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Abstract

The research in this PhD thesis is an important part of a larger study aimed at 
developing the next generation o f fire-resistant, lightweight, structural materials 
(Surefire). The Surefire project aimed to develop a new class of materials that exhibited 
properties such as strength, stiffness, hardness and fire performance to compete with 
conventional materials. The aim was to achieve this through the synergistic integration 
o f both nano size (particulate) and micro size (fibrous) reinforcements within an 
unsaturated polyester matrix. A new fire retardant unsaturated polyester resin system 
capable o f UL94 classification VO was developed. The novel approach used to achieve 
this innovative class of material did not include halogenated compounds, but instead 
combined state of the art nano-scale particles with existing but un-revealed know-how 
to achieve a new class of material.

Initial studies concentrated on the characterisation o f a range of alkylammonium and 
alkylphosphonium organoclays. This was followed by in-depth studies o f the polymer 
layered silicate nanocomposite (PLSN) materials. A range of commercial nanoclays 
were sourced, and characterised. In addition a range o f modified clays were developed 
to improve fire performance and compatibility. Intercalated nanoclays in polyester resin 
formed an integral, dense char and therefore provided good fire protection. 
Phosphonium-modifled clays exhibited greater thermal stability and provided enhanced 
fire performance but were more expensive and batch quality was variable. The addition 
of nanoclays and the fire retardant dimethyl methyl phosphonate (DMMP) to the resin 
caused a synergistic improvement in fire performance in one particular type of resin, 
possibly due to the particular type of modification used, but not revealed. The addition 
of 5-10wt% clay can interfere with crosslink density o f the composite resin so this issue 
was addressed by producing surfactants which offered a cross-linking group, vinyl and 
methacrylate groups in particular on the end of the alkyl tail. The best formulations 
incorporated tributylhexadecylphosphonium clay (Bul6-MMT) which achieved a UL94 
VO classification making them competitive with the fully halogenated resins 
investigated in the benchmarking stage.

A novel ‘one-pot’ synthesis method for the production o f PLSN, by the in-situ 
polymerisation of UP in the presence o f a tributylhexadecylphosphonium surfactant and 
Na+ Cloisite, was shown to be successful. Whereas, other novel PLSN formulations 
incorporating a range of triphenylphosphonium cations were encouraging but have, so 
far, only provided limited success.

The Surefire resin system was estimated to be between 19 and 24% cheaper than 
brominated and chlorinated resins, while offering similar fire performance, together 
with the added benefit o f eliminating toxic halogenated species. Surefire resins offer 
significant potential as non-halogenated, fire retardant resins, although additional work 
would be necessary to exploit these results commercially. The key areas o f future focus 
should include (i) identifying why the most successful, non-halogenated resin exhibits 
better fire performance than the other resins, (ii) understanding the origins o f the 
synergy between the resin and additives particularly the clay, (iii) developing a better 
appreciation of suitable applications and (iv) confirming suitability for purpose through 
further testing.
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1. Introduction

The research in this PhD thesis is an important part of a larger study aimed at 

developing the next generation o f fire-resistant, lightweight, structural materials 

(Surefire [1‘1]). Surefire was a DTI funded project under the LINK Basic Technologies 

for Industrial Application programme. The project aimed to develop a brand new class 

of materials that exhibited properties such as strength, stiffness, hardness and fire 

performance to compete with conventional materials. The consortium consisted of 2 

RTD organisations Sheffield Hallam University and NetComposites together with 7 

specialist SME -  Scott Bader, Jones Stroud insulations, Fibre technology, Plastech TT, 

E & F Composites, Rapra Technology and Fairline Boats, all based in the UK. The aim 

was to achieve this through the synergistic integration of both nano size (particulate) 

and micro size (fibrous) reinforcements within an unsaturated polyester matrix. The 

main target outputs were low weight structural parts with high fire and temperature 

performance, solvent resistance and corrosion performance, and coating systems 

exhibiting scratch resistance and fire performance.

A new fire retardant unsaturated polyester resin system capable o f UL94 classification 

VO was developed. The novel approach used to achieve this innovative class o f material 

did not include halogenated compounds, but instead combined state o f the art nano

scale particles with existing but un-revealed know-how to achieve a new class o f 

material. This new material was specifically developed through a collaborative project 

for use in industrial applications where fire retardancy is paramount, such as the mass 

transport, off-shore and infrastructure sectors.

The thesis in itself was split into five different parts:

1) Selection of organoclays and resins for further study

2) Exploration o f commercially available organophosphonium ions as clay 

modifiers

3) Preparation of novel surfactants and their use as clay modifiers

4) Evaluation of fire resistant properties

5) Study of Organoclay decomposition using TG-MS

1



Initial studies concentrated on the characterisation o f a range of alkylammonium and 

alkylphosphonium organoclays. This was followed by in-depth studies o f the polymer 

layered silicate nanocomposite (PLSN) materials. A range of commercial nanoclays 

were sourced, characterised and the modified clays were developed to improve fire 

performance and compatibility. Intercalated nanoclays in polyester resin formed an 

integral, dense char and therefore provided good fire protection. Phosphonium-modified 

clays exhibited greater thermal stability and provided enhanced fire performance but 

were more expensive and batch quality was variable. The addition of nanoclays and the 

fire retardant dimethyl methyl phosphonate (DMMP) to the resin caused a synergistic 

improvement in fire performance in one particular type o f resin (Crystic 189LV), 

possibly due to the particular type of molecular end caps used, but not revealed. The 

addition o f 5-10wt% clay can interfere with crosslink density of the composite resin so 

this issue was addressed by producing surfactants which offered a cross-linking group 

on the end of the alkyl tail, vinyl and methacrylate groups in particular. The best 

formulations incorporated tributylhexadecylphosphonium clay (Bui6-MMT) which 

achieved a UL94 VO classification making them competitive with the fully halogenated 

resins investigated in the benchmarking stage.

These new materials have the potential to open up a significant range o f applications in 

areas such as construction, offshore and mass transit where fire performance and 

lightweight have always been critical issues. An end-user interest group was formed 

from UK companies who were interested in using non-halogenated fire retardant resin 

systems. The membership included companies from a wide range o f industries. The 

opinions o f the end-user interest group helped steer the developments within the project. 

A number o f key applications were determined by the end-user interest group:

■ Aerospace components (replacement of phenolic prepreg with a cheaper system)

■ Underground rail infrastructure (replacement of epoxy strengthening/repair 

patches with a cheaper, less toxic system)

■ Construction panels and modules (replacement of halogenated resins with a less 

toxic system)

■ Construction and transportation profiles (replacement o f halogenated pultrusion 

resins with a less toxic system)

2



A number o f products were selected for trial and these included an under bonnet duct 

for Caterpillar trucks and a bar top lid for a Phantom 46 luxury performance motor 

yacht. Both products required high temperature operating performance with the bar top 

lid, which encloses a cooking griddle reaching temperatures up to 300 °C. The under 

bonnet duct was produced using standard and nano-materials and slight differences in 

the gel times were recorded (30 minutes for standard and 90 minutes for nano-material) 

however, no comparable difference could be detected between both moulded parts after 

24 hours in terms o f shape/stiffness. Further work is still undergoing on the Phantom 46 

bar top in order to apply nanotechnology to resist temperature on this component.

The total cost of the Surefire resin system was compared to halogenated resin systems. 

The Surefire resin system was estimated to be cheaper than brominated and chlorinated 

resins, and was estimated to be between 19 and 24% cheaper than halogenated systems 

with similar fire performance, plus the added benefit o f eliminating toxic halogenated 

species. The work in this thesis is entirely my own, the role o f the project partners is 

detailed below in Table 1-1.

Table 1-1 SUREFIRE project partners

Organisation Description Project Role
NetComposites Technology developer and 

licensor
Project manager, process 

development
Plastech Thermoset 

Tectonics Ltd
Designer and manufacturer 

of tooling systems
Development o f tool coatings, 

manufacture of case study tooling
E&F Composites Ltd Moulder of composite 

components
Process development, design and 

manufacture o f case study 
component

Jones Stroud Insulations 
Ltd

Manufacturer of fibre- 
reinforced intermediate 

products

Development, manufacture and 
testing of prepregs

Scott Bader Ltd Manufacturer of resin 
systems and coatings

Development and supply o f resins

Fibre Technology Ltd Manufacturer and suppliers 
of steel fibres

Development and supply o f steel 
fibres

Rapra Technology Ltd Technology developer and 
licensor

Development and characterisation 
of resin and coating systems

Fairline Boats Ltd Manufacturer of luxury 
boats

Design and manufacture o f case 
study component
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1.1 Clays, Organoclays and Nanocomposite Materials

One o f the most promising directions for technological development in the 21st century 

is nanotechnology. Nanocomposite materials are of great interest within the plastics 

industry. These materials incorporate organically modified layered silicates, often 

referred to as organoclays, within a host matrix as low quantity (i.e. < 5 wt%) fillers 

dispersed at the nanometre-level. This dispersion of clay platelets has led to the general 

description of this class of materials as PLSNs [1‘2l

Substantial property improvements have been demonstrated with nanocomposites when 

compared to virgin polymers. Properties that have revealed improvements include:

■ Mechanical properties e.g. strength, modulus and dimensional stability ’1_5, 
1-6 ]

■ Decreased permeability to gases, water and hydrocarbons [1'7,1_8,1'9,1' 10,1-11]

■ Flame retardancy and reduced smoke emissions [1'12, M3,1_14]

■ Thermal stability and heat distortion temperature (HDT) u 15, M6, M7]

■ Ionic conductivity [l' 18, M9]

■ Optical clarity in comparison to conventionally filled polymers [1‘20]

■ Increased biodegradability o f biodegradable polymers [1'21]

Often this enhanced material performance occurs without a significant increase in the 

density o f the polymer, and also without any reduction in the materials potential recycle 

ability. The development and study of nanocomposite hybrid material’s in the field o f 

materials science is a multi-disciplinary research activity generating both academic and 

industrial interest. Applications for PLSNs have been proposed for use in the materials, 

construction, aerospace and food-packaging sectors as displayed later, in Table 1-9.

The property improvements resulting from the formation o f a nanocomposite most 

notably occur at extremely low concentrations o f aluminosilicate (1-5 wt%) as 

compared to conventional phase-separated composites o f a filler material in a polymer 

(20-30 wt%). The observed property enhancements result from the extremely large 

surface area available for interaction with a polymer, coupled with a relatively large 

aspect ratio [1"22l
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The intercalation chemistry o f polymers when mixed with appropriately modified 

layered silicate and synthetic layered silicates has long been known [1'23], however the 

topic of polymer clay nanocomposites has gained momentum only recently. The revival 

of interest in these materials is due to two major findings. Firstly a report from the 

Toyota research group working on Nylon-6 (N6)/montmorillonite (MMT) 

nanocomposites, demonstrated that small amounts of layered silicate result in 

pronounced improvements o f thermal and mechanical properties [1'24], and secondly 

further work by Vaia et al. [1'25] who established the possibility o f melt mixing polymers 

with layered silicates without the use of organic solvents.

To impart thermal stability/flame retardancy current trends favour the use o f fillers like 

metal-trihydrate/hydroxide and halogenated compounds; however, the use of these 

systems has definite environmental and safety concerns [1'26l  An example o f the 

impracticality of these systems comes from the application o f aluminium hydroxide 

(ATH) in wires and cables [1'27]. This application requires loadings in excess o f 60 wt% 

to achieve a suitable level o f flame retardancy, which leads to an inflexible product and 

can cause processing problems. Whereas, halogenated flame retardants are expensive 

and may release biologically harmful toxins into the environment under combustion
n 2$ i 791

conditions L ' ’ . Nanocomposites minimise the disadvantages of these traditional

flame retardant systems.

The use o f mineral based systems had not been considered for flame retardancy until 

recently. However, reports of the improved thermal stability o f siloxane polymer-clay 

composites [1‘30] and a polyimide-clay composite [1'31] has generated new interest in the 

use o f these mineral based systems.

1.2 Commercial Market for Polymer-Clay Nanocomposites

With further research polymer-clay nanocomposite materials have the potential to bring 

about a revolution in the plastics industry that would be beneficial to both the 

production industry (reduced costs and better processibility) and the consumer market 

(reduced cost and improved functionality). Figure 1-1 demonstrates the global market 

analysis of nanocomposite growth in different commodity sectors, predicted to 2009.
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Figure 1-1 Global market analysis of nanocomposite growth in different commodity sectors,
predicted to 2009 |1'32’.

1.3 Classification of Minerals

All minerals are divided into several classes, of which the silicates were the main focus 

for this research. The silicates are divided into several sub-classes based on the number 

of linkages between the basic units o f their structure (i.e. SiC>4 tetrahedra). The sub

classes found in sedimentary rocks are the tectosilicates (silica and feldspars) and the 

phyllosilicates (kaolinites, smectites, illites and chlorites) [1'33,1_34] displayed in Table 1-

2 .

Table 1-2 The sub-division of the silicate class.

Class Subclass Group Subgroup

— tectosilicates —

Silicates

phyllosilicates

silica -----------

feldspars

Kaolinites 1:1 

Smectites 2:1 

Illites 2:1 

Chlorites 2:1

quartz 

alkali series 

plagioclase series
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1.4 Clay and Nanocomposite Structure

1.4.1 Structure of layered Silicates

Clay minerals (phyllosilicates) are among the most important industrial materials. Their 

physical and chemical properties are closely related to their structure and composition [1' 

35l  Clay minerals are often used as filler materials because o f their properties in 

products such as dry wall finishing’s, wallboard compounds or joint treatment 

compounds providing thickening properties and thixotropic characteristics [1‘36].

The structure of clay minerals has been determined largely by X-ray diffraction (XRD) 

methods. In order to understand the importance of clay minerals, it is necessary to 

describe the compositional and molecular unit arrangements. Clay minerals are 

comprised of continuous two-dimensional tetrahedral sheets of the composition Si2 0 s, 

with SiC>4 tetrahedrons (Figure 1-2) linked by sharing three comers of each tetrahedron 

to form a hexagonal mesh pattern (Figure 1-3 A).

^ o x y g e n  ^ s i l i c o n

Figure 1-2 Schematic representation of the single silica tetrahedron (shaded) and the sheet 
structure of silica tetrahedrons arranged in a hexagonal network 11-371
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r o ta t io n  of  
t e t r a h e d r o n s

Figure 1-3 (A) Ideal hexagonal tetrahedral sheet. (B) Contracted sheet of ditrigonal symmetry 
owing to the reduction of mesh size of the tetrahedral sheet by rotation of the tetrahedrons |1_371.

Silicon atoms of the tetrahedrons are frequently, partially substituted by aluminum and, 

to a lesser extent, ferric iron. The apical oxygen at the fourth comer of the tetrahedrons, 

which is usually directed normal to the sheet, forms part o f an adjacent octahedral sheet 

in which octahedrons are linked by sharing edges (Figure 1^1).

^ h y d r o x y l  9  a lum inu m,  m a g n e s i u m j r o n

Figure 1-4 Schematic representation of the single octahedron (shaded) and the sheet structure of
octahedral units 1,-371

The junction plane between the tetrahedral and octahedral sheets consists o f shared 

apical oxygen atoms o f the tetrahedrons and unshared hydroxyls that lie at the centre o f 

each hexagonal ring o f tetrahedrons and at the same level as the shared apical oxygen 

atoms (Figure 1-5). Common cations that coordinate the octahedral sheets are Al, Mg, 

Fe3+, and Fe2+; but occasionally Li, V, Cr, Mn, Ni, Cu, and Zn substitution occurs. If 

divalent cations (M2 ) are in the octahedral sheets, all the positions are filled to balance 

the charge (Mg3(OH)6), however, if trivalent cations (M3+) are in the octahedral sheets, 

only two thirds o f the positions need to be filled to balance the charge, (Al2 (OH)6).



When all three octahedra have cations (Mg2+ and Fe2+) at their centre the sheet is known 

as trioctahedral and dioctahedral (Al3+and Fe3+) when only two are occupied.

^ oxygen 

^  hydroxyl 
% silicon 
^  aluminum

© 1 9 9 4  E n cyclopaed ia  B r ita n n ic a , Inc

Figure 1-5 Structure of 1:1 layer silicate (kaolinite) illustrating the connection between tetrahedral
and octahedral sheets ,1'371.

In the composition of octahedral sheets, if all the anion groups are hydroxyl ions, the 

resulting sheets may be expressed by M2+(OH ) 2  and 7 l/+(OH)3, respectively. Such 

sheets, called hydroxide sheets, occur singly, alternating with silicate layers in some 

clay minerals. Brucite, Mg(OH)2 , and gibbsite, Al(OH)3 , are typical examples o f 

minerals having similar structures. There are two major types for the structural 

“backbones” o f clay minerals called silicate layers. The unit silicate layer formed by 

aligning one octahedral sheet to one tetrahedral sheet is referred to as a 1:1 silicate 

layer, and the exposed surface of the octahedral sheet consists o f hydroxyls. In another 

type, the unit silicate layer consists of one octahedral sheet sandwiched by two 

tetrahedral sheets that are oriented in opposite directions and is termed a 2:1 silicate 

layer (Figure 1-6). These structural features, however, are limited to idealized 

geometric arrangements.
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Figure 1-6 Schematic presentation of (A) 1:1 layer structures and (B) 2:1 layer structures [1-37|

Real structures of clay minerals contain substantial crystal strains and distortions, which 

produce irregularities such as deformed octahedrons and tetrahedrons rather than 

polyhedrons with equilateral triangle faces. Ditrigonal symmetry modified from the 

ideal hexagonal surface symmetry, and puckered surfaces instead o f the flat planes 

made up by the basal oxygen atoms o f the tetrahedral sheet can occur. One of the major 

causes o f such distortions is dimensional “misfits” between the tetrahedral and 

octahedral sheets. If the tetrahedral sheet contains only silicon in the cationic site and 

has an ideal hexagonal symmetry, the longer unit dimension within the basal plane is

9.2 A, which lies between the corresponding dimensions 8.6 A of gibbsite and 9.4 A of 

brucite. To fit the tetrahedral sheet into the dimension of the octahedral sheet, alternate 

Si0 4  tetrahedrons rotate (up to a theoretical maximum of 30°) in opposite directions to 

distort the ideal hexagonal array into a doubly triangular (ditrigonal) array (Figure 1- 

3B). By this distortion mechanism, tetrahedral and octahedral sheets of a wide range o f 

compositions resulting from ionic substitutions can link together and maintain silicate 

layers. Among ionic substitutions, those between ions o f distinctly different sizes most 

significantly affect geometric configurations of silicate layers.

Commonly used in nanocomposites are smectites, from the structural family known as 

the 2:1 phyllosilicates. A 2:1 layer is constructed of an octahedral sheet sandwiched 

between two tetrahedral sheets. The space that is positioned between two adjacent
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layers is known as the interlayer, interlamellar or gallery space. The term interlayer 

space will be used throughout this thesis. The complete assembly is known as a 

structural layer where the theoretical thickness o f both sheets (assuming they are 

undistorted) is 5 A for the octahedral sheet and 4.6 A for the tetrahedral sheet, resulting 

in an overall thickness o f 9.6 A for a 2:1 sheet.

The thickness o f the layers is around 1 nm with the diameter of the layers ranging from 

300 A to several microns, or larger depending on the particular layered silicate. These 

uncharged layers are organized into stacks and this leads to a regular van der Waals gap 

between the interlayer. Isomorphic substitution o f Al3+ for Si4+ in the tetrahedral sheet 

or Fe2+, Mg2+ for Al3+ in the octahedral sheet creates an excess o f negative charge in the 

clay layers that is counterbalanced by cations (usually alkali or alkaline earth cations) in 

the interlayer space. The distance between sites o f negative charge depends on the 

extent of isomorphic substitution. The principal exchangeable cations are calcium, 

magnesium, sodium and potassium [1‘38,1_39l

The most commonly used layered silicates are montmorillonite (MMT), hectorite and 

saponite, their chemical formula and characteristics are given in Table 1-3 and the 

structure of MMT is given in Figure 1-7.

O 

Si, A1 

O 

Al, Fe, Mg

Figure 1-7 Schematic representation of the 2:1 phyllosilicate MMT |1"401.
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The maximum amount o f cations in a clay that can be exchanged by other cations is 

given by the cation exchange capacity (CEC) and is measured in milliequivalents (meq) 

per 100 grams of clay. The charge varies with 80 % of the CEC in the interlayer space 

and 20 % of the CEC at the edge of the layer and so the CEC is considered as an 

average value over the whole crystal.

Table 1-3 Chemical formula and characteristics of commonly used 2:1 phyllosilicates

Class Chemical Formula CEC [meq/ 
lOOg]

Montmorillonite Mx(Al4_xMgx)Si802o(OH)4 110
Hectorite Mx(Mg6.xLix)Si80 2o(OH)4 120
Saponite MxMg6(Si8.xAlx)0 2o(OH)4 86.6

M=monovalent cation; jt=degree of isomorphous substitution (between 0.5 and 1.3).

1.4.2 Clay Minerals of Relevance in This Thesis

1.4.2.1 Montmorillonite (MMT)

Montmorillonite (MMT) is the name given to the clay found first near Montmorillon in 

France, and is the most common phyllosilicate used for the production o f commercial 

polymer clay nanocomposites. MMT composition varies across a relatively wide range 

not only with geographical location but also with the deposit strata [1 . A relatively

high amount of isomorphous substitution leads to the composition o f MMT deviating 

from the ideal formula, ACSi^iotOH^.xTCO. An idealised structural formula for MMT 

is Nao.3 (Ali.7 Mgo.3 )Si4 0 io(OH)2 . Figure 1-7 displays the molecular structure of MMT [1‘ 

40], this model is the most widely accepted and was first proposed by Hofmann, Endel 

and Wilm [1'43] and modified by Magdefrau and Hofmann [1'44], and, Hendricks [1‘45]. 

Water and polar molecules can easily enter between the layers of the montmorillonite 

structure. The electrostatic bonding between the layers and exchangeable cations is 

weak consequently the chances of swelling or intercalation are excellent.
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1.4.3 Clay Mineral Properties and Characteristics

1.4.3.1 Isomorphous Substitution

Isomorphic substitution is the process in which octahedral or tetrahedral cations are 

substituted by other cations if they have the appropriate size to fit the structure (e.g. 

Al3+—► Si4+, Mg2+—► Al3+, Li+—> Mg2+). Since the substituting ions generally have a 

lower valency, then the initially neutral clay layer now carries a net negative charge. As 

a result, positively charged ions are adsorbed on the surface to electrically balance the 

layers. If  isomorphic substitution occurs in the tetrahedral sheet then the negative charge 

is concentrated on the four surface oxygens at the base o f the relevant tetrahedron. 

However, when isomorphic substitution occurs in the octahedral layer then the negative 

charge is spread out over ten of the oxygens and is diffuse. The extent o f the net 

negative charge now carried by the clay sheets is measured by the CEC. Different clays 

have different CECs, and are displayed in Table 1-4:

Table 1-4 CEC values for selected clays (at pH 7).

CEC Range meq/lOOg Clay
Kaolin 3-15

Chlorite 10-40
Illite 10-40

Smectite 80-120
Vermiculite 100-150

Cations that are common in clay minerals found in nature, e.g. Na+, Ca2+, Mg2+ or K+, 

can be exchanged by other cations by dispersing the clay in a solution o f the desired 

cation. Exchangeable cations can also be associated with the edges of silicate layers, 

where the structural ions have unsatisfied valences, because of broken bonds.

1.4.3.2 Swelling/Hydration of Clay

Clay is hydrophilic and water can usually be found in the interlayer spaces, solvating 

the exchangeable cations present [1'46]. Water molecules in the interlayer space can be 

present in different environments. They can either be directly co-ordinated to the 

exchangeable cations or they may be held in pores and removed by drying under 

ambient conditions. Water also may be adsorbed on the surface o f clay mineral 

structures and in smectites, vermiculites, hydrated hallo ysite, sepiolite, and 

palygorskite; this water may occur in interlayer positions or within structural channels.
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Figure 1-8 Swelling of clay in the presence of water |lJl71.
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When water is adsorbed between the layers, the distance between the layers (dooi 

spacing) increases in a pseudo stepwise manner. This is the result o f a swelling of the 

clay layers and is represented in Figure 1-8. When an organic solvent is adsorbed 

between the layers it is referred to as intercalation. Another feature of the clay’s 

structure that has a direct bearing upon the chemistry o f the complexes is the acidic 

nature of the clay surface [1'48]. The clay can show Bronsted and Lewis acidity with the 

structure governing the degree to which these occur. For example, Lewis acidity is more 

commonly associated with exposed Al31 and Fe3+ cations at the edges of the clay sheets 

and can be increased by the thermal treatment of the clay. Similarly, the Bronsted acid 

characteristics are usually governed by the availability o f water in the interlayer around 

the cations and are the result o f the dissociation of water molecules in a hydration space 

between the cations. The degree to which this effect is seen depends on the nature of the 

substitution, i.e. whether it is mainly from the tetrahedral or octahedral sheet, and on 

water content, the lower the water content the higher the acidity. Bronsted acidity is also 

very dependent on the polarising power of the interlayer cation.

1.4.4 Organic Mineral Interactions

For a number of years the interactions between clays and organic molecules have been 

of major interest to industry. Some of the industrial sectors that are specifically 

interested by such interactions include: geological *■’A9\  oil exploration [l'50], 

pharmaceutical [1'51], waste treatment [1‘52], plastics [1'53], catalysis [l'54], laundry powders 

[1'55] and agricultural [1‘56,1‘57,1_58]. An example o f this is the vital role that clay minerals 

play in the control o f hazardous organic molecules. Organoclays are able to adsorb
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hazardous organic pollutants (e.g. fuel contamination) within the interlayer spaces o f the 

clay slowing down the migration o f pollutants through soils and waterways [1'59, 1 .

Sanchez-Martin et al. [161] studied the efficiency o f a series of clay minerals 

(montmorillonite, illite, muscovite, sepiolite and palygorskite) modified with the 

cationic surfactant octadecyltrimetylammonium (ODTMA) in the adsorption of 

pesticides (penconazole, linuron, alachlor, atrazine and metalaxyl). They concluded that 

clay minerals could be used as barriers to prevent the mobility of certain hydrophobic 

pesticides from a point source of pollution.

1.4.4.1 Typical Smectite - Organic Molecule Interactions

Smectite clays interact with organic molecules in a very complex way. Lahav et al. [1'
62 1 631’ ' J documented the interactions occurring between different cationic exchanged 

MMTs and the pesticide benzinine; the results indicated a variety o f interactions were 

occurring. Other examples o f complexes formed through organoclay interactions 

include; sulfolane adsorbed on cationic exchanged MMTs [1'64] and the interactions of 

alachlor (herbicide) with ho mo ionic MMTs [1'65]. The five main types of interactions are 

described in Table 1-5 [1'38], it is also possible for positively charged organic molecules 

to be exchanged with the inorganic cations in the interlayer space [1~39]. The number and 

variety o f organic compounds which can acquire a positive charge is limited, such 

compounds (e.g. alkylammonium ions) often contain nitrogen, of which the amines 

form the largest class. A fixed internal porosity is achieved by such cation exchanges 

since the pore size and shape depend on the alkylammonium ion.

Cation-exchange may also occur indirectly with organic molecules. Ruiz-Conde et a l  [1' 

66] studied the interaction of aqueous solutions o f formamide, acetamide and 

propionamide with vermiculite. Vermiculite is similar in structure to MMT but has a 

higher CEC (Table 1-4). These situations demonstrated that amides were hydrolysed to 

liberate N H /.

15



Table 1-5 Types of interactions between organic molecules and (hydrated) cations |,'3S|.

Lewis Acidity - After thermal dehydration or at room 

temperature the exchangeable cations may serve as Lewis acids 

and adsorbed bases become co-ordinated directly to the cations. 

If M is an alkali metal cation, then the bond between it and B is 

mainly electrostatic, ion-dipole attraction.

■

B-M n+

Protonation of Organic Molecules - Water coordinated to 

exchangeable metallic cations serves as a proton donor 

(Bronsted acid). Depending on the polarising power o f the metal 

(Mn+) and the basic strength of the organic molecule (B), the 

organic molecule may be protonated by accepting a proton from 

a water molecule, thus gaining a positive charge.

+H B— (O H )-M n+

Water Bridges - The organic molecule may form a H-bond with 

the polar water molecule, i.e. the water acts as a bridging 

molecule.

B— H—(O H )-M n+

Water Bridge Associations - Organic molecules may also be 

associated to molecules of the type opposite. The presence of 

these associations depends greatly on the size of the molecule.

B— B --H (O H )-

M"+

Other Associations - Organic molecules may also be associated 

with broken edges, external clay surfaces, with substitutions in 

the tetrahedral sheet or clusters between stacks of clay layers.

1.4.4.2 Factors Affecting the Adsorption of Organic Molecules onto Minerals

The absorption process can be affected by a number o f surface and organic molecular 

properties as displayed in Table 1-6:

Table 1-6 Surface and organo-molecular characteristics affecting adsorption.

Surface Properties Organic Molecular Characteristics
Surface configuration Size

Exchangeable ions on surface Shape
Total surface area Flexibility
Interlayer spacing Charge

Surface Chemistry (0  or OH) Polarity
Particle size and crystallinity
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Certain reaction conditions are also significant in addition to these molecular factors:

■ Temperature - The structure of the interacting liquid may be disrupted upon 

increased temperature due to greater thermal activity; increasing the relative 

number of free molecules and the rate of intercalation.

■ Addition of water to the intercalating liquid - Too much water would result in 

the solvation of the intercalating molecules, resulting in relatively few un

solvated molecules being available to intercalate, therefore decreasing the 

intercalation rate.

■ Reaction Solvent - Fujita et al. [1~67] investigated the interlayer structures of 

magadiite derivatives after alcohol adsorption. By changing the amount of 

modifying silylating regent, organic derivatives of magadiites with different 

adsorption capacities were prepared. After the adsorption of alcohols onto 

derivatives with different degrees o f silylation, the samples with a lower degree 

of silylation exhibited larger basal spacings and adsorbed larger amounts of 

alcohols than did the samples with a higher degree of silylation.

1.4.4.3 Alkylammonium Ion Exchanged Clays

A variety o f organic cations are able to replace the resident metal exchange cations on 

clays by a simple ion exchange process. [1'68]. The initial adsorption of organic 

molecules may lead to a change of the clay character from hydrophilic to organophilic 

and to an expansion o f the interlayer dooi spacing. Both factors tend to facilitate further 

adsorption of organic substances by the interlamellar organic phase. Also the 

thermodynamic free energy of mixing must be able to compensate for the energy o f 

increasing separation o f the clay platelets. For example the adsorption of a base requires 

that the interlamellar phase comprises active acidic functionalities, while adsorption o f 

non-ionic compounds requires that their solubility parameter is comparable to that o f 

the interlamellar phase [1'69,1'70]. ^-alkylammonium derivatives o f smectites have been 

extensively studied and the results obtained are summarised in numerous publications 

(e.g. Grim [l'71], Theng [1'72], Lagaly [1'73], Jones [1~74], Newman [1'75], Favre [1'76] and Xie
[1-77K
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Figure 1-9 Orientations of alkylammonium ions in the galleries of layered silicates with different
layer charge densities |1'791.

The orientations o f the alkylammonium ion chains in organoclay were initially deduced 

based on infrared and X-ray diffraction (XRD) measurements [!‘78] and depend on the 

layer charge density of the clay. The monolayer, bilayer, pseudo-trilayer, and paraffin 

type monolayer orientations are displayed in Figure 1-9. More recent modelling 

experiments by Hackett [1~79] have provided further insights into the packing orientations 

of the alkyl chains in organically modified layered silicates. Molecular dynamics (MD) 

simulations were used to study molecular properties such as density profiles, normal 

forces, chain configurations and trans-gauche conformer ratios.

A study by Vaia et al. [1'80] using Fourier transform Infrared (FTIR) spectroscopy has 

shown the structures in Figure 1-9 to be too simplistic. They monitored frequency shifts 

of the asymmetric CH2  stretching and bending vibrations and found that the intercalated 

chains existed in states with varying degrees of order. Generally as the interlayer 

packing density or the chain length decreases (or temperature increases), the intercalated 

chains adopt a more disordered, liquid like structure, resulting from an increase in the 

gauche/ trans conformer ratio. As the available surface area per molecule reaches a 

certain range, the chains are not completely disordered but retain some orientational 

order similar to that in the liquid crystalline state demonstrated in Figure 1-10.
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Figure 1-10 Alkyl chain aggregation models: (a) short alkyl chains: isolated molecules, (b) medium 
chain lengths: form quasi bilayers and (c) longer chain length: increased interlayer order, liquid-

crystalline polymer environm ent|1_801.

1.4.5 Organically Modified Clays

Adsorption of organic cations renders the clay layer surface organophilic. Organo- 

modified clays can be used as gelling agents, fillers, thickeners, chromatography 

column packing materials and for sorption of hydrophobic pollutants [1'38l  Quaternary 

alkylammonium cations are the most common organic modifiers used to improve the 

compatibility between polymers and clay surfaces. This is because they readily 

exchange with the inorganic cations situated between the layers o f clays like MMT. 

However, other compatibilising agents have recently been used to produce PLSNs, 

which either participate in or initiate the polymerisation process. Ethylene-vinyl alcohol 

(EVOH) copolymers have been shown to incorporate hydroxylated quaternary 

alkylammonium cations. These cations greatly improve the compatibility between the 

clay and the EVOH through the introduction o f favourable hydroxyl group interactions. 

Other suitable compatibilising agents for the synthesis o f nanocomposites with a variety 

of host polymers are listed by Ogawa et al. [1’81l

In other attempts to produce PLSNs, maleic anhydride grafted polypropylene has been 

shown to lead to the production of polypropylene-clay nanocomposites. The use o f 

amino methyl-styrene [182] and living free-radical initiators [1'83] has also been shown to 

have limited degrees of success in the formation of polystyrene-clay nanocomposites.

Jordan [l 84] was the first to discover that organoclays could be dispersed in polar organic 

liquids, when long-chain alkylammonium ions were cation exchanged onto MMT, 

resulting in the formation of gels with a high liquid content. The compatibility o f clay 

interlayer spaces with various polymers can be accomplished by modifying the silicate 

surface with organocations via a cation exchange reaction [1'85l  The cationic head group 

of the alkylammonium molecule preferentially resides at the layer surface, while the
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aliphatic tail radiates along or away from the surface. The nature of the interlayer space 

is altered by the presence of these aliphatic chains modifying it from its hydrophilic 

state to a hydrophobic/organophilic state. The organocations may also contain various 

functional groups, which could react with polymers and improve the adhesion between 

the clay platelets and a host matrix. Therefore, it is possible to obtain a good dispersion 

of organoclays in organic solvents and increase the <7-spacing o f a swelling clay by 

increasing the alkyl chain length and/or the charge density o f the clay [1'86].

The most widely used alkylammonium ions are produced by protonation o f the amine 

function of primary alkylamines in an acidic medium. The basic formula o f an 

alkylammonium cation is CH3 -(CH2 )„-iNH3 +, where n is between 1 and 17. Interestingly 

the length of ammonium ions has a strong impact on the resulting structure o f the 

nanocomposite. Alkylammonium ions based on secondary amines have also been 

successfully used [1'87].

In the early 1990's, Lan and Pinnavaia [1‘86] used alkylammonium exchanged clays 

during a study of the formation of epoxy resin-clay nanocomposites. Three types o f Na- 

MMT were cation exchanged with CH3 (CH2 )„-iNH3 +, where n = 7, 11, 17, which 

produced different results depending on the nature of the clay. XRD and composite 

testing showed that the synthesis o f delaminated nanocomposites was favoured by 

exchange with alkylammonium cations with a chain length greater than C„ = 8  whereas 

alkylammonium cations with shorter chain lengths led to the formation o f intercalated 

nanocomposites [1'85’ 1_86l  This study was validated by Messersmith and Giannelis [1‘88] 

who incorporated ftmctionalised quaternary alkylammonium cations (i.e. 

CH3(CH2 )i7 N+CH3 (CH2 OH)2 ) in epoxy resin materials.

1.4.5.1 Hofmann Degradation of Alkylammonium Surfactants

The elimination reaction known as the Hofmann degradation reaction is able to convert 

ammonium salts to alkenes and ammonia. This reaction could be thermally driven in the 

case of ^-alkylammonium cations, ammonia would be released as the temperature 

increased. Nucleophilic substitution reactions (SN2) would occur between the hydrogen 

atoms on the alkyl chain's /Tcarbons and hydroxyl groups on the clay surface. The n- 

alkylammonium decomposition pathway would produce ammonia, while tertiary methyl
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amino groups would be produced in the case of quaternary alkylamines, as well as 

alkenyl fragments and water.

The proximity o f the Lewis base sites (i.e. hydroxyl groups) and the basic 

aluminosilicate surface to the intercalated alkylammonium molecules in organoclays 

would enhance (i.e. lower the activation energy of) the Hoffmann degradation. This has 

been shown by the lower onset temperature o f the thermal desorption of 

alkylammonium cations in organoclays compared to their virgin state and increased 

alkene production [1'89]. The presence o f branched alkanes also implies that secondary 

reactions, such as alkene addition, may occur between desorption products, 

complicating a simple explanation of product generation.

1.5 Polymers, Composites and Nanocomposite Principles

PLSNs are formed through the union of two very different materials namely organic 

polymers and specific clay minerals. A PLSN is a polymer that contains well dispersed 

nanometre sized (i.e. 1 0 9 m) clay particles.

1.5.1 Polymers

The polymer industry has been built with synthetic chemicals as its basis, however, this 

has begun to change in the past decade with the introduction of polylactic acid and other 

polymers derived from biomass [1'90, 1_91l  Polymers originated in the 1930s when 

polyvinyl chloride (PVC ~ originally reported by Baumann, 1870) was commercially 

developed (by BASF). Carothers [1‘92] working at Du Pont synthesised polyesters, 

neoprene and the first polyamide - nylon 6 6 , a replacement for silk patented in 1935. 

The need for commodity independence in times of war accelerated development in the 

synthetic polymer industry.

Other polymers developed during this period were; polyethylene (PE) by ICI, 

polymethylmethacrylate (PMMA) (trade name acrylic) also by ICI, Perspex, whose 

shatter-resistant properties were first applied to protective screens and aircraft canopies 

and polystyrene (PS) developed by BASF but originally reported by Simon (1839) and 

again by Staudinger (1922). PS was not mass produced until 1937. Since this early
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period new polymers have been introduced every few years including 

polytetrafluoroethylene (PTFE/Teflon), polycarbonate (PC), polyethylene terephthalate 

(PET), polypropylene (PP), polyurethane (PU) and acetal [1'93l

During the period 1935-1945 other materials that were developed include silicones, 

used in heat resistant paints and as water repellents, epoxy resins which have excellent 

adhesion and chemical resistance properties and polyester resins which, when combined 

with glass fibre offer a structural material for boat and car bodies. Due to many o f these 

polymers becoming malleable when heated, they became generically referred to as 

"plastics", a term taken from the Greek word "plastikos" meaning "to be moulded". 

Plastics are classified as either being Thermoplastic or Thermoset:

■ Thermoplastics -  Are polymers that soften when heated. Examples include 

Polyamides (PA), Polyolefins, (PO), PTFE and nylons.

■ Thermosets -  Are plastics that become hard with the application o f heat. A 

chemical reaction is usually the heat source, generating heat in the liquid plastic, 

causing it to become hard. Examples include unsaturated polyester resin, epoxy 

resin and polyurethanes.

Preparation of polymer clay nanocomposites with a thermoset matrix is simpler for two 

reasons: ( 1 ) the monomers or oligomers show low viscosity, and (2 ) they are polar. 

Thus there are many publications and patents, especially for epoxy-based 

nanocomposites [1'87,1_94,1_95l

1.5.2 Polymer Additives

Polymers and polymer derivatives have been applied to an increasingly varied range o f 

products and components particularly in the food packaging industry where traditional 

glass, metal and paper continue to be replaced by polymers. To reduce the weight o f 

cars and improve manufacturing methods the automotive industry has replaced some 

under the bonnet parts with plastics. Polymers however, have certain limitations in both 

the food packaging and the automotive industries. In the packaging industry, certain 

oxygen sensitive foods (e.g. beer and tomato products) cannot be stored in polymer 

containers due to the oxygen permeability o f the polymer. The use o f polymers in
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automotive applications is limited due to the tendency o f plastics to warp and creep 

under heat and load pressure because of low stiffness and tensile strength.

Polymer disadvantages include;

■ Poor mechanical properties, such as strength, stiffness, Young’s modulus, 

hardness, shear strength etc;

■ Poor processing properties including complex viscosity.

■ Poor stability in oxygen, light and flame.

■ High heat generation under curing and dynamic conditions.

■ Easy crack initiation and crack propagation.

■ Expensive.

Polymer materials are usually reinforced with fillers (fibres and metals) to improve 

mechanical properties. One of the most common reinforcing materials is a fibrous filler 

in a randomly dispersed state. Theories by Cox [1'96] and Kelly [1'97] are commonly 

employed to estimate the reinforcing effect o f fibrous fillers. These fillers, fibres and 

metal are classified into a large number of groups depending on their function, some o f 

these are presented below [1' .

■ Fillers (30-150 wt%), used to increase bulk, modulus, stiffness, tensile strength, 

fatigue strength, shear strength, abrasion resistance and to reduce crack 

initiation/propagation, e.g. silica, clay, and zinc oxide.

■ Extenders (10-30 wt%), tolerated by the polymer up to a certain extent, to 

reduce the product cost. e.g. refinery oil and chlorinated wax.

■ Antioxidants (0.1-10 wt%), to prevent oxidation of the polymer in the presence 

of oxygen/air. e.g. acetone-diphenylamine-acetone-amine, and 4,4’- 

dioctyldiphenylamine.

■ Cross-linking agents (0.1-5 wt%), used to increase hardness, modulus, stiffness, 

tensile strength, fatigue strength, shear strength, abrasion resistance and reduce 

crack initiation/propagation, e.g. sulphur and hydrogen peroxide.

■ Coupling agents (10 wt% of filler), used for good adhesion between the filler 

and polymer, e.g. coating CaCCE with stearic acid.

■ Fire Retardants (0.1-5 wt%), used to reduce polymer degradation against flame, 

e.g. triethyl phosphate, dimethyl methylphosphonate and brominated flame 

retardants.
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Composite materials exhibit a number o f improved properties in comparison with pure 

polymers. Composites have become very popular for structural applications and are sold 

in million tonne quantities [1' " l  From these quantities it has been shown that modified 

polymers already command a large market share in the plastics industry.

Interest in nanometre-size materials has increased in recent years owing to advances in 

synthetic techniques and the ability to readily characterise materials at the atomic level. 

Nanometre-size plates, grains and fibres have a considerably increased surface area and 

different chemistry when compared to traditional polymer additives. Carbon 

black/acetylene black (for the improvement of rubber) is produced by thermal 

decomposition o f acetylene gas and known to have surface areas that are > 1 0 0 0  m /g, 

and have particle sizes <50 nm [M0°] Carbon black also imparts UV protection, 

enhanced conductivity and structural reinforcement[1101]

1.5.3 Polymer Flammability

Most plastics are carbon based materials and will burn producing gases and smoke 

when subjected to a flame. Plastics are excellent fuels and are generally classed as 

ordinary combustibles falling into the same category as wood, leather and many other 

common materials. All o f these materials will degrade at very high temperatures into 

volatile and gaseous combustion products.

1.5.3.1 The Polymer Combustion Process

The actual process of combustion for plastics is very complex, however it generally 

follows 6  separate stages:

1. Primary Thermal - The ignition source heats the bulk plastic to create a rise in 

temperature depending on the product and the ignition source energy output.

2. Primary Chemical - Under the influence o f the ignition source the heated plastic 

starts to degrade, through the formation of free radicals.

3. Polymer Decomposition - The plastic starts to rapidly degrade into a range of 

lower molecular weight decomposition products. Typical products at this stage 

are combustible gases and liquids, charred solids and possibly smoke.
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4. Ignition - The combustible gases ignite and start to combust in the presence of 

sufficient oxygen and the ignition source. It is the combustible gases and liquids 

that bum and not the bulk material.

5. Combustion - The burning gases produce combustion at or near the surface of 

the bulk plastic. If  the process produces sufficient energy it can become self- 

sustaining.

6 . Flame Propagation - Depending on the plastic, the combustion stage produces 

flames (which can propagate) and charred surface layers. This can be 

accompanied by the emission of smoke and toxic gases.

The response of plastics in the combustion process also depends on the type of plastic. 

Thermoplastics tend to soften and flow at high temperatures, often before ignition takes 

place whereas thermosetting materials do not soften but undergo localized surface 

charring (sometimes with flaming) and the charred residue can either fall off or remain 

in place to form an insulating layer.

1.6 Polymer/Clay Nanocomposites

The first material to be commercialised was a nylon-6 /montmorillonite hybrid 

developed at the Toyota Research Laboratory in 1988 [1'102] however, as far back as 

1976 Unichika (Japan) filed a patent for a nylon-6 /montmorillonite nanocomposite. 

Melt intercalation failed to disperse alkylammonium exchanged clays, so in-situ 

polymerisation o f 8 -caprolactam into C 1 2-ammonium exchanged montmorillonite was 

employed and was found to produce a composite with largely improved properties [1‘ 

103]. Publication o f these findings sparked a worldwide interest in these materials and 

many polymer/ clay systems have been developed.

Nanocomposites are two phase materials with one phase whose dimensions are on the 

nanometer (10 ' 9 m) scale being dispersed in a second [1_46l  Classification o f nano fillers 

is in accordance with the number o f dimensions of the material that are on a nanometer 

scale as summarised in Table 1-7.
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Table 1-7 Types of Nanofiller Materials 11'201

Number of dimensions on nanometer scale Type of Nanofiller
One Layered Crystals, e.g. Clay
Two Nanotubes or Whiskers

Three Spherical Silica Nanoparticles

PLSNs present a radical alternative to conventional filled polymers [1'15]. Owing to the 

nanometre-size particles obtained by dispersion of the clay, these nanocomposites 

exhibit markedly improved mechanical, thermal, barrier, optical and physico-chemical 

properties when compared with the pure polymer or conventional (microscale) 

composites as first demonstrated by Kojima et al. [M04] for nylon-clay nanocomposites.

1.6.1 Structure of PLSNs

Layered silicates generally have layer thickness in the order o f lnm  and have a high 

aspect ratio (e.g. 10-1000) and lg  of completely dispersed clay has a surface area o f 760
9 1m g' . Therefore if a few weight percent o f clay is properly dispersed throughout a 

polymer matrix then a much higher surface area for polymer/filler interaction is created 

as compared to conventional composites. There are three main types o f composites that 

can be obtained when a layered clay is associated with a polymer, and is dependent on 

the nature of the components used (layered silicate, organic cation and polymer matrix) 

as displayed in Figure 1-11.

Layered silicate Polymer

Phase separated Intercalated Exfoliated
(microcomposite) (nanocomposite) (nanocomposite)

Figure 1-11 Structures of polymer/clay nanocomposites (not to scale).
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A phase separated composite (Figure 1-11 a) is obtained when the polymer is unable to 

intercalate between the silicate sheets, its properties stay in the same range as traditional 

microcomposites. An intercalated structure (Figure 1-11 b) results when a single (and 

sometimes more than one) extended polymer chain intercalates between the silicate 

layers resulting in a well ordered multi-layer morphology that is built up with 

alternating polymeric and inorganic layers. An exfoliated or delaminated (Figure 1-11 

c) structure is obtained when the silicate layers are completely and uniformly dispersed 

in a continuous polymer matrix, both ordered and disordered exfoliated nanocomposites 

can be achieved. Aggregated nanocomposites (Figure 1-12) are also possible, these are 

virtually the same as intercalated nanocomposites. However, silicate layers are some 

times aggregated due to hydroxylated edge-edge interactions of the silicate layers.

Aggregation is a condition in which clays, polymers or other small charged particles 

become attached and form a fragile structure. In dispersed clay slurries, aggregation 

occurs after mechanical agitation ceases and the dispersed clay platelets spontaneously 

form aggregates because of attractions between negative face charges and positive edge 

charges.

Intercalated/Aggregated Exfoliated

Figure 1-12 Schematic illustration of the three classes of thermodynamically achievable 
polymer/layered silicate nanocomposites |M0S|.

To elucidate the structure o f polymer/clay nanocomposites several methods are required 

to give complementary information. The most commonly used techniques are X-ray 

diffraction (XRD), which is used to give information on the spacing o f the clay layers 

and crystallinity of the polymer and transmission electron microscopy (TEM), which 

allows the extent of clay dispersion to be observed. It is generally only used to confirm 

exfoliation after an ‘XRD silent’ trace has been obtained [1'41, M06l  Furthermore atomic 

force microscopy (AFM), nuclear magnetic resonance spectroscopy (NMR) and neutron 

scattering have been used to investigate the structure of polymer/clay hybrids [1107].
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Both XRD and TEM are essential tools for evaluating nanocomposite structures, 

however TEM is time-intensive and only gives qualitative information on a very small 

part o f the sample, while low angle peaks in XRD allow quantification o f changes in 

layer spacing. When the layer spacing exceeds around 80 A in an intercalated 

nanocomposite or when the layers become significantly disordered in an exfoliated 

nanocomposite then XRD becomes less useful.
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Figure 1-13 XRD traces for (a) Nylon-6 composites with different organoclays and (b) the 
corresponding arrangement of the clay layers 11-1081.
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Diffraction peaks are no longer visible in an exfoliated structure. Two possibilities for 

this are, ( 1 ) there is no clay in that part of the sample, or (2 ) the samples include clumps 

of disordered clay that do not diffract. Figure 1-13 displays the XRD traces and the 

corresponding arrangement o f the clay layers within nylon-6 /organoclay (nano) 

composites. Besides these well-defined structures, other intermediate organisations can 

also exist.

1.6.2 Nanocomposite Preparation

Nanocomposites can be prepared via different routes. There are four main preparation 

methods and the choice o f method is dependent on the type of clay and the properties o f 

the polymer matrix [1109] utilised. In-situ polymerisation and solution intercalation are 

often limited in their use in technological applications as compatible clay/ monomer 

systems or clay/ polymer/ solvent systems are not always available [1'110].

1.6.2.1 In-Situ Intercalative Polymerisation

The first method used to synthesis PLSNs based on polyamide 6  C1_4] was in-situ 

polymerisation. The organosilicate is swollen with the liquid monomer (or monomer in 

solution) therefore allowing polymer formation to occur in between the intercalated 

sheets. Polymerisation can be initiated by heat, radiation, diffusion o f a suitable initiator 

or by fixation of an organic initiator inside the galleries before the monomer swelling 

step. The key to this method is to control the rate of polymerisation occurring between 

the silicate layers (intragallery polymerisation). Polymer layered silicate 

nanocomposites based on thermosets such as epoxies, unsaturated polyester, and 

polyurethanes have been synthesised by this method as well as thermoplastic 

nanocomposites based on polyethylene terephthalate [1' 111], polystyrene and polymethyl 

methacrylate (PMMA) [1-1121

1.6.2.2 Exfoliation-adsorption

By using a solvent in which the polymer (or prepolymer) is soluble the layered silicate 

can be exfoliated into single layers. Such layered silicates can be easily dispersed in an 

adequate solvent due to the weak forces that stack the layers together. The polymer is 

then adsorbed onto the delaminated sheets and when the solvent is evaporated (or the 

mixture precipitated) the sheets reassemble, sandwiching the polymer to form an
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ordered multilayer structure. The major advantage of this method is that it is possible to 

synthesise intercalated nanocomposites based on polymers with low or even no polarity. 

However, due to the large quantities of solvent used in this approach, it is difficult to 

execute the exfoliation-adsorption process in industry. Nanocomposites based on high- 

density polyethylene, polyimide and nematic liquid crystal polymers [1‘113] have been 

synthesised by this method.

1.6.2.3 Melt Intercalation

Melt intercalation was first reported by Vaia et al. [1'25] in 1993 and is applicable to a 

wide range of commodity polymers [1"114]. In order to optimise the polymer-layered 

silicate interactions the layered silicate is mixed with the polymer matrix in a molten 

state. The mixture is then annealed at a temperature that is above the glass transition 

temperature of the polymer to form the nanocomposite, and either an intercalated or an 

exfoliated nanocomposite can be formed. The melt intercalation process is increasingly 

popular due to its potential for application with rapid processing methods such as 

injection moulding. Silicate layers have been exfoliated and/or intercalated into a wide 

range o f thermoplastics, from strongly polar nylon 6  to polystyrene using the melt 

intercalation process.

1.6.2.4 Template Synthesis

This method was first proposed by Carrado et al. [1'115] and is the in-situ hydrothermal 

crystallisation of silicate layers (hectorite) in an aqueous polymer gel. This method has 

been used for the synthesis o f double-layer hydroxide-based nanocomposites [1' 116] but 

is less advanced for layered silicates. Based on self-assembly forces, the polymer aids 

the nucleation and growth of the inorganic host crystals and gets trapped within the 

layers as they grow. This method is particularly suited to water soluble polymers such 

as poly(acrylonitrile) (PACN) and poly(aniline) (PANI). The driving force o f this 

technique is the balance between the negatively charged sites on the silicate lattice with 

those on the cationic polymer chain. Unfortunately the size o f the synthesised layers 

cannot compete with natural layered silicates for kinetic reasons and their average 

length is limited to around one third of their natural counterparts.
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1.7 Nanocomposite Property Enhancements

Fukushima and Inagaki [1117] proved that the surface chemistry o f the clay could be 

made compatible with a hydrophobic polymer matrix, by the replacement of the 

inorganic cations in the clay galleries with alkylammonium cations. E-caprolactam was 

polymerised in the interlayer region of the organoclay to form a nylon(6 )-clay 

nanocomposite 11118]. With clay loading o f only 4.2 wt%, the hybrid exhibited a 

doubling of modulus, a 50 % increase in strength, and an increase in the heat distortion 

temperature (HDT) of 85 °C compared to the pristine polymer (Table 1-8).

Table 1-8 Comparative physical data for Nylon-6, Nylon-6-MMT composite and Nylon-6-MMT 
nanocomposite I111’1*118!.

Sample Clay
(Wt%)

Tensile
Strength

(MPa)

Tensile
Modulus

(GPa)

Impact
(KJ/m3)

HDT 
(°C @ 18.5 

Kg/cm2)
Nylon-6 -MMT
Nanocomposite 4.2 107 2 . 1 2 . 8 152

Nylon-6 -MMT
composite 5.0 61 1 . 0 2 . 2 89

Nylon - 6 0 69 1 . 1 2.3 65

Table 1-9 Nanocomposite suppliers, components and applications.

Company Material Application
Bayer AG (Durethan 
LPDU) Nylon 6 Barrier films

Clariant PP Packaging
GE Plastics (Noryl 
GTX) PPO/Nylon Automotive painted parts

Honeywell (Aegis) Nylon 6 Multi-purpose 
Bottles and film

Hyperion PETG, PBT 
PPS, PC, PP Electrically conductive

Kabelwerk Eupen of 
Belgium EVA Wire and cable

Nanocor (Imperm)
Nylon 6  

PP
Nylon MDX6

Multi-purpose
Molding
PET beer bottles

Polymeric Supply Unsaturated polyester Marine, transportation

RTP Nylon 6 , PP Multi-purpose, 
electrically conductive

Showa Denko 
(Sy sterner)

Nylon 6  

Acetal
Flame retardance 
Multi-purpose

Ube (Ecobesta) Nylon 6 , 12 
Nylon 6 , 6 6

Multi-purpose 
Auto fuel systems
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It was also demonstrated that organoclays exfoliated in a nylon - 6  matrix greatly 

improved the dimensional stability, the barrier properties and even the flame retardant 

properties [1"12,1-119,1I20]. The breakthrough with the nylon-6 -MMT nanocomposite led 

to the first practical application as the material was used for the timing belt covers on 

Toyota Camry vehicles Table 1-9 displays a partial listing o f companies

marketing nanocomposite materials for different applications.

Polymers filled with nanometre-size materials have different properties than polymers 

filled with conventional materials. Some properties attributed to nanocomposites, such 

as increased thermal stability and tensile strength can be achieved by using higher 

conventional filler loadings. However, this is at the expense of increased weight o f the 

material. Futhermore, properties like material clarity or improved barrier properties 

cannot be duplicated by filled resins at any loading. During delamination o f the clay 

agglomerates, the clay structure reduces from cuboid agglomerates to flat platelets. The 

shape of clay platelets is usually expressed in terms of its aspect ratio, i.e. the ratio 

between the diameter and the thickness of a platelet. Miilhaupt et a l [1122] summarised 

the advantages and disadvantages of nanocomposites compared to traditional fillers and 

pristine polymers, as displayed in Table 1-10.

Table 1-10 Advantages and disadvantages of polymer/ clay nanocomposites.

Advantages Disadvantages
- improved gas/liquid barrier - production costs

properties - reduced extensibility in some
- increased thermal stability and fire thermoplastic blends

resistance - discolouration in cation activated
- improved abrasion resistance bentonites
- altered electronic and optical - orientation and properties dependent on

properties direction o f shear
- reduced shrinkage and residual - no adequate replacement o f silica or

stress carbon fibre reinforcement yet
- increased mechanical properties - high adhesive content in non-polar

- low specific density polyolefins
- improved stiffness in flexible

polymers
- smooth surfaces

- recyclable
- control of biodegradation e.g.

polylactic acid and starch
- dispersion and fixation of pigments

and fillers
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1.7.1 Flame Retardancy of Nanocomposites

Fire hazards result mainly from the combination of different factors. These include: 

ignitability, ease of extinction, flammability o f generated volatiles, amount of heat 

released on burning, rate of heat release, flame spread, smoke obscuration and smoke 

toxicity. However, the most important fire hazards can be identified as heat, smoke and 

toxic gases [I' 123]. A high heat release rate causes fast ignition and flame spread. It also 

controls the fire intensity and is therefore more important than ignitability, smoke 

toxicity or flame spread. The escape time for fire victims is also controlled by the heat 

release rate. Another important fire hazard is smoke production. People become 

disoriented in dark black smoke and therefore their escape from a burning building is 

hindered, also fire fighters have severe problems when rescuing people in smoke- 

darkened surroundings. The acute toxicity of fire gases is mainly controlled by the 

carbon monoxide content. Carbon monoxide is responsible for over 90% of people 

killed by fires [1124J.

Each year approximately 5000 people are killed by fire in Europe and more than 4000 

people in the USA. Consequently it is important to develop well-designed flame 

retardant materials to minimise these fire hazards [1' 125]. Polymers are increasingly used 

in new and varied applications, where specific mechanical, thermal and electrical 

properties are required. Another important property is the flame retardant behaviour o f 

the polymers and this can be achieved through two routes:

■ Use of intrinsically flame-retardant polymers like PVC or fluoropolymers.

■ Use o f flame retardants, such as aluminium trihydrate, magnesium hydroxide, 

brominated organic additives or intumescent systems to prevent the burning o f 

polymers including PE, PP, UP.

However, these flame retardant systems can exhibit some significant disadvantages:

■ The applications o f aluminium trihydrate (ATH) or magnesium hydroxide 

requires very high loadings of the filler within the polymer matrix. Loading 

levels of more than 60 wt% are necessary to achieve a suitable flame retardancy, 

e.g. for cables and wires.

■ In Europe, there are health and safety reservations about the general use o f 

brominated additives as flame retardants.
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■ Intumescent systems are relatively expensive and electrical conductivity 

requirements can restrict the use of these products.

Nanocomposites avoid the outlined disadvantages of these traditional flame retardant 

systems. Nanocomposites have the ability to promote flame retardancy at very low filler 

levels (2 - 1 0  wt%) due to the formation o f a thermally insulating char which has a low 

permeability to volatile combustion products caused by a fire [M26]. The low filler 

contents in nanocomposites offering improvements in flame retardancy are highly 

attractive for the industry because the end-products can be made cheaper and are easier 

to process.

1.7.2 Thermal Stability

Thermogravimetric analysis (TGA) is generally used to study the thermal stability of 

polymeric materials. The weight loss, due to the formation o f volatile products after 

degradation at high temperature, is monitored as a function o f temperature. Heating 

under an inert gas flow results in a non-oxidative degradation (pyrolysis), while the use 

of air or oxygen allows oxidative degradation of the samples. Thermal stability is 

enhanced by the incorporation o f silicate in the polymer matrix, the silicate acts as a 

superior insulator and mass transport barrier to the volatile products generated during 

decomposition [1' 127]. Blumstein first indicated thermal stability improvements in 

nanocomposites [1 , in a study on the thermal stability o f poly (methyl methacrylate)

(PMMA) intercalated with montmorillonite.

Burnside and Giannelis [1’30] used TGA (under N 2 ) to measure the thermal stability o f 

cross-linked poly(dimethylsiloxane) (PDMS) in which 10 wt% of organo-MMT was 

exfoliated. When compared to unfilled cross-linked PDMS (Figure 1-14), the TGA 

displayed a large shift in weight loss towards higher temperature, with a stabilisation as 

high as 140 °C at 50 % weight loss. This was attributed to hindered out-diffusion o f the 

volatile decomposition products (i.e. mainly cyclic silicates), as a direct result o f the 

decrease in permeability predicted for exfoliated nanocomposites.
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Figure 1-14 TGA traces for PDMS (solid line) and PDMS nanocomposite (dashed line) containing
10 wt% organo-modifled MMT |1'301.

Another nanocomposite study based on cross-linked PDMS was conducted by Wang et 

a l  [1128] using slightly different processing conditions in order to produce mainly 

intercalated structures. These materials exhibited increased thermal stability for 

nanocomposites intercalated with 8.1 vol% of org-MMT but it was limited to about 60 

°C at 50 % of weight loss. The increased thermal stability (also reported for silica-based 

nanocomposites in the same study) was attributed to the inactivation o f the active 

centres in the main silicone chain, decomposition by interaction with the filler or by 

prevention o f the unzipping degradation occurring through physical and chemical cross- 

linking points built up between polymer chains and filler particles.

A shift to a higher decomposition onset temperature was reported for intercalated 

nanocomposites o f PMMA tU]29\  PS P-130! and Epoxy [1' 131] when prepared by emulsion 

polymerisation in the presence of water swollen Sodium MMT (Na-MMT). The onset 

of thermal decomposition by TGA (under N2 ) was measured by Doh and Cho [1' 132] for 

intercalated PS-based nanocomposites produced by polymerisation o f styrene 

containing various org-MMTs. The decomposition onset temperatures of PS-based 

nanocomposites with increasing filler content were collected together with a Na-MMT 

microcomposite for comparison. A large increase in the onset of decomposition 

occurred for nanocomposites at very low filler content and quickly levelled off at 430 

°C. The threshold was reached for a filler content as low as 0.3 wt% when intercalating

35



an organoclay modified with a dimethylbenzyloctadecylammonium cation, which was 

considered to be compatible with PS. In contrast, Na-MMT did not modify the 

decomposition onset o f the PS matrix. Another useful feature o f nanocomposites in 

which the thermal property improvements occur at very low filler content, is that it 

often makes the final product cheaper, lighter and easier to process than more 

conventional microcomposites.

The extent of the thermal stabilisation in nanocomposites may also arise from the nature 

of the thermal degradation mechanism, which is often different from one polymer to 

another. When polyimide-clay nanocomposites were thermally degraded under N 2 , their 

thermal stability was only enhanced by approximately 25 °C (at 50% of weight loss), 

which was much less than a shift of 140 °C observed in exfoliated PDMS 

nanocomposites [1'25, M33].

Zanetti et al. [1~134] conducted detailed TG analyses of nanocomposites based on 

ethylene-vinyl acetate (EVA). The inorganic phase used was either fluorohectorite (FH) 

or MMT, both exchanged with octadecylammonium cations. This study demonstrated 

that creation of nanocomposites by extrusion o f EVA depended on both the type o f 

silicate and the type of silicate modification. During thermal degradation, deacylation 

was accelerated and occurred at temperatures lower than those for the pure polymer due 

to catalysis by the strongly acid sites created by thermal decomposition o f the silicate 

modifier. These sites were active when there was intimate contact between the polymer 

and the silicate. Slowing down volatilisation o f the deacylated polymer in nitrogen may 

be due to the labyrinth effect of the silicate layers in the polymer matrix. In air, the 

nanocomposite presented significantly delayed weight loss derive from the barrier effect 

due to diffusion o f both volatile thermo-oxidation products to the gas phase and oxygen 

from the gas phase to the polymer.

A significant delay in TGA weight loss has also been observed when heating under air, 

this may be attributed to barrier effects caused by diffusion o f both volatile thermo

oxidation products to the gas phase and oxygen from the gas phase to the polymer. 

During volatisation the barrier effect increases due to the reassembly o f the reticular 

layers o f the silicate on the surface of the polymer [1'135]. Figure 1-15 displays the TGA
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analysis of a polystyrene n-hexadecyl triphenylphosphonium clay nanocomposite (PS- 

P16) compared with virgin PS. The thermal stability o f the nanocomposite is enhanced 

compared to that o f the virgin polymer as the typical onset temperature of the 

degradation is around 50 °C higher for the nanocomposite than for virgin PS [1"136].

PS-VB16

PS-P16u>wo
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'5 40 -
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Figure 1-15 TGA curves for polystyrene, PS and the nanocomposites |M361.

Figure 1-15 displays a difference in the degradation mechanism for phosphonium 

nanocomposites (PS-P16) as compared to ammonium nanocomposites (N,N-Dimethyl- 

n-hexadecyl-(4-vinylbenzyl) ammonium chloride (PS-VB16) and N,N-Dimethyl-n- 

hexadecyl-(4-hydroxymethylbenzyl) ammonium chloride (PS-OH16)). The 

nanocomposite made using PS-P16 appears to degrade by a two step process, with the 

second step accounting for approximately 30 % of the degradation o f the phosphonium- 

PS nanocomposite and can be attributed to some interaction between the clay and the 

polymer assisting in stabilising the nanocomposite. A confident explanation for this 

phenomenon is that the increased decomposition temperature of the phosphonium clay 

provides the formation o f char at an elevated temperature to retain the polymer d '136]. 

However in the case of alkylammonium clays char formation occurs earlier and the char 

can be broken up by the time the polymer degrades.
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Figure 1-16 Peak heat release rates for polystyrene and the three nanocomposites |11361.

The nanocomposites depicted in Figure 1-16 had much lower peak heat release rates 

(PHRRs) than the virgin polymer. Associated with the decrease in the rate o f heat 

release was a decrease in the mass loss rate and the amount of energy released by the 

time at which polystyrene had entirely burned out and also a modest increase in the time 

at which the peak heat release was reached. The production of a char barrier served to 

retain some o f the polymer and thus both the energy released and the mass loss rate 

decreased. The amount of smoke evolved and the specific extinction area, also 

decreased with the formation of the nanocomposite. It was apparent that phosphonium 

clays have greater thermal stability than the corresponding ammonium salts, which may 

be useful when polymer-clay mixtures are processed at relatively high temperatures.
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1.7.3 Flame Retardancy

Gilman [M2] reviewed the flame retardant properties o f polymer-layered silicate 

nanocomposites using cone calorimetry (Figure 1-17). An improvement in flammability 

was revealed for many different types o f PLSNs. Cone calorimetry is an effective bench 

scale method that measures fire relevant properties such as heat release rate (HRR), 

peak HRR, smoke production, and carbon monoxide yield. Typically the sample is 

exposed to a heat flux (often taken as 35 kW/m2) and the HRR as well as the mass loss 

rate (MLR) are recorded as a function of time. Reduction of the peak HRR is the most 

clear-cut evidence for the efficiency o f a flame retardant and is therefore the most 

important parameter in evaluating fire safety [1137].

Laser photometer beam

Temperature and differential pressure 
measurements made here

'^Gas samples 
taken here

Cone heater 

i  Spark ignition

Soot collection filter

Specimen

Load Cell

Figure 1-17 Cone Calorimeter 111381

39



A typical example is displayed in Figure 1-18 and peak HRR values in Table 1-11, 

where a HRR plot for nylon - 6  was compared to that for a nylon - 6  exfoliated 

nanocomposite (5 wt.% of exfoliated montmorillonite) at 35 kW/ m 2 heat flux. This plot 

is typical of those found for all the nanocomposites and shows a clear reduction in the 

peak HRR of 63 % as observed for a nylon - 6  nanocomposite compared to pure nylon-6 . 

The HRR is reduced in the nanocomposite, occurring over the temperature range of 280 

to 1500 seconds as compared to between 300 and 1000 seconds for pure nylon-6 . 

However, the time to ignition was also reduced by approximately 20 seconds in the 

nanocomposite sample as compared to nylon-6 . The parameter that is primarily 

responsible for the lower HRR of nanocomposites is the MLR during combustion. The 

MLR obtained for nanocomposites is significantly reduced from the values obtained for 

the pure polymer [1'12l
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Figure 1-18 Comparison of the Heat Release Rate plot for nylon-6 and nylon-6 silicate
nanocomposite

Table 1-11 Peak HRR for Nylon-6 and Nylon-6 nanocomposites taken from cone calorimeter data
|l-2]

Peak HRR (kW/m2)
Nylon - 6 1010

Nylon- 6  nanocomposite 2% 6 8 6

Nylon- 6  nanocomposite 5% 378

Comparison of cone calorimeter data for nylon-6 , nylon-12, polystyrene (PS), and 

polypropylene (PP) nanocomposites revealed that the heat of combustion (Hc), and 

carbon monoxide yields were unchanged, suggesting that the source o f the improved 

flammability properties of these materials is due to differences in the condensed phase 

decomposition process and not to a gas phase effect [1"139].
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1.7.4 Fire Retardant Systems and Char Formation

The use o f synthetic polymers in buildings or construction applications is steadily 

increasing and consequently more emphasis is placed on the hazards that result from the 

burning of such materials. The majority of polymer-containing end products must now 

pass regulatory tests and therefore considerable interest has arisen in the design o f 

materials that can pass such tests. Although halogenated flame retardant systems have 

proven very effective, environmental concerns have prompted the development of 

alternative flame retardant systems [1140]. Research into new fire-retardant systems 

covers a broad range of approaches, including the systematic investigation into 

combinations o f additives that promote synergy [ 1 ' 1 4 1 ] 5 intumescent systems [1135] and 

char formation [1142]. Kashiwagi has identified char formation as the most promising of 

these and has reviewed the benefits of char formation in improving the fire resistance o f 

polymers [1"143].

The advantages of char formation are:

■ Reduced mass of volatiles - Part o f the carbon (and hydrogen) stays in the 

condensed phase, reducing the mass o f volatile combustible degradation 

fragments evolved.

■ Thermal insulation - Polymer degradation results in a char layer forming over 

the remaining virgin polymer. This char layer has low thermal conductivity and 

enables it to act as thermal insulation therefore reducing the heat flux reaching 

the virgin polymer [1' 144].

■ Obstruction of combustible gases - A charred surface may act as a physical 

barrier, obstructing the flow o f combustible gases generated from the 

degradation of the underlying un-burnt material [M4 5 1.

■ Increased thermal capacity - The formation o f a char-polymer mixture 

increases the thermal capacity o f the material relative to the scenario o f no-char 

formation.

The flame retardant effect o f a nanocomposite arises mainly from the formation o f char 

layers obtained through the collapse of the exfoliated and/or intercalated structures 

during combustion. This multi-layered carbonaceous-silicate structure appears to 

enhance the performance of the char through structural reinforcement acting as an
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excellent insulator and mass transport barrier, slowing down the escape o f the volatile 

decomposition products as the polymer decomposes [1 1 4 6 ] most event

occurring is the one illustrated in Figure 1-19 where a char layer has formed in between 

the clay layers giving an overall inter layer spacing of 12.6 A.

{  9.6 A
C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C

C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C { 3 A

Figure 1-19 Illustration showing the formation of the char layer in between the clay layers.

Zanetti et al. [1'147] investigated the combustion behaviour of PLSNs based on ethylene 

co-vinyl acetate (EVA) using cone calorimeter experiments and demonstrated how the 

char layer forms after thermal degradation o f the nanocomposite (Figure 1-20). A char 

layer forms on the surface o f the nanocomposite as it burns, this layer insulates the 

material below and slows the mass loss rate of decomposition products. This residue 

layer is formed as the polymer burns away and the silicate layers reassemble into a 

multi-layer char, observed using TEM. It was found that the charring process was 

accelerated by acidic catalytic sites of the layered silicates, derived from the Hoffman 

reaction o f the organic alkylammonium cation. Catalytic activity o f zeolites (typically 

alluminosilicates) might depend on the presence of peroxides in their structure b-148̂  

generated during heat exposure in air. The role of catalysis in charring is indirectly 

supported by the fact that charring is only effective in the nanocomposite because the 

intimate contact between the polyene molecules and the atoms o f the inorganic 

crystalline layers was so extensive that thermal bond scission was prevented. Only the 

surface of the nanocomposite, which is in contact with air, is charred and so this layer 

becomes an effective ceramic carbonaceous, thermally stable shield for the polymer, 

although they also prevent oxygen from diffusing into the bulk to extend its oxidative 

dehydrogenation carbonizing action.
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Figure 1-20 Schematic representation of combustion mechanism and ablative reassembly of a 
nanocomposite during cone calorimeter experiments |1'14?1.

A study by Gilman et al. [1135] of the nylon- 6  silicate nanocomposite pyrolysis process, 

under an atmosphere o f nitrogen, revealed that a reduction in the MLR did not occur 

until the sample surface was partially covered with char. Visual observations o f the 

pyrolysis demonstrated that when the MLR for nylon - 6  silicate nanocomposite slowed, 

compared to the pure nylon-6 , the surface of the silicate was over 50% covered by char.
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1.7.5 Testing for Gases and Smoke

Toxic Gases - Toxic gases are the main source of death in many fires where high fuel 

loads o f plastics are involved. However, there is no recognized standard for toxic gas 

emission testing, because the amount and type o f toxic gas generated depends not only 

on the plastics involved but also on the additives used in the plastics and the details o f 

the particular fire. For most conventional plastics the main gas risk is the generation o f 

CO (exposure limit = 35 ppm, 40 mg/m3), which at high concentrations is extremely 

toxic.

Smoke - A major hazard in real fires is the smoke given off when most plastics burn. 

The Smoke Box test developed by the National Bureau of Standards (NBS) is one o f the 

most widely used laboratory-scale techniques to quantify the smoke generation from 

burning materials. This test measures the amount of smoke produced per unit area when 

a material is exposed to both flaming and radiant heat sources. The optical density o f 

the smoke generated is measured as the smoke accumulates in a closed chamber system 

and test specimens can be burned in either the flaming or non-flaming (smouldering) 

mode.

1.7.6 Mechanical Property Enhancements of PLSNs

An unexpected large increase in the moduli (tensile or Young's modulus and flexural 

modulus) of PLSNs with organoclay loadings as low as 1 wt% has previously been 

revealed [1'119]. PLSN material stiffness was shown to be substantially enhanced 

whatever the method of preparation, polymerisation within protonated e-caprolactam 

swollen MMT [1'16], and polymerisation of ^-caprolactam, an acid catalyst and natural 

MMT [M7].

1.7.6.1 Tensile Modulus

The tensile or Young’s modulus expresses the stiffness of a material. Remarkable 

improvements have been seen when nanocomposites are formed with layered silicates. 

Nylon- 6  nanocomposites exhibit a dramatic increase in the tensile properties at 

relatively low filler content, when prepared through the in-situ intercalative ring 

opening polymerisation of e-caprolactam using protonated aminododecanoic acid- 

exchanged MMT (ADA-MMT). The tensile modulus and other properties o f exfoliated
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nylon- 6  PLSNs with various clay loadings were measured at 120 °C [1'119] (Table 1-12). 

The strong interaction between the matrix and silicate layers via the formation o f 

hydrogen bonds is the main reason for this dramatic increase in tensile modulus.

Table 1-12 Property effects on Nylon-6-ADA-MMT with increased organoclay loadings 11-119).

Nylon-6- ADA- 
MMT (wt%)

Flexural Modulus 
(MPa)

Tensile Modulus 
(MPa) HDT(°C)

0 % 2836 2961 56 1
2 % 4326 (53%) 4403 (49%) 125 (123%)
4% 4578 (61%) 4897 (65%) 131 (134%)
6 % 5388 (90%) 5875 (98%) 136 (143%)
8 % 6127(116%) 6370 (115%) 154 (175%)

This remarkable improvement was first reported by the Toyota research group [14], an 

increase of 90% in which the modulus was found with the addition of only 6  wt% of 

exfoliated clay. They also found that the extent of the improvement to the modulus in 

their material was directly dependent upon the average length o f the dispersed clay 

particles (i.e. the aspect ratio of the dispersed nanoparticles) [1-11].

A short review by Kornmann [1' 1()9] concerning the moduli of PLSNs suggested that the 

stiffness of nanocomposites is related to the degree of exfoliation o f the layered silicate 

in the polymer matrix. This is possibly because exfoliation increases the interaction 

between the silicate layers and the polymer by providing 360° access to the silicate 

layer by the polymer.

1.7.6.2 Impact Properties

The impact properties have been measured for nylon-6 -based nanocomposites prepared 

either by in-situ polymerisation o f e-caprolactam using protonated aminododecanoic 

acid-exchanged MMT [l ll9] or by melt intercalation of nylon - 6  in octadecylammonium 

exchanged MMT [1~149]. Both methods lead to exfoliated nanocomposites especially at 

filler contents < 1 0  wt% (at higher loadings, melt-intercalation provides partially 

exfoliated/partially-intercalated materials). An increase in the impact property o f PLSN 

of Nylon-6 -MMT was demonstrated (Table 1-8) as compared to the composite and 

pristine polymer.
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1.7.6.3 Stress at Break

The stress at break expresses the ultimate strength that the material can bear before 

break. In intercalated and exfoliated PLSNs stress at break has been reported to vary 

greatly, depending upon the nature of the interactions between the matrix and the filler. 

In PS intercalated nanocomposites [1-130\  the ultimate tensile stress was reported to be 

lower than the pristine polymer and the exfoliated PS nanocomposite, reducing further 

as the clay loadings were increased (Table 1-13).

Table 1-13 Tensile results for Nanocomposites of pure PS |1',3°l

PS-MMT (wt%) Stress at Max 
Load (Mpa)

Strain at Max 
Load (%)

Young’s Modulus j 
(Gpa)

0 28.7 2.87 1 . 2 1

5 (Exfoliated) 21.7 2.40 1.30
1 0 23.4 1.63 1.91
2 0 16.6 1 . 0 1 2.64

30 (Intercalated) 16.0 2.30 1.83

The benefit in strength for the strongly hydrophobic PS was not as great as that o f the 

PMMA-clay hybrid. Suggesting that the reduced tensile strength in the nanocomposites 

was mainly attributed to poor interfacial adhesion between the PS matrix and the clay 

particles.

1.7.7 Barrier Property Enhancements of PLSNs

1.7.7.1 Permeability

A major advantage of PLSNs is the decrease in permeability brought about by the 

nanocomposites structure. This property was first reported by the Toyota research 

group, whose polyamide- 6  clay hybrid had a water absorption rate that was reduced by 

40% when compared to the pristine polymer. Phillip et al. [1'9] observed a dramatic 

decrease of water permeability with their poly(s-caprolactone) layered silicate 

nanocomposite of up to 80% with only 5% volume of clay.

Enhancements in gas barrier properties are well known in PLSNs, however the 

dependence on factors such as the relative orientation o f the sheets in the matrix and the 

state of aggregation and dispersion are not well understood. A study by Bharadwaj [1‘8] 

has shed light on both of these issues by modifying a simple model, developed to
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describe permeability in filled polymers on the basis o f tortuosity arguments. By 

correlating the sheet length, concentration, relative orientation and state o f aggregation, 

it was thought that better barrier materials could be designed using nanocomposites. The 

presence of fillers introduces a tortuous path for molecules that are diffusing through the 

composite. This reduces permeability by forcing the molecules to travel a longer 

diffusive path through the composite, as illustrated in Figure 1-21.

d’
IW

Figure 1-21 Tortuosity for a diffusing molecule introduced upon exfoliating layered silicates in a
polymer matrix.

The sheet-like morphology o f the silicate layers is particularly efficient at maximising 

the path length due to its large length to width ratio compared to other shapes such as 

spheres or cubes. The tortuosity factor (x) is represented by the equation below and is 

defined as the ratio o f the actual distance (d') that a penetrating molecule must travel to 

the shortest distance (d) that the molecule would have travelled in the absence o f the 

layered silicate, this is expressed in terms o f the length (L), width (W), and volume 

fraction o f the sheets ( (j) s):

d' 1 L
t -  — = 1 + ----- (hK (1)

d  2 W s

The effect of tortuosity on permeability is expressed as:

P  1 - 6
~  = (2)

Pp T

where Ps and Pp represent the permeability o f the PLSN and the pure polymer, 

respectively. In a study by Yano et al [110] H20  permeability was measured for 

polyimide nanocomposites with 2 wt % of different silicates. Water permeability was 

reduced by a factor of 1 0  over the pure polyimide by dispersing 2  wt % of synthetic 

mica into the polyimide. The model predictions from equation 2 closely tracked the 

relative permeability as a function of the silicate sheet length. In addition equation 2
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was found to accurately reproduce the observed concentration dependence o f the 

relative permeability of H2 O in polyimide montmorillonite nanocomposites.

1.7.7.2 Effect of Sheet Orientation

Any movement away from the sheets orientating themselves perpendicular to the film 

plane would lead to deterioration in barrier properties. There is a range o f possible 

orientations o f the sheets with respect to each other as displayed in Figure 1-22, where 

1 indicates perfect orientation i.e. parallel to film surface, - Vi indicates perpendicular or 

orthogonal orientation and 0 indicates random orientation. The two extremes planar and 

orthogonal alignment o f the sheets can be treated simply by interchanging L and W in 

equation ( 1 ).

S  = -y2 s=o s= 1

Figure 1-22 Definition of orientation of the direction of preferred orientation (n) of the silicate 
sheet normal’s (p) with respect to the film plane. Three values of the order parameter (S) - Vi, 0 and

1 are also displayed |1"81.

1.7.7.3 Solvent Resistance

The improved barrier properties of PLSNs also increase solvent resistance. A study by 

Heinemann et a l [1I50] on epoxy clay nanocomposites demonstrated that these materials 

offered better resistance to organic solvents (such as alcohols, toluene and chloroform). 

This was even more apparent for solvent molecules that were small enough to penetrate 

into the polymer network and large enough so that once they were absorbed, they 

caused molecular damage to the epoxy matrix, as with propanol or toluene. This type o f 

solvent molecule is prevented from diffusing into and damaging the bulk o f the polymer 

network by the presence of the exfoliated silicate layers.
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1.8 Nanocomposites and Conventional Flame Retardants

Flame retardants can be added to most conventional plastics to improve the ignition or 

burning performance. The disadvantage o f the use o f flame retardants is that many of 

the more common additives can also increase the amount of smoke generated during 

burning. The general approach starts with a conventional flame retarded polymer 

formulation, already showing good flammability properties. Then, incorporation of a 

nano dispersed layered silicate allows a significant portion o f the conventional flame 

retardant to be removed from the formulation, therefore either maintaining or improving 

flammability performance and enhancing physical properties. These improvements 

result from reduction in the amount of conventional flame retardant used, which often 

degrades properties, and from the normal reinforcing effect o f the nano dispersed 

layered silicate.

1.8.1 Nanocomposites and Intumescent Flame Retardants

Bourbigot et al. [1'15,] studied the substitution of a PA - 6  MMT (2% MMT) 

nanocomposite for pentaerythritol in a typical ammonium polyphosphate (APP) based 

intumescent flame retardant formulation. Measurable improvement in the mechanical 

and flammability properties o f an ethylene vinyl acetate formulation (EVA-24, 24% 

vinyl acetate) were demonstrated. It was found that as much as one third of the APP 

could be removed whilst maintaining a V-0 rating (the V classification system is 

described in Chapter 2).

1.8.2 Phosphorus Containing Flame Retardants

Phosphates have long been known as fire retardants. Triphenyl phosphate has been used 

in cellulosic materials and dimethyl methylphosphonate has been used as a low 

viscosity liquid additive for ATH-filled polyester resins [1'152]. The fire retardant action 

of aromatic phosphates occurs mainly in the vapour phase leading to the production o f 

incombustible carbonaceous char [l_153]. Consequently fewer toxic gasses are released 

into the atmosphere. Furthermore, the flame-retardant efficiency o f phosphorus 

compounds has been reported to be better than equal-weighted halogenated compounds 

and could be further enhanced when phosphorus is covalently bound to the polymers [1'
154, 1 -155]
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However, one of the less desirable features of the use of aromatic phosphates is that 

they tend to complex with cobalt-based cure promoters, and thereby slow down the 

cure. This problem can usually be overcome by increasing the amount of catalyst used. 

Another means is by heating, which for open mould applications may cause styrene 

emission problems. Akzo Nobel has found some novel cobalt catalysts which have pre- 

complexed cobalt cations, which are less prone to complexation and deactivation by the 

phosphate [,' 156].

1.8.3 Nanocomposites and Melamine

A patent issued to Inoue and Hosokawa reports the use o f silicate-triazine intercalation 

compounds in fire resistant polymeric composites [1-1 5 7 1_ y_o ratings were achieved in 

the UL 94 flammability test through the combination of the known FR properties o f 

triazine, melamine, and those of PLSNs. It was stated that the quaternary 

alkylammonium treatment, typically used to facilitate intercalation and delamination o f 

layered silicates in polymers, increases the flammability o f the nanocomposites. Their 

solution was to use the ammonium salt o f melamine, which have known FR properties
[1 -1 5 8 ]

1.8.4 Other Nanostructured Flame retardants

Carbon nanotubes can also be used as nanofillers for the improvement o f flame 

retardancy. Beyer [1159] first investigated flame retardant properties of carbon nanotube 

based compounds by cone calorimetry. Flame retardant nanocomposites were also 

synthesised by melt blending ethylene vinylacetate copolymer (EVA) with multi-walled 

carbon nanotubes. Fire property measurements revealed that the incorporation of multi 

walled carbon nanotubes into EVA significantly reduced the peak heat release rates 

compared with virgin EVA. Char formation was considered to be the most important 

factor for these improvements. There was also a synergistic effect in the combination o f 

carbon nanotubes and organoclays resulting in an overall more perfect closed surface 

responsible for the improved heat release values.
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1.9 Unsaturated Polyesters

An unsaturated polyester (UP) is a long chain polymer containing a number o f reactive 

double bonds. The unsaturated polyester is formed via a step polymerization reaction, 

the "polyester monomer" required for making cross-linked polyester is formed from 

ethylene glycol. An example of a polymerization reaction is shown in Figure 1-23.

o o
hoch2ch,oh + ci— y— ci

Ethylene Glycol y------(
H H

Vinyl diacyl chloride

O O
ci— 1 y— ci

O O H—Cl

Cl  ̂ >— O—CH,CH,OH

Cl

H H

O O O O
o—c—c—o-

H* H2 V = ,
Cl + H-Cl

H H H H H H
Vinyl Ester

Figure 1-23 A step polymerization reaction forming unsaturated polyester.

Ethylene glycol acts as an organic base in this reaction, with the most important 

characteristic of the ethylene glycol being the hydroxyl groups at either end. The 

polyester reaction can therefore be thought o f as an acid-base reaction. The organic acid 

is a vinyl diacyl chloride, which is also difunctional. The condensation polymerization 

reaction is simply the reaction o f a base along with an acid to form an ester, with 

hydrochloric acid (HC1) being released as a condensation product. Each end continues 

to react to form polyester and this is the raw material for cross-linking. The actual cross- 

linked network is formed via a chain propagation reaction. An example is presented in 

Figure 1-24.

Initiation Free radical

P — c = c -
L H H

Polyester 
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H
-C—c-
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+
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Figure 1-24 A chain propagation reaction forming cross-linked unsaturated polyester chains.

51



The unsaturated polyester formed by condensation polymerization is added to a mixture 

o f styrene (a cross-linker) and peroxide (radical initiator). Radicals attack the 

unsaturation in the polyester or the styrene vinyl groups to initiate a chain 

polymerization reaction, which yields a cross-linked styrene-polyester copolymer. 

Styrene provides the crosslink’s between the polyester chains to form a thermoset 

polymer. This is a chain addition reaction and so no additional products are formed. By 

connecting styrene monomers and unsaturated polyester molecules the free radicals 

grow and form long chain molecules, achieved by both inter- and intramolecular 

reactions. The styrene monomer, unsaturated polyester linear chain and organophilic- 

treated MMT exist together in the nanocomposite system resulting from the typical 

curing mechanism of unsaturated polyester. Therefore, it is very important how each 

component behaves in the formation of the nanocomposite.

Unsaturated polyester resins can be classified on the basis o f their structure and can be 

grouped as follows: (1) ortho resins, (2) isoresins, (3) bisphenol-A fumarates, (4) 

chlorendics, and (5) vinyl ester (VE) resins [1' 160]. Ortho resins are classed as general 

purpose resins, they are based on phthalic anhydride (PA), maleic anhydride (MA), or 

fumaric acid and glycols. Phthalic anhydride is relatively low in price and provides an 

inflexible link in the backbone, however, it has a tendency to reduce the thermal 

resistance o f the laminate together with a limited chemical resistance and so processing 

problems can arise with ortho resins.

Iso resins are prepared using isophthalic acid, MAI fumaric acid and glycol. These 

resins have considerably higher viscosities than ortho resins, therefore a higher 

proportion o f the reactive diluent (styrene) is needed and the resin becomes more 

expensive. Due to the presence of higher quantities o f styrene an improved water and 

alkali resistance is seen in the cured resin, isophthalic resins are hence of a higher 

quality since they demonstrate improved thermal, chemical resistance and mechanical 

properties.
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1.9.1 Formation Mechanisms of Unsaturated Polyester Nanocomposites

Using MMT, Kommann et al. [M61] presented experimental evidence to support the 

formation of UP clay nanocomposites. Silane treatment was used in order to facilitate 

wetting of the silicate particles. However, Fourier Transform Infrared (FT-IR) results 

obtained with silane indicated that there were very few reactions with the silicate and 

therefore silane was not used to form the nanocomposites. It was also found that the 

toughness properties o f the MMT-UP nanocomposite were improved significantly and 

at a MMT content of 1.5 wt% the fracture energy of the nanocomposite was 138 J/ m 

as compared to the pure UP having fracture energy of 70 J/ m .

Suh et al. [1162] reported the properties and formation mechanisms o f unsaturated 

polyester nanocomposites using several preparation routes. Two mixing processes were 

used followed by a curing step, the crosslinking process began by decomposition o f the 

initiators in the curing step. The first type o f mixing used was simultaneous mixing, the 

UP chains, styrene monomers and organophilic-treated MMTs were simultaneously 

mixed for 3 h at 60°C. The second method, sequential mixing is a relatively new 

approach to preparing unsaturated polyester-layered silicate nanocomposites, in the first 

step the pre-intercalates of the UP and MMT were prepared and then in the second step 

the styrene monomer was added to the pre-intercalates, mixing times were varied.

The formation mechanisms, for samples prepared using the simultaneous and sequential 

mixing methods, were investigated using dynamic mechanical thermal analysis 

(DMTA). In the simultaneous mixing method, the styrene monomer was found to move 

more easily than uncured UP chains, generating a higher styrene monomer 

concentration in the MMT interlayer than in any other part of the simultaneously mixed 

system. If polymerisation were to occur under these conditions, the total cross linking 

density o f the sample would decrease due to the low concentration o f styrene in the 

uncured UP linear chains outside the interlayer space.

In the sequential mixing method the styrene monomer diffuses into the interlayer o f the 

MMT that is intercalated with the UP, increasing the cross linking density of the UP- 

silicate nano composite. The styrene monomers that are acting as crosslinking curing 

agents are therefore better dispersed both inside and outside of the silicate layers with
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increased mixing time. It was suggested that the crosslinking reaction takes place 

homogeneously inside and outside o f the silicate layers, and crosslinking density 

reaches the degree of crosslinking density of the cured pure UP [M6 2 1_

1.9.2 Mechanical Properties of Unsaturated Polyester Nanocomposites

In a study by Inceoglu [1' 163] the effects o f unmodified and modified MMT on the 

mechanical properties o f polyester composites were investigated. The effect of 

ultrasonic mixing on the mechanical properties were also examined and the samples 

analysed using XRD, differential scanning calorimetry (DSC) and scanning electron 

microscopy (SEM). Organically treated Na-MMT (O-MMT (Cloisite 30B)) and non

treated Na-MMT were used at various weight percentages 3%, 5%, 7% and 10% 

respectively. The matrix used contained a relatively high styrene content o f around 

39%.

From the XRD patterns obtained it was found that the d-spacing o f the organoclay 

expanded from 19.7 A to 45 A in the composites containing O-MMT, while the Tg 

values increased from 72°C in the unfilled unsaturated polyester, to 8 6 °C in 10% O- 

MMT loaded unsaturated polyester. The SEM micrographs indicated that O-MMT 

exhibited a higher degree of exfoliation than Na-MMT, in which large agglomerates 

were present. In O-MMT composites a maximum value for the Young's Modulus was 

obtained at 5% clay content, which resulted in an improvement o f 17% with respect to 

that of the neat polyester. At approximately 5% clay content the tensile strength 

exhibited a maximum and the strain at break values displayed a minimum. All these 

results indicated that the degree of exfoliation is at a maximum between 3%-5% of O- 

MMT content[M63).

The degree of exfoliation in composites with Na-MMT was lower than that of O-MMT. 

Na-MMT also has a smaller effect on Young's Modulus, which increased by only 10% 

at 5% loading. The tensile strength did not change significantly and the impact strength 

values revealed a continual decrease with respect to increasing clay content. These 

results therefore indicated that there was a lower degree of exfoliation in the unmodified 

clay in comparison to the modified clay [M63].
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In this section the materials, procedures and experimental techniques used in this thesis 

will be described.

2. Clay Preparation Procedures and Experimental Techniques 

2.1 Sodium Ion Exchanged Cloisite

Sodium (Na+) Cloisite is a natural, mainly Na+ exchanged montmorillonite supplied by 

Southern Clay Products. The raw material was dispersed in 75g batches in an excess of 

deionised water (750 ml) in a large glass beaker (1.5 1). The clay/ water mixture was 

then stirred for 1 2  hours using a mechanical stirrer until a clay suspension was formed. 

Sodium hydroxide at 0.3 mole (12g in 250 ml deionised water) was added to the clay 

suspension and stirred for 48 hours. The mixture was then centrifuged and re-dispersed 

in deionised water between 8  and 1 0  times until the conductivity of the final supernatant 

reached below 50 ps. The exchanged clay was then air dried for 48 hours and ground 

manually using a pestle and mortar. The aim of this approach was to produce a 

homoionic sodium exchanged form of Na+ Cloisite, into which it would be easier to 

exchange quaternary ammonium and alkylphosphonium cations and make the gallery 

surfaces organophilic.

2.2 Effect of Gallery Cations

The measured amount of cation varies with the charge on the exchange cation. The 

charge present on sites between the clay layers varies between 40-150 mEq/lOOg, 

however the charge on the external surface of clays is usually in the order of 5-10 

mEq/100 g. This fact makes it possible to distinguish two kinds o f clay, those with low 

exchange capacities (~10 mEq/100 g, e.g. Kao finite) and those with high exchange 

capacities (40-150 mEq/100 g, e.g. Smectite)[21].

The arrangement of adsorbed water may be affected by the gallery cations in several 

ways. The gallery cations provide a bond of varying strength, which holds the layers 

together and controls the concentration of adsorbed water. The effectiveness o f the 

exchange cations is dependent on their size and charge, i.e. Na+, K+ would develop a 

weak clay structure; clay slurry containing these ions would be capable o f adsorbing
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2+ 2+
large concentrations o f water. Ca , Mg would develop stronger links with the clay 

layer and clay slurry containing them would contain lower water concentrations. The 

replacing power of exchangeable cations increases with increasing valence and 

decreasing radius. A frequently quoted order of replacing power is sodium < potassium 

< calcium < magnesium < ammonia < hydrogen < iron < aluminium.

2.3 Quaternary Ammonium and Phosphonium Exchanged Na+ Cloisite

By immersing quantities of Na+ Cloisite in aqueous solutions containing various 

quaternary ammonium and phosphonium bromide salts, the replacement of the resident 

cations was performed. Na Cloisite samples were exchanged with 

decyltrimethylammonium bromide and alkyltriphenylphosphonium bromide cations of 

varying alkyl chain length, plus n-hexadecyl-tri-n-butyl phosphonium Bromide cations. 

Throughout subsequent chapters, the different organoclay species will be referred to 

with respect to the organocation headgroup and the alkyl chain length (Table 2-1).

The cation exchange capacity (CEC) is reported in terms of milliequivalents (mEq) of 

the molecular weight of surfactant cation per 100 g of the dry clay. The CEC of a clay 

species is a measure o f the number o f cations adsorbed on its surface once it has been 

washed free o f excess salt solution. CEC is stated in milliequivalents per 100 g of dried 

material (mEq/100 g).

The cation loading o f the surfactants (Table 2-1) offered to the clay was related to the 

CEC ofN a+ Cloisite (92.5 mEq/100 g). This was calculated from:

Mass of Mass of Clay/g x CEC of Clay/mEq/g x Multiple of CEC

Organocation x Organocation (amu) / Cation Charge)
Required = _____________________________________________________

/ a  1000
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Table 2-1 Sample Identification for alkylammonium and alkylphosphonium exchanged Na+ 
Cloisite

Organic Component Abbreviation 
for Salt

Abbreviation 
for Cation

Abbreviation 
when exchanged 
onto Na+ Cloisite

decyltrimethylammonium 
Bromide, Cn = 10

DTAB DTA+ DTA-MMT

co-decyltrimethylammonium 
Bromide, Cn = 10

cd-DTAB co-DTA+ co-DTA-MMT

( 1 -octyl) triphenylphosphonium 
Bromide, Cn = 8

TP8 B TP8 + TP8 -MMT |

decyltriphenylphosphonium 
Bromide, Cn = 10

TP10B TP10+ TP10-MMT

co- decyltriphenylphosphonium 
Bromide, Cn = 10

co-TP 10B co-TP 10+ co-TP 10-MMT

n-dodecyl triphenylphosphonium 
Bromide, Cn = 12

TP12B TP12+ TP12-MMT

( 1 -tetradecyl) 
triphenylphosphonium Bromide, 

Cn = 14

TP14B TP14+ TP14-MMT

n-hexadecyltriphenylphosphonium 
Bromide, Cn = 16

TP16B TP16+ TP16-MMT

n-hexadecyl-tri-n-butyl 
phosphonium Bromide, Cn = 16

B u l6 B B ul6 + B u l6 -MMT

Na Cloisite was suspended in deionised water (lOg clay in 100ml o f H 2 O), in a 250 ml 

beaker. The clay slurry was mixed for 1 hour to swell the clay galleries with water. The 

calculated mass of decyltrimethylammonium, alkyltriphenylphoshonium or n- 

hexadecyl-tri-n-butyl phosphonium salt was then pre-dispersed in 50 ml deionised 

water, added to the beaker, covered and stirred for 24 hr. These samples were 

repeatedly washed with deionised water and then centrifuged at 17,000 rpm for 1 hr and 

then air-dried for 48 hr to produce the organocation-exchanged samples for analysis. 

This method of preparation was also used to prepare the samples (using the salts in 

Table 2-1), which were used as the organoclay species in subsequent polymer-clay 

nanocomposite preparations.

61



2.4 Industrially Produced Organoclays; Cloisite 10A, Cloisite ISA, Cloisite 30B 

and Garamite.

Southern Clay Products were the suppliers o f the industrially produced organoclays, 

Cloisite 10A, Cloisite 15A, Cloisite 30B and Garamite (Table 2-2). These organoclays 

were industrially prepared by cation exchanging Na-MMT with alkylammonium, 

hydrogenated tallow surfactants. Hydrogenated tallow is composed predominantly of 

octadecyl chains (C„ = 18) with small amounts of lower homologues, specifically 65 % 

- C ,7 = 18; 30 % - Cn = 16; 5 % - C„ = 14).

These organoclays were used in initial behaviour and characterisation experiments 

without further treatment or purification and were chosen to establish their 

compatibility with the unsaturated polyesters. The OH group on the Cloisite 30B 

headgroup was expected to be compatible with the ester on the oligomer, the benzene 

group on the Cloisite 10A headgroup was considered to be compatible with styrene, and 

it was anticipated that Cloisite 15A would be the least compatible with the polyester. 

These organomodifiers are displayed in Table 2-2:
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Table 2-2 Structures of the organomodifiers on industrially produced organoclays

Cloisite 10A

CHo
l +

HX—N — HT

X

Modifier concentration offered = 
125 mEq /100 g clay

Dimethyl hydrogenated tallowalkyl 
benzyl ammonium MMT 

dooi Spacing = 19.2 A

Cloisite 15A

CHo
l + 3

HX—N —HT 
3 1 

HT

Modifier concentration offered = 
125 mEq /100 g clay

Dimethyl dihydrogenated tallowalkyl 
ammonium MMT 

dooi Spacing = 31.5 A

Cloisite 3 OB

CHXHXH
L 2  2

H.C—N—T 
1

c f  c h 2 c h 2o h

Modifier concentration offered = 90 
mEq /100  g clay

Methyl, tallow, bis-2-hydroxyethyl, 
quaternary ammonium MMT 

dooi Spacing = 18.5 A

Na+ Cloisite

Na+

Modifier concentration offered = 
92.5 mEq /100 g clay

Na+
dooi Spacing = 11.7 A

Garamite Modifier concentration offered = 
Unknown

dooi Spacing = 12.2 A
T = Tallowalkyl

Garamite is a mixture o f organosmectite and sepiolite (i.e. a layered and a fibrous clay) 

also produced by Southern Clay Products and is a thixotropic additive for unsaturated 

polyester.
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2.5 Unsaturated Polyester

Three commercially available resins were identified and provided by Scott Bader, 

Crystic 272, Crystic 189LV and Crystic R935. The main structural components are 

presented in Table 2-3. These are a representative selection of resins, ranging from high 

corrosion performance Crystic R935, high performance Crystic 272 and low viscosity 

general purpose resin Crystic 189LV. The product received is a polymeric oligomer 

dispersed in styrene, however the detailed composition of these resins were not 

divulged due to the commercial sensitivity of the resins.

Table 2-3 Main structural components of the commercially available resins

Crystic 189LV Crystic 272 Crystic R935
Phthalic Anhydride 

0

r A
0

0

Isophtf

COC

A

lalic Acid 

DH

COOH

Isophth

COC

X

alic Acid 

)H

COOH

Ethylene Glycol 

/O H
HO

Propyle

h

H3C

C

ne Glycol

—  CH2OH 

>H

Propyle

H

h3c  - 

0

ne Glycol

— CH2OH 

H

Diethylene Glycol 

h o / /N sv/ / ° n  ^ ^ oh

1,5-pentane diol 

h o ^ ^ ^ ^ oh

Neopenl

h3c

tyl Glycol

c h 2o h  

- c h 3 

c h 2o h

Styrene (35 - 38 %) Styrene (39 -43 %) Styrene (36 - 40 %)
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2.6 Characterisation Techniques

The following techniques were used in this thesis to characterise all clays, organoclays 

and nanocomposite materials.

2.6.1 X-Ray Diffraction (XRD)

2.6.1.1 XRD Theory
1 o

X-rays are a high frequency (around 10 Hertz) form o f electromagnetic radiation that 

is produced when atoms o f any substance are struck by high-speed electrons. This form 

of radiation was first reported in 1895 by Wilhelm Rontgen and led to him being 

awarded the first Nobel Prize in Physics in 1901. He discovered, when experimenting 

with high-energy electrons, another type of radiation that had the following unique
T2-2 2-31propertiesL ’ J:

■ it travelled in straight lines

■ it was absorbed exponentially by matter and the exponent was proportional to 

the mass of the absorbing material

■ it darkened photographic plates

■ it created shadows of absorbing material on photosensitive paper

Max von Laue (1912) theorised that if crystals were composed of regularly spaced 

atoms acting as scattering centres for x-rays and if the wavelength of x-rays was about 

equal to the interatomic distance in crystals then it should be possible for a crystal to 

diffract x-rays. He devised an experiment in which x-rays were allowed into a lead box 

containing a crystal, with sensitive film behind the crystal. When the films were 

developed there was a large central point from the incident x-rays, but also many 

smaller points in a regular pattern. These points could only be due to the diffraction o f 

the incident beam and the interference of many beams. By using a crystal as a 

diffraction grating, Von Laue proved that x-rays were not particles, but waves o f light 

with very small wavelengths. W.L. Bragg and his father W.H. Bragg applied Von 

Laue’s discovery to monochromatic radiation who demonstrated that diffraction could 

be treated geometrically like reflection. Bragg’s law was derived allowing diffraction to
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be treated in simple mathematical terms. The Bragg equation provides a simplified 

framework for diffraction that works for basic calculations:

nX = 2d sin 9 Eqn 2-1

where: n = integer, X = wavelength of x-rays, d = d-spacing of crystal, 0  = diffraction angle.

By re-arranging the equation the d-spacing may be calculated as follows: 

d  = n X / 2sin 0 Eqn 2-2

The terminology used for the d-spacing, i.e. dooi, is derived from the separation o f the 

particular crystal planes in the unit cell that is being measured [2 4], and comprises the 

gallery spacing plus the platelet thickness e.g. for MMT: dooi = gallery spacing + 0.96 

(nm) [2'5]. As the sample is rotated the incident beam encounters different planes of 

regular crystalline form and it is these planes that are given a set of indices according to 

their position in the unit cell.

In the early 1930’s soil scientists Hendricks and Fry [2‘6] and Kelley et al. [2'7] applied 

XRD to elucidate the crystalline structure of clay minerals. XRD is a powerful 

technique that can be used to identify the crystalline phases in materials [2’8,2'9,2-10] and 

has been used in the context of this thesis to monitor the position and intensity o f the 

dooi basal reflection of clays or polymer clay nanocomposite materials to determine:

■ that the clay treated with surfactant has been exchanged and the surfactant is 

intercalated into the gallery.

■ the molecular orientation of surfactant molecules in the interlayer space o f the 

organoclays.

■ the level of dispersion o f the organoclay within polymer matrix indirectly 

through peak broadening and loss o f peak intensity (indicating a more 

disordered system).

XRD is dependent on many factors including sample length, alignment, sample 

homogeneity, thickness, position, and the quality o f the calibration standards used 

making quantitative reproducibility difficult.
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An important contributor to the performance of a polymer layered silicate 

nanocomposites (PLSN) is the extent of intercalation and exfoliation o f the organoclay 

and XRD is the principal method that has been used to examine this. An example of X- 

ray scattering data obtained for an unsaturated polyester (UP)/ clay system is shown in 

Figure 2-1 as the scattering intensity versus 20, where 20 is the angle of diffraction.

XRD curve of UP b a sed  PLSN

&wca>
XRD curve 
of neat UP

0 2 4 6 8 10
Angle [°20]

Figure 2-1 XRD traces of neat UP and a UP/ PLSN containing 5 wt% Cloisite 15A.

Below 20 < 10° the XRD trace of neat UP is featureless, yet, the PLSN containing 5 

wt% Cloisite 15 A exhibited distinct peaks. The positions and shapes of these peaks 

provide information on the dispersion/ agglomeration o f the diffracting species, the 

organoclay. The presence o f multiple peaks in the XRD traces was quite common. They 

often originated from different organoclay structures and their incomplete dispersion 

during incorporation in a polymeric matrix [2 U].

X-ray scattering instruments are divided into the more common wide angle and less 

common small-angle X-ray scattering instruments, WAXS and SAXS respectively. The 

scattering angle 2 0  = 2 ° is considered the boundary between the two however, newer 

WAXS instruments are frequently able to provide reliable scattering profiles down to 20 

=  1° .
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2.6.1.2 XRD Analysis

X-rays are produced when high-speed electrons strike the atoms o f another substance. 

The tube, which produces X-rays within the diffractometer, is under vacuum. Inside this 

tube electrons are generated by a glowing tungsten filament (cathode). The electrons are 

then accelerated by voltages (15-60 kV) in order to strike a metal target, which is acting 

as the anode. The accelerated electrons strike the inner more tightly bound electrons of 

the target knocking them out of their orbital positions, and away from the influence of 

their respective nuclei. Electron vacancies are produced, which are subsequently filled 

by higher orbit electrons dropping inwards to fill the vacancy. This drop involves the 

production o f an X-ray photon, the energy o f which is proportional to the difference 

between the energy levels o f the orbitals. This energy difference is dependent on the 

number o f protons in the nucleus attracting the electrons, and therefore depends on 

atomic number, z. The energy difference is related to the wavelength o f the emitted x- 

ray via AE = he/ X.

The most commonly used material for the target and therefore the source o f the x-rays 

is copper, although for the measurements presented in this thesis chromium is an 

important alternative. The wavelength of Cu K a radiation is 1.5418 A while the 

wavelength of Cr K a radiation is 2.291 A. The lowest angle o f diffraction for both 

tubes is 2°. It is called the theta angle, and is measured in degrees. Therefore, using a 

theta angle o f 2 , the largest d-spacing that the copper tube can detect is 44.2 A and the 

largest d-spacing that the chromium tube can detect is 65.6 A. Other target materials 

include cobalt, molybdenum and iron, the wavelength for the K a  lines of x-rays 

produced by these metals are summarised in Table 2-4.

Table 2-4  Summary of Wavelength of x-rays produced by various metals

Material Wavelength Ka line [A]
Cobalt 1.790

Molybdenum 0.711
Chromium 2.291

Iron 1.937
Copper 1.542
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In this thesis powder diffraction measurements in reflection were performed using a 

Bragg -  Brentano geometry. Figure 2-2 illustrates the characteristics of Bragg-Brentano 

geometry.

Detector

X -rays m ay  be 
scattered or 
absorbed b y  
the sam ple

Figure 2-2 Schematic diagram of Bragg -  Brentano geometry

As the X-rays pass through the sample matter, radiation interacts with the electrons in 

the atoms, resulting in the radiation becoming scattered. If the matter is crystalline and 

the atoms are organised in planes, with the distances between the atoms being of the 

same magnitude as the wavelength of the X-rays, then constructive and destructive 

interference will occur [2'3]. In a typical experiment the diffracted intensity (of the 

scattered x-rays that obey Bragg’s Law) is measured as a function o f the diffraction 

angle (2 0 ) and the orientation of the sample, which yields the diffraction pattern.

The use of powder diffraction in the analysis of PLSN's is largely based on the 

established procedures developed for the identification and characterisation of layered 

silicate minerals [2' 12,213]. XRD is used to monitor the position and the intensity o f the 

dooi spacing corresponding to the repeat distance perpendicular to the layers. For clay 

nanocomposites within a polymer the 0 0 1  basal reflections are generally used to 

estimate the dispersion of the organoclay. The interlayer spacing o f the layered silicates 

is usually calculated from the position o f the 001 peak by employing Bragg’s Law 

(equation 2 -2 ).

Table 2-5 displays the diffraction profiles for selected examples of PLSNs. For 

immiscible mixtures the d-spacing does not change upon blending with the polymer, 

although the peak intensity may be reduced.

Incident
X-rays

t
X-ray tube

Sample
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Table 2 -5  Diffraction profiles for different types of intercalated and exfoliated nanocomposites

(a) Intercalated/Aggregated

Aggregated 
clay stacks

| 2 0
The finite layer expansion associated with intercalated structures results in a new 

basal reflection corresponding to a larger gallery height. If the clay layers are ordered 

then intense and sharp dooi and doo2  reflections are visible.

(b) Intercalated/Dispersed

2 0
As the clay layers become less ordered (i.e. fewer large stacks), the peaks become 

broader and less intense and the doo2 reflection is no longer visible.

(c) Partially Exfoliated

2©

/ ‘V}'

/ /

/
/

Exfoliated
Layers

If a nanocomposite is made up of regions o f exfoliated layers in amongst stacks o f 

unexpanded clay, then this results in the dooi reflection shifting to lower angles for the 

unexpanded clay, than would be expected. This is as a result of the peak position and 

intensity being the sum of the dooi reflection for the unexpanded clay on top o f 

scattering from the exfoliated, disordered platelets.

= / — = __/

/  ^ / /

/ \\

Unexpanded
Layers

As the nanocomposite becomes more exfoliated and there are fewer unexpanded clay 

stacks then the intensity of the peak decreases and the breadth of the basal reflection 

increases.
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(d) Exfoliated

/

1 
1

\ 
/

/ 
/ 

\ 
\

I
1

/ / __
/  —

/ 1\/\

B

2 ®

The extensive layer separation (beyond the resolution o f Bragg-Brentano geometry) 

of exfoliated structures does not result in a new, observable d-spacing, but leads to 

loss o f intensity and eventual disappearance of the d-spacing associated with the 

intercalated system [2' 14]. An exfoliated nanocomposite displays a smooth scattering 

profile at low angle (trace A) indicating disruption of the once ordered clay layers. 

However, a scattering profile, which is similar to the one presented for trace B could 

indicate large packets of disordered layers separated by microns of polymer.

(e) Other Possible Diffraction Profiles

It is possible to achieve a combination of a number of profiles detailed above, which 

could lead to a diffraction trace, which is difficult to interpret. Other profiles are also 

possible such as disrupted stacks and card house structures. Disrupted stacks could 

give rise to an XRD pattern with a weak and broad d o o i  peak or no d o o i  at all as the 

clay layers are not optimally aligned, this could be misinterpreted as an 

intercalated/dispersed or exfoliated system. The clay layers in a card house structure 

are also not aligned correctly and would not give rise to an XRD pattern, however 

clay particles could possibly be visible by eye in the samples (as observed in some o f 

the samples in Chapter 4 and Chapter 5, which did not diffract).

Disrupted stacks Card House Structure

Vaia et al. [212] examined the kinetics o f polymer melt intercalation and demonstrated 

the real-time evolution o f these x-ray scattering patterns, providing detailed information 

on the dynamics of structure formation and intercalation.
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It is especially critical to determine the presence o f exfoliated layers because o f their 

association with property enhancements although, the large d-spacings (dooi > 2 . 0  nm) 

and absence o f hkl reflections requires the collection of data at scattering angles, 2 0 , of 

less than 10°. However, contributions to the broadening and weakening o f basal 

reflections occur as a result o f (a) layer disorder, (b) silicate volume fractions less than 

0.1 and (c) experimental conditions. Consequently special considerations are necessary 

when preparing samples, performing experiments and interpreting different traces from 

PLSNs.

The absence o f basal reflections in powder diffraction spectra is often interpreted as 

evidence for an exfoliated PLSN. However, subsequent electron microscopic 

investigations reveal the presence of large quantities of disordered layers separated by 

microns of polymer devoid o f layers, which is not the desired exfoliated morphology.

2.6.1.3 XRD Experimental Parameters

Samples were analysed on either a Philips PW3710 or a Philips PW1710 X-ray 

Diffractometer, which contained a Cu or Cr-tube, respectively. The instrumental 

settings that were used are summarised in Table 2-6.

Table 2-6  Settings for XRD measurements

Parameter Cr Settings Cu Settings
Generator tension [kV] 30 40
Generator current [mA] 40 40
Starting angle [°] 1 . 8 2 !
End angle [°] 12-75 12-75
Step size [°] 0 . 0 2 0 . 0 2  j
Time per step [sec] 1 1

For preliminary characterisation of clay minerals, scanning from 1.8-40 °20 was 

considered adequate. The diffraction patterns for the modified organoclays were 

recorded over an angular range o f 1.8-25 °20 and the diffraction patterns for the 

unsaturated polyester clay nanocomposites were recorded from 1.8-12 °20. A scan rate 

of 2  ° 2 0  per minute was used unless otherwise stated.
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2.6.2 Thermogravimetric Analysis (TGA)

2.6.2.1 Thermal Analysis Techniques

A variety o f thermo-analytical techniques may be used to investigate the thermal 

stability of organoclays and polymer-clay composites; these include thermogravimetric 

analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry 

(DSC) and thermo-mechanical analysis (TMA). In this thesis, the main thermal analysis 

technique used was TGA (also coupled with mass spectrometry (TG-MS)) and was used 

to measure changes in thermal stability and degradation temperature(s) as a function of 

the type or amount of additive in clay and polymer materials.

2.6.2.2 TGA Analytical Process

TGA involves the continual recording of a sample’s weight when it is subjected to a 

precise, usually linear, temperature program [215]. The sample is contained in a 

refractory crucible within a furnace and suspended from a sensitive recording balance 

and therefore mass and temperature readings can be made simultaneously. Samples may 

be heated from room temperature up to 1000 °C using the metier system, 1100 °C using 

the Cahn system and 1650 °C using the Netzsch system. The TG weight loss curve plots 

weight loss on the y axis and increasing temperature to the right on the x axis. Subtle 

weight changes are often difficult to determine and so an alternative representation was 

regularly used which presents the negative 1st derivative o f the TG weight loss curve i.e. 

the derivative thermogram (DTG) in which -dw/dT is plotted on the y-axis and 

temperature on the x-axis. The DTG curve presents the rate of change in mass, with 

respect to the rate of change in temperature (Figure 2-3).

T G O ine DTG Curie

Temperature Temperature

Figure 2-3 Diagrammatic representation of a typical TG curve and its associated DTG profile
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Several experimental factors influence the shape o f the TG curve, which include [215];

■ Sample size: Large samples may produce poorly resolved events due to 

temperature gradients within the sample and/ or trapping of volatile materials.

■ Particle size distribution and packing density: To optimise reproducibility 

these should vary as little as possible.

Purging atmosphere/ flow: In this thesis nitrogen and air were used as a flow 

gas. The type of reaction occurring as the sample is heated is highly dependent 

on the choice of purge gas. The interaction of the sample and the gas involved 

with it is crucial. Under an inert nitrogen atmosphere pyrolysis is likely to occur, 

however under the reactive atmosphere o f air oxidation is more likely to occur. 

An atmosphere rich in decomposition products would delay the corresponding 

decomposition o f the heated material until a higher temperature. This principal 

is known as Le Chatelier’s principal. So for the equilibrium:

X(solid)  ̂ Y(solid) Z (g as)

when an excess of Z is present it is less likely that X will decompose therefore 

fast flow rates of purge are an advantage, so that the reaction products are swept 

away upon release.

■ Heating rate: The resolution o f the TG curve decreases as the difference 

between the sample’s actual and recorded temperature increases therefore a slow 

heating rate is used as standard to ensure the sample’s recorded temperature and 

actual temperature remain as close as possible.

The sample holder: To ensure conclusive results the sample container must 

not react with the sample and therefore alumina 

crucibles were used. The depth of the sample holder 

can also influence the degradation mechanism as the 

deeper the crucible then the poorer the purge flow to 

the sample, thus slowing down degradation.
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2.6.2.3 TGA Experimental Parameters

For all samples, TGA was performed on a Mettler-Toledo TA8000 thermogravimetric 

analyser where a nitrogen or air gas flow was maintained at a rate of 2 0  cm 3 min'1. 

Standard 10 mg samples, which were sampled from the same area o f the PLSN (5mm 

from the edge o f the sample) were first conditioned at 35 °C for 15 minutes in order to 

remove weakly physisorbed components and obtain a stable weight reading. The 

temperature was then ramped at a rate of 20 °C min ' 1 up to 800 °C.

2.6.3 Evolved Gas Analysis (EGA) by Thermogravimetry-Mass Spectrometry 

TG-MS)

TG analysis is able to record weight changes occurring upon sample decomposition, but 

is unable to assign weight losses to specific components and must therefore be used in 

conjunction with other techniques (e.g. Mass Spectrometry or Fourier transform 

infrared spectroscopy), to provide corroborative evidence o f the association o f specific 

weight losses with particular components. Wie et al. [216] used TG-FTIR-MS for the 

thermal analysis of organically modified layered silicates (OLS) and compared them to 

pure montmorillonite. They examined the effect of chemical variation (alkyl chain 

length, number o f alkyls and presence o f C=C bonds) of the organic modifiers on the 

thermal stability and degradation products of the organically modified MMT. They 

found that TG-FTIR-MS provided useful information on the thermal decomposition of 

OLS such as decomposition products and that the release of organic compounds from 

OLS was staged and occurred via different mechanisms.

Another study by Wie et al. [217] examined the nonoxidative thermal degradation o f 

MMT and OLS MMT using TG-FTIR-MS and pyrolysis/GC-MS. Analysis o f products 

(GC-MS) indicated that the initial degradation o f the surfactant in the OLS followed a 

Hoffmann elimination reaction and that the chain length, surfactant mixture, exchanged 

ratio, or preconditioning (washing) did not alter the initial onset temperatures. However, 

these factors were found to affect the initial mass loss.
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In this thesis two different systems have been used a Unicam-Synergic Chemical 

Analysis System (‘Synergy’ system) and a NETZSCH STA instrument, both were used 

to perform evolved gas analysis (EGA). Both systems consisted o f a thermobalance to 

record the weight loss o f a sample and a mass spectrometer to detect and identify the 

fragment ions from the evolved gases. The MS output corresponds to different weight 

losses in real-time. This type o f analysis is referred to as real time analysis, since 

time/temperature related weight losses observed in the TG are related to specific 

features seen in the total ion current trace from the spectrometer. EGA by real-time MS 

will be referred as TG-MS throughout this thesis.

2.6.3.1 TG-MS Interface

The Thermo Unicam system comprises an interface, which ensures that evolved gases 

are sampled (Figure 2-4) before they are allowed to diffuse throughout the entire 

volume of the TGA reaction cell [218l

The interface employs a ‘sniffer’ tube for MS sampling, it is constructed o f a high 

temperature alloy and extends to a position just above the sample cup where it does not 

interfere with the TGA hang-down wire. The vacuum conditions that the MS unit is 

operated under serve to draw the evolved gases towards it along the transfer line. The 

transfer line temperature was optimised and run operated at 200 °C.
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Figure 2-4  Schematic diagram of the Unicam TG-MS Interface System |2'191.
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2.6.3.2 Mass Spectrometer

By coupling the thermal analysis instrument with a fast Quadrupole Mass Spectrometer 

(QMS) the detection and identification o f gaseous components are possible in exact 

time correlation with the other thermal analysis signals. The mass spectrometer used in 

the ‘Synergy system’ was an ATI Unicam Automass System 2 quadrupole mass 

spectrometer, and the NETSCH ST A system used a QMS 403 C made by Aeolos®. 

During this work the MS was operated in Electron Impact (El), positive ionisation 

mode. It is composed of three main units:

■ Ion source

■ Quadrupole mass analyser

■ Detector

2.6.3.3 Ion Source

The ion source is where the sample is introduced into the MS. In real time TG-MS the 

transfer line is directly interfaced with the ion source. The sample passes through an 

electron beam (70 eV) and ionisation occurs when an electron strikes a molecule and 

imparts enough energy to remove an electron from that molecule. The following 

example demonstrates the reaction methanol would undergo in the ion source:

CH3 OH + 1 electron —> CH3 OH* (radical cation) + 2 electrons

Singly charged ions are usually produced by El ionisation and contain one unpaired 

electron. This charged ion (i.e. CH3 0 H+*) is called the molecular ion and remains intact. 

Energy imparted by El is typically more than that required to produce the molecular ion 

and this excess energy causes instability in the molecular ion, causing it to break into 

smaller fragments to give a characteristic mass spectrum. The methanol ion may 

fragment in various ways, with one fragment carrying the charge and one fragment 

remaining uncharged. For example:

CH3 OH "  (molecular ion) —» CH2 OH+ (fragment ion) + H’

Or

CH3 OH 1 ’ (molecular ion) —» CH3+ (fragment ion) + *OH
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A typical El fragmentation pattern of methanol is displayed in Figure 2-6, and mass to 

charge ratio (m/z) for each fragment are displayed in Table 2-7.

Table 2-7  Mass to charge ratio (m/z) for CH3OH4* fragment ions

Fragment Mass to Charge Ratio (m/z)
CH3OH+b 32
c h 2o h + 31
CHOH 30
CHO 29
CO 28

c h 3+ 15
•OH 17

M e t h y l  A l c o h o l
1 0 0  96-

31

29

32

50  96

28
30

1 0 20 30

Figure 2-6  E l fragmentation pattern of Methanol

Qualitatively this type of spectrum demonstrates important features such as:

■ The ions produced are singly charged and the m/z ratio corresponds to the 

‘weight’ of the fragments produced. Not only is the elemental composition o f 

each fragment ion accessible, but so are the molecular weight and molecular 

formula.

■ The ions produced may be related to the structure o f the intact molecule using 

well-understood principles.

■ The mass spectra are reproducible. This is o f crucial importance when libraries 

of reference spectra are used to aid structure determination.
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However, there are two main disadvantages o f El, 1) there are limitations in the range 

of compounds which may be successfully ionised and 2) the utility o f the resulting 

spectra. Samples must be volatile yet thermally stable to yield an El spectrum and this 

prohibits the study of many unstable and thermally involatile analytes.

The utility of El spectra may be reduced by the degradation/ breakdown of fragment 

molecules resulting from less than optimal transfer line temperatures before being 

analysed in the MS. This would result in no ‘effective molecular ion’ being detected, in 

these cases the molecular weight may not be determined and one of the single most 

valuable pieces o f analytical information is lost. Therefore it is very important to 

optimise the transfer line temperature and introduction o f the sample into the MS 

source, in this thesis the transfer lines were optimised at 200 °C.

2.6.3.4 Ion Analyser (Quadrupole)

Molecular ions and fragment ions produced during ionisation are accelerated by 

manipulation of the charged particles through the mass spectrometer, whereas 

uncharged particles and fragments are pumped away. Ion filters using positive and 

negative voltages control the path of ions through the quadrupole. Based on their mass 

to charge ratio (m/z) the ions travel down the path and the electric field triggers the ions 

to oscillate in the x and y directions. El ionisation produces singly charged particles, so 

the charge (z) is one. Therefore, an ion’s path through the quadrupole is dependent on 

its mass.

2.6.3.5 Mass Detector

The MS detector works by producing an electronic signal when struck by an ion. A 

series o f timing mechanisms integrates the signal abundance and associates it with a 

particular rfrdc voltage ratio (m/z). By doing this the associated mass and signal 

abundance are correlated. The mass detector utilised in the Netzsch ST A instrument 

was an SEV (Channeltron) detector.
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2.6.3.6 Advantages of the STA 409 PC Luxx® when coupled to the QMS 403 C

Aeolos®

Evolved gases are directed straight to the gas analyser along a heated transfer line, 

therefore eliminating condensation and decomposition products, via the absence of 

pressure reduction orifices. This achieves high detection sensitivity and facilitates 

quantitative detection of all identified gas components. The QMS 403 C Aeolos® EGA 

instrument can analyse a mass range between 1 and 300 amu.

2.6.4 X-ray Fluorescence (XRF) Spectrometry

An XRF spectrometer was used for quality assurance by quantitatively analysing the 

chemical composition o f exchanged organo-clays, through the determination o f the 

quantity o f elemental oxides present in all samples, using pressed powders. X-rays are 

directed towards a sample and elements present in the sample produce characteristic 

fluorescence radiation at specific wavelengths. The amount of fluorescence at a specific 

wavelength is then related to the concentration of the element in the sample.

2.6.5 'H and 31P NMR

'H and 3IP NMR spectra were obtained using a Buker B-ACS 60, 200 MHz instrument. 

The spectra were used to determine the product purity and to monitor any chemical 

shifts in the different methacrylate functionalised phosphonium-organomodifiers that 

were synthesised. By monitoring the chemical shifts in the signal it was possible to 

determine whether intermediate products were still present or whether the reaction had 

gone to completion.

2.6.6 Infrared Spectroscopy

Infrared (IR) radiation is electromagnetic radiation with a wavelength positioned 

between the visible and the microwave regions of the electromagnetic spectrum. 

Information on the vibrational (and rotational) changes within molecules can be 

obtained from the molecular energies found within this region. The IR region can be 

divided into three sub-regions, the near IR region which covers the range o f 14,000- 

4000 cm'1, the mid-IR region between 4000-400 cm '1 and the far IR region between 200
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and 20 cm '1. An infrared spectrum is formed as a consequence o f the absorption of 

electromagnetic radiation at frequencies that correlate to the vibration of specific sets of 

chemical bonds within a molecule [2'21].

Fourier Transform Infrared Spectroscopy (FT-IR) for the characterisation o f PLSNs has 

been used initially in studies of the polymer matrix morphology, e.g., conformation and 

crystallisation behaviour of polystyrene (PS) [2'22] or a- to y-crystalline form transition 

o f PA-6 [2'23l  By comparing the experimental and calculated spectra, the type and 

intensity o f interactions can be identified [2 24]. FT-IR has been utilised in this thesis to 

determine surface effects between the front and back surfaces o f PLSNs and to 

determine whether methacrylate-functionalised phosphonium-organomodifiers have 

remained exchanged onto Na+ Cloisite, after the washing process.

2.6.6.1 Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR spectroscopy is based on a Michelson interferometer and a mathematical 

procedure developed by Fourier to transform the time domain to the frequency domain
T2 25 2 26 2 2711 ' ’ ’ J. Figure 2-7 presents a schematic illustration o f a Michelson interferometer.

In such a system the radiation from the light source (a mercury lamp or a silicon carbide 

rod) is sent to a beam splitter made from infrared transparent material (e.g. KBr). The 

beam splitter reflects approximately half the light onto a fixed mirror (reference mirror) 

that in turn reflects the light back to the beam splitter. The light that is not reflected of 

the beam splitter passes through onto a continuously moving mirror (objective mirror). 

The objective mirror is moving at a constant, known velocity, the light is reflected off 

this mirror and recombined with the light reflected off the fixed mirror at the beam 

splitter. The radiation is then passed through the sample and onto the detector (Figure

2-7 represents this as a screen). Commonly used detectors are the liquid nitrogen cooled 

mercury cadmium telluride (MCT) detector (used in this thesis) or the (less sensitive) 

deuterated triglycine sulphate (DTGS) detector.
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Figure 2 -7  Schematic illustration of a Michelson Interferometer |2'281.

FT-IR has three major advantages over the traditional dispersive approach to record an 

infrared spectrum:

1. Throughput (Jacquinot) advantage: No slits are needed in this set-up, 

therefore the amount of radiation that reaches the detector is higher and an 

increased signal to noise ratio can be obtained.

2. Multiplex (Fellgett) advantage: All frequency elements reach the detector 

simultaneously in this set-up, therefore the spectrum can be obtained in a very 

short time.

3. Laser reference (Connes) advantage: Derived from the sampling method, the 

time interval at which information is sampled is determined by utilising a laser 

with a fixed wavelength (usually 632.8 nm). As the time interval can be 

measured very accurately the frequency domain spectrum obtained from the 

Fourier transformation is also very accurate. This allows the averaging of scans 

to reduce the signal to noise ratio of the final spectrum.

A disadvantage of the FT-IR system is that unwanted bands in the spectrum, from CO2 

or water vapour absorption, can only be removed by purging the instrument with a dry, 

infrared inactive gas such as nitrogen or subtraction of a spectrum o f the sample 

compartment in the absence o f a sample.
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The most basic sampling technique in infrared spectroscopy is the transmission set-up. 

Here the light from the source is passed through the sample onto the detector as 

depicted in Figure 2-8.

D

0 - *

m
a

I

e
t
e

1 t
Source o

e r

Figure 2-8  Schematic Representation of transmission Set-up

Information on the bulk o f the sample can be obtained with this technique. The 

thickness o f the samples that can be analysed by this method depends on their 

absorption properties. Only thin films can be analysed for strongly absorbing samples.

2.6.6.2 Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

(ATR-FTIR)

Attenuated total reflectance (ATR) spectroscopy, also known as internal reflection 

spectroscopy (IRS), is especially suitable for the analysis o f samples that are difficult to 

investigate by transmission measurements such as physically thick samples and strongly 

absorbing solids or liquids. The sample is placed in contact with an ATR crystal. The IR 

radiation sent through this crystal undergoes total reflection at the sample/crystal 

interface. The number o f total reflections occurring is dependent on the size and 

geometry o f the crystal as well as the angle o f incidence of the incoming light [2'29].

ATR spectroscopy is a surface technique and the most important theoretical feature is 

associated with the properties of the evanescent field created at the surface o f the ATR 

crystal. An evanescent field is created when light (in this case infrared radiation) 

travelling at an angle greater than the critical angle through a medium with a high 

refractive index (the ATR crystal or infrared element, IRE) undergoes total internal 

reflection at the interface with a material of lower refractive index.
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The evanescent field decays exponentially with increasing depth from the interface. The 

rate of decay o f the evanescent field depends on the wavelength, the angle o f incidence 

o f the light and the refractive indices o f the denser and uncommon medium (ATR 

crystal and sample). The depth at which the field has dropped to 1/e («36.8 %) of its 

original value has been defined as the depth of penetration. Harrick has arbitrarily 

defined this parameter, however, the naming has caused some confusion. The depth of 

penetration can be calculated using the following equation [2'30].

d„ =  A  _ _ _  Eq" 2-3
2;r(sin 0 - n 2x ) '

where:

0: Angle of incidence, n2i=n2/ni, n i: refractive index of the IRE, n2: refractive index of the sample,

A,]=X/ni

A major problem with ATR is the excellent sample contact required to obtain 

quantitative spectra. To achieve good sample contact the surface o f the sample must 

remain, as flat as possible and therefore the pressure applied to the sample must be 

powerful enough to press the sample against the crystal but not damage the crystal or 

the sample. To obtain reproducible results the applied pressure has to remain constant [2‘
3 1 ]

The detection range depends on the type of detector and the material o f the beam 

splitter. For ATR measurements a more sensitive detector needs to be used than for 

transmission as the energy reaching the detector is much lower because o f absorption 

during reflection and losses in the optical system.

2.6.6.3 ATR-FTIR Experimental Parameters

ATR-FTIR spectra were recorded on a Nicolet Nexus FTIR spectrometer equipped with 

a Graseby -  Specac Golden Gate™ accessory, a mercury cadmium telluride (MCT) 

detector and a single reflection diamond crystal. Spectra were recorded using the 

instrument settings summarised in Table 2-8.

85



Table 2-8  Settings for ATR-FTIR measurements on the Nicolet Nexus

Parameter Setting
Number of Scans 

Mirror Speed [cm/sec] 
Resolution [cm 1] 

Apodisation Function 
Spectral Region [cm'1]

10
1.8988 1 

4
Triangular 
4000 - 650

2.6.7 Testing For Flammability

Within this thesis the UP nanocomposites were subjected to several tests for 

flammability namely the Underwriters Laboratory (UL94) and the Limiting Oxygen 

Index (LOI) tests. As with any test procedure, the tests for flammability are designed for 

the laboratory and quality control. In real fires plastics may behave significantly 

differently and the results of laboratory testing cannot predict the actual performance o f 

a particular plastic or product.

2.6.7.1 Underwriters Laboratory (UL94)

UL testing is a method of classifying a material’s tendency to either extinguish or 

spread a flame once it has been ignited and although originally developed by UL, it has 

now been incorporated into many National and International Standards (ISO 9772 and 

9773). The testing involves applying a flame to a sample in various orientations and 

assessing the response o f the material after the flame is removed. Materials that burn 

slowly or self extinguish and do not drip flaming material, rank highest in the UL 

classification scheme.

Horizontal Burning Test (94HB) - This is the easiest test to pass and materials that 

pass the vertical burning test will usually be acceptable for applications that require a 

horizontal burn, HB, only. The test involves applying a flame to one end of a horizontal 

bar of the plastic for 30 seconds or until the flame front reaches the specified mark. 

Figure 2-9 illustrates the horizontal burning test, and depicts a typical sample setup 

including dimensions. I f  burning continues then the time taken for the flame to travel 

between two set points is measured. If  burning stops then the time o f burning and the 

damaged length are measured.
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Figure 2 -9  Schematic illustration of the Horizontal Burning Test (94HB)

A material will be classified 94HB if the time taken to reach the second mark is greater 

than the specified minimum or if burning stops before the second mark.

Vertical Burning Test (94V) - This is a more demanding test than the HB test because 

the specimen is tested in the vertical orientation and the material burning at the lower 

end of the sample preheats the material in the upper portion of the specimen. Figure 2— 

10 illustrates the vertical burning test, and depicts a typical sample setup including 

dimensions. A test flame is applied to the lower end o f the test specimen and the 

material is classified according to Table 2-9. UL94V requires materials to be self- 

extinguishing to pass the test.

C F =

20 ±  1 mm

BURNER

1 _

£

SPECIMEN

10 ±  1 mm
£

COTTON

7
300 ±  10 mm

approx. 50 mm

\  6 mm mox.

■ j -

Figure 2-10 Schematic illustration of the Vertical Burning Test (94V)
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There are 12 flame classifications specified in UL94 that are assigned to materials based 

on the results of these small-scale flame tests. These classifications, listed below in 

descending order of flammability (Table 2-9), are used to distinguish a material’s 

burning characteristics after test specimens have been exposed to a specified test flame 

under controlled laboratory conditions [2'32].

■ Six of the classifications relate to materials commonly used in manufacturing 

enclosures, structural parts and insulators found in consumer electronic products 

(5VA, 5VB, V-0, V -l, V-2, HB).

■ Three o f the remaining six classifications relate to low-density foam materials 

commonly used in fabricating speaker grills and sound-deadening material (HF- 

1, HF-2, HBF).

■ The last three classifications are assigned to very thin films, generally not 

capable o f supporting themselves in a horizontal position (VTM-0, VTM-1, 

VTM-2). These are usually assigned to substrates on flexible printed circuit 

boards.

To achieve either V-0, V-l or V-2 ratings the criteria displayed in Table 2-9  have to be 
met:

Table 2-9 UL94 Ratings and Criteria |2'331

UL94-V
Rating

Duration of flaming 
for total flame 

application (Sec)

Total duration of 
flaming for 5 

samples (10 flame 
applications) (Sec)

Dripping of Flaming 
Material

V-0
(Best)

Less than 10 sec Less than 50 sec None Allowed

V-l
(Good)

Less than 30 sec Less than 250 sec None Allowed

V-2
(Drips)

Less than 30 sec Less than 250 sec Dripping o f flaming 
material which ignites 

the cotton placed below 
the specimen



2.6.7.2 Sample Specification

All samples were analysed using an in-house version of the UL94 vertical burning test. 

The samples were 1.5 mm thick, with dimensions of a standard microscope slide (75 x 

25 mm). A standard butane gas ‘creme brulee’ torch (purchased from a local department 

store) was utilized with a set flame size of 40 mm. The samples were clamped in the 

vertical position, and then a flame applied to the bottom right hand corner o f the sample 

for 10 seconds, the time it took for the flame to extinguish was recorded. 30 seconds 

after the flame had extinguished, the flame was re-applied in the same position for a 

further 10 seconds and the time recorded for the flame to extinguish. Both extinguish 

times were combined to give the total duration of flaming and the UL94-V rating.
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3. Preparation and Characterisation of Commercial Organoclays and their 

Nanocomposites

3.1 Introduction

This chapter aimed to assess the commercially available nano fillers (Table 2-2 of 

Chapter 2) and to optimise mixing conditions for their dispersion into different 

unsaturated polyester resins (namely Crystic 272, Crystic 189LV and Crystic R935 

(Table 2-3 of Chapter 2)). This was a scoping exercise carried out in the early stages o f 

the project, before Cloisite 15A and Crystic 189LV were chosen as the optimal 

materials. It was also hoped to prepare experimental resins containing small amounts 

(<2%) of phosphonium groups in the unsaturated polyester backbone. It was anticipated 

that this small number o f phosphonium groups would bind to the clay nanolayers and 

promote the dispersion o f the clay throughout the resin. All organoclays and their 

resulting nanocomposites were characterised using XRD and TGA. The XRD and TGA 

experimental parameters can be found in sections 2.8.3 and 2.9.3 of Chapter 2. A 

summary of the nanocomposite preparation parameters can be found in Table 3-2.

3.2 Preparation and Formulation

Unsaturated polyester-clay (UP-clay) nanocomposites were prepared with variations in 

the sample composition and mixing procedure.

3.2.1 Preparation

The unsaturated polyester-clay nanocomposites (UPCN) were prepared by in-situ 

polymerisation. This method was chosen as it provided a straightforward means o f 

casting the films once the nanocomposites had been prepared. The thermal stability and 

dispersion of the nanocomposites into the unsaturated polyester was investigated 

through the production of a wide range o f samples. The samples were prepared using 

different organically modified montmorillonites and unsaturated polyesters, by varying 

the stirring time (to help expand the clay layers) and mixing speed (to investigate the 

effect of shear and clay loading) as displayed in Table 3-2.
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Initially to be able to observe how the base resins behaved when cast under the 

manufacturers instructions, a series o f experiments were carried out in which Crystic 

272, 189LV and R935 were cast under the conditions recommended by Scott Bader, the 

manufacturers. Accelerator E (a cobalt accelerator containing 0.45% cobalt) provided 

by Scott Bader was added to 40g of Crystic 272 at 2 wt% and mixed at 1000 rpm for 15 

minutes, Catalyst M (50% methyl ethyl ketone peroxide (MEKP)), also provided by 

Scott Bader, was then added at 2 wt% and the blend poured onto glass slides to gel.

3.2.2 Formulation

Organoclay, accelerator and 40 g of resin (provided by Scott Bader) were added 

together in a 100 ml waxed paper cup. A variety of organoclays were used at a range of 

concentrations between 1 and 5 wt% of the total weight of resin used. The accelerator (2 

wt%) was mixed manually with a wooden spatula into the resin before the organoclay 

was added. The mixture was then blended together using a dispermat mixer equipped 

with a circ toothed dispersing impeller with a diameter of 2cm. The mixing speed and 

mixing time were varied during initial experiments. After the mixing step was complete 

the catalyst (2 wt%), was mixed manually into the resin with a wooden spatula and then 

the resin cast into a mould to produce samples with dimensions o f 75 x 25 x 1.5 mm. 

The cast resins were then postcured, which consisted of a cure at room temperature for 

24 hours and then heating to 80 °C for 3 hours. Table 3-1 displays the mixing regime 

adopted.

Table 3-1 Mixing regime adopted

1) Resins - Crystic 272 2) Organoclays - Cloisite 30B
Crystic R935 Cloisite 10A
Crystic 189LV Cloisite 15A

Garamite
3) Mixing Procedure - Resin + Accelerator E (2 wt%)

+ 5 wt% organoclay
(mixed for 15 or 30 minutes at 1000, 8000 or 14,000
rpm)

+ Catalyst M (2%)
(stirred with wooden spatula for I min)
(poured onto glass slide and levelled after resin began
to thicken)

4) Postcuring - 24 Hours at room temperature followed by 3 hours at 80 °C
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Table 3-2  Summary of the nanocomposite preparation parameters

wt% clay (with Clay UP Mixing Speed Mixing Time
respect to UP) (rpm) (min)

— — 1000 15
5 Cloisite 30B 1000 15 |
5 Cloisite 30B 1000 30
5 Cloisite 30B 8000 15
5 Cloisite 30B 8000 30
5 Na+ Cloisite

(Nr—CN
o

1000 15
5 Cloisite 10A 1000 15
5 Cloisite 10A 8000 15
5 Cloisite 15A mv 1000 15
5 Cloisite 15A c

u 8000 15
5 Garamite 1000 15
5 Garamite 8000 15
1 Cloisite 30B 1000 15
3 Cloisite 30B 1000 15
5 Cloisite 30B 1000 15
10 Cloisite 30B 1000 15

— — 1000 15
5 Cloisite 30B 1000 15
5 Cloisite 30B 8000 15
5 Cloisite 30B 14000 15
5 Cloisite 30B 1000 30 |
5 Cloisite 30B in 8000 30 |
5 Cloisite 30B m

Os 14000 30 !
5 Sodium Cloisite

o

in

1000 15
5 Sodium Cloisite 1000 30
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3.3 Results and Discussion

3.3.1 Effect of Organic Modifier on the Clay

The dispersion o f four commercially available organically modified clays (at 5 wt% 

organoclay) in Crystic 272 were investigated (Cloisite 10A, Cloisite 15A, Cloisite 30B 

and Garamite).

3.3.1.1 XRD Analysis of the Effect of Organic Modifier on the Clay

Cloisite 15A1K 15Min

Cloisite 10A1K 15Min

Cloisite 30B 1K 15Min

Garamite 1K 15Min

2 4 6 8 10 12 14
Angle [°20]

Figure 3-1 XRD traces (Cr tube) for Crystic 272 
composites containing 5 wt% of various organoclays 

-  Traces are offset for clarity
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Cloisite 10A 1K  15Min

Cloisite 30B 1 K 15Min

Garamite 1K 15Min

2 12 144 6 8 10

Angle [°20]

Figure 3-2 XRD traces (Cr tube) of various 
organoclays -  Traces are offset for clarity

An increase in the layer spacing was observed in the XRD traces presented in Figure 3 -  

1 compared to those in Figure 3-2, indicating that intercalated nanocomposites were 

produced. Cloisite 30B demonstrated the largest increase in layer spacing upon 

intercalation of Crystic 272 (from 17.2 A to 34.4 A (+ 100 %)) however, all clays 

reached a similar ‘final spacing’ near 34 A (Cloisite 15A = 34.0 A and Cloisite 10A =

33.7 A). The increase in spacing between these samples and the pure clay was 76 % for 

Cloisite 10A (19.2 to 34.0 A) but only 8 % for Cloisite 15A (31.5 to 34 A), Cloisite 15A 

was very well ordered in Crystic 272.
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The intense dooi peaks for the composites containing Cloisite 15A and Cloisite 10A 

indicated intercalated/aggregated composites as illustrated in Table 2-5 (a) o f Chapter 2, 

in comparison the other composites displayed less intense peaks, which could be due to 

non-difffactioning clay aggregates or less organoclay in the beam. Cloisite 30B, Cloisite 

10A and Cloisite 15A demonstrated intercalated/exfoliated composites when blended 

with Crystic 272. This was evident in the XRD traces by an increase in low angle 

scattering (indicating some exfoliation) and from the presence of less intense and 

broader dooi and d0 0 2  reflections (representing intercalation). The XRD trace for 

Garamite when blended with Crystic 272 was very similar to that o f Garamite 

organoclay.

Cloisite 3OB contained an hydroxyl group which was expected to be compatible with 

the ester on the oligomer, therefore allowing Cloisite 30B to disperse more readily into 

the UP. From the dooi spacing, derived from the XRD traces presented in Figure 3-1, 

Cloisite 30B displayed the largest increase in d-spacing (+15.9 A) when dispersed in 

Crystic 272. Less Crystic 272 was able to penetrate into the clay layers o f Cloisite 15 A 

compared to Cloisite 10A, due to the surfactant on Cloisite 15 A consisting of two 

alkylammonium chains as compared to Cloisite 10A which only has one. This made it 

physically harder for Crystic 272 to enter between the clay layers as there was less 

available space. The organocations in Cloisite 30B and Cloisite 10A change orientation 

upon dispersion into Crystic 272, going from lying parallel to the basal surface in a 

monolayer arrangement to orientating themselves perpendicular to the basal surface in a 

paraffin like arrangement (as depicted in Figure 1-9 of Chapter 1). This change in 

orientation accounts for the large increase in d-spacing upon dispersion into Crystic 

272, however upon dispersion o f Cloisite 15 A into Crystic 272 the organocations were 

already orientated in a paraffin like arrangement and therefore Crystic 272 was not able 

to enter between the clay layers and cause significant layer expansion.
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3.3.1.2 TGA Analysis o f the Effect of Organic Modifier on the Clay

Cloisite 15A1K 15Min

Cloisite 10A1K 15Min

Cloisite 30B 1K 15Min
$

" OI Garamite 1K 15Min

Crystic 2 72  1K 15Min

100 200 300 400 500 600 700
Temperature (°C)

Figure 3-3 DTG traces (Air) for Crystic 272 prepared using 5 wt% of elected organoclay -  Traces
are offset for clarity

The DTG traces presented in Figure 3-3 displayed two thermal desorption events, 

occurring over two stages, for the nanocomposites and for Crystic 272. The 

nanocomposites displayed a temperature maximum (Tmax) (A) at 409 °C and Tmax (B) at 

562 °C. Crystic 272 displayed Tmax (A) at 393 °C and Tmax (B) at 547 °C, therefore the 

addition o f organoclay increased the maximum thermal decomposition temperature of 

Crystic 272 by approximately 20 °C. The addition of 5 wt% organoclay increased the 

peak width o f the resulting nanocomposites by a maximum of 16 °C in the sample 

containing Cloisite 10A.

3.3.2 Effect of Clay Loading

Higher clay loadings can affect the dispersion of clay in a polymer matrix, increasing 

the number o f intercalated or even agglomerated clay layers. To investigate the effect of 

clay loading on the thermal properties o f UP nanocomposites, Crystic 272 was loaded 

with Cloisite 30B (the weakest trace in Figure 3-1) at 1, 3, 5 and 10 wt% and mixed at 

1000 rpm for 15 minutes.
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3.3.2.1 XRD Analysis o f the Effect of Clay Loading
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Figure 3-4  XRD traces (Cr Tube) for Crystic 272 nanocomposites prepared using Cloisite 30B at 
different clay loadings -  Traces are offset for Clarity

The XRD results presented in Figure 3-4 demonstrated that at low clay loadings (1 to 3 

wt%) the dooi peak could not be observed, which could indicate an exfoliated 

nanocomposite. However, an exfoliated nanocomposite should exhibit increased 

scattering at low angle, which the XRD traces for the 1-3 wt% samples do not show and 

therefore the traces are comparable to that for pure Crystic 272, possibly indicating poor 

scattering (Table 2.5 (e) o f Chapter 2) or little/no clay in the beam. At 5 and 10 wt% the 

d o o i  and d o o2  peaks were clearly visible at 33.3 and 17.1 A  in the 5 wt% sample and 32.8 

and 16.9 A  in the 10 wt% sample. As the amount of clay in the sample decreased from 

10 to 5 wt% then a shift in the d o o i  and d o o2  spacings to a slightly lower angle was 

observed, the distance between the d o o i  and d oo2  peaks remained the same at 

approximately 16.0 A  and confirmed that the second peak was in fact the doo2 reflection. 

If the second peak was not the d o o2  reflection but the d o o i  reflection o f Cloisite 30B 

organoclay then the spacing between the first and second peak would not have remained 

the same and a peak at 17.2 A  would have been observed in both samples. An increase 

in low angle scattering coupled with a broader less defined d o o i peak, indicated that 

intercalated/exfoliated nanocomposites had been formed when 5 or 10 wt% Cloisite 

3 0B was dispersed in Crystic 272.
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3.3.2.2 TGA Analysis o f the Effect of Clay Loading

10% Cloiste 30B  
1K 15Min

5% Cloiste 30B  
1K15MinI -"O

3% Cloiste 30B  
1K 15Min

1%Cloiste 30B  
1K15Min

Crystic 2 72  
1K15Min

100 200 300 400 500 600 700
Temperature (°C)

Figure 3-5  DTG traces (Air) for nanocomposites prepared using Crystic 272 with 0-10 wt% 
Cloisite 30B -  Traces are offset for Clarity

The DTG traces presented in Figure 3-5 displayed two thermal desorption events (A 

and B), occurring over two stages for Crystic 272 incorporating between 0 and 10 wt% 

Cloisite 30B. Tmax (A) occurred during stage 1 (200-477 °C) at 390 °C for Crystic 272 

and the 1 wt% sample and 393, 409 and 404 °C for the 3, 5 and 10 wt% samples, 

respectively. Tmax (B) occurred during stage 2 (478-625 °C) at 544 °C for Crystic 272 

and, 540, 554, 568 and 558 °C for the 1, 3, 5 and 10 wt% samples, respectively. The 

peak width increased with increasing clay content, increasing by a maximum o f 14 °C in 

the 10 wt% sample.

3.3.3 Effect of Stirring Time and Mixing Speed.

Experiments were carried out using Crystic R935 and Cloisite 30B in order to determine 

the optimum mixing speed and time required to obtain maximum clay dispersion in the 

final samples. The samples were mixed using 5 wt% Cloisite 30B for 15 or 30 minutes 

and at 1000, 8000 or 14, 000 rpm. Cloisite 30B was used as it gave the most XRD silent 

trace in Figure 3-1, which was thought to reflect the most dispersion.
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3.3.3.1 XRD Analysis o f the Effect of Stirring Time and Mixing Speed.
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Figure 3-6  XRD traces (Cr Tube) for composites prepared using Crystic R935 and Cloisite 30B at 
different mixing times and speeds -  Traces are offset for clarity

The XRD traces presented in (Figure 3-6) demonstrated a broad, weak dooi peak centred 

around 31.7 A, and a second peak at approximately 16.8 A, which is representative of 

the doo2  of unexpanded Cloisite 30B as observed in Figure 3-2, where Cloisite 30B 

organoclay exhibited a doo2 spacing o f 17.2 A. Cloisite 30B when mixed at 14 000 rpm 

for 15 or 30 minutes exhibited a dooi peak at a slightly lower angle and higher d-spacing 

(34.2 A), however almost the same spacings (31.7 and 16.8 A) were obtained when 

mixed at 1000 or 8000 rpm. All peaks were o f similar intensity suggesting that all 

samples had a similar degree of exfoliation/intercalation, with the exception o f the 

composite prepared at 8000 rpm for 30 minutes, which showed evidence o f low angle 

scattering and therefore more exfoliated clay layers within the sample, leading to a more 

exfoliated/intercalated composite.
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3.3.3.2 TGA Analysis o f the Effect of Stirring Time and Mixing Speed.
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Figure 3 -7  DTG traces (Air) for composites prepared using Crystic R935 and Cloisite 30B at 8000 
rpm for 15 and 30 minutes -  Traces are offset for clarity

The DTG traces presented in Figure 3-7 display a two stage thermal decomposition for 

both Crystic R935 and its nanocomposites containing Cloisite 30B. Tmax (A) occurred at 

395 °C for pure Crystic R935 increasing to 402 °C upon addition o f Cloisite 30B. Tmax 

(B) occurred at 551 °C in pure Crystic R935 increasing again by 7 °C upon addition o f 

Cloisite 30B to give Tmax (B) at 558 °C. This thermal degradation pattern was also 

observed in nanocomposites made at 1000 and 14000 rpm. At this stage it was decided 

to carry out further experiments at 1000 rpm for 15 minutes as it was thought that these 

mixing conditions resulted in an exfoliated nanocomposite. However, further 

understanding of the interpretation o f the XRD spectra revealed that the composites 

(including composites prepared using Cloisite 10A and Cloisite 15A) prepared at 1000 

rpm for 15 minutes were actually intercalated, and resembled the XRD traces displayed 

in Table 2.5 (b) of Chapter 2. An exfoliated nanocomposite would resemble the XRD 

trace displayed in Table 2.5 (d) of Chapter 2.
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3.3.4 Effect of Polymer Structure

The original criterion for identifying the most appropriate organoclay was based on the 

extent to which the organoclay dispersed into different resins based on how silent the 

XRD traces were, however oven tests (performed by a colleague) and rudimentary 

flame tests clearly identified an intercalated structure as offering the most effective fire 

retardant properties. The oven tests were conducted to obtain information about the 

physical structure and chemical composition o f the residues remaining after the samples 

were heated. The samples were heated in air in an oven at 500 °C for 5 minutes, and 

then the residue investigated using optical microscopy and scanning electron 

microscopy (SEM). The SEM studies indicated that intercalated nanocomposites 

produced large chunks of a solid and dense clay/graphite hybrid, while XRD silent 

nanocomposite produced small pieces of a solid clay/graphite hybrid dispersed in free 

graphite. The highly intercalated structure arising from Cloisite 15A dispersed in resin 

(Figure 3-1), produced the most integral and dense char which could be the best type of 

insulation layer for enhanced fire retardant properties. Therefore, Cloisite 15A was 

chosen over the largely XRD silent nanocomposites produced when Cloisite 30B was 

mixed with resin. A simple fire test, which utilised a horizontal burning position, was 

then set up. During these fire tests, the pure resin evolved massive quantities o f smoke 

and the flame did not self extinguish. The same was observed with an XRD silent 

nanocomposite (Cloisite 30B and Crystic 189LV). However, the highly intercalated 

nanocomposite (Cloisite 15A and Crystic 189LV) produced less smoke when the 

sample burned, and self-extinguished within 26 seconds.

The three different types o f unsaturated polyester used for nanocomposite preparation 

have different structures, which may influence the packing o f the polymer chains within 

the clay layers. Cloisite 15A was mixed with the three unsaturated polyesters to 

investigate whether the polymer structure would influence the arrangement o f the clay 

layers in the resulting nanocomposite material.
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3.3.4.1 XRD Analysis o f the Effect of Polymer Structure
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Figure 3-8  XRD traces (Cr tube) for composites prepared using Crystic 272, R935 and 189LV and 
Cloisite 15A. Crystic 189LV has been added as a comparison -  Traces are offset for clarity

The XRD traces presented in Figure 3-8 display comparisons for nanocomposites o f 

Crystic 272, Crystic R935 and Crystic 189LV containing 5 wt% Cloisite 15A. Crystic 

189LV has been added as a comparison and displayed neither d o o i  nor d o o2  peaks. Both 

d o o i  and d o o2  peaks were present in all samples containing Cloisite 15A however, an 

increase in scattering at low angle in the Crystic 189LV composite compared to the 

Crystic 272 and R935 composites, coupled with a less well defined d o o i  peak indicated 

that the Crystic 189LV composite contained an increased amount of dispersed clay 

layers. The d o o i  spacings for composites prepared using Crystic 272, Crystic R935 and 

Crystic 189LV plus 5 wt% Cloisite 15A were 33.7 A ,  31.7 A  and 34.9 A ,  respectively. 

The d o o i  and d 002 spacings remained approximately 16 A  apart in all resins, confirming 

the identity o f the d o o 2  peak. Cloisite 15A displayed a d o o i  spacing of 31.5 A  (Figure 3-  

2), therefore it was apparent that the interlayer space of Cloisite 15A had not expanded 

when dispersed into Crystic R935. Flowever, Cloisite 15A did expanded slightly when 

dispersed into Crystic 272 and Crystic 189LV.
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3.3.4.2 TGA Analysis o f the Effect of Polymer Structure
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Figure 3-9  DTG traces (Air) for composites prepared using Crystic 272, R935 and 189LV and 
Cloisite 15A, mixed at 1000 rpm for 15 minutes -  Traces are offset for clarity

The DTG results presented in Figure 3-9 displayed a two step thermal decomposition 

for both nanocomposites and pure resin. Upon comparison o f the maximum temperature 

for the nanocomposites and pure resin it was apparent that Tmax (A) increased from 393 

to 407 °C in Crystic 272, however Tmax (A) remained unchanged in Crystic 189LV and 

Crystic R935 at 422 and 403 °C, respectively. Tmax (B) increased from 547 to 561 °C in 

Crystic 272, from 556 to 568 °C in Crystic 189LV yet remained unchanged in Crystic 

R935 at 548 °C. The biggest difference between the nanocomposites and resins was the 

increased peak width upon addition of organoclay, as observed in Figure 3-3 and Figure

3-5.
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3.3.5 Effect of Ultrasound

In an attempt to improve dispersion of the organoclay into Crystic 189LV the use of 

ultrasound (15 minutes) prior to mixing was employed. An ultrasonic bath supplies 

energy to the polymer chains and the clay layers enabling the polymer chains to enter 

more readily into the galleries between the silicate layers [31]. An ultrasonic bath can 

therefore promote exfoliation and prevent formation of agglomerates resulting in an 

increase in polymer-clay surface interactions.

It was found that ultrasound and mixing did not significantly change the extent of 

dispersion or thermal properties of Cloisite 30B when mixed with Crystic 189LV. These 

results contrast with those obtained by Inceoglu et al. [ , who obtained an increase in

tensile strength (+ 8.9%), tensile modulus (+ 4.3%) and impact strength (+ 13%) of 

samples prepared in an ultrasonic bath using an orthophthalic unsaturated polyester 

resin and Cloisite 3OB. Their results indicated that when an ultrasonic bath was used, 

higher values were obtained due to a higher degree of exfoliation.

3.3.6 Comparison of Results for the Preparation of Unsaturated 

Polyester/Organoclay Nanocomposites

Nanocomposites o f unsaturated polyester and organically modified montmorillonite 

were prepared by in-situ polymerisation. Several preparation parameters were 

investigated (e.g. clay loading and polymer structure) in order to optimise mixing 

conditions into different unsaturated polyester resins. All nanocomposites were 

characterised fully using XRD and TGA.

Differences in organic modification of commercially available organoclays resulted in 

changes in the interlayer spacing of the organoclay when dispersed in Crystic 272. XRD 

data demonstrated an increased d-spacing from 17.2 A  to 34.4 A  (+ 100 %) for Cloisite 

30B, from 19.2 to 34.0 A  (+ 76 %) for Cloisite 10A and from 31.5 to 34 A  (+ 8 %) for 

Cloisite 15 A. Cloisite 30B, Cloisite 10A and Cloisite 15A demonstrated 

intercalated/exfoliated composites when blended with Crystic 272, however Cloisite 

15A displayed the most order within the nanocomposites, displaying clear, sharp, dooi 

and doo2  peaks. Cloisite 30B displayed the largest percentage increase in the dooi spacing 

upon intercalation, however all of the organoclays reached a similar ‘final spacing’ near
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34 A .  From the d o o i  spacing, derived from the XRD traces presented in Figure 3-1, 

Cloisite 30B displayed the largest increase in d-spacing (+15.9 A )  when dispersed in 

Crystic 272. The relatively low percentage increase in the d o o i  spacing for Cloisite 15A 

can be attributed to the surfactant on the clay containing two alkylammonium chains 

which make it physically more difficult for the resin to enter into the gallery o f the clay.

The organocations in Cloisite 30B and Cloisite 10A change orientation upon dispersion 

into Crystic 272, going from lying parallel to the basal surface in a monolayer 

arrangement to orientating themselves perpendicular to the basal surface in a paraffin 

like arrangement (as depicted in Figure 1-9 of Chapter 1). This change in orientation 

accounts for the large increase in d-spacing upon dispersion into Crystic 272, however 

upon dispersion of Cloisite 15A into Crystic 272 the organocations were already 

orientated in a paraffin like arrangement and therefore Crystic 272 was not able to enter 

between the clay layers and cause significant layer expansion. These results are similar 

to those published by other groups [31, 3'2, 3'3] for the preparation of unsaturated 

polyester/clay nanocomposites.

An increase in low angle scattering in the XRD traces for Cloisite 30B, coupled with a 

decrease in intensity of the dooi and doo2 reflections indicated that the composites were 

very likely to have regions o f exfoliated clay layers co-existing with intercalated 

regions, very much like the XRD traces illustrated in Table 2.5 (c) in Chapter 2. XRD 

patterns exhibiting the absence o f basal reflections are often initially interpreted as 

evidence for an exfoliated nanocomposite. However, Bharadwaj et al. [3‘4] found that 

what appeared to be exfoliated nanocomposites using XRD, were actually 

intercalated/exfoliated nanocomposites when TEM was utilised. It was observed that 

regions o f delaminated sheets dispersed individually existed amongst regions, where the 

regular stacking arrangement was maintained with a layer of polymer between the 

sheets. The diffraction profiles for different types o f intercalated and exfoliated 

nanocomposites can be found in Table 2-5 of Chapter 2.

Increasing the clay loading of Cloisite 30B from 0 to 10 wt% into Crystic 272, resulted 

in the XRD traces for the samples containing 1 to 3 wt% Cloisite 3OB resembling that 

of the XRD trace for pure Crystic 272. The absence of the dooi reflection did not 

indicate an exfoliated nanocomposite but rather a composite which was intercalated
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(confirmed through the absence o f low angle scattering), but had little/no clay in the 

beam. At 5 and 10 wt% the d o o i  and d o o 2  peaks were clearly visible indicating an 

intercalated/exfoliated structure, confirmed through an increase in low angle scattering 

coupled with a broad and less intense d o o i  reflection. As the amount of clay in the 

sample decreased from 10 to 5 wt% then a shift in the d o o i  and d o o2  spacings to a lower 

angle was observed, the distance between the d o o i  and d o o 2  peaks remained the same at 

approximately 17 A ,  therefore confirming that the second peak was in fact the doo2  

reflection. If  the second peak was not the d o o 2  reflection but the d 0o i reflection o f 

Cloisite 30B organoclay, then the spacing between the first and second peak would not 

have remained the same and a peak at 17.2 A  would have been observed in both 

samples. The DTG traces indicated an increase in the thermal decomposition 

temperature maxima (Tmax (A)) of 19 °C as the clay loading of Cloisite 30B increased 

from 0 to 5 wt%. The peak width increased with increasing clay content, increasing by a 

maximum of 14 °C at 10 wt% Cloisite 30B. Based on these XRD and TGA results it 

was decided to carry out further experiments using 5 wt% organoclay as this produced a 

more exfoliated/intercalated composite with an increased thermal decomposition 

temperature maximum.

The dispersion o f Cloisite 30B into Crystic R935 decreased as the mixing speed 

increased, probably due to shear forces causing the clay particles to re-aggregate. The 

reproducibility o f the XRD traces also decreased as the mixing speed increased due to 

air bubbles trapped within the sample. Changing the stirring time from 15 to 30 minutes 

at each mixing speed did not decrease the level of dispersion at that mixing speed. All 

peaks were o f similar intensity suggesting that all samples had a similar degree o f 

intercalation/exfoliation, with the exception o f the composite prepared at 8000 rpm for 

30 minutes, which showed evidence of low angle scattering and therefore more 

exfoliated clay layers within the sample, leading to a more exfoliated/intercalated 

composite. The DTG traces indicated that the addition of Cloisite 30B into Crystic 

R935 increased the thermal decomposition temperature maxima by 5 °C for both T max 

(A) and Tmax (B) compared to pure Crystic R935, however Tmax (A) and (B) remained 

the same when samples were prepared under all mixing conditions. Based on XRD 

results it was decided to use 1000 rpm for 15 minutes as the standard conditions because 

they produced what was thought to be an exfoliated nanocomposite, however further
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understanding o f the interpretation of the XRD spectra revealed that these composites 

were actually intercalated.

These experiments were carried out in the early stages of the project and the original 

criterion for identifying the most appropriate organoclay was based on the extent to 

which the organoclay dispersed in different resins. However oven tests and rudimentary 

flame tests clearly identified an intercalated structure as offering the most effective fire 

retardant properties. The highly intercalated structure arising from Cloisite 15A 

dispersed in Crystic 189LV, produced the most integral and dense char which is the best 

type o f insulation layer for enhanced fire retardant properties. Therefore, Cloisite 15 A 

and Crystic 189LV were chosen over the other organoclays and resins.

Upon dispersion o f Cloisite 15 A into the unsaturated polyesters Crystic 272, 189LV and 

R935 intercalated/exfoliated composites were formed. The dooi and doo2 reflections were 

visible in all organoclay/resin mixtures, however an increase in the scattering at low 

angle in the Crystic 189LV composite, coupled with a less well defined dooi reflection 

indicated that this composite contained an increased amount of exfoliated clay layers. 

Cloisite 15A did not expand upon dispersion into Crystic R935 and expanded by 

approximately 2 A, when dispersed into Crystic 272 and 189LV. Cloisite 15A also 

displayed minimal expansion upon dispersion into other resin systems such as 

polyvinylester (PVE) [5] and polymethylmethacrylate/poly(styrene-co-acrylonitrile) 

(PMMA/SAN)[6].

3.4 The Synergistic Effect between Halogenated Resins and Clays

In the early stages o f the project it was hoped to prepare experimental resins containing 

small amounts (<2%) of phosphonium groups in the unsaturated polyester backbone. It 

was anticipated that this small number of phosphonium groups would bind to the clay 

nanolayers and disperse them throughout the resin in a similar manner to the use o f 

maleated polypropylene [7,8]. However, initial evaluation o f this phosphorus monomer 

identified some issues with the chosen synthetic route regarding stability. Therefore, a 

range o f unsaturated polyesters already incorporating chlorine (Crystic D3644LV) or 

bromine (Crystic PD7343) were provided by Scott Bader. In this thesis, the halogenated 

resins are denoted as Cl-resin and Br-resin. These halogen resins were blended with the
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standard UP resin (Crystic 189LV) at different concentrations. Cloisite 10A was 

identified as a standard commercially available organoclay for this work. Cloisite 10A 

was chosen for this work before Cloisite 15A was set up as the optimum clay to be used 

throughout the project. The standard mixing regime outlined in Table 3-1 was used and 

blends of Crystic 189LV, which are outlined in Table 3-3 were prepared. XRD was 

used to evaluate the influence on organoclay dispersion when incorporating halogen 

resins, TGA measurements were also performed.

Table 3-3  Clay and halogenated clay additions to Crystic 189LV

Blend C10A (wt%) Cl-resin (wt%) Br-resin (wt%)
1 1 - -

2 3 - -

3 5 - -

4 1 10 -

5 1 20 -

6 1 40 -

7 1 - 10
8 1 - 20
9 1 - 40
10 3 10 -

11 3 20 -

12 3 40 -

13 3 - 10
14 3 - 20
15 3 - 40
16 5 10 -

17 5 20 -

18 5 40 -

19 5 - 10
20 5 - 20
21 5 1 - 40
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3.4.1 XRD Analysis o f the Synergistic Effect between Cl-resin and Clay
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Figure 3-10 XRD traces (Cr Tube) for composites prepared using Crystic 189LV and 1 to 5 w% 
C10A, plus 10 or 40 wt% Cl-resin -  Traces are offset for clarity
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The XRD traces presented in Figure 3-10 display Crystic 189LV blended with Cloisite 

10A at 1, 3 or 5 wt% and either 10 or 40 wt% Cl-resin. The XRD traces were very w'eak 

in all samples and therefore a significant amount of error (± 2A )  had to be taken into 

consideration upon determination o f the d-spacings. From the absence o f low angle 

scattering in the XRD traces, all nanocomposites are presumed to be intercalated, 

however there was little/no clay in the beam to produce a dooi reflection in the samples 

containing less than 5 wt% Cloisite 10A. The traces at 5 wt% displayed d0oi and doo2 

reflections, representing d-spacings o f 29.8 and 16.8 A ,  respectively. The XRD results 

for the Br-resin system indicated the same intercalated structure and degree of 

dispersion as the Cl-resin containing nanocomposites.

Table 3-4  Parameters of the diffraction peaks (Cl-resin system)

Composition Peak Position (°20) d-spacing (A)
C10A-1 Cl-0 3.26 34

C10A-1 Cl-10 3.68 36
C10A-1 Cl-20 3.84 34
C10A-1 Cl-40 3.78 35
C10A-3 Cl-0 3.85 34

C10A-3 Cl-10 4.22 31
C10A-3 Cl-20 4.14 31
C10A-3 Cl-40 - -

C10A-5 Cl-0 3.88 34
C10A-5 Cl-10 4.32 30
C10A-5 Cl-20 4.26 30
C10A-5 Cl-40 4.02 ! 33

The diffraction peak parameters for the Cl-resin system are presented in Table 3^1. At 

each clay content (1, 3 or 5 wt%) as the halogen-resin increased from 0 to 40 wt% the d- 

value increased and the peak intensity decreased. At each Cl-resin content the d-value 

decreased with increasing clay content, also the degree o f clay dispersion decreased 

with increasing clay content. These results correspond to the common knowledge that 

clay disperses more readily into mixtures containing more of a polar component.

Several studies have been conducted on the preparation and characterisation o f  

poly(vinyl chloride) (PVC)/organically modified MMT nanocomposites [3‘9,3' 10,311]. It 

was noted that as the clay content increased (1-5 wt%), the characteristic diffraction 

peak of the organically modified MMT (OMMT) in PVC/OMMT nanocomposites 

decreased significantly in intensity and shifted to a lower angle. This indicated that the
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PVC chains had intercalated into the inter layer of OMMT, and also confirmed that 

reducing the loading o f OMMT was favourable for the intercalation of PVC chains into 

the silicate layers. TEM results suggested that partially exfoliated and partially 

intercalated structures had formed in PVC/OMMT nanocomposites. The PVC systems 

in the literature correspond to the Cl-resin systems in this thesis as a significant loss o f 

intensity was also observed upon addition o f the organic MMT Cloisite 10A and also a 

shift in the d o o i spacing to a lower angle was observed. As the clay loading decreased 

from 5 to 1 wt% then the d o o i  spacing increased to approximately 35 A  in the 1 wt% 

sample, compared to approximately 31 A  in the 5 wt% samples.

3.4.2 TGA Analysis of the Synergistic Effect between Cl-resin and Clay

5% C10A, 40% Cl-resin

3% C10A, 40% Cl-resin

1% C10A, 40% Cl-resin

i-
T3 5% C10A, 10% Cl-resin

3% C10A, 10% Cl-resin

1% C10A, 10% Cl-resin

100% Cl-resin

100% 189LV

300  A B 4 0 0  C D 600100 200 700500

Tem perature (°C)

Figure 3-11 DTG traces (Air) for composites prepared using Crystic 189LV and 1 to 5 w% C10A, 
plus 10 or 40 wt% Cl-resin -  Traces are offset for clarity
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The DTG traces presented in Figure 3-11 display seven thermal desorption events (Tmax

(A), (B), (C), (D), (E) (F) and (G)) occurring over two stages (Stage 1 260-460 °C and 

stage 2 461-700 °C), which are listed in Table 3-5. Crystic 189LV displayed a two step 

decomposition with Tmax (C) occurring at 422 °C and Tmax (D) occurring at 556 °C, the 

Cl-resin displayed a three step decomposition with Tmax (A) occurring at 323 C, Tmax

(B) occurring at 369 °C and Tmax (D) occurring at 631 °C. Three maxima were observed 

in the DTG traces for the composite samples (B, C and D for the 10% samples and E, F 

and G for the 40% samples). Tmax (B), (C), (E) and (F) occurred over the region of 270- 

460 °C with Tmax (B) occurring at 367 °C and Tmax (C) occurring at 417 °C in the 10 

wt% Cl-resin samples and Tmax (E) occurring at 351 °C and Tmax (F) occurring at 395 °C 

in the 40 wt% Cl-resin samples. Tmax (D) and Tmax (G), which were representative o f the 

decomposition o f the char layer formed upon burning, occurred at 568 °C (Tmax (D)) in 

the 10 wt% Cl-resin samples and 638 °C (Tmax (G)) in the 40 wt% Cl-resin samples. In 

Crystic 189LV and Cl-resin blends the two maxima representing thermal decomposition 

o f the resin move closer in temperature with increasing Cl-resin content. The 

corresponding DTG traces for the Br-resin system (not illustrated) indicated the same 

thermal degradation profile as the Cl-resin containing nanocomposites.

Table 3-5  TG results of Crystic 189LV, Cl-resin and Crystic 189LV/Cl-resin/Cloisite 10A 
composites

Stage 1 
10 wt% Sample

Stage 2 
10 

wt% 
Sample

Stage 1 
40 wt% Sample

Stage 2 
40 

wt% 
Sample

A
(°C)

B
(°C)

C
(°C)

D(°C) E(°C) F(°C ) G (°C )

Crystic 189LV 422 556
Cl-resin 323 369 631

1%C10A, 10% Cl- 
resin

367 417 568

3% C10A, 10% Cl- 
resin

367 417 568

5% C10A, 10% Cl- 
resin

367 417 568

1% C10A, 40% Cl- 
resin

351 395 638

3% C10A, 40% Cl- 
resin

351 395 638

5% C10A, 40% Cl- 
resin

339 390 638
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Yang et al. [310] also observed three maxima in their DTG traces for the thermal 

decomposition of PVC/OMMT nanocomposites. In the presence o f silicate layers a 

decrease in the Tmax under stage 1 was observed, however a slight increase in the Tmax 

under stage 2 was observed. This trend was also observed in the samples listed in Table

3-5, the temperature maxima under stage 1 decreased by 2 °C for Tmax (B) and 5 °C for 

Tmax (C), however under stage 2 Tmax (D) (Tmax (G) in the 40 wt% Cl-resin sample) 

increased by 12 °C in the 10 wt% Cl-resin samples and 7 °C in the 40 wt% Cl-resin 

samples.

3.5 The Effect of Clay on Char Formation

All flame retardants act either in the vapour phase or the condensed phase through a 

chemical and/or physical mechanism to interfere with the combustion process during 

heating/pyrolysis, ignition or flame spread. It is unlikely that organoclay plays a 

significant retarding role in the vapour phase. Hence the improvement in fire retardant 

performance is attributed to the insulating barrier ‘char’. Consequently, the 

composition, quantity and quality of the char formed in a nanocomposite have been 

investigated. The amount of char, the onset temperature for char decomposition and 

char decomposition temperature range were evaluated using TG results. Decomposition 

of an UP occurs in two steps; thermal decomposition of the resin and decomposition o f 

the char formed (Figure 3-12).
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Figure 3-12 Typical TG and DTG traces (air) for UP decomposition

113



3.5.1 Effect of Clay on Amount of Char Formed

Generally, the incorporation of clay into a polymer matrix enhances its thermal stability 

by acting as a superior insulator and mass transport barrier to volatile products 

generated during decomposition. The clay acts as a heat barrier, which enhances the 

overall thermal stability o f the system, as well as assisting in the formation of char after 

thermal decomposition of the resin. This high performance carbonaceous-silicate char 

builds up on the surface of the nanocomposite during burning, therefore insulating the 

underlying material [3' 12]. As the fraction o f clay increases, the amount of char that can 

be formed increases, and the rate at which heat is released decreases, provided an 

integral, coherent char is formed. There are many methods to evaluate the flame 

retardant properties o f polymers, a convenient and useful method to evaluate char at the 

research and development stage is TGA, however it must be noted that a real 

combustion situation is more complicated and severe than that in a ‘static’ heating 

environment.

The TG and DTG traces presented in Figure 3-13 display nanocomposites of the Cl- 

resin with increasing clay content (0-5 wt%). The corresponding parameters are 

calculated and listed in Table 3-6 and Table 3-7. In the thermal decomposition section 

of the DTG trace (i.e. before char forming) two peaks were observed, two maximum 

weight loss temperatures were presented in the mixture o f Cl-resin and UP resin. The 

addition o f 10 wt% Cl-resin to Crystic 189LV decreased the 5% weight loss 

temperature from 256 °C for Crystic 189LV to 247 °C, however increasing the Cl-resin 

content above 10 wt% increased the 5% weight loss temperature, until a maximum of 

284 °C was reached at 100 wt% Cl-resin. The 30% weight loss temperature decreased 

upon addition of Cl-resin from 375 °C for Crystic 189LV to 331 °C for the Cl-resin. The 

maximum weight loss temperature decreased from 418 °C for Crystic 189LV to 325 °C 

at 100% Cl-resin.

The addition of Cloisite 10A into 10 wt% Cl-resin increased the 5% weight loss 

temperature from 247 °C to 260, 271 and 261 °C in the 1 ,3  and 5 wt% Cloisite 10A 

samples. The temperature at 30% weight loss also increased from 357 °C to 

approximately 365 °C upon addition of Cloisite 10A. The maximum weight loss 

temperature did not vary significantly when Cloisite 10A was added to the Cl-resin.
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The char forming ability is very important for flame retardancy. Although halogens act 

mainly in the vapour phase, the mixture of Cl-resin and UP resin formed more char with 

increasing Cl-resin content. The char formation and char decomposition range presented 

very similar behaviour in both Br- and Cl-resin systems however, variations that 

occurred in the Br-system were weaker than those that occurred in the Cl-system. The 

char decomposition onset temperature and maximum char decomposition temperature 

remained unchanged by the addition o f clay or halogenated resin alone; however a 

synergistic effect existed between clay and the halogenated resin, more clay and more 

halogenated resin created more char and an increased decomposition range (Table 3-7).

Table 3-6  Parameters from TG for the Cl-Resin System

Composition 5% Weight 
Loss 

Temperature
(°C)

30% Weight 
Loss 

Temperature
(°C)

Maximum Weight 
Loss Temperature

(°C)

C10A-0 Cl-0 256 375 418
C10A-0 Cl-10 247 357 374,414
C10A-0 Cl-50 273 343 345, 391

C10A-0 Cl-100 284 331 325
C10A-1 Cl-0 264 379 423

C10A-1 Cl-10 260 364 369,411
C10A-1 Cl-20 277 359 358, 409
C10A-1 Cl-40 272 347 346, 393
C10A-3 Cl-0 239 373 414

C10A-3 Cl-10 271 364 | 365,414
C10A-3 Cl-20 274 358 353,412
C10A-3 Cl-40 273 343 342, 395
C10A-5 Cl-0 235 371 418

C10A-5 Cl-10 261 366 370,412
C10A-5 Cl-20 267 356 351,404
C10A-5 Cl-40 260 337 334, 386
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Table 3-7  Parameters from TG for the Cl-Resin System

Composition Char Content 
(wt%)

Max. Char 
Decomposition 

Temp (°C)

Char Decomposition 
Range (°C)

C10A-0 Cl-0 4.9 552 483-619 (136)
C10A-0 Cl-10 9.7 560 476-644(168)
C10A-0 Cl-50 16.3 628 476-711 (235)

C10A-0 Cl-100 23.7 625 468-736 (268)
C10A-1 Cl-0 6.3 556 485-632(147)

C10A-1 Cl-10 8.9 563 483-653 (170)
C10A-1 Cl-20 11.9 584 476-661 (185)
C10A-1 Cl-40 15.8 633 485-705 (220)
C10A-3 Cl-0 9.0 561 470-619(149)

C10A-3 Cl-10 11.0 563 468-636 (168)
C10A-3 Cl-20 13.3 594 478-667(189)
C10A-3 Cl-40 18.0 633 470-707 (237)
C10A-5 Cl-0 12.1 558 466-621 (155)

C10A-5 Cl-10 12.5 565 462-634(172)
C10A-5 Cl-20 15.6 607 476-678 (202)
C10A-5 Cl-40 20.2 631 466-699 (233)

From Table 3-7 it is clear that the amount of char formed upon addition of clay is more 

than the wt% of clay added into the system. For example the sample containing 0 wt% 

Cl-resin has a char content of 4.9 wt%, therefore the addition o f 1 wt% Cloisite 10A 

should result in a char content of 5.9 wt%, however 1 wt% Cloisite 10A contains 

approximately 0.6g of inorganic silicate layers and 0.4g of surfactant and so the char 

content should equal 4.9 + 0.6 = 5.5 wt%. From Table 3-7 the actual char content for 

the 1 wt% Cloisite 10A sample was 6.3 wt% which was above the calculated value o f 

5.9 wt%. This synergistic effect on char formation was also apparent in the 3 and 5 wt% 

Cloisite 10A samples. The addition o f an extra 2 wt% of Cloisite 10A to make the 3 

wt% sample was calculated to achieve a char content of 7.5 wt% (6.3 + (0.6 x 2) = 7.5), 

however the actual char content was 9.0 wt%. The addition o f a further 2 wt% of 

Cloisite 10A to make the 5 wt% sample was calculated to achieve a char content o f 10.2 

wt% (9.0 + (0.6 x 2) = 10.2), however the actual char content was 12.1 wt%.

A similar pattern was also observed in the samples containing Cl-resin and Cloisite 

10A, the higher the wt% of Cl-resin in the system then the higher the char content, 

doubling the wt% of Cl-resin in the system lead to an increase o f between 4 and 5 wt% 

char. These increases in char content are plotted in Figure 3-14. Without the addition o f 

Cl-resin, clay improved the formation o f carbonaceous char, with the amount of
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carbonaceous char being almost doubled upon addition o f 5 wt% clay. The organic part 

of the silicate has been omitted as the organic part primarily degrades and is desorbed 

from the sample.
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Figure 3-14 Char content formed in Crystic 189LV composites containing Cl-resin (with and
without clay)

Table 3-8  Char characteristics for Br- and Cl-resin systems

Specimen Char type Dense char dimension
Pure resin 

Crystic 189LV
Loose char 

only
Cl-resin

Mostly 
dense char

5mm-1cm, same thickness as the original sample
Cl-resin + 5wt% 

CIO
5mm-1cm

Cl-resin + 5wt% 
C15

2cm or larger, whole sample present as 2 pieces

Br-resin

Mostly 
dense char

Br-resin + 5wt% 
CIO

the char was a single, whole piece. It was, laterally 
expanded, much thinner than the original sample and 

was net-like.
Br-resin + 5wt% 

C15
Integral, almost the same thickness as the original 

sample, no expansion in lateral direction
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Oven tests (performed by a colleague) were conducted on the Br- and Cl-resin systems 

and are summarised in Table 3-8. The incorporation of clay promoted the formation of 

more integral insulation layers. Samples were subjected to the in-house version o f the 

UL-94 horizontal burning test (see section 2.6.7.1 of Chapter 2 for description o f test), 

and all samples self extinguished in 3 seconds irrespective of how much clay had been 

added or which halogenated resin was used.

3.6 Conclusions

The addition of Cloisite 30B, Cloisite 10A and Cloisite 15 A into Crystic 272 increased 

the d-spacing of the organoclays from 17.2, 19.2 and 31.5 A, respectively, to a similar 

‘final spacing’ o f 34 A. Intense dooi peaks were observed for the composites containing 

Cloisite 15A and Cloisite 10A, therefore indicating intercalated/aggregated composites. 

In comparison Cloisite 30B displayed less intense peaks, which could be due to non- 

diffractioning clay aggregates or less organoclay in the beam. The d-spacing of 

Garamite did not increase upon addition into Crystic 272. The thermal decomposition 

temperature maxima (Tmax A and Tmax B) increased by 16 °C upon addition o f all four 

commercially available organoclays into Crystic 272.

Increasing the loading of Cloisite 30B from 1 to 10 wt% in Crystic 272 resulted in a 

more intercalated/exfoliated nanocomposite in the 5 and 10 wt% samples, the greatest 

peak intensity was seen in the 10 wt% sample. The thermal decomposition temperature 

maximum (Tmax A) increased as the clay loading increased from 390 °C in Crystic 272 

and the 1 wt% sample to 393, 409 and 404 °C in 3, 5 and 10wt% samples, respectively. 

Therefore, the optimal clay loading was reached at 5 wt% as this loading gave the 

desirable intercalated/exfoliated morphology plus the most elevated thermal 

decomposition temperature maximum.

Increasing the stirring time and mixing speed did not result in an increase in the d- 

spacing of Cloisite 30B when mixed in Crystic R935, however the 8000 rpm sample at 

30 minutes displayed a more exfoliated/intercalated nanocomposite. Increasing the 

mixing time from 15 to 30 minutes in the 1000, 8000 and 14,000 rpm samples increased 

the thermal decomposition temperature maximum (Tmax A) by 7 °C in all samples. At 

this stage it was decided to carry out further experiments at 1000 rpm for 15 minutes as
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it was thought that these mixing conditions resulted in an exfoliated nanocomposite. 

However, further understanding o f the interpretation o f the XRD spectra revealed that 

the composites (including composites prepared using Cloisite 10A and Cloisite 15A) 

prepared at 1000 rpm for 15 minutes were actually intercalated.

The d-spacing o f Cloisite 15A when dispersed in Crystic 189LV, Crystic 272 and 

Crystic R935 increased from 31.5 A  to 34.9, 33.7 and 31.7 A ,  respectively. Therefore, 

Crystic R935 did not intercalate into the gallery of Cloisite 15A, however Crystic 272 

and Crystic 189LV did increase the d-spacing of Cloisite 15A slightly. The thermal 

decomposition temperature maximum did not increase upon addition o f Cloisite 15 A 

into Crystic 189LV and Crystic R935, however, an increase of 14 °C was observed 

when Cloisite 15A was dispersed in Crystic 272. The biggest difference between the 

nanocomposites and resins was the increased peak width upon addition o f organoclay, 

with the largest increase observed in the Crystic 189LV/Cloisite 15A sample.

It was found that the use o f ultrasound and mixing did not significantly change the 

extent of dispersion or thermal properties of Cloisite 30B when mixed with Crystic 

189LV.

The addition of halogen resins did provide better flame retardant properties. As the 

amount of Cl-resin increased from 10 to 40 wt% the XRD traces indicated a more 

exfoliated/intercalated nanocomposite, the thermal decomposition temperature maxima 

also shifted to a lower temperature as the amount of Cl-resin increased. The amount of 

char formed upon addition of clay was more than the wt% of clay added into the 

system, for example the addition if 3 wt% clay formed 4.1 wt% char in the 0% Cl-resin 

sample. A synergistic effect occurred upon addition of Cloisite 10A in Crystic 189LV 

plus Cl-resin, in the 3 wt% Cloisite 10A samples the amount of char formed increased 

from 9 to 11% when 10 wt% Cl-resin was incorporated into the system and the amount 

o f char increased from 9 to 18 % when 40 wt% Cl-resin was incorporated into the 

system. The maximum char decomposition temperature increased by a maximum o f 70 

°C upon incorporation o f 40 wt% Cl-resin, and the char decomposition range also 

increased as the amount o f Cl-resin and clay in the system increased.
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Crystic 189LV was identified as the polymer system of choice at this stage as it 

contained no additional additives such as pigments, thixotropes and stabilisers. Crystic 

189LV displayed the broadest peak width and increased temperature maximum (Tmax 

(A)) compared to the other UP resins, also rudimentary horizontal burning tests 

identified Crystic 189LV as displaying the most promising fire retardant properties 

when clay was added. The mixing speed of 1000 rpm and time o f 15 minutes were 

chosen as the standard mixing conditions because they produced what was thought at 

this stage to be an exfoliated nanocomposite. Based on XRD and TGA results it was 

decided to carry out further experiments using 5 wt% organoclay as this produced a 

more exfoliated/intercalated composite with an increased thermal decomposition 

temperature maximum.

Based on oven tests the intercalated composites formed using Cloisite 15 A and Crystic 

189LV offered the most effective fire retardant properties and were chosen over the 

exfoliated/intercalated composites incorporating Crystic 189LV and Cloisite 30B. The 

highly intercalated structure arising from Cloisite 15A dispersed in Crystic 189LV, 

produced the most integral and dense char which is the best type o f insulation layer for 

enhanced fire retardant properties. Cone calorimetry data collected for the halogenated 

resin systems resulted in a predicted Euroclass rating o f D. The promising fire retardant 

system incorporating Crystic 189LV/Cloisite 15A (Surefire hand lay-up resin (Cloisite 

15A at 1 wt%)) also reached a Euroclass rating o f D, in the cone calorimetry test results 

and therefore reinforce comparability to the halogenated resin systems and could 

possibly eliminate the need for halogenated resins in the future.

Unfortunately, the aim o f the project was to formulate halogen free resin systems, 

however the performance o f the halogenated resins in the horizontal burning test proved 

to be a benchmark value to which the other flame retardant systems within this thesis 

were compared. Therefore, unsaturated polyester/clay nanocomposites containing small 

amounts of non-halogenated flame retarding agents, which offer superior flame 

retardant properties became the ultimate target for this project.
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4 Organoclays Prepared Using Commercially Available Organophosphorus 

Cations

4.1 Introduction

In this chapter, a series o f alkyltriphenylphosphonium cations, of variable carbon chain 

lengths, plus an n-hexadecyl-tri-n-butyl phosphonium cation were sourced and 

exchanged onto Na-MMT. The resulting phosphonium clays were, characterised using 

XRD, TGA and in some cases TG-MS, combined with the orthophthalic unsaturated 

polyester resin Crystic 189LV and tested using the UL94 vertical burning test for 

flammability (see section 2.6.7.1 of Chapter 2 for description of test). Special emphasis 

was placed on the determination of whether the different organocations and clay 

compositions that were produced lead to improved thermal stability of the organocation, 

and therefore the nanocomposite in which it was used.

The gas phase fire retardant dimethyl methyl phosphonate (DMMP) was added into the 

unsaturated polyester resin system to try and improve the fire retardant properties of the 

resulting nanocomposites incorporating these phosphonium organoclays. Individual 

components o f the nanocomposite systems (DMMP and styrene) were analysed to 

determine which was responsible for the increased dispersion o f the organoclay into the 

unsaturated polyester. An in-depth investigation into the role of DMMP as a fire 

retardant was carried out using TGA and TG-MS. The effect of increasing the loading 

of the organocation and also incorporating a washing step after organocation exchange 

were employed.

To try and improve the efficiency and reduce the cost of the nanocomposite preparation 

procedure, an efficient ‘one-pot’ method was explored in which all components o f the 

nanocomposite were combined simultaneously in a mixture. The organoclay dispersion, 

thermal degradation pattern and fire retardancy o f these systems was investigated and 

compared to samples prepared using the standard nanocomposite preparation method.
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The exchangeable cations of natural clays can be replaced by various organocations 

through a simple ion exchange process. These organocations may, for example, have an 

ammonium (or phosphonium) head group, consisting o f a nitrogen atom in an alkyl or 

quaternary ammonium complex, with a positive charge. When exchanged onto a clay 

surface these organocations replace the resident Na+, Ca2+, ions (i.e. they are adsorbed 

onto cation-exchange sites) and the free inorganic cations from the clay and halide ions 

from the ammonium can then be washed o u t[41].

Theng et al. [4~2] found that the affinity o f a clay for the organic molecules was linearly 

correlated to the molecular weight of the alkylammonium ion, i.e. the greater the length 

of the alkyl chain, the greater the contribution to the physical forces o f adsorption. The 

stability o f alkylammonium montmorillonite (MMT) complexes has been partly 

attributed to the Van der waals attraction o f hydrocarbon chains with their neighbouring 

chains and with the clay surface. Other contributions are believed to be due to the 

thermodynamic stabilisation o f the alkylammonium ion at the clay surface when 

compared with the same ion hydrated in aqueous solution [4'3]. As a result, organoclay 

complexes are generally thermally stable up to at least 175 °C. However the thermal 

stability o f alkylphosphonium exchanged clays in nitrogen has been noted to increase 

above that of alkylammonium complexes. This is because the thermal stability o f an 

exchanged MMT is related to the thermal stability o f the parent salts. The higher 

decomposition temperature of the alkylphosphonium clay provides the formation o f 

char at a more opportune time, preventing further degradation o f the polymer. However, 

in the case of alkylammonium clays char formation occurs earlier and can be broken up 

by the time that the polymer degrades. The incorporation o f ammonium and 

phosphonium-clay into a polystyrene clay nanocomposite causes a decrease in the 

degradation onset temperature [4'4], however the degradation products of a 

phosphonium-clay further react with aromatic carbon in the system to form a complex 

phosphorus-carbon structure, by grafting on, or linking different aromatic carbons, 

which are hard to degrade [4‘5].
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Traditionally, the main use o f alkylammonium-exchanged clays has been to produce 

thixotropic effects in aqueous or non-aqueous systems, e.g., to improve paper coating, 

lubricant thickening or to prevent sedimentation of dispersed solids. Organoclays are 

also effective adsorbents for removing organic contaminants from water. When non

polar molecules and dissolved organic compounds encounter organoclay particles with 

their alkyl chains protruding into the polar solvent (e.g. H2 O), these species are attracted 

by the alkyl chains (i.e. because they are chemically similar). Since this partitioning 

activity takes place in the clay galleries, no stable binding of the contaminant to the 

surface of the clay occurs. Their use as adsorbents for organic compounds in water was 

mentioned as early as the 1960’s [4'6, 4'7], but most work has been conducted since the 

1980’s. The hydrophobic interactions that occur between non-polar organic pollutants 

and the alkyl chains o f organoclays reduces the mobility of organic pollutants (i.e. in 

soil and waterways), such as benzene derivatives (benzene, toluene and xylene (BTX)) 

and phenols (i.e. non-ionic chemicals with low water solubility). This extends to the use 

o f organoclays to remediate groundwater and industrial wastewater in underground 

storage tank sites, oil storage terminals, oil drilling sites and refineries, where the 

groundwater may be contaminated with oil, grease, phenolic compounds, aromatic and 

halogenated hydrocarbons |4'8’4‘9].

Depending on the size o f the organic cations and the layer charge o f the mineral, the 

alkyl chains of the organocations can adopt different configurations within the gallery 

space (Figure 1-7), and so, may impart steric/ size exclusion thresholds for the 

adsorption o f organic molecules.

Organocation exchange of a, normally hydrophilic, silicate surface renders it 

organophilic, this makes it possible to intercalate many different engineering polymers 

into the clay gallery. The role o f alkylammonium cations in an organoclay for the 

production of nanocomposites is to lower the surface energy o f the inorganic host, and 

so, improve its wetting characteristics with respect to the polymer, by reducing platelet- 

platelet interactions and increasing the compatibility with polymers. Also, the 

alkylammonium and alkylphosphonium cations may have functional groups that can 

either react with the polymer [410] or initiate the polymerisation o f monomers [411] to 

improve the strength of the interface between the inorganic guest and the polymer.
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4.2 Organo-Modification of Clays

Successful incorporation o f MMT into a polymer requires the surface o f the hydrophilic 

MMT to be rendered more organophilic. This can be achieved through exchange o f the 

hydrated interlayer cations with cationic surfactants such as alkylammonium cations. A 

problem however is that commonly used surfactants have limited thermal stability [412]. 

A number o f concepts have been proposed that offer alternatives to conventional 

ammonium-modified montmorillonite, these include alkylimidazolium as the surfactant 

to increase the initial decomposition temperature [413] and phosphonium-based 

surfactants to improve thermal stability I4-14’4' 15!

4.3 Phosphonium Based Surfactants on Clays

Phosphonium compounds are widely used as stabilizers in many applications and offer 

unique additional opportunities for polymer layered silicate nanocomposites (PLSNs) [4‘ 

16]. Examples include mono and bisphosphonium salts (e.g. mono and 

bisalkyltriphenylphosphonium salts) that are used as flame retardants for textiles and 

paper, stabilization agents for polyacrylonitrile fibres exposed to sunlight, heat 

stabilizers for nylon and condensation additives to organic dyes to produce wash fast 

colours [412]. Therefore the use of phosphonium salts as organic modifiers for layered 

silicates may further enhance the thermal properties o f polymer nanocomposites. Xie et 

al [412] conducted a study in order to provide a better understanding o f the thermal 

behaviour o f phosphonium salts and the modified MMTs (P-MMT) produced using 

them. The thermal stability and degradation mechanism of phosphonium-modified 

MMTs (P-MMT) were discussed and compared directly to ammonium-modified MMTs 

(N-MMT).

Nonisothermal decomposition of quaternary phosphonium modified MMT (e.g. 

tetraoctylphosphonium modified MMT (P-4C8)) occurred in four stages, which were 

similar to those observed for the corresponding quaternary ammonium modified MMT 

(e.g. tetraoctylammonium modified MMT (N-4C8)) (Figure 4-1).
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Figure 4-1 DTG traces (N2) comparing quaternary ammonium MMT (N-4C8) and quaternary
phosphonium MMT (P-4C8) |4'121.

In summary, evolution of adsorbed water occurred below 180 °C (Region I). Organic 

substances evolved between 250 °C and 500 °C (Region II). Dehydroxylation o f the 

aluminosilicate occurred between 500 °C and 700 °C (Region III), and evolution o f 

products associated with residual organic carbonaceous residue occurred between 700 

°C and 1000 °C (Region IV).

The major difference between the thermal decomposition behaviour of P-4C8 and N- 

4C8 under N 2 was that the maximum rate o f mass loss and onset temperature (TonSet) for 

neat phosphonium salts were consistently 70-80 °C higher than that observed in the 

corresponding P-MMT, compared to a 15-25 °C difference observed between neat 

ammonium salts and the corresponding N-MMT. Therefore, indicating that the 

influence o f the layered silicate was more substantial for phosphonium than ammonium 

surfactants [412]. To conclude it can be said that the superior improvement in thermal 

stability (i.e. increase in TonSet) for P-MMT compared to that of N-MMT under N 2 , along 

with the well-known properties of phosphorus compounds, such as flame retardancy 

and heat stabilization represent advantages to the utilization of P-MMT in various 

polymer composites.
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4.4 Commercially Available Phosphonium Cations

4.4.1 Preparation

The gallery cations of Na' Cloisite were exchanged with alkyltriphenylphosphonium 

(TP) cations with chain lengths ranging from Cn = 8 to Cn = 16 (TP8+ to TP16+) and an 

alkyltributylphosphonium (B ul6+) cation. They were exchanged at a concentration that 

was equivalent to 1 x CEC of Na+ Cloisite (92.5 mEq/lOOg). XRD and TGA were 

carried out on all exchanged clays, the specific trends within which are discussed below. 

The organoclay samples prepared will be referred to with respect to their organocation 

species (Table 4-1).

Table 4-1 Sample identification for alkyl phosphonium exchanged Na+ Cloisite

Organic Component Abbreviation 
for Salt

Abbreviation 
for Cation

Abbreviation 
when exchanged 
onto Na+ Cloisite

(1-octyl) triphenylphosphonium 
Bromide, Cn = 8

TP8B TP8+ TP8-MMT

decyltriphenylphosphonium 
Bromide, Cn = 10

TP10B TP10+ TP 10-MMT

n-dodecyltriphenylphosphonium 
Bromide, Cn = 12

TP12B TP 12+ TP12-MMT j

(1 -tetradecyl) triphenylphosphonium 
Bromide, Cn = 14

TP14B TP14+ TP14-MMT

n-hexadecyltriphenylphosphonium 
Bromide, Cn = 16

TP16B TP16+ TP16-MMT

n-hexadecyl-tri-n-butyl 
phosphonium Bromide, Cn = 16

Bul6B B ul6+ Bul6-MMT
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4.4.2 XRD Analysis o f TP8+ - TP16+ and B u l6 + Exchanged Na+ Cloisite

ID<

c3Oo

TP10-MMT

TP8-MMT

Na+ C loisite

2 4 6 10 228 12 14 16 18 20
Angle[°20]

Figure 4-2 XRD traces (Cr Tube) for TP8 + - TP16+, B u l6 + exchanged Na+ Cloisite. Together with 
that for Na+ Cloisite -  Traces are offset for clarity

The XRD traces presented in Figure 4-2, displayed an increase in the d o o i  spacing from

12.1 A  for Na' Cloisite to 17.4 A  in TP8-, TP10- and TP12-MMT, respectively. As the 

length o f the carbon chain increased the d o o i  spacing increased up to 18.7 A  in TP14- 

MMT and 17.7 A  in TP16-MMT. The d o o i  spacing in Bul6-MMT was 20.9 A ,  this can 

be attributed to the bulkier head group further expanding the clay layers. A smaller peak 

occurred at lower angle representing d-spacings of 30.5 A  in TP8-, TP10-, TP12-, and 

TP16-MMT and 36.5 A  in Bul6-MMT.
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4.4.3 TGA Analysis of TP8+ - TP16+ and B u l6 + Exchanged Na+ Cloisite

A-1
B-1A+1

TP14-MMT

TP12-MMT

TP8-MMT 
Na+ C loisite

400200 300 500 600 700 800
Temperature (°C)

Figure 4-3  DTG traces (Air) for Na+ Cloisite exchanged with TP8+-TP16+ and B u l6 + -  Traces are
offset for clarity.

The DTG traces presented in Figure 4-3 exhibited several thermal desorption events, 

these can be grouped to form temperature ranges within which the thermal desorption 

maxima varied 35-200 °C, 200-450 °C and 450-800 °C. An assignment o f the events 

occurring within these temperature ranges are presented in Table 4-2.

Table 4-2  Assignment of desorption maxima occurring within specific temperature ranges of TG 
traces for TP8 - to TP16-MMT and B u l6 -MMT

Stage Desorption 
Temperature (°C)

Assignment

1 35 - 200 evolution of adsorbed water

2 200 - 450
decomposition o f organocations 
producing aliphatic species, ring 

compounds, ammonia, water and CO 2

3 451 -8 0 0 clay dehydroxylation and CO2  evolution

The DTG traces for TP8+ - TP164 and B u l6 f exchanged Na' Cloisite (Figure 4-3) 

display two maxima in the decomposition process (A and B), however several smaller 

peaks occurred (A-1, A+1, B-1 and B+l), which decomposed over three stages (1 ,2  and 

3). Three peaks (A-1, A and A+1) were present over the temperature range 200 -  450 °C
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(stage 2), and were representative o f decomposition of the alkylphosphonium cations 

from the Na+ Cloisite galleries. Three peaks (B-1, B and B+l) were also present over 

the temperature range 451 -  800 °C (stage 3), and were representative of clay 

dehydroxylation and CO2 evolution. The decomposition temperatures for peaks A and 

B, and the smaller peaks either side of A and B are displayed in Table 4-3.

Table 4-3  Decomposition peak temperatures for TP8 - to TP16-MMT and B u l6 -MMT

A-1 (°C) A (°C) A+1 (°C) B-1 (°C) B(°C ) B+l (°C)
TP8 -MMT 351 388 631

TP10-MMT 334 369 619 638
TP12-MMT 327 351 598 626
TP14-MMT 299 341 610 645
TP16-MMT 309 360 612 645
B11I 6 -MMT 292 348 610 640
Na Cloisite 675

Tmax (A) represented the main decomposition peak during stage 2, however the position 

of this peak varied across the TP series. Tmax (A) occurred at a higher temperature of 

351 °C in TP8-MMT, then as the alkyl chain length increased from Cn = 8 to Cn = 12, a 

progressive decrease in the desorption temperature (351 to 327 °C) of Tmax (A) was 

observed. Tmax (A) then increased to 341 and 360 °C in TP 14- and TP16-MMT, 

respectively. Tmax (A-1) was present in TP 14-, TP 16- and Bul6-MMT, while Tmax 

(A+1) was present in TP8-, TP 10- and TP12-MMT, all peaks were present as shoulders 

on the main decomposition peak A, with the exception of Bul6-MMT which displayed 

a clear sharp A-1 peak. Tmax (B) occurred during stage 3 and displayed the same 

temperature pattern as stage 2. Tmax (B-1) was present in TP 16- and Bul6-MMT, while 

Tmax (B+l) was present in TP 10-, TP 12- and TP14-MMT, however it was difficult to 

determine the actual peak positions o f the shoulders under Tmax (B) due to the increased 

peak width o f peak (B). Below 200 °C (stage 1), the alkylphosphonium chains were 

thermally stable, and so, any weight loss was attributed to adsorbed water being 

thermally desorbed (Table 4-4).
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Table 4—4 Comparison of weight losses for TP8 + - TP16+ and B u l6 + exchanged Na+ Cloisite (air) at 
different temperature ranges with increasing chain length.

Stage 1 Stage 2 Stage 3
35-200 °C

(% )
201-450 °C

(%)
451-800 °C

(%)
Total
(% )

Na+ Cloisite 5.4 1.0 4.8 11.2
TP8 -MMT 0.7 12.6 18.1 31.4

TP10-MMT 0.8 14.1 19.1 33.9
TP12-MMT 1.4 16.3 21.0 38.7
TP14-MMT 0.6 15.2 21.7 37.5 I
TP16-MMT 2.2 10.9 20.1 33.1
B u l6 -MMT 0.8 16.1 18.2 35.1

Weight losses across stage 2 (201 -  450 °C) followed the pattern

TP 12>Bu 16>TP 14>TP 10>TP8>TP 16. Weight losses across stage 3 (451 -  800 °C) 

followed a similar pattern to the previous segment, which resulted in the total weight 

loss following the pattern TP12>TP14>Bul6>TP10>TP16>TP8.

Table 4-5  Possible organic exchange against actual organic exchange for TP8 - to TP16-MMT and 
B ul6 -MMT at 1 x CEC

TP8 -
MMT

TP10-
MMT

TP12-
MMT

TP14-
MMT

TP16-
MMT

B u l6 -
MMT

Possible Organic 
Exchange (mg/g)

372.8 385.7 398.7 411.6 424.6 394.9

Actual Organic 
Exchanged (mg/g)

234.2 254.8 289.5 286.4 238.8 265.2

Percentage 
Exchanged (%)

63 66 73 70 56 67

* All exchange amounts are ± 5%

Table 4-5 presents the actual amount of organic exchange in comparison with the 

possible amount of organic exchange for the TP series and Bul6-MMT. The actual 

amount or organic exchange was similar for TP8-, TP 10-, TP 12-, TP 14- and Bui 6- 

MMT at 68% ± 5% of the possible organic exchange, however the actual amount 

exchanged for TP16-MMT was slightly lower at 56%, of the possible organic exchange 

amount. These exchange amounts did appear rather low, and so B u i6̂  was exchanged 

onto Na^ Cloisite at 1.5 and 2.0 x CEC of N a1 Cloisite to try and increase the 

percentage exchange. The percentage exchange was calculated to be 90 and 84% at 1.5 

and 2.0 x CEC (± 5%), respectively, confirming that the original Bul6-MMT sample and 

most probably the TPn-MMT samples had not been fully exchanged at 1 x CEC.
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4.5 Crystic 189LV Composites Prepared Using TP8+ - TP16+ and B u l6 + 

Exchanged Na+ Cloisite -  Preliminary Studies

In order to assess the influence o f the carbon chain length and head group on the 

dispersion of alkylphosphonium modified clays into an unsaturated polyester resin 

nanocomposites were made using Crystic 189LV and TP84 - TP161 and B ul6+ 

exchanged Na+ Cloisite. The mixing regime outlined in section 2.6.2 o f Chapter 2 was 

employed.

4.5.1 XRD Analysis of Nanocomposites

Figure 4—4 XRD traces (Cr Tube) for Crystic 189LV composites containing 5wt% of TP8 - to TP16- 
MMT and B u l6 -MMT -  Traces are offset for clarity

The XRD traces presented in Figure 4-^  display TP8- to TP16-MMT and Bul6-MMT 

mixed with Crystic 189LV. When mixed with Crystic 189LV, the d o o i  spacing o f TP14- 

, TP16- and Bul6-MMT increased from 18.7, 17.7 and 20.9 A, to 33.1, 33.7 and 27.8 A, 

respectively. A partially exfoliated/intercalated composite was achieved when Crystic 

189LV was mixed with TP14- and TP16-MMT, evident from an increase in background 

at lower angle (due to fewer intercalated stacks) and from the presence o f a less intense 

d o o i  peak (from remaining intercalated stacks in the composite). Bul6-MMT when 

mixed with Crystic 189LV displayed an intercalated/aggregated composite, this was 

evident from the presence of an intense d o o i  peak and a clear d o o 2  peak. The smaller

5%TP12-MMT

5%TP10-MMT

5%TP16-MIVrr

Crystic 189LV
5% TP14-MMT

2 4 6 8 10 12
Angle [°29]

2 4 6 8 10 12
Angle [°20]

133



peaks which appeared between 7 and 8 °20 in the traces for TP 14- and TP16-MMT 

nanocomposites could be representative of the doo2 spacings o f the composites or 

possibly unexpanded TPM- and TP16-MMT. The XRD traces for composites 

containing TP8-, TP 10- and TP12-MMT displayed very weak d o o i  peaks at 16.8 A ,  

which were very similar to the d-spacings o f TP8+, TP10+ and TP12+ exchanged Na+ 

Cloisite. The weak d o o i peaks in the XRD traces, indicated that no intercalation has 

occurred and a microcomposite was achieved. Organoclay dispersion within the TP8-, 

TP 10- and TP12-MMT samples was very poor as organoclay particles were clearly 

visible within the films, this further confirmed the formation of a microcomposite.

4.5.2 TGA Analysis of Nanocomposites

5% Bu16-MMT

.5% TP16-MMT

5% TP14-MMT

5% TP12-MMT

5% TP10-MMT

5% TP8-MMT

Crystic 189LV

100 200 300 400 500 700600
Temperature (°C)

Figure 4—5 DTG traces (Air) for Crystic 189LV composites containing 5wt% of TP8 - to TP16- 
MMT and B u l6 -MMT -  Traces are offset for clarity.

The DTG traces presented in Figure 4-5 display two maxima in the decomposition 

process (A and B), decomposing over two stages. Stage 1 occurred between 121 and 

480 °C and exhibited Tmax (A) at 422 °C for pure Crystic 189LV and samples made 

using Crystic 189LV and 5 wt% TP 10-, TP 12-, TP 16-, and Bul6-MMT. TP8- and 

TP14-MMT displayed Tmax (A) at the slightly higher temperature of 444 and 437 °C, 

respectively. However, when comparing the %wt loss for all nanocomposites (Table 4 -  

6) the weight loss over the ranges 121-480 °C and 481-800 °C were very similar for all
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samples and the total %wt loss was approximately 97 % (± 2 wt%). Tmax (B) occurred at 

556 °C for pure Crystic 189LV, increasing to 568 °C for the nanocomposites containing 

TP 10-, TP 12-, TP 16- and Bul6-MMT, respectively. Tmax (B) occurred at 582 °C for 

nanocomposites containing TP8- and TP14-MMT. Tmax (B) is probably a degradation 

product that decomposes at a higher temperature (e.g. the char that forms when 

organoclay and resin decompose in stage 1). From the DTG traces it was apparent that 

composites containing TP8- and TP14-MMT were more stable than composites 

containing TP 10-, TP 12-, TP 16- and Bul6-MMT, however these composites were not 

carried forward as they proved unsuccessful in the in-house version o f the UL94 

Vertical Burning tests (Table 4-15).

Table 4-6  Comparison of the weight losses for Crystic 189LV composites containing 5wt% of TP8 - 
to TP16-MMT and B u l6 -MMT at different temperature ranges between 35 and 800 °C.

Stage 1 Stage 2
35-120 °C 

(%)
121-480 °C

(% )
481-800 °C

(%)
Total
(% )

Crystic 189LV 0.04 92.8 6.8 99.6
TP8 0.05 88.0 7.9 95.9
TP10 0.3 88.4 9.0 97.6
TP12 0.2 88.0 8.4 96.6
TP14 0.1 88.3 8.4 96.8
TP16 0.3 88.8 8.2 97.3
B u l6 0.2 88.5 8.4 97.2

4.6 Comparison of Data of TP8 + - TP16+ and B u l6+ Exchanged Na+ Cloisite and 

Nanocomposites of Crystic 189LV/ TP8+ - TP16+ and B u l6 + Exchanged Na+ 

Cloisite

4.6.1 Comparison of XRD Data for Alkylphosphonium Clays and their 

Composites with Crystic 189LV

The basal spacings for TP8+ - TP164 and B ul6+ exchanged Na+ Cloisite, are displayed 

in Table 4-7, and indicate that expansion of the gallery occurred when exchanged with 

the full range of alkylphosphonium cations. For the organoclays the gallery was 

expanded to the highest degree when exchanged with TP14+ and B ul6+.
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Table 4 -7  Comparison of d0oi for Na+ Cloisite exchanged with TP8+-TP16+, B u l6 + and their 
corresponding Crystic 189LV nanocomposites

TP8 - TP10- TP12- TP14- TP16- B u l6 -
MMT MMT MMT MMT MMT MMT

Organoclay </0oi (A) 17.4 17.4 17.4 18.7 17.7 20.9
Nanocomposite </ooi (A) 16.8 16.8 16.8 33.1 33.7 27.8

The basal spacings o f Crystic 189LV composites containing 5 wt% TP8- to TP16-MMT 

and Bul6-MMT, are also displayed in Table 4-7, and indicate that expansion o f the 

gallery occurred when nanocomposites of Crystic 189LV were made. Crystic 189LV 

mixed with TP8-, TP10-, and TP12-MMT displayed weak dooi peaks at 16.8 A, which 

were very similar to the d-spacing for TP8+, TP10+ and TP12+ exchanged Na+ Cloisite.

A small peak at lower angle (corresponding to d-spacings of 30.8 A for TP8- to TP16- 

MMT and 36.5 A for Bul6-MMT) occurred in the XRD traces for the 

alkyltriphenylphosphonium and alkyltributylphosphonium exchanged Na+ Cloisite. The 

presence o f this peak does not appear to effect the nanocomposite formation but an 

attempt is made to explain its presence. Ijdo and Pinnavaia [4~17] have attributed this to 

the formation of several products when the inorganic cations in the gallery are only 

partially replaced by organic cations (Figure 4-6). Phase segregation can occur, yielding 

starting material and newly formed organoclay (a). Figure 4-6 illustrates that mixing o f 

the two ions at exchange sites can lead to the formation o f a single ho mo structured 

phase (b) or two types of heterostructured phase (c). The mixed ion homostructure (b) 

has all the interlayers occupied by both metal ions and the onium ions, whereas the 

heterostructures (c) have two types of segregated galleries, one occupied by inorganic 

cations and the other by organic cations. The two galleries o f the hetero structure may be 

stacked either in a disordered, interstratified manner or in a regularly alternating 

fashion.
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Na (H20) Na(H20 )  Na(H20>

Figure 4-6  Three possible structures formed when the exchange sites of smectite clays are occupied 
with two different cationic species, alkylammonium and hydrated sodium ions

Na (H20) Na(H2Q) Na(H,Q)and

The regular stacking o f the distinguishable organic and inorganic galleries has also been 

observed in the staging behaviour in graphite [418l  The peaks at lower angle associated 

with spacings of 30.8 A and 36.5 A were most likely due to the formation of a mixed 

ion heterostructure (Figure 4-6 (c)) with the TP8+ - TP16+ and B ul6+ cations and 

Na(H20) cations segregated into two interlayers (Figure 4-7) in a regular alternating 

fashion.

Na (H20 )_  
layer in 

between the 
clay layers

o o o o o o
O  O  I . . !

■ .; •: oo

_  TP8+ - 
TP16+ and 

B ul6+ layer

Figure 4 -7  Schematic illustration of the possible structure for TP8 + - TP16+ and B u l6 + exchanged
Na+ Cloisite

In the early stages of the project, the aim was to produce a fully sodium exchanged form 

of montmorillonite, into which it would be easier to exchange quaternary ammonium 

and phosphonium cations and make the gallery surfaces organophilic. To make this 

possible, it was necessary to convert Na4 Cloisite (with its various hydrated gallery 

cations (E.g. majority Na+, Ca2+, Mg2+)) into sodium clay by exchange with sodium
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hydroxide (NaOH). The exchange process required the exchanged clay to be washed 

many times (between 8 and 10) until the conductivity of the final supernatant reached 

below 50 ps (5-10), therefore from an industrial perspective fully exchanged clays are 

very time consuming and expensive to produce. Due to the industrially driven nature of 

the project the NaOH exchange procedure was discontinued and as received Na+ 

Cloisite was utilized. However, differences in the XRD traces were seen between the 

fully Na-exchanged and as received forms, an example using Bul6-MMT is displayed 

in Figure 4-8, which demonstrated a clear peak at lower angle (this peak was also seen 

in the TPn-MMT series), which was only visible when the as received form of Na+ 

Cloisite was used.

Bul6-MMT prepared using the Na^ exchanged form of Na+ Cloisite displayed a slightly 

higher d o o i  spacing than Bul6-MMT prepared using the as received form of Na+ 

Cloisite, this could be attributed to varying states of hydration between the two forms o f 

Bul6-MMT. One possibility is that Na+ Cloisite (as received) contained a small, fixed 

amount of clay with high layer charge, accounting for the small fixed amount o f the 

heterostructure observed. The separation distance between the d o o i  peak and the small 

peak at lower angle for TP8- to TP16-MMT and Bul6-MMT (as received form) are 

presented in Table 4-8.

6000 Bu16-MMT using fully 
N a-exchanged N a+ 

C lo isiteX . Bu16-MMT using a s  
received N a+ C loisite

5000

4000

3 3000

2000

1000

6 122 4 8 10

Angle [°20]

Figure 4-8  XRD traces (Cr tube) displaying the differences between fully Na-exchanged and as
received forms of B u l6 -MMT
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Table 4-8  Separation distances between d0oi and small peak at lower angle

TP8 -
MMT

TP10-
MMT

TP12-
MMT

TP14-
MMT

TP16-
MMT

B u l6 -
MMT

Distance between 
dooi and small 

peak (A)

13.4 13.4 13.4 12.5 14.7

The distance between the layers was approximately the same distance as that found in 

the hydrated form of Na+ Cloisite (12.4 A) (Figure 4-9) and therefore supports the 

formation o f a mixed ion heterostructure as displayed in Figure 4-6 (c). In comparison 

the exchanged form of Na+ Cloisite formed a mixed ion homostructure as displayed in 

Figure 4-6 (b).

—
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Figure 4—9 Distance between layers in a hydrated Na+ Clay

Table 4-9 exhibits the possible amount of organic exchange against the actual amount 

o f organic exchange (using TG data) for Bul6-MMT prepared using fully Na- 

exchanged Na' Cloisite as compared to Bul6-MMT prepared using as received Na+ 

Cloisite. In the fully exchanged form, Calcium (Ca2+) has been removed from the 

exchange sites, therefore more exchange sites were available for organic exchange with 

B ul6+ cations. Therefore, an increase in the percentage exchange was observed from

67.1 to 83.8 % in the fully exchanged form, compared to the as received form.

Table 4-9  Possible organic exchange against actual organic exchange for B u l6 -MMT prepared 
using fully Na-exchanged Na+ Cloisite as compared to B u l6 -MMT prepared using as received Na+ 
Cloisite -  At 1 x CEC.

B u l6 -MMT using fully Na- 
exchanged Na+ Cloisite

B u l6 -MMT using as 
received Na+ Cloisite

Possible Organic 
Exchange (mg/ g)

394.9 394.9

Actual Organic 
Exchanged (mg/ g)

331.1 265.2

Percentage 
Exchanged (%)

83.8 67.1 I

* All exchange amounts are ± 5%
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4.6.2 Comparison of TGA Data for Alkylphosphonium Clays and their 

Composites with Crystic 189LV

The total weight loss from standard 10 mg samples increased as the length of the alkyl 

chain in the alkyltriphenylphosphonium cation increased from Cn = 8 to Cn = 12 (Table

4-10), above this chain length a steady decrease in the total weight loss was observed. 

The weight loss < 200 °C, which was believed to be due to loss of water associated with 

the surfactant head group, remained relatively constant throughout the series of samples, 

with the exception o f TP 12- and TP16-MMT which demonstrated a slightly higher 

weight loss (Table 4-4). The alkyltriphenylphosphonium cations decomposed and the 

products desorbed from the Cloisite galleries between 201 °C and 450 °C (stage 2), 

three decomposition peaks were present over this temperature range (Tmax (A -l) Tmax 

(A) and Tmax (A+l)). Tmax (A) was the main decomposition peak during stage 2, 

however two shoulders on Tmax (A) occurred in the decomposition pathway. TP8-, 

TP 14-, TP 16-, and Bul6-MMT displayed Tmax (A -l) as a shoulder before the main 

decomposition peak (A), while TP 10- and TP12-MMT demonstrated Tmax (A+l) as a 

shoulder after the main decomposition peak (A). As the length o f the alkyl chain 

increased, the profde of the thermal events changed, the majority o f the thermal 

desorption occurred at a maximum of 388 °C when Cn = 8, decreasing to 360 °C when 

Cn = 16. The weight loss > 451 °C was attributed to clay dehydroxylation and CO2 

formation as the carbonaceous coke was gasified.

Table 4-10 Comparison of total weight losses for Na+ Cloisite exchanged with TP8+-TP16+, B u l6 + 
and their corresponding nanocomposites

TP8 + TP10+ TP12+ TP14+ TP16+ B u l6+
Organoclay Total %wt Loss 31.4 33.9 38.7 37.5 33.1 35.1

Nanocomposite Total %wt Loss 95.9 97.6 96.6 96.8 97.3 97.2

Crystic 189LV nanocomposites containing TP8-, TP 16- and Bul6-MMT displayed a 

total %wt loss o f approximately 97 % (± 2 wt%) compared with 99.6 % for pure Crystic 

189LV. This weight loss should reflect the amount of inorganic added, however when 

the amount of inorganic is calculated (2.8, 2.7, 2.7, 2.6, 2.5 and 2.7 wt% for TP8-, 

TP 10-, TP 12-, TP 14-, TP 16- and Bul6-MMT, respectively) the %wt o f the sample 

remaining is higher than the amount of inorganic in the system. Therefore, it is believed 

that a synergistic effect occurred between the organoclay and the unsaturated polyester,
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which lead to the formation o f an increased amount of carbonaceous char and decreased 

total %wt loss. The nanocomposites containing TP8- and TP14-MMT displayed a 

slightly higher temperature thermal decomposition maxima (Tmax (A) = 444 and 437 °C, 

respectively) compared to pure Crystic 189LV, TP 10-, TP 12- and TP16-MMT (Tmax 

(A) = 422 °C). Crystic 189LV nanocomposites containing TP8- and TP14-MMT 

displayed a shift in the desorption maxima towards a higher temperature, demonstrating 

a stabilising effect on the entire system until the upper thermal limit o f the material was 

reached. This shift could possibly be due to which part of the nanocomposite was 

sampled (centre or edge), however care was taken to ensure all nanocomposites were 

sampled from the same area (section 2.6.2.3 o f chapter 2).

It was not clear why this shift occurred, Yang et al. [4' 19] believed that this shift could be 

attributed to an increase in the formation o f the protective barrier layer due to the 

surface accumulation o f clay platelets held together by carbonaceous char. This barrier 

would have thermally insulated the UP matrix. Also, a highly tortuous path to mass 

transport produced by layering o f the clay platelets would have created a diffusion 

barrier to gases and fumes [4'20]. These two mechanisms, described more fully in section 

1.6.4 of Chapter 1, are the most likely to retard the combustion of the polymeric 

materials.

4.7 Difficulties Optimising the Dispersion of the Organophosphonium Clays in 

Crystic 189LV

Initially self aggregation occurred when preparing nanocomposites using the 

organomodified clays based on TP8+-TP16+ and B ul6+ exchanged Na+ Cloisite. 

Mechanical milling was used in an attempt to overcome this problem, however large 

particles could still be visually identified. Dimethyl methylphosphonate (DMMP) is a 

liquid phosphonate that has been identified as a fire retardant agent in many polymers [4'
21 4 221’ ' J. DMMP was originally added to the polymer systems to reduce the extinguish 

times of samples when subjected to the fire tests, the liquid fire retardant additive 

DMMP, which acts primarily in the gas phase reduced the extinguish times o f samples 

prepared using Crystic 189LV. The fire retardant performance improved as the DMMP 

level increased; addition of 10 wt% DMMP to Crystic 189LV achieved a borderline V-l 

pass. DMMP was added at various stages in the mixing procedure (i.e. before/after the

141



organoclay and resin had been mixed together) and it was noted that the addition o f 

DMMP to the organoclay before mixing into Crystic 189LV improved the dispersion of 

the organoclay into Crystic 189LV, by acting as a pre-swelling agent. Therefore, pre

swelling of the organophosphonium modified clays with DMMP was identified as the 

preferred method to overcome dispersion issues. To investigate the effect o f individual 

components in the nanocomposite systems (DMMP and styrene (from the unsaturated 

polyester matrix)), on the d-spacing o f organophosphonium clays, XRD analysis was 

carried out on organophosphonium clays, organophosphonium clays dispersed in 

DMMP, organophosphonium clays dispersed in styrene, and organophosphonium clays 

dispersed in DMMP, dried and then dispersed in styrene.

4.7.1 XRD Analysis of Organophosphonium Clays Dispersed in DMMP

XRD analysis was carried out on organophosphonium clays dispersed in DMMP, to 

investigate the effect that DMMP had on the d-spacings o f the organophosphonium 

clays. 1 g o f each organophosphonium clay (TP8- to TP16-MMT and Bul6-M MT plus 

Na' Cloisite) was dispersed in DMMP, and then dried in an oven at 80 °C overnight.

Figure 4-10 XRD traces (Cr tube) for TP8 - to TP16-MMT, B u l6 -MMT and Na+ Cloisite, dispersed
in DMMP -  Traces are offset for clarity
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The XRD traces presented in Figure 4-10 display TP8- to TP16-MMT, Bul6-MMT and 

Na+ Cloisite, treated with DMMP. The dispersion o f these organophosphonium clays 

into DMMP did not appear to increase the d o o i  spacings, however it did increase the d o o i  

spacing ofN a+ Cloisite from 12.5 to 14.6 A .  A decrease the d o o i  spacing of Bul6-MMT 

from 20.9 to 17.7 A  was observed, which could suggest that excess surfactant has been 

washed out or that B ul6+ had re-orientated within the inter layer space. The d-spacings 

are displayed in Table 4-11, compared to the d-spacings for organophosphonium clays, 

and organophosphonium clays dispersed in styrene.

4.7.2 XRD Analysis of Organophosphonium Clays Dispersed in Styrene

XRD analysis was carried out on organophosphonium clays dispersed in styrene, to 

evaluate the effect of styrene from the unsaturated polyester matrix, on the d-spacings o f 

organophosphonium clays, lg  of each organophosphonium clay was dispersed in 

styrene, and then dried in an oven at 100 °C overnight, the lower temperature of 80 °C 

used to dry the DMMP samples was not sufficient to dry the styrene samples.

Bu 16-MMT in Styrene

Z)
< TP16-MMT in Styrene

c
13oO

TP14-MMT in Styrene

TP12-MMT in Styrene

TP10-MMT in Styrene

TP8-MMT in Styrene

2 4 6 8 10 12

Angle [°20]

Figure 4-11 XRD traces (Cr tube) for TP8 - to TP16-MMT and B u l6 -MMT, dispersed in styrene -
Traces are offset for clarity
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The XRD traces presented in Figure 4-11 display TP8- to TP 16-MMT and Bui 6-MMT, 

dispersed in styrene. The XRD traces for all organophosphonium clays dispersed in 

styrene displayed a clear d o o i  spacing of 17.8 A ,  with the exception of Bul6-MMT, 

which displayed a d o o i  spacing of 24.8 A .  A small peak at lower angle (33.0 A )  is 

visible in the XRD traces for TP 10- and TP 16-MMT dispersed in styrene. The d -  

spacings are displayed in Table 4-11, compared to the d-spacings for 

organophosphonium clays, and organophosphonium clays dispersed in DMMP. The 

increase in background at a lower angle in the TP8-, TP 12- and TP14-MMT samples 

could possibly be attributed to the polymerisation of styrene within the samples. There 

was strong evidence o f polymerisation within these samples, after they had been dried 

overnight the samples had taken on a glassy appearance characteristic o f polymerised 

styrene.

4.7.3 XRD Analysis of Organophosphonium Clays Dispersed in DMMP, then 

Dispersed in Styrene

The effect on the d-spacings of organophosphonium clays dispersed into DMMP and 

then dispersed into styrene were analysed using XRD. lg  of each organophosphonium 

clay (plus N a1 Cloisite) was dispersed in DMMP, dried in an oven at 80 °C overnight, 

and then dispersed in styrene and dried in an oven at 100 °C overnight.

TP16-MMT
z>
<

TP14-MMTw
c
=3oO

TP8-MMT

Na+ C loisite

2 4 6 8 1210

Angle [°20]

Figure 4-12 XRD traces (Cr tube) for TP8 - to TP16-MMT, B u l6 -MMT and Na+ Cloisite, dispersed 
in DMMP, dried, then dispersed in styrene -  Traces are offset for clarity
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The XRD traces presented in Figure 4-12 display TP8- to TP16-MMT, Bul6-MMT and 

Na+ Cloisite, dispersed in DMMP, dried, and then dispersed in styrene. The d-spacings 

are presented in Table 4-11, with comparisons o f the d-spacings obtained for 

organophosphonium clays, organophosphonium clays dispersed in DMMP, and 

organophosphonium clays dispersed in styrene.

Table 4-11 Comparison of d0oi spacings for organophosphonium clays and Na+ Cloisite, dispersed 
in DMMP, dispersed in styrene and dispersed in DMMP, dried then dispersed in styrene

dooi (A) TP8 -
MMT

TP10-
MMT

TP12-
MMt

TP14-
MMT

TP16-
MMT

B u l6 -
MMT

Na+
Cloisite

Organophosphonium
clays

17.4 17.4 17.4 18.7 17.7 20.9 12.5

Organophosphonium 
clays dispersed in DMMP

17.9 17.6 17.9 17.7 17.7 17.7 14.6

Organophosphonium 
clays dispersed in styrene

17.8 17.8 17.8 17.8 17.8 24.8 -

Organophosphonium 
clays dispersed in 

DMMP, dried, then 
dispersed in styrene

17.5 17.5 17.5 17.5 17.5 23.4 14.7

The d-spacings for organophosphonium clays TP8- to TP 16-MMT, did not appear to 

expand significantly upon dispersion into DMMP, styrene, or DMMP and then styrene. 

The d-spacing o f Bui 6-MMT decreased when dispersed into DMMP, increased when 

dispersed into styrene, and increased when dispersed in DMMP which was then dried 

and dispersed into styrene. It was observed that the small peak at lower angle, which 

was found in all organophosphonium clays, was not present when the clays were 

dispersed in DMMP and was only present in the TP 10- and TP 16-MMT samples when 

dispersed in styrene. However, when dispersed in DMMP, dried and then dispersed in 

styrene, the small peak at lower angle was once again visible in all organophosphonium 

clays plus NaH Cloisite. These experiments confirmed that the expansion in the dooi 

spacing observed when composites were prepared using these organophosphonium 

clays and Crystic 189LV, was due to polymerisation of Crystic 189LV in the gallery 

space, therefore expanding the clay layers further. The increase in the dooi spacing 

cannot be attributed to DMMP or styrene preferentially expanding the clay layers.
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4.7.4 XRD Analysis o f Composites Prepared Using DMMP

Modified organophosphonium clays once pre-dispersed in DMMP were then mixed 

with Crystic 189LV following the mixing regime outlined in section 3.2.2 o f Chapter 3. 

The samples, described in Table 4-12, were based on those in section 4.5.2 which 

formed a microcomposite (TP12-MMT) and intercalated nanocomposite (TP 16-MMT 

with Crystic 189LV plus an intercalated nanocomposite of Crystic 189LV/Bul 6-MMT.

Table 4-12 Nanocomposite formulations involving DMMP

Organoclay Carbon Chain 
Length

Organoclay Used 
(wt%)

DMMP (wt%)

Bui 6-MMT 16 2.5 5
Bui 6-MMT 16 5 10
TP 16-MMT 16 5 0
TP 16-MMT 16 2.5 5
TP 16-MMT 16 5 10
TP12-MMT 12 5 0
TP12-MMT 12 2.5 5
TP12-MMT 12 5 10

5% Bu16-MMT
=>
<
w 2.5% Bu 16-MMT, 5Dc
oo

5% Bu16-MMT, 10D

Crystic 189LV

62 4 128 10
Angle [°20]

Figure 4-13 XRD traces (Cr Tube) for Crystic 189LV composites prepared by pre-mixing B u l6 - 
MMT and different percentages of DMMP (e.g. 5D = 5% DMMP) -  Traces are offset for clarity
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This pre-swelling step using DMMP made it easier to physically combine the 

phosphonium-based organoclays with the resin. The XRD traces presented in Figure 4 -  

13 display Crystic 189LV and Crystic 189LV mixed with 5 wt% Bui 6-MMT, 2.5 wt% 

Bul6-MMT plus 5 wt% DMMP (5D) and 5 wt% Bul6-MMT plus 10D. Intercalated 

and aggregated nanocomposites were achieved in the 5 wt% Bui 6-MMT and 5 wt% 

Bui 6-MMT plus 10D samples, confirmed by the presence of clear dooi and doo2 peaks. 

The XRD traces for composites prepared using 2.5 wt% Bui 6-MMT plus 5D were less 

intense, possibly due to the decreased amount of clay in the sample. The dooi spacing 

increased from 20.9 A  in Bui 6-MMT to 29.1 A  when mixed with Crystic 189LV/5 wt% 

Bul6 and 28.1 A  when mixed with Crystic 189LV/2.5 or 5 wt% Bul6 plus DMMP. 

Upon increasing the amount of DMMP in the Bui 6-MMT samples from 5 to 10 wt%, 

the samples remained intercalated, therefore DMMP did not clearly influence the 

dispersion and size o f the stacks within the Bui 6-MMT samples.

5% TP16-MMT, 
10D

3
<cnc
oO 2.5%  TP16-MMT, 

5D

5% TP16-MMT

2 4 6 8 10 12

5% TP12-MMT 
10D

3
< 2.5% TP12-MMT 

5Dcnc12oo
5% TP12-MMT

Crystic 189LV

2 4 6 8 10 12
Angle [°20] Angle [°20]

Figure 4-14 XRD traces (Cr Tube) for Crystic 189LV composites prepared by pre-mixing TP12- 
and TP16-MMT and different percentages of DMMP (e.g. 5D = 5% DMMP) - Traces are offset for

clarity
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The XRD traces presented in Figure 4-14 were obtained from Crystic 189LV 

nanocomposites containing TP 12- and TP 16-MMT, with and without pre-dispersion in 

DMMP. When mixed with Crystic 189LV and DMMP, an increase in the d-spacing of 

TP 12-, and TP 16-MMT occurred from 17.4 and 17.7 A ,  to 30.1 and 31.7 A ,  

respectively. Crystic 189LV did not intercalate into TP12-MMT, this is evident from 

the d o o i  peak, which displayed a d-spacing of 17.4 A ,  which was the same as that for 

unexpanded TP12-MMT (Figure 4-2). The addition of 5D into the TP12-MMT/Crystic 

189LV system produced some intercalated nanocomposite, but lots o f undispersed 

TP12-MMT remained. However a more exfoliated/intercalated nanocomposite was 

formed upon addition o f 10D, which was observed through increased low angle 

scattering and intensity of the d o o i  peak. Therefore, there is clear evidence that the 

addition o f DMMP did influence the dispersion of Crystic 189LV into TP12-MMT, 

however micrograins still remained in the sample. Intercalated and aggregated 

nanocomposites were formed when TP 16-MMT was mixed with Crystic 189LV, 

occurring in the presence and absence o f DMMP. The 2.5 wt% TP16-MMT/5D samples 

displayed a more intercalated/aggregated nanocomposite nature, observed through 

increased intensity o f the d o o i  and d o o2  peaks. Table 4-13 exhibits the d o o i  spacings for 

TP12-, TP16- and Bul6-MMT/ DMMP/ Crystic 189LV nanocomposites (± 0.2 A ) .

Table 4-13 Comparison of d0oi spacings for Crystic 189LV composites prepared by premixing 
TP12-, TP16- and B u l6 -MMT and different percentages of DMMP (e.g. 5D = 5% DMMP)

Organoclay Organoclay (wt%) DMMP (wt%) dooi (A)
TP12 5 0 -

TP12 (1) 2.5 5 27.4
TP 12 (2) 5 10 30.1

TP16 5 0 33.2
TP 16 (3) 2.5 5 32.9
TP 16 (4) 5 10 31.7

Bul6 5 0 29.1
B u i6 (5) 2.5 5 28.1
B u i6 (6) 5 10 28.1
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4.7.5 TG Analysis of Composites Prepared using DMMP

i-~o

50 150 250 350 450 550 650
Tem perature (°C)

Figure 4-15 DTG traces (Air) of composites prepared using Crystic 189LV, TP12-, TP16- and 
Bui 6 -MMT and DMMP (formulations described in Table 4-13) -  Traces are offset for clarity.

The DTG traces presented in Figure 4-15 are for the nanocomposite samples prepared 

using TP12-, TP16- and Bul6-MMT (labelled 1-6 in Table 4-13). They decomposed 

over three stages, with three maxima in the decomposition process (A, B and C). Tmax 

(A) occurred at 215 °C, Tmax (B) occurred at 425 °C, and Tmax (C) occurred at 565 °C. 

The peak under Tmax (A) most likely corresponds to the evaporation o f DMMP, which 

boils at 181 °C, however this peak is not prominent in all samples. Tmax (B) and Tmax (C) 

correspond closely to the decomposition maxima for Crystic 189LV blended with 

modified organoclays.

Therefore, DMMP does not appear to affect the decomposition pathway o f these 

systems, at this level of investigation, as well as having little effect on the d0oi of the 

C16 chains. DMMP does however aid the dispersion of TP12-MMT, increasing the 

amount o f intercalation by the UP.
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4.8 One Pot Synthesis of Crystic 189LV-Clay Nanocomposites Incorporating TP8 + 

to TP16+ and B u l6+, DMMP and Na+ Cloisite

4.8.1 Introduction

This section describes the preparation of (nano) composites from an original ‘one-pot’ 

process, starting with Na+ Cloisite. An efficient one-pot synthesis method would 

involve all the components for a UP-clay (nano) composite simultaneously in a mixture, 

which would permit the in-situ preparation of organophosphonium clays. Such a 

method would potentially provide an economic advantage through cost reduction, be 

more efficient and reduce environmental impact through reduced process manufacture.

4.8.2 Experimental Method

The usual method of preparing an organoclay is to pre-disperse inorganic cation 

exchanged clay in a large amount of water. The salt is then added into the suspension. 

After the ion-exchange reaction, the solids obtained are washed, dried and ground. 

Generally washing is the time intensive stage. In this simplified ‘one-pot’ method the 

inorganic clay and alkylphosphonium salt were mixed with UP resin and DMMP, 

simultaneously.

Bui 6-MMT was studied first simply because it presented the best fire retardant results 

(Table 4-15) in the initial survey. For comparison Na+ Cloisite was exchanged with 

B ul6+, using the general method described in section 2.3 of Chapter 2. Three Crystic 

189LV based composites containing 5 wt% organoclay were prepared: one from Bui 6- 

MMT and 10 wt% DMMP (1), one from Na+ Cloisite and 10 wt% DMMP (2) and the 

last one from a mixture o fN a+ Cloisite, B ul6+ salt (Bul6B) and 10 wt% DMMP (3). In 

the ‘one-pot’ method, Bul6B was added at the beginning o f the blending procedure, i.e. 

directly with the DMMP and Na+ Cloisite before addition to Crystic 189LV. Most 

importantly, the nanocomposites produced by the ‘one-pot’ method were found to have 

comparable fire retardant properties to the nanocomposites produced by the standard 

method. In addition to Bul6B, samples containing TP8B to TP16B salts were also 

prepared using the ‘one-pot’ method.
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4.8.3 XRD Analysis of ‘one-pot’ composites

3
<
wc
13oO

6 122 4 8 10

Angle [°20]

Figure 4-16 XRD traces (Cr Tube) for Crystic 189LV composites prepared using (1) Bul6-M M T  
and 10D (Standard Method), (2) Na+ Cloisite and 10D and (3) Bul6B, Na+ Cloisite and 10D (One

Pot Method) -  Traces are offset for clarity

The XRD traces presented in Figure 4-16 display traces for composites 1 to 3. These 

results indicate an intercalated morphology for both compounds 1 and 3, with d- 

spacings o f 28.6 A  (1) and 34.4 A  (3), the second peak in composite 1 was 

representative o f the doo2  peak of the Crystic 189LV intercalated Bui 6-MMT. 

Compound 2 exhibited only a weak peak corresponding to a d-spacing o f 14.7 A ,  which 

is in agreement with the d-spacing of the DMMP expanded Na+ clay (Table 4-11).

Table 4-14 Comparison of d0oi spacings for Bui 6-MMT dispersed in DMMP and styrene, and its 
nanocomposites prepared using the standard and ‘one-pot’ methods

d o o i  ( A )
B u l6 -MMT 20.9

Bui 6 -MMT dispersed in DMMP 17.7
Bui 6 -MMT dispersed in styrene 24.8
Bui 6 -MMT dispersed in DMMP, 
dried, then dispersed in styrene

23.4

Standard method 28.6
‘one-pot’ method 34.4

151



Table 4-14 displays a comparison of the d o o i  spacings for Bui 6-MMT dispersed in 

DMMP and styrene, and its nanocomposites prepared using the standard and ‘one-pot’ 

methods. The ‘one-pot’ method exhibited the largest increase in d-spacing, however 

upon comparison o f the d o o i  spacings in Table 4-14 it was unclear at this stage whether 

the increase could be attributed to one/or a combination of components in the ‘one-pot’ 

system.

4.8.4 TGA Analysis of ‘one-pot’ composites

Crystic 189LV

100 200 300 400 500 700600

Temperature (°C)

Figure 4-17 DTG traces (Air) for Crystic 189LV and composites prepared using Crystic 189LV  
and (1) Bui 6 -MMT and 10D (Standard Method), (2) Na+ Cloisite and 10D and (3) B u l6 B, Na+ 

Cloisite and 10D (One Pot Method) -  Traces are offset for clarity

The DTG traces presented in Figure 4-17 display three maxima in the decomposition 

process (A, B and C), occurring over three stages. Tmax (A) occurred during stage 1 at 

220 °C and represented the thermal desorption of DMMP, Tmax (B) occurred during 

stage 2 at 421 °C for pure Crystic 189LV and at temperatures between 425 and 430 °C 

for compounds (1) to (3). Tmax (C) occurred during stage 3 at 556 °C for pure Crystic 

189LV, increasing to 568 °C for compounds (1) (standard method) and (2), and 577 °C 

for compound (3) (the ‘one-pot’ method).
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Alexandre et al. [4 23] carried out a similar study and reported on the preparation of 

ethylene-vinyl acetate (EVA) nanocomposites in an original ‘one-pot’ reactive process, 

starting directly from natural, Na+ exchanged clay. Dimethyl dioctadecylammonium 

bromide (DMDODABr) was studied as a potential clay/matrix reactive compatibiliser. 

Three EVA based composites were prepared: (X) using a standard method similar to the 

one used in this thesis, (Y) a control using Na+ Cloisite, and (Z) using a ‘one-pot’ 

method. XRD analysis revealed an intercalated morphology for composite (X) and 

intercalated/exfoliated morphology for composite (Z). An increase in the Young’s 

modulus, the stress at break and a decrease in the strain at break were observed in the 

composite made by the ‘one-pot’ method. These differences were explained by the 

difference in structure observed between nanocomposites (X) and (Z) (intercalated v. 

intercalated/exfoliated), as the amount of individual clay platelets responsible for the 

large increase in modulus is smaller in the case of the ‘one-pot’ nanocomposite. This 

behaviour might also result from a limited diffusion of the ammonium salts within the 

EVA, inducing a modification o f the clay layer that was not sufficient to achieve the 

best compatibilisation.

Another property for which the nanocomposite morphology played an important role 

was the thermal stability under air. The DTG results observed for Bui 6-MMT are 

similar to those found by Alexandre et al. [4'23] in that they also found an increase in 

Tmax (C) for the nanocomposite made using the ‘one-pot’ method (Z), as compared to 

the microcomposite (Y), this is also in agreement with improvements reported for other 

partially intercalated and partially exfoliated nanocomposites I4-24’4-25].

4.9 UL94 Vertical Burning Test Results using Dimethyl methyl phosphonate 

(DMMP) as a Flame Retardant

DMMP served a dual purpose, not only was it used as a flame retardant, it was also used 

as a pre-dispersing agent for the modified clays. Very interesting results on fire 

performance were produced that could remove the need for halogenated products to 

achieve increased fire retardancy. DMMP is a liquid phosphonate that has been used as 

a fire retardant agent in many polymers, and acts mainly in the vapour phase. 

Considering this knowledge the following question was addressed:
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Could the combination o f  clay and DMMP provide better fire  retardant performance 

given that clay forms much better insulation layers and that the evaporation or 

decomposition o f  DMMP would suppress the flame?

To evaluate the effectiveness of DMMP as a flame retardant agent a fire test similar to 

the UL94 vertical burning test (94V) (Section 2.13.1 o f Chapter 2) was performed on 

the entire series of TP and B ul6+ exchanged organoclay nanocomposites and DMMP. A 

comparison of samples made via the standard and one-pot routes were also included.

4.9.1 UL 94 Vertical Burning Test Results

TP8- to TP 16-MMT and Bui 6-MMT were mixed with Crystic 189LV and DMMP at 

2000 rpm for 30 minutes, using the standard and ‘one-pot’ methods, postcured and then 

subjected to the vertical burning test. The results are displayed in Table 4-15 and a 

UL94-V classification was applied where possible.

A sample displaying good burning characteristics incorporated Crystic 189LV, 5 wt% 

Bui 6-MMT and 10 wt% DMMP (10D) (highlighted in Table 4-15). Four different 

samples were burnt in total (Burn 1, Bum 2 etc.). Each sample, which was the size o f a 

standard microscope slide, was secured in a clamp, before a flame with a length o f 

approximately 5 cm was applied to the bottom comer o f the sample for 10 seconds after 

the sample had extinguished. The sample was allowed to cool for 30 seconds and a 

second flaming applied. The time it took for the flame to extinguish after each flaming 

was recorded (e.g. 2, 11 etc.), the mean value for the total time for each flaming was 

taken, which resulted in a UL94-V classification being applied (criterion for each 

UL94-V classification can be found in section 2.6.7.1 of Chapter 2).

Crystic 189LV when mixed with 5 wt% TP 14 displayed poor burning characteristics. 

After the first flaming the samples continued to bum beyond 60 seconds and 

consequently were extinguished manually (denoted as Ex, in Table 4-15), a second 

flaming was not applied and the samples failed to reach a UL94-V classification.
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Table 4-15 UL94 Vertical Burning Test Results

Burn 1 Burn 2 Burn 3 Burn 4 Total UL94- V 
Classification

Original Method
Crystic 189LV Ex Ex Ex Ex - Fail
Crystic 189LV, 

10D
3, Ex 20, Ex 3, Ex 4, Ex 7.5, Ex Fail

5% TP8-MMT Ex Ex Ex Ex - Fail
5% TP8-MMT, 

10D
2 ,5 3 ,5 3 ,9 2, 11 2.5, 7.5 V-0

5% TP10-MMT, 
10D

3 ,4 6 ,9 2, Ex Ex - Fail

5% TP12-MMT, 
10D

3, Ex Ex Ex Ex - Fail

5% TP14-MMT Ex Ex Ex Ex - Fail
5% TP14-MMT, 

10D
4, 30 5, Ex 6, Ex Ex - Fail

5% Bui 6-MMT Ex 25, Ex 28, Ex Ex - Fail
5% Bui 6-MMT, 

10D
3,8 4 ,5 2 ,5 1,9 2.5,

6.75
V-0

One-pot Method
5% TP8+ and 
MMT, 10D

5, 19 6, 14 3, 11 4, 15 4.5,
14.75

V -l

5% TP10+ and 
MMT, 10D

3, 8 12, 26 21,22 - 5.6,
18.6

V -l

5% TP 12+ and 
MMT, 10D

31, Ex 7, 24 - - - Fail

5% TP14+ and 
MMT, 10D

15,40 8, Ex - - - Fail

5% TP16+ and 
MMT, 10D

3,8 12, Ex - - - Fail

5% B ul6+ and 
MMT, 10D

3, 12 3, 10 3 ,7 - 3,9.6 V -l

(Ex = Extinguished manually after 60 seconds)

The vertical burning test results in Table 4-15 indicated to some extent that the original 

and ‘one-pot’ methods were comparable, however the V-rating slipped from a V-0 in 

the case of the B ul6+ samples down to a V-l rating, and this was also the case for the 

TP8+ samples. In some of the samples, organoclay particles were clearly visible in the 

films. When organoclay particles were visible, then the samples had a tendency to crack 

when subjected to the first flaming and had to be extinguished manually, this 

phenomenon was attributed to poor dispersion within the samples. As a result o f poor 

dispersion, the addition o f organophosphonium-clays alone did not result in significant
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fire retardant improvement. However, using DMMP as a pre-swelling agent not only 

improved the dispersion but also caused the fire retardant properties to reach a much 

higher classification. The pure resins and samples without DMMP failed and had to be 

extinguished manually.

Based on the vertical burning test results in Table 4-15 it was decided not to pursue the 

TP series. Poor dispersion o f these clays within the polymer lead to an increased 

incidence of cracking within the samples after they had been subjected to the first 

flaming. Consequently the sample continued to burn after the second flaming due to 

non-uniformity of the char layer and had to be extinguished manually. Bui 6-MMT 

however, displayed comparable fire retardant properties to the halogenated resins in 

section 3.5 of Chapter 3. The halogenated resins self extinguished within 3 seconds after 

the first flaming, compared to Bui 6-MMT composites, which self extinguished in 

approximately 2.5 seconds after the first flaming. As a result o f these comparable fire 

retardant results it was decided to further pursue composites prepared using Crystic 

189LV, Bui 6-MMT and DMMP.

4.10 Variation in B u l6  Exchanged Na+ Cloisite Batches and its Effect on Fire 

Retardant Properties of Crystic 189LV Composites Containing DMMP

The most promising fire retardant results were observed when B ul6+ was exchanged 

onto Na+ Cloisite and mixed with Crystic 189LV and DMMP. Consequently many 

different batches o f this organophosphonium-clay were produced during the project. 

Fire retardant performance varied and although all batches were made using the same 

exchange procedure both batch-to-batch differences, and differences between samples 

made from the same batch, but on different days were seen. Table 4-16 displays 

different Bui 6-MMT (5 wt%) batches mixed with Crystic 189LV and 10D, that were 

subjected to the in-house version of the UL94 Vertical Burning Test (where possible V- 

ratings have been applied).

156



Table 4-16 UL94 Vertical Burning Test results for different Bul6-M M T batches

Burn
1

Burn
2

Burn
3

Burn
4

Burn
5

Burn
6

Total UL94- V 
Rating

Batch 2 3 ,8 4 ,5 2 ,5 1,9 - - 2.5, 6.8 V-0
Batch 4, 

Mix 1
1,8 3 ,7 2, 5 3 ,5 3 ,6 3 ,9 2.5, 6.7 V-0

Batch 4, 
Mix 2

3,42 4, Ex 3, 12 3, Ex 6, 8 4, Ex 3.8, - Fail

Batch 4, 
Mix 3

2, 11 3, Ex 2, Ex 3, 12 2 ,6 4, Ex 2 .7 ,- Fail

Batch 4, 
Mix 4

3, 15 2, 10 2, 11 <1,4 2 ,7 2, 8 1.8, 9.2 V -l/V -0

Batch 5 Ex, - 6, 11 7 ,6 7, Ex - - - Fail
Batch 6 4, 30 2, 23 3, 16 2, 14 - - 2.8, 20.8 V-l
Batch 8 4, 32 3, 20 4, 25 4, 13 - - 3.8, 22.5 V-l

(Ex = Extinguished manually after 60 seconds)

4.10.1 XRD Analysis of Different B u l6 -MMT Batches
5000 Batch 4

Batch 2

40 0 0
Batch 5

3000</>
c
=3oO Batch

2000 Batch 6

1000

4 92 3 5 6 7 8
Angle [°20]

Figure 4-18 XRD traces (Cr Tube) for different Bui 6 -MMT batches

The XRD traces presented in Figure 4-18 display different Bui 6-MMT batches. Table 

4-17 displays the dooi spacing and the d-spacing for the smaller peak at lower angle for 

each batch. Differences were seen in the intensity of the dooi peak, batches 2 and 4 

displayed the most intense dooi signals and were approximately twice as intense as batch 

5 and three times as intense as batch 8. The ratio of the small peak at low angle to the 

dooi peak also differed, varying as 10:1, 9:1, 8:1 and 4:1 for batch 4, batch 2, batch 5 

and batch 8, respectively.
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Table 4-17 Comparison of d0oi and small peak at lower angle spacings for B ui 6-MMT batches

d o o i  ( A ) d-spacing for small peak (A)
Batch 2 21.2 36.3
Batch 4 21.2 36.3
Batch 5 21.5 37.7
Batch 6 - -
Batch 8 20.9 35.7

The dooi spacings for the different Bul6-MMT batches presented in Table 4-17 are all 

similar at 21.2 A  ± 0.3 A .  However, the d-spacing for the small peak at lower angle 

varied by approximately 2 A  from batch to batch, which could indicate regular 

interstratification o f Na+ and B ul6+, or it could indicate an increased amount of B ul6+ 

in some of the samples.

4.10.2 TG Analysis of Different B u l6 -MMT Batches

A-1

B-1

i-■o
$"OI

300 450 600 750150

Temperature (°C)

Figure 4—19 DTG traces (Air) for different B u l6 -MMT batches -  Traces are offset for clarity

The DTG traces presented in Figure 4-19 display two maxima in the decomposition 

process (A and B), decomposing over two stages. In batches 2, 4, 5 and 8, Tmax (A) 

occurred at 344 °C and Tmax (B) occurred at 652 °C, however, there were differences in 

the position and intensity o f the minor peaks under Tmax (A -l) and Tmax (B-1) as 

displayed in Table 4-18.
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A

Figure 4-20 displays the DTG trace for 

batch 6. Batch 6 displayed a different 

degradation pattern to the other batches. 

Tmax (A) occurred at a lower temperature 

of 330 °C. However, Tmax (A -l) occurred 

at 290 °C, which was the same 

temperature as batches 5 and 8. Tmax B 

occurred at a lower temperature o f 638 °C 

and Tmax (B-1) occurred at 593 °C.

From the UL94 vertical burning test results (Table 4-16) batches 2 and 4 displayed the 

most promising fire retardant properties reaching a V-0 classification, however batch 4 

(mixes 2 and 3) along with batch 5 also displayed the least promising fire retardant 

properties. Tmax (A-l) displayed a significant shift in temperature (up to 28 °C between 

batches 2, 5 and 8) and height between different batches.

Table 4-18 Differences in peak positions and intensity for different B u l6  batches

Stage 1 Stage 2
Tmax A 

(°C)
Tmax B 

c o
Tmax A -l

(°C)
Tmax B-1

(°C)
Height
A : A -l

Separation 
Between A 

and A -l (°C)
Batch 2 350 645 262 - 1:0.4 88
Batch 4 350 645 283 510 1:0.7 67
Batch 5 350 645 290 510 1:0.88 60
Batch 6 330 638 290 593 1:0.2 40
Batch 8 350 645 290 510 1:1.05 60

It was unclear at this stage what was being released under Tmax (A -l) and whether the 

peak shifts and peak heights played an important role in the fire retardant properties o f 

B ul6+ exchanged N a1 Cloisite, when included in the Crystic 189LV composites with 

DMMP. It appeared that when there was a large difference in peak heights as for Batch 

2 (plus a large separation between Tmax (A) and (A -1)), then the fire retardancy changed 

from a V-l to a V-0 classification. When the peak heights were in the mid range as for

0.009 -

T3

I : 0.006 - B-1
A-1

0.003 -

300 450 600 750150

Temperature (°C)

Figure 4-20 DTG trace (Air) for Bui 6 -MMT
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Batch 4 and Batch 5, then the fire retardancy reached a V-0, V-l or fail classification. 

To provide a better understanding of what was being released under Tmax (A-l), TG-MS 

analysis was carried out and will be reported later in the Chapter.

4.10.3 XRF Analysis of Different B u l6 -MMT Batches

X-ray fluorescence elemental analysis was carried out on the different B u i6 batches 

(Table 4-19) to give an indication of the amount of Na+ displaced. For comparison the 

data for Na+ Cloisite has been included in the table.

Table 4-19 XRF Elemental Analysis of Different B u l6 -MMT batches and Na+ Cloisite

Batch 2
(% )

Batch 4
(% )

Batch 6

(%)
Batch 8

(% )
Na+ Cloisite 

(% )
MgO 1.9 2.1 2.08 2.1 2.3
Na20 0.1 0.09 0.2 0.06 4.3
AI2O3 22.5 22.4 22.3 22.5 22.6
S i0 2 64.5 64.5 64.1 64.7 65.1
P2O5 5.7 5.8 6.4 5.6 0.01
S 0 3 0.01 -0.02 -0.02 -0.01 0.7
k 2o 0.06 0.06 0.06 0.02 0.1
CaO 0.3 0.3 0.3 0.3 0.2
T i0 2 0.1 0.2 0.1 0.1 0.1

Fe2C>3 4.7 4.6 4.5 4.6 4.7

As expected Na+ Cloisite contained more Na20 than the Bui 6-MMT batches and very 

little P 2 O 5 .  Batches 2 ,  4 and 8  all contained similar amounts of Na20 and P 2 O 5 ,  

suggesting that the exchange process had occurred to a similar extent in these batches. 

However, from the elemental analysis of Batch 6, it was clear that the exchange process 

had occurred differently. Batch 6 contained more Na20 than the other batches, 

suggesting that less B ul6+ had entered the gallery to replace the Na20. It is also 

possible that there was free phosphonium salt that had not ion exchanged onto the clay 

and that the washing process had not removed sufficiently. Batch 6 displayed a 

markedly different XRD pattern compared to the other batches.
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4.11 Increasing the Loading of B u l6 + onto Na+ Cloisite

Batch 6 prepared using B ul64 exchanged Na+ Cloisite displayed a different degradation 

pattern to the other batches and it was thought that the exchange process had occurred 

differently. To investigate whether variations in the loading of B u i6 ' onto Na+ Cloisite 

affected the thermal degradation pattern and whether a trend could be established 

between a fully/partially exchanged batch and good/poor fire retardant properties Na+ 

Cloisite was loaded with B ul6+ at different percentages o f the CEC (Table 4-20). 

Therefore, the effect o f organocation excesses and deficiencies could be investigated.

Table 4-20 CEC exchange mass for B u l6 + at 0.25 to 2 x CEC of Na+ Cloisite

Mass 
of Clay 

(g)

CEC of 
Clay 

(mEq/g)
Multiples of

CEC
Molecular 
Weight (g)

Cationic
Charge

Mass
Required

(g)
1 0.925 0.25 507.6 1 0.12
1 0.925 0.5 507.6 1 0.23
1 0.925 1 507.6 1 0.47
1 0.925 1.5 507.6 1 0.70
1 0.925 2.0 507.6 1 0.94

4.11.1 XRD Analysis of Clay with Different B u l6+ Loadings

2,0

3<

0.5

0 .25

1410 124 6 82
Angle [°20]

Figure 4—21 XRD traces (Cr-tube) for Na+ Cloisite loaded with B u l6 + at 0.25 -  2.0 x CEC -  Offset
for clarity
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The XRD traces presented in Figure 4-21 displayed an increase in the d-spacing as the 

loading of B ul6+ increased. The dooi peak in the XRD trace for 0.25 x CEC is difficult 

to see due to the higher intensity of the diffraction peaks in the other samples, however 

upon expansion of the y-axis the dooi spacing was visible at 14.8 A .  The dooi spacings 

and the d-spacing for the smaller peaks at lower angle are presented in Table 4-21.

Table 4-21 Variation in d-spacing with loading for the B u l6 + exchanged clay

% CEC dooi-Spacing
( A )

Small Peak
( A )

Difference 
between dooi 

and small 
peak ( A )

0 12.1 20.3 8.2
0.25 14.8 23.4 8.6
0.5 16.4 28.2 11.8
1.0 20.8 35.7 14.9
1.5 24.3 40.0 15.7
2.0 24.3 40.0 15.7

The d-spacings in Table 4-21 display some variability in the distance between the dooi 

spacing of Bui 6-MMT and the smaller peak for the heterostructure. However, as the 

loading o f B u i6 1 increased from 1.0 to 1.5 and 2.0 x CEC, the difference between the 

dooi spacing and the spacing for the small peak at lower angle remained the same at 

approximately 15 A ,  and the values aligned with that in Table 4-8 for Bui 6-MMT. 

These diffraction patterns could be further evidence for a staged intercalate, and 

variation in the basal spacing of the galleries containing the inorganic cations in the 

heterostructure defined by Figure 4-6 (c), have been tentatively attributed to variable 

hydration o f the inorganic cations. Basal spacings from 12.5 to 15 A  are readily 

obtained at different relative humidities.

162



4.11.2 TGA Analysis o f Clay with Different B u l6 + Loadings

A-1

l-
T3

0.5

0.25

300 350 400200 250

H-"O A-1
5•o

2.0

400200 250 300 350
Tem perature (°C) Tem perature (°C)

Figure 4-22 DTG traces (Air) B u l6 + at 0.25 to Figure 4-23 DTG traces (Air) B u l6 + at 1.5 and
1.0 x CEC of Na+ Cloisite -  Traces are offset 2.0 x CEC of Na+ Cloisite -  Traces are offset

for clarity for clarity

The DTG traces presented in Figure 4-22 and Figure 4-23 display B ul6+ at loadings of 

0.25 to 2.0 x CEC on Na' Cloisite, over the temperature region (200 to 400 °C) in which 

differences were seen in the different Bui 6-MMT batches (Figure 4-19). The peak 

under Tmax (A -l) became less intense and moved to a lower temperature as the loading 

of B ul6+ on Na+ Cloisite increased. The peak positions and intensities are presented in 

Table 4-22. The sample exchanged at 0.25 x CEC behaved very much like Na+ Cloisite 

and did not exhibit Tmax (A-l), however Tmax (A) was visible at 348 °C which was the 

same temperature as in the other samples.

Table 4-22 Differences in peak positions and intensity for B u l6 + at 0.25 to 2.0 x CEC of Na+ Cloisite

Tmax A 
(°C)

Tmax A -l 
(°C)

Intensity 
A : A -l

Separation Between 
A and A -l (°C)

0.25 348 - - -
0.5 348 299 - -
1.0 348 292 1:1 56
1.5 344 273 1:0.2 71
2 .0 348 273 1:0.2 75
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From the data presented in Table 4-18 and Table 4-22 it was still unclear which factors 

could potentially link to the fire retardant properties o f the sample. From the T max (A-1) 

value it appeared that batches 5 and 8  were exchanged at 1.0 x CEC and that batches 2 

and 4 were exchanged somewhere between 1.0 and 1.5 x CEC. It appeared however that 

as the separation between Tmax (A) and Tmax (A -l) increased then the fire retardant 

properties of the resulting composite also increased.

4.11.3 XRF Analysis of Clay with Different B u l6+ Loadings

X-ray fluorescence elemental analysis was carried out on B u l6 + at loadings o f 0.25 to 

2.0 x CEC on Na+ Cloisite (Table 4-23) to give an indication o f the extent of exchange 

onto Na+ Cloisite as the loading increased. Data for Na+ Cloisite has been included in 

the table for comparison.

Table 4-23 XRF Elemental Analysis of B u l6 -MMT at 0.25 to 2.0 x CEC of Na+ Cloisite

0.25
(%)

0.5
(% )

1.0
(%)

1.5
(% )

2 .0

(% )
Na+ Cloisite

(% )
MgO 2.27 2.23 2.19 2.08 2.08 2.3
Na20 2.15 1.03 0 . 1 2 0.07 0.07 4.3
AI2O3 22.92 22.90 22.62 2 2 . 0 1 21.97 2 2 . 6

S i0 2 65.73 65.6 64.8 63.2 63.1 65.1
p2o 5 1 . 6 3.1 5.3 7.9 8 . 1 0 . 0 1  !
S 0 3 0 . 2 0 . 0 1 -0 . 0 1 -0.10 -0.08 0.7
k 2o 0.06 0.05 0.04 0.05 0.03 0 . 1

CaO 0.3 0.3 0.3 0 . 2 0 . 2 0 . 2

T i0 2 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1

Fe2C>3 4.6 4.7 4.6 4.4 4.4 4.7

The data in Table 4-23 indicated that as the loading of B u l 6 + onto Na+ Cloisite 

increased from 0.25 to 2.0 x CEC of Na+ Cloisite, the wt% of Na2 0  decreased and the 

wt% P2 O5 increased significantly. The large decrease in Na2 0  between Na+ Cloisite (4.3 

%) and B u l6 + at 0.25 x CEC, is due to excess Na+ on Na+ Cloisite, which was removed 

during the washing process. As was expected Na+ Cloisite contained more Na2 0  than 

B u l6 -MMT and very little P 2 O 5 .  However, the wt% of P 2 O 5  did not increase 

proportionally to the amount of Bui 6  ̂ offered. Between 1.0 and 2.0 x CEC the wt% of 

P 2 O 5  increased by only 65 %.
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4.12 TG-MS Analysis of B u l6 + Exchanged Na+ Cloisite

Noticeable differences in the decomposition peak position of Tmax (A-l) between 

different batches of Bui 6' exchanged Na+ Cloisite were found (Figure 4-19). Therefore 

to provide a better understanding o f what was being released under Tmax (A -l), TG-MS 

analysis was carried out on batch 2 and batch 5. These batches produced composites 

which displayed ‘good’ (batch 2) and ‘bad’ (batch 5) fire retardant properties, and so the 

decomposition ions were examined to confirm whether the species being released would 

render the material more or less fire retardant.

4.12.1 TG-MS Analysis of a Good vs. Bad Batch

Bad Batch
A-1

Good Batch

ID<
</)cCl)c

300 400200 250 350

Temperature (°C)

Figure 4-24 DTG (Air) of Good (batch 2) and Bad (batch 5) B u l6 -MMT batches using Netzsch TG-
MS Instrument

The DTG traces presented in Figure 4-24, obtained using the Netzsch TG-MS 

instrument, displayed Tmax (A) at 347 °C in both the ‘good’ (batch 2) and ‘bad’ (batch 5) 

Bul6-MMT batches, however Tmax (A-l) occurred at 266 °C in the ‘good’ and 287 °C in 

the ‘bad’ Bul6-MMT batch. This trend was also observed when batch 2 and batch 5 

were run on the Mettler system. Consequently, the ions that were desorbed under the 

temperature region of interest (250 to 450 °C) were analysed for both samples.
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After surveying the decomposition ions from several Bul6-MMT batches, three 

decomposition ions were chosen, m/z = 50, which is present in all Bul6-M MT samples 

and two strong Bul6-MMT decomposition ions m/z = 57 and 71. It is still unclear what 

m/z = 50 represents, it has been suggested to come from methyl chloride, however the 

mass spectrum did not contain peaks at m/z = 35 or 37, which are characteristic o f the 

isotopes of chlorine and so it is still unclear what m/z = 50 represents. M/z = 50 was 

always present in the presence of Bul6-MMT. The decomposition ions m/z = 57 and 71 

are thought to represent -(CTh^CTh and -(CTh^CTB, respectively. Tmax (A -l) always 

contained ions with m/z = 50, 57 and 71, which were independent on the peak position, 

therefore it can be confirmed that Tmax (A -l) came from the organocation and was not 

due to water evolution as previously speculated. Figure 4-25 displays the MS data for 

‘good’ (batch 2) and ‘bad’ (batch 5) Bul6-MMT batches. It was observed that the ions 

evolved with two temperature maxima, Tmax (A -l) and Tmax (A), Tmax (A) occurred at 

the same temperature in both samples, however Tmax (A-l) desorbed at a higher 

temperature in the ‘bad’ Bul6-MMT batch. It was observed that the peak under Tmax 

(A-l) always desorbed 30-40 °C higher in the MS as compared to the DTG.

Differences in the intensity o f the ions evolved were observed between the ‘good’ and 

‘bad’ batches, with the ‘good’ batch being approximately one third more intense as the 

‘bad’ batch. Therefore, TG-MS could be used as an early predictor of fire performance, 

in that the difference between ‘good’ and ‘bad’ fire performance could be related to the 

thermal desorption temperature o f the peak under Tmax (A -l) and the amount o f B ul6+ 

that was exchanged onto Na+ Cloisite, which is proportional to the intensity o f the ions 

evolved. However, at this stage it is still unclear which o f these factors are the major 

contributors to the fire performance of the Bul6-MMT composites, or whether good fire 

performance is related to some other as yet unidentified contributing factor. After 

increasing the loading o f B ul6+ onto Na4 Cloisite (section 4.11) and comparing the 

values for Tmax (A-l), it indicated that batch 2 was exchanged at between 1.0 and 1.5 x 

CEC ofN a+ Cloisite, however batch 5 was exchanged at 1.0 x CEC o fN a 1 Cloisite.

166



A-1

A-1

&c<ucn c<D Goodc

c
Good

Bad
300 400250 350

450400250 300 350

Temperature (°C)Bad Ion 71
Ion 57

A-1
&
COcQ)
c

Good

Bad

300250 350 400 450

Temperature (°C)
Ion 50

Figure 4-25 Ion comparisons for a Good (Batch 2) and Bad (Batch 5) B u l6 -MMT Batch

4.13 B u l6 -MMT Washed in 80:20 Et0H :H 20

The organoclays used were layered silicates, which had been made organophilic by an 

ion exchange process. Due to natural defects/charge heterogeneity on the clay plates, 

some of the clay plates may not have been fully ion exchanged. Therefore, some o f the 

organic treatment remained associated with the clay after the ion exchange process, but 

was not ionically bound to the surface, only physisorbed to the surface. This extra 

surfactant may possibly be removed by solvent washes [4’26], however, commercial 

organoclays are usually only washed with water. Therefore, the extra surfactant 

associated with these organoclays will be carried along into the preparation o f a 

polymer nanocomposite. When the organoclay is mixed with a polymer, this surfactant 

may serve a beneficial role, in that it assists the dispersion of the clay plates into the
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polymer matrix. However, the surfactant may also affect the polymer nanocomposite 

properties negatively by plasticizing the polymer or inhibiting crystal growth in 

crystalline polymers [4"27l  Furthermore, the excess organic treatment may remove some 

of the flammability benefits obtained from nanocomposites, by causing early ignition of 

the nanocomposite.

Therefore, Bul6-MMT prepared at 1.5 and 2.0 x CEC of Na+ Cloisite, which were 

found to contain extra surfactant, were washed with a mixture o f 80:20 Et0 H:H 2 0 , to 

evaluate any detrimental effects due to this extra surfactant on organoclay dispersion 

and flammability properties o f the composites prepared using the organoclay. Bui 6- 

MMT samples (~lg) were dispersed in 80:20 EtOH:H20 (~20ml) and mixed overnight. 

They were then centrifuged for 1 hour at 16, 500 rpm and dried in an oven set at 50 °C 

overnight. The organoclays were then ground manually with a pestle and mortar and 

characterised using XRD and TGA.

4.13.1 XRD Analysis of Washed B u l6 -MMT

2.0 W ashed  in 80:20 EtOH:H20
=)
<

1.5 W ashed  in 80:20 EtOH:H20c
oO

2.0

146 8 10 1242

Angle [°26]

Figure 4-26 XRD traces (Cr Tube) for B u l6 -MMT prepared at 1.5 and 2.0 x CEC of Na+ Cloisite,
washed in 80:20 E t0H :H 20 .
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The XRD traces presented in Figure 4-26 indicate that after Bul6-MMT had been 

washed with ethanol and water, the excess surfactant was removed, and the d-spacing o f 

organoclays originally exchanged at 1.5 and 2.0 x CEC of Na+ Cloisite became 

comparable to the d-spacing o f B ul6+ prepared at 1.0 x CEC of N a1 Cloisite (Table 4 -  

25).

4.13.2 TGA Analysis of Washed B11I 6 -MMT

A-1

2.0 in 80:20 
EtOH:H20

h-•o

1.5 in 80:20 
BOH:H20 /

200 250 4 0 0350300

I -■D A-1

2.0

350200 250 300 400
Temperature (°C) Temperature (°C)

Figure 4-27 DTG traces (Air) B u l6 + prepared Figure 4-28 DTG traces (Air) B u l6 + prepared 
at 1.5 and 2.0 x CEC of Na+ Cloisite -  Traces at 1.0,1.5 and 2.0 x CEC of Na+ Cloisite (1.5

are offset for clarity and 2.0 washed in 80:20 EtOH:H20) -  Traces
are offset for clarity

The DTG traces presented in Figure 4-27 and Figure 4-28 indicated that after washing 

with ethanol and water the thermal degradation pattern o f Bul6-MMT prepared at 1.5 

and 2.0 x CEC of Na+ Cloisite (Figure 4-27) became very similar to that o f Bul6 

prepared at 1.0 x CEC of Na+ Cloisite (Figure 4-28). Tmax (A) remained the same at 

approximately 348 °C, however the value o f Tmax (A-l) increased from 273 to 290/292 

°C after washing with ethanol and water (Table 4-24). Therefore incorporation o f this 

washing step into the cation exchange process would ensure that excess surfactant was 

removed from the organoclays, which could reduce plasticization of the polymer or 

prevent early ignition of the nanocomposite.
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The data presented in Table 4-24 demonstrates that after washing with 80:20 

EtOHiHhO the height of peak A in relation to peak A -l, for B1 1I 6 -MMT prepared at 1.5 

and 2.0 x CEC, was comparable to that of B1 1I 6 -MMT prepared at 1.0 x CEC (without 

washing in 80:20 EtOEkEEO). The separation distance between peaks A and A -l were 

also very similar. Therefore, upon preparation of composites containing these washed 

B u l 6 -MMTs, it was expected that the washed B u l 6 -MMT would display a similar 

thermal degradation pathway, and also behave similarly in the UL-94 vertical burning 

test.

Table 4-24 Differences in peak positions and heights for B u l6 + at 1.0,1.5 and 2.0 x CEC of Na+ 
Cloisite, plus B u l6 + at 1.5 and 2.0 x CEC of Na+ Cloisite, washed in 80:20 EtOH:H2Q

Tmax A
(°C)

Tmax A -l 
(°C)

Height 
A : A -l

Separation Between 
A and A -l (°C)

1.0 348 292 1 : 1 56
1.5 344 273 1 :0 . 2 71
2.0 348 273 1 :0 . 2 75

1.5 Washed in 
80:20 Et0H:H20

348 292 1:0.9 56

2.0 Washed in 
80:20 Et0H:H20

348 290 1 :0 . 8 58

4.14 Nanocomposites Containing Bul6-MMT Prepared at 1.5 and 2.0 x CEC and 

washed in 80:20 EtOH:H20

To give an indication o f whether excess surfactant affected the fire retardant properties 

of the resulting polymer nanocomposites, B u l6 -MMT exchanged at 1.5 and 2.0 x CEC 

of Na+ Cloisite after washing with 80:20 EtOTkECO, was dispersed in DMMP and then 

mixed with Crystic 189LV at 2000 rpm for 30 minutes. Nanocomposites were made as 

a comparison using B u l6 -MMT prepared at 1.5 and 2.0 x CEC of Na+ Cloisite, which 

had not been washed. All samples were postcured in the usual way, characterised using 

XRD and TGA and then subjected to the in-house version o f the UL94 Vertical Burning 

Test (Table 4-26) (where possible V-ratings have been applied).
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4.14.1 XRD Analysis of Nanocomposites Containing Washed B u l6  Clays

wc3oO

122 6 8 104
Angle [°20]

Figure 4-29 XRD traces (Cr tube) for Crystic 
189LV and (1) 5 wt% B u l6 -MMT prepared at 

1.5 x CEC, 10D, (2) 5 wt% B u l6 -MMT 
prepared at 2.0 x CEC, 10D -  Traces are offset 

for clarity.

D
<
wc
3Oo

122 4 6 108
Angle [°20]

Figure 4-30 XRD traces (Cr tube) for Crystic 
189LV and (3) 5 wt% B u l6 -MMT prepared at 
1.5 x CEC (washed in 80:20 EtOH:H20 ) , 10D 
and (4) 5 wt% B u l6 -MMT prepared at 2.0 x 

CEC (washed in 80:20 EtOH:HzO), 10D -  
Traces are offset for clarity.

The XRD traces presented in Figure 4-29 and Figure 4-30 display nanocomposites of 

Crystic 189LV prepared using (1) 5 wt% Bul6-MMT at 1.5 x CEC, 10D, (2) 5 wt% 

Bul6-MMT at 2.0 x CEC, 10D, (3) 5 wt% Bul6-MMT at 1.5 x CEC (washed in 80:20 

EtOH:H20), 10D and (4) 5 wt% Bul6-MMT at 2.0 x CEC (washed in 80:20 

EtOFFFEO), 10D. The XRD traces representing nanocomposites (1) and (2) displayed 

an intercalated/aggregated structure, confirmed through the presence o f intense dooi and 

doo2  peaks. However, after washing with methanol and water the XRD traces 

representing nanocomposites (3) and (4) also displayed intercalated nanocomposites, 

but the dooi peaks were less intense, therefore indicating that there was less clay in the 

beam or that it was an intercalated/dispersed structure.

Table 4-25 displays the dooi values obtained for Crystic 189LV composites prepared 

using 5 wt% Bul6-MMT prepared at 1.5 and 2.0 x CEC (washed and un-washed), 

which were pre-dispersed in 10 wt% DMMP.
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Table 4-25 Comparison of d0oi spacings for nanocomposites prepared using Crystic 189LV and 5 
wt% Bul6-M M T prepared at 1.5 and 2.0 x CEC (washed and un-washed), pre-dispersed in 10D

dooi Organoclay (A) dooi Nanocomposite (A)
Original Bul6-MMT at 1.0 x

CEC
20.8 27.1

(1) Bul6-MMT at 1.5 x CEC 24.3 31.1
(2) Bul6-MMT at 2.0 x CEC 24.3 30.0
(3) Bul6-MMT at 1.5 x CEC, 

Washed Et0H :H 20
20.8 26.7

(4) Bul6-MMT at 2.0 x CEC, 
Washed Et0H :H 20

20.8 28.5

The d o o i  values in Table 4-25 indicate that when Bul6-MMT was washed with 80:20 

EtOH:H20, the layer spacing was comparable to that of Bul6-MMT (20.8 A) prepared 

at 1.0 x CEC o fN a+ Cloisite. This was also the case when nanocomposites o f Bui 6- 

MMT were prepared at 1.5 and 2.0 x CEC of Na+ Cloisite (washed in 80:20 

EtOH:H20). Therefore, it could be anticipated that the fire retardant properties would 

also be similar to the original Bul6-MMT nanocomposites.

4.14.2 TGA Analysis of Nanocomposites Containing Washed B ul6 Clays

700400 500 600200 300100
Temperature (°C)

Figure 4-31 DTG traces (Air) for Crystic 189LV nanocomposites prepared using (1) 5 wt% B ul6- 
MMT prepared at 1.5 x CEC, 10D, (2) 5 wt% Bul6-M M T prepared at 2.0 x CEC, 10D, (3) 5 wt% 
Bul6-M M T prepared at 1.5 x CEC (washed in 80:20 Et0H :H 20 ) , 10D and (4) 5 wt% Bul6-M M T  

prepared at 2.0 x CEC (washed in 80:20 Et0H :H 20 ) , 10D -  Traces are offset for clarity.
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The DTG traces presented in Figure 4-31 display three thermal decomposition maxima 

(A, B and C) occurring over three stages. For all nanocomposites displayed in Figure 4 -  

31, Tmax (A) (evolution of DMMP) occurred during stage 1 at 220 °C, Tmax (B) 

(decomposition o f resin) occurred during stage 2 at 437 °C and Tmax (C) (decomposition 

of carbonaceous char) occurred during stage 3 at 580 °C. Therefore, the removal of 

excess surfactant did not affect the thermal decomposition of the nanocomposites, 

however, the XRD traces presented in Figure 4-30 indicated that it did result in a less 

aggregated nanocomposite due to the loss o f intensity o f the dooi peaks.

4.14.3 UL94 Vertical Burning Test

Nanocomposites prepared using Crystic 189LV, washed and unwashed Bul6-M MT and 

10D were subjected to the in house version o f the UL94 vertical burning test. The 

results are presented in Table 4-26. Bul6-MMT at 1.0 x CEC of Na+ Cloisite (batch 4, 

mix 1) from Table 4-16, has been displayed as a comparison.

Table 4-26 UL94 Vertical Burning Test Results for washed and un-washed organoclays

Burn 1 Burn 2 Burn 3 Burn 4 Total UL94-V
Rating

Bul6-MMT at 1.0 x
CEC

1,8 3 ,7 2, 5 3, 5 2.3,
6.3

V-0

(1) Bul6-MMT at
1.5 x CEC

5, Ex 3, Ex 4, Ex 20, Ex - Fail

(2) Bul6-MMT at 
2.0 x CEC

5, Ex 6, Ex 3, Ex 15, Ex - Fail

(3) Bul6-MMT at 
1.5 x CEC, Washed 

Et0H :H 20

Cracked,
Ex

30, Ex 8, Ex Fail

(4) Bul6-MMT at 
2.0 x CEC, Washed 

Et0H :H 20

Cracked,
Ex

Cracked,
Ex

17, Ex Fail

(Ex = Extinguished Manually after 60 seconds)

From the XRD results it was expected that the vertical burning test results might be 

similar to those for Bul6-MMT prepared at 1.0 x CEC, as similar d-spacings were 

observed. The DTG results for the nanocomposites indicated a shift to a higher thermal 

decomposition temperature for samples containing Bul6-MMT at 1.5 and 2.0 x CEC of 

Na+ Cloisite, Tmax (A), (B) and (C) increased by 5, 12, and 15 °C, respectively.
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However, poor dispersion o f B1 1I 6 -MMT into the unsaturated polyester as the loading 

of Bui 6 ' increased from 1.0 to 1.5 and 2.0 x CEC of Na+ Cloisite led to an increased 

incidence of cracking after the first flaming, and consequently the samples had to be 

extinguished manually (Table 4-26).

A number of papers have reported on the influence of cationic surfactant on the thermal 

stability o f organoclays. He et. al. [4‘28] reported that there are three different molecular 

environments for surfactants within organoclays: ( 1 ) surface cations intercalated into the 

clay layers through cation exchange and bound to surface sites via electrostatic 

interaction, (2 ) surfactant physically adsorbed on the external surface o f clay and (3) 

surfactant-anion ion pairs located within the clay gallery. The decomposition 

temperature for the surfactants with different molecular environments is different from 

each other. An increase in the concentration o f surfactant physically adsorbed to the 

external-surface o f an organoclay decreases the thermal stability of the organoclay and 

hence the resultant nanocomposite. This decrease was observed in both the B u l6 + 

organoclays exchanged at 1.5 and 2.0 x CEC and the resultant nanocomposites, with a 

decrease of 7 °C for the organoclays and approximately 15 °C for the nanocomposites.

Xie et. al. [4_2)J washed their alkyl quaternary ammonium modified MMTs with 

methanol and found that the organic content after washing corresponded to the CEC of 

the MMT. In this thesis after washing, the organic content of the samples corresponded 

closely to the organic content in the 1.0 x CEC samples, as displayed in Table 4-27.

They compared the d-spacing and total organic content and concluded that the majority 

of the excess surfactant is contained within the gallery and not physisorbed to the 

exterior of the crystallites. They concluded that MMT that has been exchanged beyond 

the CEC did not have a substantially greater fraction of surfactant residing outside the 

gallery than MMTs exchanged at their CEC equivalent. The d-spacing for B u l 6 -MMT 

increased significantly from 2 0 . 8  A  at 1 . 0  x CEC to 24.3 A  at 2 . 0  x CEC, above that of 

B u l 6 -MMT exchanged at the CEC equivalent o f Na+ Cloisite and therefore, suggests 

that excess surfactant in these systems resided in the gallery. If this was not the situation 

then expansion of the d-spacing would not have been observed.
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Table 4-27 Possible organic exchange against actual organic exchange for B u l6 -MMT at 0.25 to 2.0 
x CEC, plus 1.5 and 2.0 after washing

0.25 0.5 1.0 1.5 2.0 1.5
Washed

2.0
Washed

Possible Organic 
Exchange (mg/ g)

98.8 197.5 394.9 592.5 789.9 - -

Actual Organic 
Exchanged (mg/ g)

89 156 270 354 330.6 259.5 281.1

Percentage Utilised
(%)

90 79 68 60 42 44 36

Percentage of 1 
CEC covered (%)

23 40 68 90 84 66 71

* All exchange amounts are ± 5%

Xie et. al. [4 29] associated initial decomposition events based on TGA analysis with 

degradation o f the excess surfactant above the CEC that resides exterior to the layers. 

Therefore removal o f this surfactant by repeated washings and the corresponding 

reduction in the magnitude of the initial event would then imply that the intercalated 

surfactants are stabilized by confinement within the interlayer and degrade during the 

higher temperature events. However, further examination o f their results indicated that 

this initial hypothesis was not correct. The results for Bul6-MMT at 1.5 and 2.0 x CEC 

support their hypothesis, given that after washing with 80:20 EtOH:H2 0  the initial event 

occurring under Tmax (A -l) increased in temperature from 271 to 292 °C.
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4.15 The Role of Dimethyl methylphosphonate (DMMP)

Work has been carried out to try and understand the role o f DMMP in combination with 

organoclays both as intercalated powders and as components of nanocomposites 

prepared using Crystic 189LV. lg  of TP8- to TP16-MMT and Bul6-MMT were 

dispersed in DMMP and then dried in an oven at 80 °C overnight. Any differences in 

the thermal decomposition o f the organoclays after dispersion in DMMP were analysed 

using TGA and TG-MS, the XRD traces for the organoclays and organoclays dispersed 

in DMMP are displayed in Figure 4-2 and Figure 4-10, respectively.

4.15.1 TGA Analysis of TP8- to Bul6-MMT, and TP8- to Bul6-M M T Dispersed in 

DMMP

Figure 4-32 to Figure 4-37 display the thermal decomposition of TP8- to TP16-MMT 

and Bul6-MMT using TGA under air. The DTG results demonstrated two thermal 

decomposition maxima Tmax (A) and Tmax (B) for all organoclays, however under these 

main peaks multiple shoulders occurred. The peak temperatures and positions are 

displayed in Table 4-28:

Table 4-28 Peak position temperatures for TP8 + to TPltP and B u l6 + Exchanged Na+ Cloisite

A-l (°C) A (°C) A +l (°C) B-2 (°C) B -l (°C) B(°C) B+l (°C)
TP8-

MMT
358 393 418 - 598 635 -

TP10-
MMT

341 381 - - - 635 -

TP12-
MMT

- 334 - - - 603 635

TP14-
MMT

- 346 - - - 612 635

TP16-
MMT

- 365 - 523 572 661 -

Bul6-
MMT

269 337 - - 528 631 “

Bul6-MMT displayed a slightly different decomposition pathway than the other 

organoclays. Two main peaks were observed however, there was a clear sharp peak 

under Tmax (A-l) that was not seen in the other organoclays.
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Figure 4-38 to Figure 4 ^ 3  demonstrate the thermal decomposition o f TP8- to TP 16- 

MMT and Bul6-MMT dispersed in DMMP, using TGA under air. The DTG traces 

demonstrated three thermal decomposition maxima (A, B and C), however multiple 

shoulders occurred under Tmax (C). The peak temperatures and positions are displayed 

in Table 4-29:

Table 4-29 Peak position temperatures for TP8 + to TP16+ and B u l6 + exchanged Na+ Cloisite, 
dispersed in DMMP

A (°C) B(°C) C-l (°C) C(°C) C+l (°C)
TP8 -MMT 122 372 - 628 -

TP10-MMT 131 327 - 603 -

TP12-MMT 124 325 512 612 659
TP14-MMT 122 325 512 612 652
TP16-MMT 150 351 505 584 640
B11I 6-MMT 148 320 521 591 652

TP8-MMT and TP10-MMT dispersed in DMMP demonstrated the same decomposition 

pathway with three clear decomposition peaks, TP 12-, TP 14-, TP 16- and Bul6-MMT 

all displayed three main decomposition peaks (A, B and C), plus two shoulders under 

Tmax (C) (displayed as Tmax (C -l) and Tmax (C+l) in Figure 4-^10 to Figure 4^43).

Three major peaks (A, B and C) were observed in the decomposition pathway o f the 

organophosphonium clays dispersed in DMMP, compared to two major peaks (A and 

B) in the decomposition pathway o f the organophosphonium clays. TP8- and TP 10- 

MMT dispersed in DMMP displayed an intense peak exhibiting a Tmax (A) at 122 and 

131 °C, respectively, however this peak was absent in the organophosphonium clays. 

Peaks A and B in TP8-/TP10-MMT and B and C in TP8-/TP10-MMT dispersed in 

DMMP were of similar intensity in both samples, however the peaks evolved at a 

slightly higher temperature in TP8-/TP10-MMT. Several shoulders occurred under the 

main decomposition peaks A and B in TPn-MMT, and peak C in TPn-MMT dispersed in 

DMMP.

Upon dispersion o f Bul6-MMT into DMMP, the characteristic peak A-l was no longer 

visible and the decomposition profile resembled that o f the TPn-MMT series.

177



U - 6 i u )  s a n |B A  QAJno( i, - 6 lu) s e n | B A  0 A J n Q

(l,-6iu) SBfljBA 0 AjnQ (l.-6uj) saniBA ©Ajno

oo
r -



(j,-6iu) S8n|BA 8AJnQ( i, - B lu ) s a n i B A  e A j n o

( [ , - 6 u j ) s a n i B A  © A j n o( | , - 6 lu) S 0 n | B A  8 A j n o

Os
r -



oo
C D

Oo
C D

exexo oo
Q. Q .

OO
CM

OO
CM

COCDOOO
O

L OOOO
O

L O

OO
O

LOCOoo
d

CT5
CMoo
d

CMop
o

oC Doo
d

COo
p
d

"d-o
p
o

cooo
o

o
p
d

o
p
d

oo
d

(|,-6w) s9n|BA QAjno( [ , -6 ili) s a n i B A  e A j n o ex

ooco

a

oo
C D

Oo
C D

OOO
a.C L

fN

Oo
CM

OO
CM

O-&

0 5OOO
d

■'t
CMOO
d

0 5o■'Cf-oo
d

C Mo
p
d

oo
p
d

oo
p
d

o
p
d

o
p
o

o
p
d

o
p
d

1.-6lu) s a n | B A  9 A j n o( | , -B lu) s a n i B A  9 / u n Q ex

ooo



4.15.2 TG-MS Analysis of TP8- to Bul6-M M T Dispersed in DMMP

Bu16-MMT in DMMP

z>
< TP16-MMT in DMMP

wc0
TP14-MMT in DMMP

c

TP12-MMT in DMMP

TP10-MMT in DMMP

800600 700
TP8-MMT in DMMPTemperature (°C)

Figure 4-44 m/z = 79 (Air) -  TP8 - to TP16-MMT and B u l6 -MMT dispersed in DMMP -  MID -
Traces are offset for clarity

Figure 4-44  displays m/z = 79 (main decomposition ion in DMMP) for TP8- to TP 16- 

MMT and Bul6-MMT dispersed in DMMP. The traces indicated that TP8- and TP 10- 

MMT contained significant amounts of absorbed DMMP (m/z = 79), which was 

desorbed under Tmax (A) at 148 °C, at a lower temperature than the boiling point of 

DMMP (which boils at 181 °C), whereas TP12-, TPM- and TP16-MMT exhibited a 

higher desorption temperature for DMMP under Tmax (B) at 501 °C. The intensity o f the 

DMMP peak in the TP8- and TP10-MMT samples was reduced due to the vacuuming 

step employed in the Netzsch TG-MS instrument before the start o f each run. Figure 4 -  

55 displays the effect of the vacuuming step more clearly. Without the presence o f 

DMMP the TPn-MMT series did not exhibit m/z = 79.

Bul6-MMT did not exhibit a low temperature loss o f DMMP. A tentative explanation 

for the ability o f TP8- and TP10-MMT to accommodate adsorbed DMMP is that the C8 

and CIO alkyl chains are relatively short and therefore there is some space between 

them in the interlayer for DMMP to occupy. However, when the chain length exceeded 

12 carbons there was no longer any space available for DMMP to be adsorbed. Table 4 -  

5 demonstrated that the Cloisite interlayer space was under exchanged with a maximum 

of 62.8 and 66.1 % exchanged occurring in TP8- and TP10-MMT, therefore there could
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possibly be space for DMMP to reside within the interlayer, when the chain length was 

small (Cn =8 or 10). However, Table 4-11 indicated that sorption of DMMP did not 

result in an increase in the d-spacing of the organophosphonium clays.

Bu16-MMTin DMMP

Z)
< TP16-MMT in DMMP
&wc
0
c

TP14-MMT in DMMP

TP12-MMT in DMMP

TP10-MMT in DMMP

TP8-MMT in DMMP

800300 400

Temperature (°C)
500 600 700200100

Figure 4^45 m/z = 50 (Air) -  TPS- to TP16-MMT and B u l6 -MMT dispersed in DMMP -  MID -
Traces are offset for clarity

Figure 4M5 displays the mass fragment m/z = 50 (present in all organoclays) and 

demonstrated the thermal desorption from TP8- and TP10-MMT under Tmax (A) at 472 

°C. TP 12-, TPM- and TP16-MMT exhibited m/z = 50 thermally desorbing at a higher 

temperature under Tmax (B) at 501 °C, TP 12-, TPM- and TP16-MMT also displayed a 

shoulder under Tmax (B) (Tmax (A)) at 472 °C. Bul6-MMT dispersed in DMMP 

demonstrated m/z = 50 desorbing at two temperatures, the main desorption peak 

occurred at 354 °C and a smaller peak under Tmax (B) occurred at 501 °C. The relative 

intensities for desorption o f DMMP (m/z = 79) and m/z = 50 were very similar in TP8- 

and TP10-MMT, and also in TPM- and TP16-MMT.

In comparison Bul6-MMT (Figure 4-25) also exhibited the evolution of ion m/z = 50 at 

two temperatures, the main desorption peak occurred at 374 °C with a smaller peak at 

the lower temperature of 283 °C, the intensity o f the Bul6-MMT ion was also found to 

be 40% higher than in the Bul6-MMT/DMMP sample. Neither m/z = 50 or m/z = 79 

were desorbed at the same temperature as the main decomposition peak between 330 

and 390 °C in the mettler traces, for TP8- to TP16-MMT.
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4.16 Nanocomposites Containing Bul6-M M T and DMMP

4.16.1 TGA Analysis of Nanocomposites Containing Bul6-MMT and DMMP

The DTG results presented in Figure 4 -

46 display Crystic 189LV with

increasing concentration o f DMMP. It

was revealed that as the wt% of DMMP

increased from 0 to 10 wt% then the

thermal desorption temperature

decreased from 283 °C in the 2.5 wt%

DMMP sample to 236 °C in the 10 wt%

DMMP sample. However in samples

containing Crystic 189LV, 5% Bui 6-

MMT and 0-10D, desorption o f DMMP
Figure 4-46 DTG (Air) Crystic 189LV containing 

occurred at approximately 200 C in all q_jq w^% DMMP -  Traces are offset for Clarity

samples.

4.16.2 TG-MS Analysis of Nanocomposites Containing Bul6-MMT and DMMP

To give an indication of a possible decomposition mechanism with and without the 

presence o f clay, nanocomposites of Crystic 189LV containing 5 wt% Bul6-M MT and 

0-10 wt% DMMP (D), along with samples o f Crystic 189LV and 0-10 wt% DMMP 

were analysed using TG-MS. The samples were analysed under an atmosphere of air 

and nitrogen to compare oxidative (air) and non-oxidative (nitrogen) decomposition. 

The samples were run in multi ion detection (MID) mode, which made it possible to 

select particular ions o f interest, samples were analysed up to a temperature of 300 °C as 

this was the region where the main differences occurred.

TG-MS analysis o f nanocomposites containing Crystic 189LV, and DMMP revealed 

that DMMP (m/z = 79) was desorbed at a maximum of 265 °C in samples prepared 

using 2.5 wt% DMMP under air (Figure 4—47) and nitrogen (Figure 4-48). However as 

the DMMP loading increased the thermal desorption temperature decreased, when 

DMMP loading reached 10 wt% the thermal desorption temperature decreased from 265 

°C (2.5 wt% sample) to 235 °C. In the nanocomposites containing Bul6-M M T and

10D

t------- 1------- 1------- 1--------1
50 100 150 200  250  300

Tem perature (°C)
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DMMP, TG-MS analysis revealed that DMMP was desorbed at 230 °C irrespective o f 

the DMMP loading, under both air (Figure 4—49) and nitrogen (Figure 4-50). It was 

noted that the intensity o f the signal increased as the DMMP loading increased.

A mass fragment of m/z = 50 was identified in the early stage decomposition o f 

nanocomposites containing Crystic 189LV, Bul6-MMT and DMMP, however this 

fragment ion appeared to be absent in the absence of Bul6-MMT (Figure 4-51 and 

Figure 4-52). In the nanocomposite samples run under air (Figure 4-53) and nitrogen 

(Figure 4-54) the intensity o f m/z = 50 increased as the DMMP loading increased. 

DMMP was thermally desorbed at a similar temperature o f 225 °C in the 2.5-10 wt% 

samples, m/z = 50 appears to be thermally desorbed before m/z = 79.
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Comparison o f the TGA and TG-MS results revealed that the thermal decomposition 

trend for nanocomposites containing Crystic 189LV and DMMP was observed in both 

techniques and can be attributed to the thermal desorption o f DMMP (m/z = 79). It was 

also observed that the desorption temperature for m/z = 79 in nanocomposites 

containing Bul6-MMT remained at a constant temperature of 230 °C regardless of 

DMMP concentration or decomposition conditions (oxidative or non-oxidative).

Slight temperature differences between samples run using TGA and TG-MS can be 

attributed to vacuum effects within the TG-MS instrument. Prior to each run the sample 

chamber was evacuated of atmospheric gases and replaced with the gas o f choice (air or 

N 2 ), the vacuum was operated at 10‘2 mbar and so during the evacuation process it was 

possible that DMMP could have been pulled out of the sample and removed along with 

the atmospheric gases. Figure 4-55 displays temperature and intensity differences for 

m/z = 79 in an evacuated and non-evacuated sample of TP10-MMT dispersed in 

DMMP. A slight temperature decrease was observed in the evacuated sample and the 

intensity was approximately 6 times less intense compared to the non-evacuated sample.
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Figure 4-55 Intensity differences in m/z = 79 for TP10-MMT dispersed in DMMP, evacuated vs.
non-evacuated sample
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The decomposition product represented by m/z = 50 has been tentatively attributed to 

the evolution of methyl chloride, however this could not be proven using existing 

equipment. It was clear that m/z = 50 only appeared in the presence o f clay and was 

desorbed after the thermal desorption of m/z = 79. The intensity o f the m/z = 50 mass 

fragment increased as the DMMP loading increased even though this fragment did not 

appear in the mass spectrum o f DMMP. The mass ion m/z = 50 was present in both 

Bul6-MMT and Bul6-MMT dispersed in DMMP, however m/z = 50 desorbed at the 

higher temperature of 400 °C in the Bul6-MMT sample compared to 350 °C in the 

Bul6-MMT dispersed in DMMP sample. The intensity of the Bul6-M MT sample 

dispersed in DMMP was approximately 40% higher than the intensity o f the Bui 6- 

MMT sample.

4.17 Surface Differences in Nanocomposites Containing of Bul6-MMT

The fire retardant properties of samples prepared using Crystic 189LV, Bul6-M M T and 

DMMP varied greatly, it was suggested that the area sampled could greatly affect the 

fire retardancy of the composites. The sample preparation procedure may influence 

platelet exfoliation and orientation [4‘30], in such a way that the sample may be 

composed of several different regions (bulk, front and back) which may behave 

differently when under thermal degradation. Studies on the thermal stability o f B u i6- 

MMT containing nanocomposites indicated differences between the surfaces o f  the test 

piece and the bulk sample, which may contribute to the fire retardant properties o f the 

UP nanocomposites. These surface trends were clearly observed when analysed using 

TGA under air (oxidative decomposition) but not so apparent under N 2  (non-oxidative 

decomposition). Analysis using ATR FTIR also revealed surface differences. The 

‘front’ surface denotes the surface that was open to air during the curing process and the 

‘back’ surface denotes the surface which was in contact with the mould during the 

curing process.
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4.17.1 TGA Analysis of Front and Back Surfaces of Nanocomposites Containing 

Bul6-MMT and DMM P

TG analysis was carried out on samples containing Crystic 189LV, 5 wt% Bul6-MMT 

and 10D, run under an atmosphere o f Air (Figure 4-56) and N 2 (Figure 4-57). 

Preparation o f the front and back samples involved removing the surface o f the 

nanocomposite with a scalpel and running the shavings on the instrument, the bulk 

sample was prepared in the usual way, using a sample size as stated in section 2.6.2.3 of 

chapter 2. The derivative thermograms (DTG) were obtained and any differences noted.
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50 150 250 350 550450

Tem peraure (°C)

Figure 4-56 DTG traces (Air) Crystic 189LV composites containing, 5 wt% B u l6 -MMT and 10D, 

front, back and bulk differences -  Traces are offset for clarity

The DTG traces presented in Figure 4-56, which were run in air displayed two maxima 

in the decomposition process (A and B (1 or 2)), decomposing over two stages. 

Significant differences in the position of peak B between the front, back and bulk 

samples were revealed. The thermal decomposition temperature of peak B, increased 

from 383 °C under Tmax (B l) for the front and back samples to 432 °C under Tmax (B2) 

for the bulk sample. Tmax (A) represents the thermal desorption o f DMMP and occurred 

at 225 °C in both the bulk and front samples.
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In Figure 4-5 Crystic 189LV composites containing 5 wt% TP8- to TP16-MMT and 

Bul6-MMT were analysed using DTG under an atmosphere o f air. The main 

decomposition peak A displayed a Tmax (A) evolving at a higher temperature in the TP8- 

and TP14-MMT samples. After analysis of the front, back and bulk in Figure 4-56, 

these temperature differences could possibly be attributed to sampling variations, with 

more o f the bulk material being sampled in the TP8- and TP14-MMT composites, 

leading to an increased thermal decomposition temperature maximum. Figure 4-15 and 

Figure 4-31 are good examples of composites where the TG samples have been taken 

from the same area o f the composite (in these cases the bulk). Both figures display a 

high temperature peak, which is at the same temperature in all composites of that 

particular series.

i-
X 3

Bulk

Back

Front

55050 150 250 350 450

Tem perature (°C)

Figure 4 -5 7  DTG traces (N 2) for Crystic 189LV composites containing, 5 wt% B u l6 -MMT and 

10D, front, back and bulk differences -  Traces are offset for clarity

The DTG traces presented in Figure 4-57, run under nitrogen did not reveal any 

significant differences between the thermal decomposition o f the peak under Tmax (B) 

which occurred at 430 °C in all samples. The thermal desorption of DMMP occurred 

under Tmax (A) at 225 °C in both the bulk and front samples. Therefore, to investigate 

whether these effects were caused by the clay in the system, Crystic 189LV samples 

containing 10D were made and the front, back and bulk analysed using TG. Also to 

investigate whether these differences were only seen at the surface o f the samples, a
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layer approximately 100 pm thick was removed and the new exposed front (Front-1) 

and back (Back-1) surfaces were analysed, the results are displayed in Figure 4-58.
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Bulk

Back -1

Front-1

Back

Front

600200 300 400 500100
Temperature (°C)

Figure 4-58 DTG traces (Air) for Crystic 189LV composites containing 10D. Front, back and bulk

differences -  Traces are offset for clarity

The DTG traces presented in Figure 4-58 indicated surface and bulk differences within 

the samples and this effect was observed with and without the presence of clay. Tmax (A) 

occurred at 232 °C and is representative o f the thermal desorption of DMMP, this peak 

also occurred in the bulk sample and to a lesser extent in the front sample. Tmax (B l) 

occurred between 376 and 390 °C in the front and back samples, whereas a shift to a 

higher temperature (439 °C) was displayed in the bulk sample (Tmax B2). A new peak 

denoted as Tmax (C) occurred at 530 °C in the front and back samples, however this peak 

was not present in the bulk sample and the samples containing Bul6-MMT.

4.17.2 ATR FTIR Analysis of Front and Back Surfaces of Nanocomposites 

Containing Bul6-MMT and DMMP

ATR FTIR was carried out using the settings outlined in section 2.12.3 o f Chapter 2. 

The front and back surfaces of nanocomposites containing Crystic 189LV, 5% Bui 6- 

MMT and 10D (Figure 4-59) and Crystic 189LV and 10D (Figure 4-60) were analysed 

in triplicate for reproducibility, the peak positions are displayed in Table 4-30.
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Figure 4-59 ATR FTIR of Crystic 189LV composites containing, 5 wt% B u l6 -MMT and 10D -
Front and back differences
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Figure 4-60 ATR FTIR of Crystic 189LV composites containing 10D - Front and back differences
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Table 4-30 Peak positions for front and back surfaces of composites prepared using Crystic 189LV, 
5 wt% B u i6 and 10D, and Crystic 189LV and 10D, plus DMMP.

Peak Positions (cm 1)

L L1 M N N1 O P Q R S

Front 1 703 875 1033 - 1074 1127 1249 1717 - -

Back 2 700 - 1030 - 1071 1138 1255 1720 2843 2917

Front 3 700 875 - 1036 1068 1124 1252 1714 - -

Back 4 700 - - 1030 1065 1135 1258 1717 2848 2917

DMMP 720 - - - - - 1250 - 2860 2930

In both systems analysed (with and without clay) peak L1 was present on the front 

surface, which was not present on the back surface. Peaks L, R and S were thought to 

originate from DMMP (spectra not included), these peaks were more intense on the 

back surface than the front. The presence o f DMMP on the back surface was 

contradictory to what was found in the TGA data, as it was originally thought that 

DMMP was not present on the back surface as no peak was found for DMMP in the 

DTG traces under air or nitrogen. However, upon examination o f the spectra for pure 

Crystic 189LV peaks R and S were clearly visible on the back surface and so it was 

more likely that peaks R and S were representative of polystyrene that had shifted to the 

back surface o f the sample during the curing process.

In the presence of clay peak M dominated peak N and peak N 1. On the front surface 

peak P was more intense than peak O, however on the back surface peaks P and O were 

equal in intensity and these intensity differences occurred in the presence and absence 

of clay. On the back surface there was less clay (peaks M, N, N 1, O and P) visible, this 

was due to the migration of polystyrene towards the back surface, leading to an 

increased polystyrene content near the ATR window. On the front surface peak Q was 

more intense than on the back surface, occurring again in the presence and absence o f 

clay. In the absence of clay peaks N and N 1 were clearly defined.

After removing the top layer of the nanocomposites both surfaces appeared the same, 

peaks R and S were not as intense. The differences between the bulk and surface o f the 

nanocomposites observed using TGA and ATR FTIR could possibly stem from 

differences in the degree of exfoliation of the clay from the bulk to the surface and/or
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differences in the orientation of clay particles in these regions during the mixing and 

casting processes. However, Lee et ah [4’31] has found little mechanistic reason to 

believe that exfoliation varies across from surface to bulk regions o f their polypropylene 

nanocomposites.

4.18 Conclusions for Commercially Available Organophosphorus Cations

The gallery cations of Na+ Cloisite were exchanged with triphenyl phosphonium (TP) 

cations with chain lengths ranging from Cn = 8 to Cn = 16 (TP8+ to TP16+) and a tributyl 

phosphonium (Bul6+) cation. XRD and TGA were carried out on all exchanged clays, 

and nanocomposites incorporating these exchanged clays. XRD results indicated that 

the phosphonium clays produced intercalated nanocomposites in Crystic 189LV. The d- 

spacing increased from 12.1 A for Na+ Cloisite to 17.4 A in TP8- to TP12-MMT and 

18.7, 17.7 and 20.9 A in TP 14-, TP 16- and Bul6-MMT, respectively. A small peak at 

lower angle occurred, which has been tentatively attributed to the formation of a mixed 

ion heterostructure, where TP81 - TP16+ and B ul6+ cations and Na(H20) cations are 

segregated into two interlayers in a regular alternating fashion.

DTG data revealed a two stage decomposition pattern for all phosphonium clays. The 

decomposition temperature maximum (Tmax A) decreased as the chain length increased 

from Cn = 8 to Cn = 12 (351 to 327 °C) and then increased when Cn = 14 and 16 (341 

and 360 °C). Shoulders occurred on the main decomposition peak Tmax A occurring after 

the main decomposition peak (Tmax A +l) in the TP8- to TP12-MMT samples and before 

the main decomposition peak (Tmax A -l) in the TP 14- and TP16-MMT samples. Bui 6- 

MMT displayed a clear sharp decomposition peak under Tmax A -l, at a much lower 

temperature of 292 °C.

When the actual amount of organic exchange was calculated all organoclays were 

slightly under exchanged with TP8-, TP10-, TP14- and Bul6-MMT at 68% ± 5% of the 

possible organic exchange, however the actual amount exchanged for TP16-MMT was 

slightly lower at 56% of the possible organic exchange amount.
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The incorporation of TP 14-, TP 16- and B1 1I 6 -MMT into Crystic 189LV produced 

intercalated/exfoliated nanocomposites for the TPM- and TP16-MMT samples and 

intercalated/aggregated nanocomposites for the B u l6 -MMT sample. The dooi spacing 

also increased from 18.7, 17.7 and 20.9 A, to 33.1, 33.7 and 27.8 A, respectively. The 

layer spacing of TP 8 -, TP 10- and TP12-MMT did not expand upon dispersion into 

Crystic 189LV. The DTG traces indicated a thermal decomposition maxima of 422 °C 

for pure Crystic 189LV and samples made using Crystic 189LV and 5 wt% TP 10-, 

TP 12-, TP 16-, and B u l6 -MMT.

Composites containing TP8 - and TP14-MMT displayed a slightly higher temperature 

thermal decomposition maxima (+22 °C), demonstrating a stabilising effect on the entire 

system until the upper thermal limit o f the material was reached. It was believed that 

this shift was due to the formation of a protective barrier layer, due to the surface 

accumulation of clay platelets held together with a carbonaceous char. This barrier 

would have thermally insulated the UP matrix.

To investigate the effect of individual components in the nanocomposite systems 

(DMMP and styrene), on the d-spacing of organophosphonium clays, XRD analysis was 

carried out on organophosphonium clays dispersed in DMMP, and dispersed in styrene. 

Dispersion of TP8 - to TP16-MMT in DMMP or styrene did not significantly expand the 

d-spacings of the organoclays. The d-spacing of B u l6 -MMT decreased when dispersed 

into DMMP and increased when dispersed into styrene. It was observed that the small 

peak at lower angle (found in all organophosphonium clays), was not present when 

dispersed in DMMP and was only present in TP 10- and TP16-MMT samples when 

dispersed in styrene. These experiments confirmed that the expansion in the d o o i  spacing 

observed when composites were prepared using these organophosphonium clays and 

Crystic 189LV, was due to polymerisation of Crystic 189LV in the gallery space, 

therefore expanding the clay layers further. The increase in the d o o i  spacing cannot be 

attributed to DMMP or styrene further expanding the clay layers.
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The organoclays proved difficult to disperse into the UP resin, however this was 

overcome by pre-mixing with dimethyl methyl phosphonate (DMMP), which has been 

identified as an effective gas phase fire retardant. Very interesting results on fire 

performance were produced that could remove the need for halogenated products to 

achieve increased fire retardancy. Using DMMP as a pre-swelling agent not only 

improved the dispersion but also caused the fire retardant properties to reach a much 

higher classification.

XRD analysis o f Bul6-MMT dispersed in DMMP and then incorporated into Crystic 

189LV revealed intercalated and aggregated nanocomposites for the 5 wt% Bul6-MMT 

plus 10D samples, which were similar to Bul6-MMT at 5 wt% without DMMP. The 

XRD traces for composites prepared using 2.5 wt% Bul6-MMT plus 5D were less 

intense, possibly due to the decreased amount of clay in the sample. The dooi spacing 

increased from 20.9 A in Bul6-MMT to 29.1 A when mixed with Crystic 189LV/5 wt% 

B u i6 and 28.1 A when mixed with Crystic 189LV/2.5 or 5 wt% B u i6 plus DMMP. 

Upon increasing the amount o f DMMP in the Bul6-M MT samples from 5 to 10 wt%, 

the samples remained intercalated, therefore DMMP did not clearly influence the 

dispersion and size o f the stacks within the Bul6-MMT samples.

When mixed with Crystic 189LV and DMMP, an increase in the d-spacing o f TP 12-, 

and TP16-MMT occurred from 17.4 and 17.7 A, to 30.1 and 31.7 A, respectively. 

Crystic 189LV did not intercalate into TP12-MMT, however the addition of 5D into the 

TP12-MMT/Crystic 189LV system produced some intercalated nanocomposite, but lots 

of undispersed TP12-MMT remained. A more exfoliated/intercalated nanocomposite 

was formed upon addition of 10D, which was observed through increased low angle 

scattering and intensity o f the d o o i  peak. Intercalated and aggregated nanocomposites 

were formed when TP16-MMT was mixed with Crystic 189LV, occurring in the 

presence and absence of DMMP. The 2.5 wt% TP16-MMT/5D samples displayed a 

more intercalated/aggregated nanocomposite nature, observed through increased 

intensity of the d o o i  and d o o 2  peaks.

DTG traces indicated the same thermal decomposition pathway for all the 

nanocomposites incorporating DMMP and therefore, DMMP does not appear to affect 

the decomposition pathway o f these systems, at this level of investigation.
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Nanocomposites incorporating B ul6+, DMMP and Crystic 189LV were prepared from 

an original ‘one-pot’ process, starting with Na+ Cloisite. An efficient one-pot synthesis 

method involves incorporating all components of an UP-clay nanocomposite 

simultaneously in a mixture, permitting the in-situ preparation o f organophosphonium 

clays. XRD data revealed an intercalated/exfoliated nanocomposite with increased dooi 

spacing o f 34.4 A in the ‘one-pot’ method, compared to 28.6 A in the standard method. 

However, the thermal decomposition maximum in the DTG traces remained the same at 

~ 427 °C for the standard and ‘one-pot’ methods. The char decomposition temperature 

in the DTG curves displayed an increase of 9 °C in the ‘one-pot’ method.

Samples prepared using Crystic 189LV, TP8- to TP16-MMT, Bul6-MMT and either 0 

or 10 wt% DMMP were subjected to the in-house version of the UL94 vertical burning 

test. In order of effectiveness, B u i6-, TP 10- and TP8-MMT improved fire resistance 

(reaching classification V-0, V-0 and V -l, respectively) but TP 12-, TP 14- and TP 16- 

MMT were less successful. Further analysis using TGA indicated that, for TP8- and 

TP10-MMT, DMMP was available at relatively low temperatures to extinguish the gas 

phase flame but, for TP 12- and TP16-MMT, it was not. This suggests that the 

phosphonium salt may interact/react with (some of) the DMMP reducing its active 

concentration below the required value for effective operation as a gas phase fire 

retardant.

XRD and TGA data revealed batch-to-batch variation in the Bul6-MMT organoclays, 

which may influence dispersion, indicating that the loading o f the 

tributylhexadecylphosphonium clay needed to be carefully monitored. XRD data 

revealed an increase in the intensity of several batches, however the d o o i  spacing 

remained the same at 21 A (± 1 A). The DTG results revealed a shift in the minor pre 

peak A -l, revealing that as the peak A-l moved to a lower temperature then the 

intensity of the d o o i  peak using XRD also increased, which resulted in an increase in the 

fire retardant properties o f the samples. TG-MS measurements performed on Bui 6- 

MMT batches displaying ‘good’ and ‘bad’ fire retardant properties displayed peak A -l 

at a lower temperature in the ‘good’ batch and also the intensity o f the decomposition 

ions was almost twice as intense in the ‘good’ batch.
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Variations in the loading of B ul6+ onto Na+ Cloisite affected the level o f dispersion and 

thermal degradation pattern of the resultant nanocomposite. XRD results displayed an 

increase in the d-spacing from 20.8 A  at 1.0 x CEC to 24.3 A  at 1.5 and 2.0 x CEC, 

however as the loading o f B ul6+ reached 1.0, 1.5 and 2.0 x CEC, the difference 

between the dooi spacing and the spacing for the small peak at higher angle remained the 

same at approximately 15 A .  DTG results displayed a loss of intensity for the peak 

under Tmax (A -l) and a shift to a lower temperature (292 °C at 1.0 x CEC decreasing to 

273 °C at 1.5 and 2.0 x CEC) as the loading of B ul6+ increased. However, it was still 

unclear which factors could potentially link to the fire retardant properties o f the 

sample. It appeared that as the distance between Tmax (A) and Tmax (A-l) increased then 

the fire retardant properties o f the resulting composite also increased.

In experiments similar to those performed by Xie et. al. [4'29] washing of Bul6-MMT 

prepared at 1.5 and 2.0 x CEC of Na+ Cloisite in a mixture o f 80:20 EtOH:H20, 

indicated that the organic content o f the samples corresponded closely to the organic 

content in the 1.0 x CEC samples. XRD and TG results indicated that when Bul6-M MT 

prepared at 1.5 and 2.0 x CEC of Na' Cloisite, was washed in a mixture o f 80:20 

EtOH:H20, then excess surfactant was removed. The dooi spacing decreased from 24.3 

A  at 1.5 and 2.0 x CEC, to 20.8 A  as in the 1.0 x CEC sample. The DTG results also 

indicated that after washing the peak under Tmax A-l increased from 273 °C to -290 °C 

which was at the same temperature as the 1.0 x CEC samples. Therefore incorporation 

of this washing step into the cation exchange process would ensure that excess 

surfactant was removed from the organoclays, which could reduce plasticization o f the 

polymer or prevent early ignition of the nanocomposite.

When Bul6-MMT washed in a mixture of 80:20 EtOH:H20 was incorporated into the 

unsaturated polyester Crystic 189LV (plus 10D) and subjected to the ‘in-house’ version 

of the UL94 vertical burning test. An increased incidence o f cracking after the first 

flaming occurred as the loading of B ul6+ increased from 1.0 to 1.5 and 2.0 x CEC of 

Na+ Cloisite, and consequently the samples had to be extinguished manually.
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The role of DMMP was investigated in combination with organoclays both as 

intercalated powders and as components o f nanocomposites prepared using Crystic 

189LV. TP8- to TP16-MMT and Bul6-MMT were dispersed in DMMP, dried and then 

any differences in the thermal decomposition of the organoclays after dispersion in 

DMMP analysed using TGA and TG-MS. The DTG results for the thermal 

decomposition o f TP8- to TP16-MMT and Bul6-MMT dispersed in DMMP, 

demonstrated three thermal decomposition maxima (A, B and C), however multiple 

shoulders occurred under Tmax (C).

TG-MS data indicated that TP8- and TP10-MMT contained significant amounts of 

absorbed DMMP (m/z = 79), which was desorbed under Tmax (A) at 148 °C, at a lower 

temperature than the boiling point o f DMMP (which boils at 189 °C), whereas TP 12-, 

TPM- and TP16-MMT exhibited a higher desorption temperature for DMMP under 

Tmax (B) at 501 °C. Bul6-MMT did not exhibit a low temperature loss o f DMMP. A 

tentative explanation for the ability o f TP8- and TP10-MMT to accommodate adsorbed 

DMMP is that the C8 and CIO alkyl chains are relatively short and therefore there is 

some space between them in the gallery for DMMP to occupy. However, when the 

chain length exceeded 12 carbons there was no longer any space available for DMMP to 

be adsorbed.

Composites containing Crystic 189LV and DMMP, and Crystic 189LV, Bul6-MMT 

and DMMP were made. Analysis o f the gases released suggested that DMMP (m/z = 

79) evolved at lower temperatures when present in greater quantities, possibly leading 

to improved fire performance. In addition, an unidentified fragment ion m/z = 50, which 

has been tentatively attributed to the thermal desorption of methyl chloride, (however, 

this could not be proven using existing equipment) was evolved from specimens 

containing Bul6-MMT. It was clear that m/z = 50 only appeared in the presence o f clay 

and was desorbed after the thermal desorption o f m/z = 79. The intensity o f the m/z = 

50 mass fragment increased as the DMMP loading increased even though this fragment 

did not appear in the mass spectrum of DMMP.
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Differences between the surface and bulk composition o f nanocomposites containing 

Bul6-MMT were revealed using TGA and infrared (ATR-FTIR) spectral 

characterisation. DTG data revealed that the surface ‘layer’ was less thermally stable 

than the bulk when heated in air, and decomposed at 383 °C at the surface compared to 

432 °C in the bulk. Using ATR-FTIR it appeared that polystyrene (characteristic peaks 

at 2848 and 2917 cm'1) had migrated to the back surface of the sample and that the 

characteristic organoclay peaks were more intense at the front surface o f the sample 

compared to the back. Fomes and Paul [4'32] have suggested that when a polymer is cast 

into a mould the surface and bulk regions undergo different cooling rates, which can 

lead to differences in chain/clay orientation. Therefore, the surface and bulk differences 

found using DTG and IR could possibly stem from differences in the orientation of the 

polymer/clay particles, which occurred during the mixing and casting processes.

The most promising nanocomposite system from Chapter 4 comprised Crystic 189LV, 5 

wt% Bul6-MMT and 10 wt% DMMP, which achieved UL94 classification VO and 

therefore compared favourably with halogenated resins. However, the clay modification 

process is prohibitively expensive for commercial application, therefore the ‘one pot’ 

preparation method should be further developed as an alternative to the standard, 

intensive process, as preliminary studies displayed comparable results in the UL94 

vertical burning test for the standard and ‘one-pot’ methods.

4.18.1 Literature reports on the distribution of clay from skin to core in PLSNs

Fomes and Paul [4'32] examined the effects o f organoclay concentration and degree o f 

exfoliation on a nylon-6 matrix crystal stmcture in nanocomposites formed by melt 

processing. Aliphatic polyamides, such as nylon-6, are well known for their strong 

hydrogen bonding (H-bonding) ability and seek to maximize the number o f H-bonds 

within and between polymer chains. Maximization of H-bonds in the crystalline state o f 

nylon-6 requires the polyamide chains to adopt either a frilly extended or twisted 

configuration.
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Figure 4-61 Chains in the (a) fully extended configuration of the a-crystalline form and (b) twisted

configuration of the y-crystalline form |4"331.

In the fully extended configuration, termed the a-form polymer chains are oriented in an 

anti-parallel fashion as displayed in Figure 4-61 (a). Anti-parallel chains are situated 

such that the amide linkage and methylene units lie within the same plane, and the H- 

bonds occur between adjacent anti-parallel chains to form sheets of H-bonded chains. 

The y-crystalline (Figure 4-61 (b)) form o f nylon 6 occurs, when H-bonds form 

between parallel polyamide chains. To maximise the number of H-bonds, formation 

requires the amide linkages to twist approximately 60° out of the plane o f the molecular 

sheets.

Early studies [4'34,4'35] revealed that crystallization for extended periods o f time below ~ 

130 °C leads solely to the y-crystallites while above ~ 190 °C only the a-form is 

produced. Temperatures in between these two limits result in a mixture o f the two 

forms, with higher fractions of a  produced at higher temperatures. Rapid cooling or 

quenching in general produces the y-form [4‘36], however annealing can also affect the 

structure, annealing for extended times leads to the conversion o f the y phase into a 

phase [4'34l  Therefore, rapid cooling and low temperature crystallization promotes the y- 

form, while higher crystallization temperatures or slow cooling leads to the a-form.
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When a polymer is cast into a mould the outer-most layer undergoes rapid cooling, 

while the central portion experiences slower cooling rates and less stress, this produces 

a surface-bulk structure due to the differences in cooling and chain orientation [4'37]. 

Differences in the physical and mechanical properties between the surface and bulk can 

be significant. Fornes and Paul [4‘32] found the surface region to contain only the y- 

crystalline form, largely due to rapid cooling of the surface at low temperatures and 

possibly limited polymer chain mobility. Increasing the concentration o f clay within the 

surface enhanced the formation o f the y-form, which may relate to further restrictions in 

polymer chain mobility. The bulk region however, contained both a  and y-forms o f 

nylon-6.

Lee et al. [4~31] examined the morphology and mechanical properties o f polypropylene 

(PP) reinforced with organoclay (dimethyl, dehydrogenated tallow-MMT) and 

toughened with an ethylene-octene based elastomer. Four different organoclay 

concentrations were investigated ranging from 0 to 6.8 wt%, XRD data from the core 

region (Figure 4-62 (a)) of the injection moulded sample, did not display a 

characteristic basal reflection for all MMT concentrations, suggesting an exfoliated 

structure. However, this was opposite to what was observed during TEM particle 

analysis, which displayed a decrease in the level of dispersion with increasing MMT 

concentration. The XRD traces from the skin region (Figure 4-62 (b)) o f the samples 

revealed that a strong peak from the organoclay persisted without any significant shift in 

location; however the intensity o f this peak increased with increasing MMT content, 

indicating that large stacks of platelets existed in the skin portion o f the injection 

moulded samples. These findings suggest distinct structural differences between the 

skin and core regions o f PP nanocomposites.
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Figure 4-62 XRD traces (Cu-tube) for PP/organoclay nanocomposites containing 1, 2.8 and 6 . 8  

wt% MMT. (a) is taken from the core region, while (b) is taken from the skin region. The curves
are shifted vertically for clarity |4'311.

The intensity differences of the characteristic peaks o f the clay could possibly stem 

from differences in the degree o f exfoliation o f clay from the core to skin and/or 

difference in the orientation o f clay particles in these regions during the injection 

moulding process. However, there is little mechanistic reason to believe that exfoliation 

varies across from the skin to core regions, and so, it is believed that there is a 

significant difference in the orientation o f clay particles in the skin and core regions in 

the injection-moulded specimen. This skin-core effect is particularly o f interest from an 

industrial point o f view, since the injection moulding process is largely involved in the 

production o f commercial products, however as yet it has not been considered how the 

orientation of clay at the surface of an injection moulded part would promote fire 

retardancy and this is defiantly something to consider in the future. These papers 

illustrate that differences can occur between the skin and the core regions o f injection 

moulded thermoplastics, however, due to the lack o f shear when casting the UP 

nanocomposites at room temperature, it is difficult to draw realistic parallels.

Gilman et al. [4'38] in an effort to study the changes in the structure and dispersion o f the 

polymer nanocomposite during burning, subjected a polystyrene (PS)-clay 

nanocomposite to various amounts o f thermal degradation under realistic fire 

conditions. The combination o f XRD, TGA, and TEM analysis o f the PS 

nanocomposite samples after various pyrolysis times provided a more detailed picture 

into the mechanism of flammability reduction. The data collected reinforced, and 

provided additional understanding o f the proposed condensed phase flame retardant 

mechanism for PLSN materials. As the nanocomposite heats up the polymer
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decomposes and volatilizes. This causes the structure to collapse and results in a smaller 

interlayer spacing between the layered silicate or clay layers. The clay appeared to 

catalyze formation o f carbonaceous char which yielded a clay reinforced carbon char 

layer with a d-spacing of 13.0 A ;  this unique structure formed quickly under pyrolysis 

conditions, and was stable even after extended pyrolysis times. TGA data suggested that 

there were two types of carbonaceous materials formed in the carbon phase of the clay- 

carbon char; a carbon that can be decomposed and volatilized by heating in nitrogen, 

and a second fraction o f material which required more aggressive conditions, (i.e. 

heating >700 °C) in the presence o f air. The data indicated that not until substantial 

clay-carbon char formed did the pyrolysis rate (MLR) slow.

The clay carbon char provided thermal protection to the underlying material, as 

evidenced by the XRD, optical, and TGA data from the middle and bottom layers o f the 

PLSN in the early part of the heat exposure. It was suggested that a minimum thickness 

o f clay-carbon char must build up before the effect is produced. The data also indicated 

that the barrier is not impervious, and that gases and heat do penetrate through the 

barrier over time, eventually yielding a porous clay-carbon network structure that 

maintained the shape o f the original material. However, even with this porosity, the d- 

spacing of the PLSN remained intact in the middle layers o f the sample up to 200 s after 

a heat exposure of 50kW/m2. However, it was not clear how much protection would be 

gained if the sample was thinner. It may be that the impressive thermal protection was 

in part due to the thickness (8mm) of the sample. Since the PLSN protective layer 

delays combustion of underlying material, in a thinner sample the reduction of heat 

release rate should still be observed, but the length of prolonged burning and low MLR 

maybe shortened. The varying thickness o f the samples in this chapter may in some part 

explain the variable fire retardant results for the Bul6-MMT composites, but the 

industry standard for UL94 is 3mm and this was used in this thesis on a number o f 

occasions, including in the cone calorimetry results.

The PLSN only delays the inevitable combustion of the polymer, rather than preventing 

combustion once the carbon-clay barrier is set up. Gilman believes that with this new 

knowledge on how PLSN materials provide flammability reduction, it should be 

possible to develop additional flame retardant technology that will take greater 

advantage of the PLSN flammability reduction. Development of clays that promote or
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catalyze additional carbonaceous char formation would most likely enhance the flame 

retardant effectiveness of elay-nanocomposite based flame retardants.

The clay/carbon char model is still widely accepted but the influence o f nanofillers on 

the degradation mechanism is also under investigation. Costache et al. [4'39] investigated 

the effect of different inorganic fillers (cationic and anionic clays and multi-wall carbon 

nanotubes (CNTs)) and the respective nanocomposite morphologies on the degradation 

pathway o f poly(methyl methacrylate) (PMMA). They found that in the presence of 

clay (cationic or anionic) or CNTs no qualitative effect on the degradation mechanism 

of PMMA was observed. PMMA undergoes thermal degradation by a single process 

and the presence o f filler cannot change its degradation pathway, in contrast with other 

systems such as polyamide-6 (PA-6), polystyrene (PS) and ethylene vinyl acetate 

copolymer (EVA), where fillers can promote one thermal degradation pathway at the 

expense o f another. The barrier mechanism, which is the most widely proposed 

mechanism by which nanocomposite formation imparts fire retardancy to polymers, is 

actually important not only at the surface, but also within the polymer matrix. 

Therefore, they state that in many cases the reduction to mass transport was much more 

important than the insulating effect which can arise only at the surface.

Jang et al. [4_40] suggested that the number of degradation pathways o f a polymer is one 

of the factors that can affect the fire retardancy of polymer/clay nanocomposites. If 

degradation occurs by only a single pathway, then more thermally stable products are 

not produced and the fire retardancy is not significantly improved in the presence o f 

clay. The changes in the degradation pathway o f polystyrene (PS) in the presence o f 

clay were discussed and the factors affecting the fire retardancy of polymer/clay 

nanocomposites such as the relative stability of the radicals produced upon degradation 

were considered.

Virgin PS evolved a styrene monomer (m/z = 104), dimer (m/z = 208) and trimer (m/z = 

312) as the main degradation products during thermal degradation, the formation o f 

these products is depicted in Figure 4-63. Styrene monomer is produced via P-scission 

of a chain end formed by the initial chain scission, while dimer and trimer are evolved 

via radical transfer followed by p-scission [4'41,4'42, 4 43]. In the presence o f clay, many 

different evolved products were detected, produced via radical recombination (Figure
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4-64) and extensive random scission (Figure 4-65). The degraded molecules have an 

opportunity to undergo radical recombination, because the degraded molecules are 

confined between well-dispersed clay layers. Extensive random chain scission occurred 

at the same time, since the degrading polymers experienced superheated conditions 

during the thermal event. The identification o f head-to-head structures and many 

isomers in the evolved products suggested that a recombination reaction between 

tertiary and/or secondary radicals occurred in the presence of clay [4 44l

^ C H 2 - C H ’ CH2-CH-CH2-CH-CH2' ^ '  ‘̂ - 'C H 2-CH-CH2'CH •c h 2-c h -c h 2-c h -c h 2^

6 6 6 —  6 6 * 6 6
^V^C H 2-CH-CH2-CH c h 2=c h CH3-C -CH2-CB-CH2r 'v '

^ O V C H - C H r C  -CHyCHa CH2-C =CH3 •CH-CH2-CH-CH2^ v '6 6 6 6*6 6 
N

^V>CH2-C -CH2-CH-CHr CH2 ' ^ C H r CH-CH2-CH CH2=C -CH2-CH2 

6 6 6  6 6 *  6 6 
v n ^ c H 2-CH-CH2-CH CHZ=C -CH HpH -CH^CH j 

1— -  6  6 * 6 6  6
Figure 4-63 The formation of evolved products, styrene monomer, dimer, and trimer |4'44].

PS displayed a large reduction (typically around 60%) in the peak heat release rate 

(PHRR). Considering the changes o f degradation pathway o f the polymer in the 

presence of clay, polystyrene exhibits a significant increase in the intermolecular 

reaction; radical recombination. The radicals produced when PS degrades may undergo 

several secondary reactions, disproportionation, {3-scission, hydrogen abstraction, 

radical transfer and radical recombination. The styryl radical in styrene-containing 

polymers is the most stable. A relatively stable radical has more opportunity to undergo 

various secondary reactions. In the presence of clay, the clay acts as a barrier to keep the 

degrading compounds from evolving, hence the radicals have more opportunity to 

undergo additional reactions. These reactions become significant at higher clay 

concentrations because the degrading polymer is retained by the clay layers, permitting
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further reaction [4'44]. Thus, more stable radicals may undergo intermolecular reactions, 

such as hydrogen abstraction and radical combination, which lead to the reduction in the 

heat release rate in cone calorimetry.

^ C H z -C H - G H r C H - C H 2^  ^ C H 2-C H  • C H 2- C H - C H 2 ^ v ’ c h 3-6  ^ c h 2- c  -c h 2̂

6 6 — 6 + 6 + 6 + 6
B

-CH2-CH -CH -CH2-CH'^f’

c + c
CH3 p H 3 

^ C H - C H s - C  - C - CHj r C H '^ v ‘

6  ob6

A + C

c h 3
^ C H  -CH-i-CH - C - CH2-CHrvv ’ A + D 

B + D 
C 4 D  
D 4 D

Branched/Cross-linked
Structures

Figure 4-64 Radical Recombination 14-441

For PS/clay nanocomposites, the secondary styryl radical is as stable as the allylic 

radical and there are many potential tertiary styryl radical sites available. The hydrogen 

in the p-position to the benzene ring may be the source of hydrogen abstraction, 

therefore, in the presence o f clay, radical transfer (intra- and inter-) to this position is 

very probable and the possibility to undergo radical recombination becomes high, along 

with hydrogen abstraction because o f the high stability o f the styryl radicals. Thus many 

head-to-head structures are detected in GC/MS analysis and these significant changes 

may be the reason for the large reduction in PHRR.
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Figure 4-65 Extensive Random Chain Scission |4_441.

Therefore, it can be stated that the stability o f the radical produced upon degradation of 

a polymer is proportional to fire retardancy in terms o f the reduction in PHRR. The 

more stable the radical a polymer produces, the better is the reduction in peak heat 

release rate upon nanocomposite formation.

Jang et al. [4 45] further utilised GC/MS as well as TGA/FTIR to study the degradation 

pathway o f polyamide-6 clay (PA-6 clay) nanocomposites, using the same techniques as 

in the previous work [4"40, 4A4\  Since acetonitrile was used as the solvent for the 

collection o f the evolved products, the mass spectra for each GC trace exhibited only 

molecular mass higher than m/z = 50. The structures were identified through the 

analysis o f mass fragmentation pattern and/or by co-injection with authentic 

compounds; some structures were speculatively assigned according to the degradation 

patterns that were proposed by the previous workers [4'46, 4'47, 4'48]. The most dominant 

species in the evolved products was 8-caprolactam (m/z = 113), which is the monomer 

of polyamide-6, which can be produced through intra- and/or inter-molecular 

aminolysis/acidolysis reactions. The dimer (m/z = 226,) was produced in a similar 

fashion. It was generally accepted that monomer formation was primarily generated by 

intra-molecular reactions rather than inter-molecular reactions. In the presence o f clay, 

the soluble fractions of PA-6 clay nanocomposite displayed increased viscosity and this 

increase could be explained by inter-molecular reactions since one chain attacks 

another, leading to larger molecules. The clay provided more opportunity for degrading
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polyamide-6 to undergo intermolecular aminolysis/acidolysis by containment of the 

degrading polymer.

The GC/MS results indicated that the relative intensity o f e-caprolactam decreased with 

increasing clay content. Apart from the monomer and the dimer, many evolved 

structures were produced via chain scission. These results implied that evolved products 

via chain scission also increased during the thermal degradation of polyamide-6 in the 

presence o f clay. Therefore, it is anticipated that through the analysis o f the radicals 

evolved from the polymer clay nanocomposites, structurally identified through the 

analysis o f mass fragmentation pattern and/or by co-injection with authentic 

compounds, then an indication o f the degree o f fire retardancy would be determined.

Bourbigot et a l  [4_49] combined nanoparticles with traditional flame retardants 

(intumescents) to achieve low flammability with nanocomposites. Nanocomposites 

based on three different types of nanoparticles, clay, polyhedral silsesquioxanes (POSS) 

and carbon nanotubes (CNT) were discussed. Their flammability properties were 

measured by using cone calorimetry. They observed a significant reduction in the heat 

release rate (HRR) compared to the virgin polymer, however it was apparent that nano- 

dispersion o f the filler was absolutely necessary to achieve the highest performance. 

The formation of a coherent char layer (i.e. no cracking) was also found to be 

imperative to obtain low heat release rates. However, it was found that low flammability 

of the nanocomposites was only achieved in terms o f HRR, and the samples failed in 

terms of the UL94 and limiting oxygen index (LOI). The combination o f traditional 

intumescents overcame the UL94 and LOI problems. In comparison the UL94 results in 

this chapter for the composites containing alkyltriphenylphosphonium and 

alkyltributylphosphonium exchanged Na+ Cloisite, also failed when the samples 

exhibited non-uniformity o f the char layer (i.e. cracking) and the introduction o f the fire 

retardant DMMP increased the amount o f samples reaching a UL94 classification o f V- 

0 and V -l.
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5. Covalent Binding of Modified Organoclay

The objective of this chapter was to consider covalent binding o f modified nanoclays 

within an UP matrix. This has been studied through the synthesis o f a series of vinyl- 

functionalised alkylammonium and phosphonium cations and methacrylate- 

functionalised phosphonium-organomodifiers, which have been chosen to include a 

vinyl (C=C) functionality on the salt. It was expected that the double bond on the salt 

would be involved in polymerisation along with simple radical polymerisation 

involving styrene in the unsaturated polyester resin. Therefore, polymerisation could 

occur in the clay gallery, “tethering” or linking the polymer to the clay surface by a 

covalent bond to the ammonium or phosphonium cation. The improvement in thermal 

stability and clay dispersion in the resulting composites have been evaluated using X- 

ray diffraction (XRD), thermo gravimetric analysis (TGA) and in some cases 

thermogravimetry coupled with mass spectrometry (TG-MS).

Firstly Na' Cloisite was modified using the alkylammonium cations 

decyltrimethylammonium (DTA1) and co-decyltrimethylammonium (co-DTA+) at 

different percentages o f the CEC. XRD, TGA and TG-MS were utilised to study what 

effect organocation deficiencies and excesses would have on the physical properties and 

thermal decomposition of the products.

Secondly the thermal stability o f phosphonium-MMT compared to ammonium-MMT 

was investigated through the synthesis o f a triphenylphosphonium and a 

trimethylammonium cation with a chain length o f Cn = 10 (cd-TP 104 and co-DTA+, 

respectively). It was anticipated that the vinyl group (CH2 =CH-) on the surfactant tail 

would be available for polymerisation in the unsaturated polyester.

Thirdly the covalent binding of modified organoclay into the UP matrix was 

investigated through the synthesis of a series of methacrylate fiinctionalised 

phosphonium-organomodifiers with increasing chain length (Cn = 3 to Cn = 10), to 

maintain/improve the mechanical strength o f the nanocomposite, if the addition of clay 

impaired the normal cross link density o f the UP.
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Thermosetting polymers, such as polyesters and epoxies exhibit several useful 

characteristics due to the high degree o f cross-linking between individual polymer 

chains. Superior properties, coupled with ease of processing have led to numerous 

applications o f these polymers [51]. Unfortunately cross-linking makes these materials 

inherently brittle with poor resistance to crack initiation and propagation. Recently it 

has been demonstrated that the addition o f nanometer sized fillers such as AI2 O3 can be 

used to significantly enhance the mechanical properties of thermosetting unsaturated 

polyesters [5‘2].

Montmorillonite (MMT) is commonly used as a nanometer sized filler. The efficiency 

of MMT in improving the properties of a polymeric material is primarily determined by 

its degree o f dispersion in the polymer matrix. However, the hydrophilic nature o f the 

MMT surface impedes homogenous dispersion in many organic polymer phases. To 

overcome this problem, it is often necessary to make the clay surface organophilic prior 

to use, through ion-exchange reactions involving the exchange o f cationic surfactants 

for the interlayer cations. The role o f the organic cation is to reduce the surface energy 

of the MMT, to reduce the platelet-platelet attraction and improve the wetting 

characteristics for an organic polymer [5'3].

5.1 Uptake Isotherms of DTA+ and to-DTA+ on Na+ Cloisite
For the purposes of initial experiments Na+ Cloisite was modified using the

alkylammonium cations DTA4 and co-DTA+. The organoclay samples prepared for the 

uptake isotherm experiments will be referred to with respect to their organocation 

species (Table 5-1).

Table 5-1 Sample Identification for alkylammonioum exchanged Na+ Cloisite
Organic Component Abbreviation 

for Salt
Abbreviation 

for Cation
Abbreviation when 
exchanged onto Na+ 

Cloisite
decyltrimethylammonium 

Bromide, Cn = 10
DTAB DTA+ DTA-MMT

CG-decyltrimethylammonium 
Bromide, Cn = 10

co-DTAB co-DTA+ (o-DTA-MMT
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Na+ Cloisite was modified at different percentages of the CEC (Table 5-2), to study 

what effect organocation deficiencies and excesses would have on the physical 

properties and thermal decomposition o f the products. DTA1 and co-DTA+ were 

compared to evaluate any differences in thermal decomposition upon addition o f a 

terminal double bond on the salt, into the system. The exchanged amounts for o)-DTA+ 

were virtually identical to the exchanged amounts for DTA+.

Mass of 
Clay (g)

CEC of 
Clay

Multiples of
CEC

RMM 
DTAB (g)

Mass Required 
of DTAB (g)

1 0.925 0.25 280.30 0.065
1 0.925 0.5 280.30 0.13
1 0.925 1 280.30 0.26
1 0.925 1.5 280.30 0.39
1 0.925 2 280.30 0.52

5.1.1 DTA-MMT and to-DTA-MMT Preparation

Na' Cloisite was suspended in deionised water (lOg clay in 100 ml o f H2 O), in a 250 ml 

beaker. The clay slurry was mixed for 1 hour to swell the clay galleries with water. The 

calculated mass o f decyltrimethylammonium salt was then pre-dispersed in 50 ml 

deionised water, added to the beaker, covered and stirred for 24 hr. These samples were 

repeatedly washed with deionised water until the conductivity fell below 50 pS and then 

centrifuged at 17,000 rpm for 1 hr. After the washing process the clays were air dried 

for 48 hours, the thermal decomposition of the organic species, resulting from a 

Hoffman degradation process was monitored using TGA, TG-MS, and the expansion o f 

the clay was studied using XRD.
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5.1.2 XRD Analysis o f DTA-M M T and w-DTA-MMT

DTA-MMT (o-DTA-MMT
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Angle [°20] Angle [°20]
Figure 5-1 XRD traces (Cr-tube) for DTA+ and w-DTA+ exchanged Na+ Cloisite- Traces are offset

for clarity

The XRD traces presented in Figure 5-1 were obtained from DTA+ and co-DTAf 

exchanged Na' Cloisite. The maximum d o o i  spacing was reached at 1.0 times the CEC. 

After this loading the d o o i  spacing did not fluctuate significantly. Table 5-3 presents the 

d o o i  spacings for DTA-MMT and co-DTA-MMT at each concentration (± 0.2 A ) .

Table 5-3 d0oi spacings for DTA-MMT and to-DTA-MMT
dooi-Spacing (A)

% CEC DTA-MMT (O-DTA-MMT
0 12.1 12.1

0.25 12.2 12.2
0.5 13.0 12.9
1.0 13.1 13.1
1.5 13.1 13.3
2.0 13.4 13.2
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Figure 5-2 depicts the increase in d-spacing as DTA+ enters the gallery. The distance 

between one dehydrated clay layer and another is 9.6 A, and as the clay becomes 

hydrated the d-spacing expands to 12.5 A (as in Na+ Cloisite). After exchange with 

DTA+, Na+ and H2 O were replaced as illustrated in Figure 5-2, and the d-spacing 

increased to 13.4 A, therefore confirming that the alkyl chain lies parallel to the basal 

surface. If the alkyl chain was not parallel to the basal surface and was radiating away 

from the silicate layers, then the d-spacing would be larger. The hydrated clay gallery 

was expanded by approximately 1 A after exchange with DTA+ and co-DTA+ cations. 

However, the expansion due to the DTA+ cation is 13.4 -  9.6 A = 3.8 A.

12.

W ater
Na

n

▼

DTA

13.4 A

J

♦ L
Figure 5-2 Diagram representing the increase in d-spacing when DTA+ enters the gallery.

Uptake curves (Figure 5-3), which were determined using weight loss data from TG 

traces (using a temperature ramp o f 20 °C min'1), confirmed that both surfactants readily 

replaced the Na' cations in the gallery. When 1 CEC of modifier was introduced 

approximately 90-96% of the Na4 ions were displaced, there was good agreement 

between the data obtained under both air and nitrogen.

"O0)
_ Q
o
CO-O
<
O111O

100 1

80 -

60 -

40  -

20  -

T

0.5 1
[Organomodifier] w.r.t CEC

1.5

DTAB N2 (jU-DTAB N2 DTAB Air oj-DTAB Air

Figure 5-3 Uptake curve showing percentage CEC adsorbed against the concentration of 
organomodifier (w.r.t CEC) available in original solution.

5.1.3 TGA Analysis of DTA-MMT and co-DTA-MMT in Air
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The derivative thermograms (DTG) presented in Figure 5-4 to Figure 5-7 demonstrated 

several thermal desorption events, which could be grouped into temperature ranges 

within which the thermal desorption maxima varied, 35-150 °C, 151-430 °C and above 

431 °C. An assignment of the events occurring within these temperature ranges, verified 

later using TG-MS are displayed in Table 5^1.

Table 5-4  Assignment for desorption maxima in DTG traces occurring within specific temperature 
ranges

Desorption 
Temperature (°C)

Assignment

3 5 - 150 evolution of physisorbed water

151 -430

decomposition o f organocations 
producing aliphatic species, ring 
compounds, ammonia, water and 
C 02

>431 clay dehydroxylation and C 02 
evolution

The DTG traces presented in Figure 5-4 are for DTA-MMT, prepared at 0 to 2 x the 

CEC, collected in air. Three temperature maxima (Tmax) in the decomposition process 

(A, B and C) were displayed, decomposing over three stages. During stage 1 (35-150 

°C) the alkylammonium chains were relatively stable and so small weight losses were 

attributed to thermal desorption o f trapped water molecules. Stage 2 occurred over the 

range 150-430 °C and represents the decomposition o f alkylammonium chains. Tmax (A) 

occurred at 241 °C and Tmax (B) occurred at 302 °C. Stage 3 occurred over the range o f 

431-800 °C and displayed Tmax (C), at 610 °C and represents the decomposition o f the 

carbonaceous char layer formed upon oxidation and some clay dehydroxylation. The 

DTA+ sample prepared at 0.25 x CEC displayed a similar decomposition profile to Na+ 

Cloisite (trace with % CEC = 0), in which clay dehydroxylation occurred with a Tmax at 

670 °C.

The DTG traces presented in Figure 5-5 are for co-DTA-MMT, prepared at 0 to 2 x the 

CEC, collected in air. The DTG curves also displayed three maxima in the 

decomposition process (A’, B’ and C), decomposing over three stages ((1) 35-150 °C 

(2) 151-430 °C and (3) 431-800 °C). Tmax (A’) occurred at 285°C and Tmax (B’) occurred 

at 323 °C. Tmax (B’) however, occurred after the main decomposition event, Tmax (A ’), 

whereas the peak under Tmax (A) in DTA+ exchanged N a1 Cloisite (Figure 5^4), was
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before the main decomposition peak, Tmax (B). Tmax (C) occurred at 670 °C in the 

samples prepared using co-DTAh at 0.25 and 0.5 x CEC, and represents clay 

dehydroxylation at a similar temperature to Na+ Cloisite and could indicate a lower 

loading of co-DTA+ associated with the clay.

Table 5-5  Comparison of the weight losses for DTA-MMT and to-DTA-MMT calculated under air

Desor ption Temperature Ranges - Air
DTA- 35-150 °C 151-430 °C 431-800 °C Total
MMT (peak A) 

(% )
(peak B) (%) (peak C) (%) (% )

0 5.2 1.1 4.9 11.2
0.25 7.4 2.0 5.8 15.2
0.5 1.8 5.8 11.4 18.9
1.0 0.8 7.9 13.5 22.1
1.5 1.0 8.1 13.5 22.5
2.0 0.8 8.3 13.5 22.6

co-DTA- 35-150 °C 151-430 °C 431-800 °C Total
MMT (peak A’) 

(%)
(peak B’) 

(% )
(peak C) (%) (% ) :

0 5.2 1.1 4.9 11.2
0.25 6.2 1.9 5.3 13.4
0.5 4.9 3.3 8.9 17.2
1.0 0.7 6.2 14.3 21.2
1.5 0.8 6.6 14.5 21.9
2.0 1.0 6.5 14.7 22.2

Weight losses across the whole temperature range appeared relatively constant when 

DTA+ and co-DTA+ were exchanged at 1.0 to 2.0 x CEC, however differences were 

observed in the samples prepared at 0.25 and 0.5 x CEC (Table 5-5). The weight loss 

between 35 and 150 °C was higher in the 0.25 CEC sample compared to the 0.5 CEC 

sample and was due to water associated with the un-exchanged Na+ ions. Over the 

temperature range 181-450 °C the samples prepared at 1.0-2.0 x CEC appeared fully 

loaded as the weight loss remained constant in this region. Over the temperature range 

451-800 °C, decomposition of the carbonaceous char occurred and was highest in 

samples prepared at 1.0, 1.5 or 2.0 x CEC. The total weight loss displayed a steady 

increase following the pattern 0 < 0.25 CEC < 0.5 CEC < 1.0 CEC < 1.5 CEC < 2.0 

CEC.
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5.1.4 TGA Analysis o f DTA-M M T and co-DTA-MMT in Nitrogen

The DTG traces presented in Figure 5-6 are for samples prepared using DTAf and 

collected in nitrogen. Four maxima in the decomposition process (E, F, G and H) 

occurred, decomposing over three stages. During stage 1 (35-150 °C) the

alkylammonium chains were relatively stable and so small weight losses were attributed 

to adsorbed water being thermally desorbed. Stage two occurred over the temperature 

range 151-515 °C, and incorporated peaks E, F and G. Peaks E and F were present as 

shoulders of the main decomposition peak G and exhibited Tmax (E) and Tmax (F) at 234 

°C and 327 °C, respectively. Peaks E and F evolved before the main decomposition 

peak G. Decomposition of the alkylammonium chains occurred between 151 °C and 515 

°C and displayed a Tmax (G) at 418 °C. Stage three occurred over the range 516-800 °C 

and incorporated Peak H, which displayed Tmax (H) at 612 °C. Peak H represents the 

decomposition o f the char formed upon organocation decomposition and some clay 

dehydroxylation. Weight loss in this region was much smaller under nitrogen, compared 

to air, because the non-oxidative decomposition (pyrolysis) occurring under nitrogen, 

leads to higher proportions of gaseous products and smaller quantities of char. No 

weight loss associated with the decomposition o f the alkylammonium chains was 

apparent in the 0.25 CEC DTA-MMT sample, however the Tmax at 655 °C is 

characteristic o f clay dehydroxylation.

The DTG curves for co-DTA1 under nitrogen presented in Figure 5-7 also displayed 

four maxima in the decomposition process (E, F, G and H), decomposing over three 

stages. Stage one (35-150 °C) represents the thermal desorption of adsorbed water 

molecules. Stage two (decomposition o f the alkylammonium chains) occurred over the 

temperature range 151-515 °C and incorporated peaks E, F and G. Peaks E and F were 

present as shoulders on the main decomposition peak G and exhibited Tmax (E) and Tmax 

(F) at 255 °C and 367 °C, respectively. Peaks E and F evolved before the main 

decomposition peak G (Tmax (G) = 409°C). Stage three occurred over the range 516-800 

°C and incorporated Peak H, which displayed a Tmax at 605 °C.
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Table 5-6  Comparison of the weight losses for DTA-MMT and co-DTA-MMT calculated under N2

Desorption Temperature Ranges -  N2
Stage 1 Stage 2 Stage 3

DTA- 35-150 151-260 261-350 351-515 150-515 516-800 Total
MMT °C (% ) °C °C °C °C (%) °C (%)

(peak E) 
' (%>

(peak F) 
(% )

(peak G) 
(%)

(peak H) 
(% )

0 5.4 0.4 0.7 0.6 1.7 2.6 9.7
0.25 6.5 0.4 0.6 1.6 2.6 4.8 13M
0.5 2.2 0.5 2.0 8.6 11.1 5.2 18.5
1.0 0.9 1.2 3.1 11.1 15.4 4.4 20.7
1.5 0.9 1.6 3.3 1.8 16.6 4.5 21.1
2.0 1.1 1.7 3.3 11.0 16.0 4.5 21.6

Stage 1 Stage 2 Stage 3
co-DTA- 35-150 °<’"'i 151-300 301-515 °C 150-515 516-800 Total
MMT (%) °C (peak F and G) °C (%) °C (% )

(peak E)
(% )

(%) (peak H)
(%)

0 5.4 0.7 1.0 1.7 2.6 9.7
0.25 7.3 0.8 2.1 2.9 5.2 15.4
0.5 4.8 0.6 5.6 6.1 4.9 15.8
1.0 0.7 1.8 11.7 13.4 4.6 18.8
1.5 0.9 1.9 12.5 14.4 4.3 19.7
2.0 0.8 2.1 12.3 14.4 4.4 19.5

When analysed under nitrogen the sample weight loss across the whole temperature 

range appeared relatively constant when DTA+ and co-DTA' were exchanged onto Na+ 

Cloisite at 1.0 to 2.0 x CEC with a minor increase as the % CEC offered increased. 

However differences were observed in the 0.25 and 0.5 x CEC samples (Table 5-6). 

Weight losses between 35 and 150 °C were higher in the 0.25 and 0.5 x CEC sample 

compared to the 1.0, 1.5 and 2.0 x CEC samples, and was attributed to the loss o f water 

associated with the remaining Na' cations. The total weight loss displayed a steady 

increase following the pattern 0 < 0.25 CEC < 0.5 CEC < 1.0 CEC < 1.5 CEC < 2.0 

CEC.
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5.1.5 TG-MS Analysis of DTA-M M T and to-DTA-MMT

The decomposition temperature of organociays controls the upper processing 

temperature and subsequent thermal stability of polymer-clay nanocomposite materials. 

A more complete knowledge of the decomposition pathway was important because 

desorption products evolving at lower temperatures in an organoclay’s thermal 

desorption profile may have a role in the thermal decomposition o f the hybrid material. 

The thermal decomposition of the different organoclay series may be briefly 

summarised in three distinct regions: (region I) < 150 °C, evolution of adsorbed water, 

(region II) 150-500 °C, desorption o f organic species, (region III) 500-800 °C, 

dehydroxylation o f the aluminosilicate layer and the evolution o f products associated 

with residual organic carbonaceous residue. After a survey o f the possible species 

arising from the alkylammonium cations in contact with the clay surface, the 

decomposition products were identified and separated into 3 categories (Table 5-7):

Table 5-7  Assignment of TG-MS decomposition products

Category Assignment Group
I Water [m/z = 18], and CO2 [m/z = 44]
2 Linear aliphatic species: 

Alkyls [m/z = 43, 57, 71, 85] 
Alkenyls [m/z = 41, 55, 69, 83]

3 Ring Compounds (See Table 5-8)

DTA+ and co-DTA4 modified Na' Cloisite were analysed using thermogravimetry 

coupled with mass spectrometry (TG-MS), at 0.5 and 1.5 times the CEC, in order to 

compare partially loaded clay with fully loaded clay. An ATI Unicam Automass System 

2 quadrupole mass spectrometer was used, and the mass spectra of the gases evolved 

during the heating process, using a Cahn T G I31 thermobalance were collected. The MS 

was operated in the electron impact (El), positive ionisation mode. The samples were 

introduced into the TG-MS instrument at 30 °C and the temperature then ramped at 20 

°C/min until 800 °C. The samples were run under nitrogen and the evolved gases 

transported along a transfer line at 200 °C to the mass spectrometer and analysed.

221



Several ions, which are representative o f the major decomposition products arising from 

DTA+ and co-DTA4 were investigated. The major ions in decane and decene were 

compared for both DTA-MMT and co-DTA-MMT prepared at 0.5 and 1.5 times the 

CEC as well as other ions that are common to dienes and cyclic species such as 77, 78 

and 79 (Table 5-8).

Table 5-8  Fragment ions for the major decomposition/rearrangement products arising from DTA- 
and to-DTA-MMT

m/z ratio

77

Assignment

1,3-cyclohexadiene and 
1 -methylcyclohexene

Structure

78 benzene

79
1,3-cyclohexadiene and 
1 -methylcyclohexene

81 1 -methylcyclohexene

82 1-cyclohexene

91 + 92 Toluene, ethylbenzene

95 methylbromide CH3Br

96 1 -methylcyclohexene
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5.1.5.1 Decomposition Ions from DTA-M MT and co-DTA-MMT

The ions presented in Figure 5-8 (i and ii) incorporate ion 58 representing the -NMe3 

head group and ions 138, 140 and 142, which represent the mass ions for CIO diene, 

CIO alkene and CIO alkane, respectively. Figure 5-8 (iii) and (vi) presents ion 78, 

which was characteristic o f benzene, ion 91, which represented toluene and xylene and 

ions 95, 106 and 120 which represented methyl bromide (from CH3 decomposing from 

the head group and combining with free Br in the sample), dimethylbenzene and 

trimethylbenzene, respectively. No differences occurred in the decomposition pathways 

between ion 106 (dimethylbenzene) and ion 120 (trimethylbenzene) in either DTA- or co 

-DTA-MMT and so these ions have not been displayed. MS identified a proportion o f 

the species desorbed from the organoclay to be cyclic species, evolving as a result o f ( 1 ) 

Hoffman degradation o f the organocation forming alkene and trimethyl amine moieties, 

(2 ) intramolecular reactions or “back biting” mechanisms which occurred on the alkenyl 

chain. The alkenes then react on the acid-sites on the clay surface resulting in the 

formation of many new species, Table 5-9 displays the possible decomposition 

pathways for ions arising from the DTA 1 cation.
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Table 5-9  Possible decomposition and rearrangement mechanisms for species derived from DTA+.
The balancing H2 molecules have been omitted.

Double bond 
migration and/or 

isomerisation/ 
cyclisation.
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5.1.6 Aliphatic Hydrocarbons Evolved from DTA-M M T and co-DTA-MMT

5.1.6.1 Diene [m/z = 138], Alkene [m/z = 140] and Alkane [m/z = 142]

When the intensity ratio of diene/alkene (i.e m/z = 138 : m/z = 140) was studied it was 

found that a greater proportion o f diene evolved from co-DTA-MMT than DTA-MMT. 

The ratio of diene/alkene in co-DTA-MMT was approximately 1.5 compared to 0.7 in 

DTA-MMT, based on the relative intensities o f m/z 138 to m/z 140. In DTA-MMT, 

ions 138 and 140 had the same Tmax, however in co-DTA-MMT the diene preceded the 

alkene. In DTA- and co-DTA-MMT the ion count indicated that there was more alkene 

than alkane in both samples. In samples prepared at 1.5 x CEC, the Me3N head group 

(m/z = 58) was detected before ions 138 and 140 (Figure 5-8 ii (lines in red)), and the 

intensity of ion 58 in co-DTA-MMT was almost double that o f ion 58 in DTA-MMT.

5.1.6.2 Ring Compounds

The majority o f secondary species (identified from a comprehensive database search) 

desorbed from DTA- and co-DTA-MMT were identified by MS as ring compounds 

(Table 5-8). Desorption o f ring compounds in the 0.5 x CEC samples (Figure 5-8 iii) 

occurred at a lower temperature and were more intense in DTA-MMT compared to co- 

DTA-MMT. The onset temperature at which degradation began (Tonset) occurred at the 

same temperature (300 °C) in all samples. Benzene [m/z = 78] displayed larger 

concentrations than other ring compounds across the temperature range 300-400 °C in 

the 0.5 DTA-MMT sample. Above 400 °C the intensity/concentration o f toluene [m/z = 

91] dominated the evolved spectra. The plot for benzene [m/z = 78] contained two 

events characterised by a lower Tmax at 465 °C and a higher Tmax at 600 °C. This two 

step evolution occurred in all samples, however, this behaviour was not fully 

understood but could be due to the occurrence of competing decomposition processes. 

The intensity o f the toluene peak [m/z = 91] was revealed to be at least double that o f 

any other species evolved.

226



The spectra representing samples prepared using 0.5 x CEC, displayed two temperature 

maxima for the evolution of the ring compounds [m/z = 91 and 78]. Toluene [m/z = 91] 

and benzene [m/z = 78] occurred under a Tmax of 490 °C for the 0.5 DTA-MMT samples 

and 510 °C for the co-DTA-MMT samples. Methyl bromide [m/z = 95] occurred under a 

Tmax of 450 °C in the 0.5 DTA-MMT samples and 490 °C in the 0.5 co-DTA-MMT 

samples.

In comparison, the ring compounds in the spectra collected from samples prepared 

using 1.5 x CEC, were represented by one temperature maxima, which occurred at 490 

°C for toluene [m/z = 91] and benzene [m/z = 78] in both the 1.5 DTA- and co-DTA- 

MMT samples. Methyl bromide [m/z = 95] demonstrated a Tmax at 425 °C for DTA- 

MMT and 450 °C for co-DTA-MMT.

5.1.7 Comparison Summary for the Analysis of DTA+ and co-DTA+ Exchanged 

Na+ Cloisite

5.1.7.1 Comparison Summary of XRD and TGA Data for DTA+ and co-DTA+ 

Exchanged Na+ Cloisite

The basal spacings for Na  ̂ Cloisite exchanged with DTA+ and co-DTA+ at 0.25-2.0 x 

CEC displayed in Table 5-3, indicated that expansion of the gallery occurred when 

exchanged at 0.5-2.0 x CEC. The total weight loss from standard 10 mg samples 

increased as the loading of DTA+ or co-DTA+ on the clay increased with respect to the 

CEC (i.e. 1.0 x, etc.), and the maximum total weight loss for DTA- and co-DTA-MMT 

occurred at 2.0 x CEC (Table 5-10), although they were almost identical to those for 

samples prepared at 1.5 x CEC.
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Table 5-10 Comparison of total %wt loss for DTA-MMT and to-DTA-MMT at 0.25 -  2.0 x CEC

n 2
DTA+ Total wt loss (%)

0 9.7
0.25 13.9
0.5 18.5
1.0 20.7
1.5 21.1
2.0 21.6

co-DTA+ Total wt loss (%)
0 9.7

0.25 15.4
0.5 15.8
1.0 18.8
1.5 19.7
2.0 19.5

Air
DTA+ Total wt loss (%)

0 11.2
0.25 15.2
0.5 18.9
1.0 22.1
1.5 22.5
2.0 22.6

co-DTA+ Total wt loss (%)
0 11.2

0.25 13.4
0.5 17.2
1.0 21.2
1.5 21.9
2.0 22.2

The weight loss at <150 °C decreased from 0.25 to 0.5 x CEC but remained constant 

between 1.0 and 2.0 x CEC (Table 5-5 and Table 5-6), which was believed to be due to 

the loss o f water associated with the surfactant’s cationic head groups. The 

decomposition products from the alkylammonium cations were desorbed within the 

temperature range of 150-515 °C when run under N 2 and 150-450 °C when run under 

air. Under air and N2 at 0.25 x CEC, the majority of the weight loss occurred under the 

Tmax at 60 °C, however at 0.5 to 2.0 x CEC the majority o f the thermally desorbed 

products were evolved under the Tmax at 430 °C under N2 and 620 °C under air. Under 

N2, weight loss at temperatures >515 °C was attributed to dehydroxylation o f the clay 

and C 0 2 evolution and remained relatively constant throughout the series o f samples, at 

~ 4.5 wt%.

5.1.7.2 Comparison Summary of TG-MS Data for DTA+ and co-DTA+ Exchanged 

Na+ Cloisite

Samples prepared using DTA+ at 0.5 x CEC demonstrated the evolution o f ions 138 and 

140 at the same temperature. The intensity o f the peak for toluene [m/z = 91] was 

greater than that of the peaks for benzene [m/z = 78] and methyl bromide [m/z = 95]. 

Samples prepared using DTA1 at 1.5 x CEC and co-DTA1 at 0.5 and 1.5 x CEC, 

exhibited ion 138 preceding ion 140, and an increased intensity for toluene [m/z = 91] 

compared to benzene [m/z = 78] and methyl bromide [m/z = 95], At 1.5 x CEC, the
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-NMe3 head group (m/z = 58) was detected before ions 138 and 140, and the intensity o f 

ion 58 in co-DTA-MMT was almost double that of ion 58 in DTA-MMT. These 

experiments demonstrated that the intensity o f ion 138 > ion 140 for co-DTA-MMT and 

was a positive confirmation that the terminal double bond was available for cross 

linking reactions.

5.2 The Thermal Stability of Phosphonium (TP10+) Compared to Ammonium

(DTA+) Exchanged Na+ Cloisite

The use of phosphonium salts as organic modifiers in layered silicates may further 

enhance the thermal properties o f polymer nanocomposites. To provide a better 

understanding of the thermal behaviour of phosphonium salts and their modified 

montmorillonites (P-MMT), the thermal stability of a phosphonium modified (n-decyl 

triphenylphosphonium bromide (TP10B) and co-decyl triphenylphosphonium bromide 

(co-TP 1 OB) MMT was compared with ammonium modified (n-decyl 

trimethylammonium bromide (DTAB) and co-decyl trimethylammonium bromide (co- 

DTAB)) MMT (Table 5-11). co-DTAB and co-TPlOB were not commercially available 

and were therefore synthesised in-house (co-DTAB was synthesised by a colleague). 

After exchange the clays were fully characterised using XRD and TGA. It was expected 

that the vinyl group (CH2=CH-) on the end of the surfactant tail o f co-DTAB and co- 

TP 1 OB would be available for polymerisation in the unsaturated polyester.

Table 5-11 Organocation structures

| Br

DTAB -  RMM - 200.3
T Br

co -D T A B -R M M -198.3

Q
" 6 B"

TP 1 OB -  RMM - 483

Q
"6  Bt

co-TPlO B-RM M -481
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5.2.1 Synthesis of co-decyl triphenylphosphonium bromide (co-TPlOB)

co-decyl triphenylphosphonium bromide was not available commercially and so was 

synthesised in the laboratory. This was achieved using 10-bromo-l-decene and 

triphenylphosphine:

6
2.62 g of triphenylphosphine and 2.4 g 10-bromo-l-decene were combined in a round 

bottomed flask and refluxed under an atmosphere of nitrogen for 8 hours, in a heated 

water bath. An oily residue was produced, which was dissolved in dichloromethane 

(DCM) (25 ml) and then triturated three times in ether (25 ml), the ether was removed 

on a rotary evaporator leaving a glassy compound with a weight of ~ 2g. co-TPlOB was 

then dissolved in 80:20 EEChMeOH and exchanged onto Na+ Cloisite at 1 x CEC using 

the exchange procedure outlined in section 5.1.1.
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5.2.2 XRD Analysis o f DTA+, co-DTA+, TP10+ and co-TP10+ Exchanged Na+

Cloisite

c
Z3o
O

DTA-MMT

126 8 1042
Angle [°20]

Figure 5-9  XRD traces (Cr tube) for DTA+, w-DTA+, TP10+ and to-TP10+ exchanged Na+ Cloisite -
Traces are offset for clarity.

The XRD traces presented Figure 5-9 display DTA+, co-DTA+, TP10+ and oo-TP10+ 

exchanged Na' Cloisite at 1 x CEC. An increase in the dooi spacing occurred from 12.5 

A  in Na+ Cloisite to 13.1 A  in DTA-, 13.1 A  in oo-DTA-, 17.7 A  in T P10- and 18.9 A  in 

co-TP 10-MMT. The larger d-spacing for TP10-MMT can be attributed to the bulkier 

PPI13 head group expanding the clay layers further than the MesN head group.
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5.2.3 TGA Analysis o f DTA+, io-DTA+, TP10+ and w-TP10+ Exchanged Na+

Cloisite

A+1

A-1

TP10-MMT

100 200 300 400 500 600 700 800

Tem perature (°C)

Figure 5-10 DTG traces (Air) for DTA+, co-DTA+, TP10+ and co- TP10+ exchanged Na+ Cloisite -
Traces are offset for clarity.

The DTG traces presented in Figure 5-10 display the results for DTA-, co-DTA-, TP10- 

and a)- TP10-MMT. Two maxima in the decomposition process (A and B) occurred, 

decomposing over two stages. Below 200 °C, the alkylammonium and phosphonium 

species were thermally stable, and so, weight loss could be attributed to physically 

adsorbed water being thermally desorbed. Stage 1 occurred between 200 and 450 °C and 

was representative of the decomposition o f the alkylammonium and phosphonium 

cations from the Cloisite galleries, Tmax (A) occurred during stage 1 at 302, 288, 330 

and 313 °C for DTA-, co-DTA-, TP 10- and co-TP 10-MMT, respectively. A shoulder 

occurred for TP10-MMT (Tmax A+1), after the main decomposition peak (A) at 351 °C 

and a shoulder occurred for DTA-MMT (Tmax A-1) before the main decomposition peak

(A) at 240 °C. Stage 2 occurred between 480 and 745 °C and was representative o f clay 

dehydroxylation and the further decomposition of carbonaceous char formed upon 

oxidation, Tmax (B) occurred during stage 2 at 612, 612, 607 and 586 °C for DTA-, co- 

DTA-, TP10- and co-TPlO-MMT, respectively. TG analysis of the organoclays revealed 

that the onset of degradation for DTA-, co-DTA-, TP 10- and co- TP 10-MMT, were 169, 

180, 222 and 229 °C, respectively.
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5.2.4 Composites Prepared Using Crystic 189LV, DTA-, co-DTA-, TP10- and co-

TP10-MMT

The samples displayed in Table 5-12 were mixed with Crystic 189LV at 1, 3 and 5 wt% 

at 1000 rpm for 15 minutes, accelerator E and catalyst M were used at 2 wt% each. 

Once cast the samples were postcured at room temperature for 24 hours, and then at 80 

°C for 3 hours. All composites were characterised using XRD and TGA. Silent XRD 

traces were recorded, however this did not mean that an exfoliated composite had been 

produced, since organoclay particles were clearly visible in the films, therefore these 

XRD results have not been presented.

Table 5-12 Type of organoclay used and mixing regime adopted

Organomodifier Organoclay Used 
(wt%)

Mixing Speed 
(rpm)

Mixing Time 
(min)

co-TP 10+ 1 1000 15 !
co-TP 10+ 5 1000 15

TP10+ 1 1000 15
TP10+ 3 1000 15
TP 104 5 1000 15
DTA" 1 1000 15
DTA' 3 1000 15
DTA' 5 1000 15

co-DTA4 1 1000 15
co-DTA+ 5 1000 15
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5.2.5 TGA Analysis of Composites Prepared Using Crystic 189LV, DTA-, co-

DTA-, TP10- and co-TPlO-MMT

5% w-DTA-MMT

3% w-DTA-MMTl-■o

1 % w-DTA-MMT

5% DTA-MMT

1% DTArMMT

Crystic 189LV

100 200 300 400 500 600 700
Temperature (°C)

Figure 5-11 DTG traces (Air) for composites prepared using Crystic 189LV, DTA-MMT and co-
DTA-MMT -  Traces are offset for clarity

The DTG traces presented in Figure 5-11 displayed two main thermal decomposition 

events, occurring over two stages. For all composites, Tmax (A) occurred during stage 1 

at 420 °C and Tmax (B) occurred during stage 2 at 563 °C. Crystic 189LV also displayed 

two thermal decomposition events occurring over two stages, Tmax (A) occurred during 

stage 1 at 420 °C and Tmax (B) occurred during stage 2 at 556 °C. The increased 

decomposition temperature of peak B in the nanocomposite samples could be a 

degradation product that decomposes at a (marginally) higher temperature (e.g. the char 

that forms when organoclay and resin bums). The TonSet (calculated from TG data) for 

polymers containing 5 wt% organoclay occurred at 280°C decomposing over the range 

of 280-46CTC, compared to the pristine polymer which displayed a TonSet of 300 °C, 

decomposing over the range of 300 -  460 °C.

The TG results for DTA-MMT and co-DTA-MMT are in contrast with the results 

obtained by Zhang [5~4] et al., who observed an improvement of 19 °C in the thermal 

stability o f their unsaturated polyester clay nanocomposites, incorporating cetyl 

trimethylammonium bromide (CTAB) modified montmorillonite as compared to the 

unsaturated polyester resin.

234



5% w-TP 10-MMT

TD

1% w-TP 10-MMT 
5% W-TP10-MMT

3% TP10-MMT

1% TP 10-MMT

Crystic 189LV

100 200 300 400 500 700600
Temperature (°C)

Figure 5-12 DTG traces (Air) for composites prepared using Crystic 189LV, TP10-MMT and » -
TP10-MMT -  Traces are offset for clarity

The DTG traces for TP10- and co-TPlO-MMT presented in Figure 5-12 displayed the 

same decomposition maxima as the composites containing DTA-MMT and co-DTA- 

MMT (Figure 5-11), with Tmax (A) occurring at 420 °C and Tmax (B) occurring at 563 

°C. However, the TonSet at 5 wt% appeared to be 20 °C lower in the composite prepared 

using Crystic 189LV and TP 10-MMT than in the sample made using co-TP 10-MMT.

The thermal stability o f alkylammonium exchanged organoclay (DTA-MMT and co- 

DTA-MMT) was investigated in comparison with alkylphosphonium exchanged 

organoclay (TP 10-MMT and co-TP 10-MMT). Hussain and Simon [5'5] attempted to 

improve the flame retardancy o f tetraglycidyl diaminodiphenylmethane (TGDDM) 

epoxy resin by the addition o f ammonium (octadecyl ammonium exchanged) and 

phosphonium exchanged nano clays. TGA experiments were performed and the onset of 

degradation o f pure TGDDM commenced at 380 °C with the rate o f degradation 

significantly increasing at 450 °C and a char yield (charred material formed upon 

decomposition o f the samples) o f 22 % at 600 °C. With the addition o f 5% ammonium 

exchanged organoclay the char yield increased to 44-48% at 600 °C suggesting that the 

clay acts as a fire retardant by forming a barrier to degradation and stabilising the layer 

o f char formed when the sample is burned. The addition of phosphonium exchanged 

organoclay resulted in an earlier onset of degradation at 350 °C with a char yield in the 

region of 42 -  44 %. Table 5-13 presents the thermal properties of Hussain and Simon’s
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epoxy resin and modified epoxy resin composites plus the thermal properties of DTA+, 

co-DTA+, TP10+ and co-TP 10+ composites:

Table 5-13 Thermal properties of resins and modified organoclays

Temp, at 
10% Weight 

Loss (°C)

Char Yield %
400 °C 450 °C 600 °C

Pure TGDDM 400 90 22
5% Ammonium Clay - 

TGDDM
420 93 44

3% Phosphonium Clay - 
TGDDM

395 91 42

Pure Crystic 189LV 302 47 0
5% DTA-MMT in 189LV 318 51.5 7.5

5% co-DTA-MMT in 189LV 310 50.5 9.5
5% TP 10-MMT in 189LV 293 47 4

5% co-TP 10-MMT in 189LV 310 48 5 ,

The results of Hussain and Simon correspond to the results obtained for DTA-MMT and 

TP 10-MMT composites in the respect that the temperature at 10% weight loss was 

lower in the alkylphosphonium exchanged composites (TP 10-MMT) as compared to the 

alkylammonium exchanged composite (DTA-MMT). The temperatures at 10% weight 

loss were 318 and 293 °C in composites containing DTA-MMT and TP10-MMT, 

compared to 420 and 395 °C in Hussain and Simons alkylammonium and 

alkylphosphonium composites. An unexpected decrease in the onset of degradation was 

also observed in the composites as compared to pure Crystic 189LV. The char yields at 

600 °C for the alkylammonium composites (DTA-MMT and co-DTA-MMT) were 

slightly higher (7.5-9.5 %) than the char yields for the alkylphosphonium composites 

(TP 10-MMT and co-TP 10-MMT (4-5 %)), therefore the alkylphosphonium composites 

would display a higher total weight loss compared to the alkylammonium composites 

(Table 5-14). This would be expected as alkylphosphonium degradation products 

further react with aromatic carbon in the system to form a complex phosphorus-carbon 

structure [5‘6] during stage 1 (Tmax (A) o f Figure 5-12), which then undergoes further 

decomposition during stage 2 (Tmax (B)), resulting in an increased overall weight loss 

and lower char yields.
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Table 5-14 Comparison of weight losses for Crystic 189LV composites containing 5 wt% DTA-
MMT or TP10-MMT

Stage 1 Stage 2
35-150 °C 151-450 °C >450 °C Total

(% ) (%) (% ) (% )
Crystic 189LV 0.3 91.6 7.8 99.8

5% DTA-MMT 0.3 85.2 8.4 93.9
5% TP10-MMT 0.6 90.6 8.4 98.0

5.3 Covalent Binding of Modified Organoclays

The covalent binding of modified organoclay into the UP matrix was investigated 

through the synthesis o f a series o f methacrylate functionalised phosphonium- 

organomodifiers (section 5.3.1) with increasing chain length (Cn = 3 to Cn = 10), to 

maintain/improve the mechanical strength o f the nanocomposite, if the addition o f clay 

impaired the normal cross link density o f the UP. It was anticipated that the reactive 

vinyl double bond at the end o f the Cn chain or on the end of the methacrylate group 

would cross-link into the UP matrix. The modified organoclay was incorporated into the 

UP resin Crystic 189LV and the resulting nanocomposites evaluated for improvements 

in clay dispersion (XRD), thermal stability (TGA), and flame retardancy using an in- 

house version of the UL94 vertical burning test.

5.3.1 Synthesis of TP3MM, TP6MM, TP8MM and TP10MM

The methacrylate fiinctionalised phosphonium-organomodifiers were synthesised, using 

the procedure outlined in section 5.3.2. They will be denoted as TP3MM (3 = C3 ), 

TP6MM (6 = C6), TP8MM (8 = C8) and TP10MM (10 = C10). The phosphonium- 

organomodifiers were characterised using 'H and 13P solution NMR spectroscopy 

(Bruker B-ACS 60, 200 MHz) and Mass Spectrometry (Hewlett Packard (agilent) 

5988A GC/ MS System) (MS) operated in electron impact mode. Characterisation data 

obtained in the synthesis of these compounds are displayed in Table 5-15.
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CH 3 C H 3

TP3MM+

Figure 5-13 Structures of TA3+ and TP3MM+

Na+ Cloisite was also exchanged with commercially available 

[3(methacryloylamino)propyl] trimethylammonium chloride (TA3) (Sigma Aldrich). 

Even though TA3 had a trimethylammonium head group as compared to a 

triphenylphosphonium head group (for TP3MM to TP10MM) it was hoped that the 

reactive vinyl double bond at the end o f the methacrylate group would give an 

indication o f how effective the synthesised compounds would be at cross-linking into 

the UP. The structures of TA3 and TP3MM are displayed in Figure 5-13.

5.3.2 Synthesis of TP3MM

Stage 1

■ Triphenylphosphine (2.62g), 3-bromo-l-propanol (1.50g) and acetonitrile (~ 25 

ml) were combined in a round bottomed flask. The mixture was then heated in 

an oil bath under reflux for 6 hours.

■ The reaction progress was evaluated using thin layer chromatography (TLC) 

(10% MeOH in DCM as the running solvent). Triphenylphosphine and the 

reaction mixture were spotted parallel to each other and once triphenylphosphine 

was no longer visible in the reaction mixture, then the reaction was considered 

to be complete.

■ A white crystalline solid was produced in 75% yield, which was washed twice in 

ether (25ml) and dried on a Buchner funnel.
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Stage 2

B Methacrylic anhydride (~ i.54g) was added to the salt produced in stage 1 and

heated under reflux in an oil bath at 90 °C for 12 hours.

■ The reaction progress was evaluated using TLC (10% MeOH in DCM as the 

running solvent). The salt from stage 1 was spotted parallel to the reaction 

mixture and once the salt was no longer visible in the reaction mixture, then the 

reaction was considered to be complete.

■ A yellow oily product resulted, which was dissolved in DCM (25ml) and 

washed in a solution o f sodium bicarbonate and water (40ml) using a separating 

funnel.

■ The layers were separated. The bottom layer was run off and washed again in 

water.

■ The layers were separated. The bottom layer was run into a beaker and dried 

with magnesium sulphate powder (1-2 g), filtered and washed again with DCM 

(25ml).

■ The product was then checked using TLC (10% MeOH in DCM as the running 

solvent).

■ Once washing was complete the DCM was removed on a rotary evaporator to 

leave an oily residue as the final product in 30% yield.

TP6MMBr, TP8MMBr and TPlOMMBr were made using the same procedure as above, 

however the starting material 3-bromo-1 -propanol was substituted with 6-bromo-l- 

hexanol, 8-bromo-l-octanol and 10-bromo-l-decanol, as appropriate.
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Table 5-15 NMR and MS data for TP3- to TPlOMMBr

Starting
Material

*H NMR (ppm) 3iP NMR 
(ppm)

MS m/z 
(amu)

TP3MMBr 3-bromo-l-
propanol

1.87 (t, 3H, CH3), 3.99 (m, 2H, 
CH2-0), 4.43 (m, 2H, CH2=), 
4.94 (s, 2H, CH2-P), 5.54 (d, 
1H, CH2), 6.01 (s, 1H, CH2), 

7.81 (m, 15H, Ph3P+)

24.4 388.8

TP6MMBr 6-bromo-l-
hexanol

1.95 (t, 3H, CH3), 3.8 (m, 2H, 
CH2-0), 4.08 (m, 2H, =CH2), 
5.5 (m, 1H, CH2-P), 5.6 (m, 

1H, CH2-P), 5.81 (m, 4H, 
CH2), 6.25 (m, 4H, CH2), 7.86 

(m, 15H, Ph3P+)

24.0 431.0

TP8MMBr 8-bromo-l-
octanol

1.29 (m, 5H, CH2), 1.63 (m, 
5H, CH2), 1.93 (m, 3H, CH3), 
3.75 (m, 2H, CH2-0), 4.1 (m, 
2H, CH2=), 5.53 (m, 1H, CH2- 
P), 5.63 (m, 1H, CH2-P), 6.06 

(m, 1H, CH2), 6.2 (m, 1H, 
CH2), 7.7 (m, 15H, Ph3P+)

24.3 438.3

TPlOMMBr 10-bromo- 1 - 
decanol

1.25 (m, 9H, CH2, CH3), 1.65 
(m, 6H, CH2), 1.9 (s, 4H, CH2), 
3.88 (m, 2H, CH2-0), 4.15 (q, 
2H, =CH2), 5.55 (m, 1H, CH2- 
P), 6.05 (s, 1H, CH2-P), 7.8 (m, 

15H, Ph3P+)

24.3 487.6

NMR (]H and 31P) and MS were used to confirm the structure of TP3MMBr -  

TPlOMMBr. MS data revealed the molecular ion peak for TP6MMBr, TP8MMBr and 

TPlOMMBr and the (M -l)4 peak for TP3MMBr, which were the expected molecular 

weights of the products. 31P NMR displayed sharp peaks with chemical shifts o f 24 ppm 

for all compounds, no other peaks were seen in the 31P NMR confirming the formation 

of one single product. !H NMR was performed on all compounds, all spectra were clean 

of impurities and all expected peaks arising from the absorption o f all protons were 

accounted for.

240



5.4 TA3-MMT and its Composites with Crystic 189LV

TA3+, which was purchased as an aqueous solution was exchanged onto N a1 Cloisite 

using the procedure outline in section 5.1.1. The modified organoclay was then pre

dispersed in DMMP and mixed with Crystic 189LV using the procedure outlined in 

section 3.4.2 of Chapter 3, using a mixing speed of 2000 rpm for 30 minutes.

5.4.1 XRD Analysis of TA3-MMT and its Composites with Crystic 189LV

=3<
CO-t—• TA3-MMTc
o
O

1% TA3-MMT, 5D

5% TA3-MMT, 10D

Crystic 189LV

2 4 6 8 1210
A n g le  [°20]

Figure 5-14 XRD traces (Cr tube) for TA3-MMT and Crystic 189LV composites containing 1 or 5 
wt% TA3-MMT and 5 or 10 wt% DMMP (D) -  Traces are offset for clarity

The XRD traces presented in Figure 5-14 display TA3-MMT and Crystic 189LV 

composites containing TA3-MMT and DMMP. TA3-MMT displayed promising 

evidence for an intercalated morphology as it exhibited a d-spacing of 13.5 A ,  which is 

usual for a tetramethylammonium type head group. A smaller peak occurred with a d- 

spacing of 20.0 A ,  which could indicate the formation of a mixed ion heterostructure as 

explained in detail in section 4.6.1 of Chapter 4. The XRD traces for Crystic 189LV 

composites containing TA3-MMT at 1 or 5 wt% with 5 or 10 wt% DMMP (D) appeared 

to be XRD silent, however, clay particles were clearly visible in the resin samples 

indicating the formation of a microcomposite. An exfoliated nanocomposite would 

display an increase in scattering at low angle, indicating disruption o f the once ordered 

clay layers. However, a scattering profile, such as the one presented for the composites 

in Figure 5-14 could indicate that the clay stacks in the microcomposite are not aligned 

correctly (i.e. Figure 2.5 (e) of Chapter 2) and do not diffract.
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5.4.2 TGA Analysis o f TA3-M M T and its Composites with Crystic 189LV

i-T3

TA3-MMT

Na+ C loisite

0 100 300200 400 500 600 800700
Temperature (°C)

Figure 5-15 DTG traces (Air) for TA3-MMT and Na+ Cloisite -  Traces are offset for clarity

The DTG trace for TA3-MMT presented in Figure 5-15 displayed three thermal 

decomposition events, which were grouped into three temperature ranges 35-200 °C, 

201-450 °C and above 451 °C, within which the thermal decomposition temperature 

maximum varied. An assignment of the events occurring within these temperature 

ranges were given in Table 5^1. Tmax (A) occurred during stage 1 at 78 °C, Tmax (B) 

occurred during stage 2 at 292 °C and Tmax (C) occurred during stage 3 at 700 °C. The 

DTG trace for Na^ Cloisite also presented in Figure 5-15 displayed two thermal 

desorption events, occurring over two stages, Tmax (A) occurred during stage 1 at 78 °C 

and Tmax (B) occurred during stage 3 at 675 °C.
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Figure 5-16 DTG traces (Air) Crystic 189LV composites containing 1 or 5 wt% TA3-MMT and 5 
or 10 wt% DMMP (D) -  Traces are offset for clarity

The DTG traces presented in Figure 5-16 for Crystic 189LV composites containing 1 

and 5 wt% TA3-MMT and 5 or 10 wt% DMMP (D), displayed three main thermal 

decomposition maxima, occurring over three stages. Stage 1 occurred between 35 and 

295 °C and represents the evolution of DMMP and absorbed water, stage 2 occurred 

between 296 and 495 °C and represents the decomposition of the resin and 

organocations and stage 3 occurred between 496 and 800 °C and represents 

decomposition of the carbonaceous char. Tmax (A) occurred during stage 1 at 240 °C, 

Tmax (B) occurred during stage 2 at 420 °C and Tmax (C) occurred during stage 3 at 575 

°C. Samples containing 1 wt% TA3-MMT demonstrated loss o f DMMP at a higher 

temperature (Tmax = 253 °C) compared with samples containing 5 wt% TA3-MMT (Tmax 

= 220 °C). However, Tmax (B) and Tmax (C) remained the same in both samples at 430 

and 575 °C, respectively. Crystic 189LV displayed Tmax (B) in a similar position to the 

composites ±5 °C, however peak C was almost 20 °C lower. Table 5-16 compares the 

weight losses for Crystic 189LV composites containing TA3-MMT.
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Table 5-16 Comparison of weight losses for Crystic 189LV composites containing 1 or 5 wt% TA3-
MMT and 5 or 10 wt% DMMP

Stage 1 Stage 2 Stage 3
35-295 °C 296-495 °C >496 °C Total

(%) (% ) (% ) (%)
Crystic 189LV 9.5 83.3 6.7 99.6

1% TA3-MMT, 5D 12.0 79.1 6.7 97.6
5% TA3-MMT, 10D 16.7 65.7 7.4 89.6

The total weight loss for Crystic 189LV composites containing TA3-MMT was 

considerably smaller in the sample containing 5 wt% TA3-MMT compared to the 

sample containing 1 wt% TA3-MMT. The amount of clay added to the system was 5 

wt% however, 10 wt% residue remained. This decrease in weight loss can be attributed 

to the increased amount of DMMP, which increased the amount o f carbonaceous char 

formed during stage 2, which then underwent further decomposition during stage 3, 

resulting in an increase in the amount o f carbonaceous residue remaining in the system.

5.5 Phosphonium-organomodifiedi Clays

The synthesised organomodifiers TP3MM+ - TP10MM+, were all oily residues. These 

oily residues were dissolved in a mixture of 80:20 TCOiMeOH and then exchanged onto 

Na4 Cloisite using the procedure outline in section 5.1.1. The modified organoclays 

were then pre-dispersed in DMMP and mixed with Crystic 189LV using the procedure 

outlined in section 3.4.2 of Chapter 3 using a mixing speed of 2000 rpm for 30 minutes.
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5.5.1 XRD Analysis of Phosphonium-organomodified Clays
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Figure 5-17 XRD traces (Cr tube) for the phosphonium-organomodified clays - TP3MM-, 
TP6 MM-, TP8 MM- and TP10MM-MMT -  Traces are offset for clarity

The XRD traces presented in Figure 5-17 are for TP3MM-, TP6MM-, TP8MM- and 

TP10MM-MMT. All phosphonium-organomodified clays displayed an intercalated 

structure with TP8MM- and TP10MM-MMT displaying intense d o o i  and d o o 2  peaks with 

spacings of 17.2 and 8.8 A ,  respectively. TP3MM- and TP6MM-MMT displayed much 

weaker d o o i spacings of 16.2 A ,  which could possibly be due to poor loading o f 

TP3MM+ and TP6MM+ onto N a1 Cloisite. The smaller peaks at higher d-spacing (24.4 

A  in TP3MM- and TP6MM-MMT and 30.1 A  in TP8MM- and TP10MM-MMT) 

indicated the possible formation of a mixed ion heterostructure as explained in detail in 

section 4.6.1 of Chapter 4.
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5.5.2 TGA Analysis o f Phosphonium-organomodified Clays
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Figure 5-18 DTG traces (Air) for the phosphonium-organomodified clays - TP3MM-, TP6 MM-, 
TP8 MM- and TP10MM-MMT -  Offset for clarity

The DTG traces presented in Figure 5-18 displayed two main thermal decomposition 

events, which were grouped into three temperature ranges 35-150 °C, 151-450 °C and 

451 to 800 °C °C. An assignment of the events occurring within these temperature 

ranges are displayed in Table 5-4. Tmax (A) occurred during stage 2 at 360, 295, 334 

and 346 °C for TP3MM-, TP6MM-, TP8MM- and TP10MM-MMT, respectively. Tmax 

(B) occurred during stage 3 at 630 °C for TP3MM- and TP6MM-MMT and 624 °C for 

TP8MM- and TP10MM-MMT. The DTG trace for TP10MM-MMT displayed a similar 

degradation pattern to that of TP10-MMT in Figure 5-10.

Table 5-17 Comparison of weight losses for TP„MM-MMT, TP8 -MMT, TP10-MMT, TA3-MMT  
and Na+ Cloisite

Stage 1 Stage 2 Stage 3
35-150 °C 151-450 °C > 451 °C Total

(%) (% ) (%) (% )
TP3MM-MMT 2.9 3.1 8.3 14.3
TP6MM-MMT 2.9 5.0 13.6 21.5
TP8MM-MMT 1.5 9.2 18.2 28.9

TP10MM-MMT 1.3 13.6 21.3 36.2
TP8-MMT 0.7 12.6 18.1 31.4

TP10-MMT 0.8 14.1 19.1 34.0
TA3-MMT 4.5 4.1 7.8 16.4
Na+ Cloisite 5.4 1.0 4.8 11.2
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Table 5-17 displays the weight losses for TPnMM-MMT, TP8-MMT, TP10-MMT, 

TA3-MMT and those for Na+ Cloisite have also been included for comparison. Below 

200 °C water evolved from the samples, more water was associated with TP3MM- and 

TP6MM-MMT, although the loss o f water from TA3-MMT and N a1 Cloisite was 2-3 % 

greater than that of the TPnMM-MMT series. Between 200 and 450 °C decomposition 

ofTPJVOVf and TPn+ occurred. As the carbon chain length increased the weight loss in 

this region increased. This trend was also observed above 450 °C when clay 

dehydroxylation was also occurring. The weight losses for TP8- and TP10-MMT were 

similar to those for TP8MM- and TP10MM-MMT ± 2 wt%.

5.5.3 ATR FT-IR Analysis of Phosphonium-organomodified Clays

ATR FTIR was carried out on TP3MM-MMT, TP6MM-MMT and TP10MM-MMT, 

using the settings outlined in section 2.6.6.3 of Chapter 2. The spectra for TP6MM- 

MMT and TP10MM-MMT are displayed in Figure 5-19. The spectra for TP3MM- 

MMT exhibited the same peak positions and intensities as TP6MM-MMT and so it has 

not been displayed.
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Figure 5-19 ATR FTIR spectra for TP6 MM-MMT and TP10MM-MMT
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The ATR FTIR data presented in Figure 5-19 displayed very similar peak positions in 

the spectra of TP6MM- and TP1QMM-MMT, however the peak intensity of TP10MM- 

MMT was approximately one third that of TP6MM-MMT, indicating less clay in the 

beam in the TP10MM-MMT sample. An assignment of the peaks and possible group 

frequencies are given in Table 5-18.
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Figure 5-20 ATR FTIR spectra for Na+ Cloisite and TP10MM-MMT

The ATR FTIR data presented in Figure 5-20 exhibited some similarities between Na+ 

Cloisite and TP10MM-MMT, both traces displayed a strong Si-0 band at ~ 1000 cm '1, 

which is present in all (organo)clays. The main bands of interest were the C=C stretch, 

which occurs at approximately 1650 cm' 1 and the C=0 stretch, which occurs at 1700 

cm '1. The peak at 1700 cm'1 confirms the presence o f the C=0 stretch, however due to 

the shape and position of the peak at 1634 cm' 1 it is more likely that this peak 

corresponds to the OH stretch frequency o f water than the C=C stretch o f the alkene. 

The trace for N a1 Cloisite displayed a strong OH stretch of adsorbed H2O at 1634 cm '1, 

TP10MM-MMT however, displayed a weaker OH bend and therefore incorporated 

much less adsorbed H2O.
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Table 5-18 Peak assignments and possible group frequencies

Peak
Position

Possible
Bond

Type of Compound Frequency Range, 
(cm-1)

~ 1000 Si-0 Organo clays
1004 Benzene 

Ring Stretch 
& Bend

Benzene 1000-1100

1113 C-0 Alcohols, ethers, carboxylic 
acids, esters

1050-1300

1439 C-H (bend) 
P-C

Alkane, Water 1340-1470

1632 h 2o - 1590-1670
1700 C=0

(stretch)
From methacrylate group 1690-1760

2928 C-H (stretch) - 2800-3000
3621 O-H (stretch) Structural OH 3590-3650

5.6 Crystic 189LV Composites Prepared Using TP8MM+ and TP10MM+ 

Exchanged Na+ Cloisite

TP3MM1, TP6M M \ TP8M M 1 and TP10MM+ were exchanged onto Na+ Cloisite, 

dispersed in DMMP (D) and then mixed with Crystic 189LV. TP8MM- and TP10MM- 

MMT were selected for further analysis as these clays displayed the largest increase in 

d-spacing following exchange onto Na+ Cloisite. The resulting composites were 

characterised using XRD and TGA. All samples were then subjected to the in-house 

version of the UL94 Vertical Burning test.
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5.6.1 XRD Analysis of Crystic 189LV Composites Prepared Using TP8M M + and

TP10M M + Exchanged Na+ Cloisite

5% TP10MM-MMT, 10D

1 % TP1OMM-MMT, 5D

Z)
<
£c
oo 5% TP8MM-MMT, 10D

1% TP8MM-MMT, 5D

62 4 8 10 12
Angle [°20]

Figure 5-21 XRD traces (Cr tube) for Crystic 189LV composites prepared using 1 or 5 wt% 
TP8 MM+ or TP10MM+ exchanged Na+ Cloisite, with 5 or 10 wt% DMMP (D) -  Traces are offset

for clarity

The XRD traces presented in Figure 5-21 display Crystic 189LV composites prepared 

using 1 or 5 wt% TP8MM+ or TP10MM+ exchanged Na+ Cloisite, with 5 or 10 wt% 

DMMP (D). The composites prepared using 1 wt% TP8MM- and TP 1 OMM-MMT 

displayed very weak dooi spacings of 14.6 and 16.6 A ,  respectively, which could be 

representative o f unexpanded TP8MM- and TP 1 OMM-MMT, however at 1 wt% clay it 

was difficult to detect a real peak in the XRD trace. The composite prepared using 5 

wt% TP8MM-MMT and 10D exhibited an intercalated/exfoliated morphology, with 

dooi and doo2 spacings o f 34.0 and 17.1 A ,  respectively. The increase in background at 

low angle and loss of intensity o f the dooi peak are characteristic of an intercalated 

composite incorporating some exfoliated clay layers, no peaks were present in the 

composite prepared using 5 wt% TP 1 OMM-MMT and 10D.
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5.6.2 TGA Analysis of Crystic 189LV Composites Prepared Using TP8M M + and

TP10M M+ Exchanged Na+ Cloisite

5% TP1 OMM-MMT, 10D
l--o

1% TP 10MM-MMT, 5 D

5% TP8MM-MMT, 10D

1% TP8MM-MMT, 5D

Crystic 189LV

150 25050 350 450 550 650 750
Tem perature (°C)

Figure 5-22 DTG traces (Air) for Crystic 189LV composites prepared using 1 or 5 wt% TP8 MM- 
or TP10MM, with 5 or 10 wt% DMMP (D) -  Traces are offset for clarity

The DTG traces presented in Figure 5-22 are for Crystic 189LV composites prepared 

using TP8MM- and TP 1 OMM-MMT. Three main thermal decomposition maxima (A, B 

and C) were present, taking place over three stages. Stage 1 occurred between 146 and 

295 °C and represents the evolution o f DMMP (which boils at 181 °C), stage 2 occurred 

between 296 and 495 °C and represents organocation and resin decomposition and stage 

3 occurred between 496 and 800 °C and represents decomposition of the carbonaceous 

char. The decomposition maxima varied slightly in decomposition temperature, between 

samples prepared using 1 and 5 wt% TP8MM- and TP 1 OMM-MMT, and 5 or 10 wt% 

DMMP, the peak position temperatures are displayed in Table 5-19.

Table 5-19 Peak position temperatures for Crystic 189LV composites prepared using TP8 MM- and 
TP1 OMM-MMT

T m ax (A) 
(°C)

T m ax ( B )  

(°C)
T m a x  (C)

(°C)
1 wt % TP8MM-MMT, 5D 264 435 565
1 wt% TP10MM-MMT, 5D 243 437 568

5 wt% TP8MM- or TP10MM- 
MMT, 10D

241 432 579

Crystic 189LV - 421 556
Crystic 189LV, 5D 232 430 577

Crystic 189LV, 10D 232 430 577
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Loss of DMMP under Tmax (A) displayed an increase in the decomposition temperature 

from 232 °C in the composites prepared using Crystic 189LV and 5 or 10 wt% D, to 

264 and 241 °C in the samples prepared using Crystic 189LV and 1 and 5 wt% clay (5 

wt% and 10 wt% D), respectively. The sample prepared using 1 wt% clay displayed the 

largest increase in thermal decomposition temperature compared to pure Crystic 189LV.

Table 5-20 Comparison of weight losses for Crystic 189LV composites prepared using TP8 MM- 
and TP1 OMM-MMT

Stage 1 Stage 2 Stage 3
35-145 °C 146-295 °C 296-495 °C >496 °C Total

(%) (%) (%) (% ) (% )
1% TP8MM, 5D 0.57 10.21 83.42 5.41 99.62

| 5% TP8MM, 10D 0.83 13.42 73.95 7.54 95.74
1% TP10MM, 5D 0.41 9.17 83.11 6.27 98.96

5% TP10MM, 10D 0.75 11.26 75.58 7.60 95.18

The total weight loss for the composites prepared using Crystic 189LV and TP8MM- 

and TP 1 OMM-MMT (Table 5-20) decreased as the amount of inorganic material in the 

sample increased, the difference reflected the clay content. These results also indicated 

that the thermal stability decreased slightly as the wt% of organoclay increased. Loss of 

DMMP over the 146-295 °C temperature range for the composites prepared using 5 

wt% organoclay decreased Tmax (A) by 23 °C compared to the composites prepared 

using 1 wt% organoclay, also Tmax (B) under the region 296-495 °C decreased by 5 °C 

in the composites prepared using 5 wt% of TP8MM- and TP 1 OMM-MMT as compared 

to the 1 wt% samples.

5.7 UL94 Vertical Burning Test Results

Crystic 189LV composites containing TA3+, TP3MM+, TP6MM+, TP8MM+ and 

TP10MM+ exchanged Na+ Cloisite, were prepared at 2000 rpm for 30 minutes, 

postcured and then subjected to the in-house version of the UL94 Vertical Burning test. 

The results are displayed in Table 5-21 and UL94-V ratings have been applied where 

possible.
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Table 5-21 Vertical Burning Test Results

Composition Burn
1

Burn
2

Burn
3

Burn
4

Total UL94- V 
Rating

1% TA3-MMT, 5D 5, 8 6 ,7 6 ,9 10,
>60

6.8,
20.8

Fail

5% TA3-MMT, 10D 14,
>60

2, 13 11,9 - 9, 27 Fail

1% TP3MM-MMT, 
5D

4, 24 2 ,9 3, 12 17, 22 6.5,
16.8

V-l

5% TP3MM-MMT, 
10D

10, Ex 4, 18 2, Ex 3, Ex 4.8, Ex Fail

1% TP6MM-MMT, 
5D

13, Ex 6, Ex 5, Ex 3, Ex 6.8, Ex Fail

5% TP6MM-MMT, 
10D

3,20 4,35 2, 18 3, 17 3, 22.5 V-l

1% TP8MM-MMT, 
5D

3, 15 20, 12 4, Ex 18, Ex 11.3,
Ex

Fail

5% TP8MM-MMT, 
10D

4, 18 2, 16 1,22 4, 12 2.8, 17 V -l

1% TP10MM-MMT, 
5D

4, Ex 11, Ex 6, 16 3, 17 6, Ex Fail

5% TP10MM-MMT, 
10D

5, 16 5, 50 5,43 4, 15 4.8,31 Fail

(Ex = Extinguished manually after 60 seconds)

After the first flaming, many o f the samples cracked, disrupting the char layer that is 

responsible for the increased fire retardancy o f the composites. Therefore, many 

individual samples continued to bum after the second flaming due to this non

uniformity of the char layer and had to be extinguished manually. The samples that 

achieved a UL94-V rating were intercalated composites prepared using Crystic 189LV, 

containing 1% TP3MM-MMT, 5D, and 5% TP6MM-MMT, 10D, and 5% TP8MM- 

MMT, 10D.

Composites prepared using TA3-MMT displayed some promising results, however at 

least 1 out of the 4 samples tested failed to extinguish and therefore, the overall 

classification for TA3-MMT composites was ‘Fail’. Gilman et a/. [4‘7] suggested that 

there were two types o f carbonaceous materials formed upon thermal degradation of 

their PLSNs (a lower and a higher temperature char), and that clays that promote or 

catalyze additional carbonaceous char formation would most likely enhance the flame 

retardant effectiveness o f clay-nanocomposite based flame retardants. Therefore, the
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increased amount of char formed in stages 2 (lower temperature) and 3 (higher 

temperature) of the thermal degradation of the 5 wt% TA3-MMT nanocomposites 

(Table 5-16) could tentatively explain the increased flame retardancy of this 

alkylammonium based nanocomposite.

From these results it was apparent that composites prepared using clays with a 

triphenylphosphonium based organomodifiers were more stable than composites 

prepared using clays with a tetramethylammonium type modifier, and reached a UL94- 

V classification of V -l. In comparison the UL94 vertical burning test results for 

composites prepared using 5% TP8-MMT and 10D (Table 4-15 of Chapter 4) reached a 

V-0 classification.

5.8 Conclusions for the Covalent Binding of Modified Organoclay

To study what effect organocation deficiencies and excesses would have on the physical 

properties and thermal decomposition of the products, Na+ Cloisite was modified with 

the alkylammonium cations DTA1 and co-DTA+, at different percentages of the CEC of 

Na' Cloisite. XRD results (Figure 5-1) revealed that a maximum dooi spacing of 13.4 A  

was reached at 1.0 times the CEC, confirming that the alkyl chains were laying parallel 

to basal surface. Uptake curves (Figure 5-3) revealed that when 1 CEC of modifier was 

introduced approximately 90-96% of the Na+ ions were displaced.

The total weight loss calculated from TG data, increased as the clay loading o f DTA+ or 

co-DTA+ increased with respect to the CEC (i.e. 1.0 x, etc..), the maximum total weight 

loss for DTA- and co-DTA-MMT occurred at 2.0 x CEC. DTG results displayed the 

alkylammonium cations being thermally desorbed over a wider temperature range (150- 

515 °C) when run under N2 (Figure 5-6 and Figure 5-7), as compared to when run 

under air (180-450 °C) (Figure 5-4 and Figure 5-5). Under air the DTG traces displayed 

three temperature maxima (A, B and C) with Tmax A being thermally desorbed before 

Tmax B in the DTA1 samples and Tmax B being thermally desorbed after Tmax A in the co- 

DTA+ samples. Under N2 the thermal degradation pattern o f DTA* and co-DTA' 

followed a similar pattern. Under air and N2 at 0.25 x CEC, the majority o f the weight 

loss occurred under the Tmax at 60 °C. However, the majority of weight loss for samples 

prepared at between 0.5 and 2.0 x CEC occurred at 620 °C under N2 and 420 °C under
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air. TG-MS analysis showed that the diene/alkene ratio (i.e m/z = 138 : m/z = 140) in 

the gases evolved from the DTA+- and co-DTA+-clay (under nitrogen) was 

approximately 1.5 compared to 0.7. This confirmed that the vinyl group on the end of 

the surfactant tail was still available after exchange onto the clay and therefore 

potentially able to crosslink with styrene and/or the UP oligomer.

co-decyltriphenylphosphonium bromide (co-TP 1 OB) and co-decyl trimethylammonium 

bromide (co-DTAB) were successfully prepared and exchanged onto Na+ Cloisite before 

being characterised using XRD and TGA. The XRD traces (Figure 5-9) for the co-TP 10- 

MMT and oo-DTA-MMT exhibited expansion of the clay gallery from 12.5 A  in Na+ 

Cloisite to 13.1 and 18.9 A  in co-DTA-MMT and co-TP10-MMT, respectively. This 

suggested that a single layer o f o-DTA+-organocations resided in the clay gallery, 

whilst the spacing for co-TP 10-MMT was attributed to the P P I 1 3  head group. TGA 

analysis (Figure 5-10) revealed a higher decomposition temperature under Tmax A in the 

phosphonium clay (330 °C) as compared to the ammonium clay (302 °C), however Tmax 

B occurred at the same temperature of approximately 602 °C (± 10 °C) in both samples.

Composites prepared using Crystic 189LV and co-DTA-MMT/co-TP 10-MMT displayed 

the same thermal degradation pattern when analysed using TGA (Figure 5-11 and 

Figure 5-12, respectively), with Tmax A occurring at 420 °C and Tmax B occurring at 560 

°C (± 3 °C) in both the co-TP 10-MMT/co-DTA-MMT composites and pure Crystic 

189LV.

The second type of functionalised surfactant was based on a triphenylphosphonium 

head group separated from a methacrylate end group by a hydrocarbon chain o f 

differing length i.e. 3, 6, 8 and 10 methylene groups, which are subsequently referred to 

as TP3MM (3 = C3 ), TP6MM (6 = C6 ), TP8MM (8 = C8 ) and TP10MM (10 = C10, 

respectively.

The exchange of N af Cloisite with commercially available 

[3(methacryloylamino)propyl] trimethylammonium chloride (TA3) was investigated, 

the XRD traces exhibited a d-spacing o f 13.4 A ,  corresponding to a single layer o f the 

modifier in the gallery. The triphenylphosphonium based modifiers all resulted in a d- 

spacing of 17.5 A ,  regardless of the alkylchain length, and therefore supports the view
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that the triphenyl head group controlled the gallery expansion, this was also observed in 

section 4.4 of Chapter 4 with organoclays prepared using TP8 ' and TP10+. A small peak 

at higher d-spacing occurred for TP8MM- and TP 1 OMM-MMT, corresponding to a d- 

spacing of 30.1 A .  The separation distance between the d o o i  peak and the small peak at 

lower angle was 13.4 A ,  and this separation distance was also observed in the 

organoclays prepared using TP8+ and TP10+ in Chapter 4 (Table 4-8). The separation 

distance was approximately the same as that found in the hydrated form of Na+ Cloisite 

and therefore supports the formation o f a mixed ion heterostructure, as displayed in 

Figure 5-23. The TP8MM+ and TP10MM+ cations and Na(H20) cations were 

segregated into two interlayers (Figure 5-23) in a regular alternating fashion.

Na (H20 )  
layer in 

between the 
clay layers

o o o o o o

o o o o o o

Figure 5-23 Schematic Illustration of the possible structure for TP„MM exchanged Na+ Cloisite

TP3MM- and TP6MM-MMT did not display an intense d o o i  peak or peaks at higher d- 

spacing. Ijdo and Pinnavaia [5~8] investigated the intercalation process that leads to the 

formation o f heterostructures, elucidating the role o f onium ion geometry in the 

synthesis o f regularly ordered heterostructures. They found that C4 to C6 onium ions 

were too hydrophilic to quantitatively displace Na+ from the exchange sites. No 

heterostructured intercalate was formed under these equilibrium conditions because 

there was little or no onium ion binding. The onium ion did not compete effectively 

with Na+ in the exchange process. Therefore, most of the aqueous onium salts were lost 

upon washing and drying o f the products. Using TG data, this theory can be confirmed, 

when the amount of organic exchange for TP3MM- to TP 1 OMM-MMT and TA3 was 

compared to the actual amount o f organic exchange possible, the results are displayed in 

Table 5-22.
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Table 5-22 Possible organic exchange against actual organic exchange for TP3MM- to TP1 OMM-
MMT and TA3 at 1 x CEC

TP3MM-
MMT

TP6MM-
MMT

TP8MM-
MMT

TP10MM
-MMT

TA3-
MMT

Possible Organic 
Exchange (mg/ g)

360.2 399.2 405.4 451.1 171.1

Actual Organic 
Exchanged (mg/ g)

86 162.1 229.2 285.3 113.8

Percentage 
Occupied by 

Onium Ion (%)

24 41 57 63 67

* All exchange amounts are ± 5%

As the alkyl chain length increased, the actual amount of organic exchange also 

increased, however when Cn = 10 only 63% exchange occurred. Therefore, the affinity 

between these bespoke modifiers and the clay surface appeared rather low. 

Consequently the dispersion issue, which caused the samples to crack when subjected to 

the in-house version of the UL94 vertical burning test, has been attributed to low 

percentage coverage o f the clay surface by the bespoke modifier. This trend was also 

observed in the triphenylphosphonium exchanged organoclays prepared in Chapter 4, 

however, when Cn = 8 and Cn = 10 only 63 and 66% exchanged occurred (Table 4-5). 

To overcome this problem, the concentration of all triphenylphosphonium 

organomodifiers, methacrylate functionalised phosphonium-organomodifiers and TA3+ 

could be increased beyond the CEC of Na+ Cloisite. In section 4.11 o f Chapter 4 the 

loading of B u l6+ was increased from 1.0 x CEC to 1.5 and 2.0 x CEC o f Na+ Cloisite. 

This resulted in an increase in the percentage occupied by the onium ion of 90 and 84% 

at 1.5 and 2.0 x CEC, respectively, when calculated against the possible organic 

exchange for 1.0 x CEC of Na+ Cloisite. The extent of exchange may also be increased 

if the equilibration time for the surfactant when added to the aqueous clay suspension 

could also be increased.

From TG data, an increase in the TonSet of 25 °C was observed when alkylammonium 

exchanged TA3+ (Figure 5-15) was compared with the alkylphosphonium exchanged 

TPnMM+ series (Figure 5-18). This trend was also observed upon comparison of the 

Tonset of the alkylammonium exchanged co-DTA-MMT as compared to 

alkylphosphonium exchanged co-TPlO-MMT (Figure 5-10). The Tonset increased from 

180 °C in co-DTA-MMT to 229 °C in co-TP 10-MMT.
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These results are similar to those presented by Xie et al. [5'9] who compared the thermal 

stability and degradation mechanism of quaternary phosphonium modified 

montmorillonites to ammonium modified montmorillonites. They also observed an 

increase in the thermal stability, under N2, of alkyl and aryl quaternary phosphonium- 

modified montmorillonite (P-MMT) compared to ammonium-modified montmorillonite 

(N-MMT). The thermal stability o f exchanged MMT was related to the thermal stability 

o f the parent salts, the phosphonium salts have a much higher initial decomposition 

temperature compared to the ammonium salts.

Zhang et al. [5_4] focused on the influences o f the polymerisable quaternary ammonium 

(methacryloxylethyl benzyl dimethyl ammonium chloride (MBDAC)) on the structure 

and properties of the resulting nanocomposites of unsaturated polyester. The effects o f 

organophilic MMTs obtained from different quaternary ammonium ions on the 

mechanical properties and the structure of unsaturated polyester-based nanocomposites 

were compared. TGA results indicated that the starting weight loss (TonSet) of the 

hybrids was between 11 and 19 °C higher and the temperature at maximum weight loss 

was between 24 and 30 °C higher than that of UP. The DTG results (Figure 5-22) for 

nanocomposites prepared using Crystic 189LV, TP8MM- and TP 1 OMM-MMT 

indicated that the TonSet was 32 °C higher in the composites and the temperature at 

maximum weight loss (Tmax (B)) was between 14 and 21 °C higher in the composites, as 

compared to pure Crystic 189LV. This could be attributed to a strong interaction or 

chemical bonding between the inorganic layers and the UP. However, in comparison the 

Tonset for the composites prepared using Crystic 189LV, TP8- to TP16-MMT and 10D 

from Chapter 4 was very similar to that of Crystic 189LV at ~ 124 °C. The temperature 

at maximum weight loss (Tmax (B)) increased by a maximum of 10 °C in the TP8-MMT 

composite but did not increase in the composite prepared using TP 10-MMT, therefore 

the incorporation o f the methacrylate group did significantly increase the T onSet of the 

resulting composites and also slightly the temperature at maximum weight loss (Tmax

(B)).

Evaluation of the exchanged organoclays using ATR-FTIR confirmed the presence o f 

the C=0 stretching vibration at 1700 cm '1. Wang et al. [5 I0] hypothesised that exfoliated 

nanocomposites were more likely to be formed when a double bond, that may be 

involved in the polymerisation reaction is present in the organocation on the clay.
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However, composites prepared using Crystic 189LV, TA3-MMT, TP8MM- and 

TP 1 OMM-MMT plus DMMP, which contained a double bond, displayed largely XRD 

silent traces for most of the composites with the exception of the sample prepared using 

5 wt% TP8MM-MMT and 10D, which displayed an intercalated/exfoliated morphology 

(dooi 34 A). The XRD silent traces contained clumps of clay, which were visible by eye 

and therefore poor dispersion of the organoclay into Crystic 189LV occurred. A 

scattering profile, such as the one presented for the TA3-MMT and TP 1 OMM-MMT 

nanocomposites, which were very similar to the XRD trace for pure Crystic 189LV, 

could indicate that there was very little clay in that part o f the sample.

The dispersion of all clays exchanged with a functionalised modifier in Crystic 189LV 

was generally poor despite presenting nominally ‘x-ray silent’ diffraction traces. Large 

particles of poorly dispersed clay were clearly present. This poor dispersion o f the 

functionalised nanoclay prevented the formation of a coherent char which in turn led to 

an increased incidence o f cracking within the surface o f the specimen after the first 

flaming. Consequently the sample continued to bum after the second flaming due to the 

resulting non-uniformity o f the char layer and because the gases were able to leave the 

polymer and fuel the flame.

When the UL94 vertical burning test was carried out on all the composite samples, the 

most promising fire retardant results (Table 5-21) were observed with 

intercalated/exfoliated composites containing 5 wt% TP8MM-MMT and 10D in Crystic 

189LV, the samples reached a V -l classification. However, higher UL94-V 

classifications were reached with the composites prepared in Chapters 3 and 4. Samples 

prepared in Chapter 4 using 5 wt% TP8-MMT and 10D in Crystic 189LV (Table 4-15 

of Chapter 4) achieved a V-0 classification with all samples self extinguishing in 2.5 

seconds after the first flaming. The UL94-V test results from Chapter 4 were 

comparable to those from Chapter 3 for halogenated resins, which also reached a V-0 

classification and self extinguished in 3 seconds after the first flaming. Due to these 

dispersion issues work was not continued on the methacrylate functionalised 

phosphonium-organomodifiers.
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5.9 Literature Reports on the Preparation of Polystyrene-Clay Composites

In the literature, there is little evidence for the preparation o f unsaturated polyester-clay 

composites and therefore the following reviews report on the preparation o f 

polystyrene-clay (PS/MMT) composites, as the systems within this thesis incorporated 

the unsaturated polyester as a polymeric oligomer dispersed in styrene. A common 

technique involves dispersing clay into the styrene monomer followed by 

polymerisation. Also anchoring organic surfactants into the interlayer region containing 

polymerisable ammonium or phosphonium groups may provide an additional driving 

force for layer separation.

Doh and Cho [511] investigated the effect of the chemical structure o f organophilic 

MMTs on the process of PS/MMT composite preparation. The composites were 

prepared by direct polymerisation of styrene in the presence of organophilic MMTs 

(ammonium and benzylammonium exchanged MMT (Ta-MMT and Bz-MMT, 

respectively) where Cn = 18). XRD measurements o f the PS/Bz-MMT hybrid indicated 

an increased basal spacing from 19.1 to 34.0 A  due to the swelling o f the interlayer by 

the styrene monomer and successive polymerization. As the structural affinity between 

the styrene monomer and the organic group of org-MMT increased, the dispersibility o f 

org-MMT in the styrene monomer also increased. The penetration o f monomers into the 

lamellae o f organophilic MMT can be facilitated by the attractive forces between the 

org-MMT interlayers and the free monomer molecules. The interlayer distance of Ta- 

MMT barely changed because, according to the authors, there was already enough space 

to accommodate the intercalating PS polymer chains without expanding the interlayer.

As the alkyl chain length o f the alkylammonium cations in org-MMT increased, the 

basal spacing (dooi) o f org-MMT also increased, however, when monomer was 

introduced into the org-MMT interlayer space followed by polymerization, the increase 

in interlayer distance depended on the structure of the organic group rather than the 

chain length of the alkylammonium cation. In support of Doh and Cho’s findings, data 

in section 4.7 of Chapter 4 displayed an increase in the basal spacing o f 

tributylphosphonium (B ul6+) exchanged Na' Cloisite by 4 A  when the organoclay was 

dispersed in styrene. No increase was observed with the triphenylphosphonium
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exchanged organoclays (TP8 -TP16+) however, this can be attributed to the 

polymerisation of styrene in the TP-clays when dried at elevated temperature.

TGA thermograms displayed a delayed decomposition of the PS/Bz-MMT hybrid as 

compared to a PS/Na-MMT microcomposite, which was attributed to confinement of 

PS polymer chains between MMT layers as well as the MMT surface-polymer 

interactions in the nano structured hybrid. Therefore, the structural affinity between the 

styrene monomer and the organic group is an important factor in preparing hybrid 

composites. The structural affinity in PS/Bz-MMT was attributed to the presence of the 

benzyl-unit, which improved thermodynamic compatibility by being similar to the 

structure of the styrene monomer.

Fu and Qutubuddin [512] reported on the synthesis o f exfoliated polystyrene-clay 

nanocomposites using the reactive cationic surfactant

vinylbenzyldimethyldodecylammonium chloride (VDAC), which was exchanged onto 

MMT. Exfoliated polystyrene-clay nanocomposites were prepared by direct dispersion 

of organophilic MMT in the styrene monomer followed by free radical polymerisation. 

The exfoliation o f MMT in the polystyrene matrix was attributed to a strong interaction 

between styrene and VDAC-MMT.

The cationic surfactant VDAC contained a polymerisable aromatic group, which 

exhibited good affinity with styrene and encompassed the ability to homopolymerize as 

well as copolymerize with monomers in an organic medium such as acetonitrile [513l  

VDAC functionalised MMT was found to have strong swelling ability and formed a 

viscous gel in styrene. Exfoliated nanocomposites were successfully synthesised using 

this functionalised form of Na-MMT. PS-VDAC-MMT nanocomposites displayed a 

higher thermal degradation temperature than pure polystyrene and the nanocomposites 

exhibited higher dynamic modulus with increased loading of VDAC-MMT in 

polystyrene.

Akelah and Moet [5 I4] investigated the ability o f styrene intercalated between swelled 

MMT interlayers to polymerise, to produce organophilic polystyrene-MMT through 

chemical bonds. They suggested that interlayer accessibility to styrene molecules is
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related to the solvation energy o f the solvent mixture used. It was presumed that 

polymerisation was initiated in the interlayer region and once the polymerisation 

started, the MMT-PS propagating chains were swollen by the styrene molecules 

because o f sufficiently attractive forces between styrene and the interlayer polystyrene 

propagating chains. Therefore, the effect of the initial amount o f styrene monomer 

inserted between the interlayers before the onset of polymerisation is the main factor 

causing the increase in the intercalation of PS molecules between the interlayers.

The synthesis of exfoliated poly (methyl methacrylate) (PMMA) and PS/ clay 

nanocomposites via bulk polymerisation has been reported on by Zeng and Lee [5‘15l  

They found that the polarity and hydrophilicity of the initiators and monomers greatly 

affected clay dispersion. The combined use o f a more polar, less hydrophobic monomer 

and initiator lead to better clay layer separation and a more disordered intercalated 

nanocomposite, which results from favourable interactions o f the clay surface with both 

the monomer and the initiator. Introducing a vinyl ftinctionalised group onto the clay 

surface improved clay dispersion significantly, and exfoliated PMMA and PS/clay 

nanocomposites were successfully synthesised with a clay concentration o f 5 wt%.

By applying the knowledge that has been gained through the preparation of polystyrene- 

clay nanocomposites, exfoliated unsaturated polyester-clay nanocomposites could 

possibly be made. For example to improve the dispersion o f the methacrylate 

functionalised phosphonium organomodified MMT, direct dispersion into styrene prior 

to incorporation into the unsaturated polyester resin could be employed, as in 

experiments by Fu and Qutubuddin [5'12l  Doh and Cho [5'11] also employed direct 

dispersion into styrene, they stated that the interlayer distance o f their ammonium 

exchanged MMT did not expand as there was already enough space to accommodate the 

intercalating PS polymer chains. Therefore, direct dispersion into styrene may only be 

beneficial to the methacrylate functionalised phosphonium organomodified MMT and 

not TA3-MMT.

To improve the thermal stability o f the methacrylate functionalised phosphonium- 

organomodified MMT, exchange salts with an increased thermal stability could be 

investigated. For instance Xie et al. [5"9] found that the thermal stability o f exchanged 

MMT was related to the thermal stability o f the parent salts, with phosphonium salts
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having a much higher initial decomposition temperature as compared to ammonium 

salts.

Zeng and Lee [5"15-* hypothesised that the use o f a more polar, less hydrophobic 

monomer and initiator can lead to better clay layer separation and a more disordered 

intercalated nanocomposite. Therefore, a larger study could be conducted incorporating 

a wider range o f resins and initiators, to possibly find a more polar and less hydrophobic 

combination, to produce more disordered intercalated nanocomposites.
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6. Conclusions

6.1 Preparation and Characterisation of Polymer Clay Nanocomposites

Nanocomposites were prepared by in-situ polymerisation o f commercially available 

organically modified montmorillonites. Three types o f unsaturated polyester, an 

orthophthalic (Crystic 189LV) and two isophthalic resins (Crystic 272 and Crystic 

R935, all received as polymeric oligomers dispersed in styrene) were intercalated into 

three clays (Cloisite 30B, Cloisite 15A and Cloisite 10A) with different organic 

modifications.

Differences in organic modification of commercially available organoclays resulted in 

changes in the interlayer spacing of the organoclay when dispersed in Crystic 272. The 

XRD traces demonstrated intercalated/exfoliated composites for Cloisite 30B, Cloisite 

10A and Cloisite 15A when blended with Crystic 272, however Cloisite 15A displayed 

the most order within the nanocomposites, displaying clear, sharp, dooi and doo2  peaks. 

For the nanocomposites an increase in the d-spacing was observed from 17.2 A  to 34.4 

A  (+ 100 %) for Cloisite 30B, from 19.2 to 34.0 A  (+ 76 %) for Cloisite 10A and from 

31.5 to 34 A  (+ 8 %) for Cloisite 15A. Cloisite 30B displayed the largest percentage 

increase in the dooi spacing upon intercalation, however all o f the clays reached a 

similar ‘final spacing’ near 34 A .  The thermal decomposition temperature maxima (Tmax 

A and Tmax B) increased by 16 °C upon addition o f all four commercially available 

organoclays into Crystic 272.

The thermal decomposition temperature maximum (Tmax) increased as the clay loading 

in Crystic 272 increased and intercalated nanocomposites were produced. The absence 

of the dooi reflection did not indicate an exfoliated nanocomposite but rather a 

composite which was intercalated (confirmed through the absence o f low angle 

scattering), but had little/no clay in the beam. Increasing the clay loading of Cloisite 

3OB from 0 to 5 wt%, increased Tmax (A) by 19 °C, and produced intercalated 

nanocomposites for samples containing 1 and 3 wt% clay. Samples containing 5 and 10 

wt% Cloisite 30B yielded an intercalated/exfoliated structure, confirmed through an 

increase in low angle scattering coupled with a broad and less intense dooi reflection. 

The peak width increased with increasing clay content, increasing by a maximum of 14
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°C at 10 wt% Cloisite 30B. Based on these XRD and TGA results it was decided to 

carry out farther experiments using 5 wt% organoclay as this produced a more 

exfoliated/intercalated composite with an increased Tmax.

Increasing the stirring time and mixing speed did not result in an increase in the d- 

spacing o f Cloisite 30B when mixed in Crystic R935, all peaks were o f similar intensity 

suggesting that all samples had a similar degree of intercalation/exfoliation, with the 

exception o f the composite prepared at 8000 rpm for 30 minutes, which showed 

evidence of low angle scattering and therefore more exfoliated clay layers within the 

sample, leading to a more exfoliated/intercalated composite. Increasing the mixing time 

from 15 to 30 minutes in the 1000, 8000 and 14,000 rpm samples increased the thermal 

decomposition temperature maximum (Tmax A) by 7 °C in all samples. Based on XRD 

results it was decided to use 1000 rpm for 15 minutes as the standard conditions because 

they produced what was thought to be an exfoliated nanocomposite, however further 

understanding of the interpretation o f the XRD spectra revealed that the composites 

(including composites prepared using Cloisite 10A and Cloisite 15A) were actually 

intercalated.

The d-spacing o f Cloisite 15A when dispersed in Crystic 189LV, Crystic 272 and 

Crystic R935 increased from 31.5 A to 34.9, 33.7 and 31.7 A, respectively. Therefore, 

Crystic R935 did not intercalate into the gallery o f Cloisite 15 A, however Crystic 272 

and Crystic 189LV did increase the d-spacing of Cloisite 15A slightly. The thermal 

decomposition temperature maximum did not increase upon addition o f Cloisite 15 A 

into Crystic 189LV and Crystic R935, however, an increase o f 14 °C was observed 

when Cloisite 15A was dispersed in Crystic 272. The biggest difference between the 

nanocomposites and resins was the increased peak width upon addition o f organoclay, 

with the largest increase observed in the Crystic 189LV/Cloisite 15A sample.

It was found that the use o f ultrasound and mixing did not significantly change the 

extent of dispersion or thermal properties of Cloisite 30B when mixed with Crystic 

189LV.
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The synergistic effect between halogenated resins and clays has been investigated. 

Halogenated resins were provided by Scott Bader, namely Crystic D3644LV (chlorine- 

containing) and Crystic PD7343 (bromine-containing), denoted as Cl-resin and Br-resin, 

respectively. Oven tests illustrated that the addition o f clay promoted the formation of 

more integral char and the halogen-containing samples all extinguished in 3s, although 

halogenated compounds are undesirable from a health and safety viewpoint. Halogens 

act mainly in the vapour phase, the mixture o f Cl-resin and Crystic 189LV formed more 

char with increasing Cl-resin content and the incorporation of clay reinforced this 

behaviour.

Crystic 189LV was blended with Cl-resin concentrations of 0, 10, 20, and 40 wt% and 

0, 1, 3 and 5 wt% Cloisite 10A nanoclay. Cloisite 10A was chosen before Cloisite 15A 

was selected as the optimum clay. XRD analysis indicated that at each clay content, the 

d-value increased and the peak intensity decreased with increasing Cl-resin content. At 

each halogen content the d-value decreased with increasing clay content. The degree of 

dispersion decreased with increasing clay content.

It was found that the char decomposition onset temperature and maximum char 

decomposition temperature remained unchanged by the addition of clay or halogenated 

resin alone, however a synergistic effect between clay and halogenated resin existed, 

more clay and more halogenated resin created more char and an increased 

decomposition range. The addition o f 10 wt% Cl-resin almost doubled the amount of 

char formed (4.9 to 9.7 wt%), increased the maximum char decomposition temperature 

(552 to 560 °C) and char decomposition range (from 136 to 168 °C), a reduction in the 

5%, 30% and maximum weight loss temperatures were also observed (9 and 18 °C 

reduction, respectively). The 100 wt% Cl-resin samples produced the most char (23.7 

wt%) and widest char decomposition range (268 °C) as well as the lowest maximum 

weight loss temperature (325 °C compared to 418 °C for pure Crystic 189LV) and 

temperature at 30% weight loss (331 °C compared to 375 °C for pure Crystic 189LV). 

The addition of clay into the Cl-resin formulations increased the 5 and 30% weight loss 

temperatures and slightly decreased the maximum weight loss temperature. The 

addition o f clay into UP increased the amounts of char formed and char decomposition 

range and this increase was greater than the amount of clay added into the system, for 

example the addition if 3 wt% clay formed 4.1 wt% char in the 0% Cl-resin sample. A
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synergistic effect occurred upon addition o f Cloisite 10A in Crystic 189LV plus Cl- 

resin, in the 3 wt% Cloisite 10A samples the amount of char formed increased from 9 to 

11% when 10 wt% Cl-resin was incorporated into the system and the amount of char 

increased from 9 to 18 % when 40 wt% Cl-resin was incorporated into the system.

Crystic 189LV was identified as the polymer system of choice at this stage as it 

contained no additional additives such as pigments, thixotropes and stabilisers. Crystic 

189LV displayed the broadest peak width and increased temperature maximum (Tmax 

(A)) compared to the other UP resins, also rudimentary horizontal burning tests 

identified Crystic 189LV as displaying the most promising fire retardant properties 

when clay was added. The mixing speed of 1000 rpm and time o f 15 minutes were 

chosen as the standard mixing conditions because they produced what was thought at 

this stage to be an exfoliated nanocomposite. Based on XRD and TGA results it was 

decided to carry out further experiments using 5 wt% organoclay as this produced a 

more exfoliated/intercalated composite with an increased thermal decomposition 

temperature maximum.

These experiments were carried out in the early stages of the project and the original 

criterion for identifying the most appropriate organoclay was based on the extent to 

which the organoclay dispersed in different resins, however oven tests (performed by a 

colleague) and rudimentary flame tests clearly identified an intercalated structure as 

offering the most effective fire retardant properties. Therefore the intercalated 

composites formed using Cloisite 15A and Crystic 189LV offered the most effective 

fire retardant properties and were chosen over the exfoliated/intercalated composites 

incorporating Crystic 189LV and Cloisite 30B. The highly intercalated structure arising 

from Cloisite 15A dispersed in Crystic 189LV, produced the most integral and dense 

char which is the best type of insulation layer for enhanced fire retardant properties. 

Cone calorimetry data collected for the halogenated resin systems resulted in a predicted 

Euroclass rating o f D. The promising fire retardant system incorporating Crystic 

189LV/Cloisite 15A (Surefire hand lay-up resin (Cloisite 15A at 1 wt%)) also reached a 

Euroclass rating o f D, in the cone calorimetry test results and therefore reinforce 

comparability to the halogenated resin systems and could possibly eliminate the need 

for halogenated resins in the future.
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Unfortunately, the aim o f the project was to formulate halogen free resin systems, 

however the performance o f the halogenated resins in the horizontal burning test proved 

to be a benchmark value against which the other flame retardant systems within this 

thesis were compared. Therefore, unsaturated polyester/clay nanocomposites containing 

small amounts of non-halogenated flame retarding agents, which offer superior flame 

retardant properties became the ultimate target for this project.

6.2 Commercially Available Organophosphorus Cations

Clays modified using phosphonium-based surfactants exhibit greater thermal stability 

than ammonium-based surfactants and have been found to increase the fire resistance of 

polystyrene. Phosphonium clays were prepared, characterised, combined with resin and 

tested using an in-house version o f the UL94 Vertical Burning test. Special emphasis 

was placed on the determination of whether the different organocations and clay 

compositions that were produced lead to improved thermal stability of the organocation, 

and therefore the nanocomposite in which it was used.

The gallery cations o f Na+ Cloisite were exchanged with triphenyl phosphonium (TP) 

cations with chain lengths ranging from Cn = 8 to Cn = 16 (TP8+ to TP16+) and a tributyl 

phosphonium (Bul6+) cation. XRD and TGA were carried out on all exchanged clays, 

and nanocomposites incorporating these exchanged clays. XRD results indicated that 

the phosphonium clays produced intercalated nanocomposites in Crystic 189LV. The d- 

spacing increased from 12.1 A  for Na+ Cloisite to 17.4 A  in TP8- to TP12-MMT and 

18.7, 17.7 and 20.9 A  in TP 14-, TP 16- and Bul6-MMT, respectively. A small peak at 

lower angle occurred, which has been tentatively attributed to the formation of a mixed 

ion heterostructure, where TP8+ - TP16+ and B ul6+ cations and Na(H20) cations are 

segregated into two interlayers in a regular alternating fashion.

DTG data revealed a two stage decomposition pattern for all phosphonium clays. The 

decomposition temperature maximum (Tmax A) decreased as the chain length increased 

from Cn = 8 to Cn = 12 (351 to 327 °C) and then increased when Cn = 14 and 16 (341 

and 360 °C). Shoulders occurred on the main decomposition peak Tmax A occurring after 

the main decomposition peak (Tmax A+l) in the TP8- to TP12-MMT samples and before 

the main decomposition peak (Tmax A -l) in the TP 14- and TP16-MMT samples. Bui 6-
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MMT displayed a clear sharp decomposition peak under Tmax A -l, at a much lower 

temperature o f 292 °C.

When the actual amount of organic exchange was calculated all organoclays were 

slightly under exchanged with TP8-, TP 10-, TP 14- and Bul6-MMT at 68% ± 5% of the 

possible organic exchange, however the actual amount exchanged for TP16-MMT was 

slightly lower at 56% of the possible organic exchange amount.

The incorporation of TP 14-, TP 16- and Bul6-MMT into Crystic 189LV produced 

intercalated/exfoliated nanocomposites for the TP 14- and TP16-MMT samples and 

intercalated/aggregated nanocomposites for the Bul6-MMT sample. The dooi spacing 

also increased from 18.7, 17.7 and 20.9 A ,  to 33.1, 33.7 and 27.8 A ,  respectively. The 

layer spacing o f TP8-, TP 10- and TP12-MMT did not expand upon dispersion into 

Crystic 189LV. The DTG traces indicated a thermal decomposition maxima of 422 °C 

for pure Crystic 189LV and samples made using Crystic 189LV and 5 wt% TP10-, 

TP 12-, TP 16-, and Bul6-MMT.

Composites containing TP8- and TP14-MMT displayed a slightly higher Tmax (+22 °C), 

compared to pure Crystic 189LV. TP10-, TP12- and TP16-MMT, demonstrated a 

stabilising effect on the entire system until the upper thermal limit o f the material was 

reached. It was believed that this shift was due to the formation o f a protective barrier 

layer, due to the surface accumulation o f clay platelets held together with a 

carbonaceous char. This barrier would have thermally insulated the UP matrix.

To investigate the effect of individual components in the nanocomposite systems 

(DMMP and styrene), on the d-spacing of organophosphonium clays, XRD analysis was 

carried out on organophosphonium clays dispersed in DMMP, and dispersed in styrene. 

Dispersion of TP8- to TP16-MMT in DMMP or styrene did not significantly expand the 

d-spacings o f the organoclays. The d-spacing of Bul6-MMT decreased when dispersed 

into DMMP and increased when dispersed into styrene. It was observed that the small 

peak at lower angle (found in all organophosphonium clays), was not present when 

dispersed in DMMP and was only present in TP 10- and TP16-MMT samples when 

dispersed in styrene. These experiments confirmed that the expansion in the d0oi spacing 

observed when composites were prepared using these organophosphonium clays and
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Crystic 189LV, was due to polymerisation of Crystic 189LV in the gallery space, 

therefore expanding the clay layers further. The increase in the d0oi spacing cannot be 

attributed to DMMP or styrene further expanding the clay layers.

The organoclays proved difficult to disperse into the UP resin, however this was 

overcome by pre-mixing with dimethyl methyl phosphonate (DMMP), which had been 

identified as an effective gas phase fire retardant. Using DMMP as a pre-swelling agent 

not only improved the dispersion o f the organoclay but also caused the fire retardant 

properties to reach a much higher classification in the UL94 vertical burning test.

Composites prepared using Crystic 189LV, 5 wt% Bul6-MMT and 10 wt% DMMP 

constituted the first real breakthrough with respect to fire properties. The results showed 

very impressive flame retardant improvement achieving UL-94 VO which can be 

directly compared with pure halogenated resin. In order of effectiveness, B u i6-, TP 10- 

and TP8-MMT improved fire resistance but TP 12-, TPM- and TP16-MMT were less 

successful. Further analysis using TGA indicated that, for TP8- and TP10-MMT, 

DMMP was available at relatively low temperatures to extinguish the gas phase flame 

but, for TP 12- and TP16-MMT, it was not. This suggested that the phosphonium salt 

reduced the active concentration o f DMMP, although the exact mechanism has not been 

established.

Analysis using TGA revealed significant differences in the thermal behaviour of the 

different groups of DMMP treated clays. The clays containing TP8+ and TP10+ 

exhibited a large weight loss (Tmax = 140  °C), whereas those containing TP12+, TP14+ 

and TP16+ did not display this weight loss but did exhibit another which maximised at 

500 to 520 °C. Using TG-MS, analysis of the evolved gases indicated that the early 

weight loss was due to the evolution o f DMMP and water. Suggesting that DMMP was 

available at relatively low temperatures to extinguish the gas phase flame. For TP 12- 

and TP16-MMT however, the only evidence for fragments o f the sorbed DMMP 

occurred during the mass loss which maximised near 510 °C. Suggesting that the 

phosphonium salt may interact/react with (some of) the DMMP reducing its active 

concentration below the required value for effective operation as a gas phase fire 

retardant.
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TG-MS data indicated that TP8- and TP10-MMT contained significant amounts o f 

adsorbed DMMP (m/z = 79), which was desorbed at a lower temperature than the 

boiling point of DMMP (which boils at 189 °C), under a Tmax (A) at 148 °C. Whereas 

TP 12-, TPM- and TP16-MMT exhibited a higher desorption temperature for DMMP 

under Tmax (B) at 501 °C. Bul6-MMT did not exhibit a low temperature loss of DMMP. 

A tentative explanation for the ability of TP8- and TP10-MMT to accommodate 

adsorbed DMMP is that the C8 and CIO alkyl chains are relatively short and therefore 

there is some space between them in the gallery for DMMP to occupy. However, when 

the chain length exceeded 12 carbons there was no longer any space available for 

DMMP to be adsorbed.

The clay modification process can be a major investment in developing a commercial 

application, therefore a ‘one pot’ preparation method was investigated as an alternative 

to the standard, resource intensive process. XRD data revealed an intercalated/exfoliated 

nanocomposite with increased dooi spacing of 34.4 A  in the ‘one-pot’ method, compared 

to 28.6 A  in the standard method. However, the thermal decomposition maximum in the 

DTG traces remained the same at ~ 427 °C for the standard and ‘one-pot’ methods. The 

char decomposition temperature in the DTG curves displayed an increase o f 9 °C in the 

‘one-pot’ method. The fire properties of specimens produced using the ‘one pot’ method 

showed some promise but have not been fully optimised. This route is attractive 

because the phosphonium clay does not have to be prepared and extensively washed 

prior to inclusion in the formulation.

Important variations occurred in the fire test results from nanocomposites containing 

Bul6-MMT. Dispersion seemed to be more of an issue with this clay and retrospective 

examination o f the XRD and TGA traces, revealed subtle differences between different 

batches which probably influenced the ability of Bul6-MMT to disperse into Crystic 

189LV. XRD data revealed an increase in the intensity o f several batches, however the 

d o o i spacing remained the same at 21 A  ( ±  1 A ) .  The DTG results revealed a shift in the 

minor pre peak A -1, revealing that as the peak A -1 moved to a lower temperature then 

the intensity o f the d o o i  peak using XRD also increased, which resulted in an increase in 

the fire retardant properties o f the samples. TG-MS measurements performed on Bui 6- 

MMT batches displaying ‘good’ and ‘bad’ fire retardant properties displayed peak A -l
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at a lower temperature in the ‘good’ batch and also the intensity o f the decomposition 

ions was almost twice as intense in the ‘good’ batch.

TG-MS was utilised to explore the gases released from nanocomposites prepared using 

Crystic 189LV and Bul6-MMT, plus DMMP, prior to the onset of unsaturated 

polyester decomposition. The temperature at which DMMP was released was of 

particular interest as loss during post-curing was always a possibility. Composites 

containing Crystic 189LV and 10 wt% DMMP were made. Analysis o f the gases 

released suggested that DMMP (m/z = 79) evolved at lower temperatures when present 

in greater quantities, possibly leading to improved fire performance. In composites 

containing 5 wt% Bul6-MMT, DMMP evolved at 230 °C irrespective o f the amount of 

DMMP. In addition an unidentified fragment ion m/z = 50 evolved, which has been 

tentatively attributed to the thermal desorption of methyl chloride, (however, this could 

not be proven using existing equipment). It was clear that m/z = 50 only appeared in the 

presence of clay and was evolved after the thermal desorption of m/z = 79. The intensity 

o f the m/z = 50 mass fragment increased as the DMMP loading increased even though 

this fragment did not appear in the mass spectrum of DMMP.

Differences between the surface and bulk composition o f nanocomposites containing 

Crystic 189LV, 5wt% Bul6-MMT and 10D (plus Crystic 189LV and 10D) were 

revealed using TGA and infrared (ATR-FTIR) spectral characterisation. DTG data 

revealed that the surface ‘layer’ was less thermally stable than the bulk when heated in 

air, and decomposed at 383 °C at the surface compared to 432 °C in the bulk. Using 

ATR-FTIR, in both systems analysed (with and without clay) it appeared that 

polystyrene (characteristic peaks at 2848 (R) and 2917 cm '1 (S)) had migrated to the 

back surface of the sample, leading to an increased polystyrene content near the ATR 

window. The characteristic organoclay peaks were more intense at the front surface o f 

the sample compared to the back. After removing the top layer o f the nanocomposites 

both surfaces appeared the same, peaks R and S were not as intense. The differences 

between the bulk and surface o f the nanocomposites observed using TGA and ATR 

FTIR could possibly stem from differences in the degree of exfoliation o f the clay from 

the bulk to the surface and/or differences in the orientation of clay particles in these 

regions during the mixing and casting processes.
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Variations in the loading of B ul6+ onto Na+ Cloisite affected the level o f dispersion and 

thermal degradation pattern of the resultant nanocomposite. XRD results displayed an 

increase in the d-spacing as the loading o f B ul6+ increased (14.8 to 24.3 A  at 0.25 to

2.0 x CEC), however as the loading of B ul6+ reached 1.0, 1.5 and 2.0 x CEC, the 

difference between the d o o i  spacing and the spacing for the small peak at higher d- 

spacing remained the same at approximately 15 A .  These diffraction patterns could be 

further evidence for a staged intercalate, and variation in the basal spacing of the 

galleries containing the inorganic cations in the heterostructure, have been tentatively 

attributed to variable hydration o f the inorganic cations. The main peaks o f interest in 

the DTG traces were the main decomposition peak Tmax (A) and a much smaller peak 

Tmax (A-l), which occurred before the main decomposition peak Tmax (A). The DTG 

results displayed a loss o f intensity for the peak under Tmax (A -l) and a shift to a lower 

temperature as the loading of B ul6+ increased (from 292 °C at 1.0 x CEC to 273 °C at

2.0 x CEC). However, it was still unclear which factors could potentially link to the fire 

retardant properties o f the sample. It appeared that as the distance between Tmax (A) and 

Tmax (A -l) increased then the fire retardant properties o f the resulting composite also 

increased.

Organoclays that contain excess surfactant have been reported to be detrimental to the 

level o f dispersion and flammability properties o f the composites prepared using them. 

Therefore incorporation o f a washing step into the cation exchange process would 

ensure that excess surfactant was removed from the organoclays, which could reduce 

plasticization of the polymer or prevent early ignition of the nanocomposite. XRD and 

TG results indicated that when Bul6-MMT prepared at 1.5 and 2.0 x CEC of Na+ 

Cloisite, was washed in a mixture of 80:20 EtOH:H20 , the excess surfactant was 

removed. The d o o i  spacing decreased from 24.3 A  at 1.5 and 2.0 x CEC back to 20.8 A  

as in the 1.0 x CEC sample. The DTG results also indicated that after washing the peak 

under Tmax A-l increased from 273 °C to -290 °C which was at the same temperature as 

the 1.0 x CEC samples.

When Bul6-MMT washed in a mixture of 80:20 EtOH:H20  was incorporated into the 

unsaturated polyester Crystic 189LV (plus 10D) and subjected to the ‘in-house’ version 

o f the UL94 vertical burning test. An increased incidence o f cracking after the first
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flaming occurred as the loading of B ul6+ increased from 1.0 to 1.5 and 2.0 x CEC of 

Na" Cloisite, and consequently the samples had to be extinguished manually.

The most promising nanocomposite system from Chapter 4 comprised Crystic 189LV, 5 

wt% Bul6-MMT and 10 wt% DMMP, which achieved UL94 classification VO and 

therefore compared favourably with halogenated resins. However, the clay modification 

process is prohibitively expensive for commercial application, therefore the ‘one pot’ 

preparation method should be further developed as an alternative to the standard, 

intensive process, as preliminary studies displayed comparable results in the UL94 

vertical burning test for the standard and ‘one-pot’ methods.

6.3 Covalent Binding of Modified Organoclay

The covalent binding of modified nanoclays within an UP matrix, was studied since 

evidence in the literature suggested that the addition o f 5-10 wt% clay can interfere with 

the crosslink density o f the resulting composite. This issue was addressed by producing 

alkylammonium and phosphonium surfactants which offered a cross-linking group on 

the end of the alkyl tail, vinyl and methacrylate groups particularly.

To study what effect organocation deficiencies and excesses would have on the physical 

properties and thermal decomposition of the products, Na+ Cloisite was modified with 

the alkylammonium cations DTA+ and co-DTA+, at different percentages of the CEC of 

Na+ Cloisite. XRD results revealed that a maximum d o o i  spacing o f 13.4 A  was reached 

at 1.0 x the CEC, confirming that the alkyl chains were laying parallel to the basal 

surface. Uptake curves and XRF analysis revealed that when 1 x CEC of modifier was 

introduced approximately 90-96% of the Na+ ions were displaced.

The total weight loss calculated from TG data, increased as the clay loading o f DTA4 or 

co-DTA4 increased with respect to the CEC (i.e. 1.0 x, etc.), the maximum total weight 

loss for DTA- and co-DTA-MMT occurred at 2.0 x CEC. DTG results displayed the 

alkylammonium cations being thermally desorbed over a wider temperature range (150- 

515 °C) when run under N 2 , as compared to when run under air (180-450 °C). Under air 

and N 2 at 0.25 x CEC, the majority o f the weight loss occurred under the T max at 60 °C.
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However, the majority o f weight loss for samples prepared at 0.5 and 2.0 x CEC 

occurred at 420 °C under N 2 and 300 °C under air.

TG-MS analysis showed that the diene/alkene ratio in the gases evolved from DTA- and 

co-DTA-MMT (under nitrogen) was 1.5 to 0.7. Therefore confirming that the vinyl 

group on the end of the surfactant tail was still available after exchange onto the clay 

and potentially able to crosslink with styrene and/or the UP oligomer.

To provide a better understanding of the thermal behaviour of phosphonium salts and 

their modified MMT, the thermal stability o f a phosphonium modified co-decyl 

triphenylphosphonium bromide (co-TP 10B) MMT was compared with ammonium 

modified co-decyl trimethylammonium bromide (co-DTAB), exchanged onto Na+ 

Cloisite and characterised using XRD and TGA. The XRD traces suggested that a single 

layer of co-DTA+-organocations resided in the clay gallery, whilst the spacing for co- 

TP 10-MMT was attributed to the PPh3 head group, confirmed as a result o f expansion 

o f the clay gallery from 12.5 A  in N a1 Cloisite to 18.9 and 13.1 A  in co-TPIO- and co- 

DTA-MMT, respectively. Phosphonium based clays exhibited much greater thermal 

stability than alkylammonium based clays in air. TG analysis o f the organoclays 

revealed that the onset of degradation for co-TP 10-MMT and co-DTA-MMT were 229 

and 180 °C, respectively.

The second type of functionalised surfactant was based on a triphenylphosphonium 

head group separated from a methacrylate end group by a hydrocarbon chain o f 

differing length i.e. 3, 6, 8 and 10 methylene groups, which are subsequently referred to 

as TP3MM (3 = C3 ), TP6MM (6 = C6 ), TP8MM (8 = C8 ) and TP10MM (10 = C i0), 

respectively. Na+ Cloisite was also exchanged with commercially available 

[3(methacryloylamino)propyl] trimethylammonium chloride (TA3). TA3 had a 

trimethylammonium head group as compared to a triphenylphosphonium head group 

(for TP3MM to TP10MM) and it was hoped that the reactive vinyl double bond at the 

end o f the methacrylate group would give an indication o f how effective the synthesised 

compounds would be at cross-linking into the UP.

The exchange of Na^ Cloisite with TA3f, revealed a d-spacing of 13.4 A ,  which 

corresponded to a single layer of modifier in the gallery. The triphenylphosphonium
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based modifiers resulted in a d-spacing o f 17.5 A  for TP8MM- and TP10MM-MMT, 

and supported the view that the triphenyl head group controlled the gallery expansion. 

A small peak at higher d-spacing occurred for TP8MM- and TP10MM-MMT, 

corresponding to a d-spacing of 30.1 A .  The separation distance between the d o o i  peak 

and the small peak at higher d-spacing was 13.4 A .  The separation distance was 

approximately the same as that found in the hydrated form of Na* Cloisite (12.4 A )  and 

therefore supports the formation of a mixed ion heterostructure, incorporating TP8MM+ 

and TP10MM+ cations and Na(H20) cations, which were segregated into two interlayers 

in a regular alternating fashion.

As the alkyl chain length increased, the actual amount of organic exchange also 

increased, however when Cn = 10 only 63.2 % exchange occurred. Therefore, the 

affinity between these bespoke modifiers and the clay surface appeared rather low. 

Consequently the clay dispersion issue, which caused the samples to crack when 

subjected to the in-house version of the UL94 vertical burning test, has been attributed 

to low percentage coverage o f the clay surface by the bespoke modifier. This trend was 

also observed in the triphenylphosphonium exchanged organoclays (TP8- to TP 16- 

MMT), however, when Cn = 8 and Cn = 10 only 62.8 and 66.1 % exchanged occurred, 

this decreased percentage coverage could possible indicate that there is space within the 

interlayer o f the clay for DMMP to reside, and could explain the higher UL94-V ratings 

for TP8-MMT composites.

From TG data, an increase in the TonSet of 25 °C was observed when the alkylammonium 

exchanged TA3+ was compared to the alkylphosphonium exchanged TPnMM+ series. 

This trend was also observed upon comparison of the Tonset of the alkylammonium 

exchanged co-DTA-MMT as compared to alkylphosphonium exchanged co-TP 10-MMT. 

The TonSet increased from 180 °C in co-DTA-MMT to 229 °C in co-TP 10-MMT.

For the nanocomposites prepared using Crystic 1 8 9 L V ,  T P 8 M M -  and T P 1 0 M M - M M T ,  

the T o n s e t  was 3 2  °C higher in the nanocomposites, and the temperature at maximum 

weight loss was between 1 4  and 2 1  °C higher in the nanocomposites compared to pure 

Crystic 1 8 9 L V .  In comparison however, the T o n S e t  did not increase significantly for 

composites prepared using Crystic 1 8 9 L V ,  T P 8 -  and T P  1 0 - M M T ,  and the temperature 

at maximum weight loss increased by only 1 0  °C for T P 8 - M M T  composites and did not
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increase for T P  1 0 - M M T  composites, therefore the incorporation o f the methacrylate 

group did significantly increase the T o n S e t  of the resulting composites and also increased 

the temperature at maximum weight loss.

Evaluation of the methacrylate fimctionalised organophosphonium clays using ATR- 

FTIR confirmed a strong Si-0 band at ~ 1000 cm'1, which is present in all 

(organo)clays. The main bands o f interest were the C=C (1632 cm '1) and C =0 (1700 

cm '1), which were both present in the exchanged organoclays and confirmed the 

presence of a double bond for possible cross-linking into the UP. The trace for Na+ 

Cloisite displayed a broad OH stretching band for adsorbed H2 O at between 3000 and 

3600 c m 1, TP10MM-MMT however, did not display a broad OH stretch and therefore 

incorporated much less adsorbed H 2 O.

The most promising fire retardant results were observed with intercalated/exfoliated 

composites containing 5 wt% TP8MM-MMT and 10D in Crystic 189LV, the samples 

reached a V-l classification. However, higher UL94-V classifications were reached 

with the composites prepared using triphenylphosphonium modified clay TP8-MMT, 

the incorporation o f 5 wt% TP8-MMT and 10D in Crystic 189LV achieved a V-0 

classification with all samples self extinguishing in 2.5 seconds after the first flaming. 

The UL94-V test results for halogenated resins (Cl-resin) however, also reached a V-0 

classification and self extinguished in 3 seconds after the first flaming.

The dispersion of all clays exchanged with a fimctionalised modifier in Crystic 189LV 

were generally poor despite presenting nominally ‘x-ray silent’ diffraction traces. Large 

particles of poorly dispersed clay were clearly present. This poor dispersion o f the 

fimctionalised nanoclay prevented the formation of a coherent char which in turn led to 

an increased incidence o f cracking within the surface of the specimen after the first 

flaming. Consequently the sample continued to bum after the second flaming due to the 

resulting non-uniformity o f the char layer and because the gases were able to leave the 

polymer and fuel the flame. Due to these dispersion issues work was not continued on 

the methacrylate fimctionalised phosphonium-organomodifiers.

278



6.4 Considerations for Future W ork

The work in this thesis could be expanded upon in a number of ways:

■ The percentage exchange o f all triphenyl phosphonium (TP) clays was found to 

be rather low, however increasing the loading of Bui 6+ to 1.5 x CEC, increased the 

percentage exchange to 89.6%. Therefore, by increasing the loading o f TP8+ to 

TP16+ to 1.5 x CEC, the percentage exchange of the resulting organoclay could also 

be increased.

■ It became evident in Chapter 4 that when B ul6+ was exchanged onto Na+ 

exchanged Na+ Cloisite, then the percentage exchange increased from 67.1% in the 

as received form to 83.8% in the fully exchanged form. In the fully exchanged form,
94-Calcium (Ca ) had been removed from the exchange sites, therefore more exchange 

sites were available for organic exchange with B ul6+ cations. So by exchanging 

TP8+ to TP 16' onto N a‘ exchanged Na+ Cloisite, the percentage exchange may also 

be increased.

■ The products evolved during TG-MS experiments could be identified using gas 

chromatography coupled with mass spectrometry (GC-MS). In experiments similar 

to those carried out by Jang et al. [6"1], the identity o f evolved products would be 

established by collecting them (the evolved products) using a cold trap and the 

structures identified through the analysis o f the mass fragmentation pattern and/or 

by co-injection with authentic compounds. GC-MS could be utilised to identify 

what is being released under the small pre-peak Tmax (A -l) in the DTG traces o f 

Bul6-MMT, and also to identify whether m/z = 50 is from a single compound or a 

mixture o f compounds.

■ The fire properties of specimens produced using the ‘one pot’ method showed 

some promise but were not fully optimised. This route was considered attractive 

because the phosphonium clay did not have to be prepared and extensively washed 

prior to inclusion in the formulation. Bul6'  was studied first simply because it 

presented the best fire retardant results. The XRD patterns indicated that the ‘one- 

po f method produced nanocomposites with similar clay dispersion to the standard
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method. More importantly, the nanocomposites produced by the standard and ‘one- 

pot’ methods had comparable fire retardant properties. A more extensive 

investigation into the ‘one-pot’ method is required as a maximum number of three 

samples for each alkylphosphonium salt were previously surveyed.

■ Differences in the ATR FT-IR spectra were observed between the front and back 

surfaces o f samples prepared using Crystic 189LV, 5 wt% Bul6-MMT and 10D. To 

determine whether these differences were a result o f the casting surface in which the 

samples were exposed, the samples could be cast between two glass sheets and any 

differences between the samples investigated using ATR FT-IR.

■ The percentage exchange of all methacrylate fimctionalised phosphonium - 

organomodifiers was also quite low, to overcome this problem the synthesis o f the 

modifiers could be scaled up to provide a larger amount o f product. Therefore, 

increasing the exchange o f the modifiers to 1.5 x CEC would hopefully increase the 

percentage exchange of the modified clays. Again Na+ exchanged Na+ Cloisite 

could be used instead of as received Na' Cloisite.

■ In Chapter 4, successful fire retardant results were achieved with samples 

incorporating Bul6-MMT. Therefore, the synthesis of Bul6MM-MMT could be 

employed to try and increase the fire retardant properties o f the methacrylate 

fimctionalised organomodifiers.

■ Other flame retardants such as ammonium polyphosphate [6'2] could be utilised 

as improvements in fire performance have been observed in the work o f a colleague 

using DMMP and other commercially available phosphates with commercially 

available clays.
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6.5 Conferences Attended

■ IRDG University Research Meeting

Location: UMIST, Manchester. Date: 15th October 2003.

■ IRDG Christmas Meeting

Location: Kings College, London. Date: 15th December 2003.

■ Materials Research Day

Location: Sheffield Hallam University. Date: 10th September 2004.

■ Current Knowledge on the Layer Charge of Clay Minerals 

Location: Smolenice castle, Slovakia. Date: 18th-19th September 2004. 

Poster: TG-MS Analysis o f  the Desorption o f Organocations from  Smectities

■ 2nd Mid-European Clay Conference

Location: Miskolc, Hungary. Date: 20th-24th September 2004.

Poster: TG-MS Analysis o f  the Desorption o f Organocations from  Smectities

■ IRDG Christmas Meeting

Location: Kings College, London. Date: 16th December 2004.

■ IRDG Christmas Meeting

Location: The Royal Institute, London. Date: 15th December 2005.

■ Materials and Engineering Research Innovation Day 

Location: Sheffield Hallam University. Date: 19th January 2006.

Poster: Fire Retardant Nanocomposites.

■ UK GRAD Programme

Location: Windermere. Date: 20Ih -  24th February 2006.
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