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Abstract

Heavy metal pollution is a very prominent problem persisting globally at the present time. 

Many technologies have been put forward to remediate such pollution. Bioremediation is a 

promising and eco-friendly tool to resolve environmental pollution. Microbes belonging to 

diverse phylogenetic groups have been investigated previously for remediation and 

immobilisation of pollutants. One among such groups are methanotrophs, which grow on 

methane as their sole source of carbon and energy and are able to remediate diverse 

hydrophobic organic pollutants due to the wide range of substrates utilised by their 

oxygenase enzymes. Recently, it was shown that the methanotroph Methylococcus capsulatus 

(Bath) was also able to remediate hexavalent chromium contamination. In the current study 

sediment samples were enriched from an urban river in Sheffield in Northern England that 

has previously suffered serious heavy metal pollution due to previous activity of the steel 

industry (17th to 19th century).

The site selected for the present study was the River Sheaf located on south west of Sheffield 

in Northern England and approximately 3 miles from city centre, and which flows from 

Totley through Millhouses Park. Sediment samples were collected and characterised, 

according to various size fractions and then heavy metal analysis was carried out in the 

various fractions of the sediments. The most abundant heavy metals found at site were lead, 

chromium, nickel, arsenic and cobalt. The maximum concentrations of the heavy metals Pb, 

Cr, Ni, As and Co in the site were 412.80 mg/kg, 25.232 mg/kg, 25.196 mg/kg, 8.123 mg/kg 

and 7.66 mg/kg, respectively.

Methanotrophs were enriched and isolated from the Sheaf sediments and then the isolated 

methanotrophs were investigated to determine their ability to reduce the hexavalent 

chromium. A strain of Methylomonas koyamae, which was given the strain designation SHU1, 

was isolated and found to remove hexavalent chromium across a range of concentrations in 

the range of 10-1000ppm after cultivation on methane as growth substrate. The Cr (VI) may 

be reduced to Cr (III) but the production of Cr (III) was not experimentally investigated and 

so there is the possibility that some or all of the chromium removal could be due to 

biosorption and uptake into the cells e.g. via the sulphate transport pathway.



It was also found that the removal of Cr (VI) was inhibited by the addition of the metabolic 

inhibitor sodium azide, thus indicating that removal of chromium is largely a metabolic 

reaction mediated by enzymes rather than a passive biosorption process.

It was speculated that methane monooxygenase (MMO) provides electrons from the 

oxidation of methane which may be used by other enzymes for removal (e.g. chemical 

reduction) of hexavalent chromium. Phenyl acetylene is a strong inhibitor of soluble MMO 

(sMMO) but inhibits particulate MMO (pMMO) less effectively. When cells expressing 

sMMO and pMMO were inhibited by phenyl acetylene the chromium removal reaction was 

completely inhibited compared in cells expressing sMMO.

The above isolated organism produces a sMMO when there is copper deficiency in the media 

which is another distinguishing characteristic to potentially apply the organism in 

bioremediation of hydrophobic organic compounds, because sMMO generally has a wider 

substrate range than pMMO.

The proteins encoded by available genome sequences of Methylomonas strains were 

compared with proteins from other microbes that are involved in chromium reduction, efflux 

systems and chromium uptake. Highly significantly similar proteins were found in the 

Methylomonas strains which resembled the proteins known to be involved in chromium 

removal, uptake and reduction. A number of strains of the Methylomonas genus are known to 

possess a gene for the sulphate transporter systems which could also play a major role in 

transportation of chromium (VI) into the cells.

To the author's knowledge this is the first description of a strain of the widely 

environmentally distributed genus Methylomonas that is capable of remediating hexavalent 

chromium.
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Chapter 1

1.1 Introduction

Rapid industrialisation and population growth are the two factors which most affect the 

global environment and are a general risk to health. The release of pollutants into the 

environment accidentally or through anthropogenic activities distributes pollutants in soil, 

water and air, affecting the environment (Das and Dash 2014).

Highly industrial areas throughout the globe pose a high risk of heavy metal pollution to 

living beings. Natural processes also release some amount of heavy metals into the 

environment but their concentration is negligible in most parts of the world but serious in 

some locations. Volcanic eruptions, weathering and erosion are the principal natural 

processes that release heavy metals into the environment (Abdullahi 2015).

The pollutants once they enter into the environment can pass through the food chain and flow 

from lower constituents to higher trophic levels and risk the ecosystem by bioaccumulation 

and transferring from one food chain to other (Das and Dash 2014). The pollutants from air 

water and soil can move and be transported via various biogeochemical cycles and thus affect 

every component of environment as shown in figure 1 . 1 .

Heavy metals and poly cyclic aromatic hydrocarbons are among the major pollutants in 

present day. Globally the order of the heavy metals found at polluted sites in terms of their 

concentrations is as follows: Pb>Cr>As>Zn>Cd>Cu & Hg (USEPA 1996). Their non- 

biodegradable nature and bioaccumulation in the environment makes heavy metal pollution a 

long term serious issue.

The most efficient technique to remediate the heavy metal pollution is treatment with 

microbes. Microbial remediation is gaining significant interest due to the interaction of 

microorganisms with metals which can alter the physical and chemical state by making 

changes in metal speciation thus increasing or decreasing their mobility. Thus by 

transformation or immobilisation by microbes remediation of metal contaminated sites can be 

achieved (Ali et al 2015).
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Figure 1.1 Movement of pollutants in various parts of environment
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1.2 Chromium

1.2.1 Definition, Sources & Uses

Chromium was first identified in Siberian red lead ore (Crocoite) in 1798 by the French 

chemist Vacqueline. It belongs to group VI-B (transition element) of the periodic table. 

Chromium is a steel-grey, radiant, hard and malleable metal occurring in nature in various

chemical forms, which constitutes 0.1-0.3 mg kg ' 1 of the earth's crust (Fendorf 1995).

Chromium has numerous ores of which the mineral chromite is the major economically 

extractable form. The stable forms of Cr are the trivalent (III) and the hexavalent Cr (VI)
2  "b5species; although there are various other valence states between Cr'“ and Cr which are

unstable and short lived in biological systems.

Cr (III) and Cr (VI) are the usual common species in soil. These two forms exhibit quite 

different chemical properties and affect organisms in different ways (Fendorf 1995). Cr (VI) 

is mediated as the most toxic form which usually occurs associated with oxygen as chromate
9 9(C1O 4  ’) or dichromate (Q 2O7 ) oxy anions. Cr (III) is less harmful and less mobile than Cr 

(VI).

The various sources of chromium can be found in different industries such as electroplating, 

steel and automobile manufacturing, mining, leather tanning, cement, wood preservation, 

metal processing, textile manufacture and production of paints, pigments and dyes. The 

extensive usage of chromium in various industrial applications is tabulated in figure 1 . 2  

below.
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Figure 1.2 Usage of chromium in different sectors
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1.2.2 Properties and forms of chromium

As described above the two forms of chromium (III) and (VI) commonly exist in soil. Cr (VI) 

is water soluble across a wide range of pH, while trivalent chromium tends to be adsorbed on 

the surface of soil particles and precipitate as chromium hydroxide to some extent in acidic 

and alkaline conditions thus posing Cr (III) a high possibility for persistence in the 

environmental for long periods. Figure 1.3 shows how the various forms of chromium exist 

in a natural cycle.
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Figure 1.3 General phases of chromium in natural environment
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Chromium (VI) is the most oxidised, free, active and noxious form of chromium and exists in 

the environment in equilibrium with other chromium species (Figure 1.3). The existence of 

Cr (VI) in nature is a consequence of the oxidation of natural Cr III in smaller proportions 

while larger concentrations are released anthropogenically as pollutants from oxidation of Cr 

III (Dhal et al 2013). Manganese oxides present in soil favour the oxidation of Cr III to Cr VI 

(Dhal et al 2013) while soil carbon compounds aid in reduction of Cr (VI) to Cr (III) (James 

2001). Hence the oxidation and reduction reaction takes place simultaneously there is 

balance of different chromium containing ions in the soil environment

Under neutral pH the oxidation of Cr (III) to Cr (VI) facilitated by manganese oxides via 

surface oxidation and proceeds as

Cr3+ +1.5 M n0 2 + H2Q —>H C r04~ + 1.5 Mn2+ + H+ (1)

6



Reduction by organic compounds, e.g. hydroquinone (with formation of quinine) proceeds as

C6 H6 0 2 + C1O 4 2' + 2H20 ---------- >  0.5 Cr2 0 3 + 1.5 C6 H6 0 2 + 2.5 H20  + 20H ' A G ° 2 9 8

= -427kJ mol' 1 (2)

Cr (III) is less bioavailable and less mobile in water and soils compared to Cr (VI) which has 

higher solubility and bioavailability thus making its toxicity a greater environmental problem. 

In soils the oxidation reaction of Cr (III) to Cr (VI) occurs via surface oxidation facilitated by 

manganese oxides under neutral pH conditions. However reduction reactions of Cr (VI) to Cr 

(III) are favoured by organic compounds like hydroquinone, moreover under most natural 

conditions in soil, reduction of Cr (VI) to Cr (III) is favoured over the oxidation of Cr (III) to 

Cr (VI) by oxidising agents. Barlett and James (1979) who conducted several experiments on 

the oxidation of Cr (III) to Cr (VI) concluded that soils containing manganese oxides were 

more extensively oxidised than the soils without manganese oxides.

Although pH plays a very important role on the oxidation and reduction reactions of 

chromium in soils it is a complicated process, but typically high pH values intensifies the 

oxidative power while low pH values increase reduction reactions. In the laboratory at 

optimum conditions such as neutral pH and at elevated levels of Mn oxides and appropriate 

aeration conditions, it was observed that soluble and freshly precipitated forms of Cr (III), 

such as C1CI3 and Cr (OH) 3 supplemented to soil may be oxidised up to 15% (Dhal et al 

2013).

1.2.3 Speciation of Cr (VI)

Toxicological studies have shown that the extent of toxicity of a metal depends on its 

chemical form and oxidation state hence there is growing interest to study the speciation of 

chemicals in the environment (Hintsa 2013)

Cr (VI) can form distinct species, such as C r04“ (chromate), HCrOf (hydrogen chromate) or 

Cr2 0 7 2' (dichromate) according to the pH and total Cr (VI) proportion in the medium.

H2 C r04— > H+ + HCrOf , Kj = 10' 0 ' 75 mol dm ' 3

HCr04 — >  H+ + C r042", K2 = 10' 6 7 5  mol dm ' 3

2HCr04' — > Cr2 0 7 , K3 = 10' 2 2 dm3 mol' 1

7



H2 C1O 4  (chromic acid) is a strong acid and at higher than pH 1 a deprotonated form of Cr 

(VI) exists, while at pH more than 7 only CrC>4 2' ions prevail in solution throughout the 

concentration range. At pH ranging from 1-6 HCrCV is the prevailing species.

1.2.4 Chromium toxicity

Chromium is a fundamental micronutrient in humans and animals; it is crucial for normal 

sugar, lipid and protein metabolism in mammals (Dhal et al. 2013). Deficiency of chromium 

leads to amendment to lipid and glucose metabolism in humans and animals, while no 

positive effects have been observed for chromium in plants.

Cr (VI) toxicity can be attributed to its easy dispersion across the cell membrane in 

prokaryotes and eukaryotes with consecutive reduction of Cr (VI) giving free radicals that 

cause DNA transformations and other toxic effects (Dhal et al 2013 & Xia et al 2014). Cr 

(III) has been predicted at 10-100 times less toxic than Cr (VI) (Flora et al 1990) because of 

the impervious nature to cellular membranes to almost all Cr (III) complexes.
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1.3 Bio remediation

1.3.1 Introduction

Industrialization has produced many pollutants in the environment, where their removal 

becomes essential for environment to produce sustainability for living beings. A range of 

physical and chemical methods have been investigated for eradication of toxic metals but 

these are not sustainable to the environment (Das 2014).

The conventional techniques that can be employed in the remediation process include 

chemical precipitation, coagulation, adsorption by activated carbon, adsorption by natural 

minerals, ion exchange and reverse osmosis. In chemical precipitation coagulants such as 

aluminium sulphate, iron salts, and lime are employed to remove the noxious elements from 

the higher concentration of pollutants present in waste materials. A desired level of 

precipitate is generally not obtained to remove pollutants by this technique (Das 2014).

Adsorption is a surface based phenomenon in which molecules, atoms, and ions from gas, 

liquid or dissolved solid adsorb to the surface of adsorbent. Adsorption by activated carbon is 

an extensively used technique that was first employed in United States in 1930 to eliminate 

taste and odour from contaminated water. Activated carbon is a raw form of graphite with a 

random/irregular structure which is highly penetrable, demonstrating an immense range of 

pore sizes, from visible cracks and crevices to slits of molecular dimensions. The large 

surface area, micro porous structure and high degree of surface reactivity contribute to the 

adsorption by activated carbon (Mohan & Pittman Jr. 2006)

Various components such as coconut shells, woodchar, lignin, petroleum coke, bone char, 

peat, sawdust, carbon black, rice hulls, sugar peach pits, fish fertilizer wastes, waste rubber 

tyres etc., aid in preparation of activated carbons. The adsorption by activated carbon has 

advantages since it is highly effective process, it has great scope to adsorb a broad range of 

pollutants, due to the porous nature and high surface area of the adsorbent (for example 

activated carbon ) it is an efficient remediation technique (Mohan & Pittman Jr. 2006).

The adsorption by activated carbon also has several disadvantages. It is an expensive 

technique and the costs for reactivation of the adsorbents are high. The performance o f the 

technique can be improved by complexing agents. Activated carbons are not applicable to

9



removal of hydrophilic substances and rejuvenation results in loss of carbon (Mohan & 

Pittman Jr. 2006).

Ion exchange is a versatile chemical reaction wherein ions from water or waste water are 

exchanged with similarly charged ions attached to an immobile solid particle. Naturally 

occurring inorganic zeolites or artificial resins serves as immobile solid particles. Ion 

exchange technique mainly employs hydrocarbon derived polymeric resins (Akpor & Muchie 

2010). The technique has been proposed to eliminate several heavy metals from waste water. 

For example the naturally occurring mineral clinoptilolite has been used to remove chromium, 

lead and cadmium (Vaca et al 2001).

Disadvantages of ion-exchange technique are lack of selectivity against specific target ions, 

susceptibility to fouling by organic substances and microorganisms present in water and 

generation of wastes as a result of ion exchanger regeneration (Metcalf & Eddy 1991).

Reverse osmosis removes over 99% of dissolved minerals via a membrane process which 

acts as a molecular filter. When cellulose acetate or aromatic polyamide membranes are 

applied at high pressures the solvent is forced out through this membrane to dilute solution. 

The clean water passes through the membrane leaving dissolved and particulate matter. This 

technique is efficient to remove ionic species from solution (Akpor & Muchie 2010).

The concentrations of ionic and dissolved organic compounds can be reduced to great extent 

by reverse osmosis (Volesky et al 2003, Pawlak et al 2005). This technique has gained utmost 

importance in removal of heavy metals on large and small scales. The disadvantages of these 

techniques are the high cost of membranes used, very expensive operational costs and usage 

of high pressure, all of which make the technique expensive and sensitive to operating 

conditions.

Chemical precipitation is a widely used technology to remove metals from industrial waste 

waters. The process involves the alteration of dissolved contaminants to insoluble solids and 

then removal of contaminants from the liquid phase using physical methods such as 

clarification and filtration (Nomanbhay & Palaniswamy 2005). In a precipitation process the 

chemical precipitants are added to intensify the particle size through aggregation. The 

concentration of chemical is dependent on pH and alkalinity of water. Heavy metals are 

removed from waste water with sodium hydroxide and lime during the neutralisation process 

(Akpor & Muchie 2010).

10



The disadvantage of this technique is that light small floes are generated which require extra 

coagulation and flocculation procedures. The method generates a large volume of sludge 

whose disposal incurs additional costs. This technique does not meet regulatory requirements 

with hydroxide and carbonate precipitations. The method is also not considered to be safe due 

to working with corrosive chemicals (Akpor & Muchie 2010).

Because of the disadvantages described above relating to conventional techniques for 

remediation of metals, use of bacteria to bioremediate various natural and man-made 

compounds and the resulting reduction of their toxicity on ecosystems draws an increasing 

significance. The enzymatic transformation of metals generally does not generate any toxic 

products therefore posing less risk to ecosystems. Bioremediation and biotransformation can 

be applied to facilitate the naturally occurring microbes to enhance their metabolic activity by 

degrading, transforming, or accumulating toxic compounds like hydrocarbons, radionuclides, 

heterocyclic compounds, pharmaceutical substances and toxic metals (Das 2014).

1.3.2 Characteristics of microorganisms suitable for bioremediation

The applications of microorganisms to detoxify metals have increasingly gained recognition 

as a significant approach for remediation of metals, in spite of some limitations. A substantial 

amount of work in the literature suggests that a microbe to be employed for bioremediation 

should possess a resistant genotype for a particular pollutant or have the following features as 

described below in figure 1.4.

11



Figure 1.4 Features of microbes to be used in bioremediation
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1.3.3 Various methods of chromium reduction

Microbes can produce several enzymes that can transform toxic metal ions to less/ nontoxic 

forms under various environmental conditions. Traditionally enzymes such as mono or di 

oxygenases, reductases, dehalogenases, cytochrome p450 monooxygenases, bacterial 

phosphodiesterases, hydrolases, transferases and oxidoreductases obtained from bacteria, 

fungi, plants and microbe plant associations can be employed in bioremediation. Enzymes 

participating in lignin metabolism such as laccases, lignin and manganese peroxidases 

isolated from white rot fungi and bacterial phosphotriesterases are all employed in the 

bioremediation process (Thatoi et al 2014).

Hexavalent chromium usually enters the cell via the sulphate transport pathway and gets 

reduced to Cr (III) by various enzymatic and non-enzymatic processes. During this process, 

reactive oxygen species (ROS) are formed, which exert deleterious effects on cells by 

interacting with proteins and nucleic acids. While trivalent chromium is less toxic and less
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bioavailable and it readily forms insoluble hydroxides/oxides above pH 5.5 and also Cr (III) 

are impermeable to biological cell membranes. Detoxification of Cr (VI) to Cr (III) by 

reduction of hexavalent chromium species is gaining utmost importance in the environment 

(Thatoi et al 2014).

The chromium reduction can be carried out by bacteria, fungi and algae. Bacterial chromium 

reduction can be of two types

1. Enzymatic or direct chromium reduction

2. Non-enzymatic or indirect chromium reduction

1.3.4 Direct reduction of chromium by bacteria

Microorganisms that have the ability to reduce Cr (VI) are usually referred to as chromium 

reducing bacteria (CRB). Among CRB, the Gram positive bacteria are shown to have 

significant tolerance to Cr (VI) toxicity at relatively high concentrations, whereas Gram- 

negative bacteria are more sensitive to Cr (VI) (Thatoi et al 2014).

The enzymatic reduction of chromium takes place in two ways.

1. Aerobic process

2. Anaerobic process

The enzymatic reduction of Cr (VI) is shown below in Figure 1.5
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Figure 1.5 Diagrammatic representation of Cr (VI) reduction via enzymatic process
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1.3.4.1 Aerobic reduction of Cr (VI)

Under aerobic process the bacterial Cr (VI) reduction occurs via two or three steps. Initially 

Cr (VI) is reduced to Cr (V) and/or Cr (IV) which are usually short lived intermediates 

preceded by further reduction to the Cr (III) which is a thermodynamically stable product. 

The reactions are shown below in the following equations.

Cr6+ + e  >  Cr5+

Cr5+ + 2e"---------> Cr3+
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Electrons from internal sources, NADH, and NADPH act as electron donors in the Cr (VI) 

reduction reaction. The Chr R Cr6+ reductase immediately reduces Cr6+ via one step with an 

electron to form Cr*+, followed by a two electron transfer to generate Cr3+. Although some 

amount of Cr3+ intermediate is automatically re-oxidised to generate ROS, the probability of 

harmful radicals are lessened with the reduction via two electron transfer by Chr R. The 

enzyme Yie F is exclusive enzyme which catalyses the straight forward reduction of Cr6+ to 

Cr3+ through a four-electron transfer, in which three electrons aid in reducing Cr6+ and the 

other is transferred to oxygen. The amount of ROS produced by Yie F in Cr6+ reduction is 

minimal, and so it is considered as a less potent reductase than Chr R for Cr6+ reduction 

(Cheng, Gu 2007 & Barrera-Diaz et al 2012).

In Pseudomonas aeruginosa, Cr6+ resistance is attributed to the decreased uptake and/ or 

increased efflux of Cr6+ by the cell membrane. An identical mechanism of resistance is 

reported for Alcaligenes eutrophus CH34 (recently classified as Waustersia eutrophci). A  

number of bacteria in other genera such as Bacillus spp., E.coli ATCC 33456, Shewanella 

alga BrY-MT and a few unidentified strains have been shown to reduce Cr6+ and utilise x 

soluble reductases in the cytosol (Cheung & Gu 2007). In Ps. maltophila 0-2  and Bacillus 

megaterium TKW3 Cr6' reduction was facilitated with the membrane cell fractions indicating 

that the reductase enzyme is membrane associated (Cheung et al 2006).

A lot of research has been carried out regarding the Cr6t reductases and their purification 

from pseudomonads. A partially soluble Cr6+ reductase from Ps. putida PRS2000 was 

reported by Ishibashi et al (1990). A 38 kDa soluble Cr6+ reductase from Ps. ambigua G-l 

was reported by Suzuki et al., (1992). A 600 kDa soluble Cr6+ reductase, ChrR, from Ps. 

putida MK1 was reported by Park et al., (2000). Ackerley et al (2004) described ChrR as a 

dimeric flavoprotein activating the reduction of Cr6+ optimally at 70°C. The membrane 

associated Cr6+ reductase was reported from the proteome of B. megaterium TKW3 which 

was identified on a two dimensional electrophoresis gel (Cheung et al 2006).

1.3.4.2 Anaerobic reduction of Cr (VI)

In the anaerobic process, Cr (VI) can act as a terminal electron acceptor in the respiration 

process utilising a large range of electron donors, including carbohydrates, proteins, fats, 

hydrogen, NAD (P) H and endogenous electron reserves. Both soluble and membrane- 

associated enzymes have been found to enhance Cr6t reduction. Sulphate and iron reducing 

bacteria (SRB and IRB) are important members of anaerobic microbial communities.
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Chromium (VI) reduction by biogenic iron (II) and sulphides generated by IRB and SRB are 

estimated as being 100 times greater than that due to CRB alone. SRB produce HbS, which 

serves as a Cr (VI) reductant via a process that involves three stages

1. Reduction of sulphates

2. Reduction of chromate by sulphides and

3. Precipitation of Cr (VI) by sulphide.

The reduction of Cr (VI) by Fe (II) occurs when IRB reduce Fe (III) to Fe (II) which in turn 

reduces Cr (VI) to Cr (III). Research into Cr6+ reduction has also been performed in the 

facultative anaerobe Enterobacter cloacae HOI (Barrera-Diaz et al., 2012).

A consortium of bacteria has been described with the capability to reduce Cr6+ and also to 

degrade benzoate. This consortium contained Microbacterium sp. MP30, Geobacter 

metallireducens, Shewanella putrefaciens MR-1, Pantoea agglomerans SP1, Agrobacterium 

radiobacter EPS-916 (Cheung & Gu 2007).

1.3.5 Indirect reduction of chromium by bacteria

The non-enzymatic Cr (VI) reduction to Cr (III) can be attributed to different chemical 

compounds, produced during the bacterial metabolic process. The most potential non- 

enzymatic chromate reductants could be ascorbic acid, glutathione (GSH), cysteine or 

hydrogen peroxide in microbial cells and ascorbate in higher organisms.

Reduction of Cr (VI) may also occur via chemical reactions that are present in intra/extra 

cellular locations such as amino acids, nucleotides, sugars, vitamins, organic acids or 

glutathione associated compounds (Thatoi et al 2014).

1.3.6 Reduction of chromium by Algae

Interaction between chromium and algae has been researched less intensively compared to 

interaction between chromium and bacteria, or chromium and fungi. Reports on tolerance and 

resistance of algae to chromium are limited. The exact mechanism of chromium resistance 

and uptake of chromium by algae is not clearly understood (Kamuledeen et al 2003).
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Hexavalent chromium reduction in Algae can be mainly done by the accumulation of 

chromium by algal cells, followed by the removal with the help of chelating agents. Possible 

uses of immobilized algae for chromium bioremediation suggest a feasible technique.

Filamentous alga Cladophora accumulated several heavy metals but Cr uptake rate was 

higher and faster (72% after 15 minutes). It is reported from tannery effluent samples of post- 

anaerobic digestor Selenastrum could remove 395ppm of Cr in solutions (Cervantes et al 

2001). Using immobilised cells in columns with kappa carragenan (fluidized bed) or 

polyurethane foam (packed bed), C. vulgaris removed 48 and 34% of Cr respectively, 

whereas S. acutus removed 36 and 31%. (Cervantes et al 2001).

1.3.7 Reduction of chromium by Fungi

Yeasts and filamentous fungi offer a possible alternative for bioremediation of waters and 

soils polluted by Cr (VI). However, no practical use of fungal cells has been reported. The 

fungal cell wall constitutes chitin, a heteropolymer of N-acetylglucosamine and glucosamine. 

The deacetylated amino groups of glucosamine act as an essential binding site for metals. In 

Mucorales, the siderophore rhizoferrin shows increased Cr (III) biosorption (Cervantes et al 

2001).

A polycarboxylate siderophore rhizoferrin is able to bind Fe (III), Cr (III) and Al (III). 

Mainly in yeasts and fungi the remediation of hexavalent chromium is by biosorption rather 

than reduction from the cells. Biomasses obtained from Rhizomucor arrhizu, Candida 

tropicalis and Penicillum chrysogenum are excellent biosorbents of chromium. S. cerevisiae 

and Candida utilis have the ability to sorb Cr (VI) and the sorption capacity of dehydrated 

cells is considerably higher than that of intact cells (Cervantes et al 2001).

Aspergillus sp. N2 and Penicillum sp. N3 are chromate resistant filamentous fungi and when 

tested in 50ppm of Cr (VI) aqueous solution at about neutral pH Aspergillus sp. N2 reduced 

the Cr (VI) concentration by 75% whereas Penicillum sp. N3 reduced it to 35%. The 

mechanism of Cr (VI) reduction in both the species were enzymatic and sorption to mycelia 

(Cervantes et al 2001).
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1.4 Methanotrophs

1.4.1 Introduction

Methanotrophic bacteria can utilise methane as sole source of carbon and energy. 

Methanotrophs are omnipresent in the environment and show an important role in the 

universal oxidation of methane. Their unique microbiological and metabolic features have 

led to investigation of methanotrophs for a number of biotechnological applications (Jiang et 

al 2010). Methanotrophs play a major role in universal cycling of carbon, nitrogen and 

oxygen as well as in deterioration of hazardous organic materials (Semrau et al., 2010).

1. 4. 2 What are methanotrophs?

Methanotrophs are a group of the methylotrophic bacteria. Other methylotrophic bacteria can 

use different one-carbon compounds, including methanol, methylated amines, and 

halomethanes and methylated compounds containing sulphur. The key enzyme of 

methanotrophic microorganisms, methane monooxygenase (MMO) performs the oxidation of 

methane to methanol is the chief defining metabolic feature of methanotrophs.

Methanotrophs are pervasive in environment, including many extreme environments, and can 

grow at temperatures as low as 40°C or as high as 72°C (Jiang et al 2010).

Most known methanotrophs survive at steady pH (5-8) and at wide temperature ranging from 

(20-35°C), with psychrophilic (growth <15°C), thermophilic (growth> 55°C), alkaliphilic 

(growth at pH > 9.0), and acidophilic (growth at pH <5) (Semrau et al 2010).

The first methanotroph Bacillus methanicum was isolated in 1906, but it was in 1970 when 

Whittenbury and his colleagues isolated and characterized over 100 new methane utilising 

bacteria which form basis for current classification of bacteria (Jiang et al 2010).

Methane monooxygenases are the inherent enzymes of methanotrophs that catalyse methane 

to methanol, as shown in the figure 1 . 6  illustrating metabolism of substrates by 

methanotrophs with formaldehyde as intermediate.
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Figure 1.6 Pathway for oxidation of methane and assimilation of formaldehyde
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The two different pathways of formaldehyde assimilation in methanotrophic bacteria are 

RuMP pathway and Serine pathway are shown in the figure 1.7 and 1.8 respectively.
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Figure 1.7 RuMP pathways for formaldehyde fixation

3 Ribose-5-phosphate 3 HCHO

t Hexulose-6-phosphate
synthase

5 Gyceraldehyde-3-phosphate

Rearrangement reactions 
♦

3 Hexulose-6-phosphate
Hexulose phosphate 

t  isomerase

3 Fructose-6-phosphate

1 Glyceraidehyde-3-phosphate

CELL M A T E R IA L " * ^ " ^ ^

(3HCHO + ATP GLYCERALDEHYDE-3-PHOS + ADP)

Source: Adapted from Hanson &Hanson 1996

Figure 1.8 Serine pathways for formaldehyde assimilation
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1. 4. 3 Forms of MMO

Methanotrophs oxidise methane to methanol with the key enzyme methane monooxygenase 

(MMO). This MMO is present in two forms 1. Membrane associated or particulate methane 

monooxygenase (pMMO) present in most known methanotrophs and is located in 

cytoplasmic membrane. 2. Soluble methane monooxygenase (sMMO), which is present in 

some methanotrophs, is located in the cytoplasm.

pMMO is a copper containing enzyme. It consists of three polypeptides with molecular 

masses of approximately 45000 Da (a-subunit, PmoB), 26000 Da (P-subunit, pmoA), and 

23000 Da (y-subunit, pmoC) with a (apy) 3  subunit structure (Semrau et al 2010). pMMO is 

present in all tested methanotrophs except Methylocella sp., which possess sMMO alone 

(Semrau et al 1999).

The sMMO is a three component enzyme comprising of a hydroxylase, a reductase and a 

regulatory protein. The hydroxylase component is composed of three subunits with molecular 

masses of approximately 54000 Da (a-subunit), 42000 Da (P-subunit), and 22000 Da (y- 

subunit) with a subunit molecular structure of (apy) 2  (Semrau et al 2010). To date the sMMO 

gene is found in Methylococcus, Methylosinus, Methylomonas, Methylomicrobium, 

Methylocella and Methylocystis (Semrau et al 1999).

In Type I methanotrophs the SMMO gene is found in the Methylomonas sp. Strain KSWIII 

and Methylomonas sp. strain KSPIII. The sMMO genes from these organisms were cloned 

and sequenced and the genealogical analysis of sMMO amino acid sequences showed that the 

strains are closer to the Methylococcus capsulatus (Bath) of type X methanotrophs. 

(Shigematsu et al., 1999).

1. 4.4 Classification of methanotrophs

The methanotrophic bacteria have been grouped into three types, Type I, Type II and Type X 

based on the morphological differences, types of resting stages, fine structure of 

intracytoplasmic membrane and some physiological characteristics as shown in table 1 . 1  

below (Hanson & Hanson 1996). The characteristics of the various types of methanotroph are 

described.
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Table 1.1 Characteristics of type I, type II, and type X methanotrophs

Characteristic Type I Type II TypeX
Cell Short rods, usually occur Cresent- shaped rods, rods, pear- Cocci, often
morphology single; some cocci or elipsoids shaped cells, sometimes occur in 

rosettes
found in pairs

Growth at 
45°C

No No Yes

G+C content 
of DNA 
(mol%)

49-60 62-67 59-65

Membrane
arrangement

Yes No Yes

Bundles of 
vesicular disks 
paired 
membranes 
aligned to 
periphery of 
cells

No Yes No

Nitrogen
fixation

No Yes Yes

Resting stages 
formed

No Some strains No

Exospores
Cysts

Some strains Some strains Some strains

RuMP
pathway
present

Yes No Yes

Serine
pathway
present

No Yes Sometimes

Ribulose-1,5-
biphosphate
carboxylase
present

No No Yes

Major PLFAs 14.0, 16:1 oo 7c, 16:1 oo5t 18:1 co8 c 16:0, 16:1cd7c
Proteobacteria 
1 subdivision

Gamma Alpha Gamma

Phylogenetic 1041 (5'- 1034 (5'- No specific
signature CTCCGCTATCTCTAACAG CC AT ACCGG AC AT GT CC AAA probe has
probe (S) ATT-3'), 1035 (5'- 

G ATT CT CT GG AT GTC AAG 
GG-3'), MM650 (5'- 
CCTCTACTCAACTCTAGT- 
3'), MM850 (5’- 
T ACGTT AGCTCC ACC ACT 
AA-3')

GC-3') been tested.
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1.4.5 Environmental application of methanotrophs

Methanotrophs have important and major applications in applied microbiology and 

biochemical engineering along with bioremediation.

1. Pollutant degradation- possession of pMMO or sMMO by methanotrophs is significant 

feature to be applied in various pollutants degradation. sMMO will bind and oxidise alkanes 

up to C-8 , as well as ethers, cyclic alkanes, and aromatic hydrocarbons. pMMO can oxidise 

alkanes up to C-5 but cannot oxidise cyclic alkanes or aromatic compounds (Seramu et al 

2010). Methanotrophs can be used in bioremediation of halogenated hydrocarbons via co- 

metabolism with MMO's, biotransformation of organic substrates like propylene to epoxy 

propane and production of chiral alcohols (Jiang et al 2010). Methanotrophic enrichments 

from various habitats such as aquifers, landfills, wastewaters and waste disposal sites can 

degrade pollutants such as chlorinated hydrocarbons.

2. Greenhouse gas removal- with increased global warming concern, efforts have been made 

to reduce the man-made emissions of various greenhouse gases particularly CH4  from 

landfills and agricultural soils. C H 4  is almost 25 times more powerful than carbon dioxide at 

absorbing infrared radiations (IPCC, 2007) and atmospheric C H 4  proportions have 

dramatically increased since the industrial revolution. Landfills are potential source of 

atmospheric C H 4  emissions and various strategies have been proposed to reduce the C H 4  

emissions, engineered systems like 'biocovers' or 'biofilters' to reduce C H 4  emissions (Semrau 

et al 2 0 1 0 ).

Biocovers constitutes porous materials like organic matter (eg. compost, sewage sludge and 

wood chips) above the surface of landfill, which can effectively transport gas with sufficient 

water retention capacity to increase methanotrophic activity. Various column studies of 

biocover material in laboratories reported the removal rates of CH4  ranging from 22 to 242 g 

CH4  m'2 day'' (Scheutz et al 2009). It was also reported that methanotrophs can remove 

convincing amounts of CH4  from the atmosphere, i.e., at concentrations on the order of 1.7 

p.p.m.v., orders of magnitude lower than what is found in engineering environments such as 

landfills and factory farms (Semrau et al., 2010).

In western Michigan 2 V2 year field experiment was conducted at a closed landfill where 

methanotrophs, were enhanced by nutrient addition to soil without increasing biogenic 

nitrous oxide (N2 O) production. The methane flow were reduced drastically about more than
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half with addition of KNO3 and NH4 C1 into the soil in comparison to control plots, while N2 O 

flow increased considerably during spring and summer. With the addition of 

phenylacetylene an inhibitor of sMMO to the soil fields it decreased peak N 2 O proportions by 

half and methane oxidation by one third. The results indicate such addition in connection 

with soil moisture management provides viable method to reduce greenhouse gas emissions 

from landfills (Lizik et al 2013).

3. Production of single cell protein- an alternative mode of protein production for humans and 

animal consumption has increased since World War I, and importance has risen among 

developing nations to provide adequate protein diets to their populations (Kuhad et al., 1997). 

Yeasts, fungi, algae, and bacteria, including methanotrophs can be used as source of 

microbial protein. The Norferm Denmark A/s in Norway can produce 8000 tons year’ 1 of 

protein obtained from M. capsulatus Bath, named as Bioprotein and was estimated that 

production could be increased to 40000 tons year ' 1 (Winder 2004).

1.4.6 Copper regulation in methanotrophs

Copper is the key factor that controls methanotrophic activity and plays a major role in their 

physiology. Copper is essential for expression of pMMO, while at low concentrations of 

copper few methanotrophs express sMMO that contains diiron active site.

MMO activity in M. capsulatus (Bath) is primarily dependent on concentration of copper. In 

excess of copper the MMO activity was observed in particulate fractions but switched to 

soluble fractions in response to copper stress i.e., low copper to biomass ratio (Stanley et al 

1983). The copper switch mechanism was demonstrated in Methylosinus trichosporium 

OB3b but some methanotrophs do not have ability to defend copper stress in this way 

(Stanley et al 1983).

In strains which express both pMMO and sMMO copper in the growth medium inhibits 

expression of sMMO genes leading to elucidation of pMMO and formation of considerable 

intracytoplasmic membranes that express pMMO (Balasubramaniam and Rozenweig 2008). 

The switch is associated with the secretion of a chalkophore known as methanobactin and 

expression of another polypeptide MmoD, which plays an important role in the copper switch 

by increasing copper bioavailability that controls expression of MMOs, the MmoD with 

methanobactin amplifies the bacterial response to copper (Semrau et al 2010, Semrau et al

2013). Lack of copper in the medium, facilitates methanobactin to adhere to a variety of
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transition and near transition metals that may have potential effects on metals mobility metals 

in soils and aquatic systems (Semrau et al 2013).

Copper plays a vital role in metabolism, and co-ordinating expression of two methane

monooxygenases. Copper also influence the elucidation of two out of four formaldehyde 

dehydrogenases, development of internal membranes, and expression of other polypeptides 

related to copper regulation or transport (Kim et al., 2004). Methanobactin fulfils the role of 

copper trafficking molecule by passaging higher amounts of copper while protecting cellular 

components from its toxic effects (Kim et al 2004).

Methanobactin is a small (<1200 Dalton) modified polypeptide with two five or six- member 

rings (imidazole, oxazolone or pyrazinedione rings) (Figure 1.9) with associated enethiol 

groups that binds copper with affinities of greater than 1021 M -l. (Semrau et al 2013). 

Methanobactin was first identified from M. trichosporium OB3b is a modified polypeptide 

with two oxazolone rings that are responsible for the high affinity binding of copper (Semrau 

et al 2013).

Methanobactin can be described as a compact pyramid like structure with a metal 

complexation site located at the base of the pyramid. The isopropylester group (Figure 1.9) 

folds underneath the surface creating a tail like projection and a cleft, and it appears to 

obscure the metal site to some extent. The metal co-ordination environment is composed of 

dual N- and S- donating systems that are derived from two 4-thionyl-5-hydroxy imidazolate 

moieties. The N atom of each imidazole and the S atom of the two thionyl substituents

coordinate the copper in distorted tetrahedron geometry (Kim et al 2004).

The cells secrete methanobactin continuously and it accumulates in the copper deficient 

conditions in culture media. If copper is provided in culture media, methanobactin binds the 

copper and the methanobactin copper complex is internalised to the cell possibly to be 

associated with pMMO activity (Kim et al 2004).

25



Figure 1.9 (a) Diagrammatic illustration of the copper-methanobactin complex (Cu- 

mb) from M. trichosporium OB3b (b) Ball-and-stick representation of crystal structure 

(Cambridge Crystallographic Data Centre deposition number CCDC 241254)
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1.4.7 Bioremediation by methanotrophs

Potential use of methanotrophs in biotechnology and bioremediation process is mainly due to 

their unique physiology and the capability of the bacteria to be cultivated on large scale 

(Jiang et al., 2010).

The possession of MMO enzyme is the distinguishing characteristics of methanotrophs to 

allow them to degrade diverse organic compounds. Methanotrophs can also perform the 

remediation of inorganic pollutants. The capability of MMO to detoxify or transform toxic 

elements to less toxic forms by redox reactions with the enzyme is the basis for their potential 

remediation of metal contaminated environment. These organisms influence the speciation 

and bioavailability o f metals in environment which is another characteristic feature to be 

employed in bioremediation (Pandey et al., 2014).

Bioremediation of hexavalent chromium is well characterised by methanotroph M. capsulatus 

(Bath) over wide range of concentrations 1.4-1000 mg L"1. These organisms' genome 

sequences demonstrate that five potential chromium reductases genes may be responsible for 

the Cr (VI) reduction and making the organism potential for bioremediation of this pollutant 

(Hasin et al., 2010)

Another interesting aspect of M. capsulatus (Bath) is its ability to detoxify Hg (II) to the less 

toxic Hg (0) via a reaction catalysed by MerR-derived polypeptides. This NADH dependent 

mercuric reductase is active in M. capsulatus (Bath) with NADH provided at expense of 

methane oxidation (Boden & Murrell 2011).

Methanotrophs are known to remediate many organic pollutants because o f their enzyme 

MMO which has affinity to a wide range of organic substrates. TCE (trichloro ethylene) 

which is used in many industrial solvents is a known carcinogen and can be degraded by 

several methanotrophic bacteria such as M. trichosporium OB3b, M. capsulatus (Bath), 

Methylocystis sp., Methylsinus sporium strain 5, Methylocystis daltona SB2, Methylocystis 

strain SB2 and unidentified strains of methanotrophs (MP18, MP20, PI4) (Pandey et al

2014).

Some strains of the Methylomonas genus were found to exhibit the sMMO enzyme which 

will help to degrade trichloroethylene. For instance Methylomonas methanica (KSWIII, 

KSPII & KSPIII) can enhance trichloroethylene degradation (Shigematsu et al., 1998).
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Methylomicrobium album BG8 which can utilise methane and methanol as sole carbon and 

energy source can degrade several halogenated hydrocarbons: dibromomethane,

dichloromethane, vinyl chloride, 1,1 dichloroethylene, cis-dichloroethylene, trans- 

dichloroethylene and trichloroethylene (Semrau et al 1999).

A new strain Methylocystis strain JTA1 which was isolated from Loagong municipal solid 

waste landfills Shangai, China. The 16S rRNA & PmoA gene shows that the organism can 

tolerate chloroform (50 mg L'1) and can be employed in the soils and landfills bioremediation 

and waste water decontamination (Zhao et al 2013).

Methanobactin, a chalkophore which binds copper, was found to bind other metals including 

mercury when added as HgCl2 and reduced Hg (0) thus is helping in the detoxification 

process. Methanobactin from M. trichosporium OB3b AmbnA (a mutant defective in 

methanobactin production), Methylocystis sp. strain SB2 and Methylomicrobium album BG8 

showed that methanobactin can adhere to mercury and leads to reduction o f Hg (II) to Hg (0) 

by formation o f grey precipitate and was associated with cell biomass (Vorobev et al 2013).

A facultative methanotroph Methylocystis strain SB2 when grows on methane can degrade 

.vinyl chloride, trans-dichloroethylene, trichloroethylene, 1,1,1 trichloroethane and 

chloroform. The organism grows on methane and co-oxidises these hydrocarbons and 

chlorinated hydrocarbons. When the strain grew on ethanol it can degrade vinyl chloride, 

trans-dichloroethylene, trichloroethylene, 1,1,1 trichloroethane and except few 1,1,1 

trichloroethane the growth on ethanol was not affected by chlorinated hydrocarbons. No 

reduction of chlorinated hydrocarbons was observed when cells were inhibited by growth on 

ethanol indicating pMMO activity for the degradation of pollutants. When mixtures of 

chlorinated alkanes/alkenes were added to cultures growing on methane/ethanol chlorinated 

alkene degradation occurred but not chlorinated alkanes and the growth significantly reduced 

on methane and ethanol (Semrau & Im 2011).

A facultative methanotroph Methylocystis strain SB2 which also grows on multi carbon 

compounds can degrade 1,2 dichloroethane, 1,1,2-trichloroethane, 1,1-dichloroethylene and 

cis-dichloroethylene when grown on methane or ethanol. This organism can use ethanol as 

growth substrate to enhance mobility of chlorinated hydrocarbons in situ and pollutant 

transport and biodegradation (Jagadevan & Semrau 2013).
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Methanotrophs can also be employed for metal recovery as biosorbents from waste water. 

Such methanotrophs were isolated from pristine and metal impacted (acid mine drainage) 

environments (Xie et al 1996).

De Marco et al (2004) studied the capability of 31 methylotrophic strains isolated from range 

of soil, sediments and contaminated areas to study heavy metal tolerance among these strains. 

The isolates exhibited some interesting features such as resistance to heavy metals, arsenate 

and organic pollutants. Four of the strains were regarded as "super bugs" because o f their 

ability to withstand high concentration of heavy metals. The strain Methylophilus 

methylotrophus EHg7 resistant to cadmium and M. methylotrophus ECr4 resistant to 

chromium.

The organism Methylacidiphilum fumariolicum (SoIV) strain isolated from volcanic 

environment survive at low methane and oxygen concentrations and pH as low as 1. The 

genome sequence reveals that the organism has pMMO and assimilates C2 compounds and 

thus is a facultative methanotroph. This organism helps the study of methane cycling in the 

volcanic environment (Khadem et al 2012).

The ubiquitous nature of methanotrophs, adaptability to copper stress environment, wide 

range of substrate specificity by MMO enzyme, the detoxification process of Cr (VI) and Hg 

(II) by M. capsulatus (Bath) and degradation of several halogenated compounds by various 

methanotrophs is an interesting aspect to isolate and characterize methanotrophs from River 

Sheaf and study the detoxification process of Cr (VI) by the isolated organisms.

1.4.8 Aims and objectives

The main aims and objectives in the present study are

1. To collect the sediment samples from the River Sheaf

2. To characterize the physical and chemical properties of sediments

3. To enrich and isolate the methanotrophic bacteria from the sediments of the River Sheaf

4. To characterize and study the isolate enriched from the River Sheaf sediments

5. To determine the remediation properties of hexavalent chromium by the isolated 

methanotrophic bacteria.
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Chapter 2 

MATERIALS AND METHODS
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2. Materials and Methods

2.1 Materials

All chemicals were supplied by Sigma, Fisher or BDH and were of analytical grade. The 

water used was glass distilled or deionised.

2.1.1 Bacterial strains and growth conditions

The following bacterial strains were used in the study:

>  Methylomonas koyamae (SHU 1) isolated from River Sheaf sediments

>  Methylosinus trichosporium OB3b was obtained from the culture collections of 

Howard Dalton and Colin Murrell (University of Warwick)

The methanotrophs M. trichosporium and Mm. koyamae (SHU1) were grown and propagated 

aerobically in nitrate minimal salts (NMS) medium or NMS agar using methane (1:4 v/v in 

air) as sole source of carbon and energy. The methanotrophs M. trichosporium and Mm. 

koyamae (SHU1) were cultivated on NMS agar plates and incubated inside airtight jars in the 

presence of methane at 30°C for 8-10 days using methane as growth substrate. The recipe for 

NMS medium is given in section 2.1.5 below.

2.1.2 Enrichment and isolation of new methanotrophs

0.5 g of sediment samples collected from the River Sheaf were enriched with 50 ml o f NMS 

media (Nitrate minimal salts) in 200 ml Erlenmeyer flasks. Methane gas was introduced at 

1:4 v/v with air into the culture flasks at regular intervals using hypodermic syringes and the 

flasks were sealed with subaseals (Fisher) to prevent methane loss. The flasks were incubated 

at 30°C on a rotary incubator for 1 week to 10 days for the growth of methanotrophs in the 

flask. The growth of methanotrophs was observed by monitoring the turbidity o f the 

enrichments in flasks.

The cultures in the flasks were sub cultured into fresh NMS medium and incubated at 30°C 

on a rotary incubator for 1 week to 10 days of growth. After 1 week to 10 days of growth in 

fresh flasks, a loopful of culture was streaked on fresh NMS plates and incubated at 30°C in a 

methane air atmosphere until single colonies of the isolate were obtained. The plates were
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then put into a gas tight jar and methane gas was introduced into the air in the jar as the sole 

source of carbon and energy and incubated at 30°C for 1-3 weeks. Depending on the physical 

appearance and morphological features of colonies, colonies of the same appearance were 

streaked on fresh NMS plates and incubated at 30°C for 1-3 weeks for appropriate growth of 

methanotrophs on the plates.

The isolated organisms were streaked several times on fresh NMS plates and, prior to 

sequencing of the 16S rRNA genes, were also examined under the microscope to observe 

features like shape and motility.

After obtaining pure cultures the methanotrophs M. trichosporium and Mm. koyamae (SHU1) 

were grown and propagated aerobically in nitrate minimal salts (NMS) medium or NMS agar 

using methane (1:4 v/v in air) as sole source of carbon and energy.

The growth of the organism was determined by plotting a graph of absorbance at A600 nm vs 

time.

2.1.3. Growth of methanotrophs for chromium (VI) removal experiments

All growth cultures and chromate reduction experiments were carried out at 30°C using an 

orbital shaker incubator at 180 to 200 rpm. Bacterial cultures were prepared in 250 mL 

Erlenmeyer flasks containing 50 mL of medium as the working volume in triplicate. The 

flasks were inoculated with pure cultures of M. trichosporium OB3b, Mm. koyamae (SHU1) 

at 30°C. Flasks were fitted with subaseals to prevent the loss of methane. 50 cm3 of air was 

removed by using a plastic syringe fitted with a hypodermic needle and then the air was 

replaced aseptically with 60 cm3 of methane, whilst allowing the addition of liquids or taking 

the samples for spectrophotometric analysis.

Cultures were allowed to grow to an OD6 0 0  of 0.3-0.8 before addition of hexavalent 

chromium in the form of potassium dichromate solution. The cells were cultured in the 

presence of hexavalent chromium using the same culture methods described above, with 

addition of the same concentration of hexavalent chromium to control flasks, containing 

medium plus dead cells or just medium as stated for each experiment.

The resistance of the organism to chromium was studied by cultivating the organism in fresh 

NMS medium and then by addition of hexavalent chromium and taking absorbance readings 

at A600 nm at regular intervals. The resistance of Mm. koyamae SHUlwas also observed by
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preparing fresh NMS plates with the different chromium(VI) concentrations of 5, 10, 25, 50, 

75 and 100 ppm and the resistance of the organism was identified by growth of organism on 

these NMS plates.

2.1.4 Equipment

Orbital incubators were used from Stuart Scientific S I50 and Gallenkamp, UK

Inductively coupled plasma-mass spectrometer (ICP-MS) model Hewlett Packard (HP) 4500, 

Yokogawa Corporation, Japan was used

Spectrophotometer: 6715 UV/Vis Jenway

Centrifuge: Heraeus Pico 17, Thermoscientific

Thermal cycler: Primus 8 6  plus, MWG-Biotech

Microwave Oven MDS2000 CEM Corporation USA

2.1.5 Media

Nitrate minimal salts (NMS) liquid medium and agar medium containing 15 g of 

bacteriological agar (Oxoid) per litre were used for cultivation of methanotrophs. Phosphate 

buffer was added after the medium had cooled to about 60°C, just before pouring the agar 

media in sterile plates. The recipe of NMS is as follows:

NMS Medium

This recipe is for NMS with 0.1 mg per litre CUSO4 .5 H2 O. To vary the concentration of 

copper, copper free NMS trace elements (recipe below) were used and copper sulphate was 

added to bulk medium as a separate solution before autoclaving.

The following components were mixed in the following given proportion

10 X NMS salts - 100ml

Na molybdate solution - 1ml

NMS trace elements - 1 ml

Fe EDTA solution - 0.1ml
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Water to 1 litre

Just before using 10 ml of sterile NMS phosphate buffer solution was added per litre of 

medium (when cooled to lower than 60° C)

10 X NMS salts

k n o 3 - 1 0  g

M gS04 .7H20  - 10 g 

CaCl2 .2H20  -2 g 

Water to 1 litre 

Stored at 4°C 

Na molybdate solution 

NaM o04 .2H20  - 0.5 g 

Water to 1 litre 

Stored at 4°C 

FeEDTA solution 

FeEDTA -3.8 g 

Water to 100 ml 

Stored in the dark at 4°C.

NMS trace elements

CuS0 4 .5H20  - 100 mg (for 0.1 mg per litre in the final medium)

FeS0 4 .7H20  - 500 mg 

ZnS0 4 .7H20  - 400 mg 

H 3 B O 3  - 15 mg
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CoC13 .6H20  - 50 mg 

Na2EDTA - 250 mg 

MnCl2 .4H20  - 20 mg 

NiCl2 .6H20  - 10 mg

Water to 1 litre 

Stored in the dark at 4°C.

NMS phosphate buffer solution

Na2 H P0 4 .12H2 0 -  107.4 g 

(OR Na2 H P0 4  - 49.7 g)

KH2P 0 4  - 39 g 

Water to 1 litre

pH was 6 . 8  without adjustment. Sterilised by autoclaving in 100 ml aliquots and stored at 

room temperature.

2.2. Analytical measurements 

2.2.1 Optical density measurements

During the whole experimentation process, the OD (for growth curve experiments) was 

measured at a wavelength 600 nm using a spectrophotometer.

2.2.2 Preparation of chromium (VI) stock solution

A stock solution containing 1000 ppm of chromium was prepared by adding 1.130 g of 

K2 Cr2 0 7 in 500 ml of deionised water.

2.2.3 Preparation of chromium (VI) standard curve

A 1, 2.5, 5.0, 7.5 and 10 ppm range of Cr (VI) solutions were prepared including a blank. 50 

j l l I  of diphenyl carbazide (0.5 g in 200 ml of acetone) and 30 pi of 10 % sulphuric acid were 

added to 1 ml of each of the standard Cr (VI) solutions and allowed to stand for 5 minutes in 

order to develop colour (Al Hasin et al.,2010). A calibration curve with the standards of
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hexavalent chromium was obtained, from which the unknown values are interpolated with the 

help of prism 6  Graph pad software.

After the colour development the absorbance is measured at 540 nm and the graph was 

plotted against absorbance vs concentration to get standard curve.

2.2.4. Determination of reduction assay in microbial cultures

The reduction of hexavalent chromium in microbial cultures was determined by measuring 

growth, inhibiting metabolic enzyme and also MMO enzyme described below.

The removal of the hexavalent chromium was determined by culturing the organism Mm. 

koyamae SHU1 in fresh NMS medium to optical density (0.1/0.3 OD) and then addition of 

hexavalent chromium ( 1 0  ppm) in the form of potassium di-chromate solution and then 

determining the removal of hexavalent chromium via the diphenyl carbazide (DPC) assay and 

recording the absorbance readings at A5 4 0  nm- A 1 ml aliquot of each bacterial culture and 

control was taken in an Eppendorf tubes and it was centrifuged for 5 minutes at maximum 

speed and the supernatant was collected and the diphenyl carbazide assay was performed as 

described for the standard curve above. The unknown concentration in the samples was 

determined by using the standard curve.

An experiment was designed to determine whether the removal of hexavalent chromium was 

carried out by the organism enzymatically or whether the chromium removal was a non 

enzymatic process such as biosorption. The organism was cultivated as described above.

0.5% sodium azide was also added which is a metabolic inhibitor. Removal of Cr (VI) is 

determined by the DPC assay. In a separate flask containing NMS medium the organism was 

cultivated and optical density measured 0.1/0.3 at OD600 nm and the cells were autoclaved, 

in order to kill them and inactivate enzymes. After cooling hexavalent chromium was added 

and chromium (VI) concentration was monitored by the DPC assay at A540 nm.

In another set of experiments, the organism Mm. koyamae was again cultivated in fresh flasks 

with optical density of 0.3 and then addition of 10 ppm hexavalent chromium. Phenyl 

acetylene (0.05%v/v) was added to the culture flasks to inhibit the enzyme methane 

monooxygenase. The inhibition of the enzyme is assessed by monitoring the removal of 

hexavalent chromium by DPC assay.
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Fresh NMS medium was prepared with 0 . 1  mg of copper per litre and the organism was 

cultivated until it reached 0 . 3  O D 600 nm. Then phenyl acetylene ( 0 . 0 5 %  v/v) and 10 ppm of 

hexavalent chromium were added to determine whether the sMMO enzyme was inhibited and 

its possible role in reduction of chromium (VI). The removal of hexavalent chromium was 

monitored by D P C  assay.

2.2.5 Determination of Napthalene oxidation assay

The expression of sMMO and pMMO in the methanotrophs is controlled by the concentration 

of the copper in the medium. pMMO is expressed at high copper to biomass ratio and sMMO 

is expressed at low copper to biomass ratio. In order to investigate the effect of a copper 

dependent MMO and possibly other gene expression on the effect of phenyl acetylene on 

chromium (VI) removal, the experiments were performed at a range of copper concentrations. 

The fresh NMS medium with various concentrations of copper 1 0 0  mg L '1, 1 mg L"1, and 0 . 1  

m gL 1 were prepared and the organism was cultivated and the expression of pMMO or 

sMMO was determined by the naphthalene oxidation assay (Graham et al., 1 9 9 2 ) .

In order to determine whether methanotroph cells on plates were expressing sMMO, the 

naphthalene oxidation test was performed and the plates were compared with the plates of 

known sMMO producing Methylosinus trichosporium OB3b, at a low copper to biomass ratio 

as a positive control.

The naphthalene oxidation assay was mainly used to assess whether the sMMO gene is active 

in methanotrophs because napthalene is substrate of sMMO but not pMMO. The test was 

performed by adding a few crystals of naphthalene (~ 2 5 - 3 0  mg) across the petri dish lid and 

the agar plate was turned upside down on top of it. The plate was kept in an air tight jar and 

incubated at 3 0 ° C  for 6 0  minutes. The plates were removed from the incubator and a freshly 

prepared solution of tetrazotised-o-dianisidine ( 5  mg mL'1) was added drop wise onto the 

colonies. A purple or pink colour that developed instantly or within a few minutes indicated 

the oxidation of napthalene to 1 , 2 -  napthol by the sMMO enzyme.

In the case of liquid cultures 1 mL of liquid cultures were taken into Eppendorf tubes and a 

few crystals of naphthalene were added and the tubes were incubated on a rotary shaker at 

3 0 ° C  for 6 0  minutes and sMMO activity was assessed by adding tetrazotised-o-dianisidine as 

above.
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2.2.6 pH measurement in sediment samples

After transporting the sediment samples to the laboratory, their pH was measured using the 

pH meter (a suspension was made by adding 0.1 g to 10 ml distilled water) and the results 

indicated that the pH was near neutral (6 .7-6.9) for all samples.

2.3 Template DNA extractions for polymerase chain reaction (PCR)

This is the method of extracting DNA from a culture of bacterial cells that was used to 

prepare the template for PCR amplification.

1. Liquid culture (1 ml) / or a loopful of bacterial colonies from the plate were taken into an 

Eppendorf tube.

2. In the case of liquid cultures, centrifugation for 1 minute at maximum speed in a bench top 

centrifuge was carried out to pellet the cells and then the supernatant was discarded

3. The cells were resuspended in 50 pi of sterile distilled (SD) ultrapure water by vortexing, 

and centrifuging for 1 minute.

4. The supernatant was discarded

5. The cells were again resuspended in 30 pi of SD H2 O

6 . The cell suspension was boiled in a heat block at 100°C for 10 minutes

7. Centrifugation was carried out for 10 minutes at maximum speed.

8 . 5 pi of the resulting supernatant was used as the DNA containing template for PCR.

PCR Reagents

10X PCR buffer -5 pi

dNTPs (25 mM each dNTP) - 0.5 pi

50 mM MgCL - 2 pi

Primer 1 [16S1 AGAGTTTGATCMTGGCTCAG ((100-200ng)] - 1 pi 

Primer 2 [16S2 TACGGYTACCTTGTTACGACTT (100-200 ng)] - 1 pi
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DNA template - 5 pi

BSA (bovine serum albumin) solution - 1 pi 

Taq Polymerase - 1 pi 

SD H20  - 33.5 pi

After addition of all reagents the tubes were placed in the thermal cycler and the program 

selected for amplification is shown in table 2 . 1

The first phase is denaturation where the double helical strands of DNA are separated from 

one another in the template DNA at 94°C - 95°C. In the second phase or annealing step the 

primers, which are short sequences of single stranded DNA added to the sample DNA, anneal 

with complementary similar sequences on the template DNA at a specific temperature. In the 

final phase or extension phase the polymerase enzyme makes primers extend along the length 

of DNA to make a new strand of DNA. Successive cycle of these steps result in an 

exponential amplification of the target DNA sequences.

Table 2.1 Thermal cycling conditions

Step Temperature Time (Minutes) No. of cycles

Initial denaturation 95UC 1-3 1

Denaturation 95UC 0.5

25-40Annealing Tm-5 0.5

Extension 72UC 1 min/kb

Final extension 72°C 5-15 1

Source: Fisher scientific protocol

After completion of the thermal cycler program (about 2 h) the tubes were kept on ice for 30 

minutes and 5 pi of the solution was used for gel electrophoresis.

2.4 Gel Electrophoresis

1. The agarose gel was prepared by adding lg  of agarose in 100 ml TAE buffer. The 

suspension was heated in the microwave oven to get clear solution.
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2. After cooling to about 50°C 40 ml of the solution was poured into the gel plates and 

ethidium bromide (5 pi of a 5 mg/ml solution) was added to permit subsequent visualisation 

of the DNA.

3. The comb was inserted into the gel.

4. After the gel had solidified the comb was removed and the gel was placed into the gel tank 

filled with the TAE buffer.

5. A piece of parafilm was taken and 1 pi of 6  X DNA loading dye (Thermal Scientific) was 

added on to the parafilm.

6 . 5 pi of water (which serve as negative sample) was added to a separate lp l of loading dye 

and pipette it out and released to mix it well.

7. The procedure was repeated with the given number of samples.

8 . 6  pi of the sample plus loading dye was loaded into the second wells in the gel.

9. In the same way other samples were filled in the next well one after the other.

10. 1 pi of loading dye and 3 pi DNA ladder were mixed well and the resulting 4 pi of 

solution were loaded into the first well of the gel to quantify the approximate size and amount 

of DNA in the experimental samples.

11. In the same way another 4 pi of DNA ladder plus loading dye was placed in the last well 

after all the samples were loaded.

12. The lid was placed onto the gel tank and connected to the power supply and the voltage 

was adjusted to 90 V and checked after 10 min

13. The gel was allowed to run for 40 minutes after which the power was switched off.

14. The lid was removed and the agarose gel was placed on to the uvp trans- illuminator.

15 The uv light was turned on and the ethidium bromide which is a DNA-intercalating agent 

caused the bands of DNA to fluoresce with orange colour.

16. An image of the gel electrophoresis was captured via a digital camera and the connected 

computer.
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2.5 PCR product clean up

The PCR product which was obtained had to be cleaned up prior to sending for sequencing, 

which was performed by using the Qiagen PCR clean up kit.

1. Depending on the number of samples the Eppendorf tubes were taken in duplicate and 

labelled accordingly.

2. 200 pi of buffer PB (binding buffer) from the kit was added to each tube.

3. 50 pi of sample was added to each tube and was mixed by hand.

4. 250 pi of the resulting solution was poured into DNA-binding column tubes from the kit.

5. The tubes were centrifuged at 13,000 rpm in the micro centrifuge for 1 minute.

6 . The liquid that ran through the columns was discarded.

7. 750 pi of buffer PE (wash buffer) was added to each of the column tubes.

8 . The centrifugation was carried out as in the above step and the flow through was discarded 

and the process was repeated again until no further buffer flowed out of the columns.

9. The flow through was discarded and the column tubes were placed onto new other tubes to 

collect the DNA.

10. 30 pi of buffer EB (elution buffer) was added to the column tubes and centrifuged again 

as above.

11. The column tubes were discarded and the purified PCR product was stored in the freezer 

until sequencing.

2.6 Sequencing of 16S rRNA genes

After the PCR amplification of the 16S rRNA gene from the purified bacterial DNA from the 

isolated organisms from the River Sheaf sediments, the amplified DNA was visualised by gel 

electrophoresis and the samples were cleaned up with the Qiagen PCR kit, as detailed below. 

The samples were then sent to Euro fins MWG for sequencing (Carson et al., 2012).
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2.7 Bioinformatics analysis of sequences

Bioinformatics is a discipline that combines the computer technology and biology for 

processing biological data.

BLAST is the Basic Local Alignment Search Tool and is an algorithm for comparing 

biological sequences such as amino acid sequences and nucleotide sequences of different 

proteins or DNA. A BLAST search compares the query sequences with the library of 

sequences databases to identify sequence that resemble the query sequence above certain 

threshold limit.

The result that was obtained from the sequencing was compared with database of sequences 

using the NCBI BLAST server (http://blast.ncbi.nlm.nih.gov/Blast.cgi). and identified the 

organism with nearest similarity in terms of the sequence of its 16S rRNA gene.

2.8. Acid digestion for heavy metal analysis

A known amount of each sample (0.1 g) was taken into a digestion tube and 2 ml of 50% 

HNO3 was added to the tube in fume hood and was left for 15 minutes for pre-digestion. The 

tubes were then sealed and digested in a microwave digestion unit (10 minutes). After the 

samples had cooled a further 2 ml of 50% HNO3 was added and the mixture was filtered 

through Whatman filter paper. The filtered supernatant was stored in capped bottles in the 

cold room until further analysis on ICP-MS. The tubes were washed in soap solution after 

filtration and then soaked in 10% HNO3 overnight and washed with distilled water. The tubes 

were air dried and re-used (EPA method 3050 B).

2.9 Heavy metal analysis by ICP-MS

ICP-MS (Inductive coupled plasma mass spectrometry) is a mass spectrometry technique 

which can measure several metals and non-metals at a concentrations down to the parts per 

trillion range of non-interfered low background isotopes. A schematic representation of ICP- 

MS is shown below in the figure 2.1.

The ICP-MS consists of following parts:

1. Sample introduction system which composes nebuliser and spray chamber to introduce the 

sample into the system.

2. ICP torch and RF coil which generates argon plasma and also serve as ion source
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3. Interface which links the atmospheric pressure to high vacuum mass spectrometer

4. Vacuum system which provides high vacuum for ion optics, quadrapole and detector

5. Collision or reaction cell which remove interfaces

6 . Ion optics which guide the desired ions into quadrapole

7. Mass spectrometer which sorts ions by mass-to-charge ratio (m/z)

8 . Detector which counts individual ions

9. Data handling and system controller which controls instrument and handles data to obtain 

final output

Figure 2.1 Schematic diagram of ICP-MS
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Source: Adapted from www.ualberta.ca

The principle behind the ICP-MS is when the samples are introduced into the sample 

injection system the fine droplets created in nebulizer will be passed through spray chamber 

and finally into argon plasma. The plasma dries the aerosols dissociates the molecules there 

by removing electron from components thus forming single charged ions which are directed 

into mass spectrometer. Most ICP-MS use quadrapole mass spectrometer which rapidly scans 

mass-to-charge-ratio at one time.

Once the ions exit from the spectrometer, ions strike the dynode of an electron multiplier, 

which acts as detector. At this stage the ions releases a cascade of electrons which are
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amplified until a measurable pulse. The software program installed on the computer 

compares intensities of measurable pulses to those of standards, which make up calibration 

curve, to determine the concentration of the element.

The ICP-MS equipment was calibrated by running with blank solutions, followed by a 

standard solution, ICP-MS Calibration standard (XXI) from Sigma.

After calibration, the samples in which the heavy metal analysis has to be carried are injected 

via nebuliser and the processing of sample takes place in the ICP-MS and the final output is 

generated in the report.

2.10 Grain size distribution in sediment samples

After collecting sediment samples the samples were air dried in the oven and then separated 

into different sizes using a series of sieves as per the mesh size (75 pm, 150 pm, 300 pm, 600 

pm, 1.18 mm, 2.36 mm and 5 mm). The weight of each sieve was determined first and then 

the sieves were stacked one on top of another with the 75 pm sieve at the bottom and the 5.0 

mm sieve on top. A known amount of soil sample was placed on the uppermost sieve and 

sieving was carried out for 15 minutes. After sieving the weight of soil plus sieve was 

determined for each individual sieve to allow the weight of each particle size fraction to be 

calculated. Finally the sieves were cleaned with a brush before use with further samples.

The sampling protocol for the River Sheaf sediments is described in the sampling chapter.
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3. Sampling of River Sheaf Sediments

The sampling protocol used the steps described below to obtain the samples from suitable 

locations in appropriate quantities in order to determine the physical and chemical 

characteristics of the sediments and also enrich and isolate microorganisms to employ in 

bioremediation.

3.1 Introduction

Sheffield is known for large scale metal manufacturing and processing resulting in the 

introduction of heavy metals into top soils. A wide range of pollutants such as Cr, Ni, and Pb 

have been found in the top soils of Sheffield and these have resulted from point and diffuse 

pollution. Dispersal of trace elements due to mining and exploitation of coal has further 

enhanced the heavy metal concentration in the top soils of Sheffield. Deposition of heavy 

metals in the top soils of Sheffield has resulted from the metal working industries of Sheffield 

along the Rivers Don, Sheaf and Porter during the last century and establishment of 150 firms 

for steel manufacturing in the city during the mid-18th century. The long history of the steel 

manufacture in Sheffield, including the large steel works of British Steel at Tinsley in the 

1960s have led to elevated levels of Ni and Cr in top soils of the Sheffield area (Rawlins et al., 

2005).

Knowledge of the history of the steel industry and historical heavy metal contamination of 

the Sheffield area serves as an important base in analysing the type and concentration of 

pollutants in the sediments of the River Sheaf and employing the River Sheaf as a study area 

for further research.

3.2 Sampling Purpose: -

Health and safety procedures have to be taken into consideration during sampling. A risk 

assessment has to be prepared considering all risks involved during sampling to minimise the 

chance of accidents during field trips.

The aim of the sampling procedure was to designate an appropriate area where the samples 

were to be collected, and take photographs when the samples were collected at appropriate 

locations along the section of the River Sheaf which passes through Millhouses Park. The 

device used to collect the samples was a plastic scoop.
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The main rationale for identification of this particular location of the River Sheaf as the study 

site is due to its historical contamination and also some former industrial pollution sources 

present along the River Sheaf upstream from the chosen sampling site. The heavy metals 

were expected to persist in the environment for a longer time than other organic pollutants, 

due to their non-biodegradable nature in the sediments; as a result the section of the River 

Sheaf described below was selected as the sampling site.

3.3 Description of site: -

The present site employed for the study is the River Sheaf which is a river in Sheffield 53° 

23' N 1° 28' W53.383° N 1.467° W, South Yorkshire, England. Situated in the Pennine 

foothills in the extreme south west comer of Yorkshire, Sheffield city is built on seven hills 

and watered by five rivers. The Rivers Sheaf, Porter, Loxley and Rivelin finally join into the 

River Don as shown in figure 3.1. There are continuous ridges which rise from the Don 

Valley and connect with the high ground to the north and west. With cross valleys and minor 

ridges the impression is gained that Sheffield is all hills, except for one comer of flat terrain 

containing Attercliffe and Carbrook on the lower Don valley. The source of the River Sheaf 

is in the union of the Totley Brook and the Old Hay Brook in Totley, which was formerly a 

separate settlement and is now a suburb of Sheffield (total 56 suburbs). The main tributaries 

of the River Sheaf are Porter Brook and Meers Brook. It flows northwards, past the suburb of 

Dore through the valley called Abbeydale and north of suburb of Heeley. The River Sheaf 

joins the River Don near Blonk Street Bridge in Sheffield city centre.

Millhouses is a public urban park located in Millhouses neighbourhood in the south of 

Sheffield. It is a 12.87 hectare park stretching 1.2 km along the floor of the River Sheaf 

valley sandwiched between Abbeydale Road South (A 621) and the railway tracks of the 

Midland Mainline. Prior to the construction of the park it was used for farmland and 

industrial purposes due to various power mills located on the river. (Sheffield libraries 

archives & information 2006)
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Figure 3.1 Rivers of Sheffield
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Source: Adapted from Crown Copyright/database right 2011. An Ordnance Survey/EDINA supplied 

service. River layer kindly licensed from the Environment Agency.

The soils of Sheffield city have developed over carboniferous Lower and Middle coal 

measure formations, although the soils of part of the west of the city have been developed by 

older Millstone Grit Formation. The Lower and Middle coal measures in the Sheffield region 

consist of cyclothems, including mudstones, shales and inter-bedded sandstones. Soils 

derived from the coal measures in this region were shown to have naturally elevated 

concentrations of several trace elements including Pb, Cr and Ni in comparison to their 

average contents throughout England and Wales. There are no extensive quaternary deposits 

found in these soils ensuring that all the soils are formed from two parent materials (Rawlins 

et al. 2002).

The history of metal manufacturing and processing, has contributed to significant amounts of 

trace metal pollution in the urban areas of Sheffield top soils. The historic coal usage, metal
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working industries on the rivers Don, Sheaf and Porter along with the Steel Manufacturing by 

British Steel in 1960s have led to elevated levels of Ni and Cr in Sheffield soils. Historically 

Pb was known in Sheffield for manufacturing of special alloys and more recently as an 

additive (alkyl-lead) in petrol. Although the adding of lead compounds to petrol ceased in the 

UK in 2000, high road density and heavy traffic in industrialized areas was evident 

throughout Sheffield and has contributed to significant point and diffuse metal pollution 

(Rawlins et al., 2002).

3.4 Sample collection: -

The sediment sample collection protocol was designed to collect the samples according to the 

size of site and physical and chemical parameters to be analysed. A stratified random 

sampling method was employed to collect the samples at the River Sheaf site passing along 

Millhouses Park. The total site was broken into two areas and samples were collected 

randomly from each area depending on the accessibility to sediment samples at the location. 

Depending on the length of River Sheaf that is passing through Millhouses Park the nine 

samples were collected at approximately equal spacing along the river from where the River 

enters Millhouses Park with grid reference SK 332835 to the point at which the River leaves 

the Park, considering the accessibility to the site in view with health and safety. The nine 

different sampling sites at which samples were collected are shown in figure 3.2
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Figure 3.2 Map showing different sampling locations along River Sheaf

Scale 1:5000 Red dots denote  
sampling locations

3.5 Sampling locations: -

The sediments of the River Sheaf passing along Millhouses Park were collected for the 

present study. The samples were collected during the month of October in 2011. A total of 

nine samples were collected for physico chemical and microbiological analysis. The 

photographs of the site at the individual locations of sample collected are shown below and 

marked with arrows in Figure 3.3-3.11.
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Figure 3.3 (Sample MH-1)

Figure 3.4 (Sample MH-2)
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Figure 3.5 (Sample MH-3)

Figure 3.6 (Sample MH-4)
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Figure 3.7 (Sample MH-5)

Figure 3.8 (Sample MH-6)
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Figure 3.9 (Sample MH-7)

Figure 3.10 (Sample MH-8)
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Figure 3.11 (Sample MH-9)

3.6 Sample preparation and handling: -

The sediments samples of 1.5-2.0 kg each were collected in zip lock bags by using a plastic 

scoop at each designated location as shown in the figure 3.1. After collection at each site the 

scoop was cleaned in the flowing water of the river to minimise cross contamination and the 

samples were transported to laboratory for further analysis and were stored in the cold room 

prior to the analysis. The litter, mostly domestic waste such as tins, paper and plastic bags, 

was observed along with some dog faeces and debris at some places which could result in 

pollution of sediments to some extent in and around the site, along with leaves and twigs 

around the site; these were separated prior to placing the soils samples in zip lock bags.

The weather on the day during mid October 2011 when the samples were collected was 

cloudy with 7°C temperature. All the samples were collected on the same day. The river was 

flowing very slowly throughout its course in Millhouses Park. The Park is used by public for 

social and recreational activities and can contribute to some amount of waste which can alter 

the biological properties of sediments.
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The samples were stored in the cold room and then the physical and chemical characteristics 

were analysed by separating the sediments according to the fraction size and also heavy metal 

analysis were determined in these sediments samples which are described in the next chapter 

"physical and chemical characterisation of River Sheaf sediments" in this thesis.

3.7 Conclusion and Discussions: -

The site is used by general public for recreational activities. Waste due to recreational 

activities such as tins, paper and plastic bags have been found around the site which can alter 

the biological properties of sediment and water. The water looks clean to naked eye in all the 

areas except at one junction where the pipe of 20 cm diameter from unknown origin joined 

into river which could also have an effect on the sediments and water.
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Chapter 4

PHYSICAL AND CHEMICAL 

CHARACTERISATION OF 

SEDIMENTS
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4. Physical and chemical characteristics of sediment

samples

4.1 Introduction

The sediment samples from the River Sheaf were collected and were transported to the 

laboratory for further physical and chemical characterization. Trace elements or heavy metals 

are the primary concern in environmental pollution. The main sources of pollution include 

weathering of soils and rocks, anthropogenic activities such as drainage of land and land use 

alterations and industrial activities. The hydrological cycle which maintains the water in the 

environment dissolves less than 1% of pollutants in water and 99% are stored in sediments, 

thus making sediments major carriers of pollutants. Analysis of sediments indicates the 

nature of pollutants and the type of pollution associated with the water body (Cited by 

Filgueiras et al., 2004).

Human activities like tanning, smelting, electricity production, mining and domestic and 

industrial waste waters release several aquatic toxic heavy metals into the terrestrial 

environment and through natural processes enter into the aquatic environment and become 

deposited in the sediments.

The particle size distribution was measured in the sediment samples by the sieving method as 

described in the section 2.9 of Materials and Methods chapter. The concentration of the 

pollutants stored in sediments is affected by the sediment mineralogy and dimensions and 

distribution of the particles. Trace elements are adsorbed by organic substances such as 

carbohydrates and minerals such as Fe and Mn oxides. Heavy metals of anthropogenic origin 

are generally introduced into the environment as inorganic complexes or hydrated ions which 

can easily bind to the surface of sediment particles by relatively weak physical and chemical 

bonds (Bartoli et al., 2012). The concentration of chemicals in sediments tends to increase 

with the decreasing particle size, because the surface area per unit mass increases rapidly 

with decreasing particle size, as suggested by Fontaine et al (2000).

After particle size fractionation of the samples the heavy metals in each selected fraction 

were determined by Nitric acid digestion followed by analysis on ICP-MS.

58



4.2 Results

The sediment samples were divided into various fragments according to size of particles and 

were categorised on the Wentworth scale as shown in table 4.1. Grain size is the fundamental 

aspect of sediments. According to geological criteria sediments can be classified into four 

fractions that constitute gravel, sand, silt and clay and sediments can be characterised based 

on the ratios of the various proportions o f these fractions. The fractions have long been 

defined according to the grade scale described by Wentworth (1922). According to 

Wentworth's scale the grain size is a logarithmic scale in which each grade limit is twice as 

large as the next smaller grade limit. The gravel sized particles have a diameter o f 2 mm or 

greater; sand-sized particles diameters range from <2 mm to >62.5 pm; silt-sized particles 

have diameters ranging from <62.5 pm to >4 pm; and clay is less than < 4 pm. The table 4.1 

shows the relationship between the Wentworth scale and the * (phi) scale devised by 

Krumbein which has been extensively used in recent work (Krumbein & Aberdeen 1937).

Table 4.1 Size classification of sample fractions

Fractions Wentworth Grade Phi($) scale

Fraction l ->5 millimeters Pebble -2

Fraction 2 <5.0 mm>2.36 

mm

Granule -1

Fraction 3 <2.36 mm>1.18 

mm

very coarse sand 0

Fraction 4 <1.18 mm>600 

pm

coarse sand 1

Fraction 5 <600 pm >300 pm medium sand 2

Fraction 6 <300 pm >150 pm fine sand 3

Fraction 7 <150 pm>75 pm very fine sand 4

Fraction 8 <75 pm Silt 5-8

The sample fractions which are larger than sand (granules, pebbles, cobbles and boulders) are 

collectively known as gravel and the fractions smaller than the sand (silt and clay) are known 

as mud. A total of 9 samples were collected from the River Sheaf that was passing through 

the Millhouses Park and was designated as MH-1 to MH-9. The sediment samples are
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categorised into various fractions according to sizes and are described below from table 4.2- 

4.10.

Table 4.2 Particle size distribution at sample location MH-1

MH-1 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight

of

sample

fraction

(g)

630.6 283.0 200.1 118.2 67.1 26.0 10.7 11.8

Percent

retained

46.87 21.03 14.88 8.79 4.99 1.93 0.79 0.88

see Table 4.1 for definitions of fractions 

Weight of soil sample = 1345.5g

% retained= weight of sample fraction/weight of soil sample *100

Table 4.3 Particle size distribution at sample location MH-2

MH-2 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight 

of sample 

fraction 

(g)

368.5 203 216.6 251.4 179.1 63.8 19.3 17.0

Percent

retained

27.92 15.38 16.41 19.05 13.57 4.83 1.46 1.28

see Table 4.1 for definitions of fractions

Weight of soil sample= 1319.4g

60



Table 4.4 Particle size distribution at sample location MH-3

MH-3 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight

of

sample

fraction

(g)

213.6 105 124.7 168.0 138.5 63.9 19.9 15.1

Percent

retained

25.13 12.35 14.67 19.76 16.29 7.51 2.34 1.77

see Table 4.1 for definitions of fractions 

Weight of soil sample=849.8g

Table 4.5 Particle size distribution at sample location MH-4

MH-4 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight

of

sample

fraction

(g)

291.9 150.3 153.3 217 145.2 41.5 11.7 10.4

Percent

retained

28.57 14.71 15.00 21.24 14.21 4.06 1.14 1.01

see Table 4.1 for definitions of fractions 

Weight of soil sample=1021.5g
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Table 4.6 Particle size distribution at sample location MH-5

MH-5 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight

of

sample

fraction

(g)

584.7 205.5 170.2 251.5 297.7 106.2 31.0 23.6

Percent

retained

34.86 12.25 10.1 15.35 17.15 6.33 1.84 1.40

see Table 4.1 for definitions of fractions 

Weight of soil sample=:1677.0g

Table 4.7 Particle size distribution at sample location MH-6

MH-6 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight

of

sample

fraction

(g)

399.2 189 193 198.2 131.7 53.8 23.1 27.1

Percent

retained

32.82 15.54 15.86 16.29 10.82 4.42 1.89 2.22

see Table 4.1 for definitions of fractions 

Weight of soil sample = 1216.2 g
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Table 4.8 Particle size distribution at sample location MH-7

MH-7 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight

of

sample

fraction

(g)

694.3 316.9 208.3 111.0 80.3 41.4 16.6 21.4

Percent

retained

46.58 21.27 13.98 7.45 5.39 2.78 1.11 1.43

see Table 4.1 for definitions of fractions 

Weight of soil sample = 1490.4 g

Table 4.9 Particle size distribution at sample location MH-8

MH-8 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight

of

sample

fraction

(g)

612.8 257.9 240.7 226.8 273.1 161.2 38.8 21.7

Percent

retained

33.41 14.06 13.12 12.37 14.89 8.79 2.11 1.18

see Table 4.1 for definitions of fractions 

Weight of soil sample = 1834.1 g
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Table 4.10 Particle size distribution at sample location MH-9

MH-9 Fraction

1

Fraction

2

Fraction

3

Fraction

4

Fraction

5

Fraction

6

Fraction

7

Fraction

8

Weight

of

sample

fraction

(g)

234.2 134.6 110.1 125.9 255.5 292.6 97.6 51.8

Percent

retained

17.94 10.31 8.43 9.64 19.57 22.41 7.48 3.97

see Table 4.1 for definitions of fractions 

Weight of soil sample = 1305.3 g

The abundance of each of the particle size fractions in each sample was in the following rank 

order pebble> granules> coarse sand > very coarse sand> medium sand> fine sand> very fine 

sand> silt. The percent of silt is low at all sample locations with an average of 1.68% and 

pebbles being the highest contributing to average of 32.67% in each fractions.

After fractionating into the various particle sizes heavy metal analysis was carried out on 

fractions 5-8 i.e., the four finest fractions with the ICP-MS as described in the Materials and 

Methods section 2.8 and the results are tabulated below (table 4.11 to 4.16).
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Table 4.11 Heavy metal concentration at sample locations MH-1, MH-2 &MH-3 fractions

Sample
Location

Mg
(mg/kg)

Ca
(mg/kg)

Cr
(mg/kg)

Mn
(mg/kg)

Fe
(mg/kg)

Co
(mg/kg)

Ni
(mg/kg)

Cu
(mg/kg)

MH-1
Fraction
5

52.08 12.084 575.2

MH-1
Fraction
6

1051.2 45.8 1902

MH-1
Fraction
7

1776 7.808 212.2 9596 0.1502 1.136

MH-1
Fraction
8

1965 13.86 0.236 0.538 3.238

MH-2
Fraction
5

47.68 10.56 676

MH-2
Fraction
6

1156.8 35.63 2083

MH-2
Fraction
7

1665.8 3.568 200.96 9659 0.328 0.985

MH-2
Fraction
8

1896 12.685 0.486 0.785 2.56

MH-3
Fraction
5

10.36 3865 3.86 478

MH-3
Fraction
6

986.3 25.65 1896

MH-3
Fraction
7

1336 2.86 125.36 8758 0.236 1.686

MH-3
Fraction
8

1683.2 6.538 1.214 0.685 3.825

d e n o te s  b e low  detect ion  limit
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Table 4.12 Heavy metal concentration at sample locations MH-1, MH-2 &MH-3 fractions

Sample
Location

As
(mg/kg)

Se
(mg/kg)

Cd
(mg/kg)

Pb
(mg/kg)

Zn
(mg/kg)

MH-1
Fraction
5

5.244 5.076 5.12

MH-1
Fraction
6

5.368 50.76 8.2

MH-1
Fraction
7

6.063 238.18 21.772

MH-1
Fraction
8

6.126 336.88 35.68

MH-2
Fraction
5

4.832 6.072 3.26

MH-2
Fraction
6

4.954 49.96 5.78

MH-2
Fraction
7

5.032 210.36 18.76

MH-2
Fraction
8

5.123 280.68 29.36

MH-3
Fraction
5

4.768 4.068 4.86

MH-3
Fraction
6

4.855 48.86 6.85

MH-3
Fraction
7

4.980 196.98 18.75

MH-3
Fraction
8

5.023 212.36 27.36

denotes below detection limit
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Table 4.13 Heavy metal concentration at sample locations MH-4, MH-5 &MH-6 fractions

Sample
Location

Mg
(mg/kg)

Ca
(mg/kg)

Cr
(mg/kg)

Mn
(mg/kg)

Fe
(mg/kg)

Co
(mg/kg)

Ni
(mg/kg)

Cu
(mg/kg)

MH-4
Fraction
5

10.36 1230 3.368 65.8

MH-4
Fraction
6

1236.7 2136 0.896

MH-4
Fraction
7

3658 1.123 8588 1.536 9.856 6.368

MH-4
Fraction
8

71.36 9.865 5.658 22.121 40.386

MH-5
Fraction
5

11.388 1460.8 1.422 83.6

MH-5
Fraction
6

1464.8 4392 1.2912

MH-5
Fraction
7

4688 4.744 10744 3.9676 11.892 9.668

MH-5
Fraction
8

8592 25.232 7.66 25.196 59.08

MH-6
Fraction
5

9.568 1336 4.656 96.5

MH-6
Fraction
6

1385 3136 0.435

MH-6
Fraction
7

4025 2.265 9759 2.368 6.785 3.856

MH-6
Fraction
8

65.96 13.68 6.865 19.578 22.516

d e n o te s  be low  detect ion  limit
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Table 4.14 Heavy metal concentration at sample locations MH-4, MH-5 &MH-6 fractions cont...

Sample
Location

As
(mg/kg)

Se
(mg/kg)

Cd
(mg/kg)

Pb
(mg/kg)

Zn
(mg/kg)

MH-4
Fraction
5

4.186 70.36 2.868

MH-4
Fraction
6

4.583 100.58 22.85

MH-4
Fraction
7

4.765 175.86 47.13

MH-4
Fraction
8

4.950 200.58 96.58

MH-5
Fraction
5

5.184 100.56 4.164

MH-5
Fraction
6

5.596 113.96 24.88

MH-5
Fraction
7

6.24 228.02 58.56

MH-5
Fraction
8

6.6 271.44 121.48

MH-6
Fraction
5

3.131 81.36 3.868

MH-6
Fraction
6

3.468 121.85 36.580

MH-6
Fraction
7

3.935 157.96 49.235

MH-6
Fraction
8

4.123 210.98 101.53

denotes below detection limit
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Table 4.15 Heavy metal concentration at sample locations MH-7, MH-8 &MH-9 fractions

Sample
Location

Mg
(mg/kg)

Ca
(mg/kg)

Cr
(mg/kg)

Mn
(mg/kg)

Fe
(mg/kg)

Co
(mg/kg)

Ni
(mg/kg)

Cu
(mg/kg)

MH-7
Fraction
5

21.05 4356.8 63.8 7136

MH-7
Fraction
6

4878 27.6 3856

MH-7
Fraction
7

2136.5 4.868 4538 0.438 1.365

MH-7
Fraction
8

3985 18.965 2.136 9.675 53.785

MH-8
Fraction
5

2500.2 175.18 9250

MH-8
Fraction
6

2342.5 136.0 6758 0.734

MH-8
Fraction
7

1876.5 2.5685 8136 0.865 0.9765

MH-8
Fraction
8

2895 7.132 3.135 12.185 29.365

MH-9
Fraction
5

2635.6 195.12 8084

MH-9
Fraction
6

2395.2 129 4880 0.8472

MH-9
Fraction
7

1374.4 3.6764 7360 0.9208 1.1008

MH-9
Fraction
8

3238 9.644 5.036 13.416 37.508

d e n o te s  be low  d etect ion  limit
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Table 4.16 Heavy metal concentration at sample locations MH-7, MH-8 &MH-9 fractions cont...

Sample
Location

As
(mg/kg)

Se
(mg/kg)

Cd
(mg/kg)

Pb
(mg/kg)

Zn
(mg/kg)

MH-7
Fraction
5

7.125 116.53 45.468

MH-7
Fraction
6

7.368 140.38 31.38

MH-7
Fraction
7

7.835 200.65 48.75

MH-7
Fraction
8

8.123 335.65 95.68

MH-8
Fraction
5

5.928 101.56 29.368

MH-8
Fraction
6

5.735 116.86 11.756

MH-8
Fraction
7

6.013 216.53 33.652

MH-8
Fraction
8

6.236 412.80 80.568

MH-9
Fraction
5

6.028 108.96 34.632

MH-9
Fraction
6

5.672 124.48 13.78

MH-9
Fraction
7

5.944 218.64 38.756

MH-9
Fraction
8

6.656 439.20 85.96

denotes below detection limit

The analysis of heavy metals in the River Sheaf sediments indicate that sediments have been 

polluted with toxic heavy metals, of which the major representatives were lead (Pb), 

chromium (Cr), cobalt (Co), nickel (Ni) and arsenic (As). The magnesium was found only in 

the medium sand fractions at sample locations 3, 4, 5 and 6. The minimum concentration of 

calcium, copper, zinc, manganese, and iron at various locations was 47.68 mg/kg, 0.9765 

mg/kg, 3.26 mg/kg, 1.422 mg/kg, and 65.8 mg/kg while maximum concentration of calcium,
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copper, zinc, manganese and iron was 8592 mg/kg, 59.08 mg/kg, 121.48 mg/kg, 212.2 mg/kg 

and 10744 mg/kg. The heavy metals found at site are chromium, cobalt, nickel, arsenic and 

lead. The concentration of lead was very high compared to the other toxic metals. The 

minimum concentration of chromium, cobalt, nickel, arsenic and lead are 1.123 mg/kg, 0.236 

mg/kg, 0.1502 mg/kg, 3.131 mg/kg and 4.068 mg/kg, while maximum concentrations of these 

heavy metals chromium, cobalt, nickel, arsenic and lead at various sample locations are 

25.232 mg/kg, 7.66 mg/kg, 25.196 mg/kg 8.123 mg/kg and 412.80 mg/kg.

4.3 Conclusions and discussions:-

Size is a fundamental property of sediment particles. It provides important clues about the 

nature and provenance of sediments (Pye & Blott 2004). Most heavy metals are found in 

greatest abundance in the fractions of fine sand, very fine sand and silt as it would be easier 

for the metals to get adsorbed to the smaller particles (Duyusen et al, 2013).

The mobility and biological effectiveness of soil heavy metals have a strong correlation with 

the size and composition of heavy metal fractions (Cited by Zhang et al., 2013). The various 

size fractions have different composition and properties which affected the behaviour of 

pollutants. Fine particles have a higher ability to carry heavy metals because of their 

increasing specific surface area and presence of clay minerals, organic matter and Fe/Mn/Al 

oxides in micro aggregates (Gong et al., 2013).

Sheffield is known for extensive iron and steel working since the industrial revolution along 

the upstream region of the River Sheaf, which could contribute to the heavy toxic metals such 

as chromium, nickel, cobalt, arsenic and lead. The main source of the iron and steel industry 

is usage of chromium, nickel and cobalt with steel alloys in manufacturing and thus resulted 

in the chromium pollution with sediments. The lead in the sediments comes from industries 

and urban pollution and automobiles which have been predominant in Sheffield (Gilbertson 

et al., 1997).

Sheffield has a wide history of pollution from the period of Roman occupation which caused 

small scale geo chemical contaminants. In the 17th and 18th centuries a lot of pressure was put 

on woodlands for charcoal production for domestic and industrial use and burning of charcoal 

intensified the pollution. During m idl8lh and 19th centuries coal burning followed by coke 

utilisation for industrial and domestic purposes has led to atmospheric pollution. From 1897-
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1937 activities of the Rother Vale mine in what is now a Tinsley Park led to widespread 

pollutants of the atmosphere, water and soil. From 1913 to 1980 introduction of alloying 

agents to stainless steels, special steels and high speed steels led to the introduction of organic 

contaminants, heavy metals, charcoal and soot. After 1980 intensive use of lead additives in 

automobiles has led to increasing lead concentration and pollution in city of Sheffield.

Sheffield's historical development has been chartered by Hey (1998), Crossley et al. (1989), 

and Hutchinson and Rothwell (2008). Hutchinson and Rothwell (2008) surveyed 115 sites of 

water powered industry on the city's rivers with 34 sites documented along the River Sheaf 

and concluded that Pb was the major industrial pollutant along this river. According to 

Crossley et al. (1989) the former lead working site operated along the Upper Sheaf Valley 

located along side water courses provided early sources of power between the 17th and 19th 

centuries. A large proportion of the heavy metal pollution resulted from smelting of metal 

ores and has continued to cause problems even though the industrial activities that produced 

the pollution have ceased (Blake et al 2003, Hutchinson and Rothwell 2008).

In 2008 Hutchinson & Rothwell surveyed 12 sample sites located along the upper River 

Sheaf to the south west of Sheffield, a span of approximately 5 km. The samples were 

analysed to investigate spatial and temporal distribution of heavy metal mobilisation along 

the former water powered and Pb working sites. The results showed high concentration of Pb 

at all sampling locations. Chromium was not analysed during this previous study. During 

summer the concentrations of lead observed by Hutchinson and Rothwell (2008) were 

approximately twice as compared to the winter. The concentration of organic matter in the 

samples also increased (from 20-40%) from winter to summer at the uppermost sample sites 

on the very edge of the urban area and the concentration of organic matter generally 

decreased going downstream.

Hutchinson and Rothwell (2008) performed heavy metal analysis for two sampling periods 

and considerable spatial and temporal variation was observed in suspended sediment metal 

concentrations. The sediment associated Pb concentrations were relatively high during the 

winter at sampling sites 7, 8, 9, 10 and 12. The highest concentration of lead recorded in 

samples was 2132 mg/kg which was very high compared with the Pb concentrations in the 

present study sampling sites (maximum Pb concentration of 412.80 mg/kg). The high Pb 

levels at the site can be contributed due to particular industrial history of valley. Comparison 

of the results in the current study with those of Hutchinson and Rothwell (2008) indicates a
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difference in the lead concentrations between the flood plains of the upper Sheaf (sampled by 

the previous study in 2008) and the lower Sheaf (sampled in the current study in 2011). The 

substantial difference in the concentrations of lead found in the two studies are probably the 

result of a number o f factors, including likely continued release of lead into the environment 

due to acid mine drainage from historic mine workings and an expected general decline in 

lead concentrations at these sites since the industrial activity that caused the problem ceased 

in around 1970.

During the sampling the suspended sediment Cu concentrations observed by Hutchinson and 

Rothwell (2008) were also high at sampling site 3 during summer (maximum Cu 

concentration 107 mg/kg) compared with winter (maximum Cu concentration 102 mg/kg) 

sampling, although this seasonal difference was less than that observed for Pb (which was 

also at higher concentrations in winter as detailed above). The maximum concentation o f Cu 

found in the present study was lower than these values (maximum copper concentration 59.08 

mg/kg. The other metals found by Hutchinson and Rothwell (2008) were Zn, Fe and Mn at 

sampling site 5, which was located on tributary of the River Sheaf. These three elements 

showed a strong temporal variation in their concentrations. The Zn, Fe and Mn at the present 

sampling study site are low (see Tables 4.11-4.16) as compared to the upper Sheaf sampled 

by Hutchinson and Rothwell (2008). The reason could be attributed due to some remediation 

works carried out that can have impact on the low concentration of these metals, in addition 

to the expected decline in heavy metal concentration with time since mining activities ceased.

Another study was performed by collecting 5 samples from the soils near the Sheba Leather 

Industry Wukro, Ethiopia and also 2 samples from 2 km away from main industry and 

effluent stream. The samples were collected at a depth of 20 cm across a 5 m radius. The 

samples near the industrial area showed higher concentration of Chromium (VI) which could 

be possibly due to release of untreated sewage. The maximum concentration o f Cr (VI) found 

at the site was 9.99 mg kg'1 which falls just within the WHO limits of 10 mg kg'1 (Gitet et al., 

2013). This result is comparable to the maximum total chromium concentration of 7.66 mg 

kg'1 in the present study, though it should be borne in mind that the Gitet et al. data are for 

hexavalent chromium alone and the data from the current study are total chromium, which is 

likely to comprise both trivalent and hexavalent chromium.

A further study which was carried out at a slag heap associated with the steel industry in 

China analysed a total of 45 samples were collected from this site. Of these, 3 samples were
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from location A (Steel alloy factory), 9 samples from location B (adjacent to slag heap), 23 

samples from location C (in the vicinity of factory) and 10 control samples from far away 

from chromate slag site.

The highest concentration of Cr (VI) recorded at Location A was 2239.5 mg/kg which 

crossed the threshold of secondary environmental quality standard for soil in china by 540% 

and is 21 times higher than local background value. At location B it is 1589.3 mg/kg which is 

15 and 4 times higher than standard limit and local background value. However the 

chromium concentrations in the vicinity of factory at location C are all low, close to local 

background value. Even outside the factory the chromium concentration was 959.3 mg/kg 

which is 9 times higher than local background value (Huang et al., 2009). These 

concentrations are more than two orders of magnitude higher than in the current study, 

consistent with a very high degree of contamination from the site in China where steel 

manufacture and deposition of contaminated waste continues.

Jajmau & Unnao the two industrial areas and parts of Kanpur & Unnao districts of Uttar 

Pradesh in India located at 80° 151- 80° 341 E longitude and 26° 241 - 26° 351 N latitude is a 

chronic polluted area and one of the biggest exporting centers of tanned leather. The industry 

is located on the banks of River Ganga along with its tributary Pandu River. A total of 53 

samples were collected from site and 11 elements were analysed (As, Ba, Co, Cr, Cu, Ni, Mo, 

Pb, Sr, V and Zn) out of which As, Co, Ni and Mo were below the detection limit. The 

concentration of the metals exceeded the international threshold values.

The average values of these heavy metals were Cr (2652.3 mg/kg) Ba (295.7 mg/kg) Cu (42.9 

mg/kg) Pb (38.3 mg/kg) Sr (105.3 mg/kg) V (54.4 mg/kg) and Zn (159.9 mg/kg) and these 

metals showed positive correlation due to industrial contamination and sinks of the soil in the 

study site. The presence of Sr in the study site showed the adsorption and enrichment of Pb, 

V and Cu (Srinivasa Gowd et al., 2010). These results indicate a site highly contaminated 

with chromium, presumably due to the on-going tanning industry in this area

Across the world, the average chromium concentration in pristine natural waters ranges from 

0.2-1 g/ltr. Natural chromium concentrations in sea water are found to be 0.04-0.5 pg/ltr. The 

natural total chromium content in natural surface waters ranges from 0.5-2 pg/ltr 

approximately, while the dissolved total chromium content is 0.02-0.3 pg/ltr (WHO 

guidelines 2003). In light of these data, it is evident that if the chromium contained in the 

sediment samples from the River Sheaf were released into the surrounding river water, with a
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substantial proportion o f the chromium in the hexavalent oxidation state, a substantial 

pollution problem could result.
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CHAPTER 5

ENRICHMENT AND ISOLATION

OF Methylomonas. koyamae (SHU1)

from sediment samples
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5. Enrichment and Isolation of 

koyamae(SHU1) from sediment samples

5.1 Introduction:-

Environmental pollution can be attributed to several anthropogenic activities. When various 

toxic metals are introduced into the environment they can remain persistent, thereby affecting 

human health by entry through food chain and produce toxic effects. The metals which 

remain in the environment are held there by sorption, precipitation and complexation 

reactions. These metals can be removed from the soil by uptake with plants, leaching and 

volatilization process. The fate of the metals in the soil environment depends on the soil 

properties and environmental factors (Das et al 2014).

Metals are cycled in the various segments of the environment by biological, geological and 

chemical process that transport and mobilise the elements simultaneously between living 

systems and non-living systems. Several physical and chemical techniques have been studied 

to remediate these metals but these have proven to be non-economical, so transformation by 

microbes offers a promising alternative to physical and chemical remediation (Das et al 2014).

Methanotrophs or methane oxidising bacteria are capable of oxidising methane which is a 

very potent greenhouse gas. These organisms can remediate a range of pollutants as well as 

oxidising methane and using it as sole source of energy, thus adding a beneficial effect to the 

environment.

Methanotrophs have been used in the present study because of their potential and promising 

results with the metal remediation (as detailed in the literature review chapter) and also these 

organisms which are widespread in the environment has not been extensively explored in 

terms of metal remediation compared to the other microbes. In the present study 

methanotrophic bacteria were enriched from the sediments of the River Sheaf to study the 

characteristics of methanotrophs from this environment in respect to reduction of heavy 

metals.
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5.2 Methods

Enrichment of microbes from the study site was carried out to ensure isolation of various 

pure strains of methanotrophs to be cultivated to employ in the experiment. The sediment 

samples collected from the River Sheaf were used for enrichment and isolation of 

methanotrophs. Sampling of sediments is described in detail in chapter 3 of the thesis. Figure

3.2 from chapter 3 shows the sample collection site used for the above experiment.

A pure colony of the same type that was obtained from the plates described in materials and 

methods chapter was grown on a fresh NMS plate to produce cells for the DNA preparation, 

and then the 16S rRNA gene was amplified by PCR (the methods for DNA purification and 

PCR are described in detail in chapter 2).

The PCR product of the 16S rRNA gene from the cultivated methanotrophs was subjected to 

gel electrophoresis (method is described in chapter 2 section 2.5) to identify the presence of a 

product of the expected size. Later the gel electrophoresis product was cleaned with the 

Qiagen kit and then subjected to sequencing.

The sequencing results obtained from the PCR product were subjected to BLAST which is an 

online tool to identify the similar sequences which can be used to classify 16S rRNA 

sequences to the species level.

5.3 Results

5.3.1 Enrichment Results

When sediments samples were enriched into fresh NMS medium in Erlenmeyer flasks, the 

cultures showed high turbidity within 3-4 days indicating the growth of methanotrophs in the 

media, with methane as sole added carbon and energy source. The flasks were then sub 

cultured 2-3 times until several single isolated colonies were obtained depending on colour 

and texture on fresh NMS plates. Based on the colour the colonies isolated are tabulated in 

table 5.1 below.
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Table 5.1. Different colours of isolated colonies from NMS plates

Isolate number Colony colour

1 pinkish white from 25/9/12 plate 1

2 white colonies from 17/9/12

3 orange colonies from 25/9/12 plate 1

4 cream colonies from 25/9/12 plate 1

5 creamish orange colonies from 25/9/12 plate 1

6 pink colonies from 25/9/12 plate 1

7 cream colonies from 25/9/12 plate 2

8 creamish orange colonies from 25/9/12 plate 2

9 pink colonies from 25/9/12 plate 2

1 0 orange colonies from 25/9/12 plate 2

1 1 creamish orange colonies from 25/9/12 plate 3

1 2 orange colonies from 25/9/12 plate 3

Among all of the samples analysed six different colours and morphology of colonies were obtained. 

Representatives of these organisms were cultivated in fresh NMS plates and used for further study.

5.3.2 Microscopic examination of isolated colonics

The enriched isolated colonies were prepared and observed under the microscope to view the shape 

and motility of the organisms (Figures 5.1 and 5.2; Table 5.2).
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Table 5.2 Characteristics of the isolated organisms

Isolate number Colony colour Colony shape and Motility

Isolate number 1 from table 5.1 pinkish white colonies rods and motile

Isolate number 2 from table 5.1 white colonies cocci and non-motile

Isolate number 4 from table 5.1 cream colonies cocci and motile

Isolate number 5 from table 5.1 Creamish orange colonies rods and motile

Isolate number 6  from table 5.1 pink colonies rods and motile

Isolate number 10 from table 

5.1

orange colonies rods and non-motile

5.3.3 Identification of non methanotrophic contamination in isolated samples

The isolated colonies were streaked on the fresh nutrient agar plates and incubated at 37°C for 24 hrs 

to check for the growth of non methanotrophic bacteria in the samples. No growth on three out of six 

cultured nutrient agar plates indicated absence of any contamination by other types of cultivable 

bacteria from these cultures. The results of the growth on the nutrient agar are shown in the table 5.3.

Table 5.3 Purity of isolated samples

Isolate number Type of colony Growth on Nutrient Agar plates

Isolate number 1 from table 5.1 Pinkish white colonies -

Isolate number 2 from table 5.1 White colonies +

Isolate number 4 from table 5.1 Cream colonies +

Isolate number 5 from table 5.1 Creamish orange colonies -

Isolate number 6  from table 5.1 Pink colonies -

Isolate number 10 from table 

5.1

Orange colonies +

5.3.4 Molecular identification of microorganisms

The isolated colonies which are detailed in table 5.1 were used for sequencing. After amplification of 

16S rRNA genes from single isolated colonies by PCR, the PCR products were sequenced and the 

sequences were subjected to analysis via BLAST, which is an online tool to compare the sequences 

with the database. The results of the BLAST searches are interpreted in table 5.4.
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Table 5.4 Molecular identification of organisms

Isolate Serial No 

(table 5.1)

Length

(bp)

Closest match Genbank 

accession no.

Similarity Ho
Values

Pinkish 

white PI

No.l 973 Methylomonas koyamae NR113033.1 99% 0 . 0

Pinkish 

white P2

No.l 914 Methylomonas koyamae NR 113033.1 99% 0 . 0

White PI No.2 35 N/A -

White P2 No.2 2 2 N/A -

Creamish 

orange 

(plate-1 ) PI

No.5 236 N/A

Creamish 

orange 

(plate-1) P2

No.5 315 Methylophilus leisingeri

Methylophilus

methylotrophus

Methylophilus

rhizospharerae

AB 193725.1 

NF 911346.1 

AB 698737.1

99%

99%

99%

2e-157

le-155

le-155

Creamish 

Orange 

(plate-2 ) PI

No.5 366 Methylomonas koyamae NR 113033.1 99% 0 . 0

Creamish 

Orange 

(plate-2) P2

No.5 277 Methylomonas koyamae NR 113033.1 99% 2e-l 17

Pink PI No. 6 - N/A -

Pink P2 No. 6 467 Methylomonas koyamae NR 113033.1 99% 0 . 0

Creamish 

orange 

(plate 1) PI

No. 8 792 Methylomonas koyamae NR 113033.1 99% 0 . 0

Creamish 

orange 

(plate 1) P2

No. 8 819 Methylomonas koyamae NR 113033.1 99% 0 . 0

Orange PI No. 10 980 Acidovorax facilus JQ236816.1 99% 0 . 0

Orange P2 No. 10 973 Acidovorax facilus JQ236816.1 1 0 0 % 0 . 0
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The results in table 5.4 show that there were three types of organisms that were been isolated from the 

sediments of the River Sheaf and were identified as

1. Methylophilus spp.

2. Methylomonas koyamae

3. Acidovorax facilus

Among the isolates obtained from this study only Mm. koyamae belongs to the genus or species 

previously known to grow on methane. The isolated strain Mm. koyamae from table 5.4 with serial 

number 6  was used for the further study and this strain was given the name Mm. koyamae (SHU1).

5.3.5 Growth of Mm. koyamae (SHU1)

After identification of Mm. koyamae (SHU1) it was cultivated and examined under the microscope 

prior to making glycerol stocks of the organism. The colonies appeared pink in colour on fresh NMS 

agar plates and changed further to pinkish orange at longer incubation time. The isolated colonies of 

Mm. koyamae (SHU1) are shown in the figure 5.3. The colonies appeared as motile rods under the 

microscope.

Figure 5.3 Mm. koyamae on NMS plate
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5.3.6 Growth of Mm. koyamae (SHU1) on Methanol

The ability of Mm. koyamae (SHU1) to grow using methanol (0.5%) as sole carbon and 

energy source was tested in liquid culture at 30° C on rotary incubator. Within 3-4 weeks of 

innoculation the cultures developed turbidity the colour of the culture was pinkish orange. 

This indicates growth of the Mm. koyamae (SHU1) on methanol.

5.4 Discussion and conclusions

In the present study when the samples of the River Sheaf were enriched with methane as sole 

carbon and energy source Mm. koyamae (SHU1) was isolated. These particular organisms 

belong to methanotrophic bacteria which are Gram negative bacteria that utilize CH4  as the 

sole carbon and energy source. Mm. koyamae (SHU1) belongs to type I methanotrophs of 

Methylomonas family which are ubiquitous in the environment. As detailed in chapter 2 the 

sediments samples from the River Sheaf had near neutral pH and so isolation of a 

Methylomonas strain from these samples is consistent with the neutrophilic phenotype 

previously reported for members of the genus Methylomonas. Similarly the isolation of the 

strain of Methylomonas in enrichments at 30°C is consistent with the known mesophilic 

growth temperature range of this genus (Marco et al., 2004).

Methane oxidising bacteria of the genus Methylomonas have previously been found in fresh 

water lakes and rivers, wetland muds, activated sludge and waste water, and coal mine 

drainage water. The reason for the growth of type I methanotrophs in the present study can 

possibly be attributed to their faster growth compared with the type II methanotrophs. Type I 

methanotrophs growth is significantly influenced by the O2 concentration compared to type II 

methanotrophs and not only that the former grow faster than latter and former bacteria are 

more sensitive to environment such as, O2 concentration and nitrogen. Higher concentrations 

of methane C H 4  favour the growth of type II methanotrophs. (Zifang et al.,2012).

Mm. koyamae (SHU1) the species which was found in the present study, was first isolated by 

Japanese bio geochemist Tadashiro Koyama and is named after him. The strain was isolated 

from floodwater of rice paddy fields in Japan (Ogiso et al., 2012). Methylogaea oryzae and 

Mm. koyamae are the only two organisms belonging to Type I of methane oxidising bacteria 

that have been isolated from paddy fields so far (Dianou et al., 2012).

85



Methanotrophs have been extensively studied in rice field cultivation because rice fields are 

water logged and anaerobic. The methanogenesis activity under these anaerobic conditions 

makes rice fields one of the major global sources of methane and has led to interest in 

studying the methane oxidising bacteria in rice fields, which may be important in reducing 

the amount of the greenhouse gas methane released into the atmosphere. In a year-round 

experiment conducted in Japan on methanotroph communities with DGGE (denaturing 

gradient gel electrophoresis) and DNA sequencing analysis of key functional genes {pmoA, 

amoA). 38 DGGE bands were observed in this study. The investigation of these DGGE bands 

showed that methanotrophs, particularly type I, dominated during rice cultivation and during 

the winter fallow season type I and type II were dominant in sheath segments on soil surface 

and in the plough layer, while ammonia oxidisers dominated blade segments placed in the 

plough layer (Jia et al 2007).

Methanotrophic bacteria that are associated with roots of submerged rice plants have been 

assessed by cultivation independent techniques such as T-RFLP (terminal restriction 

fragment length polymorphism) technique, to study pmoA, mmoX, mxaF, and 16S rRNA 

genes. The results obtained from pmoA based (T-RFLP) from rice roots and bulk soils of 

hooded rice microcosms indicated that there was a greater abundance of type I methanotrophs 

in rice roots than in bulk soil. The organisms belonged to Methylomonas, Methylobacter and 

Methylococcus (Horz et al., 2001).

Rice and paddy fields are the major source of anthropogenic emissions of atmospheric 

methane which can contribute to 15-20% of global anthropogenic methane emissions. The 

rice fields have optimum conditions like temperature ranging from 25°C - 30°C and pH 6 - 8  

which is most appropriate for the methane oxidation by methanotrophs (Fazli et al., 2013).

Fresh water sediments also contribute 40-50% of annual atmospheric methane flux thus 

giving rise to the growth of methanotrophic organisms by providing methane as sole carbon 

and energy source. In fresh water sediments the zone of methane oxidation is restricted to the 

top 0.8 cm where the oxidation of methane takes place and 65% of methane is oxidised to cell 

materials and other metabolites. The high oxygen concentration and low methane 

concentration in this zone of soil provide a suitable environment for various type I strains of 

methanotrophs (Auman et al 2000).

Previous isolates of M. koyamae have been shown to be Gram-negative motile rods with a 

single polar flagellum and type I intracytoplasmic arrangement. These organisms grow on
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methane and methanol as sole carbon and energy source. The cells o f this organism do not 

form chains or surface pellicle. The optimum conditions for this organism are 30°C at pH 6.5 

and with 0-0.1% (w/w) NaCl; cells are sensitive to NaCl above 0.5%. The major quinone is 

MQ- 8  and Ci6;i and Cm; o are predominant fatty acids. The DNA G+C content of the type 

strain is 57.1 mol%. Consistent with this, the isolated organism Mm. koyamae SHU1 exists as 

motile rods and can grow on methane and methanol as source of energy at optimum 

temperature 30°C (Ogiso et al 2012).

The organism Mm. koyamae SHU1 is pink or pinkish orange in colour which may indicate 

the presence of carotenoid pigments. Possession of carotenoids is a distinctive feature of 

species in the genus Methylomonas which is rarely found in other species of methanotrophs 

(Shigematsu et al, 1999). Carotenoids are naturally occurring lipid soluble pigments, the 

majority being C40 terpenoids which act as antioxidants scavenging O2 and peroxy radicals; 

their anti-oxidant property can be attributed to their structure. Carotenoids are found in all 

higher plants, algae, phototrophic bacteria and some non-phototrophic bacteria. The non- 

phototrophic bacteria and fungi rely on carotenoids for protection when they grow in 

abundant light and air (Mata Gomez et al., 2014).

Species of Methylomonas have been applied in bioremediation of organic pollutants such as 

trichloroethylene and thus this particular genus can be employed in industrial applications of 

remediation of various pollutants.

In the study a Methylophilus sp. strain is identified these are obligate methylotrophs that can 

use reduced one carbon compounds such as methane or methanol as carbon source for their 

growth (Anthony 1982). Methylophilus sp. has earlier been studied in terms of its metal 

tolerance, plant growth promotion, plant disease resistance and soil fertility enhancement. 

This genus has earlier been explored for the industrial production of amino acids, 

polyhydroxy alkanoates and carotenoids as well as for bioremediation (Giri et al., 2013). 

NADP+ specific isocitrate dehydrogenase and glutamate dehydrogenase activities have not 

been observed in strains of this genus (Doronina et al., 2012). Isocitrate dehydrogenase is an 

enzyme from citric acid cycle which catalyses oxidative decarboxylation o f isocitrate to a- 

ketoglutarate and CO2. Glutamate dehydrogenase is present in most microbes and is used 

convert glutamate to a-ketoglutarate and in urea synthesis.

Acidovorax facilis was also enriched when isolating methanotrophs in this study. A facilus is 

a chemo organotrophic Gram negative bacterium which as shown in table 5.3 in this chapter
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is able to grow on nutrient agar plates. The organism is mainly associated with soil and 

agriculture as a soil inoculant and derives its energy and biomass from the end products of 

methanotrophs which can result in growth during enrichment of methanotrophs. The genus 

Acidovorax belongs to class Betaproteobacteria and the family Comomonadaceae. (Li et al., 

2011) The term facilis indicates quick and easy cultivation of this organism. A. facilis was 

first isolated from lawn soil in the United States. The mean G+C contents of DNAs range 

from 64-65 mol%. A.facilis grow at 30°C (found in the above experiment) in the presence of 

0.5% NaCl and grow on the following substrates D-glucose, glycerol, butyrate, succinate, 

suberate, azelate, sebacate, DL-lactate, D-malate, DL-3 hydroxybutyrate, L-proline and L- 

glutamate. (Williams et al., 1990). A. facilis is likely to use DL-3 hydroxybutyrate and 

butyrate from methanotrophs and so it may have been isolated in the current study because of 

its ability to grow alongside methanotrophs when methane was provided as the sole source of 

carbon and energy.

The bioremediation potential of the newly isolated Mm. koyamae (SHU1) is explored in the 

next chapter.
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CHAPTER 6 

CHARACTERISATION OF

Methylomonas koyamae SHU1
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6. Characterisation of Methylomonas koyamae SHU1

6.1 Introduction

Heavy metal pollution associated with concomitant industrial development is a great concern 

with regard to sustainability of the environment. Heavy metal pollution is complex as 

compared to organic pollution because the former is non-biodegradable in nature and can 

persist in environment for many years. Microbes play a prominent role in remediation of the 

environment, by biosorption and transformation of heavy metals as microorganisms from 

contaminated environment tend to be resistant to these metals because of natural selection 

and evolution in polluted environments. They have detoxification as well as resistance 

mechanisms. Intracellular bioaccumulation or biotransformations are two processes that are 

associated with Cr (VI) detoxification which can be attributed to enzymatic reactions or 

chemical reaction with metabolites and other cellular components (Guria et al., 2014).

Methane, which is a potent greenhouse gas and causes global warming 23 times more than 

CO2 , has only one biological methane sink which are methanotrophs. These organisms 

growing on methane can co-metabolise many organic and toxic compounds. Methanotrophs 

are of great interest in industrial applications due to their unique microbiological and 

metabolic features (Jiang et al., 2010).

Methanotrophs are ubiquitous in nature and can grow at temperatures as low as 4°C and as 

high as 72°C and can adapt themselves to various environmental conditions thus increasing 

the potentiality of the organisms for biotechnological and industrial applications. Methane 

monooxygenase (MMO) is a distinguishing enzyme in methanotrophs which facilitates 

oxidation of many hydrocarbons and other hydrophobic compounds (Jiang et al., 2010).

6.2 Methods

The organism Mm. koyamae SHU1 isolated as described in isolation and enrichment chapter 

was cultivated in fresh NMS medium and incubated at 30° C to study the growth 

characteristics of the organism.
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The growth curve, resistance to hexavalent chromium experiment, removal of hexavalent 

chromium by adding metabolic inhibitor and inhibiting enzyme MMO are all described in the 

materials and Methods chapter.

The results of all the experiments are discussed below.

6.3 Results

6.3.1 Growth of Mm. Koyamae SHU1

The Mm. koyamae SHU1 organism was grown in fresh NMS medium with methane as 

carbon and energy source to determine its growth. The optical density at O D 6oonm of the 

culture was recorded and a graph was plotted of optical density vs time and the readings are 

shown in the growth curve for the organism as depicted below in Figure 6.1. A parallel 

experiment was conducted with the well characterised methanotroph M. trichosporium OB3b 

in order to compare its growth curve (Figure 6.2) with that of Mm. Koyamae SHUl.

Figure 6.1 Growth curve of Mm. koyamae SHUl
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Figure 6.2 Growth curve of M.trichosporium (OB3b)
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Both the organisms grew to a maximum optical density of approximately 1.0 and the growth 

in terms of time was compared for both the organisms. The lag phase of Mm.koyamae 

SHUl is less than that compared with the M. trichosporium (OB3b). The time taken for Mm. 

koyamae to reach the maximum OD was about 9 days when compared with M. trichosporium 

OB3b which took approximately 17 days. The shorter lag phase of Mm. koyamae could be 

due to its faster adaptability to the environment and thus reaching its fastest growth rate 

earlier than compared with M. trichosporium OB3b.

6.3.2 Resistance of the Mm. koyamae SHUl with hexavalent chromium

After the addition of hexavalent chromium to 10 ppm to a liquid culture (0.3 OD) of Mm. 

koyamae SHUl the optical density readings decreased indicating the cells are not tolerant or 

resistant to the hexavalent chromium (Figure 6.3). Growth of Mm. koyamae SHUl was not 

recorded in any of the plate cultures with chromium (VI) with varying concentrations of 5, 10, 

25, 50, 75 and 100 ppm indicating the organism is non-resistant. The resistance to hexavalent 

chromium was compared with M. trichosporium (OB3b) and this organism also proved to be 

non-resistant and non-tolerant to hexavalent chromium. The decrease in the optical density 

of the culture after the addition of hexavalent chromium suggests the autolysis of cells.
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Figure 6.3 Growth curve of Mm. koyamae SHUl after addition of 10 ppm of Cr (VI)
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6.3.3 Removal of hexavalent chromium by Mm. Koyamae SHUl

The standard curve (Figure 6.4) with different concentrations of chromium (VI) vs 

absorbance at A5 4 0  nm was obtained and this graph was used as a basis to calculate the 

unknown concentrations.

Figure 6.4 Standard curve of chromium Cr (VI) by DPC Assay
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Removal of hexavalent chromium by Mm. koyamae SHUl in the presence of sodium azide, 

blank and heat killed cells was also recorded and reported. Figure 6.5 shows the removal of 

hexavalent chromium by Mm. koyamae SHUl in the presence and absence of inhibitors, 

blank and heat killed cells. There was no removal of hexavalent chromium observed by Mm. 

koyamae SHUl in the flasks with added sodium azide, which is a metabolic inhibitor. 

Removal of hexavalent chromium was not observed with the blank and in heat killed cells 

indicating that the live cells of Mm. koyamae SHU 1 are solely responsible for the removal of 

the chromium.

Reduction of hexavalent chromium was observed in cultures of Mm. koyamae SHUl despite 

the data described earlier in this chapter that indicate that the strain was not resistant to 

hexavalent chromium. Together these data show that even though the hexavalent chromium 

inhibits the growth of Mm koyamae SHUl these cells remain to some extent metabolically 

intact and metabolically remove the hexavalent chromium.

The heat killed cells did not show any removal of hexavalent chromium indicating that these 

could be an enzymatic process since that heat killing makes all the enzymes inactive. This 

provides additional information that removal is enzymatic process compared to the results 

with sodium azide.

Figure 6.5 Removal of hexavalent chromium by Mm. koyamae (SHUl) in various 

conditions
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In order to investigate the role o f  MMO enzyme in the chromium removal from cells by Mm. 

koyamae SHUl the organism was grown in high copper medium and low copper medium and 

the enzyme was inhibited by phenyl acetylene as phenyl acetylene is a well known inhibitor 

o f the sMMO enzyme. When the cells were grown in low copper medium with phenyl 

acetylene the chromium removal activity was completely inhibited, indicating that the phenyl 

acetylene completely inactivated the sMMO enzyme and the chromium removal reaction was 

completely inhibited as a consequence (Figure 6 .6 ). W hen the cells were grown in high 

copper medium in the presence o f  phenyl acetylene, the cells could perform the removal o f 

chromium for the period o f experiment, consistent with continued activity o f pMMO in the 

presence o f phenyl acetylene and hence continue with general metabolism including 

chromium (VI) removal.

Figure 6.6 Removal of hexavalent chromium by Mm. koyamae (SH U l) by inhibiting two 

enzymes pMMO and sMMO
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The organisms were cultivated in normal NMS medium and 0.1 mg L ' 1 cu NMS medium and 

were grown to OD 0.3 and then phenyl acetylene (0.05% v/v) and 10 ppm o f hexavalent 

chromium were added.
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6.3.4 Effect of copper concentrations on Mm. koyamae SHUl

The Mm. koyame SHUl was cultivated on fresh NMS plates with the various copper 

concentrations of 100 mg L '1, lmg L" 1 and 0.1 mg L ' 1 and after the growth of organism on the 

plates the naphthalene oxidation assay was carried out to determine the possible expression of 

sMMO. The plates of 100 mg L' 1 and 1 mg L' 1 copper showed negative results for the 

naphthalene assay while the plates with 0.1 mg L 1 copper showed a positive result with 

purple colouration to the reagent as shown in the figures below (Figures 6.7, 6 . 8  and 6.9)

Figure 6.7 Naphthalene assay for 0.1 mg L'1 concentration of copper for Mm. koyamae 

(SHUl)
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The image (figure 6.7 ) shows a positive result for sMMO expression by Mm. koyamae SHUl 

at low copper concentration.
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Figure 6.8 Naphthalene assay for 1 mg/L' concentration of copper for Mm. koyamae

(SHU 1)

The image (figure 6 .8 ) shows negative result for sMMO expression by Mm. koyamae SHUl 

at high copper concentration.

Together these two results suggest that in this organism Mm. koyamae SHUl the expression 

of MMO's is strongly controlled by the copper concentration.
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Figure 6.9 Naphthalene assay for 0.1 mg/L~ concentration of copper for M.

trichosporium (OB3b)

This image (figure 6.9) confirms sMMO expression by the positive control culture M. 

trichosporium (OB3b) at low copper concentration.

6.3.5 Genome sequences of chromate reductase genes in Methylomonas genera

At the time of writing of this thesis the genome sequence of the Methylomonas koyamae 

JCM16701 is underway at the University of Tokyo but it is currently incomplete. In order to 

investigate the genes and proteins that are possibly involved in the chromium removal by 

Methylomonas strains, BLAST searches were performed to compare the sequences known to 

be involved in chromium removal in other microbes with available Methylomonas 

sequences, including the completed genome sequence of Methylomonas methanica and a 

number of draft genome sequences of other Methylomonas strains.
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The literature survey has been done to identify various genes and protein sequences involved 

in the chromium reduction and based on the sequences BLAST searches were done to 

identify these proteins in Methylomonas. The query sequences which were used for the 

BLAST searches were identified from the bacteria which are known to be involved in either 

uptake of Cr (VI) or enzymatic reduction of Cr (VI). Based on the hits E values less than or 

equal to 1 have been reported in this thesis.

A BLAST search of Methylomonas sequences was performed with the chromate transport 

and sulphate uptake protein SrpC gene of Synechococcus elongatus (Accession number 

Q55027 and locus SRPC SYNE7) which is known to be involved in the transport of Cr (VI) 

oxy anions into cells. The results are represented as follows (Table 6.1)
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Table 6.1 M eth y lo m o n a s  proteins similar to the chromate transport and sulphate uptake 

protein Srp C

Type of Protein E-value % Identity Accession number % Similarity

Chromate 

transporter 

Methylomonas sp 

FJG1

le-41 29% WP 036278748.1 46%

Chromate 

transporter 

Methylomonas sp 

l l b

2e-41 30% WP026603374.1 47%

Chromate 

transporter 

Methylomonas sp 

MK1

6e-41 30% WP 020483265.1 46%

Chromate 

transporter 

Methylomonas sp 

MK1

2e-37 29% WP 020485852.1 45%

Chromate 

transporter 

Methylomonas sp 

LW 13

6e-29 40% . WP 033158674.1 59%

A number o f sequences were identified from Methylomonas strains with the highly 

significant similarity to the chromate transporter and sulphate uptake protein SrpC from S. 

elongatus. This indicates genes with potential to enable Cr (VI) uptake are widespread 

within the genus Methylomonas.

A BLAST search of Methylomonas sequences was performed using an example of the flavo 

reductases namely the flavin/Fe2S2 oxido reductase protein Fre of Escherichia coli (Accession 

number M74448 and locus AAA91058) which is known to be involved in Cr (VI) reduction. 

The results are represented as follows (Table 6.2).
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Table 6.2 Methylomonas proteins similar to the Flavin oxido reductase Fre of E. coli

Type of Protein E-

value

% Identity Accession number Similarity

Oxido reductase

Methylomonas

methanica

8e-13 25% WP013819134.1 39%

Hypothetical

protein

Methylomonas sp 

MK1

6 e -ll 23% WP 020483906.1 45%

Methane 

monooxygenase 

Methylomonas sp 

LW13

5e-10 23% WP 033157500.1 45%

Methane 

monooxygenase 

Methylomonas sp 

l ib

5e-10 23% WP 026602862.1 44%

Methane

monooxygenase

Methylomonas

methanica

4e-09 23% WP 013818326.1 44%

Soluble methane

monooxygenase

reductase

(MMOR)

Methylomonas sp

KSPIII

5e-09 23% BAA84756.1 45%

Oxygenase 

Methylomonas sp 

MK1

3e-07 23% WP 020485016.1 43%
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Type of Protein E-

value

% Identity Accession number Similarity

Na (+)- 

translocating 

NADH quinine 

reductase subunit 

F Methylomonas 

methanica

5e-07 25% WP013819247.1 47%

Oxygenase 

Methylomonas sp 

FJG1

6e-07 22% WP036279265.1 43%

Na (+)- 

translocating 

NADH quinine 

reductase subunit 

F Methylomonas 

sp FJG1

4e-06 24% WP 036277821.1 47%

Multispecies Na 

(+)- translocating 

NADH quinine 

reductase subunit 

F

Methylomonas

7e-06 24% WP 020481961.1 46%

Oxygenase 

Methylomonas sp 

LW 13

8e-06 23% WP 033155708.1 43%

Na (+)- 

translocating 

NADH quinine 

reductase subunit 

F Methylomonas 

sp LW13

9E-06 24% WP 033159347.1 46%

Oxygenase le-05 21% WP 013819792.1 40%
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Type of Protein E-

value

% Identity Accession number Similarity

Methylomonas

methanica

Pyridoxamine 5’ 

phosphate oxidase 

Methylomonas sp 

LW 13

5e-04 25% WP 033159429.1 46%

Hypothetical

protein

Methylomonas sp 

MK1

0.066 32% WP 020482799.1 54%

Pyridoxamine 5’ 

phosphate oxidase 

Methylomonas sp 

FJG1

0.41 31% WP 036272407.1 52%

A number of sequences were identified from Methylomonas strains with the highly 

significant similarity to the flavin reductase protein Fre from E. coli. This indicates genes 

encoding protein with potential to enable Cr (VI) reduction are widespread within the genus 

Methylomonas.

A BLAST search of Methylomonas sequences was performed with the nitro reductase protein 

NfsA gene of E coli (Accession number YP_ 007556383) which is also known to be involved 

in Cr (VI) reduction. The results are represented as follows (Table 6.3)
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Table 6.3 Methylomonas proteins similar to the nitro reductase NfsA which catalyses 

chromate reduction

Type of Protein E-Value %Identity Accession number Similarity

cob(II)yrinic acid 

a,c diamide 

reductase 

Methylomonas 

spFJGl

5e-08 24% WP036275280.1 41%

cob(II)yrinic acid 

a,c diamide 

reductase 

Methylomonas 

methanica

le-07 26% WP013816958.1 41%

Cob(II)yrinic acid 

a,c diamide 

reductase

Methylomonas sp 

LW13

2e-07 24% WP 033157530.1 41%

Cob(II)yrinic acid 

a,c diamide 

reductase 

Methylomonas sp 

l ib

le-06 24% WP 036277672.1 41%

Cob(II)yrinic acid 

a,c diamide 

reductase

Methylomonas sp 

MK1

le-05 24% WP 026147064.1 40%

drg A

Methylomonas

methanica

le-04 23% WP 01381799.1 43%
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A number of sequences were identified from Methylomonas strains with the highly 

significant similarity to the nitro reductase protein NfsA from E. coli. This indicates genes 

encoding protein similar to NfsA with potential to enable Cr (VI) reduction are widespread 

within the genus Methylomonas.

A BLAST search of Methylomonas sequences was performed with the old yellow enzyme 

chromate reductase from Thermus scotoductus (Accession number CAP 16804) which 

represents another class of enzymes known to be involved in Cr (VI) reduction. The results 

are represented as follows (Table 6.4)

Table 6.4 Methylomonas proteins similar to the old yellow enzyme of chromate 

reductases

Type of Protein E value %Identity Accession

number

Similarity

Oxido reductase 

Methylomonas sp 

LW13

2e-l 19 51% WP 033157034.1 65%

hypothetical protein 

Methylomonas sp 

MK1

le-118 53% WP 020483038.1 6 6 %

Oxido reductase 

Methylomonas sp 

FJG1

2e-l 17 51% WP 036275863.1 65%

Oxido reductase 

Methylomonas sp l ib

5e-l 14 50% WP 026601964.1 65%

NADH flavin oxido 

reductase

Methylomonas sp 

FJG1

5e-30 35% WP 036276325.1 52%

NADH flavin oxido 

reductase

Methylomonas sp

le-29 35% WP 020484195.1 52%
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Type of Protein E value %Identity Accession

number

Similarity

MK1

NADH flavin oxido 

reductase

Methylomonas sp 11 b

3e-29 35% WP 026602636.1 53%

NADH flavin oxido 

reductase

Methylomonas sp 

LW13

5e-29 35% WP 033156900.1 52%

NADH flavin oxido 

reductase 

Methylomonas 

methanica

5e-29 29% WP 013816803.1 44%

N-ethylmalemide

reductases

Methylomonas

methanica

8e-28 33% WP 013818191.1 52%

NADH flavin oxido 

reductase

Methylomonas sp 

MK1

2e-26 28% WP 033193894.1 44%

NADH flavin oxido 

reductase 

Methylomonas 

methanica

8e-26 33% WP 013818206.1 45%

Hypothetical protein 

Methylomonas sp LW 

13

0.18 28% WP 033155511.1 42%

Hypothetical protein 

Methylomonas sp 

FJG1

1 . 0 32% WP 036274026.1 40%

106



A number of sequences were identified from Methylomonas strains with the highly 

significant similarity to the old yellow enzyme type chromate reductases protein from T. 

scotoductus. This indicates genes with potential to enable Cr (VI) reduction are widespread 

within the genus Methylomonas. The BLAST search also identified two Methylomonas 

proteins which are annotated as hypothetical proteins in the data base with E values which are 

greater than 0 . 1  and may have similar function and structure to the nitro reductase protein, 

but the relatively high E values indicate that this conclusion can only be made tentatively in 

these cases.

A BLAST search of Methylomonas sequences was performed with the chromate reductase 

from Pseudomonas putida ChrR (Accession number AAK56852) which is known to be 

involved in Cr (VI) reduction. The results are represented as follows (Table 6.5)
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Table 6.5 Methylomonas proteins similar to chromate reductase ChrR

Type of Protein E-value %Identity Accession number Similarity

FMN reductase 

Methylomonas sp 

FJG1

7e-19 35% WP 036273967.1 56%

FMN reductase 

Methylomonas sp 

LW 13

2e-18 36% WP 033158735.1 54%

FMN reductase 

Methylomonas sp 

l ib

8e-13 37% WP 036276266.1 59%

Hypothetical

protein

Methylomonas sp 

MK1

0.25 30% WP 020481640.1 42%

NAD (P)H 

quinone oxido 

reductase 

Methylomonas 

methanica

0.58 23% WP 013816938.1 42%

NAD (P)H 

quinone oxido 

reductase

Methylomonas SP 

l ib

0.97 19% WP 026602733.1 39%

Hypothetical

protein

Methylomonas sp 

FJG1

0.97 29% WP 036272568.1 42%
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Three sequences were identified from Methylomonas strains with the highly significant 

similarity to the chromate reductase protein from P. putida. This indicates genes with 

potential to enable Cr (VI) reduction are widespread within the genus Methylomonas. The 

BLAST search also identified four Methylomonas proteins in the data base with E values 

which are greater than 0.1 and may have similar function and structure to the Chr R protein, 

but the relatively high E values indicate that this conclusion can only be made tentatively in 

these cases. It is also interesting that two of these are annotated as reductase proteins in the 

data base.

A BLAST search of Methylomonas sequences was performed with the chromate efflux 

system from Pseudomonas aeruginosa ChrA (Accession number AAA88432) which is 

known to be involved in Cr (VI) reduction. The results are represented as follows (Table 6.6)

Table 6.6 M eth y lo m o n a s  proteins similar to chromate reductase ChrA

Type o f Protein E-value %Identity Accession

number

Similarity

Chromate transporter 

Methylomonas sp FJG1

le-43 33% WP

036278748.1

47%

Chromate transporter 

Methylomonas sp MK1

3e-42 33% WP

020485852.1

47%

Chromate transporter 

Methylomonas sp 1 lb

3e-25 37% WP

026603374.1

58%

Chromate transporter 

Methylomonas sp MK1

le-24 37% WP

020483265.1

58%

Chromate transporter 

Methylomonas sp LW13

2e-24 34% WP

033158674.1

57%

A number of sequences were identified from Methylomonas strains with the highly 

significant similarity to the chromate efflux systems protein from P. aeruginosa. This 

indicates genes with potential to enable Cr (VI) resistance due to chromium (VI) efflux are 

widespread within the genus Methylomonas. The BLAST search indicates the species of 

Methylomonas have shown the presence of potential chromate efflux systems which would be
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expected to confer the resistance to Cr (VI). Nonetheless the strain used in the study did not 

show resistance to Cr (VI) but facilitated removal of Cr (VI).

6.4 Discussion and conclusions

Methanotrophic bacteria are considered as suitable organisms for bioremediation of organic 

pollutants because of their co-metabolic transformation of such compounds, possibility of 

complete compound degradation without the formation of toxic metabolites, broad spectrum 

of compounds availability and widely available and inexpensive growth substrate (Sullvian et 

al., 1998). The methane monooxygenase enzyme (MMO) also plays a major role in the 

bioremediation of several organic compounds making methanotrophic bacteria as suitable 

organisms for bioremediation of several compounds (Marco et al., 2004).

The possibly shorter lag phase of Methylomonas koyamae SHUl compared with M. 

trichosporium OB3b could be another distinguishing characteristic to employ them in 

bioremediation. These organisms could serve two purposes 1. Use of methane as sole source 

of energy and carbon, thereby able to reduce methane gas emissions in the natural 

environment 2. Removal of hexavalent chromium for bioremediation purposes.

Metals play an important role in the life processes of microorganisms. Many metals like Ca, 

Co, Cr, Cu, K, Mg, Zn and Na are required nutrients and play essential role in metabolic 

activities. Typically presence of these metals and other nutrients at polluted sites select 

microbes resistant to these pollutants and such strains may be applicable in the 

bioremediation of pollutants (Srivastava et al., 2008).

Microbes when encountered with heavy metals will utilise them in one or more of the 

following ways 1. Utilise trace amounts of metals for metabolic activities 2. Tolerate the 

metal ions to threshold limit 3. Detoxify the metal spp. 4. Offer resistance to toxic levels.

The uptake of heavy metals in the environment by microorganisms is mainly by the following 

mechanisms, biosorption, bioaccumulation, and efflux and chemical transformation such as 

reduction or precipitation. Chromium reduction has been reported in several species of 

bacteria, fungi, yeasts and some actinomycetes to date (Sandana Mala et al., 2014). The 

different population of microbes present in different habitats have different capabilities to 

reduce the hexavalent chromium and transform other heavy metal pollutants.
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The reduction of hexavalent chromium to trivalent chromium is of renewed interest in 

research field. The discovery of chromium reducing microbe in 1970's (Romaneko & 

Korenkov 1977) was followed by Several Cr (VI) resistant species belonging to 

Pseudomonas, Ochrobactrum, Bacillus, Shewenella, Arthobacter, Lysinibacillus and 

Cupriavidus have been isolated in recent years. (Pei et al., 2009). These microbes have 

demonstrated their ability to survive in the presence of hexavalent chromium by acquiring 

resistance to chromium (VI) by exposure to chromium (VI) or by participating in the 

detoxification process. Cr (VI) reduction can be co-metabolic or could be predominantly 

disimilatory or respiratory under anaerobic conditions (Pei et al., 2009). Cr (VI) reduction can 

either be plasmid borne as in Pseudomonas species or located on chromosomal DNA as in 

Bacilli and Enterobacteriaceae (Pei et al., 2009).

Microorganisms that have the ability to reduce Cr (VI) are usually called chromium reducing 

bacteria (CRB), Among CRB, Gram positive bacteria have high tolerance to Cr (VI) 

concentrations compared to Gram negative bacteria. (Coleman 1988). Bacteria employ 

different resistance mechanisms to overcome chromium toxicity in the environment which 

include the reduced uptake of Cr(VI), extracellular Cr (VI) reduction, detoxification of 

reactive oxygen species (ROS), detoxifying enzymes/intracellular Cr(VI) reduction, DNA 

repair enzymes and efflux of hexavalent chromium from the cell (Thatoi et al., 2014).

The chrR gene located on chromosome of P. aeuginosa conferred resistance to chromate 

(Aguilar-Barajaset al 2008). Morais et al. 2011 reported Ochrobactrum tritici contains chrB, 

chrA, chrC and chrF in chromosomal DNA of which chrB and chrA are essential for 

chromium resistance in sensitive bacteria. Genetic studies show ruvR gene of O. tritici is 

related to chromium resistance. Genetic analyses of chromate resistant P. aeruginosa 

(Cervantes et al 1990) and Alcaligenes eutrophus (Nies et al 1990) has shown that the Cr 

reduction is mediated by plasmid. Genes for hydrophobic polypeptide, chrA, were identified 

in chromate resistance plasmids of both P. aeruginosa and A. eutrophus.

Aerobic Cr (VI) reduction is usually associated with soluble proteins and require NAD (P) H 

as an electron donor (Shen and Wang 1993). Cr (VI) reducing activity in aerobes like 

Pseudomonas ambigua, P. putida, Escherichia coli and Bacillus coagulans have been found 

in the soluble fraction of cells. In B. subtilis the reduction is mediated by cell free extracts of 

bacteria. (Thatoi et al. 2014)
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NADH was electron donor in the reduction of chromate by soluble enzyme present in 

cytoplasm of Pseudomonas sp. CRB5. NADH/NADPH served as electron donors for Cr (VI) 

reduction by soluble enzymes present in P. ambigua, P. putida and Vigribacillus sp. P. 

maltophila 0-2  and Bacillus megaterium TKW3 were found to utilise membrane associated 

reductases for Cr (VI) reduction in spite of being aerobes (Thatoi et al 2014).

Anaerobic chromium reduction is associated with membrane bound reductases such as flavin 

reductases, cytochromes and hydrogenases that are part of electron transport systems and use 

chromate as electron acceptor (Thatoi et al 2014). Pseudomonas dechromaticans isolated 

from sewage sludge under anaerobic chromium reduction use Cr (VI) as electron acceptor. 

Enterobacter cloacae isolated from industrial waste water in periplasmic space uses 

membrane bound hydrogenase or reduced cytochrome (Wang et al. 1991).

In Shewanella putrefaciens MR-1 chromate reduction was associated with cytoplasmic 

membrane where formate and NADH served as electron donors. (Park et al 2000). Membrane 

associated reductase have been reported in Cr(VI) reduction in some bacteria where H2 was 

an electron donor and Cr(VI) was an electron acceptor in electron transport chain (Thatoi et 

al 2014). The reduction of Cr (VI) in Desulfovibrio vulgaris has been shown by cytochrome 

c3 which is anaerobic bacterium.

In the present study it has been shown that the removal of hexavalent chromium by Mm. 

koyamae SHU1 is likely to be enzyme mediated as when a metabolic inhibitor was added to 

the cultures the reduction was not carried out and when cells were heat killed the reduction 

was inhibited, strongly suggesting reduction is carried out enzymatically and it is an active 

cellular reaction rather than the reaction between cellular constituents and chromate. The 

chromium reduction carried out by Me. capsulatus Bath showed that it can reduce hexavalent 

chromium from 1.4 to 1000 mg L'1 and inhibition of organism by sodium azide caused loss o f  

57% of chromium removal. It can be shown that the inhibition by metabolic indicator effects 

the organism as cytochrome oxidizers are affected and there by affecting the metabolism of  

organism. The effect of azide is presumably an indirect one since inhibition by azide causes 

reduction of dioxygen to water and thus prevent channelling of reducing equivalents into 

reduction of chromate (Hasin et al 2010). In the case of Mm. koyamae (SHU 1) studied in this 

thesis the sodium azide may be functioning in the same way as proposed for Me. capsulatus 

Bath to remove the electrons supply from a reductase enzyme. Since trivalent chromium has 

not yet been detected as the product of hexavalent chromium transformation in Mm. koyamae
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(SHU1), it is also possible that sodium azide exerts its effect by removing the source o f the 

energy for active uptake of hexavalent chromium.

Cr (VI) transport across the cell membranes can occur via the sulphate uptake pathway 

because sulphate and chromate are two oxy anions with similar structure (Ramirez-Diaz et al., 

2008). The Cr (III) ion transport into cells is quite slow because o f its insolubility and slow 

rate of ligand exchange. However the complexes of Cr (III) can be easily transported with 

siderophores, which are iron uptake mediators. Siderophores are structurally diverse group of 

biogenic chelating agents associated with uptake of iron and other metals. These siderophores 

bind to a wide range o f metal ions, solubilize metal complexes and enhance mobility of metal 

ions in the environment, including toxic heavy metals (Duckworth et al., 2014).

Chromate accumulation has been reported in P. aeruginosa and A. eutrophus via the sulphate 

transport pathway. Microbes such as E. coli and Salmonella typhimurium possess the ATP 

binding cassette (ABC) type sulphate- thiosulphate transport systems which is regulated in 

parallel with cysteine biosynthetic enzymes and is part of the cysteine regulon. The 

components of sulphate-thiosulphate permease from E.coli and Salmonella typhimurium are 

largely encoded by a cluster of genes. The sulphate transport pathway in E. coli is encoded by 

the cluster of genes cysP, cysT, cysW  and cysA and the unlinked gene sbp. The products of 

cysT and cysW  span the membrane and form a channel for the passage of sulphate and related 

ions; cysA encodes an associated hydrophilic membrane binding ATP protein, while sbp and 

cysP encode the sulphate and thiosulphate periplasmic binding proteins respectively (Marcia 

& Diego 2000).

Heat killing is one of the most efficient methods for inactivating the enzymes in bacteria. 

Optimum temperature is one of the criteria and plays an important role in the growth of 

bacteria and reduction of Cr (VI). Variations in temperature affect viability of cells and 

ultimately leading to death. At low temperatures the fluidity of membranes decreases and 

thereby affecting the functioning of transport systems thus as a result the substrates do not 

enter the cell to support the low growth rate of cells. The increase in temperatures leads to 

thermal denaturation of proteins which is irreversible. As the removal of chromium is almost 

certainly enzyme mediated loss o f denatured protein will result in loss of chromium removal 

function, altering membrane function, inactivation of protein synthesizing mechanism due to 

alteration in ribosome conformation (Narayani & Shetty 2013). As discussed earlier in this
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section the key protein in chromium removal by Mm. koyamae (SHU1) that is inactivated by 

heating could be a reductase or a transmembrane pump that actively imports chromium into 

the cells.

The optimum temperature 30°C for chromium reduction is found in all the following species 

Pseudomonas fluorescens LB300, Microbacterium Sp. NCIMB 13776, Streptomyces sp. 

MCI, Brevibacterium casei, Arthobacter crystallopoites, Thiobacillus thioparus, Bacillus sp. 

and Pseudomonas plecoglossicida (30°-37°C) (Naryani & Shetty 2013).

In all methanotrophic organisms’ pMMO or sMMO requires reducing equivalents for its 

activity. Methanotrophs are known to generate NADH from oxidation of formaldehyde and 

formate which provides the reducing equivalents for pMMO and sMMO. The fact that the 

phenyl acetylene inhibits chromium removal by Mm. koyamae SHU1 expressing either form 

of MMO may indicate a direct involvement of the MMO enzyme in Chromium (VI) removal 

but more likely is due to general inhibition of energy requiring processes within the cell when 

it can no longer metabolise its carbon and energy sources.

Oxidation of methane to methanol is the carried out by the enzyme methane monooxygenase 

enzyme (MMO). Two distinct forms of MMO have been characterised, cytoplasmic and 

soluble forms of methane monooxygenase (sMMO) and membrane bound or particulate 

methane monooxygenase (pMMO). These two distinct MMOs have different kinetics for 

methane oxidation with sMMO having higher turnover but lower affinity than pMMO. (Lee 

et al 2006). Several strains of methanotrophs including Methylococcus capsulatus (Bath) are 

known to express two forms of enzymes pMMO or sMMO. At higher copper levels (4 pM) 

pMMO is expressed whereas at low copper levels (<0.8 pM) sMMO is expressed. The a and 

y proteobacteria have been found to synthesize and excrete a chalkophore (a siderophore like 

molecule) known as methanobactin which can increase the bioavailability for copper and 

plays an important role in copper switch that controls expression of two forms o f MMO 

(Semrau et al 2013).

The sMMO activity has been observed in small number of strains of type I methanotrophs 

including Methylomonas. The two isolates from the genus Methylomonas that have been 

shown to express the two forms of MMO are M. methanica 68-1 and Methylomonas sp. strain 

GYJ3 (Fru 2011).
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Mm. koyamae SHU1 is likely to be useful in bioremediation of both hydrocarbons and Cr 

(VI) due to its possession of sMMO and a chromium(VI) removal activity.

Since the genome sequence for Methylomonas koyamae was not available, BLAST searches 

were done to search the other available genome sequences of Methylomonas species. The 

BLAST search for proteins potentially involved in chromium reduction, Cr (VI) uptake and 

chromium efflux systems were performed with all available Methylomonas sequences. The 

results demonstrate the potential presence of all these functions associated with Cr (VI) 

removal and resistance in the genus Methylomonas. This is consistent with the ability of 

Methylomonas koyamae SHU1 to remove Cr (VI). Also the presence of Cr (VI) resistance 

genes suggests that other Methylomonas strains, unlike Mm. koyamae SHU1, may be resistant 

to hexavalent chromium. The laboratory results and the BLAST search results suggest that 

the chromium resistance and chromium reduction genes are widespread among the genus 

Methylomonas in the environment. It could be possible that a diversity of strains from this 

genus can be used in the bioremediation of chromium (VI).
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DISCUSSION AND CONCLUSIONS
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7. Discussions and Conclusions

7.1 General conclusions

In the present study methanotrophs have been isolated from the sediment samples of the 

River Sheaf passing along Millhouses Park in Sheffield, UK. The site selected for the study 

has a past industrial history alongside the steel manufacturing plants, and water power mills 

which contributed to a significant pollution and as the pollutants are non-biodegradable in 

nature they have been persistent in the environment for many years. Thus it may be 

advantageous to remediate the pollutants by using microorganisms rather than any other 

physical and chemical technique. Microbes can help in the detoxification process, where 

heavy metals are converted to a less toxic state and microbiological methods may be more 

economical than chemical alternatives.

The Sheaf sediments were collected and the sediment samples were fractionated on the basis 

of particle sizes to analyse the concentration of pollutants in each particle size fraction of the 

sediments. The concentration of lead was higher in the samples than any other heavy metals 

probably because of the past industrial history. The other heavy metals found in the study 

area are chromium, cobalt and nickel. These heavy metals can be attributed due to 

development of steel industries in the Sheffield city.

The sediment samples collected from the River Sheaf were enriched for the methanotrophs 

and the methanotroph obtained was identified based on the sequencing of 16S rRNA gene as 

Methylomonas koyamae SHU1 and the organism was employed in the removal of chromium. 

It was found that the organism can reduce the concentration of chromium in the range of 2-10 

ppm.

It was found that Mm koyamae SHU1 could remove hexavalent chromium although the 

organism was not resistant at the concentrations tested. The removal of hexavalent chromium 

was carried out in the presence of sodium azide a metabolic inhibitor and in the presence of 

heat killed cells to ensure that the reaction is metabolically carried by the enzymes within the 

cells.

The removal of chromium by Mm. koyamae SHU1 was not observed in the heat killed cells 

and also in the cells where sodium azide was added indicating that the removal of Cr (VI) is
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an active metabolic process and depends on the cellular constituents rather than an 

environmental mediated reaction.

The enzyme methane monooxygenase was inhibited with phenyl acetylene and there was no 

removal observed probably indicating that the organism requires reducing equivalents for 

reduction reaction and the methane oxidation pathway provides the reducing equivalents 

necessary for the reduction of chromium. Alternatively Mm. koyamae SHU1 may remove 

chromium (VI) in another way such as active Cr (VI) uptake rather than the chemical 

reduction.

The organism Mm. koyamae SHU1 produces a sMMO during the deficiency of copper in the 

medium indicating that under the low copper conditions the organism can be potentially 

applied for the bioremediation of several hydrocarbons and chromium (VI) reduction because 

of the greater substrate range of sMMO.

BLAST searches were performed to identify the chromium (VI) reduction, Cr (VI) efflux 

system and Cr (VI) uptake genes with the available Methylomonas sequences to identify the 

potential presence of these genes.

7.2 Discussion

The isolated organism Mm. koyamae SHU1 can reduce hexavalent chromium (which was 

seen in the previous chapter) but as the trivalent chromium has not been characterised in this 

study there could be the possibility that the organism can accumulate or sorb the hexavalent 

chromium ions from the solution rather than the complete enzymatic mediated reduction 

process.

7.2.1 Mechanism of chromium (VI) bioremediation

In the natural environment when the microbes interact with metals or metalloids some of 

these elements could be beneficial to the microbes and others harmful. Interaction o f metals 

with microbes can lead to four mechanisms which can be employed to remediate metal 

contaminated environment by microbes.

The various levels of interaction of metals/metalloids with the organisms include

118



1. Metabolic/enzymatic- uptake of metals or metalloids in the metabolic activities of 

microbes. Indeed enzymes such as nitrogenase and cytochrome oxidases contain 

metals (Cu, Mo and Fe) that under certain circumstances can be toxic.

2. Some microbes can use certain metals or metalloids as electron donors or electron 

acceptors in energy metabolism. A number of Eubacteria and archaea have been
9 •researched eg. The archeon Sulfolobus sp. reduces M0 O4 ' to a lower oxidation state 

(Brierley and Brierley 1982) and reduction of C1O 42' to Cr (III) by the bacterium 

Pseudomonas fluorescenes LB300 form part o f respiration (Wang and Shen 1995).

3. Enzymatic microbial detoxification- where the toxic metal species is converted to a
2 3less toxic or non-toxic species. The oxidation of AsO ' to AsC>4 ‘ by Alcaligenes 

faecalis (Ehrlich 1997) and reduction of hexavalent chromium to trivalent chromium 

by Methylococcus capsulatus (Bath)

4. Non enzymatic processes such as accumulating metal ions on the cell surfaces either 

by living or dead biomass. This process can also be referred to as biosorption. The 

process o f biosorption is detailed below.

Biosorption is a physico-chemical process where the substances can be removed from 

the solution with the help of biological materials (Gadd 2009). Biosorption can be 

passive or metabolically independent process. The biosorbents used for the process 

can be dead biomass or fragments of cells and tissues. The biosorption can be 

performed by the live cells where the metal ions get adsorbed on to the surface of the 

cell walls or the outer layers (Fomina & Gadd 2014). Biosorption is an important 

natural phenomenon like sorption of metals and microbes in soil.

The biosorption process involves a solid phase (biosorbent) and liquid phase (solvent: 

water) or some dissolved or suspended ions to be sorbed (sorbate). A wide range o f  

biosorbates can be removed from the solutions. These include metals, particulates, 

and colloids, inorganic and organic compounds like dyes, flouride, pthalates and 

pharmaceuticals (Fomina & Gadd 2014).

The mechanisms involved in the biosorption process include adsorption, ion exchange and 

complexation/coordination. In the case of biological materials the functional groups present 

in cell wall structure interact with metal species like carboxyl, phosphate, hydroxyl, amino, 

thiol etc., the process of biosorption depends on system and given conditions. Precipitation 

and crystallisation are also possible mechanisms that can occur in the biosorption process 

(Gadd 2009).
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The process of biosorption is influenced by various factors like pH, ionic strength of the 

solution, initial pollutant concentration, biosorbent nature and the availability of binding sites, 

agitation and temperature (Gadd 2009). Several analytical techniques have been employed to 

study the efficiency of the biosorption process such as atomic absorption spectrophotometry 

(AAS), UV-Vis spectrophotometry, Scanning or transmission electron microscopy coupled 

with energy dispersive X-ray spectroscopy (SEM/TEM-EDX), X-ray diffraction (XRD) 

analysis, Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) 

(Gadd 2009). In the case of xenobiotics which are extremely resistant to biodegradation these 

can be removed by biosorption. The dyes, phenolic compounds and pesticides have gained 

increasing attention to remove from waste stream by biosorption (Fomina & Gadd 2014).

A material which has affinity for absorbing various types of substrates can be used as a 

biosorbent. There are a wide range of biosorbents available which includes biological 

materials, industrial wastes and natural residues. The various biosorbents used are microbial 

biomass like bacteria, archaea, cyanobacteria, filamentous fungi and yeasts, and seaweeds. 

Industrial wastes like fermentation and food wastes, anaerobic and activated sludges are also 

employed as the biosorbents. Agricultural wastes such as rice straw, wheat bran, sugar beet 

pulp, soyabean hulls, fruit and vegetable wastes are also employed. Natural residues such as 

tree barks, weeds, and sphagnum peat moss sawdust and plant residues have also been 

employed as biosorbents (Park et al., 2010; Dhankar and Hooda, 2011). Biosorbents have 

been prepared from commercial products to remove various types of pollutants from solution 

(Gadd 2009).

Peptidoglycan carboxyl groups are the main site for binding of metal ions in Gram positive 

bacterial cells with phosphate groups contributing in Gram negative bacteria (Gadd 2009). 

Many microbes have the ability to produce extracellular polymeric substances (EPS), which 

constitutes polysacchrides, capsules, slimes and sheaths which is an important biosorptive 

component in living cell systems especially biofilms depending on associated components 

and polysaccharide (Comte 2008). EPS are involved in biosorption of cadmium in activated 

sludges (Comte 2008). EPS also adsorb or trap particulate matter such as precipitated metal 

sulphides and oxides (Gadd 2009).

Previously, an attempt was made to test the efficiency of metal ions removal from waste 

water using the biosorbents from the isolates of metal contaminated environments. Several 

heterotrophic, methanotrophic, sulphate reducers and algae were isolated from water and
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sediment samples collected at abandoned coal mining site. One culture IGTM17 which is 

mixed methanotrophic culture has a binding capacity o f 56 mg/g biomass making it superior 

to ion exchange resins. The biomass was found to exhibit good metal binding capacities at 

low pH.(Xie et al., 1996).

It is possible that biosorption plays a role in chromium removal by Mm. koyamae SHU1 it 

may be possible that the metal binding peptide methanobactin that methane oxidising bacteria 

produce is involved.

Methanobactin (mb) is a small copper binding compound or chalkophore produced in 

response to copper limitation, which strongly bind to copper and are found in almost all 

methanotrophs. These chalkophores promote copper internalisation into cells and protect the 

cells from copper toxicity. These chalkophores are known to display redox reactions and 

weak antibiotic properties and are possibly associated with pMMO (Kim & Graham 2004).

Methanobactins is a chalkophore which is similar to the siderophores which are utilised by 

several other organisms for collecting iron. Although mb is known to be produced in several 

methane oxidisers, it has not been investigated in Mm. koyamae SHU1. A simple plate assay 

helps in the identification of methanobactin production, as detailed below. Such a test could 

be used as a first step to determine whether Mm. koyamae SHU1 produces mb.

Semrau and colleagues have developed a method to detect mb on plates by modifying the 

previous chrome azurol S (CAS) for determining siderophores on plates. In the previous 

method a blue complex forms with iron and CAS in the presence of detergent 

hexadecyltrimethylammonium bromide (HDTMA) and the removal of iron by siderophores 

can be determined by colour change in medium from blue to orange as the siderophore strips 

iron from the CAS. In the modified method of Semrau, determination of chalkophore iron is 

replaced by copper; CAS has high affinity for copper as well as iron. The change in the 

colour from blue to yellow shows the production of chalkophore in the plates, as the 

chalkophore removes copper from the CAS. Four methanotrophs have been tested for 

chalkophore production in this way and M. trichosporium OB3b, M. capsulatus (Bath), and 

Methylomicrobium album BG8 produced chalkophores, while Methylocystis parvus OBBP 

did not produce detectable chalkophore in this plate assay (Yoon et al., 2011).
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Methanobactins are known to bind to variety of the metals and play an important role in 

solubilisation or immobilisation of metals making methanotrophic activity a potential role in 

remediation of metal contaminated environment. Research findings by Choi et al 2006 using 

UV-visible absorption spectroscopy have demonstrated that the methanobactin from 

Methylosinus trichosporium OB3b in the absence of Cu (I) or Cu (II) binds several metals 

such as Ag(I), Au (III), Cd (II), Co (III), Fe (III), Hg (II), Mn (II), Ni (II), Pb (II), U(VI) and 

Zn (II) but not Ba (II), Cr(VI), La (III), Mg (II) and Sr (II). If the mb from Mm. koyamae 

SHU1 matches or is almost similar to mb of other methanotrophs it is unlikely that it will 

bind to Cr (VI).

Nonetheless, the possibility o f methanobactin being involved in chromium reduction could be 

evaluated since the methanobactins have the redox capacity and also have been found to bind 

to mercury and detoxify it as shown in Methylocystis strain SB (Baral et al., 2014). If in 

future it is possible to isolate methanobactin from Mm. koyamae SHU1 its potential role in 

detoxification o f heavy metals, including chromium (VI), could be investigated.

The ability of methanobactin to bind the heavy metals as shown by Choi et al 2006 could be 

used in bioremediation by methanotrophs and also to evaluate the role o f methanobactin from 

methanotrophs in the biosorption of heavy metals.

The possibility that chromium (III) is produced from Cr (VI) by Mm. koyamae SHU1 needs 

to be experimentally investigated. The techniques are discussed below to measure both Cr 

(III) and Cr (VI). The chromium speciation in the solution can be detected with the ICP-MS 

(Inductively coupled plasma emission mass spectrometry) coupled with HPLC (High 

pressure liquid chromatography). Because these techniques provide high resolution and ease 

in separation and detection of ions, they are gaining importance. In the HPLC-ICP-MS 

technique the consistent mobile phase of HPLC carries the chromium species and they are 

separated according to their affinity for the mobile and stationary phases. The outflow from 

the HPLC is coupled to the nebuliser of the ICP-MS to quantify the chromium in the fractions 

as they elute (McSheehy and Martin 2006).

It is likely that the removal of hexavalent chromium by Mm. koyamae SHU1 is enzymatic 

because the addition of the sodium azide to the reaction completely inhibited the removal of 

Cr (VI) indicating the likely role of enzymatic activity.
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The NAD (P) H reductase could play a role in chromium removal as when the enzyme 

methane monooxygenase is inhibited by the phenyl acetylene chromium removal was 

completely abolished. Alternatively, the reducing equivalents supplied from the reduction of 

methane to methanol by MMO enzyme may enable the reduction of hexavalent chromium by 

the organism using other enzyme(s).

M. capsulatus (Bath) can also play an important role in reduction of toxic mercury (II) ions to 

elemental mercury with the help of NADPH dependent mercuric reductase (Boden 2011). 

The reduction of hexavalent chromium by M. capsulatus Bath as shown by Ismael (2014) by 

NADPH reductase could be leading to possibility to Mm. koyamae SHU 1 could also reduce 

hexavalent chromium with an NADPH reductase and also be employed and tested for the 

detoxification of mercury (II) ions.

Many basic steps in the chemical transformation of compounds in microbes involve oxidation 

and reduction reactions. These usually involve important co-enzymes whose substrate 

metabolism and energy metabolism have been studied (Feng, Shi et al 2009) and the co­

enzymes function to allow oxidation or reduction of the substrate by accepting or donating 

electrons.

Such redox co-enzymes include NAD and its phosphorylated derivative NADP, which can be 

oxidised or reduced by loss and gain of two electrons. ATP-NAD kinase utilizes ATP as sole 

phosphoryl donor for phosphorylation of NAD (H), While NADH kinase phosphorylates both 

NAD+ and NADH to form NADP+ and NADPH. The NADP and NAD (P) H are thought to 

be involved in the chromium reduction in methane oxidising bacteria and the determination 

of NAD (P) H activity in solutions can give significant background information on reduction 

of hexavalent chromium in the organisms and its vital role in the oxidation reduction 

reactions.

The possible involvement of an NAD (P) H reductase in reduction of chromium (VI) by Mm. 

koyamae SHU 1 could be investigated as follows. The cells would be grown to mid 

exponential phase and then the cells harvested by centrifugation, followed by the 

resuspension of cells in lOmM phosphate buffer and then breakage of the cells through 

sonication, followed by centrifugation. The cell free extracts would be stored to allow 

subsequent analysis of the chromium (Vl)-stimulated dehydrogenase activity in the cells, via 

spectrophotometer assays at A3 4 0  nm. The reduced flavin nucleotides (NADH and NADPH+)
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have strong absorbance at this wavelength compared to oxidised nucleotides (NADf and 

NADP+) (Ray et al 1989).

The chromium removal observed in the present study could also be attributed to the 

involvement of the sulphate transport pathway. The similarities of the two oxy anions may 

allow chromium (VI) to permeate inside the cell membrane of the microbes. The pathway 

thus could take up the chromate as well as sulphate into the cells.

Bioinformatics is a range of tools which uses computer to study the biological data and 

process it. Various BLAST searches were performed with the available genome sequences of 

the Methylomonas genus with the chromium reductases enzymes and other proteins that 

could possibly be involved with chromate uptake, efflux systems and chromate reduction. 

Various highly significant proteins likely to be involved in the process were found in a 

number of Methylomonas species which have been clearly discussed with the results in 

chapter 6  under heading 6.3.5 section. The presence of these proteins in Mm. koyamae SHU 1 

could possibly enable the application of Methylomonas in the bioremediation of Cr (VI).

7.2.2 Distribution of M. koyamae across the globe

Methanotrophs are present in many natural ecosystems consuming methane which is formed 

biogenically by methanogenesis or abiotically generated by seeping from ocean beds natural 

gas mines and coal fields. The type I methanotrophs are termed as efficient oxidisers and also 

used as biofilters in industrial applications. These organisms have been used in several 

remediation applications (Rosenberg et. al., 2014).

The genus Methylomonas is ubiquitous in nature, although this is only the second report of 

the isolation of Mm. koyamae. The first time this species was isolated, it was associated with 

the nitrogenous fertilisation in the rice field soils. The fact that M. koyamae has been isolated 

from two contrasting environments is consistent with its presence in wide range of habitats. 

The organism M. koyamae was first isolated from flood water of rice paddy field and the 

strain was classified as FW 12E- YT (NCIMB=14606). Next, in the current study, the strain 

was isolated from sediments of the River Sheaf, Sheffield, UK, and so it is present in at least 

different habitats and two different continents. Also, the strain M. koyamae along with four 

other strains R-45378, R-45383, R-49799, and R-49807 (97.9-100% 16S RNA sequence 

similarity) were detected at the molecular level in a culture-independent study of nitrogen 

metabolism in methane oxidising bacteria in Belgium (Hoefman et al., 2014).
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Since M. koyamae has been isolated from two contrasting environments across two 

environments across two continents and also identified in a culture independent molecular 

study, it is possible that this species is widely distributed across the globe. It is also 

reasonable to draw the conclusion that Methylomonas are widespread and their ability to use 

in the bioremediation and other studies along with several other methanotrophs contribute a 

great significance in the upcoming research field which is described in detail in 1.4.5 of the 

literature review

7.2.3 Significance of results

Researchers have tried experimenting with many bacteria, fungal and algal species to 

bioremediate hexavalent chromium and found several organisms which are able to effectively 

remediate hexavalent chromium to the less toxic trivalent state in the environment by 

employing techniques such as enzymatic reduction, bio sorption, bioaccumulation by sulphate 

transport pathway with low operational and chemical costs.

In a similar way researchers have been exploiting methanotrophs and studying the application 

of the organisms in remediation of hexavalent chromium, which is a growing trend in the 

field of biotechnology. If we can cultivate such organisms as Mm. koyamae SHU1 or other Cr 

(VI) reducers in bioreactors and employ them on large scale for cleaning up the contaminants 

it would be a considerable success in biotechnological industry.

7.3 Recommendations for future work

> The above the removal of hexavalent chromium by Mm. koyamae SHU1 was 

observed by diphenylcarbazide assay. These reduction reactions can also be 

characterised by applying TEM transmission electron microscopy) and EXFAS 

(Extended X ray absorption fine structure). The speciation of chromium during 

microbial reduction can also be employed with these techniques.

>  The organism could be employed for reduction of other potential heavy metal 

pollutants or detoxification of lead, mercury and arsenic. Biosorption by 

methanotrophs could also be employed to remove the toxic metals from the 

environment.
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> Organisms which can reduce hexavalent chromium also have potentiality to remediate 

several organic compounds. The organisms can be employed in the bioremediation of 

the organic pollutants with or without simultaneous chromium (VI) contamination.

> The methanobactin from the isolated organism Mm. koyamae SHU 1 should be tested 

for binding of other metal ions which may be one efficient way to detoxify the heavy 

metals by this compound.
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