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Abstract

Phase transformation studies have been carried out on VS2241 A, Fe-9.14Ni -0.002C alloy.This alloy
was chosen because it was expected that the speed of austenite decomposition would be slow enough
to allow continuous cooling transformation and isothermal transformation experiments to be carried out
on the same alloy.

Upon furnace cooling, massive ferrite was the predominate phase formed. TEM inspection observed low
angle sub-boundaries inside ferrite grains. Pre-polished surface examination showed the presence of
Widmanstatten ferrite as evident by tent-shaped surface relief. Martensite-austenite (M-A) constituent
was also observed under TEM inspection indicating that partition of carbon had occurred during
transformation.

Quantitative analysis ofthe dilatation curve showed continuous cooling consisted oftwo portions. One
between 575 + 5°C and 558 + 3°C corresponding to the formation of grain boundary nucleated massive
ferrite while the portion between 558°C to 500°C was thought to correspond to Widmastatten ferrite
formation. The observation of an experimental TOtemperature of 623 + 5°C and a theorectical TO
temperature of 614 £ 5°C implied that transformation took place below TOin the two phase field.

Microanalysis using a FEG-STEM system with a windowless LINK X-ray detector was carried out at
Liverpool University. This showed that the Ni content across a ferrite grain was constant at 8.8 +
0.2wt%Ni and 12.98 £ 0.43wt%Ni was detected on a grain boundary confirming that the massive
transformation was composition invariant, but local partitioning occurred in the interface during
transformation.

Thermal arrest experiments observed bainitic ferrite and lath martensite transformed at temperatures
~ 486°C and ~ 384°C respectively.

Incomplete transformation was observed for all the isothermally transformed structures in the Fe-9Ni
alloy below TO. It was suggested that this phenomenon would apply to all transformations occurring in
the two phase field below the TOtemperature.

Separate but overlapping C-curves in a TTT diagram for Fe-9Ni were proposed to account for the co-
existence of massive ferrite and Widmanstatten ferrite at the same temperature. The lath formation of
Widmastatten ferrite was interpreted as a product of partial coherent interfaces propagated by means
ofa ledge mechanism, thermally activated by the trans-interphase diffusion of solute atoms.

A thermal arrest at 707 £ 5°C was observed on air cooling an Fe- 3.5Ni alloy,VS2239A. This
corresponded to equi-axed ferrite transformation in the single phase region.

In an iced brine quenched Fe-4Cu alloy, massive ferrite and Widmastatten ferrite were observed. A 6°
misorientation was calculated between two adjacent ferrite grains seperated by a ragged grain boundary.

Charpy impact testing of Fe-9Ni alloy, VS2241A gave a DBTT of - 140°C and -100° C for massive
ferrite and bainitic ferrite respectively. Massive ferrite showed a higher upper shelf energy on the
transition curve.
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Nomenclature and Abbreviations

Atomic percentage

Temperature separating the o+y and y phase fields
Fully austenitised temperature
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Diffusion coefficient

Pre-exponential diffusion coefficient constant
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Vickers microhardness

Martensitic start transformation

Activation energy

Universal gas constant

time (in seconds)

Temperature

Temperature at which parent and product phase of the same composition
have the same free energy

T, temperature in the presence of strain energy
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Ys Austenite start transformation temperature

0 Cementite Fe;C
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AG* Activation free energy for nucleation

AC Air cool

bee Body centre cubic
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fec Face centre cubic

fct Face centre tetragonal
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hep Hexagonal close packed
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IS1J The Iron and Steel Institute of Japan
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TEM Transmission electron microscope
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TTT Time-temperature-transformation (diagram)

wQ Water quench
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1. Introduction

In recent years, there has been a tendency in steel development to keep the carbon
content in structural steels as low as possible to promote excellent toughness and
weldability, high strength being obtained by transforming to low temperature
transformation products. The development of continuously transformed low carbon
HSLA steels has largely replaced the traditional heat treated high yield strength (HY)

steels, through the advance of microalloying and thermomechanical controlled

processing.

Because of the low carbon content and the addition of alloying elements into iron, the
transformation of y—a becomes very complicated, various kind of microstructures
being found from continuously cooled products. Controversial opinions have arisen in
determining the transformed products and also the mechanisms involved. With such a
low carbon level, the speed of transformation is rapid, thermomechanical processing
also enhances the complication of the transformation. The studies of transformation in
steels base on carbon diffusion control (in high carbon steels) no longer hold true in
such a low carbon level alloys. It is thought that other types of transformation
mechanism, for instance massive transformations play an important role in this group of

steels.

In view of the problems arising in this new group of steels, it was thought that further

studies of low carbon ferrous alloys needed to be carried out in addition to the earlier

purely academic studies.

Fe-Ni alloys have been the most extensively used in the study of y—>a transformation in
iron binary alloys. Transformations in Fe-Ni alloys occur by several mechanisms,
depending on composition and cooling rate. The transformed microstructures of
equiaxed ferrite, massive ferrite, bainitic ferrite, lath (massive) martensite and twinned
martensite were reported in Fe-Ni alloys containing ~0.01%C, transformed from high

temperature to low temperature range [WILSON 1984, 1994].



Following the first report on massive structure in Fe-4%Ni and Fe-6%Ni alloys by
OWEN and WILSON [1965], MASSALSKI et al [1975] has shown the composition
invariance of massive ferrite in an Fe-8.74%Ni alloy by microprobe studies.
HAYZELDEN and CANTOR [1985] also observed massive ferrite in melt spun Fe-25%Ni
alloy. These later two cases clearly demonstrated the massive transformation in the two-
phase field (at+y), which was regarded as thermodynamically unfeasible [HILLERT
1984]. BEE and HONEYCOMBE [1978] suggested that the observation of ragged
boundaries reported in massive ferrite was simply due to the impingement of the

Widmanstitten structure.

It has been suggested that solute drag may occur accompanying the transformation.
Microanalysis carried out on partially transformed ferrite grain in Fe-7%Cr-2%Ni by
Ricks, SouTHWICK and HOWELL [1981] reported a small statistically significant change
in composition within the grain boundaries. Solute drag effect was thought to be

responsible for the difference in composition.

While experiments clearly showed that massive transformation would be so rapid that
only continuous cooling transformation experiments could be carried out to study the
transformation behaviour, theoretical calculation suggested that it might be possible to

study it isothermally for Fe-Ni alloy at the vicinity of 10% Ni [WILSON 1991].

Because of outstanding questions concerning transformation in iron-nickel alloys, it was
decided to study Fe-Ni alloys with two level of nickel , i.e. 3.5% and 9%. The materials
provided by Swinden Technology Centre were vacuum cast Fe-3.5%Ni and Fe-9%Ni

with carbon content as low as 0.004 wt.%.

Attention was given to Fe-9Ni alloy as it was expected that the speed of austenit<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>