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Abstract

Studies have noted that the concentration of carbon dioxide in the atmosphere has risen 
by more than a third since the Industrial Revolution and is now rising faster than ever 
before. During the 20th Century there was an observed global mean temperature rise of 
around 0.6 °C. Analysis of these two coinciding events has resulted in the now widely 
accepted theory of “the greenhouse effect”. In 1997 the UK Government signed up to 
the Kyoto Treaty. This stipulated that all ratified states would enter an agreement to 
either curb, or reduce their total CO2 emissions, depending on the country’s current 
output. Building energy use currently accounts for 46% of total UK energy 
consumption, resulting in the annual release of 66 million tonnes of carbon into the 
atmosphere.

As one step in addressing this issue the Government introduced the Approved 
Document Part L2 of the Building Regulations -  Conservation o f Fuel and Power on 
the 1st April 2002. A requirement of the document was that a fan pressurisation 
airtightness performance assessment be made of the completed building envelope. For 
all non-domestic buildings with a gross floor area of greater than 1000m2 an air leakage 
test would be required in accordance with CIBSE TM 23:2000 to prove that the 
construction was reasonably airtight. The improvements made in the thermal 
performance of building materials have raised the importance of designing and 
constructing less air leaky building envelopes. It has been reported that heat loss 
associated with air leakage could account for 30% of heat loss through the building 
envelope.

It has been noted that previously available fan pressurisation rigs in the UK could not 
produce the flow rates to attain a satisfactory pressure difference across the envelope for 
large buildings. 'Large' building tests were previously classed as those carried out on 
structures with a floor area of up to only 5000m2. However, a modern UK warehouses 
can have a floor area of 60,000m2 or greater.

The thesis provides an account of the origins of airtesting and the evolving airtightness 
rules and regulations in the UK and other European Union member states. The 
methodologies for the practical application of airtightness testing and the calculation 
and interpretation of results are provided. The design, construction and calibration of 
the largest air testing rig in the UK (and possibly the world) are discussed. Three 
examples of very large buildings tested using this rig are presented; the largest of which 
has a floor area of nearly 60,000 m2. Analysis of the airtightness test results and 
practical considerations for testing such large structures are presented. Examples of 
remedial sealing measures to improve building envelope airtightness performance are 
presented.

The largest building tested was then used as a case study for an investigation into the 
space heating energy saving benefits of improved building envelope airtightness. 
Dynamic Thermal Modelling (DTM) and Computational Fluid Dynamics (CFD) 
simulations were utilised to provide a space heating assessment of the building through 
a one month period. The study concludes that testing of very large warehouse buildings 
is practically feasible and that there are considerable energy saving benefits to be had 
from sealing building envelopes to best practice levels.

- 5 -



Chapter 1 Introduction

1.1 Overview

The continual increase of the world’s population and improving standards of living have 

resulted in an ever growing requirement for energy to facilitate demand. Whilst the 

search for new sources of energy and types of fuel has previously been the priority, 

there has now been a shift towards finding methods of reducing demand. This has been 

partially realised through improved efficiency of production machinery and transport 

vehicles. Analysis of the breakdown of energy use by sector reveals that the processes 

providing space heating within buildings are a significant contributor to the overall 

figure. Heat loss from buildings can occur by conductive, convective and radiant losses 

through or from the structure or by infiltration losses from external air entering and 

leaving the building. The gradual improvement in the effectiveness of insulation in the 

walls, floors and roofs of buildings has focused attention on the airtightness of the 

building structure. A building envelope with greater airtightness properties will reduce 

the amount of unwanted external air entering the building, known as infiltration, and 

warm internal air leaving the building, known as exfiltration. There are a number of 

methods available to estimate building envelope airtightness and the associated air 

change rate within a building. One method which has become increasingly prevalent, 

due to its inclusion as a requirement in the latest revision of the Building Regulations, is 

a fan pressurisation test. This entails subjecting the building envelope to a differential 

pressure using a fan, usually mounted in an external doorway. The results of an 

airtightness test can be used as a basis for calculating an indicative air change rate for 

the building in question.
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1.2 C 02 emissions and climate change

Since the appearance of the human race on this planet, mankind has strived for progress 

to improve standards of living and remove subservience to the harsh environment. 

Throughout recorded history there has been a gradual progression towards what is now 

described as modern civilisation. The latter half of the eighteenth century in Britain saw 

a very rapid change from work carried out in the home with simple machines to 

industries in factories with power driven machinery. This was the beginning of the 

industrial revolution, a phenomenon that would eventually propagate over most of the 

modem world.

The search for energy to power machinery led to the requirement for mining and 

burning of fossil fuels. One of the main products of combustion of fossil fuels is carbon 

dioxide. Studies of trace gases in the atmosphere have noted that the concentration of 

carbon dioxide has risen by more than a third since the industrial revolution and is now 

rising faster than ever before. During the twentieth century there has been an observed 

global mean temperature rise of around 0.6 °C (White Paper 2003). Analysis of these 

two coinciding events has resulted in the now widely accepted theory of “the 

greenhouse effect”. The principles of the greenhouse effect are that trace gases in the 

atmosphere absorb infrared radiation emitted by the Earth’s surface, causing a warming 

of the atmosphere. This has traditionally been vital for maintaining temperatures for life 

to flourish. However, the burning of fossil fuels has upset the balance and a gradual 

increase in global temperatures has ensued. Carbon dioxide is thought to account for 

half of the warming effect associated with greenhouse-gas emissions (Shorrock and 

Henderson 1990).



The IPCC report (2001) highlights projections that globally averaged surface 

temperatures are set to increase by 1.4 to 5.8 °C  by 2100. Computer modelling (Graves 

and Phillipson 2000) has been used to predict that mean annual temperatures will 

increase by up to 2.4 °C by 2050 and up to 3.3 °C by 2080 in London. Climate change 

is already having a noticeable impact in the UK. Vidal and Brown (2003) summarised 

that “drought stress in crops has increased sharply in the past 20 years, with farmers 

now saving irrigation water fo r  higher value vegetables and salad crops. Climate 

change is already affecting foundations o f buildings as the soil dries out, according to 

the Building Research Establishment. The government is also considering new 

regulations, particularly fo r  tall buildings, so they can withstand higher wind speeds. A 

decade o f sudden downpours, ferocious storms, flash floods and prolonged cloudbursts 

all consistent with global warming have provoked the government to increase spending 

on defending towns from river flooding by hundreds o f millions o f pounds. It has also 

raised the standard height o f sea defences”.

1.3 Government measures to reduce carbon dioxide emissions

UK carbon dioxide emissions currently account for about 2% of the global total (White

Paper 2003). In 1997 the UK Government signed up to the Kyoto treaty. This

stipulated that all ratified states would enter an agreement to either curb, or reduce their 

total CO2 emissions, depending on the country’s current output. The UK target was set 

at a 12.5% reduction of 1990 greenhouse gas emissions by the year 2008 -  2012. This 

covers a basket of six greenhouse gases (carbon dioxide, methane, nitrous oxide, hydro 

fluorocarbons, per fluorocarbons and sulphur hexafluoride), weighted for their global 

warming impact (Pout et al. 2002). In addition to this, the UK government imposed a



more stringent domestic target of reducing carbon dioxide emissions to 20% below 

1990 levels by 2010.

A long term strategy was revealed in February 2003, when the Government released the 

White Paper entitled “Our energy future -  creating a low carbon economy”. The target 

set by the Government is to reduce emissions of carbon dioxide by 60% by 2050. The 

target is based on a report by the Royal Commission for Environmental Pollution 

(2000), which estimates that reductions in the region of 60% relative to current day 

emissions would be required by 2050 to prevent CO2 concentrations exceeding safe 

limits. It is hoped that this will be achieved by an increased reliance on renewable 

energy for production of electricity and a speeding up of changes to building regulations 

and setting tougher standards for energy efficiency in new homes, refurbishments and 

electrical products. Building energy use currently accounts for 46% of total UK energy 

consumption, resulting in the release of 66 million tonnes of carbon into the atmosphere 

(Pout et al. 2002).

To address the issues of energy use in buildings, the Approved Document Part L2 of the 

Building Regulations -  Conservation of Fuel and Power was introduced on the 1st April 

2002. For the first time a framework was proposed that would produce an assessment 

of the total energy performance of new buildings. Three different approaches; 

Elemental, Whole Building or Carbon Emissions Calculation Method could prove 

compliance in ascending order of complexity. The route chosen would satisfy Building 

Regulations at design stage. Upon completion of construction two performance 

measures were stipulated to assess the build quality of the finished product.



1.2 C 02 emissions and climate change

Since the appearance of the human race on this planet, mankind has strived for progress 

to improve standards of living and remove subservience to the harsh environment. 

Throughout recorded history there has been a gradual progression towards what is now 

described as modem civilisation. The latter half of the eighteenth century in Britain saw 

a very rapid change from work carried out in the home with simple machines to 

industries in factories with power driven machinery. This was the beginning of the 

industrial revolution, a phenomenon that would eventually propagate over most of the 

modem world.

The search for energy to power machinery led to the requirement for mining and 

burning of fossil fuels. One of the main products of combustion of fossil fuels is carbon 

dioxide. Studies of trace gases in the atmosphere have noted that the concentration of 

carbon dioxide has risen by more than a third since the industrial revolution and is now 

rising faster than ever before. During the twentieth century there has been an observed 

global mean temperature rise of around 0.6 °C (White Paper 2003). Analysis of these 

two coinciding events has resulted in the now widely accepted theory of “the 

greenhouse effect”. The principles of the greenhouse effect are that trace gases in the 

atmosphere absorb infrared radiation emitted by the Earth’s surface, causing a wanning 

of the atmosphere. This has traditionally been vital for maintaining temperatures for life 

to flourish. However, the burning of fossil fuels has upset the balance and a gradual 

increase in global temperatures has ensued. Carbon dioxide is thought to account for 

half of the warming effect associated with greenhouse-gas emissions (Shorrock and 

Henderson 1990).



The first requirement was that insulation should be reasonably continuous and that 

excessive thermal bridging should be avoided. Submitting a certificate from a suitably 

qualified person that appropriate design details and building techniques have been used 

could satisfy this. Alternatively, an infrared thermographic inspection could be used to 

show that the insulation is reasonably continuous over the envelope.

The second requirement was that an airtightness performance assessment be made of the 

completed building envelope. For all non-domestic buildings with a gross floor area of 

greater than 1000m2 an air leakage test would be required in accordance with CIBSE 

TM 23:2000 to prove that the construction was reasonably airtight. Prior to the Part L2 

Regulations 2002, no requirement had been stipulated for the airtightness performance 

of the building envelope. Increased enthusiasm from the UK government to meet 

carbon dioxide emission reduction targets has deemed it necessary to bring forward the 

next revision of Part L of the Building Regulations to 2005. This will see tighter targets 

for building energy performance and airtightness of the building envelope (Office of the 

Deputy Prime Minister 2003) across a broader spectrum of the UK building stock.

Figure 11 Sample size: n  -  384.
Mean value: 11.49 m3 h~* n r 2. Median 
value: 11.27 m3 h_1 n r 2.

Figure 1. Airtightness o f UK buildings 
Source: CIBSE TM23:2000
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Growing concerns amongst the European Union of the energy use in buildings has 

resulted in the design and implementation of the EU Energy Performance of Buildings 

Directive (Council of the European Union 2002). The EU Directive notes that “the 

residential and tertiary sector, the majority of which are buildings, accounts for more 

than 40% of final energy consumption in the community and is expanding, a trend 

which is bound to increase its energy consumption and hence also its carbon dioxide 

emissions”. In response to this the Directive lays down the general framework for a 

methodology of calculation of the integrated energy performance of buildings, which 

may include airtightness standards for the building envelope. This culminates in a 

requirement for the application of minimum performance standards for the energy 

consumption of new buildings. The stipulation is also placed upon large existing 

buildings that are subject to renovation. All buildings subject to the EU Directive will 

be labelled with a transparent energy performance indicator, such as is currently seen on 

white electrical household goods.

1.4 The impact o f air leakage in buildings on energy consumption

The improvements made in the thermal performance of building materials have raised

the importance of designing and constructing less air leaky building envelopes. Air

leakage in buildings is described as the unwanted infiltration and exfiltration of air.

This can enter a building through a number of infiltration paths, usually located at

junctions between elements in the building envelope. Perera et al. (1994) noted that heat

loss associated with air leakage could account for 30% of heat loss through the building

envelope. A recent study by the UK’s Air Infiltration and Ventilation Centre (Orme

2001) puts forward estimates of annual air change rates of commercial and residential

buildings in 13 industrial countries, with the potential for reducing air change related
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losses. Unnecessary ventilation was noted to account for two-thirds of the energy 

wastage through the loss of conditioned air.

The original design specification and the attention to detail during construction will 

determine the airtightness of a building envelope. The airtightness of a building will 

dictate the level of unintentional infiltration and exfiltration of air. The movement of 

colder external air into the interior of the building will create a thermal load. This 

thermal load is a function of the rate at which the air enters the building and the 

difference between the indoor and outdoor temperature (Jackman 1973). The figures 

for best practice airtightness levels in new UK buildings by Potter (2001) show that 

there is great scope for improvement of the construction of building envelopes. With 

the rapid rise in demand for air conditioning in offices and retail premises over the past 

20 years (Scrace 2001), the need for airtight buildings is paramount.

1.5 Assessment o f building infiltration rates

Air that enters a space comes from a combination of infiltrating and intentional sources. 

While the measurement of air flow rate through identifiable openings is possible by 

direct measurement, it is not practical to measure air flow through the many unknown 

gaps and cracks that may appear in the construction of the building, or to measure air 

flow rate through more than one or two purpose provided openings at a time 

(Liddament 1996). Amongst the field of air infiltration measurement techniques within 

buildings a number of methods are available. However the two that are most commonly 

used are the tracer gas and fan pressurisation assessment methods.
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Tracer gas assessment involves the inserting of a seeded inert gas into a building and 

measuring the decay of concentration as mixing occurs with unseeded infiltrating air 

over time. Examples of the adaptation of tracer gas techniques to larger and more 

complex multi-cellular buildings can be found in Walker and Perera (1990) and Walker 

and White (1995). However, the use of tracer gas techniques can be a long and 

laborious task, with the estimation of building infiltration rates taking days or even 

weeks.

Figure 2. Tracer gas equipment -  gas bottle, sampler unit and bags.
Source: Walker and Perera 1990

The fan pressurisation method entails the use of a fan to create a pressure differential 

across the envelope. The input of a constant flow rate to produce a steady state (DC) 

pressure differential is the currently accepted method (CIBSE TM23:2000). After fan 

set-up and building preparation, an airtightness test may take only ten minutes. Results 

for the airtightness of the building envelope are reported as an air leakage rate per
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square metre of building envelope per hour at a reference differential pressure of 50 

Pascal. From this airtightness result estimation can be made of the indicative 

infiltration rate, based on comparisons with data obtained from tracer gas techniques. 

Sherman and Grimsrud (1980) demonstrated the use of the fan pressurisation test to 

estimate building airtightness. This technique was used to determine the total leakage 

area of the structure. From this the infiltration rates were calculated for a variety of 

conditions. The steady state technique is the most commonly used method; however, 

other pressurisation assessment processes are available.

1.6 Airtightness testing methods

1.6.1 Steady state (DC) pressurisation techniques

Steady state (DC) assessment of building airtightness performance involves establishing 

a pressure difference Ap across the envelope. This can be achieved utilising portable 

fans temporarily installed in a doorway, or other suitable opening. HVAC plant is 

switched off and all external doors closed. Measurements taken of the flow rate Q 

across the fans and Ap across the envelope allow a relationship to be established 

between the two. In accordance with the current building regulations adherence to 

CIBSE TM23, this is defined in terms of the power law equation of the form:

Q = C (A p)n (1.1)

where C and n are constants that are assumed to relate to the geometry of a single 

opening in the building envelope. The building envelope is subjected to differential 

pressures ranging from 20 up to 100 Pascal. If a pressure differential of at least 25 

Pascal cannot be obtained, then the test is deemed to be invalid. Values for C and n are
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calculated using least square regression analysis. The flow rate required to obtain a 

differential pressure is a function of the building envelope area. Very large buildings 

will therefore require a fan with a large volume flow rate.

1.6.2 Unsteady (AC) pressurisation techniques

Unsteady techniques (AC and pulse techniques) have been suggested as alternatives to 

the conventional steady state technique (Modera 1985, Nishioka 2000, Carey and 

Etheridge 2001). The theoretical advantage is that large expensive rigs would not be 

required and disruption to operations during building testing would be minimised. 

However, uncertainties introduced by the inertia of the flow through imperfections in 

the building envelope add increased complexity to the calculations and the technique is 

currently impractical for widespread commercial use. The DC technique is therefore 

preferable if an acceptable differential pressure is achievable across the building 

envelope.

1.7 Testing o f large buildings

Available data for the airtightness of UK buildings is limited. Stephen (1998) noted that 

only two large scale databases of air leakage rates in UK dwellings are known: one held 

by British Gas pic and covering some 200 dwellings (Etheridge 1987); and the other 

held by BRE covering some 471 dwelling and 87 large panel system flats. No 

databases are currently available for larger non-domestic buildings.

Carey and Etheridge (2001) noted that previously available fan pressurisation rigs in the

UK provided by BRE and BSRIA could not produce the flow rate to attain a satisfactory

pressure difference across the envelope for larger buildings. The accuracy of the results

would be affected as a result of pressure forces generated by buoyancy and wind.
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“Large building” tests were previously classed as those carried out on structures with a 

floor area of up to only 5000m . Modem UK warehouses can have a floor area of 

60,000m2 or greater. Calls from CIBSE, BRE and BSRIA (Brundrett and Jackman 

(1997)) to produce a joint initiative aimed at improving building airtightness resulted in 

the introduction of mandatory testing in the UK. However, no progress was made with 

the testing of large buildings, such as the Bedford warehouse shown in figure 3, which 

has a floor area of nearly 60,000 m2 and a volume of nearly 800,000 m3. This building 

will be one of the case studies analysed in Chapter 5.

Figure 3. Very large warehouse building, Bedford UK.
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1.8 Computer modelling o f air infiltration and energy use in buildings

Computer simulations may be used to assess the effects of external conditions on the 

internal building environment. Boundary conditions can be established using the 

known variables of building thermal properties and external environmental conditions. 

Modern computer thermal analysis software allows for all conceivable component 

properties to be accounted for in the determination of thermal load upon a building. 

The level of thermal load determining the size of heating plant that must be installed. 

Software packages such as TAS (Kitson 2003) have been used to calculate the heating 

demands and specify plant for prestigious projects such as the Swiss Re building in 

London (Building Services Journal, June 2003).

For a given set of wind conditions (illustrated by pathlines) 
FLUENT predicts surface pressures (illustrated by contours) on 

the building exterior and external aerodynamic air flow 
characteristics ventilation

Figure 4. Dynamic Thermal Computer Modelling used to assist in the specification o f  
M  and E plant at the Swiss Re building, London.

Source: Kitson 2003
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Infiltration is a variable that will be instrumental in the calculation of building heating 

demands. However, due to limited data on building airtightness, values are assumed as 

a rule of thumb (Boushear 2001). This may lead to inaccuracies and under or over­

sizing of heating plant. Over sizing may be a problem, particularly in new buildings 

that have been constructed to a demanding airtightness specification. Stuart Borland, 

director of Building Sciences Ltd, claimed that in one case the M and E plant was 

halved in size because the designers knew the building would be pressure tested 

(Stephen 2002). Using currently available technology it is possible to compile building 

envelope performance data obtained from building airtightness tests and comprehensive 

building component data available in O and M manuals. The parameters may be used 

to assess the effect of the external environment on internal building conditions. The 

data sets obtained may be inputted in computer thermal modelling software and a 

simulation run with a weather data file to calculate the heating load placed on the 

building during a heating season. From this simulation it may be possible to more 

accurately assess heating requirements for plant sizing.

1.9 Aims and structure o f the study

In Chapter 2 of the study a review will be made of the historical airtightness of 

buildings in the UK and abroad. This will be followed by a summary of the heat loss 

from a building and envelope degradation associated with air leakage. The literature 

review will also include a chronological account of airtightness testing regulations and 

recommendations in the UK and internationally.

Chapter 3 will highlight the theory used to support airtightness testing of buildings; 

beginning with an overview of steady state and dynamic pressure measurement



techniques. Methods for calculation and interpretation of results will be presented along 

with an assessment of infiltration heat loss and the equivalent leakage area calculation. 

Finally, previous research into the repeatability of airtightness tests will be highlighted.

Chapter 4 will give an insight into the methodology required for the creation and 

calibration of a large test rig. A review of the design and construction process for the 

large test rig, along with lessons learned from mistakes will be provided. Required 

equipment and methodology for the calibration of the rig will also be presented. The 

practical requirements for airtightness testing will also be noted, with particular 

reference to the testing of large and very large buildings. Finally, a summary will be 

made of some remedial sealing measures that are currently in use on new and 

refurbished buildings.

Chapter 5 will report on the field testing of one large and two very large UK buildings. 

In chapter 6 the output graphs and tables from the field data will be presented. A brief 

interpretation of the results will be given.

Chapter 7 will summarise the computer modelling work carried out in conjunction with 

Hilson Moran consulting engineers. Airtightness data obtained from the testing of a 

very large warehouse will be input into a currently available computer thermal- 

modelling program along with available building envelope thermal data. Simulations 

will be run to assess the thermal loads imposed on the building during the heating 

season. One simulation will be run with the building airtightness specification utilised 

at the design stage (Current Building Regulations standard). The second simulation will 

be run with a building airtightness specification actually achieved during the building 

test.
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Chapter 8 will firstly discuss the viability of testing very large buildings in the UK. The 

current information available on the airtightness of large warehouses in the UK will be 

summarised. Following this, analysis of the energy saving associated with the 

improved envelope airtightness observed at the very large warehouse will be given. 

Finally, an investigation into the further work that can be carried out into the impact of 

energy savings with improved envelope airtightness will be presented.
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Chapter 2 Literature review

2.1 Historical airtightness o f buildings

Early measurements of airtightness in dwellings entailed small fans mounted in 

doorways, known as “blower door fans”. Blower door technology was first used in 

Sweden as a window mounted fan to test the tightness of building envelopes 

(Blomsterberg 1977). Sherman and Grimsrud (1980) noted the disadvantages of tracer 

gas methods and devised a technique using fan pressurisation results and weather data 

to calculate infiltration.

Potter et al. (1995) carried out airtightness on twelve large UK office buildings with

3 3volumes ranging from 1,951 m to 44,335 m . The average normalised leakage of the

3 1 2  jstructures was found to be 21.8 m h‘ m . Naturally ventilated buildings were found to 

be tighter (17.40 n rV m '2) than air-conditioned buildings (23.98 m ^ ^ m  2). Pre 1990 

buildings (17.81 m3h 'm '2) were found to be tighter than post 1990 buildings (24.62 

m h" m' ). They summarised that a UK office could have an air leakage performance

T 1 9anywhere between 10 and 40 m h'm " . Potter (1992) also found the average air leakage 

of a UK factory/warehouse building to be 35.68 m3̂ ^ ' 2.

Stephen (1998) noted that UK dwellings built since about 1980 do appear to be more

airtight (on average) than those built since the 1930’s. He attributed this to fewer

chimneys and adoption of energy efficiency measures. The same trend comparing post

1980 houses with pre 1980 was also noted in the USA (Sherman 1990), no reasons for

this were specified. Further work was carried out in the USA (Sherman and Dickerhoff

1998) on much larger datasets that represented much more comprehensive cross-
- 21  -



sections of homes in particular locations than had not previously been studied. They 

discovered that USA dwellings were leakier than previously estimated. Furthermore the 

datasets studied showed that less than 10% of dwellings in the U.S. would meet 

ASHRAE’s airtightness standard (1988).

2.2 Building heat loss and envelope degradation associated with air leakage

Warm conditioned air exfiltrating through the building envelope causes more problems 

than just greater heating requirements. Studies on rural hospitals in the province of 

Alberta, Canada (Ogle and Connor 1995) have shown that a lack of airtightness may 

result in serious building envelope problems. This is particularly true for non-domestic 

types of buildings, which can be humidified and pressurised by a mechanical HVAC 

system. Potter and Jones (1992) analysed the effects of environmental conditions on 

energy usage on a sample of factories and warehouses using the “CRKFLO” computer 

program. This software calculates the flow rates between components, taking into 

account inside/outside temperature differences and wind effects on the building.

2.3 Airtightness testing in the UK and internationally

In an AIVC review (Colthorpe 1990) assessed the building airtightness and ventilation 

standards in various European countries. All countries analysed stipulated minimum air 

change for ventilation requirements, with most countries producing a methodology for 

calculation of energy use. Legislation for airtightness of building fabric varied from 

non-existent to extremely stringent. A summary for the airtightness requirements for 

each country was: -
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Sweden

The average air leakage coefficient, for that part of the enclosed surface that forms part 

of the enclosing surface which forms the boundary with outdoor air or an unheated area 

may not exceed 3 m'Vm 2 for dwellings and 6 m3h-1m"2 for other premises at a pressure 

difference of 50 Pa. The air test results were taken as averages of the pressurisation 

tests at 50 Pa (Q50). Alongside airtightness requirements, stipulation was also enforced 

for minimum air exchanges to maintain air quality.

Denmark

The Danish Building Regulations 1982 give construction standards for all new 

buildings, to a high level of energy efficiency. These standards were also being applied 

to existing building stock under the 1981 Act on reduction of energy consumption in 

buildings, issued by the Danish government. No requirement was in place to test whole 

buildings, though component testing was specified.

Finland

Whilst air sealing of fabric and windows was considered, there were no numerical 

values for acceptable building airtightness in the building codes. However, thermal 

insulation regulations require that the airtightness had to be good enough to comply 

with the thermal indoor climate guidelines. Classification of window airtightness was 

voluntary, but widely used amongst manufacturers and builders.

Belgium

National standards were in place for the public building sector, which comprised 30% 

of the building stock. There were no overall airtightness requirements for whole 

buildings. Windows were classed in groups according to their air leakage performance
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and degree of exposure i.e. height of building in which the window is situated. 

Maximum air permeability rates for joints were set at each exposure level.

Canada

Standards were in place to determine the airtightness of buildings by the fan 

depressurisation method. There was no legal requirement to test whole buildings. 

However, testing of windows and doors was mandatory with maximum air leakage rates 

set for different component ratings.

Germany

No regulations in place for airtightness testing of buildings. However standards in place 

classified windows by exposure level and gave acceptable air permeability values for 

each group under pressure. Standards were also available making recommendations for 

sealing joints and installing vapour barriers, with further standards for wind resistance 

tests etc.

Italy

Testing was in place for building components. Recommendations were also made for 

the airtightness testing of whole buildings.
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Table 1. Requirements and recommendations fo r  airtightness and ventilation rates in
some countries.

Source: A IV C 1990
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Table 2. Overview o f Airtightness Levels in Standards and Regulations in 1994.
Source: AIVC 1994

Country Whole Building Components

Windows Doors
Belgium < 3ach for dwellings fitted with 

bal.mech.at SO Pa.
<1 ach when heat rec.is fitted at 
SO Pa.

2 - 6  m3/h per metre length of 
crack at lOOPa

20-40 m3/h per door at 10 or 50 
Pa.

Canada Maximum 1.5 ach at SO Pa 
(For HUDAC constructed 
dwelling)

Extreme 0.25 • 8.35 n?/h.m at 75 
Pa
Normal 0.55 - 2.79 fflVh.m at 75 
Pa

2.541/s .m2 of door area at 75 Pa

Denmark 0.5 dm3/s.m length of joint at 30 
Pa
0.4 • 0.7 ach for dwellings

0.50 dm3/s.m length of crack at 
50 Pa

Finland <0.5 - >2.5 tn3/h. m2 at 50 Pa

France Max. 0.2 ach for non residential 
buildings

<7.0 - 60 mVh. m2 at 100 Pa < 7 -6 0  n^/h. m2 at 100 Pa

Germany 1 • 20 m3/h. m length o f joint 
depending upon exposure level 
over the pressure range 10 -1000 
Pa

Italy 1 m2 of envelope should not 
exceed 10 m3/h at 98 Pa 
1.5 - 5.0 ach for schools

1.4 - 8.0 m3/h. m (Crack) at 50 Pa 
4.8 - 31 m3/h. m2 (Area) at 50 Pa

Netherlands Class 1 Max. 100 - 200 dirf/s at 
10 Pa (1.4-2.24 ACH at 10 Pa) 
Class 1 Min. 30 - 50 drrf/s (0.4 - 
0.72 ACH at 10 Pa) Class 2 Max. 
upto 80 dm3/s (0.72 - 1.15 ACH 
at 10 Pa)

2.5 dm3/s per m length of crack 
at 75 Pa
0.5 dm3/s per 100 mm of frame 
section

New Zealand 0.6 - 4.0 dm3/s. m of joint at 150 
Pa
2.0 • 17.0 dm3/s .m2 window area 
at 150 Pa

Norway 1.5-4.0 ach at SO Pa

Sweden 3 - 6  m3/h m2 at 50 Pa

Switzerland Lower limit 2 - 2.5 ach at 50 Pa 
Upper limit 3 - 4.5 ach at 50 Pa. 
NOTE Upper limit for Buildings 
with balanced mech. is 1 ACH at 
50 Pa

0.2 m3/h.m at 1 Pa (When 
n*0.66)
(a)5.65 m3/h.m at 150 Pa
(b)8.95 n^/h.m at 300 Pa
(c)14.25 mJ/h.mat600 Pa

United Kingdom 1.22 - 6.2 at 50 Pa m3/h m of 
open joint

United States o f America Normalised leakage range taken 
from measurements at 4 Pa ELA 
for whole of USA. From <0.1 - 
1.60 (from ASHRAE 119-1988, 
APP.B ACIMLn. Therefore 
<0.1 to 1.6 ach)
NOTE: Standard requires no part 
of US to be tighter than 0.28 
(only small part of upper 
midwest) Mostly the tightness 
requirement is 0.4.

0.77 dffiVs per m of sash at 75 Pa 2.5 - 6.35 dntVper m2 area at 75 
Pa 17.0 dm3/s per m length of 
crack at 75 Pa
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1 I ^
In the UK (England and Wales), an air permeability target of 10m 'h 'm ' was introduced 

on April 1st 2002 for all new non-domestic buildings with a floor area greater than 

1000m in the Approved Document Part L2. A period of leniency was granted up to the 

30th September 2003 in which a building with an originally unsatisfactory test would 

have to undergo appropriate remedial work and a retest to show that: -

(i) an improvement of 75% of the difference between the initial test result and the 

target standard of 10 m Vm'2 at 50 Pa; or, if less demanding

3 1 2(ii) a performance no worse than 11.5 m hf m' at 50 Pa.

The Building Regulations Part J were introduced in Scotland during the same period. 

Methods were identified for the conservation of fuel and power, although there was no 

mandatory requirement to airtest buildings. Some enlightened clients, such as IKEA 

have chosen to airtest their Scottish based stores, despite there being no legal 

requirement.

Stephens (2002) noted that before its introduction into the building regulations it was 

estimated that fewer than 5% of buildings were pressure tested. Implementation and 

enforcement of the new airtightness testing regulations in England and Wales has been 

slow and largely uncoordinated. In a survey of new buildings identified by the 

Glennigans database, HRS Services Ltd estimated that only 30% of projects were 

subject to an airtest upon completion of the envelope. This has not been helped by 

factors such as Billington (2001) in his manual to the building regulations, in which he 

states “Construction, offers insulation continuity thermography and air pressure testing 

as options to show compliance but it is expected that designers and contractors will
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prefer to use the new robust details”. In response to the increasing confusion 

surrounding the requirements for airtightness testing of buildings, King (2003) of the 

Building Regulations Division at the Office of the Deputy Prime Minister wrote a letter 

of clarification, for circulation amongst the industry. In this he states that, “The current 

introduction to AD L2 says there is no obligation to adopt any particular solution 

contained in an Approved Document i f  you prefer to meet the relevant requirements in 

some other way. However, the underlying objective remains the achievement o f a fabric  

performance that -  i f  put to a pressure test -  would achieve the performance standard. 

In relation to larger buildings, the AD offers no alternative to pressure testing as a way 

o f showing compliance with the airtightness aspect o f Part L2”.

2.4 Testing very large buildings

The ease of testing dwellings with blower door fans has meant that some data are 

available for the airtightness of residences. The commercial realities of testing large 

buildings have meant that there is very little data available for industrial buildings. 

British Gas carried out pressurisation tests on seven “large” buildings, with volumes 

ranging from 660 to 12,600m (Lilly 1987). Measurements were made with four 

Watson House leakage testers used in parallel. Each unit was capable of producing a

i
maximum flow rate of 1.25m s" at 50 Pa. The study noted that measurements of the 

buildings under test required pressurisation equipment sufficient to generate flow rates

'X 1 •  •  •in excess of 65,000m hf . The conclusion was that it was impractical to pressurise most 

industrial buildings larger than 5000 to 10,000m3 in volume to a pressure of 50 Pa. 

However, the author illustrated the fact that a purpose built leakage tester for large 

buildings was now in operation to generate 50 Pa pressure differences at flow rates of 

up to 150,000m3h '1.
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Potter and Jones (1992) documented the improvements that could be made to buildings

using basic sealing techniques. Perera et al. (1994) highlighted the following areas as

the main sources of air leakage.

1. At junctions between main structural elements; wall to roof junctions, wall to 

floor junctions, wall to foundation junctions, junctions between parapets and roofs.

2. At joints between walling components; sealant or gasketed joints between 

heavyweight or curtain walling panels, overlapping joints between lightweight sheet 

metal wall panels and at boundaries of different cladding/walling systems.

3. Around windows, doors and rooflights; between window or doorframes and walls 

or floors, between doors and windows and their frames, between frames and sills.

4. Through gaps in membranes, linings and finishes; in wall membranes and dry 

linings, in ceiling linings and boundaries with wall linings, gaps in floor finishes and 

around skirtings

5. At service penetrations; electrical sockets and conduits, gas and electricity entry 

points, ventilation pipes for sanitary waste, overflow pipes and flues.

6. Around access and emergency openings; to roof space, to roof, to floors, to 

services and delivery points.

Through permeable materials; some materials, such as brickwork cladding, are not

impermeable to air, and may be very permeable if construction quality is low.
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Figure 5. Potential air leakage pathways in generic office building 

Source: Perera et al. 1994

- 3 0 -



2.5 Summary

This chapter has outlined the origins of building airtightness testing and has given an 

overview of the historical airtightness of buildings in the UK and abroad. An account 

has been made of the regulations and recommendations in force for the testing of 

buildings in the aforementioned countries. An introduction has also been provided into 

the major sources of building air leakage. The following chapter will summarise the 

theory used to support the airtightness testing of buildings. Methods for calculation and 

interpretation of results will be presented, along with an assessment of infiltration heat 

loss and the equivalent leakage area.
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Chapter 3 Theory

3.1 Steady state pressure measurements

Steady state (DC) assessment of building airtightness performance involves establishing 

a pressure difference Ap across the envelope. This can be achieved utilising portable 

fans temporarily installed in a doorway, or other suitable opening. HVAC plant is 

switched off and all external doors closed. Measurements taken of the flow rate Q 

across the fans and Ap across the envelope allow a relationship to be established 

between the two. This can be defined in terms of the power law equation given in 

Chapter 1:

Q =C (Ap)n (1.1)

where C and n are constants that are assumed to relate to the geometry of a single 

opening in the building envelope. The building envelope is subjected to differential 

pressures ranging from 20 up to 100 Pascal. If a pressure differential of at least 25 

Pascal cannot be obtained then the test is deemed to be invalid. Values for C and n are 

calculated using least square regression analysis. The flow rate required to obtain a 

differential pressure is a function of the building envelope area. Very large buildings 

will therefore require a fan with a large volume flow rate.

3.2 Least square power law

The results from a steady state building test will give a dataset comprising of building 

differential pressures (APenv) and corresponding fan flow rates (Q). There are a number

of curve fitting approximations available to produce a best fit line between these points.
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The most straightforward of these is the least squares approximation. For this, the 

straight line

y = mx + b (3.1)

should be fitted through the given points (xj, yO,....,(xn , yn) so that the sum of the

squares of the distances of those points from the straight line is minimum, where the

distance is measured in the vertical direction (the y-direction).

The calculation of the factors m and b for a given pressurisation test are as follows:-

dSumXY = Z( In APenv * In Qc) (3.2)

dSumXX = I (  In APenv * In APenv) (3.3)

dSumX = X(In APenv) (3.4)

dSumY = I ( ln Q c) (3.5)

m = (dSumX * dSumY - Numpnts * dSumXY) / (dSumX * dSumX - dSumXX 

* Numpnts) (3.6)

b = (dSumX * dSumXY - dSumXX * dSumY) / (dSumX * dSumX - dSumXX * 

Numpnts) (3.7)

3.3 Air leakage index vs. air permeability calculation methods

Building pressure tests using the steady state (DC) method are usually reported at a 

reference internal to external building pressure of 50 Pascal. The flow rate through the 

fan(s) required to maintain this pressure is known as Q5 0 . When the fan(s) used are only 

capable of producing a low flow rate (Orme 1995) then the reference pressure for 

calculations may be set at 25 Pascal, with a fan flow rate recorded at Q 2 5 .  Tests to large 

buildings have traditionally required a minimum building pressure of 25 Pascal with the 

recorded data extrapolated to 50 Pascal to give a result at fan flow rate Q50 (CIBSE 

TM23:2000).
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There are two criteria that may be used to report an airtightness test using steady state 

techniques. These are the air leakage index and air permeability index of a building. 

Both methods of calculation entail the determination of fan flow rate Q nr s' into the 

building at a reference pressure of 50 Pascal. Q is then multiplied by 3600 to give the 

flow rate Q m3h 1. This figure is then divided by the externally exposed envelope area

3 1 9of the building under test to give a result of X m h 'm ' . It is the definition of envelope 

area that determines the criteria. The air leakage index entails the summation of the 

surface area of the walls and roof exposed to the external environment to calculate the 

envelope area. The air permeability of the building is devised by summation of the 

surface area of the solid ground floor, walls and roof. The calculations are as follows: -

Calculation of Air Leakage Index, ALI 

Q5o = C * (50)n

Air Leakage Index = 3600 * Q50 / S

Calculation of Air Leakage Permeability Index, API

Q50 = C * (A P)n (3.10)

Air Permeability Index = 3600 * Q a p i  /  S + F (3.11)

Where S = exposed surface area of walls + roof

F = area of solid ground floor

(3.8)

(3.9)
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In the UK, measurements have traditionally been reported using the air leakage index 

criteria (Potter and Jones 1992, Potter 1998). The vast majority of new buildings 

include a virtually impermeable concrete floor, therefore making the air leakage index a 

more stringent standard. As a rough approximation an air permeability result of 10 m3h' 

W2 would equate to an air leakage index of 14 nrVW2. This relationship is wholly 

dependent on the design of the building.

The current Part L Building Regulations specify the air permeability calculation method 

as the criterion for testing of new buildings. This is in line with CIBSE TM23: 2000 

and the CEN 13829 standard upon which it is based. Potter (2000) argues that the air 

permeability criterion is not a fair method upon which to judge the envelope airtightness 

performance of new buildings. He states that “If one compares office buildings of 

single storey, five storey and ten storey with the same net floor area with an air 

permeability of 10 mVm'2, then the single storey building would have to be 

considerably less airtight than multi-storey buildings. Equally large footprint buildings 

need to be less airtight than smaller ones”. Testing by HRS Service Ltd has shown that 

large warehouses and retail buildings can easily pass current building regulations with 

little attention to airtightness during construction (see Section 5.2).

3.4 Effective leakage area

The total leakage area for a building can be represented as an effective leakage area, 

ELA, which represents a single opening having the same airflow leakage. This can be 

helpful on site to conceptualise the amount of further sealing required to attain a 

building airtightness specification. The effective leakage area is calculated from:-
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ELA = Q * ((p/2Ap)°'5/CD) (3.12)

Q = airflow rate (m3 s '1)

p = air density (kg m~3)

AP = pressure difference across the opening (Pa)

0.5 = exponent for large openings

Cd = discharge coefficient (set to 1 . 0  or * 0 . 6  depending on the
shape of the orifice)

The reference pressure differential across the building envelope during an airtightness 

test is 50 Pa. Naturally occurring pressures from wind are generally much lower than 

this. For this reason it is normal to quote the effective leakage area at between 4 Pa and 

10 Pa (ASHRAE Fundamentals Handbook 2001). The value of Q at these low pressure 

differences may be extrapolated down from those during the test using the flow 

equation (1). Transforming the power law equation using natural logarithms gives:-

ln(Q) = ln(C) + n.ln(AP) (3.13)

3.5 Calculation o f infiltration heat loss

The natural air change rate of a building may be roughly calculated from an air leakage 

test. For domestic buildings it has been found that the natural air change rate 

(infiltration) is approximately equal to 1/20 of the 50 Pa air leakage rate. With the air 

leakage rate equal to Q50/V (Q50 being the leakage airflow rate per hour at a pressure 

differential of 50 Pa across the building envelope and V being the internal volume of the 

building). The association will become stronger with an increasingly airtight building. 

On a very leaky building it is very difficult to estimate the air change rate.
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This l/20th calculation for domestic buildings has not been effective in modelling the air 

change rates of non-domestic buildings. The BRE have carried out research, using 

tracer gas techniques, into this area and have found that the relationship is improved by 

incorporating the surface to volume ratio of the building into the calculation. This gives 

the relationship of

I s 1/*  * 7 v * Q5° /s  (3.14)

I = infiltration rate in air changes per hour ( h 1)

S = exposed surface area of walls and roof (m2)

V = internal volume of the building envelope (n r )

Equation 3.13 was found by HRS to give some low values for air change rate on 

buildings tested in comparison to BSRIA rules of thumb (Boushear 2001). The 

simplified form for this equation was found to give a more reasonable estimation.

I = V6o* Q50/s (3.15)

Using the air infiltration rates calculated from the previous equation, an approximation 

of the thermal load can thus be calculated using the following equation

total no of hours

E =  2  3600pCpQi(Tint(i)_Text(i)) (J) (3.16)

1=1
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E = thermal load ( J )

p = air density (kg/m3)

Cp = specific heat capacity of air (J/kg. K)

Qi = combined air infiltration and ventilation rate at hour (m3/s)

T in t( i )  = indoor air temperature at hour, I, (K)

T e x t( i )  = outdoor air temperature at hour, I, (K)

This may be approximated, assuming a constant air change rate and representing 

temperature variation by degree-days.

E = Q*DD*24*3600pCp (J) (3.17)

where DD = number of degree days

The degree-day measurement is a method of tracking and evaluating the difference 

between the internal and external temperatures. It is calculated by averaging the 

number of degrees temperature difference over a day, that the external temperature is 

below a set base internal temperature (usually assumed to be 15.5 °C). Degree-day data 

may be obtained from the Internet at the Vilnis Vesma web site (www.vesma.com).

3.6 Repeatability o f airtightness tests

Air leakage measurements carried out at intervals in a heated but unoccupied test house 

at the BRE Garston site over a period of eighteen months clearly indicated an increase 

in air leakage rate of some 25% during the winter compared with the summer (Warren

& Webb 1980). Persily (1982) also found a seasonal variation of the order of 25%.
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This was attributed to changes in the moisture content of the building materials caused 

by yearly variations in the moisture content of outside air. However, Dickinson and 

Feustel (1985) found no significant correlation between the moisture content of wood 

components on the exterior and interior of the building and the seasonal swing in 

airtightness.

3.7 Summary

This chapter has highlighted the theory used to support the airtightness testing of 

buildings. Methods for the calculation and interpretation of results have been presented 

along with an assessment of infiltration heat loss and the equivalent leakage area 

calculation. A brief outline of the repeatability of results has also been presented. The 

following chapter will give an insight into the methodology required for the creation 

and calibration of a large test rig. A review of the design and construction process for 

the large test rig, along with lessons learned from mistakes will be provided. The 

practical requirements for airtightness testing will also be noted, with particular 

reference to the testing of large and very large buildings. A summary will then be 

presented of some remedial sealing measures that are currently in use on new and 

refurbished buildings.
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Chapter 4 Methodology

4.1 Design and construction o f large test rig

The size of building that can be airtightness tested using a steady state (DC) 

pressurisation technique is partly a function of the maximum flow rate Q that can be 

produced by the test rig. Previous trailer mounted rigs designed and constructed by the 

BRE and BSRIA had a maximum flow rate of 30 m Y 1. This imposed a limit on the 

size of building that could be tested with just one rig.

The author underwent a two year placement with HRS Services Limited as part of a 

Teaching Company Scheme. The aforementioned is a specialist construction company, 

with a decade of experience of sealing buildings to best practice levels of airtightness. 

Their main focus has been on the supermarket retail industry, who recognise the 

benefits for both energy consumption and thermal comfort. With knowledge of 

airtightness requirements and air test procedures, HRS Services limited decided to 

produce their own rigs. Through the support of the author these rigs were designed and 

calibrated to recognised British Standards. It was noted by the author that there was a 

current upper size limit for buildings in the UK that could be tested using the currently 

available equipment. It was therefore decided to design, construct and calibrate a rig 

that would be considerably larger than those used by existing airtightness testing 

companies.

When designing the very large test rig it was necessary to take into account many 

practical considerations. The rig and all equipment required to power it would need to
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be contained on a 7.5 tonne lorry. This would allow personnel to transport the rig using 

a standard UK driving licence. The maximum diameter of the rig would be limited by 

the height of a standard building double doorway (2000 mm) and would require a 

means of connection from ground level to the height of the rear of the lorry. Transport 

would also be required on the rig for up to five personnel. A team of this size would be 

needed to seal the large array of mechanical ventilation on the roofs of some very large 

buildings. Storage room was also required for temporary sealing materials, door 

screens and smoke testing machines.

The 2000 mm fan required for the rig was purchased from Elta fans Ltd. Power demand 

and volume flow output data supplied by the manufacturer highlighted the requirement

3 1for a power source with an output of 90 kW to produce a volume flow rate of 90 n r s’ 

(Figure 6). To achieve this level of output it was deemed necessary to employ a 5-litre 

diesel “donkey” engine, separate from the main vehicles power supply. A hydraulic 

system would then be incorporated to transfer power from the diesel engine to the 2000- 

mm fan at the rear of the vehicle.

3 1Figure 6. Absorbed power (kW) vs. volume flow  output rate (m s  )fo r  various fan
blade angles
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Figure 7. Volume flow  rates achieved with different fan sizes through 
the manufacturer’s range
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Figure 8 shows a side elevation of the lorry on which the plant was to be mounted. In 

addition to the driver’s cab at the front of the vehicle, a sleeper cab was added. This 

increased the space available for transport from two to five personnel. The diesel 

donkey engine was to be mounted centrally between the front and rear wheels, at the 

point where the spare is indicated in Figure 8. The hydraulic pump, oil reservoir and air 

intake fan and grills would also be situated at this location. The diesel engine and 

hydraulic system would be housed in a boxed unit. This housing would also be large 

enough to contain all sundries required for carrying out the air tests.
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Figure 8. Transport lorry side elevation dimensions

Figure 9. Transport lorry plan dimensions
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Figure 10. 2000 mm fan details.

The 2000-mm fan (figure 10) would be mounted at the rear of the vehicle on the tail 

plate. Hydraulic hoses would transport oil at up to 200-bar pressure from the reservoir 

to the fan system. For connection of the fan system to the door screens, it was decided 

that a flexible duct arrangement was most suitable. Two x 3 metre and one x 2 metre 

lengths were constructed, giving a cumulative length of eight metres. This would allow 

the rig to be parked at a reasonable distance from the building under test to avoid 

bollards and other items restricting access. The angle of the duct between the height of 

the fan off the ground (1.2 m) and floor level at the door entrance would also be 

minimised, to avoid restricting airflow at the fan outlet. The ducting would be stored in 

the donkey engine housing along with the other air testing sundries.

On completion of the test rig, it was noted that the front of the vehicle was sitting lower 

than the rear of the vehicle. Measurements of the vehicle weights on front and rear 

axles confirmed fears that too much load was being placed at the front of the vehicle. 

This meant that the vehicle and rig were not road legal. It was decided by the author that



the remedy would be to move the position of the donkey engine and housing towards 

the rear of the vehicle. Unfortunately, moving the boxed housing too close to the rear 

of the vehicle would restrict airflow into the fan. Consultations with the fan 

manufacturers and Halifax fan consulting engineers confirmed that no obstruction 

should be within 1.25 m of the fan to avoid airflow restriction into the fan. Contact with 

the lorry manufacturer lead to pinpoint analysis of the various items on the lorry to 

calculate the loads imposed on the front and rear axles. A compromise was reached, 

whereby the power source would be moved 0.5 m towards the rear and the front 

suspension would be up rated to keep the vehicle within the legal requirements of the 

DVLA. The large test rig was given the name of the “Megafan” for marketing purposes 

and was now suitable for transport around the country. To make accurate assessments 

of building air leakage rates the fan would now need to be accurately calibrated.

4.2 Calibration o f large air test rig

There are a number of methods available for rig calibration. The author decided that for 

the most accurate calibration of the rig, the method entailing the use of a calibration 

duct would be best. The duct is used to create an environment where it is possible to 

measure the relationship between the pressures observed at the fan and the true flow 

volume measured at the outlet of the calibration duct. Tap-ins located around the inlet 

venturi of the fans were connected together with tubing to give a pressure reading for a 

given flow rate through the fan. Measurements of the velocity pressures at the outlet 

end of the duct, coupled with information about the air density, are used to calculate the 

true air flow volume resulting from the fan. Collecting data for various fan pressures 

and true airflow volumes at the duct outlet allowed a formula to be calculated for the

relationship between observed and actual volume flow rates through the fan.
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For the calibration of the Megafan the test was carried out in accordance with BS 1042: 

Section 2.1:1983 Measurement o f flu id  flow  in closed conduits. This highlights the 

location and number of sampling points required close to the outlet end of the 

calibration duct. Section 10.2.1. of this document refers to the “Log-Tchebycheff” 

method in circular cross sections. Three full diameter traverses of the duct are required 

using a pitot static tube at a given position along the calibration duct (Figure 9. Megafan 

calibration duct). Eight measurements are made at each diameter traverse, giving a total 

of 24 velocity pressure readings for each fan pressure level. The calibration duct was 

designed and built in accordance with BS 848 Part 1 1980 type B -  ducted flow , 

incorporating straighteners to remove swirl.

The two inlet venturies for the Megafan were manufactured according to clause 21 of 

BS 848 Part 1. One 2000-mm venturi was constructed for the highest flow rates. A 

1400-mm venturi was constructed for lower flow ranges. On each venturi four tap-ins 

were created at 90-degree intervals. These were connected using rubber tubing and T- 

piece attachments to produce one outlet tube for pressure measurements.
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Figure 11. Calibration duct fo r  “Megafan” test rig

During the actual calibration procedure the airflow through the duct was measured and 

calculated from the pitot static traverse, utilising an NPL design pitot static tube. The 

static pressure drop at the fan venturi was measured using a digital micromanometer. 

The measured flow was then compared to the indicated flow from the inlet of the 

venturi subject to calibration. The procedure was carried out at ten approximately 

equally spaced values over the full operating range of the inlet venturi and the results 

plotted to give a straight line relationship between the measured and actual flows. This 

enabled a flow correction factor to be calculated for each venturi. This is in the form of 

a mathematical equation, such that: -

Air flow m3.s‘l = f (AP) (4.1)

where AP is the measured pressure drop at the inlet venturi
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Figure 12. Author connecting “Megafan ” test rig to calibration duct 

4.3 Calibration procedure

1. Ensure the lorry handbrake was on. Secure the fan to the calibration duct using 

the bolts provided

2. The barrier around the Megafan lorry was positioned to keep people a minimum 

of 10m away.

3. The fan rev counter was connected up to the digital readout in the cab.

4. The fan engine was turned on and the speed increased to a maximum of 

2300rpm. At the same time slowly increase the fan speed to a maximum of

880rpm. These two actions should be done simultaneously.
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5. The fan speed was reduced by decreasing the engine speed. Two way radio 

communication was maintained between the fan speed operator and the engine 

speed operator.

6. The doors of the storage box on the back of the lorry did not impede the airflow 

into the fan. Nothing was within 1.25 metres of the inlet cone of the fan.

Figure 13. Megafan rig ready fo r  calibration

7. The procedure consisted of measuring observed volumes at the fan venturi and 

actual volumes at the other end of a calibration duct. These were compared to 

establish a relationship between the two. Comparative tests were carried out at 

ten equidistant points through the full working range of flow rates for the fan 

venturi in question. These data were inputted into the HRS spread sheet to
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calculate flow volumes from observed pressures. Values were plotted into a 

graph and a line equation calculated for the relationship.

8. The open area of the venturi and discharge duct was calculated from 7tr2

9. Atmospheric pressure was measured using a UKAS calibrated absolute pressure 

meter. Temperature was measured using a UKAS calibrated ETI Therma 1 

Thermometer, with an uncertainty of calibration of ± 0.5 °C. These values were 

inputted into the spreadsheet, which then calculated a value for air density.

10. Measurements of velocity pressures were made with the pitot static tube along 

four radius traverse points of each of three traverse diameters. Location of 

traverse points were indicated in BS 1042: Section 2.1:1983, item 10.2.1 

Circular cross sections.

11. For calibration of each venturi the fan flow rate was raised to the maximum for 

normal working conditions. For the Megafan with 2000mm venturi the pressure 

reading at the venturi was around 1100 Pascal. For the Megafan with 1400mm 

venturi this was around 500 Pascal.

12. The flow rate was then reduced to the lower limit of calibration in ten equal 

stages. At each stage measurements from the pitot static traverse were taken on 

each of the three traverse diameters. The lower limit for venturi pressure 

readings with the 2000mm venturi was 220 Pascal.

13. Velocity pressure readings for the three traverse diameters were then entered 

into the HRS Excel spreadsheet. From this square roots of velocity pressures 

were calculated and thus an average of the square roots obtained was then 

squared to give an average measured reading. This measured reading was then 

compared with the average reading obtained at the venturi.

14. The pitot volume alpha is set at the known value of 0.997, calculated from

BS848-1. Air density is calculated using the following equation: -
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Air density (p) = Paatmos/ 287*(Tatm0s + 273.15) (4.2)

Paatmos = atmospheric pressure (Pa)

Tatmos = atmospheric temperature (°C)

These values were substituted into the equation below to provide values for mass 

flow in the spreadsheet using the following equation: -

Mass flow = a.7tr2.(2p.AP)0'5 (4.3)

a  = pitot volume

p = air density (kg.m~3)

AP = average pitot reading (Pa)

15. With known values for mass flow and air density the flow volume was 

calculated by dividing mass flow by air density to give a value in m V 1. This 

gives a value for the average measured volume from the pitot static traverse.

16. The value for the venturi reading was used to calculate a value for the venturi 

velocity and thus venturi volume using the following equations: -

Venturi velocity (m.s'1) = (2AP/p)0 5 (4.4)

AP = average venturi reading (Pa)

p = air density (kg.m'3)

Venturi volume = venturi velocity (m .s1) * venturi area (7tr2)
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Inserting the values into a spreadsheet allowed a comparison to be made between 

observed volume at the venturi and actual measured volume at the pitot static 

traverse. With all ten readings for observed against actual volume input into an 

Excel graph, a line equation was calculated. Adherence to the British Standards 

using this method save an accuracy of ± 2% for the venturi volume and ± 2% for 

the measured pitot volume. Summation of these two values save an overall 

uncertainty of ± 4% for true volume.
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Figure 14. Megafan calibration duct.
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4.4 Testing o f very large buildings

It was hypothesised by the author that the procedure for testing a very large single cell 

warehouse building using the steady state technique would be similar to that for a 

smaller building. The principles of introducing a flow rate Q into a building to create a 

pressure Ap across the building envelope remains the same. With a very large rig, such 

as the Megafan, it may be quite possible to pressurise the whole building using only one 

rig. However, it should be borne in mind that there will be a large number of 

mechanical ventilation plant units that will need to be turned off and temporarily sealed. 

It may also be necessary to take measurements of pressure differentials across the 

building envelope at a number of locations simultaneously to obtain a representative 

result. The standard procedure in the run up to an air test of a building is as follows: -

The following must be in place:

1. Smoke vent and fan actuators should be operational

2. Envelope areas should be calculated and verified

3. All builders work should be complete to air seal envelope including windows,

doors, hatches, cills, services etc.

4. Air inlets should be sealed

5. Extracts should be sealed

6. The Client must inform all contractors and personnel that access into and out of

the building will be restricted for a period of at least 2 hours and ensure that this 

is observed.
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7. H and V shall be shut off and all H and V equipment closed down and any other 

equipment that form openings or penetrations in the envelope shall be 

temporarily sealed

8. An adequate number of suspended ceiling tiles, if installed, shall be removed

around the perimeter of the building, to allow inspection of the floor/wall 

junction at all points.

9. Attendance by a client representative on site during the air test

10. Full access to be provided to all roofs and elevations

11. All internal doors, plenums, suspended ceilings and raised floor systems are

effectively fixed opened to enable unrestricted air flow into all parts of the 

building envelope.

In addition the following must be checked to ensure that accurate testing of the building

envelope is taking place:

12. Temporary seals must not be made to the external doors and frames

13. Temporary seals must not be made to external door thresholds

14. Temporary seals must not be made to loading bay doors

15. Additional seals must not be applied to air handling plant

16. Temporary seals must not be applied to the boiler room

17. Temporary seals must not be applied to lift shaft vents and doors

18. Temporary seals must not be applied to windows and cills

19 Temporary seals must not be applied to the tank room

20. Temporary seals must not be applied to drains, plugs and overflows

21. Temporary seals must not be applied to smoke exhaust fans and vents

22. Temporary seals must not be applied to any electrical switch rooms
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4.5 Remedial sealing measures

Building projects that have not incorporated envelope airtightness practices from design 

to completion may not attain the required performance specification. If the building 

fails the airtightness test then it may be necessary to carry out reductive sealing. This 

technique can be used to identify areas of permeable components or leakage paths. 

After the initial building test has been carried out individual or component multiple 

components such as trickle ventilators or building eaves can be sealed with polythene 

and tape. Further tests can be carried out to identify the contribution of each isolated 

area to the overall building leakage rate.

Figure 15 to Figure 19 indicate sealing measures that may be applied in a remedial 

manner to refurbished buildings. These techniques may be also be applied to a newly 

constructed building after completion, if the required airtightness specification has not 

already been achieved.
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HRS SERVICES LTD. 
The Makings 
81 Burton Road 
Sheffield 
S3 8BX

Tel: +44 114 272 3004 
|| \ J Fax:+44 114 272 3003

SERVICES
LULLLil

Block Work Wall Below Roof 
Sheet 

Air Seal To Eaves Detail
E Mail opman@highrise.co.uk

Material Performance and 
Specifications

1. Celotex double-R 
GA2000 is a low 
density rigid foam 
board with tri­
laminate foil facings 
on both sides. It 
provides a vapour 
barrier at the 
insulation surface as 
well as a high thermal 
resistance. It has a 
Class 1 surface spread 
of flame to BS476 pt 7. 
Product performance 
can be relied upon for 
25-50 years.

2. Webbseal 56 LM is a 
low modulus, neutral 
cure silicone intended 
for use in movement 
joints. It conforms to 
ISO 11600 for 
construction use.

3. Vapour check plaster 
board is foil faced on 
one side. It has a Class 
1 surface spread of 
flame to BS476 pt 7.

Typical Detail

Profiled R oof S h e e t
Low m odulus silicon e se a la n t

Timber stud  
a s  required

P lasterboard or Insulation  

Board - Foil F aced

Insulation a s  R equired

Low m odu lus silicon e  se a la n t

Blockwork

Figure 15. Airseal detail at blockwork wall to roof sheet eaves detail.
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HRS SERVICES LTD.
The Makings 
81 Burton Road 
Sheffield 
S3 8BX

Tel: +44 114 272 3004 
|| f  J Fax: +44 114 272 3003 

S E R V I C E S  ^  ° P m a n ® h 'gh r ' s e -C0-u k 

I I M I T ED

Block Work Wall Less Than 50 mm 
Below Roof Sheet

Air Seal To Top Of Internal Wall (Not 
Fire)________

Material Performance and 
Specification

1. Closed cell foam fillers are 
produced from PEL. 
Bedded correctly, they are 
fully air tight and have a 
life expectancy of 30 years.

2. Webbseal 56 LM is a low 
modulus, neutral cure 
silicone intended for use in 
movement joints. It 
conforms to ISO 11600 for 
construction use.

Typical Detail

Insulation Profiled roof sheet

Silicone
Sealant

If large 
of the roof sheet 
are expected, fix 
galvanised angle 
to roof with tec 
screws and seal 
with silicone sealant

C losed  cell foam  filler 
bedded with low 
m odulus silicone  
sealant

Figure 16. Airseal detail at blockwork wall adjacent to roof sheet eaves detail.
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HRS SERVICES LTD.
The Maltings 
81 Burton Road 
Sheffield 
S3 8BX

Tel: +44 114 272 3004 
|] [ J Fax:+44 114 272 3003

SERVICES ^ 0Pman®^‘g l̂r*SC C0 u*<
I I  M I T ED

Mansard Roof Spanning Area Between 
Block Work Wall And Roof Sheet 

Air Seal To Eaves Detail

Material Performance and 
Specifications

1. Celotex double-R GA2000 
is a low density rigid 
foam board with tri­
laminate foil facings on 
both sides. It provides a 
vapour barrier at the 
insulation surface as well 
as a high thermal 
resistance. It has a Class 1 
surface spread of flame to 
BS476 pt 7. Product 
performance can be relied 
upon for 25-50 years.

2. Webbseal 56 LM is a low 
modulus, neutral cure 
silicone intended for use in 
movement joints. It 
conforms to ISO 11600 for 
construction use.

3. Vapour check plaster 
board is foil faced on one 
side. It has a Class 1 
surface spread of flame to 
BS476 pt 7.

4. Closed cell foam fillers are 
produced from PEL.
Bedded correctly, they are 
fully air tight and have a 
life expectancy of 30 years.

Typical Detail

Profile roof 
sheet

Low modulus 
silicone sealant

Linder drawn with 
ply wood sheet, 9mm 
vapour shield or 10mm 
insulation board

T rocal 
membrane

Profile roof 
sheet

10mm foil faced 
insulation board 
or 9mm vapour shield 
plaster board

Closed cell foam 
packers sealed 
with low modulus 
silicone sealent

Figure 17. Airseal detail at blockwork wall adjacent to roof sheet eaves detail.
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HRS SERVICES LTD. 
The Makings 
81 Burton Road 
Sheffield 
S3 8BX

T e l :  +44 114 272 3004 
|] f  J Fax:+44 114 272 3003
SERVI CES ^  ° P m an ® highrise.co.uk

1 I M l  T E D

Penetration of External Wall by 
Steelwork or Services 

Air Seal Detail

Service Penetration

Material Performance and 
Specifications

1. Webbseal 56 LM is a low 
modulus, neutral cure 
silicone intended for use in 
movement joints. It conforms 
to ISO 11600 for construction 
use.

2. Vapour check plaster board is 
foil faced on one side. It has a 
Class 1 surface spread of 
flame to BS476 pt 7.

3. Celotex double-R GA2000 
is a low density rigid 
foam board with tri- 
laminate foil facings on 
both sides. It provides a 
vapour barrier at the 
insulation surface as well 
as a high thermal 
resistance. It has a Class 1 
surface spread of flame to 
BS476 pt 7. Product 
performance can be relied 
upon for 25-50 years.

Typical Detail 
Wall

10mm foil faced insulation 
or 9mm plaster board fixed 
at 300mm centres

Low modulus 
silicone sealant

Figure 18. Airseal detail at external wall penetration.
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HRS SERVICES LTD. 
The Makings 
81 Burton Road 
Sheffield 
S3 8BX

h r
SERVICES
MJLLL11

Tel: +44 114 272 3004 
J Fax: +44 114 272 3003

E Mail opman@highrise.co.uk

Penetration of Roof Sheet by 
Steelwork or Services 

Air Seal Detail
Material Performance and 

Specifications

1. Celotex double-R GA2000 
is a low density rigid 
foam board with tri- 
laminate foil facings on 
both sides. It provides a 
vapour barrier at the 
insulation surface as well 
as a high thermal 
resistance. It has a Class 1 
surface spread of flame to 
BS476 pt 7. Product 
performance can be relied 
upon for 25-50 years.

2. Webbseal 56 LM is a low 
modulus, neutral cure 
silicone intended for use in 
movement joints. It 
conforms to ISO 11600 for 
construction use.

3. Vapour check plaster 
board is foil faced on one 
side. It has a Class 1 
surface spread of flame to 
BS476 pt 7.

Closed cell foam fillers are 
produced from PEL. Bedded 
correctly, they are fully air 
tight and have a life 
expectancy of 30 years.

Typical Detail

10mm foil faced insulation 
or 9mm plaster board fixed 
to sheets with adhesive or 
self tapping screw and sealed 
with low modulus sealant

Figure 19. Airseal detail at external wall penetration.

Low modulus
silicone sealant

Closed cell foam fillers 
bedded with low modulus 
silicone sealant
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4.6 Summary

This chapter have provided an insight into the methodology required for the creation 

and calibration of a large test rig. A review of the design and construction process for 

the large test rig, along with lessons learned from mistakes, has been provided. 

Information relating to the equipment and methodology required for the calibration of 

the rig has been provided. The practical requirements for testing large buildings have 

been noted. A summary of some remedial measures currently used on buildings have 

also been presented. The following chapter will report the field testing of one large and 

two very large UK buildings. The practical implications of testing very large buildings 

and some of the problems encountered on site will be discussed.
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Chapter 5 Field Testing

5.1 Field testing o f large buildings

The implementation of Part L2 of the Building Regulations on 1st April 2002 brought

# 2 
into force the requirement for buildings with a gross floor area greater than 1 0 0 0  m to

reach a reasonable level of envelope airtightness. For most buildings this could be

assessed with an airtightness test. The following are three examples of buildings that

were subject to an airtightness test in 2002. The results of these tests are presented in

Chapter 6 .

5.2 Testing o f a large warehouse (Building A) to determine building envelope 
airtightness using the Megafan rig

Building A was a large steel framed, composite clad building, located in Bury. The 

building had an air permeability index envelope area of 35,544 m and a total volume of 

196,150 m3. The cladding contractor was responsible for the airtightness compliance of 

the building and had employed sealing techniques to gain approval. This included the 

correct closure of gasket joints and silicone sealing at composite panel junctions.

Prior to the test, the author met with the cladding contractor to ensure that all building 

work was complete to the air seal envelope including windows, doors, hatches, cills and 

services. H and V subcontractors shut down the H and V plant on the roof of the 

building and temporarily sealed them. For the purpose of the test, a large wooden 

screen was installed in the main entrance to the building. This contained a 1400-mm 

cut-out, into which the Megafan would be installed. On arrival to site, a building check 

was carried out by the author to ensure that all required areas were completed and
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temporarily sealed where required. Inspection was also carried out to ensure that areas 

such as smoke exhaust vents and external doors were not sealed.

When the building was ready to be tested the Megafan was connected to the wooden 

screen using one three-metre flexible duct section. Temperature measurement probes 

were placed 2 0  m inside and outside away from the building and connected to digital 

thermometers in the Megafan lorry. 5-mm bore plastic tubing was placed 20 m inside 

and outside away from the building. This tubing was then connected to digital 

micromanometers inside the Megafan lorry. The pressure drop across the fans was 

measured using high quality digital manometers designed for measuring pressure 

differentials to an accuracy of ± 1% of a reading. Temperature measurements were 

made before, during and after the test using Therma 1 Thermometer Digital 

thermometers. These were calibrated by UKAS to an accuracy of ±0.5 °C. A UKAS 

calibrated absolute pressure meter was used to establish the atmospheric pressure. 

Radio contact was maintained between personnel at the testing rig and personnel inside 

the building to ensure that all doors and windows remained shut and that no one left the 

building. The Megafan rig was used to impose a positive pressure of 62 Pa across the 

building envelope. Pressure differential was established across the fan. Fan speed was 

then lowered to give 1 0  building envelope differential pressure readings with 

corresponding fan pressure drop readings. The lowest building differential pressure 

recorded was 20 Pa. Results of the test can be found in Section 6.1.
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5.3 Testing o f a very large retail store (Building B) to determine building envelope 
airtightness using the Megafan rig

Building B was a very large retail store located in Glasgow. Although no mandatory 

requirement for testing was in force in Scotland, the client had decided to test the type 

of construction that would be used on other projects in the UK. The building has an air 

permeability index surface area of 42072 m and a volume of 180760 m . The 

construction was brick/block/cladding with a trocal membrane for the roof sheet.

Figure 20. Building B front entrance

Prior to the airtest, a site visit was carried out by HRS personnel to audit the building 

and make recommendations for improvements to the current sealing practices 

employed. Inspection revealed that some sealing practices had been employed around 

the building. However, omissions were noted at the roof sheet eaves (Figure 21) and at
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service penetrations to the roof sheet. The client had been informed by the roofing 

contractor that air needed to pass from the building through the roof sandwich for it to 

“breathe”.

Figure 21. Lack o f sealing at roof sheet detail

On the day of the airtest, sealing of H and V plant on the roof was left to HRS 

personnel. There were a large number of mechanical ventilation units (Figure 22) 

spread over a roof area of approximately 18000 m . Plant was sealed with Celotex 

board, polythene sheet and tape. The process of sealing all the roof plant took four 

hours with four personnel working consistently. Also present on the roof were a large 

number of smoke vents (Figure 23), which were closed but not sealed.

- 6 6 -



Figure 22. Large number o f mechanical ventilation units

Figure 23. Large number o f smoke vents
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During the process of mechanical vent sealing in the roof, the author and two further 

HRS personnel were installing the Megafan into the entrance to the building at ground 

level. Concrete bollards present in front of the doorway were removed prior to the test. 

Unfortunately the entrance was only just greater than 2 m high. The wooden screen, 

pre-made for fixing the flexible duct into the doorway had to be cut to size. To support 

the flexible duct between the fan and wooden screen a scaffolding ramp was erected 

(Figure 24).

Figure 24. Megafan flexible duct sealed into wooden screen at entrance to retail store

A 40-m length of 5-mm bore plastic tubing was placed into the centre of the sales floor. 

The other end of the tubing was connected to the positive terminal on the digital 

micromanometer in the lorry cab. A further 20-m length of tubing was placed adjacent 

to the building with one end connected to the negative terminal of the digital
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micromanometer. Temperature probes were placed in the centre of the sales floor and 

outside the building. Average wind speed was taken during the test using a digital 

anemometer. Atmospheric pressure was determined using an absolute pressure meter. 

The pressure drop across the fans was measured using high quality digital manometers 

designed for measuring pressure differentials to an accuracy of ± 1 % of a reading. 

Temperature measurements were made before, during and after the test using Therma 1 

Thermometer Digital thermometers. Before the test commenced a bunted barrier was 

erected to provide a 1 0  m by 1 0  m no go area around the fan, inside and outside the 

building. All moveable objects were removed from the airflow path of the fan inside 

the building. Control of the fan and reading data assimilation was carried out by an 

operator in the lorry cab (Figure 25)

Figure 25. Megafan ready to test with the author in the lorry cab to record results.
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Radio contact was maintained between the fan operator, personnel within the building 

and personnel who were on the roof to check that none of the temporary sealing blew 

off during the test. With the donkey engine running the Megafan was taken up to 

maximum speed. The first results indicated a very low building pressure. Radio 

contact with personnel on the roof revealed that a roof hatch had been left open. With 

the hatch closed the test could proceed. The building was taken up to a differential 

pressure of 57 Pa. 10 building pressure readings were recorded, down to a differential 

pressure of 16Pa. The results are recorded in section 6.2.
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5.4 Testing o f a very large warehouse building (Building C) to determine
airtightness using multiple rigs

In December 2002 the opportunity arose to air test the largest building to be subject to 

such a test in the UK (and probably the world). With an air permeability index 

envelope area of 128400 m2 and a total volume of 746720 m3 the very large distribution 

centre would push the current air testing equipment and technology to its limits. The 

building was of a steel framed, composite clad construction. Careful attention had been 

taken during construction to ensure that all gaskets and joints were sealed. However, on 

a building this size there were tens of thousands of metres of linear joints. Even a 1-mm 

gap along the length of the joints would result in a massive open area for air leakage. 

To assess the possibility of joint leakage a sample of spot check were carried out around 

the building prior to the air test by the author (Figure 26). Indications from these 

samples were good, suggesting that the building would easily meet the current Building 

Regulations targets.

Figure 26. Joint leakage assessment by the author using a component tester
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The pressure testing of such an enormous building provided the perfect opportunity to 

demonstrate the capabilities of the Megafan and answer questions about the 

impossibilities of testing large buildings. A two-day publicity event was organised by 

the author and HRS Services Ltd to highlight the available testing rigs, ease of large 

building testing and the energy saving benefits that can be accrued from good envelope 

airtightness in large buildings. The event was attended by government officials from 

the ODPM, clients, main contractors, cladding contractors, academics, building control 

and approved inspectors.

For the purpose of this test, the author decided that three variable speed fans would be 

used to generate the pressure differential Ap across the building envelope; the Megafan, 

2000mm in diameter and two medium sized fans, 1250mm in diameter. The 1250mm 

fans were driven using the power take off from 3.5 tonne Mercedes vans with a similar 

design to the 2000mm-fan rig. The pressure drop across the fans was measured using 

high quality digital manometers designed for measuring pressure differentials to an 

accuracy of ± 1% of a reading. Temperature measurements were made before, during 

and after the test using Therma 1 Thermometer Digital thermometers.

The three fans were positioned at equal intervals along one side of the building 

envelope. Prior work had been carried out by the author with Nelson Chilengwe at 

Sheffield Hallam University using Computational Fluid Dynamics (CFD) modelling to 

investigate any interactions between the fan plumes. The study had constructed a model 

of the building under test and assigned properties to the building boundaries to try and 

accurately represent conditions on site. The three fans were introduced into the model

as fixed flows. Full details of this work can be found in Appendix A.2.
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The large fan was connected with a flexible duct to a wooden screen situated within one 

of the dock levellers, as illustrated in Figure 27. The two medium sized fans were 

positioned within dock leveller entrances and sealed in with a wooden frame and 

Celotex board.

Figure 27. Megafan sealed into dock leveller entrance

For the purpose of the test, all external doors and windows were closed, with internal 

doors to the offices left open. Mechanical ventilation openings on the building roof 

were to be sealed with polythene sheet and adhesive tape by the cladding contractor. 

On arrival at site, it was noted that this had not been carried out. HRS personnel spent 

three hours sealing mechanical ventilation plant on the roof. Personnel who had been 

requested to monitor the temporarily sealing on the roof during the test were also not 

available.
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Large openings containing permanently open louvers had been noted on previous visits 

to site and a requirement to have them sealed had been communicated to the project 

team. On the date of the scheduled air test, the louvers, constituting an area of around 

40m2, were still unsealed. To carry out a test under these conditions would have been 

pointless. The louvers were therefore covered with polythene sheet and tape, under the 

premise that they would be properly sealed at a latter date and remain sealed during 

operational conditions. Three lm  openings in the building envelope remained unsealed 

to fulfil the requirement of ventilation to the gas boilers. On a visit to the site six 

months latter the author observed that permanent sealing to these louvers was being 

installed, coincidentally on the day of the visit.

Three parties of two personnel were required to operate the fans and record the observed 

pressure differentials. Further personnel were positioned around the building and on the 

roof, to ensure that vents remained sealed and doors remained closed. Communication 

was maintained by radio contact. To establish the pressure differential across the 

building envelope that would satisfy Building Regulation requirements, a 60m length of 

5mm internal diameter plastic tube was connected from the digital manometer located at 

the large fan and placed inside the building at a 45° angle to the fan at ground level. A 

2 0 m length of tube was connected to the manometer and placed outside the building at a 

45° angle to the fan. The pressure differential across the building envelope was raised 

to 81 Pascal and then lowered in ten stages to 23 Pascal. Pressure differentials across 

the three fans were maintained with a difference of not greater than 2 0 % at each 

respective test level. Results for the test can be found in Section 6.3.
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5.5 Summary

This chapter has reported on the field testing of one large and two very large UK 

buildings. The practical implications of testing very large buildings has been discussed 

and some of the problems highlighted on site have been discussed. The current 

knowledge gap in the UK construction industry relating to building airtightness has also 

been noted. The following chapter will report the output graphs and tables from the 

field data. A brief interpretation of the results will be given.

- 7 5 -



Chapter 6 Results

6.1 Testing o f a large warehouse (Building A) to determine building envelope
airtightness using the Megafan rig

The following reports detail the results from the airtightness test carried out at Building 

A, on the 20th of May 2004. The test was performed using the Megafan rig with 2000- 

mm venturi attached. The data shown are output graphs and tables from the Altas 

program. The Altas program was produced by the author in conjunction with Sheffield 

Hallam University for HRS Services to carry out and report the results of airtightness 

tests. Altas takes as input measured parameters of the air-leakage test i.e. pressure 

differentials across the fans and building envelope, temperatures and wind speed 

prevailing during the test period. Altas then derives the airflow rates through the fans 

from the measured pressures across the fans. The measured air flow rates through the 

fans and building envelope are corrected for deviations in density from standard 

temperature and barometric pressure (20°C and 101325 Pa). Correcting the air leakage 

parameter to standard conditions enables tests carried out under different conditions to 

be properly compared. In addition Altas determines the Airtightness Performance and 

Air Leakage Characteristic of a building based upon the input. The later involves 

regression analysis to determine the flow exponent and coefficient in the power law 

equation, which relates the airflow rate across the building envelope to the pressure 

differential across it. Output from Altas is in the form of presentable printouts ready for 

issue to clients for inclusion in reports or for general record keeping.

Figure 28 shows a log-log plot using a power law regression fit of the measured fan 

flow rate Q, against the building differential pressure AP. A value for the measured
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flow rate at a building differential pressure of 50 Pa, Q50, is quoted as 53.94 m V1. This 

is calculated by interpolating the measured results using a least square law 

approximation. The calculated value for air permeability was 5.46 n rV m "2, which 

easily satisfies the current Building Regulations target of 10 m V n T 2. The reported

3 1 2value for air leakage index is 9.08 m h ' m '  . The value for the correlation coefficient of 

the power law regression fit is 0.9956. Figure 29 shows a linear plot using a power law 

regression fit of the measured fan flow rate Q, against the building differential pressure 

AP. Figure 30 highlights the environmental and fan output data during the test. 

Average wind speed was noted to be 2.2 ms’ 1 at the beginning, falling to 2.0 ms' 1 at the 

end of the test. Figure 31 summarises the building details. Figure 32 reports the fan 

and building pressures recorded during the test.
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6.1.1 Log-log data plot for building pressurisation test

lA ltas v 4 B e ta 0 2  - [Building Air L ea k a g e  T e st R e su lts ]

File Edit D a ta  Display D a ta  R ep o rts

-U l x| 
^ I S j x l

Building Air Leakage .Characteristic
Client N am e: pew Construction

Building Ref:
72G5

Date of Test: 120.05.04

Lo g  L oa A jiX ea k a g e  Characteristic:

Q = C fDP)^n
53.94

3.3581
30 0.7098

Corr. Coeff 0.995G

Air L e a k a g e  Index10

Air Perm. Index
@  5 0 P a  |5.46

100
PrintPressure Diff across bldg (Pa)

Close

3 1Figure 28. Q(m s' ) v. Ap(Pa) log-log data points fo r  the building pressurisation test.
With a power law regression fit.

Source Altas v3.36.
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6.1.2 Linear data plot for building pressurisation test

■ I A ltas v 4 B eta t)2  - [Building Air L ea k a g e  T est R e su lts ]

Q '̂v File Edit D a ta  Display D a ta  R e p o rts

Building Air Leakage Characteristic Building Ref:
Client Name: |Dew Construction 7265

Site Address: Bury

HRS Ref No: 7265 Date of Test: |20.05.04

Linear Air L ea k a g e  C haraderistic:-

Air flow rate (m37s)
Q = C (D P r n

3.3581100- -

0.7098
Corr. Coeff 0.9956

80--
Air L e a k a g e  Index
@ 50Pa |9.079 | 
Air Perm. Index
@ 50Pa

60--

5.4636

40--

20- - Print

Close
100

- i s l  X |
j f f j x l

3 1Figure 29. Q(m s' ) v. Ap(Pa) linear data points fo r  the building pressurisation test.
With a power law regression fit.

Source Altas v3.36.
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6.1.3 Environmental and measured data

H H M -iffl XJ

Building Air Leakage Test Data Sheet
Client Name: |Dew Construction | Date of Test: |20.05.04 □
Site Address: Building Ref: T est Start Time: |l2.30 □
Bury 7265

T est da tabase  No: |7265

General W eather 
Conditions:

T est Finish Time: |l.00 

Pressurisation: Q D

Depressurisation:

Clear, light winds

Wind S peed  at Start of Test: |2.2 m/s

Wind S peed  at End of Test: |2 Im/s

Barometric Press, at Start of Test: |l01000| P a

Barometric Press, at End of Test: |ioiooo| P a

External Tem p at Start of Test: |16.5 | deg C

External Temp at End of Test: |16.8 | deg C

Fan off, press, diff. at Start of Test: I?. IP a

Fan off, press, diff. at End of Test: l° IP a

Internal Temp Sensor 
Location

Interna
(de

Temp
gC)

centre of building Start End

|12.8 | |13.5 |

Fan Speed 634 608 564 540 506 465 405 338 306 272

Press. Diff (Pa) 52 47 41 38 36 32 27 20 18 16

Air Flow (m3/s) 53.41 51.60 48.11 46.24 44.17 40.27 34.45 29.39 25.86 23.73

Engineer: IS.CIoss Date: |20.05.041 C hecked  by: Date: Print Close

Figure 30. Environmental and measured data 
Source Altas v3.36.
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6.1.4 Building envelope data

i A ltas v 4 B e ta 0 2  - [Building Air T ig h tn ess  P er fo rm a n ce]

(JV  File Edit D a ta  Display D a ta  R ep o rts

xj
. I f f !  x |

Building Air Tightness Performance

Client Name: 

HRS Ref No:

Site Address:

Eew Construction

72G5

Date of T e st 

Building Ref:

20.05.04

Bury

7265

Building Physical Parameters
Building Vol: 1196150 [ m3

m2Walls Area: 7236

Floor Area: 

Roof Area:

114154 

114154

m2

m2

Building Air Tightness Results:
ALI Envlp Area =

ALP Envlp Area =

[21390

135544

m2

m2

Air Leakage Index (ALI) = 

Air Permeability (API) =

Indie. Infil Rate = [0.15 | ACH

G eneral Comments:

Engineec S.CIoss Date: 20.05.04 Checked by:

|9 08 | m3/h per m2 at |5Q | P a

|5.46 | m3/h per m2 at |50 | P a

Print

Close

Date:

Figure 31. Building envelope data 
Source Altas v3.36.
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6.1.5 Measured fan and building envelope data

- I f f !  x |
a

i - - - - - - - - - - - -

Measured Data
Fan 1 Envlp

Fan 2000mm Meat. Total |
Speed (Pa) | (m3/s) (Pa) (m3/t) |

634 570 53.414 52 53.414
608 531 51.597 47 51.597
564 460 48.108 41 48.108
540 424 46.236 38 46.236
506 386 44.171 36 44.171
465 319 40.266 32 40.266
405 231 34.447 27 34.447
338 166 29.387 20 29.387
306 127 25.857 18 25.857
272 106 23.728 16 23.728|

Add T est De! TestFan Type dJOOmrnFan ID

Figure 32. Measured fan and building envelope data. 
Source Altas v3.36.
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6.2 Testing o f a very large retail store (Building B) to determine building envelope
airtightness using the Megafan

The following reports detail the results from the airtightness test carried out at Building 

B, on the 8th of September 2002. The test was performed using the Megafan rig with 

2000-mm venturi attached. The data shown are output graphs and tables from the Altas 

program.

Figure 33 shows a log-log plot using a power law regression fit of the measured fan 

flow rate Q, against the building differential pressure AP. A value for the measured 

flow rate at a building differential pressure of 50 Pa, Q50, is quoted as 69.36 m Y 1. This 

is calculated by interpolating the measured results using a least square law 

approximation. The calculated value for air permeability is 5.93 m'VW2, which 

satisfies the current Building Regulations target of 10 m3h '1m'2. The reported value for

3 1 2air leakage index is 10.41 m h' m' . The value for the correlation coefficient of the 

power law regression fit is 0.9968. Figure 34 shows a linear plot using a power law 

regression fit of the measured fan flow rate Q, against the building differential pressure 

AP. Figure 35 highlights the environmental and fan output data during the test. 

Average wind speed was noted to be 1.0 m s'1 at the beginning, falling to 0.6 m s'1 at the 

end of the test. Figure 36 summarises the building details. Figure 37 reports the fan 

and building pressures recorded during the test.
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6.2.1 Log-log data plot for building pressurisation test

j A lta s  v 3 .3 6  - [Building Air L ea k a g e  T e st R e su lts ]

Fiie Edit D a ta  Display D a ta

Building Air Leakage Characteristic
Client Name: |IKEA

Building Ref:
Entire building exc. loading bay

Date of Test: (08.09 02

Loq-Loq Air L ea k a g e  C haraderistic:-

50.69.38

Pressure Diff across bldg (Pa)

C (D P )
8.9310
0.5240

Corr. Coeff 0.9968

Air L e a k a g e  Index
@ 50Pa [10.41 1 
Air Perm. Index
@ 50Pa 5.93

Print

Close

• 3 1Figure 33. Q(m s' ) v. Ap(Pa) log-log data points fo r  the building pressurisation test.
With a power law regression fit.

Source Altas v3.36.
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6.2.2 Linear data plot for building pressurisation test

I A lia s  v 3 .3 6  -  [Building Air L e a k a g e  T e st R e su lts ]

g f*  Fite Edit D a ta  Display D a ta

Building Air Leakage Characteristic
Client Name: fKEA ~

Site Address: IKEA Glasgow

HRS Ref No: [IKEA01

Linear Air L ea k a g e  C haraderistic:-

Building Ref:
Erkiie building exc. loading bay

Date of Test: 08.09.02

Air flow rate (m3/s)
Q f  C_tP_Pr.n

8.9310100- •
0.5240

Corr. Coeff 0.99S8
8a-

Air L e a k a g e  Index
@ 50Pa |10.4051 
Air Perm. Index
@ 50P a

GO--
5.9347

40--

2(T- Print

Close
100

Figure 34. Q(m' s' ) v. Ap(Pa) linear data points fo r  the building pressurisation test.
With a power law regression fit.

Source Altas v3.36.
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6.2.3 Environmental and measured data

I Alt as v3.36 - [Ait Leakage Test Data Sheet]
C f .  File Edit D a ta  Display D a ta

Building Air Leakage Test Data Sheet
Client Name: |IKEA

Site Address:
IKEA Glasgow

Building Ref:
Entire building exc. loading bay

T est da tab ase  No: |lKEA 0 |

Date of Test: 108.09.02

T est Start Time: 122.15 

T est Finish Time: 122.45 

Pressurisation:

General Weather 
Conditions:

Depressurisation: Q  I

Fair

Wind S peed  at Start of Test: h 1 m/s

Wind S peed  at End of Test: |o.G m/s

Barometric P ress, at Start of Test: |102050| P a

Barometric Press, at End of Test: |102060| P a

External Tem p at Start of Test: |l 5.5 | deg C

External Tem p at End of Test: |l 5.5 | deg C

Fan off, press, diff. at Start of T e st 1“ 1 Pa

Fan off, press, diff. at End of Test: 1° ! P a

Internal Temp Sensor 
Location

Sales area

Internal Temp 
(deg C)

Start End

Em IP1 I

Fan Speed 880 845 805 775 725 682 597 560 445 415

Press. Diff (Pa) 57 58 49 48 45 38 33 26 17 16

Air Flow (m3/s) 74.50 72.88 68.12 66.34 62.03 59.06 53.04 49.27 38.81 37.54

Engineer: |S.CIoss | Date: [08~09 02 [ C hecked  by: | | Date: [

Figure 35. Environmental and measured data 
Source Altas v3.36.

-.Itflxl
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6.2.4 Building envelope data

I Alt as y 3.36 - [Building Air Tightness Performance]
File Edit D a ta  Display D a ta

Building Air Tightness Performance

Client Name: 

HRS Ref No:

Site Address:

[IKEA

pKEAl

Date of Test: |08.09.02 |

Building Ref: |Entire building exc. loading bay

IKEA Glasgow

Building Physical Parameters
Building Vol: 1180760 | m3 Floor Area:

Walls Area: [5920 | m2 Roof Area:

Building Air Tightness Results;
ALI Envlp Area = 123996 | m2 Air Leakage Index (ALI) =

ALP Envlp Area = 142072 | m2 Air Permeability (API) =

Indie. Infil Rate = p. 17 | ACH

G eneral Comments:

Print | 

Close [

Engineer: S.CIoss Date: 08.09.02 Checked by: Date:

118076 | m2 

118076 | m2

[10.41 | m3/h per m2 at |50 | P a

|5.93 | m3/h per m2 at |50 | P a

Figure 36. Building envelope data 
Source Altas v3.36.

.Jf iJxj
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6.2.5 Measured fan and building envelope data

j Alt as v3.36 - [Enter/Edit Measured Data]

Measured Data

Fan 2000mm Meas. Total 
Speed [Pa| |(m3/«] [Pa] (m3/«)

785 82.033 45 62.033

28 49.267490 49.267

Fan ID |Fan 1 Fan Type jsOOOriin [ Add Te*t

Figure 37. Measured fan and building envelope data. 
Source Altas v3.36.
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6.3 Testing o f a very large warehouse (Building C) to determine airtightness using 
multiple rigs

The following reports detail the results from the airtightness test carried out at Building 

C, on the 12th of December 2002. The test was performed using the Megafan rig with 

2000-mm venturi attached and two medium sized fans, each with a 1250mm venturi 

attached. The data shown are output graphs and tables from the Altas program.

Figure 38 shows a log-log plot using a power law regression fit of the measured fan 

flow rate Q, against the building differential pressure AP. A value for the measured 

flow rate at a building differential pressure of 50 Pa, Q50, is quoted as 80.14 m s"1. This 

is calculated by interpolating the measured results using a least square law 

approximation. The calculated value for air permeability was 2.25 mVm'2, which 

easily satisfies the current Building Regulations target of 10 m3h"lm‘2. The reported 

value for air leakage index was 4.07 m V i r f 2. The value for the correlation coefficient 

of the power law regression fit is 0.9997. The exponent “n” has a value of 0.6182. 

Figure 39 shows a linear plot using a power law regression fit of the measured fan flow 

rate Q, against the building differential pressure AP. Figure 40 highlights the 

environmental and fan output data during the test. Average wind speed was noted to be 

1.8 m s'1 at the beginning, rising to 2.3 ms 1 at the end of the test. Figure 41 summarises 

the building details. Figure 42 reports the fan and building pressures recorded during 

the test.
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6.3.1 Log-log data plot for building pressurisation test

- i s !  Xj
n

Building Air Leakage Characteristic Building Ref:
Client Name: |Simons

Date ofTest: |12.12.02

Project Drake

Loq-Loq Air L eak age Characteristic:

100
7.13701.80.14
0.G182

Corr. Coeff 0.999730

Air L e a k a g e  Index
©  50Pa 14.07 |
Air Perm. Index
(§? 50Pa

10

12.25

100
PrintPressure Diff across bldg (Pa)

Close

3 1Figure 38. Q(m s' ) v. Ap(Pa) log-log data points fo r  the building pressurisation test.
With a power law regression fit.

Source Altas v3.36.
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6.3.2 Linear data plot for building pressurisation test

. | s | x |

CJ . Fite Edit Data Display Data Reports -Jff.i.xJ
...........................................................

Building Air Leakage Characteristic
Client Name: jSimons

Site A ddress imons/GSE Argos Distribution Centre
larsh Leys
empston

HRS Ref No: [Drake 12.12.02 |

Linear Air L eak age Characteristic:-

Building Ref:
Project Drake

Date of T e s t |12.12.02 ~~|

Air flow rate (m3/s)

7.1370250--
0.6182

Corr. Coeff 0 9997
200-■

Air L e a k a g e  Index
@ 50Pa
Air Perm. Index
@ 50Pa

14.0655
150--

2.2468

100- ■

Print

Close
100

3 - 1Figure 39. Q(m' s' ) v. Ap(Pa) linear data points fo r  the building pressurisation test.
With a power law regression fit.

Source Altas v3.36.
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6.3.3 Environmental and measured data

m y^msmem
( J .  File Edit Data Display Data Reports

Building Air Leakage Test Data Sheet
Client Name: |Simons

Site Address:

12.12.02

Simons/GSE Argos Distribution Centre
Marsh Leys
Kempston
Bedfordshire

Building Ref:
Project Drake

Date of Test:

T est Start Time: |l 900

T est d a tabase  No: [Drake”

General W eather 
Conditions:

Test Finish Time: |22Q0 

Pressurisation: E

Depressurisation: □

Mild

Wind S peed  at Start of Test: I1 I m/s

Wind S peed  at End of Test: |0.5 | m/s

Barometric Press, at Start of Test: O N) i P a

Barometric Press, at End of Test: 11022001 P a

External Temp at Start of Test: 111 I deg C

External Temp at End of Test: 12.3 deg C

Fan off, press, diff. at Start of Test: l° I Pa

Fan off, press, diff. at End of Test: l°_ I P a

Internal Temp Sensor 
Location

Internal
(de

Temp
gC)

Centre of warehouse Start End

|14 | |128 |

Fan Speed 0 0 0 0 0 0 0 0 0 0

Press. Diff (Pa) 81 78 71 83 56 51 41 37 29 23

Air Flow (m3/s) 101.4 97.20 92.53 86.16 79.22 75.97 66.70 62.34 53.83 45.95

Engineer: |S.CIoss et al | D a te:|l2.12.02| C hecked  by: | | Date: [

Figure 40. Environmental and measured data 
Source Altas v3.36.
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6.3.4 Building envelope data

£ '»  File Edit Data Display Data Reports

Building Air Tightness Performance

Client Name: 

HRS Ref No:

Site Address:

E
prake 12.12.02~

Date of Test: 

Building Ref:

Simons/GSE Aigos Distribution Centre
Marsh Leys
Kempston
Bedfordshire

12 . 12.02

Project Drake

Building Physical Parameters
Building Vol: 1746720 | m3 Floor Area:

Walls Area. 113520 | m2 Roof Area:

Building Air Tightness Results:
ALI Envlp Area = 170960 | m2 Air Leakage Index (ALI) =

ALP Envlp Area = 1128400 | m2 Air Permeability (API) =

Indie. Infil Rate = p.07 | ACH

G eneral Comments:

Print J
Close

Engineer: S.CIoss et al Date: 1212.02 Checked by: Date:

157440 | m2 

157440 | m2

|4.07 | m3/h per m2 at |50 | P a

|2.25 | m3/h per m2 at [50 | P a

Figure 41. Building envelope data 
Source Altas v3.36.
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6.3.5 Measured data

■ JAItas v4Beta02 - [Enter/Edit Measured Data]
H  EH:! l \ , l  ' ! '.r;| j ,  | , . -1 * 1  x |

Measured Data
Fan 1 [ Fan 2 Fan 3 Envlp

Fan 1250mm 2000mm Meas. Total |
Speed (Pa] | (m3/s) | (Pa) (m3/s) (Pa] |(m3/s) (Pa) (m3/s)|

0 53G 27.693 528 27.481 470 46.278 81 101.451
0 470 25.893 440 25.034 470 46.278 76 97.205
0 386 23.41 368 22.843 470 46.278 71 92.53
0 391 23.565 370 22.907 360 39.685 63 86.156
0 390 23.534 371 22.938 260 32.744 56 79.215
0 330 21.6 309 20.882 270 33.492 51 75.973
0 196 16.509 192 16.333 275 33.861 41 66.703
0 148 14.267 147 14.217 275 33.861 37 62.344

0 77 10.123 68 9.477 280 34.227 29 53.827
0 80 10.33 68 9.477 180 26.146 23 45.9531

Fan ID }Fan 1 Fan Type 11250mm Add T est Del Test Close

Figure 42. Measured fan and building envelope data. 
Source Altas v3.36.
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Table 3 C, n and air permeability values for very large buildings subject to test

Building 
type / ref

Volume
(m3)

Envelope 
Area (m2)

C n Air
permeability
(m3/hr/m2)

Building A 196,150 35,544 3.358 0.7098 5.46

Building B 180,760 42,072 8.931 0.524 5.93

Building C 746,720 128,400 7.137 0.6182 2.25

6.4 Discussion

The testing of these three buildings has demonstrated that technically and operationally 

it is possible to carry out airtightness pressure tests of such large structures. The results 

for Building A and Building B in Table 3 also show that the Part L air permeability 

target value of 10 m V W 2 is readily achievable on large warehouse buildings using 

standard construction techniques and paying little attention to detail at the airseal line. 

Table 3 also shows, admittedly for a small sample, that there is no obvious link between 

building size and C and n values. This is not unexpected, as each building in Table 3 

was constructed differently. Great attention to the detailing and construction at the 

airseal line was made during the construction of building C. On buildings A and B 

there was very little attention to the design and quality of workmanship at the airseal 

line. Table 3 also indicates that the air permeability increases as the surface area of the 

building decreases. Based on further tests carried out by HRS one hypothesis is that as 

the overall surface area of warehouse increases, the relative contribution of the 

generally impermeable floor area to the overall surface area (i.e. floor, walls and roof) 

also increases. However, in this small sample the answer is probably related to the 

quality of workmanship and type of construction. Buildings A and B probably attained 

greater air leakage, due to limited attention to airseal details during construction.
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6.5 Summary

This chapter has reported the output graphs and tables from the field data obtained from 

the airtightness testing of one large and two very large UK buildings. A summary and 

interpretation of the results has been provided. The following chapter will summarise 

the computer modelling work carried out in conjunction with Hilson Moran consulting 

engineers. Airtightness data obtained from the testing of the very large warehouse 

(Building C) will be input into a currently available computer thermal-modelling 

program along with available building envelope thermal data. Simulations will be run 

to assess the thermal loads imposed on the building during the heating season. One 

simulation will be run with the building airtightness specification utilised at the design 

stage (Current Building Regulations standard). The second simulation will be run with 

a building airtightness specification actually achieved during the building test.
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Chapter 7 Computer simulation

7.1 Modelling o f a very large warehouse in Bedford

The airtightness testing of building C set a new standard for the size of building that 

could be subject to such an investigation. Building C was a warehouse known as 

Project Drake at the design stage. This building is now occupied by Argos and utilised 

as a large storage and distribution centre with a total of 60,000 m floor area. Thermal 

performance data for all the components used in the construction of the building were 

collated in the operation and maintenance manuals. This information was stored on 

DVD; search menus were available with filters to aid easy access to required 

information. The author decided that the abundance of building performance data 

available for this particular project was sufficient to fulfil the parameters of a computer 

simulation for dynamic thermal modelling. A number of software packages are 

commercially available for dynamic thermal modelling. These include the Virtual 

Environment, produced by IES, and TAS (Thermal Analysis System) produced by 

EDSL. TAS is a suite of software products which simulate the dynamic thermal 

performance of buildings and their systems. The main module is the TAS Building 

Designer, which performs dynamic building simulation with integrated natural and 

forced airflow. It has 3D graphics based geometry input that includes a CAD link. 

TAS Systems is a HVAC systems/control simulator, which may be directly coupled 

with the building simulator. It performs automatic airflow and plant sizing and total 

energy demand (EDSL website). TAS uses a Finite Element to convert geometry into 

an accurate resistor/capacitor representation, which is then accurately solved using a 

finite difference method (Harvard thermal website). For the purpose of modelling the
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building, the author decided to liase Hilson Moran Consulting Engineers. They helped 

to carry out dynamic thermal modelling of building C using the TAS software.

At conception the building had been designed to operate within certain environmental 

parameters, with an envelope airtightness level set at current building regulations 

standards. Testing of the building had shown the envelope airtightness to exceed 

current regulations. Reducing building air leakage will theoretically reduce the space 

heating requirements during the heating season. To investigate this two computer 

models of the building were created; one with the design level of envelope airtightness 

and the other with the envelope airtightness observed during the airtightness test. 

Simulations were then run with a local weather file for January to assess the heating 

requirements to maintain design temperatures within the building.

Space heating in the warehouse is supplied by 5 gas burners (2 x 800kW and 3 x 

600kW) providing a total output of 3400kW. 5 ducts encompassing 241 jet nozzles at 

ceiling level are designed to maintain an internal temperature of 16 °C. The original 

design specification for the level of infiltration was 0.25 ACH which, using the BRE 

'/20th nile adapted for large buildings, would be indicative from a building attaining 

current building regulations of airtightness of lOm3. ^ 1̂ ' 2. HRS air tested the building 

and found the actual building envelope permeability to be 2.25 m ^ h ’.nf2. This would 

give an indicative infiltration rate of 0.07 ACH. The initial hypothesis was that a 

reduction in infiltration loading could facilitate a possible downsizing of plant at the 

design stage.

The author formulated the line of investigation for the dynamic thermal modelling. 

This was as follows: -
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From the design drawings a wireframe model of the project was constructed. Data for 

the thermal properties of all components used in the construction were collected from 

the O and M manuals and by contacting manufacturers. These thermal properties were 

assigned to the components in the computer model. Where manufacturer data was not 

available, worst case scenarios were used. A weather data file for Bedford was 

incorporated into the model and a simulation run to substantiate infiltration and fabric 

losses for the building in the worst case environmental temperature (-4 °C external) on 

January 31st. Two models were run with natural air change rates of 0.25 and 0.07 

respectively, to maintain the design internal conditions of 16° C. Building component 

surface temperatures were established from the model.

7.2 Computational fluid dynamics modelling o f Building C

A theoretical negative side effect of plant downsizing in such a high building was that 

design lateral temperatures would not be maintained across the building and that 

stratification would occur resulting in uneven temperatures between the floor and 

ceiling. This was investigated using Computational Fluid Dynamics (CFD) modelling. 

FLO VENT - a commercial CFD programme was utilised to model in detail the airflow 

patterns and heat transfer which occurred within the Warehouse. Output from 

FLO VENT takes the form of temperature profiles and vector plots within the domain 

being investigated and, as such, allows the designer to investigate in detail the local 

thermal conditions, such as stratification, that are generated.

The simulation model was created within the FLOVENT software package and 

comprised a domain measuring 359 x 160 x 15.5 m high to represent the Warehouse. 

Racking was included as solid/cuboid shelves. The internal offices within the 

Warehouse area were also included in the model and allowance made for air to leak out
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via the offices. External wind on the day the air-leakage test was carried out was 

relatively low and therefore this was not included in the CFD model.

Limitations in the version of FLOVENT used meant that expected fabric leakage rates 

could not be applied to whole surfaces of the building. Therefore, air-leakage paths 

were represented by resistances to flow applied to sections of the building fabric. These 

leakage paths in the building fabric had to be estimated in terms of their size and 

location. To simplify the model, and in order to avoid complications in solution

convergence, a uniform width was assigned to the leakage paths, which were located

along the perimeters of the building.

An approximate size of the total leakage path was obtained from the Effective Leakage 

Area calculated from Altas based up on equation 7.1 below. The minimum allowable 

width of a resistance in FLOVENT applied evenly over the length of the building 

symmetries resulted in a total leakage path area of 213.72m2. To adjust this to the 

required effective leakage area a free area ratio of approximately 0.038 was applied to 

the resistances. The effective leakage area was then used to estimate the loss 

coefficient ("k" in equation 7.2) representing the resistance in the CFD model. For this 

model a value of 1.0 was assigned to the discharge coefficient as the geometry of the 

orifices were not known.

ELA = Q * ((p/2Ap)°'5/CD) (7.1)

Ap = 0.5(kpv2) (7.2)
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Figure 43: CFD model of warehouse

7.2.1 Turbulence model

The domain modelled was huge with significant open spaces. This, coupled with the 

fact that airflow discharge from the high-velocity nozzle diffusers is very chaotic and 

irregular, implied that the flow would be of a turbulent nature. Hence, turbulence was 

represented by the LVEL k-c model in accordance with FLOVENT modelling advice.

7.2.2 Boundary Conditions

External walls, internal walls, roof and floor were modelled as constant temperature 

surfaces. Surface temperatures were obtained from TAS simulation results. Inflow into 

the domain was represented by constant volume flow rate nozzle diffusers each with the 

airflow rate and jet temperatures set to match the actual design/commissioned data. The 

location of nozzle diffusers was derived from "As-built" drawing layouts. Outflow from



the domain was via pressure loss leakage paths represented by planar resistances whose 

loss coefficient was derived as described above. Heat gains from occupants and other 

sources such as forklift trucks working within the building were ignored. Heat gain 

from internal lights was assigned a constant value of 15W/m of floor area.

7.2.3 Grid and Grid independence

A grid localised at diffuser locations and totalling about 720 000 cells was used. The 

large number of cells used was mainly due to the need to capture the development of the 

plume at nozzle diffuser locations. This final grid was arrived at by performing a simple 

grid sensitivity assessment on a number of cases. This indicated that whilst maintaining 

the plume profile, by reducing the cell sizes by 30% the difference in results averaged 

less than 1% difference in temperatures predicted at various points within the 

computational domain. This level of accuracy was considered adequate taking into 

account the other uncertainties in problem definition such as representing the air leakage 

paths by planar resistances likely to be encountered in practice.

7.2.4 Solution control and Convergence

False-time-steps and individual variable residual termination levels automatically 

generated by FLOVENT were utilised in the solution. Convergence based on the 

residual errors reaching an acceptably low-level, automatically calculated by 

FLOVENT, was achieved within 10 000 iterations lasting over several days on a 

Toshiba P4 laptop with 5 12Mb of RAM.
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7.2.5 Jet Plume Calibration

Manufacturer's bench-test technical data for the nozzle jet diffusers could not be 

obtained for this study, hence, calibration of the jet plume was not undertaken. 

However, the airflow pattern from the nozzles was set by resolving the resultant jet 

velocity into the three co-ordinate directions (x, y, z) and ensuring the vector 

perpendicular to the nozzle diffuser face was 20m/s with an angle of 45° in line with the 

design data. The resulting jet plume had the desired effect.

7.2.6 Air-leakage test infiltration rate (0.07 ach'1)

Simulations were carried out using actual results from the air-leakage test i.e. an 

infiltration rate of 0.07 ach'1, and commissioned data for the induction air heating 

system (50°C supply air temperature and 20m/s nozzle jet velocity). Temperatures of 

all surfaces included in the CFD model were assigned using results from TAS 

calculations, taking into account the reduced infiltration rate. The CFD model was run 

and solved using nozzle data obtained from the manufacturer and surface temperatures 

obtained from the results of the CFD modelling.
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7.3 Results o f dynamic thermal modelling o f Building C using original design
specification and airtightness level determined from airtightness test to produce 
energy consumption model

The dynamic thermal model for building C was constructed and run using an infiltration 

level of 0.25 ac/h and a worst case heating scenario month from January 1st to 31st. The 

same initial model was then run with an infiltration level of 0.07 and a worst case 

heating scenario month from January 1st to 31st.

DTM Peak Heating Loads for Building C at infiltration rates of 
0.07 ac/hr and 0.25 ac/hr

2500

2000

■a 1500 (0 O
*  1000 

500

□  0.07 ac/hr 

■  0.25 ac/hr

W
Total Fabric Loss Total Infiltration Losses Peak Total Sensible Load

Figure 44: Results fo r  peak heating loads fo r  building C at 
0.07 and 0.25 ac/hr during the month o f January 2003

Figure 44 highlights the results for peak heating loads from the dynamic thermal 

modelling simulation. With the infiltration level set at 0.25 ac/hr the total fabric losses 

are 982 kW; the total infiltration losses are 1444 kW and the peak total sensible load is 

2426 kW. With the infiltration level set at 0.07 ac/hr the total fabric losses are 982 kW; 

the total infiltration losses are 409 kW and the peak total sensible load is 1391 kW. The 

result of reducing the infiltration level from 0.25 ac/hr to 0.07 ac/hr are a 1035 kW 

reduction in infiltration load.
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7.4 Results o f computational fluid dynamics modelling o f Building C

The results for the solved case for 0.07ach’1 indicate temperatures in the Warehouse 

ranging from about 14°C at floor level to 18°C at ceiling level (Figure 45). These were 

consistent with measurements made on site. It can be seen from figure 45, which shows 

a typical section along the height of the building, that the temperature is fairly uniform 

across the Warehouse. As such it can be said that most of the "occupied zone" within 

the Warehouse falls within the expected range of design parameters. It is clear from 

figure 45 that a "cold zone" occurs at the end of the building opposite where the offices 

are located. The reason for this cold zone not being reflected on the other side of the 

model is that the cold outdoor air entering the Warehouse via the offices is warmed up 

as the office areas were at a relatively higher temperature than the Warehouse.

Project Drake Temp DTM 0.07ach

Temperature (deg C)

Figure 45: Typical section across building showing discharge from  je t diffusers
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7.4 Summary

This chapter has summarised the computer modelling work carried out in conjunction 

with Hilson Moran consulting engineers. Airtightness data obtained from the testing of 

the Building C was input into a currently available computer thermal-modelling 

program along with available building envelope thermal data. Dynamic thermal 

simulations were run to assess the thermal loads imposed on the building during the 

heating season. One simulation was run with the building airtightness specification 

utilised at the design stage (Current Building Regulations standard). The second 

simulation was run with a building airtightness specification actually achieved during 

the building test. The simulation results indicate a large reduction in the total peak 

heating load for Building C with a reduction in infiltration from 0.25 ac/hr to 0.07 ac/hr.

The following chapter will discuss the viability of airtightness testing very large 

buildings. There will then be a discussion on the energy savings achieved with 

improved envelope airtightness at Building C. Current information available on the 

airtightness of very large UK buildings will be summarised. Finally, an investigation 

into the further work that can be carried out into the impact of energy savings with 

improved airtightness will be presented.
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Chapter 8 Conclusions and further work

8.1 Feasibility o f testing large buildings in the UK

The theory and equipment to carry out airtightness testing using the steady state 

pressurisation technique has been readily available since the 1980’s. The widespread 

uptake of this facility in the UK was negligible up until 2002. This was possibly due to 

resistance from the construction industry and a lack of information available for clients 

about the thermal benefits of airtight buildings. The implementation of the requirement 

to airtest buildings in the Approved Document Part L2 2002 has resulted in a relatively 

slow increase in the number of buildings tested and the availability of rigs to test these 

buildings. One possible excuse for this was the perceived technical problem of testing 

of buildings with floor areas over 5000 m2. This study has demonstrated the design, 

construction and calibration of a rig capable of testing very large buildings using a 

steady state pressurisation technique.

The successful airtightness testing of Building C using a large rig and two medium 

sized rigs has set a precedent for the envelope performance analysis of very large 

buildings (see Appendix A.2). The preparation of the building, set-up of the rigs, 

airtightness test and analysis of results can all be achieved within one day. The actual 

cost to the main contractor, for the quality assurance spot checks of composite panel 

joints during construction and final airtest, was less than 0.1% of the total contract 

expenditure. The results from an air test provide the main contractor with information 

about the quality of the workmanship of the subcontractor who has constructed the 

airseal line. For Building C the cladding subcontractor was responsible for this detail.

The results from an airtest can also be used as a performance indicator for the client.
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8.2 Airtightness o f large warehouse buildings in the UK

This study has highlighted the feasibility of air testing large warehouse buildings. A 

number of testing companies have the resources and technical expertise to carry out the 

testing of large buildings. These companies have formed the basis of the Airtightness 

Testing and Measurement Association (ATTMA). The Association, currently chaired 

by David Pickavance of BSRIA, has recently been awarded a DTI grant to carry out 

further research into the testing of large buildings.

Airtightness testing of large buildings in the UK using the steady state technique 

requires large, expensive test rigs. The provision of these rigs has not been 

commercially viable for non-governmental organisations until the introduction of the 

Building Regulation 2002 Part L2 Conservation of Fuel and Power. The slow uptake of 

the new regulations by the UK construction industry has meant that many large rigs 

currently remain idle for most of the year. Air testing companies are looking to the 

Office of the Deputy Prime Minister to enforce the regulations that it has put in place.

8.3 Energy savings in Building C associated with improved envelope airtightness

8.3.1 Dynamic thermal modelling (DTM) simulation

The DTM simulation highlighted the reduction in infiltration load that can be attained 

from improved building airtightness. The DTM model simulated Building C with air 

permeability levels of 10 m3.h '.m 2 (current building regulations requirement) and 

2.25 m3.h ’.m'2 (actual figure observed on site). From the DTM simulation it was noted 

that this improvement in building envelope airtightness resulted in a 40% reduction in 

peak total sensible load. The indicative infiltration rate of 0.07 was calculated from the
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air test. During air test conditions all dock levellers and doors were closed and therefore 

the test does not truly represent operational conditions. However, it should be noted 

that the plant was specified for a project attaining current Building Regulation standards

T 1 9 •of airtightness (i.e. 10m .h' .m' ). Given this parameter the indicative infiltration rate 

would be at least 0.25 ac/hr under air test conditions. The boiler design margin for the 

plant currently installed is large (approximately 40%) to allow for increased infiltration 

rate due to open dock levellers etc. This design margin should also be applied when 

specifying boiler sizes for a project with improved building airtightness.

8.3.2 Computational flu id  dynamics (CFD) simulation

The study successfully established a CFD model incorporating results from the building 

envelope airtightness test (analysed using Altas) and DTM simulations. This model can 

be employed in carrying out simulations with a view of assessing the impact on in-door 

parameters in relation to plant downsizing. The exercise re-enforced the fact that there is 

currently no guidance available on accurately assigning boundary conditions to 

represent air-leakage paths. This study has highlighted a possible way of deriving these 

boundary conditions. Thus the resulting model can be used as a basis of carrying out 

simulations to assess the impact of tighter buildings on plant sizes and the resulting in­

door air quality and comfort parameters.

The solved case showed temperatures in the warehouse ranging from 14°C at floor level 

to 17.5°C at ceiling level. The majority of cells within the warehouse space were 

around 16°C, which is concurrent with design specification and readings actually 

recorded on site. It is therefore safe to assume that the boundary conditions for the CFD
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Drake simulation are correct. Further investigation on the effects of plant downsizing 

on lateral temperatures and stratification can be carried out using this model.

8.4 Further work on the impact o f energy savings with improved envelope 
airtightness

It has been established that there is a significant reduction (40%) in peak total sensible 

load associated with improving building envelope airtightness from current building 

regulation levels, to those measured at Building C. Further investigation is required to 

establish whether plant can be downsized at the design stage of a project, with 

knowledge of the expected level of completed building airtightness. This would allow 

an initial cost saving. An assessment of operation costs with the smaller heating and 

ventilation units would then be required. The effect of downsized plant on the internal 

building conditions would also need to be analysed.

8.4.1 Further work with dynamic thermal modelling

Prior to further investigation using DTM, information about downsized plant will be 

required. Information on the boiler efficiency curves from the manufacturer for 

currently installed plant and the next model down within the product range would need 

to be obtained. An energy simulation in DTM would be run for a full year at Building 

C to establish total load and requirements for heating throughout the year at 0.07 ac/hr. 

Investigation would be carried out to assess the heating load demands on the currently 

installed and downsized boilers and the level of required output with associated 

associated boiler efficiency. Further to this a lifetime cost analysis would be carried out 

for the currently installed plant and the theoretical reduced plant scenario.
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8.4.2 Further work with Computational Fluid Dynamics Simulation (CFD)

Prior to further investigation with CFD manufacturers benchmark data would be 

obtained for jet plumes from the nozzles. It is anticipated that reducing the size of plant 

installed in the building would result in lower jet temperatures or possibly reduced jet 

velocities. A further CFD simulation would therefore be run with reduced nozzle jet 

velocity and/or temperature as required to assess stratification and lateral temperatures 

within Building C.
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Appendix A. 1 Formulae used in this study
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A .l Altas main equations

Calculation of Air Density

GasConst = 287

DensityTemp = 0.5 * (TempStart + TempEnd)

MeanBaromPress = 0.5 * (BaromStart + BaromEnd)

Density = ((MeanBaromPress) * 0.4 * 249.174) / (GasConst * (DensityTemp + 
273))

Correction for air density 

Pressurisation:

Qc = Qt * (0.5 (InternalTempStart + IntemalTempEnd) + 273)) / (0.5 
(ExternalTempStart + ExtemalTempEnd) + 273))

Depressurisation:

Qc = Qt * (0.5 (ExternalTempStart + ExtemalTempEnd) + 273)) / (0.5 
(InternalTempStart + IntemalTempEnd) + 273))

Calculation of factors m and b

dSumXY = £ (  In APenv * In Qc) 

dSumXX = Z( In APenv * In APenv) 

dSumYY = X( In Qc * In Qc) 

dSumX = Z( In APenv) 

dSumY = I (  In Qc)

m = (dSumX * dSumY - Numpnts * dSumXY) / (dSumX * dSumX - dSumXX 
* Numpnts)

b = (dSumX * dSumXY - dSumXX * dSumY) / (dSumX * dSumX - dSumXX * 
Numpnts)

Calculation of Correlation Coefficient
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a 2 = (Numpnts * dSumXX - dSumX * dSumX) * (Numpnts * dSumYY - 
dSumY * dSumY)

SXy = Numpnts * dSumXY - dSumX * dSumY

Correlation Coefficient = Sxy / V (a 2)

Correction to Standard Temperature and Barometric Pressure

This is achieved by correcting the factor "C" for density, where C = expb. 

C = C * (Density / 1.2) (1' m)

Calculation of Air Leakage Index

Qali = C * (APali) m

AirLeakagelndex = 3600 * Q ali / (ALI)EnvArea

Calculation of Air Leakage Permeability Index

Qapi = C * (APapO m

AirPermlndex = 3600 * Q api / (API)EnVArea

Calculation of Indicative Infiltration Rate

Q iir = C * (AP) m

IndicInfilRate = 3600 * (1/60) * Q iir / (IIR)SUrfaceArea

Key:

Q: measured airflow rate of fan

Qt: total measured airflow rate of fans

Qc: corrected total measured airflow rate

APcnv: measured envelope pressure difference 

In: natural logarithm

Numpnts: number of pairs (Qt, APenv)
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ALI: air leakage index 

API: air permeability index 

IRR: indicative infiltration rate 

EL A: effective leakage area



Appendix A.2

A.2 Pressure testing a very large building: theory and practice

Paper published in the Proceedings o f the 24th AIVC international conference 
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October 2003.
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PRESSURE TESTING A VERY LARGE BUILDING 
THEORY AND PRACTICE

S. Closs1, N. Chilengwe2 and S. Sharpies2

1 HRS Services Ltd, The Makings, 81 Burton Road, Sheffield, S3 8BX, UK  
2 Sheffield Hallam University, Sheffield, UK

ABSTRACT

The airtightness of a building envelope impacts upon the magnitude of uncontrolled air leakage and 
associated ventilation energy losses. A building's airtightness can be assessed using a steady state fan 
pressurisation technique. This paper describes a study on the largest building in the UK ever to have had 
its airtightness tested. Power law regression analysis revealed a good correlation between flow rate into 
the building and observed pressure differentials. Building internal - external pressure differentials were 
measured during the testing and compared with predicted values from a CFD model. The CFD analysis 
showed that using resistance areas derived from Effective Leakage Area calculations gave reasonable 
agreement between the predicted and measured differential pressures. However, further work on 
boundary conditions is required to improve the agreement.

KEYWORDS

airtightncss, fans, loss coefficient, pressure distribution, CFD

INTRODUCTION

The gradual improvement in thermal insulation levels in buildings over the last thirty years has increased 
the relative proportion of energy losses associated with air infiltration. Consequently, it becomes more 
important to be able to design, test and seal buildings to have less leaky external envelopes. A recent 
study by Orme (2001) estimated, for 13 industrial countries, that unnecessary ventilation accounted for 
over 60% of the energy wastage, mainly through the loss of conditioned air. In cool climates exfiltrating 
air carries with it water vapour and lost energy. Water vapour condenses and causes wetting, bacterial 
growth and deterioration of the building envelope (Anis, 2001). Building envelopes with relatively 
airtight constructions help create more controllable internal environments, and the infiltration of 
pollutants and uncontrolled exfiltration of air can be minimised. Consequently, mechanical ventilation 
plant can be specified with confidence at a level that is both effective and efficient. However, despite 
these benefits, interest in air leakiness has, to date, been limited in the UK. The publication of the 
Approved Document L2 in the new UK Building Regulations (2002) introduced the requirement for 
building envelopes to attain a reasonable standard of airtightness for buildings with floor areas exceeding 
1000 m2. ‘Reasonable’ is defined as a leakage of no more than 10 m3/hr/ per m2 of building envelope 
surface at a pressure differential of 50 Pascal. It is estimated that approximately 3000 new, large 
buildings per year in the UK would need testing. Very large buildings (floor areas exceeding 5000 m2 
floor area) have represented a particular problem for pressure testing using conventional steady state (DC) 
techniques. Unsteady techniques (AC and pulse techniques) have been suggested by Carey and Etheridge 
(2001) as alternatives to the conventional steady state technique. However, uncertainties introduced by 
the inertia of the flow through imperfections in the building envelope add increased complexity and 
uncertainty to the calculations and results. Therefore, the DC technique is preferable i f  an acceptable 
steady state differential pressure can be achieved across the building envelope. The main focus of this 
paper is to report on a pressurisation test carried out on a very large building (floor area of 57,440 m2). 
CFD simulations were carried out to model the pressure differentials obtained within the building. 
Measured data and CFD predictions are compared in this paper.
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M E T H O D O L O G Y

The study of building envelope airtightness performance involves establishing a pressure difference Ap 
across the envelope. Measurements taken of the airflow rate Q in to a building produced by fans and the 
pressure difference Ap created across the envelope allow a relationship to be established between the two. 
In accordance with the current UK building regulations, adhering to CIBSE Technical Memorandum 
TM23 (2000), this Q-Ap relationship is defined in terms of the power law equation of the form:

Q = C (Ap)n
(1)

where C and n are constants that are assumed to relate to the geometry of a single opening in the building 
envelope. During testing the building envelope is typically subjected to differential pressures ranging 
from 20 to 70 Pascal. The actual testing work was carried out on a very large retail distribution 
warehouse (359 x 160 x 15.5m high). This is the largest building ever pressure tested in the UK, and 
possible Europe. Three variable speed fans were used to generate the pressure differential Ap across the 
building envelope; one large fan, 2000 mm in diameter and two medium sized fans, 1250 mm in 
diameter. The 2000mm fan was mounted on the back of a 7.5 tonne truck and the 90kW power required 
by the fan was provided by a diesel engine. The 1250mm fans were driven using the power take off from 
other trucks with a similar design to the 2000 mm fan rig. The largest fan was connected with a flexible 
duct to a wooden screen situated within one of the loading bay openings. Figure 1 shows the large fan 
and part of the building being tested. The two medium sized fans were positioned within other loading 
bay entrances and sealed in with temporary wooden frames. All three fans had previously been 
calibrated to give actual volumetric flow rates within ±2% accuracy. Temperature measurements were 
made before, during and after the test using digital thermometers. These were calibrated to an accuracy 
of ±0.5 °C. The three fans were positioned at intervals along one long side of the building envelope. For 
the purpose of the tests all external doors and windows were closed, with internal doors to the offices left 
open. Mechanical ventilation openings on the building roof were sealed with impermeable sheet and 
adhesive tape. Large openings containing open louvers, which were going to be sealed, constituting an 
area of around 40m2, had been noted on previous site visits and these were also sealed during testing. 
Three lm2 openings in the building envelope remained unsealed to fulfil the requirement of ventilation to 
gas boilers. Three groups of two personnel were required to operate the fans and record the observed 
pressure differentials. Other observers were positioned around the building and on the roof to ensure that 
vents remained sealed and doors remained closed. Communication was maintained by two-way radio 
contact. The pressure differential across the building envelope was measured using a 60m length of 5mm 
internal diameter plastic tube that was connected to a differential digital manometer located inside the 
building at a 45° angle to the fan at ground level. A 20m length of tube was connected to the same 
manometer and placed outside the building at a 45° angle to the fan at ground level.

Figure 1: 2000mm diameter fan positioned in the loading bay door
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The pressure differential across the building envelope was raised to 81 Pascal and then lowered in ten 
stages to 23 Pascal. Measurements were also made of the internal pressure distributions at a regular 7 x 7  
grid of points inside the building when the differential pressure across the envelope was set at 50 Pascal. 
The first grid point was 20 m from the fan wall and 45 m from the side wall. These measurements were 
taken using 5mm internal diameter plastic tube, up to 140m in length. The tubing was arranged in 
straight lengths and did not come into contact with sources of heat. Using tubes of this length resulted in 
a damping of the fluctuations in pressure. These values were used as the basis of a comparison with 
pressure differentials predicted from the CFD software FLOVENT. This is an established commercial 
package that is typically used for building services application on a much smaller scale.

RESULTS AND DISCUSSION

The initial measurements established the relationship between the airflow through the fans, Q, and the 
differential pressure, Ap, observed across the building envelope. Figure 2 shows a log-log analysis o f the 
Q-Ap data points for the retail distribution warehouse. Fitting a power law curve to these results gave a 
correlation coefficient of 1.00. The effect of pressure distributions within the building was investigated 
and Table 1 illustrates the pressure differentials observed at 20m intervals, with the building envelope Ap 
set at 50 Pascal. One of the objectives of this study was to test if CFD could be used to predict pressure 
distributions in very large spaces. Simplified methods have been suggested as a means of modelling 
mixing and displacement flows to give an indication of air distribution (Waters and Simons,2002). 
However, prediction of localised pressure distributions on such a large scale would require an established 
CFD package, coupled with currently available desktop computing power and considerable solving times. 
Investigations have been carried out into the airflow patterns in large buildings using CFD (for example, 
Simons et al, 2001; Yau and Whittle, 1991 and Kato et al, 1995). However, air leakage through building 
fabric was not incorporated into these studies.

Air flow rate (m3/s)

Corr C oeff =
1 0 0 ' _______________________________________________o o 0<^  1-0

50, 77.94
© Q at 50 P a =

30 77.94 m3/s

C = 6.94
10 n = 0.62

3-

-|
3 10 30 100

Pressure Diff across bldg (Pa)

Figure 2: Q(mVs) v. Ap(Pa) data points for the building pressurisation test 
with a power law regression fit

T a b le  I  P re s su r e  d i f fe r e n tia ls  o b s e r v e d  a t  m o n i to r  p o in ts  w ith in  th e  b u i ld in g

Distance from wall with mounted fans
Column 20m 40m 60m 80m 100 m 120m 140m

1 49 Pa 49 Pa 51 Pa 51 Pa 51 Pa 51 Pa 51 Pa
2 50 Pa 51 Pa 51 Pa 51 Pa 52 Pa 53 Pa 53 Pa
3 49 Pa 49 Pa 49 Pa 51 Pa 50 Pa 51 Pa 51 Pa
4 50 Pa 51 Pa 52 Pa 56 Pa 58 Pa 59 Pa 56 Pa
5 51 Pa 51 Pa 52sF?a 52 Pa 51 Pa 51 Pa 49 Pa
6 49 Pa 51 Pa 51 Pa 52 Pa 53 Pa 55 Pa 55 Pa
7 54 Pa 55 Pa 52 Pa 52 Pa 52 Pa 52 Pa 52 Pa



The simulation model was created in FLOVENT version 3.2 and comprised of a room measuring 359 x 
160 x 15.5 m high. The three fans used in the test were represented as fixed flow fans and located to 
reflect the actual set up. Current limitations in FLOVENT meant that expected fabric leakage rates could 
not be applied to whole surfaces of the building. Instead, resistances to flow were applied to sections of 
the building fabric. Leakage paths in the building fabric initially had to be estimated in terms of size and 
location. A uniform width was assigned to the leakage paths represented as resistances, which were 
positioned along the perimeters of the building. An approximate size of the total leakage path was 
obtained from the effective leakage area, ELA, calculated from Eqn. 2 below.

ELA = Q(p/2Ap)0'5
(2)

where p is the density of air. ELA was calculated to be 8.19m2. A resistance width of 0.1m was applied 
evenly over the length of the building, resulting in a total leakage path area of 213.72m2. To adjust this to 
the required effective leakage area a free area ratio of approximately 0.038 was applied to the resistances. 
The ELA was then used to estimate the loss coefficient k, given in Eqn. 3 below, representing the 
resistance (leakage path).

Ap = 0.5(kpv2)
(3)

Uniform lighting of 15W/m2 was also included at a high level in the warehouse. Following the actual test, 
known values for internal and external temperature were added to the model. A uniform grid totalling 
230,000 cells was used. Convergence was achieved within 3000 iterations and changes to the false time 
step were not required. Once the model parameters were assigned as above and the simulation solved, a 
first approximation to the solution was obtained. Initial results showed lower pressure differentials than 
experienced for the actual test. Altering the free area ratio to the resistances representing the leakage 
paths then refined these. Further adjustment of the free area ratio eventually resulted in a figure that lead 
to a pressure distribution similar to that obtained from the actual test. A free area ratio of 0.0561 was the 
final figure applied to the resistances, giving an actual total leakage area of 11.2 m2 (similar to the 
calculated value ELA of 8.19m2, taking into account assumptions made and time limitations. The 
pressure difference distribution within the building at a height of 1.0 m above floor level obtained from 
CFD is shown in Figure 3. Table 2 shows a comparison of the measured pressure differentials at a height 
of 1 metre and those values predicted from the CFD analysis. Differences are generally less than ±10%, 
which is encouraging given the size of the building and the complexity of the modelling. However, 
differential pressures observed near the wall adjacent to the fans were generally higher than predicted 
from the CFD model, particularly with readings taken in line with the 2000mm fan. This may possibly be 
due to discrepancies between the positioning of the resistances in the model and the actual leakage paths 
present within the building.
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Table 2 Comparison o f measured and predicted pressure differentials

D istance from 
wall with 

m ounted fans

Pressure differential (Pa) at Column number

1 2 3 4 5 6 7

20m

M easured 49 50 49 50 51 49 54

Predicted 51.6 52.1 51.6 51.7 51.7 51.9 51.6
%

difference -5.3% -4.2% -5.3% -3.4% -1.4% -5.9% 4.4%

40m

M easured 49 51 49 51 51 51 55
Predicted 51.6 51.8 51.6 51.6 51.7 51.9 51.7

%
difference -5.3% -1.6% -5.3% -1.2% -1.4% -1.8% 6.0%

60m

M easured 51 51 49 52 52 51 52
Predicted 51.6 51.8 51.7 51.7 51.8 51.9 51.7

%
difference -1.2% -1.6% -5.5% 0.6% 0.4% -1.8% 0.6%

80m

M easured 51 51 51 56 52 52 52
Predicted 51.7 51.8 51.7 51.8 51.8 51.8 51.7

%
difference -1.4% -1.6% -1.4% 7.5% 0.4% 0.4% 0.6%

100m

M easured 51 52 50 58 51 53 52
Predicted 51.7 51.9 51.8 51.8 51.8 51.8 51.7

%
difference -1.4% 0.2% -3.6% 10.7% -1.6% 2.3% 0.6%

120m

M easured 51 53 51 59 51 55 52
Predicted 51.8 51.9 51.8 51.9 51.8 51.8 51.7

%
difference -1.6% 2.1% -1.6% 12.0% -1.6% 5.8% 0.6%

140m

M easured 51 53 51 56 49 55 52

Predicted 51.8 51.9 51.9 51.9 51.8 51.8 51.7
%

difference -1.6% 2.1% -1.8% 7.3% -5.7% 5.8% 0.6%

View: 2D+Y

+  -P

-mm*

Pressure

54

52 X

r
*  48.

Project Drake A Argos Bedford warehouse CFD model

Figure 3: Predicted differential pressure distribution within the building at 1.0 m above ground level
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CONCLUSION

This study has investigated some practical aspects of pressure testing a very large building and the 
possibility of using CFD modelling as a tool to predict the pressure distribution within the building. A 
relatively simple method was used to incorporate the impact of leakage paths into the CFD model, and 
this was quite successful in predicting pressure differentials. However, more work is needed to refine the 
application of CFD to building pressurisation testing. Software developers will need to produce better 
methods of representing the leakage of building fabric, and such developments are being made in the 
industry (Rose, 2003). Findings from this study will hopefully lead to more accurate methods of applying 
fabric leakage to models and so provide more precise ways of determining pressure distributions within 
buildings.
The authors would like to thank the UK Government’s Teaching Company Scheme (Programme No. 
3790) for their financial support of this work and Gazeley Properties for allowing access to the retail 
distribution warehouse.
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Appendix A.3

A. 3 Sample o f Building C Dynamic Thermal Modelling output data
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CDcoCOî .O h-co coCD
CDT_

II
ID
cd< II
s roroCO L_c <ro;o X
"roQ. o
X o

ro>n ii
& ro
’o Eo 3
ro O>  >
t_3 i_3
C Cro ro>  >



C/3

COco ■M" T—T—•M" 00 min m in X—co COCOCMCOCMCMCMCMco o oin CMh- COin CD■M" CMco CDco ■M" co r̂ CM•M"T—o CDCM■M; in T—o
00 cd CO00 COcd
h- in COCOCMh- COco COCOCO m CO

(0 -*—» c  oN•«_O
X

O)c
TOCO
0X

CM CO ' t  W CO N  CO

ooI—
CD1_CO3crCO

>4—o
CDCDCOI—0

C/3

T—CMco CO in ■M" 00 CD
CO r*- in CO h- CM CM in CMh- CMCM CD N- o CO CM x—

■M" CM in in x— CO CMcoCO ■M" CO x— CO O CO coco CDp h- CO (vj CO o
cd CO cd h-' cd cd CO

00 o in o 00 v CDinh- 00 COCOin COCOCO

ro
coN

’l_o
X

CDc
TOCO0x

CM CO ^  0  0  N 0
CO
crCO

M—0
0COCOi_
0

1

N- CO h- co co CO CO co CD in O
CO in CO CD CO CD CDCO N- © CD o
CD CM CDT—o T— CO o x— h- CO

o in CM m CO T— CDp x—CD in V
o "M" CO ■M- T— N- T~ fA N- CO o
1— h- p h>- ■M" O ■M" W O CO V#CO T”
cr
C/3

co h-'

© in © in o in o oCOCOCO in in in h- in

0)0
JC
</>■oCO
Si
a
CO
a> 0)
5
J=
o

CO£L
0
01_
0>CO

oz
CDc
TOCO
0X

M CO ' t  io 0  S  CO
CO0cr0

Vt—o
0CDCOI—
0

ro

I f(0 ^  0 <0
x «
0
CD ”ro 3to .*_>
0  c  > 0 < >

CD CM►J cm

CO o '
CL U  ^  CD 
0  0  _  
^ O co
s i t£  E _§>Q. 0 w
O 'Z 

o
W °>
o  2  'w C 0 cB > o <  <  Q

'co

h- CM CM CM CM
h-CDCD
o'

o Oo
00

0_0 o00
0.0

"o>-id
CO CO
E E E

CD CD CO in
m CD CD CO

in CO CO CM in
O CM o

d CMin CM o< id CM in
'ro'
a. T” T— T—
X

CM
™ J=

3 Q•4—*C 0 0 CD
>  COV*— (—O O
co .£2 £ Q
^  i+-^  o
® sQ. £
o  <

>% II
-0 in
C II

&0

o
0•a

<
S I
' 0

II
CO
0l_

X c
0 c

0 <
ro a TO X
0 *C0
< o X "o
X LL X _o
COsz 00 CM, 0

>CL CO II II
< 0

0 II 'oO E
3

E II 0 03 o >  >O
>4-«O

II
ro.cCL

LL
00CO

0
E3
O

34—'c
0

3
c
0

Cl < 2 > >  >



IO
03

cr
co
'z z  m  (0 o  
CL r-
03
0i_ro>ro

N" CO o io 03 LO CM
N" 03 CO T—03 O 03 CO
IO h- CO CD CO CO
O) CD CO N" co 03 CO

N- co CM N" 03 T—
CM h- N" O o CO 03
03 03 03 T— 03 03

ir> IO o o LO o CO
00 03 03 o oT“ VT“ 03

c
oN
*i_
O
X

o
Z
D)C
T3roroCL

CM CO ^  LO CO N  CO

ro13crco
«*—
O
0C3)ro
i _
0

o
oL_

cr
(/)
0
0i _0>ro

T- 03 CO 03 COh-COCOo CO 03 O LO
CO CO co COh- COCOCO
CM CM co COCDCOCOCO
h- h- N" co NT N" ■̂r CM
o o o N" h- o COd
T” T“ T_ 03 03 T—O) T“
IO IO © o IO o 1"-T“ T” V 03 O) 03T™V" T“ T“

c
o.N‘t—
0
1

CO
c
*oro
0

DC

CM CO ' t  0  0  S  0

0 i_ro
3
O"
CO

H—
o
0
COro
0
5

CO

CD
0)

£
cn

T3
CO
2
a

(0
0)cn
if
o
If

CT o) CO

CO
CL

0
0
i _
0>ro

LO 03 CO CO N" LO io 03 T“ T“ o
CO o CO CO 03 03 03 CO CO to o
CO co CO co h- CD LO 03 v- CO

00 CO CO CO N" 03 LO h» T“
CO N- CO CO N- CM03 CO o o
o o N" N- N- d CO 03 w

o T“
T_ 03 d 03 T_ 03 03

h- o o o LO U3 COT“ 03 03 03 o 03
T“ T“ T“

CN CO N" IO CO N- CO
oz
CO
c
TOro
0
DC

0
o
o
l _

0
ro
ocr0
M—o
0
COroi—
0

ron ro 
O Q .  
co 'r;

i fro 13 o ro 
rv o

QC 0  “ ■ 
o> c  ro 3U +*<D C
5  5

03 CM
►J CM

ro
CL u  W  CO 
0  0  l_
3  0  
0 
0

Q co
a - E
E 
0  
H

D)_X

~  .«= ro
0  <  ‘fe .c
CL 
0 
o  
E

0 “ CO
2  0 0  c  > <u <  a

r- h- CM CM CM CM

C3 o oro O roro0 _0 ro _0
~D3JX

CO 0 CO
E E E

CO IO CM CM CM03 03 CM03
03 CM CO CMN- IO COo IO IO N; 03

o 03 t— LO T“< T— T—

CM
£TJ=
£ t s
3  Q  
c ro ro co 
>  ro**— s z  o  o  
ro w ro q
H  o

® so . 2
o  <

ro
E
_3
O>
o

CL

roa.
X
>»
‘to
cro
•a
CM̂
x
roro
<
x
rosza.
<
ll
£o

ii E  
ro to

SZ  t o  
CL CO 
<  2

II
&
0
Cro
Q

_o
LL
0
0CO

II
ro
E
_3
O>

II
iq
d

ll
>* ro 
•55 2
c  <  
ro *

"ro ^  
0- o  x o  
cm̂ ro
ll ii 

ro
o  EO _3
ro o  
>  >  
*L_ "l—
3  3  
C C
r o  r o  > >



oo
1_

cr
if)

CD T—LO CO t—CO LO CO
IO ■7—■M" T—CMT—r̂ ■M-T- CD h- CD LO CD co h- CD•M- M" "M" ■M- •M" CM•M- CDO CO CM CO 00 CO CM CMIO
CM CMCM CMCMCM CO CM CM
T_ T_ T_ T_ T_ T“ T- T_
m O o o LO © IO O

CO LO CO CO CO h- IOT“ T“ T“ T~ T“ T“ T~ T“Q. 'T ®   T“

(0 •4—»c
oN
oX

CDC
droro
Cd

CM CO ^  in CD h- CO

to
oo
I—

rok_ro3crto
4 -O
roCDro
ro

5

oo
ex

if)
roto &— ro > ro

i o 't f IO i o CDIO LOLOCO•M" COCDh- o •M- •M- h- LO
Is- o 00 T— oo M" h". X— CM
■M- oo o CO LO o M"CM 5 ■M; M" CDCMM; ■M;
CMT—’ v - T— o o CMT- T~
T“ T“ T_ T_ T_ T- T“

© IO IO o o o o OIO CM CO CO T” CM IO COT“ V“ V“ T“ T“ T“ T~ r*

ro
c
oN
oX

CDc
droro
Cd

CM CO "M- LO CO h- CO

oot_
ro
ro3crto

4—o
ro
cdro>—ro
-5

oo
cr03

ro

roto
i—ro>ro

CD LO T— CD T—CO CO ■M- T- O
00 CD r̂ oo O oo CO CO CM CM T“ o
CO M" t—CO oo CO LO LO LO 03 CM CO
CM ■M; o CM CO CM M" M" N- h- T“
N. CM ■M" O o o to o
O T—o o o T—T—T— CO T“
T“ T- T_ T_ T“ T_ T-* T“
IO IO o IO o IO CM CMT“ IO CO T- T- T“ CMCMT“ T~ T“ T“ T“ T“ T“ T“

0 o

0  S 0  .y c: tr o . ro
(/) >
8  o  .52 z
0£ co

03 ro=  <d
X X

cm co tn co r"- co
ro3crto

4 -O
roO)ro
i_ro

CO CM 
kJ CM

ro
i . ,2

I fro 72 ro roa: o 
roro z ro 3b 44ro c > ro < >

ro o  cl uCDro ro ^ Q co
E
~D) .x:
ro

ro
§  §.■& o  2  toc <u cB > ro<  <  a

ti °
ro a) 

coto

h- h- 
CM CM 
CM CM

COCDCD
o

CM

3 Q 
c ro >

4—O
ro ro

ro
CD\_ro 

s z  o tob ^
m  CO Q. g 
O <

ro
E3
O>
o
0.

CD r-_x E
"d- co "X CO
oIO T- r-

O «>. ^< CM 00
-0 "  "" CL 
X 
>* 
to
§ II
•a >,
CM
X
ro ro
<  
x  
ro

s z_Q_
<
II 
O

tocroa
_o
UL
totoro

ll
ro w

S Z  ( 0
cl ro 
<  2

ll
ro
E_3
O>

oo ro ro to 
•52 «  
E E
CM CD CM t- CM h- T- CO
co oo
00 CM T- CM

II
LO
o< ii
^  ro
to wu-c <ro X
ro0. oX o
CM ro>II ii
>> ro
'o EO 3
ro O>  >
L—3 L-3
C Cro ro>  >



o
o1_
crC/3
'ro'

0
COt_
0>0

xt xt T—CD T—xt in T—CD
CO co Xt xf co o xf T—
CO CO CD co CD CO xf CD h-o p T—CM o co T“ O)
CO CO •M; CM xfr CO î - xt CM
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