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ANALYSIS OF THE CNV WAVEFORM IN THE TIME AND FREQUENCY
DOMAINS

M. COELHO 
ABSTRACT

The Contingent Negative Variation (CNV) response of the 
Electroencephalogram (EEC) is often obscured by the 
background EEC and/or ocular artefacts (OAs). These 
necessitate the application of a variety of signal 
processing techniques to reduce the influence of such 
phenomena on the measured signal. The methods discussed in 
this thesis are: ocular artefact removal (OAR) in the time 
domain and the use of data tapering and Fourier Transforms 
to give frequency domain amplitude and phase spectra.
Two OAR methods were compared: a non-recursive method using 
ordinary least squares parameter estimation developed by 
Nichols and a recursive least squares technique developed by 
Ifeachor. Recursive OAR was observed to distort the CNV 
response. This was discovered to be due to omission of the 
response from the algorithm being used, an omission ocurring 
in both techniques. To correct this the inclusion of a 
model of the response in the algorithm was proposed. A 
number of data sets were devised in order to investigate
this effect and the successfulness of including the response
model. It was shown that response modelling gave more 
efficient OAR and reduced response distortion. Similar
investigations were performed on recorded response data 
which showed that modelling was essential for recursive OAR 
but that non-recursive OAR was relatively insensitive to the 
inclusion or omission of response modelling.
The use of data tapering was included in order to help 
improve the spectral analysis of short epochs of EEG data.
A comparison of statistical properties of the harmonics of 
the amplitude and phase spectra of the CNVs of normal,
patient and at risk subjects was made using Predictive 
Statistical Diagnosis (PrSD) and Discriminant Analysis (DA), 
The investigation compared results between PrSD and DA and 
between 1 and 4 second inter-stimulus interval CNVs and 
suggested that the 1 second data gave better discrimination.
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1 INTRODUCTION

The following points are discussed,in this chapter : 
the origins of this thesis; the data processing methods to 
be applied; and the goals and aims of the thesis.

Section 1.1 is a desription of the thesis origins and a 
brief overview of the relevant areas in the field of EEG 
work, an outline of the Contingent Negative Variation (CNV) 
and Auditory Evoked Potential (AEP) responses of the human 
EEG, and Ocular Artefacts (OAs). The time and frequency 
domain methods to be applied are given in Section 1.2.
These comprise Ocular Artefact Removal (OAR) in the time
domain, signal processing methods of windowing (time domain) 
of data prior to transformation to the frequency domain 
phase and energy spectra. The statistical methods applied 
are also described in this section. These involved the 
generation of a number of test statistics, data reduction 
methods to determine a set of variables which gave best
discrimination between a number of subject groups, and the 
use of Discriminant Analysis (DA) and Predictive Statistical 
Diagnosis (PrSD) to attempt to classify subjects which may 
fall into one or other of the known groups. Previous work
which formed the starting point for this thesis is also
described. Section 1.3 is a description of the experimental 
data to be used: 1 and 4 second CNVs. Section 1.4 gives the 
aims of this work and Section 1.5 is a brief outline of the 
thesis layout.



1.1 THE ELECTROENCEPHALOGRAM AND THE CONTINGENT NEGATIVE 
VARIATION AND AUDITORY EVOKED POTENTIAL RESPONSES

1.1.1 ORIGINS OF THE ELECTROENCEPHALOGRAM

The first reported observation of the
electroencephalogram was by CATON (1875) who discovered that 
incessant current oscillations could be displayed by a 
galvanometer connected to two electrodes placed on the 
exposed cerebral cortex of an animal. BERGER (1929) was the 
first to report on the EEG of man, showing that it could be 
recorded through the skull. DAWSON (1947) reported a means 
of making scalp recordings of stimulated cerebral action 
potentials in man by displaying individual EEG traces on a 
cathode-ray oscilloscope and superimposing them on a single 
photograph. This was necessary due to the small magnitude 
of such evoked potentials when compared to the background 
EEG.

1.1.2 DESCRIPTION OF THE ELECTROENCEPHALOGRAM

An introduction to the physical structure and 
electrical activity of the brain is given in COOPER et al 
(1980). The ongoing background rhythmical EEG can be 
described in terms of four frequency ranges or bands (COOPER 
et al, op. cit.): delta (<4Hz), theta (4 to < 8Hz), alpha (8 
to 13 Hs) and beta (>13 Hs). GEVINS (1984) considers any 
activity at > 30 Hz as a separate, gamma, band. In addition 
potentials due to endogenous or exogenous events can be 
observed in the EEG. In this thesis such phenomena will be
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referred to collectively as responses. This is to avoid 
any conflict of terminology arising out of the use of one of 
the commonly applied descriptions since a variety of names 
have been given to such EEG responses. Common references 
are to evoked potentials (EPs), event-related potentials 
(ERPs) and stimulus-related potentials (SRPs) even though 
the same specific response may be classed under any one of 
these three headings by different authors.

1.1.3 THE CONTINGENT NEGATIVE VARIATION

One of the numerous responses of the EEG is the 
Contingent Negative Variation (CNV) first described by 
WALTER et al (1964). The CNV is elicited by a constant 
foreperiod reaction time task. The standard experimental 
paradigm is to give a warning stimulus (S^) which is 
followed after a time (known as the Inter-Stimulus Interval 
(ISI)) by a second (imperative) stimulus (S^) at which some 
action is required on the subject's behalf (this is often a 
motor-response (MR) caused by pressing a button to terminate 
Sg). and are often either audio or visual stimuli.
The CNV proper is the negative shift of the EEG baseline 
which occurs between the two stimuli.

The CNV is considered to comprise several components 
(e.g., see TECCE and CATTANACH, 1982 and ROHRBAUGH et al, 
1976 and 1986). LOVELESS and SANFORD (1974) conclude that 
the CNV comprises two components which are an orientating 
response subsequent to S^ (the "0" wave) and an expectancy
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response in anticipation of S  ̂ (the "E" wave). Using a 4 
second ISI they found the "0” wave to peak no later than 850 
msec after and that the "E" wave commenced about halfway 
through the foreperiod.

1.1.4 THE AUDITORY EVOKED POTENTIAL

Although this thesis is concerned with the CNV the 
Auditory Evoked Potential (AEP) is introduced here because 
of its presence in the experimental paradigm (described in 
the previous section) when and Sg are auditory stimuli.
It is also considered to be a multi-component response (see 
e.g., COOPER et al, 1980 or SHAGASS, 1972).

1.1.5 OCULAR ARTEFACTS

Ocular artefact (OA) is the collective reference to a 
number of eye-related artefacts: eye-movements (EMs) and 
eyelid and blink artefacts. OAs often obscure responses, 
especially the CNV. It has been noted that CNV changes at 
the vertex can be reproduced by voluntary downward eye 
movement (STRAUMANIS et al, 1969). HILLYARD and GALAMBOS 
(1970) concluded that on average 23% of the CNV was composed 
of Eye Artefact Potential (EAP). A discussion of the types 
and causes of OA is given in JERVIS et al (1988).
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1.2 TIME AND FREQUENCY DOMAIN METHODS OF PROCESSING AND 
ANALYSING THE CONTINGENT NEGATIVE VARIATION

The use of both time and frequency domain methods was 
considered necessary since they provide complimentary views 
of a waveform. The time domain approach allows ease of 
visual interpretation of a waveform, indeed it was through 
study of the time domain representation of waveforms that 
the problems inherent in the Ocular Artefact Removal (OAR) 
method came to light (see Chapter 2 for details). The 
frequency domain is important because it is here that the 
statistical tests (Chapter 4) are applied. These are needed 
to examine important freqency components of the response 
and to quantify the properties of the harmonics.

1.2.1 OCULAR ARTEFACT REMOVAL

Section 1.1.5 gave the reasons why the presence of 
OAs in the EEG are undesirable. A variety of methods of OAR 
exist (details are given in JERVIS et al, 1988) which can be 
loosely grouped into three categories: rejection, fixation 
and s u bt r act i on.

OAR rejection methods discard records in which OAs are 
present. This has the drawback of being wasteful of data.

In eye fixation methods subjects are asked to fix their 
eyes on a target and refrain from blinking. This suffers
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from two drawbacks: not all subjects can co-operate and 
(especially for the CNV) the requested behaviour effectively 
assigns a ' secondary task'1 (GRATTON et al, 1983) or acts as 
a 'distracting stimulus' (WEERTS and LANG, 1973). 
Distraction processes are considered amongst the most 
disruptive of CNV development (TECCE and CATTANACH, 1982).

Methods of OAR using Electro-oculogram (EOG) 
subtraction have been used in both time and frequency 
domains. They have been applied on-line and off-line and 
have used both analogue and digital techniques (see JERVIS 
et al, 1988, for a review of various methods). The 
principle of subtraction methods is that the measured EEG 
is the linear sum of the true (background) EEG and OAs and 
hence if OAs in the EEG can be estimated the true EEG can 
also be estimated. In this thesis interest centres on time 
domain OAR using the least squares method to estimate how 
much OA in the measured EEG (derived from measurement of the 
EOG) should be subtracted to estimate the true EEG. This is 
achieved by computing a number of parameters known as 
transmission coefficients. Two such methods are considered 
in Chapter 2: the off-line technique of non-recursive OAR
(NR-OAR) of QUILTER et al (1977) as extended by NICHOLS 
(1982), and the on-line recursive OAR (R-OAR) method of 
IFEACHOR (1984), The terms 'non-recursive' and 'recursive' 
refer to the manner of applying the least squares method. 
NR-OAR uses ordinary least squares (OLS) techniques, while 
R-OAR uses recursive least squares (RLS). OLS provides 
constant values for the transmission coefficients which
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depend upon the data of the whole record, while RLS provides 
values (based on weighted data) which are being updated 
point-by-point and hence use only some of the data (i.e., 
the latter part since the weighting discards the early data) 
and thus provide parameter estimates which can vary with 
time.

1.2.2 SPECTRAL ANALYSIS

The signal processing methods of NICHOLS (1982) applied 
a Tukey window (Chapter 3) in the time domain to data prior 
to transformation to frequency domain amplitude and phase 
spectra. The harmonics of these spectra were then subject 
to a number of statistical tests (see next section). This 
windowing also involved transformation of the windowed data 
due to the introduction of a spurious d.c. level even though 
the mean level of the data had already been removed.

1.2.3 STATISTICAL METHODS

Statistical tests were applied by NICHOLS (1982) to 
allow a quantitative comparison of the spectral properties 
of the CNVs of two subject groups (normal and Huntington's 
Chorea (HC)). An attempt was also made to classify subjects 
at risk (AR) of developing HC. This work was extended to a 
logic algorithm (LA) classification procedure (JERVIS et al, 
1984). These tests are concerned with detecting additivity 
and phase ordering effects on responses in the EEG.
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1.2.4 THE APPLICATION OF THE CONTINGENT NEGATIVE VARIATION 
- TO HUNTINGTON'S CHOREA FOR DIAGNOSTIC PURPOSES

One possible application of the CNV in attempting to 
diagnose subjects at risk of developing HC was introduced in 
the preceding section. HC is commonly first detected 
between the ages of 30 and 50 (mean age 44 years), is 
invariably fatal and of duration of approximately 15 years 
from onset. NICHOLS (1982) and JERVIS et al (1984)
considered that since HC affects the same regions of the 
brain responsible for generating the CNV, study of the
latter could lead to an ability to discriminate between 
normal and HC subjects with application to pre-symptomatic 
diagnosis of HC in at risk subjects (the offsprings of HC 
sufferers).

1.3 EXPERIMENTAL DATA RECORDINGS

The data used in this thesis had been recorded in 
earlier work (NICHOLS, 1982). Both CNV and AEP responses
are referred to. The CNV data had been recorded using
plastic cup Ag/AgCl dc electrodes using vertex to linked 
earlobe electrodes. The EOG recordings used nasal, outer 
canthi, infra- and supraorbital electrodes. The acquisition 
system -3dB passband was 0.016 - 30 Hs. The warning
stimulus S^ was a 70 dB SPL click and the imperative 
stimulus Sg was a 1 kHs tone of 90 dB SPL (A-weighting). At 
Sg the subject was asked to press a handheld pushbutton to 
terminate it. Thirty-two such trials were obtained per
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subject. Two experimental conditions were used: the first 
had a 1 second ISI, the second had a 4 second ISI. The EEG 
and EOGs were recorded by sampling* at 125Hs.

1.4 GOALS AMD AIMS OF THESIS

The aims of the work can be seen as developing the 
methods described in Section 1.2. The first goal was the 
investigation of means of improving the time domain 
processing of the data. Initially a comparison of the NR-OAR 
and R-OAR methods was to have been made but in doing so it 
was observed that R-OAR produced response distortion. This 
was due to the omission, in the algorithm being used, of a 
model for the response. Thus it was decided to investigate, 
on both real and test data, the effects of the omission and 
the effectiveness (or otherwise) of including a model of the 
response. A second goal was the development of improved 
means of spectral analysis of short epochs of EEG data by 
improved data windowing.

In the frequency domain the main investigation 
concerned the application of PrSD (AITCHISON et. al., 1977) 
and DA alternatives to the LA classification procedure. In 
doing so it was hoped that improved classification would 
arise when applied to discriminating between various subject 
groups (as described in Section 1.2.4). The results from 
PrSD, DA and LA (1 second data) and PrSD and DA (4 second
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data) methods were to be compared within and between the two 
data sets.

In light of the findings of LOVELESS and SANFORD (1974) 
the 4 second CNV was to be investigated as two epochs of 
equal length, with a small amount of overlap, covering the 
first and second halves of the interval from the end of S^ 
to the start of S0.

1.5 OVERVIEW OF THE THESIS

The layout of this thesis follows the sequence of 
processing steps and analysis which were applied to the 
data. Chapter 2 deals with OAR. In it the following
topics are discussed: the basic principles used in OAR, the 
omission of the response from the basic model and its 
effects and a proposed solution to introducing a response 
model and the results of this procedure. This investigation 
was applied to both real and test data. Chapter 3 is a 
discussion of various signal processing issues and includes 
a comparative study of two types of data window applied to 
both real and test data. Chapter 4 makes brief reference to 
the statistical tests of NICHOLS (1982), descibes DA and 
PrSD methods, shows how they were implemented and gives 
guidance on how to interpret the results. Chapter 5 gives 
the results when the processing steps were all applied and 
discusses and draws a number of conclusions based on the CNV 
data.
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2. OCULAR ARTEFACT REMOVAL 
2. 1 CHAPTER OUTLINE

The need to perform Ocular Artefact Removal (OAR) is
discussed in this chapter. OAR by proportional subtraction
of the electro-oculogram (EOQ) from the electroencephalogram
(EEC) by means of the least squares method of parameter
estimation is discussed in section 2.2. Details of the two
types of OAR investigated, vis. non-recursive OAR (NR-OAR)
and recursive OAR (R-OAR) are also given. Section 2.3 is a
discusion of OAR when a response is present and how such a
situation causes erroneous parameter estimation and hence
incorrect OAR. The means of rectifying this error by
modelling the response in the least squares method is then
described. Section 2.4 shows the need to investigate the
effect on parameter estimation when d.c. (mean) level
removal is and is not applied to the data. Section 2.5 is a
description of a set of test data created to investigate the
above points along with the results obtained, discussion and 

\

conclusions. Section 2.6 gives the results obtained when 
the methods of Section 2.5.were applied to two EEG response 
(a CNV and an AEP). Section 2.7 gives the recommended 
processing sequence to be used based on the results of 
sections 2.5 and 2.6.

2.2 THE BASIS OF THE ELECTRO-OCULOGRAM SUBTRACTION METHOD

OAR by proportional EOG subtraction assumes that the 
measured EEG is a linear combination of the true EEG and

-15-



ocular artefact (OA) and that the OA is a linear combination 
of selected EOGs. The EOG is that electrical potential 
measured between two electrodes (which may be placed in a 
variety of configurations) adjacent to the eye. Then for 
the i th point, in discrete form, of an n point sequence, 
the general model is:

y(i) = ©1x 1(i) + ©2x2 (i) + ... + + e(i>

P
y(i) = y2©.x.(i) + e(i) i = 1,2, ...,n - (2.1)

j=l 3 3

where the y(i) are sampled values of the measured EEG
containing OA, the x.(i) are the sampled values of theJ
measured EOGs (or a function of them), e(i) is the true
(background) EEG which is regarded as an error term and the
0 . are proportionality values known as model parameters or J
transmission coefficients. Assuming that the 0^ can be

A A

estimated (by 0.) then the true EEG can be estimated as e(i) 0
(the circumflex denotes the estimate of a given value) 
where:

P -
e(i) = y(i) -JI 0 ̂ x.(i) i = l,2,...,n - (2.2)

j=l 3 3

Equation (2.1) can be written more compactly in matrix 
form for all n samples as:

Y = X 0 + E - (2.3)m  ~n~n n
-16-



where: Y~n y( l) 
y(2) 

.

ii*F Tx'd)
x x(2)

9 = ~n 91~

02
En = e( 1) 

e(2) 
•i ii * ii . i

Tand x (i)

i . i i m i
|e(n)J

Then, similarly, equation (2.2) can be written:

E = Y - X 9 —n ~n ~n~Ti (2.4)

2.2.1 THE LEAST SQUARES METHOD OF PARAMETER ESTIMATION

The basis of least squares estimation is to compute 9 .sJ
which minimise the sum of squares of the estimated error
term (the true, background EEG), e(i). This can be
performed using the ordinary least squares (OLS) method
(section 2.2.2) in which the 9 .s are constant or theJ
recursive least squares (RLS) method can be used to give
values of 9 .s which are updated from point to point and can 0
thus vary with time.

Then the least squares estimate for 9 ii-n
(IFEACHOR et al 1986a and b).:

@n given by

T -1 T 9 = (X*X ) X Y~~n ~n~~n "n~n - (2.5)

A variety of EOG combinations can be used for the model 
of equation (2.1). A recent review (JERVIS et al, 1988) 
found an adequate model to be:
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y(i) - 91.VE0GR(i) + 9^■HEOGR(i) + 9^.HEOGL(i) - (2.6)
i = 1, 2, . . . , n

where the vertical EOG of the right eye is denoted VEOGR and 
the horizontal EOGs of left and right eyes are HEOGR and 
HEOGp respectively. A model which may be marginally better 
is (ibid):

y(i) = 9r HE0GR(i).HE0GL(i) + 92.VE0GR(i) + 93.HE0GR(i)
+ 94.HE0GL(i) - (2.7)

This was chosen as the model to be used in processing real 
data (section 2.6) and realistic'’ test data (section 2.5).

2.2.2 NON-RECURSIVE OCULAR ARTEFACT REMOVAL

NR-OAR estimates the 9 . values by using the whole
A

duration of a record to compute a value of 9^ which applies 
throughout the record (QUILTER et al, 1977; FORTGENS and DE 
BRUIN, 1983; JERVIS et al, 1985). It is to be noted that 
QUILTER et al (1977) used correlation techniques to obtain 
values for the 9.s. However IFEACHOR (1984) has shown that

J

correlation and OLS methods lead to identical expressions
for the 9 -s and thus that the two methods give alternative J
ways of visualising the determination of 9^.

Although the Q.s are constant throughout a record they
J

are computed for each record and thus allow for inter-trial 
variability and between subject variability.
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In essence the NR-OAE method seeks to minimise:

n  ̂ 9 n p „ 9
J =2l [e<i>3 = [Z.{y<i) ~ 5l0-x.(i)}z] - (2.8)

i=l i=l j=l J J

by computation of appropriate values of 9. (see Appendix AlJ
for details)

2.2.3 RECURSIVE OCULAR ARTEFACT REMOVAL

R-OAR computes updated values of the 9 .s by using theJ
more recent data and discarding the earlier data. Thus 
equation (2.8) is modified to:

j = IIX n Xte(i)]2 = [ ^ X n 1{y(i) - X  O.x.U)}2] - (2,9) 
i=l i=l j = l J J

(IFEACHOR, 1984; IFEACHOR et al 1986a) where X is known as 
the 'forgetting factor' and allows the tracking of a slowly 
varying parameter. Typically 5 is between 0.98 and 1 since 
smaller values assign too much weight to the more recent 
values giving wildly fluctuating results (IFEACHOR, 1984; 
IFEACHOR et al, 1986a).

Two advantages of R-OAR as compared to NR-OAR are that 
it is adaptive with the Q. being continuously updated, and

J

that it makes possible automatic on-line OAR.
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2.3 OCULAR ARTEFACT REMOVAL WITH A RESPONSE PRESENT
2.3.1 ERRONEOUS PARAMETER ESTIMATION DUE TO PRESENCE OF 

NON-RANDOM RESPONSE

It was decided to compare the two correction methods 
described in the previous section by applying them to EEGs 
containing the CNV and AEP responses. NR-OAR was 
implemented using the methods of QUILTER et al (1977) but 
extended to four model parameters (JERVIS et al, 1980; 
NICHOLS, 1982; JERVIS et al, 1985). This used subroutine 
NROARM (Appendix A2) which was adapted from subroutine 
EYECOR of NICHOLS (1982). R-OAR was implemented using the 
methods described in IFEACHOR et al (1986a and b). This used 
subroutine RCOARM (Appendix A2) based on the software in 
IFEACHOR (1984). The model used was that given in equation 
(2.7) and was selected because it allows for the effects of 
vertical (VE0GR) and horizontal (HE0GR and HEOGp) eye 
movements and attempts to compensate for possible non-linear 
interaction between the horizontal EOGs (HE0GR.HE0GR) .

Plots of the G.s against time showed the R-OAR
J

algorithm took typically 2s and sometimes as long as 5s to
converge. Since this is an appreciable length of the 8s
record R-OAR was applied twice. The 9 .s obtained at the endJ
of the first computation were used as the starting values 
for the second. This gave much shorter convergence times 
and gave confidence that correct parameter estimates were 
used for those parts of the record of interest.



Figures 2.1, 2.2 and 2.3 show the no-OAR, NR-OAR and 
R-OAR corrected EEGs from the same subject. Each waveform 
is a 32 trial average. For Figures 2.2 and 2.3 OAR was 
applied to each trial prior to inclusion in the averaging 
process.

DATA PCfNTS
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 IIME IN SECONDS

Figure 2. 1
The averaged 1 s ISI CNV of a co-operative subject
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Figure 2.2
The averaged Is ISI CNV of the same subject as Fig. 2.1 

subsequent to implementation of NR-OAR : (do = 0)
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Figure 2.3
The averaged Is CNV of the same subject as Fig. 2.1 
subsequent to implementation of R-OAR (dc = 0)



The CNVs shown were obtained from a normal subject who had 
been asked to refrain from moving their eyes or blinking 
until after completion of the CNV paradigm. Inspection of 
the EOGs of each trial for this subject showed that the CNV 
epoch did not contain OA and that on numerous occasions (24 
out of 32 trials) OA was present in the post-CNV epoch (this 
is manifest as the hump centered at 7s in Figure 2.1 which 
is smeared in this fashion because of the averaging 
process). Inspection of the three waveforms shows that the 
R-OAR corrected CNV response is distorted when compared to 
the no-OAR and NR-OAR waveforms (between which no difference 
can be seen for the CNV or AEPs).

This shape modification is the result of a deficency in 
the two OAR methods as previously implemented. The least 
squares method computes the 0 .s by minimising the sum ofiJ
squares of the error terms (the e(i) or EEGt(i)) on the
assumption that they are random. However the CNV is not a
random signal and its presence in the measured EEG will
cause incorrect estimates of the 9 -s and hence of the true

3

EEG and response itself. This follows since equation (2.1) 
must now include the response R(i):

P
y'(i) = 21 O -x • (i) + R(i) + e(i) i = 1,2, ...,n - (2.10)

j=l J J

where y'(i) is the measured EEG including the response. 
Equation (2.2) is now:
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e(i) = y'(i) - l 0 ;x.( i) - R(i) i = 1,2,...,n - (2.11)
0=1 J J

However both existing OAR methods do not include the R(i) 
term in equation (2.11) which thus becomes:

A P £
e(i) = y ’(i) -^r0.x.(i) i = l,2,...,n - (2.12)

j=l J J

where 9. are now the incorrect estimates of the 0. and e(i) J J
is an incorrect estimate for the background EEG.

This erroneous estimation will occur for both methods
but its effects can be anticipated to differ in form and
magnitude between NR-OAR and R-OAR. NR-OAR has fixed values
of 0 . which are computed from the data of the whole record.
However R-OAR attaches more weight to the most recent data,
discarding earlier data, and can have values of 0 . which
vary with time due to updating of the estimates. Thus it
can be anticipated that incorrect 0. estimation due toJ
NR-OAR could lead to magnitude and/or level differences but
not shape distortion, whereas such a problem could occur in
R-OAR in which the 0 . may be varying with time.J

2.3.2 RESPONSE MODELLING IN THE APPLICATION OF OCULAR 
ARTEFACT REMOVAL

The previous section showed how the presence of a 
response can cause incorrect estimates of the transmission
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coefficients and hence of the true EEG and response itself 
when OAR is carried out. Here a possible remedy is given.

It has been seen that inclusion of the response, R(i)> 
in the general model of equation (2.1) to give equation 
(2.10) represents the correct model to be used in OAR. 
However there are cases when the true shape of the response 
is unknown. One such case is when the response is obscured 
by OA. This is especially true of the CNV and was 
introduced in Section 1.1.5. Here it is essential to remove 
the OA in order to elicit the true shape of the response. 
However, as has been seen, the response presence corrupts 
the OAR process leading to incorrect estimates of the 
background EEG and the response. One solution to this 
impasse is to model the response.

In the rest of this text to avoid confusion equation 
(2.1) shall be referred to as the '’general model'’ while the 
response in equation (2.10) shall be replaced by a J response 
model'’ or "model of the response" . Denoting the response 
model as RM(i) for the ith point, equation (2.10) becomes:

_P

j=
y’(i) = 2_ 0 .x •( i) + RM(i) + e(i) i = 1,2,. ..,n -(2.13)iJ J

where y"(i)=y(i)+R(i) -(2.14)
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The response model can comprise a number of components, 
say q and so equation (2.13) can be written: 

p+q
y'(i) = 21 e,x,(i) + e(i) -(2.15)

j = l J J

where:
p+q

RM(i) = 21 O.xAi) -(2.16)
j=P+l J J

The x.(i), for j ;> P+l> now represent the components of
the response model. For j <: p the x.(i) still represent the3
measured EOGs.

The form of equation (2.15) means that the existing OAR 
software (NICHOLS, 1982 and IFEACHOR, 1984) can be utilised 
by suitable modifications to extend the number of terms 
which can be corrected for (the existing versions were both 
written to handle up to five terms, the four EOG channels 
plus the measured EEG ) •

It is to be noted that the estimates of the 
transmission coefficients associated with the response model 
components are used only in so far as giving improved 
estimates of the EOG channel transmission coefficients is 
concerned. This is because an estimate of both background 
EEG and response is required. Thus equation (2.2) becomes:
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e* (i) = y'(i) - ̂
j =  l J J

i = 1,2,...,n -(2.17)

where: e'(i) = e(i) + R(i) (2.18)

2.4 THE EFFECT OF D.C. LEVEL REMOVAL

This section shows ■that the data pre-processing' 
procedure of subtracting' the mean (or d.c. level) of the 
data from the data may affect the parameter estimates.

Consider NR-OAR without modelling' (NR-OAR-NM) in which
there is one EEG channel and one EOG channel (EEG (i) andm
EOG (i) respectively) and in which d.c. levels remain, m

----------------------------   - - -  — id

Thus equation (2.1) can be written for this case as

EEG (i) = 9.EOG (i) + EEG.(i) i = 1,2,...,n -(2.19)111 ill L

where EEG,(i) is the true or backg'round EEG.

Equation (2.2) can be written for this case as:

EEG.(i) = EEG (i) - 9. EOG (i) i = l,2,...,n -(2.20)Ts ill Hi

and hence equation (2.8) becomes:
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n __. o JL - 9J = V  [ EEG, (i) ] =51 [EEG ( i) - 9.E0G (i)]^ -(2.21)
i=i ' t i=l m m

from which 'the expression for the estimated value of 9, 
is:

n
5" EOG (i).EEG (i) m mi=l

9 = -(2.22)
n

i=l
[EOGm (i>]

If now d.c. levels are removed from both EEG (i) andm
EOG^Ci), i.e. the means of the data are removed from the 
data, equation (2.22) becomes:

^ i[EOGm (i)-^OG]CEEGm ( i ) ^ EEG]

G |dc=0 =      - <2 '23)
[EOGm (i)-^EOG]2

1= '

^ 1E0Gm (l)'EEGm (l) ryjEOG,/JEEG

± [ E O G a (i)]2 - n;40Q 
1 = 1

- (2.24)

Thus, in general 9 ^ 9 |<jc _q and hence the need to
investigate the effects of d.c. level removal arises.
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2.5 TEST DATA

In order to test the truthfulness (or otherwise) of the 
ideas concerning the effect on parameter estimation when OAR 
is performed with a response present a number of test data 
sets involving simulated CNV and OAs were created and 
processed. The degree of effectiveness of response 
modelling was also to be assessed and a comparison of 
results was planned when d.c, level removal from the data is 
and is not carried out. The removal of d.c. levels from the 
data will be indicated by (dc = 0) and its inclusion will be 
denoted (dc ? 0). The use of known test data makes such
investigations easier and more accurate since the response 
shapes are known.

2.5.1 DESCRIPTION OF TEST DATA

The simulated data comprised four sets: three involved 
simplified data consisting of one EEG channel, one EOG 
channel and one CNV model component, the fourth case used 
more realistic test data comprising one EEG channel, four 
EOG channels and two CNV model components. Further details 
are given below (Sections 2.5.1.1-2.5.1.3 use the simplified 
data while Section 2.5.1.4 uses the realistic test data). 
For the simplified data the general model is:

-29-



2
y(i) = 51 9.x.(i) + e(i) i = 1,2, ...,1024 -(2.25)

j=l J J

where: 9^ is the transmission coefficient for the EOG 
channel and 9^ is the transmission coefficient for the 
response model component. In Sections 2.5.1.1 - 2.5.1.3 the 
'true* value of 9^ was set to 0.2.

In the case of the more realistic test data the general 
model is:

6
y(i) = 51 0.x.(i) + e(i) i = 1,2,...,1024 -(2.26)

j=l J 0

where ~ ®4 are transmission coefficients for the EOG 
channels and 9^ and 9̂  are the transmission coefficients for 
the response model components.

2.5.1.1 0A AND A SEPARATE RESPONSE

As a start the simplest experimental condition possible 
was simulated in which a CNV response was present along with 
a temporally distinct OA. The simulated measured EEG 
representing this (after dc level removal (d.c. =0)) is
given in Figure 2.4 while Figure 2.5 shows the simulated 
measured EOG without d.c. level removal (dc ^ 0).
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Figure 2.4
Simulated measured EEG which contains an OA and a response
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Figure 2.5
The simulated EOG corresponding to the OA of Figure 2.4

The single component response model (dc ? 0) is shown in 
Figure 2.6.
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Figure 2. 6 
Linearly modelled response

Figure 2.7 (dc = 0) shows the EEG corrected for OA
non-recursively and without modelling (NR-OAR-NM).

DATA POINTS51,2 8̂ 6

TINE IN SECONDS

Figure 2.7 
The NR-OAR-NM (dc = 0) corrected EEG
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The estimated CNV differs from the known one only in that 
there is a small (1/jV) but constant level shift. The shape, 
slope and maximum amplitude (relative to the baseline) are 
unchanged and there is an OA remnant (in the form of 
overcorrection of the measured EEG) of ljuV (5% of the 
original OA). The correction, with d.c. level removal, gave 
rise to the 9 (the estimated value) of 0.20984 , compared 
with the known value of 0.2, i.e., 4.92% in error.

Figure 2.8 (dc = 0 )  shows the NR-OAR corrected EEG when 
modelling of the CNV was included (NR-OAR-WM).
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Figure 2.8 
The NR-OAR-WM (dc = 0) corrected EEG

There are no visual traces of the OA and the CNV shape is
-a.

unaltered. The value of 0 with d.c. level removal is 
0.20047 differing from the known value of 0.2 by 0.24%. 
Hence it has been established for these simplified data that
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successful OAR can be achieved non-recursively provided the 
response is modelled.

Figure 2.9 (dc =0) shows the corrected EEG obtained 
using the recursive method, but with no modelling 
(R-OAR-NM).

512

n
IrR0V0
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S

TIME IN SECONDS

Figure 2.9 
The R-OAR-NM (dc = 0) corrected EEG

A vestige of OA remains varying from +2.8juV to -0.7juV, 
relative to the EEG baseline. It can also be observed that 
there exists a small difference in pre- and post-OA EEG 
baseline of ~0.5jjV. It appears that the CNV is unaltered. 
Scrutiny of the recursively corrected EEG when modelling is 
applied (R-OAR-WM) and the d.c. level is removed (dc = 0)
show that the CNV shape is unaltered and no OA remnant is 
discernible, i.e., the EEG is the same as in Figure 2.8. In
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addition the pre- and post-OA baseline difference of Figure 
2.9 has been eliminated.

Figure 2.10 (dc =0 )  is a plot of 0 agains 
number for the R-OAR-NM case showing a variation of 
during the record which accounts for the pre- and 
EEG baseline difference observed in Figure 2.9.
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Figure 2.10
Variation of 9 with sample number for R-OAR-NM (dc = 0)



The following observations can be made: the abrupt change in 
0 at t = 2 corresponds to the onset of OA; the more gradual 
increase in 0 commences in the vicinity of the start of the 
CNV (there being a slight delay ~0.2s); the change in sign 
of the slope of 0 occurs at CNV termination. Figure 2. 11 
(dc = 0) shows the R-OAR-WM case in which the second trace 
(labelled "THETA 2") is the estimate for the CNV model 
component parameter, the 0g of equation (2.25).

(j) 
C£ 
LU I— 
LU 2= < 
CH 
<  
CL
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.2001

Figure 2. 11
A

Variation of 0 with sample number for R-OAR-WM (dc = 0)

This figure shows immediately the very good estimate of 0 
obtained when modelling is introduced and the elimination of 
the fluctuating 0 values noted in Figure 2.10. The only
discernible variation is for 0g during the CNV presence.
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Figure 2.12 (dc ^ 0) shows the NR-OAR-NM corrected EEG, 
derived from data from which the d.c. level has not been 
removed.

DATA POINTS 51,2

TIME IN SECOND!

Figure 2.12 
The NR-OAR-NM (dc * 0) corrected EEG

This is seen to exhibit neither OA remnant nor CNV shape 
modification. This was found to be the case for all 
processing options (NR-OAR-NM, NR-OAR-WM, R-OAR-NM and 
R-OAR-WM). The value of 0 obtained by NR-OAR-NM and 
NR-OAR-WM was identical and equalled 0.20034, i.e., 0.17% in 
error. Figure 2.13 (dc i- 0) shows the plot of 0 variation 
when R-OAR-NM was performed. An identical plot was obtained 
when modelling was applied (except, of course, for the 
addition of the estimate of 0g, the model component).
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Figure 2.13
Variation of Q with sample number for R-OAR-NM (dc 0)

For these simple data, the conclusions are that the 
response must be modelled if the d.c. levels of the data 
have been removed, and that response modelling gives good 
results in all cases.

For simplicity no EEG or EOG background noise was
simulated. This condition can be justified by noting that
the worst case error in estimating the 0 values will be when
there is no noise. Consider an N point sequence, where for
simplicity N is an odd integer next in sequence after a
multiple of 4. Denote the background EEG as s(i) and let
this be constant at a voltage v . Furthermore let thes
'noise' be a voltage waveform of value -v relative to v .n s
Then:
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(v - V s n

s(i) = < v

Vs.V + v s n

N-l
i = 2,6,10,...,N-7,N-3 i.e. ---- terms

4
N+l

i = 1,3,5,...,N-2,N i.e. ---- terms
2

N-l
i = 4,8,12,...,N-5, N-l i.e. ---   terms

4
- (2.27)

or for no 'noise':

s( i) = v i = 1, 2,3,. . . , N -(2.28)

The above are depicted in Figure 2.14.

\/
/

/
/

N-2 N - l  N

Figure 2. 14
Illustration of effect of noise on sum of squares, J

Then for no 'noise':
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J = X  O(i)]2 - Nv2 
i=l

-(2.29)

And when ’noise-’ is present:

N+l N-l N-l 2
2 4 4

N-l
(2.30)

2

Then comparing (2.29) and (2.30) must always be greater
than J. Hence any given non-random response in the EEG will
have a greater effect on J than J .n

2.5.1.2 SEPARATE 0A AND A RESPONSE HAVING AN ADDITIONAL 0A

In the following d.c. levels have been removed from the 
data yielding Figures 2.15, 2.17 - 2.21.

The remaining figures were obtained from data possessing 
d.c, levels.

Since OAs may be superimposed on the responses this 
situation was investigated using simple data. The simulated 
measured EEG (dc = 0) is shown in Figure 2.15.

-40-



in 
—i 
r~ 
o 
< 
o 

n 
3

DATA POINTS
1321ZSi138

-10 0 2 3 8I 71
TINE IN SECONDS

5 6

Figure 2.15
Simulated measured EEG which contains an OA and an OA 

superimposed on the response (do = 0)

The EOG causing the OAs is given in Figure 2.16 (do 5*0).
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Figure 2.16
The simulated EOG (do f 0) corresponding to the OAs of

Figure 2.15
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Using NR-OAR-NM gives the corrected EEG of Figure 2. 17 (dc = 
0).

DATA POINTS 8̂ 6

0 - j  =

TinE- IN SECONDS

Figure 2.17 
The NR-OAR-NM (dc = 0) corrected EEG

Incomplete removal of both OAs is observed, there remaining 
13% of the original OA in each case. With NR-OAR-WM (dc = 
0) the corrected EEG showed no trace of either OA, i.e., it

A

was as for Figure 2.8. The values of 0 in these cases were 
0.17389 (13.1% in error) and 0.19863 (0.7% in error)
respectively. R-OAR-NM (dc = 0) gave the corrected EEG of 
Figure 2.18 which shows incomplete OA removal.
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Figure 2.18 
The R-OAR-NM (dc = 0) corrected EEG

The first OA is initially undercorrected by 6jSV but is
reduced to ~0. 5jjV of overcorrection. The second OA becomes 
worse with CNV development being ~5.5/uV undercorrected at OA 
termination. There is also a small distortion of the CNV 
and EEG baseline differences are noted in the different 
regions of the corrected EEG. Figure 2.19 (dc = 0) shows
the R-OAR-WM corrected EEG. The OAs are now almost
completely removed (scrutiny of the regions in which the OAs
were present reveals slight corrected EEG perturbations)* 
The EEG baseline differences have been eliminated and the 
CNV appears undistorted.
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Figure 2.19 
The R-OAR-WM (dc = 0) corrected EEG

The variations of 9 with sample number for R-OAR-NM (dc 
= 0) and R-OAR-WM (dc = 0) are shown in Figures 2.20 and 
2.21 respectively.
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Figure 2.20
a

Variation of 9 with sample number for R-OAR-NM (dc = 0)
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Figure 2.21
Variation of 6 with sample number for R-OAR-WM (dc = 0)

In the former 9 suffers a step change at the rising edge of 
the first OA with another rapid change starting at the 
rising edge of the second OA. The final values of 9 of
0.1492 was in error by 25.4% but between the rising edges of

/**

the two OAs 9 was much closer to the true value of 0.2. 
With response modelling the OAs cause much smaller change in 
9 which, as expected for this one type of artefact, is more 
nearly constant, the final value of 0.1974 being within 1.3% 
of the true value. It is to be concluded once more that 
efficient OAR requires response modelling which also 
overcomes the response distortion introduced by R-OAR 
(Figures 2.18 and 2.19).

Study of the NR-OAR-NM, NR-OAR-WM, R-OAR-NM and 
R-OAR-WM corrected EEGs, in which d.c. levels remain,- were 
similar to their d.c. level-removed counterparts, excepting
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that their baselines remained at zero. The non-recursive 
estimates of 9 with and without response modelling were
0.19863 {0.1% in error) and 0.16379 (22.1% in error)
respectively. Figure 2.22 shows the 9 variation with sample 
number for R-OAR-NM (dc j- 0).
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CNVNCT1 
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THETA 1 .1481

Figure 2.22
Variation of 9 with sample number for R-OAR-NM (dc ^ 0)

It can be seen that it has a similar form to its d.c. 
level-removed counterpart (Figure 2.20) but that, apart from 
the regions of change, it remains, at one or other of two 
constant values (either 0.2 or 0.1481). The plot of 9 
variation for R-OAR-WM (dc ^ 0) was the same as for the d.c. 
= 0 case of Figure 2.21.

Thus it is to be concluded that satisfactory OAR 
requires response modelling whether or not d.c. levels are 
removed.



2.5.1.3 CONTAMINATION OF THE EOG BY THE RESPONSE

Contamination of the EOGs by background EEG or by the
response (IFEACHOR et al, 1986a; JERVIS et al, 1988) is
another problem found in practice. This causes partial
correlation between the EOGs and the measured EEG which
leads to incorrect estimates of the 9 .s and hence of theJ
true (background) EEG and the responses. Thus the term
x.(i) in equation (2.13) is replaced by x.'"(i) where:J J

Xj’(i) = xj(i) + KjlEEGt(i) + Kj2CNV(i) -(2.31)

where and K^2 are transmission coefficients indicating
contamination of the EOG by the true EEG and response
respectively. This situation was investigated by simulation
in which, as a simplification, K., was set to zero. A valuejl
of K 2̂ =0.2 was introduced. To investigate the conflicting 
results of Sections 2.5.1.1 and 2.5.1.2 regarding d.c. level 
removal offsets of +10juV and -20juV were introduced into the 
simulated measured EEG and EOG respectively.

The simulated measured EEG and EOG are given in Figures 
2.23 and 2.24 respectively.
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Figure 2.23
Simulated EEG which contains an OA and an OA superimposed on 

a response, possesses an offset and in which dc 1 0
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Figure 2.24
Simulated EOG corresponding to the OAs of Figure 2.23, which 
is contaminated by the responses, possesses an offset and in

which dc / 0
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They both include d.c. levels and show the offsets 
introduced. The EEG was corrected for all four OAR methods,
i.e., non-recursive/recursive and with/without response 
modelling, in which d.c. levels were removed. The resultant 
corrected EEGs were compared with the corresponding 
waveforms of Section 2.5.1.2 (i.e., in which no
contamination of the EOGs occurred). Each pair of waveforms 
were very similar, i.e., the sequence of correction methods 
NR-OAR-NM, NR-OAR-WM, R-OAR-NM and R-OAR-WM yielded the same 
waveforms as these shown in Figures 2.17, 2.8, 2.18 and 2.19

A

respectively. The values of © obtained for NR-OAR-NM and 
NR-OAR-WM were 0.17865 (11.7% in error) and 0.19889 (0.7% in 
error). The corresponding estimates of 9 for no 
contamination of the EOG (Section 2.5.1.2) were 0.17389 and 
0.19863, i.e., differences of < 1.6% (for NR-OAR-NM) and < 
0.04% (for NR-OAR-WM) between contaminated and 
uncontaminated EOGs. The © variations for R-OAR-NM and 
R-OAR-WM are shown in Figures 2.25 and 2.26.
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Figure 2.25
Variations of 9 with sample number for R-OAR-NM (dc = 0)
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Variation of 9 with sample number for R-OAR-WM (dc = 0)
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Apart from small differences in values the general form of 
both figures is as for the no EOG contamination case, i.e., 
Figures 2.20 and 2.21 respectively.

The conclusion for d.c. level removed data is that modelling 
is necessary for both NR-OAR and R-OAR cases. Furthermore, 
for the test data used here, the effect of contamination of 
the EOG by the response is very small.

When d.c. levels remain, use of NR-OAR-NM and NR-OAR-WM 
result in the corrected EEGs in Figures 2.27 and 2.28.

DATA POINTS51,2

-40 80 2 3 75 G1
TIHE IN SECONDS

Figure 2. 27 
The NR-OAR-NM (dc 0) corrected EEG
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Figure 2.28 
The NR-OAR-WM (dc ^ 0) corrected EEG

It is immediately apparent that little OA has been removed. 
The 9 values obtained with and without response modelling 
were 0.03180 and 0.03391 respectively, i.e., errors of 84% 
and 83%. Artefacts of 16.6jjV and 16.8juV remain (out of 
original OAs of 20 jjlV) for NR-OAR-NM and NR-OAR-WM cases.

Figure 2.29 shows the R-OAR-NM (dc ?0) corrected EEG.
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Figure 2.29 
The R-OAR-NM (dc 5* 0) corrected EEG

Substantial EEG baseline distortion has occurred, 
considerable OA remnants are evident and the CNV has been 
distorted. Figure 2.30 is the corrected EEG when R-OAR-WM 
(dc 5*0 ) is used.
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Figure 2.30 
The R-OAR-WM (dc j- 0) corrected EEG

This is marginally worse than the case without response 
modelling in that the response OA remnant is ~4jaV greater 
(at OA termination) than when R-OAR-NM (dc ^0) is used. 
Figures 2.31 and 2.32 show wildly varying 9s for both 
R-OAR-NM (dc *0) and R-OAR-WM (dc *0).
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Variation of 9 with sample number for R-OAR-NM (dc / 0)
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Figure 2.32
Variation of 9 with sample number for R-OAR-WM (dc ? 0)

On the basis of the above observations on this test 
data it is to be concluded that when offsets are present 
d.c. level removal is essential. In addition it is 
impossible to discern any effects due to response
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contamination of the EOG. It is assumed that any such 
effect is of the same (small) magnitude as for the above 
cases in which the d.c. level was removed and so it is 
obvious that effects on the corrected waveforms due to d.c. 
offsets will be far greater. Thus it is to be concluded, 
for the given test data, that EOG contamination by the 
response can be neglected.

2.5.1.4 REALISTIC TEST DATA

Here the more realistic case in which the OA has been 
modelled in terms of several EOGs is considered. It was 
also decided to simulate the experimental paradigm used in 
obtaining the CNVs investigated in this work (see Section
1.3 for recording details) by introducing simulated AEPs at 
each end of the CNV. The effect of 'mismodelling' the CNV 
by making the model and actual CNV shapes somewhat different 
was also to be investigated. This was done by assuming a 
two component CNV model. The '’true" CNV, however, had the 
form of Figure 2.33, i.e., a very short negative going
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Figure 2.33
Simulated measured 'realistic’ EEG, with offset and d.c.

level

segment after the first AEP followed by a constant level 
until the second AEP, and as such was intended to bear a 
degree of resemblance to the real CNV of Figure 2.1. In 
addition d.c. offsets of for the EEG channel and -l(^uV
for each EOG channel were included. It was decided to vary 
the known 0 values between EOG channels and between OAs. 
This was to allow for differing 9s due to different 
transmission paths and also to allow for variation of 9 
within a channel due to, say, electrode displacement during 
recording and the fact that differing OAs (e.g., blinks and 
eye-movements (EMs)) require different amounts of 
compensation (WEERTS and LANG, 1973 and IFEACHOR et al, 
1986a). This assumed data is summarised in Table 2.1.
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TABLE 2.1
EOG AND EEG DATA USED IN SECTION 2.5.1,4

EOG 9 value Measured EOG <uV) Contribution to
channel o a 2 0A2 0A1 o a2 EEG (juV)

0A1 2
VL 0. 10 0. 05 350 500 35 25
VR -0. 01 0. 10 280 400 -2.8 40
HL -0. 10 -0.20 56 80 -5.6 -16
HR -0. 10 -0. 15 70 100 -7 -15

The two OAs in the EEG have magnitudes of 19.6j.aV and
34juV. The negative values of the 9s are included in Table 
2.1 since the simulated EMs in the EOGs of Figure 2.34 are 
all positive going whereas negative going EMs also occur in 
real data (a positive EM with a negative value of 9 
transmission coefficient has the same contribution to OA in 
the EEG as a negative EM with a positive value 9).
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Figure 2.34
Simulated EOGs corresponding to OAs of Figure 2.33 with

offset and d.c. level

The two AEPs were not modelled since the major part of the 
error in estimating the 0 values is due to the presence of 
the CNV (insofar as the test data used here is concerned).

AThis arises since the calculation of 9 will be affected more 
adversely for non-random waveforms possessing larger 
amplitudes and/or longer duration (the CNV) than for smaller 
amplitude and/or shorter duration responses (the AEPs). 
This is a consequence of the least squares method of 
estimating the 9s. Thus even though the second AEP in 
Figure 2.33 has a larger maximum amplitude than the CNV the 
latter*s greater duration will outweigh the AEP*s influence.
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The first part of the following discussion concerns data 
which have had their d.c. levels removed and non-removal of 
d.c. levels is discussed after that.

The simulated measured EEG and EOGs are given in 
Figures 2.33 and 2.34 and show the respective offsets. The 
values of 9 obtained in using NR-OAR are shown in Table 2.2.

TABLE 2.2
AVALFJES OF Os OBTAINED IN SECTION 2.5. 1.4
NR-OAR-NM NR--0AR-WM

P. 0 II o oii0TJ dc = 0 dc = 0

§1 466.78442 1968.21118 533.05396 2298.06421
e2 - 0.16260 0.01134 - 0.17977 0.05383
?3 1.32366 2.46946 1.42793 2.13716
°4 - 0.08000 2.26075 - 0.11716 1.69729
°5 — — 0.53200 0. 53371
S6 - 0.16386 0.16441

The estimated values of 9 of this table are related to the 
EOGs of Table 2.1 by the form of equation (2.7), i.e., 9^ is 
associated with the term HEOG^.HEOG^, 0o with VEOGp etc. 
Each of these 9 estimates depends upon a corresponding pair 
of known 9s in Table 2.1 (one for each OA). This is because 
the NR-OAR method uses all the EOG (and EEG) data in a 
record to compute a single estimate of each 9. It is seen 
that the estimated values of 9 (Table 2.2) bear no obvious 
relation to the known values in Table 2.1. The values of 9. 
are estimates of the transmission coefficient associated 
with the HEOGT . HEOGg term and are relatively large. However
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the product Q^HEOG^.HEOGg is relatively small because 
HEOG^.HEOGg is small.

Figure 2.35 gives the NR-OAR-NM (dc = 0) corrected EEG 
which shows overcorrection of both OAs (~4.5jjV for OA^ and 
~1.5pV for 0A2 >.
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Figure 2. 35 
The NR-OAR-NM (dc = 0) corrected EEG

Figure 2.36 gives the NR-OAR-WM (dc = 0 )  corrected EEG 
showing improved OA correction, there being remnants of ~3jiV 
for 0A^ (overcorrected) and ~0.5pV for OAg (undercorrected).
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Figure 2.36 
The NR-OAR-WM (dc = 0) corrected EEG

Figure 2.37 gives the R-OAR-NM (dc = 0) corrected EEG 
which shows large CNV and post-CNV EEG baseline distortion.

DATA POINTS
40

!\V
U  ' I

-40 3 4 5
TIME IN SECONDS

Figure 2.37 
The R-OAR-NM (dc = 0) corrected EEG

-62-



cn
-i
r-
o<
o^
jn
*-
<n

The CNV has a +6jmV shift- just before AEPg> and the EEG 
baseline suffers a +7jjV shift just after AEPg (both shifts 
are relative to the corresponding known value of CNV or 
EEG). The OA remnants are ~0.5juV for OA^ and ~3juV for OAg 
(both overcorrected). It is to be noted that the above 
values of distortion of CNV and EEG are comparable to those 
observed in the real data when Figures 2.1 and 2.3 are 
compared. Indeed the overall evolution of both R-OAR-NM 
waveforms when compared to their respective no-OAR EEGs are 
similar; an increasingly positive shift of the CNV during 
its development and a positive (but decreasing with time) 
shift of the post AEPg EEG baseline. The R-OAR-WM (dc = 0)
corrected EEG is shown in Figure 2.38.

DATA POINTS2̂ 6 ESS

-40
TIME IN SECOND:

Figure 2.38 
The R-OAR-WM (dc = 0) corrected EEG
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The post- AEPg EEG baseline distortion is reduced to a 
+3.5jmV maximum shift. Much of the CNV distortion has been 
eliminated but there still exists shift prior to AEPg.

The variations of 9 for R-OAR-NM (dc = 0) and R-OAR-WM 
(dc =0) are shown in Figures 2.39 and 2.40.
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Figure 2.39
Variation of 9 with sample number for R-OAR-NM (dc = 0)
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Figure 2. 40
Variation of 0 with sample number for R-OAR-WM (do = 0)

It is seen that rapid changes in 0 value start during AEP^ 
and AEPg in both cases. However, the range of 0 values
((maximum 0 value) - (minimum 0 value)) is smaller when the
reponse is modelled, i.e., ~78 as compared to ~123 without 
modelling.

Thus for the d.c. level removed results given above it 
is concluded that for both NR-OAR and R-OAR modelling of the 
response gives better corrected waveforms than when
modelling is not performed.

In the following paragraphs the effects of non-removal 
of d.c. levels are considered. Figure 2.41 shows the 
NR-OAR-NM (dc j*0) corrected EEG.

\
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Figure 2.41 
The NR-OAR-NM (dc J- 0) corrected EEG

The remnant OA (for both OAs) is ~2.5pV (overcorrected). 
This value is reduced to ~ljaV (overcorrected) when NR-OAR-WM 
(dc 5̂ 0) is applied as shown in Figure 2.42.
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Figure 2. 42 
The NR-OAR-WM (dc ^ 0) corrected EEG

Comparing these two figures with those in which d.c. levels 
have been removed (Figures 2.35 and 2.36) it appears that 
not performing d.c. level removal gives marginally better 
correction. However, in light of the previous results in 
which the non-removal of d.c. levels led to much greater 
differences it is felt to be an insignificant result. This 
assertion can be supported by noting that the offsets 
introduced in this section are smaller in relation to the 
data than these of Section 2.5.1.3 and hence will have less 
effect on the corrected waveforms.

Figures 2.43 and 2.44 show the R-OAR-NM (dc ? 0) and
R-OAR-WM (dc 5* 0) corrected EEGs which are very similar to 
the corresponding d.c. level removed cases.

-67-



DATA POINTS
 ..

M
I
CR0
V0
LT
S

TINE IN SECOND:

Figure 2.43 
The R-OAR-NM (dc 0) corrected EEG
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Figure 2.44 
The R-OAR-WM (dc ^ 0) corrected EEG

In the latter the CNV distortion is of a slightly different 
form but is the same in magnitude.
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The plots of G variation for R-OAR-NM (dc ;* 0) and 
R-OAR-WM (dc 5*0) are shown in Figures 2.45 and 2.46.
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Both of them show reduced value ranges as compared with 
their d.c. level removed counterparts and once more the 
range of values is smaller in the response modelled case.

The results depicted in Figures 2.41 - 2.46 reinforce 
the view that modelling the response leads to better- 
corrected waveforms than when modelling is not performed.

Finally the question of what the effects are (if any) 
of mismodelling of the CNV and/or non-modelling of the AEP 
are examined. Scrutiny of the CNVs of both NR-OAR-WM cases 
(i.e., dc - 0 and dc / 0 in Figures 2.36 and 2.42
respectively) revealed no noteable differences when compared 
to the no-OAR case (Figure 2.33). However comparison of 
Figures 2.38 and 2.44 (R-OAR-WM (dc = 0) and R-OAR-WM (dc / 
0)) both showed some^1^ erencesin CNV shape when compared to 
Figure 2.33. The source of this could be either the CNV 
mismodelling or the lack of modelling of the AEPs. 
Comparison of the AEPs in Figures 2.36, 2.38, 2.42 and 2.44 
with those of 2.33 showed no discernible differences and 
thus it is felt that the CNV shape modification is due to 
the response mismodelling.

The results of this section dealing with realistic data 
lead to the following conclusions:

(i) In contrast to the results of the previous test data 
set (section 2.5.2.3) non-removal of d.c. level does not
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cause severe errors. However neither does it bring about 
any significant improvement in results.
(ii) NR-OAE is improved, in terms of OA correction, by the 
use of modelling.
(iii) R-OAR must be done with modelling to reduce both CNV 
and EEG baseline distortion and to improve OA correction.
(iv) Mismodelling of the CNV can lead to small amounts of 
distortion of the CNV in the corrected EEG for R-OAR .

2.6 RESULTS USING REAL DATA

The effectiveness of incorporating modelling in the OAR 
procedure applied to experimental response data was 
investigated. Both CNV and AEP responses were used, which 
had been recorded in earlier work (NICHOLS, 1982). In light 
of the previous conclusions concerning d.c. level removal, 
it was decided to carry out the processing with and without 
d.c. level removal.

2.6.1 CNV RESPONSES

The CNV was modelled by two components (as described in 
Section 2.5.1.4. An ISI of 1 second was used in this 
investigation. The AEPs were not modelled for the reasons 
given in Section 2.5.1.4. Figure 2.47 shows the averaged 1 
second ISI CNV (with d.c. level removed) of the same 
co-operative subject for whom results were given in Figures 
2.1- 2.3.
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Figure 2. 47
The averaged Is ISI CNV of the subject of Fig. 2.1 
subsequent to implementation of NR-OAR-WM (dc = 0)

The results of Figure 2.47 were obtained using the NR-OAR-WM 
method. Comparison of this averaged CNV with that of Figure
2. 1 shows that NR-OAR-WM has had little effect on the CNV 
shape. The R-OAR-WM (dc = 0 )  corrected EEG is shown in 
Figure 2.48.
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Figure 2.48
The averaged Is ISI CNV of the subject of Fig. 2.1 
subsequent to implementation of R-OAR-WM (dc = 0)

It is seen that the CNV shape modification is now reduced to 
a maximum of ~4/uV as compared to ~7.5^uV without modelling.

Figures 2.49 - 2.52 refer to OAR processing in which no 
d.c. level removal was performed. However, the plots of the 
corrected EEGs shown have had their d.c. levels removed 
subsequent to processing in order to bring them within the 
display area for plotting. Figures 2.49 and 2.50 show EEGs 
corrected with NR-OAR-NM (dc ^ 0) and NR-OAR-WM (dc £ 0)
between which no differences are observed.
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Figure 2.49
The averaged Is ISI CNV of the subject of Fig. 2.1 
subsequent to implementation of NR-OAR-NM (dc i- 0)

DATA POINTS
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Figure 2.50
The averaged Is ISI CNV of the subject of Fig. 2. 1 
subsequent to implementation of NR-OAR-WM (dc 0)
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Comparing these figures with Figure 2. 1 (the no-OAR case) 
there is an attenuation of the first AEP (by ~1-2juV) and the 
CNV shape has been modified, this being manifest by up to a 
2jjV positive shift of the mid- to latter part of the CNV. 
There are also various differences in the background EEG 
(between the NR-OAR and no-OAR cases) outside the CNV and 
AEP region. Figure 2.51 shows the results from R-OAR-NM.

K » t l * v W V - - /l h V N
i Y  N ' V  h r i  

■ ■ " | . ■ — .- [ '- -- ■- -- 1- ■- -

f- / * n n i v  ^  — \ y -  » - r

I v y  f

' 1 1 ■ ■ . | ,

Figure 2.51
The averaged Is ISI CNV of the subject of Fig. 2.1 
subsequent to implementation of R-OAR-NM (dc ? 0)

Apart from miscellaneous background EEG differences there is 
an obvious CNV distortion in the form of a maximum +7.5/uV 
shift in the latter part of the CNV with respect to the 
no-OAR case. Figure 2.52 was obtained with R-OAR-WM.
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Figure 2.52
The averaged Is ISI CNV of the subject of Fig 2.1 subsequent 

to implementation of R-OAR-WM (dc ^ 0)

Although the previous CNV shape distortion is much reduced 
it is still ~2juV. Furthermore there still exist noticeable 
background EEG differences when comparing R-OAR cases with 
the no-OAR case.

The above results lead to the conclusion that whether 
or not d.c. levels are removed response modelling in NR-OAR 
produces no difference in the corrected EEG from that for 
the NR-OAR-NM case and can be omitted whereas response 
modelling should be used when R-OAR is performed in order to 
reduce CNV distortion.
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2.6.2 AEP RESPONSES

A pair of 32 trial averaged AEPs are shown in Figure 
2.53. These were obtained without any OAR.

DATA POINTSbl2 7§8

67a 2 3 5 64
TIME IN SECONDS

1

Figure 2.53
A pair of 32 trial averaged AEPs without OAR

The AEP was modelled piecewise linearly as shown in 
Figure 2.54.
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Figure 2. 54 
The piecewise linear model for the AEP

Figures 2.55 - 2.58 show, respectively, the averaged AEPs
obtained by NR-OAR-NM, NR-OAR-WM, R-OAR-NM and R-OAR-WM and 
have all had d.c. levels removed.
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Figure 2.55
The averaged AEP subsequent to NR-OAR-NM (dc = 0)
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Figure 2.56
The averaged AEP subsequent to NR-OAR-WM (dc = 0)
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Figure 2. 57
The averaged AEP subsequent to R-OAR-NM (dc = 0)
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Figure 2.58
The averaged AEP subsequent to R-OAR-WM (dc = 0)

For both NR-OAR cases the only noticeable AEP
difference (compared to the no-OAR case of Figure 2.53) is in
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AEP^ where an attenuation of ~ljaV occurs at either 
extremity, i.e., the apparent shape and development of each 
AEP is unchanged, although changes in level can be discerned 
(~2.5pV for AEP2).

When R-OAR-NM is applied, not only do the level and 
magnitude differences, described above , occur but there are

9
also small changes in the shape of the first AEP. When 
modelling is applied recursively it is not clear that these 
changes are overcome. These differences can be seen in the 
upper region of the AEP by noting that it possesses two 
peaks and further noting their relative magnitudes.

Attention is now turned to the case when d.c. level 
removal is performed only for display purposes subsequent to 
OAR processing. Figures 2.59 - 2.62 show EEGs corrected by 
NR-OAR-NM, NR-OAR-WM, R-OAR-NM and R-OAR-WM respectively. 
Both NR-OAR methods give very similar results to each other. 
The R-OAR methods show a small difference for the first AEP 
but otherwise are similar. Comparing no-OAR (Figure 2.53) 
with NR-OAR (both with and without modelling) there can foe 
seen a difference in peak to peak values for both AEPs. For 
no-OAR the peak to peak values for first and second AEPs 
were ~29. 5pV and ~23juV respectively. When NR-OAR was 
applied these values became ~36jaV and ~28iuV respectively. 
However, the general features of the AEP shape are similar. 
Application of R-OAR-NM shows peak to peak values of ~30|uV 
and ~26|uV for the first and second AEPs (Figure 2.61). For 
R-OAR-WM (Figure 2*62 )) these values are ~29juV and ~26jaV
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respectively. AEP shape modification can be discerned in a 
similar fashion to that described above for R-OAR-NM (dc = 
0) and R-OAR-WM (dc = 0), i.e., Figures 2.57 and 2.58.

DATA POINTS 51.2 1 *
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Figure 2. 59
The averaged AEP subsequent to NR-OAR-NM (dc ? 0)
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Figure 2.60
The averaged AEP subsequent to NR-OAR-WM (dc / 0)
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Figure 2.61
The averaged AEP subsequent to R-OAR-NM (dc ^ 0)

-83-



DATA POINTS
■ 5A2 .....

nicR0
V0
L
T
S

TIME IN SECOND:

Figure 2.62
The averaged AEP subsequent to R-OAR-WM (dc J- 0)

From the above results it is concluded that NR-OAR 
introduces amplitude changes but causes no distortion, that 
omission of response modelling (i.e., NR-OAR-NM) produces no 
discernible differences when compared to NR-OAR-WM and that 
the use of R-OAR causes response distortion and even when 
response modelling is applied this distortion remains.

2.7 DISCUSSION

The results presented in this chapter were obtained 
from both simulated and real data. For the simulated data 
observations it was shown that modelling of the response is 
necessary for efficient OAR (for both non-recursive and 
recursive methods) and to avoid response distortion 
(recursive method). When the real data results were studied 
the response distortion of the CNV was evident when R-OAR-NM
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was used and it was demonstrated that response modelling 
reduced this distortion. By contrast the NR-OAR method was 
found to be relatively insensitive to the presence or 
absence of a response model. Since the opportunity to 
devise accurate CNV models did not exist, it was decided to 
use the NR-OAR-NM method.

The consequences of removing the d.c. level from all 
the data channels or of leaving it in have been investigated 
and showed some contradictory results. It appeared (from 
Section 2.5.1.1) that non-removal of the d.c. level obviated 
the need for modelling. However, the results of Section
2.5.1.2 indicated that modelling could not be avoided by non 
d.c. level removal. This led to consideration of d.c. 
offsets in the data which, in Section 2.5.1.3, produced 
results showing the necessity of d.c. level removal. 
Section 2.5.2 gave results which were neutral. In 
considering these findings discussion is restricted to the 
two sections in which offsets were present. This can be 
justified by noting that for the real data, when no OAR was 
applied, and when d.c. levels were removed, EEG offsets of 
-55.3juV and 10. ljuV for the CNV and AEP data were observed 
(for the 32 trial averaged waveforms). The differences 
between the observations of Section 2.5. 1.3 and 2.5.2 might 
then be accounted for by the fact that the offsets for the 
latter were proportionally smaller than those for the 
former. Thus, it is felt that the best course of action was 
to perform d.c. level removal on the data.
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In Section 2.5,2 the effect of CNV and response model 
mismatching was considered. While for NR-OAR-WM there 
appeared to be no effect, there was a small observable 
effect for R-OAR-WM. This is not surprising because of the 
previous discussion of the RLS and OLS methods. Another 
cause of mismatching between the response and its model 
which was not investigated but could well affect results, is 
the temporal misalignment between them.

In light of the results of this chapter the following 
OAR processing was selected for the remainder of this work:
(i) remove d.c. levels from all data channels;
(ii) use non-recursive OAR and
(iii) omit a response model from equation (2.1).
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3 FREQUENCY DOMAIN METHODS
3.1 CHAPTER OUTLINE

The frequency domain signal processing techniques to be 
applied to the data are discussed in this chapter, together 
with demonstrations and results which illustrate some of 
these points and which indicate the preferred processing 
steps to be followed.

Section 3.2 is a brief introduction to the Discrete, 
Fast and Continuous Fourier Transforms along with power and 
energy spectra. The use of the FFT to obtain amplitude and 
phase spectra and the energy spectrum will be given together 
with the use of each of these representations. Section 3.3 
covers a range of signal processing topics: sampling,
aliasing, picket-fencing, augmenting zeroes and the 
fundamental limitations of the data epoch length. Section 
3.4 describes windowing and its drawbacks, spectral 
leakage, biasing, and two examples of windows (Tukey and 
Kaiser-Bessel). Section 3.5 describes an investigation to 
compare (and determine the best choice of) Tukey and 
Kaiser-Bessel windows. Section 3.6 is a review of the 
results with recommendations as to the processing regime to 
be used in the rest of this work.
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3.2 THE FOURIER TRANSFORM AND ENERGY SPECTRUM
3.2.1 BACKGROUND

The Fourier Transform (FT) is a means whereby one
representation of a signal (in the time domain) can be 
translated into another representation (in the frequency 
domain). The reverse process is equally possible but is not 
required in this work. The time domain signal (e.g. EEG 
recording) is Fourier Transformed to yield a pair of spectra 
(either amplitude and phase or real and imaginary components
of a complex function). All these spectra show the
variation of some quantity (depending on which spectrum is 
considered) against frequency. From these it is possilbe to 
obtain information showing the variation of power (for an 
infinite signal) or energy (for finite signals) with 
frequency. The former is the power spactrum, the latter the 
energy spectrum.

Signals may be continuous (in time) or discrete. 
Because of the nature of digital computers (on which much 
signal processing work is performed) even a continuous
signal will be rendered discrete by sampling.

The FT F(co) of a time signal f(t) is given by:

F(6» =
f CO

f(t)e~j0>fcdt -(3.1)
/_CO

Where 60 is angular frequency = 27Tf and f is frequency.
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F(cO) is complex and may be written as the sum of two 
other functions:

F(CJ) = R(O) + jl(cj) -(3.2)

where R(o) is an even function and 1(0) is an odd function.

It is also possible to consider the amplitude, (A(CO)), and 
phase,((p (CO)), spectra in which:

A(co) = jF{(0) | = \R2(CO) + I2(W) -(3.3)
, . , I M

and (1) (CO) = tan ----  -(3.4)
R(6J)

Equations (3.1) - (3.4) are for continuous aperiodic
signals, f(t). For sampled data signals the translation 
from time to frequency domain is made by the Discrete 
Fourier Transform (DFT).

Let a sequence of N samples be spaced T seconds apart 
in an interval (0,(N-l)T), i.e.,

f(kT) = f(0),f(T),f(2T), ...,f([N-l]T) -(3.5)

The DFT is defined as a sequence of N complex-valued 
samples in the frequency domain by (STREMLER, 1977):

N-l
Fn (nil) = 21 f(kT)e“J'Q,Tnk n = 0, 1, 2, . . . , N-l -(3.6) 
u k=0
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27T
where SI - --

(N-l)T

In using the DFT the FT is being approximated 
numerically. To see the relationship between the FT and DFT 
consider a truncated time signal f(t) with an FT of F(co) . 
If:

f(t) 04^4. (N-l)T 
f(t) = -j “(3.7)

0 elsewhere
then:  ̂(N-l)T

F(CO) = \ f(t)e J£0tdt -(3.8)
Jo

With variable changes CO->nil, t->kT and dt ->T equation (3.8) 
can be approximated by (STREMLER, 1977):

F(nil) = 5" f(kT)e JnilkT.T -(3.9)

then: F (CO)
k=0

C0=ni2= TFD(nil) -<3'10)

The complex spectrum F̂. (nil) can be written in the form 
of equation (3.2) as:

Fd (nil) = Rd (nil) + j 1̂  (nil) - (3. 11)
and hence the phase spectrum of equation (3.4) can be

written:

± — 1  ̂̂dl)and CDr (nil) = tan -----  - (3. 12)
RD(nil)
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Although direct application of equation (3.6) will give
the required spectrum this method is seldom applied because

2of the large number (N ) of complex multiplications required 
with increasing N. Instead Fast Fourier Transform (FFT) 
algorithms have been developed (COOLEY and TUKEY, 1965) 
which offer drastic reductions by using the fact that many 
multiplications are repetitive. This can result in as few 
as (N/2)logpN multiplications being required (BERGLAND,
1969). For N = 1024 this means a reduction in complex 
multiplications of 204.8 : 1. A large number of computer 
programs to perform the FFT are available. The one used 
here is due to ROBINSON (1978) and is given in Appendix 2 as 
subroutine NLOGN.

3.2.2 ENERGY SPECTRUM

The energy spectrum denoted G(nil) of a signal is given 
by (OTNES and ENOCHSON, 1972):

2T
G (nil) =

N
f d  (nil) n = 0,1,2, . . . , N/2 -(3.13)

The factor of 2 is present in order to render the 
double-sided spectrum single-sided.

3.2.3 THE USE OF THE SPECTRA IN SIGNAL PROCESSING

The energy and phase spectra were computed for the 
averaged waveforms obtained from the individual trials
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subsequent to OAR.* These were then studied in order to 
determine which DFT harmonics were to be subjected to the 
statistical tests described in Chapter 4. In practice, this 
s'election was based on the energy spectrum alone (a typical 
example is given in Figure 3.1) since the phase spectrum 
(Figure 3.2 shows an example) gave no visual clues as to 
'interesting* harmonics. The energy spectrum of the 
averaged waveform, however,showed frequencies of maximum 
energy content.

PGSHAX = .4684E-14 PGST-
STIMULUS

R< dB >
Gr

E -40-
N
E

-60-

- 20-

-60 i

-130 0
• 0.0 384 

35.1
512 H'flONIC 
54.7 F (Hz)

Figure 3.1
The energy spectrum of a 32 trial averaged CNV
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Figure 3.2
The phase spectrum of a 32 trial averaged CNV

After selection of the required harmonics the phase and 
amplitude spectra for each trial for the pre-stimulus 
(pre-S^) and post-stimulus (between end of and start of 
Sg) eras were computed and subjected to the statistical 
tests of Chapter 4. The pre-stimulus era comprised one 
epoch for both 1 and 4 second CNVs. The post-stimulus era 
had one epoch for the 1 second CNV, but consisted of two 
epochs for the 4 second data.

3.3 .FURTHER; SIGNAL PROCESSING TOPICS
3.3.1 SAMPLING AND ALIASING

Sampling is the process of measuring the value of a 
continuous waveform at (usually) equally spaced time 
intervals. This renders a discrete (sampled) representation 
of the underlying continuous signal. The spectrum of a
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sampled signal is a repeated version of that of the 
underlying continuous waveform repeated every 27T/T rads/sec 
(T is the interval between samples), (LYNN, 1982), as shown 
in Figure 3.3.

F  (co)

CO" W M AX COMAX

-TT - £0 m a x w = ' 0 00
Figure 3.3

The repeated spectra of a sampled signal

If (the highest frequency component present in the
signal) exceeds TT/T overlap of the repeated spectrum, a 
phenomena known as aliasing or spectral folding, occurs. 
This is shown in Figure 3.4. As can be seen this is an 
undesirable process (the true spectrum is distorted thus 
giving an erroneous representation). To prevent this 
problem use of an anti-aliasing filter is recommended 
(BELLANGER, 1984), the purpose of which is to ensure that 
the frequency components of the signal at/or greater than a 
threshold value (the folding frequency) are negligible.
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Figure 3.4
Aliasing when spectra of Figure 3.3 overlap;

In practice the anti-aliasing filter is designed to have a 
cut-off frequency below that of the folding frequency. Such 
a filter is given in subroutine FILTER (see Appendix 2).

3.3.2 PICKET FENCE (SCALLOPING) EFFECT

Since the DFT spectrum is also discrete any signal 
component which occurs at a frequency between two adjacent 
DFT harmonics will have its energy shared between these 
harmonics thus distorting them. This phenomenon is known as 
picket-fence or scalloping effect. From this description it 
can be seen that reducing the DFT harmonic separation (i.e., 
incresing the number of harmonics for a given frequency 
range) will reduce the chance that a signal component falls 
between adjacent DFT harmonics. This reduction in harmonic 
separation is achieved by using augmenting zeroes which are
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appended to the end of the data sequence (comprising N 
points). The number of augmenting seroes N* must satisfy two 
conditions:

M(i) N + N-’ - 2  where M is an integer (since the FFT 
algorithm usually needs an integer power of 2 number of data 
points);

(ii) sufficient resolution is achieved, given by 
1/ [ (N+N'-DTj

Those frequency components of the signal which do not 
coincide with the DFT harmonics suffer a loss in gain known 
as scalloping loss (HARRIS, 1978).

3.3.3 LIMITATIONS DUE TO DATA DURATION

Although in principle the previous section indicates 
that any required resolution can be achieved, another limit 
exists which is that of the signal duration, NT. This 
places a fundamental limit on the resolution that can be 
obtained despite the use of augmenting seroes. This 
phenomena is related to time-bandwidth product. This is 
given by HARRIS (1978) as NTB ^ 1/(47T ) where B is the 
bandwidth. Thus the shorter (in time)a signal is the wider 
its bandwidth will be and the greater the likelihood of 
overlapping of adjacent signal components.
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3.4 THE USE OF DATA WINDOWS
3.4.1 SPECTRAL LEAKAGE AND DATA WINDOWS

As has been noted any real signal is of finite 
duration. This is, in effect, the truncation of an infinite 
signal which can be considered equivalent to multiplying, 
or windowing, the infinite signal by a rectangular' pulse, 
or window, of width NT and height unity (Figure 3.5).

Figure 3.5
Sinewave signal whose frequency is a harmonic of 1/(NT)

Since the signal shown there is a simple sinewave possessing 
an integer number of cycles in the interval NT this 
effectively means that no signal truncation has occurred 
(i.e., that the signal is periodic and exists throughout all 
time) and will possess the amplitude spectrum of Figure 3.6.
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Figure 3.6
The amplitude spectrum of the signal of Figure 3.5

Now in practice a number of sinusoids of different 
frequency, amplitude and phase will make up the signal of 
interest, and so it is unlikely that all the components will 
have frequencies such that every one has an integer number 
of cycles within the window. To see the effect of this 
consider a sinewave in which there are a non-integer number 
of cycles in the window, as shown in Figure 3.7.
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Figure 3.7
Sinewave signal whose frequency is not a harmonic of 1/(NT)

In the time domain this situation can be described by:

in which s(i) = the windowed signal 
w(i) = the window function 
x(i) = the true signal 

Now, time domain multiplication of two signals is 
equivalent to convolving the spectra of the two signals in 
the frequency domain and is expressed as (COOLEY et al, 
1969):

s(i) = w(i)x(i) i =1,2, N -(3.14)

N
S(njQ) = - ka)X(kXL)

k=-N
-(3.15)

where: nil = angular frequency of nth harmonic;
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S(nil) = complex DFT component at frequency nil; 
W(nil) = amplitude spectrum of window at nil;
X(kil) = amplitude spectrum of true signal at kfi.

For the case of Figure 3.7 the amplitude spectrum of X 
is given by:

/Aci at k = t n -
X(kil) - \ S k = 0,+1,±2, . . . ,dbN -(3.16)

[0 for all other ^

where Aq is the signal amplitude at frequency+n^il,.

The amplitude spectrum of the rectangular window is 
given by:

nQ.NT
N T . sin (-----)

2 nftNT
W (nil) = ----------------  = N T . Sa (-----) -(3.17)

nflNT 2
( )

2

Where Sa denotes the sampling function. Substitution of 
equations (3.16) and (3.17) into (3.15) gives the amplitude 
spectrum of Figure 3.8.



Figure 3.8
The amplitude spectrum of the signal of Figure 3.7

This shows two overlapping sampling functions centred on 
the two frequency components due to the signal. Each 
sampling function comprises a mainlobe and an infinite
number of sidelobes of decreasing amplitude. Thus instead 
of having two impulses at +n^il spurious peaks have been 
introduced into the spectrum. This is known as spectral
leakage and refers to the fact that energy in the original 
spectral components at k = +n^ leaks to other frequencies
after truncation in time (STARK and TUTEUR, 1979). When a
large number of varying signal components are present it can 
be seen that the true spectrum can become distorted with 
spurious peaks being introduced or true ones being cancelled 
out.
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In order to reduce this distortion it is desirable to 
suppress the large sidelobes and hence reduce leakage. From 
the time domain point of view this is equivalent to reducing 
the discontinuities at each end of the finite time segment 
(OTMES and ENOCHSON, 1972). A variety of windows have been 
developed each of which aim to satisfy a number of criteria 
as to what constitutes a '’good'' window. The general method 
is to multiply the data by a window function which has a 
value of 1 at the mid-data point and which is tapered (hence 
windowing in the time domain is also known as tapering) 
smoothly to zero at each end of the data. Studies of data 
windows have been made (DURRANI and NIGHTINGALE, 1972 and 
HARRIS, 1978). The former studied 3 families of data
windows and the latter investigated 23 such families.

HARRIS op, cit, ,defined and evaluated a number of 
measures on each window: equivalent noise bandwidth (ENBW);
processing gain (PG); scalloping loss (SL); worst case
processing loss (WCPL) and minimum resolution bandwidth
(MRB). ENBW is the width (in the frequency domain) of a
rectangular filter with the same peak power gain and which 
transmits the same amount of noise power as the window. To 
improve harmonic detection the noise signal should be kept 
as small as possible by minimising ENBW. PG is the ratio of 
output signal-to-noise ratio to input signal-to-noise 
ratio. SL is a measure of the loss in gain of a signal 
frequency component falling midway between adjacent DFT 
frequency spectrum harmonics. WCPL (in dB) is the sum of 
maximum SL of a window and processing loss (PL) of a window.
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PL is due to the window having reduced the data to zero at 
or near the window boundaries. MRB is a measure of 
frequency resolution for two adjacent mainlobes of equal 
amplitude. It is defined as the bandwidth when mainlobe 
energy is 6 dB below its peak value (i.e., 0.25 of the 
maximum value).

HARRIS (1978) found the ratio ENBW to 3dB bandwidth was 
a sensitive indicator of overall window performance with a 
value in the range 1.04 to 1.055 indicating good 
performance. He also concluded that maximum dynamic range 
of multitone detection requires the window transform (i.e., 
its frequency domain spectrum) to possess a highly 
concentrated central lobe with very low sidelobe structure. 
Four window families met this requirement of which two had 
minor performance advantages over the others: the
Blackman-Harris and Kaiser-Bessel windows. Of these the 
Kaiser-Bessel window was recommended on the grounds of ease 
of computation of coefficients and simple trade-off between 
mainlobe width and sidelobe levels by varying a single 
parameter, OC .

In light of the work of NICHOLS (1982) where a 12.5% 
taper was applied to each end of a Tukey window prior to 
signal processing it was decided to compare this window with 
the Kaiser-Bessel window.



3.4.2 THE TUKEY WINDOW

This is in fact a family of windows in which the amount 
of taper varies with a parameter (X . This is the ratio of 
total tapered length (i.e., the tapers at both ends of the 
data) to the data length.

For a data sequence of N points, with total taper , 
the window function in discrete time, is given by:

N
TT ( i ~ <* ~)

( 2 N
0.5[l+cos{--------------}] . 0 N< i 4 C< -

N 2
( -)

2
N

w(i) = < 1 a<*-4 i< (1 - -)N -(3. 18) 
2 2

a

0. 5 [ l+cos{-
TT(i-[ 1 - -]N) 

2
N

< »  ->
2

}] (1- -)N < i «N
2

This was implemented in subroutine TAPER2 (see Appendix 
2) taken from NICHOLS, 1982) with a value of CX = 0.25 (i.e., 
12.5% taper at each end of the data).

3.4.3 THE KAISER-BESSEL WINDOW

The Kaiser-Bessel family of windows are given by 
(HARRIS, 1978):



This expression is for a window even about the origin
(i.e., an odd number of points). To convert to an even
number of points sequence the right end point is discarded
and the sequence right shifted so that the left most point
coincides with the origin. I is the sero-order modifiedo
Bessel function of the first kind given by:

(x/2)k 9
I (x) = Z_ [-----] -(3.20)

k=0 kl

The above was implemented using the FORTRAN subroutines
TAPKAI, KAIGEN and SFJFACT and function program unit BSSL. *
These have been modified to improve computational 
efficiency. In practice an upper limit of k = 32 in the
summation of equation (3.20) is adequate since values of 
k>33 produce very small changes in In>

* Program units KAIGEN and BSSL are based on a program 
written by Paul Bassingdale.
3.4.4 PROBLEMS WITH WINDOWING

The use of the above windows suffers from a
disadvantage: the introduction of a spurious d.c. level due 
to the windowing process itself. This problem can be



corrected for by the use of a data transformation which
accompanies the windowing.

To see how this spurious d.c. level arises consider a
data sequence and a window function given by the sequence
w^. Denote the means of the respective sequences by ju and
ju and define ju as the mean of the windowed data. Further J w r xw
denote and w^ as the sequences obtained by subtracting
the means iu and u from x. and w.' x / w i i

1 N N
î xw = = tlX Cxi+/Jx] [wi+/ V  -(3.21)1=1 1=1

1 N= + ^ XPW -(3.22)1 — i

Now consider a general window comprising three 
sections: two symmetrical tapers (at either end of the data) 
and a central constant region, i.e.,

i — 1 i • • • > N rp
w± = ;i i=NT+l,...,N-Nt -(3.23)

i=N-NT+l,...,N

where is the length of the taper, Y .. is the lower end of 
the window taper and Y^y the upper end of the taper.
However this is required in terms of w'^, i.e.,

yiL = w'i + i=l,....HT
1 = w'i + i=NT+l,...,N-Nt -(3.24)

yi0 = w 'i + i=N-NT+l, . . . ,H
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which can be rearranged to:

w  .i =
iL Pw

Pw
^iU Pw

i — 1, . . . , N fp 
i=NT+l,...,N-Nt 
i=N-NT+l,...,N

-(3.25)

Then: w „ „1 v T 1 T 1
î xw = s £ - xiyiL + N.^r . ,xi + H„ fr-, .xiyi(J + ^ ws 2 ^ xi +1 =  1 ‘  " “

N-N, N
i—Nrp+1 *n-n t+i

NET=1
+ IJx>Jw

Since OAR requires that the d.c. levels be removed (Chapter 
2) jj = 0 and so the last term of this equation vanishes as 
does the fourth term. This gives:

z1xw
1 n t
N-X.1=1

N-N, N
x: y - T + i iL ,+ 1 4- _ xiyiU} ~(3.26)i=N-NT+l

Now the expression in brackets in equation (3.26) will
no longer be sero since each end of the data has been
tapered. Thus, in general, u  ̂0./ xw

This effect is shown in Figure 3.9
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Figure 3.9
Energy spectrum showing the introduction of a do level due

to windowing

The data used to give this spectrum had its mean level 
removed prior to windowing but, as can be seen, a new d.c. 
level has been introduced. Figure 3.10 shows the energy 
spectrum when the d.c. level present, due to windowing, is 
removed. Although the 0 Hz component is removed a 
substantial (and undesirable) increase in sidelobe structure 
occurs.
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Figure 3.10
Energy spectrum when the dc level due to windowing is 

subtracted from the windowed data

To overcome this JERVIS et al (Submitted for publication) 
proposed the following mean level correction:

s. = w i(x^ - k x)k2 -(3.27)

where: = the transformed data sequence
w = the window sequence

= the original data sequence with its mean 
removed

= a correction constant to compensate for the 
d.c. level introduced due to windowing 

kg = a correction constant to restore the energy 
content of to the value of the pre-windowed 

data (it will have been reduced due to
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and:
•tapering)

N
x iw i

N
-(3.28)

i=l
w .1

N
N

-(3.29)

i=l
w.i

Use of such a correction gave Figure 3.11 where the d.c. 
level and the sidelobe effects have been removed.

0i PRESTIMULUS

- 2 2 -

-60

-100 512 H'MONIC256
Figure 3.11

128

Energy spectrum when the transformation of equation (3.27)
is used

3.5 INVESTIGATION OF SIGNAL PROCESSING CONCEPTS

To test a number of the above ideas an investigation of 
both real and simulated (test) data was carried out. The
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aims were to: compare the Tukey and Kaiser-Bessel windows
and to observe the practical effects of spectral leakage.

3.5.1 TEST DATA
3.5.1.1 DESCRIPTION OF THE TEST DATA

The test data comprised two superimposed sinusoidal 
signals close in frequency and of large amplitude 
difference. Two simulated data sequences were generated: 
one a short duration signal comprising 64 points (to which 
960 augmenting seroes were added) the other a 1024 point 
data sequence. Each sequence had two representations: one
where both signals contained an integer number of cycles 
(the 'transparent'" sequence), the second where the larger 
amplitude sinewave was adjusted in frequency so that it no 
longer contained an integer number of cycles (the '"opaque'’ 
sequence). Thus in what follows reference is made to 64 and 
1024 point transparent and opaque data.

3.5.1.2 APPLICATION AND RESULTS

The test data was studied in two stages: the first used 
64 point transparent and opaque data (with 960 augmenting 
seroes) while the second used 1024 point data (with no 
augmenti ng seroes).

The 64 point (representing 0.512 msec) transparent data 
comprised two sinusoids of frequencies 7.8125 Hs (for the 
larger amplitude signal) and 9.765625 Hs (for the smaller
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amplitude signal). These frequencies were integer multiples 
of 1/(NT) = 1.953125 Hs. The two signals had an energy 
difference of 20dB (a factor of xlO). Figure 3.12 shows the 
spectrum of the transparent sequence after windowing with a 
rectangular window followed by the addition of 960 
augmenting zeroes.

01
POST- ST IMULUSPOSMAX = .2447E- 13

-20- i

-60i

-1 0 0 512 H'riONIC25S23.41287.80.0

Figure 3.12
Energy spectrum for two sinewaves each harmonically related 

to 1/(NT) obtained using a rectangular window. 64 data
points, 1024 point FFT.

Even with transparent data the sidelobe structure masks the 
presence of the smaller frequency component. The larger 
sinewave was now adjusted in frequency to no longer have an 
integer number of cycles in the data's duration. The use of 
a rectangular window gave Figure 3.13.
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Figure 3.13
Energy spectrum for two sinewaves not harmonically related 

to 1/(NT) obtained using a rectangular window. 64 data
points, 1024 point FFT.

Again there is no indication of the second peak due to the 
sidelobe structure. A Tukey window with 12.5% taper at each 
end of the window ((X = 0.25) was applied to give Figure 
3. 14.
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Figure 3.14
Energy spectrum for two sinewaves obtained using a Tukey 

window with a 12.5% taper. 64 data points, 1024 point FFT.

Although the sidelobes are reduced the second peak cannot be 
seen. Three examples of the Kaiser-Bessel window with - 

0.5, 0.75 and 1.0 were used to give Figures 3.15,3.16 and 
3.17. It is seen that for this data careful selection of QC 
is necessary to obtain the best result from the trade-off 
between decreasing sidelobe level and increasing mainlobe 
width (hence resolution) whilst increasing OC. . Here &  - 

0.75 or 1.0 picks out the second peak. The value of 0.75 is 
to be preferred because of the smaller mainlobe width.
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Figure 3.15
Energy spectrum for two sinewaves obtained using a 

Kaiser-Bessel window with =0.5. 64 data points, 1024
point FFT.
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Figure 3.16
Energy spectrum for two sinewaves obtained using a 

Kaiser-Bessel window with 0C = 0.75. 64 data points, 1024
point FFT.
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Figure 3.17
Energy spectrum for two sinewaves obtained using a

Kaiser-Bessel window with 0^ = 1.0. 64 data points, 1024
\

point FFT.

Having seen the effect of three different windows the 
discussion of the signal duration limitations will be 
illustrated. This was done by performing the above 
operations once again but now using a data sequence of 1024 
points (no' augmenting zeroes) representing 10 seconds 
duration. In addition the larger amplitude sinewave was 
made 40dB greater than the second signal (a factor of xlOO).

The transparent representation of the data used signal 
frequencies of 10 Hz and 12 Hz (the fundamental frequency was 
1/(NT) = 0 . 1  Hz). The spectrum resulting from a rectangular 
window is shown in Figure 3.18. The two components are 
clearly seen.
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Figure 3.18
Energy spectrum for two sinewaves each harmonically related 

to 1/(NT) obtained using a rectangular window. 1024 data
points

The second peak disappears in the sidelobe structure when 
the opaque data sequence's spectrum is obtained (Figure 
3.19).
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Figure 3.19
Energy spectrum for two sinewaves not harmonically related 
to 1/(NT) obtained using a rectangular window. 1024 data

points

Applying a Tukey window with 0C = 0.25 reveals the second 
peak again (Figure 3.20).
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Figure 3.20
Energy spectrum for two sinewaves obtained using a Tukey 

window with a 12.5% taper. 1024 data points

Figures 3.21,3.22,3.23 and 3.24 show the spectra obtained 
using Kaiser-Bessel windows in which 0C= 0.5, 0.75, 1.0 and 
2.0. As for the 64 data point sequence the mainlobe width 
increases and the sidelobe levels decrease with increasing 
C*.
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Figure 3.21
Energy spectrum for two sinewaves obtained using a 
Kaiser-Bessel window with (X = 0.5. 1024 data points
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Figure 3.22
Energy spectrum for two sinewaves obtained using a 

Kaiser-Bessel window with (X = 0.75. 1024 data points
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Figure 3.23
Energy spectrum for two sinewaves obtained using a 
Kaiser-Bessel window with (X = 1.0. 1024 data points
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Figure 3.24
Energy spectrum for two sinewaves obtained using a 
Kaiser-Bessel window with OC = 2.0. 1024 data points
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The value of cc = 0.5 only just shows the second peak's 
presence. With CX =0.75 an improvement is discerned and 
when <X = 1.0 the second peak can be positively identified. 
The clearest disclosure of this peak comes with (X - 2.0. The 
best display of the second peak comes with the Tukey and 
Kaiser-Bessel windows (when the latter has ex. = 1.0 or 2.0). 
Although comparable the Kaiser-Bessel window is to be 
preferred since the two signals show smaller sidelobe 
structures (and hence have better discrimination between 
close peaks).

3. 5. 1.3 DISCUSSION OF TEST DATA RESULTS

The above results for the 1024 point data have shown 
that the Kaiser-Bessel window gives improved performance 
when compared to the Tukey window. The results for the 64 
point data sequence have demonstrated the problems arising 
due to the use of short epochs of data. The 64 point data 
was also a testing ground for applications to the real data 
processing to be used on 1 second CNVs, from which it was 
determined that a value of ot = 0.75 should be used in the 
Kaiser-Bessel window. In addition investigations were 
carried out on 216 point data to simulate the 4 second CNV 
processing. From this a value of C< = 1.25 was chosen for 
use with the 4 second data.
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3.5.2 REAL DATA

In order to test the suggested processing procedure 
derived from the test data it was decided to investigate the 
effects when a Tukey window (with 12.5% taper at each end of 
the data) and a Kaiser-Bessel window (with C< - 0.75) were 
applied to 1 second CNV data. The data which was to be 
subject to windowing was that of the averaged waveforms 
(after each individual trial had been subject to 
non-recursive OAR without response modelling). The data 
transformation of equation (3.27) was used.

3.5.2.1 DESCRIPTION OF DATA

The data studied here comprised EEC records of 1024 
points sampled at 125Hs (i.e., 8.192 second duration). Each 
record (trial) contained a 1 second ISI CNV. All the trials 
were then averaged and two epochs of the averaged EEC were 
studied (each of 64 point duration). The first segment 
immediately preceded S^ while the second segment immediately 
preceded S9.

3.5.2.2 RESULTS

Figures 3.25 and 3.26 show, respectively, the energy 
spectra of 32 trial averaged waveforms (where low pass 
filtering has been performed) for data which has had Tukey 
and Kaiser-Bessel data tapering.
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Figure 3.25
spectrum of a 32 trial averaged CNV using a Tukey 

window with 12.5% taper.
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Figure 3.26
Energy spectrum of a 32 trial averaged CNV obtained using a 

Kaiser-Bessel window with OC = 0. 75

Both show a low frequency peak and most of the energy

difficult to discern any major or consistent differences 
between the two figures. It is observed, however, that for
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is in the region up to harmonic 128. In general it is
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high frequencies the KB sidelobe structure is higher than 
that of the Tukey windowed data (a result consistent with 
observations on the test data).

3.5.2.3 DISCUSSION OF REAL DATA RESULTS

The results when applying the Tukey and Kaiser-Bessel 
windows to real data proved inconclusive. This is not 
surprising since the true spectrum is unknown and on the 
basis of a simple visual analysis it would be difficult to 
obtain significant findings when considering short data 
epochs. However, on the basis of the results of Section
3 .5.1 it is felt that the best choice is to use the 
Kaiser-Bessel window with OC = 0.75 (for 1 second CM Vs) or CX 
= 1.25 (for 4 second CNVs).

3.6 CONCLUDING REMARKS

A variety of signal processing topics have been 
discussed in this chapter a number of which have been 
investigated practically. It has been seen that windowing 
of data is desirable in order to reduce spectral leakage, 
that such windowing should be accompanied by a data 
transformation given in equation (3.27). A comparison of 
Tukey and Kaiser-Bessel windows was made on '"short'1 and 
"long'1 duration test data. Here it was seen, for the "long" 
duration data, that the Kaiser-Bessel window gave better 
performance. When applied to the "short" duration data a 
marginally better performance of the Kaiser-Bessel window,
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as compared to the Tukey window, was observed. Since the 
"short" duration test data had been chosen to be of the same 
length as the real data to which it was to be applied, the 
value of OC for the Kaiser-Bessel window which gave best 
performance was chosen to be used when processing real data. 
An example of application of both windows to real data was 
given. On the basis of the contents of this chapter it was 
decided to use the following processing steps:

(i) window the data and append augmenting zeroes;
(ii) use the Kaiser-Bessel window with C* = 0.75 for 1 

second CNVs and <X = 1.25 for 4 second CNVs;
(iii) use the mean level correction of equation (3.27)

In investigating the CNVs the computation of energy and 
phase spectra were based upon data lengths of 64 points (1
second ISI) and 216 points (4 second ISI). S. and Ŝ  were
delivered at points 407 and 532 (1 second ISI) and points
219 and 719 (4 second ISI). For the 1 second CNV the
pre-stimulus data started at point 342 while the 
post-stimulus segment commenced at point 432. For the 4 
second CNVs the pre-stimulus era began at point 22 and the 
post-stimulus epochs started at points 284 and 490.
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4 STATISTICAL METHODS
4.1 CHAPTER OUTLINE

This chapter describes the statistical tests and 
methods used in analysing the data produced by application 
of the signal processing methods of Chapters 2 and 3. The 
results themselves are presented in Chapter 5.

Section 4.2 gives brief details of the statistical 
tests applied to the amplitude and phase spectra of each 
segment of the EEC data subsequent to OAR. Section 4.3 
discusses Discriminant Analysis (DA) while Section 4.4 
covers Predictive Statistical Diagnosis (PrSD). Section 4.5 
describes how the above techniques were implemented and 
Section 4.6 concludes the chapter by indicating how the 
results so generated were to be interpreted.

4.2 STATISTICAL TESTS

Four tests were applied to the spectra (two to the 
amplitude spectrum, two to the phase spectrum). These tests 
were applied by NICHOLS (1982) and JERVIS et al (1983 and 
1984) to AEPs and CNVs in an investigation of additive and 
ordering effects in EEC responses. This involved testing 
harmonics of the amplitude spectrum of the response (AEP or 
CNV) for an increased amplitude in the direction of the 
preferred phase angle (the Nearest and Furthest Mean 
Amplitude Test) and for an increased amplitude in the 
harmonics of the response compared with those of the
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pre-st imu lias EEG (Pre- and Post- Stimulus Mean Amplitude 
Differences Test). The harmonics of the phase spectrum were 
tested for phase ordering' by the Rayleig'h Test of Circular 
Variance and the Modified Rayleig'h Test of Circular 
Variance. Full details of the tests are g'iven in NICHOLS 
(1982) and JERVIS et al (1983).

4.2.1 NEAREST AND FURTHEST MEAN AMPLITUDE TEST

This test investig'ates the variation of amplitude with
phase ang'le of a particular post-stimulus harmonic. The
mean length of that half of the vectors whose phase angles
lay within the smallest arc was calculated as was that of
the remaining vectors. A one-tailed t test (with a
correction for the possibility of unequal variances) was
then performed to determine whether the former mean value 
was greater than the latter.

4.2.2 PRE- AND POST-STIMULUS MEAN AMPLITUDE DIFFERENCES 
TEST

In this test the mean of differences between pre- and 
post-stimulus amplitudes for a given harmonic were
calculated. A two-tailed t test was then applied, with a
correction for possible unequal variances.
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4.2.3 RAYLEIGH TEST OF CIRCULAR VARIANCE

This "test is used to determine whether a set of phase 
angles are distributed in a non-uniform manner. Consider a 
set of N phase angles 0^. The circular variance is computed 
as:

S = 1 - R -(4.1)o

where:

6 - 2  -  2C * + S ^ - (4.2)

1 '  Nand C = j-j cos - (4.3)
i=l

1 NS = i I ]  sin 9. - (4.4)
i=l

The standard test is usually applied to the statistic
R. For uniformly distributed phase angles SQ = 1 (R = 0)
while a set of identical angles has S = 0 (R = 1).o
Tabulated values of SQ are given in NICHOLS (1982)/

4.2.4 MODIFIED RAYLEIGH TEST OF CIRCULAR VARIANCE

This test aims to take both the amplitude and phase 
angle into account. The statistic, U , is computed after 
ranking of the vectors by magnitude. If there are N phase 

angles 0^, UQ is given by:
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.cosO.
i=l

i

The significance levels for U are obtained from thoseo
%■of the test statistic R by:

Tabulated values of U are given in NICHOLS (1982).o

4.3 DISCRIMINANT ANALYSIS

In this work the use of DA is an intermediate step (as 
implemented in the Statistical Analysis System (SAS) 
package) towards using PrSD. It can also be used as a 
diagnostic method in its own right (COOPER and WEEKES, 1983) 
and as such was used to give results for comparison with 
those of PrSD in Chapter 5.

An introduction to DA is given in Chapter 12 of COOPER 
and WEEKES (1983) with a more advanced treatment of the 
linear discriminant function in Chapter 6 of MORRISON
(1976). DA was effected using the SAS package and details 
of the appropriate procedures used will be given in Section 
4. 5.
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DA is concerned with distinguishing' between two (or 
more) groups of individuals on the basis of a common set of 
variable values for each of the individuals in each group, 
i.e., it determines how well the groups can be discriminated 
by the statistical data itself. Of course, the ability to 
allocate individuals of known groups into those groups is , 
in its own right, not very useful. However, DA offers a 
method of classifying individuals of unknown group (type) 
into one amongst two (or more) known groups. This method 
requires that DA is applied to those individuals of known 
classification to yield a set of measures. Against these the 
variable values of any individual of unknown type can be 
compared to determine into which group the individual should 
be classified. As a check on the effectiveness of the DA it 
can be applied to the individuals of known classification to 
see if any misclassification arises (the assignment of an 
individual of known type to the wrong group). The fewer the 
number of misclassifications the better the discrimination. 
Since the work described in this thesis refers to data 
comprising two known types further discussion of DA shall 
consider two groups but, in general, the method can be 
applied to more than two types.

DA uses the data obtained for the two known groups to 
determine a boundary which '"best'1 divides the two groups of 
data. This boundary can be expressed mathematically as a 
discriminant function. If a straight line boundary is 
considered (curved boundaries are possible) then it is
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specified by the linear discriminant- function, which, for a 
p-dimensional multivariate data set, takes the general form:

f(X) = a 1X 1 + a0X0 + ... + a X + c -(4.7)1 1 2  2 p p

where X., . .. , X are the p variables and a., ..., a and c1 P 1 P
are computed from the data. Substitution of values of X^,
..., Xp for a particular individual yields a value of the 
function in equation (4.7) known as the discriminant score.

The criteria for 9 best*’ discriminant boundary and hence
discriminant function can now be given. The values of a^,
... , a are chosen so as to minimise the variance of the P
discriminant scores for each group while maximising the 
difference between the average discriminant scores of the 
two groups. The 9o 9 in equation (4.7) is selected to cause 
the discriminant boundary to pass through the mid-group 
centroid (the point midway between the centroids of the two 
groups).

Once the discriminant function has been determined the 
test data (the data of individuals of known type is called 
the calibration data set) can be substituted in the function 
to yield discriminant scores for this data. These then 
indicate to which of the known types the unknown individual 
belongs according to the statistical data.

DA as implemented in SAS does not give values of the 
discriminant scores but computes two values of probability
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(the sum of which is unity) which show the probability of 
belonging to one or other group.

Prior to the use of DA stepwise discriminant analysis 
was performed (again using a SAS procedure) to select a 
reduced number of the 56 variables available for each 
subject (14 harmonics x 4 test statistics). In fact 98 
variables were produced, but 42 of these were not of 
interest as they were for the pre-stimulus data only. The 
aim of this was to identify those variables which best 
discriminated between the data for the two known groups.

4.4 PREDICTIVE STATISTICAL DIAGNOSIS

PrSD is concerned with assessing to which of a given 
set of possible types, t, an individual (or case) belongs on 
the basis of a vector X of observations on that individual. 
This assessment is most conveniently expressed as 
probabilities or • plausibilities of the possible types 
(AITCHISON et al, 1977; JERVIS et al, 1985). As with DA, 
PrSD uses a calibration data set of observations on 
individuals of known type to compute certain values which 
are used together with the test data to classify the latter 
into types.

In addition it is recommended that an index of 
atypicality is computed for each type. Such indices provide 
a check on the computed probabilities. High values for all 
indices or for the index associated with the highest
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probability may indicate the individual is of an unknown 
type not included in the calibration set.

Let p(X(t,Q) be the probability density function of X
for a given type t with parameter vector 0. p(t) is the

1 1
incidence rate (the probability of being type t. from

1

previous results) and p(t|X,G) is the probability that a 
case with observation vector X is assigned to type t. Then 
using Bayes' theorem:

P ( t ).p(X|t,G)
P<t|X,G) =  3------- *--- -(4.8)

1 p(X)

but p(X) has a total probability expression given by: 

t=tn
P(X) P(Xlt,G)p(t) -(4.9)

t=t]^

and so equation (4.8) becomes:

P(t)p(X|t,G)

P (11X, G ) = -(4.10)
Xp(t)p(X|t, G)
t=ti

Usually 0 is unknown, but the calibration data set (Z) 
is and p(X|t,G) can be replaced by q(X|t,Z.) (AITCHISON et 
al, 1977) and so equation (4.10) becomes:
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P(t)q(X|t, Z)
P(tIX,0) -(4.11)

where:

q(X|t,z) P(X|tJ0)p(0|Z)d9 (4.12)0

Equation (4.12) is known as the predictive density
function for a "future" observation X on a case of type t
assessed on the calibration data Z (AITCHISON et al, 1977).
This may take a variety of forms (AITCHISON and DUNSMORE,
1975) but for the situation here AITCHISON et al (1977)
replace the right hand side of equation (4.12) by:

q(X_|t,Z_) = Std( vt,mt, {l+l/nt}St) -(4.13)

where: there are nt individuals of type t with observation 
vectors X]_,X2, ... 'Xn^7 vt the number of degrees of
freedom (= nt-l); mt is the matrix of means and St is the
covariance matrix. Std denotes a d-dimensional student-
type density function defined by:

Std (v,b,e) =
r[0.5(v+i)] 1

TTd / 2 . r [ 0. 5 (v-d+1) ]. 1 vc | 1 /2 [l+(X-b)T(vc) 1(X-b)] (v+D/2

-(4.14)

where P  is the garnma function (see e.g. STEPHENSON, 1978). 
Thus using equations (4.14), (4.13) and (4.11) the required
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values of p(t|X,9) can be computed for the individuals of 
known type. To compute the probabilities for the test data 
equation (4.14) uses the observation vector X for the 
individual of unknown type but retains the mean and 
covariance matrices for the known type.

The atypicality index for type t is given by AITCHISON
et al (1977):

1 1 wt<x)A(t) ~B {sd, £(n.-d} ; -§-----  } - (4.15)
wt(X)+(nt-l)/nt 

where: wt(X) = (X - mi_)T Ŝ. 1(X - fflt)

and JB denotes the incomplete Beta function computed 
according to the algorithm of MAJUMBER and BHATTACHAHJEE 
(1973).

In applying this technique the variables selected for 
diagnosis are assumed to have normal distributions and so 
prior to their inclusion this assumption was tested.

4.5 IMPLEMENTATION OF STATISTICAL METHODS

This section describes the implementation of both DA 
and PrSD. The work was performed using FORTRAN programs and 
the SAS (Statistical Analysis System) package on an IBM 4341 
mainframe computer with a VM/CMS operating system. Four
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steps were involved: (i) the selection of the FFT harmonics 
for investigation; <ii) the compilation of test statistics 
from the values of the amplitude and phases for these
harmonics; (iii) the use of various SAS procedures to select 
variables for analysis from the above information, (to 
produce summary data on these variables and to carry out 
DA); and (iv) the application of PrSD using the variables 
(of calibration and test data sets) and summary data (of the 
calibration data set only).

The following definitions are used: each test statistic 
for any FFT harmonic is called a variable, while the 
complete set of variable values for a subject is known as an 
observation; the observations on individuals of known type 
comprises the calibration data set and the test data set is 
made up of the observations of the individuals of unknown 
type.

The selection of the FFT harmonics for processing was 
made on the basis of the energy spectrum plots of the 
averaged waveforms (Chapter 3). Scrutiny of the phase 
spectrum plots gave no useful indicators as to harmonic 
selection. The energy spectrum for each subject of the two 
known groups (8 normal and 8 Huntington'’s Chorea subjects) 
were produced using the recommended processing options given 
in Chapters 2 and 3, vis., removal of the mean of the data 
of each trial from the data prior to application of 
non-recursive OAR (without response modelling) followed by 
use of the FFT with a Kaiser-Bessel window (PC = 0.75 for
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1 second ISI CNV and CX = 1.25 for 4 second ISI CNVs) which
was accompanied by the data transformation described in 
Chapter 3. The resulting energy spectra for each of the 14 
subjects were then studied to determine the harmonic numbers 
corresponding to peak and second largest magnitude (i.e. 2 values 
for each subject) for : the pre-stimulus era (1 and 4 second 
CNVs), the post-stimulus era (1 second CNVs) and for two 
segments of the post-stimulus era (4 second CNVs). This gave 
rise to 140 values (2 harmonics x 14 subjects x 5 separate 
eras). The aim was to represent this information with the 
minimum number of harmonics by looking for that sub-set of 
harmonics which included as many of the observed values as 
possible and as a result 14 were chosen (harmonic numbers 4, 
6, 8, 12, 16, 20, 24, 28, 32, 48, 64, 80, 96 and 112). The
chosen harmonics have been adjusted to bring them into line
with the nearest harmonic number which was a multiple of 4, 
apart from harmonic 6 (due to the large number of peak 
magnitude harmonics occurring here).

These selected harmonics were then subjected to the 
statistical tests described in Section 4.2 to produce the 
required test statistics. These test statistics were then 
processed by a number of SAS procedures in order to select a 
suitable sub-set of the 56 variables. This was necessary for 
three reasons: (i) to keep computational processing within
manageable limits, (ii) to generate the necessary summary 
statistics needed for PrSD, and (iii) to ensure differences
in the observed distributions between normal and
Huntington's Chorea subjects since, as AITCHISON et al
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(1977) note, the distribution of observation vectors must 
differ from type to type if statistical diagnosis is to be 
useful.

To select those variables which showed different 
distributions between the two types SAS procedure TTEST (SAS 
1982a) was applied to all variables. This produced an 
F-statistic and two t-statistics (one for the case of equal 
variances, one for unequal variances), computed by comparing 
the HC and normal observations. These statistics were used 
to select the variables with significant differences 
(between HC and normal groups) of either variance (5% 
significance level for the F-statistic) and/or mean (10% 
significance level for the t-statistic). To check whether 
the selected variables were normally distributed within the 
two separate groups SAS procedure UNIVARIATE (SAS, 1982a) 
was used. This provided two measures as to normality of the 
distribution or otherwise: the Shapiro-Wilk statistic, W
(SHAPIRO and WILK, 1965) and a normal probability plot. W 
takes the values 0 < W < 1 with small values of W leading to 
rejection of the null hypothesis that the data are a random 
sample from the normal distribution. The normal probability 
plot comprises a graph on which the data are plotted 
together with a line indicating where data from a normal 
distribution should fall. Deviation between this line and 
plotted data indicates that the data are not normally 
distributed. Any variables which were found to be 
non-normally distributed were discarded.
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The .selected variables were then used in SAS procedure 
STEPDISC (SAS, 1982b). This performed stepwise discriminant 
analysis in order to identify that subset of these variables 
which gave best discrimination between HC and normal types. 
Between 8 and 18 variables were submitted to STEPDISC of 
which from 1 to 3 were selected by the procedure.

The variables selected by STEPDISC were then processed 
by the SAS procedure DISCRIM which performs DA as described 
in Section 4.3. The data supplied to this procedure
comprised a calibration data set (the normal and HC 
subjects) and a test data set (the dementia and at risk 
subjects). DISCRIM computed the probabilities of being
normal and HC (p(N) and p(HC) respectively) for each subject
where p(N) + p(HC) = 1. For each of the two known subject
groups the covariance matrix of the variables and also (for 
each variable) the means of each type were calculated for 
use in PrSD. The results of DA are given in Chapter 5.

PrSD computations were performed by a set of FORTRAN 
programs written for these tasks (see program DISC in 
Appendix A2). All the data required by the programs was 
entered into disc files to allow easy verification and avoid 
data entry errors, each file being read as required by the 
programs. The computational sequence is now described.

First, the software reads various data items: the
number of variables (the "dimension” of student-type density 
function of equation (4.13)), the total number of subjects
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(i.e., of both known and unknown types), the number of 
subjects in each of the HC and normal subject groups, the 
prior probability of being normal (the p(t) of equations 
(4. 9) , (4. 10) and (4. 11) - assumed to be 0.5 since only two 
possible types are being considered, i.e., HC or normal) and 
(for each of the two types) the mean of each of the selected 
variables (the m^s of equations (4.13) and (4.15)). The 
following steps were then performed twice (once for each 
known type): the values of the elements of the covariance 
matrix were read; the items [v̂ _( 1+1/n^.)S]  ̂ and 
Ivt (l+l/nt )S| were computed by means of a matrix inversion 
subroutine, MINV, from the IBM SSP (Scientific Subroutine 
Package) library. Then for every subject (taken one at a
time) the observation vector (i.e., the value of each
variable for that subject) was read in by the software and 
the density function of equation (4.10) was computed (the 
FORTRAN intrinsic function GAMMA was used to calculate the 
values of the gamma function in equation (4.14)). The
atypicality indices of being normal or HC (A(N) and A(HC) 
respectively) were computed by a program unit using the 
algorithm of MAJUMDER and BHATTACHARJEE (1973) which
calculated the incomplete beta function. This was the final 
step in the computational process, the results of which are 
given in Chapter 5.



4.6 INTERPRETATION OF RESULTS OF DISCRIMINANT ANALYSIS AND 
PREDICTIVE STATISTICAL DIAGNOSIS
4.6.1 DISCRIMINANT ANALYSIS RESULTS

As has been described the DA technique as implemented 
in SAS produces two non-independent probabilities p(N) and 
p(HC) for each subject. Since p(N) + p(HC) = 1 it is only 
necessary to consider one of the values (the other being 
easily obtained from the above expression). Since the PrSD 
technique as implemented in Section 4.5 produces a value for 
p(N) this is the probability which will be considered in DA 
results.

In addition to the value of p(N) SAS indicates (for the 
subjects of known type) whether a subject has been

ftmisclassified by the DA procedure. Thus when comparing 
results from different experimental conditions (e.g., 1
second and 4 second CNVs) the condition which gives fewer 
misclassifications of subjects of known type can be 
considered to give the better discrimination (COOPER and 
WEEKES, 1983). Since the closer the value of p(N) to 1 the 
more likely it is to belong to type normal and the closer 
the value of p(N) to 0 the more likely it is to belong to 
type Huntington's Chorea this also provides a means of 
checking the DA results. Turning to the classification of 
the subjects of unknown type it is apparent that they will 
be classified as normal if p(N) > 0.5 or Huntington's Chorea 
if p(N) < 0.5.

indicated on SAS printouts by an asterisk. 
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One possible assessment of a value of p(N) is proposed 
here : determine the smallest value of p(N) for the known 
normal subjects (p(N^j^|N)) and the largest value of p(N) 
for the known HC subjects (p(N^jr |HC)), if for an AR or 
dementia subject p(N) > '■ P ( ^  |N) assign to type normal or 
if assign to type HC, else assign to
unclassified type.

4.6.2 PREDICTIVE STATISTICAL DIAGNOSIS RESULTS

PrSD produces three values for each subject: p(N),
A(N) and A(HC). When comparing between experimental 
conditions the assessment of which condition provides better 
discrimination can use the number of misclassifications 
criteria given for DA (see page 136).

Analysis of the results for a particular experimental 
condition are no longer simple above/below threshold 
comparisons since the atypicality indices have a role to 
play. These indices are a check against including a subject 
in a type on the basis of p(N) while in fact belonging to a 
type not included in the calibration data set e.g., a value 
of p(N) = 0.98 for a subject of unknown type would suggest 
membership of the normal subject group, however, a large 
value of A(N) = 0.95 might suggest that this subject is not 
typical of that group.

A ‘guide to classification of individuals using the 
atypicality indices can be inferred from Section 11.4 of
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AITCHISON and DUNSMOEE (1975). The method consists of 
determining the maximum values of A(N) from the normal group 
and of A(HC) from the HC group. The atypicality indices of 
the test data subjects can then be compared to the maximum 
values of A(N) and A(HC) of the calibration set to determine 
to which of the two groups membership is indicated or
whether membership of a group outside the two given groups
is more likely (see Section 5.2.3.1 for details). Thus when 
classifying subjects from the test data set it is not 
sufficient to consider the atypicality indices on their own, 
they must be used in conjunction with the known values of 
A(N) and A(HC) of the calibration data set subjects.
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5 RESULTS OF PREDICTIVE STATISTICAL DIAGNOSIS AND DISCRIMI
NANT ANALYSIS

5.1 CHAPTER OUTLINE

The results discussed in this chapter are those ob
tained when predictive statistical diagnosis (PrSD) and 
discriminant analysis (DA) were applied to the data, 
obtained using the signal processing techniques of Chapters 
2 and 3, and the statistical techniques described in Chapter 
4. Thus prior to the application of DA or PrSD the data had 
been prepared as follows:

(i) the mean level of the data of each trial was 
subtracted from the data for that trial;

(ii) OAR was applied using the non-recursive method 
without response modelling;

(iii) the energy and phase spectra were obtained using 
a Kaiser-Bessel window (with CX = 0.75 for 1 second CNVs and 
C* = 1.25 for 4 second CNVs);

(iv) the statistical tests of Section 4.2 had been used 
to generate the test statistics for each of the given 
harmonics;

(v) the resulting test statistic variables had been 
reduced in number by selecting those which were normally 
distributed and gave best discrimination between normal and 
Huntington's Chorea subject groups (Section 4.5).
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5.2 RESULTS
5.2.1 INTERMEDIATE RESULTS IN IMPLEMENTING PREDICTIVE 

STATISTICAL DIAGNOSIS AND DISCRIMINANT ANALYSIS 
The relationship between the FFT harmonics selected, 

the statistical tests (of Section 4.2) and the SAS variables 
are given in Table 5.1

TABLE 5.1
CORRESPONDENCE BETWEEN HARMONIC NUMBER, STATISTICAL TEST AND

SAS VARIABLE NUMBER
Harmonic
Number

Nearest & 
Furthest 
Mean 

Amplitude 
Test

Pre- and Post- 
St imu lus Mean 
Arnplitude 
Difference 

Test

Rayleigh 
Test of 
C i rcu1ar 
Variance

Mod i f i ed 
Rayleigh Test 
of Circular 
Variance

4 1 43 _ 44 2 45 3 46
6 4 47 - 48 5 49 6 50
8 7 51 - 52 8 53 9 54
12 10 55 - 56 11 57 12 58
16 13 59 - 60 14 61 15 62
20 16 63 - 64 17 65 18 66
24 19 67 - 68 20 69 21 70
28 22 71 - 72 23 73 24 74
32 25 75 - 76 26 77 27 78
48 28 79 - 80 2.9 81 30 82
64 31 83 - 84 32 85 33 86
80 34 87 - 88 35 89 36 90
.96 37 91 - 92 38 93 39 94
112 40 95 - 96 41 97 42 98

Note:(i) each variable is known to the SAS package as Vn,
where n = variable number, e.g., the variable 
number for harmonic 8 of the Nearest and 
Furthest Mean Amplitude Test (pre-stimulus) is V7

(ii) in each of the cells in this table the left hand 
figure refers to the pre-stimulus epoch, the 
right hand figure is for the post-stimulus epoch

(iii) the Pre- and Post-Stimulus Mean Amplitude 
Difference Test cells do not have pre-stimulus 
variables since the test is concerned with the 
difference between pre- and post-stimulus

(iv) for the 4s ISI CNVs two post-stimulus epochs 
exist of which the first has the variable 
numbers shown above while for the second epoch 
each variable is preceded by a 9 I* , e.g. epoch 1 
variable for harmonic 80 for Rayleigh Test of 
Circular Variance is V89 and the correspondong 
epoch 2 variable is V189 •



The steps set out in Section 4.5 on selecting the 
variables to be candidates for DA (as far as t-statistic, 
F-statistic, W-statistic and normal probability plots are 
concerned) were used and the variables so chosen are given 
in Table 5.2 which also shows those variables determined to 
give best discrimination between normal and HC types.

TABLE 5.2
SELECTION OF '’BEST'1 DISCRIMINATORY VARIABLES BY STEPWISE 

DISCRIMINANT ANALYSIS (SDA)
ISI Epoch Outliers

Included
or

Removed

Variables submitted 
to SDA

Variables 
Selected 
by SDA

Is - Included V43-V50 V52-V54 V56 
V60 V64 VS4-V88

V46
Is Removed V43 V46 V47 V50 V58 

V60 V62 VS6 V84
V46

4 s 1 Included V47 V48 V52 V59 V62 
V66 V76 V78 V80-V83

V47 V62 V76
4s 1 Removed V47 V59 VS1 V62 V66 

V78 V80-V84
V47 V62 V84

4s 2 Included VI45-VI49 VI75 V176 
V182

VI48 VI49 
V17 5

4s 2 Removed VI44 VI45 VI48 V149 
V152 VI73 V174 V182 

V194
VI45 VI48

5.2.2 DIAGNOSTIC RESULTS OF THE LOGIC ALGORITHM

For the purposes of comparison the logic algorithm (LA) 
method of JERVIS et al (1984) quoted in Table 5.3. is given:
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TABLE 5.3
CLASSIFICATION OF SUBJECTS BY USE OF LOGIC ALGORITHM

Known Group Subject Classification
1 N or D
2 N or D

Normal 3 N or D
4 N or D
5 N or D
6 N or D
7 HC
8 HC

Huntington"s 9 HC or D
Chorea 10 HC

11 HC
12 HC or D
13 HC
14 HC
15 N or D

Dementia 16 N or D
17 HC or D
18 N or D

At risk 19 N or D
20 HC

Notes:
D denotes dementia 
HC denotes Huntington''s Chorea 
N denotes normal

5.2.3 RESULTS QF APPLICATION OF PREDICTIVE STATISTICAL 
DIAGNOSIS

In the discussion that follows two sets of results are 
referred to: the full data set (Section 5#2.3*1) and an
outliers-removed data set (Section 5«2*5*2)- This arose due 
to the presence of outliers in the 4 second ISI CNV results. 
These took the form of a known normal subject classified as 
HC (for the epoch 2 data) and a known HC classified as 
normal (for the epoch 1 data). To investigate if it was
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TABLE 5,4
RESULTS OF PREDICTIVE STATISTICAL DIAGNOSIS APPLIED TO FULL DATA SET

Subject Subject Is ISI CNV 4s ISI CNv (epoch 1) 4s ISI CNV (epoch 2}
Group p(N) AIN) A(HC) p(N) A(N) fi(HC) P(N) A(N) A(HC)

1 0.998 0,571 0.999 0,955 0,278 0.382 0.957 0.284 0.955
nL. 0.990 0,097 0.995 0.941 0,283 0.832 0.991 0.389 0.987 •

N 3 0,983 0.308 0.992 0,819 0,097 0.527 i 0,294 0,288 0.582
4 0.788 0.808 0.958 0.898 0.278 0.770 0,971 0.283 0.985
5 0,997 0,854 0.999 0.998 0,308 0,979 0,888 0,124 0.754
6 0.994 0,111 0.998 0.884 0,273 0.482 0.830 0,201 0,874

7 0.010 0.995 0.830 0.018 0.852 0.150 0,034 0.452 0,054
S 0,010 0.993 0.472 * 0,795 0,175 0.581 0.289 0.147 0.447
9 0.015 0,988 0.057 0,025 0,824 0.140 0.118 0.497 0.808

HC 10 0.427 0.904 0.898 0.213 0,713 0.543 0.007 0.828 0.343
n 0,020 0,984 0.180 0,028 0.820 0.188 0.042 0.554 0.277
12 0.013 0,989 0.179 0,009 0.941 0.512 0,009 0.889 0,084
13 0,010 0,993 0.509 0.027 0.828 0.178 0,015 0,818 0,043
14 0.042 0,974 0,482 0,088 0.897 0,183 0.088 0,840 0.554

15 0.987 0.503 0.987 0.984 0.022 0.785 0,495 0.843 0,898
D 18 0.997 0,583 0.999 0.309 0,381 0.155 0,522 0.829 0,839

17 0.018 0.987 0,012 0.157 0.820 0.245 0.918 0.383 0,948

18 0.S5S 0.758 0,988 0.580 0.352 0.444 0.458 0.044 0,529
AR 1? 0.997 0.754 0,999 0.993 0.303 0.979 0.043 0,571 0.314

20 0.997 0.842 0,999 0,027 0.872 0,383 0.807 0.327 0.895

Notes;
N denotes norsal 
HC denotes Huntington's Chores 
D denotes essentia 
AR denotes at risk
* denotes ^classification of subject of known type



possible to improve classification these two subjects were 
transferred from the known (calibration) data to the unknown 
(test) data to be classified. The resultant calibration 
data set is the outliers-removed data set.

PrSD computes three values: probability of being of
type normal, p(N) and atypicality indices of membership of 
normal and Huntington's Chorea (HC) subject groups (A(N) and 
A(HC> respective1y).

5.2.3.1 PREDICTIVE STATISTICAL DIAGNOSIS AND THE FULL DATA 
SET

The results for PrSD (p(N),A(N) and A(HC)) when applied 
to 1 second CNV data and to both epochs of 4 second CNV data 
are given in Table 5.4.

For the 1 second CNV data it is apparent that all known
members of both types are correctly classified. Both epochs
\of the 4 second CNV data suffer misclassific-ation of one

subject of known type.

Following the recommendation of Section 4.6 regarding 
interpretation of atypicality indices the maximum values of 
A(N) for the normal group and A(HC) for the HC group are 
given in Table 5.5.
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TABLE 5.5
MAXIMUM VALUES OF ATYPICALITY INDICES FOR FULL DATA SET

N HC
Experimental Value of Subject Value of Subject
condition largest largest

A(N) A(HC>
Is CNV 0. 806 4 0.898 10

4s CNV (epoch 1) 0.308 5 0. 561 8
4s CNV (epoch 2) 0. 369 2 0.608 9

Using' the values g'iven here (denoting' the maximum value 
of A(N) for the normal group as A(N^y> and the maximum 
value of A(HC) for the HC group as A(HCw*y>) in association 
with the results in Table 5.4 the following can be noted:

(i) for the I second CNV all values of A(HC) > 
A(HC^^) for the normal subject group and all values of A(N)
> A(Nj^^) for the HC subject group;

(ii) for the 4 second CNV (epoch 1) two values of 
A(HC) fall below A(HC^Y) for the normal subject group while 
one value of A(N) falls below A(NiifAV> for the HC subjectKftA
group;

(iii) for the 4 second CNV (epoch 2) 1 value of A(HC) < 
A(HCMAy) tor the normal subject group and one value of A(N> 

< A< W  for the HC group.

Comparing’ all three experimental conditions for the 
dementia and at risk groups it is seen that in terms of p(N) 
all six subjects suffer inconsistent classification on the 
basis of p(N). Table 5.8 shows the classification of the 
six subjects for each experimental condition. The classifi
cation was as follows:
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(i) assign to type FJ if both A(N) > A(Nuav> and A(HC)MnA
> A ( H C m a x >;

(ii) assign to type HC if p(N) < 0.5, A(N) > A<Nwav)MnA
and A(HC) < A(HCw^) and

(iii) assign to type N if p(N) > 0.5, A(N> < ^^MAX^
and A(HC) > M H C max) .
Once again there is inconsistent classification across
experimental conditions.

TABLE 5.6
CLASSIFICATION OF DEMENTIA AND AT RISK SUBJECTS WITH FULL

DATA SET BY PrSD
Subject
Group

Subject Is CNV 4s CNV 
(epoch 1)

4s CNV 
(epoch 2)

15 N N U
D 16 N HC U

17 HC HC U
18 N N? a U b

AR 19 N N HC
20 N? a HC N

Notes:
N denotes normal type 
HC denotes Huntington's Chorea type 
U denotes a type outside of classification 

possibility since both A(N) > A(Nmay) and 
A(HC) > A(HCmax) MAa

? denotes conflicting indications between p(N) and 
A(N) or A(HC), details as follows:

a p(N) > 0.5 but A(N) > M ^ m x )

b p(N) < 0.5 but A(N) < A(Nmay) and 
A{HC) < A(HCmax)

Returning to Table 5.4 it is observed that for every 
subject in the HC group A(N> is greater for the 1 second CNV 
than for either of the two 4 second CNV epochs. This



indicates that the HC group values of the 1 second data are 
more atypical of normal type membership than those for 
either of the 4 second data epochs. For the normal group 
every subject has a value of A(HC) greater in the 1 second 
CNV data than epoch 1 of the 4 second CNV data and five 
subjects out of six have greater values of A(HC) in the 1 
second CNV data than in epoch 2 of the 4 second CNV data. 
This indicates that normal group values of the 1 second CNV 
data are more atypical of HC type membership than those for 
either of the 4 second CNV epochs. These two results taken 
together suggest better discrimination between types in the 
1 second data than either epoch of the 4 second data.

The above observations lead to the conclusion that 
more reliable discrimination is obtained with the data from 
the 1 second CNV data since:

(i) there are no misclassifications of subjects of 
known type in the Is data;

(ii) the 1 second data achieves better discrimination 
between normal and HC types (as indicated by atypicality 
indices)

5.2.3.2 PREDICTIVE STATISTICAL DIAGNOSIS AND THE 
OUTLIERS-REMOVED DATA SET

The results for PrSD (p(N), A(N) and A(HC)} when 
applied to the three experimental conditions are given in 
Table 5.7.



TABLE 5.7
RESULTS OF PREDICTIVE STATISTICAL DIAGNOSIS APPLIED TO OOTLIERS-RENOVED DATA SET

Subject Subject is ISI CNV 4s ISI CNV (epoch 1) 4s ISI CNV (epoch 2)
Group p(N) AIN) A (HC) p(N) A(NJ A (HC) p(N) A (N) A(HZ)

I 1.000 0.538 1.000 0.981 0.165 0,914 0.997 1,000 1,000
2 0.999 0,431 0,999 0.975 0.123 0,890 0.981 0.999 1.000
3 0,998 0.644 0.999 — — — — ~ —

N 4 — — — 0.979 0.199 0.917 0,995 1,000 1,000
5 1.000 0.656 1.000 0.999 0.248 0.983 0.783 0.985 0,999
6 i.000 0.165 1.000 0,625 0.178 0,501 0,976 0.998 1.000
7 0.002 0,998 0,740 0.018 0.805 0.378 * 0.951 0.966 1.000
8 0.002 0,997 0,438 — — — — — —
9 0.003 0.996 0.228 0,026 0.648 0.045 0.318 0.539 0,6984

HC 10 — — — 0.00? 0,882 0,471 t 0,937 0.749 0,988
n 0.005 0.995 0.514 0,020 0.758 0.249 0,460 0,963 0,990
12 0.002 0,997 0.040 0,029 0.761 0.376 0.065 0.861 0,719
13 0.002 0.998 0,497 0,019 0.739 0,186 e 0,832 0,987 0,999
14 0,017 0.992 0,809 0.029 0.736 0.289 * 0,974 0.998 1.000

-- — — * 0.071 0.853 0.789 * 0.042 0,807 0.421
0 4 0.902 0.941 0,995 — — — — — —

8 — — — 0.213 0,696 0.707 £ 0.980 0,998 1,000
10 * 0.524 0.973 0.984 — — -- — — —

15 0.994 0,791 0.999 0,612 0.712 0.893 0.997 0,999 1.000
D 16 1,000 0.563 1.000 0,315 0,370 0,393 0,993 1.000 1,000

17 0,003 0.996 0.292 0,090 0,897 0.887 0, C<26 0.969 0.993
IS 0.947 0.922 0,996 0.800 0.612 0.900 0,983 0.999 i. 000

AR 19 1.000 0.784 1,000 0,999 0.219 0.982 0.963 0,997 1,000
20 1,000 0.880 1.000 0.187 0.499 0,385 0,596 0,972 0,995

Notes;
N denotes nornal 
HC denotes- Huntington's Choree 
0 denotes outlier 
D denotes daiEntia 
AR denotes at risk
* denotes Eisciessificetion of subject of known type
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For both 1 second and 4 second (epoch 1) data all 
members of the calibration data set are correctly classified 
but one outlier is misclassified. The 4 second (epoch 2) 
data shows severe misclassification with 4 out of 7 HC 
subjects and both outliers incorrectly assigned.

The maximum values of A(N) and A(HC) are given in Table
5.8.

TABLE 5.8
MAXIMUM VALUES OF ATYPICALITY INDICES FOR OUTLIERS-REMOVED

DATA SET

Experimental
condition

1
Value of 
largest 
A(N)

1
Subject

H
Value of 
largest 
A(HC)

C
Subject

Is CNV 
4s CNV (epoch 1) 
4s CNV (epoch 2)

0. 656 
0.248 
1.000

5
5

1 and 4
0.809
0.471
1.000

14
10

7 and 14

For both 1 second and 4 second (epoch 1) data all 
values of A(HC) > ^or ^ ie normal subject group and
all values of A(N) > A(N^^) for the HC subject group. It 
is not possible to comment on the 4 second (epoch 2) data as 

both A(N^jr) and ^(HC^^) are un^ y *

The classification of subjects 15 - 20 using the same
rules as described in the previous section is1 given in 
Table 5.9.



TABLE 5 9
CLASSIFICATION OF DEMENTIA AND AT RISK SUBJECTS WITH 

OUTLIERS REMOVED DATA SET BY PrSD
Subject
Group

Subject Is CNV 4s CNV 
(epoch 1)

4s CNV 
(epoch 2)

15 U n U n X
D 16 N HC X

17 HC U h X

18 U n U n X
AR 19 U n N X

20 U n HC X

Notes:
N denotes normal type 
HC denotes Huntington's Chorea type 
U denotes type outside classification possibility 

since both A(N) > A(N^AX) and A(HC) > A(HC^AX)
n p(N) > 0 . 5  but both A(N) > A(Nmay) and 

A(HC) > A(HCmax)
h p(N) < 0.5 but both A(N) > A(NMAy) and 

A(HC) > A(HCmax)
x unable to classify since A(NMAy) = 1.0000 and

A(HCm a x } = 1-0000

In terms of p(N) subjects 15, 18 and 19 are consis
tently classified as normal across all three experimental 
conditions. Using the classification rule of the previous 
section two thirds of the 1 second data are unclassifi- 
able into a known type and half of the 4 second (epoch 1) 
data cannot be assigned to either normal or HC groups. 

Since the values of arK  ̂^ ^ M A X ^  ^or ^ ie ^ secon<3-
(epoch 2) case are both unity no sensible classification can 
be attempted.

From Table 5.7 it is seen that (comparing the 1 second 
data to each of 4 second data epochs in turn, considering
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only those subjects where comparison is possible) for
the normal subjects all four values of A(HC) are larger in 
the 1 second data than in the 4 second (epoch 1) data while 
for the six HC subjects all values of A(N) are larger in the 
1 second data than the 4 second (epoch 1) data. Comparing 
the 1 second data with the 4 second (epoch 2) data the A(N) 
of two subjects are identical between experimental condi
tions while one value of A(N> is larger in the 1 second data 
than the 4 second (epoch 2) data and one smaller. These 
results suggest that the 1 second data gives better discrim
ination between types than the 4 second (epoch 1) data.

The above lead to the following conclusions:
(i) the 4 second (epoch 2) data cannot be used for 

success fu1 c1as s i f i cat ion;
(ii) the 1 second and the 4 second (epoch 1) data give 

comparable performance in terms of number of misclassifica- 
tions of known subjects and the number of unclassifiable 
dementia and at risk subjects;

(iii) the 1 second data has better discrimination 
between normal and HC types when the values of atypicality 
indices are considered.

5.2.4 RESULTS OF APPLICATION OF DISCRIMINANT ANALYSIS

Results are given for both full and outliers-removed 
data sets. DA gave probabilities for each subject, p(N) and 
p(HC), of which p(N) alone is recorded since p(N) + p(HC) = 
1.
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5.2.4.1 DISCRIMINANT ANALYSIS AND THE FULL DATA SET

Table 5.10 shows the results of applying DA to the full 
data set.

TABLE 5.10
RESULTS OF DISCRIMINANT ANALYSIS APPLIED TO FULL DATA SET

Subject
Group Subject

1 second 
ISI CNV 

p(N)
4 second 
epoch 1 

p(N)
ISI CNV 
epoch 2 

P(N)
1 1.0000 0.9975 1.0000
2 0.9999 0.9943 1.0000
3 0.9994 0.8990 * 0.4301

N 4 0.8880 0.9780 1.0000
5 1.0000 1.0000 0.9128
6 1.0000 0.7470 0.9923
7 0.0000 0.0000 0.0233
8 0.0000 * 0.8870 0.3984
9 0.0002 0.0002 0.1817

HC 10 0.3718 0.0372 0.0000
11 0.0006 0.0002 0.0203
12 0.0001 0.0000 0.0011
13 0.0000 0.0002 0.0040
14 0.0039 0.0115 0.0266
15 0.9971 0.9948 0.9093

D 16 1.0000 0.2778 0.9300
17 0.0002 0.0513 0.9999
18 0.9485 0.6051 0.6293

AR 19 1.0000 1.0000 0.0193
20 1.0000 0.0000 0.9940

The 1 second data shows correct classification of all 
subjects of known type while both epochs of the 4 second 
data give incorrect assignment of 1 subject each and these 
are the same subjects erroneously classified by PrSD.
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On the basis of the number- of misclassifications of 
subjects of known type it is inferred that the 1 second data 
will give better classification of subjects of unknown type.

Use of a simple above/below threshold criterion (of 
p(N> = 0.5) to classify dementia and at risk subjects gave 
Table 5.11 while the rule proposed in Section 4.8 gave Table 
5. 12.

TABLE 5.11
CLASSIFICATION OF DEMENTIA AND AT RISK SUBJECTS WITH FULL 

DATA SET BY SIMPLE THRESHOLD VALUE
Subject
Group

Subject Is CNV 4s CNV 
(epoch 1)

4s CNV 
(epoch 2)

15 N N N
D 16 N HC N

17 HC HC N
18 N N N

AR 1.9 N N HC
20 N HC N

TABLE 5.12
CLASSIFICATION OF DEMENTIA AND AT RISK SUBJECTS FROM THE 

FULL DATA SET WITH RULE OF SECTION 4.6
Critical 

Probabi1 ities Is CNV
4s CNV 
(epoch 1)

4s CNV 
(epoch 2)

P(NMTHIN)
p < C |HC!

0. 888 
0.3718

0. 747 
0.0372

0.9128 
0.3984

Subject
Group

Subject •

15 N N U
D 16 N U N

17 HC U N
18 N U U

AR 19 N N HC
20 N HC N
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5.2.4.2 DISCRIMINANT ANALYSIS AND THE OUTLIERS-REMOVED DATA 
SET

Table 5.13 gives the results for the outliers- 
removed data set when DA is applied.

TABLE 5.13
RESULTS OF DISCRIMINANT ANALYSIS APPLIED TO OUTLIERS-REMOVED

DATA SET
Subject
Group

Subject 1 second 
ISI CNV 

P(N)
4 second 
epoch (1) 

P(N)
ISI CNV 
epoch (2) 

p(N)
1 1.0000 1.0000 0.9999
2 1.0000 0.9999 0.6709

N 3 1.0000 — —
4 — 1.0000 0. 9988
5 1.0000 1.0000 * 0.4212
6 1.0000 0. 7714 0.9853
7 0.0000 0.0000 0.3406
8 0.0000 — —
9 0.0000 0.0004 0.0181

HC 10 — 0.0000 0.0046
11 0.0000 0.0000 0.2438
12 0.0000 0.0000 0.0612
13 0.0000 0.0000 0.0362
14 0.0000 0.0000 0.3012
3 -- * 0.0000 * 0.2074

0 4 0.9979 — —
8 — 0.0145 * 0.8556
10 0.3311 — —
15 1.0000 0.7119 0.7319

D 16 1.0000 0.2609 0.9996
17 0.0000 0.0000 0.7549
18 0.9998 0.9906 0.7671

AR 19 1.0000 1.0000 0.5382
20 1.0000 0.0556 0.0593

All known subjects (including the two outliers) are 
successfully classified with the 1 second data. Epoch 1 of 
the 4 second data has one known subject (an outlier) mis- 
classified and epoch 2 of the 4 second data incorrectly
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assigns three known subjects. Comparing the number of known 
subject misclassifications given in Table 5. 13 it is seen 
that the 1 second data is best in this respect (no 
misclassifications) and that the 4 second (epoch 1) data is 
better than the 4 second (epoch 2) data.

\

The classification of the dementia and at risk subjects 
when a simple above/below rule of p(N) = 0.5 and the rule 
of Section 4.6 were used are shown below in Tables 5.14 and 
5.15 respectively.

TABLE 5.14
CLASSIFICATION OF DEMENTIA AND AT RISK SUBJECTS WITH 
OUTLIERS-REMOVED DATA SET BY SIMPLE THRESHOLD VALUE

Subject
Group

Subject Is CNV 4s CNV 
(epoch 1)

4s CNV 
(epoch 2)

15 N N N
D 16 N HC N

17 HC HC N
18 N N N

AR 19 N N N
20 N HC HC



TABLE 5.15
CLASSIFICATION OF DEMENTIA AND*AT RISK SUBJECTS FROM THE 
OUTLIERS-REMOVED DATA SET BY DA WITH RULE OF SECTION 4.6

Critical 4s CNV 4s CNV
Probabilities Is CNV (epoch 1) (epoch 2)

1.0000 0. 7714 0.6709
P<n“™|HC> 0.0000 0.0004 0.3406

Subject Subject
Group

15 N • U N
D 16 N U N

17 HC HC N
18 U N N

AR 19 N N U
20 N U HC

5.3 DISCUSSION

Evidence was given in Sections 5.2.3 and 5.2.4 that 
results obtained for both PrSD and DA from 1 second CNV data 
gave better discrimination than those results obtained from 
either epoch of the 4 second CNV data. Given this, the 
question of whether the full or outliers-removed data 
results distinguish between types better is addressed.

For PrSD (Tables 5.4 and 5.7) the removal of the 
outliers gave higher values of p(N) for all normal subjects 
in the normal group* and lower values of p(N) for all HC 
subjects in the HC group, which indicates better 
discrimination between the two types. However, values of 
A(N) became larger (worse) in four out of five cases in the 
normal group and four out of seven values of A(HC) were 
larger (worse) in the HC group when the outliers were
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removed, This indicates impaired type discrimination. 
Although the normal outlier (subject 4) has a large value of 
p(N> both it and the HC outlier (subject 10) suffer from 
larger values of their associated atypicality indices when 
outliers-removed data is compared to full data set results. 
Against this is set the observation that the two outliers 
have larger (better) atypicality index values relating to 
the group of which they are not a member, indicating that 
they are less typical of that group. The HC outlier is also 
misclassified on the basis of its p*(N) value. In addition
the two outliers would be assigned to an as yet unknown type
on the basis of their atypicality indices.

In contrast the results of DA (Tables 5.10 and 5.13) 
give equal or larger values of p(N) for all six normal 
subjects when outliers have been removed than when included 
in the calibration data set. All values of p(N) for all 
eight HC subjects are improved (i.e., lowered) when 
outliers are removed from the calibration data set.

The comments lead to the conclusion that the PrSD 
discrimination is best performed when the calibration data 
set includes the outliers while DA discriminates better when
the outliers are excluded from the calibration data.

The final issue concerns whether PrSD or DA is superior 
in discriminating between known types and classifying 
subjects of unknown type. Consider first Table 5.4 and 5.10. 
Both PrSD and DA successfully classify the known subjects,
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they both indicate the same two subjects as outliers (as 
measured by their values of p (N )) and both give the same 
classification of dementia and at risk subjects (Tables 5.6 
and 5.11) for five out of six cases. The remaining case 
(subject 20) is assigned by DA to type normal. PrSD assigns 
the subject to type normal on the basis of high p(N) ( = 
0.997) but A(N) > A(N^^) which questions whether it belongs 
to this type. However, the difference [A(HC) - A ( H C ^ Y )] > 
[A(N) - A(N^£Y )] indicating the subject is more atypical 
of type HC than of type normal.

Turning now to the outliers-removed data set results 
(Tables 5.7 and 5.13) PrSD and DA correctly classify the 
known normal and HC subjects of the calibration data set. 
DA also correctly assigns both outlier subjects using the 
simple above/below p(N) = 0 . 5  criteria but fails to assign 
either subject when the '’critical probabilities'’ measure is 
used (Tables 5.14 and 5.15). PrSD allocates one subject 
correctly and one incorrectly on. the basis of p(N)„ Both 
are indicated as not belonging to either normal or HC types 
by their atypicality indices.

Considering the above points it is felt that the PrSD 
technique is to be preferred since it provides two 
additional scores with which to test the validity of type 
assignment on the basis of probability of being normal and 
provides consistent results (classifications) with DA. Also 
better discrimination is obtained by using the 1 rather than 
4 second data.
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5.4 CONCLUSIONS

This chapter has given and discussed the results of 
using PrSD and DA techniques to distinguish between two 
known groups (normal and Huntington’s Chorea) and to classi
fy subjects from dementia and at risk groups into one or 
other of the above types. An attempt at improving discrimi
nation between known types (and hence hopefully improving 
the reliability of classifying the subjects from dementia 
and at risk groups) proved inadequate. However, this is 
felt to be more due to the small sample sise involved than 
to other factors.

In light of the current understanding of the multi- 
component nature of the CNV (TECCE and CATTANACH, 1982;
SIMONS et al. 1983; LOVELESS and SANFORD, 1974a and 1974b; 
and ROHRBAUGH et al, 1978 and 1988) it had been felt, prior
to the work reported here, that use of a 4 second CNV which
was split into epochs might give better discrimination in 
one or other of the epochs than for the 1 second data. The 
results presented here, however, show the contrary. For the 
recorded data the 1 second results consistently led to 
better classification than the results of either epoch of 
the 4 second data. A comparison of the results of PrSD and 
DA showed them to give consistent results (where classifica
tion of subjects of unknown type was possible) for the 
conditions considered best for discrimination (1 second data 
with a full calibration data set). However, the existence 
of two atypicality indices in PrSD to check for
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misclassification of subjects or the possibility that the 
subject belongs to a type which is not normal or HC is 
considered to make this technique preferable to DA.
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6 CONCLUSIONS
*

This chapter is a summary of the results of Chapters 
2, 3 and 5 and on this basis recommendations on processing 
procedures are given. Some suggestions for future 
investigations are put forward. The content of this 
chapter is kept to a minimum since the only aim is to draw 
together the most essential points which should be 
considered in any future work in this field. The detailed 
conclusions and the reasoning behind them are presented in 
each chapter.

6.1 RESULTS AND PROCESSING METHODS

The results of the test data of Chapter 2 have shown 
the need to include a model of the response to obtain 
efficient OAR (for NR-OAR and R-OAR) or reduced distortion 
representation (for R-OAR) of a response present in the EEG. 
However, it was also seen that mismodelling of the response 
can cause its own distortion. Results for a recorded CNV 
showed that the NR-OAR method was relatively insensitive to 
the inclusion or omission of a model, but for R-OAR 
modelling was essential. < - -Since this work was
performed off-line NR-OAR (without modelling) was chosen.

In the frequency domain it was shown that windowing 
(or tapering) of the data is desirable. The Kaiser-Bessel 
window when applied to 1024 point test data gave much better 
performance than the Tukey window. When 64 point data is 
considered the improvement is difficult to discern. In light
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of the results for 1024 point data the Kaiser— Bessel window 
is to be preferred. The need for a transformation of the 
data along with the windowing process has also been 
demonstrated.

The statistical techniques of Discriminant Analysis 
(DA) and Predictive Statistical Diagnosis (PrSD) have been 
applied to both 1 second and 4 second ISI CNV data in an 
attempt to classify subjects of an unknown type (at risk of 
having Huntington'1 s Chorea) into one of two subject groups 
(normal or HC). It was found that the 1 second data gave 
better discrimination as measured by the number of correct 
classifications of individuals of known type. A method of 
classification was described and applied to the subjects of 
unknown type. Of the three at risk subjects all were 
classified as normal. As of October/November 1987 all three 
showed no HC symptoms*. Of course, this is not entirely 
conclusive proof on two counts: first, the sensitivity of 
classification with varying experimental conditions, i.e., 
classification was not always consistent and second, the 
impossibility of stating whether or not HC symptoms will 
appear later.

On the basis of the results of Chapters 2,3 and 5 the 
following processing method is recommended:

* Personal communication with Dr. E.M. Allen, Freedom Fields 
Hospital, Plymouth.



(i) the use of modelling of the response is essential 
if R-OAR is performed and if NR-OAR is applied response 
modelling (if an accurate model is available) would be 
beneficial but not essential;

(ii) use of the Kaiser-Bessel window is desirable and 
should be accompanied by transformation of the windowed data 
as described in Section 3.4.4;

(iii) the use of PrSD is to be preferred to DA.

6.2 SUGGESTIONS FOR FUTURE INVESTIGATION

The most important investigation required for OAR is to 
determine a means of obtaining accurate response models. 
This, however, will present difficulties because of the 
evolution of the CNV with trial number.

As a further step in the use of PrSD it is suggested 
that the existing two type classification is increased to 
three by including the dementia results in the calibration 
data set. This might provide better measures of the 
atypicality indices (on the basis of the recommended method 
in Chapter 4) for the at risk group and the probability of 
being normal p(N) and so lead to more definite 
classification.

The most important extension of the PrSD method 
requires the acquisition of a substantially larger dataset. 
The data on the individuals of known types should be split 
into two sections: the first, to be used as a calibration
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data set, the second, to allow assessment of the correctness 
or otherwise of the * rulesJ derived for classification 
purposes. Provided a successful classification of the 
second section is achieved, more confidence could be placed 
on the classification of the at risk subjects.

6.3 CONCLUDING REMARKS

The overall contribution of this work has been in 

implementing and developing techniques to improve the 

investigation of the CNV response of the human EEG. These 

techniques comprised signal processing and statistical 

methods. The signal processing work on OAR gave clear 

evidence of the need to modify the existing NR-OAR and R-OAR 

methods. The results of the application of windowing to 

real data were less conclusive. This was due to the 

restrictions arising from the short duration of the CNV data 

but the methods involved are still considered relevant to 

the field of EEG work. The application of the statistical 

methods gave useful results, although they must be treated 

with caution because of the small sample size. However the 

procedures followed here will be of value in any future work 

with hoped for larger data sets. It is felt that the 

techniques described here (whether taken as a whole or 

individually) have helped lay the foundations for future 

work and it is hoped that they will be of benefit to others.
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APPENDIX Al : DERIVATION OF THE ESTIMATES FOR THE 0 .5J

Denote the measured EEG as y(i), the true (background
EEG) as e(i), the measured EOGs as x.(i) and the
transmission coefficients as 0.. Let there be p measuredJ
EOGs and q model components. Then the general model is:

p+q
y(i) = T ’O.x.(i) + e(i) - (Al)

and so:

P+q
e(i) = y(i) - 5 “ 9.x.(i) - (A2)

Denoting the estimates of e(i) as e(i) and of 9. as 9.,
J 3

equation (A2) becomes:

p+q-
e(i) = y(i) - 5 “ 9-x.(i) - (A3)

Let the sum of squares of the error term be J, then:

n - 9 n P+q- 9
J = H [ e ( i ) r  = 51 Ey(i> - Z Z Q * x . A i ) r  ~ (A4)

i=l i=l j=l

Use of the least squares method of parameter estimation 
requires that the sum of squares of the error terms, J, is a 
minimum (this is achieved by computation of appropriate

A
values of the 9.s). For the k th parameter it is necessaryJ A
to differentiate J partially with respect to 9̂ .:
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dJ <b n p+q-
= ° = Z  £y(i>9̂̂ . &9^ i=i j=l

n p+q.
[-2y(i)x, (i) + 2 >  Q.v.(i)xji)] - (A5)

i=i k f=i J 3 k

n n p+q-
Z y ( i ) x k (i> = X CE e.x.CDx.Ci)] - <A6>
i=l K i=l j=l 3 J K

n n p+q-
5^y(i>x. (i) - 2_ 1 9  .x,(i)xk (i)]
i=l K i=l j*k 3 3  K

9k = ----------------------------------  - (A7)
f  2r >
i=l *

where the second sum for the second term of the numerator is 
for all values of j except k.

To show that this value of 9^ does give a minimum value 
of J differentiate equation (A5) with respect to 9^:

n p±a 9
21 [2Z 2xT(i>] • - (A8)
i=l j=l

which must always be positive and so the value of 9, givenK
in equation (A7) causes J to be a minimum in equation (A4).

As an example put y(i) = EEG (i), e(i) = EEG, (i). Alsom
let there be one Xj(i), EOGffi(i), and no response modelling
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so that- p = 1 arid q = 0. Thus there is only one transmission 
coefficient 9^ and so its estimate is:

n
EEG (i)EOG (i). mv m1 = 1

-------------------- - (A9 )

X E0 G^i)
1 = 1

which is of the form of equation (2.22) in Section 2.4.
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APPENDIX A2 : PROGRAM UNIT LISTINGS AND DESCRIPTIONS

The contents of this appendix are as follows: Section
A2.1 contains diagrams illustrating the calling sequences of 
the various program units; Section A2.2 is a list of brief 
descriptions (in alphabetical order) of the various program 
units used in the signal processing work; and Section A2.3 
gives the source code listings.

A2.1 CALLING SEQUENCES

The three main program units are DISC (for PrSD), 
IDVRES (for generating the test statistics) and MAINPLOT 
(for producing energy and phase spectra and the averaged 
waveforms).

In what follows the MAIN program units are given on the 
left most side of the page. Moving rightwards across the 
page indicates deeper levels of program invocation, e.g. 
subroutine MINV is called by subroutine DISP which is called 
by MAIN program unit DISC. Moving down the page indicates 
the order in which the program units are first encountered, 
e.g. MAIN program unit IDVRES first calls GETNAM followed by 
HRINIT then BATNOS, etc.

Note that the lower case letters following a program 
unit have the following! meanings:

’ i’ denotes a FORTRAN 66 intrinsic function,
•'s'1 denotes a subroutine from the IBM Scientific
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Systems Subroutine (SSP) package, 
fv* denotes an IBM VM/CMS Systems Subroutine,
'd ’ denotes that the subroutine has further calls to 

program units as described earlier in the calling
sequence.

DISC DISP MINV s
STN ALGAMA i 

BETAIN
IDVRES GETNAM NAMTST

HRINIT 
BATHOS 
DEVICE
NROARM MODEL

DATIN NAMCON FILEDF v 
LBMOVE v 

FILEDF v 
DECODE LBMOVE v 

CORE v
I2T0I4

MEAN 
ARRAY s 
DGELG s 

RCOARM MODEL
RDATA GETNAM d 

DATIN d 
MEAN
ADAPTV XYVAL ONLSUB XVAL1

UDUFLT
MAXVAL
OAGRAF NGRAPH
WAIT
POSDET
MODTHG NGRFS1 NPLOT
PRTTHT
THENVL
MODOAG

FILTER
TAPCOS COSGEN 
TAPKAI KAIGEN SUEACT 

BSSL
TAPER2 WINDY
NLOGN
ASTATI
VSTAT2
VSTAT3
STPRNT
STATIO NAMCON
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MAINPLOT RETYPE v
INPUT GETNAM d 

BATNOS 
PROCES NROAEM d 

RCOARM d 
FILTER 
TAPER2 d 
TAPCOS d 
TAPKAI d 
NLOGN

REDUCT
DATOUT HEADER 

DATAXS 
DATPLT 

PSDOUT HEADER 
PSDAXS 
PSDPLT 

PHAOUT HEADER 
PHAPLT

Calls to subroutines not listed above are to 
subroutines which are part of the GINO-F and GINOGRAF
packages

A2.2 PROGRAM UNIT DETAILS

This section gives a brief description of each of the 
program units (which are given in alphabetic order).

ADAPTV OAE-F66
Acts as an interface between the various program units 
which are responsible for recursive OAR.

ASTATI STAT-F66
Carries out ’Rayleigh Test of Circular Variance'’.

BATNOS CNV-F66
Determines how many trials to be processed and which 
are to be included.

tK Brief descriptions of program units BETAIN, DISC, DISP and STN are 
given on p. A13.



BSSL TPFL-F66
Computes Bessel functions.

COSGEN TPFL-F66
Generates Tukey window weights.

DATAXS PLOT-F68
Produces axes and associated labels used in generating 
plots of CNV/ERA or windowed data.

DATIN CNV-F66
Reads information from a specified file pair which 
consists of data from file *’ fname' BINARY and header 
information (comprising patient name, sample rate and 
EEG and EOG scale factors) from file fname" HEADER.
' fname-’ is common to both files.

DATOOT PLOT-F66
Controls production of CNV/ERA or windowed data plots.

DATPLT PLOT-F66
Responsible for plotting CNV/ERA or windowed data.

DECODE COMM-F66
Mimics function carried out by PRIME FORTRAN command 
DECODE as invoked on line DAT 32 of program unit DATIN, 
n.b. it is not a general purpose replacement for this 
command.

DEVICE OAR-F66
Selects graphics device to be used in plotting.

FILTER TPFL-F66
Performs low pass filtering.

GETNAM CNV-F66
Reads name of file to be processed. Also determines 
what type of file it is by invoking NAMTST (see below).
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HEADER PLOT-F66
Affixes to each plot (produced under program MAINPLOT) 
details of name of file, processing options requested 
and trials included in processing.

HRINIT COMM-F66
Assigns the harmonics to be investigated according to 
whether a CNV or ERA file is being processed. Harmonic 
numbers are stored in an array by means of FORTRAN DATA 
statements and can be changed by altering these 
statements.

I2TOI4 COMM-F66
Converts INTEGERt-2 to standard INTEGER representation. 
Files are stored in INTEGER*2 format to conserve disc 
space.

IDVRES OAR-F66
Main program unit responsible for generating details of 
phase/amplitude results for each harmonic on a trial by 
trial basis.

INPUT PLOT-F66
When using MAINPLOT this subroutine determines required 
processing and plotting options.

KAIGEN TPFL-F66
Generates Kaiser-Bessel taper.

MAINPLOT PL0T-F68
Interface between program units used in plotting.

MAXVAL OAR-F66
Ensures that plot data fits into plotting area by 
determining maximum positive and negative values of y 
axis data.
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MEAN CNV-F66
Removes mean value from data record.

MODEL COMM-F66
Initialises components to be used if modelling has been 
requested (constructs necessary models according to 
data file name).

MODOAG 0AR-F66
Controls production of plots of model components.

MODTHG OAR-F66
Plots graphs of point by point THETA variation.

NAMCON COMM-F66
Converts name of file to be processed from a form 
consistent with original PRIME programs to one 
consistent with VM/CMS file handling.

NAMTST COMM-F66
Determines whether CNV or ERA data is being processed.

NGRAPH OAR-F66
Plots a graph in one of six p'ossible positions.

NGFRS1 OAR-F66
Plots multiple curves on a single graph with selectable 
y axis scaling.

NLOGN CNV-F66
Performs FFT and inverse FFT.

NPLOT OAR-F66
Used to allow multiple curves to be plotted on one 
graph.

NROARM COMM-F66
Carries out non-recursive OAR including modelling or 
not as required.
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OAGRAF OAR-F66
Controls production of plots of corrected and 
uncorrected EEG graphs.

ONLSUB OAR-F66
Carries out actual recursive correction by invoking one 
of three correction algorithms.

PHAOUT PLOT-F66
Controls production of phase v. frequency plots.

PHAPLT PLOT-F66
Responsible for plotting phase v. frequency graphs.

POSDET OAR-F66
Determines position of end point for each correction 
parameter on graphs of <THETA) values.

PROCES PLOT-F66
Carries out processing requirements as dictated by 
program unit INPUT, invoked by program MAINPLOT.

PRTTHT OAR-F66
Appends to THETA plots information showing batch number- 
being corrected and which curve corresponds to which 
THETA.

PSDAXS PLOT-F66
Produces axes and associated labels used in generating 
plots of ESD.

PSDOUT PLOT-F66
Controls plotting of ESD.

PSDPLT PLOT-F66
Responsible for plotting ESDs.
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ECOARM OAR-F66
Carries out recursive OAR including modelling or not as- 
required replaces EYEREC.

RDATA OAR-F66
Reads data (stored as integers) from a given 
unformatted (binary) file and converts to real format.

REDUCT COMM-F66
Reduces sise of GINO-F plots if so desired (user can 
select between a choice of sizes).

STATIO COMM-F66
Reads/writes statistics from/to file.

STRENT COMM-F66
Creates two files (PRE-STAT LISTING and POS-STAT 
LISTING) containing a condensation of the statistical 
results for each harmonic for both pre- and 
post-stimulus epochs.

SUFACT TPFL-F66
Creates an array in COMMON storage containing values of 
1i to 321.

TAPCOS TPFL-F66
Interface to program unit COSGEN and allows mean 
removal from windowed data.

TAPER2 TPFL-F66
Carries out alternative form of Tukey windowing.

TAPKAI TPFL-F66
Interface to program unit KAIGEN which allows '’complex'’ 
mean removal from windowed data.
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THENVL OAR-F66
Creates a file (THETA ENDVALS) containing end point 
values for each THETA. '

UDUFLT 0AR-F66
UDU algorithm for recursive OAR (the one currently 
used).

VSTAT2 STAT-F66
Calculates 'Nearest and Furthest Mean Amplitude 
Difference'’ test statistics.

VSTAT3 STAT-F66
Calculates '’Modified Rayleigh Test of Circular 
Variance'’ statistics.

WAIT COMM-F66
Pauses between displayed screens until user enters a 
' V  .

WINDY TPFL-F66
Called by TAPER2 (see above) to create window weights. 

XVAL1 OAR-F66
Used to set up data array for use when ONLSUB invoked. 
Contains model components.

XYVAL OAR-F66
If OA model 4D is being used for recursive OAR sets 
XYVAL vertical left EOG equal to product of horizontal 
left and right EOG channels.

A2.3 PROGRAM UNIT LISTINGS

In the following the program units have been seperated 
into two sections: the first lists the signal processing
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program units; the second lists the program units used for 
PrSD.

In the signal processing section the program units are 
listed in alphabetic order. The PrSD program units are 
listed in the order in which they are called (they are held 
in a single source file). Listings of program units DATAXS, 
DATOUT, DATPLT, HEADER, PHAOUT, PHAPLT, PSDAXS, PSDOUT and 
PSDPLT are not given since they do not perform any 
processing and are graphics output routines only.

A2.2 PROGRAM UNIT DETAILS (c o n t .)

Below are brief descriptions of the program units used 

in predictive statistical diagnosis.

BETAIN

Computes incomplete beta function.

DISC

Main program unit used in implementing predictive 

statistical diagnosis. Acts as an interface between 

the required subroutines.

DISP

Generates dispersion matrix.

STN

Generates d-dimensional student-type density function.
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C FILE L B  ; ABAPTV OAR-FM LAST REV ; 9 FEB 87CC 22 .APR 87 ; ADDITION OF CALLS TO SUBROUTINE NAIL C SUBROUTINE ASAPTVINPT,N,L1«I TYPE.IHODEL,ONLFLG5HPLFLG}INTEGER TBEP08I7),vBUOUT ,KY8DlN,ISIVALREAL THETHPI7).MODEN0I3}LOGICAL CNVFLS.ERAFLS.ONLFLG.MPLFLS DIMENSION ££6C0(1O24) 5EESC6U0*4) .EEGC7 (1024)DIMENSION THETABiJiSGJJHE7ASi?!68).THETA7l7168),THEM0Bi3072) DIMENSION R3SDI1024},RsSSil024) 5RSS7li024)DIMENSION RSQ0I1O24).830811024).8307(1024)DIMENSION DAD(1024) ,uA6> 1024).0A7I1024)DIMENSION THDEND14)JHSENDiS),TH7ENDI7)COMMON VL11024) ,VRI1024) .BLI1024} .HRII024)COMMON /BLNKEX/ CMPNT111024},CHPNT2I 1024).CMPNT3L024) COMMON /FLAGS/ CNVFLG.£RAFL§.ISIVAL COMMON /DEVNOM/ I DEV 'BATA NPAR4.NPARS.NPAR7 74,8.7/DATA IDB,ID6,IB7 /5,6.7/DATA VDUOUT.KYBBIN 78,5/IF L I  MODEL .NE. 0) .AND. LNOT. I0NLFLS))) GO TO 200 C NO CNV 08 AER MODELLING REfiUJREB.CALL XYVALITHETAB,EESCD.8SSD.RS8B«OAD«NPAR4,IDD.ITYPE)IF IMPLFLS) SO TO 700IF IIDEV .EO, 9) GO TO 700CALL MAXVALIBBES,BENS ,TBETAD,N,4)DO 100 1=1.4 ■THDENDII) = THETAD I 1024*1)THETMPII) = THDEND11)100 CONTINUECALL OASRAF(VL,VR.HL,HR.OAD.EEOCD,N)IF (IDEV .ES. I) CALL HAITCALL POSDET1NPAR4.THDEND,THETHP.THEPOSICALL M0DTH8iTHETAD. N. 4,4098,BBES.BEND)CALL PRTTHT1THEP0S.NPA84.THDEND.I)IF (IDEV .EO. 1) CaLL M I T  CALL THENVL(THDEND,4)150 60 TO 700200 IF (.NOT.(CNVFLS)) GO TO 400 C CNV 2 COMPONENT MODELLING,CALL XYVAL1THETA6,EESC8,RSS8,8S08,0A8.NPAR8.IBS,ITYPE)IF IMPLFLG) GO TO 700IF IIDEV .EO. 9) SO TO 700CALL MAXVALIBBES.BEND,THETA8.N,8)DO 300 1=1.8THSENBu) = THETA8II 024*1)IF II ,LE. 4) THETHPU) = TH8ENDII)IF II ,SE, 5) R0DEND1I-4) = THSENBU)300 CONTINUECALL OAGRAFIVL.VR.HL,HR,0A8,EEGCS,N)IF IIDEV ,EQ. 1) CALL Mb ITCALL POSDETINPAR4.THSENS.THETHP,THEPOS)CALL MODTHGITHETA8.N.4,4098.BBES,BEND)CALL PRTTHTITHEPOS,NPA84,THSEND.1)IF IIDEV .EO. 1) CALL HAiT CALL MBD0AG1CMPNT1.CMPNT2,CHPMT3,N)IF IIDEV .ES. I) CALL NAif DO 340 1=4097.8144THEM0B(I-4y?8) = THETASII)340 CONTINUETHETHPU) '= MODEMS ID THETMPI2) = MODEMS(2)CALL POSDET(2,MODEMS,THETMP,THEPOS)CALL MODTHGITHEMOS.N.2,2040,BBES,BEND)CALL PRTTHT iTHEPOS.21M0DEN815)IF IIDEV .ES. 1) Ch LL NAIT CALL THENVLITH8END.8)GO TO 700 400 IF I.NOT,IERAFL8)) GO TO 1000 C AER 3 COMPONENET MODELLING.420 CALL XYVALITHETA7,EEGC7,RSS7,RSS7,0A7,NPAR7,ID7,ITYPE)IF IMPLFLG) GO TO 700 IF IIDEV .ES. 9) SO TO 700 CALL MAXVALIBBES.BENB,THETA7.N,7)
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DO 500 1=1.7TB7ENDID = THETA7 (1024*1)IF II .IE. 4) THETHPiI} = TH7ENDII)IF (I -BE. 5) MODENDII-4) = TH7END11}500 GOBIINOECALL 0ASRAF!VL,vR.HL.HR.0A7,EEGC75N}IF IIDEV ,E§, I) CALL NAIT 'CALL POSDETINPAR4,TH7END.THETHP,THEPOS)CALL BODTBGITBETA7fN .4,40% ,BSEG.BEND)CALL PRTTHTITHEPOS.NPAR4.TH/END.15IF IIDEV .EO. I) CALL BAITCALL HOSOASICHPHTi,CHPNT2,CHPMT3.M}IF IIDEV .EO. 1) CALL WAIT DO 540 1=4097.7168THEMQBII-4096) = THETA7II)540 CONTINUETHETHP!!} = MODENDU} 'THETHP12) = N0SENDI2)THETHP13) = M0DEN8I3}CALL POSDET13,MODEND,THETHP.THEPOSI CALL HODTHSITBENOB. N? 3.3072BBES. BEND}CALL PRTTHTITHEPOS,3,MODENDI5)IF IIDEV .ES. i) CALL WAIT CALL THENVLITB7ENS.7)700 RETURNCC EXCEPTION HANDLER.C1000 NRITE!900001.1020}1020 FORHAT!/ * * «  HODELLINS OF NON-CNV/ERA DATA REQUESTED. « T .1 7,4);, * * *0* ■ TO TERMINATE "  1 "  TO CONTINUE'}READIKYBfllN,1040)ienorv1040 FORHATIII)IF 11 IENORV M .  0) .AND. IIENSRV .HE. 1)1 SO TO 1000IF IIENSRV .ES, 1) SO TO 420STOPEND

C FILE I.D. ; ASTAT1 STAT-F66 C SUBROUTINE ASTATIIANGLE,N)CC THIS SUBROUTINE CALCULATES SOHHARV STATISTICS FOR THE N ANGULARC VALUES IRADIANS) STORED IN ARRAY !ANGLE",
C MEAN DIRECTION .... THETA=ATAN!S/C)CC WHERE C = AVERAGE COSINE VALUEC S = AVERAGE SINE VALUECC CIRCULAR VARIANCE .... V0=!-S8RT!?C*C*S*S}CC VO HAS A VALUE 1 FOR COHPLETE UNIFORHITY ON THE CIRCLEC 0 FOR A SET OF IDENTICAL ANGLESC INTEGER VDUOUTREAL PRNFST132).PRHFDFI32).PRPPSTI32).PRCVSTI32),PRHDSTI32)REAL NFSTP0I32).NFDFP0I32).PPSTP0I32),CVSTP0!32),HDSTP0!32) INTEGER IHRPRE,1HRPOS,PRPPDF,PPDFPO LOGICAL PRE.POSCOHHON 7PREST7 PRNFST,PRNFDF,PRPPST,PRPPDF,PRCVST,PRHDST,IHRPRE, 1 PRECOMMON /POSST/ NFSTP0,NFDFP0,PPSTP0,PPBFP0,CySTPC^HDSTP0.1HRP0S, 1 PCSDATA VDUOUT 714/DATA VDUOUT 767DIMENSION ANGLE IN.)DATA PI/3,14159265367C=0s=oD C U  1 = 1 .  HC=C+C0S!AN8LE!IHS=S+SIN!ANSLEII)}
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i CONTINUE C=C/N S=S/NTHETA=ATAN2(S,C)VO=l-SSRTiC*C+S*S}WRITE (VDUOUT.IOO) THETA TH£TA=THETA*iSO/PI NRITEIVDUOUT,102) THETA WRIIE I vDUOUT . 1 0 1 } VO100 FGRNATI/' MEAN DIRECTI0N',i3X, = \F10.5,' RADIANS’)101 FORHATI’ CIRCULAR VARIANCE',107 '= ',F!0.5)102 FORHAT 12831.'= '-F10.5,' DEGREES'}IF IPRE) PRCVSTIIHRPRE) = VOIF IPOS.) CVSTPO(IHRPOS) = VORETURNEND

C FILE 1.0. ? BATNOS CNV-F66 CC READS NUMBER OF BATCHES TO BE PROCESSES FROM KEYBOARD. IF C THAN 32 DETERMINES WHICH BATCHES TO BE INCLUDED.C SUBROUTINE BATNOS(BATS,MAX}INTEGER BATS (32} ,HA7.1 YES. INO,ANSWER DATA I YES, I NO / ' f y N V  10 WRITE(6.20}20 FORMAT( HON MANY TRIALS TO BE PROCESSED',1 /.57,‘ENTER A 2 DIGIT NUMBERf E.G. 09'3READ (5,30, ERR-200) MA7 30 FORMAT 112}IF(MA7 .ST, 32 .OR, MAX ,LT. 13SG TO 10IF(MAX «Efi, 32}GO TO 100ITBAT=01 = 160 WRITE(6,70}ITBAT70 FORMAT( BATCH '.13.* TO BE INCLUDED - " Y ”  OR " N " ' )READ(5 f 80,ERR=30y}ANSWER 80 FORMAT (AHIF (ANSWER .EO. INO} SO TO 90 IF (ANSWER ,NE, IYES) GO TO 60 BATSd )=ITBAT 1=1+1 90 ITBAT=ITBAT+6IF(I ,LE. MAX)GO TO 60 RETURN 
100 DO'120 1=1,MAXBATSd )=(!-! 5+6 120 CONTINUE RETURN 200 WRITE(6,210.1210 FORMATd ERROR IN READING NUMBER OF BATCHES TO BE PROCESSED' 1 /,107,'PLEASE RE-ENTER VALUE'3SO TO 10 '300 WRITE(6.310)310 FORMAT( ERROR IN READING ANSWER, PLEASE RE-ENTER')SO TO 60 END

C FILE I.D. ; BSSL TPFL-F66 LAST REV ; 16 FES 87CC COMPUTES BESSEL FUNCTIONS,C FUNCTION BSSL(7)INTEGER IREAL BSSL.)'7T,7TSORT COMMON /ARFACT/ FACT(325 BSSL =1.0 DO 10 1=1,327TSSRT = (X/2}**I/FACT(DIF (7TSSRT .LT, .734684E-39) XTSORT = .734684E-397T = 7TSGRT«2

LESS
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ra 
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BSSL = BSSL r XT JO CONTINUE RETURN END

C FILE LB. ; COSGEN TFFL-FM LAST REV 7 NOV 85CC THIS PROSARH GENERATES A COSINE-BELL NIMDOX FUNCTION AND APPLIES I C TO BATA CONSISTING OF ‘BATNUH* POINTS STORED IN ARRAY DATA (),C SUBROUTINE C0S6EN(DATA,BATNUM)INTEGER DATLEN,BATNUH,TAPNUH,I, J,K REAL DATA(BATNUH),rlJAPLEN,AR6HNTDATA PI 73.141592654/TAPLEN = 0.125DATLEN = BATNUH - ITAPNUH = IFIX(TAPLEN*DATNUH+0.5)ARSMNT = PI/(TAPLEN*FLOAT(DATLEN))DO 100 1=15TAPNUH 
0 = 1 - 1DATA(I) = 0.5*11.O-COS(FLOAT(J)*ARGHMT)J*BATA(I)100 CONTINUEK = BATNUH - TAPNUH + 1 DO 200 I=K,BATNUH 3 = I - 1DATA(I) = 0.5*(1.O-COS(FLOAT(DATLEN-J)&ARSMNT))*DATA(I)200 CONTINUERETURN END

C FILE I.B. ; BATIN CNV-FSB LAST REV ; 10 HAR 87
SUBROUTINE DATIN(IBATNO,I4DATA,RNAHE,SF1,SF2,SAHRAT,BFILDPI

THIS SUBROUTINE READS DATA FROM A FILE SPECIFIED BY ARSUHENT RNAHE. THE BATCH SPECIFIED IS READ INTO I DATA. THE PROGRAM ALSORETURNS THE SCALE FACTORS SF1. SF2, AND THE SAMPLE RATE (SAHRAT).SETTING DFILOP = -1 CLOSES ANY OPEN FILE AND RETURNS.
INTEGER I4BATAI1024).RNAHE(20),TI!LE(36).NHE(S)INTEGER NBAT,ISATNO.IAA1(4),I.NAXBAT,IL INTEGER RETCLUNITAS.UNITBN.NPT INTEGERS FHODEA^HQOEB.I2DATA(1024)LOGICAL DFILOP REA) DEV ICEREALMS NAME.FTYPEA.FTYPES,OPTSAS(4),OPTSBN(4)COMMON /SHPfRS/ TMPFRSDATA UNITAS.UNITBN.NPT 710,11.1024/DATA FTYPEA.FTYPEB / ‘HEADER* BINARY*/DATA FHODEAjFHSDEB.DEVICE / 'Cl'.'C4*,'DISK'/DATA OPTSAS / ' ( y R E C F H Y F y }  /DATA OPTSBN /'(* 'R E C F M ' V S  ,')*/IF (DFILOP) GO TO 1100 CALL MAMCBN(NAME.RNAHE)CALL FILEDF(RETCD.UNITAS,DEVICE.NAME,FTYPEA,FHODEA,OPTSAS)READ(10.3000,END=I300,ERR*1900)NHE,SF1,3F2 READ(10,3010IEND=1800,ERR-1900)HAXBAT 'READ(10,3020.END=1300,ERR=1900)TITLE DO 234 IL=1,4IAA1(ILJ=TITLE(IL*20)234 CONTINUECALL DECODE!IAA1,SAHRAT)TrfPFRQ = SAHRATCALL FILEDF(R£TCD,UNITBN,BEVICE,NAME,FTYpEB,FMOSEB,OPTSBN) DFILOP = .TRUE,1100 READ!11,ENB=1800,ERR-1900)NBATREAD(11,ENB=1800.ERR-1900)(I2BATA(I),1=1,1024)IF(NBAT ,N£, IBATNO)00 TO 1100 NBAT=NBAT*1CALL I2T014(I4DATA,I28ATA,NPT)RETURN



1800 KRITE«& f1810)RNAHE1810 FORHAT(*** END OF FILE *,20A1,' *«')STOP 3
1900 mriteib,mo.)ibatnq.rname1910 FORMAT!’*** ERROR READINS BATCH M S . *  FORM FILE ',20A1,' *«') STOP 4 3000 F0RMAT(6A2,2F8.6)3010 FORMAT114)3020 FORHAT(36A2)END

C FILE I.D. J DECODE C0HM-F66 LAST REV ; 23 SEP 8sCC THIS SUBROUTINE PERFORMS THE FUNCTION CARRIES OUT BV THE 'DECODE C COMMAND IN PRIME FORTRAN, IT DOES SO USING A CALL TO AN IBM SYSTEMS C SUBROUTINE jC CALL CORE(BUFFER,LENGTH)C 'BUFFER' IS AN ARRAY OF 'LENGTH’ BYTES, IT CONTAINS THE CHARACTER C (FORMATTED) REPRESENTAION NHICB IS TO BE CONVERTED TO INTERNAL BINARY C (UNFORMATED) REPRESENTATION, FOR FURTHER DETAILS SEE SCP CS DOCUMENT C 'V2/1.6 VM/CMS SYSTEMS SUBROUTINES' JAN 1986 EDITION. N.B. THIS IS C NOT A GENERAL PURPOSE REPLACEMENT FOR THE PRIME COMMAND,C SUBROUTINE DECODE(IAA1,SAHRAT)INTEGER IAAH4) jITEMPd)REAL SAHRATCC CONVERT FROM A2 TO A4 CHARACTER FORMAT,C CALL LBMOvE(IAA1(11,1,1TEMP(1),1,2)CALL LBMOVE(IAA1(2),lfITEMP(l),3,2)CALL LBMOVE(IAA1(3),1,1TEMP(2),1,2)CALL LBMOVE(IAA1(4),1,ITEMP(2),3,2)CALL CORE 11TEMP,8)READ(5,10)SAHRAT 10 FORMAT(FS,4)RETURNEND

C FILE I.D, : DEVICE 0AR-F66 LAST REV ? 21 NOV 86C SUBROUTINE DEVICE(IDEV) ‘CC THIS SUBROUTINE NOMINATES THE GRAPHICS DEVICE TO C BE USED FOR PLOTTING GRAPHS,C COMMON /DEVNUM/ IDEVNO 20 NRITE(6,40)40 FORMAT(" ENTER 1 TO VIEN, 2 FOR C1051 OR 9 FOR NO BINO-F ACTION ) READ(5,60,ERR=100)IDEV '60 FORMAT(IIIIF((IDEV ,NE, 1) .AND, IIDEV ,NE, 2) .AND, (IDEV ,NE, 9))S0 TO 200IF (IDEV ,ES, I) CALL T4010IF (IDEV .ES. 2) CALL C1051NIDEVNO = IDEVRETURNCC ERROR MESSAGES.C 100 NRITE(6,120)120 FORMAT( *** ERROR IN READING DEVICE NUMBER, RE-ENTER ***’)GO TO 20 200 WRITE(6,2201IDEV220 FORMAT( *** INVALID DEVICE CODE, IDEV = ',12.' *«'}SO TO 20



C FILE LB, ; FILTER TPFL-F6S LAST REV ; 19 DEC 06C SUBROUTINE FILTERINFTSJT)DIMENSION XTINPTS.).DATOUT11024)?B!123}REAL HLOGICAL SOTEH INTEGER NTFILE120)INTEGER*2 FMOBE INTEGER RETCD,UNIT REAL DEVICE REALMS FNAME,FTYPEBATA UN IT-DEV ICE, FTYPE, FHODE /9, ‘DISK ‘, ‘FILTER' , ‘Cl 7 DATA FNAME / ’BP1L217 DATA SOTEH / .FALSE. 7 IF1G0TEMJG0 TO SOCALL FILEDF1R£TCD,UNIT,DEVICE,FNAME,FTYPE,FHODE)REMIND 9 READ 19,10)10 FORMAT!/}READ 19,15)ICASEis f o r m a t ^  ,121C CASE 1 = ODD LENGTH. SYMMETRICALC CASE 2 = EVEN LENGTH, SYMMETRICALC CASE 3 = ODD LENGTH, ANTI-SYMMETRICALC CASE 4 = EVEN LENGTH, ANTI-SYMMETRICALISGN=!IF(ICASE .EO. 3 ,0R, ICASE ,EB, 4)ISGN=-1 READ 19,20}N 20 FORMAT 1162,14}N2=1N+1}72 DO 50 1=1,N2 READ 1y 5 40)H 11}40 FORHAT192,E15.8)B 1N* t-I}=H iI}*FLOATIISGN}50 CONTINUE eOTEN=,TRUE,60 DO 30 I=1,NPTS 3T0R£=0,IF IN -LT. I}SO TO 70 STORE=XT!I}SO TO 30 70 DO 75 K=i,NSTORE=STORE + XTlI-K-f-1} *H1K>75 CONTINUEDATOUT1I)=STORE SO CONTINUEDO 35 I=1,NPTS X T11}=DATOUT11}35 CONTINUERETURN END

C FILE I.D. » GETNAM CNV-F66 LAST REV ,* 1 HAY 37CC THIS PROGRAM READS A FILE NAME FROM THE USER, IT IS ENTERED INTO C ARRAY NAME!) IN A1 FORMAT,C SUBROUTINE GETNAM1NAME}INTEGER NAME 120},ANSH£R,IYES,INO,1 BATA IYES.INO / ‘V y r /10 NRITE16,20}20 FORMAT I1 PLEASE ENTER NAME OF FILE TO BE PROCESSED’,1 /,10X,' - A MAXIMUM OF 8 CHARACTERS'}READ 15,40.ERR=100)1NAME1D,1=1,8}40 FORMATiBAi}70 N.RITE 16,30) INANE 11} ,1=1,3}80 FORMAT!1 PLEASE CONFIRM FILE NAME ; ' 3A1,1 7,10.2 ‘ - ENTER ’7 ”  OR "N'“JREAD 15.90,ERR=200}ANSNER 90 FORMATIA1)IF 1ANSNER .ES. INQ) GO TO 10IF 1ANSNER ,NE, IVES} SO TO 70CALL NAMTSTINANE}
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RETURN 100 WRITE 16, 110)110 FORMATC ERROR IN READINS FILE NAME, PLEASE RE-ENTER DETAILS') SO TO 10 200 HRITE16,210)210 FORHATV ERROR IN READINS ANSNER, PLEASE RE-ENTER')SO TO 70 END

C FILE 1.0. ; HRJNIT C0MH-F66 LAST REV j 2 HAR 87CC THIS PROGRAM UNIT ASSIGNS THE HARMONIC NUHNERS TO BE INVESTIGATED C ACCORDING TO W H I C H  TYPE OF FILE IS BEING PROCESSED, VIZ. CNV OR ERA C FILE.
C SUBROUTINE 'HRINIT1NUHHRH,HRHTAB.FNAME)INTEGER CNVHRH.ERAHRH.NUHHRH,FNAME120)INTEGER CNVTAB132),ERbTAB!32j,HRHTAB!32)INTEGER ISIVALLOGICAL CNVFLS,ERAFLSCOMMON /FLAGS; CNVFL6,ERAFLS,ISIVALCC INITIALISATION FOR CNV PROCESSING 
C DATA CNVHRN 714/DATA CNVTABI1),CNVTABI2).CNVTAB13) 74.6.8/DATA CNVTA8I4),CNVTABI5),CNVTABI6) 712,16.20/DATA CNVTAB!?),CNVTABIS).CNVTAB19) 724)28,327DATA CNVTABUO),CNVTAB!ll),CNVTA8li2) 748,64,807 DATA CNVTAB113).CNVTAB114) 796,1127 C DATA CNVTAB(11,CNVTAB(2),CNVTAB13) 716,20,367C DATA CNVTABI4),CNVTAB15),CNVTAB16) 756.76,967C DATA CNVTAB17),CNVTAB18),CNVTAB(9) 7124.144.1767C DATA CNVTAB410/,CNVTAB111),CNVTAB112) 7196,208,2447C DATA CNVTABU3),CNVTABU4)' 7244,2727CC INITIALISATION FOR ERA PROCESSING C DATA ERAHRM 7127DATA ERATAB11),ERATAB12),ERATAS13) 716,24,367 DATA ERATAB14),ERATAB15).ERATAB16) 764,72,927 DATA ERATAB17),ERATAB18),ERATAB19) 7116,156,1767 DATA ERATAB110),ERATASllI){ERATAS!12) 7204,224,2407 C DATA ERATAB1135.ERATAB114) 7212,2327
CC ASSIGN HARMONICS TO BE TESTED ACCORDING TO FILE BEING PROCESSED.
C IF 1CNVFLSJ NUHHRH = CNVHRH IF ISRAELS) NUHHRH = ERAHRM DO 100 1=1,NUHHRHIF 1CNVFL6) HRMTAB1I) = CNVTAB!I)IF ISRAELS) HRHTABII) = ERATAB!I)100 CONTINUE RETURN END

C FILE I.D. ; I2T0I4 C0HH-F66 CREATED ; 29 JAN 87C LAST REV ; 29 JAN 87CC CONVERTS INTEGERS DATA TO INTEGER BATA I 2- TO 4- BYTE ) FORM. SUBROUTINE I2T014114DATA.12BATA,NPT)INTEGER I4DATAU024),NPT,VDUOUT INTEGER*2 I2DATAU024)DATA VDUOUT 767IF IINPT .LE, 0) .OR. INPT .GT. 1024)) GO TO 9000 DO 100 1=1.NPTI40ATA1I) = I2DATA1I)100 CONTINUE RETURN9000 NRITE!VDUOUT,9020)NPT9020 FORHAT 17,’ *** ERROR IN SUBROUTINE I2T0I4 *«'./



1 ,4X.'VALUE OF HPT = \-I8) STOP'END

C FILE 1.0, ; IBVRES 0AR-F66 LAST REV ; 27 APR 87C INTEGER FNAME120),CBANAN.BATNRS(32),SSR,DEL,SLINE INTEGER TBLEN.BATNO.STATuU,IOFLASINTEGER PR£S,P08S?ikv,ISTART,IFILT,ISi.IS2.ITL,ITRIAL.L8TDLNINTEGER EYETYP,HRHTA8(32} .ANSteR.MINTYF.NBAf5MBbTI.NUMfiRMINTEGER PREPOS,HRMNIC,VBUuUT,KYBSIN,IMEANINTEGER I ,K,L1 ,N.MP,Ml.ISIVAL.IEPOCHINTEGER IHAH,IHRPRE,IHRPOS.PRPPBF.PPBFPOLOGICAL PRE,POS,HPLFLB.STAFL8,CNVftS,ERAFLG,OPNFR,BFILOP5MFiLOPREAL BATA 11024},ALPHA,tCBRR.P15RHEAN.SFifSF2,SAHRAT,STDEVREAL SUM,SUMS8,fSTAT ?NINVAL h 024)<HISUH1fHISUM3REAL i m n m h .ANGLE 132),RAB(32) ,RABBIR256,32)REAL PRNFSTI32).PRNFBF132}fPRPPSTI32).PRCVSTI32)?PRNBSTC32)REAL MFSTP0(32),NFBFP0(32),PPSTP0(32}5CVSTP0(32},MBSTP0(32}
COMPLEX TBATAm i l )>RESi 11024,32) .Si41024.321REAL*8 FTYPEINTEGERS FHODECOMMON /IFLSEL/ IFILTCOMMON /TRLNUM/ BATNOCOMMON /PREST / PRNFST, PRNFBF, PRPPST, PRPPBF, PRCVST, PRMBST, I HRPRE.I PRE 'COMMON /POSST/ NFSTPO,NFBFPO.PPSTPQ,PPBFPO ,CVS T PO,MBS TPQ,IBRPOS,I PCSCOMMON /EPOCH/ IEPOCH COMMON /FLAGS/ CNVFLG.ERAFL6.ISIVAL COMMON /BTFLST/ DFILOPCOMMON /NFILST/ NFILOP.NISUMl.NISUH3.WNVALDATA N.CHANAN.PI /1024,4,3.141592654/BATA PkES.POSS.ISI,IS2,BtL /342,472.407,532,125/BATA TBLEN.LGTBLNjNP.SSR /1024,10.64,1/BATA VDUOUT,KYBBIN,STATOU /6,5.14/DATA MPLFLG,OPNFIL /.FALSE,,,FALSE,/DATA FTYPE,FMOBE /'STATEILE V  C 7DFILOP = .FALSE,NFILOP = .FALSE,ITL = TDLEN/2 + 1 Ni = NP*SSR DO 20 1=1,20 FNAMEi1} = 0 20 CONTINUE 50 CALL GETNAMIFNAME}CALL HRINIT(NUHHRM,HRHTAB,FNAME)IF (NUMHRM .ST. 325 60 TO 4000IF ISRAELS .OR, (CNVFLS .AND, (ISIVAL ,EQ. !))) SO TO 0055 NRITEIVDUOUT,SO)SO FORMAT I* PROCES POST STIMULUS EPOCH 1 OR 2 - ENTER NUMBER'}READ (KYBBIN.70.ERR-55)IEPOCH 70 FORMAT(II) ' 'IF ((IEPOCH ,ME. 1) .AND. (IEPOCH ,NE. 2)5 SO TO 55 PRES = 22IF (IEPOCH .EO. 1) POSS = 288IF (IEPOCH ,E8, 2) POSS = 490IS! = 219 IS2 = 719 BEL = 500 NP = 216 Ml = NP*SSR SO CALL BATNOS(BATNRS,MBAT)CALL DEVICE(IDEV)100 NRITE(VDUOUT.110}110 FORMATC (if FOR OA REMOVAL (0) NOT TO DO SO")REAB(KYBBIN.*,ERR-100)ECORRCC SET EYETYP = 0 TO ENSURE BATA REAB FROM FILES BY MEANS OF SUBROUTINE C NROARM C
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EYETYP = 0IF (ECORR .ES. 0.OJ SO TO 200 ISO WRITE IVDUOUT,160}160 FORMAT I' RECURSIVE (1) OS NON-RECURSIVE(0)*)READ(KYBSIN.5020,ERR-150}EYETYP 2O0 WRITE(VDUOUT.210}210 FORMAT(’ (I) TO FILTER , (0) OTHERWISE')READ(KYBBIN,5020,ERR-200}IFILT 250 WRITE(VDUOUT.2601260 FORMAT(' PERFORM BASELINE CORRECTIONS')READ(KYBBIN,5020,ERR=250)BLINE 300 WRITE(VDUQUt,310f310 FORMAT(' "O'* FOR TUKEY WINDOW. ” 1 "  FOR KAISER-BESSEL WINDOW', 1 /.' " 2 "  FOR MJN TAPER2 MINBOW'}REAB(KYfiDIN,5020,ERR-300)WINTYF312 IF (WINTYF ,NE. I) SO TO 320 WRITE(VDUOUT,315}315 FORMAT(‘ ENTER ALPHA VALUE'}READ(KYBBIN,318,ERR=3I2)ALPHA313 FORMAT(F5,0}320 WRITE(VBUOUT,330)330 FORMAT(' REMOVE MEAN FROM WINDOWED DATA " 1 "  OR NOT " O ' " }REAB(KYBBIN,5O20,ERR=32O)IMEAN 340 WRITE (VDUOUT, 3501350 FORMAT(' TYPE OF MODELLING REQUIRED /.1 4X,"  '0' - FOR NO MODELLING * ,/,4L " 1 0 "  FOR STRAI6HT LINE ‘ <2 ' MODELLING',/.6X.'ENTER AS A 2 BISIT NUMBER, E.S, 09')READ(KYBBIN,36O,ERR=340)IMODEL360 FORMAT(12)400 WRITE(VDUOUT,410)410 FORMAT(' STATISTICS TO BE INCLUDED, ENTER (T) FOR YES, (F)',1 ' FOR NO'}READ (KYBBIN, 420, ERRM0O) STAFLS 420 FORMAT(LI)IF ((.NOT.(STAFLS)) .AND. (.NOT,(.NOT.(STAFLS)}}} SO TO 400IF (IFILT ,EQ, 0} PRES = PRES - 21IF (IFILT .EO. 0) POSS = POSS - 21IF (IFILT .EQ, 1) IS! = IS1 ♦ 21IF (IFILT ,E8. 1) IS2 = IS2 + 21BEL = BEL - 48CC THESE PARAMETERS ARE GOVERNEDC BY THE CNV PARADIGMC IS1 IS THE SI STIMULUSC IS2 IS THE S2 STIMULUSC PRES IS THE START OF THE PRE. STIM. DATA TO BE ANALYSED,C POSS IS THE START OF THE POST STIM, BATA TO BE ANALYSED,C ALL VALUES ARE IN TERMS OF 'SAMPLE NUMBER' 1 TO 1024CC NOW THE ITERATIVE BITC DO 1200 ITRIAL=1,HBA7 BATNO=BATNRSilTRIAL)WRITE(VDUOUT.800}BATNO 800 FORMAT(' PROCESSING BATCH *14)IF (EYETYP ,ES, 0) CALL NR0bRM(FNAME,BATN0,CHANAN-3,BATA,SF1?1 SF2,SAMRAT,tCORR,IMODEL}IF((ECORR .EQ, 1,),AND.(EYETYP .ES, DICALL RCOARM(FNAME,BATNO, 1 .BATA,IMODEL.MPLFLG)IFdFILT ,E8, I)CALL FILTER(N,DATA)CC PRE STIMULUSCC COPY BATA FOR PCA PROCESSING.C IBES = I SI - 1 + 48 IEND = IS2 - I BO 320 1=1.DELPCADAT (1 f ITRIAL) = BATA(DIBES)*1,E6 820 CONTINUEISTART=PR£S-1
11=0BO 900 I=1,N1,SSR Ll=LDlTRBAT (LI} =BAT A (I+IST ART)
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CONTINUEIF (WINTYF ,E§. OCALL TAPCOS(TRBAT,NP,IHEAN3IF (WINTYF ,E§, I)CALL TAPKAHTRBAT^P,ALPHA,IHEAN)IF (WINTYF .EO. 25 CALL TAPER2 (T RDAT, NP, I MEAN!BO 950 1=1 JBLENTBATA(I}=CMPLX(0.,0.5 IF(I .LE, HP)TBATm I5 =CMPLX(TRBAT(I).0,}CONTINUE CALL NL0GN(L8TBLN,TBATA,-I.)
* «  STUDY HARMONIC **t
BO 1000 IHAR=1,NUHHRH HRMNIC = BHMTAB(IHAR)PRESi(IHAR,ITRIAL)=TBATA(HRHNIC+1)*2. /FLOAT(NP)CONTINUE

POST STIMULUS ISTART=P0SS-1 
L1=0BO 1050 I=1,N1,S8R L K l + I  'T RDAT(11)=BATA(KISTART)CONTINUEIF (WINTYF .EO. OCALL TAPCOS (TRBAT .NP, I MEAN)IF (NINTYP ,E8, 1JCALL TAPKAI(TRBATINP,ALPHA,IMEAN)IF (WINTYF ,ES, 2)CALL TAPER2(TRBAT> , IHEAN)DO 1100 1=1 JBLENTDATA(II=CMPLX(0.,0,)IFII -IE, NP)TBATA(I)=CMPLX(TRBAT(I),0,}CONTINUE CALL NLOGN([&TDLN,TBATA,-1J  BO 1150 IHAR=i.NUHHRH HRMNIC = HRHTAB(IHAR}SI(IHAR,ITRIAL)=TBATA(HRMNIC*!}*2./FLGAT(NP}CONTINUE CONTINUE CALL SEVENSCC CREATE FILE CONTAINING DATA FOR PCA PROCESSING.C BO 1280 ISAHP=1,BEL BO 1260 ILINt=i,4K = (ILINE-1)*8 * 1 L = K + 7WRITEi'27,1240) (PCABAT (ISAMP,ITRIAL) ,ITRIAL=K,L)1240 FORMAT(8(F8.3,1*}}1260 CONTINUE1280 CONTINUEIF (.NOT.(STAFLS)) GO TO 3100 WRITE(STATOU,1300)(FNAME(I).1=1,8)1300 FORMAT(201 /DATA FILE = ',8X,8a I)WRITE(STATOU,!320)MBAT 1320 FORMAT(20L-NUMBER OF BATCHES = ',12) ypiTp/ATATfiH t W i i f t P  

1340 FORMAT(20X,"iuMBER OF BATA POINTS = ',145 WRITE(STATOU,!360)TBLEN 1360 FORMAT(20X,'FFT LENGTH = ',14/ POINTS')
up J Jf {STATnij j W i i PRF-q

1380 f o r m a t(20/ 'Pr e-s t imu lu s an a l y s e d d a ta e x ten ds fr om p o i n t *.i4)WRITE(STATOU.1400)POSS 1400 FORMAT(20X, 'POST-STIMULUS ANALYSED DATA EXTENDS FROM POINT M 4 )  IF ((ECORR .ES, 1.) .AND. (EYETYP .EO. 0)) WRITE(STATOU,1420)IF ((ECORR .ES. 1.) .AND, (EYETYP .ES. D )  WRITE(STATOU.1440)IF (BLINE .ES. 1) WRITE(STATOU,14605 IF (IFILT .EO. 1) WRITE(STATOU.1480)IF (WINTYP .EO. 0) WRITE(STATOi), 1500)IF (WINTYP .ES. 15 WRITE(STATOU,1520)ALPHAIF (WINTYP ,EQ, 2) WRITE(STATOU,1540)IF (IMEAN .£0. 1) WRITE(STATOU,1560)IF (IMEAN .EO. 0) WRITE(STATOU,1570)1420 FORMAT(20X,'NON RECURSIVE 0A RtMOVAL APPLIED'}1440 FORMAT(20X,'RECURSIVE OA REMOVAL APPLIED')1460 F0RHAT(20I,'BASELINE CORRECTION APPLIES’)1480 FORMAT(20X,'FILTERING OF BATA PERFORMED')

900

950151

1000

1050

1100

1150
1200
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1500 FORMAT(20X, '25 PER-CENT TUKEY WINDOW APPLIED')1520 FORHAT(20/i'KAISER-BESSEL WINDOW APPLIED WITH ALPHA = ',F8,4)1540 FORHAT(20X,'MJN 25 PER-CENT "TAPER2" TUKEY WINDOW APPLIED')1560 FORHAT(20X.’MEAN OF WINDOWED DATA REMOVED *)1570 FORMAT(20X,'MEAN OF WINDOWED DATA INCLUDED')WRITE(STATOU,15B0)1580 FORMAT!///)DO 1650 IHAR-1,NUHHRH IHRPRE = IHAR IHRPOS = IHARHRMNIC = HRHTAB(IHAR)DO 1600 K=1.NBATANGLE IKI=AT AN21AI MAS (PRESI (IHAR,?:)} .REAL (PRES! (IHAR,K)) 5 RAD(K)=CABS(PRESI(IHAR,K)) .1600 CONTINUEWRITE(STATOU,1610)HRHTAB(IHAR)1610 FORMAT(20X.’ANGULAR STATISTICS FOR PRE-STIMULUS HARMONIC ',13)PRE = .TRUE,POS = .FALSE,C STATISTICAL TESTS FOR PRE-STIMULUS EPOCH CALL ASTAT1(ANGLE,MBAT)CALL VSTAT3(ANGLE,RAD,MBAT)CALL VSTAT2(ANSLE,RAD,MBAT)WRITE(STATOU,1620) '1620 FORMAT(/////)DO 1630 K=l,MBATANGLE (KJ=ATAN2(AIMAB(S1(IHAR,K)),REAL (SI (IHAR,K)))RAD (?:' I =CABS (SKI HAR, K))RADDIF(IHAR,K)=CABSiSl (IHAR,K) )-CABS(PRESI (IHAR,?;))1630 CONTINUEWRITE(STATOU,!635)HRHTAB(IHAR)1635 FORMAT(20X,'ANGULAR STATISTICS FOR POST-STIMULUS HARMONIC 'I .13)PRE = .FALSE.POS = .TRUE.C STATISTICAL TESTS FOR POST-STIMULUS EPOCH CALL ASTAT1(ANGLE,MBAT)CALL VSTAT3(ANGLE,RAD,MBAT)CALL VSTAT2(ANGLE,RAD.MBAT)WRITE(STATOU,16401 1640 FORMAT(////>1650 CONTINUEWRITE(STATOU,2100)2100 FORMAT!//,' RESULTS OF A PAIRED T-TEST ON THE PRE-POST RADIUS LENGT *HS' ///I MBATi=HBAM DO 3000 IHAR-1,NUHHRH SUM=0.DO 2500 1=1,MBATSUM=SUM+RADDIF(IHAR,I)2500 CONTINUERMEAN=SUM/FLOAT(MBAT)SUMSS=0,DO 2600 1=1,MBATSUMSS=SOMS§*(RABBIF(IHAR,I)-RMEAN)»(RABBIF(IHAR,I)-RMEAN) 2600 CONTINUESTDEv=S8RT(SUMS8/FL0AT(MBATi))TSTAT=RM£AN/(STDEV/SORT(FLOAT(MBAT)))PPSTPO(IHAR) = TSTAT PPBFPO = MBATIWRITE(STATOU,27!0)HRMTAB(IHAR),RMEAN,STDEV,TSTAT,MBATI 2710 FORMAT(' HARMONIC= ’,I3,5X.'MEAN= ',£14.8,5X,I 'ST, DEV- ’,E!4.8,5X,*T= *;F8.4,5X, WITH',5X,13,' OF')3000 CONTINUEPREPOS = 0CALL STPRNT(PREPOS,NP,TDLEN,PRES,POSS,ECORR.BLINE,IFILT,1 WINTVP,ALPHA,NUHHRH,HRHTAB,MBAT,BATHRS,FNAME.EYETYP,IMEAN,2 PRNFST,PRMFDF,PRPPST,PRPPDF,PRCVST,PRMDST,IMODEL I IOFLAS = 1CALL STATI0(PREPOS,NP,TDLEN,PRES,POSS,ECORR,BLINE,IFILT,1 WINTYP.ALPHA,NUHHRH,HRHTAB,MBAT,BATNRS,FNAME.EYETYP,IMEAN,2 PRNFST,PRNFDF,PRPPST,PRPPDF,PRCVST,PRMDST,IMODEL,3 I0FLA6,FTYPE,FMODE,OrNFIL) 'PREPOS = 1CALL STPRMT(PREPOS,MP,TDLEM,PRES,POSS,ECORR,BLIME,IFILT,
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1 n i n t y p^ l p h a.n u m h b h.h r h t a b ^ b a t .b a t n r s/ n a h e .e y e t yP jIn e a n ,2 NFSTPO 5 NFDFPO , PPSTPOPPBFPO - CVSTPO. HDSTPO, J HODEL )CALL s t a t i d(p r e p b s,n p ,t b l e n,p r e s ;p q s s .e c g r r,b l 1n e ,i f i l t,1 HINTYP, ALPHA, NUHHRH.HR8TAB - NBAT, BATNRS, FNAME I EYETYP f IMEAN,2 NFSTPO,NFDFPO.PPSTPu,PPBFPu,CVSfPO,MBS IPO,IMODEL, '3 IOFLAS,FTYPE.FHODE.OPNFIL)3iOO STOPC ERROR MESSAGES 4000 HRITEIVBU0U7,4020)4020 FORMAT (2X.’H *  ERROR IN PROGRAM UNIT IDvRES ***'}HRIIE IVDUOUT,4040)NUHHRH 4040 FORHAT(5X,'NUHHRH = ',13.' EXCEEDS HRHTAB DIMENSION')GO TO 3100 C MULTI-REFERERENCEB FORHAT STATEMENTS.5020 FORMAT ill)END

C FILE I.D, ; INPUT PL0T-F66 LAST REV ; 18 HAR 87CC 5 JON 87 j ADDITION OF CODE TO SKIP PSD QUESTIONS IF NOT REQUIRED CC THIS SUBROUTINE INTERROGATES THE USER FOR DESIRED PROCESSING OPTIONS, C SUBROUTINE INPUT C FNAME,IDEV.ECORR,BLINE.IFILT,PLOTAN.BATNRS<1 NUH8AT,NiNBflN.PLfyPE,EYETYP,L06TYP.IMEAN,'2 IMODEL,ALPHA)INTEGER FNAME1201.PLOTAM 14).BATNRS132)INTEGER IDEV.BLINE.IFILT,NUHBAT,HINBOH INTEGER ANSNER,IYE$.INO,PLTYPE.LGGTYP.EYETYP,IHEAN INTEGER VDUOUT,KYBBIN,IHODEL,ISIVAL,IEPOCH LOGICAL CNVFLG.ERAFL6 REAL ECORR,hLPHADATA IYES.INO,VDUOUT,KYBBIN / T , ‘N\6,5/COMMON /EPOCH/ IEPOCH COMMON /FLAGS/ CNVFLG,ERAFLG,ISIVAL 100 NRITE(VDUOUT,110)110 FORMAT (///)CALL GETNAMIFNAME)IF (ERAFLS .OR. (CNVFL6 .AND, (ISIVAL .ES. 1))) SO TO 118 112 NRITE(VDUOUT,114)114 FORMAT(' FOR 4S ISI CNV PROCES POST STIMULUS EPOCH 1 OR 2 \1 ■' - ENTER APPROPRIATE NUMBER')READ(KYBDIN.1020)IEPOCHIF ((IEPOCH',NE, 1) .AND. (IEPOCH ,NE, 2)) GO TO 112 lie NRITE(VDUOUT,120)120 FORMAT(' DO YOU NANT TO DISPLAY ON TEKTRONIX (0) OR CALCOMPCI)') READ(KYBDIN,1020,ERR=118)IDEV 140 NRITE(VBUBUf,150)150 FORMATC DO YOU NANT EYE MOVEMENT CORRECTIONS - " Y "  OR " N * " )  READ(KY8BIN,1040,ERR-140)ANSNERIF ((ANSNER ,N£. IYES) .AND, (ANSNER .NE, INO)) SO TO 140 ECORR = 0,0IF (ANSNER ,£§. IYES) ECORR = 1,IF (ECORR .EO. 0.) GO TO 230 170 NRITECVDUOUT,180)180 FORMAT*' NON-RECURSIVE “ 0 "  OR RECURSIVE " 1 "  OA REMOVAL )READ(KYBDIN,1020,ERR=170)EYETYP IF ((EYETYP ,NE. 0) .AND, (EYETYP .NE. !)) GO TO 170 200 NRITECVDUOUT.210)210 FORMAT(' TYp£ OF MODELLING REQUIRED -',/,1 4X,"  *0" FOR NO MODELLING1,/^)''" W  ’ FOR STRAIGHT LINE',2 ' MODELLING* /,«, 'ENTER AS 2 DIGIT NUMBER, E.G. 04')REAB(KYBDIN,220,fcRR=200)IMODEL220 FORMAT(125IF ((IMODEL .NE, 0) .AND. (IMODEL .NE, 10)ISO TO 200 230 HRITECVDUOUT,240)240 FORMAT(' DO YOU NANT BASELINE CORRECTIONS - " Y "  OR " N " ' )READ(KYBDIN,1040,ERR=230)ANSNERIF ((ANSNER .NE, IYES) .AND. (ANSNER .NE, INO)) GO TO 230 BLINE = 0IF (ANSNER ,£S, IYES) BLINE = 1 280 SRITE(VDUOUT,270)270 FORMATC' DO YOU NANT FILTERING - " Y “  OR " N " *)
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READ (KYBBIN,1040,ERR=260) ANSNERIF C(ANSNER .NE, IYES) .AND. (ANSNER .NE. INO)) SO TO 280 IFILT = 0IF (ANSNER ,£§. IYES) IFILT = I NRITEIVDUOUT,290)290 FORMAT(' REQUIRED PLOTTING OPTIONS (ENTER " Y "  O R " N " )  s ’)300 NRITE(VBU0UT,3iO)310 FORMAT(' AVERAGED CNV)READ(KYBDIN,1040,ERR=300)PLGTAN(1)IF ((PL0TANC1) .NE. IYES) .AND, (PLOTAN(i) .NE, INO)) SO TO 300330 NRITE(VDUOUT,340)340 FORMAT(' HINBONEB DATA')READ(KYBDIN,1040,ERR=330)PL8TAN(2}IF ((PL0IANC2) ,NE, IYES) .AND, (PLOTAN(25 .NE, INO)) SO TO 330380 NRITE(VDUOUT,370)370 FORMAT-:' PBNER SPECTRAL DENSITY')READ(KYBDIN,1040,ERR=380)PLOTAN(3)IF ((PL0TANC3) ,NE, IYES) .AND. (PL0TAN(3) .NE, INO)) GO TO 380 IF CPL0TANC3) .ES. INO) SO TO 500 390 IF (PL0TANC3) ,E0. IYES) NRITE(VDUOUT,400)400 FORMAT- ‘ LINEAR " 0 "  OR LOGARITHMIC 1 "  PLOT’)IF (PL0TAN(3) ,E8. IYES) READ(KYBDIN,1020,ERR=390)PLTYPE IF ((PLTYPE .NE, 0) .AND, (PLTYPE .NE. 1)1 SO TO 390 420 IF (PLTYPE ,E0, 1) NRITE(VDUOUT,430)430 FORMAT(' RELATIVE " 0 "  OR ABSOLUTE " 1 "  VALUES’)IF (PLTYPE .ES, 1) READ(KYBDIN,1020,ERR=420)L0STYP 500 NRITE(VDUOUT,510)510 FORMAT(' PLOT PRASE ANGLE V. FREQUENCY, ” Y "  OR " N " ' )READ (K'YBD IN, 1040. ERR=500) PLOT AN C 4)IF CCPL0TANC4) .NE. IYES) .AND, (PLOTAN(4) .NE, INO)) SO TO 500 CALL BATNOS(BATNRS,NOMBAT)540 NRITE(VDUOUT,550) '550 FORMAT(' DO YOU NANT C0SINE-8ELL (0). OR KAISER-BESEL (1) NINDON*) NRITE(VDUOUT,580)580 FORMAT(4X 'RECTANGULAR NINDON (8)')NRITE(VDUOUT,570)570 FORMAT(4X.'INVESTIGATE NINDON ITSELF (9)')NRITE(VDUOUT,580)580 FORMATC4X, 'USE MOM "TAPER2" NINDON (2)‘)READ(KYBDiN,1020,ERR=540)NINDONIF ((NINDON ,NE. 0) .AND. (NINDON .NE. 1) .AND, (NINDON .NE. 8)1 .AND. (NINDON .NE. 9) .AND, (NINDON .NE, 2)) GO TO 540 585 IF(NINDON .NE. 1) SO TO 830 NRITE(VDUQUT.590)590 FORMAT(' ENTtR ALPHA VALUE")READ(KYBDIN,595,ERR=5S5)ALPHA 595 FORMAT(F5.0J 830 NRITE(VDUOUT,840)840 FORMATC REMOVAL OF MEAN FROM NINDONED DATA",1 / ’ " 0 ”  FOR NO. " 1 "  FOR YES')READ (K YBiil N, 1020, ERR-630) IMEANIF (iIMEAN .NE. 0) .AND. (IMEAN ,NE, D )  80 TO 830NRITE(VDUOUT,860)880 FORMAT-:///,‘'PLEASE CONFIRM THE FOLLOWING RE8UIREHENTS s') 
ml TE (VDUOUT, 870) (FNAME (I) ,1=1,8)870 FORMAT(’ FILL TO BE PROCESSED j ’.8A1)IF (CNVFLS .AND, (ISIVAL ,E8, 4)) NRITE(VDUOUT,675)IEPOCH 675 FORMAT(' PROCES POST-STIMULUS EPOCH M 2 )IF (IDEV ,E8, 0) NRITE(VDUOUT,680)IF (IDEV ,EQ, 1) NRITE(VDUOUT.690)680 FORMAT(' SELECTED OUTPUT DEVICE s TEKTRONIX 4010")690 FORMATC SELECTED OUTPUT DEVICE ; CALCOMP 1051")IF (ECORR ,EQ. 0.) NRITE(VDU0UT,700)IF ((ECORR .E8. 1.) .AND. (EYETYP ,ES. 0) .AND, (IMODEL ,E8. 0))1 NRITE(VDUOUT,710)IF ((ECORR .£8. 1.) .AND, (EYETYP .ES. I) ,AND, (IMODEL .ES. 0))1 NRITE(VDUOUT,720)IF ((ECORR .EO. 1.) .AND, (EYETYP .£8. 0) -AND, (IMODEL .EQ, 10))1 NRITE(VDUOUT,740)IF ((ECORR ,E8. I.) .AND, (EYETYP .EQ. 1) .AND, (IHODEL .EO. 10))I NRITE(VDUOUT,750)700 FORMAT(' NO EYE MOVEMENT CORRECTIONS REQUESTED")710 FORMAT(' PERFORM NON-RECURSIVE EYE MOVEMENT CORRECTIONS',1 " (NO MODELLING)')720 FORMAT(' PERFORM RECURSIVE EYE MOVEMENT CORRECTIONS',
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1 ’ (NO MODELLING}'}740 FORMAT(’ PERFORM NON-RECURSIVE EVE MOVEMENT CORRECTIONS',1 1 (STRAIGHT LINE MODELLING)'I750 FORMAT(’ PERFORM RECURSIVE EYE MOVEMENT CORRECTIONS',1 ' (STRAIGHT LINE MODELLING)’}IF (BLINE .EO, 1) MRITE(VOUCH!,760)760 FORMAT(’ PERFORM BASELINE CORRECTIONS’)IF (IFILT .EO, 1) NRITE(VDUOUT,770)770 FORMAT(' FILTER AVERAGED C N V TIF (PLOTAN(i) ,EQ, IYES) HRITE(VBU0UT,780)780 FORMAT(' PLOT AVERAGED CNV’)IF (PLOTAN(2) .ES, IYES) NRITE(VDUOUT,790)790 FORMAT(' PLOT NINDONED DATA')IF ((PLOTAN(3) .ES, IYES) .AND, (PLTYPE ,ES. 0})NRITE(VDUOUT,800) IF ((PLOTAN(3) ,E8, IYES) .AND, (PLTYPE ,ES. I) .AND,1 (LOGTYP .ES. 0)) NRITE(VDUOUT,BIO)IF ((PLOTAN(3) .ES, IYES) .-AND, (PLTYPE .ES, 1) .AND,1 (LOGTYP ,ES, I)) NRITE(VDUOUT.820)800 FORMAT(’ LINEAR PLOT OF POMER SPECTRAL DENSITY')810 FORMAT(’ RELATIVE LOGARITHMIC PLOT OF PONER SPECTRAL DENSITY’)820 FORMAT(’ ABSOLUTE LOGARITHMIC PLOT OF PONER SPECTRAL DENSITY')IF (PLOTAN(4) ,E8, IYES) NRITE(VDUOUT,830)830 FORMAT(' PLOT OF PHASE ANGLE V, FREQUENCY'}IF (NUMBAT ,£§. 32) NRITE(VDUOUT,840)IF (NUMBAT ,LT, 323 NRITE(VDUOUT.850)NUMBATIF (NUMBAT ,LT, 16) NRITE(VDUOUTi060)(BATNRS(I),I=I,NUMBAT)IF ((NUMBAT ,ST, lb) ,AND, (NUMBAT ,LT, 32))1 NRITE(VDU0UT,860)(BATNRS(I).1=1,16)IF ((NUMBAT ,GT, 16) .AND, (NUMBAT ,LT, 32))1 ' NRITE(VDUOUT,860)(BATNRS(I),1=17,NUMBAT)840 FORMAT(' ALL 32 BATCHES')850 FORMAT(IX,14.’ BATCHES, COMPRISING THE FOLLOMINS BATCHES s')860 FORMAT (1611X, 13,1X 3 3IF (NINDON ,t8. 0) NRITE(VDUOUT,900)IF (NINDON ,ES, 1) NRITE(VBU0UT,920)ALPHAIF (NINDON ,E8. 2) NRITE(VDUOUT.930)IF ((NINDON .ES. 8) .OR, (NINDOw .ES, 93) NRITE(VDUOUT,940)NINDON900 FORMAT(' COSINE-BELL NINDON)920 FORMAT(' KAISER-BESEL NINDON NITH ALPHA = ’,F5,2)930 FORMAT(' M3N "TAPER2" NINDON')940 FORMAT (' NINDON = ' I DIF (IMEAN .ES, 0) NRITE(VDUOUT,950)IF (IMEAN ,E8. 1) NRITE(VDUOUT,960)950 FORMAT(’ MEAN OF NINDONED DATA'TO BE INCLUDED')960 FORMAT(' MEAN OF NINDONED DATA TO BE REMOVED)970 NRITE(VDUOUT,980)980 FORMAT(' - ENTER " Y "  OR "!(’")READ(KYBDIN,1040,ERR=970)ANSNER IF (ANSNER ,ES. iNO) GO TO 100 IF (ANSNER .NE. IYES) GO TO 970 RETURNCC MULTI-REFERENCED FORMAT STATEMENTS,1020 FORMAT (ID 1040 FORMAT (AD END

C FILE I.D. ; KAIGEN TPFL-F66 LAST REV ; 16 FEB 87
SUBROUTINE KAIGEN(N ,N.ALPHA)INTEGER IDEST, ISQftCE, I ,NT M MREAL N(1024),PI.ALPHA,!REAL TEMP.BSSLPIDATA PI 73.141592654/N2 = N/2 NT = N2 * 1 CALL SUFACTSSSLPI = BSSL(PDALPHA)DO 130 NH=1,NIF (NN .LT, NT) GO TO 110 X = (FLOAT (N2-NM) /FLOAT (N23JK2 60 TO 120110 X = (FLOAT(NN-N2)/FLOAT(N2))**2
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120 m m  = 18S5LlPI*ALPBA*SQRTll,0-X}}/BSSLPmNXNi?} 130 CONTINUE TEMP = H1N)DO 140 1=2,NIDES! = N + 2 - J IBONCE = IDEST - 1 WIDEST) = N1IS0RCE)140 CONTINUE Nil) = TEHP RETURN END

C FILE I.D. ; MAINPLOT PLOT-FM LAST REV ; 24 HAR 87CC 20 HAR 87 i ALTERED SELECTION OF UNITS TO ALLOs REDUCED SIZE PLOTSCC THIS PR06RAH ACTS AS THE INTERFACE BETHEEN THE VARIOUS SUB-C ROUTINES. IT HAKES USE OF THE SINO-F 8ARPHICS PACKASE. IF A TEK-C TRONIX TERMINAL NAS THE NOMINATED GRAPHICS DEVICE, THEN THE USERC IS ASKED MHETHER A CALCOMP PLOT OF THE PREVIOUSLY DISPLAYEDC SCREEN IS) IS (ARE) RESUIRED,CC THE SUBROUTINES USED. WITH A BRIEF DESCRIPTION, ARE jCC INPUT - INTEROSATES THE USER FOR NAME OF DATA FILE TO BE USED,C PROCESSING OPTIONS TO BE CARRIED OUT, AND OUTPUTC GRAPHICS DEVICE 1 TEKTRONIX 4010 OR' CALCOMP 1051 }C PROCES - READS DATA FROM NOMINATED FILE AND PROCESSES IT ACCORD-C INS TO SPECIFIED OPTIONSC DATOUT - RESPONSIBLE FOR PRODUCING GRAPHICAL DISPLAY OF DATA ORC NINDONED DATA II.E, BEFORE OR AFTER THE DATA HAS BEENC NINDONED)C PSDOUT - PRODUCES GRAPHICAL DISPLAY OF PRE- AND POST- STIMULUSC ENERGY SPECTRAL DENSITYC PHAOUT - PRODUCES GRAPHICAL DISPLAY OF PRE- AND POST- STIMULUSC PHASE PLOT V. FREQUENCY.C INTEGER BLINE,IDEV,NUMBAT,TDLEN,NPOINT,IYES,INRVAL.HARNUM INTEGER IFILT,STIH1fSTIH2,PRES,POSS,NPfiNLY.NINBOH,S11E INTEGER FNAME120},BATNRSf32),PLQTAN?4},EYETYP,LOGTYP,PLTYPE INTEGER IMEAN,I,IMODEL LOGICAL IRDUCtREAL ECORR.SAHRAT,STMINT,HSIZE,VSIZE,ALPHAREAL AVDATh 11024) .PREPSD11024) .P0SPS^1024) ,TAPDATU024)REAL PREANS11024),POSANG11024)REAL TEXUNI.CALUN!COMMON /IFLSEL/ IFILTDATA IYES /'Y*/DATA TEX UNI,CALUNI,IRDUCE 70.18,0.25,.TRUE.7CC READ IN DESIRES PROCESSING OPTIONS.CALL RETYPEC CALL INPUT1FNAME,IBEV,ECORR.BLIME.1FILT,PLOTAM,BATNRS,NUMBAT,1 NINDON,PLTYPE,EYETYP,LOGTYP,IHEAN,IMODEL,ALPHA!CC PERFORM REQUIRED PROCESSING OPTIONS.C CALL PROCES1FNAME,ECORRfBLINE,IFILT,BATNRS,NUMBAT,AVDATA.PREPSD.1 POSPSB, I NRVAL, SAH8»T, ST I HI, ST IH2 .PRES, POSS, NP.ANL Y, TyLEN,2 NPOINT,NINDON,ALPHA,PLOTAN,TAPDAi,EYETYP,IMEAN,IMuDEL,3 PREANG.POSANS}STMINT = FLOATIINRVAL)/SAHRAT SIZE = TDLEN HARNUM = TDLENCC SELECTS REQUIRED GRAPHCS DEVICE AND SIZE OF UNITS IN MM.C IF IIRDUCE) CALL REDUCT1TEXUNI,CALUNI,NSIZE)IF IIDEV ,EQ. 1) GO TO 10CALL T4010CALL UNITSITEXUNI)IF 1NSIZE .NE. 0) CALL CHASIZ(!4,,14.}
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80 TO 20 10 CALL ClOSIN CALL UNIT3ICALUND CALL CHASIZ(!2.,12.)CC DEPENDING ON SELECTED PLOTTING OPTING PRODUCES GRAPHICAL DISPLAY OF C AVERAGES DATA, NINDONED DATA OR ENERGY SPCTRAL DENSITY OR ANY C COMBINATION OF THESE, C 20 IF 1PLOTAN ID ,E0, IYES) CALL DATOUTIFNAME,STHINT,SAHRAT,ECORR,1 BLINE.IFILT.STIMi,SIIM2 < PRES , POSS,NPANL Y.TDLEN,NINDOM ,I DEV,2 AVBATA,NOHBhT,BATNRS,ALPHA,1.EYETYP.IHEAN,IHODEL)IF 1PL0TAN12) ,E8, IYES)'CALL DATOUT I FN.4HE. STM I NT, SAHRAT , ECORR ,1 BLINE,IFILT,STIHi,STIH2.PRES,POSS,NPAMLYJDLEN-HINBDN,IDEV,2 IAPDAT,NUMBAT,BATNRS,ALPHA,2-EYETYP,IHEAN,IHODEL I IF (PLOTAN(3) ,ES; IYES)'CALL RSlOu T(FNbHE,STMlNT,SAHRAT,ECORR, 1 BLINE JFILT.STJMl,STIM2,PRES, POSS, NPANLYJBLENJINDOs, IDEV I2 PREPSD5P0SPS8fSII£,NumAT,BAtNRSfALPHA?PLTYP£5^EYETYP,3 IHEAN,IHODEL.LOGTYP)IF (PLOTAN(4) .£8. IYES) CALL PHAOOTIFNAHE,STMINT,SAHRAT,ECORR,1 BLINE,IFILT,STIHI-STIM2.PRES-POSS,NPANLV,TDLEN,MINOON-IDEV,2 PREANS,P0SANGfSllE-NUHBAT,BATNRS?M A ?PLTYPE.4?EYETYP,3 IHEAN,IHODEL,LOSTYF)C C IF TEKTRONIX TERNIANL USED PROMPT USER AS TO NHETHER A CALCOMP C PLOT OF VIEWED SCREENS REQUIRED, C HSIZE =14,VSIZE = 20. IF CIDEV .ES. 1) SO TO 30 CALL PICCLE CALL H0V‘T02I0,.0,}CALL H0VBY2 HI. *HSI It ,17. milt}CALL CHAHOL(49HD0 YOU NANT A CALCOMP PLOT OF DISPLAYED SCREENS*,) CALL M0VBY2(-47.«HSIZE,-2, H'SIZE>CALL CHAHBLH9HYES ID OR NO (0)*.}CALL HOVT02I0..O.}CALL CHAHOLI10HRESP0NSE*.}CALL CURSOR(l.LY)IF II -NE, 15 SO TO 30 CALL SEVENSCC PRODUCE CALCOMP PLOT OF DISPLAYED SCRENNiS).C IDEV = 1CALL C105INCALL UNITS(CALUNI)CALL CHASIZU2..12.)IF IPLOTANID .ES. IYES) CALL DATOUT(FNAME- STMINT,SAHRAT,ECORR.1 BLINE.IFILT-STIMl-STIMS.PRES.POSS-NPANLY-TDLENJINDON,IDEV,2 AVBATA,NUMBAT,BATNRS,ALPHA,1.EYETYP,IMEAN,IMODtL5IF (PLOTAN(25 -EOZ IYES)'CALL 0AtOUT IFNAME,STMINT,SAHRAT,ECORR,1 BLINE,IFILT,3TiHl,STIH2.PRES,POSS.NPANlY JBLEN,NJNDOMDEV;2 TAPDAT,NUMBAT,BATNRS,ALPHA,2,EYETYP,IMEAN,IMODEL5IF (PLOTAN135 -ES, IYES) CALL PsiOUT IFNAME,STMINT,SAHRAT,ECORR,1 BLINE- IFILT,STINI-ST1M2-PRES-POSS,NPANLY,TBLEN.HINDOH,1DEV,2 PREPSB.POSPsD,SIZE,NUMBAT,BATNRS,ALPHA,PL TYPE,3,EYETYP, '3 IMEAN,IMODEL-LOGTYP)IF (PLSTAN(45 .ES. IYES) CALL PHAOUT(FNAME,STMINT,SAHRAT,ECORR,1 BLINE,IFILT,STIM1.STIM2-PRES.POSS,NPANLY,TDLEN,NINDON,IDEV,2 PREANs.POSANG,SIZE.NUMBAT,BATNRS,ALPHA,PLTYPE,4,EYETYP,3 IMEAN,IMODEL,LOGTYP)30 CALL SEVENS STOP END

C FILE I.D- i MAXVAL OAR-FsS C SUBROUTINE MAXVALiBBES,BEND.BIN,N ,NGRF5 DIMENSION D IM  10240)CC SUBROUTINE TO ASSIGN THE START OF Y-AXIS (BBES) TO C THE MAX NEB DATA VALUE AND THE END OF Y-AXIS (BEND)



C TO THE MAX POSITIVE BATA VALUE.-r
BBES = 0.0 BEND = 0.0 NTflT = N*NSRF OS 16 1=1,NTOTIF mm) .IT. BBES)BBES = BIN(I3 IF (BIN(13 .ST, BEND)BEND = BINdJ 10 CONTINUEHRITE(6,20)BBEG.BEND 20 FORHAT( BBEB.BEHD'.2F12.41 RETURN END

C FILE LB. : HEAN CNV-F66C SUBRBUT DIE HEANINPTS,DATA,RHEAN) DIMENSION BATA(NPTS3 RNEAN=0.DO 20 I=!,N?TSRNEAN=RHEAN+BATA (I3 20 CONTINUERHEAN=RHEAN/FLOATINPTS)DO 30 1=1.NPTSBATA (1}=DATA (1J-RHEAN 30 CONTINUERETURN END

C FILE I.D. i MODEL C0MH-F66 LAST REV i 30 APR 87CC THIS PR06RAH UNIT INITIALISES THE COMPONENTS TO 8E USED IF C 'MODELLING' IS REQUIRED, IT DETERMINES HBICB FORM OF MODEL IS RE- C SOIRED IFOR CNV OR ERA DATA) AND. IF CNV. NHETHER IS OR 4S IS!C MODEL IS NEEDED. IT ALSO REQUIRES FROM THE CALLING PROGRAM UNIT C THREE FLAGS INDICATING HBETHER CNV OR ERA DATA IS BEING PROCESSED, C AND (IF CNV DATA) THE ISI VALUE,C SUBROUTINE MODEL(FNAME,CMPNT!,CHPNT2,CHPNT-3,IHODEL!INTEGER FNAME (20),ISIVfiL.CHARi.CHAR2.IFILT INTEGER VDUOUT,KBDIN,INDEX,IHODEL LOGICAL CNVFLG.ERAFLS COMMON /FLAGS/ CNVFLG.ERAFLS,ISIVAL COMMON /IFLSEL/ IFILTREAL CMPNT1(10241,CMPNT2(I024},CMPNT3I1024}DATA CHAR!,CHAR2,KBDIN,VDUOUT /'I','2',5,8/CC CHECK IF IHODEL CORRESPONDS TO VALID MODEL TYPE,C IF (IMODEL .NE, 101 SO TO 9000 DO 130 1=1.1024 CMPNT!II) = 0,CHPNT2(I1 = 0,CKPKT34I) = 0.130 CONTINUEIF ((CNVFLS1 .AND. (ISIVAL ,E0. 1)3 INDEX = 407 + 32 - 21 IF KCNVFL6) .AND, IISIVAL ,E0, 4)3 INDEX = 267 * 32 - 2!IF (ERAFLS3 INDEX = 203 - 2!IF (IFILT .EQ. 13 INDEX = INDEX + 2!IF (ERAFLS3 SO TO 800IF iCNVFLG .AND. (ISIVAL .EQ. 43 3 GO TO 500CC INITIALISE COMPONENTS FOR IS CNV MODEL,
C 00 300 1=1.93 DO 300 1=1,46 3 = 1 - 1CMPNT!(INDEX+I3 = -l.E-6«FLQAT(J>300 CONTINUE DO 400 1=47,93 J = I - 47
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chpnthindex+d =CMPNT21INBEX+I) = -l.E-6*FLDAT13)400 CONTINUE GO TO 1500CC INITIALISE COMPONENTS FOR 4S CNV MODEL.CC 500 SO 600 1=1,250 500 DO 600 1=1,234 J = I - 1CHPNTi U N B E X + n  = -1.E-6*FL0AT13)600 CONTINUE C DO 700 1=251,500 DO 700 1=235,468 J = I - 2*5CHPNTlfWBEX+I) = CMPNT1IIMDEX+234)CHPNT21INDEX*!) = -I.E-6*FL0AT!J)700 CONTINUE GO TO 1500CC INITALISE COMPONENTS FOR ERA MODEL.C 800 SO 900 1=1,8 J = I - 1CHPNT1IINDEX+I} = -1,E-6*FL0AT13)900 CONTINUE SO 1000 1=9,24 J = I - 9CNPNTHINDEX+I) = CHPNTHB)CNPNT2!INDEX*I} = i.E-6*FL0AT13)1000 CONTINUE DO 1100 1=25,32 3 = 1 -  25CMPNT!1INDEX+1) = CMPNT118)CMPNT2IINDEXt!) = CMPNT2124)CHPNT3iINDEXED = -l.E-6*FL0AT13)1100 CONTINUE 1500 RETURNCC ERROR HANDLERS.C9000 NRITE1900001.9020}9020 FORMAT 1//,' INVALID MODEL TYPE REQUESTED, VALUE IS 3,12, I //,' STOP IN SUBROUTINE "MODEL" «*'}STOPEND

C FILE I.D. i N800AB 0AR-F66 LAST REV ? 9 FEB 87CC A PROGRAM TO PRODUCE PLOTS OF MODEL COMPONENTS.C SUBROUTINE HODOAS!CMPNT!,CMPNT2,CMPNT3,N)INTEGER GRFTVP13),ISIVAL LOGICAL CNVFLS.ERAFLG COMMON /XVAL/ X 11024)COMMON /FLAGS/ CNVFLG,ERAFLB.ISIVAL REAL CMPNT! 11024),CMPNT2!1024) .CMPNT311024)DATA ICMPA,ICMPB,l£«Pl,ICMP2,ICMP3 / ‘C M V P N V T !  Y T 2 Y T 3 7  CALL PICCLE C PLOT MODEL COMPONENT !.6RFTYPI1) = ICHPA SRFTVP12) = ICMPB GRFTYP13) = ICMP!CALL NGRAPH1N,X,CMPNT!,I,0.GRFTYP)C PLOT MODEL COMPONENT 2.8RFTYP13) = ICHP2CALL N6RAPH1N,X ,CMPNT2,2.0.GRFTYP)IF UCNVFL6) .AND. l.NOT.(tRAFLG))) SO TO 1000 C PLOT MODEL COMPONENT 3.GRFTYP13) = ICMP3CALL NSRAPH1N,X,CMPNT3,3.0.GRFTYP)1000 RETURN END
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C FILE I.D. ' MODTHG 0AR-F66 LAST REV ; I40CT 86
C A PROGRAM TO PRODUCE PLOTS OF THETAS FOR MODEL COMPONENTS, C SOBROUTIME MODTHG(THETA.N,NSRF,MSI2E.BBES.SEND}INTEGER NGRF.NSI2E REAL THETA(NSIZE)COMMON /mu XU024)ISCALE = 3 CALL PICCLECALL NGRFSiIH.NSRF.X,THETA.4,3,1SCALE.BBEG,BEND)RETURNEND

C FILE I.D. . NAHCON C0HM-F66 LAST REV ; JUN 85
C A SUBROUTINE TO CONVERT NAME OF THE FILE TO BE PROCESSED FROM A FORM C CONSISTENT MITH THE ORIGINAL M.J.N. PROGRAMS TO ONE MHICH ALLOKS THE C USE OF THE CHS SUBROUTINE ;C CALL FILEBF(RETCD.UNIT ,DEVICE,FNAME.FTYPE,FMOBEfOPTS)C THE CALL TO 'LBMOVE' IS TO A VM/CHS SYSTEM SUBROUTINE. SEE SCP C COMPUTER SERVICES DOCUMENT V2/1.6 'VM/CMS SUBROUTINES'C SUBROUTIME NAHCON(FNAME.NAME)INTEGER NAME(20),I REAL*8 FNAME DO 10 1=1,8CALL LBMOVE(NAME(I),!,FNAME,1,1)10 CONTINUE RETURN END

C FILE I.D, ; NAMTST COMM-F66 LAST REV i 9 FES 87CC THIS PROGRAM UNIT DETERMINES HHETHER FILE NAME CORRESPONDS TO C CNV OR ERA BATA BY INSPECTING FIRST THREE CHARACTERS OF FILE NAME, IF C SO THE APPROPRIATE FLAG IS SET TRUE. ELSE BOTH FLAGS ARE RETURNED C FALSE TO THE CALLING PROGRAM UNIT.C SUBROUTINE NAMTST(FNAME)INTEGER FNAME120),CNVTST(3).ERATST(3),IENORV.vDUOUT,CHARI-CHAR2INTEGER ISIVALLOGICAL CNVFLG.ERAFLSCOMMON /FLAGS/ CNVFLG.ERAFLS,ISIVALDATA VDUOUT,KBDIN,CHARI,CHAR2 /6,5,'i','27DATA CNVTST,ERATST / ’C ' N ’f'V", E ,’R ,'A'/CNVFLG = .FALSE.ERAFL6 = .FALSE,IF ((FNAME(7) .NE, CHARD .AND, (FNAME(7) .NE. CHAR2)) SO TO 9100 IF (fCNVTST(I) ,E8. FNAMEtl)) .AND, (CNVTST(2) .EQ. FNAME(2D 1 .AND, (CNVTST(3) ,£0, FNAME(3))) CNVFLG = .TRUE,IF ((ERATST(I) .EO, FNAME(1)) .AND, (ERATST(2) ,E8, FNAME(2))I .AND, (ERATST(3) .EO. FNAME(3))) ERAFLG = .TRUE.IF l.NOT.(CNVFLG .OR. ERAFLG)) SO TO 9000 IF (CNVFLG .AND, ERAFLG) 60 TO 9200 IF (FNAME(7) .ES, CHARI) ISIVAL = I IF (FNAME(7) .EO. CHAR2) ISIVAL = 4 120 RETURNCC ERROR HANDLERS,C9000 NRITE(VDUOUT,9020)9020 FORMAT-//,' NON CNV/ERA DATA (NAME DOESN'T START HIIB ',1 ' " C N V 1 OR "ERA"), " 1 "  TO CONTINUE, " 9 "  TO ABORT')READ(KBDIN,9040,ERR=9000)IENQRY 9040 FORMAT (IDIF ((IENORV ,NE, D  .AND, (IENORV .NE. 9)) GO TO 9000 IF (IENORV .ES. 1) SO TO 120 SB TO 9900 9100 NRITE(VDUOUT,9120)9120 FORMAT(' NON CNV/ERA DATA (NAME DOESN''T CONTAIN A " 1 "  OR'
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1 f' ' "2 ’' AT EXPECTED LOCATION). " V  TO CONTINUE'2 ' "9“ TO ABORT')REAB(K8$IN}9 i 40,ERR=9D00)IENORV 9140 FORHATIII)IF ((IENORV .NE. 1) .AND. (IENORV .NE. 9)) SO TO 9100 IF (IENORV .ES, 1) SO TO 120 9200 NRITE(VDUOUT.9220)9220 FORHAT(* ERROR IN "NAMTST", CNVFLG AND ERAFLS BOTH TRUE ) 9900 NRITE(VDUOUT,9920)9920 FORHAT(//,' fit STOP IN SUBROUTINE NANTST tit*}STOPEND

C FILE I.D, : NSRAPB 0AR-F66 LAST REV i S OCT 86C SUBROUTINE NSRAPB(K, X, Y, INS,IST,SRFTVP)
ROUTINE TO PLOT A GRAPH IN ONE OF SIX PARTS OF A PAGE, THUS UPTO SIX GRAPHS CAN BE PLOTTED ON ONE PAGE IF CALLED SIX TINES
X HOLDS X-AXIS SATA V HOLDS DATA TO BE PLOTTED C INS SPECIFIES PART OF THE PAGE TO PLOT GRAPH C 1ST SPECIFIES THE Y-AXIS LABEL C DIMENSION X(N),V(N)INTEGER ILAB1 ill),ILAB2(2),ILAB3(2),8RFTYP(3)DATA ILABi /3f V  A'.'HP'.‘II1.’TU‘f ' D E V  (%'UV',') 7  DATA ILAB2,ILAB3 / {AC',fF y C C Y F  7  ILABI(1) = GRFTYP!I)ILABi(2) = GRFTYP(2)ILABi(3) = GRFTYP(3)XI = 0,0IF (NBB(INSj2) .ES. 1) Xi = 1(0.0 Yi = 57,0IF (INS ,LT, 2) Yi = 115.0IF (INS .ST. 3) YI = 0.0X2 = XI t 100.0Y2 = Yl t 70,0IF (INS .61, 0) SO TO 15 CALI PICCLF 
15 CALL NiMB02(Xl,X2fVi,Y2)CALL CHASI2(2.4f2.4)CALL 8BAF(X,Y,N,0)AX 1 = X2 - 50,0AX2 = XI + 10,0AY! = Yl + 5.0AY2 = Yl + 10,0CALL M0VT02(AXifAYi)CALL CHAHOK'TINE (SEC)*,‘)CALL CHAANG(90,0J CALL N0VT02(AX2,AY2)IF (1ST .EO, 0)CALL CHAARRiILABi,11.2)IF (1ST ,£8. 1)CALL CHAABR(ILAB2.2,2JIF (1ST ,ES, 2)CALL CHAARR(ILAB3,2,2)CALL CHAANG(0.)RETURNEND

C FILE I.D. : NGRFSi 0AR-F66 LAST REV ; 15 OCT 86C SUBROUTINE NSRFSHN,NSRF f X,DIN51NS,IST,!SCALE5 BBES,BEND)CC THIS SUBROUTINE PLOTS MULTIPLE CURVES ON A SETC OF AXES NITB SELECTABLE Y-AXIS SCALING AND POSITION OFC ORIGIN, THE PART OF THE PAPER TO PLOT THE GRAPHS ISC ALSO SELECTABLE.CC N -THE NUMBER OF POINTS PER CURVEC NSRF -THE NUMBER OF CURVES TO BE PLOTTED



C X -CONTAINS THE VALUES FOR THE X-AXISC BIN -CONTAINS ALL THE DATA POINTS TO BE PLOTTEDC NITH DATA FOR CURVE I OCCUPYINS THE FIRST N POSITIONSC INS -DETERMINES NHAT PART OF THE PAPER THE BRAPHS C ARE PLOTTED ONC 1ST -DETERMINES THE Y-AXIS LABELLINGC ISCALE -DETERMINES THE TYPE OF LABELLING FOR Y-AXISC DIMENSION Y (10251 .DINU0240) ,X11025)INTEGER ILAB0I4),ILABi(2).ILA82I2)?ILAB3(9).ILAB4I5)INTEGER ILABS 15},ILABS 13),ILA87I7)INTEGER ITYPE,ICOL 51PEN X4)REAL WIDTHBATA ILABO,ILABI,ILAB2 /'A H ' , ' P 1 V 0 V Y I  Y A C Y F  Y C C V F  7  DATA ILAB3 /'E S V T H Y T E y D  Y P A ',!RA'.'HE'.'TE','R S !/DATA ILAS4 /'ER'/RB'/R Y N D V R H 7DATA I LABS /'PA’/RA','NE'.'TE',* RS' iDATA ILA86 /'SA','NP','LE',' T  ,'AR','IA't'NC'5’E 7DATA ILAB7 /'HU'.'LT' ' C'/Ofi’ ' C'.'OE'.'FF'/DATA IPEN11.), I PEN (2), IPEN13). IPEN (4}' /! ,225,7/
DATA NIDTH,ITYPE 70.0,0/CC DETERMINE THE PART OF THE PAGE TO PLOT GRAPH C
n = o.oIF IM0B1INS,2} .ES, I) XI = 110.0 YI = 57.0IF IINS ,LT, 2) Yl = 115,0IF TINS ,GT, 3) Yl = 0.0X2 = XI t 100.0Y2 = Yl + 70,0CALL NINDB2ai.X2.Yl.Y2}CALL CHASIZI2.4.2.4)NLEN = 8CC DETERMINE THE RANGE OF DATA TO PLOT C IF IX ID ,GE. 0.0) SO TO 50 I OR = 0X3 = XI t 50.0 Y3 = Yl + 35,0 VBES = -5,0 VEND = 5,0 NINTS = 10 AX1 = X2 - 7.0 AX2 = X3 AY1 = Y3 - 5,0 AY2 = Y2 - 6.0 SO TO 60 50 IOR = 1X3 = XI * 20.0 Y3 = Yl + 17.0 VBES = 0.0 VEND = 9,0 NINTS = 9 AX1 = X3 t 20,0 AX2 = X3 - 15.0 AY1 = Yl * 8.0 AY2 = Y3 ISCLEX = 3 ISCLEY = 2CC POSITION AXES, BRAN AND LABEL THEM C 60 CALL AXIPOSIIOR,X3,Y3,90.0,1J CALL AX IPOS11OR,X3fY3,50,0,2)CALL AXISCAI1SCLEX.N1NTS.VBES,VEND.1)CALL AX ISCA11SCLEY.NLEN,BBES, BEND,i)CALL AXIDRAI2.1.1)CALL A X I B R A 2)CALL «0VTB2IAX1,AY1)CALL CHAHOLI' TIME ISEOt.M CALL M0VT021AX2.AY2)CALL CHAANG190.0)
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C PLOT THE CURVES
IF (1ST .-ES. 03CALL CHAABRIILABO.4,2)IF 11ST ,E9. 1}CALL CBAARRULAB1,2,23IF LIST .ES. 2)CALL CHAARRHLAB2-2,2)IF 11ST ,E8. 33 CALL CBAARRULAS3,9,23IF (1ST ,£0, 4)CALL CHAARRULAB4,5,23IF < 1ST .EO. 53CALL CHAAR8ULAB5,5,2JIF 11ST .EO. 63CALL CBAARRiILAB6,8,23IF (1ST .EO. 73CALL CBAARRULAB7J.23CALL CHAANSiO.03 BO 70 1=1.NSRFCALL P E N S E L U P E N U 3  .W»TttfITYPE) CALL NPLOTiBINJ,'?,!}CALL SRACURiX,Y,M3 70 CONTINUECALL PENSELii,NIBTH,ITYPE3RETURNEND

C FILE I.D. i NLOBN CNV-F66 C SUBROUTINE NLOSNiN.X,SI8N3THIS PROSRb M PERFORMS THE FFT.N=BASE 2 LOS OF NO. OF POINTS.):= COMPLEX ARRAY OF DATA FOR TRANSFORMATION. SI8N= -1. FOR FFT.SISN= U .  FOR I FFT.TRANSFORMED DATA IS RETURNED IN X.DIMENSION H U 23 COMPLEX BK,HOLD,S,X(20483 LX=2**N BO 1 1=1.N1 M U  3 =2** lN-13 DO 4 1=1.N NBL0CK=2«(L-1) lSLOCN=LX/NBLOCK LBHALF=LBL0CK/2 
K=0BO 4 IBLOCK=i.NBLOCK 
FK=K FLX=LXv=SISN*6.283185308*FK/FLX NK=CHPL X (CDS(V 3,SIN iV 3 3 ISTART=LBLGCK * iIBLOCK-13 BO 2 I=i,LBBALF J=ISTARTU JH=J*L8HALF S=X(JH3 *NK 3UJH3=3UJ3-0 3HJ3=XfJI+82 CONTINUE BO 3 I=2.,N 
11=1IFiK.LT.NU3ISO TO 43 K=K-MU34 K=K+HUIJ 
K=0BO 7 3=1.LX IFiK.LT.33SO TO 5 H0LB=)UJ3 X(J3=X(KU3 X(K+13=H0LB5 BO 6 1=1,N 
11=1IF IK. LT. H U  3 3 SO TO 76 K=K-M1137 K=K+HII13 IFISISN.LT.0.3RETURN BO 8 1=1,LX8 XU3=X(IJ/FLX RETURN END



C FILE I.D. ; NPLOT GAR-FEE C SUBROUTINE NPLOTIDIN.N,Y. 1ST)CC THIS SUBROUTINE ALIGNS N CURVES TO BE PLOTTED C ON ONE GRAPH
DIMENSION Y11025),DIN(10240}II = (IST-1)*N DO 10 1=1 .NYd) = DIN d i d )10 CONTINUE RETURN END

C FILE L B  ; NROARH COHM-Fsd LAST REV : 13 HAR 87C SUBROUTINE NROARN(FNAME,BATNO,ICHAN.COR1.SF1.SF2.SAHRAT.ECORR.1 IMODEL)CC THIS PROGRAM IS INTENDED TO MINIMISE THE AMOUNT OF E.O.G. PONER C IN THE E.E.G. IT USES THE MODIFIED 8UILTER TECHNIOUE. HORIZONTAL C AND VERTICAL COMPONENTS OF BOTH EYES ARE TAKEN INTO CONSIDERATION.C THE PROGRAM REMOVES B.C. OFFSET ON ANY OF THE INPUT DATA CHANNELS.C REAL VL(1024)}V R d 024),HL11024).HR11024),E l d 024),COR1d 024)REAL CMPNT 1 (1024).CMPNT2U024) ,CHPNT3(1024)-VECX1 (49)REAL PvL,PVR,PHL,PBR,PNi,PN2,PN3REAL 8,CCL.O,CCR,AREAL Ni VL,N2VL,N3VL,N1VR,N2VR,N3VRREAL N1HL.N2HL.N3HL,N1HR,N2HR,N3HRREAL N12,N13,N23REAL MVL.MVR.MHL,«HR.MN1.MN2.MN3DIMENSION'n  U.7LRM1 (7),RBS(7)DOUBLE PRECISION DRBSI7).DVECd(49)INTEGER BATNO,INF(1024) .FNAME(20),ISIVALINTEGER I.L,N,VDUOUT,KB0IN,ACTRON.ACTCOL.DIMRON.DIMCOLLOGICAL CSE.DFILOPLOGICAL CNVFLG,ERAFLGCOMMON /FLAGS/ CNVFLG,ERAFLG,ISIVALCOMMON /DTFLST/ DFILOPDATA CSE /.FALSE,/DATA KBDIN,VDUOUT 15. U  C INITIALISE CORRELATION SUMS OF PRODUCTS TO ZERO,DATA PVL,B,CCL,C,N1VL,N2VL,N3VL /7*G./DATA PVR, D, CCR, Ni VR, N2VR, N:»VR !h*6JDATA PHL,A,N1HL,N2HL,N3HL /5*0,/data pmlulm.nim.nM /m.jDATA PN1,N12,N13 ' /3d./DATA PN2,N23’ /2mJDATA PN3 /O,/DATA MVL,MVR,MHL.MBR,MNLMN2,MN3 /7*0./N=1024IF (IMODEL -EO, 10)CALL MODEL(FNAME.CMPNT),CMPNT2,CMPNT3.IMODEL)CC THE DATA IS ASSUMED TO BE IN THE FOLLOWING ORDER - CC VL , VR , HL , HR . Ml , M2CC Ml IS THE CHANNEL TO BE CORRECTED BY THE MODIFIED OUILTER TECHNIQUE, C M2 IS THE CHANNEL CORRECTED BY THE BURDEN TECHNIOUE,C SFI FOR EOS DATA. SF2 FOR EES DATA,CC CHECK THAT THE BATCH NUMBER IS VALID,IF (BATNO ,LT, 0 .OR, BATNO ,GT. 191)GO TO 299?IF (FLOAT (BATNO/G) ,NE, FLOAT (BATNO)/U  SO TO 2999 L=BATNOC READ THE DATA AND CONVERT TO REAL FORMAT,CALL DATIN(L,INP.FNAME,SF1,SF2,SAHRAT,DFILOP)DO 22 1=1,HVL(I)=FLOAT(INP(I))*SF1*1,E-06 22 CONTINUE L=Ld
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CALL DATIN1L, IHP,FNAHE, SF 1,SF2.SAMRAT,DFILOP}SO 24 1=1,8 'V R H H F L O A T u N F m } *SFi*L£-06 24 CONTINUEL=L+iCALL SATINiL,1HP,FNANE.SF1,SF2,SAHRAT,BFILOP}DO 26 1=1,HHL (1) -FLOAT >: INF 11 ) )  tSF 1 *1  , £ - 0 6  26 CONTINUEL=L+iCALL BAT1N 1L ,IHP,FNANE,SFi ?SF2fSAMRAT,DFILOF>SO 28 1=1,NHR i I) =FLOAT I INF i I}} #5F1 *1.E-06 28 CONTINUEL=L+iCC CHECK wHICH CHANNEL IS TO BE CORRECTED,C IF CHANNEL 5 INCREMENT L,C IFIICHAN .BE. 2}L=LtlCALL SATINtt.INF,FNAHEfSF1,SF2,SAMRAT.SFHOP)DO 30 1=1.0E H  I} =FLOAT i 1NP i I >} *SF2*1, £-06 30 CONTINUEC SUBTRACT THE MEAN OF EACH DATA BATCH FROM THE DATA,CALL HEAOW.El.EiAVJ IFiECORR .«£. i.)SB TO 1000 CALL HEfiNIH,VLfVLH}CALL MEANIM.VR.VRH)CALL HEAN1N,HL,HLH)
callCALL MEANiNjCMPNTlrCiAV)CALL MEAN\N,CHPNT2,C2AV)CAii NFANM CMPNT3 HAV1 

C SETS UP MODIFIED EOS ^OBEL 4S IAS USES IN RECURSIVE OAR),C I.E. MOSEL COMPRISES VR,HL<HR,BL*HR,SS 40 1=1,1024VLII) = HUn«HRfI>40 CONTINUE C FORM THE CORRELATION SUMS OF PRODUCTS,DO 100 1=1,NPVL = PvL + VLII}**2 B = B + VLIDH'Ri'I.f CCL = CCL + VLilHHLtl)C = C + VL<I)*HRII)N1VL = N1VL + VLlIJiCMPNTHI}N2VL = N2VL + VL i' I) *CHPNT 2 CI >N3VL = N3VL ♦ VL>I)CHPNT3I1)PVR = PVR t V81I)»2 D = D t VR1I.HHLH}
CCR = OCR * VRilHHRu)N1VR = N1VR + VRIDtCMPNTHI)N2VR = N2VR + VRU).*CHPNT2(I}N3VR = N3VR t VRH}CMPNT3(D PHL = PHI t HL(I)**2 A = A + HLtf}*HRU)N1HL = N1HL t HLIIJtCHPHTKI)N2HL = N2HL + HLiI}*CHPHT2H I>N3HL = N3HL + HLu HCHFN T3u)PHR = PHR t HR i I} *BR i I)HIHR = N1HR t HRI DCMPNTHJ}N2HR = N2HR + H R H )*C«PNT2iI}N3HR = N3HR t HRIIHCMFNT3U}PN1 = PN1 + CHPNTHI)«2 Ml 2 = HI 2 + CMPNT1iI)*CMPNT2(I)Ml 3 = N13 + CMPNTHDCMPNT31I)PN2'= PN2 t CMPNT2iJ}**2 N23 = N23 + CMPNT2II)*CMPMT3(I)PN3 = PN3 4- CHPHT3UJM2 100 CONTINUE DO 200 1=1,NMVL = MVL 4- EifI)*VLtt>HVR = MVR t EllIJtVRlI)NHL = NHL + E H D t H L l D  MHR = MHR 4- EHI.HHR1I)
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MN1 = M l  * EHD-tCHPNTHIJ
M2 = MN2 t Ei(I)tCHPNT2(I}HN3 = M l  t EHI.i*CMPNT3U}200 CONTINUE

nil, I) = PVL X I U 52) = B X1U,3} = CCL Xi U,4) = C X l U f5> = NlvL XI(I,6} = N2VL X I U ,7} = N3VL XI(2,2) = PVR XI(2,3) = D XI(2,4) = CCR XI(2,55 = NIVR XI12,6) = N2VR XI(2,7) = N3VR XI<3,31 = PHL XI(3,4) = A XI(3.5) = NIHL XI(3,6) = N2BL XI13,7} = N3BL XI (4,4} = PHR XI(4,5) = NiHR 11(4,6) = N2HR XI(4,7} = N3HR 11(5,5} = PNI XI(5,6} = N12 XI(5,7) = N13 XI(6,6) = PN2 XI(6,7) = N23 XI(7,7) = PN3 RHS(l) = MVLRHSi2) = MVRRHS(3) = NHLRHSI4) = MHRRHS(5) = MNIRHSI6) = HN2RHS(7) = HN3CC SET UP SYMMETRICAL MATRIX.DO 300 1=1,6 IPL1 = 1 * 1  DO 250 J*IPL1,6 Xi(3,I) = XI(I,J)250 CONTINUE300 CONTINUECC CHANSE TNG DIMENSIONAL ARRAY TO SINGLE DIMENSION VECTOR AS RESUIRED C BY SSP SUBROUTINES,C MODE = 2 APTRflH ■= 9*9
IF'HMOBEL'.EQ, 0) ACTROM = 4 IF HIMOSEL .£8. 10} .AND, ICNVFLS)} ACTRON = 6IF HIMODEL ,E0, 10) ,AND, (ERAFL6JJ ACTROH = 7ACTCOL = 99IF (IMODEL .Efi. 0) ACTCOL = 4IF HIMODEL .ES. 10) .AND, (CNVFLSJ) ACTCOL = 6IF HIMODEL ,E0. 10) .AND. (ERAFLB)) ACTCOL = 7IF ((ACTRON ,E0, 99) .OR. (ACTCOL ,E3. 99}) SO TO 9100DIMRON = 7DIMCOL = 7CALL ARRAY(NODE,ACTRON,ACTCOL,DIMRON,DIMCOL,VECX1,X!)CC PERFORM SOLUTION OF GENERALISED LINEAR EQUATIONS BY SSP CALL,
NUMESU = 99IF (IMODEL ,E0, 0) NUME8U = 4IF HIMODEL .Efl. 10} .AND, (CNVFL6)} NUMESU = 6IF HIMODEL ,E§. 10} .AND, (ERAFLS)) NUMESU = 7IF (NUMESU ,E§. 99) SO TO 9300NUMVEC = IC EPS VALUE FOR DOUBLE PRECISION SSP CALL.EPS = 1.£-15



DO 310 1=1,49DVECX1!I) = BBLElVECXi!!)}310 CONTINUE DO 315 1=1,7ORBSII) = DBLE(RBSil)}315 CONTINUECALL DGELGI DRBS,DVECX1,NOHEOU,NUMVEC,EPS,IER)IF 1IER ,NE. 0) GO TO 9000 DO 320 1=1,7RHSil) = 3NGLIDRHSH.H 320 CONTINUEC IF !IMODEL .EO. 0)«RIT£(V&U0UT.400HRHSH},I=1,NUHESU}C IF HIMODEL ,NE, 01 .AND. (CNVfLS)JC 1 NRITE!VDU0UT,410) !RBS!I),1=1,NUMESU)C IF HIMODEL ,NE, 0) ,AND, (ERAFL6J)C 1 NRITE1VDU0UT,420) IRHS1I).1=1,NUMESU)C 400 FORMAT 1//,' K! = ‘ F 1 2 , 5 , 2 I K 2  = ',F12.5,2X * K3 = ',F12,5,2X,C 1 ‘ K4 = *,F12.5JC 410 F O R M A T ! / / K I  = ',F12.5,2X,' K2 = ',F12.5,2X,' K3 = ' F12.5.2X,C 1 ' K4 = ,F12.5,2X,'K5 = F12.5,' K6 = '.F12.5JC 420 FORMAT!//, XI = ',F12,5,2X,' K2 = ',F12.5,2X,' K3 = ' F12.5.2X,C 1 ' K4 = !,F!2,5,2X,'K5 = ',F8,6,' U  = ',F12.5.2X,' K? = ’,F12,5)CC APPLY CORRECTION,C DO 600 1=1,NCOR1(D = El!I)-!RBS41)*VL!I)*RBS!2)«VR!I)*RBS!3)*HL!I}1 +RHS(4)*HR!I)}600 CONTINUE SO TO 1100 1000 DO 1010 1=1, NCORKI) = El! I)1010 CONTINUE 1100 RETURNCC ERROR MESSAGESC2999 NRITE!6,4000)BATNO4000 FORMAT!///,' BATCH NUMBER INCORRECT’,16)STOP 89000 NRITE!VSUOUT,9020)IER9020 FORMATC ERROR IN USE OF SSP SUBROUTINE GELS, ERROR CODE =',I4)SO TO 9900 9100 NRITE!VDU0UT,9120)9120 FORMAT!' ERROR IN VALUE OF "ACTRGN" OR " A C T C O L " ’)SO TO 9900 9300 NRITE!VDU0UT,9220)9220 FORMAT!' ERROR IN VALUE OF "NUMESU"')9900 NRITE!VDU0UT,9920)9920 FORMAT!//,’ *** STOP IN SUBROUTINE NROARM «*'}STOPEND

C FILE I.D. , OASRAF 0AR-F66 LAST REV ; 7 OCT 86C SUBROUTINE OASRAF!DO,D1,D2.D3,D4,D5,N)INTEGER IvL,IVR.IHL-IHR. I E & l .IEE82,IDA1,!0A2,SRFTYP!3)DIMENSION DO! 1024) ,01 (1024) ,D2!1024J DIMENSION 0341024).0441024),0511024)COMMON /XVAL/X11024)DATA IVL.IVR,IHL,IHR.IE0G1,IE0S2 / ’VL' ’VR’,’HI' ‘HR’,' E',‘OS'/ DATA IEE81,ItEG2,lOAi,I0A2,IBLANK /'CE'.'EG'j'DE'/ES',' 7  CALL PICCLEC PLOT DIFFERENCE BETNEEN CORRECTED AND UNCORRECTED EESS,SRFTYP{1} = IDA!SRFTYP!2) = I0A2SRFTYP!3) = IBLANKCALL NGRAPH!N.X,D4.0,0,SRFTYP)C PLOT CORRECTECD EES,SRFTYP!1) = IEES1 SRFTYP!2) = IEES2 CALL NGRAPH!N,X,D5,1,0,SRFTYP)C PLOT VL EOG,



S RF TYP m = IVL SRFTYP(2) = IE0S1 •SRFTYP (3) = JEQ62 CALL NSRAPBIN,X,DO,2,0,SRFTYP} C PLOT VR EOS,SRFTYP 11} = I VR CALL NSRAPH1N,X,B1,3.0,SRFTYP) C PLOT HL EOS,SRFTYP 11) = IHL CALL NSRAPHIN,X,82,4,0,SRFTYP} C PLOT HR EOS,SRFTYP(1) = IHRCALL NSRAPHIN,X,83,5,0,SRFTYP}RETURNEND

C FILE LB. 5 ONLSUB QAR-F66 LAST REV 20 OCT S7C SUBROUT INE ONLSUB 1 PARS?. BOUT, RSS, BBS, OA, NPAR, I TYPE}C
C XN VECTOR OF EOS BATAC THETA VECTOR OF PARAMETER ESTIMATESC PS COVARIANCE MATRIXC S SQUARE ROOT VECTORC U VECTOR FOR THE UPPER TRIAN6ULAR MATRIXC DIMENSION XN(7),PS1?,73 ,THETA??} ,35711024} ,3(28) .0(28)DIMENSION PARH17168} .BOOTH024) fR S S U 024) ,hS§1101?4} .0AH024) INTEGER FNAHE120}COMMON /VDATA/ EESi11024) ,E£S2?1024} .FNAHECOMMON /1NTLV/ ALPHA, SAHHA. THETAOBATA J1.02,03,04,05,k  !1024,2048,3072.4096,5120,6144/N = 1024 HPT = N BO 40 1=1,28sin = o.o u m  = o.o40 CONTINUEBO 50 1=1.7 BO 55 0=1,7 PS 11,0} = 0.0 55 CONTINUE50 CONTINUENTIHES = 2CC INITALISE THETA AND THE COVARIANCE MATRIX PS C DO 10 1=1.NPAR THETA TI) = THETAO PS 11,1} = ALPHA IK = (1+1}*1/2 51IK} = ALPHA 01 IK} = ALPHA 10 CONTINUENRITE16,111}ALPHA,SAHHA,NPAR 111 FORMAT 11X,'ALPHA=5,F6.3.'SAHHA*’,F6,3,1NPAR-',15}SF1 = NPT/1NPT-NPAR}SF2 = 1.0 - SF1 RSS1 = 0.0 SST1 = 0.0 BF1 = 0.0
C REMOVE OCULAR ARTEFACT RECURSIVELYr

BO 25 Ml=1,NTIHES BO 20 11=1.NPTCALL XVALHXN,NPAR,Ii)Y = miill)IF IITYPE ,E3, 0}CALL RLSFLT1Y,XN,PS,THETA,NPAR.E ,SAMMA,11}IF IITYPE ,E8. 13CALL S3RTFL1Y,XN,S,THETA,NPAR,t,SAHHA}IF IITYPE ,E3. 2}CALL UBUFL11Y,XN,0,THETA,NPAR,E,SAMMA,11}PARH111) = THETAtlJ PARM1I1+J1) = THETA12}
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PARHU1+J2} = THETA 13}PARHII1+J3J = THETA {4)PARHUi+M) = THETA15)PARMI1*J5) = THETA16)PARHH1+J6) = THETA w)mum = E mil) = v-eRSS1 = 8AHHA*RSS1 t E*ESST! = BAHHA*SST! 4- EESI til)*EE61 111)DF1 = 1.0 * SAHHAtOF?RSSlIi) = RSS1/DF1 SSTIII) = SST TIF (ABStSSTi) .-ST, O.OOOOOl)RSfl{ID = (SF2+SFHRSS1/SST1J 20 CONTINUE 25 CONTINUEDO ioo I=1.NPT EESI II) = BOUT1I)100 CONTINUERETURN END

C FILE LB. ; POSSET 0AR-F66 LAST REV i 21 AUG 87C SUBROUTINE POSSET1PARHNO.THEvAL.THPVAL.THEPOS)INTEGER PARHH0.THEPOS (PARHNO)REAL THEvAL (PARHNO).THPVAL(PARHNO)CC CARRY BUT BUBBLE SORT C1 IF (PARHNO .EO. 1} 60 TO 3000 DO 1000 1=15 P A M  K = PARHNO - 1 BO 900 J=1.KTEHP = THPVAL(J)IF 1THPVAL(0+1) ,LE. THPVAL(J)3 SO TO 900 THPVAL <J) = THPVAL LH]}THPVAL (J*l) = TEHP 900 CONTINUE1000 CONTINUECC BETERHINAE THETA VALUE POSITIONS C DO 2000 1=1.PARHNO DO 1600 J=I,PARHNOIF ITHPVAL(I) ,£S. THEVAL IB)} 60 TO 1300 1600 CONTINUE1800 THEPOSID = J2000 CONTINUE3000 IF (PARHNO .EO. 1) THEPOS(1>*I RETURN END

c FILE I.D.cc THIScccccr IBVRESL-c IS1c IS2c ISTRTc PRES!c

ROCES PL0T-F66 LAST REV i 13 HAR 87
THIS SUBROUTINE PERFORMS THE REQUIRED PROCESSSIHS OPTIONS.

THE FOLLOWING CHANGES HAVE BEEN HADE TO VARIABLE NANES BETHEEN IBVRES AND HAINPLOT PROGRAM UNITS.
HAINPLBT . IBVRES . HAINPLOT . IBVRES . HAINPLOT
STIH1 STIH2 ISTART PREST!

NNPBELSI

NPOINTN P
INRVAL POSST1

HBATLILABI
NUHBATINDEXLABEL

SUBROUTINE PROCES(FNAHE.ECORR.BLINE.IFILT,SATNRS.NUHBAT.AVDATA,1 PREPSii, POSPsD ? INRVAL. SAMRAT f ST I HI . ST IH2, PRES *2 POSS.Nr.TDLEN,NPBINT.NINDON.ALPHA. PLOTAN, '3 TAPDAT.EYETYP,IHEAN,IHODEL.PREANS,POSANG)INTESER CHANAN,SSR,INRVAL,BLIHE,TBLEN.BATNO,PRES fPOSS
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INTEGER IFILT,STIHI,STIN2,ITL.NPOINT,NP,N1-NUHBAT,IEPOCHINTEGER ISTAR T,INDEl,ITRIbL ,HhRNUH,INO,NINDONINTEGER FNANE uO) ,BATNRS(32),PL0TAN(4) .EVETVF INTEGER IHEAN, IHODEL - VDUOUT,KBDIN,LGTDLN,IHAR,ISIVALREAL ECORR.ALRHAiSFI1SF2,tlISLiNL«ISLi«lNINVAL (1024)REAL AVDATA(1024) <DAfA(l024) .TRDATU024) ,TAPBAT(I024)REAL PREPS»(1024> ,P0SPSB(i024) .PREANBU024) ,PGSANG(i024) COMPLEX IDATA(1024),PREST1(1024)iOGSTi(1024)LOGICAL CNVFLS,ERAFLB,HPLFLS,NFILOPC O , ™  /FLAGS/ CNVFLS,ERAFLS,ISIVALCOMMON /EPOCH/ IEPOCHCOMMON /SMPFRQ/ INFERSCOMMON /WFILST/ NFIL OP,HISON1,HISUH3,HINVALDATA HPLFLS /.TRUE./DATA CHANAN /4/DATA SSR.HARNUH,INO /I,1024,'N7DATA VDUQUT.KBDIN /6,5/HFILOP = -FALSE,TSLEN = 1024 LGTDLN = 10 NPOINT = 1024 NP = 64IF (CNVFLB .AND, (ISIVAL .EG, I)) NP = 64IF (CNVFLO .AND, (ISIVAL .EG, 4)) NP = 216IF (ERAFLS) NP = 32 ITL = TDLEN/2 * 1 Nl = NP*SSRr 342
IF (CNVFLB -AND, (ISIVAL .EG, D )  PRES = 342IF (CNVFL8 .AND, (ISIVAL .EG. 4)) PRES = 22IF (ERAFLS) PRES = 168POSS = 472IF (CNVFLS .AND. (ISIVAL ,E§. D )  POSS = 472IF (CNVFLO .AND. (ISIVAL .EG. 4) .AND. (IEPOCH .EG. D) POSS = 288IF (CNVFLS .AND, (ISIVAL .EG. 4) .AND, (IEPOCH .EG, 2)) POSS = 490IF (ERAFLS) POSS = 204SUN! = 407IF (CNVFLB -AND, (ISIVAL -EG, D )  STIN1 = 40?IF (CNVFLS .AND, (ISIVAL .EG, 4)) STIJfl = 219STIN2 = 532IF (CNVFLS .AND. (ISIVAL .EG. !)) STIN2 = 532IF (CNVFLS .AND, (ISIVAL .EG. 4)) STIH2 = 719INRVAL = 125IF (CNVFLS .AND, (ISIVAL .EG, D )  INRVAL = 125IF (CNVFLS .AND, (ISIVAL .EG, 4)) INRVAL = 500IF (IFILT .EG, 0) PRES = PRES - 21IF (IFILT .EG, 01 POSS = POSS - 21IF (IFILT .EG. I) STIH1 = STIH1 + 21IF (IFILT .EG, 1) STIH2 = 3TIH2 + 21DO 100 I=1,NP0INTAVDATA(1) = 0,100 CONTINUEDO 250 I TRIAL21,NUHBAT BATNO = BATNRS(ITRIAL)NRITE(VDUOUT.110)BATNO 110 FORMAT(’ PROCESSING BATCH ’.14)IF (EVETYP ,EG. 0) CALL NROARN(FNANE,BATNO,I CHANAN-3,DATA f SF1,SF2,SAHRAT,ECORft,IHODEL)IF ((ECORR .EG, I.) -AND, {EVETYP .EG. 1)3 CALL RCOARH(FNAHE,I BATNO,DATA,IHODEL,HPLFLS)DO 220 I=i.NPOINTAVDATA!I) = AVDATA(I) * DATA(I)220 CONTINUE 250 CONTINUEDO 300 1=1,NPOINTAVDATA(I) = AVDATA(I)/FLOAT(NUHBAT)300 CONTINUEIF (IFILT ,EQ, 1) CALL FILTER(NP03NT,AVDATA)CC PRE - STIHULUSC ISTART = PRES - I INDEX = 0 DO 350 I=1,N1,SSR INDEX = INDEX + I
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TRDAT(INDEX) = AVDATA < 11-1 START)350 CONTINUEIF (HINSON .Efi. 2) CALL TAPER2(TRDAT,NP.IHEAN)IF (HINSON ,E8, 0) CALL TAPCOS(TRDAT,NP,IHEAN)IF (HINSON .Efi. 15 CALL TAPKAI(TRDAT,NP,ALPHA,IHEAN)INDEX = 0 SO 375 1=1,NP INDEX = INDEX * 1 T AP'D AT (INCE X+1 START 5 = TRDAT(I)375 CONTINUEDO 400 M . T D L E NTDATAd) = CHPLX(0..0.)IF (I .LE. NP) TDATAd) = CHPLX (TRDAT d  ),.<),}400 CONTINUECALL NLOSN(LSTDLN,TDATA,-1,}SO 450 IHARSI,HARNUH 'PRESTlflHAR) = TDATA(IHAR)*2,/FLOAT(NP)450 CONTINUECC POST - STIMULUSC ISTART = POSS - 1 INDEX = 0 DO 500 I=lfNl,SSR INDEX ='INDEX + 1 TRDAT(INDEX) = AVDATA(ItISTART)500 CONTINUEIF (HINSON ,-Efi. 2) CALL TAPER2(TRSAT.NP,INEAN)IF (HINDOH .Efi, 0) CALL TAPCOSi TRDA T,HP,IMEAN)IF (HINDOH .Efi. I) CALL TAPKAI(TRDAT,NP,ALPHA.INEAN)INDEX = 0 BO 570 1=1,NP INDEX = INDEX + 1 TAPDAT (INDEX11START 3 = TRDATd)570 CONTINUEDO 600 I=1,TDL£NTDATAd) = CHPLHO..O.)IF (I .LE. NP) TDATAd) = CHPLX(TRDAT(13,0,3 •600 CONTINUECALL NLOSN(LSTDLN,TDATA,-1.)DO 700 IHAR=1,HARNUMPOSST I d  HAR) = TDATA (IHAR) *2. /FLOAT (NP)700 CONTINUEIF (EVETVP .Efi, 1) SAHRAT = THPFRfiIF ((PL0TAN(3) ,Efi. INO) .AND. (PL0TAN(4) .Efi. IN013 SO TO 900 gn egg IHAR=1 HARNUH
PREPSD(IHA.ft) = (2,/CSAHRATsFLOAT(NP)))*(CABS(PREST1(IHAR))**2) POSPSB(IHAR) = (2./(SAHRAT*FL0AT(NP)>}t(CABS(P0SSTl(IHAR})**2} PREANS(IHAR) = ATAN2(AIHAO(PREST1(IHAR)).REAL(PREBT!(IHAR))) POSANB(IHAR) = ATAN2(AINAS(POSST!(IHAR)3.REAL(POSST!(IHAR)3 3 BOO CONTINUE900 RETURN END

C FILE I.D, ; PRTTHT 0AR-F66 LAST REV 5 14 OCT B6CC THIS SUBROUTINE APPENDS TO THE PLOTS (OF THETAS, CORRECTED AND C CONTAMINATED EESS, ETC,) INFORMATION DISPLAYING BATCH NUMBER OF TRIAL C AND THE FINAL VALUES OF THE THETA PARAMETERS, THE LATTER IS INCLUDED C TO HELP IN IDENTIFYING THE DIFFERENT THETAS: ON THE PLOTS,C SUBROUTINE PRTTHT(THEPOS,PARHNO,ENDVAL,OFFSET)INTEGER PARHNO,THEPOS(PARHNOJ,BATNO,FNAHE(203,OFFSETINTEGER ICQL.IPEN(4).ITYPEREAL ENDVAL(PARHN6),NIDTHCOMMON /TRLNUN/ BATNOCOMMON /VBATA/ EES! (! 024),EEG2 (1024),FNANEC PEN COLOURS t 1 - BLACK, 2 - RED, 5 - GREEN, 7 - BLUEDATA IPEN /i.2,5,7/DATA HIBTH,ITYPE /0.0,0/CC TEMPORARILY SNITCH OFF HINDOH,



call mmumCALL 80VT02U10.0.60.0J CALL CHAA1 IFNAHE.i)CALL HOVT021110,0,52,0)CALL CHAHOL18HBATCH *.}CALL CHAINT1BATN0.3}CALL H0VTB2U10.O,44.fl)00 100 1=1,PARHNOICOL = iPENlTHEPQSlI))CALL PENSELfICOL,WBTH.IYTPE)CALL CHAHOL18HTHt!A *,iCALL CHAIN!11THEP0S1I)*OFFSET-iJ,1)CALL CHAHOL13B *.)CALL CHAFIX(ENDVAL(THEPOS(I)),9,4)CALL H0VT02(110,0,144,0-6,OsFLOATlI)))100 CONTINUECALL H0VTB21110,0.144,0-6.0*FL0ATIPARHNO+i)))CC RESTORE HINSON,C CALL HINSONU)ICOL = 1CALL PENSEL1ICBL,NIDTH.ITVPE)RETURNEND

C FILE LB, ; RCOARH 0AR-F66 LAST REV 5 9 FEB 37CC THIS PROGRAM IS AN ADAPTATION OF PRQSRAH UNIT ONLCRTN,C IT HAS BEEN SO ADAPTED IN ORDER TO ALLOH ITS INTEGRATION NITH OTHER C PROGRAM UNITS. THIS IS TO ALLOH IT'S USE IN PRODUCING AVERAGED C RESULTS AND INDIVIDUAL TRIAL RESULTS FOR MULTIPLE TRIALS,C SUBROUTINE RCOARH1TNAHE,L1fTEHP?IHOBEL,HPLFLS)
C THIS PROGRAM. TOGETHER NITH SEVERAL OTHER ROUTINES,C IS USED TO REHOVE OCULAR ARTEFACTS FROM THE EES C USING ONE OF THREE USER-DEFINED ON-LINE ALGORITHMS C (THESE ARE RLS,SSRT AND UD FILTERS),C

INTEGER FNAHE120).TNAHE120)LOGICAL 0NLFL6,HPLFLS REAL TEHP11024)COHHON VL 11024). VRU024) ,HL 11024) .HRU024)C M O S  /BLNKEX/' CHPNTi 11024) .CHPNT2U024) .CHPNT3U024)COHHON /VBATA/EEG111024},EES211024),FNANE COHHON /XVAL/X11024)COHHON /IHTLV/ALPHA,SAHHA,THETAO DATA L2 70/DO 10 1=1.20FNAHEII) = TNAHE1I)10 CONTINUEIF IIHODEL ,E§, 10) CALL HODEL1FNAHE,CHPNTI,CHPNT2.CHPNT3,IH0DEL) NPT = 1024 'N = 1024C THE FOILONIMS DO LOOP IS PRESENET TO ALLON FOR DIFFERENCES IN C IHPLEHENTATIONS OF N,J,N, AND E.I.C, PROGRAHS,DO 30 1=1,NCHPNTill) = CHPNTiII)*i,E6 CHPNT21I) = CHPNT21IH1.ES CHPNT31I) = CHPNT3II)*LE3 30 CONTINUE DO 40 1=1 fN IH1 = 1 - 1XII) = FLOAT1IH11/125.0 n 40 CONTINUE
C SPECIFY SAHHA AND THE INITAL VALUES FOR C P 10R S OR U),CC ENTER ALPHA - INITAL VALUE FOR PS C SAHHA - THE FORGETTING FACTOR C AND THETA10) - THE INITAL VALUE FOR THETA
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ALPHA = 0.05 SAHHA = 0,99609375 THETAO = 0.1CC SPECIFY AND THEN READ THE EES RECORD TO PROCES C 14 = 0{>£4] PI £• ~ P&l QF
CALL RDATA(Li,L2,L3,L4.0NLFLS}IF (L3 ,E8. 0) 80 TO 100CC REHOVE HEAN FRON THE DATA C CALL HEANiNPTjVLjVLH)CALL HEAN(NPT,VR.VRH)CALL HEAN(NPT,HL,HLH}CALL HEAN(NPT,HR.BRH)CALL HEAN(NPT,EES1.EEGH)CALL HEAN (NPT ,CHPNf1,C1AV)CALL HEAN1NPT.CHPNT2,C2AV)CALL HEANINPT,CNPNT3,C3AV)CC SELECT ON-LINE ALSORITH TO USE CC 0 FOR RLS, 1 FOR SORT, 2 FOR UDU I TYPE - 2CALL ADAPTV 1 NPT, N , L1,1 TYPE, I HODEL, O.NLFLS , HPLFLS)100 CONTINUEC RETURN CORRECTED DATA TO CALLING PROGRAH, ALLGNS FOR DIFFERENCES C SETNEEN H.J.N, AND E.I.C, PROGRAHS DO 500 1=1,NPT

Itnriu = EESI(I)*l,E-06 500 CONTINUE RETURN END

C F IL E  I . D .  ;  RDATA 0 A R -F 6 6  LAST REV ; 10  HAR 3 7C
SUBROUTINE R B ATA( L 1 , L 2 , L 3 , L 4 , O NLFLG)

C
C T H IS  SUBROUTINE READS DATA FORM A G IV E N  B IN A R Y F IL E  

C AND CONVERTS I T  TO REAL FO RHA!
C

REAL HEEG 1.HEEG2 
INTEGER FN AHE1 2 0 )
INTEGER B A T N O ,IN F (1 0 2 4 )

LO G ICAL C S E .O N L F L S .D F IL O P
COHHON VL (1 0 2 4 )  , V R ( 1 0 2 4 )  . H L (1 0 2 4 )  - H R U 0 2 4 )

COHHON /B L N K E X / C H P N T I( 1 0 2 4 ) , C H PN T2( 1 0 2 4 ) ,C H P N T 3 (1 0 2 4 )
COHHON /V D A T A / E E S I (1 0 2 4 )  ,E E S 2 (1 0 2 4 )  .FNAHE 
COHHON / SHPFR S/ SAHRAT 
COHHON /B T F L S T /  D F ILO P  

DATA N jC S E  / 1 0 2 4 , . F A L S E , /
BATNO = L l
I F  (L 4  ,G T , 0 )  GO TO 2 5  
I F  (O N LFLG ) CALL SETNAH(FNAHE)

N R IT E (6 ,8 )F N A H E  
8  FO RHAT( D A T A F IL E  ' , 2 0 A 1 , / / / )

C

C CHECK WHETHER NBOLE F IL E  IS  TO BE READ OR NOT 
C

I F  (L 2  , £ S ,  0 )  SO TO 2 5  
10 N R IT E (A ,1 5 )
15 FORHAT( ENTER BATCH NOHBER OR ( - 1 )  TO S U I T ')

R E A D (6 .* )B A T N O

I F  ((B A T N O  , L T .  0 )  .O R . (BATNO . S T .  1 9 D IG 0  TO 2 9 ?
2 5  N R IT E (6 ,2 0 )B A T N 0  
2 0  FO RHAT( B A T N 0 = ', I 5 )

L = BATNO
C
C READ DATA AND CONVERT TO REAL FORHAT 
C
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CALL DATI in L,INP,FNAHE,SF1,SF2fSAHRAT,DPILOP)DO 30 1=1tNVL 11} = FLOAT! I N P d m S F l  30 C0NT1N0E L = L MCALL DAT1NIL,INP,FNAHE,SFI,SF2,SAHRAT,DFILOP>00 40 1=1 ,NVR(I) = FLOATuMFdl )*SF1 40 CONTINUEL = L + 1CALL DATIN(L «INP,FNAHE«SFI.SF2«SAHRAT,OFILOP)SO 50 1=15N 'HLII) = FLOAT U N P m . H S F l  50 CONTINUEL = L + 1CALL DATIN(L,INP.FNAHE,SF1,SF2,SAHRATJFILOP)DO 60 1=1,NHR II) = FLOAT (INP(Il>*SFi 60 CONTINUEL = L + 1CALL SATIN(L,INP,FNAHE,SF1,SF2,SAHRAT,DFILOP)DO 70 1=1}NEESI (I) = FL0AT(INP(I)}*SF2 70 CONTINUEL = L MCALL DATINIL,INP,FNAHE,SF1,SF2,SAHRAT,DFILOP)DO 80 1=1,NEEB2(IJ = FL0AT(JNP(I})*SF2 80 CONTINUEHRITE(6,90)SFlfSF2 90 FORHATr SF1= \F8.6,' SF2= ',F8,6)13 = 1IF M L 2  ,E8. 0} .AND, (L4 ,LT, 31)1RETURN 240 CSE = .TRUE.CALL DATINIL.INP,FNAHE,SF1,SF2,SAHRAT,DFILOP)
RETURN

299 L3 = 0IF 1BATNO ,EQ. -1) 60 TO 240 NRIT£(6,300)300 FORHAT( ILLEGAL BATCH NO, - NO, SHOULD BE BETNEEN 0 AND 191') SO TO 10END

C FILE Ij, 5 REDUCT COHH-F66 CREATES i 20 HAR 87C LAST REV i 25 HAR 87CC DETERMINES IF ANY REDUCTION IS TO BE APPLIED TO THE PLOT DEFAULT C UNITS SIZE OF 0,18 FOR TEKTRONIX AND 0,25 FOR CALCOMP, THESE ARE C VARIABLES TEXUNI' AND ’CALUNI' RESPECTIVELY. 'NSI2E' INDICATES C WHETHER FULL SIZE 10) OR REDUCED (1) PLOTS ARE TO BE PRODUCED,C SUBROUTINE REBUCnTEXUNLCALUNLNSIIE)INTEGER IRDUCE,ICONT;KYBBIN j VBUOUT,NS11EREAL TEXUNI,CALUNIDATA VDUOUT,KYBSIN 76.5/NSIZE = 0C CHECK FOR VALID GRAPHICAL OUTPUT UNIT SIZEIF {(TEXUNI ,NE, 0,13} .OR. (CALUNI ,NE. 0,25)) GO TO 9000C DETERMINE REQUIRED REDUCTION 100 MRITE(VBU0UT,120)120 FORMAT!//,’ 'ENTER REQUIRED REDUCTION (IF ANY) - \1 /.10X, ’ " 1 "  FOR NONE' /,10X, ' " 2 "  FOR 2/3 RD, SIZE',2 /,10l, 3 "  FOR 58 PER Cc N T y . l O X , "  *4" FOR HALF SIZE ,3 /.10X.'"5" QUARTER SIZE'} ' 'READ(KY8BIN,140,ERR-100)IRDUCE140 FORHAT (IDIF ((IRDUCE ,NE, 1) .AND. (IRDUCE ,NE. 2) .AND. (IRDUCE .HE. 411 .AND, (IRDUCE ,NE, 3) .AND. (IRDUCE ,NE, 5)J SO TO 100IF (IRDUCE ,EQ. 2) TEXUNI = (2./3.WEX0NIIF (IRDUCE ,E8, 2) CALUNI = (2,/3.}*CALUNIIF (IRDUCE ,ES, 3) TEXUNI = 0.53*TEXUNIIF (IRDUCE ,£Q. 3) CALUNI = 0.58*CALUNIIF (IRDUCE ,ES, 4) TEXUNI = 0.5*TEXUNI
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IF IIRDUCE ,EQ, 4) CALUNI = 0.5*CALUNIIF (IRDUCE ,E8, 5) TEXUNI = 0,25*TEX0NIIF (IRDUCE ,E8. 5) CALUNI = 0.25*CALUNIIF IIRDUCE .HE. i) HS11E = INRIIE IVDUBUT,200}TEX UNI, CALUNL  NSIZ E 200 FORMATi ' TEXUNI = ',F8.4,5X,'CALUNI = ’,F8,4,5X ’NS1ZE = '.ID 500 RETURNCC ERROR EXCEPTION,C9000 WRITE<VDU0UTf9020)9020 FORMATI///,'*** ERROR IN SUBROUTINE REDUCT ««'}9040 »RITE(VDU0UT,9060)9060 FORMAT 15X,'UNITS SIZE ENTERED FROM CALLING PROGRAM UNIT IN ERROR') WRITE (VDUDU7.9080)TEXUNI .CALUNI 90S0 FORMAT(5X,'TEKTRONIX UNITS = ',FS.4,5X,'CALC0MP UNITS = *,F8.4) 9100 «RITE(VDUOUT,9120) "9120 FORMAT I//, '*** ENTER " 1 "  TO CONTINUE, " 0 "  TO ABORT «**)READIKYBDIM,9140,ERR=9i00IICON!
9 1 4 0  FORMAT I  I DIF KICONT .HE. 1) .AND, IIC0NT .ME. C D  SO TO 9100IF (IC0NT .E0. D  SO TO 500STOPEND

FILE I.D, i STATI0 C0MM-F66 CREATED j 24 FEB 87 LAST REV i 26 FEB 37
PROGRAM TO -D  CREATE FILES TO HOLD STATISTICAL INFORMATION FOR SUBSEQUENT PROCESSING IN PREDICTIVE STATISTICAL ANALYSIS,2) READ BACK DATA FROM FILES CREATED IN STEP ID,
THE F0LLNIN8 ARE THE ARGUMENTS TRANSMITTED T0/FR0M THIS SUBROUTINE AND HAVE THE DENOTED MEANING AND RANGE OF VALUES,
PREP0S - EPOCH 0 = PRE-STIMULUS 1 = POST-STIMULUS NP - NUMBER OF DATA POINTS
BLINE - BASELINE 0 = NOCORRECTION 1 = YESPRES - START OF PRE-STIMULUS EPOCHALPHA - ALPHA VALUE FOR KB HINDOH
NINTYP - NIND0N 0 = HJN TUKEY1 = KAISER-BESSEL2 = TUKEY FNAME - FILE TO BE PROCESSED

MODEL - MODEL TYPE 0 1

TDLEN - FFT LENGTH
ECORR - OAR 0 = NO1 = YES IFILT - LON PASS 0 = NOFILTER 1 = YESPOSS - START OF POST-STIMULUS EPOCHEYETYP - OAR TYPE 0 = NON-REC, I = REC.MEAT - NUMBER OF TRIALS

IEF0CB - POST-STIM EPOCH1 = EARLY2 = LATENUMHRM - NUMBER OF HARMONICS

BATNRS - BATCH NUMBERS TO BE INCLUDED FMODE - FILE-MODE OF FILE TO BR READ, IF ANY INPUT IREAD)

NONESTRAIGHT LINEHRMTAB - HARMONIC NUMBERS TO BE INCLUDED FTYPE - FILE-TYPE OF FILE TO BE READ, IF ANY IOFLAG - READ OR NRITE STATS FILE 01 = NRITE -OUTPUT)OPNFIL - INDICATES IF FILE ALREADY OPEN .FALSE. = NOT OPEN .TRUE, = OPENNFS! - NEAREST AND FURTHEST MEAN AMPLITUDE TEST (STATISTICS)NFDF - "  ID.F.)PPST - PRE- AND POST-STIMULUS MEAN AMPLTUDE TEST -STATISTICS)PPDF - "  ID.F.)CVST - RAYLEIGH TEST OF CIRCULAR VARIANCEMDST - MODIFIED RAYLEIGH TEST OF CIRCULAR VARIANCE
SUBROUTINE STATIOiPREPOS.NP.TDLEN.PRES.POSS.ECBRR.BLINE,IFILT. 1 HINTYP,ALPHA,NUMHRM,HRMTAB,MBAf,BATNRS,FNAME,EYETYP,I MEAN.



2 NFS!,NFDF,PFST.PPDF.CVST,MBST,IMODEL,IOFLAS,FTYPE.FMODE,OPNFIDINTEGER' IHAR,PPDF,PREPOS.Mi5,,TBLEN,PRES,POSS,BLIN£,IFIL T ’INTEGER MIMTYpJUHHRH.MBAT.HRMTAB*32) ,BATNRS1323 .EYETYPINTEGER DATSET.FNAHE(*0),1MEAN,IHODEL,IOFLAG,IEPOCH,ISIVALLOGICAL CNVFLG,ERAFLS,OPNFILREAL NFST(3*3,NFBF(32) .PPSTI32) f CVST 132 3 ,HDST(323REAL ECORR,ALPHAINTEGERS FMODE,MODEINTEGER RETCD.MRNAME(20),IBLANK,IBASH,CHEP i,CHEP2REAL DEVICEREAL*8 NAME,FTYPE,TYPECOHHON /FLAGS/ CNVFLS,ERAFLS,ISIVALCOHHON /EPuCHJ JEPBCH'DATA DATSET, I BABB, I BLANK, CHEP I .CHEP 2  121 , V  ','1 * ’2 7DATA TYPE,NODE,DEVICE /'STATRLE','C','DISK1/
C CREATE NRITE FILE NAME,

DO 30 1=1,20NRNAHEu) = I BLANK 30 CONTINUEHRHAME (13 = FNAHE (13MRNAM£(23 = FNAHE143NRNAHEI33 = FNAHE153NRNAHE143 = FNANE163HRNANE153 = FNAHEI73IF (ISIVAL ,ES. 41 NRNAHEI63 = IBASHIF 1(ISIVAL ,E§, 43 .AND. IIEPOCH ,E§, 133 NRNAHEI73 = CHEPiIF I(ISIVAL ,£G, 43 .AND, (IEPOCH ,E0, 233 HRNANE(73 = CHEP2C
C IF FILE ALREADY OPEN NRITE/READ DATA FROM NEXT SECTION OF FILE C IF (0PNFIL3 GO TO 70IF (IOFLAS ,E8, 13 CALL NAHCON(NAME,NRNAHE3IF (IOFLAS ,£S, 03 CALL NAHCONINANE,FNAHE3IF (IOFLAG ,ES, 1) GO TO 50TYPE = FTYPE NODE = FHOBE50 CALL F1LEDF(RETCD,DATSET,DEVICE,NAME,TYPE,MDB£3IF (RETCD ,NE, 03 GO TO 9000 OPNFIL = .TRUE.CC DETERMINE NHETHER READ OR NRITE FILE HEADER INFORMATION C70 IF ((IOFLAG ,N£. 03 .AND. (IOFLAG ,NE, 133 80 TO 9000IF (IOFLAG ,E8, 03 GO TO 500CC NRIIE HEADER INFORMATION C KRITE(DATSET,903 90 FORMAT!IX.701'*'}}NRITE(SATSET,100 3 (FNAME(13.1=1,83,NP,TBLEM.PREPOS,IEPOCH 100 FORMAT(* FILE ',8A1.531,'NP = ',14.st 'FFT'LENGTH = ',I4.5X,1 'PREPOS = *,11,41.dEPOCB = 'III 3 ' 'NR I TE (DATSET, 120.3 PRhS, POSS, ECORR, EYETYP, I MODEL 120 FORHAT(’ PREb = ’ I4.5X,’POSS = ’ 14,5X,'ECORR = ',F3,1,5X,1 'EYETYP = ’ ll.SX, IMOBEL = ?,I23 'NRITE(DATSET,140lBLiNE.lFILT,IMEAN,NINTYP,ALPHA 140 FORMAT(' BLINE = ' II,5X.'IFILT = ?,I1.5Xj'IHEAN = M1, 5X ,1 'NINTYP = *11,21,'ALPHA = ',F5.2JNRITE(DATSET,ISO-NOMHRM,MBAT 160 FORMAT(’ NUMHRM = ',I3,5X,'HBAT = ',123 WRITE(DATSET,90)CC WRITE STATISTICS TO FILEC DO 300 1=1,NUMHRMWRITE(DbTSET,260)HRMTAB(13,NFST(I3,NFDF(I3,PPSTd),PPBF,CVST(!3 1 ,MDSt(13260 FORHAT(1X,14,3X«F8.5,1X,F5.2,3X,F8,5,1X,12,2(3X,F7,53 3300 CONTINUE 'GO TO 900CC READ HEADER INFORMATION C
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500 READ(DATSET,5203CFNAHEd) ,I=i.8)fNP,TDLEN.PREPOS.IEPOCH 520 FORHAT ( // .7X.8A13 5X ,5X414 , 5X,1 3X, 14.5X, 9X. I i, 4X,9X,11)READ C DATSET, 540) PRES, POSS. ECORR. £ VET VP. I HODEL ' '540 FORHAT ( 81,14.5X.7X.34,51 .8X,F3.1,5X. 9X ,11,5X, 9X, 12)READ ( DATSET.560 3 BLINE,IFIL T,I HE An ,H!NTVP, ALPHA 560 F0RMATC97,Ii,5X,ei,!i,57,8X,Il,5X,9X,li,2X,8X,F5,23READ 1DATSET,580iNUMHRM,HSAT 580 FORHAT11OX,13,5X,7X,12 f//)CC READ STATISTICS F R O M  F I L E
do 700 M . m m nREAD(DAfS£T,6603 HRHTAB ( I} ,NFST(I3 JFBFCI3 ,PPST(I3 ,PPDF,CVSTCI3 1 ,HDST(I3

660 F0RHAT(iX,I4,3X,F8.5,iX,F5.2,3X,FS,5,iX,I2,2(3X,F7,53}700 CONTINUE900 RETURN
C ERROR HANDLERS C9000 CONTINUE STOP END

C FILE L B ,  ; STPRNT C0HH-F66 LAST REV : JUL 86C SUBROUTINE STPRMTCPREP0S,NP,7SLEN,PRES,P0SS5EC0RR,8LINE,IFILT,
1 N IN T V P jA LP H A .N U H H R H  jH R H Ta B ,H B A T  , BATNRS , FNAHE, EV ETV P, IH E A N ,2 NFST,NH3F, PPST,PPBF.CVST,HfiST,IMODEL)INTEGER IBAR,PPDr, PREPOS, Nl*, TBl£ N . PRE S ,POSS,BLINE,IFIL T INTESER HINT VP,HUNHRH,MSa T .HRHTAS(NUNBKM3 ,BATNRS(N8AT3.EVETVp INTEBER DATSET,FNAHE120),IHEAN,IHODEL REAL NFS!132},NFDF1321,PPST(*23.CVST132)-HDST132)REAL ECORR.ALPHAIF 1PREPOS .£8. 0) DATSET = 19IF (PREPOS ,E8, i) DATSET = 20IF 1(PREPOS ,E8, 0} .AND, (NBA! .ST, 1})1 NRITE(OATSET,JOO)(FNAHE(I).1=1,0),HBAT IF ((PREPOS ,E8, 0) .AND, (MBAT .E8. I)}1 wRITECDATSET,i203(FNANE(I),1=1,8}.HBAT IF ((PREPOS .E 8 . 1 3 .AND. (HBAT ,81, 1)3 1 MRITE(DATSET,1403(FNAHE(13.1=1.S3.HBAT IF ((PREPOS ,E8. 13 .AND. (HBAT .Efi. j}}1 NR ITE(DATSET,1603(FNAHE(13,1=1,83.HBAT100 F O R M A T C 1 ',29X,' PRE-STIMULUS RESULTS FROM DATA FILE - ’.1 8A1,4X, COMPRISING -,12,’ BATCHES'.1OX 'PAGE '133120 FORHAT C 1 . 2 9 X , '  PRE-STIHULUS RESULTS FROH DATA FILE - 1 8A1,4X, COMPRISING ’ I!,' BATCH ' lOX.'PAGE ',133140 FORHAT 1’r ,29X,’POST-STIhULUS RESULTS FROM DATA FILE - 1 8A1.4X, COMPRISING '12,' BATCHES',lOX.'PABE ',133160 FORMATrl ,29X, ‘POST-STlHULUS RESULTS FROH DATA FILE - ',1 8A1.4X. COMPRISING ' II ' BATCH 'f10X,'PA6E ’,133NRITE(DATSET,2O03NP1TDL£M,PRES<POSS 200 FORMAT(/.IX,14, ’ DAfA POINTS' 6X,14,' POINT FFT'.&X,1 'PRE-STIHULUS EPOCH EXTENDS FROH POINT '.14.61, "2 'POST-STIHULUS EPOCH EXTEND FROH POINT '143
WRITE(DATSET,3003300 FORHAT(/3IF ((ECORR ,EB, 1,3 .AND. (EVETVP .E8. 03 .AND. (IMODEL ,EQ, 0331 NRITECDATSET,3203IF ((ECORR .Efi. 1.3 .AND, (EVETVP .Efi. 03 .AND, (IHODEL .Efi. 10333 yPITPiHATRF! WiS
IF ((ECORR .EQ. i y  .AND, (EVETVP .Efi. 13 .AND, (IHODEL .Efi. 033 
1 M R I T F / n A T R F T  \40i
"iF ((ECORR .Efi,T} .AND. (EVETVP .Efi. 13 .AND. (IMODEL .Efi. 103 3 1 HRITS(DATSET,3503 IF CBLIME .Efi. if INRITE (DATSET, 3603IF (IFILT .Efi. 13 HRITEIBATSET.3803320 FORMAT(20X,'MOM-RECURSIVE OA RtHOVAL APPLIED (NO H0DELLINB3 '3 330 FORMAT(20X,'NON-RECURSIVE OA REMOVAL APPLIED (CNV/ERA MODELLED}'} 340 FORMAT(20X,'RECURSIVE OA REMOVAL APPLIED (NO MODELLING}'3350 FORMAT(20X,'RECURSIVE OA REMOVAL APPLIED (CNV/ERA MODELLED}'}360 FORMAT(20X,'BASELINE CORRECTION APPLIED'}
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380 FORHAT(20X,'FILTERING ®  BATA PERFORMED'}
if ihintyp .e o . o ) hr ite >:d a t s e t,sooiIF (HIHTYP .E8. 1) HR I TE (DAT SET,520)ALPHAIF ININTYP .EO. 2) HRITE(DATSET,530)500 FORMAT 120):,'25 PER CENT TUKEY HINDOH')520 FORHAT(20X,'KAISER-BESSEL HINDOH HITH ALPHA = 'F8.43 530 FORMAT(20X,'HJN 25 PER CENT " T A P E R 2 "  TUKEY HINDOH’}IF 11MEAN .EO. 0) HRITE(DATSET,5403 IF IIHEAN .EO. 1) HRITE(DATSET,5501 540 FORMAT(20X,'MEAN OF HINDOHED DATA INCLUDED'}550 FORMAT(20X,'HEAN OF HINDOHED DATA REMOVED'}HRITE(DATSET,5803NUMHRM 530 FDRMAT(/,10X,I4,IX,'HARMONICS HAVE BEEN SELECTED FOR THE',1 ' STATTISTIChL TESTS’}HRITE(DATSET,700}700 FORMAT( ’ HARMONIC,',5X'NEAREST AND FURTHEST',5L 3 '. PRE- AND POST1 STIMULUS MEAN .',3X,2 'RAYLEIGH TEST OF CIRCULAR ,',3X,3 'MODIFIED RAYLEIGH TEST OF'} 'HRITE(DATSET,720}720 FORMAT(' ========.' 5 X  'MEAN AMPLITUDE TEST',6X,1 AMPLITUDE DIFFERENCES TEST 'iiX,2 'VARIANCE' IIX,'.',7X,'CIRCULAR VARIANCE')HRITE(DATSET,740)740 FORMAT(9X,'. ,5X,'====================^ f

j ■r ============================ ' 1. .

3 1 = = = = = = = = = = = = = = = = = = = = = = = = = 11
HRITE(DATSET,760)760 FORMAT(9X,',(1 TAIL)',22X,',(2 TAIL)’,22X,] CIRCULAR’.22X/.M0D, DISP.'i HRITE(DATSET,780)PPDF 780 FORMATC9X'. T-STAT D . F . ' H X T - S T A T  ALL HITH ',12,I ' D.F.' 5X ' VARIANCE',22X,\ FACTOR')HRIT£(DATSET,800)C 800 FORMAT(9X,',- - - - - - 1 7 X , - - - - - - - - - - - - - - - - - - - '

C BOO*FORMAi}(9X,4(',’,3{('-5)}} *DO 1000 1=1.NUMHRMIF (PREPOS .Efi, 0) HRITE(DATSET,9003 1 (HRMTAB(I}.NFST(I),NFDF(13.CVST(I),MDST(I)3900 F0RMAT(4X,I3,2X,'.' F3.5 ' / fF 4 . J ^ J 7 X ' , 7 X , ̂ 22X. . ,F7.5,i2X, , ,6/,C IF (PREPOS .Efi, 13 HRITE(DATSET,9503C i (HRMTAB(I}.NFST(13,NFDF(13,PPST(13,CVST(13,MDST(13 3C 950 F0RMAT(4X,I3,2X,',’ilF8.5A ' '?F 4 , U 7 X , ' ,  ',F7.4,C 1 22X , ’, ',F7,5,i'2X, . ',1-7,5)IF (PREPOS .Efi. 13 HRITE(DATSET,9503 1 (HRMTAB*13,950 FORMAT(47,1
B C13.NFST(13.NFDF(13.PrST(13,CVST(13,HOSTC13 3 ,I3,2X,'.' Ffi.5 ' F 4 . 1 . 1 7 X ‘,F7.4,22X ’ ',F7,5,22X, . ',F7,5}HRITE(DATSET,$70)970 FORMAT(9X,4(,',30('-'3 3 31000 CONTINUERETURN END

C FILE I.D. ; SUFACT TPFL-F66 LAST REV ; 16 FEB 87CC COMPUTES FACTORIAL 1 TO FACTORIAL 32 , STORING THE RESULT IN A C COMMON BLOCK TO SAVE REAPEATED CALCULATIONS.
SUBROUTINE SUFACT COMMON /ARFACT/ FACT(323 FACT(i) = 1.0 DO 200 1=2,32 REFACT =1.0 DO 100 0=1,1REFACT = REFACT * FLOAT(J)100 CONTINUEFACT(13 = REFACT 200 CONTINUE RETURN END
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C FILE L B,  i TAPCOS TPFL-F66 LAST REV ; 13 MAR 87CC THIS PROGRAM IS AN INTERFACE BETWEEN THE MAIN PORGRAM OMITS RE~ C SPONSIBLE FOR SIGANL PROCESSINS AND THE PROGRAM OMITS HHICH GENERATE C THE REQUIRED NINDGNS.C ALSO THE HINDOHED DATA HAY, OR HAY NOT (DEPENDING ON A SUBROUTINE C ARGUMENT), HAVE ANY MEAN REMOVED,C SUBROUTINE TAPCOSfTRDAT.NP,IMEAN)INTEGER NP,VDUOUT,IHEAN,1DCTYPREAL TRDAT(NP 3 < NINVAl (1024 3 ,RMEAN,SUMI,S0M2, S0M3, i IND AT (1024 3LOGICAL HFILOPCOMMON /HFILST/ NFILQP.SUH1,SUH3.NINVAL DATA VDUOUT 16!C SET IDCTYP = 0 FOR 'SIMPLE' MEAN LEVEL REMOVAL,C SET IDCTYP = 1 FOR ‘COMPLEX' MEAN LEVEL REMOVAL,BATA IDCTYP HiIF ((IMEAN ,NE, 03 .AND. (IMEAN .NE. 133 SO TO 1300 IF 1MFIL0P3 GO TO 200 BO 100 1=1,HP NINVAL(I) = 1.0 100 CONTINUECALL C0S8EN(HINVAL,NP 3 C TAPER BATA 200 DO 400 1=1.NPTRDAT(I! = TRDAT(I3«NINVAL(I)400 CONTINUECC DETERMINE NHETHER OR NOT TO SUBTRACT MEAN C 600 IF (IMEAN .NE. 13 SO TO 900CC SUBTRACT MEAN FROM HINDOHED DATA C
IF (IDCTYP .EO. 13 SO TO 700 SUM! = 0.0 DO 650 1=1.NPSUM! = SUM1 + TRDAT(13 650 CONTINUERHEAN = SUM1 /’FLOAT (NP)DO 680 1=1.HPTRDAT(11 = TRDAT(13 - RHEAN 680 CONTINUEGO TO 900 700 SUM2 = 0.0IF (HFIL0P3 GO TO 740sum = o.o SUH3 = 0.0 DO 730 1=1.NPSUM1 = SUM! t NINVALII)SUM3 = 3UM3 + NINVAL(I)*NINVAL(I3 730 CONTINUESUMS = SORT(FLOAT(NP3/SUM3)740 DO 750 1=1,NP

SUM2 = SUH2 + TRDAT(13*NINVAL(IJ 750 CONTINUESUM2 = SUM2/SUM!DO 800 1=1,NPTRDATill = (TRDAT(13-SUH23*SUM3*NINVAL(13 800 CONTINUEHFILOP = .TRUE,900 RETURNCC ERROR MESSAGES C1300 HRITE(VDUOUT,132031320 FORMAT(' « «  INVALID IMEAN VALUE « « * }2000 HRITE(VDUOUT.202032020 FORMAT(' STOP IN SUBROUTINE TAPCOS' >STOP END •



C FILE L B ,  i TAPER2 TPFL-F66 LAST REV } 15 DEC 36C SUBROUTINE TAPER2(X,N JHEAN)CC TAPERS SUBROUTINE AND SUBTRACTS HEAN C INTEGER I,IHEAN,IBCTVPREAL SUH1,SUH2,isUH3,H ,MINDY,X (M3,XHEAN
C SET IDCTYP = 0 FOR 'SIMPLE' HEAN LEVEL REMOVAL,C SET IDCTYP = 1 FOR 'COMPLEX' HEAN LEVEL REMOVAL,

DATA IDCTYP H i
IF ((IHEAN .EO. 1) .AND, (IDCTYP .Efi, 1)1 SO TO 200 C TAPER DATA,BO 100 1=1,H
xm = h i ) w m m fu)100 CONTINUEIF (IHEAN .EO, 0) >30 TO 300 XHEAN = 0.0 DO 120 1=1.NXHEAN = XHEAN + XU>120 CONTINUEXHEAN = XHEAN/FLOATINI DO 140 1=1,MXII) = XII) - XHEAN 140 CONTINUE SO TO 300200 sum = o.oSUH2 = 0.0 SUH3 = 0.0 DO 210 1=1,N * = MINDY(I,N)SUM! = SUN! + H SUH3 = SUH3 t m  SUH2 = SUH2 t mi l )210 CONTINUE SLLN2 = SUH2/SUH1 SUH3 = SORT(N/SUH3)BO 220 1=1,NXII) = (X (13-SUM23*SUM3*NINDY(I,N1 220 CONTINUE 300 RETURN END

C FILE LB, i TAPKAI TPFL-F66 LAST REV 5 13 HAR 87CC THIS PROSRAH IS AN INTERFACE BETNEEN THE MAIN PORSRAH UNITS RE- C SPONSIBLE FOR SISANL PROCESSING AND THE PROGRAM UNITS WHICH GENERATE C THE REQUIRED NINDGNS.C ALSO THE MINDGNEB DATA HAY, OR HAY NOT (DEPENDING ON A SUBROUTINE C ARGUMENT), HAVE ANY MEAN REMOVED,C SUBROUTINE TAPKAIITRDAT,NP,ALPHA,IMEAN)INTEGER NP,VDUOUT,IMEAN,IDCTYP "REAL TRDAT(NP),ALPHA,RHEAN REAL HINVAL(1024),SUH1,SUH2,SUH3LOGICAL MFILOPCOMMON /NFILST/ NFILOP,SUM1,SUH3,MINVAL C SET IDCTYP = 0 FOR 'SIMPLE* MEAN LEVEL REMOVAL,C SET IDCTYP = 1 FOR 'COMPLEX' HEAN LEVEL REMOVAL,BATA IDCTYP Hi DATA VDUOUT 76/IF ((IHEAN .NE, 0) .AND. (IHEAN .NE, 1)3 GO TO 1300 IF (NFILGP) GO TO 200 DO 100 1=1,NP NINVAL(I) =1.0 100 CONTINUECALL KAIGEN(III NVAL,NP,ALPHA)C TAPER BATA 200 DO 400 1=1-NPTRDAT(11 = SNGL(DBLE(TRDAT(133 *B8LE(HINVAL(13 3 3 400 CONTINUE



C DETERMINE WHETHER OF; NOT TO REMOVE MEANC 600 IF IIMEAN .NE, I) SO TO 900CC SUBTRACT MEAN FROM NINBONED DATAC IF ilBCTYP .Efi, i) SO TO 700 SUM! = 0.0 DO 650 1=1.NPSUM! = SUM! + TRDATill 650 CONTINUERHEAN = Su.nl/FLOARNF}DO 680 1*1-NPTRDAT!I1 = TRDATil) - RHEAN 680 CONTINUESO TO 900 700 SUH2 = 0.0IF INFILOP) SB TO 740 SUM! = 0.0 SUH3 = 0.0 BO 730 1=1,NPSUM? = SUM! t HINVALiDSUH3 = SUM3 + NINVALfI)*NINVAL(I}730 CONTINUESUN3 = SORT IFLOATINP)/SUM3)740 DO 750 1=1,NPSUN2 = SUM2 + TRDAT-: m y  INVALID 750 CONTINUESUM2 = SUH2/SUM1 DO 800 1=1.NPTRDATill = iTRDAT1I}-SUM2)*SUN3«NINVALiI) 800 CONTINUENFILOP = .TRUE.900 RETURNCC ERROR ME3SASESC1300 NRITE(VDUOUT,1320)1320 FORMAT!’ **tt INVALID IMEAN VALUE m i ' }2000 NR]TE!VDUOUT.2020}2020 FORMAT!' STOP IN SUBROUTINE TAPKAI'}STOPEND

C FILE I.D. 5 THENVL 0AR-F66 - LAST REV ; 13 OCT 06CC THIS SUBROUTINE SENDS TO A DATA FILE THE VALUES OF THE THETAS C FOR THE FINAL DATA POINT IN EACH TRIAL. IT SUPPLIES THE TRIAL NUM- C BER, AND THE VALUES OF THE THETAS IN THE ORDER THETA 1. THETA 2.C THEfA 3 AND THETA 4 !PRINTED LEFT TO RI8HT}.C SUBROUTINE THENVL iTHDEND-NPAR}INTE8ER BATNO,DATSET,NPaR REAL THDEND(NPAR)COMMON /TRLNUM/ BATNO n£Tfi DATSET 713/
NRITE!DATSETj100)BATNO,!THDENDtI},1=1,NPAR}100 FORMAT!47.14,7!!/,F8.4,IX}}RETURNEND

C FILE LB. ; UDUFLT 0AR-F66 LAST REV i 1 DEC 36C
SUBROUTINE UDUFL T !Y , X , U , THE TA, NPAR, E , SAMMA, 11}CC THIS SUBROUTINE IS BASED ON BIERMAN'S COBINS OF THE UDU C FILTERING ALGORITHM. IT COMPUTES THE PARAMETER ESTIMATES,C THE EMA ESTIMATES AND THE CORRECTED EES USING RLS METHOD.

C IN P U T S ;C " U UPPER TRIANGULAR MATRIX HITH DilJ STORED IN U!I,I}
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ira YfX OUTPUT SAMPLE AND £00 DATA VECTORTHETA VECTOR OF PREVIOUS PARAMETER ESTIMATESSAMHA THE FORSETTINB FACTORNPAR NUMBER OF PARAMETERS IN THE MODELII THE SAMPLE NUMBER
OUTPUTS;0 UPDATED TRIAN8VLAR MATRIXB THE 0NNEI6THEB KALMAN SAINTHETA UPDATED PARAMETER ESTIMATES E CORRECTED EES DATA

DIMENSION X (7) ,0(28).THETA(71 .B (7).VI7)SF = I.0/GAMMA PERR = Y DO 2 J=i ?NFARPERR = PERR - X(J)sTHETA(3}2 CONTINUE M = IV U ) = Xu)IF (NPAR .Efi, I) SO TO 15 BO 10 J=2,NPAR VID = X(J)
J I  = J -  i  DO 5 K=i,JI M = M + Iv>j) = vy) + umnm5 CONTINUE M = M + 1 BU) =10 CONTINUEis b i d  = u i m x mALPHA = SAMHA + BII.HVID DELTA = 1.0/ALPHA U(D = UI1DDELTA M = IIF (NPAR .EO. D  SB TO 27 DO 25 J=25NPAR BETA! = ALPHA ALPHA = ALPHA + B(J)tVU)P = -VUHDELTA DELTA = 1.0/ALPHA 31 = 0 - 1  DO 20 K=1.J1 M = M * 1 BETA = U(M)0(H) = BETA + BIK)tP B(K) = 800 <■ B(J}*BETA 20 CONTINUEM = M + 1U(M) = U(»}*8ETA1*BELTA*SF 25 CONTINUE 27 PERR = PERR/ALPHA DO 30 0=1,NPARTHETA I J) = THETAI J) t B(3)*PERR 30 CONTINUEE = VNPAR2 = NPARIF (NPAR2 ,6T, 41NPAR2 = 4 DO 35 I=1,NPAR2E = E - X(!)*THETA(I)35 CONTINUERETURN END

C FILE I.D. i VSTAT2 STAT-F66 
"  SUBROUTINE VSTAT2(ANGLE,RAD,N)
C THIS SUBROUTINE EXAMINES THE N VECTORS WHOSE DIRECTIONS ARE STOREDC IN ARRAY ’ANGLE" AND INHOSE MAGNITUDES ARE STORED IN ARRAY ’RAD'. THEC PROGRAM IDENTIFIES THE IN/2) VECTORS WHICH LIE IN THE SMALLEST ARCC AND COMPARES THE AVERAGE LENGTH OF THESE VECTORS WITH THE AVERAGE
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C LENGTH OF THE REMAINING VECTORS. THE COMPARISON IS HADE BY A T-TESTC HITH AN APPROXIHATE CORRECTION FOR (POSSIBLE) UNEQUAL VARIANCES.CC INTEGER VDUOUTDIHENSION ANGLE IN),RAD(N),TEHP(100)DOUBLE PRECISION SUH11.5UH12.SUH21.SUH22REAL PRNFST132),PRNFDFl32>?PRPPST(32),PRCVST132).PRBD3TI32}REAL NFSTP0(32).NFDFP0I32).PPSTP0I32).CVSTP0I32).HDSTP0I32)INTEGER IHRPRE,IHRPOS.PRPPDF«PPDFPO 'LOGICAL PRE.POSCOHHON /PREST/ PRNFST,PRNFDF,PRPPST.PRPPDF,PRCVST.PRHDST,IHRPRE.1 PRE ‘COHHON /POSST/ NFSTPO.NFBFPO,PPSTPO.PPDFPO.CVSTPO.HDSTPO.IHRPOS.! POSDATA PI/3.1415926536/DATA VDUOUT /14/DATA VDUOUT iU
STORES ANGLES IN A TEMPORARY ARRAY AND ARRANGES IN ASCENDING ORDER USING A BUBBLE SORT.
DO 1 1=1.NTEMpllKANGLEu)1 CONTINUE DO 2 1=2,N H A MANAX=TEJ»PU>NH A M -I+ 2  DO 3 J=2,NNAXIFITtHPlJJ.LE.AHAX) GO TO 3AHA X=T E .HP C J iH A M3 CONTINUE TEHPIHAXMEMPINHAX)2 TEMP(NMAX)sAHAX
FIND THE (N/2) VALUES LYING IN THE SMALLEST ARC.
N2-N/2DMIN=TEMPIN2)-TEHP(1}AMIN=TENPU>AMAM£MP(N2}DO 4 I=2.N IU=KM2-1IF<IU .LE. N)UPP£R=TEHPIIU}IFIIU .ST. N)UPPER=TEHPiIU-N)+2.*Pi IF I (UPPER-TEHPd.l) .BE. DM IN) 60 TO 4 DMIN=UPP£R-TEMP(I)AMIM=T£HP(I)AHAX=UPPER4 CONTINUECC CALCULATES MEAN AND VARIANCE FOR BOTH SETS OF DATA C SUM!1=0.0SUH12=0.0SUN21=0.0SUM22-0.0N2=0N21=0
C 0N S T =0.IFIAHAX.6T.PI) C0NST=2*PI DO 5 1=1.N A=ANbLEiI)IF (A .IT. (i. I A=A+CONSTIF(A .LT. AHIN .OR. A .ST. AHA/)GO TO 6N2=N2*1SUMll=SUMlltRAD>;i}SUM12=SUH12 ̂ RAD iI)*RAD(I)50 TO 5 6 SUN21=SUH21+RADII}N2I=N2I*15UM22=SUH22+RAD(I)*RADiI)5 CONTINUE
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SUS1i=8UHii/N2 SUH21=SUM21/N2iSUH1 2= !SUH12/N2-SUH11 *3UM1 1) / IN2-1)SUH22=!SUH22/N2I-SUH21 *SUM21)/<N2i-I)cC CALCULATES T-STATISTIC AND OUTPUTS RESULTS C TSTAT=SNGL!!SUH11-SUH21}/DSORT!SUH12*SUM22))DF=(SUH12+SUH22)*!SUN12fSUM22}BF=DF/{Stmi2«SUH22/IN2+1i+5UH22»SUH22/IN21+1))-2 SUH12=BSSRT!SUH12*N2}SHH22*DS0RT!SUH22«N21}WRITEtVDUOUT,100)H2,SUMI!,SOU12 WRITE! VDUOUT, 101} N2 1. SUH21. SUM22 MRITE!VDUOUT,102)TSTb T .DF100 FORHAT!/' HEAN AND S.B, OF LENGTHS DF THE'.14 * CLOSEST VECTORS t= EU.8.E16.8)101 FORHAT(' HEAN AND S.D. OF LEN8THS OF THE'.14,' REMAINING VECTORS = t ' E16.8.E16.8)102 FORHAT!/ T-STATISTIC = ’, F 1 0 . 5 H I T H  ',F6.1,+' DEGREES OF FREEDOM')IF IPRE) PRNFST!IHRPRE) = TSTATIF iPRE) PRNFDFilHRPRE) = DFIF IPOS) NFSTP0IIHRP0S) = TSTATIF IPOS) NFDFP0IIHRP0S) = DFRETURN END

C FILE LD. ; VSTAT3 STAT-FSS C
SUBROUTINE VSTAT3!ANSLE,RAD,N)
THIS SUBROUTINE CALCULATES A 'H0DIFIED DISPERSION' STATISTIC FOR THE VECTORS WHOSE DIRECTIONS ARE STORED IN ARRAY 'ANGLE' AND WHOSE MAGNITUDES ARE STORED IN ARRAY ’RAD'.
MODIFIED DISPERSION FACTOR .... UH=1-S8RT!S*S+C*C)
WHERE S= WEIGHTED AVERAGE OF SINE VALUES C= WEIGHTED AVERAGE OF COSINE VALUES
AND THE WEIGHTING FACTORS ARE THE RANK ORDERS OF THE VECTORS
OH HAS VALUE 1 FOR A ZERO HAGINTUDE RESULTANT VECTOR0 FOR A SET OF ALIGNED VECTORS
INTEGER VDUOUTDIMENSION ANGLE!N),RABIN),TEHPA!100J.TEHPRUOO)REAL PRNFST1321.PRNFDFI32),PRPPST!32l}PRCVST!32).PRHDST1321 REAL NFSTP0I32).NFDFP0132),PPSTP0!32),CVSTP0!32).HDSTP0I32)INTEGER IHSPRE,IHRPOS,PRPPDF,PPDFPO LOGICAL PRE.POSCOMMON /PREST/ PRNFST,PRNFBF,PRPPST.PRPPDF.PRCVST,PRHDST.IHRPRE.1 PRECOHHON /POSST/ NFSTPO,NFDFPO,PPSTPO,PPDFPO,CVSTPO.HDSTPO,IHRPOS,1 POSDATA VDUOUT /I4/C DATA VDUOUT iU DO 1 1=1.NTEHPft!I)=ANGLE!I)TEMPR!I)=RAD!I}1 CONTINUE C=0.0 S=0.0DO 2 1=2,N HAX=1AH A M E H P R U )NHAX=N-I+2 DO 3 J=2,NHA>:IF !TEHPR!J).LE.AHAX) SO TO 3 AHAX=TEHPR!J)HAK13 CONTINUE



s=s *n m a/*s i m i t e h p a i h a x dTEMPR (MAX} =TEMPR INHAX)TEHPAIHAX)=TEHPAINMAX)2 CONTINUE C=C+CGSITENPAID)S=S+SIN!TEHPAID)SUHN=N«IN*D/2C=C/SUMNS=S/SUHNUH=1.0-SfiRT !S*S+CsC)WRITE(VDUOUT,100) UN 100 FORMAT!/' MODIFIED DISPERSION FACTOR = '.F10.5J IF IPRE) PRHDSTIIHRPRE) = UN IF IPOS) HDSTPOIIHRPOS) = U.H RETURN END

C FILE LD, j WAIT COHM-FBS CREATED ; 22 APR 87C SUBROUTINE WAIT 10 CALL H0VT02I0..0.)CALL CURBEFI3HU.)CALL CURSORIIX?}IF II .NE. 1) SO TO 10RETURN
END

C FILE I.B. 5 WINDY TPFL-F66 C REAL FUNCTION NINDYIJ.NI)INTESER J.N.NTL.NI DATA PI /3.1435928538/TL = .125 AN = FLOAT INI)AN! = AN - 1CC TL IS THE TAPER LENGTHC NTL = IFiXlTL*AN*0.5J WINDY =1.0 AT = J - 0.5IF !J ,SE. NTL .AND. J .LE. INI-NTL))RETURN WINDY = II, - COS!PI*A3/!AN3*TL)))/2,IF (3 .ST. INI-NTL))1 WINDY = II. t COS IPI* IA J + N T L -A N 1 ) / 1A N )* T L )))/2. RETURN END

C FILE I.D. i XVAL1 0AR-F88 C SUBROUTINE XvALI(XN.NPAR,IDCC PRIME THE VECTOR X WITH EOS DATA C DIMENSION XNI7)COMMON VL 11024) ,VR!I024) .HLU024) -HRII024)COMMON /BLNKEX/ CHPNTI13024),CHPNT2!1024)fCHPNT3U024} XNID = VRIIi)XNI2) = HR 111)XNI3) = HLII1)XNI4) = VL1I1)XNI5) = CHPNTI (ID XNI6) = CNPNT2IID XNI7) = CHPNT3IID RETURN END



C FILE LD. i XYVAL OAR-FBt C Subrou ti ne x v v a l i p a r h,b o u t tr s s 5r s s ,d a j f a r .i d,i t v f e}cC XN IS A VECTOR OF EDS SATAC THETA IS A VECTOR OF PARAMETER ESTIMATES INFARtj)C PS IS COVARIANCE MATRIX OF THE EOS SATA 1NPAR*NPAR)C DIMENSION PARMI716S).000111024) .RSSL024) .RS8U024) .0AU024) COMMON VL (1024).VR (I{>24) .HL i 1024),HR U 024)COMMON /BLNKEX/'CMPNTJLu24) .CMPNt2(i024).CMPNT3L024)N = 1024IF (IS .LT, 5) SO TO 110 DO 150 1=1,NVLU) = HR>I)*HL>I)150 CONTINUE110 CONTINUECALL ONLSUBIFARM,BOUT,RSS.RSSfOA,NPAR.ITVPE)RETURNEND

-ASS-



C FILE J.D, : DISC FORTRAN LAST REV i 15 DEC 87CC 15 DEC 87 ; CHANGED READ STATEMENTS TO TAKE DATA STRAIGHT

C PROGRAM ONUS TO PERFORM PREDICTIVE STATISTICAL DIAGNOSIS
C M = NUMBER OF VARIABLES (TESTS)C N = NUMBER OF OBSERVATIONS TO BE CLASSIFIEDC PRIOR = PRIOR PROBABILITY OF BEING NORMALC NI = NUMBER OF NORMAL SUBJECTSC N2 = NUMBER OF HC SUBJECTSC AMI = ARRAY HOLDING MEANS FOR NORMAL SUBJECTSC AM2 = ARRAY HOLDING MEANS FOR HC SUBJECTSC X = ARRAY HOLDING DATA TO BE CLASSIFIEDCC THE FOLLOWING SUBROUTINES ARE USED C - STN COMPUTES D-DIMENSIONAL STUDENT TYPE DENSITY ANDC ATYPICALITY INDICESC - DISP COMPUTES DISPERSION MATRIXC - MINV IS FROM THE IBM SCIENTIFIC SYSTEMSC SUBROUTINE ISSP)C DIMENSION X(10)X I (10,10),02(10.10}.AMI(10).AH2U0)READ(12,*) M,N,PRIOR READ(12ft) n L(AM1(J),J=LM)READ(12,*) N2,(AM2(J),J=llM)V1=FL0AT(N1)-L0 V2=FL0AT(N2)-1.0 CALL DISP(M,N1,C1.V1,DET1)CALL DISP(M,N2,C2,V2.'DET2)DO 4 1=1,N ' 'READ(12,*) (X(J).J=1,M)CALL STN(M,V1 ,AHl,Cl,LSI ,DET1 ,A1)CALL STN(M.V2.AM2.C2.X,S2,DET2,A2)PA=SIfPRIOR/(Si«PRIOR+\1.0-PRIOR)*S2)4 HRITE(6,100) I.PA.AI,A2 100 FORMAT(110,3F1U.3)

P=0,5*(V*1) '0=0.5*(V-FLOAT(M)*1) 
D=3.i4159«(0.5fFL0AT(M))A=8AMMA(P)/(DtGAMHA(0)*SQRT(BET)) F=0.0DO 1 J=1 ,H DO 1 K=1,M 1 F=F+(X(J)-6(J))t(X(K)-B(K))*C(J,K) 8=1.0/(LOtF) H P  P;=At"
Pl=FL0AT(M)/2,0P2=P-P1BETA=ALGAMA(PI)*ALGAMA(P2)-ALGAMA(P) 2=F/ (FH)A=BETAIN(2,P1.P2,BETA,IFAULT) IF(IFAULT.NE.O) A=-l RETURN END

CC FROM FILE RATHER TAHN FROM KEYBOARD

STOPENDCc c SUBROUTINE STN(M.V.B.C.X.S.DET.A) 

CCc

-A59-



3U8R0UTINE BISPIM.N.C.V.DET)dimension m,n) . m i do i , m i MDO 2 I=i5H 2 REAS(12,*) (C(I.J).J=1.H}CR=(1.0*1.O/FLOb T(N)I*V DO 1 1=1,8 SO 1 J=1 ,.H 1 C(I,J}=CII,J}*CR CALL HINV(C,H,DETfL«l.LN2}RETURNEND
FONCTION BETAIN(X,P<Q,BETA,IFAULT)LOGICAL INDEX DATA ACS /O.lE-7/BETAIN=XIFAULT=1IF(P.LE,0,0.OR.2,LE.0,0) RETURN IFAULT=2IF(X,LT.O.0.OR.X,GT.1.0) RETURN IFAULT=0IF(X.EO.0.0,OR,X.E2,1,0} RETURNPS9=P*SCX=1,0-XIF(?,SE.PS9*X) GOTO 1xx=cx
C MPP-2
09 = PINB£X=,TRUE,SOTO 21 XX=X PP=P 02=0IND£X=,FALSE,2 TERH=?,0 AI=1,0 BETAIN=1.0 NS=89+CX#PS8 RX=X);/CX3 TENF-OS-AI IFINS.E8.0) RX=XX4 TERj1=TERN*TEHP*RX/ (PP*AII BETAIN=BETAIN+TERH TEHP=ABS(TERM)
IF(TEMP.LE,ACO,AND.TEHP,LE,ACU*BETAIN) GOTO 5AI=AI*1,0NS=N3-1IF(NS.SE.O) GOTO 3 TEMF-PSO PS0=PS8*1.0 GOTO 45 8£TAIN=BETAIN*EXPfPP*ALOS1XX1+(00-1,0)*ALBG(CX1-BETA)/PP IF(INDEX) SETAIN=I.O-BETA!N
RETURNEND


