table 2.4: Jurkat cell line description. LGC Standards, 2013.

<table>
<thead>
<tr>
<th>Organism:</th>
<th>Homo sapiens (Human)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ:</td>
<td>Peripheral blood</td>
</tr>
<tr>
<td>Disease:</td>
<td>Acute promyelocytic leukaemia</td>
</tr>
<tr>
<td>Morphology:</td>
<td>Myeloblastic</td>
</tr>
<tr>
<td>Cell type:</td>
<td>Promyeloblast</td>
</tr>
<tr>
<td>Tumour source:</td>
<td>Primary</td>
</tr>
<tr>
<td>Age:</td>
<td>36 years</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
</tr>
<tr>
<td>Growth properties:</td>
<td>Suspension</td>
</tr>
<tr>
<td>Expression of p53:</td>
<td>Null</td>
</tr>
</tbody>
</table>

Comments

HL-60 is a promyelocytic cell line derived by Collins, *et al.* (1978). HL-60 cells spontaneously differentiate.

Table 2.5: HL-60 cell line description. LGC Standards, 2013.
Organism: Homo sapiens (Human)
Organ: Bone marow
Disease: Acute myelogenous leukaemia
Morphology: Myeloblast
Age: 59 years
Gender: Male
Growth properties: Suspension
Expression of p53: Null
Comment: The KG-la cell line is derived from the KG-1 (ATCC: CCL-246) and is almost identical. The variant subline was isolated by Koeffler et al, 1980 and was composed of undifferentiated promyeloblast.

Table 2.6: KG-la cell line description. LGC Standards, 2013.

Organism: Homo sapiens (Human)
Organ: Peripheral blood
Disease: Acute monocytic leukaemia
Morphology: Monocyte
Cell type: Monocyte
Tumour source: Primary
Age: 1 year infant
Gender: Male
Growth properties: Suspension
Doubling time: Approximately 26 hr
Expression of p53: Null
Comment: THP-1 cells are phagocytic and have Fc and C3b receptors and lack surface and cytoplasmic immunoglobins (Tsuchiya et al, 1980, Skubitz et al, 1983).

Table 2.7 THP-1 cell line description. LGC Standards, 2013.
Organism: Homo sapiens (Human)
Organ: Bone marrow
Disease: Chronic myelogenous leukaemia (CML)
Morphology: lymphoblast
Cell type: B lymphoblast
Tumour source: Primary
Age: 53 years
Gender: Female
Ethnicity: Caucasian
Comment: K562 established from pleural effusion of 53 year old female with chronic myelogenous leukaemia (Lozzio, 1975). Studies have shown the K562 blasts are multipotential, hematopoietic malignant cells that spontaneously differentiate into recognisable progenitors of the erythrocyte, granulocyte and monocytic series (Andersson et al, 1979).

Table 2.8: K562 cell line description. LGC Standards, 2013.

Organism: Homo sapiens (Human)
Organ: Bone marrow, cord blood, and fetal liver
Disease: Normal
Cell type: Haematopoietic stem cell
Cell source: Primary
Growth properties: Suspension
Comment: These cells were used as a control population of non-carcinogenic primary cells to investigate the effects on hematopoietic stem cells, which are often the cell types affected by leukaemia therapies.

Table 2.9: CD133 cell line description. Lonza, 2013.

2.2.2 Culture

All cells were cultured in 75cm² flasks (Invitrogen, Paisley, UK) at a density of 2 x 10⁶ cells/ml in RPMI 1640 medium (Invitrogen) supplemented with 10% (v/v) foetal bovine serum, 1.5 mM Glutamine and 100pg/ml penicillin/streptomycin (complete RPMI) and incubated at 37°C in a 5% CO₂ atmosphere. Cultures were maintained by the addition of fresh complete RPMI every 2 to 3 days.
2.2.3 Mycoplasma Testing
Mycoplasma are a class of Mollicutes that represent a large group of specialized bacteria, which are characterized by their lack of rigid cell wall. Mycoplasma are small and flexible, which make them able to pass through conventional microbiological filters (0.2 μM). Mycoplasma compete with the cells for the nutrients in culture media which results in reduction in the rate of cell proliferation and changes in cellular responses including gene expression (Drexler et al, 2002). The degree of infection is varied and depends on the mycoplasm species, cell type and culture condition (Dvorakova et al, 2005).

Here, the MycoAlert™ assay (Lonza) was used to ensure cultures were mycoplasma negative every two months. MycoAlert™ assay is a selective biochemical assay that exploits the activity of certain mycoplasma enzymes. The presence of these enzymes allows a rapid screening procedure which provides sensitive detection of contaminating mycoplasma in a test sample. The viable mycoplasma are lysed and the enzymes react with MycoAlert™ substrate catalyzing the conversion of adenosine diphosphate ADP to adenosine triphosphate ATP. The presence or absence of mycoplasma can be detected by measuring the level of ATP in a sample both before and after the addition of MycoAlert™ substrate. If no mycoplasma enzymes are present the second reading shows no increase for the first reading, in contrast reaction of mycoplasma enzymes with their specific substrate in the MycoAlert™ substrate causes raised ATP levels. The ATP is detected via a bioluminescent reaction (Figure 2.1). The light intensity emitted is directly proportional to the ATP concentration and was measured using a luminometer.

\[
\text{Luciferase} \\
\text{ATP + Luciferin + O}_2 \quad \text{+ Mg}^{2+} \quad \rightarrow \quad \text{Oxyluciferin + AMP + PP}_i + \text{CO}_2 + \text{LIGHT}
\]

Figure 2.1: Luminescent reaction to detect ATP in mycoplasma test. Modified from Promega.
2.2.3.1 Methodology
MycoAlert™ reagent and MycoAlert™ substrate were reconstituted in MycoAlert™ assay buffer. Two millilitres of cell culture supernatant of each tested sample was transferred into a centrifuge tube, and spun at 400 g for 5 minutes. One hundred microlitres of cleared supernatant was transferred into white 96 well plates (Fisher Scientific), and 100 μl MycoAlert™ reagent was added to each sample and incubated for 5 minutes at room temperature. Following incubation time the plate was placed in a Wallac Victor 2 1420 luminescence detector to measure luminescence (Reading A). Finally 100 μl of MycoAlert™ substrate was added to each sample and incubated for a further 10 minutes before remeasuring the luminescence using the Wallac Victor 2 1420 luminescence detector (Reading B). This shows the increased detection of ATP (Reading B).

2.2.3.2 Analysis
The ratio was calculated for each well using a luminometer reading A (before adding the MycoAlert™ Substrate) and luminometer reading B (after adding the MycoAlert™ Substrate). The increase in ATP levels over 10 minutes were calculated using the following equation:

\[
\text{Ratio} = \frac{\text{Reading A}}{\text{Reading B}}
\]

All cultures were negative for mycoplasma for the full duration of the project.

2.3 Assays of Cell Proliferation
2.3.1 Trypan Blue Exclusion Assay
Trypan blue exclusion assay was used to quantify the number of live and dead cells in suspension culture (Strober, 2001). Trypan blue is a vital dye which is only able to enter dead cells, staining them blue. Live cells have an intact cell membrane; therefore do not take in the dye from surrounding medium. In contrast dead cells do not have an intact and functional membrane and therefore do take up the dye from their surroundings. This results in the ability to easily distinguish between live and dead cells (Strober, 2001).
Here the Countess™ automated cell counter (Invitrogen) was used which uses state of the art optics and image analysis to automate cell counting. The Countess™ automated cell counter is used to determine cell count and viability (live, dead and total cells) following trypan blue staining technique.

2.3.1.1 Methods
Following treatments, suspended cells were mixed to minimize clumping of the cells. Then cell suspension was mixed 1:1 with 0.4% trypan blue solution (Sigma) and incubated at room temperature for 5 minutes. Following incubation 10 µl of stained cells was added into the Countess™ chamber slide. Then the Countess™ chamber slide was inserted into the instrument and the image of cells was adjusted to focus for analysis.

2.3.1.2 Analysis
Live cells have bright centres and dark edges and dead cells have a uniform blue colour throughout the cell with no bright centre. The average number of live and dead cells was calculated and all treated samples were normalized to controls (Figure 2.2).

Figure 2.2: Cell countess analysis image comparing live and dead cells. Live cells: have bright centres and dark edges. Dead cells: have a uniform blue colour throughout the cell with no bright centre.
2.3.1.3 Statistical Analysis

Data are presented as the mean ± SEM and were analyzed by Stats Direct using a Shapiro Wilke test to check for normality. Data were shown to be non-parametric, and thus a Kruskal-Wallis and Conover-Inman post-hoc test was used to test for significance. \(P < 0.05 \) was considered significant.

2.3.2 CellTiter-Glo°Luminescent Cell Viability Assay

The nucleotide adenosine triphosphate (ATP) is the primary energy source for all metabolic reactions and is found in all intact cells. It serves as a tool for the functional integrity of living cells as all cells need ATP to remain alive and carry out their specialized functions (Crouch et al, 1993). Interruption of cellular processes due to chemical effects, cell injury and physical damage, or depletion of essential nutrients or oxygen results in a decrease in ATP levels (Matthew et al, 2009, Crouch et al, 1984). Therefore measurement of ATP is essential to the study of cell viability. The use of ATP bioluminescence to measure cell proliferation has been shown with leukaemic cell lines (MOLT-4 and HL-60) where significant correlations between increased cell number and ATP levels were observed (Crouch et al, 1993).

The CellTiter-Glo\ luminescent Cell Viability Assay (Promega) is a homogeneous method used to identify the number of live cells in culture based on quantification of the level of ATP present that signals the presence of metabolically active cells. The homogeneous format results in cell lysis and generation of a luminescent signal proportional to the amount of ATP present (Kangas et al, 1984). The amount of ATP is directly proportional to the number of cells. The CellTiter-Glo*Luminescent Cell Viability Assay relies on the production of light caused by the reaction of ATP with luciferase. The emitted light is proportional to ATP concentration inside the cell. The luciferase reaction is summarized in figure 2.3.

\[
\text{Luciferase} \quad \text{ATP} + \text{Luciferin} + O_2, \quad \text{Mg}^{2+} \quad \rightarrow \quad \text{Oxyluciferin} + \text{AMP} + PP_i + CO_2 + \text{LIGHT}
\]

Figure 2.3: The luciferase reaction. Mono-oxygenation of luciferin is catalyzed by luciferase in the presence of Mg2+, ATP and molecular oxygen. Modified from Promega.
2.3.2.1 Methods
Ten millimetres of CellTiter-Glo®Buffer was transferred to the bottle containing CellTiter-Glo®Substrate to reconstitute the lyophilized enzyme/substrate mixture which forms the CellTiter-Glo® Reagent. Then the reagent was mixed by gently vortexing for 10 minutes. Following treatment, cell culture white-96 well plate and its contents were equilibrated at room temperature for 30 minutes. A hundred microliters of Cell Titer-Glo® Reagent was added to each well, mixed well for 2 minutes on an orbital shaker at 400 rpm to induce cell lysis. The plate was allowed to incubate at RT for 10 minutes prior to luminescence detection using the Wallac 1420 luminescence detector (PerkinElmer, Waltham, USA). Control wells were prepared containing medium and treatments without cells to obtain a value for background luminescence.

2.3.2.2 Analysis
Background readings were subtracted from all test measurements. The average from the luminescence readings was calculated and all treated samples were normalized to controls.

2.3.2.3 Statistical Analysis
Averages and Standard error of the means (SEM) were calculated and Stats Direct was used to test whether data followed a normal distribution using a Shapiro Wilke test. As the data did not follow a normal distribution, a Kruskal-Wallis and Conover-Inman post hoc tests were used to investigate significant differences. Results were considered statistically significant when \(P \leq 0.05 \).

2.3.3 MTS Assay
The CellTiter 96®Aqueous One solution Cell Proliferation Assay (Promega) is a colourmetric method for determining the number of live cells in proliferation assays. The celltiter 96®Aqueous One Solution Reagent contains a novel tetrazolium compound \([3-(4,5\text{-dimethylthiazol-2-yl})\text{-5-(3-arboxyethoxyphenyl)-2-(4-sulfophenyl)}\text{-2H-tetrazolium, inner salt; MTS}] \) and electron coupling reagent (phenazineethosulfate; PES). PES has enhanced chemical stability, which allows it to be combined with MTS to form a stable solution. The MTS tetrazolium compound is bioreduced by cells into a coloured formazan product that is soluble in culture medium (Figure 2.4). This conversion is presumably accomplished by NADH or NADH produced by
dehydrogenase enzymes in metabolically active cells. The quantity of formazan is directly proportional to the number of living cells in culture.

2.3.3.1 Methodology
Following treatment, 20 µl of CellTiter 96®Aqueous One Solution Reagent was pipetted into each well of the 96 well plate containing the samples in 100 µl of culture medium. The plate was allowed to incubate at 37°C for 2 hours in a humidified, 5% CO₂ atmosphere prior to recording absorbance at 490nm using Wallac 1420 colourmetric detector. Control wells were prepared containing medium without cells to obtain a value for background.

2.3.3.2 Analysis
The absorption values for the background readings in the wells with complete medium were subtracted from the control and treated samples. Then the average for control and treated cells was calculated and the result of treated samples was normalized to the average of control cells.

2.3.3.3 Statistical Analysis
Average and Standard error of the mean (SEM) was calculated and Stats Direct was used to test whether data followed a normal distribution using a Shapiro Wilke test. Data did not follow a normal distribution, thus Kruskal-Wallis and Conover-Inman post-hoc tests were used to investigate significant differences. Results were considered statistically significant when P ≤ 0.05.

Here, results of cell viability using trypan blue exclusion assay and CellTiter-Glo®Luminescent Cell Viability Assay were shown to be more reliable. CellTiter-Glo®Luminescent Cell Viability Assay required only few minutes to generate a measurable signal and providing an advantage over MTS assay that requires 2 h incubation to develop a signal. CellTiter-Glo®Luminescent Cell Viability Assay was also more suitable enumerating low cell counts due to high sensitivity. In addition the MTS assay showed high background levels, which may have been due to the fact that most of compounds used here were coloured and interfere in the assay (Table 2.10).
5 minutes 10 minutes 2 h
Cell counting ATP MTS reduction

1×10^4 cells/ml 50 cells in a 96 well plate 800 cells in a 96 well plate

Optics and image analysis luminescence Colourmetric

Table 2.10: Comparison of cell proliferation assay; Trypan blue exclusion assay, CellTiter-Glo*Luminescent Cell Viability Assay and CellTiter 96*Aqueous One solution Cell Proliferation Assay.

2.4 Assays of Apoptosis

2.4.1 Annexin V/PI FITC Flow Cytometry Assay

The asymmetric distribution of plasma membrane phospholipids between inner and outer leaflets is a characteristic feature of healthy cells. Under physiological conditions, choline phospholipids (phosphotidylcholine, sphingomyelin) are exposed on the external surface of the plasma membrane while amino phospholipids (phosphatidylserine, phosphatidylethanolamine) are located on the internal surface of plasma membrane (Fadok et al, 1992, Koopman et al, 1994, van Engeland et al, 1998). During apoptosis the membrane phospholipid phosphatidylserine (PS) translocates to the outside leaflet of the membrane. Exposition of PS to the external cellular environment provides signals to macrophages, which then become attracted and initiate phagocytosis of the apoptotic cells (Figure 2.5).

Since detection of exposed PS provides an early quantification of apoptosis, here fluorochrome-tagged 36-kDa anticoagulant protein Annexin V was used. Annexin V is a 35-36 kDa Ca$^{2+}$ dependent phospholipids-binding protein which has a high affinity to bind to cells with exposed PS (van Engeland et al, 1998). Annexin V conjugated to fluorochromes including FITC, which retains its high affinity for PS and thus serves as a sensitive probe for flow cytometric analysis of apoptotic cells. Annexin V-FITC staining can identify apoptosis at earlier stages of apoptosis when PS is exposed on the external surface of plasma membrane. Annexin V-FITC staining precedes the loss of membrane

76
integrity that accompanies the latest stages of cell death resulting from either apoptosis or necrosis. Thus, here Annexin V-FITC (Beckton-Dickinson) was used in conjunction with propidium iodide (PI) (Sigma), a plasma membrane permeability marker, to distinguish between live, early apoptotic, late apoptotic and dead cells (Figure 2.5). Viable cells have minimal Annexin V and PI fluorescence. Cells that are in an early stage of apoptosis stain brightly with Annexin V-FITC but exclude PI. Finally, cells that are in late stages of apoptosis or are already dead stain intensely with both markers (Figure 2.4).

2.4.1.1 Methodology
Following treatment, cells were harvested into 1.5 ml Eppendorf tubes and centrifuged at 400 g, 4°C for 5 min. Supernatant was removed and cells washed once in 100 µl cold Dulbecco’s phosphate buffered saline (DPBS) (Invitrogen). Following washing, supernatant was removed and cells resuspended in 100 µl binding buffer (BB) (10 mM HEPES/NaOH, pH7.4, 140 mM NaCl, 2.5 mM CaCl2) (Beckton-Dickinson). After washing with BB twice, cells were resuspended in 50 µl of BB and 5 µl of Annexin V-FITC. Cells were gently mixed and incubated for 15 min in the dark. Labelled cells were transferred to FACS tubes, and 300 µl of PI (50µg/ml) (Sigma)) was added and mixed gently; samples were then read directly on the flow cytometer (FACS Calibur cytometer (Becton-Dickinson, UK)) measuring fluorescence for FITC and PI. Control samples (unstained cells, cells stained with Annexin V-FITC only and cells stained with PI only) were prepared within each experiment to set up compensation and quadrants.
2.4.1.2 Analysis

Data were recorded from 10,000 cells per sample and analyzed using FlowJo software (Tree Star, Ashland, OR). A dot plot was used to provide a two-parameter display of FITC and PI. Control samples (unstained cells, cells stained with Annexin V-FITC only and cells stained with PI only) were prepared within each experiment to set up compensation and quadrants makers. Quadrant markers were applied to distinguish populations that are considered negative, single positive, or double positive. The dot plot in Figure 2.6 shows the lower left quadrant (live cells) displays events that are negative for both annexin V and PI. The lower right quadrant (early apoptotic cells) contains events that are positive for the Annexin V but negative for the PI. The upper-right quadrant (late apoptotic and dead cells) contains events that are positive for both annexin V-FITC and PI (Figure 2.5).

Figure 2.4: Schematic representation of phospholipid phosphatidylserine (PS) translocate to outside leaflet of the membrane
Late apoptotic and dead cells

Annexin V-FITC

Figure 2.5: Flow cytometry analysis of Annexin V-FITC/PI. Live cells (lower left quadrant) are Annexin V and PI negative, early apoptotic cell (lower right quadrant) are Annexin V-FITC positive and PI negative and cells that are in late apoptosis or already (upper right quadrant) dead are both Annexin V-FITC and PI positive.

2.4.1.3 Statistics
Data was presented as the means ± SEM and were analyzed by Stats Direct using Shapiro Wilke test to check for normality. Data was shown to be non-parametric, and thus a Kruskal-Wallis and Conover-Inman post hoc test was used to test for significance. $P < 0.05$ was considered significant.

2.4.2 DAPI Staining
Apoptotic cells can be distinguished from healthy and necrotic cells by classic morphological changes which are an important tool in apoptosis research. These features include cell shrinkage, membrane blebbing, chromatin condensation and nuclear fragmentation (Kerr et al, 1972, Wyllie et al, 1980, Galluzi et al, 2007). Such features can be observed under a fluorescence microscope using a DNA specific dye.

Here 4, 6-Diamidino-2-phenylindole (DAPI) was used. DAPI (Sigma) nucleic acid stain preferentially stains dsDNA; strongly binding to AT clusters in the minor groove (Gonzalez-Juanatey et al, 2004). Binding of DAPI stain to dsDNA results in approximately 20-fold increase in fluorescence, due to displacement of water
molecules from both DAPI and the minor groove (Barcellona et al, 1990). However the DAPI stain is not completely permeable, thus cells must be fixed and permabilised to enable it to pass through normal cell membranes and the blue fluorescence is then observed by fluorescent microscope via excitation by UV light at 350 nm. In cells undergoing apoptosis, the DNA has condensed and thus apoptotic nuclei will produce higher fluorescence intensity than live cells.

2.4.2.1 Methodology
Following treatment, cells were transferred to Eppendorf tubes, and centrifuged for 5 min at 400 g, at 4°C. The cells were then washed twice in 100 μl of cold DPBS. Cells were then resuspended in 100 μl of 4% (v/v) paraformaldehyde/DPBS for 10 minutes. Following fixation, cells were transferred to slides via a 20-min cytospin at 1,000 rpm (Shandon Cytospin 3 Centrifuge). Slides were then dried at room temperature and 100μl of DAPI stain (10 μg/ml) (Sigma) applied to cells for 10 min in the dark at room temperature. Excess DAPI stain was removed and slides mounted in 90% glycerol and coverslips applied and sealed with nail varnish. An Olympus BX60 fluorescence microscope was used to assess the morphology of cell nuclei using UV light at excitation wavelength of 350 nm.

2.4.2.2 Analysis
Quantitative analysis of cell populations was performed based on counting of 200 randomly-selected cells and the percentage of apoptotic features determined for each sample. DAPI nuclear morphological analysis demonstrated apoptotic cells with irregular edges around the nucleus, intense staining, and chromatin concentration in the nucleus and an increased number of nuclear body fragments in late apoptotic cells. Live cells demonstrated clear-edged, round and uniformly stained with DAPI (Figure 2.6).
2.4.3 Caspase-3 Activity

Caspase-3 activation plays a central role during the apoptotic process. Caspase 3 is expressed by most leukaemic cells as a 32kDa proenzyme (Estrov et al, 1998). In response to several stimuli, caspase-3 is cleaved and generates two subunits of 17 and 12 kDa that fit together in a double heterodimer showing activity (Nicholson et al, 1995). This enzyme is activated by caspase-8 and caspase-9 and serves a convergence point for different signalling pathways. The active enzyme cleaves and activates other caspases such as caspase-6 and-7 as well as other targets such as nuclear enzyme poly ADP-ribose polymerase (PARP) and DNA fragmentation factor (DFF) (Fernandes-Alnemri et al, 1994). Because active caspase 3 is considered as a common effector in several apoptotic pathways, it can be a good marker to detect early apoptotic cells.

Here, the DEVD-NucView™ 488 caspase-3 substrate (Cambrige Bioscience) was used which is a fluorescence probe that allows detection of caspase-3 activity in living cells in real time. NucView 488 DNA dye is attached to caspase-3 substrate peptide sequence DEVD. When linked to the substrate peptide, the dye is unable to bind to DNA and remains non-fluorescent. The substrate crosses the plasma membrane to
enter the cytoplasm, where it can be cleaved by caspase-3 to release the high affinity DNA dye that migrates to the cell nucleus to stain the nucleus with bright green fluorescence (Figure 2.7).

DEVD

Figure 2.7: Schematic showing the principle of intracellular caspase-3 detection using NucView™ 488 caspase-3 substrate. Modified from Biotium.

2.4.3.1 Methodology
Following treatment, 200 pL of cell suspension was added to flow cytometry tubes, and 5 pL of NucView™ 488 Caspase-3 substrate added directly into the cell suspension and mixed well, cells were incubated for 20 minutes at room temperature protected from the light. Following incubation 300 pL of Dulbecco's Phosphate-Buffered Saline (DPBS) (Invitrogen, Paisley, UK) was added and samples analyzed directly on FACS Calibur Cytometer (Becton- Dickinson, UK) measuring fluorescence in the green detection channel FL-1 for FITC.

2.4.3.2 Analysis
Data was recorded from 10,000 cells per sample and analysed using FlowJo software (Tree Star, Ashland, OR, USA). Data were displayed as a single parameter histogram, showing FITC signal value against the number of events. A negative control was used to determine where the markers will be placed in the histogram. Histogram markers were used to specify a range of events for FITC. On the first histogram, marker M1 placed around the caspase-3 negative cells (live cells). Marker M2 was placed to the right of M1 to assign caspase-3 positive cells (apoptotic cells) (Figure 2.8).
Figure 2.8: Flow cytometry histograms of caspase-3 activation using FlowJo software. Histogram (A): negative control of Jurkat cell line. Histogram (B) Jurkat cell line treated with PJ for 24 h. M1 indicate population negative for caspase-3 and M2 indicates population positive for caspase-3.

2.4.3.3 Statistical Analysis
Averages and Standard error of the mean (SEM) were calculated for both control and treated samples were calculated. Stats Direct was used to test whether data followed a normal distribution using a Shapiro Wilke test, the majority of data was non-parametric thus a Kruskal-Wallis and Conover-Inman post hoc test was used to investigate statistical significance. Results were considered statistically significant when P < 0.05.

2.5 Cell cycle Analysis by Flow Cytometry
The cell cycle consists of four distinct phases Gi, S, G2 and M phases. Cells in the G0/Gi phase have a defined amount (2x) of DNA (a diploid chromosomal DNA content). During S phase, cells contain between (2x and 4x DNA levels. Within the G2 or M phases (G2/M), cells have twice the amount of DNA (tetraploid chromosomal 4x DNA content) (Figure 1.2).

Based on measuring the DNA content of individual cells with a DNA binding fluorescence dye, one is able to obtain information about their distribution across cell cycle by using flow cytometry. A dye which intercalates with DNA and then becomes fluorescent such as propidium iodide (PI) is used, where DNA content is directly
proportional to the amount of fluorescent signal (Nunez, 2001). A variety of fluorescent probes have been developed for the flow cytometric analysis of cycling cells such as PI and 7-aminoactinomycin D (7-AAD), Hoechst 33342 and 33258 and 4’6’-diamidino-2-phenylindole (DAPI) (Nunez, 2001). Here, PI the most widely used fluorescent dye to stain the total cellular DNA was used. PI has red fluorescence and is excited at 488-nm wavelength of light. As PI can stain both double stranded RNA (dsRNA) and DNA (dsDNA), cells must be incubated with RNase to remove any double stranded RNA and ensure that PI staining is DNA specific. Additionally as PI is excluded by the plasma membrane of live cells, cells are fixed and permeabilized prior to adding the dye.

2.5.1 Method
Following treatment, cells were centrifuged for 5 min at 400 g, at 4 °C, and washed twice in 100 μl ice-cold DPBS. Following washing, cells were stored at −20°C in 80% ethanol overnight. Fixed cells were then washed twice with 100 μl cold DPBS and resuspended in 50μl of RNaseA (0.1 unit/ml) (Sigma) and 300 μl of PI (50 μg/ml) (Sigma). Cells were incubated at 4°C overnight prior to analysis with the FACS Calibur with excitation at 488 nm and emission at 585 nm using the FL2 channel.

2.5.2 Analysis
Data was recorded from 10,000 cells per sample and processed using FlowJo software (Tree Star, Ashland, OR, USA). Firstly, the forward scatter (FS) and side scatter (SS) were used to identify single cells (Figure 2.9 A). Then, a dot plot was applied showing pulse width vs. pulse area to gate out doublets and clumps (Figure 2.9 B). The gated single cells were plotted in a histogram, as the populations that represent PI histogram (G0/G1, S, and G2/M) are not discrete (Figure 2.9 C). The Watson Pragmatic mathematical model was used to define the population and assign percentage values in each phase. The Watson model fits G1 and G2 with Gaussian curves and makes no assumptions about the shape of the S phase distribution. It fits the region between the identified G0/G1 populations exactly by first subtracting the G0/G1 and G2/M portions of the data and then builds a function that fits what remains. Because both G2 and M phases have an identical DNA content they cannot be discriminated based on their differences in DNA content.
Figure 2.9: Cell cycle analysis based on flow cytometry using flowJo software. A: forward scatter (FS) and side scatter (SS). B: pulse width vs. pulse area to gate out doublets and clumps. C: PI histogram.

2.5.3 Statistical Analysis

Averages and Standard error of the mean (SEM) were calculated and Stats Direct was used to test whether data followed a normal distribution using a Shapiro Wilke test. Data did not follow a normal distribution, thus Kruskal-Wallis and Conover-Inman post hoc tests were used to investigate significant differences. Results were considered statistically significant when $P < 0.05$.

85
3. *Bioactive Actions of whole Pomegranate Juice Extract on Leukaemia Cell Lines In vitro*
3.1 Introduction

3.1.1 Pomegranate

3.1.1.2 Pomegranate History
Pomegranate is one of the oldest known edible fruits. Its history dates to very ancient times (Mars, 2000). Pomegranate cultivation and usage are greatly embedded in human history and its utilization has been found in many ancient cultures as food as well as medical remedies (Longtin, 2003). In Greek mythology it represents life generation and marriage. Sculpture representations of the fruit are found on ancient monuments of Egypt and the Assyrian ruins (Longtin, 2003; Jurenka, 2008). Thus fruit that has featured prominently by many of the major religions of the world such as Islam, Christianity, Buddhism and Zoroastrianism. In Islam for example, the Koran describes four gardens with shade, springs, and fruits including the pomegranate. Legend holds that each pomegranate contains a seed that comes down from paradise (Langley, 2000; Longtin, 2003).

Pomegranate trees are native to the region of Persia and the Himalayan ranges of India. There are over thousands of cultivars of pomegranate which are spreading throughout the Mediterranean, China, India, as well as the American Southwest (California and Arizona) and Mexico (Levin, 1994; Langley, 2000).

Pomegranates are used in several systems of medicine for a variety of diseases. In the Indian Ayurvedic system of medicine, the pomegranate is considered “a pharmacy unto itself” and is used as a general tonic and to treat diarrhoea, ulcers and parasitic infections (Frawely, 1986; Khan, 1991; Jurenka, 2008). Pomegranate are also considered an important part of the Unani system of medicine practice in the Middle East and India where it is popularly served as a remedy for diabetes mellitus (Jurenka, 2008). Pomegranate termed “super fruit” has long been a symbol of life, longevity, and health (Mahdihassan, 1984). It was also chosen as a logo for the Millennium Festival of Medicine and features in the coat of arms of the British Medical Society and three royal colleges (Figure 3.1) (Langley, 2000).
3.1.2.2 Botanical Description

Pomegranate (*Punica granatum* L) belongs to the family puniceaceae which consists of only two species, *Punica granatum* and *Punica protpunica*. Pomegranate grows as a small tree or a large shrub reaching 12-16 ft tall, and can live over 20 years. It has spiny branches, glossy lance shaped leaves, with bark turning grey with age (Lansky and Newman, 2007; Jurenka, 2008).

The tree bears large, red, white or variegated flowers that eventually become the fruit. Its fruit is classified as a large berry, growing up to 5 inches in diameter, delimited by a leathery peel, contained within are numerous arils, each a single seed surrounded by a translucent juice containing sac. Thin acrid-tasting membranes extended into interior of the fruit from the peel, giving a latticework for suspending the arils (Lansky and Newman, 2007; Jurenka, 2008).
3.1.2.3 Pomegranate Chemical Constitutes
Different types of phytochemicals have been identified within the different parts of the pomegranate tree, including fruits and seeds. The major class of pomegranate phytochemicals is the polyphenols (phenolic rings bearing multiple hydroxyl groups) that predominant in the fruit (Viuda-Marrots et al, 2010). Pomegranate fruit polyphenols include flavonoids (flavonols, flavanols, and anthocyanins), condensed tannins and hydrolysable tannins (ellagitannins and gallotannins). Other phytochemicals identified from pomegranate are organic and phenolic acids, sterols, and titerpenoids and alkaloids (Artik, 1998; Halvorsen et al, 2002; Afaq et al, 2005; Lansky and Newman, 2007).

The major source of dietary pomegranate phytochemicals is the fruit. The fruit can be divided to three parts, the seeds, the arils and the peel including the interior network of membranes (Figure 3.3). Edible part of the fruit (50%) represents 40% arils (juice obtain from arils) and 10% seeds. The juice contain 85% water, 10% total sugar mainly fructose and glucose, and 1.5% pectin (Aviram et al, 2000; Tezcan et al, 2009).

Minerals in pomegranate juice include iron, calcium, cerium, chloride, copper, chromium, caesium, potassium, magnesium, manganese, molybdenum, sodium, rubidium, selenium, scandium, tin, strontium, and zinc (Waheed et al, 2004). Alkaloids were mainly found in the juice as well as in the bark of the both stem and the root. There are two main types of alkaloids involving piperidines and pyrolinidines identified in pomegranate plants (Badria, 2000). Organic acids in pomegranate juice are mainly straight chain fatty acids, of which citric acid and malic acid are the major compounds with content up to 4.5 and 1.75 g/L, respectively. In addition, tartaric acid and succininc acid were also identified in the juice of pomegranate (Poyrazoglu et al, 2002; Tezcan et al, 2009).
The main classes of polyphenols found in pomegranate juice are the flavonoids, phenolic acids, and hydrolysable tannins. The soluble polyphenol content in pomegranate juice has been identified to vary within the limits of 0.2% to 1.0% (Ben Nasr et al, 1996).

The flavonoids in pomegranate juice include flavonols flavan-3-ols and anthocyanins. Flavonols that have been identified in pomegranate juice include quercetin and rutin (Artik, 1998), and flavan-3-ols such as catechin, epicatechin, and epigallocatechin 3-gallate (EGCG) (De Pasqua-Teresa et al, 2000). Anthocyanins are the largest and most important group of flavonoids present in the juice. They are responsible for the red colour of pomegranate juice (Hernandez et al, 1999). The main anthocyanins identified in pomegranate juice are cyanidin-3-glucoside, Cyanidin-3,5-diglucoside, pelargonidin-3-glucoside, pelargonidin-3,5-diglucoside, delphinidin-3-glucoside, delphinidin-3,5-diglucoside (Hernandez et al, 1999; Reed et al, 2005).

Phenolic acid are non-flavonoids polyphenols. They can be divided into two main types: (1) hydrocynammic acid, principally caffiec acid, p-cumaric acid, and chlorogenic acid; and (2) hydrobenzoic acid, mainly ellagic acid and gallic acid.

Hydrolysable tannins are high molecular weight plant polyphenols. They are found in the arils and account for 92% of the antioxidant activity of pomegranate fruit (Gil et al, 2006).
The predominant hydrolysable tannins in pomegranate juice is punicalagin, which is responsible for about 50% of its antioxidant capacity (Gil et al., 2000).

The chemical composition of pomegranates can vary depending on the cultivar, growing region, climate, maturity and storage conditions and part of the plant (Poyrazoglu et al., 2002; Barzegar et al., 2004; Fadvi et al., 2005). It has been reported over the years by different researches significant variations in organic acids, phenolic compounds, sugar, and minerals found in pomegranates (Aviram et al., 2000; Mirdehghan and Rahemi, 2007). Gozlekci and his colleagues (2011) investigated the total phenolic distribution of peel, juice, and seed extracts of four Turkish pomegranate cultivars using Folin-Ciocalteu colourmetric method, demonstrating the phenolic compounds altered depending on cultivars and fruit parts.

3.1.2.4 Bioavailability and Toxicity of Pomegranate

Despite the evidence in favour of pomegranate use, extensive studies are needed to fully understand its possible contribution to human health before recommending its regular consumption. The absorption, bio-availability, bio-distribution, and metabolism profile of pomegranate compounds has not yet been completely characterized. A small number of clinical studies have tested the metabolic profile of certain pomegranate derived compounds, such as ellagic acid. Seeram et al., 2006 reported that healthy subjects who consumed 10 ml of concentrated PJ exhibited presence of ellagic acid metabolites in plasma as well as in urine. It has been proposed that dimethylellagic acid glucuronide in human plasma and urine samples after consumption of the fruit juice concentrate is a reliable biomarker of pomegranate intake (Seeram et al., 2006).

In general, the metabolites present in humans following PJ consumption matches those found in rats fed with pomegranate extracts (Cerda et al., 2003a).

Pomegranate and it’s constitutes have safely been consumed for centuries across the world without any adverse effects. Toxicity of punicalagin, an abundant antioxidant polyphenol in PJ, was investigated in rats (Jurenka, 2008). Demonstrating no toxic effects or significant differences were detected in the treatment group compared to controls (Cerda et al., 2003b). In another study, no toxic effect on blood chemistry analysis for kidney, liver and heart was observed in patients with carotid artery
stenosis who consumed PJ for up to three years. However, a number of studies have shown toxic effect after intake of pomegranate products (Lansky and Newman, 2007) and Hedge et al, (2002) reported allergic reactions after consumption of pomegranate fruit.

3.1.2.5 Pomegranate and Health
Recent years, have seen a great interest on the part of consumers, researchers, and the food industry into how food products may help maintain health and the role that diet plays in the prevention and treatment of many illnesses has become widely accepted (Johanningsmeier and Harris, 2011). At the present time, considerable importance is given to functional foods that provide physiological benefits and are useful in disease prevention or slowing the progression of chronic diseases in a manner beyond their basic nutritional functions (Johanningsmeier and Harris, 2011).

This fruit, which has been consumed and used as medicinal food in Middle East for thousands of years, has recently gained popularity in various parts of the world (Johanningsmeier and Harris, 2011). The current explosion of research into pomegranates is evidenced by a science direct search from 2000 to 2012, revealing a significant increase in new scientific papers concerning pomegranate (Figure 3.4).

![Scientific studies on pomegranate from 2000 to 2012](image)

Figure 3.4: Increase in the number of scientific papers on pomegranate and its constituents from 2000 to 2012.
The high antioxidant content of pomegranate the fruit and juice as compared with other fruits and antioxidant beverages has been the basis for much of proposed health benefits and has stimulated interest in research on potential nutraceutical and functional food applications. Seeram et al., 2008b have reported that PJ had a higher antioxidant potency composite index and total polyphenol content in comparison to common fruit juices (orange, grapefruit, grape, cranberry, pear, pineapple, apple, red wines, iced tea and black cherry); as demonstrated by using four antioxidant tests (Trolox equivalent antioxidant activity (TEAC), total oxygen radical absorbance capacity (ORAC), free radical scavenging capacity by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP); and the antioxidant activity was at least 20% higher than any of the other juices tested. In addition, pomegranate juice was shown to have a 3-fold higher antioxidant activity than that of red wine and green tea (Gil et al., 2000) and 2-, 6- and 8-fold higher levels than those identified in grape, grapefruit, and orange juices, respectively (Azadzoi et al., 2005; Rosenblat and Avriam, 2006). The high antioxidant activity may relate to the variety of phenolic compounds present in pomegranate, including punicalagin, ellagic acid derivatives and anthocyanins. Such compounds are identified for their properties to scavenge free radicals and to inhibit lipid oxidation in vitro (Gil et al., 2007; Noda et al., 2002).

The functional and medicinal effect of pomegranate fruits and its derivatives have shown to act as anti-diabetic (Katz et al., 2007), anti-viral (Neurath et al., 2005), anti-tumour and anti-inflammatory (Ahmed et al., 2005) and improve cardiovascular diseases such as atherosclerosis, hyperlipidemia and hypertension (Aviram et al., 2000; Fuhman et al., 2010). They also help to prevent Alzheimer’s disease (Singh et al., 200) and improve sperm quality (Turk et al., 2010) and they can improve skin (Pachco-Palencia et al., 2000; Afaq et al., 2009) and oral health (Vasconcelos et al., 2003) (Figure 3.5).
In terms of anti-tumour properties pomegranate has shown potential in the treatment of solid tumour as anti-proliferative, and pro-apoptotic agents in many cancer cell lines and animal models of colon, breast, prostate, skin and lung cancers (Table 3.1). Of these, prostate cancer has been the most well studied, and it has made significant progress in assessment of the chemo preventive and therapeutic potential of pomegranate derived phytochemicals in prostate cancer with an initial phase II clinical trial reporting a significant prolongation of prostate cancer antigen doubling time in patients with prostate cancer (Pantuck et al, 2006). However, few studies have investigated the potential of pomegranate juice extract (PJ) in the treatment of leukaemia. Kawai and Lansky (2004) evaluated the effect of fresh and fermented pomegranate juice on HL-60 human leukaemia cell line differentiation. Their study demonstrated that treatment with PJs induced differentiation of HL-60 cells and inhibition of cellular proliferation (Kawai and Lansky, 2004). No studies to date have
investigated the effects of PJs on non-tumour cells, and thus selective toxicity to cancer cells has not previously been investigated.

Breast

Juice, seed-oil, fermented juice polyphenols, extract

Prostate

Seed-oil, fermented juice polyphenols, extract, juice

Lung

Fruit extract

Khan *et al.* (2006a)

Colon

Seed-oil, juice

Skin

Seed-oil, fruit extract

Leukaemia

Fresh and fermented juice

Table 3.1: Summary of studies of pomegranate different cancers.

3.2 Objective

This study investigated the hypothesis that PJ can induce cell death and prevent cellular replication to a greater extent in leukaemia cells than non-tumour control cells.

3.3 Experimental Design

3.3.1 Treatment

Eight leukaemia cell lines 4 lymphoid (Jurkat, SUP-B15, MOLT-3 and CCRF-CEM) and 4 myeloid (HL-60, THP-1, K562, KG1a) in addition to CD133 (Normal human HSCs) were maintained as described in section 2.2.2. PJ was prepared as mentioned in section 2.1 and used for the treatment of cells at concentrations: 0%; 6.25; 12.5 and 25% for 24
and 48 h following treatment induction of apoptosis and cell cycle arrest were investigated (Table 3.2).

<table>
<thead>
<tr>
<th>Technique</th>
<th>Concentration</th>
<th>Cell Type</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypan blue</td>
<td>6.25%, 12.5%,</td>
<td>8 leukaemia cell lines +</td>
<td>24 and 48 hr</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>non-tumour HSsc</td>
<td></td>
</tr>
<tr>
<td>Annexin V-FITC/PI</td>
<td>6.25%, 12.5%,</td>
<td>8 leukaemia cell lines +</td>
<td>24 and 48 hr</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>DAPI Satining</td>
<td>6.25%, 12.5%,</td>
<td>8 leukaemia cell lines +</td>
<td>24 and 48 hr</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>non</td>
<td></td>
</tr>
<tr>
<td>Cell cycle</td>
<td>6.25%, 12.5%,</td>
<td>8 leukaemia cell lines</td>
<td>24 and 48 hr</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2: Experimental design for Chapter 3.

3.3.2 Assessment of Apoptosis

We investigated the effect of RJ in terms of induction of apoptosis by using two techniques; Annexin V-FITC/PI and DAPI staining.

3.3.2.1 Annexin V-FITC/PI Stain Assay

Cells were plated in 12 well plate at cell density 5x10^s per well and incubated with RJ at different concentrations (6.25%, 12.5% and 25%) for 24 and 48 h. Annexin V/PI FITC stains were used to detect apoptosis based on flow cytometry as described previously 2.4.1. Data was recorded from 10,000 cells per sample and analysed using FlowJo software (Tree Star).

3.3.2.2 DAPI Stain

Following treatment with RJ at concentrations 6.25%, 12.5% and 25% for 24 and 48 h at cell density 5x10^4, cells were stained with DAPI to observe apoptotic morphology as explained before in section 2.4.2. Cells were investigated using Olympus BX60 fluorescence microscope using UV light at excitation wavelength 350 nm.

3.3.3 Cell viability Assay

All cell lines in addition to normal HSCs were seeded in 12 well plates and at concentration 5x10^s per well and treated with RJ at concentration 6.5%, 12.5% and 25% RJ for 24 and 48 h. Cell viability was measured by trypan blue exclusion using the countess™ automated cell counter as described in section 2.3.1. All experiments were
performed in quadruplicate. Percentage of cell viability was calculated by normalizing to untreated samples.

3.3.4 Cell Cycle Analysis
The effect of PJ on cell cycle of all leukaemia cell lines and normal HSCs were investigated using a PI stain, and analyzed using flow cytometry as describe in section 2.5 following treatment with PJ at concentration 6.25%, 12.5% and 25% for 24 h at cell density 5×10^5. Data from 10,000 cells per sample were recorded and percentages of cells within G0/G1, S and G2/M cell cycle phase were determined with FlowJo software and Waston (pragmatic) analysis of cell cycle (Tree Star).

3.3.5 Statistical Analysis
Average and Standard error of the mean (SEM) was calculated and Stats Direct was used to test whether data followed a normal distribution using a Shapiro Wilke test. Data did not follow a normal distribution, thus Kruskal-Wallis and Conover-Inman post hoc tests were used to investigate significant differences. Results were considered statistically significant when $P \leq 0.05$.

97
3.4 Results

3.4.1 Effect of PJ on Induction of Apoptosis Using Annexin V-FITC/PI based on Flow Cytometry

A significant ($P \leq 0.05$) decrease in the number of live cells and increase in the number of apoptotic and dead cells when assessed at 24 and 48 h post treatment with PJ was seen in all leukaemia cell lines (Figure 3.6 and 3.7). However, within the leukaemia cell lines and non-tumour primary HSCs different levels of sensitivity were observed, where was the most affected of all the leukaemia cell lines while THP-1 was the least affected leukaemia cell lines. In myeloid cell lines KG-1a was the affected cells comparing with the same lineage of cells. Interestingly, CD133 (non-tumour primary HSCs) was the least affected cells compared to all leukaemia cell lines (Figure 3.6 and 3.7).
Live Cells Following Treatment with PJE for 24 h

Figure 3.6: Annexin V-FITC/PI of live cell populations normalized to untreated controls in 4 lymphoid leukaemia cell lines (CCRF-CEM, JURKAT, MOLT-3, SUP-B15), 4 myeloid leukaemia cell lines (KG-la, HL-60, K562, THP-1), and non-tumour hematopoietic stem cells (CD133) following treatment PJE for 24 h. n=3.

Live Cells Following Treatment with PJE for 48 h

Figure 3.7: Annexin V-FITC/PI of live cell populations normalized to untreated controls in 4 lymphoid leukaemia cell lines (CCRF-CEM, JURKAT, MOLT-3, SUP-B15), 4 myeloid leukaemia cell lines (KG-la, HL-60, K562, THP-1), and non-tumour hematopoietic stem cells (CD133) following treatment PJE for 48 h. n=3.
CCRF-CEM the most affected cell line and showed a significant ($P < 0.05$) decrease in viable cells following 24 and 48h treatment with 6.25%, 12.5% and 25% of PJ (Fig 3.8). At low concentration (6.25%) of PJ approximately 90% decrease in the number of live cells was observed following 24 and 48 h. Treatment with high concentration of PJ (25%) showed no live cells remaining after 24 or 48h. Both early apoptotic and dead cells were significantly ($P < 0.05$) increased following treatment with all concentrations of PJ after 24 and 48 h incubation (Fig 3.8).

CCRF-CEM

<table>
<thead>
<tr>
<th>24hrs</th>
<th>48hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 0%</td>
<td>I 6.25%</td>
</tr>
</tbody>
</table>

Figure 3.8: Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on CCRF-CEM. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
Jurkat cell lines following treatment with PJ after 24 and 48 h incubation showed a significant (P < 0.05) decrease in the number of live cells in a dose dependent manner at 6.25%, 12.5% and 25% (Figure 3.9). More than 80% decrease in the number of live cells was detected at low concentrations (6.25%) of PJ following incubation times. At high concentration (25%) of PJ approximately 97% and 99% decrease in live cells was observed after 24 and 48 h incubation respectively. Apoptotic and dead cells showed a significant (P < 0.05) increase at all concentrations following 24 and 48 h (Figure 3.9).

Figure 3.9: Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on Jurkat. Mean ± SEM, * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
MOLT-3 cell lines illustrated a significant ($P < 0.05$) decrease in the number of live cells following treatment with PJ at concentration 6.25%, 12.5% and 25% (v/v) following 24 and 48 h incubation (Figure 3.10). At concentration 12.5% and 25% following 48 h treatment with PJ more than 99% decreased in the number of live cells was detected. The number of apoptotic and dead cells significantly ($P < 0.05$) increased following treatment with PJ at all concentrations following 24 and 48 h incubation times (Figure 3.10).

MOLT-3

* 0% m 6.25% w 12.50% m 25%

<table>
<thead>
<tr>
<th></th>
<th>Live</th>
<th>Apoptotic</th>
<th>Dead</th>
<th></th>
<th>Live</th>
<th>Apoptotic</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>24hrs</td>
<td></td>
<td></td>
<td></td>
<td>48hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.10: Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on MOLT-3. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
SUP-B15 cells also showed a significant ($P < 0.05$) decrease in the number of live cells and significant increase in the number of apoptotic and dead cells after treatment with PJ following 24 and 48 h incubation (Figure 3.11). Treatment with lowest concentration (6.25%) of PJ showed the smallest decrease in the number of live cells compared with other lymphoid cell lines with 46% and 30% decrease following 24 and 48 h respectively (Figure 3.11).

![SUP-B15 Table]

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Live</th>
<th>Apoptotic</th>
<th>Dead</th>
<th>Live</th>
<th>Apoptotic</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.25%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24hrs 48hrs

Figure 3.11: Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on SUP-B15. Mean ± SEM * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
KG-la showed the greatest sensitivity to PJ than the other myeloid leukaemia cell lines. Live cells showed a significant (P < 0.05) decrease when treated with 6.25%, 12.5% and 25% after 24 and 48 h when compared to control (Figure 3.12). Percentage of live cell population was not significantly different between time points when treated with 6.25% of PJ. The number of live cells decreased by half after 48 h compared with 24 h incubation following treatment with 12.5% of PJ (P < 0.05). At highest concentration 25% of PJ caused 98% decrease in the number of live cells. Significant increase in the number of apoptotic and dead cells was shown after treatment with all concentrations of PJ (Figure 3.12).

Figure 3.12: Annexin V-FITC/PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on KGla. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
Treatment HL-60 cell lines with PJ also showed a significant decrease in the number of live cells and increase in the number of apoptotic cells at all concentrations (6.25%, 12.5% and 25%) after 24 and 48 h ($P < 0.05$) (Figure 3.13). Following 24 h the number of live cells decreased to 17% compared to control and following 48 h only 1% of cells remained alive (Figure 3.13).

![Table 3.13](image)

<table>
<thead>
<tr>
<th></th>
<th>Live</th>
<th>Apoptotic</th>
<th>Dead</th>
<th>Live</th>
<th>Apoptotic</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.25%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.13: Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on HL-60. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. $n = 3$.

105
Treatment of K562 cell lines with PJ showed a significant decrease in the number of live cells and increase in the number of apoptotic cells at all concentrations (6.25%, 12.5% and 25%) after 24 and 48 h (P < 0.05) (Figure 3.14).

Figure 3.14: Annexin V-FITC/PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on K562. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
THP-1 cells were the most resistant leukaemia cell line, they showed a significant decrease in the number of live cells and increase in the number of apoptotic and dead cells after all time points ($P < 0.05$). Less than 10% decrease in the number of live cells was observed following 6.25% PJ treatment for 24 h which increased to 22% following 48 h (Figure 3.15). Apoptotic cells did not show an increase in the number of cells comparing to control when treated with PJ at concentration 6.25% after 24 h incubation, although all other treatments induced significant increases in apoptotic and dead cell populations ($P < 0.05$) (Figure 3.15).

Figure 3.15: Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on THP-1. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
The non-tumour CD133+ HSCs were less sensitive to PJ treatment than the majority of the leukemia cell lines (Figure 3.16). Treatment with 6.25% PJ did not show a significant decrease in the number of live cell and increase in the number of apoptotic and dead cells after 24 h (\(P > 0.05\)). The highest dose of PJ (25%) failed to induce 50% cell death even after 48 h (Figure 3.16).

Figure 3.16: Annexin V-FITC/ PI based on flow cytometry following treatment with PJ (0%, 6.25%, 12.5% and 25%) for 24 and 48 h on CD133 positive hematopoietic stem cells (non-tumour HSC). Mean ± SEM. * indicates significant difference (\(P < 0.05\)) vs. untreated control. n= 3.
3.4.2 Effect of PJ on Induction of Apoptosis Using DAPI for Morphology Assessment

DAPI nuclear stain exhibits normal cells with round, clear edged and uniformly stained. In contrast it demonstrates apoptotic cells with irregular edges around the nucleus, chromatin condensation in the nucleus, intense staining and with pyknosis increase number of nuclear body fragments (Figure 2.6). DAPI morphological analysis showed a significant \(P < 0.05 \) increase in the number of apoptotic cells in all 4 lymphoid and 4 myeloid human leukaemia cell lines in a dose dependent manner following treatment with PJ at concentration 6.25%, 12.5% and 25% compared to control with patterns confirming the annexin V/PI results (Figure 3.17 to 27). In addition, the percentage of apoptotic cells was significantly higher within lymphoid than the myeloid cell lines.

CCRF-CEM cells showed a significant increase in apoptotic population at all doses of PJ after 24 and 48 h incubation (Figure 3.17). Similarly, Jurkat cells showed a significant \(*P < 0.05 \) rise in the number of apoptotic population at all thee PJ concentrations following 24 and 48 h. The lowest dose (6.25%) and highest dose (25%) of PJ have shown a 10% increase in the apoptotic cell number following 48 h incubation compared with 24 h incubation time (Figure 3.18). Similarly MOLT-3 and SUP-B15 also showed significant \(P < 0.05 \) increase in apoptosis following 24 and 48 h incubation with PJ (Fig 3.19 and 3.20).

KG-1 cells were the most affected myeloid cell line with 57, 71 and 82 apoptotic cell number following 24 h incubation and 71%, 82% and 92% apoptotic cell population following 48 h at concentration of PJ 6.25%, 12.5% and 25% respectively (Figure 3.21). THP-1 was least affected lymphoid cell lines with maximum apoptotic cells of 46% and 64% at highest dose of PJ following 24 and 48 h incubation respectively (Figure 3.22). CD133 demonstrated a significant \(P < 0.05 \) increase in the number of apoptotic cells, but it was less than all leukaemia cell lines (Figure 3.23).
Figure 3.17: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with RJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with RJ at concentration 0%, 6.25%, 12.5% and 25% for 24 and 48 h. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. Scale bar= 25 pm. n= 3.
Figure 3.18: (1) Morphological staining analysis of Junket with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with PJ at concentration 0%, 6.25%, 12.5% and 25% for 24 and 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 25 pm. n= 3.
Figure 3.19: (1) Morphological staining analysis of MOLT-3 with DAPI treated with RJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with RJ at concentration 0%, 6.25%, 12.5% and 25% for 24 and 48 h. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. Scale bar= 25 pm. n= 3.
Figure 3.20: (1) Morphological staining analysis of SUP-B15 with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with PJ at concentration 0%, 6.25%, 12.5% and 25% for 24 and 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 25 pm. n= 3.
Figure 3.21: (1) Morphological staining analysis of KG-la with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with PJ at concentration 0%, 6.25%, 12.5% and 25% for 24 and 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 25 pm. n= 3.
Figure 3.22: (1) Morphological staining analysis of HL-60 with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with PJ at concentration 0%, 6.25%, 12.5% and 25% for 24 and 48 h. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. Scale bar= 25 pm. n= 3.
Figure 3.23: (1) Morphological staining analysis of K562 with DAPI treated with RJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with RJ at concentration 0%, 6.25%, 12.5% and 25% for 24 and 48 h. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. Scale bar= 25 pm. n= 3.
Figure 3.24: (1) Morphological staining analysis of K562 with DAPI treated with PJ at concentrations 0%, 6.25%, 12.5% and 25% for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with PJ at concentration 0%, 6.25%, 12.5% and 25% for 24 and 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 25 pm. n= 3.
Effect of RJ E on induction of apoptosis using DAPI staining following 24 hr incubation

Figure 3.25: Analysis of DAPI staining of apoptotic cell populations normalized to untreated controls in 4 lymphoid leukaemia cell lines (CCRF-CEM, JURKAT, MOLT-3, SUP-B15), 4 myeloid leukaemia cell lines (KG-1a, HL-60, K562, THP-1), and non-tumour hematopoietic stem cells (CD133) following treatment RJ for 24 h.

Effect of RJ E on induction of apoptosis using DAPI staining following 48 hr incubation

Figure 3.26: Analysis of DAPI staining of apoptotic cell populations normalized to untreated controls in 4 lymphoid leukaemia cell lines (CCRF-CEM, JURKAT, MOLT-3, SUP-B15), 4 myeloid leukaemia cell lines (KG-1a, HL-60, K562, THP-1), and non-tumour hematopoietic stem cells (CD133) following treatment RJ for 48 h.
3.4.3 Effect of PJ on Cell Viability

To investigate whether PJ treatment imparts anti-proliferative effects against leukaemia cells, the effect of PJ on the growth of these cells was evaluated by the trypan blue exclusion assay.

Trypan blue exclusion assay was used based on the countess™ automated cell counter to measure the effect of PJ on all leukaemia cell lines and non-tumour haematopoietic stem cells on cell viability following 24 and 48 h incubation. In this case the dye is normally taken up by viable cells but non-viable cells.

Treatment with PJ at concentrations 6.25%, 12.5% and 25% resulted in a significant decrease in the number of viable cells in a dose dependent manner compared to untreated cells (0%) following 24h and 48 h incubation in all four human lymphoid leukaemia cells (CCRF-CEM, MOLT-3, Jurkat and SUP-B15) and four myeloid leukaemia cells (HL-60, THP-1, K562 and KG1a) (P < 0.05) (Figure 3.28 to 3.36).

CCRF-CEM and Jurkat showed less than 2% viable cells post treatment with 12.5% and 25% PJ after only 24 h incubation and there was no significant difference between 24 and 48 h in the same concentration (Figure 3.27). Other lymphoid cell lines (MOLT-3 and SUP-B15) were less affected than CCRF-CEM and Jurkat with about 10% of cells remaining viable following 25% PJ treatment for 48 h (Figure 3.28, 3.29, and 3.30).

KG-1a was the most affected myeloid cell line with 96% decrease in the number of live cells following 48 h treatment with 25% PJ (Figure 3.31). In contrast THP-1 was the least affected cell lines since it only showed less than 10% decrease in the number of live cells at 6.25% PJ following 24 and at highest concentration of PJ 25% following 48 h demonstrated less than 80% decrease in the number of live cells compared to control (Figure 3.34). 25% PJ failed to inhibit more than 50% of CD133 after 24 h incubation, while following 48 h incubation the number of live cells for CD133 showed a decrease with about 80% reduction following 25% PJ (Figure 3.35).
Figure 3.27: Effect of pomegranate juice extract (PJ) on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on CCRF-CEM. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.

Figure 3.28: Effect of pomegranate juice extract (PJ) on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on CCRF-CEM. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
Figure 3.29: Effect of PJE on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on MOLT-3. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.

Figure 3.30: Effect of PJE on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on SUP-B15. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
Figure 3.31: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on KG-la. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM* indicates significant difference (P < 0.05) vs. untreated control. n= 3.

Figure 3.32: Effect of PJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on HL-60. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
<table>
<thead>
<tr>
<th>Concentration</th>
<th>K562</th>
<th>THP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6.25%</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>12.5%</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>25%</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>40%</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>60%</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 3.33: Effect of RJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on K562. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.

Figure 3.34: Effect of RJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on K562. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.

123
Figure 3.35: Effect of RJ on cell viability using trypan exclusion assay following 24 and 48 h incubation at 6.25%, 12.5%, and 25% on K562. Average cell number of untreated cells was set at 100% and relative number of cells calculated accordingly. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.
3.4.4 Effect of PJ on Cell Cycle Using Flow Cytometry

Differential effects on cell cycle stage following PJ treatment were observed dependent on cell type investigated and dose and duration of PJ treatments (Table 3.3). CCRF-CEM cells displayed cell cycle accumulation in S phase, which was significant following 6.25% and 25% treatments with PJ (Figure 3.36) \((P < 0.05)\). MOLT-3 and SUP-615 cells showed a significant \((P < 0.05)\) S phase accumulation at all concentrations of PJ (Figure 3.37 and 3.38). Jurkat cells displayed a significant G0/Gi phase accumulation at 6.25% of PJ and significant \((P < 0.05)\) S phase accumulation at 12.5% and 25% of PJ (Figure 3.37). Myeloid cells (K562 and TFIP-1) displayed a significant \((P < 0.05)\) S phase accumulation at the higher doses of PJ (Figure 3.42 and 3.43), while KG-la and HL-60 cells were the only two cell lines which displayed a G0/Gi phase accumulation at all doses (Figure 3.40 and 3.41).

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>6.25%</th>
<th>12.5%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCRF-CEM</td>
<td>S</td>
<td>S'</td>
<td>S'</td>
</tr>
<tr>
<td>JURKAT</td>
<td>G0/Gi*</td>
<td>S'</td>
<td>S'</td>
</tr>
<tr>
<td>MOLT-3</td>
<td>S'</td>
<td>S'</td>
<td>S'</td>
</tr>
<tr>
<td>SUP-B15</td>
<td>S'</td>
<td>S'</td>
<td>S'</td>
</tr>
<tr>
<td>KG-la</td>
<td>G0/Gi</td>
<td>G0/Gx*</td>
<td>G0/Gi*</td>
</tr>
<tr>
<td>HL-60</td>
<td>G0/Gi*</td>
<td>G0/Gi*</td>
<td>S'</td>
</tr>
<tr>
<td>K562</td>
<td>G0/Gi</td>
<td>S'</td>
<td>S'</td>
</tr>
<tr>
<td>THP-1</td>
<td>S</td>
<td>S'</td>
<td>S'</td>
</tr>
</tbody>
</table>

Table 3.3: Summary of cell cycle results.

125
Figure 3.36: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on CCRF-CEM. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n = 3.

Figure 3.37: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on Jurkat. Mean ± SEM* indicates significant difference (P < 0.05) vs. untreated control. n = 3.
MOLT-3
mO% *6.25% M 12.50% >J25%

100

GO/Gi Phase S Phase M Phase

Figure 3.38: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on MOLT-3. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.

SUP-B15
M 0% H 6.25% M 12.50% u 25%

100

GO/Gi Phase S Phase M Phase

Figure 3.39: Cell cycle based on flow cytometry using FlowJo software following treatment with PJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on SUP-B15. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
KG-la

10 % M 6.25% fa 12.50% U 25%

100

Figure 3.40: Cell cycle based on flow cytometry using FlowJo software following treatment with RJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on KG-la. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. $n= 3$.

HL-60

0% fa 6.25% fa 12.50% u 25%

100

80

Figure 3.41: Cell cycle based on flow cytometry using FlowJo software following treatment with RJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on HL-60. Mean ± SEM. *Significant difference ($P < 0.05$) vs. untreated control. $n=3$.

GO/G1 Phase S Phase M Phase

GO/G1 Phase S Phase M Phase
Figure 3.42: Cell cycle based on flow cytometry using FlowJo software following treatment with RJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on K562. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n = 3.

Figure 3.43: Cell cycle based on flow cytometry using FlowJo software following treatment with RJ at concentration 0%, 6.25%, and 12.5% for 24 h incubation on THP-1. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n = 3.
3.4.5 Effect of Isotonic/Osmolarity and pH Changes on Induction of Apoptosis
To ensure the toxic effects observed were due to bioactive agents in the PJ and not as a result of altered isotonic or osmolarity or decreased pH induced by PJ inclusions, cells were treated with equivalent concentrations of distilled water (0%, 6.25%, 12.5% and 25%) or in adjusted media [pH of control media = 7.5; pH of PJ at 6.25% = 7.42; pH of PJ at 12.5% = 7.42; pH of PJ at 25% = 6.52] on two lymphoid cell lines (CCRF-CEM and MOLT-3) (Figure 3.44, 3.45, 3.49, and 3.50) and two myeloid cell lines (HL-60 and THP-1) (Figure 3.46, 3.47, 3.51, and 3.52) and the non-tumour CD133+ (Figure 3.48 and 3.53) for 48 h. The majority of cell types investigated showed no significance decrease in live cells or increase in the apoptotic or dead cells following inclusion of water controls or in altered pH (P ≤ 0.05). A small but significant decrease in live cells was observed in THP-1 cells (Figure 3.52) treated with water equivalent to 12.5% and 25% PJ, and in CCRF-CEM cells treated with adjusted media to 25% (Figure 3.45). HL-60 cells also showed a small significant decrease in the number of live and increased in apoptotic cells when treated in adjusted media to 25% (Figure 3.46). However, it is noteworthy that these effects were far smaller than those seen following PJ treatment.
Figure 3.44: Annexin V-FITC/PI g based on flow cytometry. CCRF-CEM treated in pH adjusted media for 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.

Figure 3.45: Annexin V-FITC/PI based on flow cytometry. MOLT-3 treated in pH adjusted media for 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
Figure 3.46: Annexin V-FITC/PI based on flow cytometry. HL-60 treated in pH adjusted media for 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.

THP-1

M 0% M 6.25% U 12.50% S 25%

Figure 3.47: Annexin V-FITC/PI based on flow cytometry. THP-1 treated in pH adjusted media for 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
Apoptotic

Figure 3.48: Annexin V-FITC/PI based on flow cytometry. CD133 treated in pH adjusted media for 48 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. $n = 3$.

CCRF-CEM
M 0% ■ 6.25% M 12.50% ■ 25%

Figure 3.49: Annexin V-FITC/PI based on flow cytometry. CCRF-CEM treated in equivalent concentration of water for 48 h. Mean ± SEM* indicates significant difference ($P < 0.05$) vs. untreated control. $n = 3$.
Figure 3.50: Annexin V-FITC/PI based on flow cytometry. MOLT-3 treated in with equivalent concentration of water for 48 h. Mean ± SEM. *indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.

Figure 3.51: Annexin V-FITC/PI based on flow cytometry. HL-60 treated in equivalent concentration of water for 48 h. Mean ± SEM. *indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.

Live	Apoptotic	Dead
MOLT-3
fc 0% & H 6.25% & U 12.50% & l 25%

HL-60
$m 0\%$ & $m 6.25\%$ & U 12.50% & M 25%
Figure 3.52: Annexin V-FITC/PI based on flow cytometry. THP-1 treated in equivalent concentration of water for 48 h. Mean ± SEM. * indicates significant difference \((P < 0.05)\) vs. untreated control. \(n=3\).

Figure 3.53: Annexin V-FITC/PI based on flow cytometry. CD133 treated in equivalent concentration of water for 48 h. Mean ± SEM. * indicates significant difference \((P < 0.05)\) vs. untreated control. \(n=3\).
3.5 Discussion
This study aimed to investigate the hypothesis that: The effect of pomegranate extracts and its purified constituents have been investigated previously using cell lines derived from solid tumours; few, however, have investigated the effect in leukaemia cells. Khan et al. (2009) investigated the effect of PJ on induction of apoptosis in 2 breast cancer cell lines (SUM 149 and MDA-231), together with non-tumour MCF-7 10A cells, where treatment with PJ induced apoptosis following 72 h selectively within the 2 tumour cell lines and did not affect the non-tumour MCF-7 cells. Here we also identified an increased sensitivity to PJ within the majority of leukaemia cell lines compared to non-tumour HSCs were seen. Together, these studies suggest that pomegranate extracts could hold promise for selective cancer therapies in subsets of cancer types. Seeram and his colleagues (2005) showed that both isolated constituents, such as ellagic acid and punicalagin as well as PJ induced apoptosis in 2 human colon cell cultures (HT-29 and HCT116). It has also been shown that PJ derived ellagitannins and urolithins induced apoptosis in colon cancer cell line (HT-29) following 24 h (Kasimsetty et al, 2010). Induction of apoptosis, in a number of prostate cancer cells such as PC3 (Albrecht et al, 2004; Malik et al, 2005), DU-145 (Malik et al, 2005; Hong et al, 2008), LNCaP and LNCaP-AR (Hong et al, 2008), and LAPC4 (Koyoma et al, 2010) has also been shown. Here, PJ also induced apoptosis in a number of leukaemia cell lines. Importantly, we have shown that the response to PJ varied between leukaemia cell lines and the majority was affected to a greater extent than the non-tumour control cells. The sensitivity to chemotherapy agents often display selective targeting to either leukaemias of the lymphoid or myeloid origin; for example, phenoxodiol showed greater toxicity to lymphoid leukaemia than myeloid leukaemia (Herst et al, 2009), as do extracts from carrot juice (Zaini et al, 2010). Lymphoid leukaemia and myeloid leukaemia are well known to be caused by abnormalities to differential signalling pathways; for example, STATs are involved in the pathogenesis of myeloid leukaemia and act as a target for selective chemotherapy agents such as the tyrosine kinase inhibitors, which do not show any effect within lymphoid leukaemia (White and Hugues, 2009). Thus, it is not surprising to see differential sensitivity patterns between cell lines derived from myeloid and lymphoid leukaemia’s within the current study. Future work will focus on investigating the molecular mechanisms of PJ on these cell lines to
elucidate further the molecular targets of PJ and hence identify reasons for the selective targeting toward lymphoid leukaemia cell lines.

Interestingly, however, some of the myeloid leukaemia cell lines did show cytotoxic effects, suggesting that in certain subtypes of myeloid leukaemia PJ may still be a useful therapeutic agent. In addition to induction of apoptosis, cell cycle arrest can be a useful target for cancer therapies (Schmitt, 2007).

Here, a dose-dependent arrest of cell cycle at different phases was observed. At low doses of PJ, the majority of cells showed G₀/G₁ arrest, suggesting induction of senescence (Schmitt, 2007). G₀/G₁ arrest has been observed previously in a number of tumour cell lines following PJ treatments; for example, human lung carcinoma A549 cell line treatment with PJ for 72 h resulted in a dose-dependent arrest of cells in G₀/G₁ phase of the cell cycle (Khan et al, 2006b). In addition, Kasimsetty et al. (2010) observed a reduction in S phase and an accumulation of cells in G₀/G₁ in DU145 colon cancer cells following PJ treatment (Kasimsetty et al, 2010). This reduction in S phase and accumulation of cells in G₀/G₁ was also observed within the higher concentration of PJ for HL-60 and KG-1a cell lines, which were also the most sensitive myeloid cell lines. Interestingly, these 2 cell lines were the only ones investigated that at this concentration induced G₀/G₁ arrest; these 2 cell lines show myeloblast morphology unlike the other 2 myeloid cell lines that appears to affect the cell cycle response. This may be due to modulation of c-myc expression that is over expressed within HL-60 cells and inhibition of c-myc induces G₀/G₁ cell cycle arrest (Anfossi et al, 1989); thus it is possible the G₀/G₁ arrest observed here is due to inhibition of c-myc expression. In all other cell lines and non-tumour HSCs treated with 12.5%, PJ S-phase arrest was observed, demonstrating again variability between cell lines from different leukaemia types. This effect has been observed previously in CaCo-2 cells treated with the pomegranate extracted ellagitannin: punicalagin (Herst et al, 2009). Kasimsetty et al. (2010) also evaluated the effect of PJ-derived ellagitannins (gallic acid, ellagic acid, gallagic acid, hexahydroxydiphenic, gallagylidilactone, punicalins, and punicalagins) on HT-29 colon cells, and once again S-phase arrest was observed. Differential effects on cell cycle dependent on concentration or duration has been seen in a number of
studies previously for example, Mertens-Talcott et al. (2003) investigated 3 polyphenolic compounds (camptothecin, ellagic acid, and quercetin) on a lymphoid leukaemia cell line (MOLT-4); they demonstrated G0/G1 arrest following camptothecin treatment for 12 h, but this effect was not observed at later time points, whereas treatment with a combination of ellagic acid and quercetin showed no effect following 12 h, but S-phase arrest was observed following 24 h (Mertens-Talcott et al, 2003). S-phase arrest can result from 2 main causes, either an artefact of cells undergoing apoptosis within G2/M phase thus reducing their DNA content and accumulating within the S-phase peak during cell cycle analysis. Alternatively, agents that alter cell cycle expression that control progression though S phase will result in S-phase arrest. This has been shown previously in colon cancer cells treated with 2,3-dichlorophenoxypropyl, where S-phase arrest was induced by over expression of p21 (Zhu et al, 2004) or by affecting agents involved in DNA repair mechanisms such as inhibition of Poly(ADPribose) as seen following treatment of RAW 264.7, a macrophage cell line with gallotannin (Rapizzi et al, 2004), which could be a mechanism induced by pomegranate extracts within our current study.

Within this study, we also investigated the overall effect of PJ on total viable cell number, which shows a combined effect of induction of apoptosis and inhibition of cellular proliferation, confirming our previous data. Decreased number of viable cells has previously been demonstrated following pomegranate extract treatments in a number of cancers. Several studies in cell culture and animal models have reported inhibition of prostate cancer by PJ (Seeram et al 2005, 2007; Albrecht et al 2004; Lansky (1) et al 2005; Malik et al 2005; Sartippour et al., 2008; Retting et al, 2008; Hong et al, 2008; Koyoma et al, 2010).

The effects of pomegranate fruit extracts on lung cancer were examined by Khan et al. (2007b) both in vitro and in vivo, demonstrating that Normal bronchial epithelial cells (NHBE) and human lung carcinoma A549 cells were treated with pomegranate fruit extract (50-150 µg/ml) for 72 h, showing significant decrease in cell viability in A549 cells, while treatment of NHBE cells resulted in minimal effects. Based on the results of this in vitro data, a study carried out in the mouse model showed that oral
administration of human acceptable dose of PJ extract to athymic mice implemented with A549 cells resulted in significant inhibition in progression of tumour growth. Human breast cancer cell lines MCF-7 and MB-MDA-231 treated with fermented pomegranate resulted in a decrease in cell viability on both cells. In other breast cancer cell lines (MDA-231 and SUM-149) pomegranate fruit extract decreased cell proliferation following 72 h. *In vitro* studies pomegranate fruit extract decreased cell viability in WA4 mouse mammary cancer cells. Seeram *et al.* (2005) reported that both isolated constituents such as ellagic acid and punicalagin as well as PJ inhibited the proliferative effects of HT29 and HCT116 colon tumour cells.

PJ investigated within this study was a total extract of all the polyphenolics and anthocyanins together with any other potential bioactive agents, rather than a pure fraction this was performed to investigate the effects of combined responses, rather than simple individual actions. Pomegranates contain a wide number of potential bioactive agents, including hydrolysable tannins (such as punicalin, punicalagin, and gallagic), and anthocyanins (such as delphinidin, cyanidin, and pelargonidin), which can often act synergistically or indeed inhibit the actions of other agents (Herst *et al.*, 2009; Mertens-Talcott *et al.*, 2003).

3.6 Conclusion

This study is the first to investigate the effect of PJ on 8 different leukaemia cell lines in addition to normal HSCs; we demonstrated important variations in sensitivity between different types of leukaemia cell lines and normal cells. This study suggests that the active components from PJ could have potential as agents in the treatment of certain leukaemia’s, and further work will aim to identify these components.
compounds
4.1 Introduction

We have previously shown that crude extracts of PJ induce apoptosis and inhibit cell cycle in a number of leukaemia cell lines, which demonstrated greater sensitivity than non-tumour control cells (Chapter 3) (Dahlawi et al., 2011).

However, to date, the compounds responsible for the anti-leukaemic properties of pomegranate remain unknown. PJ contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components. The phenolic components include phenolic acids: principally, hydroxybenzoic acids (such as gallic acid and ellagic acid) (Amakura et al., 2000); hydroxycinnamic acids (such as caffeic acid and chlorogenic acid) (Elfalleh et al., 2011); anthocyanins, including glycosylated forms of cyanidin, delphinidin, and pelargonidin (Fanali et al., 2011; Krueger, 2012); and gallotannins and ellagitannins (Amakura et al., 2000). In addition, PJ contains glucose, fructose, water, and organic acids (including ascorbic and citric acid) (Krueger, 2012). However, the concentration and the contents of these compounds vary due to growing region, climate, cultivation practice, and storage conditions (Pande and Akoh 2009; Elfalleh et al., 2011; Legua et al., 2012).

Here, we used solid phase extraction (SPE) to fractionate PJ to determine which fractions induced apoptosis and cell cycle arrest using two lymphoid and two myeloid cell lines, which we previously demonstrated in Chapter 3 were sensitive to crude PJ. We assessed the polyphenol composition of the fractions by phenol assay and used liquid chromatography mass spectrometry (LC–MS) to identify active compounds within fractions of PJ.
4.2 Materials and Methods

4.2.1 Sample Preparation and Fraction Separation from PJ

Solid phase extraction (SPE) using Strata C18E GIGA columns (Phenomenex) were used to separate fractions from pomegranate juice extract (PJ). First, the columns were pre-equilibrated by washing with 50 ml of acetonitrile, then 50 mL of 0.1% formic acid/ultra pure water (v/v) (Sigma) PJ derived from fresh pomegranates (Sainsbury’s U.K.) prepared as described in section 2.1 were sterile filtered through 0.22 pm syringe filter (Invitrogen) and diluted 1:1 with sterile distilled water, then 50 mL of this diluted juice was added to the SPE unit. The unbound compounds which passed directly though the column were collected (Fraction A: unbound Fraction). Then, 50 mL each of ultra-pure water, acetonitrile, acetone, and ethyl acetate were added to the column to collect water (Fraction B), acetonitrile (Fraction C), acetone (Fraction D), and ethyl acetate (Fraction E) fractions, respectively, as described previously (Zaini et al, 2012) (Figure: 4.1). Each fraction was dried using freeze drying (MODULYOD-230 freeze dryer, Thermo) at -30 to -80°C for Fractions A and B or dried under a nitrogen stream at room temperature for Fractions C, D, and E. The water, unbound, and acetonitrile fractions were dissolved in distilled water; the acetone fraction in methanol; and ethyl acetate fraction in DMSO to the required dilution (Sigma).

A B C D E

Figure 4.1: Illustrates fractions generated from PJ using SPE. A: Unbound fraction, B: water fraction, C: acetonitrile fraction, D: acetone fraction, and E: ethyl acetate fraction.
4.2.2 Cell lines and Culture

Four leukaemia cell lines were obtained from the American Type Culture Collection (ATCC; Middlesex, U.K.), which chapter 3 and Dahlawi et al. (2011) demonstrated differing sensitivity to PJ. Two lymphoid cell lines: CCRF-CEM and MOLT-3 and two myeloid cell lines: HL-60 and THP-1 (Section 2.2). Cell lines were maintained and cultured in RPMI1640 medium (Invitrogen, Paisley, U.K.) supplemented with 10% (v/v) foetal bovine serum, 1.5 mmol/L L-glutamine, and 100 |ig/mL penicillin/streptomycin (complete media) in a humidified atmosphere of 5% CO₂ at 37°C.

Cells were seeded in 12-well plates (Fisher Scientific) at a cell density of 0.5 x 10⁶ cells per well and treated individually with the five fractions (unbound [i.e., compounds which passed directly through the column] and fractions eluted with water, acetonitrile, acetone, and ethyl acetate fractions) at equivalent compound weights seen in 0%, 6.25%, 12.5%, and 25% whole PJ, all treatments were performed in triplicate. Following treatment, cells were investigated for induction of apoptosis and inhibition of cell proliferation following 24, 48, and 72 h (Table 4.1).

<table>
<thead>
<tr>
<th>Test</th>
<th>Cell lines (PJ, unbound, water, acetonitrile, acetone, and ethyl acetate fractions)</th>
<th>Concentration (%)</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Titer-Glo⁺ Viability Assay</td>
<td>CCRF-CEM, MOLT-3, HL-60, and THP-1</td>
<td>6.25%, 12.5%, and 25%</td>
<td>24, 48 and 72 hr</td>
</tr>
<tr>
<td>Cell cycle</td>
<td>Acetonitrile fraction</td>
<td>6.25%, 12.5%, and 25%</td>
<td>48 hr</td>
</tr>
<tr>
<td>Annexin V-FITC/PI</td>
<td>Acetonitrile fraction</td>
<td>6.25%, 12.5%, and 25%</td>
<td>24, 48 and 72 hr</td>
</tr>
<tr>
<td>NucView™ 488 Caspase-3 substrate assay</td>
<td>Acetonitrile fraction</td>
<td>6.25%, 12.5%, and 25%</td>
<td>24, 48 and 72 hr</td>
</tr>
<tr>
<td>Hoechst 33342 and PI</td>
<td>Acetonitrile fraction</td>
<td>6.25%, 12.5%, and 25%</td>
<td>24, 48 and 72 hr</td>
</tr>
<tr>
<td>LC-MS Folin-Ciocalteu method</td>
<td>PJ, unbound, water, acetonitrile, acetone, and ethyl acetate fractions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: Experimental design for Chapter 4.
4.2.3 Cell Viability

The effect of SPE fractions (unbound, water, acetonitrile, acetone, and ethyl acetate) on the viability of cells was determined by the Cell Titer-Glo® Luminescent Cell Viability Assay (Promega) which measures total adenosine triphosphate (ATP) present, indicating the number of metabolically active cells as described in section 2.3.2. Cells were seeded at 25×10^4 cells in 100 μL of complete media and treated with each fraction at a concentration equivalent to that seen in 0%, 6.25%, 12.5%, and 25% whole PJ in a white 96-well plate (Fisher Scientific) for 48 h.

4.2.4 Annexin V- FITC /PI Flow Cytometry assay

Annexin V-FITC/PI fluorescein isothiocyanate (FITC) stains were used to detect apoptosis based on flow cytometry as described in section 2.4.1. Cells were seeded at 5×10^5 cells in 100 μL of complete media and treated with each fraction at a concentration equivalent to that seen in 0%, 6.25%, 12.5%, and 25% whole PJ in a 12-well plate (Fisher Scientific) for 24, 48, and 72 h. Data were recorded from 10,000 cells per sample and analyzed using FlowJo software (Tree Star).

4.2.5 Caspase-3 Activity

NucView™ 488 Caspase-3 substrate (Cambridge Bioscience, Cambridge, U.K.), was used for detection of apoptosis based on flow cytometry as described in section 2.4.3. Cells were treated with PJ fractions (unbound, water, acetonitrile (ACN), acetone, and ethyl acetate) at concentrations equivalent to their component concentrations seen in 0-25% whole PJ for 48 h. Data were recorded from 10,000 cells per sample and analyzed using FlowJo software (Tree Star, Ashland, OR).

4.2.6 Hoechst 33342 and Propidium Iodide (PI) staining

Apoptotic cells can be distinguished from healthy and necrotic cells by certain morphological features which are an important tool in apoptosis research. These features include cell shrinkage, membrane blebbing, chromatin condensation and nuclear fragmentation (Kerr et al, 1972, Wyllie et al, 1980, Galluzzi et al, 2007). In contrast necrotic cells characterised by loss of membrane integrity. Begin with swelling
of the cytoplasm and mitochondria complete necrosis with cell lysis (Galluzzi et al, 2007). Such features can be observed under a fluorescence microscope using a DNA specific dye.

Hoechst 33342 and PI staining technique detects apoptosis based upon fluorescent detection for morphological changes in apoptotic cells. Hoechst 33342, is a cell permeable DNA stain that is excited by ultraviolet light at around 350 nm and emits blue fluorescence at 460 nm. Hoechst 33342 binds preferentially to adenine-thymine (A-T) regions of DNA. This stain binds into the minor groove of DNA and exhibits distinct fluorescence emission spectra that are dependent on dye base pair ratio. PI stain as described previously in section 2.4.1 is a red-fluorescence dye (excitation/emission 535/617), which is only permeate to dead cells. The staining pattern resulting from the simultaneous use of these dyes makes it possible to distinguish normal, apoptotic, and dead (late apoptotic and necrotic) cell populations by fluorescence microscopy (Figure 4.3).

4.2.5.1 Methodology

Hoechst 33342 and propidium iodide (PI) staining was used to observe the apoptotic/necrotic morphology of HL-60 cells. In brief, 0.25×10^5 cells/mL were seeded into 12-well plates and incubated for 24 h following treatment with the acetonitrile fractions at concentrations equivalent to component concentrations seen in 0–25% whole PJ. Then, 1 µL of PI (50 µg/mL) and 5 µL of Hoechst 33258 (10 µg/mL) stains were added to each well and incubated at 37°C for 15 min. Cells were investigated using an Olympus inverted fluorescence microscope at excitation wavelength 350 nm and 488 nm dual wavelength filter and images were captured using Q Capture-Pro 8.0 (UVP Biolimaging Systems, Loughborough, U.K.).

4.2.5.2 Analysis
Cell populations (live, apoptotic & necrotic) were separated into three groups: live cells displayed low levels of fluorescence and normal morphology; apoptotic cells showed a higher level of blue fluorescence together with chromatin features of apoptosis, and dead cells displayed intense red fluorescence (Figure: 4.2). Necrotic cells is also characterized by high red fluorescence with damaged membranes display, but can be
differentiated from late apoptotic cells as mentioned in 4.2.6. (Figure 4.2). Quantitative analysis of cell populations (live, apoptotic and necrotic) was performed based on counting 200 randomly-selected cells and the percentage of apoptotic features determined for each sample.

Figure 4.2: Analysis of apoptosis of HL-60 cell line using Hoechst and PI staining. Live cells indicated by blue arrow, early apoptotic cells indicated by green arrows, dead and late apoptotic cell indicated by red arrows, and necrotic cell indicated by purple arrow.

4.2.6 Cell Cycle

The cell cycle distribution of leukaemia cell lines was measured by DNA content in each cell based on flow cytometry using the PI stain as described in section 2.5. Data from 10,000 cells per sample were recorded and percentages of cells within G0/G1, S, and G2M cell cycle phases were determined with Flow Jo software and Waston (pragmatic) analysis of cell cycle (Tree Star).

4.2.7 Liquid Chromatography Mass Spectrometry (LC-MS)

4.2.7.1 Methodology

Samples (containing 20 pg gallic acid equivalents [GAE]s by Folin assay) were analyzed on a LCQ-DECA system, comprising Surveyor autosampler, pump and photo diode array detector (PDAD), and a Thermo-Finnegan mass spectrometer iontrap (Stoke on
Trent, U.K.). The PDAD scanned three discrete channels at 280, 365, and 520 nm. Samples were eluted with a linear gradient of 5% acetonitrile (0.1% formic acid) to 30% acetonitrile (0.1% formic acid) on C18 column (Synergi Hydro C18 with polar end capping 2.0 mm × 150 mm) (Phenomenex) over 60 min at a rate of 200 μL/min. For dried fraction samples, the gradient was altered (t = 0, 5% acetonitrile; t = 10 min, 12.5% acetonitrile; and t = 60 min, 30% acetonitrile) to try to separate the later eluting ellagittannins. The LCQ-DECA LC-MS was fitted with an electrospray ionization interface and the samples were analyzed in positive and negative ion mode. There were two scan events: full scan analysis followed by data-dependent MS/MS of the most intense ions. The data-dependant MS/MS used collision energies (source voltage) of 45% in wideband activation mode. The MS detector was tuned against cyanidin-3-O-glucoside (positive mode) and against ellagic acid (negative mode).

4.2.8 Determination of Total Phenolics
The aim of this method was to determine the total polyphenol content in PJ and its fractions (unbound, water, acetonitrile, acetone, and ethyl acetate) using Half Strength Folin–Ciocalteu method (Singleton et al, 1999; Ainsworth et al, 2007).

Phenolic compounds are oxidized by Folin-Ciocalteu reagent. This reagent is formed from a mixture of phosphotungstic acid, H3PW12O40, and phosphomolybdic acid, H3PMo12O40, which, after oxidation of the phenols, is reduced to a mixture of blue oxides of tungsten, W8O23, and molybdenum, Mo8O23. The blue colouration produced has a maximum absorption in the region of 750 nm, and is proportional to the total quantity of phenolic compounds originally present (Ainsworth et al, 2007).

4.2.8.1 Methodology
The content of the total phenolics was evaluated by using the Half Strength Folin–Ciocalteu method adapted from (Deighton et al. 2000). First, 250 μL Folin–Ciocalteu reagent (Sigma) was added to 250 μL of each fraction (unbound, water, acetonitrile, acetone, and ethyl acetate) (1% diluted with water) and mixed gently prior to 3 minutes incubation at room temperature. Then, 250 μL of sodium carbonate solution was added to each sample, mixed well, and incubated for 1 h prior to recording at 750
nm using Ultrospec™ 2100 pro UV/Visible Spectrophotometer (GE Healthcare Life Science).

Triplicate samples containing a range of gallic acid contents from 0-500 μg were prepared to create standards. Total phenolics were expressed as Gallic Acid Equivalents (GAEs).

4.2.9 Statistical analysis:

Means and standard error of the mean (SEM) were calculated and a Shapiro–Wilke test (Stats Direct, Cheshire, U.K.) was used to test whether data followed a normal distribution. Data were non-parametric and thus a Kruskal–Wallis test and a Conover–Inman post hoc test were used to investigate significant differences. Results were considered statistically significant when $P \leq 0.05$.
4.3. Results:

4.3.1 Differential Effects of Pomegranate Fractions on ATP Levels

Whole PJ induced a dose-dependent inhibition of ATP levels within all four leukaemia cell lines ($P < 0.05$) (Figure: 4.3). The acetonitrile fraction obtained after SPE induced a significant decrease in ATP levels ($P < 0.05$) which showed a non-significant increase in cytotoxicity compared to the whole juice extracts mainly at the highest concentrations (25%) ($P > 0.05$) (Figure 4.3). The IC50 values of PJ and acetonitrile fractions for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells are illustrated in Table 4.2. Low-dose treatments of leukaemia cell lines with either whole PJ or the acetonitrile fractions demonstrated dramatic reduction in ATP levels indicating decreased cell viability following 24 h treatment (Fig. 4.3). The unbound, water, acetone, and ethyl acetate SPE fractions had minimal effects on any cell line at the doses investigated (concentration equivalent to those present in 6.25%, 12.5%, and 25% whole PJ treatments) (Figure: 4.3).

<table>
<thead>
<tr>
<th></th>
<th>4.0%</th>
<th>4.7%</th>
<th>4.3%</th>
<th>7.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile fraction</td>
<td>3.1%</td>
<td>3.9%</td>
<td>3.0%</td>
<td>5.5%</td>
</tr>
</tbody>
</table>

Table 4.2: The IC50 of PJ and acetonitrile fractions on leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1) following 24 h treatment.
4.3.2 Effect of Acetonitrile Fraction from Pomegranate Juice on Cell Cycle Arrest within Leukaemia Cell Lines

Treatment of leukaemia cells lines with the acetonitrile fraction for 48 h demonstrated significant S phase arrest within all four cell lines ($P < 0.05$) with a corresponding significant decrease in cells within G0/G1 and M phases ($P < 0.05$) (Figure. 4.4).
4.3.3 Induction of Apoptosis by Acetonitrile SPE Fraction from Pomegranate Extracts within Leukaemia Cell Lines

Acetonitrile fraction induced apoptosis (determined via Annexin V/PI-FITC) in a dose-dependent manner in all four leukaemia cell lines following 24, 48, and 72 h incubation. Acetonitrile fraction showed a significant decrease in the number of live cells with a significant increase in the number of apoptotic and dead cells in CCRF-CEM cells at all concentrations following 24, 48, and 72 h (P < 0.05) (Figure 4.5). MOLT-3 and HL-60 cells exhibited a slight decrease in the number of live cells with a slight increase in the number of apoptotic and dead cells at 6.25% following 24 h treatment with acetonitrile fraction. However, following 48 and 72 h both cell lines significantly induced apoptosis at all concentrations (P < 0.05) (Figure 4.5 and 4.6). THP-1 was the least sensitive among the cell lines investigated, which illustrated only slight induction of apoptosis at the highest concentration of 25% following 24 h treatment. Following 48 and 72 h a significant decrease in the number of live cells and a significant increase in the number of live and apoptotic cells at the highest two concentrations 12.5% and 25% was seen (P < 0.05) (Figure: 4.6)

Induction of apoptosis by treatment with acetonitrile fraction was confirmed with induction of caspase-3 activity in all four cell lines following 24, 48, and 72 h (Figure 4.7). Results showed the same pattern of sensitivity toward acetonitrile fractions when determined with annexin V-FITC/PI (Figure 4.5 and 4.6)

Microscopic examination (Figure 4.8) also demonstrated a marked increase in the number of cells displaying apoptotic morphology (such as chromatin condensation and fragmentation), in addition to a decrease in the number of live cells displaying normal nuclear morphology in CCRF-CEM, MOLT-3, HL-60 and THP-1 cells (Figure 4.9 and 4.10). Necrotic cells were significantly increased following treatment with high concentrations (25%) in most of the cell lines.
Figure 4.5: Effect of acetonitrile fraction generated by SPE of PJ on induction of apoptosis in leukaemia cell lines CCRF-CEM and MOLT-3. Cells treated for 24, 48, and 72 h with acetonitrile fraction at concentration equivalent to the concentrations of compounds found in 6.25%, 12.5%, and 25% whole PJ. Induction of apoptosis was determined by Annexin V-FITC/PI based on flow cytometry analysis. Means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n = 3.
Figure 4.6: Effect of acetonitrile fraction generated by SPE of PJ on induction of apoptosis in leukaemia cell lines HL-60 and THP-1. Cells treated for 24, 48, and 72 h with acetonitrile fraction at concentration equivalent to the concentrations of compounds found in 6.25%, 12.5%, and 25% whole PJ. Induction of apoptosis was determined by Annexin V-FITC/PI based on flow cytometry analysis. Means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
Figure 4.8: Effect of acetonitrile fraction generated by SFE of RJ on morphology of apoptotic cells in HL-60. Cells treated for 48h at concentration 6.25%, 12.5% and 25%. Apoptotic morphology was determined by Hoechst 33258 and PI staining using fluorescence microscope at magnification of x40.
<table>
<thead>
<tr>
<th></th>
<th>Live</th>
<th>Apoptotic</th>
<th>Necrotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCRF-CEM</td>
<td>0%</td>
<td>6.25%</td>
<td>12.50%</td>
</tr>
<tr>
<td>MOLT-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>6.25%</td>
<td>112.50%</td>
</tr>
</tbody>
</table>

Figure 4.9: Percentage of Live, apoptotic, and necrotic in CCRF-CEM and MOLT-3 cells determined from Hoechst 33342 and PI morphological assessment following treatment with acetonitrile fraction generated by SPE of RJ at concentration 6.25%, 12.5% and 25% for 24 hours. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.

158
<table>
<thead>
<tr>
<th></th>
<th>Live</th>
<th>Apoptotic</th>
<th>Necrotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL-60</td>
<td>0%</td>
<td>6.25%</td>
<td>M 12.50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H 25%</td>
<td></td>
</tr>
<tr>
<td>THP-1</td>
<td>0%</td>
<td>6.25%</td>
<td>H 12.50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H 25%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.10: Percentage of Live, apoptotic, and necrotic in HL-60 and THP-1 cells determined from Hoechst 33258 and PI morphological assessment following treatment with acetonitrile fraction generated by SPE of RJ at concentration 6.25%, 12.5% and 25% for 24. (Mean ± SEM, * indicates significant difference (*P < 0.05*) vs. untreated control. n= 3.)
4.3.4 Phenolic Content of SPE Fractions

The acetonitrile fraction generated by SPE had the highest phenol content of 2696.7 pg GAE/mL, which was more than double than that seen within whole juice extracts (1236.9 pg GAE/mL), whereas the phenol content of other extracts was minor in comparison with 53.5 pg GAE/mL in the unbound fraction, 148.2 pg GAE/mL in the water fraction, 46.0 pg GAE/mL in the acetone fraction, and 5.7 pg GAE/mL in the ethyl acetate fraction (Figure: 4.11). This translated to concentrations of phenol content of 6.25% equivalent treatments containing 5.2 pg/mL GAE within acetonitrile treatments and 2.4 pg/mL GAE within 6.25% treatments within whole PJ. Other fractions contained negligible levels of phenols which correlated with no observable biological activity.

Estimated Total Level of Phenolic Compound in Pomegranate Juice Fractions

<table>
<thead>
<tr>
<th></th>
<th>Unbound</th>
<th>Water</th>
<th>Acetonitrile</th>
<th>Acetone</th>
<th>Ethyl acetate</th>
<th>Juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated GAE</td>
<td>2500</td>
<td>2000</td>
<td>3500</td>
<td>53.5</td>
<td>148.2</td>
<td>1236.9</td>
</tr>
</tbody>
</table>

Figure 4.11: Estimated total level of phenolic compounds of PJ fractions (unbound, water, acetonitrile, acetone, and ethyl acetate) generated by SPE and whole PJ. n=3
4.3.5 LC–MS of Whole PJ and SPE Fractions

LC–MS was carried out on the whole PJ and each fraction generated from the SPE procedure on samples containing 20 µg GAE. Virtually all the material from the unbound fraction and the water fraction was not retained and eluted in the column wash (data not shown). Previous work has shown that these fractions contain organic acids, vitamin C, and sugars. The whole PJ contained peaks characteristic of phenolic components previously found in pomegranate (Fischer et al, 2011) and included gallotannins, ellagitannins, anthocyanins, and hydroxycinnamic acid derivatives (Figure 4.12 and Table 4.3). The acetonitrile fraction had the highest intensity of peaks but had a similar composition to the whole PJ. The acetone and ethyl acetate fractions contained lower amounts of phenolic materials but certain components were enhanced in these fractions (Figure 4.12). Comparison of whole PJ and the acetonitrile fraction (Figure 4.13) demonstrated that the acetonitrile fraction was enriched in a number of ellagitannins, ellagic acid, and hydroxycinnamic acid derivatives over the whole PJ (Figure: 4.13 and Table 4.2). However, it was clear that the acetonitrile fraction was depleted in anthocyanins compared to whole juice extracts (Figure 4.13) but all the anthocyanins in the juice were also present in the acetonitrile fraction but were eightfold lower (Figure 4.14 and Table 4.3). The anthocyanins identified within both the whole juice extracts and acetonitrile fraction included the characteristic glycosylated forms of delphinidin, cyanidin, and pelargonidin (Figure 4.14 and Table 4.3) found in pomegranate.
Figure 4.12: LC–MS chromatographs of whole PJ (A) and acetonitrile (B), acetone (C) and ethyl acetate fractions (D) from solid phase extraction of PJ LC–MS performed on samples containing 20 µg GAE/mL by folin assay. LC–MS, liquid chromatography mass spectrometry; PJ, pomegranate juice extract; GAE, gallic acid equivalent.
Figure 4.13: LC-MS chromatographs of whole RJ (Black) and acetonitrile solid phase fraction from RJ (Blue) demonstrating peak differences within negative ion mode. *The main peaks in juice sample that differ from the ACN fraction. The identities of peaks labelled are described in Table 4.2.
Figure 4.14: LC-MS chromatographs of whole PJ (Black) and acetonitrile solid phase fraction from PJ (Blue) demonstrating peak differences within positive ion mode. *The main peaks in juice sample that differ from the ACN fraction. The identities of peaks labelled are described in Table 4.2.
<table>
<thead>
<tr>
<th></th>
<th>275</th>
<th>1569</th>
<th>935, 785, 765</th>
<th>Sanguin H-10 like isomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>275</td>
<td>581</td>
<td>301</td>
<td>EA derivative</td>
</tr>
<tr>
<td>6</td>
<td>290</td>
<td>507</td>
<td>327, 315</td>
<td>Methyl EA derivative</td>
</tr>
<tr>
<td>7</td>
<td>330</td>
<td>533</td>
<td>353</td>
<td>HCA derivative</td>
</tr>
<tr>
<td>A1</td>
<td>520</td>
<td>627+</td>
<td>303</td>
<td>Delphinid-3, O-gluicoside</td>
</tr>
<tr>
<td>A2</td>
<td>512</td>
<td>611+</td>
<td>287</td>
<td>Cyanidin-3, O-gluicoside</td>
</tr>
<tr>
<td>A3</td>
<td>500</td>
<td>595+</td>
<td>271</td>
<td>Pelargonidin-3, O-gluicoside</td>
</tr>
<tr>
<td>A4</td>
<td>520</td>
<td>465+</td>
<td>303</td>
<td>Delphinid-3-O-glucoside</td>
</tr>
<tr>
<td>A5</td>
<td>515</td>
<td>449+</td>
<td>287</td>
<td>Cyanidin-3-O-glucoside</td>
</tr>
<tr>
<td>A6</td>
<td>500</td>
<td>433+</td>
<td>271</td>
<td>Pelargonidin- O-glucoside</td>
</tr>
</tbody>
</table>

Table 4.3: Putative identification of phenolic components.
4.4 Discussion

Pomegranates have been postulated by a number of groups worldwide to provide bioactive compounds with anti-cancer actions, and have been successfully used in a number of randomized clinical trials for prostate cancer (Paller et al, 2012). We previously demonstrated in Chapter 3 that crude pomegranate juice extract induced apoptosis and inhibited cellular proliferation inducing S phase arrest in leukemia cell lines. Here, we used SPE to separate the PJ into fractions and identified that the acetonitrile fraction contained the bioactive compounds responsible for induction of apoptosis, cell cycle arrest and inhibition of proliferation within leukemia cell lines.

LC-MS analysis confirmed that the PJ contained a mixture of gallotannins, ellagitannins, anthocyanins and hydroxycinnamic acid derivatives characteristic of pomegranate (Fischer et al, 2011). Importantly most of these components were recovered in the acetonitrile fraction with only a small proportion of phenolic components being identified in other fractions. The phenolic-enriched acetonitrile fraction was the most effective, and this strongly suggests that ellagitanins and other phenolic agents were responsible for its bioactive actions. Interestingly, we identified that the active acetonitrile fraction to be enriched in ellagitannins, but comparably depleted in anthocyanins.

A number of ellagitannins were identified as well as ellagic acid and hydroxycinnamic acid derivatives. Ellagitannins extracted from pomegranate have been previously shown to induce apoptosis in HL-60 cell lines (Li et al, 2011). We observed similar pro-apoptotic affects when we treated this cell line together with other leukemia cell lines with the ellagitannin-rich acetonitrile fraction from pomegranate juice. Similarly ellagic acid has been shown to induce apoptosis within HL-60 cell lines, together with S Phase arrest (Hagiwara et al, 2010). This S Phase arrest mimics that seen here following treatment with the acetonitrile fraction, and those seen previously on whole PJ (Chapter 3). In contrast, ellagic acid and caffeic acid treatment of normal human peripheral blood mononuclear cells inhibited apoptosis induced by hydrogen peroxide treatments, suggesting that these compounds have protective effects on these cells (Khanduja et al, 2006). This was confirmed in Chapter 3 which showed PJ showed a greater toxicity towards leukemia cell lines than non-tumour control cells. This may
suggests that the ellagitannins within PJ display protection to apoptosis in non-tumour cells, but induce apoptosis in tumour cells.

Induction of apoptosis by a number of hydroxycinnamic acids have also been seen within leukaemia cell lines. Artepillin C, an extract from Brazilian propolis, has been shown to induce apoptosis and inhibit DNA synthesis resulting in S Phase arrest (Kimoto et al, 2001). Anthocyanins were also found in the acetonitrile fraction from PJ although at lower levels than seen in whole PJ. Anthocyanin treatments of leukaemia cell lines have also demonstrated inhibition of cell proliferation and induction of apoptosis by a number of groups worldwide (Hou et al, 2003, 2005; Katsuzaki et al, 2003; Fimognari et al, 2004, 2005; Hyun and Chung 2004; Chang et al, 2005; Xia et al, 2006; Feng et al, 2007; Lee et al, 2009). This could account for some of the apoptosis induction within leukaemia cells following treatment with the acetonitrile fraction from PJ. However, although treatment of U937 cells (histocytic leukemia cell lines) with cyanidin and malvinidin demonstrated G2/M phase arrest (Hyun and Chung 2004), 50 % effectiveness was not reached until ~50 μg/mL. The acetonitrile fraction was very effective at ~50 μg GAE/mL and the anthocyanin content was less than ~5 % of the content. However, the 8-fold depletion in anthocyanin content between PJ and the acetonitrile fraction did not reduce effectiveness and this suggests that the actions of PJ may not be due to its anthocyanin content.

This study demonstrated that only the acetonitrile fraction demonstrated activity towards leukaemia cell lines suggesting the phenolic agents within pomegranate are responsible for induction of apoptosis and inhibition of cellular proliferation. The relative enrichment of ellagitannins over anthocyanins and the closer agreement on affects of cell cycle seen with ellagitannin treatment of leukemia cell lines, suggest that ellagitannins may be the major players in the anti-cancer actions of pomegranate. However, it is highly probable that a number of compounds found within the acetonitrile fraction of PJ interact with each other. Indeed synergistic actions of ellagic acid with quercetin and resveratrol have been demonstrated previously in the leukemia cell line MOLT 4 cells (Mertens-Talcott et al, 2003, 2005; Mertens-Talcott and Percival 2005). Seeram et al, (2005) found that individual treatment of human oral, colon and prostate cancer cell lines with punicalagin, ellagic acid and total
pomegranate tannins failed to induce the same toxicity as whole pomegranate extracts suggesting these agents either work synergistically or that other minor agents within PJ are responsible for the actions of pomegranate (Seeram et al, 2004). Conversely, our study demonstrated that treatment of leukaemia cell lines with the acetonitrile fraction from pomegranate at concentrations determined to ensure equal concentrations of agents (not just phenolics) within the fractions to those in whole PJ suggested all the toxicity seen in pomegranate juice was due to the agents seen within this acetonitrile fraction. SPE resulted in increased phenolic content of the acetonitrile fraction compared to the whole juice, which was not surprising as it is concentrated in phenolic compounds due to the loss of sugars and other compounds which are extracted in the unbound and water fractions.

Of course upon consumption of pomegranates many of the compounds identified here do not enter the blood stream within this form. For example the ellagitannins themselves do not enter the bloodstream (Seeram et al, 2004, 2006, 2008; Espin et al, 2007). As such they cannot be effective directly against leukemic cells in vivo if delivered via oral consumption. However these could be delivered via pharmacological means. However oral delivery could still provide bioactivity from the ellagitannins as the colonic-derived metabolites the urolithins are known to circulate in the bloodstream (Seeram et al, 2004, 2006, 2008; Espin et al, 2007), accumulate at certain sites (Seeram et al, 2007) and are effective against cancer cell lines (Seeram et al, 2007; Bialonska et al, 2009; Kasimsetty et al, 2010), and thus could provide the bioactive actions of consumed pomegranates. The identification of the compounds responsible within pomegranate for the anti-cancer affects will be the next step towards understanding the role of pomegranates in cancer therapeutics.
5. Anti-proliferative pomegranate pure compounds in leukaemia cell line
5.1 Introduction
Dietary chemoprevention of cancer is increasingly considered as being an important way to reduce the risk of cancer. In the last decade pomegranate has shown promise in the prevention of cancers, as has been demonstrated in studies with extracts and/or isolated bioactive compounds (Lansky and Newman, 2007; Dahlawi et al, 2011, Dahlawi et al, 2013, Viladomiu et al, 2013). PJ is a rich source of many compounds belonging to different chemical classes including, organic acid and phenolic compounds such as: phenolic acids; anthocyanins; flavonoids; anthocyanins, and ellagitannins, which have been discussed previously (3.1.2.3) (Lansky and Newman, 2007; Viuda-Marrots et al, 2010; Viladomiu et al, 2013). However, the chemical composition of pomegranate can vary depending on the cultivar, growing region, climate, maturity and storage conditions and plant components (Poyrazoglu et al, 2002; Barzegar et al, 2004; Fadvi et al, 2005).
This study tested the hypothesis that: compounds found in the PJ have growth inhibitory properties that contribute to their protection against survival and growth of cancers.

5.2 Objective
The objective of this study was to examine the effect on cell viability of a number of pure compounds that were either identified in the acetonitrile fraction of PJ (chapter 3) (Dahlawi et al, 2013); were present in the other fractions of PJ or have been identified as PJ components in previous studies (Lansky and Newman, 2007, Fischer et al, 2011, Viladomiu et al, 2013). The effects of the selected compounds were studied on ATP levels in four human leukaemia cell lines and non-tumour HSCs.
Twenty six compounds (Table 5.1) representing the different classes of compounds found in PJ were screened. These included: organic acids; hydroxybenzoic acids; hydroxybenzoic acids; falavan-3-ols; ellagitannins; amino acids; indoleamines; and anthocyanins. This would enable the identification of the most active compounds in PJ for further investigation.
<table>
<thead>
<tr>
<th>Chemical class</th>
<th>Compound name</th>
<th>Compound structure</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic acid</td>
<td>Citric acid (Sigma)</td>
<td>$\text{C}_6\text{H}_8\text{O}_7$</td>
<td>Poyrazoglu et al. (2002).</td>
</tr>
<tr>
<td></td>
<td>Malic acid (Sigma)</td>
<td>$\text{C}_4\text{H}_6\text{O}_5$</td>
<td>Poyrazoglu et al. (2002).</td>
</tr>
<tr>
<td></td>
<td>Tartaric acid (Sigma)</td>
<td>$\text{C}_4\text{H}_6\text{O}_5$</td>
<td>Poyrazoglu et al. (2002).</td>
</tr>
<tr>
<td></td>
<td>Fumaric acid (Sigma)</td>
<td>$\text{C}_4\text{H}_4\text{O}_4$</td>
<td>Poyrazoglu et al. (2002).</td>
</tr>
<tr>
<td></td>
<td>Succinic acid (Sigma)</td>
<td>$\text{C}_4\text{H}_4\text{O}_4$</td>
<td>Poyrazoglu et al. (2002).</td>
</tr>
<tr>
<td></td>
<td>Ascorbic acid (Sigma)</td>
<td>$\text{C}_6\text{H}_8\text{O}_6$</td>
<td>Lansky and Newman, 2007</td>
</tr>
<tr>
<td>Hydroxybenzoic acid</td>
<td>Gallic acid (Sigma)</td>
<td>$\text{C}_6\text{H}_8\text{O}_6$</td>
<td>Amakura et al. (2000b), Huang et al. (2005), Gomez-Caravaca et al. (2013).</td>
</tr>
<tr>
<td>Hydroxybenzoic acid</td>
<td>Ellagic acid (Sigma)</td>
<td>$\text{C}{14}\text{H}{16}\text{O}_{16}$</td>
<td>Amakura et al. (2000), Gill et al. (2000), Wang et al. (2005), Gomez-Caravaca et al. (2013).</td>
</tr>
<tr>
<td>Compound</td>
<td>Formula</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Hydroxycinnamic acid</td>
<td>HO</td>
<td>Artik (1998), Amakura et al. (2000a)</td>
<td></td>
</tr>
<tr>
<td>Hydroxycinnamic acid</td>
<td>HO</td>
<td>Artik (1998), Amakura et al. (2000a)</td>
<td></td>
</tr>
<tr>
<td>Hydroxycinnamic acid p-cumaric acid</td>
<td>HO</td>
<td>Artik (1998), Amakura et al. (2000a)</td>
<td></td>
</tr>
<tr>
<td>Cyclitol carboxylic acid</td>
<td>HO</td>
<td>Artik (1998), Amakura et al. (2000a)</td>
<td></td>
</tr>
<tr>
<td>Flavan-3-ols catechin</td>
<td>HO</td>
<td>de Pascual-Teresa et al. (2000), Gomez-Caravaca et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>Flavan-3-ols Epicatechin (Enzo Life Science)</td>
<td>HO</td>
<td>de Pascual-Teresa et al. (2000), Gomez-Caravaca et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>Flavan-3-ols Epigallocatechin 3-gallate (EGCG) (Enzo Life Science)</td>
<td>HO</td>
<td>de Pascual-Teresa et al. (2000).</td>
<td></td>
</tr>
<tr>
<td>Chemical class</td>
<td>Compound name</td>
<td>Compound structure</td>
<td>References</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Flavonols</td>
<td>Quercetin (Sigma)</td>
<td></td>
<td>Artik (1998); Caravaca et al. (2013).</td>
</tr>
<tr>
<td>Ellagitannins</td>
<td>Punicalagin (Sigma)</td>
<td>Gill et al. (2000), Gomez-Caravaca et al. (2013), Dahlawi et al. (2013).</td>
<td></td>
</tr>
<tr>
<td>Amino acids</td>
<td>Proline (Sigma)</td>
<td>Velioglu et al. (1997).</td>
<td></td>
</tr>
<tr>
<td>Amino acids</td>
<td>Valine (Sigma)</td>
<td>Franciosi (1980).</td>
<td></td>
</tr>
<tr>
<td>Amino acids</td>
<td>Methionine (Sigma)</td>
<td>Franciosi (1980).</td>
<td></td>
</tr>
<tr>
<td>Indoleamines</td>
<td>Tryptamine (Enzo Life Science)</td>
<td>Badria (2002).</td>
<td></td>
</tr>
<tr>
<td>Chemical class</td>
<td>Compound name</td>
<td>Compound structure</td>
<td>References</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Indoleamines</td>
<td>Serotonin</td>
<td>HO (\text{NH}^-)</td>
<td>Badria (2002).</td>
</tr>
<tr>
<td></td>
<td>Melatonin</td>
<td>O (\text{H,C_2O,})</td>
<td>Badria (2002).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{H,O,})</td>
<td></td>
</tr>
<tr>
<td>Anthocyanidins</td>
<td>Delphinidin</td>
<td>(\text{OH,})</td>
<td>Hernandez et al. (1999), Gill et al. (2000), Mousavinejad et al. (2009), Gomez-Caravaca et al. (2013), Dahlawi et al. (2013).</td>
</tr>
<tr>
<td></td>
<td>Cyanidin</td>
<td>(\text{OH,})</td>
<td>Hernandez et al. (1999), Gill et al. (2000), Mousavinejad et al. (2009), Gomez-Caravaca et al. (2013), Dahlawi et al. (2013).</td>
</tr>
<tr>
<td></td>
<td>Pelargonidin</td>
<td>(\text{OH,})</td>
<td>Hernandez et al. (1999), Gill et al. (2000), Mousavinejad et al. (2009), Gomez-Caravaca et al. (2013), Dahlawi et al. (2013).</td>
</tr>
</tbody>
</table>

Table 5.1: Summarised pomegranate compounds found in RJ and their chemical structure.
5.3 Material and Methods

5.3.1 Cell Culture

Four leukaemia cell lines were obtained from the American Type Culture Collection (ATCC; Middlesex, U.K.), which have previously described to have demonstrated differing sensitivity to RJ (Chapter 3) (Dahlawi et al, 2011) and the acetonitrile fraction (Chapter 4) (Dahlawi et al, 2013). They included two lymphoid cell lines: CCRF-CEM, and MOLT-3, and two myeloid cell lines: HL-60 and THP-1 (Section 2.2). These cell lines were maintained and cultured in RPMI 1640 medium (Invitrogen, Paisley, U.K.) supplemented with 10% (v/v) foetal bovine serum, 1.5 mmol/L L-glutamine, and 100 pg/mL penicillin/streptomycin (complete media) in a humidified atmosphere of 5% CO₂ at 37°C.

5.3.2 Treatment of Cells

Cells were seeded at 25 x 10⁴ cells in 100 pL of complete media and treated with each compound (Table 5.1) at concentrations: 0, 10, 25, 50, and 100 pM in white 96-well plates (Fisher Scientific) for 24 and 48 h. The IC₅₀ values were then determined, following assessment of cell viability using Cell Titer-Glo® Luminescent Cell Viability Assay (Promega) (Section 2.3.2)(Table 5.2).

<table>
<thead>
<tr>
<th>Cell Titer-Glo® Luminescent Cell Viability Assay</th>
<th>26 pure compounds</th>
<th>10, 25, 50, and 100 pM</th>
<th>CCRF-CEM, MOLT-3, HL-60, and THP-1 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.2: Experimental design for Chapter 5.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.4 Results:

5.4.1 Effect of Pomegranate Compounds in Leukaemia Cell Lines; on ATP Levels as an Indicator of Total Viable Cells

5.4.1.1 Organic acids:

The effects of the organic acids: citric acid; malic acid; tartaric acid; fumaric acid; succinic acid and ascorbic acid were investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.1.1 Citric Acid:

Citric acid did not significantly inhibit ATP levels, in any of the four leukaemia cell lines investigated following 24 h. However after 48 h, a significant inhibition of ATP levels was observed at the two highest concentrations (50 and 100 μM) in CCRF-CEM cells. Citric acid failed to cause a 50% reduction in ATP in all four cell lines following 24 and 48 h (Figure 5.1) and no IC50 value could be determined.
Figure 5.1: Effect of citric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. $n = 3$.
5.4.1.1.2 Malic Acid:
Malic acid did not significantly inhibit ATP levels in any of the four leukaemia cell line investigated and failed to cause a 50% reduction in ATP in each of the four cell lines following 24 and 48 h (Figure 5.2).

Figure 5.2: Effect of malic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$)
5.4.1.1.3 Tartaric Acid:
Tartaric acid did not significantly inhibit ATP levels in any of the four leukaemia cell lines investigated following 24 and 48 h (P > 0.05). As a result, it failed to cause a 50% reduction in ATP in all four cell lines following 24 and 48 h (Figure 5.3).

![Graph showing the effect of Tartaric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.](image-url)

Figure 5.3: Effect of Tartaric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
5.4.1.1.4 Fumaric Acid:

Fumaric acid did not significantly inhibit ATP levels in each of the four leukaemia cell line investigated following 24 h ($p > 0.05$). Following 48 h, fumaric acid significantly inhibited ATP levels in CCRF-CEM cells only at the highest two concentrations (50 and 100 μM) ($p < 0.05$). However, it failed to cause a 50% reduction in ATP in any of the four cell lines following 24 and 48 h (Figure 5.4).

![Fumaric acid 24 hr](image)

![Fumaric acid 48 hr](image)

Figure 5.4: Effect of Fumaric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($p < 0.05$) vs. untreated control. n= 3.
5.4.1.1.5 Succininc Acid:

Succininc acid did not significantly inhibit ATP levels in any of the four leukaemia cell lines investigated following 24 h ($P > 0.05$). Following 48 h, succininc acid significantly inhibited ATP levels in CCRF-CEM cells only following treatment with 25, 50, and 100 pM ($P < 0.05$). However, it failed to cause a 50% reduction in ATP in all cell lines following 24 and 48 h (Figure 5.5).

![Succininc acid 24hr](image1)

![Succininc acid 48hr](image2)

Figure 5.5: Effect of succininc acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.

181
5.4.1.1.6 Ascorbic Acid:

Ascorbic acid showed significant inhibition on ATP levels in CCRF-CEM cells following stimulation with 25, 50, and 100 pM in a dose-dependent manner following 24 and 48 h treatments \((P < 0.05)\). The remaining cell lines, displayed no significant inhibition of ATP levels following 24 and 48 h treatments \((P > 0.05)\). Ascorbic acid caused 50% reduction in ATP levels in CCRF-CEM cells only (Figure 5.6) and the IC50 values following 24 and 48 h treatments were 61 and 57 pM, respectively (Figure 5.6).

Figure 5.6: Effect of ascorbic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05)\) vs. untreated control. n= 3.
5.4.1.2 Phenolic Acids

A number of phenolic acid groups are found within pomegranates including: hydroxybenzoic acids and Hydroxycinnamic Acids which were investigated here for their potential bioactive actions on leukaemia cell lines.

5.4.1.2.1 Hydroxybenzoic Acids

The effects of the hydroxybenzoic acids: Gallic acid and ellagic acid were investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.2.1.1 Gallic Acid

Gallic acid significantly inhibited ATP levels in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60 and THP-1) with differing sensitivity ($P \leq 0.05$) following 24 and 48 h treatments. However, it only caused a 50% reduction in ATP in CCRF-CEM, MOLT-3, and HL-60 cells following 24 and 48 h treatments. Gallic acid IC$_{50}$ values for CCRF-CEM, MOLT-3, and HL-60 cells were 17 µM following 24 h treatment. Following 48 h, the IC$_{50}$ of gallic acid was 14 µM for CCRF-CEM and 15 µM for MOLT-3 and HL-60 was (Figure 5.7).
Figure 5.7: Effect of gallic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error, * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.
5.4.1.2.1 Ellagic Acid

Ellagic acid significantly inhibited ATP levels in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60 and THP-1) with different sensitivity following 24 and 48 h (P < 0.05). However, it only caused a 50% reduction in ATP in MOLT-3 cells following 24 h treatments at a concentration of 98 pM. Following 48 h ellagic acid caused a 50% reduction in ATP in all four leukaemia cell lines. The IC50 of gallic acid for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells were 40, 32, 91, and 94 pM, respectively (Figure 5.8).

![Ellagic acid 24 hr](graph)

![Ellagic acid 48 hr](graph)

Figure 5.8: Effect of ellagic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
5.4.1.2.2 Hydroxycinnamic Acids

The effects of the hydroxycinnamic acids: caffeic acid and p-cumaric were investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.2.2.1 Caffeic Acid

Caffeic acid significantly inhibited ATP levels in all four cell lines, with greater sensitivity being shown by CCRF-CEM at 24 and 48 h ($P < 0.05$). CCRF-CEM was the only cell line to show a 50% reduction in ATP levels, with an IC$_{50}$ value of 61 and 57 pM, at 24 and 48 h respectively (Figure 5.9).

![Caffeic acid 24hr](image1)

![Caffeic acid 48hr](image2)

Figure 5.9: Effect of caffeic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
5.4.1.2.2 p-cumaric Acid:

*p-cumaric acid significantly inhibited ATP levels in the CCRF-CEM cells following 24 and 48 h treatment. However, it failed to cause a 50% reduction in ATP in any of the cell lines investigated following 24 and 48 h treatments (Figure 5.10).

Figure 5.10: Effect of p-cumaric acid on cell proliferation at concentrations 0, 10, 25, 50, and 100μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05)\) vs. untreated control. \(n=3\).
5.4.1.3 Cyclitol Carboxylic Acid

The effects of the cyclitol carboxylic acid: Quinin acid was investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.3.1 Quinin Acid:

Quinine acid showed no significant effect on ATP levels in any of the four leukaemia cell lines investigated, at 24 and 48 h treatments ($P < 0.05$). As a result, it failed to cause a 50% reduction in ATP in all four cell lines following 24 and 48 h (Figure 5.11).

![Figure 5.11: Effect of quinic acid on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.](image-url)
5.4.1.4 Flavan-3-ols
The effects of the Flavan-3-ols: catechin, epicatechin and EGCG were investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.4.1 Catechin
Catechin showed no significant effect on ATP levels in any of the four leukaemia cell lines following 24 h treatment ($P \leq 0.05$). Following 48 h treatment, there was a significant effect on inhibition of ATP levels in CCRF-CEM, MOLT-3, and HL-60 cells following treatment with the highest two concentrations (50 and 100 µM) ($P \leq 0.05$). However, catechin failed to cause a 50% reduction in ATP in all four cell lines following 24 and 48 h (Figure 5.12).
Figure 5.12: Effect of catechin on cell proliferation at concentrations 0, 10, 25, 50, and 100 μM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
5.4.1.4.2 Epicatechin

Epicatechin treatment significantly inhibited ATP levels in all four leukaemia cell lines with different sensitivity following 24 and 48 h treatments ($P < 0.05$). However, epicatechin failed to cause a 50% reduction in ATP in each cell lines at 24 and 48 h (Figure 5.13).

Figure 5.13: Effect of epicatechin on cell proliferation at concentrations 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
5.4.1.4.1 Epigallocatechin Gallate (EGCG)

Epigallocatechin gallate (EGCG) treatment of CCRF-CEM, MOLT-3, HL-60, and THP-1 cells resulted in a significant inhibition of ATP levels following 24 and 48 h incubation ($P < 0.05$) (Figure 5.14). Following 24 h treatment, EGCG caused a 50% reduction in ATP in CCRF-CEM, MOLT-3, and HL-60 cells at concentrations of 17, 21, and 19 pM respectively. At 48 h there was a 50% reduction in ATP in the THP-1 cells. The IC50 values at 48 h post-treatment with EGCG for CCRF-CEM, MOLT-3, HL-60 and THP-1 cells were 9, 15, 13, and 84 pM, respectively (Figure 5.14).

Figure 5.14: Effect of EGCG on cell proliferation at concentrations 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.
5.4.1.5 Flavanoids
The effects of the Flavanoids: Quercetin and rutin were investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.3.1.5.1 Quercetin
Quercetin treatment of CCRF-CEM, MOLT-3, HL-60, and THP-1 cells resulted in a significant inhibition of ATP levels following 24 and 48 h incubation ($P \leq 0.05$). The IC_{50} values at 24 h post-treatment for quercetin in CCRF-CEM, MOLT-3, HL-60, and THP-1 cells were 25, 50, 43, 23 μM, respectively. At 48 h treatment, the IC_{50} values for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells were 14.5, 29, 22.5, and 20.5 μM, respectively (Figure 5.15).
Figure 5.15: Effect of quercetin on cell proliferation at concentrations 0, 10, 25, 50, and 100 nM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05)\) vs. untreated control. \(n=3\).
5.4.1.5.2 Rutin

Rutin did not significantly affect the ATP levels in all four leukaemia cell lines following 24 h treatment \((P > 0.05)\). Rutin treatment to CCRF-CEM and HL-60 cells resulted in a significant reduction in ATP levels following 48 h treatment \((P < 0.05)\). However, rutin failed to cause a 50% reduction in ATP in any of the cell lines (Figure 5.16).

Rutin 24hr

-\(\text{+CCR-F-CEM} \quad \text{H}^\text{+MOLT-3} \quad \text{u} \quad \text{HL-60} \quad \text{THP-1}\)

Rutin 48hr

-\(\text{+CCR-F-CEM} \quad \text{-B-MOLT-3} \quad \text{-} \quad \text{HL-60} \quad \text{THP-1}\)

Figure 5.16: Effect of rutin on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \([P < 0.05]\) vs. untreated control. \(n = 3\).
5.4.1.6 Ellagitannins

The effects of the ellagitannins: Punicalagin was investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.6.1 Punicalagin

Punicalagin treatment of CCRF-CEM, MOLT-3, HL-60, and THP-1 cells resulted in a significant reduction in ATP levels following 24 and 48 h incubation ($P \leq 0.05$). The IC$_{50}$ values at 24 h post-treatment with punicalagin for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells were 11, 19, 17, 68 μM, respectively. Following 48 h treatment, the IC$_{50}$ values of punicalagin for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells were 9, 14, 14, and 39 μM, respectively (Figure 5.17).
Figure 5.17: Effect of punicalagin on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
5.4.1.7 Amino acids
The effects of the amino acids: proline; valine and methionine were investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.7.1 Proline
Proline did not significantly reduce ATP levels, and failed to cause a 50% reduction in ATP in any of the four leukaemia cell lines investigated following 24 and 48 h treatments \((P > 0.05)\) (Figure 5.18).

![Proline concentration vs. cell viabiliy](image)

Figure 5.18: Effect of proline on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05)\) vs. untreated control. \(n = 3\).
5.4.1.7.2 Valine

Valine did not significantly reduce ATP levels, and failed to cause a 50% reduction in ATP in any of the four leukaemia cell lines investigated following 24 and 48 h treatments ($P > 0.05$) (Figure 5.19).

Figure 5.19: Effect of valine on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. $n= 3$.

199
5.4.1.7.3 Methionine

Methionine showed no significant effect on inhibition of ATP levels and failed to cause a 50% reduction in ATP in any of the four leukaemia cell lines following 24 and 48 h treatments (P > 0.05) (Figure 5.20).

Methionine 24 hr

<table>
<thead>
<tr>
<th>CCRF-CEM</th>
<th>MOLT-3</th>
<th>HL-60</th>
<th>THP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure 5.20: Effect of methionine on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
5.4.1.8 Indoleamines

The effects of the indoleamines: tryptamine; Serotonin and Melatonin were investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.8.1 Tryptamine

Tryptamine showed no significant effect on inhibition of ATP levels and failed to cause a 50% decrease in ATP in any of the four leukaemia cell lines following 24 and 48 h treatments ($P > 0.05$) (Figure 5.21).

Figure 5.21: Effect of tryptamine on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
5.4.1.8.2 Serotonin

Serotonin showed significant inhibition of ATP levels in CCRF-CEM cells following 24 h treatment at concentrations of 50 and 100 pM and in MOLT-3 cells treatment at concentration of 100 nM \((P < 0.05) \). In contrast, serotonin showed no significant effect on ATP levels in any of the four leukaemia cell lines following 48 h treatment \((P > 0.05) \) (Figure 5.22).

![Serotonin 24hr](image1)

![Serotonin 48hr](image2)

Figure 5.22: Effect of serotonin on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05) \) vs. untreated control. n= 3.
Melatonin showed significant inhibition of ATP levels following 24 and 48 h treatment in the CCRF-CEM, MOLT-3, and HL-60 cell lines ($P < 0.05$). However, it failed to cause a 50% decrease in ATP in any of the four leukaemia cell lines (Figure 5.23).

Figure 5.23: Effect of melatonin on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P<0.05$) vs. untreated control. n= 3.
5.4.1.9 Anthocyanins
The effects of the anthocyanins: delphinidin, cyaniding and pelargonidin were investigated on four leukaemia cell lines to determine potential bioactive actions affecting cell viability and proliferation, determined via measuring total ATP levels as an indication of number of metabolically active cells.

5.4.1.9.1 Delphinidin
Delphinidin significantly inhibited ATP levels in all four leukaemia cell lines investigated following 24 and 48 h treatment ($P < 0.05$). The IC₅₀ values of delphinidin for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells following 24 h treatments were 56, 67, 64, and 83 pM, respectively. Following 48 h, the IC₅₀ values of delphinidin for CCRF-CEM, MOLT-3, HL-60, and THP-1 were 42, 65, 60, and 78 pM, respectively (Figure 5.24).

Figure 5.24: Effect of delphinidin on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P<0.05$) vs. untreated control. $n=3$.

204
5.4.1.9.2 Cyanidin

Cyanidin significantly inhibited ATP levels in all four leukaemia cell lines following 24 and 48 h treatment \((P < 0.05)\). The IC\(_{50}\) values of cyanidin for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells following 24 h treatments were 56, 67, 64, and 83 pM, respectively. Following 48 h, the IC\(_{50}\) values of cyanidin for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells were 42, 65, 60, and 78 pM, respectively (Figure 5.25).

Figure 5.25: Effect of cyanidin on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05)\) vs. untreated control. \(n = 3\).
5.3.1.9.3 Pelargonidin

Pelargonidin significantly inhibited ATP levels in all four leukaemia cell lines following 24 and 48 h treatment \((P < 0.05) \). Punicalagin showed similar IC50 value of 81 pM for each cell line at 24 h treatment. At 48 h, the IC50 values of pelargonidin for CCRF-CEM, MOLT-3, HL-60, and THP-1 cells were 69, 77, 74, and 82 pM, respectively (Figure 5.26).

Figure 5.26: Effect of pelargonidin on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cell lines following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05) \) vs. untreated control. \(n=3 \).
5.4.2 Summary of Results

Twenty six naturally occurring pomegranate compounds exhibited selective anti-
cancer activity towards the leukaemia cell lines: CCRF-CEM, MOLT-3, HL-60, and THP-1
following 24 and 48 h treatment. Only 7 out of 26 compounds induced a 50% reduction
in ATP levels in 3 or more leukaemia cell lines (Table 5.3).

<table>
<thead>
<tr>
<th>Organic acid</th>
<th>24 h</th>
<th>48 h</th>
<th>24 h</th>
<th>48 h</th>
<th>24 h</th>
<th>48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Malic acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Tartaric acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Fumaric acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Caffeic acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>p-cumaric acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Quinic acid</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Catechin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>EGCG</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Quercetin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Rutin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Flavan-3-ols</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>EGCG</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Quercetin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Rutin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

207
<table>
<thead>
<tr>
<th>Compound</th>
<th>IC(_50) Values (24 h)</th>
<th>IC(_50) Values (48 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellagitannins</td>
<td>Punicalagin</td>
<td>11 pM 19 pM 17 pM 68 pM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 pM 14 pM 14 pM 39 pM</td>
</tr>
<tr>
<td></td>
<td>Proline</td>
<td>NR NR NR NR</td>
</tr>
<tr>
<td></td>
<td>Valine</td>
<td>NR NR NR NR</td>
</tr>
<tr>
<td>Amino acids</td>
<td>Methionine</td>
<td>NR NR NR NR</td>
</tr>
<tr>
<td></td>
<td>Tryptamine</td>
<td>NR NR NR NR</td>
</tr>
<tr>
<td></td>
<td>Serotonin</td>
<td>NR NR NR NR</td>
</tr>
<tr>
<td>Indoleamines</td>
<td>Melatonin</td>
<td>NR NR NR NR</td>
</tr>
<tr>
<td></td>
<td>Delphinidin</td>
<td>18.5 pM 17 pM 15 pM 76 pM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 pM 16 pM 14 pM 31 pM</td>
</tr>
<tr>
<td>Anthocyanins</td>
<td>Cyanidin</td>
<td>56 67 64 83</td>
</tr>
<tr>
<td></td>
<td>Pelargonidin</td>
<td>81 pM 81 pM 81 pM 83 pM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69 pM 77 pM 74 pM 82 pM</td>
</tr>
</tbody>
</table>

Table 5.3: IC\(_50\) values of compounds found in RJ in CCRF-CEM, MOLT-3, HL-60, and THP-1 leukaemia cells following 24 and 48 h treatments. NR= IC\(_50\) not reached.

5.4.3 Anti-proliferative effect of Pomegranate Compounds in Non-Tumour CD133+ HSCs

The 7 compounds that were found to cause 50% reduction in ATP in the four studied leukaemia cell lines were tested on the non-tumour CD133+ HSCs. Those compounds selected for analysis were delphinidin, cyanidin, pelargonidin, gallic acid, quercetin, EGCG, and punicalagin.

The non-tumour CD133+ cells less sensitive than the majority of leukaemia cell lines at all treatment doses at following 24 and 48 h (Figure 5.27). The exception was THP-1 cells when treated with gallic acid. Following 24 h treatment with gallic acid treatment at 100 pM 34% and 40% decrease in ATP levels was observed in THP-1 and CD133+cells respectively. Following 48 h, gallic acid showed 40% and 52% inhibition in cell proliferation in THP-1 and CD133+ HSCs cells (Figure 5.27)
Figure 5.27: Effect of delphinidin, cyanidin, pelargonidin, gallic acid, quercetin, EGCG, and punicalagin on cell proliferation at concentrations 0, 10, 25, 50, and 100 pM in non-tumour HSC (CD133) following 24 and 48 h. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
5.4 Discussion
The results demonstrated that 7 out of the 26 compounds found in PJ (Table 5.1): EGCG; ellagic acid; gallic acid; quercetin; delphinidin; cyanidin; pelargonidin; and punicalagin; caused a 50% reduction in ATP in leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). All the Organic acids, amino acids, and indoleamines compounds failed to cause a 50% reduction in ATP levels in the four leukaemia cell lines, following 24 and 48 h treatments. Suggesting that these compounds are inactive compounds and would not be of use in the treatment of leukaemia, and as such are not discussed further.

5.4.1 Phenolic Acids
The phenolic acids present in PJ are divided into two major groups: hydroxycinnamic acids and hydroxybenzoic acid, based on arrangement of the benzene ring, benzoic acids and cinnamic acids groups (Kim et al, 2006). These are classified as hydroxycinnamic acids including: caffeic acid and p-cumaric acid and hydroxybenzoic acids, which include: ellagic and gallic acids. Despite the hydroxycinnamic acid: caffeic acid, exhibiting inhibitory effects in CCRF-CEM cells, with IC$_{50}$ value 68 and 64 µM following 24 and 48 h treatments, respectively. It failed to display 50% decrease in ATP levels in MOLT-3, HL-60, and THP-1 cells. Indicating that caffeic acid showed selective inhibition of ATP levels against leukaemia cell lines. This agrees with the work of Hudson et al. (2000) who showed the anti-proliferative effect of caffeic acid in breast cancer cell lines (MCF-7, MDA-MB-468, and HBL-100). They showed that there was a decrease in cell proliferation in MCF-7 and MDA-MB-468 cells, but not in HBL-100 cells. Other hydroxycinnamic acids such as p-cumaric have also failed to show an inhibition of cell proliferation in breast (MCF-7, MDA-MB-468, and HBL-100) (Hudson et al, 2009), colon (SW-480 and HT-29) (Hudson et al, 2009), and hepatoma cell lines (Yagazaki et al, 2000), which support our findings that the hydroxycinnamic acids are selective towards certain cancerous cell lines.

The hydroxybenzoic acids were more effective, inhibiting ATP levels in all four leukaemia cell lines to a greater extent than hydroxycinnamic acids. This has been seen in previous studies (Lapidot et al, 2002; Guang-Jian et al, 2012). Gallic acid was shown to cause a 50% reduction in ATP levels in all leukaemia cell lines, except THP-1. Generally THP-1 was the least sensitive cell line compared to other leukemic cells.
when tested against PJ (Chapter 3) (Dahlawi et al, 2011), and the acetonitrile fraction (Chapter 4) (Dahlawi et al, 2013) and most of the pure PJ compounds investigated here. Gallic acid is widely used as an antioxidant in the food industry and was shown to exhibit a variety of pharmacological and biological activities, including anti-cancer properties. Previous work by Reddy et al. (2012) showed that gallic acid inhibited cell growth in the breast cancer cell line (MDA-MB-231), CML cell line (K562), and colon cancer cell line (COLO-205). The anti-cancer effect of gallic acid has also been demonstrated in two lung cancer cells (Calu-6 and A549), where gallic acid dose-dependently decreased the growth of Calu-6 and A549 cells following 24 h treatment (Park and You, 2010). In addition to gallic acid, ellagic acid was expressed in the acetonitrile fraction from PJ (Chapter 4) (Dahlawi et al, 2013), and here gallic acid significantly inhibited ATP following 24 and 48 h treatments. Mertens-Talcott et al. (2003) reported that treatment with ellagic acid resulted in a reduction of cell proliferation in the leukaemia cell line: MOLT-4. The anti-proliferative effect of ellagic acid was shown in several cancers cell lines including pancreatic (MIA PaCa-2; PANC-1; SW460 and SW620) (Seeram et al, 2005), prostate (RWPE-1; 22Rv1, DU-145, and PC3) (Seeram et al, 2005; Lansky (1) et al, 2005) and colon (HT-29 and HCT116) (Seeram et al, 2005) cells.

5.4.2 Flavan-3-ols
Flavan-3-ol compounds found in PJ were tested for their effect on viable cell number by measuring ATP levels of CCRF-CEM, MOLT-3, and HL-60 cell lines. Differential effects were seen where EGCG showed the most potent effects over catechin and epicatechin. Although catechin and epicatechin illustrated significant inhibitory effect on cell proliferation, they failed to induce a 50% decrease in ATP levels following 24 and 48 h treatments. Suggesting that the number of hydroxyl groups on the B ring and galloyl groups could be critical for EGCG inhibitory effects. Consistent with our results, Guang-Jian et al (2012) reported that EGCG has more potent anti-proliferative effect than catechin and epicatechin in two colorectal cancer cells (HCT-16 and SW-480). Similarly Yang et al (1998) indicated that EGCG inhibited growth of the lung cancer cell line (H441) and colon cancer cell line (HT-29), whilst epicatechin and catechin were less effective. Chung et al (2001) also showed that epicatechin had limited effects on prostate cancer cells (DU145) while EGCG demonstrated significant growth
suppression. However, EGCG has been shown to be the most abundant and bioactive Flavan-3-ol compounds in green tea for cancer chemoprevention (Stuart et al, 2006). EGCG has been shown to induce inhibition of cell growth in breast cancer cells (MDA-MB-231) (Thangapazham et al, 2007) and (MCF-7) (Tang et al, 2006) and prostate cancer cells (LnCap) (Hastak et al, 2005). In leukaemia, a study demonstrated a reduction in U937 and K562 cell number in response to treatment with EGCG (Nakazato et al, 2007).

5.4.3 Flavanoids
Quercetin and rutin belong to a class of polyphenolic flavanoid compounds. Both compounds are structurally similar; quercetin is termed the aglycone form of rutin. In rutin the hydrogen of the R-3 hydroxyl group is replaced by a disaccharide. Here, quercetin significantly inhibited ATP levels in all four leukaemia cell lines displaying 50% decrease in ATP levels. Interestingly, this study showed that quercetin has more potent inhibition in ATP levels in THP-1 cells with an IC50 value of 23 µM which was lower than other the cell lines: CCRF-CEM, MOLT-3, and HL-60, with IC50 values 25, 50, and 43 µM, respectively. This contradicts the sensitivity order seen following whole PJ, and fractions studied previously (Chapter 3 and 4) (Dahlawi et al, 2011; Dahlawi et al, 2013) suggesting quercetin is less likely to be the major compounds from PJ. Quercetin exerts anti-proliferative effects in vitro on cancer cell lines of diverse lineages, including breast cancer cells; MCF-7 (Chou et al, 2010; Choi et al, 2001), MDA-MB-231 (Chien et al, 2009; Jeong et al, 2009), SK-Br3 (Jeong et al, 2009), and MDA-MB-453 (Jeong et al, 2009), colon cancer cells: HT29 (Kim et al, 2005) and Caco-2 (Van Erk et al, 2004), and prostate cancer cells: PC-3 (Vijayababu et al, 2005; Aalinkeel et al, 2008); DU-145 and LNCap (Aalinkeel et al, 2008). In leukaemia cells quercetin has also been shown to inhibit cellular proliferation in cell lines including: K562, Jurkat, HL-60, U937, K562 (Kawahara et al, 2009; Mahbub et al, 2013), and MOLT-4 (Mertens-Talcott et al, 2003). Here, Rutin, a glycoside of quercetin, inhibited ATP levels in CCRF-CEM, MOLT-3, and HL-60 following 48 h treatment, but failed to display 50% decrease in ATP in all four leukaemia cell lines. Suggesting the sugar molecule may suppress the inhibitory effect of flavonoids toward leukaemia cell lines tested. Similarly, Kim et al (2005) reported that only quercetin was effective in inhibiting growth of colon cancer cells (HT-29) growth, but the glycoside rutin did not inhibit HT-29 cell growth. Kunts et al,
(1999) determined the growth inhibitory activity of various flavonoids, including quercetin and rutin, in two colon cancer cells (HT-29 and Caco-2) after 27 h of exposure to concentrations between 25 µM to 250 µM. Both quercetin and rutin inhibited the growth of intestinal cell lines. The IC50 values of quercetin for HT-29 and Caco-2 were 85 and 96 µM, respectively. Whereas, the IC50 value of rutin for HT-29 and Caco-2 were approximately 136 µM in both cell lines, indicating that quercetin has stronger inhibitory effect than rutin. Kim et al, (2005) also reported that quercetin was only effective in inhibiting growth of colon cancer cells (HT-29), but the glycoside rutin did not inhibit HT-29 cell growth. Lu et al, (2008) found that quercetin, not rutin, inhibited growth of human ovarian cancer cell line (OVAR-3).

5.4.4 Ellagitannins

Punicalagin is unique to pomegranate and is part of a family of ellagitannins (Tyagi et al, 2012). Punicalagin, which is the largest polyphenol, having a molecular weight of 1084, is reported to be the major component responsible for PJ antioxidant properties (Gil et al, 2000). Punicalagin was evaluated for its anti-proliferative activity against colon cancer cells (SW460, SW620, HT-29, and HCT116) and prostate cancer cells (RWPE-1 and 22Rv1), demonstrating inhibition of cell proliferation in a dose-dependent manner in all cell lines tested (Saleem et al, 2002). Here, punicalagin showed induction in inhibition of ATP levels in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1) following 24 and 48 h. Punicalagin was one of the most abundant compounds indicated in the effective fraction (acetonitrile fraction) showing a decrease in cell proliferation and induction of apoptosis against leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1) (Dahlawi et al, 2013) (Chapter 3). Thus suggesting that punicalagin may play an important role in the efficacy of PJ toward leukaemia cells.

5.4.5 Anthocyanins

Anthocyanins are one of the groups of compounds which were detected in the acetonitrile fraction (Dahlawi et al, 2013) (Chapter 3). Anthocyanins are considered the largest and most important group of flavonoids present in PJ, which give the juice its red colour (Lansky and Newman, 2006; Afaq et al, 2005). Studies have proposed that anthocyanins are the major phytochemical group responsible for the observed anticancerous effects. Anthocyanins in the form of rich-extracts from fruits and vegetables have shown anti-proliferative activity toward various cancer cell types in
vitro (Rodrigo et al., 2006; Seeram et al., 2006; Chen et al., 2005; Reddy et al., 2005; Zhang et al., 2008). Pure anthocyanins were also tested for inhibition towards the growth of cancer cell lines. Katsube et al. (2003) found that delphinidin, cyanidin, and pelargonidin showed anti-proliferative effects in human colon cancer cells (HCT116). Cyanidin and delphinidin showed concentration-dependent growth inhibition in human hepatoma cells (HepG2). The estimated IC50 values of cyanidin and delphinidin were 18.4 and 10.8 μM, respectively (Yeh and Yen, 2005). Anthocyanins, delphinidin 3-O-β-D-glucoside and cyanidin 3-O-β-D-glucoside, from black bean seed coat and red grape skin, respectively, displayed strong inhibitory effect against human leukaemia cells (MOLT-4) (Katsuba et al., 2003). Here, we found that delphinidin, cyanidin and pelargonidin induced 50% inhibition in ATP levels in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1) following 24 and 48 h treatments. Delphinidin exerted the greatest inhibition among cyanidin and pelargonidin on all leukaemia cell lines, suggesting that anthocyanins appear to be affected by their chemical structures.

5.4.6 Tumour Cell Selectively
This study investigated the effects of pure compounds found in pomegranate on ATP levels in leukaemic cells. ATP levels were used as an indication of total viable cells and thus compounds resulting in decreased ATP levels could indicate agents which could either inhibit proliferation or induce cell death or both within leukaemia cell lines. Demonstrating that delphinidin, cyanidin, pelargonidin, gallic acid, quercetin, and punicalagin illustrated bioactivity against four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Interestingly, less bioactivity was observed in non-tumour cells (CD133) when treated with concentrations showing significant cytotoxicity in tumour cells, suggesting a selective cytotoxicity against leukaemia cells. Selective inhibition of proliferation in carcinoma cells of anthocyanins has been shown previously (Zhao et al., 2004; Ozbay and Nahta, 2011). Several studies have shown that inhibition of cell proliferation by anthocyanins or anthocyanins-rich extracts was more pronounced in carcinoma cells than non-tumour cells. Zhao et al. (2004) found that anthocyanin extracts inhibited the growth of colon cancer cells (HT-29) with little effects on normal colonic cell growth when added to the media in the same concentrations. In another study, although, cyanidin-3-O-β-glucopyranoside decreased cell proliferation in both transformed (Jurkat cells) and non-transformed (human lymphocytes) T cells, normal T
cells were much less sensitive to this effect that non-transformed cells. Ozbay and Nahta (2011) examined cell proliferation in response to delphinidin in 7 breast cancer cell lines (HCC1806, MDA231, MDA468, SKBR3, MDA453, BT474, and MCF-7) in addition to non-transformed breast epithelial cell line (MCF10A). In contrast to the majority of breast cancer cell lines, proliferation of non-transformed breast epithelial cell line (MCF10A) was not significantly inhibited by delphinidin except at the highest concentration. Gallic acid has been shown to inhibit the proliferation of pancreatic cancer cells (CFPAC-1 and MiaPaca-2) in a time and dose-dependent manner. Remarkably, when compared with normal human cells HL-7702, gallic acid exhibited selective cytotoxicity for cancer cells (Liu et al., 2012). Polyphenolic compounds in green tea, including EGCG, have been widely studied since they showed selective cytotoxicity to cancerous cells and not to normal cells. Ahmed et al., 1997 reported that delphinidin significantly decreased cell viability of human epidermal carcinoma cell line (A431) with little toxicity to normal human epidermal keratinocytes (NHEKs). The flavonoid quercetin exhibited selective toxicity, since it has been shown that quercetin significantly inhibited the growth of highly aggressive PC-3 cell line and the moderately aggressive DU-145 prostate cancer cell line, but did not affect the less aggressive LNCap prostate cancer cell or normal BG-9 fibroblast cell line (Nair et al., 2004). Together these studies and the findings of this study suggest natural polyphenols display selective targeting towards tumour cell lines over normal cells and thus may provide better selective therapies for cancers.

5.5 Conclusion

Among the 26 naturally occurring pomegranate compounds investigated, only seven compounds: delphinidin; cyanidin; pelargonidin; EGCG; gallic acid; ellagic acid; quercetin; and punicalagin; induced 50% decrease in ATP levels in the studied leukaemia cell lines. Of these active components only gallic acid and quercetin were not found previously in the acetonitrile fraction of PJ when analysed by MS analysis, which was shown to induce apoptosis in the studied leukaemia cell lines (Chapter 4) (Dahlawi et al., 2013). Future work will investigate the effect of these active components on leukaemia cell lines to investigate the ability to induce apoptosis and cell cycle arrest and indicate potential activities on inhibition of proliferation or induction of cell death.
6. Impact of Anthocyanins Chemical Structure on Induction of apoptosis and Inhibition of cell Proliferation in Leukameia cell lines
6.1 Introduction

Previously it was identified that the anthocyanins are one of most potent compounds at decreasing ATP levels in leukaemia cells.

6.1.1 Chemistry of Anthocyanins

Anthocyanins (in Greek anthos means flower, and kyanos means blue), are the largest group of water-soluble pigments in the plant kingdom (Kong et al, 2003). They belong to the class of flavonoid compounds and are commonly known as plant polyphenols (Kong et al, 2003). In contrast to other flavonoids, the anthocyanins carry a positive charge in acidic solutions (Mazza, 1995). Major sources of anthocyanins are pomegranate, berries and other fruits and the anthocyanins give them their red, blue or purple colours. Colour differences between anthocyanins are mainly determined by substitution pattern of the B ring of the glycon, the pattern of the glycosylation, and the degree and nature of esterification of the sugars with aliphatic or aromatic acids, and the presence of co-pigments (Mazza and Brouillard, 1990). One distinctive characteristic of anthocyanins is that they undergo reversible molecular transformations with changes in pH. Many anthocyanins are red in very acidic conditions and turn blue as the pH is increased (Mazza and Miniati, 1993).

The glycon or de-glycosylated forms of anthocyanins are known as anthocyanidins. Anthocyanidins are polyhydroxy and polymethoxy derivatives of 2-phenylbenzoprylum or flavylum salts differ in the number and position of their hydroxyl and methoxyl groups on the B ring (Figure 6.1). There are 27 known anthocyanidins present in nature (Harborne and Williams, 2001), the six most common anthocyanidins are cyanidin, pelargonidin, delphinidin, malvidin, pentunidin, and peonidin (Harborne and Williams, 2001; Kong et al, 2003).
Pelargonidin H H
Cyanidin OH H
Delphinidin OH OH
Peonidin OCH3 H
Petunidin OCH3 OH
Malvinidin OCH3 OCH3

Figure 6.1: Basic chemical structure of common anthocyanidins.

The glycosides of the three non-methylated anthocyanidins (cyanidin, delphinidin, and pelargonidin) are the most widespread in nature being present in 80% of pigmented leaves, 69% of fruits and 50% of flowers (Kong et al, 2003) and were identified within Acetonitrile fraction of RJ (Chapter 4) (Dahlawi et al, 2013). The distribution of the six most common anthocyanidins in edible parts of plants are summarised in table 6.2.

Anthocyanidins rarely occur in their free form in nature because of their high reactivity, but are normally glycosylated with one or more sugar components which enhance their stability and solubility (Clifford, 2000; Giusti and Wrolstad, 2003). The most common sugar components which link to the anthocyanins are glucose, galactose, rhamnose, xylose, and arabinose (Kong et al, 2003). Anthocyanins can be glycosylated with one or more sugar units, typically up to 3, with some rare exceptions (Kong et al, 2003). The sugar components of anthocyanins are usually conjugated to the C3-hydroxyl group in the anthocyanidins C ring and C5 position of the A ring. Less common sites of glycosylations are the C7 position, and in rare cases glycosylation has been reported on the B ring (Kong et al, 2003). Several hundred anthocyanin structures are known to varying in: the basic anthocyanidin structure; the number of hydroxyl groups; the nature and the number of sugars attached to the molecule; the position of
this attachment; and the nature and number of aliphatic or aromatic acids attached to the sugars in the molecule. However, the most predominant anthocyanin is cyanidin-3-glucoside (Figure 6.1) (Mazza and Miniati, 1993).

<table>
<thead>
<tr>
<th>Anthocyanin</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanidin</td>
<td>50%</td>
</tr>
<tr>
<td>Delphinidin</td>
<td>12%</td>
</tr>
<tr>
<td>Pelargonidin</td>
<td>12%</td>
</tr>
<tr>
<td>Petunidin</td>
<td>12%</td>
</tr>
<tr>
<td>Peonidin</td>
<td>7%</td>
</tr>
<tr>
<td>Malvinidin</td>
<td>7%</td>
</tr>
</tbody>
</table>

Table 6.1: Illustrates distribution of the six most common anthocyanidins in edible parts of plants (Kong et al, 2003).

6.1.2 Anthocyanins Found in Pomegranate Juice

Pomegranate juice is known to be a major source of phenolic compounds, where anthocyanins are thought to be the most important. The main anthocyanins found in the acetonitrile fraction (Chapter 4) and found in other studies are: Cyanidin-3-glucoside; cyanidin 3,5-O-diglucosides; delphinidin-3-glucoside; delphinidin-3,5-O-diglucosides; pelargonidin-3-glucoside and pelargonidin-3,5-O-diglucosides (Hernandez et al, 1999; Reed et al, 2005). Delphinidin has hydroxyl groups at 3', 4', and 5', cyanidin at 3' and 4' positions in the B-ring. However, pelargonidin has no orthohydroxyl substitution (Figure 6.1).

6.1.3 Anthocyanins Bioactivity

In recent years a number of studies have shown that anthocyanins exhibited a wide range of biological and pharmacological benefits such as anti-inflammatory (Wang and Mazza, 2002; Youdim et al, 2002), anti-microbial (Pisha and Pezzuto, 1994) and improvement of vision (Matsumoto et al, 2003) and neuroprotective effects (Youdim et al, 2002). In addition, anthocyanins have exhibited a variety of effect on cells, blood vessels (Andriambelson et al, 1998; Martin et al, 2003) and platelets that may reduce the risk of coronary heart disease (Renaud & Lorgeril 1992). They have also been found to act as antioxidants, in colon (Renis et al, 2008), breast (Olsson et al, 2004; Singletary et al, 2007), liver (Shish et al, 2007), leukaemic (Dai et al, 2009) and brain cell lines in vitro (Hogan et al, 2010). In these culture systems, anthocyanins have shown multiple
anti-toxic and anti-carcinogenic effects, and directly scavenged reactive oxygen species (ROS) (Singletary et al, 2007). Some studies reported that the glycosidic forms show a decrease in the antioxidant capacity when compared with the corresponding aglycon (Rice-Evans et al, 1996; Satue-Gracia et al, 1997; Tsuda et al, 1994).

Pure anthocyanins and anthocyanidins, or in the form of mixtures have demonstrated anti-proliferative and anti-apoptotic effects in breast, colon, oesophageal, uterus and prostate cancer cells (Table 6.2). Studies in human leukaemia cells have also shown they had a pro-apoptotic and anti-proliferative activity (Table 6.2). This has been confirmed in a number of animal models (Kang et al, 2003; Chen et al, 2005; Stoner et al, 2007).

<table>
<thead>
<tr>
<th>Prostate cancer</th>
<th>Delphinidin</th>
<th>-Inhibit cell proliferation</th>
<th>Hafeez et al (2008b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androgen refractory human PCa 22Rnu1 cells</td>
<td>Delphinidin</td>
<td>-G2/M phase cell cycle arrest</td>
<td>Hafeez et al (2008a)</td>
</tr>
<tr>
<td>Human PC3 cells</td>
<td>Delphinidin</td>
<td>-Inhibit cell growth</td>
<td>Hafeez et al (2008a)</td>
</tr>
<tr>
<td>Esophageal cancer cells</td>
<td>Freeze-dried black raspberries Cyanidin-3-O-rutinoside</td>
<td>- Inhibited cell proliferation</td>
<td>Zikri, et al (2009)</td>
</tr>
<tr>
<td>Rat highly tumuorigenic RE-149 DHD cells</td>
<td>Cyanidin-3-O-rutinoside</td>
<td>- Caspase-3 and caspase-7 activity</td>
<td>Zikri, et al (2009)</td>
</tr>
</tbody>
</table>
Table (continued)

Hepatic cancer cells

| Human hepatocellular carcinoma PLC/PRF/5 cells | Anthocyanins from the berries | - decreased cell viability

| Human HepG2 cells | Cyanidin, delphinidin, malvidin | - Inhibited cell proliferation
- DNA fragmentation and caspase-3 activity. | Yeh and Yen (2005) |

| Human hepatoma Hep3B cells | Anthocyanins extracts | - Inhibited cell proliferation
- GO/G1 phase cell cycle arrest
- Induced apoptosis and decreased anti-apoptotic proteins (Bcl-2, XIAP, cIAP-1, and cIAP-2) | |

Mammary cancer cells

| Hormone-responsive human MCF-7 cells | Bilberry extract | - Inhibited cell proliferation
- G2M phase cell cycle arrest

| Rat mammary carcinoma cells from imethylbenz[a]anthracene-induced tumours in female c-Ha-ras transgenic rats | Cyanidin 3-0 b-d-glucoside | - Inhibited cell viability

| Human estrogen dependent/ aromatase positive MCF-7 and cells and MDAMB-231 cells | Freeze-dried Jamun (Eugenia jambolana) fruit extract | - Inhibited cell proliferation

| Human EGFR positive AU-565 cells | Delphinidin | - Inhibited cell viability

| Human HS578T cells | Cyanidin -3-glucoside, Peonidin -3-glucoside | - Inhibited cell viability
- G2M phase cell cycle arrest.

Leukaemia cells

| Human promyelocytic HL-60 cells | Isolated anthocyanins from Euterpe oleracea Mart | - Decreased cell viability

| Human promyelocytic HL-60 cells | Cyanidin 3-0 b-glucopyranoside | - Induced apoptosis | Fimognari et al. (2004) |

<p>| Human acute leukaemia T Jurkat cells | | | |</p>
<table>
<thead>
<tr>
<th>Human promyelocytic HL-60 cells</th>
<th>Delphinidin 3-sambubioside</th>
<th>- Inhibited cell proliferation, decreased apoptosis, increased caspase-3, caspase-8 and caspase-9 activity; induced mitochondrial membrane potential, cytochrome crelease, Bid truncation.</th>
<th>Hou et al (2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human promyelocytic HL-60 cells</td>
<td>Bilberry extract, malvidin, delphinidin, cyaniding</td>
<td>- Induced apoptosis</td>
<td>Katsube et al (2003).</td>
</tr>
<tr>
<td>Human acute leukaemia T MOLT-4 cells</td>
<td>Cyanidin-3-rutinoside</td>
<td>- Induced apoptosis</td>
<td>Feng et al (2007).</td>
</tr>
<tr>
<td>Human acute leukaemia T MOLT-4 cells</td>
<td>Delphinidin 3-0-3-galactoside, petunidin 3-0-3-galactoside, malvidin 3-0-3-galactoside, cyanidin 3-0-3-galactoside</td>
<td>- Inhibited cell growth, - Induced apoptosis</td>
<td>Katsuzaki et al (2003)</td>
</tr>
<tr>
<td>Human U937 cells</td>
<td>Anthocyanins isolated from Vitis coignetiae</td>
<td>- Inhibited cell proliferation, - Induced mitochondrial membrane potential; down-regulated of Bcl-2 expression and up regulared of Bax expression; increased caspase-3, caspase-8 and caspase-9 activity; inhibitor of apoptosis protein (IAP) activity; cleaved poly(ADP-ribose) polymerase; and induced truncated Bid translocation</td>
<td>Lee et al (2009).</td>
</tr>
<tr>
<td>Colon cancer cells</td>
<td>Cabernet Sauvignon anthocyanin extract</td>
<td>- Inhibited cell proliferation, - Increased Caspase-3 activity</td>
<td>Forester and Waterhouse (2010).</td>
</tr>
<tr>
<td>Human adenocarcinoma Caco-2 cells</td>
<td>Grape extract, anthocyanin fraction from grape extract</td>
<td>- Inhibited cell proliferation, - Induced apoptosis</td>
<td>Yi (1) et al (2005a)</td>
</tr>
<tr>
<td>Human adenocarcinoma Caco-2 cells</td>
<td>Anthocyanin fraction from blueberry extract</td>
<td>- Inhibited cell proliferation, - Induced apoptosis</td>
<td>Yi (2) et al (2005b)</td>
</tr>
<tr>
<td>Human adenocarcinoma Caco-2 cells HT-29 cells</td>
<td>Delphinidin</td>
<td>- Decreased cell viability, - G2M phase cell cycle arrest, - Induced apoptosis, cleavage of PARP, activation of caspases-3, -8, and -9, increase in</td>
<td>Yun et al (2009)</td>
</tr>
</tbody>
</table>
Table (continued)

Human adenocarcinoma HT-29 cells
Anthocyanin fraction from Georgia-grown blueberries
- Induced apoptosis and increased caspase-3 activity

Gastric cells
Human adenocarcinoma AGS cells

Table 6.2: Impact of anthocyanins in different cancer models in term of induction of apoptosis inhibition of cell proliferation and cell cycle

6.2 Objective
The aim of this study was to compare the effective properties of anthocyanins found in RJ to understand the relationship between anthocyanin chemical structures and their effects on inhibition of cell proliferation and induction of apoptosis in leukaemia cell lines.

6.3 Material and Methods

6.3.1 Cell Culture

Four leukaemia cell lines were obtained from the American Type Culture Collection (ATCC; Middlesex, U.K.), which previously demonstrated differing sensitivities to RJ (Chapter 3) (Dahlawi et al, 2011) and the acetonitrile fraction of RJ (chapter 4) (Dahlawi et al, 2013). Two lymphoid cell lines: CCRF-CEM, and MOLT-3, and two myeloid cell lines: HL-60 and THP-1 were included in this study. Cell lines were maintained and cultured in RPMI 1640 medium (Invitrogen, Paisley, U.K.) supplemented with 10% (v/v) foetal bovine serum, 1.5 mmol/L L-glutamine, and 100 μg/mL penicillin/streptomycin (complete media) in a humidified atmosphere of 5% CO₂ at 37°C (Section 2.2).

6.3.2 Treatment of Cells

Cell lines were treated with: Cyanidin; cyanidin 3-glucoside; cyanidin 3,5-diglucosides; delphinidin; delphinidin 3-glucoside; delphinidin 3,5-diglucosides; pelargonidin; pelargonidin 3-glucoside and pelargonidin 3,5-diglucosides at concentrations between 0 - 100 μM for 24 h. All compounds were purchased from Extrasynthese and were dissolved in 100% methanol. Following treatments, induction of apoptosis and cell
cycle arrest was determined and mechanisms of apoptosis induction by delphinidin investigated (Table 6.3).

<table>
<thead>
<tr>
<th>Method</th>
<th>Compounds</th>
<th>Concentrations</th>
<th>Cell Lines</th>
<th>Time (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Titer-Glo* Luminescent Cell Viability Assay</td>
<td>Cyanidin; cyanidin 3-glucoside; cyanidin 3,5-diglucosides; delphinidin; delphinidin 3-glucoside; delphinidin 3,5-diglucosides; pelargonidin; pelargonidin 3-glucoside and pelargonidin 3,5-diglucosides</td>
<td>0, 10, 25, 50, 100 pM</td>
<td>CCRF-CEM, MOLT-3, HL-60, and THP-1</td>
<td>24</td>
</tr>
<tr>
<td>Annexin V-FITC/PI</td>
<td>Cyanidin; cyanidin 3-glucoside; cyanidin 3,5-diglucosides; delphinidin; delphinidin 3-glucoside; delphinidin 3,5-diglucosides; pelargonidin; pelargonidin 3-glucoside and pelargonidin 3,5-diglucosides</td>
<td>0, 10, 25, 50, 75, 100 pM</td>
<td>CCRF-CEM, MOLT-3, HL-60, and THP-1</td>
<td>24</td>
</tr>
<tr>
<td>NucView™ 488 Caspase-3 substrate assay</td>
<td>Cyanidin; cyanidin 3-glucoside; cyanidin 3,5-diglucosides; delphinidin; delphinidin 3-glucoside; delphinidin 3,5-diglucosides; pelargonidin; pelargonidin 3-glucoside and pelargonidin 3,5-diglucosides</td>
<td>0, 10, 25, 50, 75, 100 pM</td>
<td>CCRF-CEM, MOLT-3, HL-60, and THP-1</td>
<td>24</td>
</tr>
<tr>
<td>DAPI staining</td>
<td>Delphinidin</td>
<td>0, 25, 50, 100 pM</td>
<td>CCRF-CEM, MOLT-3, HL-60, and THP-1</td>
<td>24</td>
</tr>
<tr>
<td>Cell cycle</td>
<td>Delphinidin</td>
<td>0, 25, 50, 100 pM</td>
<td>CCRF-CEM, MOLT-3, HL-60, and THP-1</td>
<td>24</td>
</tr>
<tr>
<td>The Caspase-8 and 9 Glo™ Assays</td>
<td>Delphinidin</td>
<td>50 pM</td>
<td>MOLT-3 and HL-60</td>
<td>3, 6, 24 hr</td>
</tr>
<tr>
<td>ICC (Cytochrome C and SMAC/ Diablo)</td>
<td>Delphinidin</td>
<td>50 pM</td>
<td>MOLT-3 and HL-60</td>
<td>3, 6, 24 hr</td>
</tr>
<tr>
<td>qRT-PCR (Bax, Bad, Bcl-2, and Bcl-xl)</td>
<td>Delphinidin</td>
<td>50 pM</td>
<td>MOLT-3 and HL-60</td>
<td>6 hr</td>
</tr>
</tbody>
</table>

Table 6.3: Experimental design for chapter 6.
6.3.3 Cell Viability

The effect of cyanidin, cyanidin 3-glucoside, cyanidin 3,5-diglucosides, delphinidin, delphinidin 3-glucoside, delphinidin 3,5-diglucosides, pelargonidin, pelargonidin 3-glucoside and pelargonidin 3,5-diglucosides on cell viability was determined by the Cell Titer-Glo® Luminescent Cell Viability Assay as described previously (2.3.2). Cells were seeded at 25 x 10^4 cells in 100 μL of complete media and treated with each compound at 0, 10, 25, 50, and 100 μM, in white 96-well plates (Fisher Scientific) for 24 h.

6.3.4 Annexin V- FITC /PI Flow Cytometry Assay

Annexin V-FITC/PI and flow cytometry were used to detect levels of apoptosis as described previously (section 2.4.1). Cells were seeded at 5 x 10^5 cells in 100 μL of complete media and treated with cyanidin, cyanidin 3-glucoside, cyanidin 3,5-diglucosides, delphinidin, delphinidin 3-glucoside, delphinidin 3,5-diglucosides, pelargonidin, pelargonidin 3-glucoside and pelargonidin 3,5-diglucosides at concentration of 0, 10, 25, 50, 75, and 100 μM in 12-well plate (Fisher Scientific) for 24 h. Data were recorded from 10,000 cells per sample and analyzed using FlowJo software (Tree Star).

6.3.5 Caspase-3 Activity

NucView™ 488 Caspase-3 substrate assay (Cambridge Bioscience) and flow cytometry were used to determine induction of caspase-3 (Section 2.4.3). Cells were treated with cyanidin, delphinidin, and pelargonidin at concentrations of 0, 10, 25, 50, 75, and 100 μM for 24 h. Data were recorded from 10,000 cells per sample and analyzed using FlowJo software (Tree Star, Ashland, OR).

6.3.6 DAPI Stain

Following treatment with delphinidin at concentrations of 0, 25, 50, 100 μM for 24 h at a cell density of 5x10^4 per well, cells were stained with DAPI to observe apoptotic morphology changes (Section 2.4.2). Cells were investigated using Olympus BX60 fluorescence microscope using UV light at excitation wavelength 350 nm. Quantitative analysis of cell populations (live & apoptotic) was performed based on counting of 200
randomly-selected cells and the percentage of apoptotic features determined for each sample.

6.3.7 Cell Cycle

The cell cycle distribution of leukaemia cell lines was measured by flow cytometry in PI stained cells (Section 2.5). Cells were treated with delphinidin at concentrations 0, 25, 50, and 100 pM for 24 h. Data from 10,000 cells per sample were recorded and percentages of cells within G0/G1, S, and G2M cell cycle phase were determined with FlowJo software and Wasten (pragmatic) analysis of cell cycle (Tree Star).

6.3.8 Caspase-8 and -9

The Caspase-Glo™ Assays use the luminogenic caspase-8 tetrapeptide substrate (Z-LETD-aminoluciferin) or caspase-9 tetrapeptide substrate (Z-LEHD-aminoluciferin) and a stable luciferase in proprietary buffers. In the absence of active caspases, the caspase substrates do not produce light. Upon cleavage of the substrates by the respective caspases, aminoluciferin is liberated and can contribute to the generation of light in a luminescence reaction (Figure 6.2). The resulting luminescent signal is directly proportional to the amount of caspase activity present in the sample. Figure 6.2:

\[
\text{Luciferase} \\
\text{Mg}^{2+} \quad * \\
\text{Light}
\]

Figure 6.2: Caspase-8 or -9 cleavage of the proluminogenic substrates containing LETD or LEHD, respectively. Following caspase cleavage, a substrate for luciferase (aminoluciferin) is released, resulting in the luciferase reaction and production of light.
6.3.8.1 Methodology
Cells were plated at a cell density of 2.5x10^4 cells per well in a white 96 well culture plate and then treated with 50 μM delphinidin for 3, 6 and 24 h. Following treatment Caspase-8 and 9 activity was measured by using Caspase-Glo™ 8 and 9 assays as per manufactures industry. MG-132 (30 μl) inhibitor was added to Caspase-Glo™ 8 and 9 reagents to reduce nonspecific background activity. One hundred microliters of Caspase-Glo™ 8 and 9 reagents were added to each sample, mixed well for 30 seconds on an orbital shaker at 400 rpm. The plate was allowed to incubate at room temperature for 1 h prior to luminescence detection using Wallac 1420 luminescence detector (PerkinElmer, Waltham, USA). Control wells were prepared containing medium and treatments without cells to obtain a value for background luminescence.

6.3.8.2 Analysis
Background readings were subtracted from all test measurements. The average luminescence readings were calculated and all treated samples were normalized to controls.

6.3.8.3 Statistical Analysis:
Average and Standard error of the mean (SEM) were calculated and Stats Direct was used to test whether data followed a normal distribution using a Shapiro Wilke test. Data did not follow a normal distribution, thus Kruskal-Wallis and Connover-Inman post hoc tests were used to investigate significant differences. Results were considered statistically significant when P ≤ 0.05.

6.3.9 Immunocytochemistry
Immunocytochemistry (ICC) is a method used to identify the presence of a specific protein within cells by using a specific antibody, which binds to it and allows visualization and examination of the target protein under the light microscope. Here we used an indirect method for ICC (Figure 6.3) to detect the expression of cytochrome C and SMAC/Diablo using specific antibodies (Table 6.4).
Diaminobenzidine (DAB) oxidised to brown participate

Secondary antibody

Avidin-Biotin-peroxidase Complex (ABC)

Primary antibody

Target antigen

Figure 6.3: Illustration of the indirect method of immunocytochemistry.

<table>
<thead>
<tr>
<th>Description</th>
<th>Dilution</th>
<th>Species reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrome C</td>
<td>1: 200</td>
<td>Human (Abeam, abI3575)</td>
</tr>
<tr>
<td>SMAC/ Diablo</td>
<td>1:100</td>
<td>human (Abeam ab32023)</td>
</tr>
</tbody>
</table>

Table 6.4: The source and dilution factors used for the primary antibodies.

6.3.9.1 Method

Following treatment of MOLT-3 and HL-60 cells with 50 pM delphinidin, cells were incubated for 3, 6 and 24 h and cells were then transferred to eppendorf tubes and centrifuged for 5 minutes at 400 g at 4°C. The supernatant was removed, and cells washed in 100 pi DPBS and resuspended in 100 pi 4% (w/v) paraformaldehyde/DPBS and stored at 4°C for 20 minutes. Cells were then washed with DPBS and 40,000 cells / slide were transferred to slides via a 20 minute cytopsin at 1000 rpm (Shandon Cytospin 3 Centrifuge) (Thermo Fisher Scientific). Samples were air dried and then washed in IMS for 5 minutes. To block any endogenous peroxidase activity within the cells, a hydrogen peroxidase (H2O2) block (containing 9 mL 30% H2O2, 291 IMS and 5
drops of HCL) was applied for 30 minutes followed by 5 minutes wash in deionized water and two washes in IX TBS (Tris Buffered Saline) (20 mM Tris base (Fisher Scientific) 150 mM NaCl (Fisher Scientific) pH 7.6) for 5 minutes. In a humid chamber, 100 pi of proteinase K (10 pg/mL) was applied to each slide to lightly digest the cellular membrane to retrieve the antigens. Slides were then washed in triplicate with IX TBS for 5 minutes. The serum of the secondary antibodies at 25% v/v in 1% w/v BSA in PBS was freshly prepared and added to each slide and incubated for 45 minutes at RT. The primary antibodies (Table 6.4) were prepared with suitable serum species and 100 pi was added in a humid chamber and incubated overnight at 4°C.

Following overnight incubation, cytospins were washed with IX TBS three times for 5 minutes and secondary antibodies (Table 6.5) were added and incubated for 30 minutes at RT followed by 5 minutes wash with IX TBS in triplicate. A drop of Avidin-Biotin-peroxidase Complex (ABC) was added to each slide for 30 minutes in the wet box on the orbital shaker followed by 5 minutes wash in triplicate with IX TBS. Then 3,3'-Diaminobenzidine (DAB) was added for 20 minutes at RT followed by 5 minutes washing in running tap water. Slides were counterstained in haematoxylin for 45 seconds then washed in running tap water for 5 minutes. Finally, cells were dehydrated in IMS and cleared in Sub-X prior to mounting in perlex.

<table>
<thead>
<tr>
<th>Description</th>
<th>Dilution</th>
<th>Ab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrome C</td>
<td>rabbit anti-mouse 1:400</td>
<td>Abeam (Ab 87032)</td>
<td>Cytochrome C</td>
</tr>
<tr>
<td>SMAC/ Diablo</td>
<td>goat anti-rabbit 1:300</td>
<td>Abeam (Ab 97049)</td>
<td>SMAC/ Diablo</td>
</tr>
</tbody>
</table>

Table 6.5: The source and dilution factors used for the secondary antibodies.

6.3.9.2 Analysis
Slides were examined using Olympus light microscope (X100). Images were captured using Q Capture Pro 8.0 (UVP Biolimaging Systems). Quantitative analysis of cells (active and non-active) (Figure 6.4) was performed based on counting of 200 randomly selected cells and the percentage of cells with active staining determined for each sample (untreated control cells and cells treated with delphinidin).
Figure 6.4: Illustrates analysis of cytochrome C expression in HL-60 cells following treatment with delphinidin for 3 h using Olympus light microscope (X100). Cells were divided into two groups: active and non-active. Active cells indicated by red arrows. Non-active cells indicated by green arrows.

6.3.9.3 Statistical Analysis

Average and Standard error of the mean (SEM) was calculated and Shapiro Wilke test using Stats Direct was used to analyse whether data followed a normal distribution. Data did not follow a normal distribution, thus a Kruskal-Wallis and Conover-Inman post hoc test was used to investigate statistical significance. Results of treated cells were normalized to the control (untreated cells) where control = 100%. Results were considered statistically significant when P < 0.05.

6.3.10 Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

Real-time PCR (Figure 6.5) is widely used to detect and quantify gene expression. It involves reverse transcription (RT) of mRNA into cDNA followed by PCR to amplify a specific target cDNA molecule, which is quantified in real-time by the accumulation of fluorescence after each amplification cycle (Orlando et al, 1998, Bustin, 2000).
Step: 1

A reporter (R) and a quencher (Q) are attached to the 5' and 3' ends of taqMan probe.

<table>
<thead>
<tr>
<th>Forward primer</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Step: 2

When both labels are attached to the probe, reporter dye emission is quenched.

<table>
<thead>
<tr>
<th>Forward primer</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5'</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5'</td>
</tr>
</tbody>
</table>

Step: 3

During each extension cycle, Taq polymerase cleaves the reporter dye from the probe.

<table>
<thead>
<tr>
<th>Forward primer</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Step: 4

Once separated from the quencher, the reporter dye emits its characteristic fluorescence.

<table>
<thead>
<tr>
<th>Forward primer</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'</td>
<td>5'</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 6.5: Illustration of how TaqMan reagent works. Modified from Applied Biosystems.
As amplification proceeds, the fluorescence amplification is captured by the instrument after every cycle, and is translated in a RT-PCR graph. With RT-PCR there are three amplification stages: 1) lag phase; 2) exponential; 3) plateau (Figure 6.6). In the exponential phase, the reagents are in abundance and the PCR products double every cycle. In the plateau phase, the reagents are depleted and PCR reaction stops. RT-PCR focuses on the exponential phase because it provides the most precise and accurate data for quantitation. Within the exponential phase, a threshold is set, the PCR cycle at which the sample reaches this threshold is called cycle threshold (Ct). The Ct value is used in downstream quantitation and depends on the amount of target, the larger the amount of template in the reaction the fewer amplification cycles to form a significant fluorescent signal. In contrast a small amount of target will require more amplification cycles for the fluorescent signal to generate a detectable fluorescence signal (Figure 6.6).

Figure 6.6: Illustrates qRT-PCR amplification plot.
6.3.10.1 Methodology

6.3.10.1.1 RNA Extraction
Following treatment with 50 pM of delphinidin on two leukaemia cell lines (MOLT-3 and HL-60), cell number was determined using an Invitrogen Countess automated cell counter (Invitrogen) incorporating Trypan Blue (Sigma) to distinguish live and dead cells (Section 2.3.1). Cell suspension aliquots containing 1 x 10^5 live cells were transferred to RNase free 1.5mL tubes and centrifuged at 400g for 10 minutes to recover cells. Supernatant was removed and the remaining cell pellet re-suspended in lmL Trizol (Ambion) and incubated at room temperature for 5 minutes. Chloroform (Sigma) was added at a rate of 200pL per tube; samples were mixed by vortexing for 15 seconds and incubated at room temperature for 3 minutes prior to centrifugation at 12,000g for 15 minutes at 4°C. Following centrifugation the upper aqueous phase (RNA containing) was removed to a fresh 1.5mL tube and 500pL isopropanol (Sigma) added. RNA samples were incubated for 10 minutes at room temperature and then at -80°C for 1 hour to precipitate RNA. Samples were thawed on ice and centrifuged at 12,000g for 30 minutes at 4°C to collect RNA precipitate. The resulting cell pellet was resuspended in 500 pL of 80% ethanol and centrifuged at 7,500 g for 15 minutes. Then samples were air dried on ice for 30 minutes. RNA samples were eluted in 14 pL sterile deionized water and used immediately for cDNA synthesis.

6.3.10.1.2 cDNA Synthesis
RNA samples were converted to cDNA using Moloney Murine Leukaemia Virus (MMLV) reverse transcriptase (Biolin) prior to carrying out real-time quantitative polymerase chain reaction (qPCR). Fourteen microliters of RNA samples were incubated at 60°C for 5 minutes to denature RNA. RT mastermix was added immediately at a rate of 36 pL per 14 pL RNA sample (Table 6.6).

<table>
<thead>
<tr>
<th>Deoxynucleotides triphosphates (dNTPs)</th>
<th>1.5 pL</th>
</tr>
</thead>
<tbody>
<tr>
<td>40mM (Biolin)</td>
<td></td>
</tr>
<tr>
<td>Random Hexamers (AB)</td>
<td>1.0 pL</td>
</tr>
<tr>
<td>Bioscript 5x RT Buffer (Biolin)</td>
<td>5.0 pL</td>
</tr>
<tr>
<td>Bioscript RT Enzyme (Biolin)</td>
<td>0.5 pL</td>
</tr>
<tr>
<td>Sterile distilled H20</td>
<td>28 pL</td>
</tr>
<tr>
<td></td>
<td>36.0 pL</td>
</tr>
</tbody>
</table>

Table 6.6: RT Mastermix.
Samples were incubated at 42°C for 1 h to permit cDNA synthesis, then 10 minutes at 80°C to inactivate RT enzyme. cDNA samples were diluted 1:10 by addition of sterile deionised water and stored at -20°C for use in qPCR.

6.3.10.1.3 qPCR cDNA from Directly Extracted HL-60 and MOLT-3 cells

Taqman PCR was performed on cDNA samples from directly extracted HL-60 and MOLT-3 cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was used in all experiments to normalise for variations in total RNA in each sample.

2 pL sample cDNA was loaded in duplicate into 96-well FAST PCR plates (Applied Biosystems). Real-Time PCR mastermix was added at a rate of 8 pL per well (Table 6.7).

<table>
<thead>
<tr>
<th>Taqman Gene Expression Assay</th>
<th>0.5 pL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x Taqman Fast MasterMix (Applied Biosystems)</td>
<td>5.0 pL</td>
</tr>
<tr>
<td>Sterile deionised water</td>
<td>2.5 pL</td>
</tr>
<tr>
<td></td>
<td>8.0 pL</td>
</tr>
</tbody>
</table>

Table 6.7: Real-Time PCR Mastermix.

Separate reaction mastermixes were prepared and loaded for gaiyceradsehy 3-phosphate dehyrogenesae (GAPDH) and each target gene assay. Plates were sealed with adhesive film and ran on an Applied Biosystems, StepOnePlus Real-Time PCR machine on FAST programme incorporating 50 cycles of denaturation at 95°C for 1 second followed by annealing and extension at 60°C for 20 seconds.

6.3.10.4 Analysis of qRT-PCR

Real-time PCR data is expressed as an amplification plot (Figure 6.6) for each individual target detected. Baseline was set 2 cycles prior to the first visible amplification individually for each target detected. Thresholds were set within the exponential phase of the amplification plot and maintained across all samples investigated. Measured CT values were then exported to an excel file where analysis by 2 AACT method (Livak and Schmittgen, 2001) was performed to determine target mRNA expression relative to internal reference gene and basal expression. Briefly analysis was performed by: Arithmetical mean C^values of internal reference gene and target gene sample duplicates were calculated.
Arithmetical mean of the 2 internal reference genes was calculated to generate 'mean reference' value for each sample.

\[\Delta C_T \text{ values were calculated using the equation:} \]
\[\Delta C_T = C_T (\text{target}) - C_T (\text{mean reference}) \]

Arithmetical mean \(\Delta C_T \) and standard error of the mean \(\Delta C_T \text{SE} \) for each triplicate data set (untreated control and treatment group) was calculated.

\[\Delta \Delta C_T \text{ values were calculated using the equation:} \]
\[\Delta C_T = C_T (\text{target}) - C_T (\text{mean reference}) \]

Target gene expression, relative to internal reference gene and basal expression was calculated using the equation:

Relative gene expression = \(2^{-\Delta C_T} \)

Relative gene expression was represented graphically and error bars representing standard error of \(\Delta C_T \) values for each triplicate data set were calculated using the equations:

Positive Error Bar = \(2^{-\Delta C_T + \Delta SE} \) - \(2^{-\Delta \Delta C_T} \)

Negative Error Bar = \(2^{-\Delta C_T} \) - \(2^{-(\Delta CT - \Delta SE)} \)

6.3.10.3 Statistical Analysis

In order to perform statistical analysis on RT-PCR data, \(2^{-\Delta \Delta C_T} \) was calculated for each sample and control versus treated groups compared using a Mann Whitney U test. Results were considered statistically significant when \(P \leq 0.05 \). To generate error bar to control data, each control replicate is normalized against control average to enable spread of data to be show as error bars.
6.4 Results

6.4.1 Effect of Anthocyanidins and Anthocyanins on ATP Levels as an Indicator of Total Viable Cells

To test whether anthocyanidins and anthocyanins found in RJ are effective in suppressing ATP levels of human leukaemia cell lines, the effects on ATP levels were investigated to indicate potential action on inhibiting proliferation or induction of apoptosis of cyanidin, cyanidin-3-O-glucoside, cyanidin-3,5-O-diglucosides, delphinidin, delphinidin-3-O-glucoside, delphinidin-3,5-O-diglucosides, pelargonidin, pelargonidin-3-O-glucoside and pelargonidin-3,5-O-diglucosides on CCRF-CEM, MOLT-3, HL-60 and THP-1 cells.

Delphinidin, Delphinidn-3-O-glucoside, and delphinidin-3,5-di-0-glucose significantly (P < 0.05) inhibited ATP levels in CCRF-CEM cells at all concentrations (10, 25, 50, 100 pM) in a dose-dependent manner following 24 h treatment. The IC50 values of delphinidin, delphinidn-3-O-glucoside, and delphinidin-3,5-di-0-glucose for CCRF-CEM cells at 24 h treatments were 20, 35, and 41 pM respectively (Figure 6.7) (Table 6.8).

![Figure 6.7](image-url)
Delphinidin and delphinidn-3-O-glucoside treatment in MOLT-3 cells resulted in a significant \(P < 0.05 \) inhibition of ATP levels at all concentrations (10 to 100 pM) in a dose-dependent manner, while delphinidin-3,5-di-0-glucose showed significant \(P < 0.05 \) decrease in ATP levels only at 25, 50, 100 pM. The IC50 values at 24 h post treatment with delphinidin, delphinidn-3-O-glucoside, and delphinidn-3,5-di-0-glucose for MOLT-3 cells were 17, 34, 44 pM respectively (Figure 6.8) (Table 6.8).

![MOLT-3 24 hr](image)

Figure 6.8: Effect of Delphinidin, Delphinidn-3-Oglucoside, and delphinidn-3,5-di-0-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on MOLT-3 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \(P < 0.05 \) vs. untreated control. \(n = 3 \).
Delphinidin, Delphinidn-3-O-glucoside, and delphinidin-3,5-di-0-glucose significantly ($P < 0.05$) inhibited ATP levels in HL-60 cells at all concentrations (10, 25, 50, 100 pM) in a dose-dependent manner following 24 h treatment. The IC50 values of delphinidin, Delphinidn-3-O-glucoside, and delphinidin-3,5-di-0-glucose for HL-60 cells at 24 h treatments were 16, 19, and 34 pM respectively (Figure 6.9) (Table 6.8).

\[
\begin{array}{ccc}
\text{Delphinidin} & \text{Delphinidn-3-O-glucoside} & \text{Delphinidin 3,5-di-0-glucoside} \\
\end{array}
\]

![Diagram showing concentration of compounds vs ATP levels](image)

Figure 6.9: Effect of Delphinidin, Delphinidn-3-O-glucoside, and delphinidin-3,5-di-0-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on HL-60 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. n=3.
The ATP levels in THP-1 cells was also significantly \((P < 0.05) \) inhibited in a dose-dependent manner by delphinidin, delphinidin-3-O-glucoside, and delphinidin-3,5-di-0-glucose following 24 h treatment. The IC50 values of delphinidin, delphinidin-3-O-glucoside, and delphinidin-3,5-di-0-glucose for THP-1 cells was found to be 38, 63, and 74 pM respectively (Figure 6.10) (Table 6.8).

\[
\text{THP-1 24 hr}
\]

\[\text{\textbullet - Delphinidin \quad \textoplus - Delphinidin 3-O-glucoside \quad Delphinidin 3,5-di-O-glucoside}\]

![Concentration (μM)](figure)

Figure 6.10: Effect of Delphinidin, Delphinidin-3-O-glucoside, and delphinidin-3,5-di-0-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on THP-1 leukemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05) \) vs. untreated control. \(n=3 \).
Cyanidin and cyanidin-3-O-glucoside significantly (P < 0.05) inhibited ATP levels in CCRF-CEM cells at all concentrations (10, 25, 50, and 100 pM) in a dose-dependent manner following 24 h treatment. The IC50 values of cyanidin and cyanidin-3-O-glucoside for CCRF-CEM cells at 24 h were 75 and 87 pM respectively. Although cyanidin-3,5-di-O-glucose exhibited a significant decrease in ATP levels of CCRF-CEM cells, it failed to display 50% growth inhibition (Figure 6.11) (Table 6.8).

Figure 6.11: Effect of cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on CCRF-CEM leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P< 0.05) vs. untreated control. n= 3.
Cyanidin and cyanidin-3-O-glucoside significantly \((P < 0.05) \) inhibited ATP levels in MOLT-3 cells at all concentrations (10, 25, 50, and 100 pM) in a dose-dependent manner following 24 h treatment. The IC50 values of cyanidin and cyanidin-3-O-glucoside for MOLT-3 cells were 67 and 88 pM respectively. Although cyanidin -3,5-di-O-glucose showed significant decrease in ATP in MOLT-3 cells at 50 and 100 pM, it failed to display 50% growth inhibition (Figure 6.12) (Table 6.8).

Figure 6.12: Effect of cyanidin, cyanidin-3-O-glucoside, and cyanidin -3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on MOLT-3 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05) \) vs. untreated control. \(n = 3 \).
Cyanidin significantly ($P < 0.05$) inhibited ATP levels in HL-60 cells at all concentrations (10, 25, 50, 100 pM) in a dose-dependent manner, while cyanidin-3-O-glucoside displayed significant ($P < 0.05$) decrease at 25, 50, and 100 pM following 24 h treatment. The IC50 values cyanidin and cyanidin-3-O-glucoside for HL-60 cells were 64 and 70 pM, respectively. Cyanidin-3,5-di-O-glucose showed a decrease in ATP in HL-60 cells at the highest two concentrations (50 and 100 pM), but not significantly and failed to display 50% growth inhibition (Figure 6.13) (Table 6.8).

Figure 6.13: Effect of cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on HL-60 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
Cyanidin significantly ($P < 0.05$) inhibited ATP levels in THP-1 cells at all concentrations (10, 25, 50, 100 pM) in a dose-dependent manner, while cyanidin-3-O-glucoside displayed significant ($P < 0.05$) decrease at 25, 50, and 100 pM following 24 h treatment. The IC50 values of cyanidin and cyanidin-3-O-glucoside for THP-1 cells were 83 and 90 pM, respectively. Cyanidin-3,5-di-O-glucose showed only a significant decrease in ATP levels in THP-1 cells at highest concentration (100 pM), and failed to display 50% growth inhibition (Figure 6.14) (Table 6.8).

Figure 6.14: Effect of cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on THP-1 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
Pelargonidin and pelargonidin-3-O-glucoside significantly (P< 0.05) inhibited ATP levels in CCRF-CEM cells at 10, 25, 50, 100 pM in a dose-dependent manner (P< 0.05), while pelargonidin -3,5-di-O-glucose did not show a significant (P > 0.05) decrease at all concentrations following 24 h treatment. Pelargonidin induced IC50 in CCRF-CEM cells at 81 pM. In contrast, pelargonidin-3-O-glucoside and pelargonidin-3,5-di-0-glucose failed to display 50% decrease in ATP levels in CCRF-CEM cells (Figure 6.15) (Table 6.8).

Figure 6.15: Effect of pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin -3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on CCRF-CEM leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
Pelargonidin and pelargonidin-3-O-glucoside significantly \((P < 0.05)\) inhibited ATP levels in MOLT-3 cells at 25, 50, 100 pM in a dose-dependent manner, while pelargonidin-3,5-di-O-glucose showed significant decrease at only 50 and 100 pM following 24 h treatment \((P < 0.05)\). Pelargonidin induced IC50 in MOLT-3 cells at 83 pM. In contrast, pelargonidin-3-O-glucoside and pelargonidin-3-O-glucoside failed to display 50% decrease in ATP levels in MOLT-3 cells (Figure 6.16) (Table 6.8).

\[
\text{Figure 6.16: Effect of pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on MOLT-3 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05)\) vs. untreated control. n= 3.}\]
Pelargonidin and pelargonidin-3-O-glucoside significantly \((P< 0.05)\) inhibited ATP levels in HL-60 cells at 25, 50 and 100 pM in a dose-dependent manner, while pelargonidin -3,5-di-O-glucose did not show a significant \((P < 0.05)\) decrease at all concentrations following 24 h treatment. Pelargonidin and pelargonidin-3-O-glucoside displayed IC50 against HL-60 cells at 81 and 98 pM. In contrast, pelargonidin -3,5-di-O-glucose failed to display 50% decrease in ATP levels in HL-60 cells (Figure 6.17) (Table 6.8).

Figure 6.17: Effect of pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin -3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on HL-60 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P<0.05)\) vs. untreated control. \(n=3\).
Pelargonidin and pelargonidin-3-O-glucoside significantly \((P < 0.05)\) inhibited ATP levels in THP-1 cells at 10, 25, 50, 100 pM in a dose-dependent manner, while pelargonidin-3,5-di-O-glucose did not show significant decrease at any concentration following 24 h treatment \((P > 0.05)\). Pelargonidin displayed IC50 against THP-1 cells of 83 pM. In contrast, pelargonidin-3-O-glucoside and pelargonidin-3-O-glucoside failed to display 50% decrease in ATP levels in THP-1 cells (Figure 6.18) (Table 6.8).

THP-1 24h

<table>
<thead>
<tr>
<th>Pelargonidin</th>
<th>Pelargonidin-3-O-glucoside</th>
<th>Pelargonidin-3,5-di-O-glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Concentration (nM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.18: Effect of pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose on ATP levels at concentrations 10, 25, 50, and 100 pM on THP-1 leukaemia cell line. ATP levels investigated using Cell Titer-Glo® Luminescent Cell Viability Assay to provide indication of live cell numbers. ATP levels normalized to controls and presented as means ± standard error. * indicates significant difference \((P < 0.05)\) vs. untreated control. \(n=3\).
Table 6.8: The IC50 of anthocyanins and anthocyanidins on leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1) following 24 h treatment. NR = not reached.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CCRF-CEM</th>
<th>MOLT-3</th>
<th>HL-60</th>
<th>THP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delphinidin</td>
<td>20 pM</td>
<td>17 pM</td>
<td>16 pM</td>
<td>38 pM</td>
</tr>
<tr>
<td>Delphinidin-3-O-glucoside</td>
<td>35 pM</td>
<td>34 pM</td>
<td>19 pM</td>
<td>63 pM</td>
</tr>
<tr>
<td>Delphinidin-3,5-O-diglucoside</td>
<td>41 pM</td>
<td>44 pM</td>
<td>34 pM</td>
<td>74 pM</td>
</tr>
<tr>
<td>Cyanidin</td>
<td>57 pM</td>
<td>67 pM</td>
<td>64 pM</td>
<td>83 pM</td>
</tr>
<tr>
<td>Cyanidin-3-O-glucoside</td>
<td>87 pM</td>
<td>88 pM</td>
<td>70 pM</td>
<td>90 pM</td>
</tr>
<tr>
<td>Cyanidin-3,5-O-diglucoside</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Pelargonidin</td>
<td>81 pM</td>
<td>83 pM</td>
<td>81 pM</td>
<td>83 pM</td>
</tr>
<tr>
<td>Pelargonidin-3-O-glucoside</td>
<td>NR</td>
<td>NR</td>
<td>98 pM</td>
<td>NR</td>
</tr>
<tr>
<td>Pelargonidin-3,5-O-diglucoside</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

6.4.2 Effect of anthocyanidins and anthocyanins found in PJ on induction of cell death

Delphinidin, delphinidn-3-O-glucoside, and delphinidin-3,5-di-0-glucose showed a significant \(P < 0.05 \) increase in the number of apoptotic and dead cells and significant \(P < 0.05 \) decrease in the number of live cells in CCRF-CEM, MOLT-3 (Figure 6.19), HL-60, and THP-1 cells (Figure 6.20) with different sensitivity between these cells following 24 h treatment. Delphinidin exhibited potent induction of apoptosis in all cells compared to delphinidn-3-O-glucoside, and delphinidin-3,5-di-0-glucose which had less effect on the induction of apoptosis \(P > 0.05 \).
Figure 6.19: Annexin V-FITC/ PI based on flow cytometry following treatment with delphinidin, delphinidin-3-O-glucoside, and delphinidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 pM) for 24 h on CCRF-CEM and MOLT-3. * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.
Figure 6.20: Annexin V-FITC/ PI based on flow cytometry following treatment with delphinidin, delphinidin-3-O-glucoside, and delphinidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 pM) for 24 h on HL-60 and THP-1 Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. $n=3$.
Cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose showed a significant increase in the number of apoptotic and dead cells and significant decrease in the number of live cells in CCRF-CEM cells following 24 h treatment (P < 0.05) (Figure 6.21). Cyanidin illustrated potent induction of apoptosis compared to cyanidin-3-O-glucoside and cyanidin-3,5-di-O-glucose on CCRF-CEM cells. Cyanidin induced apoptosis in MOLT-3 (Figure 6.21) and HL-60 cells (Figure 6.22), while cyanidin treatment of THP-1 cells failed to induce apoptosis. Cyanidin-3-O-glucoside and cyanidin-3,5-di-O-glucose did not show any effect on induction of apoptosis in MOLT-3, HL-60, and THP-1 cells (Figure 6.21 and 6.22).

Table:

<table>
<thead>
<tr>
<th>Compound</th>
<th>CCRF-CEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 µM</td>
</tr>
<tr>
<td>Cyanidin</td>
<td>100</td>
</tr>
<tr>
<td>Cyanidin-3-O-glucoside</td>
<td></td>
</tr>
<tr>
<td>Cyanidin-3,5-di-O-glucoside</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.21: Annexin V-FITC/ PI based on flow cytometry following treatment with cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 pM) for 24 h on CCRF-CEM and MOLT-3. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
Figure 6.22: Analysis of Annexin V-FITC/PI based on flow cytometry following treatment with cyanidin, cyanidin-3-O-glucoside, and cyanidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 µM) for 24 h on HL-60 and THP-1. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
Pelargonidin slightly induced apoptosis, but this failed to reach significance in CCRF-CEM, MOLT-3, and HL-60 cells, and failed to induce apoptosis on THP-1 cells (Figure 6.23 and 6.24). Pelargonidin, Pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose did not show any effect on induction of apoptosis in any of the cells lines investigated (Figure 6.23 and 6.24).

Figure 6.23: Annexin V-FITC/ PI based on flow cytometry following treatment with pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucose (0, 10, 25, 50, 75, and 100 pM) for 24 h on CCRF-CEM and MOLT-3. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
Figure 6.24: Annexin V-FITC/PI based on flow cytometry following treatment with pelargonidin, pelargonidin-3-O-glucoside, and pelargonidin-3,5-di-O-glucoside (0, 10, 25, 50, 75, and 100 pM) for 24 h on HL-60 and THP-1. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n=3.
6.4.3 Effect of Anthocyanidins (Delphinidin, Cyanidin, and Pelargonidin) on Caspase-3 Activity

Caspase-3 activation plays a central role during the apoptotic process. Induction of apoptosis by treatment with delphinidin, cyanidin, and pelargonidin was confirmed with induction of caspase-3 activity in all four cell lines following 24 h. In CCRF-CEM, MOLT-3, and HL-60 cells a significant increase in the number of cells with active caspase-3 was observed at concentrations 25, 50, 75 and 100 μM delphinidin ($P \leq 0.05$). While, in THP-1 the number of cells with active caspase-3 was observed at concentrations 50, 75, and 100 μM delphinidin, with no significant effect seen following 25 μM treatment with delphinidin ($P \leq 0.05$) (Figure 6.25).

Cyanidin induced apoptosis with different sensitivity in CCRF-CEM, MOLT-3, HL-60 and THP-1 cells, cyanidin failed to induce apoptosis at all concentrations (Figure 6.25). Pelargonidin failed to induce apoptosis in all four leukaemia cell lines (Figure 6.25).
Figure 6.25: Effect of delphinidin, cyanidin, and pelargonidin on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24 at concentrations 10, 25, 50 and 100 pM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis. Mean ± SEM. * indicates significant difference ($P<0.05$) vs. untreated control. n= 3.
6.4.4 Effect of Delphinidin on Induction of Apoptosis Using DAPI for Morphology Assessment

To confirm the results of annexin V/PI-FITC and caspase-3 activity, we examined the effect of delphinidin on leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1) on apoptotic morphological using DAPI stain at concentrations (25, 50, and 100 μM) following 24 h treatments.

In all cell lines, untreated cells (0 μM) exhibited intact cells, but delphinidin-treated cells showed significant nuclear fragmentation, which is a typical marker of apoptosis. The induction of apoptosis cell death was accompanied by characteristic morphology and structural changes, including a condensed and fragmented nuclear structure and decreased cell size (Figure 6.27 and 6.29).

Differential responses between cells lines was observed following delphinidin treatment at different concentrations as was observed with annexin V-FITC /PI and caspase-3 activity assessment. Treatment of CCRF-CEM and HL-60 cells with delphinidin resulted in a significant increase in the number of apoptotic cells at all concentrations 25, 50, and 100 μM (Figure 6.26 and 6.28), while in MOLT-3 and THP-1 cells a significant increase in the number of apoptotic cells was only observed following 50 and 100 μM ($P \leq 0.05$) (Figure 6.27 and 6.29).
Figure 6.26: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with delphinidin 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at concentration 25, 50, and 100 pM for 24 h. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar = 12.5 pm. $n = 3$.

258
Figure 6.27: (1) Morphological staining analysis of MOLT-3 with DAPI treated with delphinidin 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at concentration 25, 50, and 100 pM for 24 h. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar = 12.5 pm. $n=3$.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>0 (XM)</th>
<th>25 (xM)</th>
<th>50 (xM)</th>
<th>100 (xM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOLT-3
Figure 6.28: (1) Morphological staining analysis of HL-60 with DAPI treated with delphinidin 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at concentration 25, 50, and 100 pM for 24 h. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar = 12.5 pm. n= 3.
Figure 6.29: (1) Morphological staining analysis of THP-1 with DAPI treated with delphinidin 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at concentration 25, 50, and 100 pM for 24 h. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar = 12.5 pm. n= 3.
6.4.5 Effect of Delphinidin on Cell Cycle Arrest within Leukaemia Cell Lines

To evaluate the effect of delphinidin treatment on the distribution of cells in phases of cell cycle, DNA cell cycle analysis by flow cytometry was performed. Delphinidin treatment at concentrations 25, 50, and 100 μM resulted in a dose-dependent accumulation of cells in S phase, in all leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1).

CCRF-CEM cells showed a significant accumulation of cells in S phase, and a significant ($P \leq 0.05$) decrease in the G₀/G₁ phase, at all delphinidin concentrations (25, 50, and 100 μM) at 24 h (Figure 6.30). MOLT-3 cells exhibited similar pattern as CCRF-CEM cells, however, the significant accumulation of cells at S phase was only seen at concentrations of 50 and 100 μM of delphinidin following 24 h treatments (Figure 6.30). The myeloid cell lines HL-60 and THP-1, showed a significant ($P \leq 0.05$) accumulation of cells in S phase corresponding with a decrease in the G₀/G₁ and M phases following treatment with delphinidin for 24 h (Figure 6.30).
6.4.6 Effect of Delphinidin on Activities of Caspase-8 and -9 in HL-60 and MOLT-3

In order to determine whether delphinidin activated the intrinsic or extrinsic pathway levels of caspase-8 and -9 were determined using Caspase-Glo™ 8 and 9 assays. In HL-60 cells, there was a significant time-dependent increase in caspase-8 and -9 when treated with 25 and 50 μM (Figure 6.31). There was at least a 2-fold increase in caspase-8 and -9 activity between 3 and 6 h incubation. After 24 h, there was a decrease in both caspase-8 and -9 (Figure 6.31).

In MOLT-3 cells, delphinidin failed to stimulate both caspase-8 and -9, at 3 h incubation. At 6 h, there was increase in caspase-8 and -9 activity but was only following treatment with 25 μM concentration. When a 50 μM of delphinidin treatment was used more than 3.5 fold increase in both caspases. At 24 h, a decrease in both caspases was observed (Figure 6.32).
Figure 6.31: Effect of delphinidin on activation of caspase-8 (A) and caspase-9 (B). HL-60 cells were treated with delphinidin at concentration 25 and 50 pM for 3, 6, and 24 h. Caspase-8 and -9 activities were investigated using Caspase-Glo™ 8 and 9 Assays. Level of both caspases activities normalized to control and presented as means ± standard error. * indicates significant difference ($P < 0.05$) vs. untreated control. $n = 3$.
Figure 6.32: Effect of delphinidin on activation of caspase-8 (A) and caspase-9 (B). MOLT-3 cells were treated with delphinidin at concentration 25 and 50 pM for 3, 6, and 24 h. Caspase-8 and -9 activities were investigated using Caspase-Glo™ 8 and 9 Assays. Level of both caspases activities normalized to control and presented as means ± standard error. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
6.4.7 Effect of Delphinidin on Expression of Cytochrome C in HL-60 and MOLT-3 Cells

Cytochrome c is normally expressed in the cells binding to the inner membrane of the mitochondria. In response to pro-apoptotic stimuli it is released from the mitochondria to the cytosol. Thus, when using a specific antibody it is possible to demonstrate the expression, and translocation of cytochrome c as a dark brown staining. In cells with inactive cytochrome c this appears as a pale brown colour.

The number of cells displaying active cytochrome c was significantly (P ≤ 0.05) increased in HL-60 cells following 3, 6, and 24 h in a dose dependent manner (Figure 6.33 and 6.37). In MOLT-3 cells the number of active cytochrome c cells was significantly (P ≤ 0.05) increased after 6 and 24 h treatment, with 50 μM delphinidin (Figure 6.34 and 6.37).

6.4.8 Effect of Delphinidin on Expression of Smac/Diablo in HL-60 and MOLT-3 Cells

Smac/Diablo is a mitochondrial pro-apoptotic protein, which is found in an inactive form within normal cells, within active cells an increased intensity was seen indicating the release from the mitochondrial membrane.

Smac/Diablo immunopositivity was also significantly increased following 3, 6, and 24 h treatment with 50 μM of delphinidin (P≤ 0.05). At 6 h, there was a 44% increase in Smac/Diablo activity, this was greater than that seen in controls and the earlier 1 and 3 h time points (Figure 6.35 and 6.38). In MOLT-3 cells the number of active Smac/Diablo cells was also significantly increased after 6 and 24 h treatment with 50 μM delphinidin (Figure 6.36 and 6.38) (P ≤ 0.05).
Figure 6.37: Percentage of active cytochrome C in HL-60 and MOLT-3 cells determined from ICC morphological assessment following treatment with delphinidin at 50 pM for 3, 6, and 24 h normalized to untreated controls. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.

Figure 6.38: Percentage of active Smac/DIABLO in HL-60 and MOLT-3 cells determined from ICC morphological assessment following treatment with delphinidin at 50 pM for 3, 6, and 24 h normalized to untreated controls. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
6.4.9 Effect of Delphinidin on the Expression of Pro-Apoptotic Proteins (BAX and BAD) and Anti-Apoptotic Proteins (Bcl-2 and Bcl-xl)

The effect of delphinidin on the mRNA expression of pro-apoptotic proteins (BAX and BAD) and anti-apoptotic proteins (Bcl-2 and Bcl-xl) on two leukaemia cell lines (HL-60 and MOLT-3) was investigated. Delphinidin (50 μM) up-regulated the mRNA expression of Bax and Bad (4.6-fold and 4.4-fold respectively) on HL-60 cells following 6 h treatment. In addition, mRNA expression for Bcl-2 and Bcl-xl were significantly down-regulated (6.2-fold and 6.6-fold respectively) in HL-60 cells following treatment with 50 μM delphinidin for 6 h (Figure 6.39).

Similarly in MOLT-3 cells treatment with delphinidin (50 μM) resulted in up-regulated of the mRNA expression of BAX and BAD (4.1-fold and 3.5-fold respectively) and down-regulated the mRNA expression of Bcl-2 and Bcl-xl (5.8-fold and 5.6-fold respectively) following 6 h treatment (Figure 6.40).
Figure 6.39: Effect of delphinidin (50 pM) on the mRNA expression of pro-apoptotic protein (BAX and BAD) and anti-apoptotic proteins (Bcl-2 and Bcl-xl) on HL-60 leukaemia cells following 6 h treatment. The result of untreated cells was normalized to 1. Results were significant to the control sample when P < 0.05. n=3.

Figure 6.40: Effect of delphinidin (50 pM) on the mRNA expression of pro-apoptotic protein (BAX and BAD) and anti-apoptotic proteins (Bcl-2 and Bcl-xl) on MOLT-3 leukaemia cells following 6 h treatment. The result of untreated cells was normalized to 1. Results were significant to the control sample when P < 0.05. n=3.
6.5 Discussion:
This study showed for the first time that delphinidin, cyanidin, and pelargonidin, were capable of reducing ATP levels in all four leukaemia cell lines investigated.

Delphinidin was the most potent anthocyanins studied, suggesting that its ortho-hydroxyphenyl structure is critical for its activity. Consistent with our results Katsube et al, (2003) demonstrated that anthocyanidins could reduce cell proliferation of HCT116 colon cell line. Their anti-proliferative effects in order of effectiveness were: delphinidin > cyanidin > peonidin > pelargonidin > malvinidin in HCT116 cells. Similarly, six anthocyanidins were shown to inhibit TPA-induced JB6 mouse epidermal cell transformation and AP-1 transcription activity (Hou et al, 2004). Delphinidin was shown to be the most effective having a greater activity than petunidin, cyanidin, pelargonidin, malvinidin, and peonidin (Hou et al, 2004). It was concluded that the ortho-dihydroxyphenyl structure at the B-ring found in delphinidin was essential for apoptosis (Hou et al, 2003). Meiers et al. (2001) reported that cyanidin and delphinidin contain hydroxyl groups, whilst malvinidin did not. Cyanidin and delphinidin induced higher inhibitory effects on the growth of human vulva carcinoma cell line A431 in vitro (Meiers et al, 2001).

6.5.1 Delphinidin is the most active Anthocyanin on Leukaemia Cells
Delphinidin showed the greatest induction of apoptosis compared with cyanidin and pelargonidin in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). However, there was differential sensitivity shown between them. Similarly delphinidin induced apoptosis in HepG2 cells more effectively than cyanidin (Yeh and Yen, 2005). Delphinidin has also been shown to induce apoptosis in different cancer cell lines including breast (AU-565 cells) (Afaq et al, 2008); prostate (PC3 cells (Hafeez et al, 2008a) and PCA 22Rnu1 cells (Hafeez et al, 2008b)); colon (HCT-116 cells) (Yun et al, 2009); liver (HepG2 cells) (Yeh and Yen, 2005); uterus (Hela S3 cells) (Lazze et al, 2004) and leukaemia (HL-60 cells).

Here, cyanidin inhibited cell proliferation in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1), but only induced apoptosis in CCRF-CEM, MOLT-3, and HL-60 at high concentrations and failed to induce apoptosis in THP-1 cells. Several studies have reported that cyanidin in different forms (cyanidn-rutinoside, cyanidin-3-O-β-glucopyranoside and cyanidin-3-O-β-D-glucopyranoside) induced apoptosis in
oesophageal (Zikri et al, 2009) liver (Longo et al, 2008), and 6 leukaemia cell lines: (HL-60 (Feng et al, 2007; Fimognari et al, 2004); MOLT-4 (Katsuzaki et al, 2003); U937 (Hyun and Chung, 2004) and Jurkat cells (Fimognari et al, 2004)). In contrast Annalucia et al, (2004) demonstrated cyanidin-3-O-β-glucopyranoside failed to induce apoptosis but did decrease cellular proliferation.

Pelargonidin failed to induce apoptosis in all four leukaemia cell lines. Similarly, Katsub et al (2003) reported that pelargonidin failed to induce apoptosis in colon cancer cells HCT-116 (Katsub et al, 2003). Yeh and Yen (2005) showed that delphinidin and cyanidin induced apoptosis in HepG2 cells whilst pelargonidin did not induce apoptosis.

6.5.2 Effect of Sugar Molecules
This study showed that the anthocyanidins exhibited greater anti-proliferative and pro-apoptotic effects than their glycosylated counterparts: the anthocyanins. Shish et al (2005) also reported that cyanidin and pelargonidin show stronger inhibitory effects on human gastric adenocarcinoma than their glycosidic forms: cyanidin-3-glucose and pelargonidin-3-glucose. The current study also showed the number of glucoside groups affected their activity, with mono-glycoside being more potent inhibitors of cellular proliferation and inducers of apoptosis than di-glycosides. This result agrees with previous work (Chapter 5), which showed that rutin illustrated less inhibitory effect on ATP levels that its aglycon form, quercetin. This data suggests that glycosilation of the anthocyanins inhibit their biological activities. Few studies have been conducted to investigate the relationship between structure and function of glycosylated anthocyanins. Jing et al. (2008) studied the relationship between chemical characteristics of anthocyanins and their biological activity. Demonstrating that anthocyanins with structure properties of mono-glycoside were stronger inhibitors of cell proliferation in HT-29 colon cells than their tri-glycosylated counterparts (Jing et al, 200). Similarly it has been found that cyanidin and pelargonidin showed greater anti-proliferative capabilities than cyanidn-3-glucoside and pelargonidin-3-glucose on human gastric adenocarcinoma AGS cells (Shish et al, 2005). Koide et al. (1997) reported that an extract containing mostly cyanidin-glucoside and cyanidin-rhamnoside was more effective in suppressing the HCT15 colon cells growth in vitro than the extract rich in cyanidin-rhamnoside, suggesting that anthocyanin chemical structure has an effect on inhibiting cell growth (Koide et al, 1997).
The results indicated that potency of cancer chemoprevention of anthocyanins including inhibition of ATP levels and induction of apoptosis is associated with the number of hydroxyl groups on the B-ring and sugar units. These factors have also been reported to have an effect on antioxidant activity which plays an important role in cancer treatment (Kahkonen and Heinonen, 2002). Noda et al (2002) reported that delphinidin has more potent antioxidant activity than cyanidin and pelargonidin. In addition, studies suggest that glycosidic forms generally display a decrease in the antioxidant capacity when compared with the corresponding aglycon. This may due to the steric hindrance conferred by the bulky sugars (Satue-Garcia et al, 1997; Tsuda et al, 1994).

Delphinidin was the most potent compound inhibiting cell proliferation and inducing apoptosis in a dose dependent manner to a greater extent than cyanidin and pelargonidin and thus was selected for further investigation.

6.5.3 Regulation of Cell Cycle by Delphinidin

Studies have shown the involvement of cell cycle regulation in inhibiting cell growth. Here, delphinidin treatment of CCRF-CEM, MOLT-3, HL-60 and THP-1 cells resulted in arrest of cells in S phase. Similarly, Lazze, et al., (2004) showed that exposure of human uterus cancer cells (Hela S3) to delphinidin caused S phase arrest. Whilst G2/M phase arrest has been shown in breast cancer cells (MCF-7) (Nguyen et al, 2010; Chen et al, 2005) and (HS578T), and colon cancer cells (HCT-116) (Yun et al, 2009). Previously S phase arrest was also observed following treatment with PJ (Chapter 3) (Dahlawi et al, 2011) and acetonitrile fractions (Chapter 4) (Dahlawi et al, 2013) in the same cell lines tested here, indicating that delphinidin may be one of the major components in PJ.

6.5.4 Molecular Mechanism of Apoptosis Induction by Delphinidin

Here, caspase-3 activity was increased in all four leukaemia cell lines following treatment with delphinidin. This finding is supported by the work of Hou et al. (2005) who showed that treatment with delphinidin-3-sambubioside at a concentration of 100 μM induced caspase-3 activity in human promyelocytic HL-60 cells. Delphinidin has also been shown to induce caspase-3 in human colon (HCT-116) (Yun et al, 2009), breast (Human EGFR positive AU-565) (Afaq et al, 2008), and prostate (Androgen refractory human PCa 22Rnu 1) (Hafeez et al, 2008b), (PC3), and (human androgen-dependent LNCaP) (Hafeez et al, 2008b) cancer cell lines.
Delphinidin was shown here to induce activation of both caspase-8 and -9 in MOLT-3 and HL-60 cells, suggesting activation of both intrinsic and extrinsic apoptosis pathways by delphinidin. This has also been reported in delphinidin-3-sambubioside treated HL-60 cells (Hou et al, 2005) and delphinidin treated colon cancer cells (HCT-116) (Yun et al, 2009). In addition the current study showed that delphinidin treatment increased the expression of cytochrome c in HL-60 and MOLT-3 cells. Consistent with our results, Hou et al (2005) reported that cytochrome c release was observed in HL-60 cells following treatment with delphinidin-3-sambubioside. Release of cytochrome c was also observed in leukaemia cells (HL-60) and in hepatic cancer cells (PLC/PRF/5) following treatment with a mixture of anthocyanins (Change et al, 2005; Longo et al, 2008).

In addition, delphinidin treatment of MOLT-3 and HL-60 cells caused release of Smac/Diablo from the mitochondria. Khan et al. (2008) found that flavonoid treatment, fisetin, resulted in inhibition of IAP and induction of apoptosis via Smac/Diablo in prostate cancer cells (LNCaP).

A decrease in Bcl-2 and Bcl-XI and an increase in Bax and Bad mRNA in MOLT-3 and HL-60 cells following treatment with delphinidin was also seen further supporting the activation of the intrinsic pathway of apoptosis.

The activation of both intrinsic and extrinsic apoptosis by delphinidin has also been shown in breast cancer cells (MCF-7) Kue et al, (2004). Together with studies showing intrinsic and extrinsic apoptosis by anthocyanins extracted from different fruits (Change et al, 2005; Reddivari et al, 2007).

6.6 Conclusion
Anthocyanins activity was found to be dependent on the ortho-hydroxyphenyl structure and the most potent glycosidic form of the anthocyanins with proliferation and apoptosis effects seen in anthocyanins with greatest hydroxyl groups and least glycosidic form, namely delphinidin. Delphinidin induced apoptosis through intrinsic and extrinsic pathways. Suggesting that delphinidin may have potential for use as a chemotherapeutic agent against leukaemia.
7. *Induction of apoptotic arrest following stimulation with EGCG, Gallic acid, guerticin and punicalagin.*
7.1 Introduction

Pomegranates have been shown to be a rich source of a wide variety of bioactive compounds amongst these compounds, EGCG; gallic acid; quercetin and punicalagin were identified as demonstrating potent decreases in ATP levels in leukaemia cell lines (Chapter 5). To determine whether the decrease in ATP levels by these compounds was due to apoptosis or cell cycle arrest these agents were investigated further.

EGCG is a a flavan-3-ol and is the major polyphenolic agent in green tea, which has been shown to have potential as a chemopreventive agent for a number of cancers (Cimino et al, 2012). Previously EGCG was shown to be the most potent compound among other flavan-3-ol agents tested (Chapter 5). In vitro EGCG induces apoptosis and cell cycle arrest in many cancer cells without affecting normal cells (Paschka et al, 1998; Ahmad et al, 2000; Ahn et al, 2003; Salucci et al, 2002; Hastak et al, 2005; hangapazham et al, 2007; Tang et al, 2007; Adhami et al, 2007), although to date there are limited studies on its effects on leukaemia cells.

Quercetin is a flavonol and is found in a variety of fruits and vegetables (Chen et al, 2007). Numerous reports on the potential anti-cancer effects of quercetin have been published (Nair et al, 2004; Vijayababu et al, 2005; Granado-Serrano et al, 2006; Jeong et al, 2009; Chien et al, 2009; Jung et al, 2010; Jung et al, 2010). The cancer-preventive effects have been attributed to cell cycle arrest, inhibition of proliferation and induction of apoptosis (Nair et al, 2004; Vijayababu et al, 2005; Granado-Serrano et al, 2006; Jeong et al, 2009; Chien et al, 2009; Jung et al, 2010; Jung et al, 2010).

Gallic acid is a naturally occurring plant phenolic acid, and has been reported to have potential anti-cancer activities (Weng and Yen 2012). In vitro and in vivo studies using gallic acid have shown anti-cancer activities in several types of cancer cell lines including: colon, lung, and prostate cancer cell lines (Yoshioka et al, 2000; Veluri et al, 2006; Ji et al, 2009). In addition gallic acid displays selectivity towards tumour cells with lower toxicity seen in normal cells (Veluri et al, 2006; Bernhaus et al, 2009). Gallic acid can induce apoptosis and results in cell cycle arrest (Kaur et al, 2009; You and Park, 2010; Ou et al. 2010; Locatelli et al, 2012).
Punicalagin, anellagitannins is found in pomegranates, strawberries, raspberries, almonds, and walnuts (Amakura et al, 2000; Clifford and Scalbert, 2000). In PJ, punicalagin is believed to be responsible for more than 50% of its antioxidant activity (Gil et al, 2000). Our previous work (Chapter 4) (Dahlawi et al, 2013) has identified punicalagin as one of the most abundant compounds within acetonitrile fraction, and we have shown it induces a potent inhibition of ATP levels indicating decreases in live cell numbers (Chapter 5). However, to date, few studies have investigated the effect of punicalagin as pure agent in cancer cell lines (LarroSA et al, 2005; Seeram et al, 2005).

The present chapter will focus on the potential chemopreventive activities of EGCG, quercetin, gallic acid and punicalagin. Testing the hypothesis that: these agents induce apoptosis and cell cycle arrest in leukaemia cell lines.

7.2 Materials and Methods

7.2.1 Cell Culture

Four leukaemia cell lines were used in this study. These were selected as they were shown to have sensitivity to PJ (Dahlawi et al, 2011) (chapter 3) and to the acetonitrile fraction of PJ (Dahlawi et al, 2013) (Chapter 4). They included two lymphoid cell lines: CCRF-CEM and MOLT-3 and two myeloid cell lines: HL-60 and THP-1. Cell lines were maintained and cultured in RPMI 1640 medium (Invitrogen, Paisley, U.K.) supplemented with 10% (v/v) foetal bovine serum, 1.5 mmol/L l-glutamine, and 100 µg/mL penicillin/streptomycin (complete media) in a humidified atmosphere of 5% CO₂ at 37°C.

7.2.2 Treatment of Cells

Cells were treated with EGCG, gallic acid, quercetin, and punicalagin at dose of 0 – 100 µM for 24 h and induction of apoptosis and cell cycle arrest investigated (Table 7.1).
Table 7.1: Experimental design for chapter 7.

7.2.3 Annexin V-FITC / PI Flow Cytometry Assay

Flow cytometry of Annexin V-FITC / PI was used to detect apoptosis as described previously (section 2.4.1). Cells were seeded at 5 x 10^5 cells in 1 ml of complete media in a 6-well plate (Fisher Scientific) and treated with EGCG, gallic acid, quercetin, and punicalagin at a concentration of 0, 10, 25, 50, 75, and 100 pM for 24 h. Data were recorded from 10,000 cells per sample and analyzed using FlowJo software (Tree Star).

7.2.4 Caspase-3 Activity

NucView™ 488 Caspase-3 substrate was used to detect caspase-3 activity as described in section 2.4.3. Cells were treated with EGCG, gallic acid, quercetin, and punicalagin at concentrations 0, 10, 25, 50, 75, and 100 pM for 24 h. Data were recorded from 10,000 cells per sample and analyzed using FlowJo software (Tree Star).

7.2.5 DAPI Stain

Following treatment with EGCG, gallic acid, quercetin, and punicalagin at concentrations of 0, 25, 50, 100 for 24 h at cell density 5x10^4 cells per well, cells were stained with DAPI to observe apoptotic morphology as described previously (section 2.4.2). Cells were examined using an Olympus BX60 fluorescence microscope using UV light at excitation wavelength 350 nm. Quantitative analysis of cell populations (live & apoptotic) was performed based on counting of 200 randomly-selected cells and the percentage of apoptotic features determined for each sample.
7.2.6 Cell Cycle

The cell cycle distribution of leukaemia cell lines was measured by the DNA contents in each cell based on flow cytometry using PI stain as described previously in section 2.5. Cells were treated with EGCG, gallic acid, quercetin, and punicalagin at concentrations of 0.25, 50, and 100 μM for 24 h. Data from 10,000 cells per sample were recorded and percentages of cells within G₀/G₁, S, and G₂/M cell cycle phase were determined with FlowJo software and Waston (pragmatic) analysis of cell cycle (Tree Star).
7.3 Results

7.3.1 EGCG

7.3.1.1 Effect of EGCG on Induction of Apoptosis

7.3.1.1.1 Annexin V-FITC/PI Based on Flow Cytometry

EGCG treatment of CCRF-CEM, MOLT-3, HL-60, and THP-1 cells resulted in a significant increase in the number of apoptotic and dead cells and a decrease in the number of live cells following 24 h incubation at concentrations: 25, 50, 75, and 100 pM ($P < 0.05$). At the lowest concentration (10 pM) of EGCG no significant induction of apoptosis was observed in all four cell lines. THP-1 was the least sensitive among the cell lines investigated, which illustrated only slight decrease in the number of live cells and increase in the number of apoptotic and dead cells (Figure 7.1).

![Figure 7.1: Annexin V-FITC/PI based on flow cytometry following treatment with EGCG (0, 10, 25, 50, 75, and 100 pM) for 24 h on CCRF-CEM, MOLT-3, HL-60, and THP-1. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.](image-url)
7.3.1.1.2 Caspase-3 Activity:
EGCG at treatment dose of 25, 50, 75, and 100 pM significantly increased caspase-3 activity in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60 and THP-1) with different sensitivity following 24 h treatment \((P < 0.05)\). In CCRF-CEM cells, following 100 pM of EGCG caspase-3 activity was increased to 98% of cells positive as compared to 8% in untreated controls cells. In HL-60 and MOLT-3 cells caspase-3 activity was increased to 88% and 78% of cells positive respectively. THP-1 cells were the least sensitive cell lines, with only 16% of cells positive for caspase-3 activity following 100 pM of EGCG for 24 h compared to 7.5% in control cells (Figure 7.2).

![Figure 7.2: Effect of EGCG on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24 at concentrations 10, 25, 50, 75 and 100 pM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis. Mean ± SEM. * indicates significant difference \((P < 0.05)\) vs. untreated control. n= 3.](image-url)
7.3.1.1.3 DAPI for Morphological Assessment:
The EGCG-treated cells showed significant increase in the number of apoptotic cells in all four leukaemia cell lines tested (CCRF-CEM, MOLT-3, HL-60, and THP-1) at all concentrations 25, 50, 100 pM following 24 h treatment ($P < 0.05$) (Figure 7.3-7.6).

CCRF-CEM

![Diagram](image)

Figure 7.3: (1) DAPI Morphological staining analysis of CCRF-CEM with DAPI treated with EGCG at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. n= 3.
Figure 7.4: (1) Morphological staining analysis of MOLT-3 with DAPI treated with EGCG at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. Scale bar= 12.5 pm. n= 3.
Figure 7.5: (1) Morphological staining analysis of HL-60 with DAPI treated with EGCG at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar = 12.5 pm. n = 3.
Figure 7.6: (1) Morphological staining analysis of THP-1 with DAPI treated with EGCG at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. n= 3.
7.3.1.2 Effect of EGCG on Cell Cycle:
EGCG showed significant accumulation of cells in G₀/G₁ phase corresponding with a significant decrease in S and M phases in CCRF-CEM, MOLT-3, and HL-60 cell lines following 24 h treatment with concentration of 25, 50, and 100 μM (P ≤ 0.05) (Figure 7.7). In THP-1 cells G₀/G₁ phase arrest was observed, but this failed to reach significance (P > 0.05) (Figure 7.7).
7.3.2 Gallic acid

7.3.2.1 Effect of Gallic Acid on Induction of Apoptosis

7.3.2.1.1 Annexin V-FITC/PI Based on Flow Cytometry
Gallic acid treatment of CCRF-CEM, MOLT-3, HL-60, and THP-1 cells resulted in a significant increase in the number of apoptotic and dead cells and decrease in the number of live cells following 24 h incubation at concentrations: 25, 50, 75, and 100 pM \((P < 0.05) \). At the lowest concentration (10 pM) of gallic acid no significant induction of apoptosis was observed in all four cell lines \((P > 0.05) \) (Figure 7.8). THP-1 was the least sensitive among the cell lines investigated, which illustrated significant decrease in the number of live cells and increase in the number of apoptotic and dead cells at concentration 50, 75, and 100 pM, but the effects seen were lower than that observed in the other cell lines (Figure 7.8).

![Gallic acid](image)

Figure 7.8: Annexin V-FITC/ PI based on flow cytometry following treatment with gallic acid (0, 10, 25, 50, 75, and 100 pM) for 24 h on CCRF-CEM, MOLT-3, HL-60, and THP-1. Mean ± SEM. * indicates significant difference \((P < 0.05) \) vs. untreated control. \(n = 3 \).
7.3.2.1.2 Caspase-3 Activity:
Gallic acid showed a significant increase in caspase-3 activity in CCRF-CEM, MOLT-3, and HL-60 cells, but failed to induce apoptosis in THP-1 cells ($P < 0.05$) (Figure 7.9).

Gallic acid

<table>
<thead>
<tr>
<th>Concentration (uM)</th>
<th>CCRF-CEM</th>
<th>MOLT-3</th>
<th>HL-60</th>
<th>THP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.9: Effect of gallic acid on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24 h at concentrations of 10, 25, 50, 75 and 100 pM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate assay based on flow cytometry analysis. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. n= 3.
7.3.1.1.3 DAPI for Morphological Assessment:
Gallic acid showed a significant increase the number of apoptotic cells at all concentrations in CCRF-CEM and HL-60 cells following 24 h treatment (P < 0.05) (Figure 7.10-7.11). In MOLT-3, a significant increase in the number of apoptotic cells was observed at 50 and 100 pM. THP-1 cells were the least sensitive with only a small but significant increase in the number of apoptotic cells at high concentration 100 pM following 24 h treatment (P < 0.05) (Figure 7.13).

CCRF-CEM

(1)

Figure 7.10: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with gallic acid at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. Scale bar= 12.5 pm. n= 3.
Figure 7.11: (1) Morphological staining analysis of MOLT-3 with DAPI treated with gallic acid at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. $n=3$.
Figure 7.12: (1) Morphological staining analysis of HL-60 with DAPI treated with gallic acid at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. n= 3.
Figure 7.13: (1) Morphological staining analysis of THP-1 with DAPI treated with gallic acid at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. $n= 3$.
7.3.2.2 Effect of Gallic Acid on Cell Cycle
Gallic acid induced a significant accumulation of cells in S phase corresponding with a significant decrease in G₀/G₁ phase in CCRF-CEM and MOLT-3 and M phase in HL-60 cells at concentrations of 25, 50, 100 μM following 24 h treatment (P ≤ 0.05) (Figure 7.14). Gallic acid treatment to THP-1 cells resulted in a significant accumulation of cells in S phase, but only at 50 and 100 μM corresponding with decrease in G₀/G₁ phase following 24 h incubation (P ≤ 0.05) (Figure 7.14).
7.3.3 Quercetin

7.3.3.1 Effect of Quercetin on Induction of Apoptosis

7.3.3.1.1 Annexin V-FITC/PI based on flow cytometry

Quercetin showed a significant increase in the number of apoptotic and dead cells and a decrease in the number of live cells following 24 h treatment in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1) (P < 0.05) (Figure 7.15). Quercetin illustrated potent induction of apoptosis compared to EGCG, gallic acid, and punicalagin in THP-1 cells.

<table>
<thead>
<tr>
<th>Quercetin</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μM</td>
</tr>
</tbody>
</table>

Figure 7.15: Annexin V-FITC/PI based on flow cytometry following treatment with quercetin (0, 10, 25, 50, 75, and 100 pM) for 24 h on CCRF-CEM and MOLT-3. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. n= 3.
7.3.3.1.2 Caspase-3 Activity

Quercetin significantly increased caspase-3 activity in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60 and THP-1) with different sensitivity following 24 h treatment with CCRF-CEM being the least sensitive cells. Notably, quercetin illustrated potent increase in caspase-3 activity compared to EGCG, gallic acid, and punicalagin in THP-1 cells (Figure 7.16).

Quercetin

![Graph showing caspase-3 activity for different concentrations of quercetin in CCRF-CEM, MOLT-3, HL-60, and THP-1 cells.]

Figure 7.16: Effect of punicalagin on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24h at concentrations 10, 25, 50, 75 and 100 \(\mu \)M. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis. Mean ± SEM. * indicates significant difference \((P < 0.05) \) vs. untreated control. \(n=3 \).
7.3.3.1.3 DAPI for Morphological Assessment

Quercetin-treated cells showed a significant increase in the number of apoptotic cells displaying condensed and fragmented nuclear structure and a decrease in cell size which are markers of apoptosis in CCRF-CEM, MOLT-3, HL-60 and THP-1 cells at all concentrations: 25; 50; 100 pM following 24 h treatment \((P < 0.05)\) (7.17-7.20). However, quercetin illustrated potent increase in the number of apoptotic cells compared to EGCGC, gallic acid, and punicalagin in THP-1 cells as was observed with annexin V-FITC/PI and caspase-3 activity assessments (7.15 and 7.16).

CCRF-CEM

Figure 7.17: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with quercetin at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference \((P < 0.05)\) vs. untreated control. Scale bar= 12.5 pm. \(n= 3\).
Figure 7.18: (1) Morphological staining analysis of MOLT-3 with DAPI treated with quercetin at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference (P < 0.05) vs. untreated control. Scale bar= 12.5 pm. n= 3.
Figure 7.19: (1) Morphological staining analysis of HL-60 with DAPI treated with quercetin at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. n= 3.
Figure 7.20: (1) Morphological staining analysis of THP-1 with DAPI treated with quercetin at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. n= 3.
7.3.3.2 Effect of Quercetin on Cell Cycle
Quercetin treatment of CCRF-CEM, MOLT-3, HL-60, and THP-1 cells resulted in a significant accumulation of cells in S phase in all four leukaemia cell lines corresponding with a significant decrease in G₀/G₁ and M phase at concentrations: 25; 50 and 100 μM following 24 h treatment (P < 0.05) (Figure 7.21).
7.3.4 Punicalagin

7.3.4.1 Effect of Punicalagin on Induction of Apoptosis

7.3.4.1.1 Annexin V-FITC/PI Based on Flow Cytometry

Punicalagin significantly increased the number of apoptotic and dead cells and decreased the number of live cells following 24 h treatment in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1) at concentrations of 10, 25, 50, 75, and 100 pM \((P < 0.05) \) (Figure 7.55). THP-1 was the least sensitive among the cell lines investigated, which illustrated small, but significant decrease in the number of live cell and an increase in the number of apoptotic and dead cells at all concentrations (Figure 7.22).

![Punicalagin Concentrations](image)

Figure 7.22: Annexin V-FITC/ PI based on flow cytometry following treatment with punicalagin (0, 10, 25, 50, 75, and 100 pM) for 24 h on CCRF-CEM and MOLT-3. Mean ± SEM. * indicates significant difference \((P < 0.05) \) vs. untreated control. n= 3.
7.3.4.1.2 Caspase-3 Activity

Punicalagin significantly increased caspase-3 activity in all four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60 and THP-1) with different sensitivity following 24 h treatment (P < 0.05) (Figure 7.23). Punicalagin was considerably less effective towards THP-1 cells with only 19% of cells positive for caspase-3 activity at 100 pM following 24 h incubation compared to 10% in control cells (Figure 7.23).

Figure 7.23: Effect of punicalagin on caspase-3 activation in four leukaemia cell lines (CCRF-CEM, MOLT-3, HL-60, and THP-1). Cells treated for 24 h at concentrations of 10, 25, 50, 75 and 100 pM. Caspase-3 activation was determined by NucView™ 488 Caspase-3 substrate based on flow cytometry analysis. Means ± standard error of the mean. *Significant difference (P < 0.05). n= 3.
7.3.4.1.3 DAPI for Morphological Assessment

Punicalagin showed a significant increase in the number of apoptotic cells in all four leukaemia cell lines tested (CCRF-CEM, MOLT-3, HL-60 and THP-1) at all concentrations following 24 h treatment ($P < 0.05$) (Figure 7.24-7.27).

CCRF-CEM

(1)

(2)

<table>
<thead>
<tr>
<th>OpM</th>
<th>25 pM</th>
<th>50 pM</th>
<th>100 pM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.24: (1) Morphological staining analysis of CCRF-CEM with DAPI treated with punicalagin at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. n= 3.
Figure 7.25: (1) Morphological staining analysis of MOLT-3 with DAPI treated with punicalagin at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference ($P < 0.05$) vs. untreated control. Scale bar= 12.5 pm. n= 3.
Figure 7.26: (1) Morphological staining analysis of HL-60 with DAPI treated with punicalagin at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference \((P < 0.05) \) vs. untreated control. Scale bar = 12.5 pm. n = 3.
Figure 7.27: (1) Morphological staining analysis of THP-1 with DAPI treated with punicalagin at concentrations 25, 50, and 100 pM for 24 h. Live cells are indicated by the green arrows, and apoptotic cells are indicated by the red arrows. (2) Percentage of apoptotic cells determined from DAPI morphological assessment following treatment with delphinidin at 25, 50, and 100 pM for 24 h. Mean ± SEM. * indicates significant difference \((P < 0.05) \) vs. untreated control. Scale bar= 12.5 pm. n= 3.
7.3.4.2 Effect of Punicalagin on Cell Cycle

Punicalagin showed a significant accumulation of cells in S phase corresponding with a significant decrease in G₀/G₁ phase in CCRF-CEM, MOLT-3 and HL-60 cells at all concentrations following 24 h treatment (P < 0.05) (Figure 7.28). Punicalagin treatment of THP-1 cells resulted in a significant accumulation of cells in S phase only following 100 μM stimulation corresponding with decrease in G₀/G₁ phase following 24 h incubation (P < 0.05 (Figure 7.28).
7.4 Discussion

EGCG, gallic acid, quercetin, and punicalagin significantly induced apoptosis determined by AV/PI, caspase-3 activity and DAPI morphology in all leukaemia cell lines. Moreover, S phase arrest was observed following treatment with gallic acid, quercetin, and punicalagin, and in G0/G1 following treatment with EGCG for 24 h.

7.4.1 EGCG

A number of laboratory studies in vivo and in vitro have demonstrated the inhibitory action of green tea rich in EGCG as having anti-carcinogenic activities. Previously (Chapter 5), EGCG induced a potent decrease in ATP level. Here, its effect on induction of apoptosis and cell cycle regulation showed promising results in all four leukaemia cell lines tested. Using annexin V/PI-FITC based on flow cytometry and DAPI morphological assessment a significant induction of apoptosis in leukaemia cell lines was observed. In addition, caspase-3 which plays an important role in apoptosis increased in most cell lines. This is consistent with Nakazato et al. (2007) who showed that EGCG induced apoptosis in four human leukaemia cell lines HL-60, U937, KG-1a, and K562 following 24 h treatment. In addition many studies have verified this observation in several cell types (Khan (3) et al, 2006). In breast cancer EGCG induced apoptosis in several cell lines including MCF-7 and MDA-MB-231 by regulating pro- and anti-apoptotic proteins including Bcl-2, Bcl-XL, and Bax (Thangapazham et al, 2007; Tang et al, 2007). In prostate cancer, induction of apoptosis was identified in different cell lines (LNCap, PC-3 and DU145) (Paschtka et al, 1998; Hastak et al, 2005) in response to treatment with EGCG, which was also shown to be mediated via altered expression of the Bcl-2 family, which triggered the activation of initiator caspase-8 and -9 followed by activation of effector caspase-3 (Hastak et al, 2005). Qanungo et al. (2005) observed that the anti-proliferative action of EGCG on pancreatic cancer cells was mediated through induction of apoptosis as evident from nuclear condensation, caspase-3 activation and PARP cleavage. In addition he reported that induction of apoptosis in pancreatic cells following treatment with EGCG was accompanied by cell cycle arrest at G0/G1. Here G0/G1 arrest was also observed in all four leukaemia cell lines tested following treatment with EGCG. Similarly, Nakazato et al (2005) investigated the effect of EGCG in four human myeloid leukaemia cell lines (K562, U937,
HL-60, and KU812) at a concentration of 100 μM for 24 h. Following treatment with EGCG increased the population of G0/G1 phase with a reduction of cells in S phase. This observation may indicate that EGCG is not one of major compounds present in PJ, as the current study has shown that PJ (Chapter 3) and acetonitrile fraction (Chapter 4) induce S phase arrest. However, G0/G1 arrest following ECGC was also identified in many cancer cell lines including prostate (DU145 and LNCap) (Gupta et al., 2000), cervical (CaSKi) (Ahn et al., 2003), breast (MDA-MB-231 and MCF-10A), human epidermal carcinoma (A431) (Ahmad et al., 2000). Other studies reported M Phase arrest following treatment with 50 and 100 μM EGCG cancer cells such as lung cells (PC-9) (Okabe et al., 1997) and colon cells (Caco2) (Salucci et al., 2002) indicating that effect of EGCG on cell cycle may depend on cell type and tumour origin.

7.4.2 Gallic Acid

Gallic acid is well known to possess anti-oxidant and pro-oxidant properties in a concentration dependent manner which varies according to the presence of metal ions (Locatelli et al., 2012). This pro-oxidant property of gallic acid has been suggested as the trigger for apoptosis in cancer cell lines, however, it has also been shown to regulate Fas/FasL, p53, and Bcl-2 family leading to activation of the caspase cascade (Veluri et al., 2006; Ji et al., 2009; Verma et al., 2013). Gallic acid has been shown to induce apoptosis in several cancer cell lines including: stomach (KATO III) (Yoshioka et al., 2000); colon (COLO 205 and HT-29) (Yoshioka et al., 2000; Bernhaus et al., 2009); prostate (DU145 and 22Rv1) (Veluri et al., 2006; Kaur et al., 2009); lung (Calu-6, A459, and NCI-H460) (Ji et al., 2009; You and Park, 2010) and cervical cancer cell lines (Hela) (You et al., 2010). Here gallic acid significantly induced apoptosis and increased caspase-3 activity in CCRF-CEM, MOLT-3, and HL-60 cells, while had no effect on THP-1 cells.

In terms of cell cycle, gallic acid has been to shown to inhibit proliferation of cancer cells by inhibiting cell cycle progression at different stages of the cell cycle. Here, gallic acid treatment resulted in an increase in the number of cells in S phase. This arrest was also detected in prostate cancer cells (DU145) (Agarwal (1) et al, 2006). In contrast, Hsu et al. (2001) found that gallic acid induced significant M phase arrest in breast cancer cells.
(MCF-7). Ou et al. (2010) also reported that exposure of human bladder carcinoma cell lines (TSGH-8301) to gallic acid resulted in significant increase M phase cells, which was accompanied by a decrease in G0/G1 phase cells.

7.4.3 Quercetin

Here, quercetin significantly induced apoptosis and increased caspase-3 activity in all four leukaemia cell lines following 24 h treatment. Interestingly quercetin showed a potent effect in THP-1 cells comparing to other agents tested (EGCG, gallic acid, punicalagin). This confirms the effect of quercetin on ATP seen previously (Chapter 5). However these responses are inconsistent with the sensitivity of cell lines following treatment with PJ and acetonitrile fraction (Chapter 3 and 4) (Dahlawi et al, 2011; Dahlawi et al, 2013) indicating that quercetin is less likely to be one of the major bioactive compounds from PJ. However as quercetin is found in greater abundance in the peel from the pomegranate rather than the arils (Poyrazoglu et al, 2002), it is possible that limited quantities of quercetin were seen in the PJ used in this study, which were isolated from the edible part of the pomegranate, the arils. This is further supported by the lack of quercetin identified during LC/MS analysis of whole PJ and the acetonitrile fractions in Chapter 4. A number of studies have shown that quercetin can induce cell death by an apoptotic mechanism in cancer cell lines including breast (MCF-7) (Chou et al, 2010) and (MDA-MB-231) (Chien et al, 2009), lung (A549) (Nguyen et al, 2004), colon (HT29 and SW480) (Kim et al, 2005), and prostate (DU-145) (Kim et al, 2008; Jung et al, 2010) (PC-3) (Vijayababu et al, 2005; Kim et al, 2008; Jung et al, 2010; Senthilkumar et al, 2010;) (LNCaP) (Lee et al, 2008; Jung et al, 2010) and more recently in leukaemia cell lines (Mahbub et al., 2013). Some evidence has also been reported which indicates quercetin can modulate a number of key elements linked to the apoptosis including: activation of caspase-3, -8, and -9, release cytochrome c and cleavage PARP in cervical cells (Hela) (Bishayee et al, 2013) breast (MDA-MB-231) (Chien et al, 2009), prostate (DU-145) (Kim et al, 2008) and regulation of Bcl-2 family proteins (Vijayababu et al, 2005; Kim et al, 2005; Kim et al, 2008; Jung et al, 2010).

In addition to the effects on apoptosis it was also found that quercetin induced accumulation in S phase in all four leukaemia cell lines tested. This S arrest was also seen
in human leukaemia cells (MOLT-4) treated with quercetin (Mertens et al, 2004) and colon cancer cell lines (SW480 and T84) (Richter et al, 1999). In contrast, quercetin has also been shown to induce M phase arrest in human leukaemia cells (U937) (Lee et al., 2006); oesophageal squamous cell carcinoma (KYSE-510) (Zhang et al, 2009); lung (NCI-H209); and prostate cancer cells (PC-3 and DU-145) (Nair et al, 2004; Vijayababu et al, 2005; Senthilkumar et al, 2010). Conversley G0/G1 arrest has also been shown in breast (SKBr3, MDA-MB-435 and MDA-MB-231) (Jeong et al, 2009); liver (HepG2) (Mu et al, 2007) and liposacroma cell line (SW827) (Robaszkiewicz et al, 2007) cell lines. Suggesting that depending on cell type and tumour origin quercetin was found to arrest cell cycle at G0/G1, S, or M phase.

7.4.4 Punicalagin
Punicalagin significantly induced apoptosis with an increase in caspase-3 activity in all four leukaemia cell lines following 24 h treatment, however there is limited work on the effect of punicalagin on cancer cell lines, with the majority of studies focusing on colon cancers. Seeram et al. (2005) reported that punicalagin exhibited apoptotic activity in HT-29 and HCT116 colon cells. In another study, Caco-2 underwent apoptosis upon treatment with punicalagin after 24 h through Bcl-xl down-regulation with mitochondrial release of cytochrome c into the cytosol, and activation of initiator caspase-9 and effector caspase-3 (Larrosa et al, 2005). In addition, the same study found that punicalagin treatment resulted in S phase arrest following 100 μM treatment, which is consistent with our results where S phase arrest was also seen. However, punicalagin is unique to pomegranate and was one of agents detected in the acetonitrile fraction (Chapter 4) which induced apoptosis and S phase arrest.

7.5 Conclusion
All selected compounds (EGCG, gallic acid, quercetin, and punicalagin which showed 50% reduction in ATP levels (Chapter 5) induced apoptosis and resulted in cell cycle arrest in the majority of the leukaemia cell lines. EGCG induced apoptosis in leukaemia cell lines with sensitivity matching of PJ. However EGCG was found to induce G0/G1 cell arrest in contrast to the S phase arrest seen following PJ and ACN fraction of PJ. Suggesting EGCG was not the main bioactive component in PJ. Gallic acid induced apoptosis in CCRF-CEM,
MOLT-3, and HL-60 cells only and caused S phase arrest with sensitivity levels matching those seen following PJ and ACN fraction treatment. Suggesting gallic acid may be one of the bioactive compounds found in PJ, although MS analysis of his study failed to identify this as one of the key peaks. Quercetin induced apoptosis and S phase arrest in leukaemia cell lines. Although the order of sensitivity did not match that of PJ and ACN fraction as THP-1 cells displayed greatest sensitivity to quercetin compared to being the least sensitive following PJ whilst CCRF-CEM cells were the least sensitive to quercetin but most sensitive to PJ. Suggesting quercetin is not the main bioactive agent in the PJ studied here. Punicalagin induced apoptosis and S phase arrest with sensitivity levels matching those seen following PJ and acetonitrile fraction treatments. Suggests punicalagin may be one of the bioactive compounds found in PJ. Importantly MS analysis of the PJ used in this study identified punicalagin as one of the major components of the acetonitrile fraction of PJ. Interestingly to date punicalagin has only been associated from pomegranate.
8.1 Key Findings

This study demonstrated for the first time that PJ displayed potential anti-cancer effects through induction of apoptosis, inhibition of cellular proliferation and arrest of cell cycle in four myeloid and four lymphoid human leukaemia cell lines. In addition, induction of apoptosis and inhibition of cellular proliferation was dose and time dependant. Interestingly, different degrees of cytotoxicity between leukaemia cell lines were identified, where most of the lymphoid leukaemia cells were more sensitive than the myeloid cell lines. In addition PJ treatments induced cell cycle arrest in different phases which was dependant on the type of cells investigated (myeloid/lymphoid), dose and incubation times. These differential sensitivity patterns seen within myeloid and lymphoid cell lines could be due to different cellular origin, genetic abnormalities and or expression of differential proteins by different types of cells. Importantly, PJ showed a lower level of cytotoxicity against normal HSCs than the effects seen in the majority of leukaemia cells.

Further SPE of PJ demonstrated bioactive compounds were found in the acetonitrile fraction which showed highest phenolic content suggesting polyphenols were the active component. Further analysis of the bioactive acetonitrile fraction using mass spectrometry identified a number of compounds including: the anthocyanins: cyanidin-3-glucoide; cyanidin 3,5-O-diglucosides; delphinidin-3-glucoside; delphinidin-3,5-O diglucosides; pelargonidin-3-glucoide and pelargonidin-3,5-O-diglucosides; ellagitannins including punicalagin and phenolic acids including ellagic acid.

Comparison of IC50 (determined as 50% decrease in ATP levels) was used to determine the most effective compounds from PJ. Seven key polyphenols were identified as potent compounds including: delphinidin; pelargonidin; cyanidin; quercetin; EGCG; gallic acid and punicalagin.

Interestingly of the anthocyanins investigated, delphinidin was more potent than cyanidn and pelargonidin suggesting the activity of the anthocyanins was related to the number of hydroxyl groups. In addition anthocyanidins which lacked sugar molecules displayed greater toxicity toward leukaemia cells than their glycosylated forms.
The mechanisms of apoptosis for delphinidin were determined demonstrating delphinidin induced both caspase-8 and -9 in leukaemia cell lines, suggesting delphinidin activated both intrinsic and extrinsic pathways. Delphinidin also modulated expression of Bcl-2 family proteins resulting in decreased expression of anti-apoptotic proteins: Bcl-2 and Bcl-xl, and increased pro-apoptotic proteins: Bax and Bad. In addition treatment of leukaemia cells with delphinidin resulted in increased expression of cytochrome C and Smac/Diablo.

Quercetin induced apoptosis and S phase arrest in leukaemia cell lines. Although the order of sensitivity did not match that of PJ and ACN fraction as THP-1 cells displayed greatest sensitivity to quercetin compared to being the least sensitive following PJ whilst CCRF-CEM was the least sensitive to quercetin but most sensitive to PJ. Suggesting quercetin was not the main bioactive agent found in PJ. EGCG also induced apoptosis in leukaemia cell lines with sensitivity which matched that seen following PJ treatments. However EGCG was found to induce G0/G1 cell arrest in contrast to the S phase arrest seen following PJ and ACN fraction of PJ. Suggesting EGCG was not the main bioactive component in PJ.

Gallic acid induced apoptosis and S phase arrest with sensitivity levels matching those seen following PJ and ACN fraction treatment. Suggesting gallic acid may be one of the bioactive compounds found in PJ, although MS analysis of the PJ used in this study failed to identify gallic acid as a major component.

Punicalagin induced apoptosis and S phase arrest with sensitivity levels matching those seen following PJ and acetonitrile fraction treatments. Suggesting punicalagin may be one of the bioactive compounds found in PJ. Importantly MS analysis of the PJ used in this study identified punicalagin as one of the major components of the acetonitrile fraction of PJ. Interestingly to date punicalagin has only been associated from pomegranate, suggesting this could be a novel bioactive agent only sourced from pomegranates.

8.2 Future Directions
In order to test the efficiency and safety of PJ and its bioactive compounds on human health, further studies are required including in vitro and in vivo studies. These phases are
essential to approve the clinical use of these agents in general population prior to being used as a novel treatment for leukaemia

8.2.1 In vitro Studies

8.2.1.1 Investigation into the Mechanisms of Induction of Apoptosis

Experimental data obtained from this study has indicated that delphinidin, punicalagin, gallic acid, EGCG, and quercetin can induce apoptosis in leukaemia cell lines. Considering their beneficial effects in induction of apoptosis in prevention of leukaemia or as novel potential therapeutic agents more research is required to determine their mechanism of action in induction of apoptosis in leukaemia cell lines. Thus it is important to investigate their mechanistic effects on a number of pro- and anti-apoptotic proteins, caspase activation and other apoptotic proteins (Table 1.2 and 1.3). Mechanistic study by Larrosa et al. (2006) found that both punicalagin and ellagic acid induce apoptosis in human colon cancer cell line (Caco-2) as evidenced by an increase in cytochrome c release, decrease Bcl-xl, and increased caspase-3 and -9 expression. As such further investigations within leukaemia cell lines will aid in the identification of new therapeutic agents for the treatment of leukaemia.

8.2.1.2 Investigation into Cell Cycle Regulatory Proteins

This study showed that PJ and its bioactive compounds induce cell cycle arrest in different phases in leukaemia cell lines investigated, with the majority of agents inducing S phase arrest. Understanding the effects on progression of cell cycle is essential for the rational design of novel drugs to prevent abnormal cellular proliferation seen during cancer. The progression of cell cycle is regulated by the actions of protein kinase complexes composed of cyclin and cyclin–dependent kinases (CDK) (Table 1.1) in addition to other key regulators including CDK inhibitors and retinoblastoma (Section 1.1.1.2.3 and 1.1.1.2.4). Thus it is important to investigate the effect of PJ and its bioactive compounds on the activities of protein kinases and cell cycle regulators. Vicinanza et al. (2013) found that ellagic acid induced S phase which was associated with a decrease in cyclin B1 and cyclin
D1 in prostate cancer cell lines (DU-145 and PC-3). Whilst quercetin has been shown to down-regulate cyclin B1 and CK1 and increase the levels of CDK inhibitors, including: p53; p21CIP1/waf1; and p27kip1 in human breast cancer cell lines (SK-Br3, MDA-MB-453, and MDA-MB-231 (Jeong et al, 2009; Jae-Hoon et al, 2009; Chou et al, 2010; Choi et al.)

8.2.1.3 Using Pomegranate Compounds in Combination

Although natural compounds naturally occur in combinations as seen within the PJ used within the current study, little information is available regarding possible additive or synergistic interactions between compounds naturally occurring. Synergism is important as it allows lower and potentially safer doses of each compound to generate the desired effect. Thus the identification of potential interactions between natural compounds may give information regarding the efficiency of compounds contained in foods in cancer prevention. Mertens-Talcott et al. (2006) reported that ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukaemia cells (MOLT-4). In addition the effects of quercetin, kaempferol, and catechin in combination in breast cancer cell line (MDA-MB-231) synergistically inhibited cell proliferation and induce apoptosis (Schlachterman et al, 2008)

8.2.1.4 Investigating the Effect of Pomegranate Compounds in Combination with Chemotherapy

Despite recent advances in cancer treatment, most of the current chemotherapy agents cause severe side effects in addition to high failure rates resulting in patient relapse following single agent therapies. Thus searching for safer and better drugs to eliminate side effects and prevent relapse are important. Punicalagin, delphinidin, gallic acid, quercetin, and EGCG are polyphenols which induce apoptosis and cell cycle arrest in leukaemia cell lines. However, using combinations of these compounds with chemotherapy drugs may open new avenues for the discovery of ideal drug combinations for leukaemia therapy. A number of studies in vitro have used polyphenols in combination with chemotherapy agents, demonstrating promising results in cancer treatment. Kubato et al., (2003) showed that combined effects in lung cancer cell lines of resveratrol and paclitaxel (an essential chemotherapeutic agent against lung cancer) significantly enhanced the effect of paclitaxel. Lev-Ari et al. (2009) reported that combined celecoxim
(chemotherapy agent that used for colon cancer) and curcumin (a natural compound)
showed synergistic inhibition of growth of colon cancer cell lines: HT-29 and SW480 cells.
In prostate cancer, lycopene (natural compound) synergistically enhanced the anti-
proliferative effect of docetaxel (chemotherapeutic drug that clinically used to treat
patients with advanced prostate cancer) (Tang et al, 2011).

8.2.1.5 Measuring Reactive Oxygen Species (ROS)
ROS are considered to be an important preventive biomarker and may be a crucial target
for anti-cancer therapies by ameliorating oxidative stress and thus DNA damage (Valko et
al, 2007; Lambert et al, 2010). Therefore it is important to measure ROS level in leukaemia
cell lines following treatment with PJ and it bioactive compounds. Two studies have shown
that treatment of cancer cells with extracted and purified anthocyanins resulted in an
accumulation of ROS and subsequent induction of apoptosis (Feng et al, 2007; Hou et al,
2005). EGCG has also been shown to induce ROS generation in a number of cancer cell
lines including leukaemia (Jurkat) (Nakagawa, 2004), colon (HT-29) (Nie et al, 2002), and
lung (H1299) (Li et al, 2010) cancer.

8.2.2 In vivo Studies
Most of the medicines that are used to treat animals are the same as those developed to
treat human patients (Wienkers and Heath, 2005; Steele and Lubet, 2010). Although
pomegranate products have shown promising anti-tumour activities in various organs of
animals including: skin (CD1 mice) (Afaq et al, 2005), prostate (Athymic nude mice) (Malik
et al, 2005), lung (Athymic nude mice) (Khan (2) et al, 2006), and colon (F344 rats)
(Seeram et al, 2005), the chemo preventive potential of pomegranate has not been
investigated against the pre-clinical model of leukaemia. Thus, in order to justify the non-
toxicity of the PJ and its effective compounds on human health and for predicting
therapeutic responses in leukaemic patients, the effects of these agents in treatment of
animal models to determine the effective doses and administration schedules of these
compounds would need to be performed prior to clinical trials to investigate their use as
potential chemo preventive and anti-leukaemic agents.
8.2.3 Clinical Trials
Following investigation of the effect of PJ and its bioactive compounds in vitro and in vivo, the next step would be to examine the efficacy and safety in humans. Human clinical trials to date have involved consumption of a normal amount of PJ or a concentrated liquid or powder that is equivalent in polyphenolic content to an 8 oz serving of pomegranate juice (Johanningsmeier and Harris, 2011). In these studies no side effects were indicated and it is generally considered safe to consume the fresh fruit and juice of pomegranate, and indeed is a natural component of many normal diets.

PJ has been taken forward to phase II clinical trials, particularly in prostate cancers (Pantuck et al, 2006). In a phase II clinical trial, 46 men with rising prostate-specific antigen (PSA) levels following treatment for prostate cancer, were given 8 ounces of PJ daily during disease progression, PJ consumption significantly delayed the rise in PSA, increased the PSA doubling time from 15 months to 54 months based on baseline versus post-treatment measurements (Pantuck et al, 2006). In addition, analysis of plasma levels before and after treatment with PJ exhibited the treated subject plasma to have higher antioxidant and anti-proliferative activities (Pantuck et al, 2006). Thus the expansion to clinical trials in patients with leukaemia would be an essential step towards developing the use of pomegranate extracts in the treatment of leukaemia.

8.3 Final Conclusions
Together this study has shown that PJ is a rich source of bioactive compounds which could hold promise for treatment of leukaemia. The most promising compounds found with PJ were delphinidin, gallic acid, and punicalagin. Further investigation into these agents in the treatment and prevention of leukaemia are essential to develop these potential agents as future treatments.

327
Appendixes

<table>
<thead>
<tr>
<th>Company</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>Middlesex, UK</td>
</tr>
<tr>
<td>Becton Dickinson BD</td>
<td>Oxford, UK</td>
</tr>
<tr>
<td>Cambridge Biosciences</td>
<td>Cambridge, UK</td>
</tr>
<tr>
<td>Enzo Life Sciences</td>
<td>Exeter, UK</td>
</tr>
<tr>
<td>Extrasynthese</td>
<td>Genay, France</td>
</tr>
<tr>
<td>Fisher Scientific</td>
<td>Leicestershire, UK</td>
</tr>
<tr>
<td>Fisher Scientific</td>
<td>Loughborough, UK</td>
</tr>
<tr>
<td>GE healthcare</td>
<td>Buckinghamshire, UK</td>
</tr>
<tr>
<td>Invitrogen</td>
<td>Paisley, UK</td>
</tr>
<tr>
<td>LONZA</td>
<td>Slough, UK</td>
</tr>
<tr>
<td>Olympus</td>
<td>Essex, UK</td>
</tr>
<tr>
<td>Promega</td>
<td>Southampton, UK</td>
</tr>
<tr>
<td>R&D Systems</td>
<td>Abingdon, UK</td>
</tr>
<tr>
<td>Roche</td>
<td>Burgess Hill, West Sussex, UK</td>
</tr>
<tr>
<td>Sigma</td>
<td>Poole, UK</td>
</tr>
<tr>
<td>Tree Star</td>
<td>Ashland, OR, USA</td>
</tr>
<tr>
<td>Applied Bioscience</td>
<td>Chesire, UK</td>
</tr>
<tr>
<td>Phenomenex</td>
<td>Hartsfield, UK</td>
</tr>
<tr>
<td>Cambride Bioscience</td>
<td>Cambridge, UK</td>
</tr>
<tr>
<td>Invitrogen</td>
<td>Paisley, UK</td>
</tr>
<tr>
<td>Ambion</td>
<td>Cambridgeshire, UK</td>
</tr>
<tr>
<td>Bioline</td>
<td>London, UK</td>
</tr>
<tr>
<td>Abcam</td>
<td>Cambridge, UK</td>
</tr>
</tbody>
</table>
References

Artik, N., 1998. Determination of phenolic compounds in pomegranate juice by using HPLC. Fruit Processing 8, 492-499.

Asiedu, C., Biggs, J., Lilly, M., Kraft, A.S., 1995. Inhibition of leukemic cell growth by the protein kinase C activator bryostatin 1 correlates with the dephosphorylation of cyclin-dependent kinase 2. Cancer Res. 55, 3716-3720.

341

Seeram, N.P., Adams, L., Henning, S.M., Niu, Y., Zhang, Y., Nair, M.G., Heber, D., 2005. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice.

350

