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Abstract

Serotonin (5-HT) neurotransmission is involved in the psychopharmacology of 
several psychiatric disorders including, depression, anxiety disorders and 
schizophrenia. The release of 5-HT in neurons is mediated by somatodendritic 5- 
HT ia autoreceptors. The presence of 5-HT ia receptor is thought to be increased 
in depressed patients, producing a reduction in the synthesis of 5-HT. A common 
single nucleotide polymorphism in the promoter region of 5HT1A receptor C- 
1019G is also associated with depression and suicide. The nuclear DEAF-1 
related (NUDR) protein represses the 5-HT i A promoter region hence regulating 
both 5-HT1A transcription and receptor expression.

The project involved undertaking a post-mortem study to determine any 
association between the 5-HT1A promoter polymorphism and the expression of 5- 
HT ia receptor mRNA and receptor density in control human hippocampal brain 
tissue. This was achieved by genotyping human brain tissue for the 5-HT i A 
receptor polymorphism C-1019G and 5-HT i A receptor mRNA levels were 
quantified using real-time PCR. Radioligand binding was used to determine Bmax 
and Kd quantifying 5-HT1A receptor density.

The SHSY-5Y neuroblastoma cell line is a well characterised cell line model used 
in neurotransmitter studies when differentiated. The 5-HT1A receptor couples to Gj 
proteins inhibiting AC activity and hence mediating a variety of intracellular 
changes such as, decreasing cAMP leading to decreased Ca2+ levels. The SH- 
SY5Y cell line study investigated whether the 5-HTiA agonist 8 -OH-DPAT, 
inhibited forskolin stimulated Ca2+ release in the SHSY-5Y cell line and whether 
the 5-HT1A antagonist p-MPPI reversed this effect using flow cytometry.

The post-mortem study showed that the G-1019 allele had significantly higher 5- 
HT1a expression compared to the C allele in control hippocampal tissue. 
Radioligand binding data demonstrated that control samples with a GG or G/C 
genotype had a significantly higher 5-HT1A receptor density compared to samples 
with a CC genotype. SH-SY5Y cells differentiated with RA for 5 days or NGF and 
aphidicolin for 10 days had significantly increased 5-HT1A receptor mRNA levels 
compared to undifferentiated cells. Western blots and immunocytochemistry 
confirmed the presence of the 5-HT1A receptor in this cell line. An increase in 
NUDR expression was observed at the same time there is an increase in 5-HTiA 
receptor expression in SH-SY5Y cells treated with RA or NGF and aphidicolin. 
Flow cytometry showed that 8-OH-DPAT efficiently diminished forskolin- 
stimulated increase in intracellular Ca2+ in RA differentiated cells. 5-HT also a 5- 
HT1A agonist had a similar effect. SH-SY5Y cells treated with both p-MPPI and 8- 
OH-DPAT demonstrated that cells treated with p-MPPI at higher concentrations 
significantly increased forskolin-stimulated intracellular Ca2+ levels and therefore 
effectively reversed the agonistic effect of 8 -OH-DPAT.

The findings presented in the post-mortem study are novel and the SH-SY5Y cell 
line study demonstrates that this cell line when differentiated with either RA or 
NGF and aphidicolin is a useful cell-line model system for studying the 5-HT1A 
receptor.
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Chapter 1
Introduction



1.0- Serotonin (5-HT)

The isolation and characterisation of serotonin (5-HT) and its final identification 

as serotonin took place between 1940 and 1949. However, back in 1868 it was 

already widely acknowledged that blood contained a vasoconstrictive substance 

that was released in serum during platelet breakdown (Green, 2006). This 

substance proved to be a problem for Irvine Page in his studies on malignant 

hypertension due to the substance's ability to elicit large pressor responses and, 

depending on dose administered, this substance could act as either a 

vasoconstrictor or vasodilator (Rapport, Green and Page, 1948b). The 

substance was isolated and characterised and in 1949 it was finally identified by 

Maurice Rapport as serotonin, named after its vasoconstrictor properties 

(Rapport, Green and Page, 1948a).

One year later in 1950 Gaddum observed that serotonin was present in the 

brain; he also showed that the action of 5-HT in the gut was antagonised by the 

hallucinogen, lysergic acid diethylamide (LSD) (Gaddum and Hameed, 1954). 

Erspamer in the 1950’s demonstrated that “enteramine” a substance now 

known to be serotonin was distributed widely and involved in smooth muscle 

contraction. Erspamer named serotonin “enteramine” as large amounts of this 

substance were stored in enterochromaffin cells of the gastrointestinal tract 

(Erspamer, 1963).

Also in the 1950’s, Wooley and Shaw suggested that there was a role for 

serotonin in mental illness. This was hypothesised due to the knowledge of 

pyschotomimetic activity of serotonin analogues and of LSD. It was not until the 

1970’s that a role for serotonin in depression was established (Clarke et al, 

1975). Underlying this theory was work by a group of Scandinavian scientists 

who developed selective inhibitors of serotonin uptake and showed these 

inhibitors to be successful antidepressants (Carlsson et al, 1969).

The discovery and the classification of 5-HT receptors began in 1954 by 

Gaddum and Hadeem and has since been reviewed to include new 

developments in the discovery of new receptor subtypes. This has provided a 

greater understanding of serotonin and its receptors which enabled new drug
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development. Presently, there is a substantial amount of information on the 

neuropharmacology of serotonin (5-HT) which implicates the serotonin system 

as an important modulator in a variety of central nervous system processes 

(Green, 2006). These processes include: anxiety, fear, depression and 

aggression; control of sleep and modulation of ingestive behaviours and the 

cardiovascular system (Gingrich and Hen, 2001; Hoyer et al, 2002).

1.1- Synthesis and metabolism of serotonin

The precursor amino acid utilised in the biosynthesis of 5-HT is tryptophan. 

Tryptophan hydroxylase (TPH) catalyzes the hydroxylation of L-tryptophan via 

the oxidation of tetrahydrobiopterin in the presence of the reductive 

incorporation of molecular oxygen (Kappock and Caradonna, 1996). This is the 

first step in the biosynthesis of the indoleamines (serotonin (5-HT) and 

melatonin) (Martinez, Knappskog and Haavik, 2001), (Figure 1.1).

Figure 1.1- B iosynthesis of 5-HT

The conversion of tryptophan to 5-hydroxytryptophan, occurs in the chromaffin cells 

and neurons. The second step is the decarboxylation of 5- hydroxytryptophan to 5-HT 

by the aromatic L-amino acid decarboxylase.

TRYPTOPHAN 5-HYDROXY  
TRYPTOPHAN

H H H H
Tryptophan hydroxylase

OH OH
L-amino
decarbo:

SEROTONIN
H H
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In mammalian metabolism of 5-HT, the reaction catalysed by TPH preceding a- 

decarboxylation is thought to be the rate limiting step in the production of 5-HT  

(Lovenberg, Jequier and Sjoerdsma, 1967; Jequier, Lovenberg and Sjoerdsma, 

1967).

Once 5-HT has been synthesised, 5-HT is stored in secretory vesicles, as the 

free compound can be rapidly oxidised to 5-hydroxyindoleacetic acid (5-HIAA) 

through the actions of the enzymes monoamine oxidase and aldehyde 

dehydrogenase. Stored 5-HT is then released in response to mechanical and 

neuronal stimuli (Boadle-Biber, 1993).

1.2- Serotonin release and reuptake at a serotonergic synapse

5-HT as previously mentioned is taken up into and stored in storage vesicles, 

where the neurotransmitter is released into the synaptic cleft only when an 

action potential occurs at the pre-synaptic neuron. 5-HT then diffuses across 

the synaptic cleft and can bind with any of the 5-HT receptor classes 

(1 ,2 ,3,4,5 ,6 and 7) on the post-synaptic neuron.

Levels of synaptic 5-HT are tightly regulated with re-uptake of 5-HT into the 

presynaptic 5-HT terminals facilitated by the 5-HT transporter (5-HTT). 5-HTT  

suppresses the action of 5-HT on its receptors by functioning as a sodium- 

dependent plasma membrane transporter with 5-HT being recycled into the 

presynaptic terminal (Hranilovic et al, 2004).
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Figure 1.2- 5-HT neurotransm ission

An action potential initiates the release of 5-HT from synaptic vesicles into the synaptic 

cleft. 5-HT binds to 5-HT receptors present on the postsynaptic neuron. Excess 5-HT is 

reuptaken by 5-HTT or degraded by MAO.

1.3- Receptor subtype identification and classification
The first attem pt to categorise 5-HT receptor subtypes was by G addum  and 

Picarelli in 1957 although it had been previously published that 5-HT possessed 

two receptor subtypes by Gaddum  and Hadeem in 1954. G addum ’s 

classification of 5-HT receptors divided them into D and M receptor subtypes. 

The naming o f these receptors was based on the selectiv ity o f the receptor 

subtypes to d ibenzyline and m orphine as blockers. However, G addum ’s 

proposal was generally accepted to be relevant to peripheral receptors only and 

not those present in the brain (Gaddum and Picarelli, 1957).

Further research into serotonin led to the discovery o f several additional 

subtypes and classes of 5-HT receptors. The nom enclature system  has 

subsequently been adapted to align it w ith the human genom e (H oyer and 

Martin, 1997).
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The current classification of 5-HT receptors and their subtypes are based on 

their molecular structure, signal transduction pathway and operational 

properties (Kelly, 1995). There are seven classes of 5-HT receptors 5-HT-I-5- 

HT7, with some of these receptor classes being further subdivided into subtypes 

such as 5-HT1A, B, D, E and F (Hoyer and Martin, 1997).

In accordance with the recommendations of NU-IUPHAR (the main IUPHAR  

nomenclature committee), newly described recombinant receptors are 

described in lower case i.e. 5-htn and described in uppercase only when 

operational and transductional information are available.

1.3.1- 5-HT-j receptors
The 5-HT1 receptor class is subdivided into five receptor subtypes (5-HT1A,1B, 

1D, 1E and 1F), which share 40-63%  overall sequence identity in humans and 

couple preferentially, although not exclusively to, Gj/oto inhibit cAMP formation.

The 5-H T ia  receptor is widely distributed throughout the CNS in particular in the 

raphe nuclei and limbic structures including the hippocampus. The 5-H T ia 

receptor will be discussed in more detail in section 1.4.2. 5-H T ib receptors are 

expressed in the CNS and thought to be concentrated in the basal ganglia, 

striatum and frontal cortex. This receptor subtype may function as terminal 

autoreceptors (Pauwels, 1997). 5-H T1D receptors have been located in the 

human heart where they modulate 5-HT release (Hoyer et al, 2002) whereas 

the 5-HT-ie receptor was first identified in binding studies in homogenates of 

human frontal cortex (Bruinvels et al, 1994). Bai et al, (2004) have cloned and 

characterised the 5-H T i E receptor from guinea pig genomic DNA. The 5-H T ie 

receptor gene shares 95% sequence homology with the human receptor. 

Presently, little is known about the distribution and function of the 5-H T if 

receptor, m RNA for the human receptor protein has been identified in the brain 

particularly in the dorsal raphe, hippocampus and cortex (Hoyer et al, 2002).
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1.3.2- 5-HT2, 5-HT3 and 5-HT4 receptors
The 5-HT2 class comprises of the 5-HT2A, 2 B and 2C subtypes which exhibit 

46-50%  overall sequence identity and this receptor class preferentially couple to 

Gq/n to increase the hydrolysis of inositol phosphates and elevate cytosolic 

calcium. The 5-H T2a receptor is widely distributed in peripheral and central 

tissues with particularly high expression found in cortical regions (Eison and 

Mullins, 1996). 5-HT2b receptor expression has been found in organs including 

vascular smooth muscle (Ullmer et al, 1995) spinal cord (Helton and Colbert, 

1994) and the brain (Choi and Maroteaux, 1996). 5-H T2C receptors are found in 

the choroid plexus (Pazos, Hoyer and Palacios, 1984), the cortex, basal ganglia, 

hippocampus and hypothalamus (Molineaux et al, 1989).

5 -H T3 receptors can be found on neurones of both central and peripheral origin, 

the CAI pyramidal cell layer in the hippocampus and the dorsal motor nucleus 

(Hoyer and Martin, 1997). The 5-HT4 receptor is widely distributed within the 

CNS and peripheral tissues where it is thought to play an important role in the 

function of several organ responses including the alimentary tract, urinary 

blader, heart and adrenal glands (Hedge and Eglen, 1996).

1.3.3- 5-ht5, 5-ht6and 5-HT7 receptors
The 5-ht5 and 5-ht6 receptor classes are both putative. To date there is no 

evidence to confirm the expression of the 5-hts receptor endogenously, whereas 

the 5-ht6 receptor has been shown to be expressed endogenously in neuronal 

tissue (Hoyer and Martin, 1997). 5-HT7 receptors share low homology (<50% ) 

with other members of the 5-HT receptor family and are mainly found in CA2 

and CA3 pyramidal layers of the hypothalamus and in the human stomach, the 

descending colon, ileum and coronary artery (Bard et al, 1993).
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Nomenclature 5-HT1A 5-HT-ib 5-HT1D 5-ht1E 5-htip
Selective
agonists

8-OH-DPAT Sumatriptan Sumatriptan " LY334370

Radioligands [JH]WAY10063
5

[ IZ3I]GTI [1Z5I]GTI [JH]5-HT ['" l]L S D

G protein 
effector

Gj/o Gj/o Gj/o Gj/o Gj/o

Nomenclature 5-HT2A 5-HT2B 5-HT2C 5-HT3 5-HT4
Selective
agonists

Ketanserin SB200646 Mesuiergine Granisetro
n

GR1138
08

Radioligands [ ' " I ]  DOI [JH]5-HT [1tol]LSD [JH](S)zac
opride

[^ l]S B 2
07710

G protein 
effector

Gq/|| Gq/|| Gq/|| " Gs

Nomenclature 5-htsA 5-ht5B 5-hte 5-HT7
Selective agonists ” “ “ “

Radioligands [ lzol] LSD [1Z0I]LSD [1ZDI]SB25885 [1Z0I]LSD

G protein effector Gj/o None identified Gs Gs

Table 1.1- 5-HT receptor nom enclature

Abbreviations: Gq/n- activates phospholipase C, Gi/0- Inhibits adenylyl cyclase, Gs- 

Stimulatory G-protein activates adenylyl cyclise. Modified from Hoyer and Martin (1997).

1.4 - Serotonergic system

The serotonergic system has been im plicated in a vast array o f physio logica l 

and behavioural processes in vertebrates by exerting a ton ic and m odulatory 

influence on a variety of targets (Jacobs and Azm itia, 1992). The serotonerg ic 

system has also been im plicated in the pathophysio logy o f depression and 

anxiety. The m ost compelling evidence involves the alleviation of depression 

observed when selective serotonin reuptake inhibitors (SSRIs) have been 

adm inistered. SSRIs increase the availability of 5-HT at the synapse (M alagie et 

al, 2002).



Basal ganglia
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To spinal cord

Figure 1.3- The serotonergic system

Ascending projections arise from the dorsal and median raphe nuclei and travel 

through to target regions including the limbic system (hippocampus, hypothalamus and 

amygdala), striatrum and cerebral cortex. The descending projections arise from the 

raphe magnus and project towards the spinal cord (Bear, Connors and Paradiso, 2001).

1.4.1-Anatomical localisation

5-HT secreting neurons are distributed and contained throughout the brain and 

the gastrointestinal tract.

The gut is the main source of 5-HT in the body (Vialli and Erspam er, 1937). 

Enterochrom affin cells in the mucosa contain >90 percent of the body's 5-HT. It 

has recently been recognised that 5-HT is also contained in in trinsic neurons of 

the gastrointestinal tract (De Ponti, 2004). In the gut, 5-HT is an im portant 

mucosal signalling m olecule that targets enterocytes, sm ooth m uscle cells and 

enteric neurons (De Ponti, 2004). 5-HT is thought to be involved in the
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pathophysiology of a number of clinical entities such as functional gut disorders 

including irritable bowel syndrome.

5-HT acts as a mucosal signalling molecule for mucosal enterochromaffin cells 

which act as sensory transducers that respond to mechanical pressure 

(Bulbring and Crema, 1959) or nutrients (Kim, Cooke and Javed, 2001; 

Raybould et al, 2003; Fukumoto, Takewaki and Yamada, 2003) to secrete 5-HT  

into the wall of the bowel and initiate peristaltic (Grider, Kuemmerle and Jin, 

1996) and secretory reflexes (Cooke, 2000).

The central nervous system accounts for 5 percent of the 5-HT present in the 

body with 5-HT being present within several areas of the midbrain including the 

hippocampus, frontal cortex, limbic system and the hypothalamus (Tork, 1990). 

Within the central nervous system (CNS) 5-HT acts as a neurotransmitter and 

high concentrations of 5-HT can be predominantly found in localised nerve 

projections of the mid-brain particularly in several large clusters of cells referred 

to as Raphe nuclei (Rang and Ritter, 1999), (Figure 1.3).

1.4.2- Anatomical localisation of 5-HT1A receptors
1.4.2.1 - Raphe nuclei

The raphe nuclei are distributed near the midline of the brainstem along its 

entire rosto-caudal extention (Meessen and Olszewsky, 1949). The raphe nuclei 

are distributed near are a group of nuclei at the centre of the reticular formation 

present in the midbrain, pons and the medulla which are all part of the brain 

stem. The serotonergic neuron clusters are allocated on the basis of their 

distribution and main projection, into two groups: the rostral group with major 

projections to the forebrajn^and the caudal group with major projections to the 

spinal cord (Hornung, 2003). 85 percent of serotonergic neurons in the brain are 

part of the rostral group. These serotonergic pathways are believed to be 

distributed capaciously throughout the brainstem, the cerebral cortex and the 

spinal cord. Presynaptic 5-HT|ia receptors are located primarily on cell bodies 

(soma) and dendrities such as somatodendritic neurons of the dorsal raphe and 

are thought to act as inhibitory autoreceptors that exert a negative feedback
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influence on 5-HT neuronal firing (Nestler et al, 2001; Blier and Ward, 2003; 

Stahl, 1996; Ou e t a l ,  2000).

In the raphe area the activation of 5-H T ia  autoreceptors reduces the release of 

5-HT at the level of terminals in the hippocampus (Sharp and Hjorth, 1990; Blier, 

Serrano and Scatton, 1990). It is therefore assumed that changes in the firing 

rate of 5-HT neurons which is induced by drugs acting at 5-H T i A receptors can 

alter the level of activation of post-synaptic 5-HT receptors in the brain 

(Mongeau, Blier and de Montigny, 1997).

1.4.2.2 - Lim bic system

The limbic system is made from several heavily interconnected nuclei and 

several regions of the cerebral cortex. The limbic system including the 

hypothalamus, cingulated gyrus and the hippocampus and their 

interconnections comprise a harmonious mechanism, which involve the function 

of central emotion as well as participating in emotional expression (Morgane et 

al, 2005; Papez, 1937).

1.4.2.3 - H ippocam pus

The hippocampal formation is one of the most complex and vulnerable brain 

structures which is recognised as a crucial brain area subserving the human 

long-term memory (Henke et al, 1999). The hippocampal formation consists of 

the dentate gyrus and the cornu ammonis (CA) plus the subiculum collectively 

known as the hippocampus.

The hippocampus has sensory inputs arriving to the entorhinal cortex which are 

relayed to granule cells of the dentate gyrus. Synapses on CA3 pyramidal 

neurons are formed from “mossy” fibres composed of axons arising from 

granule cells. CA1 pyramidal neurons project to the subiculum which provides 

the main output of the hippocampus (Mongeau, Blier and de Montigny, 1997) 

(Figure 1.4).
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5-HT stim ulates 5-H Tia receptors which are localised on both excitatory 

pyram idal and granule neurons (Gulyas, Acsadi and Freund, 1999) resulting in 

neuronal hyperpolarisation and inhibition o f neuronal activity in the 

hippocam pus (Schm itz et al, 1998). 5-HT acting via its 5 -H T ia  receptor has 

been im plicated in rhythm ic slow activity, which has been associated with 

learning and m em ory processes in the hippocam pus (Vanderwolf and Barker, 

1986; M cEntree and Crook, 1992 and Pom peiano et al, 1992).

Fimbria

Alveus

Den fate 
gyrus

CA3 CAl

Subiculum

Figure 1.4- Schem atic representation of the hippocam pus

The hippocampal pyramidal neurons (CA1-3) and the dentate gyrus granule cells (DG) 

receive a direct cortical input via the perforant pathway from the entorhinal cortex (EC). 

Hippocampal pyramidal neurons (CA1) and the sibiculum are involved in hippocampal 

cortical output to associated limbic cortices. 5-HT1A receptors are located on both 

pyramidal CA1-3 neurons and on granule neurones present in the DG (Nolte and 

Angevine, 2000).

1.4.2.4- Function of the Hippocam pus

The hippocam pus is believed to be involved in inform ation processing and 

behaviour (Mongeau, Blier and de Montigny, 1997).The m em ory form ation 

function of the hippocam pus com prises a core structure o f the m edial tem pora l
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lobe where information about relationships, combinations, and conjunctions 

among and between stimuli is processed (Riedel and Micheau, 2001). Both the 

medial temporal lobe and the hippocampus (CA, DG, and subiculum) are the 

place for either the temporary storage of to-be consolidated information (Squire,

1992) or as the locus of permanent information storage through multiple 

memory traces (Nadel and Moscovitch, 1997).

Specific encoding of new information requires the dentate gyrus granule cells 

and processes of memory consolidation, either short-term or long-term, by 

contrast, should depend on the network activity of the hippocampus proper 

(CA1-CA3), (Riedel and Micheau, 2001).

1.4.2.5 - Serotonergic transm ission in the hippocam pus
1.4.2.6- Pre-synaptic m echanism s in the hippocam pus

5-HT neuron firing activity is credited to a pacemaker cycle that involves a 

calcium dependent potassium current. The discharge rate of these neurons is 

mediated by 5-H T i A autoreceptors localised in the somatodendritic region on 

the presynaptic neuron (Mongeau, Blier and de Montigny, 1997). The activation 

of 5-HT-ia autoreceptors is regulated by an hyperpolarisation of the membrane 

occurring by the opening of potassium channels (Aghajanian and Lakoski, 1984; 

Sprouse and Aghajanian, 1987; Williams, Henderson and North, 1985).

Contrary to somatodendritic autoreceptors of the raphe area, terminal 

presynaptic 5-HT autoreceptors of the hippocampus are not of the 5-HTia 

subtype and control the release of 5-HT without interfering with the propagation 

of action potentials (Starke, Gothert and Kilbinger, 1989). Terminal 5-HT  

autoreceptors in mammalian species excluding rodent are of the 5-HT-id 

subtype (Mongeau, Blier and de Montigny, 1997).

The majority of studies agree that terminal 5-HT autoreceptors reduce the 

release of 5-HT by reducing the calcium influx via voltage dependent calcium 

channels (Starke, Gothert and Kilbinger, 1989).
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1.4.2.7 -  Post-synaptic mechanisms in the hippocampus

Activation of postsynaptic 5-H T i A receptors, results in an inhibition of the activity 

of neurons of the limbic system (Sprouse and Aghajanian, 1988).

There are two subsets of post-synaptic 5-H T ia  receptors in the hippocampus 

that differentially couple to G-proteins that suppress pyramidal cell firing. 

Extrasynaptic 5-HT-jA receptors are located on the soma of hippocampal 

pyramidal cells, which can be activated by microiontophoretic application of 

agonists and are inactivated by pertussis toxin (Blier, de Montigny and Lista,

1993). However, the other subset intrasynaptic 5 -H T1A receptors are localised 

on dendrites of hippocampal pyramidal cells and activated by endogenous 5-HT. 

Intrasynaptic 5-H T i A receptors are un-affected by pertussis toxin (Blier, de 

Montigny and Lista, 1993). It has therefore been hypothesised that 

extrasynaptic 5-H T i A receptors are coupled with G j /0 proteins, whereas 

intrasynaptic 5 -H T1A receptors are not.

1.4.2.8 - Other Limbic brain regions

The prefrontal cortex, amygdala-hippocampus complex, thalamus, basal 

ganglia are all present in the proposed neuroanatomic model of mood 

regulation (Soares and Mann, 1997). The previously mentioned brain areas are 

thought to have extensive interconnections, the two major neuroanatomic 

circuits in the brain believed to be involved in mood regulation are the limbic- 

thalamic-cortical circuit comprising of the amygdala, mediodorsal nucleus of the 

thalamus and medial and ventrolateral prefrontal cortex and the second major 

circuit a limbic-striatal-pallidal-thalamic-cortical circuit, that includes the striatum, 

ventral pallidum and other regions (Soares and Mann, 1997).
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1.4.2.9 - Prefrontal Cortex (PFC)

The prefrontal cortex can be divided into the ventromedial and dorsolateral 

regions, each of which is associated with posterior and subcortical brain regions 

(Wood and Grafman, 2003).

The ventral medial PFC has been strongly implicated in the expression of 

behavioural, neuroendocrine and autonomic responses to emotionally relevant 

stimuli. Recent imaging studies have indicated that abnormalities in structure 

and function of this region is present in patients with mood disorders (Drevets et 

al, 1997; Kennedy et al, 2001). Tracing studies have shown that 5-HT pathways 

ascend from the midbrain dorsal (DRN) and median raphe nuclei (MRN) which 

project extensively in to the ventral mPFC (O'Hearn and Molliver, 1984; 

Steinbusch, 1981). This region has also been shown to contain a high density of 

5-HT transporter sites (Battaglia et al, 1991; Herbert et al, 2001) and 5-HT  

receptors including 5 -H T ia  and 5 -H T 2a (Pazos and Palacios, 1985; Pompeiano 

et al, 1992). The DRN and MRN are thought to receive projections from the 

ventral mPFC (Hajos et al, 1998; Peyron et al, 1998; Sesack et al, 1989; Varga 

et al, 2001) activation of which has been shown to mediate 5-HT neuronal 

activity (Celada et al, 2001; Hajos et al, 1998; Varga et al, 2001).

From anatomical and electrophysiological observations it has been suggested 

that there is an excitatory mPFC-DRN projection that brings about inhibition of 

5-HT neurones in the DRN through the activation of local raphe GABA  

neurones (Hajos et al, 1998; Varga et al, 2001).

1.4.2.10-Hypothalamus

The hypothalamus’s function is to mediate many neuroendocrine functions. The 

hypothalamus is a highly organised structure. In depression, the hypothalamus 

has been studied in regard to the hypothalamic-pituitary-adrenal (HPA) axis 

(Nestler et al, 2002). The HPA axis involves corticotrophin-releasing factor 

(CRH) and vasopressin (AVP) which are both produced in the parvocellular 

neurons of the hypothalamic paraventricular nucleus (PVN).
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It has been shown that serotonergic m echanism s exert an excitatory influence 

on the HPA axis (Chaouloff, 1993 ) and 5-HT has also been shown to e licit the 

release of ACTH release directly from the pituitary (Spinedi and Negro-Vilar, 

1983 ) by activation o f 5 -H T ia  and 5 -H T 2a receptors (Calogero et al, 1990; 

Ritten-House et al, 1994).

The 5-HT system acting through 5 -H T ia  receptors may be able to m ediate the 

negative feedback control of the HPA axis.
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Figure 1.5 - Diagram of the cross section of the hypothalamus
T h e  h ypo th a lam u s is d iv ided  into a la tera l a re a  and  a m ed ia l a re a  w h ich  a re  s e p a ra te d  

by th e  fornix and  the  m am illo th a lam ic  tract. T h e  la tera l h ypo th a lam ic  a re a  inc ludes th e  

preoptic  nucleus and  the  m ed ia l h ypo th a lam ic  a re a  includes the  su praop tic  reg ion , 

an terio r nucleus, and  th e  supraop tic  nucleus (Afifi and  B erg m an , 2 0 0 5 ).
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1.4.2.11 Amygdala

Several studies have shown the role of the am ygdala to be associated with 

conditioned fear (Davis, 1998; Catill et al, 1999; Le Doux, 2000). The am ygdala 

is thought to m ediate the ability o f previously non-threatening stimuli, when 

associated with naturally frightening stimuli (including the exposure to severe 

stress) to educe a w ide range of stress responses (Nestler et al, 2002).

Postsynaptic 5-H T1A receptors can be found in the am ygdala m ainly in the 

central nucleus (Pazos and Palacios, 1985; O huoha et al, 1993), (Figure 1.6). 

Recent data has shown that som atodendritic 5-H T1A autoreceptors in the 

claudal linear raphe nucleus are capable of modulating extracellu lar 5-HT levels 

in this area by reducing 5-HT cell firing by an as yet unknown pathway (Bosker, 

K lom pm akers and W estenberg, 1997).

Lateral

nucleus

L*

Central

nucleus
6asal

nucleus
Medial

nucleus

Insular
cortex

Cortical

nucleus

Figure 1.6- Cross- section of the Amygdala
T h e  a m y g d a la  is a com p lex  of nuclei w hich  a re  d iv ided into th re e  m ain  g ro up s  the  

la tera l nuclei, th e  cortical nucleus and  th e  cen tra l nucleus (G illiam  e t al, 2 0 0 5 ).
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1.5- Non 5-HT Neurotransmitter systems
Serotonergic neurons in the central nervous system impinge on many other 

neurons and modulate their neurotransmitter release. Serotonergic neurons 

interact with GABAergic, noradrenergic, cholinergic and dopaminergic neurons.

1.5.1- GABAergic

y-Aminobutyric acid (GABA), a neurotransmitter that is inhibitory, is present in 

the CNS and is distributed across all brain regions (Zachmann, Tocci and 

Nyhan, 1966).

In the majority of brain regions the release of GABA is controlled by inhibitory 

presynaptic 5-HT-ia receptors that are present at GABAergic nerve terminals. 

This control of GABA release is thought to be caused by the inhibition of 

adenylyl cyclase and cAMP signal transduction pathway. This pathway directly 

acts on the GABA release process in independent K+ and Ca2+ channels 

(Koyama et al, 1999). Hence, this pathway has a negative effect on GABA  

release.

The hypothesised involvement of GABAergic dysfunction in mood disorders 

came from a study by Enrich et al (1980). The study looked at the mood 

stabiliser valproate which is used as an effective treatment for bipolar patients. 

The pathophysiology of mood disorders has been linked with a GABAergic 

deficiency (Enrich et al, 1980). Preclinical animal studies have also shown that 

GABA levels may be decreased in animal models of depression and clinical 

studies have reported low plasma and CSF GABA levels in mood disorder 

patients (Bambilla et al, 2003).

1.5.2- Noradrenergic system

The Noradrenergic system runs parallel with the serotonergic system, with the 

noradrenergic system being a valuable target for antidepressants. Throughout
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the brain norepinephrine functions as a general regulator of mood responses to 

stimuli including stress (Wang et al, 1999).

In the hippocampus NA terminals are thought to originate exclusively from the 

locus coeruleus (LC) (Haring and Davis, 1985; Jones and Moore, 1977). It is 

generally accepted that an increase in the availability of NA in the biophase of 

adrenoceptors in this brain region is involved in the mechanism of action of 

antidepressants. It has also been suggested that 5-HT receptor ligands that 

enhance NA release may be expected to positively influence mood disorders 

(Fink and Gothert, 2007).

Inhibitory presynaptic 5 -H T ib /id  receptors have been identified on the 

noradrenergic axon terminals of the cardiovascular system of various species 

both in vitro and in vivo (Charlton et al, 1986; Gothert et al, 1986; Medhurst et al, 

1997 and Harris et al, 2002). Therefore, it has been hypothesised that 

noradrenergic nerve terminals in the CNS could also have inhibitory presynaptic 

5-H T- ib/id  receptors present (Taube et al, 1977; Schlicker et al, 1983).

Microdialysis studies in awake rats in which 5 -H T i A ligands were injected 

subcutaneously provided the first evidence for the involvement of 5-H T- ia 

receptors in the regulation of NA release. An increase in NA release in the 

hippocampus (Done and Sharp, 1994; Hajos-Korcsok and Sharp, 19 9 6 ) and the 

frontal cortex (Suzuki et al, 1 995 ) was observed in the presence of 8-OH-DPAT  

(a 5 -H T ia  agonist). The increasing effect observed with 5 -H T ia  receptor 

agonists on NA release was suggested to be due to activation of somadendritic 

5 -H T ia  receptors on the serotonergic neurons themselves (Done and Sharp,

1994). GABAergic activity is inhibited by the activation of 5 -H T ia  receptors 

thought to be located presynaptically on GABAergic neurons leading to a 

reduction of GABA and consequently a disinhibition of NA release 

(Katsurabayashi et al, 2003).
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Neocortex

Thalamus

H ypothalam us

Temporal lobe 

Locus coeruleus
^  Cerebellum 

To spinal cord

Figure 1.7- The noradrenergic system
T h e  n oradrenerg ic  system  ex ten d s  from  th e  locus co eru leu s  sending  pro jections  

to w ards  th e  neocortex , th a lam u s , h ypo th a lam u s and  cereb e llu m  (B e a r, C o n n o rs  and  

P arad iso , 2 0 0 1 ).

1.5.3- Cholinergic system

The cholinerg ic system is im portant fo r the role of m em ory and cognition 

(Cassel and Jeltsch, 1995; S teckler and Sahgal, 1995; Feuerstein and Seeger, 

1997; Ruotsalainen et al, 1998), an observed increase in acetylcholine 

concentration in the synaptic cleft represents a therapeutic option in dem entia  

which is associated with A lzhe im er’s disease.

Im m unohistochem ical double staining has dem onstrated that 5 -H T ia  receptors 

occur on cholinergic cell bodies in the septum  and project to the h ippocam pus 

and neocortical areas (Kia et al, 1996 ). In the presence of 5 -H T ia  receptor 

agonists such as 8-OH-DPAT inhibitory som atodendritic autoreceptors on
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serotonergic neurons are activated. The activation of these autoreceptors 

inhibits the activity o f serotonergic neurons and therefore, there is an assumed 

decrease in the stim ulation of inhibitory G ABAergic interneurons, which, in turn 

leads to the disinhibition of cholinergic neurons (Fink and Gothert, 2007).

Neocortex

Thalamus

Basal nucleus 
of Meynert

Hippocampus

Pontomesencephaio- 
tegmental complex

Medial 
septal nuclei

Figure 1.8- Cholinergic system
A scend in g  pro jections arise  from  th e  p o n to m e s c e n c e p h a lo -te g m e n ta l c o m p lex  to w ard s  

the  h ip pocam pus, neoco rtex  and  the  th a la m u s  (B ear, C on n ors  and  P arad iso , 2 0 0 1 ).

21



1.5.4- Dopaminergic system

The dopam inergic system in the brain arises from the m idbrain and in particular 

from a group of cells in this region and from the hypothalam us (Figure 1.9), 

(Kapur and Mann, 1992). The rat and m ouse brain have been used to 

investigate the m echanism  in which 5-HT receptors regulate dopam ine (DA) 

release.

5-H T1A receptors are thought to increase DA release and it is likely that the 5- 

HT ia  receptors are located as pre-and/or postsynaptic 5-H T iA receptors on 

inhibitory G ABAergic interneurons which exert an inhibitory tone on the activity 

o f the dopam inergic neurons (Fink and Gothert, 2007).

Dopamine system

Frontal 
lobe

\

Ventral tegmental area

Striatum

Substantia

Figure 1.9- Dopaminergic system
M esn lim b ic  and  m esocortica l sys tem s arise  from  th e  ven tra l te g m e n ta l a re a . T h e  

m eso lim b ic  system  projects to e le m e n ts  of th e  lim bic system  including th e  

h ip p ocam pu s and a m yg d a la . T h e  m esocortica l system  pro jects  to th e  fron ta l cortex. 

(B ear, C on n ors  and P arad iso , 2 0 0 1 ).
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The serotonergic system as previously m entioned interacts w ith several non- 

serotonergic neurons w ithin the CNS and these neurotransm itter systems are 

present w ithin the limbic region of the brain i.e. the hypothalam us, am ygdala 

and the hippocam pus with projections expanding to the dorsal raphe (DR), the 

locus coeruleus and the pre-frontal cortex (PFC) as sum m arised in Figure 1.10. 

The figure shows a sim plified sum m ary of a series of neurotransm itter neurons 

in the brain, which interact w ith the afore-m entioned brain regions and thus 

contribute to depressive sym ptoms.

VTA

To

—  GABAergic

—  Dopaminergic 

NAergic/5HTergic

Figure 1.10-Summary of the neural circuitary of the brain
S c h e m a tic  rep resen ta tio n  show ing th e  in terconnections  of neural c ircuitary  in th e  brain . 

Abbrevations: NAc- nucleus  a ccu m b en s , VTA- ven tra l te g m e n ta l a re a . M o d ified  from  

Nastier fit al 2002.

Hypo­
thalamus

Amygdala

Hippocampus
LC

23



1.6- Depression

Depressive disorders are amongst the most common psychiatric diseases with 

prevalence estimates ranging from 5 percent to a maximum of 20 percent 

(Hamet and Tremblay, 2005). Less severe forms of depression may affect an 

additional 10 percent of the American population. The interaction between 

genes and the environment have been acknowledged to play a role in the 

pathophysiology of depression (Hamet and Tremblay, 2005).

Depression is recurrent and tends to have chronic course, and can often be 

comorbid in nature. It is thought that depression is a clinically heterogeneous 

disorder thought to result from an interaction of multiple genes cooperating with 

environmental and developmental epigenetic components (Hamet and 

Tremblay, 2005).

There are two etiologically different forms of depression, bipolar disorder (manic 

depression) and unipolar disorder (Lesch, 2004). There are also many different 

symptoms of depression including disturbance of mood, thinking, sleep, 

appetite, and motor activity, with suicidal thoughts or attempts that occur to 

different degrees (American Psychiatric Association, 1994).

1.6.1- Major depression (Unipolar)

Major depression (unipolar) is a serious medical condition. The risk of 

developing major depression is thought to be approximately one in ten of the 

population at some time in their lives and twice as great among women than 

amongst men in almost all cultures studied (Elliot, 1998). Major depression is. 

characterised by sad mood, loss of interest, sleep disturbances and recurrent 

thoughts of death and suicide (Rajkowska, 2003; Lucki, 1998). In the United
Q tofoc onH \A/orlrl\A/irlQ m  o in r rlftn rooclA n  So rJ ^ 11 r
wvwtkww UI IV4 V»VI iViMiMW) i i ivijs/i Owwivi i iw Li iv iOuviii WUUOO Ol

(Costello et al, 2002). 80 percent of people with clinical depression are treated 

successfully with medication, psychotherapy or a combination of both. However, 

if clinical depression is left untreated or is inadequately treated it can often lead 

to suicide (Rajkowska, 2003).
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Many individuals suffering from panic d isorder (PTSD) or other anxiety related 

disorders tend to develop m ajor depression. This observation has lead to the 

thought that there may be overlapping neural circuitry involved in the 

pathophysio logy o f depression and that of certain anxiety disorders.

1.6.2- Bipolar depression (Manic Depressive illness)

Bipolar depression is a m ajor public health problem. It is estim ated that there is 

a 0.3-1.5 percent worldw ide lifetime prevalence of b ipolar depression 

(W eissm an, et al, 1996). B ipolar depression has also been associated with a 

mortality risk; approxim ate ly 25 percent of patients attem pt suicide at some 

point during the ir lives and 11 percent of patients die by suicide (Prien and 

Potter, 1990). B ipolar depression is also characterised by fam ilia l transm ission 

the incidence of bipolar depression among first-degree relatives of affected 

individuals is 8-25 percent.

This type o f depression is often characterised by episodes o f mania, with or 

w ithout distinct episodes of depression. Mania is characterised by euphoria or 

irritability, increased energy, and a decreased need for sleep (American 

Psychiatric Association, 1993).

Both m anic and depressive states of this d isorder are thought to be due to low 

serotonergic function through defective dam pening of other neurotransm itters 

such as, norepinephrine and dopam ine (Hilty, Brady and Hales, 1999). Lesions 

in the frontal and tem poral lobes are linked with b ipolar disorder. Left-sided 

lesions are related with depression and right-sided lesions are associated with 

mania (Hilty, Brady and Hales, 1999).

For the treatm ent of bipolar disorder lithium is effective for the treatm ent of

scute manic and depressive episodes and for the prevention of recurrent manse 

and depressive episodes (Goodwin and Jam ison, 1990).
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1.6.3- Stress-induced depression

Stress and the HPA axis have both been im plicated as a factor involved in the 

onset o f depression (Taylor et al, 2004).

The release of stress hormones, such as cortisol and also corticotrophin- 

releasing horm one (CRH), which are secreted from  the hypothalam us; this 

occurs in many individuals diagnosed with mood disorders and may result from 

hyperfunctioning o f the amygdala (which is known to activate the 

paraventricu lar nucleus of the hypothalam us (PVN)), or by the hypofunctioning 

of the h ippocam pus (which exerts a potent inhib itory influence on the PVN), 

(Young, Lopez and M urphy-W einberg, 2003; M uller et al, 2002). The release of 

stress horm ones from the hypothalam us in turn stim ulates the release of 

g lucocorticords from  the adrenal cortex (Liberzon, Krstov and Young, 1997). 

Excessive am ounts of g lucocorticoids can be dam aging and therefore the HPA 

axis is under tight regulation by a negative feedback system (Liberzon, Krstov 

and Young, 1997) which occurs m ainly through m ineralocorticoid and 

glucocorticoid receptors (Young, Lopez and M urphy-W einberg, 2003).

Cortisol in hum ans is the main glucocorticoid that m odulates m etabolism , 

induces catabolism , suppresses the immune system and is thought to have 

tem porary elevating effects on mood and em otions, especially fear and anxiety 

(Muller et al, 2002). Short-term  adm inistration of glucocorticoids often generates 

euphoria and increased energy in patients with depression. However, the long­

term increased levels of endogenous g lucocorticoids produced during 

depression can be toxic to hippocampal neurons in both anim als and humans. 

The hippocam pus is required for the feedback inhibition o f CRF neurons. 

Episodes of depression marked by severe hypercortisolem ia may produce 

further im pairm ent in the feedback regulation of the HPA axis or an impaired 

cortisol negative feedback mechanism  and therefore, nm disnose affected 

individuals to chronic depression or future recurrences (Nem eroff, 1996; Young 

et al, 1995).
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Figure 1.11- HPA axis
T h e  H P A  axis rece ives  p ro m in en t neural inputs th a t include exc ita to ry  a ffe ren ts  from  

th e  a m yg d a la . T h e  H P A  axis m ay  contribu te  to d epress io n  not only via  th e  a m y g d a la  

and  inhibitory (postsynaptic ) a ffe ren ts  from  th e  h ip p ocam pu s but a lso  th rough  

e n h a n c e d  C R F  tra n s fe r (N e s tle r e t al, 2 0 0 2 ).

1.6.3.1- Glucocorticoid receptor and Mineralocorticoid receptors

G lucocorticoids produce the ir biologic effects by binding to one o f two cytosolic 

receptors: the glucocorticord receptor (GR) or the m ineralocorticoid receptor 

(MR). The MR has a much higher affin ity for glucocorticoids than the GR. The 

GR is expressed in essentia lly every tissue in the body but is m ainly 

concentrated in the hippocampus. MR expression is more restricted; in addition 

to being expressed in the brain it is expressed in the kidney, gut and heart. 

Antidepressants have been shown to upregulate levels o f MR and GR (Pariante 

and Miller, 2001). It has been reported that MR in hippocam pal region may be 

dysfunctional in human depression (Heuser et al, 2000; Rubin et al, 1995).
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1.6.4- 5-HT receptor(s) involvement with depression

Several 5-HT receptors have been linked with being involved in depression 

although exact roles for many of the 5-HT receptors have not yet been fully 

identified. The main 5-HT receptors of interest are the 5 -H T 2a , 5-HTT and 

particularly the 5 -H T ia  receptor.

Increases in 5 -H T 2a receptors are frequently mentioned in support of the 

hypothesis of alterations in serotonergic neurotransmission in suicide and 

affective disorders (Stockmeier, 2003). Various studies have investigated 5- 

H T 2a binding in platelets of depressed patients, these studies reported an 

increase in binding sites (Bmax) in both depressed and suicidal patients (Arora 

and Meltzer, 1989). Studies investigating 5-HT2A binding in post-mortem tissue 

have shown 5-H T2A receptors to be found in the frontal cortex suggesting a role 

in cognitive aspects of depression. In the hippocampus of suicide victims a 

significant decrease in the number of 5-HT2A receptors has been reported 

(Cheetham et al, 1988).

Two polymorphisms of the 5-HTT gene have been identified; a variable number 

of tandem repeats in the second intron (VNTR) (Lesch et al, 1994) and a 44bp 

insertion/deletion in the 5-HTT linked polymorphic region (long and short alleles) 

(Heils et al, 1996). An association between the short allele of the 5-HT  

transporter has been reported with both unipolar and bipolar patients (Collier et 

al, 1996). This functional polymorphism in the promoter region of the 5-HTT has 

also been found to moderate the influence of stressful life events on depression. 

It has been hypothesised that individuals possessing one or two copies of the 

short allele may exhibit more depressive symptoms and are more suicidal in 

relation to stressful life events than individuals who are homozygous for the long 

allele (Caspi et al, 2003).

Evidence for an association between the short allele and depression is however, 

inconclusive as Kunugi et al (1997), reported to find no association between the 

short allele with either unipolar or bipolar depression. Therefore, the 5-HTT  

gene may not be directly associated with depression but could be involved in 

the moderating the serotonergic response to stress (Caspi et al, 2003).
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5-H T1A receptor has a heterogenous localisation, presynaptically as an 

autoreceptor on the soma and dendrites found m ainly in the median and dorsal 

raphe nuclei and postsynaptically in the limbic regions o f the brain (Jacobs and 

Azm itia, 1992). Som atodendritic receptors have an autoinhibitory function. It 

has been shown that on stim ulation a decrease in firing in serotonergic neurons, 

5-HT synthesis and 5-HT release was observed (Blier, de-M ontigny, Chaput 

1987; Sprouse and Aghajanian, 1987; Hjorth and M agnusson, 1988; Hutsen et 

al, 1989; M artin-R uiz and Ugedo, 2001).

Activation of postsynaptic 5-H T1A receptors, located in limbic areas (Pazos and 

Palacios, 1985; Li, Battagila and Van de Ker, 1997) results in an inhibition of the 

activity o f neurons of the limbic system (Sprouse and Aghajanian, 1988; Blier, 

de m ontigny and Lista, 1993). W hen 5-H T i A receptors are activated by excess 

am ounts of 5-HT they hyperpolarise the neuron, causing it to slow down its 

firing activity (Nestler et al, 2001; Blier and W ard, 2003; Stahl, 1996; Ou et al, 

2000).

There is great interest in this receptor due to its involvem ent in the 

pathogenesis and treatm ent of anxiety and depression (Veenstra-VanderW eele;

2000). In a study performed by Lemonde et al (2003), results indicated that 

depressed patients were twice as likely as controls to have the hom ozygous G- 

1019 genotype, and suicide victim s were four tim es as likely to carry the same 

genotype. A lso as a part of this study nuclear proteins from raphe cells were 

analysed to see whether they bound to the 26-bp palindrom e sequence 

surrounding the polymorphism . A  nuclear protein com plex was identified only in 

serotonergic neuron derived cells that bind to the C-allele of the polymorphism  

but not the G-allele. Several transcription factors were found to specifically bind 

to and activate the C(-1019) allele, these included NUDR/Deaf-1 and Hes5 

(Figure 1.12).
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Figure 1.12- Transcriptional regulatory elements of the human 5-HTiAgene.
H ighligh ted  in bold a re  th e  key rep resso r e le m e n ts  and  proteins, activation  is ind icated  

by th e  arrow s and b locked lines ind icate  repression; T h e  C (-1 0 1 9 )  a lle le  d e p e n d e n c e  

of N U D R /H e s 5  binding is ind icated  by the  d ash ed  lines. T h e re  a re  tw o ta n d e m  copies  

of th e  dual rep resso r e le m e n t (D R E ), and  the  R E -1  (w hich b inds R E S T /N R S F ).  

A d a p te d  from  A lb ert and L e m o n d e  (2 0 0 3 ).

It has been suggested from  data obtained from  transcriptiona l reporter assays, 

that Human nuclear deformed epiderm al auto regulatory factor (NUDR) and 

Hes5 repress the transcription activity o f the C (-1019) allele o f the 5 -H T1A 

promoter. W ith the G (-1019) allele, this transcriptional repression is s ignificantly 

decreased (Lem onde et al, 2003). The G allele, unlike the C allele fa ils to bind 

and m ediate NUDR repression generating an overexpression of the 5-H T iA 

autoreceptor and hence decreasing action potentia l firing rates and therefore 

reducing the release of 5-HT (Albert and Lemonde, 2004), (F igure 1.13).
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Figure 1.13- Actions of the C-1019G 5-HT1A polymorphism in 5-HT neurons
In non-depressed subjects those with a C allele, NUDR (red dot) binds and 5-HT1A 

receptor (yellow dots) expression is repressed leading to an increase in 5-HT firing rate 

( a ). Whereas, the G-allele fails to bind to NUDR leading to an overexpression of 5-HT1A 

receptors and hence a decrease in 5-HT firing rate (Adapted from Albert and Lemonde, 

2004).

In addition, under chronic stress conditions 5-H T1A receptor m RNA and binding 

in the hippocam pus is downregulated (Lopez et al, 1998). However, it is yet to 

be fully identified whether the G (-1019) 5-H T i A allele is associated w ith a rise in 

5 -H T1A receptors in the m idbrain of depressed suicide post-m ortem  tissue 

sam ples (S tockm eier et al, 1998). It is believed that the C-1019G polym orphism  

may be linked with depression and this could provide a transcrip tiona l model 

looking at the transcription factors NUDR, Hes5 and others for its aetio logy.

Studies of post-mortem  brains from depressed suicide victim s have provided 

the main evidence for increased levels of 5 -H T iA autoreceptors in human 

depression and suicide (S tockm eier et al, 1998). From studies on nonsuicidal 

subjects, a specific upregulation of 5 -H T iA autoreceptors in the raphe region
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has been shown with no change in postsynaptic 5-H T ia  receptors sites (Drevets 

et al, 1999).

The raphe and the prefrontal cortex are not the only regions of the brain studied, 

in the hippocampus a decrease in postsynaptic 5-H T ia  RNA has been observed 

in post mortem studies of major depression (Lopez-Figueroa et al, 2004). The 

reduction in 5 -H T1A receptors may reflect a decrease in cell number in these 

regions in depression.

A study by Huang et al (2004), found an association of the 5-H T- ia C-1019G  

locus with schizophrenia, substance abuse and panic attacks. However, binding 

of the 5-H T- ia  receptor in the prefrontal cortex of post-mortem brain tissue 

samples showed no relationship with suicide and genotype, therefore the study 

concluded that the relationship can not be explained by binding differences, but 

receptor affinity and transduction can not be ruled out completely.

Position emission tomography (PET) imaging studies of human patients with 

bipolar. depression, major depression, and panic disorder have shown a 

decrease in 5 -H T1A receptor density, mainly in the dorsolateral prefrontal cortex 

(Albert and Lemonde, 2004). Further studies need to be performed to determine 

whether these changes are due to alterations in 5 -H T1A expression or changes 

in neuronal number.

5-HT-ia receptors have been examined in the hippocampus of suicide victims. 

An increase in 5 -H T ia  receptor sites in the stratum pyramidale (CA1) of the 

hippocampus of suicide victims probably suffering from an affective disorder 

was reported by Joyce et al, (1993). Other studies, including those where 

subjects were psychiatrically characterised, however, did not observe any

significant changes in agonist binding to the 5-H T- ia  receptor in the
^4-;.—.^  / r > :n ~ ~  ~ i  - i n n - i .  „ i  a nn-7.
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Stockmeier et al, 1997). One study reported that in the cortex there were no 

differences in binding between suicide and control patients, however, it did 

report a significant decrease in 5-H T- ia receptors in the hippocampus of suicide 

patients (Cheetham et al, 1990). Studies of 5-H T- ia receptors in the prefrontal 

cortex have generated various results. One study of the prefrontal cortex
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detected an increase in 5 -H T i A receptors in suicide victims (Matsubara et al,

1991), whereas, Arango et al (1995), observed an increase in radioligand 

binding to 5 -H T ia  receptors in the ventrolateral, but no other areas. Several 

other studies of the prefrontal cortex report no significant changes in 5 -H T ia  

receptor in classified suicide victims (Dillion et al, 1991; Arranz et al, 1994; 

Lowther et al, 1997; Stockmeier et al, 1997).

The above examples highlight the fact that it is not simply one mechanism that 

can reduce 5-HT neurotransmission but multiple mechanisms that can 

contribute to predisposition to depression or suicide (Albert and Lemonde, 

2004).

Several studies have established interactions between the serotonergic system 

and the HPA axis and glucocorticoid secretion (Dinan, 1994). Glucorticoid 

hormones have major effects on behaviour, hippocampal morphology, 5-HT  

neurotransmission (Dickinson, Kennett and Curzon, 1985; Joels, Hesen and 

Kloet, 1991; Mendelson and McEwen, 1992; Nausjeda, Carve and Weiner, 

1982; Woolley, Gould and McEwen, 1990) and down regulating mRNA 5 -H T ia  

receptor expression (Chalmers et al, 1993). In depressed patients, elevated 

cortisol levels may lower L-tryptophan availability and therefore decreasing 5- 

HT turnover thus downregulating presynaptic 5 -H T i A receptors and upregulating 

5 -HT2 receptors. Contrarily, 5-HT is known to stimulate the release of CRH and 

ACTH and could possibly modulate the negative feedback of the HPA axis by 

glucocorticoids (Maes et al, 1994). Elevation of corticosterone levels by stress 

or from direct stimulation from dexamethasone on glucocorticoid receptors 

decrease 5 -H T ia  receptor binding levels in discrete subfields of the 

hippocampus (Mendelson and McKewen, 1992; Chalmers et al, 1994). 

Gluocorticoid receptor mRNA levels were shown to be decreased in the 

selective neurotoxic lesion of 5-HT neurons of the hippocampus (Seckl et al,
a c \ c \ r \ \  i i — 1 c  l i t  .
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glucorticoid receptor mRNA levels in the hippocampus (Seckl and Fink, 1992). 

The expression of 5-H T- ia receptors is thought to be negatively mediated by 

corticosterone in the hippocampus but not in the raphe nucleus, and 

adrenalectomy (suppresses endogenous corticosterone) increased the 

concentration of both 5-H T- ia receptor mRNA and binding sites in the
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hippocampus (Burnet et al, 1992). Hence, under stressful conditions when 

endogenous corticosterone is secreted it is only somatodendritic 5 -H T ia  

autoreceptors that are densensitised and not postsynaptic 5 -H T i A receptors 

(Laaris et al, 1999).

The ability of corticosteroids to modulate postsynaptic 5-H T- ia receptor function 

has been well documented. There is less evidence available regarding the 

effects of corticosteroids on somatodendritic 5-H T- ia receptor autoreceptor 

function (Fairchild, Leitch and Ingram, 2003). An electrophysiological study 

demonstrated that corticosterone attenuated dorsal raphe 5-H T- ia  receptor 

functions when applied acutely to rat brain slices (Laaris et al, 1995). 

Subsequently, Laaris et al (1999) also showed that exposure to unpredictable 

stress, in combination with social isolation desensitised 5-H T- ia autoreceptors in 

the DRN (Laaris et al, 1999).

1.6.5- Medical management of depression

The desensitization of 5-H T- ia autoreceptors is assumed to be one of the main 

adaptive changes that allow antidepressant actions. Studies have demonstrated 

that after 2 to 3 weeks of selective serotonin reuptake inhibitor (SSRI) treatment, 

there is internalization and a reduction of 5-H T- ia autoreceptors (Hervas et al,

2 0 0 1 ). With the desensitization of 5-H T- ia neuronal firing of 5-H T is un-inhibited 

producing an increase in 5-HT production that correlates with a seen 

improvement in depressed symptoms (Parsons, Kerr and Tecott, 2 0 0 1 ).

Antidepressant drugs are a heterogeneous group of compounds that are 

effective in the treatment of major depression. Antidepressant drugs are often 

subdivided into groups according to their structure and neurochemical 

properties, these groups inciuue uicyuiic, SSRis, iiu iep inep 'm iiitj selective 

reuptake inhibitors (NRIs), and MAOIs. MAOIs were one of the first groups to be 

administered as antidepressants, followed by TCAs which led to the more 

recent developments of SSRIs and NRIs antidepressants.
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1.6.5.1- Monoamine oxidase inhibitors (MAOI’s)

The m onoam ine theory of depression heavily focused on noradrenaline rather 

than dopam ine or 5-HT (Jones and Blackburn, 2002). This theory was proposed 

from  observations that reserpine depleted m onoam ines and caused depression, 

whereas the m onoam ine oxidase inhibitors enhanced m onoam ine function and 

thereby relieved depression (Jones and Blackburn, 2002). A  defin ite decrease 

in the firing activity of locus coeruleus nucleus (LC) NA neurons was observed 

after a 2-day treatm ent with MAOIs including clorgyline and phenelzine (B lier 

and de Montigny, 1985; Blier, de M ontingy and Azzaro, 1986). Dorsal raphe 

nucleus (DR) 5-HT neurons were shown to reduce the ir firing rate in response 

to a two day treatm ent with MAOIs (B lier and de Montigny, 1985; Blier, de 

M ontingy and Azzaro, 1986). In contrast to NA neurons 5-HT neurons firing 

activity displays a partial recovery after one week and a com plete recovery after 

three weeks o f treatm ent. The steady revival of 5-HT neuronal d ischarge was 

accounted for by the finding that 5-H T1A autoreceptors desensitise after long­

term  MAOI treatm ents (B lier and de Montigny, 1985; Blier, de M ontingy and 

Azzaro, 1986).

5HT reuptake 5 -H T
pump

Postsynaptic
membrane

MAO-A

MAOAI

Synaptic cleft

Figure 1.14- Mechanism of action of Monoamine oxidase inhibitors 

antidepressants

Monoamine oxidase A (MAOA) is an enzyme involved in the metabolism of 5-HT. 

M A D -A  rp g n ia te ?  th o  fro o  in tran o ijrQ rjo j concentration and rclcasahle stores of 5-! IT. 

MAO-A inhibitors (MAOAI) bind to and inhibit MAO-A preventing 5-HT degradation. 

This leads to an increase in 5-HT in the synaptic cleft.
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1.6.5.2- Tricyclic antidepressants (TCAs)

TCAs have been shown to have a sim ilar effect of action o f blocking the re­

uptake of noradrenaline (NA) and 5-HT like MAOIs antidepressants. However, 

TC A antidepressants block the re-uptake with different potencies. The 

therapeutic efficacy of TC A antidepressants was thus considered to be related 

to the prolongation of the synaptic action of these neurotransm itters (W illner, 

1985).

TCA antidepressants decrease the firing rate of dorsal raphe nucleus 5-HT 

neurons when adm inistrated acutely. O f all the TCAs chlorim ipram ine is the 

m ost potent of all the TCAs currently available (Scuvee-M oreau and Svensson, 

1982; VanderM aelen and Braselton, 1992). Impipram ine and am itryptiline are 

known to suppress 5-HT neurons’ discharges at high doses (Scuvee-M oreau 

and Svensson, 1982).

TCAs also preferentia lly block NA uptake for exam ple, nortriptyline and 

desipram ine, however, these antidepressants are very weak or inactive 

inhibitors of 5-HT reuptake (Quineaux, Scuvee-M oreau and Dresse, 1982).

Long term  treatm ent o f TCAs has been claimed to desensitise the a-adrenerg ic 

autoreceptors which m ediate the inhibitory feedback on the firing activity o f NA 

neurons, which in turn leads to a increase NA neurotransm ission (M ongeau et 

al, 1997).

5-HT receptor
5-HT

Postsynaptic
m em brane5HT reuptake 

pump ___^

TCA

Synaptic cleft

Figure 1.15-Tricyclic antidepressant (TCA) mode of action on 5-HT
TCA’s bind to the 5-HT re-uptake transporter preventing the re-uptake of 5-HT from the 

synaptic cleft. This leads to the accumulation of 5-HT in the synaptic cleft and 

concentration of 5-HT returns to normal levels.
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1.6.5.3- Selective reuptake inhibitors

1.6.5.4- Selective serotonin reuptake inhibitors (SSRIs)

SSRIs are the most commonly prescribed antidepressant drugs due to their 

tolerability and absence of severe side effects (Celada et al, 2003). Common 

selective serotonin reuptake inhibitors e.g. fluoxetine, paroxetine and citalopram 

used in the treatment of depression have a selective effect on the serotonin 

reuptake pump. An initial increase in 5-HT at the cell body and dendrites is 

observed. The immediate effect is to inhibit the rate of firing of 5-HT neurons 

and hence the release of 5-HT by the action of 5 -H T ia  autoreceptors (Albert 

and Lemonde, 2004; Celada et al, 2003), (Figure 1.16).

The activation of 5 -H T ia  receptors increases potassium conductance and hence 

hyperpolarizing the neuronal membrane and leading to a reduction in 

serotonergic neuron firing rate in the cortex and hippocampus (Sprouse and 

Aghajanian, 1987; Araneda and Andrade, 1991; Tanaka and North, 1993; 

Ashby, Edwards and Wang, 1994). The 5 -H T ia  autoreceptor mediates the 

inhibition of cell firing but also generates a reduction of terminal 5-HT release 

which augments the rise in extracellular 5-HT produced by re-uptake blockade 

(Adell and Artigas, 1991; Artigas et al, 1996; Invernizzi, Belli and Samanian,

1992).

However, the efficacy of this negative feedback resulting in attenuation of cell 

firing and terminal 5-HT release is less noticeable after long-term treatment with 

SSRIs. Long-term treatment outcome shows a recovery of the 5-HT firing in the 

dorsal raphe nucleus cells and an increase in extracellular 5-HT greater than 

after single administration (Bel and Artigas, 1993; Blier and Ward, 2003). Both 

effects are thought to result from the 5-HT-induced desensitisation of raphe 5-

HT.. . ai itnronontnrc ^RHor onH \A/orrl OnnQ\
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Figure 1.16- Mechanism of action of SSRIs
SSRIs (red rectangles) are thought to restore the levels of 5-HT (blue dots) in the 

synaptic cleft by binding at the 5-HT re-uptake transporter preventing the re-uptake and 

subsequent degradation of 5-HT. This re-uptake blockade leads to the accumulation of 

5-HT (blue dots) in the synaptic cleft and 5-HT firing rate is increased thus returning 5- 

HT concentration to within the normal range. This action of SSRIs is though to 

contribute to the alleviation of the symptoms of depression (Stahl and Grady, 2003).

To confirm the hypothesis that 5-H T1A autoreceptor desensitization plays a 

substantia l role in the antidepressant effect o f 5-H T iA agonists, the agonist 

buspirone was given with the preferentia l 5-H T i A autoreceptor antagonist 

pindolol (B lier et al, 1997). The study revealed that depressed patients 

improved quickly with the buspirone-pindolol com bination com pared to patients 

receiving tricyclics (tricyclics do not block 5-HT reuptake). This study, along with 

others, suggests that when the desensitization of the 5-H T i A autoreceptor is 

bypassed, by blocking it, the antidepressant response can be accelerated 

(Albert and Lemonde, 2004).
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1.6.5.5- Norepinephrine selective reuptake inhibitors (NRIs)

The evidence fo r a role of noradrenaline in depression is well established 

(Leonard et al, 1997), beginning w ith the discovery that drugs which either 

caused or alleviated depression acted to a lter noradrenaline metabolism  

(Brunello et al, 2002). Comm on NRIs include reboxetine and m aprofiline, which 

selectively inhibit noradrenaline reuptake in the synapse via the noradrenaline 

transporter (Waller, Renwick and Hillier, 2001; Buschmann et al, 2007). The 

selective inhibition o f noradrenaline reuptake is thought to enhance serotonergic 

transm ission m aybe by augm enting 5-H T iA postsynaptic neurotransm ission 

(W aller, Renwick and Hillier, 2001).

NA NA receptor

Postsynaptic
m em brane

NA re-uptake 
transporter -

SNRI

Synaptic cleft

Figure 1.17- Norepinephrine selective reuptake inhibitors (NRI’s) mode of 

action on NA
NRI’s restore the levels of NA in the synaptic cleft by binding to the NA re-uptake 

transporter preventing the re-uptake of NA providing an increase in NA in the synaptic 

cleft returning NA back to normal levels.

1.7- 5-HT1A structure and pharmacology

1.7.1- 5-HT1A structure

One of the first G-protein coupled receptors to have its gene identified by 

m olecular cloning m ethods was the 5 -H T1A receptor. The deve lopm ent o f cell 

transfection methods has enabled large am ounts of in form ation regarding 

potential signal transduction pathways linked to the receptor, corre la tions of 

receptor structure to its various functions and pharm acological properties o f the 

receptor to be obtained (Raymond et al, 1999).
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5 -H T ia  is a member of the G-protein-coupled receptor superfamily (GPCRs) 

(lismaa et al, 1995) and therefore the basic structure of the 5-H T- ia receptor 

comprises of the characteristic seven transmembrane domains that span the 

cell membrane, with an N-terminus and C-terminus present extracellularly and 

intracellularly respectively (Adham et al, 1994; Wurch, Colpaert and Pauwels, 

1998). The 5 -H T1A receptor is composed of 422 amino acids, with a core 

molecular weight o f» 46KDa and an isoelectric point of 8.8. From hydropathicity 

analysis studies it has been shown that the seven transmembrane domains 

form a-helices and that the receptor is orientated in the plasma membrane 

facing the extracellular domain. Hydrophilic sequences which form three 

intracellular and three extracellular loops connect the 7 hydrophobic 

transmembrane regions (Raymond et al, 1991). The second extracellular 

domain contains a cysteine residue (Cys186) which could form a disulphide bond 

with Cys109 (Refer to Figure 1.18). This disulphide bond may help to stabilise 

the receptor conformation (Emerit et al, 1991; Gozlan et al, 1988).

As 5-H T- ia is a member of the G-protein family it can interact with G aj 

(inhibitory)/Gao proteins to inhibit adenylyl cyclase and modulate ionic effectors, 

e.g. potassium and /or calcium channels (Lanfumey and Hamon, 2004)
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Asti2"0: agonist and antagonist binding 
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Figure 1.18- Diagrammatic representation of the structure of the 5-HTia 

receptor
5-HT,A has a seven transmembrane domain that spans the cell membrane, an N- 

terminal is present extracellular and an intracellular C-terminal. The active site for 

ligands (agonists and antagonists; shown in green) in this family of proteins is located 

in the transmembrane regions , known as a-helices confirmed by site directed 

mutagenesis and chimeric receptors (Adapted from Raymond et al, 1999).

1.7.2- 5-HT1A receptor polymorphisms

The possibility that the 5-H T1A receptor could possess alle lic varian ts was 

supported by two studies that had cloned the 5-H T1A receptor in the rat (A lbert 

et al, 1990; Fujiwara et al, 1990). Subsequently, fu rther research into a lle lic 

variants has been published in regards to the human 5-H T i A receptor gene. 

Variants published include; P ro16-Leu, ILe28-Val, G ly22-Ser, A rg219-Leu, G ly272-
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Asp, Asn417-Lys, and C-1019G (Erdmann et al, 1995; Harada et al, 1996; 

Kawanishi et al, 1998; Nakhai et al, 1995; Lemonde et al, 2003). Through the 

discovery of these allelic variants, the interesting possibility that there may be 

functional differences in the 5-H T ia  receptor has been raised and it has been 

suggested this may lead to disease manifestations (Raymond et al, 1999).

Recent molecular studies have demonstrated that the 5-HT-ia gene variants 

Pro16 -Leu, (a substitution of a single-base pair (47C -> T) on codon 16 

produces an amino-acid exchange from Proline to Leucine) and Gly272Asp (A 

single base-pair substitution (815G ->A) on codon 272 resulting in an amino- 

acid exchange from Glycine to Aspartic acid), have been associated with 

schizophrenia (Kawanishi et al, 1998). The Gly272Asp polymorphism can be 

exactly located in the intermediate portion of the third intracellular loop and as 

this area is involved in the activation and binding of G-proteins, it is thought that 

this mutation could alter signal transduction function through G-protein coupling 

(Kawanishi et al, 1998).

The rare ILe28-Val polymorphism of the 5-H T i A receptor is located in the coding 

region of the gene. The coding mutation (A->G) is present at nucleotide position 

82 leading to an amino-acid exchange from Isoleucine to Valine. BrOss et al 

(1995), demonstrated that this receptor variant had ligand binding properties 

that were practically identical to those of the wild type receptor in transfected 

COS-7 cells.

Studies investigating this allelic variant suggest that this polymorphism is 

unlikely to play a major role in the genetic predisposition to bipolar disorder or 

schizophrenia (Erdmann et al, 1995). Another coding mutation Gly22-Ser is 

present at position 22 and involves an amino acid exchange from Glycine to 

Serine. When expressed this polymorphism can alter the extracellular amino 

terminal domain of the 5-HT-ia renentnr (Nakhai et al. 1995).

The C-1019G polymorphism of the 5-HT-ia receptor gene is the most commonly 

studied polymorphism as it is associated with depression. As previously 

discussed the C-1019G polymorphism is located in a transcriptional regulatory 

region. The sequence of the polymorphism is situated within a 26-bp
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palindrome, a site believed to be important for protein-DNA interactions 

(Lemonde et al, 2003; Huang et al, 2004). The variation in this region could 

affect efficacy of binding of regulatory proteins and thus impairment of the 

repression of 5-H T- ia receptor, which correlates with depression or suicidal 

behaviour or both.

1.7.3- 5-HT1A receptor ligand pharmacology

Research into ligand pharmacology of 5-H T- ia has been studied in much detail. 

Cell lines transfected with 5-H T- ia have been used to characterise radioligands 

(Sundaram et al, 1992; 1995 ), in particular to identify and characterise partial 

(Arthur et al, 1993; Assie et al, 1997; Pauwels et al, 1 993 ) and inverse agonists 

(Barr and Manning, 1997; Newman-Tancredi et al, 19 9 8 ). However, the 

usefulness of the information gained requires some measure of validation 

(Deupree and Bylund, 2 0 0 2 ). It is important that the appropriate binding 

conditions are used. Data analysed is based on equilibrium conditions being 

present when unbound drug is separated from bound and the unbound drug 

concentration remains constant. Receptor subtype conformations can be 

altered by metal ions and GTP, therefore, it is necessary to ensure that similar 

assay conditions are used when comparing one study to another (Deupree and 

Bylund, 2 0 0 2 ).

1.7.3.1- 5-HTia receptor agonists

There is evidence that some 5-H T- ia agonists that are anxiolytic agents could 

also demonstrate antidepressant activity (Schatzberg and Cole, 1978; Rickels 

et al, 1982; Feighner et al, 1983; Schweizer et al, 1 9 8 6 ). Several 5-H T- ia partial 

agonists have been found to possess antidepressant activity in some depressed 

patients (Schweizer et ai, 1986; Amsterdam et ai, 1987; Jenkins et ai, 1990; 

Robinson et al, 1990; Rickels et al, 1990).

Buspirone was one of the first discovered 5-H T - ia receptor agonists in 1972 by 

Wu and Rayburn. However, buspirone is not considered to be an antipsychotic 

but an anxiolytic drug instead. The exact mechanism by which buspirone is
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thought to act still remains uncertain (Goa and Ward, 1986; Robinson et al, 

1 9 9 0 ). Although it has been suggested that buspirone exerts the majority of its 

clinical effects by modulating the serotonergic system (Pecknold, 1994; 

Tunnieliff, 1 9 9 1 ). Buspirone acts at both pre- and post-synaptic 5-HT receptors. 

Presynaptically in the raphe nuclei it acts as a full agonist where it inhibits the 

synthesis and the firing rate of 5-HT neurons (Pecknold, 1994; Tunnieliff, 1 9 91 ). 

Buspirone acts as a partial agonist on postsynaptic 5-H T- ia receptors resulting in 

a reduction in 5-H T- ia functioning (Peroutka, 1 9 8 8 ). The selectivity of buspirone 

has been debated as it has been shown to have a high affinity for dopamine 

receptors (Yocca et al, 1 9 8 6 ) and therefore its use as a 5-H T- ia receptor agonist 

has yet to be determined.

Gepirone (4-4-dimethyl-1 -1 -[4[4-(2-pyrimidinyl)-1 -piperazinyl]butyl]-2,6- 

pipendinedione hydrochloride) is a selective partial agonist used in the 

treatment of generalised anxiety disorder (GAD) and has been suggested to 

have antidepressant action similar to that of buspirone (Jenkins et al, 1990). 

Gepirone demonstrates differential activity at 5 -H T - ia pre- and postsynaptic 

receptors resulting in an increase in 5-HT activity (Blier and De Montigny, 1990). 

Furthermore, gepirone has been demonstrated to down-regulate 5-HT2 

receptors similar to more conventional antidepressant compounds (Eison and 

Yocca, 1985). In several animal models of depression gepirone has been 

shown to demonstrate antidepressant activity (Kennett et al, 1987; Giral et al, 

1988). Gepirone has been proven to be selective for 5-H T- ia as it does not react 

with noradrenergic, GABA or dopaminergic receptor sites (Riblet et al, 1982; 

Jenkins et al, 1990).

Tandospirone (3an, 413, 76, 7act-hexahydro-2-(4-(4-(2-pyrimidinyl)-l-

piperazinyl)-butyl)-4,7-methano-1H-isoindole-l,3(2H)-dione dihydrogen citrate) a 

novel anxiolytic piperazine derivative like buspirone, gepirone and ispsapirone
- . M  u  _ i ________  i ____ :  i / o _ u :  — i a r > r > - 7 \ ----------1__i : — : —  i /~ r — t _ . . :  - . 1  — 1 a r \ r \ n \
CMi i lea V C  p i  iCi i i i i u O U i U ^  i O u  i ^ O ' o i  MM i i t - U  C l  a i ,  i C/KJ I )  u i  i u  O i i i  i i O C i i  y i o U  l o U  i o  i. u i ,  i \J  < J £ - j

efficacy. Tandospirone binds the 5-H T1A receptor with high affinity and 

selectivity (Schimizu et al, 1988), from behavioural and physiological studies 

tandospirone has demonstrated it self to be a highly efficient 5 -H T ia  receptor 

agonist (Schimizu et al, 1992; Tsuji et al, 1990). Tatsuno et al (1989), reported 

that a decrease in 5-HT metabolite level and an increase in levels of NA and DA



in the rat brain were reported with the addition of tandospirone. Furthermore, 

tandospirone has also been shown to suppress hippocam pal adenylate cyclase 

activity via 5-H T i A receptors (Tanaka et al, 1995). Tanaka et al (1995), have 

suggested that tandosperione is alm ost a full agonist fo r 5-H T ia  receptors and 

more potent than other receptor related anxiolytics.

The m ost com m only used 5-H T1A agonist is 8-O H-DPAT (8-hydroxy-2-(di-n- 

propylam ino)tetra lin) which is known to be a powerful and selective 5-H T1A 

receptor agonist . This notion was derived from a series of behavourial and 

biochem ical investigations (Arvidsson et al, 1981; Hjorth et al, 1982) and has 

subsequently been further substantiated by a wealth o f in vivo and in vitro 

studies (M iddlem iss and Fozard, 1983; Hamon et al, 1984; Tricklebank et al, 

1984; Flail et al, 1985; Dourish et al, 1985).

In the rat CNS in vivo 8-OH-DPAT can inhibit a num ber of aspects of 5-HT 

neuronal activity. Hence, 8-OH-DPAT decreases transm itter synthesis, 

utilisation, release and turnover (Hjorth et al, 1982; 1987) and 5-HT cell firing 

(Fallon et al, 1983; Sprouse and Aghajanian, 1986) in 5-HT neurons.

1.7.3.2- 5 -H T iA receptor antagonists

Antagonist ligands that have previously been used to define the 5 -H T1A receptor 

are e ither non-selective or have agonist activity at the presynaptic 5-H T i A 

receptor. It is only in more recent years that selective and silent 5 -H T1A receptor 

antagonists have emerged (Routledge, 1996).

(S)-UH-301, was the first ligand to be described to be a 5 -H T1A receptor 

antagonist at both pre-and postsynaptic sites. (S)-UH-301 is a single
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This com pound is known to have a high affinity for the 5 -H T iA receptor and is 

thought to antagonise the effects of 8-OH-DPAT in a num ber of functiona l 

assays (Routledge, 1996). (S)-UH-301 has also been shown to increase the 

dorsal raphe neuron firing rate (Arborelius and Svensson, 1992). However, 

there is one m ajor disadvantage to this com pound which lim its its use as an in
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vivo tool in that it is also a potent dopam ine 2 receptor (D2) agonist and 

therefore has the ability to decrease both dopam ine synthesis and the firing of 

dopam ine neurones in the ventral tegm ental area (Arborelius and Svensson,

1992).

SD2 216,525 is also a 5 -H T iA receptor antagonist that shows selectivity over 

other 5-HT and m onoam ine receptors (Schoeffter et al, 1993). The effect of 8- 

O H-DPAT on forskolin stim ulated hippocam pal adenylyl cyclase hypotherm ia 

was antagonised by SD2 216,525. It was thus concluded that SD2 216,525 is 

an antagonist based on its functional activity at postsynaptic 5-HTia receptors 

(Schoeffter et al, 1993). However, there is som e evidence that suggests that 

this com pound acts as a 5-H T1A receptor partial agonist presynaptically and as 

an antagonist postsynaptically. Hence, SD2 216,525 is not an optimal choice as 

a research tool in vivo to study the 5 -H T iA receptor function (Routledge, 1996).

The first 5-H T i A receptor ligand to display unequivocal antagonist properties 

both pre and postsynaptically was (RS)-W AY100135 (F letcher et al, 1993; Cliffe 

et al, 1993). (RS)-W AY100135 blocked the effects o f 8-O H-DPAT on dorsal 

raphe neuronal firing and hippocampal 5-HT release in a presynaptic 5-H T1A 

receptor m odel (Routledge et al, 1993). However, like the afore-m entioned 

antagonists there are some disadvantages to this com pound as a vivo tool, at 

high doses (>400pg/kg i.v.), (RS)-W AY100135 induced a small but dose 

dependent decrease in raphe neuronal cell firing, consistent with a 5-H T1A 

partial agonist profile (Fletcher et al, 1993).

Recent research performed has given evidence of silent antagonists of the 5- 

HT-|A receptor, such as W A Y 100635 (N -[2-[4-(2-m ethoxyphenyl)1- 

p iperazinyl]ethyl)-n-(2-pyrid iyn l)cyclohexanecarboxam idetrihydroch loride), 

which is described as a silent antagonist due to its lack o f intrinsic activity in 

b o th  p re s y n a p t ic  a n d  p o s ts y n a p tic  5-HT<A rp rpn tn r funntinn models (Routledae. 

1996). The com m on antagonist W A Y 100635 has been portrayed to be a true 

antagonist that is selective at both som atodendritic and postsynaptic 5 -H T1A 

receptors (Cliffe, 1993) and also in a study of transfected Chinese ham ster 

ovary (CHO) cell system using GTP yS binding (New m an-Tancredi et al, 1998). 

W AY 100635 has no effect on 5-HT neuronal activity, signifying that this
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compound does not have the use-limiting properties like other 5 -H T ia  

antagonist ligands. Hence, it is the first selective and silent 5 -H T ia  receptor 

antagonist and a very useful ligand suitable for assessing 5 -H T ia  receptor 

function in vivo (Routledge, 1996).

Finally, another commonly used 5 -H T ia  receptor antagonist is 

4(2 ’methoxyphenyl)-1 -[2’[N-(2”pyridinyl)-p-iodobenzamido]ethyl] piperazine (p- 

MPPI) (Zhuang et al, 1994). p-MPPI inhibits the agonist activity induced by 8- 

OH-DPAT in inhibiting forskolin induced adenylyl cyclase activity in rat 

hippocampal tissue (Kung et al, 1994). This 5 -H T1A antagonist has an 

advantage in that it can be readily iodinated with [123l] or [125l] to enable its use 

in radioligand binding studies both in vivo and vitro to study 5 -H T ia  receptor 

function (Zhaung, Kung and Kung, 1994; Kung et al, 1994; Kung et al, 1995).

1.7.4- 5-HT receptors and second messenger signalling pathways
1.7.4.1- 5-HTia receptor signalling

Martin Rodbell in 1971 hypothesised that a guanine-nucleotide regulatory 

protein could functionally connect receptors with their effectors in the context of 

the hormonal stimulation of adenylyl cyclase (AC) system, which generates 

second messenger cyclic AMP (cAMP), (Rodbell et al, 1971). The guanine- 

nucleotide regulatory protein was later discovered to be Gs, once purified Gs 

protein was shown to be heterotrimeric comprising of a, (3, and y -subunits. It is 

known that the a-subunit is responsible for GTP and GDP binding and also for 

GTP hydrolysis, whereas the p, and y- subunits have been associated in a 

tightly linked py complex (Gilman, 1987).

5-HT receptors are involved and regulate multiple signalling pathways and 

effector molecules. It has been shown that a!! the 5-HT1 receptor subtypes 

couple to the G,vo effector. The 5 -H T ia  receptor subtype is the most 

characterised receptor in its receptor class.

As previously mentioned the 5-H T1A receptor is a member of the G-protein 

coupled superfamily consisting of a, p, and y-subunits. The 5-H T iA receptor can
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couple to the broadest range of second messengers compared to any of the 

other 5-HT receptors. Raymond et al (1999), have demonstrated that the 

recombinant 5-H T- ia receptor is coupled to the inhibition of AC through pertussis 

toxin-sensitive G-proteins (De Vivo and Maayani, 1986; Weiss et al, 1986). AC 

inhibition coupling is universally expressed (Banerjee et al, 1993; Fargin et al, 

1989; Lui and Albert, 1991; Varrault et al, 1992) and that this coupling is 

extremely efficient in that the efficacy of coupling is maximal at low 

physiologically relevant levels of receptor expression. In some systems the 

coupling of the 5-H T- ia receptor to AC is manifested by an ability to inhibit 

forskolin-stimulated AC activity.

5-H T- ia receptors that have been transfected into polarised epithelial LLC-PK1 

cells and were shown to be expressed on both basolateral and apical 

membranes. It was determined that that the 5-H T- ia receptors present on both 

surfaces had the ability to inhibit cAMP accumulation and therefore, the 5-H T- ia 

receptor has been shown to consistently inhibit AC in multiple cells (Langlois et 

al, 1996) including cultured neuronal cells (the NCB-20, P-11 and HNZ lines), 

(Hensler et al, 1996; Singh et al, 1996).

The 5-H T- ia receptor has also been reported to activate phospholipase (PL)C, 

src kinase, and mitogen -activated protein (MAP) kinases (Raymond et al, 

1999). Several groups have reported that the 5-H T - ia receptor activates ERK 

MAP kinases in CHO cells (Cowen et al, 1996; Garnovskaya et al, 1996; 1998; 

Della Rocca et al, 1999; Mendez et al, 1999; Mulifun et al, 2000). Similarity, to 

other GPCRs the 5-H T- ia receptor activates ERK through an intricate signalling 

pathway that consists of an assembly of signalling complexes that require many 

of the same molecules used by growth factor receptor tryosine kinases 

(Marshall, 1995; Luttrell et al, 1 997 ). The activation of ERK by the 5-H T- ia 

receptor is initiated by the py-subunits that are released from pertussis toxin-
- _ — - i ; . ._ / s  x _ : —  /r->-----------------1 „ i -1 n n n \
t>CII£>IUVC \ j  j J i U L c m o  ( u a y m u u u  c i  a  i, ic /c /c /y .

5-H T- ia receptor activation through the activation or inhibition of numerous 

effectors leads to both the a-subunit and Py-dimer signalling to occur. Activation 

of the receptor by agonists generates conformational changes which are still 

poorly understood (Ballesteros et al, 2001; Farahbakhsh et al, 1995).
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Once the 5-H T ia  receptor is activated it can in teract with the heterotrim eric G 

protein and can act as a guanine nucleotide exchange factor (GEF) to promote 

GDP dissociation and GTP binding and activation. In the current models o f 5- 

HT ia  receptor signalling the activated receptor dissociates into a a-subunit and 

a (Sy-dimer both subunits have the capability to regulate separate effectors 

(Gilman, 1987). The Py-dimer is thought to induce the opening of potassium 

channels and the closing o f calcium channels as shown to occur mainly in 

neuroendocrine cells (A lbert et al, 2001). Depending on cell type the model o f 5- 

HT ia  signalling can be modified. In pituitary GH4 cells transfected with the 5- 

HT ia  receptor, agonist induced receptor activation decreases calcium 

concentration by the closing o f calcium channels and the opening of potassium 

channels which leads to a reduction in in tracellu lar levels o f cAMP through the 

inhibition o f both the basal and Gs-stimulated activity of AC (A lbert et al, 2001). 

However, in transfected LIK" fibroblast cells the activated 5-H T i A receptor 

increases calcium  concentration by augm enting PI turnover through 

phospholipase activation C (PKC). Activation of PKC leads to the generation of 

two key second m essengers. The first is inositol trisphosphate (IP3) (Berridge et 

al, 1998), a rise in IP3 is observed in LIK 'fibroblast cells which, in turn releases 

in tracellu lar calcium  stores. The second key m essenger is d iacylg lycerol (DAG) 

that binds to and activates PKC. In LIK' cells 5-H T i A receptor mediated 

inhibition of basal cAMP is not observed, but forskolin-induced cAMP 

accum ulation has been shown to be reduced (A lbert et al, 2001).
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Figure 1.19- Regulation of MAPK by 5-HT1A receptors
O n  activation  of th e  5 -H T 1A recep to r it b eco m es  p hosphory la ted  by G R K . T h e  acu te  

activation  o f M A P K  has b een  asso c ia ted  w ith a C a 2+-C A M K  d e p e n d e n t p a th w ay . Th is  

lead s  to the  recru itm ent of S R C -R T K  and  th e  inhibition of the  M A P K  c a s c a d e  (A d ap ted  

from  A lbert and  T ib en , 2 0 0 1 ).

1.7.4.2- Other 5-HT receptor signalling pathways

All three of the 5-HT2 receptor subtypes couple positively to phospholipase C 

and therefore, produce an accum ulation of inositol phosphates and in tracellu lar 

calcium. W hen the 5 -H T 2a receptor is stim ulated it activates phospholipase C in 

both transfected cell lines (Alberts, et al, 1999) and brain tissue (Conn and 

Saunders-Bush, 1986) via Gq/n coupling (Figure 1.20). Activa tion o f the 5-HT2c 

receptor in the choroid plexus of various species has been shown to increase 

phospholipase C activity via a G-protein coupled m echanism  (Saunders-Bush et 

al, 1988). There is broad range of evidence suggesting tha t both 5-H T2A and 5- 

HT2C receptors can couple to other effector pathways including the m itogen 

activated protein kinase pathway (Aghajanian and Saunders-Bush, 2005).
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Figure 1.20- Schematic of 5-HT2 receptor second messenger signalling
5-HT2 receptor subtypes couple with Gaq (3y leading to the dissociation of aq initiating 

PKC and calcium release (Adapted from Agahajanian and Saunders-Bush, 2005).

5-HT4, 5-ht6 and 5 -HT7 receptors have the ability to activate adenylate cyclase 

via Gas (Figure 1.21). 5-HT4 receptors in several studies have demonstrated that 

this receptor mediates an increase in cAMP levels producing the 

phosphorylation of a range of target proteins such as cAMP-dependent protein 

kinase. The 5 -HT7 receptor has been shown to increase intracellular calcium 

which activates calmodulin-stimulated adenylate cyclase. Both 5-HT4 and 5 -HT7 

receptors have been hypothesised to be involved in cAMP formation in the rat 

hippocampus (Aghajanian and Saunders-Bush, 2005).
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Figure 1.21- Schematic of 5-HT4, 5-ht6 and 5-HT7 receptor second 

messenger signalling
When activated these 5-HT receptor classes couple to GasPy and initiating the 

conversion of ATP to cAMP via the activation of adenylyl cyclase leading to an overall 

increase in calcium release (Adapted from Agahajanian and Saunders-Bush, 2005).

1.7.4.3- 5-HT-ia signalling in depression

Studies to investigate the extent to which 5-H T- ia receptors are responsive to 

the stimulation from agonists that initiate the activation of second messengers 

could provide a more meaningful index of serotonergic system function (Hsiung 

et al, 2003).

As previously mentioned the activation of the 5-H T- ia receptor requires the 

activation and the dissociation of a heterodimeric G protein to Ga and GpY 

subunits, the 2 subunits can activate different transduction pathways. GpY 

subunits pathway was first discovered for adrenergic receptors (Touhara et al,



1995) and includes activation of PI3-K and its downstream effector, protein 

kinase B.

In suicide victims cAMP and PKA activity which couple to G ai/o, are thought to 

be downstream effectors of AC (Dwivedi et al, 2002; Hsiung, 2003). Hsiung et al 

(2003) have found G aj/0 subunit expression to be reduced in suicide victims their 

data also suggests that both the total activity (induced by forskolin) and the 

inhibition of this activity (caused by stimulation of the 5 -H T i A receptor by 8-OH- 

DPAT) are attenuated in suicide victims. In brains of patients with major 

depressive disorder (MDD) and suicide victims little is known about the 5 -H T ia  

receptor activation potential changes in second messenger activities (Hsiung, 

2003).

However, studies by Cowburn et al (1994), have begun to functionally assess 

serotonergic neurotransmission by measuring signal transduction molecules in 

post-mortem tissues. Cowburn et al studied the post-mortem frontal cortex of 

suicide victims and showed that G proteins as well as the forskolin-induced 

adenylyl cyclase activity changes were decreased compared with matched 

controls even though expression levels of Gas and Gai proteins were unaltered. 

These observations were confirmed by Reiach et al (1999); they demonstrated 

reduced adenylyl cyclase immunolabeling and activity in the temporal cortex of 

depressed suicide victims.

One second messenger pathway activated by 5-H T- ia receptors (Cowen, 1996; 

Della Rocca et al, 1999) and regulated by cAMP (Kim et al, 2001; Lou et al,

2002) involves ERK’s. ERK’s are members of the MAP kinase family which is 

involved in pathways that activate transcription factors (Gutkind, 1998). Dwivedi 

et al, 2001 found that brain regions from suicide victims when compared with 

matched controls have lower ERK1/2 enzymatic activity.
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Figure 1.22- 5 -H T ia  receptor activated transduction pathways

The 5-HT1A receptor, a G-protein is activated by 5-HT1A receptor agonists such as 8- 

OH-DPAT. This leads to the dissociation of the G-ai/0 and G-Py subunits. The 

dissociation of these subunits activates different transduction pathways. The G-Py 

subunit activates PI3-K and protein kinase B (AKT). The G-aj/0 subunit decreases the 

concentration of AC and its downstream effectors cAMP and PKA. 5-HT1A receptors in 

depressed subjects initiates the ERK’s pathway which has been shown to have lower 

activity in suicide victims (Adapted from Hsiung et al, 2003).
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1.8-Summary

5-HT is synthesised from tryptophan and stored in pre-synaptic vesicles. An 

action potential activates serotonergic neurons causing 5-HT to be released 

from storage vesicles in to the synaptic cleft where it can bind to any of the 5- 

HT receptor classes present on the post-synaptic neuron. Depending on which 

post-synaptic 5-HT receptor 5-HT has bound to different signalling transduction 

pathways are activated. All 5-HT1 receptor subtypes have been shown to 

couple to the Gj/o effector leading to the inhibition of adenylyl cyclase and a 

decrease in cAMP accumulation and calcium levels (discussed in section 

1.6.4.2).

Synaptic 5-HT levels are mediated by the 5-HT transporter which leads to the 

re-uptake of 5-HT into the pre-synaptic neuron where it is recycled (Hranilovic et 

al, 2004). Alternatively, 5-HT is degraded by oxidative deamination catalysed by 

the enzyme monoamine oxidase (MAO) and converted by oxidation into the 

metabolite 5-HIAA.

The 5-HT transporter is also the site where antidepressants such as SSRIs bind 

to prevent the re-uptake of 5-HT from the synaptic cleft and therefore act to 

alleviate the symptoms of depression by elevating levels of 5-HT in the synaptic 

cleft leading to an increase in 5-HT firing rate thus returning 5-HT concentration 

to within the normal range.

In addition, 5-HT activates pre-synaptic somatodendritic 5-H T - ia autoreceptors 

which can act as a negative feedback mechanism on 5-HT neuronal firing. 

These autoreceptors can be blocked by selective antagonists such as p-MPPI 

and W AY100635 (discussed in section 1.6.3.2).

The processes and factors involved in 5-HT neurotransmission and its 

regulation are summarised in Figure 1.23 . It has been shown that the 5-H T- ia 

receptor possess allelic variants in coding and regulatory regions. The C-1019G  

5-H T- ia receptor promoter polymorphism is of particular interest as it affects the 

expression of the 5-H T- ia receptor and hence 5-HT neuronal firing rate. This 

polymorphism is also involved in the pathogenesis and treatment of anxiety and
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depression (Veenstra-VanderW eele, Anderson and Cook, 2000). The nuclear 

protein com plex NUDR has been previously dem onstrated to bind to the C- 

allele of the C-1019G prom oter polym orphism  and not the G-allele, and 

therefore, repress the transcriptional activity o f the C-1019 allele whereas 

NUDR fa ils to bind to the G-1019 allele generating an overexpression of the 5- 

H T i A receptor th is leads to a decrease in action potential firing rates reducing 

the release of 5-HT. A lle lic  variants of the 5-H T1A and other 5-HT receptors 

could influence antidepressant efficacy therefore the study of the 5-H T i A 

receptor prom oter polym orphism  C-1019G is im portant to further e lucidate the 

m echanism s of 5-HT neuronal firing and the effect this polym orphism  has in the 

response to antidepressant treatm ent fo r pharm acogenom ics.
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Figure 1.23- O verview  of 5-HT neurotransm ission

a- 5-HT is taken up into storage vesicles, b- 5-HT is released at the pre-synaptic 

neuron by exocytosis, c- 5-HT is released in the synaptic cleft, d- 5-HT is degraded by 

MAO, e- 5-HTT re-uptakes 5-HT into the presynaptic neuron, f- 5-HT is oxidised into 5- 

HIAA, g- 5-HT can activate 5-HT1A autoreceptors which can be blocked by 5-HT1A 

antagonists (Wong, Perry and Bymaster, 2005).
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1.9- Aims of thesis

The work presented in this thesis was divided into two parts. The first part of 

this thesis aims to investigate the 5 -H T ia  receptor promoter polymorphism C- 

1019G in control hippocampal human post-mortem tissue and to quantify 5- 

HT-ia receptor m RNA expression using real-time PCR and 5-H T- ia receptor 

density by radioligand binding using W A Y100635 a 5-H T1A receptor antagonist 

(Chapter 2).

In the second part of the work presented in this thesis, the SH-SY5Y cell-line 

was studied to assess whether the retinoic acid (RA) or nerve growth factor 

(NGF) and aphidicolin differentiated cell line are suitable models to study the 5- 

HT-ia receptor. Real-time PCR was used to investigate the presence of 5-H T- ia 

rceptor and NUDR mRNA in this cell line. To determine the presence of 5-H T - ia 

receptor protein western blots and immunocytochemistry were used (Chapter 

3). To investigate whether the 5-H T- ia receptor is a functional receptor in the 

SH-SY5Y cell line by studying calcium signalling using fura-2AM assays on a 

flow cytometer (Chapter 4).

57



Chapter 2
A study of the 5-HT1A receptor 

in post-mortem tissue



2 .0 -Aims

• To determine whether the genotype of the C-1019G 5-H T ia  receptor 

polymorphism affects expression using real-time PCR to quantify 5- 

HT-ia receptor mRNA transcript levels in control human hippocampal 

post-mortem brain tissue samples.

• To determine 5-H T i A receptor density (fmol/mg) in post-mortem tissue 

using radioligand binding correlates with C-1019G genotype.
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2.1- Introduction

In the past 15 years, studies involving the use of human post-mortem brain 

tissue have become an essential part of the effort to understand the 

neurobiology of psychiatric disorders (Lewis, 2002).

Animal models have been used to study the pathogenesis of a wide variety of 

these disorders but it is thought that these animal models do not always or 

exactly reflect the human condition (Cummings et al, 2001). Therefore, studying 

human post-mortem brain tissue directly can provide several essential 

advantages in the study of psychiatric disorders that are not currently available 

through other approaches (Lewis, 2002).

In many psychiatric disorders, susceptibility genes are being identified. It is 

believed that post-mortem tissue studies may provide a crucial means for 

determining how those genetic liabilities are converted into altered expression 

of gene products (Lewis, 2002).

2.1.1- Post-mortem tissue

When using post-mortem tissue there are some factors to take into 

consideration including post-mortem delay (PMI), quality of RNA, age, pH, sex 

and pre-mortem illnesses. These factors may affect the biological status of post­

mortem human brain tissue; for example, the tissue concentrations of individual 

members of a family of proteins may also change in different ways as a result of 

one or more of these factors (Gilbert et al, 1981; Bowen et al, 1976; Perry and 

Perry, 1983).

Post-mortem delay is classified as the time elapsed between death and the 

freezing or immersion of brain tissue in a fixative (Lewis, 2002). It is reasonable 

to assume that the shorter the PMI the better the quality of the tissue, however, 

several other factors need to be considered as well including the fixative used 

and storage of samples (Barton, 1993; Harrison, 1995; Trotter, 2002).
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More recently, the addition of tissue pH and specific markers of RNA quality 

such as the RNA integrity number (RIN) have been introduced (Hynd, 2003; 

Imbeaud, 2005; Johnston, 1997) as other quality markers to consider when 

using post-mortem tissue.

2.1.2- 5-HT1A polymorphism C-1019G

The C-1019G polymorphism of the 5-H T- ia receptor gene is the most commonly 

studied polymorphism due to its association with depression (Lemonde et al,

2003). The polymorphism is located in a transcriptional regulatory region within 

the 26bp palindromic site believed to be important for protein-DNA interactions 

(Lemonde et al, 2003; Huang et al, 2004).

It is thought that variation in this region could initiate impairment in the 

repression of the 5-H T i A receptor, which could correlate with depression or 

suicidal behaviour or both.

An association between the functional C-1019G promoter polymorphism of the 

5-H T- ia gene and major depressive disorder (MDD) has been reported; MDD  

subjects are three times more likely to be homozygous for the GG genotype 

compared to control subjects (Parsey et al, 2006).

2.1.3- Genotyping methods

A Single Nucleotide Polymorphism (SNP) is the variation of a single base pair in 

the DNA sequence between either the members of a species or between the 

paired chromosomes of an individual.

SNP detection and genotyping can be used to explain and diagnose many 

diseases, to study the variation in drug responses, to establish the origin of 

biological material and to study the relatedness between individuals. SNPs are 

highly abundant, and are estimated to occur at 1 out of every 1,000 bases in the 

human genome (Sachidanandam et al, 2001).
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Presently, there are several different methods readily available for the detection 

of SNP-genotypes ranging from hybridisation of allele-specific oligonucleotides 

to TaqMan probes.

2.1.3.1- Real-time PCR

The polymerase chain reaction (PCR) is a technique that can amplify a specific 

DNA segment invitro by using two specific primers that hybridise to opposite 

DNA strands (Sharma, Singh and Sharma, 2002).

The PCR method generates large quantities of specific DNA from a complex 

DNA template in a single enzymatic reaction within a matter of hours (Sharma, 

Singh and Sharma, 2002). The traditional form of PCR involves the detection of 

the PCR target at the end-point after the last PCR cycle, whereas, in more 

advanced techniques such as, Real-time PCR (RT-PCR) an accurate measure 

of the amount of PCR product is taken throughout every cycle.

This was achieved using a selection of different fluorescent chemistries that 

enable to correlate PCR product concentration with fluorescent intensity (Wong 

and Medrano, 2005).

Real-time PCR has now become the technique of choice for quantifying mRNA, 

as real-time PCR allows the rapid analysis of gene expression from low 

quantities of starting template (Peirson, Butler and Foster, 2003). This 

technique has enabled swift and reproducible high-throughput quantification 

combined with high sensitivity (Peirson, Butler and Foster, 2003).

More traditional approaches, such as northern blots and RNase protection 

assays are in several cases unsuitable as they have low sensitivity which 

requires high concentrations of starting template to achieve detection (Peirson, 

Butler and Foster, 2003).
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2.1.3.2- PCR amplification phase

The PCR amplification can be divided into 3 phases the linear ground phase, 

exponential phase and the plateau phase (Tichopad et al, 2003). During the first 

10-15 PCR cycles, fluorescence emission at each cycle has not yet risen above 

that of background this is known as the linear phase. During this phase baseline 

fluorescence is calculated. The second phase is known as the exponential 

phase at this stage the fluorescence has reached a threshold and is significantly 

higher than background levels (Threshold line in Icycler, Biorad literature). At 

this point the PCR reaction has reached its optimal amplification period with 

PCR product doubling every cycle under ideal reaction conditions. The final 

phase is the plateau phase where all the reaction components become limited 

(Bustin, 2000).

Plateau Phase

Linear Phase

Exponential Phase

PCR Cycle Number

Figure 2.1- Diagrammatic representation of the PCR phases
In the exponential phase the level of fluorescence is significantly above that of 

background. The linear phase involves the doubling of PCR product every cycle. The 

final phase is the plateau phase this occurs when the reaction components become 

limited.

2.1.3.3- Melt curve analysis

A melt curve illustrates the variation in the fluorescence signal observed as 

double-stranded DNA (dsDNA) separates or "melts" into single-stranded 

(ssDNA) when amplicon temperature is increased. Verification of Real-time 

PCR product can be accomplished by plotting fluorescence as a function of 

temperature, hence the melting curve of the amplicon. Software such as iCycler 

plots change in fluorescence (-dF)/ change in temperature (dT) plotted against
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temperature. The melting temperature (Tm) of an amplicon depends entirely on 

its nucleoside composition, G and C content and the presence of base 

mismatches. It is therefore, possible to distinguish the fluorescent signals 

obtained from the correct product from amplification artefacts that melt at lower 

temperatures and have broader peaks (Bustin, 2000). The specificity of the 

PCR reaction is given by the primers and reaction conditions used. Even well 

designed primers can form primer dimers or amplify non-specific product, 

therefore using a melt curve analysis you can clearly see if you have non­

specific product amplified.

2 ”

9575 85

Temperature (°C)

Figure 2.2- Melt curve analysis
The peak labelled with B shows specific product the peak displaced to the left (A) 

shows non-specific product. An ideal melt curve should have non-specific product 

separated from specific product by at least 2°C.

2.1.3.4- Housekeeping genes

Real-time PCR gene expression data is normalised to correct for sample to 

sample variation. Starting material obtained from different individuals can vary 

in tissue mass, cell number, RNA integrity or quality. It can be difficult to 

standardise whole tissue samples for mRNA levels whereas, when using a cell 

line cell number can be standardised. (Vandesompele et al,2002). Therefore, 

real-time PCR results are often normalised against a control gene 

(Housekeeping gene). The ideal housekeeping gene should be expressed 

constantly regardless of experimental conditions, including cell type. As it is 

quite difficult to find one gene that meets all the above criteria for every 

experimental conditions it is therefore necessary to validate the expression and
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stability of a control gene to run with every new real-time PCR experiment 

(Schmittgen and Zakrajsek, 2000).

2.1.3.5- Optimisation of PCR reaction

The primer length and sequence are important parameters to take into account 

when designing PCR primers to obtain successful amplification. Optimum 

primer length should have the ideal length ranging from 17 to 28 base pairs 

(Rybicki, 2001) and should have a Guanine (G) and Cytosine (C) base 

composition of 50-60 percent. It is necessary to check that 3’ prime ends of 

primers are not complementary as this may produce primer dimer. Primer self­

complementarity, the ability for primers to form hair-pin structures, should also 

be avoided (Innis and Gelfand, 1991).

2.1.3.6- Amplification efficiency of PCR primers

Amplification efficiency is an important consideration when performing relative 

quantification (changes in sample gene expression are measured based on a 

reference gene). Many PCRs do not have ideal amplification efficiencies and, 

therefore, calculations of relative gene expression without an appropriate 

correction factor for primer efficiency may lead to an over estimation of gene 

expression (Lui and Saint, 2002).

As PCR results are based on Ct values which are determined in early 

exponential phase of the reaction these differences in amplification efficiency 

only generate minor differences in Ct value (Giulietti et al, 2001). However, after 

36 cycles of amplification a 5 percent difference in amplification efficiency can 

generate a 2-fold difference in PCR product concentration (Freeman, W alker 

and Vrana, 1999). The delta-delta Ct method (AACt) and the Pfaffl method are 

used to calculate gene expression. In the AACt method the efficiency of reaction 

primers is assumed as 2, which can cause variability in calculated gene 

expression levels. Whereas, the Pfaffl method takes into account the individual 

primer efficiencies allowing the accurate calculation of relative expression levels.
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2.1.3.7- Allele Specific Oligonucleotides (ASO)

Early SNP-genotyping assays were based on ASO hybridisation in a “dot” blot 

format. Am plified products encom passing the SNP are im m obilised onto a solid 

surface and then hybridised to a radiolabelled o ligonucleotide or a reverse dot 

blot form at which involves the binding of biotin or fluorescent labelled PCR 

products (Saiki et al, 1989). This technique was developed further by several 

groups to perm it a lle le-specific am plification and genotyping of SNPs. Two 

alle le-specific o ligonucleotides are designed with the nucleotide com plem entary 

to the allelic variant of the single nucleotide polym orphism  positioned at the end 

of the probe (Syvanen et al, 2001). Hybridisation conditions are chosen such 

that only those probes with a perfect match will hybridise to the sample. 

Therefore, it is possible to distinguish by hybridisation between alleles differing 

by only one nucleotide in sequence.

A)

\ Perfect match

B)

\ Mismatch 

•c

PCR Product No PCR Product

Figure 2.3- Schematic of ASO genotyping method
Allele specific oligonucleotides will only bind to the complementary allelic variant SNP 

base as shown in A) to generate PCR product which is detected on an Agarose gel. B) 

shows that when a mismatch of bases occur no PCR product is generated.

2.1.3.8- SNP Real-time PCR genotyping

Several new SNP genotyping technologies have been developed in the past 

few  years. Several of these technologies are based on various m ethods of alle le 

discrim ination and target am plification (Wang et al, 2005). An inexpensive 

hom ogenous melting tem perature (Tm) - shift genotyping m ethod has been
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reported by Wang (2005). The method relies on allele-specific PCR without 

labelled oligonucleotides. This method uses two allele-specific primers, each 

containing a 3-terminal base that corresponds to one of the two SNP allelic 

variants. The method also includes a reverse primer that amplifies both alleles 

and the fluorescent dye SYBR Green (Abgene, UK) is used for detection 

purposes (Wang et al, 2005). GC-rich tails of unequal length are attached to 

the allele-specific primers, this provides the PCR product with a distinct T mthat 

depends on which of the two primers is responsible for the amplification and 

hence genotype can be determined by examining the melt curve on the real­

time PCR instrument (Biorad, iCycler).

2.1.3.9- TaqMan probe genotyping

TaqMan probes provide sequence-specific detection that relies on one method 

of signal generation, the separation of a fluorophore from a quencher (Gibson, 

2006). Other technologies involve the association of two fluorophores to 

generate fluorescent signal by energy transfer between a donor and an 

acceptor fluor, this is most commonly used in FRET technologies.

Sequence-specific detection permits the unambiguous detection of target 

sequences without the production of non-specific signals arising from primer 

dimers and other PCR events.

TaqMan was one of the initial methods introduced for homogeneous or real­

time sequence detection (Holland et al, 1991) and has since been widely 

adopted for both the quantification of mRNA’s and for detecting variation.
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Figure 2.4 - Schematic of TaqMan probe genotyping method
One of the specifically designed TaqMan probes for the target SNP bind to single 

stranded DNA template where there is a match leading to the separation of the VIC dye 

or FAM dye from the quencher which generates a fluorescence signal that is detected 

by the instrument (Applied Biosystems literature).

2.1.4- Radioligand binding

Radioligand binding is a highly regarded tool throughout a w ide range of 

disciplines, including pharm acology, physiology, biochem istry, im m unology and 

cell biology (Toews, 1993).

To enable the analysis of interactions o f hormones, neurotransm itters, growth 

factors, and related drugs with the ir receptors, studies of receptor in teractions 

with second m essenger systems, the characterization of regulatory changes in 

receptor num ber and physiological function are required (Bylund and Towes,

1993).

Radioligand binding as a technique is com parably simple, only requiring tha t the 

binding should be saturable, due to there being a fin ite num ber o f receptors.
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Binding should maintain a selectivity in competing for radioligand that parallels 

the selectivity of those competing agents in modifying a response and that the 

kinetics of binding should parallel the kinetic response (Limbird, 2004).

Studies using radioligand binding are often performed to establish the affinity of 

different drugs for a receptor and in addition the binding site density (Bmax) of 

receptor subtypes of a particular family can be determined for individual tissues 

or samples.

Kd is the measure of the concentration of a radioactive ligand that is required to 

occupy 50% of the receptors, whereas Bmax is a measure of density of the 

receptor in a tissue and is equal to the amount ‘Bound’ when all the receptors 

are occupied by a radioactive ligand.

These techniques of genotyping, real-time PCR and radioligand binding 

described above have been used extensively in the characterisation of 

serotonin receptors in the brain providing an insight into the functional role of 

serotonin and its receptors and their involvement in the pathophysiology of 

many psychiatric diseases.
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2.2.1- Ethical aspects

Human post-mortem tissue samples used in this research were provided by 

Professor Gavin Reynolds, Queens University Belfast. Approval for this study 

was obtained from the appropriate committees.

2.2.2- Brain tissue samples
All tissue samples used in this study were obtained from control subjects that 

had no previous history of metal health. The age range, post-mortem delay and 

sex of subjects were 49-93 years, 4-79 hours and 14 subjects were male and 

10 were female.

Human post-mortem tissue samples from the hippocampal brain region were 

stored in a freezer at -70°C. All tissue samples were weighed and then thawed 

on ice before use.

2.2.3- Human post-mortem Brain tissue genotyping
2.2.3.1- DNA extraction

150mg of human post-mortem brain tissue was homogenised in kit lysis buffer a 

using a micro pestle (Fisher Scientific UK) and genomic DNA extracted using 

the tissue DNA purification kit (Nucleon ST, Tepnel Life Sciences, UK). Lysed 

tissue was pelleted and 0.5 ml of reagent B was added to resuspend pellet. To 

deproteinise 150pl of sodium perchlorate was added and sample inverted 7 

times, 0.5ml of chloroform was then added and inverted 7 times to emulsify the 

phases. Nucleon resin (150pl) was added and centrifuged at 350g for 1 minute. 

To precipitate DNA, the upper aqueous layer (clear) was removed to a fresh 

1.5ml eppendorf and two volumes of cold absolute ethanol were added. The 

sample was inverted several times until DNA was precipitated. Once DNA was 

precipitated the sample was centrifuged at 4000g to pellet the DNA. The pellet 

was then washed with 1.0ml of 70 percent ethanol. The sample was re­

centrifuged and supernatant discarded. The pellet was then air dried for 10 

minutes to remove all traces of ethanol. DNA was re-dissolved in 100pl of 

ddH20 .

A further ethanol purification step was carried out. 2.5-3 volumes of 95 percent 

ethanol/0.12M sodium acetate were added to the DNA sample. The sample was
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incubated on ice fo r 10 minutes. A fter incubation sam ples were centrifuged at 

10,000g in a m icrocentrifuge for 15 m inutes at 4°C, the supernatant was 

decanted and sam ple drained by inverting onto a paper towel. 80 percent 

ethanol (2 volum es of original sam ple) were added. Sam ples were incubated at 

room tem perature for 5-10 minutes, then centrifuged fo r 5 m inutes. Samples 

were decanted and drained as above. Samples were then left to air dry for IQ- 

15 minutes, pellets were then re-suspended in deionised water.

2.2.3.2- Allele specific oligonucleotide (ASO) PCR for 5-HT1A genotyping

ASO s allow  specific am plification of a region that includes the variant nucleotide 

site. The ideal ASO length is 19-21 base pairs, which is short enough to allow 

differentia l hybridisation based on a single base change and long enough to 

provide high probability o f locus specificity.

A lle le specific prim ers for the C-1019G polymorphism  of the 5 -H T1A receptor 

were designed from  the sequence (Z11168) using prim er 3 software. A lle le- 

specific primers were synthesised by MWG Biotech. This ASO  method was 

adapted from Prof. Gavin Reynolds (Reynolds et al, 2006).

m
Forward CTG AGG GAG TAA GGC TGG AC

#
61.4

174bpReverse (C allele) GAA GAA GAC CGA GTG TGT CTT CG 62.4

Reverse (G allele) GAA GAA GAC CGA CTG TGT CTT CC 62.4

Table 2.1: Oligonucleotide primers used for ASO genotyping

2.2.3.3- PCR reaction

Each 25pl PCR reaction contained PCR m aster mix (3mM MgCI2) (ABgene, 

UK), 5pl of purified DNA and final concentration of 0.5pM  of forward and 

reverse primers.

71



2.2.3.4- PCR cycle conditions

95°C fo r 5 m inutes 

95°C fo r 30 seconds 

58°C fo r 40 seconds r ” 32 cycles 

72°C fo r 40 seconds 

72°C fo r 10 m inutes 

hold at 4°C

Two PCR reactions (Forward prim er was run with d ifferent reverse primers) 

were run fo r each sam ple genotyped. PCR product was visualised on a 3.5 

percent agarose gel and genotype determ ined by either a band being present 

with both prim ers (G/C genotype) or only one band present with e ither the G 

prim er or the C primer.

2.2.4- SNP real-time PCR genotyping

To each of the two alle le-specific primers, GC tails of d ifferent lengths were 

added. The long 14-bp GC tail had the sequence 5'- G CG G G CAG G G C G G C-3' 

and the short 6-bp GC tail had the sequence 5'- GCGGGC-3'. The longer GC 

rich tail is usually added to an a lle le-specific prim er that has a h igher T m base 

(G or C) at its 3'end, and a short tail to the other alle le-specific prim er w ith the 

lower T m base (A or T).

If one alle le-specific prim er is thought to am plify more effic iently than the other 

resulting in uneven height of melt curves then the more effic ient a lle le-specific  

prim er is added at half the original concentration (0.25pM). Prim ers were 

synthesised by MWG Biotech UK. This method was adapted from  W ang et al, 

2005.

2.2.4.1- Primers

C M
F orw ard CTG AG G  GAG TAA G G C  TG G  AC 3 ’ 61 .4

R e v e rs e  (C  a lle le ) G CG  G G C  GAA GAA GAC CG A G TG  TG T  
C TT CG 72.3

R e v e rs e  (G  a lle le ) G CG  G G C AGG G CG  G CG  AAG AAG ACC  
GAC T G T  G TC TTC  C >75

Table 2.2: Oligonucleotide primers for Real-time PCR SNP genotyping
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2.2.4.2- PCR reaction

Primer stock solution was 100pM, 12.5[j| of this stock was added to ddh^O to 

make a 12 .5 |j M solution. 1pl of 12 .5 |jM solution in 25|jl PCR reaction gave a 

final concentration of 0.5pM.

Each 25 |j I PCR reaction contained 1 2 .5 jjI of SYBR green PCR master mix 

(ABgene, UK), 5pl of purified DNA and final concentration of 0.5pM of each 

forward and reverse C primer and 0.25pM of reverse G primer were added.

2.2.4.3- PCR cycle conditions

95°C for 15 minutes to activate SYBR green mix

95°C for 15 seconds

58°C for 15 seconds. f  40 cycles

72°C for 30 seconds >

Melt curve

95°C 30 seconds V  45 cycles

50°C for 30 seconds increasing in 1°C increments ^

2.2.5- TaqMan custom Genotyping
Applied Biosystems custom designed TaqMan probes for G and C alleles 

designed from NCBI accession number Z11168. The assay contains two allele 

specific TaqMan probes labelled with VIC or 6-FAM dye and a primer pair to 

detect the specific SNP target. Each TaqMan probe incorporates the minor 

groove binder (MGB) group on the 3’ end. Each 25pl PCR reaction consisted of 

30ng DNA, 11.857pl Applied Biosystems PCR master mix and 0.657pl of 

TaqMan probe mix.

2.2.5.1-PCR cycles

The following cycles were performed on ABI Step one Real-time PCR  

instrument.

90°C 10 minutes^!

90°C 30 seconds ^  40 cycles 

92°C 15 seconds 

72°C 15 seconds'
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2.2.6- RNA extraction

RNA was extracted from human post-mortem tissue samples from the 

hippocampal region (50-60mg) using a SV total RNA isolation kit (Promega, 

UK). Tissue was homogenised with a micro pestle (Fisher Scientific, UK) in kit 

lysis buffer until a liquid homogenate was formed. Buffer N3 was added and the 

samples were centrifuged at 10,000g for 10 minutes. The clear top layer was 

removed into a fresh 1.5ml eppendorf tube, 200pl of 70 per cent ethanol was 

added before loading sample on to a spin column. RNA was eluted in 100pl of 

elution buffer. Extracted RNA was kept in the freezer at -70°C.

2.2.6.1- Experion analysis of RNA

For quantitative and qualitative analysis of RNA the Bio-Rad Experion system 

was used. Extracted RNA samples were thawed on ice. Once thawed, 3pl of 

RNA sample and 3pl of experion RNA ladder were heated in a 1.5ml eppendorf 

tube at 70°C for 3 minutes. After 3 minutes samples were stored on ice. The  

Experion StdSens RNA chip.was primed with 9pl of filtered gel mixture and was 

pipetted into the yellow G well. The chip was placed onto the priming station 

and primed for 30 seconds on pressure setting B. Once primed, 7pl of sample 

buffer was added to wells labelled 1-12. RNA ladder (1pl) and'7pl of sample 

buffer were added to L well. 9pl of gel and gel stain mixture were pipetted in to 

GS well. 1pl of each sample was pipetted into each well 1-12. Any blank wells 

had water added to them instead of sample. Samples were electrophoresed for 

15 minutes.

2.2.6.2- cDNA synthesis

The iScript cDNA synthesis kit (Bio-Rad, UK) was used to transcribe single­

stranded cDNA. In each cDNA synthesis reaction RNA, 10pl ddH20, 4pl of (5X) 

iScript buffer and 1pl of reverse transcriptase (1U) was added. Reactions were 

heated at 25°C in a heat block for 5 minutes, then moved to a water bath and 

heated at 42°C for 30 minutes. Reactions were finally heated at 85°C for 5 

minutes in a heat block for 5 minutes. All samples had 20pl of ddhhO added to 

them before being stored at -20°C.
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2.2.7- Real-time PCR

Real-time PCR is a common method used for quantifying gene expression. To 

normalise any PCR reaction housekeeping genes are used. Housekeeping 

gene expression should remain constant in the tissue or cells of the target gene. 

The accurate normalisation of levels of gene expression is vitally important to 

achieve reliable data, especially when the biological significance of a subtle 

difference in gene expression is investigated (Vandesompele et al, 2002). 

Therefore, the two most stable housekeeping genes to run with every real-time 

PCR reaction should be determined using GeNorm software (Vandesompele et 

al, 2002).

2.2.7.1- Housekeeping gene validation

8 housekeeping genes (B actin, p2M, GADPH, HPRT, RPL13A, SDHA, UBC, 

and YW HAZ) were tested on 10 human post-mortem brain tissue samples. 

Threshold (Ct) values were collected and the expression ratio was determined 

by the comparative Ct method. These values were imported into the GeNorm  

software (Vandesompele et al, 2002) which determines the most stable 

housekeeping genes. A gene expression stability measure (M value) was 

calculated for each housekeeping gene. The housekeeping gene with an M 

value greater than 1.5 was identified as the least stable and was removed. 

Housekeeping genes are eliminated until the two most stable housekeeping 

genes remain.

2 .2 .7 .2- Primer design

The housekeeping gene primers were taken from Vandesompele et al, (2002). 

The 5-H T- ia primers used were designed from accession number Z 1 1 1 6 8  using 

Primer 3 software (www.primer3.com). All primers were obtained from MWG  

Biotech. Primers are shown in the following table.
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g
p -

ACTIN

CTG G A A C G G TG A A G G TG A

CA
57.3

AA G G G A C TTC C TG TA A C A
ATG CA

57.3 141bp

(32M
T G C T  G TC TC C A T G TTT GAT  

G TA TC T
57.9

TC TC TG C TC C C C A C C TC TA
AG T

55.9 86bp

G APDH
T G C A C C A C C A A C TG C TTA

GC
59.4

G G C A TG G A C T G TG G T CAT  

GAG
59.4 125bp

HPRT1
T G A CACTG G CAAAACA AT  

GCA
55.9

G G TC C TTTTC A C C A G C A A

G C T
59.8 98bp

RPL13A
C CTG G A G G A G A A G A G G A A

AGAGA
62.4

TTG A G G A C C TC TG TG TA TT
TG TCAA

59.7 126bp

SDHA
TG G G A A C A A G A G G G C A TC

TG
59.4

C C AC C A C TG  CAT C A AATT C 

ATG
58.4 86bp

UBC
A TTTG G G T C G C G G T T C T T

G
56.7

T  G C C TT  GAC A TT CTC GAT G 

G T
57.9 90bp

Y W H A Z
A C TTTTG G TA C A TTG TG G C

TTCAA
57.6

C C G C C A G G A C A A A C C A G T
AT

59.4 134bp

Table 2.3: Oligonucleotide primer sequences for housekeeping genes 

used for Real-time PCR

5-ht1 a_for GCG AGA ACG GAG GTA GCT TT 59.4
148bp

5-ht1a_rev CCC AGA GTG GCA ATA GGA GA 59.4

Table 2.4: Oligonucelotide primer sequences for 5-HTi A gene

2.2.7.3- PCR reaction

The PCR reaction was optim ised by titrating the m agnesium  chloride (M gCb) 

concentration (3mM, 4mM and 5mM), tem plate concentration (2pl and 4pl) and 

prim er concentration (0.2pM, 0.5pM, and 1pM).

Once optim ised each 25pl PCR reaction contained 12.5pl of (2X) SYBR green 

mix (Abgene, UK), 1pl of MgCh (4mM), 5.5pl of ddH 20 and 1pl o f each forw ard 

and reverse prim er (0.5pM). 4pl o f cDNA was added separately to the 96 well 

plate sam ple wells.

Two housekeeping genes were run on every plate and used as a reference to 

norm alise data.
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2.2.7.4- PCR Cycles

95°C for 15 minutes to activate SYBR green mix 

95°C for 15 seconds

60°C for 15 seconds 

72°C for 30 seconds J

40 cycles

Melt curve

95°C 30 seconds 45 cycles

50°C for 30 seconds increasing in 1°C increments J

2.2.7.5- Primer efficiency

To calculate primer efficiency template cDNA was diluted in series (neat, 1:5, 

1:10, 1:50 and 1:100), each PCR reaction was carried out in duplicate. The Ct 

values obtained were exported in to the graphical and statistical software 

programme GraphPad Prism 4. Using the Prism software the slope and 1 over 

slope were determined.

A good reaction should have efficiency between 90 percent and 110 per cent. In 

this study, the slope of each primer was calculated using the Prism software.

A 100 per cent efficiency corresponds to a slope of-3.32. The slope of a log-linear 

phase demonstrates the efficiency of the amplification reaction.
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2.2.8- Radioligand Binding of 5-HT1A

Radioligand binding is performed to establish the affinity of different drugs for a 

receptor. In addition the binding site density (Bmax) of receptor subtypes of a 

particular family can be determined for individual tissues or samples.

Kd is a measure of concentration of radioactive ligand that is required to occupy 

50 percent of the receptors, whereas Bmax is a measure of density of the 

receptor in a tissue.

2.2.8.1- Sample preparation

The radioligand used was the 5-H T- ia antagonist 3[H] W A Y 100635. An exact 

amount in excess of 60mg of control hippocampal human brain tissue was 

weighed out and homogenised in Tris-HCL buffer (50mM, pH 7.4). The 

homogenate was centrifuged and the pellet resuspended in buffer to a 

concentration of 3.125mg/ml.

The radioligand was diluted to produce eight concentrations (8nM, 6nM, 4nM, 

2nM, 1nM, 0.5nM, 0.25nM and 0.12nM).

The amount of radioligand added to buffer to make a 8nM solution was 

calculated using the following equation:

volume of solution required (X) x 81 (specific activity)

200

The binding reaction was carried out in a 96 well plate, in each well 400pl of 

tissue suspension, 50pl of radioligand, 50pl displacer (5-HT (1mM)) or buffer 

(Control) was added.

The plate was incubated at 37°C for 50 minutes. The Skatron cell harvester was 

used to transfer the contents of the wells to filter paper. Filter paper was placed 

in scintillation fluid and counted in a scintillation counter.
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2.2.9- Data analysis
2.2.9.1- Comparative Ct method

Housekeeping gene mRNA expression was calculated using the comparative Ct 

method using the formula below (Livak and Schmittgen, 2001).

_  2  -[A C t sample-ACtcontrol]

Ratio = 2 ’MCt

2 .2.9.2- Pfaffl method

The relative expression ratio of a target gene was calculated based on its efficiency (E) 

and the difference in Ct value (delta Ct) of an unknown sample against that of a control 

and expressed in comparison to a reference gene.

R A T IO =  (E  ,arget)ACttarget(C0nlr0,'SamPle)

/p  \ ACt (control-sample) 
ref) ref

Where, E target is the real-time PCR efficiency of the target gene transcript;

E ref is the real-time PCR efficiency of a reference gene transcript; A C t target is 

the Ct deviation of control minus the sample of the target gene transcript; A C tref 

is equal to the Ct deviation of control minus the sample of the reference gene 

transcript (Pfaffl, 2001).

2.2.9.3-Primer efficiency calculation

E = io ("1/slope)-1
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2 .2 .9 .4 -  Bmax 3 n d  K j

A common method of determining Kd and Bmax values from saturation 

experiments is to use nonlinear regression analyses provided by software such 

as GraphPad Prism. A hyperbola curve is fitted to the data, as concentration 

increases the amount of bound also continues to increase until a saturation 

point is reached. To determine Bmax and Kd using a saturation plot a rectangular 

hyperbola can be fitted to the data utilising the following equation:

Specific Binding = Fractional _ m̂ax 4 ■] Occupancy.Bmax
K, + [L]

W here specific binding is the total binding of receptor and ligand, [L] is the 

concentration of the free radioligand.
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2.3- Results

2.3.1- ASO 5-HT1A genotyping
Specifically designed primers with a single base-pair substitution were used for 

genotyping samples.,

In total 23 human post-mortem brain tissue samples from various brain regions 

were genotyped for the C -1019G promoter polymorphism.

Bands were present at PCR product size 174bp. The following samples, 

positive control (genomic DNA, Sigma) and sample 344 both have a band 

present with both C and G reverse primers therefore these samples have a G/C  

genotype. One band is present with the G allele with samples 177 and 187 and 

therefore both samples have a GG genotype. Sample 200 has one band 

present with the C allele and therefore has a CC genotype (Figure 2.5).

200 bp

Key
1- DNA ladder
2- Genomic DNA (Sigma) reverse C
3- Genomic DNA (Sigma) I reverse G
4- 344 rev C
5- 344 rev G
6- 177 rev C
7- 177 rev G
8- 200 rev C
9- 200 rev G
10-■187 rev C
11-■187 rev G

Figure 2.5- A typical agarose gel of 5-HTi a receptor genotypes

An example agarose gel showing the resultant PCR product(s) generated by 

the ASO genotyping technique.
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Sample Genotype
009 G/C
062 GG
069 GG
131 G/C
177 GG
187 GG
199 -

200 CC
204 -

244 G/C
254 -

255 CC
257 GG
266 G/C
267 GG
283 CC
300 CC
323 G/C
324 G/C
325 GG
334 G/C
343 G/C
344 CC

Table 2.5- Genotype of human hippocam pal postm ortem  brain tissue  

sam ples using the ASO m ethod

Each genotyping reaction was repeated twice. Three samples (199, 204 and 254) did 

not yield any PCR products and therefore, their genotype could not be determined. The 

percentage genotypes for the ASO method were 35% GG, 40% G/C and 25% CC 

genotype.

2.3.2- Real-time PCR SNP genotyping

A hom ogenous melting tem perature (Tm) - shift genotyping method has been 

reported by W ang et al (2005). This method was adapted to enable its use with 

the Biorad iCycler real-tim e PCR instrument. This method uses two alle le- 

specific primers, each containing a 3'-term inal base that corresponds to one of 

the two SNP allelic variants.
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GC-rich tails o f unequal length are attached to the alle le-specific primers, this 

provides the PCR product with a d istinct T m and hence genotype can be 

determ ined by exam ining the melt curve (Figure 2.6).

i-

-10
46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

Temperature, Celsius

Legend

—  GG —  CC —  G/C

Figure 2.6- Exam ple data of real-tim e PCR SNP genotyping

The green peak represents the homozygous GG genotype which has a melting 

temperature Tm of 89°C, homozygous CC genotype is represented by the blue peak 

which has a Tm of 84°C and the red peak represents the heterozygote G/C genotype 

with Tm’s of 84°C and 89°C.



009 CC
062 CC
069 -

131 GG
177 GG
187 -

199 -

200 CC
204 CC
244 GG
254 CC
255 GG
257 CC
266 GG
267 GG
283 GG
300 -

323 CC
324 -

325 -

334 GG
343 CC
344 GG

Table 2.6- Genotype of human hippocam pal postm ortem  brain tissue  

sam ples using real-tim e PCR SNP genotyping m ethod

PCR reactions were performed in triplicate. Genotypes in six samples were 

undetermined due to inconsistencies in melt curve.

2.3.3- TaqMan genotyping

Applied Biosystems TaqM an custom assays are designed, synthesized and 

delivered in a single-tube format. Custom  assays use TaqM an®  m inor groove 

binding (MGB) probe-based assays that provide superior alle lic d iscrim ination 

and assay design flexibility. This custom  SNP assay was specifica lly designed 

for the C-1019G prom oter polymorphism .
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0.1 0.3  0.5  0.7  0.9  1.1 1.3 1.5 1.7

C

Legend
•  Homozygous CC •  Homozygous GG

•  Heterozygous G/C ■  Negative control

Figure 2.7- Exam ple of a TaqMan allelic discrim ination plot

The allelic discrimination plot is generated by normalising the fluorescence of reporter 

dyes to the fluorescence of the passive reference dye in each well. The ABI prism 

software plots the normalised intensities (Rn) of the reporter dyes in each sample well

on an allelic discrimination plot. The software then algorithmically clusters the sample

data and assigns a genotype according to the samples position on the plot.

Samples were repeated in triplicate.
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009 G/C G/C GG G/C
062 CC CC CC
069 G/C G/C G/C
131 CC G/C G/C G/C
177 CC CC CC
187 CC CC CC
199 GG GG GG
200 G/C G/C G/C
204 GG GG GG
244 G/C G/C G/C
254 G/C G/C
255 CC GG CC CC
257 CC CC CC
266 G/C G/C G/C
267 GG GG GG
283 G/C G/C G/C G/C
300 G/C G/C G/C
323 GG G/C -

324 GG GG GG
325 GG GG GG GG
334 G/C G/C G/C G/C
343 CC CC CC
344 G/C G/C

Table 2.7- Genotypes of human hippocampal postmortem brain tissue 

using custom TaqMan probes
The genotype of one sample (323) could not be determined.

Each genotyping technique used in this study produced varying genotypes fo r 

each sample. It was therefore, decided to com bine genotyping results from  

each method predom inantly using the TaqM an genotyping technique and any 

sam ples with poor quality and quantity o f DNA the ASO m ethod was used. In 

this study extracted DNA was assessed for quality and quantity and it was 

observed that the genotype determ ined using the ASO m ethod was found to be 

less effected by DNA quantity and quality. W hereas, the genotype determ ined 

by the TaqM an SNP genotype method is effected by the quality and quantity of 

DNA. Six sam ples (187, 200, 257, 300, 324 and 344) showed poor quality and 

quantity o f DNA and low am plification with the TaqMan genotyp ing method, 

which lead to an inconsistent genotyping result. Therefore, in these cases the 

ASO method was used. A  positive corre lation between quality and quantity of 

DNA extracted from  human post-mortem  tissue sam ples was observed (Figure 

2.8). The SNP real-tim e PCR method was not utilised due to the lack of 

identification of any heterozygotes in these sam ples which contradicts current
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literature. Therefore the genotypes from this method were not included when 

determ ining the final genotype fo r each sample. Final genotypes for each 

sam ple are shown in Table 2.8.

6OO-1 r = 0.8075

§  500-

400-
Q
O

'>3

300-

200- qp c m *

3  100 -  
O  M

1 3 4 5 60 2
Quality of DNA

Figure 2.8- Correlation between quality and quantity of DNA
Quality of DNA was determined from the ratio of absorbance readings taken at 260 and 

280nm. The quantity of DNA was determined by absorbance reading taken at 260nm. 

A positive correlation was observed between quality and quantity of DNA.
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009 G/C G/C G/C

062 GG CC CC

069 GG G/C GG

131 G/C G/C G/C

177 GG CC CC

187 GG CC GG

199 - GG GG

200 CC G/C CC

204 - GG GG

244 G/C G/C G/C

254 - G/C G/C

255 CC CC CC

257 GG CC GG

266 G/C G/C G/C

267 GG GG GG

283 CC G/C G/C

300 CC G/C CC

323 G/C - G/C

324 G/C GG G/C

325 GG GG GG

334 G/C G/C G/C

343 G/C CC CC

344 CC 
_____

G/C CC

Table 2.8- Final genotype assigned to samples



2.3.4- Real-time PCR gene expression results

2.3.4.1- RNA analysis using the Experion system

RNA was quantified using the Experion system. Good quality RNA is 

represented by two bands at 2000 and 3000 corresponding to the two ribosomal 

bands characteristic o f eukaryotic RNA. All sam ples contained RNA with 

sam ples showing som e degradation of RNA, sam ples 9 and 10 particularly 

showed poor quality RNA (Figure 2.9).

Bands present between the two ribosomal bands suggest degradation o f RNA 

(Figure 2.10).

6000

4000 m 
3000 -  
2000 -

1000 I

500.0 -
200.0 -

50.0 ►

=  ■ - =  

—  B a n

28S

18S

L 1 2 3 4 5 6 7 8 9 1 1 1 
0 1 2

L-RNA Ladder Lane 1- Sample 219
Lane 3- Sample 255 Lane 4- Sample 344
Lane 6- Sample 283 Lane 7- Sample 323
Lane 9 - Sample 177 Lane 1 0 -Sample 334
Lane 12- RNA from cell line

Lane 2- Sample 204 
Lane 5- Sample 325 
Lane 8- Sample 267 
Lane 11- RNA from cell line

Figure 2.9 - Experion gel data RNA from  Human post-m ortem  brain tissue  

sam ples

For good quality RNA two bands, one about 2000 and other about 3000 are expected 

corresponding to the two ribosomal bands 18S and 28S respectively. Bands present 

between these two ribosomal bands indicate degradation of the sample. All samples 

contained RNA Lanes 9 and 10 showed poor quality RNA.
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Time (seconds;

Figure 2.10- Example of a RNA sample electropherogram from the 

Experion system
Peaks between the two ribosomal (18S and 28S) peaks indicate degradation of the 

sample.

The human post-m ortem  tissue used in this study did show som e degradation 

when analysed using the experion system. However, using a highly sensitive 

technique such as real-time PCR for the detection of m RNA expression, even 

human post-mortem  brain tissue sam ples w ith slight RNA degradation due to 

post-mortem  intervals beyond 12hours can still be detected (Gutala and Reddy, 

2004).

2.3.4.2- Housekeeping gene validation

Real-tim e PCR was perform ed on 10 Human post-mortem  brain tissue sam ples 

using 8 housekeeping genes (p-actin, p2M, GADPH, HPRT, RPL13A, SDHA, 

UBC, and YW HAZ). 3 housekeeping genes were elim inated from  validation due 

to poor am plification and melt curve analysis. The remaining housekeeping 

genes data were used to calculate expression ratios by the com parative Ct 

method. This data was imported into the geNorm software and analysed.

The geNorm  software calculates M -values for each housekeeping gene. 

Housekeeping genes with an M -value above 1.5 are elim inated until the two 

most stable housekeeping results remained.



Results showed that the two m ost stable housekeeping genes were SDHA and 

UBC both with M -values of 0.905.

geNorm
Change Data B A C T IN R PL13A H P R T S D H A U B C

177 1 40E-01 1.00E-02 1.40E-01 1.00E-01
323 1.00E+00 1.00E+00 1.00E+00 1 00E+0Q 1 OOE+OO
219 1 0QE-02 l.OOE-fll 3.00E-02 3.00E-02 3.00E-02
204 2.90E-01 2 70E-01 6 00E-02 6.00E-02 7.00E-02
267 1.90E-01 3 70E-01 2.30E-01 4.00E-02 5.00E-02
255 6.00E-02 5.20E-01 1.00E-02 1.00E-02 1 OOE-02
344 1 30E-01 1.74E+00 ! 74E+00 2.00E-02 6.00E-02
334 4.00E-02 2 46E+00 9.30E-01 1.30E-01 1.70E-01
283 6.40E-01 1.93E+00 1.23E+00 9.00E-02 1.30E-01
325 1.50E 01 1 68E+00 2,141

M < 1.5 2.198 2.772 2.455 2.283 1.829

Figure 2.11 - geNorm  data of 5 housekeeping genes

The relative expression ratios of each housekeeping gene were imported into the 

geNorm software. The M value for each gene was calculated and the gene with the 

highest M value (Shaded in red) is deemed the least stable and is removed. The most 

stable housekeeping gene is shaded in green. Housekeeping genes are removed until 

the two most stable genes remain.
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geNorm
Change Data

SDHA UBC N orm a lisa tion  Factor
177 1.40E-01 1.00E-01 1.8127
323 1.00E+00 1.00E+00 15.3205
219 3.00E-02 3.00E-02 0 4596
204 6.00E-02 7.00E-02 0.9929
267 4.00E-02 5.00E-02 0.6852
255 1.00E-02 1.00E-02 0.1532
344 2.00E-02 6.00E-02 0.5307
334 1.30E-01 1.70E-01 2.2776
283 9.00E-02 1.30E-01 1.6572
325 1.00E-02 6.00E-02 0.3753

M <  1.5 0,905 0.905

Figure 2.12- geNorm data of the 2 most stable housekeeping genes
Through a process of elimination according to the M values of the housekeeping genes 

the two remaining stable housekeeping genes are SHDA and UBC both have an M 

value of 0.905.

2.3.4.3- Efficiency of Primers

A dilution series of cDNA was tested with both housekeeping gene prim ers and 

the 5-H T1A primer.

The Ct values fo r each dilution were imported in to G raphPad Prism, the slope 

o f the line was calculated using average Ct values.

A  slope of -3.295 represents a 100 percent effic ient primer. SDHA, UBC and 5- 

H T ia  efficiencies are shown in Figure 2.13.
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log o f d ilu tion

A  5-HT1A ■  SDHA ▼ UBC

Figure 2.13- Efficiency of the housekeeping prim ers SDHA, UBC and 5- 

HT ia

A  dilution series  of c D N A  w as  tes ted  w ith th e  prim ers S D H A , U B C  and  5 -H T 1A. T h e  C t 

va lu es  fo r e ach  dilution w e re  used to ca lcu la te  s lope of th e  line. P e rc e n ta g e  of 

effic iency  is ca lcu la ted  using E = i o ('1/slope)- 1 . S D H A , U B C  and 5 -H T 1A h ave  a s lo p e  o f -  

2 .5 7 0 ± 0 .8 8 1 , -2 .8 2 1  ± 1 .8 8 1  and  -3 .3 4 4 ± 1 .0 4 0 , and p e rc e n ta g e  e ffic ien c ies  o f 1 4 4 .9 , 

1 1 7 .2  and  99 .1  p ercen t respective ly .
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2.3.4.4- Post-mortem factors

The key factor in conducting post-m ortem  research is the quality o f the tissue. 

Several factors including pre and post-m ortem  conditions can influence the 

quality o f tissue and its ability to yield accurate results (Stan, 2006). However, 

the housekeeping genes used in real-tim e PCR controls fo r th is providing that 

confounding factors are checked.

Com m only recognised confounds include PMI, age and sex of patient. These 

tissue quality param eters were assessed in the human brain tissue sam ples 

used in this study.

Increasing age at death has been associated with reductions in certain m RNAs 

(N ichols et al, 1993; Harrison, 1995; Castensson et al, 2002). Figure 2.14 

shows that there is no significant correlation between Age of subject and 

relative expression ratio o f the 5-H T iA receptor.
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r2=0.219o

05
25-

§ 20-
</)
</>
<D
L -

1 5 -
Q.s 1°-
<D „
> 5-
J2
o
£ 100

-5J Age (years)

Figure 2.14- Correlation between age and relative expression ratio
No significant correlation is observed between an increase years in age of subject and 

relative expression ratio of 5-HT1A receptor mRNA (r2= 0.219).
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Gender is one of the main confounds of interest in autopsy studies, presently 

there is little data on sex differences in human subjects (Hynd, 2003). In this 

study 13 male and 10 female subjects were correlated to 5-H T ia receptor 

mRNA levels (Figure 2.15).
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Figure 2.15- correlation between gender of subject and relative expression 

ratio
No significant correlation was observed with gender and 5-HT1A receptor mRNA 

expression ratios. 1.0= Male, 2.0= Female.

To assess the quality of post-mortem tissue the main confound is the PMI. 

Typical intervals of post-mortem delay range from 4 to 36 hours (Whitehouse, 

1984; Barton, 1993). Studies of gene expression in the brain often target 

specific mRNAs therefore it is essential to be able to control for the effect of PMI 

on that mRNA (Hynd, 2003). Figure 2.16 shows that PMI had no effect on the 

mRNA expression of the 5-H Tia receptor in the tissue used in this study.
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Figure 2.16- Correlation between post-mortem delay and relative 

expression ratio
T h e re  w a s  no corre lation  observed  b e tw e e n  P M I and  re la tive  exp ress io n  ratio  of 5 -  

H T 1A recep to r in h um an  brain tissue  sa m p le s  used in this study (1̂ = 0 .0020).

2.3.4.5- Real-time PCR data correlated to genotype

The mean Ct values of each sam ple were imported into Excel and the Pfaffl 

method was used to calculate the relative gene expression ratios (Pfaffl, 2001). 

Sam ples with a GG genotype had higher expression com pared to those w ith a 

G/C or CC genotype. Data was analysed using one-way AN O V A  (p>0.05), 

(Figure 2.17). The log of the relative expression was also com pared to that of 

the C-allele. The results show that sam ples with a G allele had a 1-fold increase 

of average expression com pared to sam ples with C allele 

Data was analysed with an un-paired S tudent’s t-test. Sam ples w ith a G alle le 

had a significantly higher 5-H T iA receptor expression com pared to sam ples with 

a C allele (P<0.05), (Figure 2.18).
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Figure 2.17- Log of relative gene expression correlated w ith genotype

Post-mortem brain tissue samples with a GG genotype had higher expression of the 5- 

HT1A receptor than samples with a CC genotype (p>0.05). 22 samples were genotyped 

7 samples had a GG genotype, 9 samples had a G/C genotype and 6 had a CC 

genotype. One sample was excluded as it produced an ambiguous result. The boxes 

displaces the differences between populations and the spacings between the different 

parts of the box help indicate the degree of dispersion. The line represents the median.
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Figure 2.18- Log of relative gene expression of G -allele versus the C -alle le

Post-mortem brain tissue samples with a G allele had higher expression of the 5-HT1A 

receptor than samples with a C allele (*p<0.05). 22 samples were genotyped 16 

samples had a G allele present, 15 samples had a C allele present. One sample was 

excluded as it produced an ambiguous result.
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The calculated relative expression ratios and genotype for each post-mortem  

brain tissue sam ple is shown in Table 2.9.

177 0 .3 1 2 7 CC

2 0 0 0 .2 9 0 4 CC

2 5 5 0 .4 2 5 3 CC

2 6 7 0 .6 1 9 1 GG

2 8 3 0 .5 9 6 3 G/C

3 2 3 0 .7 5 4 1 G/C

3 2 5 0 .9 0 6 5 GG

3 4 3 0 .2 6 3 6 CC

3 4 4 1 .1 1 1 2 CC

1 99 0 .3 0 4 7 GG

2 0 4 3 .9 2 9 2 GG

3 3 4 3 .7 5 4 9 G/C

3 2 4 1 G /C

1 87 2 .8 4 0 7 GG

2 5 4 1 .5 2 5 0 G/C

2 5 7 4 .1 8 6 1 G G

0 6 9 2 4 .3 2 4 G G

0 6 2 4 .9 0 3 8 CC

131 1 5 .5 8 4 1 G/C

0 0 9 2 0 .3 7 1 G/C

2 4 4 1.6501 G/C

2 6 6 0 .0 3 2 0 G/C

3 0 0 0 .0 9 6 3 CC

Table 2.9- The relative expression ratios of and genotype for each post­

m ortem  brain tissue sam ple

Sample 324 was chosen as the control sample to which all other samples were 

compared when calculating the relative expression ratios using the Pffafl method and 

therefore has a relative expression ratio of 1.

2.3.5- Radioligand binding results

The best and most common method of determ ining Kd and Bmax va lues from  

saturation experim ents is to use nonlinear regression analyses provided by 

software such as Prism (Graphpad). A  hyperbola curve is fitted to the data, as 

concentration increases the am ount of bound also continues to increase until a 

saturation point is reached. Bmax and Kd for this sam ple were 1383±32.6 dpm 

and 1.15±0.09nM respectively (Figure 2.19).
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Figure 2.19- Radioligand binding of a human post-mortem tissue sample 
with the 5-HTia silent antagonist WAY100635

A saturation plot with Bound on the Y-axis and Free on the X-axis can be used to 

determine Bmax and Kd values by non-linear regression. As the concentration of 

radioligand increases the amount bound continues to increase until saturation point is 

reached. The resultant graph is a hyperbola.
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2.3.5.1- Binding data correlated with genotype data

Bmax values and genotype fo r each post-m ortem  tissue sam ple were imported 

into M icrosoft Excel and from Bmax values receptor density in fm ol was 

calculated. Results indicate that sam ples with a GG or G/C genotype have an 

increased 5-H T i A receptor density com pared to sam ples w ith a CC genotype 

(p<0.05) (Figure 2.20).

75

GG G/C CC

Genotype

Figure 2.20- 5-HTi A radioligand binding data correlated with genotype

Sam ples with a GG (n= 4) or G/C (n=7) genotype have a sign ificantly higher 
density o f 5-H T1A receptor com pared to sam ples with a CC (n=2) genotype.
Data presented as m eans±SEM, S tudent’s un-paired t-test, *p<0.05.

The calculated Bmax, Kd, receptor density in fm ol and genotype o f each post­

mortem brain tissue sam ple is shown in Table 2.10.
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199 997.5 0.221 55.97 GG
200 737.5 0.08586 41.38 CC
204 255.4 0.3325 14.34 GG
244 1113 0.1477 62.45 G/C
266 695.4 0.4 39.02 G/C
267 941.3 0.06 52.82 GG
283 1117 0.08287 62.68 G/C
300 1432 0.1506 80.35 G/C
323 630 0.2896 35.35 G/C
324 1383 0.1155 77.60 G/C
325 1506 0.1383 84.51 GG
334 254 0.4567 14.25 G/C
343 131 0.3655 7.35 CC
344 723.3 0.1136 40.58 G/C

Table 2.10- The calculated Bmax, Kdand receptor density (fm ol) values with  

concurrent genotype of each post-m ortem  brain tissue sam ple

GG 199 55.97
GG 204 14.34
GG 267 52.82
GG 325 84.51

G/C 244 62.45
G/C 266 39.02
G/C 300 80.35
G/C 323 35.35
G/C 324 77.60
G/C 334 14.25
G/C 344 40.58

CC 200 41.38
CC 343 7.35

Table 2.11- Summary table of 5-HT1A receptor density and genotype
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2.4- Discussion

The results show a clear association between genotype of the common 

promoter region polymorphism C-1019G, mRNA expression levels and 

radioligand binding of 5 -H T ia  receptor in human brain post-mortem tissue 

samples.

2.4.1- 5-HT1A genotyping of human post-mortem brain tissue 

samples
Many new SNP genotyping technologies have been developed in the past few 

years. Several of these technologies are based on various methods of allelic 

discrimination and target amplification (Wang et al, 2005).

In this study three different genotyping methods were used, ASO genotyping, 

real-time PCR SNP genotyping and finally custom designed TaqMan probes 

(Applied Biosystems). Each method incorporated the use of allele specific 

oligonucleotides, but the way in which genotype was determined differed greatly. 

For the ASO genotyping method genotype is determined by the presence of a 

band with each reverse primer producing a GG or CC genotype and two bands 

of equal intensity are present with the G/C genotype on an agarose gel, 

whereas, the real-time PCR SNP genotyping method genotype is determined 

from the melt curve analysis and genotype is determined by an allelic 

discrimination plot with the TaqMan probe genotyping method.

In this study 2 3  samples were genotyped for the common C-1019G 5 -H T ia  

promoter polymorphism. The resultant genotypes for each sample genotyped 

by the ASO method are shown in Table 2 .5 . Table 2 .6  shows the genotypes 

determined by the real-time PCR SNP genotyping method and the genotypes 

determined by the TaqMan probe method are shown in Table 2 .7 .

The resultant genotypes demonstrate that 25 percent have CC genotype, 35 

percent have the GG genotype and 40 percent have G/C genotype with the 

ASO method. Similarly, the TaqMan probe genotyping method results 

generated a 26 percent CC genotype, 22 percent GG and 52 percent G/C
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genotype split. In contrast, the resultant genotypes from the real-time PCR SNP  

method produced a 47 percent CC genotype and 53 percent GG genotype split 

with no heterozygotes present.

Clearly, the real-time PCR SNP genotyping method proved to be unreliable as 

no heterozygote genotypes were identified. Therefore results using this method 

were disregarded.

The overall genotype was determined by using genotypes obtained by the ASO  

method, a previously established method. Any ambigious genotypes were 

verified using the TaqMan genotyping method. The results demonstrate control 

samples had a 30 percent CC genotype, 30 percent GG, 39 percent G/C  

genotype across 23 samples. Genotype distribution was in Hardy Weinberg 

equilibrium.

With each genotyping method used in this study there are limitations. The ASO  

method of genotyping needs to have carefully controlled PCR conditions for 

accuracy. Genotype is determined on the basis of the presence or absence of 

PCR products when using oligonucleotides specific for either genotype. The 

limitation with this technique is the fact that the absence of a product may also 

be due to sub-optimal PCR conditions or due to low DNA quantity or quality 

(Mamotte, 2006). Similarly, genotyping using the TaqMan method the PCR  

reaction is also affected by low DNA quality or quantity of samples.

Genotyping using the real-time PCR SNP method has one main disadvantage 

which is the use of DNA dyes as they are not sequence specific and are often 

prone to generating non-specific products, such as, primer dimers (Gibson, 

2006). In this study this method was disregarded due to the lack of identification 

of any heterozygotes in this sample group.

The genotyping results obtained in this study are in agreement with Lemonde et 

al, (2003), Arias et al (2002), Parsey et al (2006) and Huang et al (2004). 

Lemonde et al, 2003 genotyped 134 control samples and the results showed 

that 37% had the CC genotype, 12% the GG genotype and 51% G/C genotype. 

Another study by Arias (2002) gave a similar trend of percentage of genotype
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as seen in the Lemonde et al (2003) study, in which 170 control samples were 

genotyped and 19%, 26% and 55% had CC, GG, and G/C genotypes 

respectively. Parsey et al, (2006) genotyped 42 control samples and showed 

that 28% had a CC genotype, 12% had a GG genotype and 60% had a G/C 

genotype. A similar study showed comparable results with healthy volunteer 

samples genotyped for C-1019G polymorphism had a 31 % CC, 22% GG and 

47%  G/C split across 102 samples (Huang et al, 2004).

2.4.2- Real-time gene expression PCR
2.4.2.1- RNA analysis

It is known that high quality RNA sample is important to obtain successful 

results with many routine molecular biology applications, especially real-time 

PCR. However, it has also been proven that degraded RNA can produce 

accurate and valid results when used in carefully validated PCR reactions 

(Schoor et al, 1995; Lee et al, 2005; Auer et al, 2003; Wittiver et al, 1997). The 

Experion automated electrophoresis system (Biorad, UK) can be used in the 

assessment of RNA quality as it provides a sensitive and accurate analysis.

RNA quality of post-mortem brain tissue used in this study was shown to be 

degraded when analysed on the experion system (Figure 2.9 and Figure 2.10). 

It is very well known that RNA is sensitive to degradation especially by post­

mortem processes (Perez-Novo et al, 2005). Schoor et al (1995), have shown 

that gene expression profiles obtained from partially degraded RNA samples 

that still have visible ribosomal bands present exhibit a high degree of similarity 

compared to that of intact samples and that of RNA samples that have sub- 

optimal quality. Thus, gene expression profiles obtained from degraded RNA  

may still lead to meaningful results if used carefully. Similarly, Lee et al (2005) 

results indicated that high quality expression data can be generated even when 

the RNA exhibits significant degradation. Auer et al (2003), were also in 

agreement and concluded that RNA degradation does not preclude microarray 

analysis if comparison is done using samples of comparable RNA integrity.

It is also acknowledged that normalisation by an internal reference gene can 

reduce or diminish tissue derived effects on quantitative real-time PCR (Wittiver 

e ta l, 1997).
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In addition a study of real-time PCR analysis of mRNA expression in 19 brains 

with 3 endogenous reference genes (B-actin, 18s RNA and GADPH) suggested 

that the post-mortem intervals and age at death do not significantly influence 

mRNA expression (Gutala and Reddy, 2004).

2.4.2.2- Housekeeping gene validation

It is essential to control for error when measuring RNA expression and quality of 

RNA especially for errors between samples. These errors can be introduced at 

a number of stages throughout the experimental protocol including input sample, 

RNA extraction and reverse transcription. One way of controlling these errors is 

to use housekeeping genes which are used to normalise any PCR reaction and 

should not vary in anyway in the tissue or cells of the target gene (Karge et al, 

1998; Vandesompele and De Preter, 2002). However, from recent research 

many studies are performed using these housekeeping genes without making 

sure of their proper validation of their stability of expression (Vandesompele and 

De Preter, 2002).

The geNorm software (Vandesompele et al, 2002) is used in the accurate 

validation of housekeeping genes to be run with every real-time PCR reaction 

performed. The appropriate validation of internal references is, therefore, crucial 

to avoid misinterpretations of gene expression (Dheda et al, 2004). In this study 

the housekeeping genes deemed the most stable according to their M-value 

where SDHA and UBC (Figure 2.12).

2.4.2.3- Efficiency of primers

The efficiency of each primer set used in this study was determined to enable 

the quantitative analysis of relative gene expression by the Pfaffl method (Pfaffl, 

2001). The slope of a log-linear phase demonstrates the efficiency of the 

amplification reaction.

To obtain primer efficiency close to 100 per cent, the slope should be around 

-3.32. Under ideal conditions the efficiency of a PCR reaction should be 100 

percent; hence the template doubles after each cycle during exponential
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amplification. However, this does not always occur and can be due to a number 

of factors, such as length of primers, the G/C content of amplicon and pipetting. 

An ideal reaction should have efficiency between 90 percent and 110 per cent.

SDHA, UBC and 5-H T ia primer sets had efficiencies of 144, 117 and 99.8 

percent respectively (Figure 2.13). It is acceptable to use primer sets with 

efficiencies above 110 percent when determining the relative expression ratio 

using the Pfaffl method as this takes into consideration the efficiency of each 

primer pair providing accurate relative expression ratios.

2.4.2.4- Effect of Age, Post-mortem interval (PMI) and sex on 5-HTia receptor 

mRNA

Age, PMI (time from death to collection of brain tissue) or sex had no effect on the 

quantification of 5 -H T ia  mRNA in the human post-mortem brain tissues used in this 

study. There was no correlation between PMI (ranging from 4 to 79hrs) with mRNA 

expression of 5-HTia (Figure 2.16). Also, no correlation was observed between age 

(ranging from 49 to 93 years) (Figure 2.14) and sex (males 13 and 10 females), 

(Figure 2.15) with 5-HT-ia receptor mRNA expression.

PET studies of several classes of neuroreceptors such as, dopamine D1 (Wang et 

al, 1998) and 5-HT2A (Adams et al, 2004) demonstrate age-dependent decline of 

the availability of receptors by 10 percent per decade. However, this decline has not 

been confirmed with 5-HT i A receptors.

A study by Gray et al found a significant decrease in 5-HT-ia receptor density in 

females compared with males (Gray, 2005). These finding are in contrast with 

previous studies on human brain samples which found no variation with gender in 

11 men and 10 women (Palego et al, 1997). Another study using 8-OH-DPAT has 

reported decreased levels of 5-HT-ia receptor levels in frontal cortex from females 

compared with males (Arango, 1995).

Many mRNAs are thought to be highly susceptible to post-mortem interval (Barton, 

1993; Harrison, 1995). The results in this study are confirmed by Burnet et al (1996) 

that found there was no significant effect of post-mortem interval on mRNA’s 

extracted from the hippocampus brain region (Burnet et al, 1996). However, in
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previous studies post-mortem interval did affect 5-HT1A and 5-HT2A receptor 

mRNAs in other brain regions (Burnet et al, 1996).

2.4.2.5- Real-time PCR data correlated with 5-HT1A genotype data

In this study the relative expression ratio for the 5-H T i A receptor indicates that 

human post-mortem brain tissue samples with a G allele had a 1-fold increase 

of average mRNA expression compared to that of the C allele. Statistical 

analysis using un-paired Student’s t-test, samples with a G allele had 

significantly higher gene expression than that of samples with a C allele 

(p<0.035), (Figure 2.18).

Lemonde et al, (2003) study suggested that their results indicated that 

depressed patients were twice as likely as controls to have the homozygous G- 

1019 genotype, and suicide victims were four times as likely to carry the same 

genotype. Similarly, Huang et al found that the G allele is associated with 

increased expression in cell-lines and has a higher frequency in schizophrenia 

(Huang et al, 2004). The GG allele has also been associated with the 

endophenotypes of depression and anxiety on the NEO rating scale for 

neuroticism in 284 normal subjects (Strobel et al, 2003). These results suggest 

that the G-1019 allele is associated with a predisposition to a depressed 

phenotype in normal subjects (Albert and Lemonde, 2004) which is in 

agreement with the results presented in this study, which show that subjects 

with a GG genotype have increased expression of the 5-H T i A receptor mRNA  

levels and therefore a predisposition to anxiety and depression.

2.4.3- Radioligand binding of 5-HT1A

Studies using radioligand binding are often performed to establish the affinity of 

different drugs for a receptor and in addition the binding site density (Bmax) of 

receptor subtypes of a particular family can be determined for individual tissues 

or samples (Bylund and Toews, 1993).
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In this study the radioligand used was the 5-H T ia  antagonist 3[H] W AY100635. 

The ideal saturation plot is one were the hyperbola curve fitted to the data goes 

through all the data points as seen in Figure 2.19. As concentration increases 

the amount of bound ligand also continues to increase until a saturation point is 

reached.

The results in this study indicate a significant (p>0.05, un-paired Students T-test) 

increase in 5-H T i A receptor binding when correlated with genotype in control 

human post-mortem tissue samples. The results show that control subjects with 

a GG or G/C genotype for the C-1019G 5-H T1A receptor promoter 

polymorphism have higher post-synaptic 5-H T i A receptor binding in human 

post-mortem hippocampal tissue. Thus, these subjects may have a 

predisposition to anxiety and depression. These results are in contrast to other 

studies that have shown that in post-mortem studies an increase in pre-synaptic

5-H T i A binding with the C-1019G promoter polymorphism (Stockmeier et al, 

1998). These results differ from Huang et al that find 5-H T i A receptor density is 

unrelated to genotype of the C-1019G polymorphism (Huang et al, 2004).

Studies using the 5-HT-iA radioligand 8-OH-N, N-dipropyl-2-aminotetralin (8-OH- 

DPAT) have shown that there are no differences in binding between suicide and 

control samples in the cortex region of the brain. However, a significant 

decrease in these receptors in the hippocampus brain region of suicide samples 

has been indicated (Gross-lsseroff et al, 1998). Lopez et al (2004), 

demonstrated that there was a decrease in postsynaptic 5-HT-|A RNA in the 

hippocampus and dorsolateral prefrontal cortex regions of post-mortem tissue 

from major depression subjects (Lopez et al, 2004). This was consistent with a 

reduction of post-synaptic 5-H T i A signalling observed in depressed suicide 

tissue (Hsiung, 2003). In contrast, Studies of human post-mortem brains from 

depressed suicide victims have revealed the presence of increased levels of 5- 

HT i A autoreceptor in depression and suicide compared to non-suicide tissue. 

This up-regulation of 5-H T i A receptors was seen in the raphe area and no 

change was observed in post-synaptic 5-H T1A receptor sites (Stockmeier, 1998).
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In a positron emission tomography (PET) study using the 5-H T- ia the partial 

antagonist W A Y 100635 has shown reduced 5-H T1A receptor binding potential 

(BP) in the mesiotemporal cortex (MTC) and raphe in depressives compared to 

controls (Drevets et al, 1999) and a 43 percent decrease in 5 -H T i A BP in the 

raphe (Drevets, 2007). The level of the reductions in 5-H T - ia receptor binding 

observed in the Drevet study were similar to those found in 5-H T- ia receptor 

mRNA concentrations in post-mortem hippocampal samples of MDD subjects 

(Lopez, 1998) and in the 5 -H T ia  receptor binding capacity in the raphe of 

depressed suicide victims (Arango et al, 2001).

Presently, there does exist disagreement within the literature regarding the 

presence and the direction of 5-H T- ia receptor binding abnormalities in 

depression, which may be in some cases explained by differences in 

anatomical location, for example the study by Stockmeier, where the binding of 

8-OH-DPAT to the 5-H T1A receptor was significantly increased in the midbrain 

dorsal raphe nucleus of suicide victims with major depression compared to 

normal control patients (Stockmeier, 1998). In other cases these differences in 

the literature can be accounted for by pathophysiological heterogeneity within 

MDD subjects. NUDR a repressor associated with the C-1019G promoter 

polymorphism of the 5-H T- ia receptor may exert opposite effects on 

hippocampal and cortical post-synaptic 5-H T- ia receptors as a reduction in 

NUDR function leads to a decrease in post-synaptic 5-H T- ia receptor expression 

in-vivo (Lemonde et al, 2003). A PET study of 5 -H T - ia receptor BP reported that 

the G-allele of the C-1019G 5-H T- ia receptor polymorphism was linked with 

higher 5-H T1A receptor binding in depressed subjects (Parsey et al, 2006). 

Some depressed subjects hypersecrete cortisol in response to stress, which is 

thought to down regulate 5-H T- ia receptor expression (Lopez, 1998) by lowering 

the availability of L-tryptophan leading to a reduction in 5-HT turnover and 

hence downregulating pre-synaptic 5-H T- ia receptors (Chalmers et al, 1993). 

Elevated levels of cortisol may also possibly induce a relatively widespread 

reduction in 5-H T- ia receptor expression (Drevets et al, 2007).
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Chapter 3
The SH-SY5Y cell line; a model

system



3.0- Aims

• To differentiate SH-SY5Y cells with retinoic acid (RA) or nerve growth 

factor (NGF) and aphidicolin over a selected time period (0-14 days) to 

produce a more neuronal cell subtype.

• To assess whether the SH-SY5Y cell line when differentiated is a 

suitable cell model to study the 5 -H T i A receptor, using real-time PCR to 

investigate the presence of 5 -H T ia  receptor and NUDR mRNA.

• To use western blots and immunocytochemistry to determine the 

presence of 5-H T ia  receptor protein.
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3.1- Introduction

3.1.1-SH-SY5Y cell line

The SH-SY5Y neuroblastoma cell line is a third generation neuroblastoma, 

cloned from SH-SY5. The original cell line was isolated from a woman's 

metastatic bone tumour in 1970.

The human SH-SY5Y neuroblastoma cell-line is a well established system for

studying neuronal function (Pahlman et al, 1995, Korner et al, 1994). SH-SY5Y

cells can be morphologically differentiated into neuronal like cells by several*
different inducing agents producing two distinct SH-SY5Y cell phenotypes 

(Feng and Porter, 1999, Pahlman et al, 1995); one by 12 -0 -  

tetradecanoylphorbol (TPA) in combination with serum or growth factors and 

another by retinoic acid (RA). Cell differentiation can be a complex process 

which is regulated by an interplay among intrinsic cellular programs such as, 

cell-cell and cell-substrate interactions, and a plethora of soluble extracellular 

signalling molecules including hormones, growth factors, cytokines, trophic 

factors and morphogens (lopez-Garballo et al, 2002).

TPA differentiation of SH-SY5Y cells can be induced by using nanomolar 

concentrations of TPA initiating an arrest in proliferation of cells but a 

continuation of cells to differentiate morphologically by releasing growth cone 

terminated neurites, allowing cells to acquire a neuronal phenotype (Pahlman et 

al, 1995).

The synchronized regulation of cell differentiation and survival by RA may play 

an important role in the context of neuronal cell generation, in which an excess 

of precursor cells is produced to ensure that all of the required nervous 

connections take place. With this neurotrophile strategy those cells that 

establish contact with their target cells will receive from them neurotrophic 

survival factors, whereas those cells that do not succeed in finding their targets 

will die through apoptosis (Pettmann and Henderson, 1998). RA induced 

differentiation produces growth inhibited adherent cells which process long 

neuritic cell processes (Pahlman et al, 1995).
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SH-SY5Y cells are commonly differentiated with RA rather than TPA to study 5- 

HT receptors. This is perhaps due to the inability of the TPA agent to induce a 

change in G protein expression, even though TPA can produce a 200-fold 

increase in noradrenaline and generates changes in protein kinase C, whereas 

RA induces only a fourfold increase in noradrenaline and does not affect protein 

kinase C but specifically alters the basal levels of several G protein subunits in 

SH-SY5Y neuroblastoma cells (Pahlman et al, 1984; Ammer, 1994).

SHSY-5Y cells can also be differentiated with Nerve growth factor (NGF), a 

member of the neurotrophin family which is thought to play a role in the survival 

and differentiation of neurons within the peripheral and central nervous system 

(Oe et al, 2005) and aphidicolin (a DNA polymerase a and 5 inhibitor). A 

dramatic increase of morphological neuronal cells is observed (LoPresti et al, 

1992) when cells are differentiated with NGF and aphidicolin. Cells become 

dependent on NGF for survival and therefore continued treatment of cells with 

NGF maintains the neuronal phenotype for several weeks (Jensen, Zhong and 

Shooter, 1992). The withdrawal of NGF from differentiated cells results in a loss 

of cell viability and cellular adhesion.

SH-SY5Y cells are more commonly differentiated with retinoic acid or nerve 

growth factor and aphidicolin as they induce morphological change in cell 

phenotype to become more neuronal (Ammer, 1994; LoPresti et al, 1992).

The morphology of differentiated cells is one way of assessing the level of 

differentiation of neuroblastoma cells invitro. Another method used to confirm 

differentiation is testing for biochemical and functional markers. Therefore, with 

the combination of the change of morphology of differentiated neuroblastoma 

cells and the presence of functional markers, the neuroblastoma cell-line could 

be considered to be a useful model system to study the initial phases of 

neuronal differentiation (Sidell, 1982).
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3.1.2- Human nuclear deformed epidermal auto regulatory factor 

(NUDR)

NUDR is a 59kDa protein which shows sequence similarity to the Drosophila 

deformed epidermal autoregulatory factor-1 (DEAF-1). NUDR has been shown 

to have similarities to other proteins providing evidence for functional domains 

in NUDR including an alanine-rich region prevalent in developmental 

transcription factors, a domain found in the promyelocytic leukaemia-associated 

SP100 proteins, and a zinc finger homology domain associated with the 

AM L/MTG8 oncoprotein (Huggenivik et al, 1998).

NUDR is also a transcription factor that can function as a repressor (Lemonde 

et al, 2003). The transcription factor NUDR has been associated with major 

depression and completed suicide (Lemonde et al, 2003). A molecular 

mechanism by which the 5-HTia promoter C-1019G polymorphism may 

regulate 5 -H T i A gene expression invivo has been suggested. The 

polymorphism is thought to regulate 5 -H T ia  by derepression of the 5 -H T ia  

promoter in presynaptic raphe neurons leading to an overall decrease in 

serotonergic neurotransmission (Lemonde et al, 2003).

3.1.3- Real-time PCR analysis of gene expression

Real-time PCR was used in this study to determine the relative quantification of 

target gene expression. This involves determining the change in expression 

level relative to another set of experimental samples such as a reference 

sample (Peirson, Butler and Foster, 2003, Wong and Medrano, 2005).

This technique has many advantages as it allows rapid analysis of gene 

expression from low quantities of starting template, it is reproducible, and high- 

throughput quantification can be achieved along with high sensitivity (Peirson, 

Butler and Foster, 2003).
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3.1.4- Immunocytochemistry

Immunocytochemistry is based on the binding of antibodies to a specific antigen 

in cells. Antibody specificity is used to detect a cellular antigen of interest within 

a cell. Cells are grown in culture media before being fixed to a surface using a 

fixative. This conserves the antigen and maintains the attachment of the cells to 

prevent multiple washing steps affecting the sample.

The fixation of cells and tissue is necessary to adequately preserve cellular 

components, including soluble and structural proteins, to prevent autolysis and 

displacement of cell constituents such as, antigens and enzymes and finally to 

stabilise cellular materials against deleterious effects of subsequent procedures. 

Fixing of cells or tissue can facilitate conventional staining and immunostaining 

(Hayat, 2002).

Detection systems are classified as direct or indirect methods. Direct method is 

the simplest of the immunocytochemical methods as it involves a one-step 

process with a primary antibody conjugated with a reporter label (Coons and 

Kapan, 1950). Several labels have been used including, fluorochromes, enymes 

and biotin (Polack and Van Noorden, 2003).

The indirect method provides a more sensitive antigen detection method, with 

detection taking place over two-steps. The primary antibody is un-labelled, but 

the secondary antibody is labelled (Polack and Van Noorden, 2003). The 

sensitivity of this method is higher than a direct method because the primary 

antibody is not labelled this retains the activity of the antibody generating a 

stronger signal, the number of labels per molecule of primary antibody are 

higher and, therefore, increasing the intensity of reaction (Ramos-Vera, 2005).

3.1.5- Western blots

The procedure of western blotting and subsequent immunodetection has 

become a powerful tool to detect and characterise a whole host of proteins, in 

particular, proteins which are in low abundance (Kurien and Scofield, 2003).

115



The western blot technique involves the transfer of proteins that have been 

previously separated on a sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) to a solid support (Laemmli,1970).

Once the proteins from the SDS-PAGE gel have been blotted, the blotted 

proteins provide an exact replica of the gel producing a useful starting step for a 

variety of experiments. The following employment of antibody probes directed 

against a membrane such as, nitrocellulose bound proteins has revolutionised 

the field of immunology (Kurien and Scofield, 2003).

The transfer of proteins from native or SDS-PAGE gels to a nitrocellulose or 

PVDF membranes has been achieved in 3 different ways, the first way is by 

simple diffusion (Renart, reiser and Stark, 1979; Kurien and Scofield, 1997); the 

second method is by a vacuum-assisted solvent flow (Peferoen, Huybrechts 

and Deloof,1982); and finally the third method by “Western” blotting or 

electrophoretic elution (Towbin, Stacheln and Gordon, 1979).

Detection with enzyme-linked reagents involves the use of chemiluminescence, 

which has become an important technique due to its sensitivity and selectivity. 

The majority of chemiluminescence methods involves the use of a few chemical 

components to generate the required light (Nieman, 1989).

To increase the sensitivity of detection the avidin-streptavidin system has been 

developed. This method exploits the specificity of the interaction between the 

low-molecular weight vitamin biotin and the protein avidin (Dunn, 1994). 

Antibodies can be easily conjugated with biotin and used as a secondary 

detection reagent for probing blots.

Real-time PCR, immunocytochemistry and western blots described above are 

techniques, which have been used in the characterisation of 5-HT receptors in 

cell lines providing an insight into whether cell lines are suitable model systems 

for studying 5-HT receptors.
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3.2- Methods

3.2.1-Cell culture

The SH-SY5Y cells were grown in DMEM containing 10% FCS, penicillin (100 

Uml'1) and streptomycin (100pg/ml'1).

3.2.2- Differentiation with Retinoic acid (RA), Nerve growth factor 
(NGF) and aphidicolin

SH-SY5Y cells were grown in DMEM for different lengths of time (0, 3, 5, 7, 10 

and 14 days) in the presence of either retinoic acid (10'5M) or nerve growth 

factor (100ng/ml) and aphidicolin (0.3pM).

3.2.3- SH-SY5Y cell line genotyping

1X106 SH-SY5Y cells were centrifuged at 600g for 5 minutes. The pellet was 

resuspended in 1.0ml buffer A of kit for 5 minutes before being centrifuged at 

1300g for 5 minutes. The DNA from the cell line was then extracted as 

previously described in section 2.2.3.1.

The ASO method of genotyping was used as previously mentioned in section 

2 .2 .3 .2 .

3.2.4- Gene expression studies by real-time PCR
3.2.4.1- Cell preparation before RNA extraction

Confluent cells were washed with PBS then trypsined for 2 minutes in a 37°C  

incubator. Trypsinised cells were resuspended in DMEM media before being 

centrifuged at 1,000 rpm for 5 minutes. The supernatant was discarded.
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3.2.4.2- RNA extraction

RNA was extracted from SH-SY5Y cell pellet (107 cells) using a GenElute 

mammalian total RNA miniprep kit (Sigma-aldrich, UK). The cell pellet was 

vortexed with Lysis buffer (500pl of lysis buffer and 5 pi |3-mercaptoethanal) 

until all clumps disappeared. The homogenate was transferred to a GenElute 

filtration column and centrifuged at 12,000 g for 2 minutes. The filtered lysate 

had an. equal volume of 70 percent ethanol added to it before loading the 

sample on to a binding column. After binding the RNA to the column, the 

column was washed with wash solution one from the kit and wash solution two 

from the kit. Finally, RNA was eluted in 50pl of elution buffer solution.

Extracted RNA was treated with DNase 1 (Sigma-aldrich, UK) to prevent 

contamination of the sample with genomic DNA. 50pl of extracted RNA was 

treated with 5pl of 10X reaction buffer and 5pl of amplification grade DNase 1. 

The sample was incubated at room temperature for 15 minutes and then DNase 

1 was inactivated by adding 5pl of stop solution. The sample was incubated at 

70°C for 10 minutes. Extracted RNA was kept in the freezer at -70°C.

3.2.4.3- cDNA synthesis

The iScript cDNA synthesis kit (Bio-Rad, UK) was used to transcribe single­

stranded cDNA. In each cDNA synthesis reaction RNA, 10pl ddH20, 4pl of 

iScript buffer and 1pl of reverse transcriptase (1U) was added. Reaction tubes 

were heated at 25°C in a heat block for 5 minutes, reaction tubes were then 

moved to a water bath and heated at 42°C for 30 minutes. Reaction tubes were 

finally heated at 85°C for 5 minutes in a heat block. All samples had 20pl of 

ddH20 added to them before being stored at -20°C

3.2.4.4- Housekeeping validation

8 housekeeping genes (B actin, (32M, GADPH, HPRT, RPL13A, SDHA, UBC, 

and YW HAZ) were tested on 11 SH-SY5Y cell line time-point samples 

differentiated with both RA and NGF. Primer sequences for housekeeping 

genes and the 5 -H T ia  receptor are shown in Table 2.3 and 2.4 respectively.
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The prim er sequences fo r NUDR were designed from NCBI accession num ber 

NM _021008 using Prim er 3 software.

NUDR_F AGC CAG TAA GGA CTG GA 59.4
201 bp

NUDR_R GGA GTT GTG GGC AGT TCA TT 57.3

Table 3.1-O ligonucleotide prim er sequences for 5 -H T ia  and NUDR

3.2.4.5- PCR reaction

Each 25pl PCR reaction contained 12.5pl of (2X) SYBR green m ix (Abgene, 

UK), 1pl o f MgCI2 (4mM), 7.5pl of ddH 20 and 1pl of each forward and reverse 

prim er (0.5pM). 2pl of cDNA was added separately to the 96 well plate.

Two housekeeping genes were run on every plate and used as a reference to 

norm alise data.

3.2.4.6- PCR Cycles

95°C fo r 15 m inutes to activate SYBR green mix

95°C fo r 15 seconds

60°C fo r 15 seconds [ 40 cycles

72°C fo r 30 seconds >

Melt curve 

95°C 30 seconds

50°C fo r 30 seconds increasing in 1°C increm ents

45 cycles

3.2.4.7- Prim er efficiency

To calculate prim er efficiency tem plate cDNA was diluted in a d ilution series 

(neat, 1:5, 1:10, 1:50 and 1:100) each PCR reaction was carried out in duplicate. 

The Ct values obtained are exported into the graphical software program m e 

GraphPad Prism 4. Using the Prism software the slope and 1 over slope were 

determ ined.
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3.2.5- Immunocytochemistry

There are many methods of immunocytochemistry the more commonly used 

are the direct and indirect method as mentioned previously. The indirect method 

was used in this case.

SHSY-5Y cells were treated with retinoic acid (RA, 10'5 M) for 5 days and were 

grown in 8 well chamber slides (1X105 cells per well). Cells were fixed with ice 

cold methanol for 10 minutes at -20°C. SH-SY5Y cells were then blocked with 1 

percent BSA in PBST (PBS and Tween 20) for 30 minutes. After blocking cells 

were washed 3 times with PBST over 15 minutes.

SH-SY5Y cells were incubated in a humidified chamber for 1 hour with a 1/50 

dilution of SR-1A (Santa-Cruz, USA) primary antibody directed at the 5-H T1A 

receptor. Negative control wells (no primary antibody) had PBS added to them. 

After incubation cells were washed with PBST 3 times over 15 minutes.

Secondary antibody alexa-flura goat anti-rabbit (Invitrogen, UK) was used at a 

1/1000 dilution. Cells were incubated at 37°C in the dark for 1 hour in a 

humidified chamber. Before mounting the slides they were washed 3 times with 

PBST. Slides were mounted with DAPI (Vector shield, UK). Slides were stored 

in the dark at 4-8°C until visualised under the fluorescent microscope.

3.2.6- SH-SY5Y cell line western blot

3.2.6.1- Sample preparation

SH-SY5Y cells (1X106 in total) were RA treated (10'5M) for 5 days then pelleted, 

the pellet was resuspended in lysis buffer (5mM Tris-HCL, 2mM EDTA and 

protease inhibitor cocktail).
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3.2.6.2- Protein concentration using Amicon Centricon centrifugal filter 

devices

Protein extracted from cells at each time-point was concentrated using an 

Amicon Centricon. A maximum of 2mls of sample was added to the sample 

reservoir, the sample was then spun at 3000g until the desired concentration of 

sample was reached. The sample was stored in the retentate vial.

3.2.6.3- Bicinchoninic acid (BCA) assay

The BCA assay is a biochemical assay used for the determination of total 

protein in a solution. Total protein concentration is exhibited by a colour change 

sample solution from green to purple according to protein concentration. The 

change in colour can be measured using colourimetric techniques.

Protein standards were made from a 20pM stock solution of BSA. In a 96 well 

plate 100pl of each standard was pipetted in triplicate. 200pl of BCA and 

copper-2-sulphate solution is added. Samples were either added neat (20pl) 

and diluted (1/2, 1/5 and 1/10). The 96 well plate was left to incubate at room 

temperature for 30 minutes before absorbances were recorded at 570nm on a 

Wallac Victor2 1420 multi-label counter (PerkinElmer Ltd, Turku, Finland). 

Absorbance values were used to calculate a standard curve, which was used to 

determined protein concentration of sample using the slope.

3.2.5.4- SDS-PAGE gel

Samples were run on a 12.5 percent separating gel (12.5%  Bis-acrylamide 

solution, 0.39M Tris, 4.9mls water, 0.1% SDS, 0.1%  APS and 15pl TEM ED) and 

a 5 percent stacking (5% Bis-acrylamide solution, 0.12M Tris, 3.4mls water, 

0.1% SDS, 0.16%  APS and 8pl TEM ED) SDS-PAGE gel. 1X SDS running 

buffer (Trizma base, gylcine, SDS and water pH 8.3) was poured into tank 

before loading the gel. 7pl of colorBurst (Sigma-aldrich, UK) molecular weight 

marker was loaded onto the gel. A maximum of 30pl of sample was loaded with 

10pl of sample buffer approximately 3pg/ml. The sample was heated at 100°C  

for 5 minutes with SDS sample buffer (Trizma base 62.7mM, glycerol 137mM,
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SDS 79.7mM and bromophenol blue 0.1%) before loading sample onto gel. Gel 

was run at 150 volts for 40 minutes to 1 hour.

The gel was transferred on to a PVDF membrane (Amserham, UK) using 

transfer buffer (Glycine 40mM, Tris.HCL 20mM and methanol 20% ) for 1 hour at 

100 volts. The second gel was Coomassie blue stained (Coomassie blue 

1.2mM, methanol 50% and acetic acid 20%).

3.2.6.5- Western Blot

The membrane was blocked with 3 percent blocking solution (BSA) (Sigma, UK). 

The primary antibody, SR-1A (Santa-cruz, USA), was used at a 1/200 dilution 

and aviva 5-H T ia  antibody (1/1000 dilution) incubated for 1hr. Secondary 

antibody Alexa-flura goat anti-rabbit (Invitrogen, UK) was used at a 1/1000 

dilution and biotinylated secondary antibody incubated for 1 hr. The detection 

method used was enhanced chemiluminescence (ECL), (Amserham, UK).
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3.3- Results

3.3.1- Time-points of SH-SY5Y RA differentiated cells

The vitamin A metabolite, retinoic acid (RA) plays an essential role in the 

nervous system development, including neuronal patterning, survival and 

neurite outgrowth (Clagett-Dame, 2005). Cells exposed to physiologic 

concentrations of RA increases the number of cells bearing neuritic processes 

and increased length of these processes. This is often accompanied by 

inhibition of cell proliferation (Clagett-Dame, 2005).

SH-SY5Y cells were grown in DMEM media for a period of 0, 3, 5, 7, 10 and 14 

days in the presence of RA 10‘5M. SH-SY5Y cells treated for 5 days and more 

appear more neuronal in their phenotype, cells are more extended and process 

neurites compared to undifferentiated cells (Figure 3.1).

3.3.2- Time-points of SH-SY5Y NGF and aphidicolin differentiated cells

SH-SY5Y neuroblastoma cells treated with NGF alone result in limited neurite 

extension but did not inhibit proliferation. To increase neuronal differentiation 

and slow proliferation aphidicolin (a DNA polymerase a and 5 inhibitor) is added 

with NGF to the cells (LoPresti et al, 1992). When SH-SY5Y cells are treated 

with a combination of NGF and aphidicolin cells are thought to irreversibly 

differentiate (Jensen, Zhong and Shooter, 1992).

NGF and aphidicolin treated SH-SY5Y cells for 8-10 days show an increased 

neuronal phenotype displaying extending neurites and processes when 

compared to undifferentiated cells (Figure 3.2).
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3.3.3- SH-SY5Y cell line genotype

Specifically designed primers with a single base-pair substitution (see section 

2.3.1) were used for genotyping RA differentiated SH-SY5Y cell line (time point 

5 days) for the 5-H T iA receptor promoter polymorphism C-1019G. Post mortem 

tissue sample 324 (G/C genotype) was used as a positive control. PCR bands 

were present at the expected product size (174bp). The SH-SY5Y genotyping 

PCR reaction was repeated 4x showing that one band was present with the G 

reverse primer, therefore, this cell line has a GG genotype (Figure 3.3).

1 2 3 4 5 6 7 8 9 10 11 12 13

trrt

200bp

Figure 3.3- 5-HTia receptor genotype in SH-SY5Y cell line
1 - DNA ladder 2-TP5 rev C 3- TP5 rev G 4- TP5 rev C 5-TP5 rev G

6- TP5 rev C 7-TP5 rev G 8- TP5 rev C 9- TP5 rev G 10- negative control rev C

11- negative control rev G 12- 324 rev C 13- 324 rev G

3.3.4- Real-time PCR gene expression

3.3.4.1- RNA

RNA was extracted from SH-SY5Y cells at different time-points (0, 3, 7, 10 and 

14 days) after induction of RA or NGF and aphidicolin using a GenElute RNA  

extraction kit (Sigma-aldrich, UK).
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All the time-point samples from RA and NGF and aphidicolin differentiated cells 

have both 18S and 28S rRNA bands present and show good quality RNA  

(Figure 3.3).

28S __ ►

18S — ►

Figure 3.4- Example RNA agarose gel
I-TPO  2-TP 3R A  3-TP 5R A  4 -T P 7R A  5-TP10RA

6-TP14R A  7-TP 3N G F 8-TP5N G F 9-TP 7N G F 10-TP10NGF

I I - TP M  NGF

3.3.4.2- Housekeeping gene validation

The comparative method was used to calculate expression of housekeeping 

genes from Ct values. GeNorm software was then used to determine the two 

most stable housekeeping genes (Figures 3.5 and 3.6).
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C h a n g e  D a ta B actin R P L1 3 A S D H A U B C Y W H A Z
N o m ilis a t iim

Factor

0 7.07E-01 8.12E-01 6.37E-01 6.1SE-01 1.49E-01 3 .7 8 18
3 R A 3.79E-01 7.58E-01 2.77E-01 4.67E-01 1.65E-01 2 .8928

3 N G F 8.71E-01 l.OOE+OO 6.60E-01 5.35E-01 2.03E-01 4 .2844
5 M 9.8 IE -02 3.47E-02 4.42E-02 4.58E-02 1.07E-02 0 .2791

5 N G F 8.54E-02 3.30E-01 3.92E-01 2.18E-01 1.02E-01 1 .4133
7 R A 2.87E-01 4.35E-01 9.47E-02 2.77E-01 8.25E-02 1 .4430

7 N G F 1.77E-01 1.05E-01 1.71E-01 2.97E-01 8.54E-02 1 .1322
10 P A 1.00E+00 9.01E-01 l.OOE+OO 1.00E+00 1.00E+00 7 .3060

10 N G F 7.93E-04 6.44E-04 4.81E-03 2.17E-03 5.81E-04 0 .0093
14 R A 7.18E-02 7.43E-02 9.81E-02 1.25E-01 3.13E-02 0 .5430

14 N G F 2.33E-01 5.63E-02 1.83E-01 2.33E-01 6.25E-02 0 .9587

M <  1 .5 1.051 1.157 1.079 0.810 0.899

Figure 3.5 - geNorm data of 5 housekeeping genes
The relative expression ratios of each housekeeping gene were imported into the 

geNorm software. The M value for each gene was calculated and the gene with the 

highest M value (Shaded in red) is deemed the least stable and was removed. The 

most stable housekeeping gene is shaded in green. Housekeeping genes are removed 

until the two most stable genes remain.

Change Data
U B C Y W H A Z Norm alisation Factor

0 6.16E-01 1.49E-01 2.8598
3 R A 4.67E-01 1.65E-01 2.6224
3 N G F 5.36E -01 2.03E-01 3.1186
5 R A 4.58E-02 1.07E-02 0 2089
5 N G F 2.18E-01 1.82E-01 1.4053
7 R A 2.77E-01 8.25E-02 1.4299
7 NGF 2.97E-Q1 8.54E-02 1.5062
10 R A 1.00E+00 1.00E+00 9.4539
10 N G F 2.17E-03 5.81E-04 0.0106
14 R A 1.25E-01 3.13E-02 0.5909
14 NGF 2.33E-01 6.25E-02 1.1415

M < 1.5 0.609 0.609

Figure 3.6- geNorm data of the 2 most stable housekeeping genes
Through a process of elimination according to the M values of the housekeeping genes 

the two remaining stable housekeeping genes are UBC and YWHAZ both have an M 

value of 0.905.

128



3.3.4.3- Primer efficiency

A  dilution series of cDNA was tested with both housekeeping gene prim ers and 

the 5-H T1A primers and NUDR prim ers (Figure 3.7).

A  slope of -3.295 represents a 100 percent efficient primer.

40-1

30-

+■»
O

20 -

0.0- 1.0 -0.5- 2.0 -1.5-2.5
Log dilution

■ UBC a  5-HT1A a YW HAZ ♦ NUDR

Figure 3.7- Efficiency of the primers UBC, YWHAZ, 5-HTiAand NUDR
A dilution series of cDNA was tested with the primers UBC, YWHAZ, 5-HT1A and 

NUDR. The Ct values for each dilution were used to calculate slope of the line. 

Percentage of efficiency is calculated using E = io ('1/slope)-1. UBC, YWHAZ, 5-HT1Aand 

NUDR have a slope of -3.537, -2.829, -3.710 and -3.754 and 91.74, 125, 86.01 and 

percentage efficiencies 84.6 percent respectively.
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3.3.4.4- 5-HT1A receptor expression in RA and NGF and aphidicolin SH- 

SY5Y differentiated cells.

The mean Ct values of each sample were imported into Excel and the Pfaffl 

method was used to calculate the relative gene expression ratios (Pfaffl, 2001) 

equation explained in section 2.2.9.2.These results demonstrate that SH-SY5Y  

cells treated with NGF and aphidicolin for 10 days had a 252-fold increase of 5- 

H Tia receptor expression compared to undifferentiated cells (p<0.01) (Figure

3.8). 5 -H T ia  receptor expression peaked at 10 days of treatment with NGF and 

aphidicolin followed by a decrease in 5 -F IT ia  receptor mRNA expression.

SFI-SY5Y cells treated with RA for 5 days had a significant 136-fold increase in 

5 -F IT ia  receptor expression compared to undifferentiated cells (p<0.05) (Figure

3.9). Data was analysed using a One-way ANOVA followed by a Dunnet’s post 

t-test.
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TIME-POINTS

(DAYS)
0 3 5 7 10 14

Average Relative 

Expression Ratio
1.0±0.4 3.5+1.3 6.2±2.3 22.4±8.5 252.9+95.6 3.6±1.5

Figure 3 .8 - 5 -H T ia  receptor mRNA expression in SH-SY5Y cells 

differentiated with NGF (100ng ml*1) for different lengths of time (0-14 

days).
Data is presented as the relative expression ratio compared to undifferentiated cells 

(time point 0 days), (n=6). Data presented as mean±SEM. One-way ANOVA with 

Dunnett's test, *p<0.05 indicates differences in expression at each time point relative to 

undifferentiated cells.

131



100CH

cs
co

'</>
(/)
o
L -
Q.
X
<D
Q)>
ro
o
Q£

100 -

10 -

1-

0.1

x ,  _ r

3 5 7 10

Time-points (Days)

I
14

TIME-POINTS

(DAYS)
0 3 5 7 10 14

Average Relative 

Expression Ratio
1.0±0.4 4.3±1.8 136.2±55.6 9.0±3.7 7.9±3.2 4.6±1.9

Figure 3.9- 5-HTi A receptor mRNA expression in SH-SY5Y cells 

differentiated with RA (10'5M) for different lengths of time (0-14 days).
Data is presented as the relative expression ratio compared to undifferentiated cells 

(time point 0 days), (n=6). Data presented as means±SEM. One-way ANOVA with 

Dunnett's test, *p<0.05 indicate differences in expression at each time point relative to 

undifferentiated cells.
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3.3.4.5- NUDR mRNA expression in RA and NGF and aphidicolin SH-SY5Y 

differentiated cells.

The results dem onstrate that SH-SY5Y cells treated with NGF and aphidicolin 

fo r 10 days had a 34-fold increase of expression com pared to undifferentiated 

cells (p<0.05) (Figure 3.10). SFI-SY5Y cells treated with RA fo r 5 days had a 4- 

fold increase in NUDR m RNA expression com pared to undifferentiated cells 

(Figure 3.11). A fter 14 days of treatm ent of RA cells showed a 6 -fo ld  increase 

in NUDR expression.

*
100-1

...ill
0 3 5 7 10 14

Time-points (Days)

Figure 3.10- NUDR mRNA expression in SH-SY5Y cells differentiated with NGF 

(100ng/ml) for different lengths of time (0-14 Days).

D a ta  is p resen ted  as the  re la tive  exp ress io n  ratio co m p ared  to u n d iffe ren tia ted  cells  

(tim e point 0 days), (n = 6 ). D a ta  p resen ted  as m e a n s ± S E M . O n e -w a y  A N O V A  with  

D un n ett's  test, *p < 0 .0 5  ind icate  d iffe ren ces  in express io n  at e a c h  tim e  point re la tive  to  

u nd iffe ren tia ted  cells.
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Figure 3.11 - NUDR mRNA expression in SH-SY5Y cells differentiated with 

RA (10"5) for different lengths of time (0-14 days).
Data is presented as the relative expression ratio compared to undifferentiated cells 

(time point 0 days), (n=6). Data presented as means±SEM. One-way ANOVA with 

Dunnett's test indicated no significant differences in expression at each time point 

tested relative to undifferentiated cells

3.3.5- Immunocytochemistry

SH-SY5Y cells were grown in cham ber slides in the presence o f RA fo r 5 days. 

The SR-1A prim ary antibody and the alexa-fluor goat anti-rabbit secondary 

antibody were used to detect the presence of the 5-H T1A receptor in both 

differentiated and undifferentiated cells.

Im m unocytochem istry results show the presence o f the 5-H T i A receptor in SH- 

SY5Y cells treated w ith RA for 5 days. An increase in fluorescence is observed 

in cells differentiated with RA com pared to undifferentiated cells (Figure 3.12).
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3.3.6- Western blot

SH-SY5Y cells treated in the presence of RA or NGF and aphicolin for d ifferent 

tim e-poin ts (0, 3, 5, 7, 10 and 14 days). The SR-1A prim ary antibody and a goat 

anti-rabbit biotinylated secondary antibody were used to detect the presence of 

the 5-H T ia  receptor.

W estern blots results show the presence of the 5-H T1A receptor in SH-SY5Y 

cells treated with RA and NGF and aphidicolin. An increase in band intensity is 

observed in cells differentiated with RA or NGF and aphidicolin com pared to 

undifferentiated cells (Figure 3.13).

RA time points
Negative TP14 TP10 TP7 TPS TP3 Control

45kDa

NGF time points

Negative TP14 TP10 TP7 TP5 TP3 TPO

< 45KDa

Figure 3.13- Western blots of RA and NGF and aphidicolin differentiated 
SH-SY5Y cells for 0-14 days
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3.4- Discussion

The results confirm that SH-SY5Y cells can be differentiated in the presence of 

RA or NGF and aphidicolin to produce cells of a more neuronal phenotype. 

Real-time PCR demonstrated the presence of 5-HT-ia receptor mRNA in both 

RA and NGF and aphidicolin differentiated SH-SY5Y cells. In differentiated SH- 

SY5Y cells western blots and immunocytochemistry showed the presence of 5- 

HT ia  receptor protein.

3.4.1- Time-points of Retinoic acid differentiated SH-SY5Y cells

The results show that SH-SY5Y cells treated for 5 days and more appear more 

neuronal in their phenotype compared to undifferentiated cells (Figure 3.1). 

These results were comparable with Lombet et al (2001), whose study found 

that SK-N-SH cells differentiated with RA (3pM) for 7 days, cells became flatter 

and bipolar. Grynspan et al (1997), similarly found that within 3 days of RA 

treatment of SH-SY5Y cells most of the cells had extended one or more 

neurites that could be clearly distinguished from normal filipodia present in 

control cells, between 7 and 10 days these neurites lengthened and arborized. 

It has also been observed that RA induced differentiation results in growth 

inhibited adherent cells which have long neuritic cell processes (Pahlman et al, 

1995).

3.4.2- Time-points of NGF and aphidicolin differentiated SH-SY5Y 

cells

The results obtained in this study show that NGF and aphidicolin treated SH- 

SY5Y cells for 8-10 days show an increased neuronal phenotype displaying 

extending neurites and processes when compared to undifferentiated cells 

(Figure 3.2). These observations are in agreement with Jensen, Zhong and 

Shooter, 1992. They observed that SH-SY5Y differentiated cells induced with 

NGF for 5 weeks attain a high degree of morphological, physiological, and 

biochemical differentiation. Cells that have differentiated have gradually 

extended neural processes and clustering into ganglionic structures over the 5 

week treatment with NGF (Jensen, Zhong and Shooter, 1992). In addition, a
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study by LoPresti et al (1992) showed that a time course of differentiation with 

NGF-aphidicolin treatment induces a commitment to differentiation. 6 percent of 

the SH-SY5Y treated for 5 days with NGF-aphidicolin displayed long neurites. 

After 4 days of treatment with NGF 60-70 percent of the cells assumed an 

altered morphology. SH-SY5Y cells have a more rounded appearance and 

extended neurites up to >400pM long. After 8 days of treatment with NGF 

aggregates of differentiated cell bodies were observed.

3.4.3- Real-time gene expression PCR

3.4.3.1- RNA

RNA used in this study had clear sharp bands present at 28S and 18S on an 

agarose gel showing good quality RNA (Figure 3.4).

RNA integrity assessment is an essential first step in obtaining meaningful gene 

expression data. It is therefore essential that appropriate measures are taken 

such as validating housekeeping genes for real-time PCR reactions into 

consideration.

3.4.3.2- Housekeeping gene validation

Housekeeping genes are normally expressed in moderately abundant levels 

and therefore, they are good genes to use for comparing expression levels 

(Warrington, 2000).

In this study the housekeeping genes deemed the most stable according to their 

M value where UBC and YW HAZ (Figure 3.6). The appropriate validation of 

internal references is crucial to avoid misinterpretation of gene expression data 

(Dheda et al, 2004). Therefore, housekeeping genes should be run alongside 

every PCR reaction performed.
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3.4.3.3- Efficiency of primers

Efficiency of each primer set used in this study was determined to enable 

quantitative analysis of relative gene expression by the Pfaffl method (Pfaffl, 

2001).

UBC, YW HAZ, 5-H T ia  and NUDR primer sets had efficiencies of 91.7, 125, 

86.1 and 84.6 percent respectively (Figure 3.7).

3.4.3.4- 5-HTia receptor mRNA expression in RA or NGF and aphidicolin 

differentiated SH-SY5Y cells

Differentiation with NGF and aphidicolin significantly increased 5 -H T ia  mRNA  

levels at 10 days producing an significant (p<0.01) 2 5 2 .9  fold increase in 

expression relative to control, (Figure 3 .8 ). At 14 days stimulation of NGF and 

aphidicolin, 5 -H T ia  receptor mRNA expression had declined to a 3 .5  fold 

change in expression relative to control (undifferentiated cells).

The timing observed of 5 -H T ia  receptor mRNA expression in response to NGF 

and aphidicolin is consistent with the results of LoPresti who showed that SH- 

SY5Y cell bodies are more rounded and extended neurites are present after 8 

days of treatment with NGF (LoPresti et al, 1992).

At day 5 following stimulation with RA a significant 136.2 fold increase (p<0.01) 

in 5-H T- ia receptor mRNA was determined relative to control (Figure 3.9). After 

day 5, 5 -H T ia  receptor mRNA levels declined and change in expression 

observed was not significantly different relative to control.

The timing of 5-HT-ia mRNA receptor expression in response to RA is consistent 

with previous work by Ammer and Schulz, (1994) who showed that RA induced 

differentiation of SH-SY5Y cells markedly increased the abundance of all G- 

protein subunits investigated. The study showed that a RA time-course had a 

marginal effect on G protein levels after 2 days of exposure, whereas 4 and 6 

days of treatment produced half-maximal and maximal G protein changes 

(Ammer and Schulz, 1994). A large increase in Gza during RA-induced
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differentiation of SH-SY5Y cells was observed. The tissue distribution of Gza 

suggests that this G protein subunit has a specialised function in neuronal 

tissue (Ammer and Schulz, 1994; Casey, 1990). Immunohistochemical studies 

have shown Gza to be present in most neurons of the hippocampus and 

cerebral cortex (Hinton, 1990). This observation made by Ammer and Schulz 

can be explained because RA treatment is known to induce pronounced neurite 

growth in SH -SY5Y cells (Pahlman et al, 1984).

When SH-SY5Y cells are induced with RA or NGF and aphidicolin for long 

period of time (14 days) a decrease in 5-H T ia  receptor mRNA expression is 

observed. T h is , observation could be explained by the phenomenon of 

transdifferentiation or by the fact that the cells have become neuronal at this 

time point and could therefore have stopped gene expression.

The SK-N-SH parental cell-line comprises at least two morphologically and 

biochemically distinct phenotypes, neuroblastic (N-type) and substrate adherent 

(S-type), which can undergo transdifferentiation (Ross, Spengler and Bledler, 

1983). Although SH-SY5Y cell-line is derived from a neuroblastic subclone it still 

retains a low proportion of S-type cells which do not have a neuronal phenotype. 

Transdifferentiation between N and S-types seems to be common to the 

majority of neuroblastoma cell-lines (Jensen, 1987; Hill, 1987). It is considered 

that the frequency of a given phenotype in a continuous neuroblastoma cell-line 

is a consequence of slower rates of conversion rather than due to a loss of 

potential to generate the other phenotype (Sadee et al, 1987). W hen SH-SY5Y  

cells are cultured for longer periods of time without being passaged they may 

contain less neuronal N-type cells and more S-type cells which tend to remain 

adherent to the bottom of the cell culture flask and therefore decrease in the 5- 

H T ia receptor expression is observed could be due to a higher population of 

non- neuronal S-type cells.
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3.4.3.5- NUDR mRNA expression in RA or NGF and aphidicolin 

differentiated SH-SY5Y cells

At day 10 cells differentiated with NGF and aphidicolin a 34.6 fold increase in 

NUDR expression was observed (p<0.05) (Figure 3.10). NUDR expression was 

not significantly affected by the length of time cells were treated with RA (Figure 

3.11).

An increase in expression of NUDR mRNA is present at the same time as there 

is an increase in 5-HTia receptor expression when SH-SY5Y cells are 

differentiated with NGF and aphidicolin (TP10). A decrease in NUDR  

expression is observed after time-point 10 in NGF and aphidicolin differentiated 

cells. An explanation for this observation could be due to the C-1019G promoter 

polymorphism of the 5-H T- ia receptor which, is thought to regulate 5-H T- ia gene 

expression in vivo through depression of the 5 -H T i A promoter in pre-synaptic 

raphe neurons leading to a reduced serotonergic transmission due to impaired 

binding of a transcriptional regulator protein NUDR that acts as a repressor 

(Huang et al, 2004; Lemonde et al, 2003). This cell line is homozygous for the - 

1019G allele, as previously described NUDR binds to the -1019C allele leading 

to depression of 5-H T- ia receptor expression (Lemonde et al, 2003). Therefore, 

in SH-SY5Y cells NUDR would not prevent the transciption of the 5-H T- ia 

receptor, this is supported by the evidence that NUDR expression in SH-SY5Y  

cells is not modulated by the length of time, cells are differentiated with RA. 

However, NUDR expression was increased at a time occuring prior to an 

increase in 5-H T- ia  receptor expression when SH-SY5Y cells were differentiated 

with NGF and aphidicolin. This can only occur when the -1019G allele is 

present as was determined in SH-SY5Y cells. For future work it would be of 

interest to investigate further the changes in NUDR expression observed.
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3.4.4- Immunocytochemistry

Immunocytochemistry results show the presence of the 5-H T ia receptor in SH- 

SY5Y cells treated with RA for 5 days. An increase in fluorescence is observed 

in cells differentiated with RA compared to undifferentiated cells (Figure 3.12).

No staining was observed on negative controls that were stained in the absence 

of primary antibody SR-1A. 4' 6-diamino-2-phenylindole (DAPI) a fluorescent 

stain that binds strongly to DNA and is often used to stain both live and fixed 

cells by labelling the cell nuclei. DAPI staining showed that all cells stained with 

alexa-fluor 488 antibody were viable.

3.4.5- Western blots

Western blots results show the presence of the 5-H T ia receptor in SH-SY5Y  

cells treated with RA and NGF and aphidicolin. An increase in intensity of band 

is observed in cells differentiated with RA or NGF and aphidicolin compared to 

undifferentiated cells (Figure 3.13). No bands were present at 48KDa at time- 

points 7 with both RA and NGF and aphidicolin. At time-point 7 the absence of a 

band could be explained by experimental error or by the fact that could be 

someother gene regulation taking place at this time point.

Non-specific bands were present on blots which could be due to phosphorylated, 

splicing variant, primary antibody binding to a different member of the same 

family, or a cross reaction between primary antibody and a non-related protein.

Charest et al (1993), found that SN-48 neuroblastoma fusion cell-line when 

differentiated with 10pM RA for 24-96 hours expresses 5-H T i A receptor RNA  

mouse species detected by the northern blot method.
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3.4.6- Conclusion

Real-time PCR gene expression studies showed that 5 -H T ia  receptor and 

NUDR mRNA was present in the SH-SY5Y cell line. Significant levels of 5 -H T ia  

receptor mRNA were present at 5 days with cells differentiated with RA and at 

10 days with NGF. Both immunocytochemistry and western blots showed the 

presence of 5 -H T ia  receptor protein.

The SH-SY5Y cell-line may provide a model for promoter studies, divergent 

from non-neuronal cell-lines in which to investigate neuronal gene expression 

(Hill and Reynolds, 2007). The SH-SY5Y cell-line is known to express the 5- 

HT2C receptor m RNA (Flomen et al, 2004) and may therefore contain some of 

the regulatory elements required for neuronal expression.

SH-SY5Y cells that stably express 5 -H T 2a and 5-HT2c receptors have been 

shown to represent a useful model system for the study of these receptors 

within a neural cell environment (Newton et al, 1996). Parsons et al, (2004) also 

used SH-SY5Y cells to look at promoter polymorphisms in the 5-HT2A receptor. 

5 -H T 2a receptor mRNA was found to be expressed in this cell-line.

From the results obtained in this study it has been demonstrated that the 

neuroblastoma SH-SY5Y cell line can be used as a model for studying the 5- 

HT-ia receptor.
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Chapter 4
5-HT1A second messenger 

signalling
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4.0- Aim

To investigate whether the 5-H T- ia receptor is a functional receptor in the SH- 

SY5Y cell line by studying calcium signalling using fura-2AM assays on a flow 

cyto meter.
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4.1-Introduction

Calcium acts as a universal second messenger in a variety of cells. Several 

functions of all cell types are mediated by calcium to some degree (Takahashi 

et al, 1999). The first reliable measurements of intracellular calcium were 

performed by Ridgeway and Ashley, (1967). The photoprotein aequorin was 

injected into the giant muscle fibre of the barnacle. The development of a 

variety of chemical fluorescent indicators began in the 1980’s by Tsien et al, 

(1985). The development of these fluorescent chemicals has revolutionised the 

measurement of intracellular Ca2+ levels in living cells.

4.1.2- Calcium signalling and 5-HTi A receptor

G proteins are a large family belonging to the G-protein coupled receptor 

superfamily (GPCR) known for their characteristic 7 transmembrane structure 

and their involvement in second messenger pathways. G proteins can function 

as “molecular switches” that alternate between an inactive guanine diphosphate 

(GDP) and activated guanine triphosphate (GTP) bound state ultimately 

regulating downstream cell processes.

There are two distinct families of G-proteins; heterotrimeric G-proteins activated 

by GPCR's and made up of alpha (a), beta ((3) and gamma (y) subunits. The 

other family is the Ras superfamily, which bind GTP and GDP and are involved 

in signal transduction.

When a ligand activates a GPCR, GDP is exchanged for GTP on the Ga subunit 

from the GpY dimer and receptor hence activating several different signalling 

cascades and effector proteins. This reaction can be terminated by the eventual 

hydrolysis of the attached GTP to GDP by the Ga subunit allowing the re­

association with GpY starting a new cycle.

Heterotrimeric G proteins are coupled to various signal transduction systems for 

example, adenylyl cyclase (AC) or phospholipase C use G proteins to transduce 

and amplify their signal to change the activity of effector enzymes (Lui, 1991; 

Gutland, 1998).
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Forskolin is derived from an Indian coleus plant and is commonly used to 

increase levels of cAMP. Forskolin is thought to resensitise cell receptors by 

activating AC and therefore increasing intracellular levels of cAMP.

The activation of AC or phospholipase C leads to the generation of intracellular 

second messengers (Birnbaumer, Abramowitz and Brown, 1990; Gilman, 1987; 

Ross, splenger and Biedler, 1989). In the case of AC, cAMP is the second 

messenger which activates protein kinase A (Lui and Albert, 1991).

When 5-H T- ia is present and activated by an agonist such as, 8-hydroxy-2-(di-n- 

propylamino)tetralin HBr (8-OH-DPAT) AC is inhibited (DeVivo and Maayani, 

1986) which leads to decreased calcium conductance (Pennington et al, 1991) 

and increased potassium conductance (Andrade, Malenka and Nicoll, 1986) via 

pertussis toxin-sensitive G  proteins for example, G j/G 0 (Figure 4.1). The 5-H T- ia 

antagonist p-MPPI reverses the effect observed by the agonist 8-OH-DPAT. 

Additionally, the 5-H T- ia receptor may couple to the pertussis toxin-insensitive G 

protein G z to increase secretion of some neuroendocrine hormones (Serres et 

al, 2000).

4.1.3- Measurement of intracellular calcium

The most widely used calcium indicators are chemical fluorescent probes as 

their signal is quite large for a given change in calcium concentration compared 

with other types of calcium indicators (Takahagi, 1999).

The most popular chemical fluorescent calcium indicators are UV-excitable and 

are used as quantitative ratiometric calcium indicators for example, Indo-I and 

fura-2AM (Takahagi et al, 1999).
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5-HT 1A
8-OH-DPAT forskolin

AMP cAMP

Fura-2AM
Gj protein

Figure 4.1- Schematic of Intracellular calcium assay

Treating SH-SY5Y cells with forskolin activates the enzyme adenylyl cyclase 

(AC), which converts AMP to cyclic AMP leading to an increase in Ca2+. The dye 

FURA-2AM binds to Ca2+and increases fluorescent signal.

When 5-HT1A agonist 8-OH-DPAT is added the Gj protein subunit of 5-HT1A 

receptor is activated. The (3 and y subunits activate K+ channels leading to an 

increase in K+ and reduction in Ca2+. The a-subunit inhibits AC producing a 

reduction in Ca2+.

The m ajority o f chem ical fluorescent indicators are cell im perm eant. Therefore 

to load cells with these indicators it is necessary to adopt special b iochem ical 

techniques. Presently, several o f the fluorescent calcium  indicators are 

derivatised with an AM that is cell perm eable (Tsien and Rink, 1980). The AM 

form  can passively diffuse across cell m embranes, and once inside cell 

esterases remove the AM group leading to a cell-im perm eant indicator.

In m any types o f cells, indicators can leak from  the cytosol to extrace llu la r 

m edium (M cDonough and Button, 1989). This type of leakage can be regulated 

in part by anion transport system s which can be inhibited or suppressed by 

probenecid (DiVirgillo, Fasolato and Steinberg, 1988).
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4.1.4- Techniques for measuring calcium

Fluorescence microscopy permits the analysis of the distribution and dynamics 

of functional molecules within single intact living cells. Confocal laser scanning 

microscopy is often used in the measurement of intracellular calcium levels by 

scanning a point across the specimen and collecting the emitted fluorescence 

through a pinhole that is located at the confocal point of a scanned focus 

(Takahaghi, 1999).

Electrophysiology can be used to measure changes in intracellular calcium. An 

estimation of intracellular calcium can be determined by monitoring the currents 

generated by calcium dependent ion channels located in the plasma membrane. 

A technique known, as “patch cramming” involves a patch micropipette 

containing the channel in a membrane patch. This is inserted into a recipient 

cell where the channel locally “senses” the intracellular messenger (Kramer, 

1990; Hamill et al, 1981).

Flow cytometry is the measurement of fluorescence and or light intensity 

emitted by whole cells, which are suspended in a flowing stream of solution 

(Rieseburg et al, 2001). The single file stream of cells is passed through a laser 

beam, which can be used for fluorophore excitation or for probing the size and 

structure of cells by light scattering. Light is detected with photomultipliers, 

which convert the light into electrical signals for display and storage in computer 

based systems.

Laser light, which is scattered by cells in the forward direction, is proportional to 

the cell size. Light scattered at right angles is proportional to granularity; the 

more complex the internal structure of the cell the more light is scattered.

Using a plate reader to measure intracellular calcium can provide a sensitive 

and cost effective fluorimetric assay to quantify measurements of rapid calcium 

responses using a multi-well plate format (Lin, 1999).
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4.2- Materials and Methods

4.2.1-Cell culture

The SH-SY5Y cells were grown in DMEM containing 10% FCS and penicillin 

(100U ml'1) and streptomycin (100pg ml'1). Cells were differentiated with retinoic 

acid (RA, 10'5 M) for 5 days.

4.2.2- Plate-based assay

SH-SY5Y cells 1X105 per well were grown in 96 well-plates in the presence of 

RA (10'5M) for 7 days. After 7 days, cells were washed with Krebs buffer (mM: 

HEPES 20, NaGI 103, KCI 4.77, CaCI2 0.5, KH2P 0 4 1.2, N a H C 0 3 25, Glucose 

15, pH 7.2) then incubated with FURA-2AM (5pM), probenecid (2.5mM) and 

pluronic acid (0.2% ) for 40 minutes at 37°C in the dark.

After incubation cells were washed once with Krebs buffer containing 

probenecid (2.5mM) and then stimulated with different concentrations of 

forskolin (50pl) (0, 5, 10, 20, 50, 100, 150 and 200pM). 10Opil of Krebs was then 

added to each well, cells were then treated with and without 8-OH-DPAT (2pM) 

(50pl).

Levels of fluorescence at 535nm were detected using a W allac Victor2 1420 

multi-label counter (PerkinElmer Ltd, Turku, Finland).

4.2.3- Flow cytometry

SH-SY5Y cells were grown in T75 flask in the presence of RA (10'5M) for 5 

days. After 5 days cells were trypsinised then counted. 106 cells per ml were 

pelleted at 1000rpm for 5 minutes. The pellet was re-suspended in Krebs buffer 

(mM: HEPES 20, NaCI 103, KCI 4.77, CaCI2 0.5, KH2P 0 4 1.2, N a H C 0 3 25, 

Glucose 15, pH 7.2). 200pl of re-suspended cells were added to each tube. 

1 OOjlxI of Fura-2AM (5 jliM ), probenecid (2.5mM), pluronic acid (0.2% ) and Krebs 

buffer was added and tubes were incubated at 37°C for 40 minutes in the dark.

After 40 minutes cells were pelleted at 400g for 5 minutes. Cells were re­

suspended in 400jul Krebs buffer.
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Before samples were analysed on the flow cytometer, forskolin (20 and 50pM) 

was added and 2\M  8-OH-DPAT or 5-HT (100jiM ) or 4-(2'-methoxy-phenyl)-1- 

[2'-(n-2"-pyridinyl)-p-iodobenzamido]-ethyl-piperazine (p-MPPI) (0, 10 and 

100pM).
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4.3- Results

4.3.1- Plate-based assay

SH-SY5Y RA differentiated cells were treated in the presence and absence of 

8-O H-DPAT (a 5-HTia agonist) at d ifferent concentrations of forskolin (0, 

5,10,20,50,100,150 and 200pM). 8-O H-DPAT decreased levels of in tracellu lar 

calcium com pared to cells treated in the absence of 8-OH-DPAT.
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Figure 4.2- Effects of 8-OH-DPAT on intracellular Ca2+ levels in SH-SY5Y cells

RA differentiated SH-SY5Y cells treated with 8-OH-DPAT (2pM) (■, n=3) evoked a 

decrease in intracellular Ca2+ compared to untreated cells (□, n=3). Data presented as 

means±SEM. A significant decrease (Student's un-paired t-test, p<0.05) in 

fluorescence was observed at 20pM and 50pM forskolin treated cells with 8-OH-DPAT 

compared to 20pM and 50pM forskolin treated cells without 8-OH-DPAT.
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4.3.2- Flow cytometry

Flow cytom etric data can be displayed using either a linear or a logarithm ic 

scale. The use o f a logarithm ic scale is indicated when there is a broad range of 

fluorescence being used. A  linear scale is used when there is not such a broad 

range of signalling im plem ented, for example, DNA analysis and calcium  flux 

measurem ent.

Flow data is often represented as dot plots and histograms. Dot plots plot one 

dot or point on the display related to the am ount of param eter x and y fo r each 

cell passed through the instrument. H istograms quantita te intensities o f scatter 

or fluorescence one param eter per histogram. Gating in flow  cytom etry is used 

to select subpopulations of cells for analysis. A  gate is a num erical or graphical 

boundary that can be used to define the characteristics of particles to include fo r 

further analysis. Gating is critical fo r subsequent analysis in order to select the 

population, free of debris and unrelated cells (Byrne, Reinhart and Hayek, 2000) 

Dead cells and cell debris are usually present at the lower left area o f the dot 

plot (Figure 4.3).

Cell Debris Cell Debris

0 50 100 150 200 250 0 50 105 (50 200 250

Foward scatter Foward scatter

Figure 4.3 - Forward and side scatter dot plot

The dot plot on the left shows a mixed population of cells plotted according to their 

shape and size. Cell debris and dead cells are often represented at the bottom left of 

the dot plot. The dense cell population of interest has been marked with the red shape 

and have been gated for further analysis.

To quantify flow  cytom etric data the m easures of the d istribution o f a population 

need to be observed. The mode is the channel with the most events in it. This is



rarely used as it is subject to errors. The median is the central value. The mean 

can be used as a measure to quantitate cellular fluorescence. In a linear 

distribution the mean is easily calculated. W hen comparing absolute 

fluorescence values it is best to use linear values as these can be directly 

compared.

4.3.3- Undifferentiated SH-SY5Y cells treated with and without 8-OH- 
DPAT

For each experiment performed two controls were run at the same time. The 

first control run was Krebs buffer to provide a base-line reading. The second 

control contained no forskolin or 8-OH-DPAT. As 8-OH-DPAT is dissolved in 

methanol and forskolin is dissolved in DMSO the second control contained both 

of these to rule out any effect they may have on levels of intracellular calcium.

Samples were gated on the basis of forward scatter (FSC-H) and side scatter 

(SSCH) signals which eliminates cellular debris and non-viable cells. Distinct 

cell populations present in the sample were identified using FL-1 (fluorescence 

wavelength of fura-2AM dye) and SSCH.

Intracellular calcium levels were quantified by measuring the mean 

value of FL-1 fluorescence. The distribution of fluorescence was always 

close to a normal gaussian distribution, thus the mean value of 

fluorescence histogram was a good representative parameter.
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Figure 4.4 - Undifferentiated SH-SY5Y cells treated with forskolin  (FSK) in 
the absence of 8-OH-DPAT

The mean values of fluorescence were calculated using CellQuest software (BD) from 

the M1 value.

The control had a mean of 106. SH-SY5Y cells were treated with 0, 20 and 50|jM FSK 

and in the absence of 8-OH-DPAT, had means of 120.89, 120.95 and 114.04 

respectively. The experiment was repeated in triplicate.

Abbrevations: SSCH- Side scatter signals, FSC-H- Forward scatter and FL1-H- 

Fluorescence wavelength
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Figure 4.5- Undifferentiated SH-SY5Y cells treated with FSK and 8-OH- 
DPAT

Undifferentiated SH-SY5Y cells were treated in the presence of 8-OH-DPAT (2 pM) 

and 0, 20 and 50pM FSK had means of 149.16, 141.47 and 216.44 respectively.
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Figure 4.6 - SH-SY5Y RA differentiated cells treated with FSK

The control had a mean of 82.48.

SHSY-5Y differentiated cells treated with 0, 20 and 50|jM FSK and in the absence of 8- 

OH-DPAT had means of 199.21, 160.11 and 254.83 respectively.
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Figure 4.7 - RA differentiated SH-SY5Y cells treated with FSK and 8-O H - 
DPAT

Differentiated SH-SY5Y cells treated with 0, 20 and 50|jM FSK and 8-OH-DPAT had 

means of 76.37, 82.46 and 96.33 respectively.
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4.3.4- Undifferentiated SH-SY5Y cells treated in the presence and
absence of 8-OH-DPAT

Undifferentiated SH-SY5Y cells were incubated with Fura-2AM, probenecid, 
pluronic acid and different concentrations o f forskolin (0, 20 and 50pM).
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Figure 4.8 - Undifferentiated SH-SY5Y cells treated with and without 8- 
OH-DPAT

8-OH-DPAT (2pM), a 5-HT1A receptor agonist had no effect on the intracellular 

Ca2+levels in forskolin stimulated undifferentiated SH-SY5Y cells. Data presented as 

means±SEM, n=3, One-way ANOVA with Bonferroni's test, p>0.05. SH-SY5Y cells 

present in the control sample were treated in the absence of FSK and 8-OH-DPAT.
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4.3.5- RA differentiated SH-SY5Y cells treated in the presence and

the absence of 8-OH-DPAT
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Figure 4.9 - RA differentiated SH-SY5Y cells treated with and without 8- 

OH-DPAT

A significant decrease in Ca2+ levels in SH-SY5Y cells treated with 20pM FSK and 8- 

OH-DPAT (2|jM) compared to those treated in the absence of 8-OH-DPAT (One-way 

ANOVA with Bonferroni's, **p<0.01) was observed (n=3).
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4.3.6- 5-HT

5-HT is a neurotransm itter that when bound to 5-H T i A receptor (G-prote in) 

activates the receptor leading to a reduction in in tracellu lar calcium.

For this experim ent 5-HT was dissolved in 0.1M HCL, therefore, the control 

(No FSK and 8-OH-DPAT) used fo r this experim ent contained 0.1M HCL.
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Figure 4.10 - SH-SY5Y RA differentiated cells treated without 5-HT
The mean of the control no FSK no 8-OH-DPAT was 110.

Differentiated cells treated without 5-HT (1mM) at 0, 20 and 50|jM FSK had means of 

185.07, 129.86 and 121.04 respectively.
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Figure 4.11 - SH-SY5Y RA differentiated cells treated with 5-HT

Differentiated cells treated with 5-HT (1mM) at 0, 20 and 50|jM FSK had means of 

116.86, 81.88 and 88.15 respectively.
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4.3.7- RA differentiated SH-SY5Y cells treated in the presence and

absence of 5-HT
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Figure 4.12 - RA differentiated SH-SY5Y cells treated with and without 
5-HT

5-HT a 5-HT1A receptor agonist significantly reduced Ca2+ levels when treated with no 

FSK compared to cells treated in the absence of 5-HT. Data presented as means±SEM, 

n=3, One-way ANOVA with Bonferroni's, **p<0.01.
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4.3.8- p-MPPI

p-MPPI is a selective 5-H T i A receptor antagonist has high binding affin ity and 

receptor selectivity for the 5-H T ia  receptor. SH-SY5Y cells treated with both p- 

MPPI and 8-O H-DPAT will com pete for the 5-H T1A receptor. Cells treated with 

an increased concentration of p-MPPI a rise in in tracellu lar calcium 

concentration should be observed.
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Figure 4.13 - RA differentiated SH-SY5Y cells treated with forskolin 
(OpM), p-MPPI (0pM,10pM and 100pM) and 8-OH-DPAT (2pM).
SH-SY5Y differentiated cells treated with no FSK, 8-OH-DPAT and 0, 10 and

100|jM MPPI had mean values of 141.87, 199.6 and 287.26 respectively. The no 

MPPI control had a mean value of 130.13.
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Figure 4.14 - SH-SY5Y RA differentiated cells treated with forskolin 
(20pM), p-MPPI (OpM, 10pM and100pM) and 8-OH-DPAT (2pM).

SH-SY5Y differentiated cells treated with 20|jM forskolin, 8-OH-DPAT and 0, 10 

and 100|jM MPPI had mean values of 157.99, 174.9 and 206.37 respectively. The 

no MPPI control had a mean value of 166.54.
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4.3.9- RA differentiated SH-SY5Y cells treated with p-MPPI
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Figure 4.15 - RA differentiated SH-SY5Y cells treated with MPPI (0, 10 and 
100pM) and 8-OH-DPAT (2pM) in the absence of forskolin

A significant increase in Ca2+ levels were observed when treated with 100 MPPI and 8- 

OH-DPAT compared to cells treated with OpM MPPI and 8-OH-DPAT. The results 

show that in the absence of forskolin p-MPPI effectively increases levels of intracellular 

calcium to that of background levels. Data presented as means±SEM, n=3, One-way 

ANOVA with Bonferroni's **p<0.01.
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Figure 4.16 - RA differentiated SH-SY5Y cells treated with 20pM forskolin 
and MPPI (0, 10 and 100jnM) and 8-OH-DPAT (2pM)

An increase in Ca2+ level was observed in cells treated with 20|j M forskolin, 8-OH- 

DPAT (2pM) and 100 MPPI compared to 20pM forskolin, 8-OH-DPAT (2pM) and OpM 

MPPI. Data presented as means±SEM, n=3, One-way ANOVA with Bonferroni's

**p<0.01.
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Figure 4.17 - RA differentiated SH-SY5Y cells treated with forskolin 
(50|jM), p-MPPI (OpM, 10pM and100pM) and 8-OH-DPAT (2pM).

SH-SY5Y differentiated cells treated with 50|jM forskolin, 8-OH-DPAT and 0, 10 

and 100|j M MPPI had mean values of 131.45, 146.58 and 153.78 respectively. 

The no MPPI control had a mean value of 161.52.

168



Me
an

 
of 

flu
or

es
ce

nc
e

A

450

400

350

300

250

200

150

100

50

0

1 2 3
Forskolin 50pM 50pM 50pM

8 -OH-DPAT 2pM 2pM 2pM
p-MPPI OpM 10juM 100pM

Control 1- No forskolin and no 8-OH-DPAT 
Control 2- Control fo r MPPI, ddH20  only

Figure 4.18 - RA differentiated SH-SY5Y cells treated with 50|jM forskolin 
and MPPI (0, 10 and 100pM) and 8-OH-DPAT (2pM)

No significant increase in Ca2+ levels was observed with cells treated with 50|jM 

forskolin, 8-OH-DPAT (2|jM) and 0, 10, and 100(j M MPPI. Data presented as 

means±SEM, n=3, One-way ANOVA with Bonferroni's p>0.05.
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4.4- Discussion

The results in this study show that 8-OH-DPAT did not diminish intracellular 

calcium levels in undifferentiated SH-SY5Y cells whereas, in RA differentiated 

SH-SY5Y cells forskolin-stimulated increase in intracellular calcium was 

efficiently reduced by 8-OH-DPAT (2pM). A similar effect was seen with 5-HT  

also a 5-HT-ia agonist, which diminished forskolin-stimulated increase in 

intracellular calcium in RA differentiated SH-SY5Y cells. A non-classical dose- 

response effect on calcium concentration was observed with 8-OH-DPAT using 

the plate based assay. The dose-response curve observed reached a maximum 

value where it peaked and then values declined back to baseline values 

representing a bell-shaped curve. This observation could be due to 5 -H T ia  

receptor desensitisation at higher concentrations of forskolin (100-200 pM).

This indicates that 5 -H T iA receptor is functional as 8-OH-DPAT effectively 

reduces the levels of intracellular calcium in this cell line. The 5 -H T ia  receptor 

agonists 5-HT and 8-OH-DPAT are known to explicitly activate G j/o  class of G -  

proteins which consequently diminish cAMP levels (Paila and Chattopadhyay, 

2006).

Pailia et al (2006) found that forskolin-stimulated increase in cAMP levels is 

efficiently inhibited by 8-OH-DPAT in a concentration dependent manner. The 

normal mechanism of 5-H T1A signalling is via G proteins which inhibit AC.

Khan et al (1995) showed that 5-HT reduced intracellular calcium 

concentrations in a dose-dependent manner in K562 cells loaded with fura-2. 

Similarly, in LZD-7 fibroblast cells 5-HT inhibited AC reducing the forskolin- 

induced enhancement of cAMP levels by 50 percent (Liu and Albert, 1991). In 

this study 8-O H-DPAT was found to be a more potent agonist than 5-HT on 5- 

HT ia  receptors comparable with studies by De Vivo et al (1986) and Dumius et 

al (1988) who found that 8-OH-DPAT is a full agonist and is generally thought to 

be more potent than 5-HT on 5-HT-ia receptors that are negatively coupled to 

AC in adult rat hippocampus and mouse hippocampal neurons.
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It is thought that the binding of 5-HT and 8-OH-DPAT to the 5 -H T ia  receptor 

may either directly open "ligand gated" channels or they may modulate the 

channel functions directly via intracellular messengers (Khan et al, 1995).

Harrington et al (1991) showed that SH-SY5Y cell line expresses D2 receptors 

and the D2 receptor is functional in this cell line. 8-OH-DPAT is also thought to 

have a weak affinity for dopamine (D2) receptors (Kleven and Koek, 1997). 

Dopamine (D2) receptor interacts with G  proteins particularly G j /0 G  proteins and 

can inhibit AC (Hall and Strange, 1999) that leads to an decrease in cystolic 

calcium concentration like that observed with 5 -H T1A receptors. In this study, to 

make certain that it was the 5-H T1A receptor inhibiting AC and therefore leading 

to a decrease in calcium levels and not D2 receptors, p-MPPI was used. p-MPPI 

has been shown to act as a selective and potent 5 -H T iA receptor antagonist 

both at somatodentrictic and post-synaptic 5-HT-iA receptors (Allen et al, 1997; 

Bjorvatan et al, 1998 and Thielen and Frazer, 1995).

SH-SY5Y cells treated with both MPPI a 5 -H T1A receptor antagonist, and 8-OH- 

DPAT demonstrated that cells treated with MPPI at higher concentration 

(100pM) significantly increased forskolin-stimulated intracellular calcium levels 

and hence effectively reversed the agonistic effect of 8-OH-DPAT. Increased 

concentration of forskolin (50pM) did not significantly augment intracellular 

calcium levels at higher concentrations of MPPI (100pM).

Kung et al (1994) demonstrated that p-MPPI completely antagonises the 

inhibition of forskolin-stimulated adenylyl cyclase activity induced by 8-OH- 

DPAT in hippocampal membranes. p-MPPI binding occurred in Sf9 cells 

regardless of the expression of a G protein subunit, as would be anticipated for 

an antagonist (Butkerait et al, 1995).

Therefore, these results suggest that pharmacological modulation of the 5-H T i A 

receptor in these cells affects intracellular calcium levels showing that the 5- 

H T i A receptor signals via second messenger pathways and is a functional 

receptor in this cell line.
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Chapter 5
Final Discussion
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5.0- Final Discussion and conclusions

The aims of the first part of this project were to investigate the effects of the 

C-1019G 5-H T-ia receptor promoter polymorphism on expression of the 5-HT-ia  

receptor in hippocampal post-mortem tissue by quantifying 5-H T-ia receptor 

mRNA expression using real-time PCR and 5-H T-ja receptor density using 

radioligand binding.

The aims of the second part the study were to validate differentiated SH-SY5Y  

cells as a model system for studying the 5-HT-ia receptor. Cells were 

differentiated with RA or NGF and aphidicolin to provide a neuronal cell subtype. 

Real-time PCR was used to quantify 5-HT-ia receptor and NUDR mRNA  

expression in this cell line. 5-H T1A receptor protein was determined using 

immunocytochemistry and western blots. Intracellular calcium levels were 

measured to investigate whether the 5-HT-ia receptor was functional in this cell 

line using flow cytometry.

There is a substantial amount of information on the neuropharmacology of 

serotonin (5-HT) which implicates the serotonin system as an important 

modulator in a variety of central nervous system processes (Green, 2006). 

These processes include: anxiety, fear, depression and aggression; control of 

sleep and modulation of ingestive behaviours and the cardiovascular system 

(Gingrich and Hen, 2001; H o yereta l, 2002).

Mood disorders are among the most prevalent forms of mental illness. Severe 

forms of depression affect approximately 14.8 million American adults (Kessler 

et al, 2005) and 20 percent of the American population are thought to suffer 

from milder forms of the illness. In the UK, depression affects 1 in 10 adults and 

the estimate of a life time prevalence of depression varies from 1 in 6 to 1 in 4 

(National office of statistics; Hale, 1997). Mood disorders can be recurrent, life 

threatening and a major cause of morbidity worldwide (Blazer, 2000).

In many cases depression should not be viewed as a single disease but a 

heterogeneous disease comprised of many diseases of distinct cause and 

pathophysiologies. Several epidemiologic studies have shown that 

approximately 40-50 percent of the risk for depression is genetic (Saunders et
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In many cases depression should not be viewed as a single disease but a 

heterogeneous disease comprised of many diseases of distinct cause and 

pathophysiologies. Several epidemiologic studies have shown that 

approximately 40-50 percent of the risk for depression is genetic (Saunders et 

al, 1999). Depression is thought to be a complex disease with several genes 

thought to be associated in the pathophysiology of this disease. However, the 

predisposition to depression is only partly genetic, with non-genetic factors also 

being an important consideration. These non-genetic factors include stress and 

emotional trauma among many other diverse factors which have all been 

implicated in the etiology of depression (Fava and Kendler, 2000). There are 

several studies which support the hypothesis that episodes of depression often 

occur in the context of some form of stress. Conversely, stress is not the sole 

cause of depression and it has been suggested that depression in the majority 

of people is due to the interactions between a genetic predisposition and some 

environmental factors (Nestler et al, 2002).

The 5 -H T ia  receptor is of great interest due to its association in the 

pathogenesis and is also a target for the treatment of anxiety and depression 

(Veenstra-VanderWeele, Anderson and Cook, 2 0 0 0 ). The 5-HT-ia receptor is 

present presynaptically as an autoreceptor on the soma and dendrites found 

mainly in the median and dorsal raphe nuclei and post-synaptically in the limbic 

regions of the brain (Jacobs and Azmitia, 1992 ). Activation of the postsynaptic 

5-HT-ia receptors results in an inhibition of the activity of neurons of the limbic 

system.

The 5-HT-ia receptor promoter polymorphism C-1019G has been associated 

with depression. Lemonde et al (2003), observed that depressed patients were 

twice as likely as controls to have the homozygous -1019G  genotype. Several 

transcription factors have been found to specifically bind to the -1019C allele, in 

particular the transcription factor NUDR, which is thought to suppress the 

transcriptional activity of the -1019C allele and therefore decreasing the 

expression of the 5-HT-ia receptor leading to an increase in firing rate, whereas 

with the G allele NUDR does not bind leading to an increase in 5-HT-ia receptor 

expression and a reduction in the firing rate.
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The serotonergic system interacts with the HPA axis and glucocorticoid 

secretion (Dinan, 1994). Glucocorticoid receptors have an effect on 5-HT  

neurotransmission by down regulating 5-H T ia receptor expression 

postsynaptically in the hippocampus (Chalmers et al, 1995).

The 5 -H T ia  receptor couples to the Gi/o effector. Once the 5 -H T ia  receptor is 

activated by an agonist the dissociation of the G protein occurs resulting in two 

subunits Ga and GpY subunits. These two subunits can activate different 

transduction pathways. The Ga subunit leads to the inhibition of AC producing a 

decrease in intracellular calcium levels. The neuroblastoma SH-SY5Y cell line is 

a well characterised cell line used in neurotransmitter studies and when 

differentiated with either RA or NGF and aphidicolin a more neuronal cell type is 

generated making this a suitable model system for studying the 5-H T ia  receptor.

5.1- Human post-mortem study

5.1.1- 5-HT1A receptor genotype and expression

Human post mortem tissue was genotyped in this study for the 5-HT-ia receptor 

promoter polymorphism C-1019G. Real-time PCR was used to quantify mRNA  

levels of the 5 -H T1A receptor. The distribution of genotype was within the Hardy 

Weinberg equilibrium and agreed with studies by Lemonde et al, (2003), Arias 

et al, (2002), Parsey et al, (2006) and Huang et al, (2004).

The results obtained in this current study show that a significantly higher 5-HT-ia 

receptor expression was observed with the G allele compared to subjects with a 

C allele in control post-mortem hippocampal tissue which is in agreement with 

Lemonde et al, (2003). The present findings demonstrate that a similar 

presynaptic mechanism of gene regulation is also present postsynaptically. A  

plausible explanation for this is that some depressed subjects hypersecrete 

cortisol in response to stress, which is thought to down regulate 5-HT-ia receptor 

expression (Lopez et al, 1998) by lowering the availability of L-tryptophan 

leading to a reduction in 5-HT turnover and hence downregulating pre-synaptic 

5-HT-ia receptors (Chalmers et al, 1993). Lopez et al (2004) demonstrated that 

there was a decrease in postsynaptic 5-HT-ia R N A  in the hippocampus of post­

mortem tissue from subjects with major depression which may be explained due 

to glucocorticoid secretion masking genotype.
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Contrary, to the results obtained in this thesis Stockmeier et al (1998) found an 

upregulation of 5-H T ia  receptors in the raphe area and observed no change in 

expression of postsynaptic sites.

5.1.2- 5-HT1A receptor density

In this study 5 -H T ia  receptor density in hippocampal post-mortem tissue was 

determined by radioligand binding.

The results obtained in this study indicated a significant increase in postsynaptic 

5-HT-ia receptor when correlated with genotype in control human post-mortem 

tissue samples, when analysed using radioligand binding. Higher 5 -H T iA 

receptor expresion was observed with subjects who had the GG or G/C 

genotpye compared to the CC genotype. However, other studies have 

demonstrated that the greater binding of the 5-HT-ia receptor is not correlated to 

genotype of the C-1019G polymorphism in pre-frontal cortex post-mortem brain 

tissue (Huang et al, 2004).

In the present literature there are several disagreements regarding the 

presence and the direction of 5-HT-ia receptor binding abnormalities in 

depression. Stockmeier et al (1998) have shown that there is an increase in 5- 

HT-ia receptors in the raphe in depressive and suicidal subjects. Whereas, other 

studies have reported a decrease in 5-HT-ia receptor binding in the hippocampal 

region of suicide samples (Gross-lsseroff et al, 1998) and reduced 5-HT-ia 

receptor binding in mesiotemporal cortex and raphe in depressives compared to 

controls (Drevets et al, 1999; Lopez et al, 1998; Arango et al, 2001). These 

abnormalities could be explained by differences in anatomical localisation and 

that some depressed subjects hypersecrete cortisol which can down regulate 5- 

HT-ia receptor expression (Lopez et al, 1998).

5.1.3- Conclusions of post-mortem tissue study

The aim of this post-mortem study was to provide a greater understanding of 

the 5-HT-ia receptor expression in control hippocampal human post-mortem 

tissue.
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The relationship between the C -1019G  5-HT-ia receptor promoter polymorphism 

and 5-HT-ia receptor expression, where the G -1019  allele is associated with a 

predisposition to depression has only previously been reported at pre-synaptic 

sites, mainly in the raphe nuclei. Therefore, the findings presented in this study 

are novel and could suggest that gene regulation of the 5 -H T 1A receptor is 

similar both pre- and post-synaptically. The findings in this study are however 

contradicted by those reported by Lemonde et al (2003). The study by Lemonde 

et al, used embryonic day 18 hippocampal and cortical primary cultures that 

were colocalised with the NUDR protein and the 5-HT-ia receptor regulating 

protein, their findings have suggested that NUDR, a 5-HT-ia transcription factor 

does not repress, but enhances 5-HT-ia transcriptional activity in hippocampal 

and septal cells.

5.2- SH-SY5Y cell line

5.2.1- Differentiation of the SH-SY5Y cell line

SH-SY5Y cells were differentiated with either RA or NGF and aphidicolin. After 

5 days of RA treatment cells appeared more neuronal in their phenotype 

compared to undifferentiated cells. This was consistent with results obtained by 

Lombet et al, 2001. After 8 days of NGF and aphidicolin treatment cells showed 

an increased neuronal phenotype displaying extended neurites when compared 

to undifferentiated cells. These observations were in agreement with Jensen et 

al, (1991).

5.2.2- mRNA and protein expression of the 5-HT1A receptor in 

differentiated SH-SY5Y cells

SH-SY5Y cells differentiated with RA or NGF and aphidicolin had significantly 

increased 5-HT-ia receptor mRNA levels compared to undifferentiated cells. RA 

induced SH-SY5Y cells, after 5 days of differentiation, showed a significant
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increase relative to control. The timing of 5-HT*iA receptor expression is in 

agreement with the study by Ammer and Schulz, (1994) who showed that RA 

induced differentiation of SH-SY5Y cells considerably increased the abundance 

of G-protein subunits investigated. With NGF and aphidicolin differentiated SH- 

SY5Y cells, after 10 days significantly increased 5-H T1A receptor mRNA levels, 

relative to control. These results are consistent with results obtained by LoPresti 

et al, (1992) who showed that SH-SY5Y cell bodies are more rounded and have 

extended neurites present after 8 days of treatment with NGF.

The presence of 5-H T i A receptor protein in SH-SY5Y cells treated with RA for 5 

days was determined by immunocytochemistry. Western blots also confirmed 

the presence of the 5-H T iA receptor in SH-SY5Y cells treated with either RA or 

NGF and aphidicolin.

These results clearly demonstrate that this cell line when differentiated 

expresses the 5 -H T1A receptor.

5.2.3- NUDR mRNA expression in differentiated SH-SY5Y cells

The 5-H T1A receptor transcription factor NUDR was detected in this cell line 

when cells were differentiated with NGF and aphidicolin. An increase in NUDR  

expression is observed at the same time as there is an increase in 5-H T iA 

receptor expression in SH-SY5Y cells treated with NGF and aphidicolin. This is 

an interesting observation and may indicate that the C-1019G 5-H T1A receptor 

promoter polymorphism, which is known to regulate 5 -H T iA receptor gene 

expression in vivo through the depression of the 5 -H T1A promoter in presynaptic 

raphe neurons leading to an reduction in serotonergic transmission (Huang et al, 

2004; Lemonde et al, 2003) is operational in this cell line. The SH-SY5Y cell line 

was genotyped for the C-1019G 5-HT-iA receptor promoter polymorphism using 

the ASO method. This cell line was determined as homozygous for the -1019G  

allele, as previously described NUDR binds to the -1019C allele leading to 

depression of 5 -H T iA receptor expression (Lemonde et al, 2003). NUDR  

expression was increased at a time occuring prior to an increase in 5 -H T iA 

receptor expression1 when SH-SY5Y cells were differentiated with NGF and
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aphidicolin. For future work it would be of interest to investigate further the 

changes in NUDR expression observed.

The presence of NUDR expression in this differentiated cell line demonstrates 

that the regulatory transcription factors of the 5-H T i A receptor are present.

5.2.4- Second messenger signalling of the 5-HT1A receptor

Levels of intracellular calcium were measured using flow cytometry by detecting 

the amount of SH-SY5Y cells that had bound to the Fura-2AM dye.

In this study it was hypothesised that 8-OH-DPAT a 5-H T i A agonist would 

reduce the levels of intracellular calcium by activating the 5-H T i A receptor Gj 

protein subunit leading to the dissociation of the (3y subunit which activate K+ 

channels, therefore reducing calcium levels. The a-subunit inhibits adenylyl 

cyclase also leading to a reduction in calcium levels. 5-HT is also a 5-H T i A 

agonist and hence it was assumed that a similar effect to that seen with 8-OH- 

DPAT would be observed.

When SH-SY5Y cells are treated with both p-MPPI (a 5 -H T iA antagonist) and 8- 

OH-DPAT (a 5 -H T iA agonist), p-MPPI will compete with 8-OH-DPAT to bind 

with the 5 -H T iA receptor. At higher concentrations of p-MPPI a gradual increase 

in calcium levels is observed. Therefore, these results show that 8-OH-DPAT is 

not binding to D2 receptors in this cell line and is specifically binding to the 5- 

HTiA receptor.

A function of the 5-H T i A receptor is to inhibit adenylyl cyclase and thereby 

reduce the levels of cAMP. The results presented in the current study 

demonstrate that 8-OH-DPAT (a 5-H T i A agonist) did not diminish intracellular 

calcium levels in undifferentiated SH-SY5Y cells, whereas, in RA differentiated 

SH-SY5Y cells forskolin- stimulated increase in intracellular calcium was 

efficiently reduced by 8-OH-DPAT. These results are in agreement with Pailia et 

al, (2006) and Khan et al, (1995). Pailia et al (2006) showed that forskolin- 

stimulated increase in cAMP levels is efficiently inhibited by 8-OH-DPAT in a 

concentration dependent manner. Khan et al (1995) found that 5-HT reduced
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intracellular calcium concentration is a dose dependent manner in K562 cells 

loaded with fura-2.

Similarly, the 5-HT-ia agonist 5-HT was also shown to diminish forskolin- 

stimulated increase in cAMP in RA differentiated cells confirmed by Khan et al

(1995).

SH-SY5Y cells treated with both p-MPPI (a 5-H T1A receptor antagonist) and 8- 

OH-DPAT demonstrated that cells treated with MPPI at higher concentrations 

(100pM) significantly increased forskolin-stimulated intracellular calcium levels 

and therefore effectively reversed the agonistic effect of 8-OH-DPAT. p-MPPI 

has been verified to be a selective and potent 5-HT-ia antagonist (Allen et al, 

1997; Bjorvatan et al, 1998 and Thielen and Frazer, 1995).

The results presented in the current study clearly show that the 5-HT-ia receptor 

is functional and capable of signalling via second messengers in differentiated 

SH-SY5Y cells.

5.2.5- SH-SY5Y cell line conclusions

The findings presented here demonstrate that the SH -SY5Y cell line when 

differentiated with either RA or NGF and aphidicolin is a useful model system 

for studying the 5-H T ia  receptor. These findings have not been previously 

described.

The development of a model system to study the 5-HT-ia receptor could be 

highly advantageous due to the unlimited availability of cells compared to post­

mortem tissue which can often be in limited supply.
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5.3 - Future work

The studies described in this thesis assessing the gene regulation of control 

postsynaptic 5 -H T ia  receptor in human post-mortem tissue would merit more 

detailed investigation of post-mortem tissue from depressed subjects using real­

time PCR to quantify 5 -H T1A receptor expression in these samples and 

correlate with genotype. This would clarify whether 5-HT-ia receptor genotype is 

upregulated or downregulated in postsynaptic post-mortem tissue in depressed 

subjects.

This study has focused on the 5-HT-ia receptor in hippocampal postmortem 

tissue samples. It would also be of interest to investigate the effect of the 5-HT  

transporter polymorphism on 5-HT-ia expression in post-mortem tissue (Zammit 

and Owen, 2006) as the 5-HT transporter is known to affect 5-HT-ia receptor 

expression.

The SH-SY5Y cell line has been shown to be successfully differentiated with RA  

or NGF and aphidicolin. It would be of interest to further investigate the 

presence of neuronal markers in this cell line when differentiated. The SH-SY5Y  

cell line is thought to consist of a mixed population of cells. It would, therefore, 

be useful to use flow cytometry to sort the SH -SY5Y cell line for the cells 

expressing the 5-HT-ia receptor to permit the sub cloning of the cell line for the 

5-HT-ia receptor. The development of a sub-cloned 5-HT-ia receptor SH-SY5Y  

cell line could be a useful model to use in the assessment of the effects of 

antidepressant drugs on 5-HT-ia receptor expression.

Clear evidence from the work presented here supports the role of the SH -SY5Y  

cell line as a model system for studying the 5-HT-ia receptor. Further, 

investigation into the presence of other 5-HT receptors in this cell line using 

real-time PCR, immunocytochemistry and western blots could further validate 

this cell line as a model system.
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