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Abstract

This work describes the invention o f a synthetic method which allows a fully-reacted PNIPAM/ clay 
nanocomposite system to remain a watery liquid until it is cooled to a predetermined temperature. Beyond 
this temperature, the polymer/ clay precursor hydrogel liquid (PCPH) spontaneously forms a cross-linked 
hydrogel that does not re-liquefy upon re-heating, but instead, possesses all o f the highly utilisable 
stimuli-responsive properties typical o f PNIPAM-based nanocomposite hydrogels synthesised in situ.

This novel methodology simultaneously addresses issues including cytotoxicity, processability, 
injectability, cross-linking and mechanical stability. In addition, PCPH synthesis requires no specialist 
equipment, inexpensive and basic components typical o f cross-linked hydrogels (water, monomer, clay 
and initiator), requires no purification steps and can be maintained as a fully-reacted liquid at evaluated 
temperatures for up to several weeks with no apparent loss of eventual functionality. The ability to create 
a fully polymerised hydrogel polymer with a liquid intermediate state has allowed the incorporation of 
biologically active dopants which can be dispersed and distributed homogeneously throughout the matrix 
prior to "phase transition triggered nanoparticle anchored gelation" (or PTTNAG) of the hydrogel.
Human mesenchymal stem cells (MSCs), have been incorporated into the gel by i) placing them on the 
assembled gel surface - the cells responded by migrating and proliferating throughout the matrix of the 
gel, and more interestingly, ii) combining the MSCs with the PCPH in the liquid phase and allowing 
PTTNAG of the polymer matrix to occur around the cells. In both cases, cell viability was excellent 
throughout a series o f 14-28 day experiments.

The work was expanded by the exploration of PTTNAG temperature tailorability. This was achieved with 
the incorporation of the relatively polar comonomer dimethylacrylamide (DMAc), and non-polar 
comonomer glycedyl methacrylate (GMAc) which respectively increased and decreased the PTTNAG 
and lower-critical solution temperature (LCST) of the resulting gels. Crucially, it was found that the 
PTTNAG temperature can be tailored precisely and incorporation of DMAc did not affect cell viability.

The process also opened several novel avenues for gel processing possibilities, including facile casting, 
extruding and electrospinning. Well defined and uniform electrospun fibres with diameters ~300nm are 
presented. The production of continuous, uniform flat PNIPAM/ clay sheets o f 300pm -1000pm achieved 
using an industrial film extrusion line is detailed. This work represents an innovation in the way in which 
such hydrogels can be manufactured and produced safely and cleanly, with no additives, no energy input 
and no toxic by- products.

Interactions between polymer and water are examined by monitoring the dehydration o f 3 separate 
hydrogel formulations using ATR-FTIR. The pseudo diffusion coefficient (in this instance, the diffusion 
o f water out o f the polymer matrix) was not affected by dopant composition, but instead, the intercept o f 
the slope was altered markedly.

Cross-link type, cross-link density, initiation method and addition of dopants have a strong influence on 
the swelling/ deswelling behaviour o f the hydrogels under study. PNIPAM/ clay gels exhibit much larger 
volume changes than those prepared with chemical cross-linking agent methylenebisacrylamide (BIS). 
Deswelling magnitude increases with decreasing cross-linker content for all gel types examined. Thermal 
deswelling is hindered in dopant-incorporated networks. The aqueous dilution of the nanocomposite in 
the liquid phase affects gel deswelling behaviour when clay concentration is.low. De/reswelling of 
PNIPAM/ clay, PNIPAM/ BIS and gelatine-doped PNIPAM/ clay gels can be induced by adjusting the 
alcohol volume fraction of the media. BIS cross-linked gels exert restricted swelling/ deswelling 
behaviours compared to those cross-linked with clay. Cross-link density within systems does not have a 
significant impact on cononsolvency behaviour, although the incorporation of gelatine imposes some 
restriction on it, directly relative to gelatine concentration.

X-ray diffraction (XRD) data proved the exfoliation of clay in the nanocomposite system post- PTTNAG. 
DMA data revealed that the viscoelasticity of the gels can be tailored with varying the nature and quantity 
of dopant materials. Gels doped with hyaluronic acid (HA) most closely resemble the mechanical 
properties of bovine NP tissue.
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Chapter 1 -  Introduction

1.1 Polymers overview
Polymers are long- chain molecules composed of a large number of repeating units and 

have very high molecular weights. They can be synthetically produced and also occur 

very commonly in nature. Naturally occurring polymers are often water-based and 

include proteins, glycogen, DNA, silk, wool, cellulose, starches and latex. Synthetic 

polymers such as polyethylene, polyester, nylon, Teflon, and epoxy are synthesised and 

produced commercially and have a wide range of behavioural properties and uses. 

Polymers are synthesised by the process of polymerisation -  a chemical process by 

which a large number of molecular Units or “monomers” are joined sequentially, 

forming a long chain of repeating monomer units. In some polymers, only one monomer 

type is used. In others, up to several different monomers may be combined in ordered or 

random conformations. In addition, polymers can be linear, branched, “combed”, cross- 

linked or have a star-like architecture.

1.1.1 Homopolymeric systems

A polymer prepared using a single monomeric species is a called a homopolymer. The 

polymer on which the majority of this study is based, /?o/y(N-isopropylacrylamide) 

(PNIPAM), lies within this category.

1.1.2 Copolymeric systems

A copolymer is formed when two different species of monomer are joined within a 

single polymer chain, and the term copolymerisation refers to a method employed to 

chemically synthesise such a material. The classification of copolymeric materials is 

based upon how the monomers are arranged, for example:

-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-

Alternating copolymer

An alternating copolymer has regular repeating single units arranged in an alternating 
fashion.

-A-A-A-B-A-B-B-A-A-B-B-B-A-B-A-A-B-

Random copolymer
2



In a random copolymer, the units may be arranged in any order. Also referred to as 

statistical copolymers, a truly random copolymer is obtained if the mole fraction of a 

monomer species equals that of the probability of finding a particular monomer at a 

particular location along the chain [1].

-A-A-A-A-A-A-A-B-B-B-B-B-B-B-

Block copolymer

Block copolymers can be thought of as two covalently linked homopolymer units, with 

monomeric subunits of each type grouped together. Occasionally, an intermediate, non­

repeating unit called a junction block is required to link the two subunit types. Polymers 

consisting of two distinct blocks are termed diblock copolymers, and those with 3 are 

known as triblock copolymers.

The polymer structure can also exist in a branched state, whereby a single principal 

polymer chain has one or more tethered side-chains. Specialist branched polymers can 

also be synthesised in the form of starts, brushes and combs. The given examples are 

those of dipolymers, i.e. those composed of 2 types of structural unit. A copolymer 

comprising three separate monomeric species is termed a "terpolymer".

1.1.3 Interpenetrating polymer networks (IPNs)

An interpenetrating polymer network (IPN) is a polymer system consisting o f two or 

more partially or fully- interlaced independent networks which are not chemically or 

physically bonded to each other, as shown schematically in fig 1.2. Many IPNs exhibit 

dual-phase continuity, i.e., at least two polymers in the system are continuous on a 

macroscopic scale.

Cross-linked junction

Polymers A and B. respectively 

Figure 1.2. Schematic representation of an interpenetrating polym er netw ork.
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1.1.4 Multipolymeric systems

Multipolymeric polymers are synthesised by polymerising three or more types of 

monomer together in tailored quantities to form a unique behavioural profile.

1.1.5 Amphiphilic polymers

An amphiphile is a chemical compound possessing both hydrophilic (water-loving) and 

hydrophobic (water-hating) properties. Amphiphilic copolymer networks incorporate 

hydrophilic and hydrophobic monomer species, and it is common for amphiphilic 

species to spontaneously self-assemble into a diverse range of morphologies. Their 

phase separation behaviour arises from the interactions between hydrophilic and 

hydrophobic domains of the polymer, and those between polymer and solvent [2-3]. 

Fatty acids, detergents and hydrocarbon-based surfactants are examples of amphiphilic 

molecules.

1.2 Hydrogels and Stimuli responsive polymers

The term "hydrogel" encompasses a class of highly water-swollen polymers (10-1000 

times their dry mass) which are cross-linked to maintain a stable 3D network [4]. 

Generally speaking, the extraordinarily hydrophilic nature of these materials is 

attributed to amide, hydroxyl, carboxyl, sulfide or other covalently bound polar groups 

on the polymer carbon backbone. When a hydrogel contains its maximum capacity of 

water, it is said to have reached its equilibrium water constant (EWC).

Published items containing the  word "hydrogel".
1800
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Figure 1.1 The number of Web of Knowledge search results for "Hydrogel".
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Some polymers exhibit sensitivity to external stimuli such as temperature or pH, and are 

therefore referred to as "stimuli responsive polymers", or SRPs. Stimuli responsive 

properties have been observed in natural, synthetic and several biopolymers involved in 

biochemical processes [5-6]. One such natural biopolymer is pH-sensitive Chitosan, a 

linear polysaccharide commercially derived from chitin, is an integral part of the 

structure of the crustacean exoskeleton and also found in the cell walls of certain fungi. 

Polypeptides (long amino acid chains with which proteins are constructed) are a family 

of thermo responsive materials, and the thermodynamic driving forces of their a-helix 

to coil transition were first examined 1950's by Schellman [7-8], who observed 

thermally-triggered structural and conformational changes in chain structure.

The pioneering studies of SRPs in the 1950s was very heavily geared around biological 

applications; it was found that when cross-linked, their swellability, flexibility and 

potential adaptability could be tailored to resemble those of natural living tissue and 

were viable candidates for cell support and tissue scaffolding [9]. Fig 1.1. Shows how 

markedly interest in hydrogel materials increased during the 1990s, followed by an even 

more earnest expansion of interest during the 2000s. As the technology progressed, 

potential applications for synthetic SRPs began to include intelligent textiles [10-11] 

artificial muscles and robotics [12-13], and actuators and sensors [12, 14-15].

Much effort has been invested in the development of macromolecules which are 

environmentally sensitive and respond to specific triggers. Common triggers include 

changes in electrolyte concentration [16-18], temperature [19-25] and changes in pH 

[17, 24, 26]. Systems that change in physical conformation in response to magnetic 

field, light [27], electricity [28] and specific biological molecules such as enzymes, 

glucose and antigens [29] have also been considered. Among the most extensively 

documented are SRPs that respond to temperature. .

1.2.1 Hydrogel classification

Hydrogels can be categorised in several ways, the most basic classification being the 

distinction between natural and synthetic materials. Further to this, they can be 

distinguished in three more specific ways; by their physical structural features, ionic 

charge and preparation method.

Based on structural features, hydrogels can be classed as having semi-crystalline, 

amorphous, or hydrogen-bonded structures. Accounting for ionic charge, hydrogels can

5



be classified as anionic, cationic, neutral or ampholytic. Based on the preparation 

method, four further groups can be distinguished; homopolymeric hydrogels, 

copolymeric hydrogels, multipolymeric hydrogels and interpenetrating polymeric 

hydrogels, and can be distinguished further to this by method of cross- linking.

1.3. Background of PoZy(N-isopropyl) acrylamide (PNIPAM)

Poly(N-isopropyl) acrylamide (PNIPAM), the polymer at the heart of this research, is 

an amphiphilic polymer which is water soluble at room temperature. It has been studied 

extensively because of its amphiphilic properties. As a homopolymer, PNIPAM has a 

sharp lower- critical solution temperature (LCST) between 30°C [30] and 35°C [31] 

(where the discrepancy can be influenced by macromolecular structure, chain length 

[32], polydispersity [33] and/ or cross-linking factors [34]). It transforms from a 

hydrophilic and swollen (coil) conformation below this temperature to a compact, 

relatively dehydrated hydrophobic (globule) conformation above it [35]. Linear 

PNIPAM is also highly soluble in organic solvents such as acetone and chloroform, as 

well as simple alcohols including ethanol and methanol. Upon warming beyond ~33°C, 

an aqueous PNIPAM solution instantaneously switches from a transparent solution into 

a turbid, white-coloured suspension. This phase transition is reversible, and a warm 

turbid suspension will immediately fully recover its optical clarity upon cooling. When 

PNIPAM chains are cross-linked, the resulting self-supporting hydrogel collapses and 

shrinks at temperatures above its LCST, and expands and swells at temperatures below 

its LCST.

Over the last two decades, the frequency of PNIP AM-based publications has increased 

markedly year-on-year, reaching a plateau around 2008. As illustrated by Fig. 1.3., 

interest in PNIPAM has increased dramatically, and it has become by far the most 

extensively studied of all thermally-responsive aqueous hydrogels. [23, 36].

The first publications focussing on PNDPAM appeared in 1956, where the process of 

formulation and polymerisation of N-isopropylacrylamide (NIPAM) monomer (Fig

1.4.) were rationally discussed [37-38]. A focus on the novel, counter-intuitive thermal 

phase-separation behaviour which it exhibited in aqueous media appeared later, as 

discussed in section 1.3.2.
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Figure 1.4. The structure of N-isopropylacrylamide (NIPAM) monomer.

Complex nanostructures consisting of organic and inorganic components have been 

researched extensively as functional nanocomposite materials. Particularly in the last 

20 years, polymeric hydrogels composed of PNIPAM have been of considerable interest 

to researchers due to these precise and modifiable stimuli-responsive properties, and as 

such, the potential uses of PNIPAM have been explored in the fields of biology [39-46], 

chemistry, [47-52] physics [53-58] and medicine [43, 59-62]. To illustrate, a 

particularly attractive application of PNIPAM is molecular gating. Several research 

groups have designed and produced devices which incorporate temperature sensitive 

components which isolate, separate and detect analytes from samples of very low 

volume and/ or concentration [63-65]. Ebara et al discovered that PNIPAM -based 

polymers (/2<?/y(AMsopropylacrylamide-tY2-2-carboxyisopropylacrylamide)) could either 

show or hide arginine/glycine/aspartic acid recognition sequences for human cell 

binding and detaching [ 19].
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PNIPAM has been successfully synthesised in situ in forms such as macroscopic gels 

[66-67], microgels [68-70], films [42,44, 71], fibres [72-74] and coatings [75-77]. The 

sharp and dramatic switch in hydrophobic-hydrophilic character PNIPAM exhibits 

around its LCST (and therefore substantial variation in colloidal properties- primarily 

size, and colloidal stability and electrophoretic mobility of the particles) at temperatures 

close to that of the human body allows for significant potential as an intelligent material 

for use in the biomedicine. Until relatively recently, however, PNIPAM polymers and 

their derivatives were thought to have extremely poor biocompatibility, based mainly on 

the assumption that, considering the high toxicity of acrylic monomers, NIP AM would 

be toxic, teratogenic and carcinogenic [78]. These assumptions were largely based on 

toxicity evaluations of acrylamide monomers, which induced developmental, neural and 

reproductive retardation in various species [79-81]. In spite of this, subcutaneous and 

orally administrative testing of the potential toxicity of PNIPAM and its copolymers 

were carried out in mice [82]. The results definitively conclude that the polymer exerted 

no toxic effects as well as absence of cumulative toxicity, although the authors 

expressed the mandatory requirement for further cytological study.

The adverse effects attributed to acrylamide monomer exposure may be attributed to its 

size, namely its ability to cross cell membranes. In addition, the involvement of its 

conjugated double bond (which can partake in nucleophilic reactions with functional 

groups containing active hydrogen), in chemical activity with integral cell processes has 

been shown to interrupt cell division, affect cell osmotic stability and inhibit nucleic 

acid synthesis [83-85]. The removal of this double bond during free radical 

polymerisation and subsequent removal of reactive groups, as well as a substantial 

increase in size preventing the crossing of cell membranes may go some way toward 

explaining the recent success in live cell proliferation on highly purified PNIPAM gels 

[41 ,43 ,46 ,60 ,86].

1.3.1 Lower Critical Solution Temperature (LCST) Theory

When a polymer becomes miscible in its solvent upon an increase in temperature, it 

exhibits an upper critical solution temperature (UCST). One that becomes insoluble 

with increase in temperature exhibits a lower critical solution temperature (LCST). The 

LCST is defined as the temperature at which coil-to-globule transition of the polymer 

network occurs due to sufficient disruption of hydrogen bonding between the amide 

groups of the polymer and the water molecules, allowing hydrophobic interactions to



form between the non-polar domains of the system. In other words, the solvent changes 

from “good” to “poor” [33, 87-88]. For free PNIPAM chains in solution, the net 

observable result of this phenomenon is PNIPAM precipitation and subsequent increase 

in solution turbidity, and for swollen 3-dimensional cross-linked PNIPAM, collapse of 

the structure, expulsion of water from the network and decrease in gel size. The extent 

and speed of this collapse depends heavily on type of cross-linking agent present and 

crosslink density (both points to be addressed in more detail in section 1.4).

Hydrophobic
backbone

Hydrophilic
AmideHN

Hydrophobic
Propyl

Figure 1.5. The structure of Poly(AMsopropylacryIamide) with functional groups 

indicated.

Although water desorption often occurs as a result of many complex mechanisms, it is 

generally accepted that precipitation/ reabsorption is observed as a net result of the 

quest for thermodynamic stability. When the temperature is below the LCST, there are 

sufficient hydrogen bonding interactions between water molecules and the polymer's 

amide N-H and C =0 groups, shown in fig 1.5, and a favourable contribution is made to 

the free energy of mixing (AHm < 0). For cross-linked systems, as schematically 

represented in fig 1.6., the hydrophilic regime is dominant, and large volumes of water 

occupy the polymer chains and interstitial spaces and the gel exists in a hydrated, highly 

swollen state. Conversely, at temperatures above the LCST, hydrogen bonds are 

disrupted and the ordering of water molecules becomes entropically unfavourable in the 

presence of hydrophobic moieties. In order to limit the entropic loss, their water 

solubility is heavily compromised [33, 89] the isopropyl groups are pulled together by
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a)

Temperature > LCST

b)

Temperature < LCST

•  Cross-linking agent

•  Water 
Temperature- 
sensitive polymer

C)

Figure 1.6. The macroscopic transition of PNIPAM above and below its lower 

critical solution tem perature as a) free chains in aqueous media b) a cross-linked 

gel system, and C) tethered at one end to a surface.

hydrophobic interaction, and the polymer physically collapses. A further increase in 

temperature enhances the unfavourable contribution of entropy to the system, and the 

relative magnitude of this “hydrophobic effect” is directly proportional to thermal input 

[32-33, 49, 64]. Details further to this regarding the precise LCST mechanism are 

subject to a degree of ambiguity. For example, Winnik suggested that the clouding of a 

polymer solution occurs in two distinctive stages, the first being the folding of individual 

polymer chains, and the second involving the aggregation of the folded polymer 

globules [90]. Winnik fails to precisely detail the mechanism by which the singular 

polymer chains transform to precipitated globules, however. Chi Wu [911 published a 

review containing results of the mechanism of collapse of linear PNIPAM chains 

between 33.02°C and 30.02°C. Fig 1.6. schematically summarises their conclusion.
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3 3 .0 2 T  ------> 3 0 .0 2 T

Figure 1.7. Schematic representation of the four states of a collapsing PNIPAM 

chain in aqueous media according to Chi W u; a) Random coil, b) crum pet coil, c) 

molten globule and d) collapsed globule [91]. A hysteresis loop exists between 

w arm ing above the LCST and cooling below it.

It was concluded using dissolving kinetics models (as a function of hydrodynamic 

radius Rh) that when the water/ PNIPAM compatibility was decreased (solubility 

changed from “good” to “poor”), chain collapse occurs in 4 distinct stable phases, as 

shown in fig 1.7. The coiled NIPAM chain is thought to initially shrink into a loosely- 

packed “crumpet” state before passing through a knotted “molten globule” state before 

reaching its final fully collapsed globule state. Interestingly, the group concluded that 

the reswelling of the chains did not follow the same route, and therefore a hysteresis 

exists between the two processes.

1.3.2 Lower- Critical Solution Temperature (LCST) of PNIPAM

The observation of an LCST was first documented for free PNIPAM in water by Scarpa 

et al in 1967 [92]. The article describes a precipitation and resolvation from the solution 

as an "inverse temperature coefficient of solubility". Shortly afterward in 1968, with 

inspiration gathered from sparing reports made during the previous decade of an 

apparent precipitation of specific polar polymers upon heating [93-94], a more detailed 

examination of the phenomenon was published by Heskins and Guillet [951. They used 

a phase diagram to conclude that phase separation was a manifestation of greater 

entropy existing in two phases compared to an inhomogeneous solution. Surprisingly, 

the rapid, predictable and sharp volume transition of PNIPAM was not observed nor
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recorded by Heskins and Guillet during their investigations of its thermodynamic 

properties.

The first fully comprehensive analysis of the thermodynamics of the LCST 

phenomenon came from two publications by Tanaka et al in 1978 [96-97], following 

their observation of the large volume changes in crosslinked polyacrylamide gels the 

previous year [98]. Thus began the general acceptance of acrylamide-based gels as 

intelligent, stimuli-responsive networks which were capable of large transparency and 

volume change responses upon a relatively small change in temperature over a certain 

temperature range. The group followed their observations with the first study of the 

discontinuous phase transition of non-ionic PNIPAM gel, and drew its distinctions from 

a regular non-ionic acrylamide gel with a continuous volume change. They deduced that 

whether the volume change of a gel was continuous or discontinuous depends on a 

parameter given by equation 1.1:

S = (b /a f (2/ + l )4

Equation 1.1

Where b/a represents the ratio of persistence length of the chain b and its effective 

radius a, and is indicative of the "stiffness" of the polymer. Parameter/represents the 

total number ionisable groups per chain [99]. According to this theory, an S value 

smaller than 290 is indicative of a continuously changing gel, where as those above 290 

have sufficient ionised functional groups and/ or stiffness undergo discontinuous change 

[26]. The group's observations showed PNIPAM volume change to be in the order of 

eight times, making S = 800 and subsequent b/a = 5.3 [26]. The preliminary 

understanding of the phenomenon was followed by a further article in 1986 detailing the 

LCST behaviour of PNIPAM in mixed alcoholic solvents [100]. This was the initial 

appearance of the phenomenon of cononsolvency re-entrant swelling behaviour, which 

will be examined more closely in chapter 6  of this thesis.

Commonly, PNIPAM hydrogels are prepared at ambient temperature from an aqueous 

solution of NIP AM monomer, initiator, accelerator and chemical cross-linking agent. 

Since the LCST of PNIPAM is somewhere in the region of 30 -35°C, propagation at 

room temperature proceeds in a hydrophilic, homogeneous solution which yields 

continuous gels. Alternatively, PNIPAM hydrogels can be prepared by beginning the 

polymerisation process below the LCST and gradually increasing the temperature to one
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that is above it, resulting in macroporous gel with a large pore size and volume, an 

elevated specific surface area and a faster expansion and contraction rate [101-102].

1.3.3 Tailoring the LCST of PNIPAM

A linear polymeric species which displays LCST behaviour can be cross-linked to give 

a thermally-triggered phase-switching gel network. Organically cross-linked gels exert 

low volume change and slower deswelling rate than their inorganically cross-linked 

counterparts. Cross-link density (and therefore inter-cross-link space) also heavily 

dictates the gels volume change capacity [103-104]. This is due to the Gibbs free energy 

of mixing the solvent and polymer is subject to two contributions: the first for mixing 

the solvent with the polymer network, the second being a manifestation of the elasticity 

of the network [105]. More densely cross-linked gels take longer to deswell and reach 

equilibrium than those with a more loosely cross-linked matrix [106].

In addition, several basic additive approaches exist to alter the temperature at which 

phase separation occurs to some degree. For example, the use of salts can decrease the 

LCST [107-109], whereby the relative increase of insolubility and decrease in LCST in 

aqueous/ salt systems follows the Hofmeister series [107]. It is thought that ions 

exhibiting a large charge to volume ratio (such as sulphates) dehydrate the polymer 

chains thus preventing effective network hydration and decreasing solubility of the 

system [87]. Conversely, anionic surfactants such as dodecylsulfate increase the LCST 

of PNIPAM by interacting with chain segments, subsequently inducing polymer- 

polymer repulsion [110].

The precise temperature at which phase change occurs can be also be tailored by 

introducing hydrophobic or hydrophilic moieties during polymerisation (non-polar 

moieties reduce the phase-change temperature; polar moieties increase it, a phenomenon 

examined in detail in section 7.4). Further to this, the copolymerisation of NIP AM 

monomer with hydrophobic comonomers containing increasing lengths of alkyl side 

groups exert lower LCST in comparison to pure PNIPAM gel, and a linear correlation 

between the transition temperature and length of the hydrophobic alkyl side group has 

been demonstrated [111].
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1.3.3.1 Tailoring the LCST of PNIPAM-based copolymer hydrogel systems

As previously discussed, hydrogels swell on contact with aqueous media as water enters 

their interstitial spaces. The manner and degree in which the solvent/ polymer 

interaction occurs is heavily dependent on factors such the polymer-solvent 

thermodynamic compatibility and physical mobility restrictions as a result of cross- 

linking density.

The hydrophilic nature of a given hydrogel network is generally owed to the presence of 

functional groups such as carboxyl (-COOH) hydroxyl (-OH), primary amidic 

(-CONH2), amidic (-CONH-), and sulphonic (-SO3H), as well as others located within 

the polymer backbone or within side chains. It is also possible, however, to design 

hydrogels which contain specific proportions of hydrophobic polymers via the 

copolymerisation or interpenetration (see section 1.2.4.4) of hydrophilic and 

hydrophobic polymers.

A tuneable LCST is a property highly utilisable for countless engineering and 

biomedical applications. Of the latter, much interest surrounds the release of a drug in. 

the solution phase at a pre-programmed “trigger” temperature, for example, infected/ 

inflamed tissue and cancerous growths emit more heat than their surrounding tissues 

[112]. An LCST tuned to be that of the aforementioned tissues may allow medication to 

be released preferentially at those sites, perhaps even with a view to increasing a drug 

dose at specific loci and therefore preventing damage or poisoning to healthy tissue. 

Also, an identical LCST can be achieved when a) a small fraction of a highly insoluble 

monomeric component is incorporated, and b) on the incorporation of larger fraction of 

relatively highly soluble monomer. This potentially allows additional control of solute- 

polymer interaction in the system.

A fundamental issue in the proposed utilisation of PNIPAM for human biomedical

purposes is that it undergoes phase change at temperatures below the human

homeostatic temperature of 37°C. The copolymerisation of NIPAM with hydrophilic or

hydrophobic species has been shown to directly influence the temperature at which

phase transition occurs. To illustrate, NIPAM has been successfully copolymerised with

hydrophilic acrylic acid [113] (this formulation incorporates additional functionality, as

the hydrophilic carboxylic groups also give rise to pH sensitivity of the PNIPAAm-co-

AAc gels) [114-115], acrylamide [116], alginate [117], N,N-dimethylacrylamide

(DMAc) [118-119] and hydroxyethyl methacrylate (HEMA) [120-121], which increase
14



the LCST of PNIPAM-based polymers, and with hydrophobic monomers such as, 

glycedyl methacrylate (GMAc) [122] which decrease it.

1.3.4 PNIPAM Synthesis

A number of methods have been adopted to synthesise PNIPAM, the most common 

approaches being redox initiation in aqueous solution [54, 123-128], Reversible 

addition-fragmentation chain transfer polymerisation (RAFT) [129-136], atom transfer 

radical polymerisation (ATRP) [137-143] and radiation initiated [144-147], although 

this list is by no means exhaustive. A brief overview of each of the aforementioned 

methods is given below.

1.3.4.1 Free-radical initiation in aqueous / organic media

A free radical is a molecular or elemental species with an unpaired electron associated 

with its structure. The unpaired electrons are profoundly reactive, and their addition to 

the double bond of a monomer generates another unpaired electron, and subsequent 

monomers are linked together in rapid succession. Therefore the reactive radical is 

continuously relocated at the end of the propagating polymer chain until the reaction is 

terminated:

a) Initiation:

R CH2CH2CH2C.M2 •  tti2— L.H2 **■ R CH2CH2CH2CH2CH2CH2®

R-R ^  2R*

R— CH2CH2*

b) Propagation:

R-—CH2CH2 •  CH2— CH2 — ► R— CH2CH2CH2CH2«Q
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c) Termination:

2 R-(CH2CH2)nCH2CH2#-----► R— (CH2CH2)nCH2CH2— CH2CH2(CH2CH2)nR

2 R-(CH2CH2)nCH2CH2#  ► R (CH2CH2)nCH=CH2 + R-(CH2CH2)nCH2CH3

time to allow reaction with a monomer and generation of an active centre.

Azo compounds (organic compounds containing the azo -N=N- group) undergo thermal 

decomposition upon heating. For example, figure 1.9. shows how azobisisobutyronitrile 

(AIBN) cleaves symmetrically to form two 2-cyanoprop-2-yl radicals, eliminating a 

molecule of nitrogen gas:

Figure 1.9. Azobisisobutyronitrile (AIBN) cleaving symmetrically to form two 2- 

cyanoprop-2-yl radicals.

AIBN can also be subject to photolysis (the chemical process by which molecules are 

broken into its constituent units through the absorption of light), and is decomposed by 

an identical scheme as that depicted above. The decomposition is induced by UV 

radiation at a wavelength of ~360nm. A more detailed explanation of this type of 

initiation can be found in section 1.3.4.4.

Theoretically, propagation of the polymer chain could terminate when all of the 

monomer in the system is consumed. In practise, the high reactivity of free radical 

species readily results in the formation of inactive covalent bonds wherever possible. 

Propagation ceases when the radical is deactivated by the destruction of the active 

centre, which occurs readily upon contact with another radical species [148] (figure 

1.8c). Thus, if the radical concentration is high, the probability of radical interaction is 

increased and short polymer chains result. Conversely, if long chains are required, small 

initiator concentrations are used.

Figure 1.8

The initiator (R*) is typically an organic compound which can easily be dissociated by 

heat or light to produce free radical species, and the radical must be stable for enough

■> 2 C + N2 
/  \
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Chain-end termination can have several causes; interaction with residual or dissolved 

oxygen, interaction with an inhibitor, a transfer of the active center to another monomer 

or to the solvent, meeting of two active centres of propagating polymer chains, or the 

interaction of an active centre and an initiating radical.

Different approaches can be taken to tailor the molecular weight (Mw) of the resulting 

polymers. For example, as previously mentioned, increasing the number of initiating 

radicals increases the number of propagating chains, reducing their overall Mw [149], an 

increase in temperature encourages faster propagation reactions and a lower Mw [136], 

and an increase in pressure encourages faster propagation yet inhibits radical 

deactivation, increasing the overall Mw [136].

Not all monomers successfully propagate in response to all types of initiators. Radical 

initiation is most effective in the presence of vinyl monomers (and a carbon-carbon 

double bond) and aldehydes and ketones (in the presence of a carbon-oxygen double 

bond) [150]. The selection of a suitable initiator for these types of polymerisations 

depends heavily on two factors -  the solubility of the initiator and its dissociation/ 

decomposition temperature. If the polymerisation is to be performed in an aqueous or 

organic solvent, it is imperative that the initiator dissolves in the solvent and that its 

dissociation temperature does not exceed the boiling temperature of that solvent.

PNIPAM gels can be produced in the form of microgels, macrogels, films, rods and 

fibres. PNIPAM micro/ nanospheres are produced by fee radical polymerisation at 

temperatures exceeding the LCST (also sometimes referred to as dispersion 

polymerisation). This can be performed with or without a surfactant and/ or crosslinking 

agent. Until now, solution polymerisation was required to produce larger-sized and 

structured gels. This involves a redox initiated free radical polymerisation at 

temperatures below that of the LCST, and requires NIPAM monomer, a cross-linking 

agent, an initiator, and an accelerating agent. The most typical free radical method for 

NIPAM solution polymerisation is that which uses a combination of either potassium 

persulfate or ammonium persulfate as an initiator, together with an accelerator - 

N,N,N’,N’ tetramethylethylenediamine (TEMED) or sodium metabisulphate [35, 127, 

151-152].

1.3.4.2 Reversible Addition-Fragmentation chain Transfer (RAFT)

One of several kinds of controlled radical polymerisation, RAFT polymerisation is a

highly utilised method for PNIPAM synthesis [129], and allows the design of polymers
17



with complex architectures, such as linear block copolymers [153], comb-like [154- 

155], star [156], brush polymers [157] and dendrimers [158]. It is a method of “living” 

free-radical polymerisation, in other words, the ability for the propagating chain to 

terminate is removed. The specific details of this technique are not relevant in this 

thesis; however the reader is directed to a comprehensive review detailing the scope and 

applications of the RAFT process, published by it’s inventors, Rizzardo et al [159].

1.3.4.3 Atom Transfer Radical Polymerisation (ATRP)

Another example of a living free-radical polymerisation technique is atom transfer 

radical polymerisation (ATRP), which was independently discovered by Mitsuo 

Sawamoto et al and Jin-Shan Wang and Krzysztof Matyjaszewski in 1995. This 

technique affords the production of PNIPAM brushes [160], stars [161], combs [162], 

and copolymers of various architectures [163-166], and unlike RAFT techniques, it 

allows controlled evolution of molecular weight and polydispersity. As a full 

explanation of this technique beyond the scope of this thesis, and the reader is referred 

to an excellent review of this technique by Braunecker et al [167].

1.3.4.4 Radiation polymerisation

Another technique that has been utilised in PNIPAM synthesis is radiation 

polymerisation, and types of radiation with can be used are ionising radiation (using 

linear accelerator electrons [168] or cobalt- 60 gamma rays [169-170]), or UV radiation 

of a particular wavelength.

Radiation can initiate the polymerisation and cross-link the resulting chains. As reported 

by Nagaoka et al [171], the formation of the monomer radical occurs via 1) the direct 

effect of radiation and 2 ) an indirect effect whereby products of water radiolysis react 

with the monomer. They detail the formation of radical on the isopropyl group of the 

monomer (which is stable, and therefore unlikely to contribute to the polymerisation or 

cross-linking) along with the formation of carboxyl alkyl radical [171]. Although it had 

been thought that most monomers required a small amount of chemical cross-linking 

agent and/ or relatively high doses of radiation in order for cross-linking to occur [172], 

Nagaoka et al concluded that no additive was necessary to obtain a PNIPAM hydrogel 

with good mechanical properties using relatively low doses of radiation. As such, this 

straightforward and additive-free process is potentially advantageous for the preparation 

of hydrogels intended for biological applications, providing simultaneous

18



polymerisation, cross-linking and sterilisation without concern for biological response 

to toxic initiator or cross-linking agent.

Radiation can also facilitate the grafting of PNIPAM onto substrates, giving rise to 

thermal hydrophilic/ hydrophobic control of surfaces. For example, As early as 1988, 

Uenoyama and Hoffman endeavoured to be able to inhibit a biological response to 

model implants by grafting PNIPAM onto silicone rubber substrates [173]. Munoz- 

Munoz et al synthesised and grafted PNIPAM onto polypropylene films utilising 

gamma radiation with a view to developing “switching” medicated coatings on medical 

devices. [174].

1.4. Cross-linked po/y(N-isopropylacrylamide) (PNIPAM)

Hydrogels can be classed a) chemically cross-linked, whereby polymer chain functional 

groups are irreversibly anchored to one another via the use of radiation or cross-linking 

agent to form insoluble 3-dimensional networks, or b) physically cross-linked, whereby 

polymer chains are tethered through intermolecular forces such as hydrophobic 

association or van der Walls forces. The key points of interest of both of these class of 

polymer is summarised below.

1.4.1 Chemical crosslinks

Prior to 2002, most conventional PNIPAM hydrogels were synthesised using an organic 

cross-linking agent. PNIPAM gels cross-linked using BIS as chemical cross-linker, 

were introduced by Pel ton and Chibante in 1986 [175]. These gels, however, were 

shown to result in significant limitations with regards to their optical, structural and 

mechanical properties, due to their rigid and inhomogeneous cross-linked networks. The 

cross-linking reaction occurs at irregular points along the polymer chain; therefore chain 

lengths between cross-iinks have a broad distribution (refer to fig 1.11).

Rigid chemical 
bridges between 

neighbouring 
polymer chains

Figure 1.11. Conventional chemically cross-linked gel structure model.
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This heterogeneous aggregation of cross-linking points has also been shown to get 

worse as cross-linker concentration increases [34, 67, 103], severely limiting the 

potential of the PNIPAM to effectively respond to temperature change, as in addition to 

their inferior mechanical properties, chemically Cross-linked networks demonstrate poor 

functional properties such as retarded deswelling rate, low swelling capacity and erratic 

solute release [21, 104, 125]. Several attempts have been made to address the 

aforementioned issues, such as the incorporation of additional inorganic components, 

such as silica [104], inorganic clay [21], and organically modified clays [176]. In all 

these cases, however, mechanical and absorption properties were not significantly 

improved. It would appear that the inorganic components did not behave as reinforcing 

agents as expected, but the role played by the chemical cross-links in the gel’s fragility 

remained dominant.

Several other new types of network structures have been attempted to address the 

mechanical and swellability issues of hydrogel matrices, with varying degrees of 

success. For example, the synthesis of interpenetrating (or double) hydrogel networks 

[177-179], the addition of macromolecular microspheres [180] the incorporation of 

starch-based nanospheres as cross-linking agents [181], the use of silk fibroin [182], the 

development of networks with linear chains and figure-of-eight sliding cross-links [183- 

185] and the use of exfoliated clay as an inorganic cross-linking agent, forming a 

polymer/ clay nanocomposite [186-188]. Of these approaches, it is the polymer/ clay 

nanocomposite systems which provide the most improved mechanical, optical and 

swelling/ deswelling properties.

1.4.2 Physical crosslinks

In 2002, Kazutoshi Haraguchi found that the mechanical, optical, structural and 

absorption properties of PNIPAM were dramatically improved with the use of 

exfoliated inorganic clay platelets in place of conventional organic chemical cross-links. 

This revolutionary nanocomposite hydrogel, which was polymerised in the presence of 

clay in situ using free-radical polymerisation, was shown to exhibit excellent 

mechanical properties, such as 1000% improvement on elongation at break, fracture 

energy up to 3300 times that of its predecessors, and a strength, modulus and swelling/ 

deswelling capacity which could be modified and controlled by adjusting clay 

concentration [188]. These properties were credited to the fact that the clay acts as a 

multifunctional cross-linking agent through non-covalent interactions, and the polymer

20



chains attached to the clay sheets are free and flexible, taking an almost random 

conformation between the relatively large distances between clay platelets (fig 1.12.).

=
Recovery

Elongation

Figure 1.12. A schematic representation of flexible polymer chains grafted onto 

neighbouring clay platelets. A, during  elongation, and B, recovery.

The restrictions placed on chemically cross-linked gels due to large numbers of cross­

links down the length of the chain are no longer applicable, and rather than the brittle 

and fragile gels achievable previously, the gel itself exhibited flexible, rubber-like 

behaviour.

1.5 Clays

Clays occur naturally as constituents of geological material, mainly as fine particles 

(with diameters ranging from a few pm to hundredths of a pm) with a sheet structure 

and a very large surface area. They have been the object of considerable interest to 

academics and industry because they often have a high capacity for cation exchange, 

useful swelling properties, and high adsorption capacities. Common clay minerals 

include smectite, vermiculite, mica, kaolinite, montmorillonite, and chlorite, each with a 

unique behavioural profile.

1.5.1 Structure, Properties and Types of Clays

Clays exist as layered structures. On a molecular level, they are crystalline in structure, 

and composition is determined by the atomic arrangement and combination within each 

clay layer (or platelet). The simple building blocks of a clay platelet consist of silica 

tetrahedra sheets and octahedral sheets. In silica tetrahedra, four oxygen atoms surround 

a central silicon atom (forming a silica-tetrahedral sheet) as shown in fig 1.13.
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o 9  Silicon9  Oxygen

Figure 1.13. D iagram m atic representation of (a) the sheet arrangem ent of silica 

te trahedra and (b) an individual silica tetrahedron.

The silica tetrahedral structure forms a pseudo-hexagonal arrangement, and a hexagonal 

void appears in the centre of each arrangement, referred to as the ditrigonal cavity. The 

oxygen atoms either become external (such as Hydroxyl) groups, or form bonds to an 

octahedral sheet.

Aluminium, iron or magnesiumOxygen

Figure 1.14. D iagram m atic representation of (a) the structure of an octahedral 

sheet, and (b) an individual octahedron.

Octahedral sheets consist of six hydroxyl anions or oxygen atoms surrounding a central 

aluminium, iron or magnesium atom. Adjacent octahedral groups share these anions and 

a planar network is formed (fig 1.14). The tetrahedral and octahedral sheets are 

superimposed on one another and fused by the sharing of oxygen atoms, and the fused 

sheets collectively constitute a clay layer. The layers form regular stacks, with a large 

surface area and a high aspect ratio.
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Figure 1.15. The arrangem ent of clay layers

The basis for classification of these minerals is the molecular arrangement of the 

platelets; for example, a Kaolin group consists of one octahedral layer fused to 

tetrahedral layer (in a 1:1 conformation, (Fig 1.15a)), and has the general formula 

A l2Si20 5(0H)5. Smectites, vermiculites, mica and talc are composed of a single 

octahedral sheet fused to two tetrahedral sheets in a sandwich-style 2:1 conformation 

(Fig 1.15b). Of these, Smectites are of the most utilised in nanocomposite technology 

because of their ability to swell in solvent and undergo cation exchange (also called 

isomorphous substitution). In very simplistic terms, this process involves the 

replacement of inter-layer ions with ions of a similar size and lower charge (for 

example, A l1+ is replaced by Mg2+ in an octahedral sheet, and Si4+ is replaced by A f + in 

a tetrahedral sheet), resulting in an excess of electrons. The net negative charge is 

counteracted by the adsorption of species such as K+, Ca2+, Na+ or Mg2+, which 

provides a charged aqueous environment within the inter-layer space (or gallery). These 

cations are shared between clay layers and results in the layers being bound to one 

another. The distance between similar atomic planes in clay (the interatomic spacing, 

and therefore distance between the clay platelets) is referred to as the d- spacing, and is 

measured in angstroms.

Increasing hydration

t OOOOO'OOOO

6uoooooou

Increasing dehydration e g Oven drying

Figure 1.16. The swelling of clay platelets and resulting increase in d-spacing.



The d-spacing increases when water is absorbed into the inter-layer gallery. The net 

result is a swelling of the clay, as represented in fig 1.16. The swellability of the clay 

depends largely on the strength of this electrostatic bonding between the cations and the 

clay layer, the weaker the interaction, the more easily water and polar molecules can be 

absorbed into the clay gallery. •

1.5.2 Laponite

Laponite is a synthetic smectite clay which appears in several personal, household paper 

and polymer products, and is manufactured at the Rockwood site in Widnes, UK [189]. 

It has Mg2+ and Li+cations in the octahedral sites, with Na+ cations within the interlayer 

space. The idealised formula for Laponite is Nao.7[Mg5.5Lio.4 SigC>2o(OH)4], and the 

platelets are typically ~30nm in diameter with a thickness of 0.92nm [190]. As a 

completely synthetic mineral, it has a well defined structural and chemical composition 

and is devoid of some inorganic components found in natural layered silicates, such as 

iron oxides.

In the field of polymer science, Laponite has proven commercially useful for several 

applications. Amongst these are its dispersion within polymers; as Laponite is 

hydrophilic and swells readily in aqueous media, the clay particles can be dispersed 

amongst hydrophilic polymers (poly(vinyl alcohol), for example) without further 

replacement of interlayer Na+ cations. In the case of hydrophobic polymers (such as 

polyethylene), an improvement in compatibility of the clay and polymer is required. For 

this, interlayer Na+ ions are exchanged for alkylammonium cations and aid the 

dispersion of the inorganic clay particles in the polymeric matrix [191].

1.6 Nanocomposite Materials

As a loose definition, a nanocomposite is a material which incorporates two or more

individual components, one of which has dimensions on the nanometre scale (< lOOnm)

that are combined to obtain the optimal properties of each component and a unique

property profile. The extraordinarily high aspect ratio of the nanoscale phase and its

exceptionally high surface to volume ratio makes nanocomposites differ from

conventional composite materials. The nanoscale component can be made up of sheets

(such as exfoliated layered silicates), particles (such as minerals), or nanofibres (such as

carbon nanotubes). In the presence of the nanoscale component, the properties of the

matrix material are affected drastically. The design and development of composite
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materials, as well as the optimisation of the manufacturing process for optimal 

performance is therefore integral to the engineering of specialist materials.

Nanocomposites are abundantly evident in nature, with naturally-occurring and 

biologically formed reagents and polymers (sugars, carbohydrates, proteins and lipids) 

forming amazingly adept composites which comprise bone, shell, exoskeleton and 

wood.

1.6.1 Polymer-matrix nanocomposites

Nanoparticles such as metals, carbon nanotubes or clays have been incorporated into a 

polymer matrix to enhance mechanical [192-197], barrier [198-203], fire resistance 

[204-206], transparency [187, 193, 197, 207-214], permeability [201, 203, 215-220], 

stiffness [195, 221-226], electrical [227-235] and thermal stability [194, 206, 221, 236- 

238], as well as allow improvements in tensile strength [193, 195-197, 199] and 

elongation at break [195-197, 199, 239] when compared to that of the pristine polymer.

1.6.2 Polymer/ clay nanocomposites

The true beginning of polymer nanocomposite innovation was in 1989 with the 

development of clay/Nylon-6  nanocomposites by Toyota, to produce tough, heat 

resistant timing belt covers which exhibited substantial improvements on the physical 

properties of the pristine Nylon 6  polymer [240-241]. Significant effort was thus applied 

to the understanding and utility of these materials by research groups the world over.

Figure 1.17 shows a diagrammatic representation of the three main types of composite 

morphologies found in clay/ polymer composites. The type of composite obtained 

usually depends on the preparation method and the type of clay used.

When the clay layers are not sufficiently separated in order for the polymer to 

intercalate between them, the composite obtained is distinctly phase-separated, and the 

properties of the material is generally not much changed from that of regular 

microcomposite materials [186]. In addition, a poorly dispersed composite material has, 

in some cases, been shown to exert worsened mechanical properties when compared 

those to the polymer alone [186]. When the structure is intercalated, platelet separation 

has occurred to a degree which allows little more than a few single polymer chains to 

extend between the layers.
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Figure 1.17. Schematic of the types of clay layer orientation in a polymer 

nanocomposite matrix.

Ordered, stacked platelet morphology is still apparent and high interference interactions 

are detectable from X-ray diffraction (XRD) patterns, however. When a complete 

uniform dispersion of clay layers is obtained within a continuous polymer phase, the 

system is considered to be delaminated, or “exfoliated” [242] (fig 1.17.). This 

conformation provides the highest possible aspect ratio, and the large number of 

polymer/ clay surface interactions is responsible for the significant improvement in the 

nanomaterial properties. When these types of structures are achieved, no diffraction 

pattern is visible in x-ray diffractograms.

Owing to their availability, low cost and ability to provide dramatic improvements at 

very low loadings, considerable interest has grown addressing the formulation and 

properties of polymer/ clay nanomaterials. Although the intercalation of polymers with 

layered silicates has been known to science for almost fifty years [243], the art of 

polymer/ clay intercalation has gained rapid momentum in both industry and academia 

in the last 2 decades.

1.6.3 PNIPAM/ Clay Nanocomposites

As previously discussed, the mechanical and swelling properties of PNIPAM has been 

extensively examined [244-246]. It has been observed that at the high concentrations of 

cross-linker required for mechanical stability, most cross-linkers hinder the swelling/ 

deswelling capabilities of the gels and shift as well as broaden the volume transition 

temperature [247]. It is well documented in recent years that the properties of PNIPAM 

are enhanced significantly by the incorporation of inorganic layered silicates into the
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gels [21, 104, 186, 197, 245, 248-249]. The addition of clay minerals to PNIPAM has 

improved the properties of the resulting hydrogel whilst retaining (even enhancing) the 

intrinsic hydrophilic/ hydrophobic phase transition of the polymer.

The development of PNIPAM/ clay nanocomposites was pioneered by Haraguchi et al, 

who in 2 0 0 2 , proposed a model for the polymer/ clay network structure, basing it on 

analytical data from FTIR, DSC, XRD, TEM and TGA measurements [193], and 

reported its compatibility with their mechanical, swelling and optical observations [196- 

197, 250]. They proved the multifunctionality of the clay platelets by calculating that 

the number of cross-linking points per clay platelet were in the order of -50  to -120, 

depending on clay concentration [250]. A substantially increased degree of equilibrium 

swelling is reported when compared to chemically cross-linked PNIPAM gels [34, 251], 

and this is attributed to a relatively low effective cross-link density value.

They also report a consistent elongation at break of the nanocomposite gels to be more 

than 1000%, regardless of the respective polymer or clay content [196], along with 

extremely high time-dependent recovery following large strain applications [197]. Also 

demonstrated are improvements in modulus and strength as a function of clay content 

and polymer density [196]. The swelling and mechanical phenomena are attributed to 

the dynamic polymer/ clay interaction, and therefore adaptive continuous rearrangement 

of polymer chains and clay platelets during elongation, compression, swelling and 

deswelling.

When compared with chemically cross-linked PNIPAM systems, Haraguchi et al report 

a precise and sharp LCST of PNIPAM/ clay gels which is shifted upwards to a small 

degree with increasing clay loading [250]. The manifestation of retractive tensile forces 

at the LCST have also been observed [248] by applying stress to the gel in a 

temperature-controlled aqueous environment. The force profiles of the gels showed 

excellent correlation to volume-change data during temperature-cycling.

Another key observation by the group was the significant improvement in optical 

transparency when chemical cross-links are replaced with clay. The opacity of 

chemically cross-linked systems has been attributed to the inhomogeneous distribution 

of cross-link points [250], and excellent optical clarity of clay networks, regardless of 

clay content or polymer density, indicates a uniform clay/ polymer network. These 

conclusions were supported by dynamic light scattering (DLS), small angle neutron 

scattering (SANS) and small angle x-ray scattering (SAXS) data [252].
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A crucial series of investigations by the group were those surround the biocompatibility 

of their clay/ PNIPAM systems [86 ]. They show that clay/ PNIPAM gels are capable of 

absorbing water, blood plasma and saline to their interstitial spaces, and even exhibit 

good blood and tissue compatibility during short-term cavity implantation. The gels are 

capable of withstanding sterilisation by y radiation or with an autoclave without their 

thermal stability being compromised. Cytocompatibility was shown to be good, 

showing that the presence of PNIPAM or clay did not affect or disturb the culturing 

cells, although the samples were subject to significant purification beforehand (they 

were washed and immersed in regularly- replaced water above the LCST for 10 days), 

in order to remove potentially toxic residual monomer and initiator. They present a 

thermo-sensitive Clay/ PNIPAM substratum which is capable of cell adhesion and 

release without the intervention of trypsin treatment, as a reduction in temperature to 

20°C enabled spontaneous cell detachment from the surface in the form of a cell sheet. 

They also found that cell culture development was not possible in chemically cross- 

linked PNIPAM systems regardless of cross-link concentration [86], despite all 

parameters other than cross-link type being identical.

1.7 Aims and Objectives of This Study

The aim of the presented research was to explore the possibility of applying existing 

nanotechnology to address technical challenges in the development of new PNIPAM- 

based stimuli-responsive materials with a number of high value applications. 

Particularly appropriate uses for these types of materials include targeted drug delivery, 

would management, and biological tissue scaffolding.

One major technical challenge in the production of these materials is that which 

addresses the adjustment of the LCST and response mechanism, and use was made of 

existing synthetic methodologies to innovatively build on the capabilities of existing 

materials. Four main approaches were adopted to achieve this; (i) by examining and 

comparing the effect of the initiation method (UV radiation vs. thermal) and cross-link 

type (chemical vs. physical) on the deswelling mechanism and phase transition 

temperature of the PNIPAM gels, (ii) the examination of how biologically-compatible 

interstitial dopants affect temperature response of PNIPAM gels of various cross-link 

densities, (iii) the study of alcohol- induced cononsolvency behaviour of PNIPAM gels 

as a function of cross-link type, cross-link concentration, initiation method and dopant
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species, and (iiii), the relative response change of PNIPAM as a function of ratio of 

hydrophilic/ hydrophobic comonomer.

Diffusion behaviour of small molecules through thin films of cross-linked PNIPAM was 

examined by attenuated total reflection -  Fourier transform infrared spectroscopy 

(ATR-FTIR) to acquire information on solvent/ polymer interactions and diffusion 

kinetics of the system.

Another major technical issue for these materials is their processability, more 

specifically, overcoming issues which currently pose serious limitations to their use as 

biological substrates and scaffolds. Current technologies include; (i) the prior 

polymerisation of PNIPAM based gels which are subsequently dried and powdered 

prior to injection into the vicinity of a vertebral fracture or other cavity prior to cross- 

linking in situ [253], (ii) the injection of a polymerised gel/ photoinitiator/ cross-linking 

agent solution under the skin, and subsequent permanent cross-linking via exposure to 

UV radiation [254], and ( iii), the formation of a copolymeric hydrogel which is injected 

into damaged inter-vertebral spinal discs followed by a di- or multi-functional aldehyde 

cross-linking agent which forms a stable polymer matrix over a period of 2 days [255]. 

Most existing technologies of this type requires the cross-linking of the preformed 

polymers in situ posing biocompatibility issues, requiring that reactive biohazardous 

and potentially cytotoxic cross-linking agents and /or initiators are injected into body 

cavities, or potentially harmful doses of radiation are required to penetrate the skin. In 

addition, excessive curing times (such as that outlined in example (iii), involve 

substantial impracticalities such as the immobilisation of the patient for several days. 

Existing methods also require several operational steps and specialist equipment, 

therefore requiring significant financial cost, expertise and processing time. PNIPAM 

sheets have also been produced by pouring a monomer/ initiator/ accelerator solution 

into a mould at a temperature above which the initiator dissociates, and allowing 

polymerisation to proceed in situ. This method requires encapsulation of the entire 

apparatus under an oxygen-free, nitrogen atmosphere and extensive post- synthesis 

purification. [86]

Here is presented the development of a novel PNIPAM/ clay precursor which addresses 

all of the aforementioned issues. Polymerised fully at a high temperature as a low 

viscosity, opaque liquid, it solidifies to spontaneously form a clear PNIPAM/ clay gel. 

Investigations undertaken to examine the tolerance of biologically active species to the
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gel in its precursor and post- PTTNAG state, as well as the ability to form such a 

polymer/ clay liquid precursor which encompasses other hydrophilic/ hydrophobic 

moieties in order to tailor the LCST and setting temperature are also presented. This 

invention allows the development of new and exciting technologies which can be 

tailored to specific medical and industrial uses.
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Chapter 2 - Experimental

2.1. Analytical techniques

2.1.1 Infrared (IR) Spectroscopy

Widely used as an instrumental characterisation technique for organic and inorganic 

analysis, infrared (IR) spectroscopy is a popular tool in identifying compound structure. 

The technique relies on the absorption of IR light at frequencies which correspond to 

characteristic vibrational energy levels of chemical functional groups within a sample.

The wavelength of infrared radiation lies within the range of 0.78 and 1000 Dm in the 

electromagnetic spectrum. For IR spectroscopy, the wavelength of IR radiation is 

presented as “wavenumbers” in the units cm"1. The wavenumber is equal to 1/A, (cm"1). 

The infrared region can be subdivided into “near IR” (0.78- 2.5 pm or 12800- 

4000cm'1), “mid-IR” (2.5 -  50pm or 4000-400cm"1), and “far-IR” (50-1000 pm or 400- 

20cm"1) [1]. Electromagnetic radiation is absorbed by molecules, but at only very 

specific wavelengths.

The Plank- Einstein equation (Equation 2.1) demonstrates the relationship between 

Plank’s constant (h ) (6.625 x 10"34 m2 kg s"1 or J s), the energy of a photon (E ), and the 

frequency of the associated electromagnetic wave (v):

E =  hv
Equation 2.1

The frequency of the vibration is directly proportional to the square root of the ratio of 

the vibrational force which is in turn proportional to the masses of the corresponding 

atoms. A lower atomic mass or a stronger chemical bond will result in a higher 

vibrational frequency and vice- versa. For example, C=N and C=C bond stretches occur 

at higher frequencies than those of C=0, C=C, and C=N. Conversely, C-H, O-H , C-C, 

C-N, and N-H stretches occur at the lowest frequencies. In addition, a C-H stretch 

occurs at a higher frequency than a C-C stretch, and a C -0  stretch occurs at a frequency 

lower than them both.

Only specific vibrational energies for a given system are possible and therefore only IR 

photons with specific energies will be absorbed. Therefore vibrational frequencies are

49



quantised, and a change in molecular vibration occurs when the photon frequency 

matches the vibrational frequency of the molecule. A change in net dipole moment 

during vibration is also required for absorption to occur [2]. This is known as the 

selection rule.

2.1.1.2 A ttenuated Total Reflectance - Fourier T ransform  Infrared
Spectroscopy (ATR -FTIR)

W hen light propagates through a material with a high refractive index (ni) at an angle 

(0) greater than the critical angle, it will be totally internally reflected at the interface of 

a material with a lower refractive index (n2). At the point of reflection, a standing wave 

is formed (the evanescent wave) which has components in all directions and decays 

exponentially. It is a surface characterisation technique and appropriate when samples 

are difficult to analyse by transmission, if they are for example, thick or strongly 

absorbing. Crucially, the refractive index of the crystal must be greater than that of the 

sample to ensure the beam is internally reflected rather than transmitted. A schematic of 

the ATR setup is shown in figure 2.1.

Figure 2.1.

The region of total reflection begins at an angle higher than a critical angle using 

Snell’s Law (equation 2.2):

111
sin0c =

111 Equation 2.2

i
i
iiii

Schematic representation of ATR apparatus.
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Where: 6c is the critical angle, ni is the refractive index of the sample and ri\ is the 

refractive index of the ATR crystal.

The depth of penetration (which is ~ 3x dp) of the evanescent wave and subsequent 

sampling depth of the resulting spectrum can be calculated using equation 2.3:

Equation 2.3

It is therefore possible to alter the dp by using crystals of varying refractive indices and 

the angle of incidence.

In practise, the dp usually in the order of a few micrometers, so very close contact 

between sample and crystal is integral. The evanescent field extending into the sample 

decays exponentially with distance from the interface. Each peak in an ATR-FTIR 

spectrum is attributed to a specific quantity of energy absorbed by a specific functional 

group present in the evanescent field.

To analyse solid samples, a sapphire plate is used to firmly press the sample onto the 

diamond crystal surface. For liquid samples, it is sufficient to pour a small amount 

directly onto the crystal. The infrared analysis in this study was performed using a 

Thermo Nicolet Nexus FTIR spectrometer which consists of three major components: a 

radiation source, an interferometer, and a detector. The interferometer used was a 

Michelson interferometer, which is comprised of a fixed mirror, a moving mirror and a 

beam splitter, as shown in figure 2 .2 :
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Figure 2.2. Schematic representation of a Michelson Interferom eter.

An infrared beam is passed into the interferometer and onto the beam splitter, where 

half is reflected to a moving mirror whilst half is transmitted to a fixed mirror. The two 

beams are subsequently recombined at the beam splitter and changes in the relative 

position of the two mirrors causes the generation of an interference pattern. If the two 

mirrors are of precisely equal distance from the beam splitter, the two beams are exactly 

in phase with one another. This is referred to as the point of zero path difference, or 

ZPD, and results in maximum constructive interference. When the moving m irror 

travels in either direction, the two beams become out of phase and at 180°, maximum 

deconstructive interference occurs. In the case of ATR, after recombination the beam is 

passed through the crystal and collected by a detector. There is a proportional 

relationship between the square root of the number of scans performed and the signal to 

noise ratio of the resulting spectrum; the more scans performed, the more improved the 

signal to noise ratio becomes.

A graph of intensity of the path-length difference over the recombined beam after the 

application of a Fourier Transform mathematical operation (an interferogram) contains 

information about the frequencies present in the beam.
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2.1.1.3 ATR-FTIR experimental parameters

Infrared analysis was performed at the Materials and Engineering Research Institute at 

Sheffield Hallam University using a variable temperature Graseby Specac Single 

Reflection Golden Gate ATR sampling accessory, attached to a Thermo Nicolet Nexus 

Spectrometer with a thermocouple accessory set to at 27°C, unless otherwise stated.

The spectra were collected using 64 scans at a resolution of 4cm '1, unless otherwise 

stated.

2.1.2 ATR FT-IR imaging

FTIR imaging using ATR mode is patented by Varian [3], and like conventional FTIR 

spectroscopic instrumentation, ATR-FTIR imaging is effectively a surface technique, 

capable of providing chemical information with a sample penetration depth of ~ 1-2  

microns. Unlike conventional ATR-FTIR, which utilises a single detection element, 

FTIR imaging utilises a combination of a focal plane array detector and an infrared 

spectrometer, allowing spatial as well as spectroscopic data to be collected 

simultaneously over a specified “field of view”. The technique is based on a 64 x 64 

element infrared array detector which allows simultaneous measurements of 4096 

spectra from specified locations in a sample. The result is a 1096-pixel chemical image 

and the technique has been employed to provide chemical "maps" of a wide range of 

materials, from polymers [4-8] to pharmaceutics [9-11], biological systems [12] and 

forensic science [13]. The technique provides information as to analyte location within a 

sample by the depiction of different materials as different colours with the 

straightforward relation of the chemical properties of a material to a certain colour. To 

allow this, a characteristic spectroscopic signature within the chemical properties of a 

material must be located within the spectra. It is important to note that the colours on a 

final ATR-FTIR image have no absolute physical or chemical meaning. Rather, they 

allow comparisons of relative analyte compositions at different loci of the sample.

2.1.2.1 ATR FT-IR imaging experimental parameters

FTIR spectra were collected using a variable temperature Graseby Specac single 

reflection diamond ATR attached to a Thermo Nicolet Nexus bench equipped with a 

Mercury-Cadmium-Telluride detector. 128 scans were performed for each measurement
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at a resolution of 4 cm '1. Single- beam background spectra of the blank ATR crystal 

were collected before each experiment and ratioed against the final spectra.

2.1.3 Dynamic Light Scattering (DLS)

Dynamic Light Scattering (also known as Photon Correlation Spectroscopy) is a popular 

and effective technique used to determine the size of particles in dispersion. It involves 

projecting monochromatic light onto a dispersion containing particles undergoing 

Brownian motion (particle movement owed to bombardment from solvent molecules 

which are themselves in motion). Light is scattered from particles in dispersion, and 

Brownian motion of the particles causes intensity fluctuations in the scattered light. The 

correlation function is used to analyse these fluctuations and give the diffusion 

coefficient, hydrodynamic radius (or z-average particle size), particle size distribution 

and describe the particle’s motion in solution using the Stokes- Einstein equation. Small 

molecules move more quickly in solution than larger particles and therefore produce a 

faster decay in the correlation function. In addition, the technique allows the 

quantification of molecular weight, translational diffusion constant and radius of 

gyration.

Detector

Laser

Sample
Temperature/ time

Data output

Figure 2.3. Schematic representation of a Dynamic Light Scattering setup.

It is important to note that the z-average diameter obtained from Dynamic Light 

Scattering is hydrodynamic diameter and is presumed to be that of a sphere. The 

calculated translational diffusion coefficient will be inclusive of any surface structure in 

addition to the particle core, and will also depend on the particle concentration in the 

dispersion.
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2.1. 3.1 DLS Experimental Parameters

DLS was performed under the supervision of Lee Fielding (Department of Chemistry, 

University of Sheffield) at the University of Sheffield, with kind thanks to Professor 

Steven Armes. The Malvern Zetasizer Nano ZS instrument equipped with a 4 mW He- 

Ne solid-state laser operating at 633 nm. The angle of the back-scattered light detector 

was at 173°.

2.1.4 Gel Permeation Chromatography (GPC)

Gel Permeation Chromatography (or Size Exclusion chromatography - SEC) is one of 

the most utilised, versatile and convenient analytical techniques for the characterisation 

of the total molecular weight and molecular weight distribution of a polymer. It is based 

on the ability to separate molecules according to their “effective size” in solution as 

polymer chains dissolved in an appropriate solvent (the mobile phase) move through a 

column of porous, rigid particles (the stationary phase). Smaller molecules readily enter 

the pores of the stationary phase, thus causing a delay in their elution from the column, 

whilst larger molecules do not enter the pores but pass quickly through the column. 

Upon elution, the sample passes through a detector (or series of detectors) which 

provides information on the quantity of material eluting from the column at any given 

time. The data is processed by analytical software, which references the information 

against a calibration curve of molecular weight vs. retention time. If the reference 

standards are chemically identical to the sample, accurate data are obtained. Often, 

reference standards are only of a similar chemistry to the analysed sample, and in such 

circumstances, results are comparative.

The width of individual chromatographic peaks is indicative of the size distribution of 

the molecules be it “narrow” or “broad”, and the size distribution curve is referred to as 

the molecular weight distribution (MWD) curve.
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Figure 2.4. Schematic representation of Gel Perm eation Chrom atography 

apparatus.

2.1.4.1 GPC Experim ental Param eters

GPC was performed under the supervision of Melanie Hannah (Department of 

Chemistry, University of Sheffield) at the University of Sheffield, with kind thanks to 

Professor Steven Rimmer.

M olecular weights of the linear polymers were determined using a Polymer 

Laboratories gel 10 micron mixed-B LS column and an ERMA refractive index detector 

ERC-7512 at room temperature with GPC grade tetrahydrofuran (THF) (Fisher 

scientific) stabilised with 250ppm butylated hydroxytoluene (BHT) (Aldrich) as the 

flow phase. The flow rate was lml/min with a sample concentration of 10mg/ ml. The 

calibration curve was produced with narrowly distributed anionic polystyrene standards 

(polymer laboratories).
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2.1.5 Thermogravimetric Analysis (TGA)

Thermogravimetric data assesses the thermostability of a sample and relies on excellent 

precision in the measurement of weight, temperature, and temperature change. It allows 

changes in the weight of a sample to be observed as a function of temperature. Points of 

relatively significant weight loss associated with sample degradation can be indicative 

of sample composition, namely water content, solvent residues and levels of organic 

and inorganic components, whereas weight gain might indicate a chemical process such 

as oxidation. The prevention of oxidation reactions can be prevented by continuously 

purging the system with an inert gas.

A TGA instrument typically consists of a high precision balance on which a crucible, 

loaded with approximately 15mg of sample is placed. The crucible is heated in a 

temperature-controlled furnace under a controlled atmosphere. During analysis, the 

sample is heated by what is typically a linear temperature gradient, which can exceed 

1000°C if required. The sample weight is plotted against temperature in real time using 

specialised (STAR E) software.

The shape of the resulting weight loss curve is influenced by several factors:

• A suitable crucible must be chosen so that it is a) able to withstand the highest 

temperature used in the analysis without degrading or undergoing oxidation, and 

b) not chemically interact with the sample.

• The heating rate -  generally speaking, a slower heating rate is preferred as to 

reveal a more detailed weight loss curve and ensure that the temperature of the 

sample is closer to that which is recorded for the furnace, although this can 

result in a reduction of the signal to noise ratio.

• Larger samples may harbour temperature gradients and “trap” volatile 

components, leading to poorly resolved weight-loss peaks [14].

• A large particle size distribution of powders sometimes leads to poor data 

reproducibility [14].
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TGA Curve

aco
Temperature

Negative derivative curve

Temperature

Figure 2.5. Diagrammatic representation of TGA thermogram and derivative 

thermogram (dTG) curves.

A thermogram, shown in figure 2.5, gives the weight change as a function of 

temperature. Often, weight loss curves look similar and transformation is required 

before results can be interpreted clearly. A negative derivative weight loss curve (dTG) 

(figure 2.5) can be created to distinguish points of significant events.

2.1.5.1 TGA Experimental Parameters

Thermogravimetric analysis was performed at the Materials and Engineering Research 

Institute at Sheffield Hallam University using a Mettler TG50 with 15-25ml min'1 N2 

purge. Samples were placed into a clean dry alumina crucible before the temperature 

was increased from 20°C to 800°C at the rate if 1 °C/min'1.
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2.1.6 X-Ray Diffraction (XRD)

XRD is a non-destructive characterisation technique which is used to identify crystalline 

phases and crystal orientation within a sample.

X-rays are electromagnetic radiation with energies of -100  eV to 100 keV. Only short 

wavelength X-rays are used in diffraction instrumentation (IkeV -  120 keV), and these 

are ideally suited for the examination of atomic structural arrangements. In a laboratory 

x-ray instrument, a high- voltage electron beam bombards a solid target, and the 

electron deceleration on impact generates a continuous stream of parallel 

monochromatic X-rays. The X-rays penetrate the sample bulk and provide information 

about its structure.

The atoms in a crystalline material are arranged into atomic planes that are spaced a 

fixed distance apart (d), and can be resolved into many atomic planes, each with a 

different d-spacing. Some waves will leave the sample “in phase” and will result in 

defined X-ray beams with high energies leaving the sample at various angles. These 

angles and intensity of the diffracted beam are used to calculate interplanar atomic 

spacings. This phenomenon is called X-ray diffraction.

Incident plane
wave

Constructive 
interference when 

11/ =  2d sin 0
d sin 6

Figure 2.6. A schematic representation of Bragg’s diffraction.

These diffracted beams are detected and the intensity recorded using a counter on a

moving arm moving at a constant angular velocity. The resulting trace gives the

diffracted beam intensity as a function of degrees 20.
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Figure 2.6 shows how Bragg’s diffraction operates. Two parallel incident plane waves 

make an angle theta (0). A beam of maximum intensity will be reflected if these two 

waves are in phase. The difference in path length between the two reflected waves must 

then be an integral number of wavelengths, (X,). This relationship is expressed 

mathematically using Bragg’s law [ 15]:

nk = 2d sin 0

Equation 2.4

Where n is an integer determined by the order given, and d  is the spacing between 

planes of the atomic lattice.

2.1.6.1 XRD Experimental Parameters

X-ray Diffraction analysis was performed at the Materials and Engineering Research 

Institute at Sheffield Hallam University using a Phillips-expert XRD with Cu X-ray
o

source A=1.542A,with a Philips mimprop detector, and standard masks for the x-ray 

beam (% inch divergence slit, .Vi inch anti-scatter slit, and a 10cm fixed mask).

The samples were dried, crushed to a powder and analysed on an aluminium mount. A 

diffraction trace was produced from the analysis of diffraction between 5 and 90 

degrees theta.
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2.1.7 Scanning Electron Microscopy (SEM)

The scanning electron microscope (SEM) is a method used for obtaining high resolution 

images of surfaces by scanning a primary beam of high-energy electrons across the 

surface of a sample. The kinetic energy of these electrons is dissipated as a variety of 

signals emitted as a result of electron- sample collisions. For example, high resolution 

SEM micrographs are produced by the detection of secondary electrons, an electron 

backscatter diffraction detector (EBSD) uses back-scattered electrons to aid the close 

examination of the crystallographic orientation of crystalline or polycrystalline 

materials, and an energy dispersive x-ray spectrometer (or EDS) allows the acquisition 

of qualitative and quantitative elemental information from characteristic x-rays. X-ray 

emission is the result of the removal of an inner shell electron from the sample after its 

collision with an incident electron. This causes a higher energy electron to replace it and 

release energy of a specific wavelength corresponding to that specific element.

Typically, a surface area of between ~5 microns to 1cm can be imaged at any one time 

with a conventional SEM setup, with a magnification of approximately 10 to 500,000X. 

A large depth of field yields a 3-dimensional image and reveals details of the surface 

texture and structure.

Special considerations are as follows:

• Samples must be self-supporting and fit into the microscope chamber. Typically 

this is around 10cm in width and rarely more than 4cm in height.

• In the majority of cases, the sample must be stable in a vacuum of around 10'5 - 

10'6 torr. Wet samples and most organic materials are likely to outgas as such 

pressures and are unsuitable for conventional SEM analysis. Such samples can 

be successfully analysed, however, in specialised “low vacuum” and 

“environmental” SEMs (LVSEM and ESEM, respectively).

• EDS detectors are not capable of detecting very light elements (Hydrogen, 

Helium, and Lithium), and many instruments cannot detect elements with 

atomic numbers lower than 11 [16].

• Unless the instrument is capable of .operation in a low vacuum mode, electrically 

insulating samples must have an electrically-conductive coating such as carbon 

or gold for study in conventional SEM systems.
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Figure 2.7. Schematic of a Scanning Electron Microscope [17]

In this thesis, all SEM data was collected in low vacuum (LV) mode without the need 

for carbon coating.

2.1.7.1 SEM Experimental Param eters

The electron micrographs were taken at the Materials and Engineering Research 

Institute at Sheffield Hallam University by Mr. Stuart Creasey in low vacuum (LV) 

mode using a FEI NO VA nanoSEM 200 Scanning Electron Microscope. A Helix 

detector insert was used to obtain the images with an operational water vapour pressure 

of 0.8-1.2 Torr, together with an accelerating voltage o f 5KV and spot size o f 4.
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2.1.8 Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight
Mass Spectrometry (MALDI-TOF-MS)

Matrix-assisted laser desorption/ ionisation time-of-flight mass spectrometry (MALDI- 

TOF MS) has become a fast, reliable and reproducible technique in the analysis o f 

biom olecules and polymers. Analytes are mixed with a “matrix” -  a low molecular 

weight compound with an absorption maximum at the laser wavelength (typically a- 

cyano-4-hydroxy cinnamic acid, but dependent on the nature o f the analyte and type o f  

measurement to be taken) [18-19]. A mixture o f matrix and analyte is applied to a metal 

plate and allowed to dry.

The plate is then inserted into a vacuum chamber via a vacuum lock where the analysis 

takes place. Pulsed laser radiation (377nm) is focussed onto the sample plate and energy 

is absorbed by the matrix molecules. A typical MALDI-TOF-MS set-up is shown in 

figure 2.8.

Pulsated 
laser light

Reflector
detector Reflector

Drift region

Sample 
matrix plate

Linear
detector

Time of flight m/z

Figure 2.8. Schematic of a M atrix-assisted laser desorption/ ionisation time-of- 

flight mass spectrom eter with a typical spectrum .

As a result, desorption o f the matrix and co-crystallised analyte occurs at speed into the

“drift region” or the gas phase o f the instrument. Concurrently, collisions occur between

ionised matrix molecules and analyte m olecules, transferring their charges across and

producing mainly singly-charged, metastable ions. After desorption, charged analytes

are accelerated in an electric field in a high voltage grid. An identical kinetic energy

applied to all ions ensures that ions o f the same mass travel at the same speed. The ions

travel through the drift region under high vacuum until they reach a detector. Lighter

ions travel faster and reach the detector earlier than heavier ones; therefore they are

separated according to their “time o f flight” and hence, size. Flight times are converted

to ion masses in mass per charge, or m/z. It is important that these ions are detected

prior to their decomposition (typically within 10° seconds).
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Reflector tubes are often used to improve resolution by correcting a distribution in start 

velocity and lengthen the flight path by reversing the drift direction in an electric 

counter field before reaching the detector [20].

2.1.8.1 MALDI-TOF-MS Experim ental Param eters

All mass spectrometric analyses were conducted with an Applied Biosystem s Voyager- 

DE STR instrument with a 2m flight path in positive ion mode. The accelerating voltage 

was kept at 2500, the delay time was 500 nsec and the shot number was 300.

2.1.9 Dynamic Mechanical Analysis (DMA)

Dynamic Mechanical Analysis, or DM A, is a characterisation technique whereby a 

small sinusoidal deformation is applied to a sample o f a known geometry. The sam ple’s 

subsequent response to applied stress, frequency and temperature are measured.

Because a sinusoidal force is applied, the modulus can be presented as an in-phase 

component (storage modulus), and an out-of-phase component (loss modulus), as 

represented in figure 2.9. The storage modulus is indicative o f the sam ple’s elastic 

properties. The ratio o f the loss modulus to storage modulus is given as tan delta, or 

“tan 5” and is very often referred to in literature as “damping”. It quantifies the energy 

dissipation o f a sample.

Sine Wave detected 
by instrument

orce

ForceSine Wave 
generated by force 
motor

Figure 2.9. The relationship between applied sinusoidal stress and strain  of an 
elastic material measured by DMA, with the resultant phase lag.
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For the DMA measurements in this thesis, frequency sweep measurements were 

applied. For this, a sample of known geometry is held between two surfaces. The 

oscillatory displacement, which is defined by its amplitude and frequency, was applied 

on one side of the sample and the reaction force was measured at the opposite side. 

Measuring the amplitude of the sine wave and the lag between the stress and strain sine 

waves of the material response allows the calculation of the modulus, viscosity and 

damping of a sample.

An important requirement is that the sample is prepared suitably with reasonable aspect 

dimensions, and be of even thickness with parallel sides.

2.1.9.1 Dynamic Mechanical Analysis (DMA) Experimental parameters

A PerkinElmer DMA8000 model was used in compression mode at 25°C, at frequencies 

between 0.1-10 Hz in ambient humidity.

2.2 Materials and Sample Synthesis

2.2.1 Chapter 3 - The Development of a PNIPAM/ Clay 
Nanocomposite Liquid Gel Precursor

2.2.1.1 Materials Used in Chapter 3

AMsopropylacrylamide, 99% (NIPAM) monomer was purchased from Sigma-Aldrich 

chemicals unless otherwise stated, and recrystallised from hexane before being allowed 

to dry for 2 days at room temperature, unless otherwise stated. The inorganic clay, 

synthetic hectorite Laponite RD, was supplied by Rockwood additives Ltd and was used 

without further treatment or purification. 2-2'-azobisisobutyronitrile (AIBN) (Sigma) 

was recrystallised from methanol and dried in vacuum. Gelatine and hyaluronic acid 

(bovine vitreous humour, lyophilised) (HA) were supplied by Fluka Analytical and used 

without further treatment. 1,1,1,3,3,3 hexafluoroisopropanol (HFIP) and sodium 

chloride (NaCl) were purchased from Sigma-Aldrich (Spain) and.used without further 

treatment. 1,8,9-trihydroxyanthracene (dithranol) was purchased from Sigma UK and 

used without further treatment. All water was 18 mf2, distilled and deionised. Water 

used as a solvent in the gel synthesis was also degassed by purging with nitrogen gas for 

a minimum of 30 minutes prior to use.
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2.2.1.2 Synthesis and Preparation  of a PNIPAM / Clay nanocomposite

Hydrogel P recursor Liquid.

All glassware, including sample vials were thoroughly washed, rinsed with acetone and 

dried in a drying cupboard overnight prior to use. An appropriate amount of laponite 

clay was weighed before being dispersed in deionised water, which had been previously 

purged with nitrogen gas for 30 minutes prior to use, and exfoliated under rapid stir for 

24 hours. NDPAM monomer and AIBN were weighed and added to the mixture, before 

stirring'for a further 2 hours. Pure PNIPAM formulations were prepared identically, 

omitting the presence of clay. Pure clay suspensions were prepared by dispersing the 

appropriate amount of clay in water for 24 hours.

To prepare a hydrogel precursor solution which contains 10% solids of which 1% is 

clay (otherwise denoted lCio), a transparent aqueous solution consisting of water (9g) 

exfoliated inorganic clay (O.lg) (or 9.1g of the original exfoliated suspension), AIBN 

(0.009g) and NIP AM (0.9g) was prepared (N.B. In all cases, the ratio of NIP AM to 

AIBN was kept at 99:1). The nomenclature format is as follows:

XCy

Where x  is the overall percentage of clay by weight, and y denotes the overall percentage 

of “solids” (discounting AIBN , therefore clay + NIP AM) by weight of the hydrogel 

precursor and subsequent gel.

Table 2.1. PNIPAM  and PCPH  form ulations used in chapter 3

Sample code Overall composition w/w

OCio 10% PNIPAM, 90% water

.25Cio 9.75% PNIPAM, .25% clay, 90% water

.5C,0 9.5% PNIPAM, .5% clay, 90% water

lCio 9% PNIPAM, 1% clay, 90% water

0C5 5% PNIPAM, 95% water

•25C5 4.75% PNIPAM, .25% clay, 95% water

•5C5 4.5% PNIPAM, .5% clay, 95% water

•5Co .5% clay, 99.5% water

OCio 10% PNIPAM, 90% water
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PNIPAM samples synthesised without the presence of clay (with sample codes 0Cy), “y” 

denotes the percentage of NIP AM by weight of the monomer solution (discounting 

AIBN, which is always 99/1 wt.-% NIP AM/ AIBN). For example, “OCio” indicates a 

lOg sample of monomer solution prepared using 9g water, lg  NIP AM and 0.01 g AIBN. 

Table 2.1. gives the sample codes and corresponding compositions of all nanocomposite 

gels examined in this chapter.

Unless otherwise stated, polymerisation was allowed to proceed in an oil bath preset to 

80°C for 24 hours. For experiments which require nanocomposite gel (post-PTTNAG) 

systems, the resulting polymer- clay precursor hydrogel (PCPH) was allowed to cool at 

room temperature inside glass vials (unless otherwise stated) and subsequently solidify 

in situ for 2  hours prior to use.

2.2.1.3 Formation of the Gelatine-incorporated PCPH

The hydrogel precursor liquid was synthesised as described in Section 2.2.1.2.

A gelatine solution was made by warming a 1:1 w/w mixture of gelatine granules and 

deionised water to 70°C and stirring until smooth. A measured quantity of this solution 

Was combined with the hydrogel precursor solution and carefully stirred in a heated 

ultrasonic bath (40 KHz at 70°C) for 2 hours until a homogenous pale-yellow viscous 

liquid, the gelatine-incorporated PNIPAM/ Clay hydrogel precursor, is formed. The 

gelatine-incorporated PCPH formulations used in this chapter, along with their overall 

compositions are given in table 2 .2 .

Table 2.2. The gelatine- incorporated PCPH formulations used in chapter 3

Sample code Overall composition w/w

lCio 9% PNIPAM, 1 % clay, 90% water

1C ioG5 8.55% PNIPAM, 0.95% clay, 8 8 % water, 2.5% gelatine

1C10G10 8.1% PNIPAM, 0.9% clay, 86% water, 5% gelatine

1C ioG15 7.65% PNIPAM, 0.85% clay, 84% water, 7.5% gelatine

1C ioG20 7.2% PNIPAM, 0.8% clay, 82% water, 10% gelatine

1C ioG25 6.75% PNIPAM, 0.75% clay, 80% water, 12.5% gelatine
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2.2.1.4 Formation of the HA-incorporated PCPH

The hydrogel precursor liquid was synthesised as per Section 2.2.1.2.

An aqueous HA solution was made by firstly preparing a 50:1 w/w mixture of crude HA 

and deionised water. The mixture was refrigerated for 48 hours, during which time it 

was removed and stirred vigorously every 12hours. A measured quantity of this 

solution, which now was a very viscous homogeneous liquid, was then combined with 

the hydrogel precursor solution and carefully stirred in a heated ultrasonic bath (40 KHz 

at 40°C) for 1 - 2 hours until a homogenous milky liquid, the HA-incorporated PNIPAM/ 

Clay hydrogel precursor, is formed. The HA-incorporated PCPH formulations used in 

this chapter, along with their overall compositions are given in table 2.3.

Table 2.3. The hyaluronic acid- incorporated PCPH formulation used in chapter 3

Sample code Overall composition w/w

lC.o 9% PNIPAM, 1% clay, 90% water

1CioHA5 8.55% PNIPAM, 0.95% clay, 90.4% water, .1% HA

IC 10HAIO 8 .1 % PNIPAM, 0.9% clay, 90.8% water, .2% HA

1CioHA15 7.65% PNIPAM, 0.85% clay, 91.2% water, .3% HA

1CioHA20 7.2% PNIPAM, 0.8% clay, 91.6% water, .4% HA

1CioHA25 6.75% PNIPAM, 0.75% clay, 92% water, .5% HA

2.2.2 Chapter 4 - The Processability of PNIPAM/ Clay
Nanocomposite Liquid Gel Precursor formulations.

2.2.2.1 Materials used in chapter 4

The materials used in this chapter are detailed in section 2.2.1.1. The synthesis, 

nomenclature format and compositions of PNIPAM/clay PCPH formulations are 

detailed in section 2.2.1.2, and compositions of PNIP AM/cl ay/gelatine PCPH 

formulations are detailed in section 2.2.1.3 of this thesis.
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2.2.3 Chapter 5 - The Characterisation of PNIPAM/ Clay
Nanocomposite Liquid Gel Precursor Formulations Post- PTTNAG.

2.2.3.1 Materials used in chapter 5

The materials, synthesis, nomenclature format and formulation compositions are

detailed in sections 2 .2 .1.1 and 2 .1.1.2 .

2.2.4 Chapter 6 -  The Influence of Alcoholic Solutions and Dopants
on the Phase Behaviour of PNIPAM.

2.2.4.1 Materials used in chapter 6

AMsopropylacrylamide, 99% (NIPAM) monomer was supplied by Sigma-Aldrich 

chemicals unless otherwise stated, and recrystallised from hexane before being allowed 

to dry for 2 days at room temperature, unless otherwise stated. The inorganic clay, 

synthetic hectorite Laponite RD, was supplied by Rockwood additives Ltd and was used 

without further treatment or purification. N, N ’-methylenebisacrylamide, 99% (BIS) 

(Sigma) was used as received, Diethoxyacetophenone (Sigma) was used as received and 

2-2'-azobisisobutyronitrile (AIBN) (Sigma) was recrystallised from methanol and dried 

in vacuum. Gelatine and hyaluronic acid (bovine vitreous humour, lyophilised) (HA) 

were supplied by Fluka Analytical and used without further treatment. Laboratory grade 

ethanol and methanol were supplied by Sigma Aldrich Chemicals. All water was 18 

mQ, distilled and deionised. Water used as a solvent in the gel synthesis was also 

degassed by purging with nitrogen gas for a minimum of 2  hours prior to use.

2.2.4.2 Synthesis of thermally- initiated Clay/ PNIPAM Nanocomposite
Hydrogels

To prepare a hydrogel precursor solution which contains 10% solids of which 1 % is 

clay (referred to as IC jo), a transparent aqueous suspension consisting of water (9g) 

exfoliated inorganic clay (O.lg) (or 9.1 g of the original exfoliated suspension), AIBN 

(0.009g) and NIP AM (0.9g) was prepared (N.B. In all cases, AIBN concentration is 1% 

that of NIP AM). Then, polymerisation was allowed to proceed in an oil bath preset to 

80°C for 24 hours. The nomenclature format is as follows:

X Cy

Where x is the overall percentage of clay by weight, and y denotes the overall 

percentage of “solids” (clay + NIP AM) by weight of the hydrogel precursor and 

subsequent gel.
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For example, “.5Cio” indicates a lOg sample of hydrogel precursor prepared using 9g 

water, 0.95g NIP AM, 0.05g clay, 0.0095g AIBN (Table 2.4). The resulting polymer- 

clay precursor hydrogel (PCPH) was allowed to cool at room temperature within the 

glass vials and set in situ.

2.2.4.3 Synthesis of ultra-violet (UV) -initiated Clay/ PNIPAM
Nanocomposite Hydrogels

The samples were prepared using the protocol outlined in section 6 .1.1.2, with the 

exception that diethoxyacetophenone was used as an initiating agent in place of AIBN. 

For UV-irradiation initiation, the vials were placed under a UV flux (wavelength 

366nm) for 20 hours, turning once after 10 hours. The matrix of sample codes for all 

clay/ PNIPAM gels examined in this chapter along with their compositions are given in 

Table 2.4.

Table 2.4. The matrix if all clay/ PNIPAM gels examined in chapter 6

UV initiated Thermally initiated Overall composition
.25CioU .25Cio 9.75% PNIPAM, .25% clay, 90% water

.5CioU .5Cio 9.5% PNIPAM, .5% clay 90% water

IC10U lCio 9% PNEPAM, 1% clay, 90% water

2.2.4.4 Synthesis of N, N’-methylenebisacrylamide (BIS) cross-linked
PNIPAM hydrogels

Organic cross-linking agent N, N’-methylenebisacrylamide (BIS) was weighed before 

being dissolved in degassed deionised water and stirred for a minimum of 2  hours.

Next, NIP AM monomer and initiator were weighed and added to the mixture, before 

stirring for a further 2 hours. The homogenised solution was injected into 35mm x 

10mm glass vials prior to polymerisation.

2.2.4.5 Synthesis of thermally-initiated BIS cross-linked PNIPAM hydrogels

To prepare chemically cross-linked hydrogels that contain 10% solids of which 1% is 

BIS (or lBISio), a transparent aqueous solution consisting of water (9g) BIS (O.lg), 

AIBN (0.009g) and NIP AM (0.9g) was prepared. Then, polymerisation was allowed to 

proceed in situ in an oil bath preset to 80°C for 24 hours. The nomenclature format is as 

follows:

JCBISy
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Where * is the overall percentage of BIS by weight, and y denotes the overall percentage 

of “solids” (BIS + NIP AM) by weight of the subsequent gel.

For example, “.5BISio” indicates a lOg sample of chemically cross-linked hydrogel 

prepared using 9g water, 0.95g NIP AM, 0.05g BIS, and 0.0095g AIBN (Table 2.5).

2.2.4.6 Synthesis of UV-initiated BIS cross-linked PNIPAM hydrogels

The samples were prepared using the protocol outlined in section 6.3.2.1, with the 

exception that diethoxyacetophenone was used as an initiating agent in place of AIBN. 

For UV-irradiation initiation, the vials were placed under a UV lamp (wavelength 

366nm) for 20 hours, turning once after 10 hours. The matrix of sample codes for all 

BIS/ PNIPAM gels, examined in this chapter along with their compositions is given in 

Table 2.5

Table 2.5. The matrix of all BIS/ PNIPAM gels examined in chapter 6

UV initiated Thermally initiated Overall composition

.25BISioU .25BISio 9.75%PNIPAM, .25% clay, 90% water

.SBISioU .5BISio 9.5% PNIPAM, .596 clay, 9096 water

IBIS10U lBISio 996 PNIPAM, 196 clay, 9096 water

The resulting hydrogels are a series of translucent, rubbery, rod-shaped gels of varying 

tensile strengths. Although definitive quantitative observations will be seen in future 

work, tensile strength of the gels improves with increasing concentration of clay when 

initiated thermally, and worsens when initiated by UV irradiation. All gels cross-linked, 

with BIS were fragile and needed to be handled with the greatest care, only slight 

deformation was required to cause splitting and breakage of the gel rod. This is in good 

agreement with observations made by Haraguchi et al [15].

2.2.4.7 Formation of diluted clay/ PNIPAM nanocomposite hydrogels

All diluted gels were initially synthesised as thermally-initiated PCPHs as described in 

section 6 .1.1.2 and Table 2.4. Whilst still in their liquid state at 80°C, a precise quantity 

of hot deionised water was added to the PCPH and the mixture was stirred gently before 

being allowed to cool and solidify at room temperature. The gels were allowed to "set" 

for at least 4 hours at room temperature in 35mm x 10mm glass vials prior to carefully 

being sliced into discs of ~2mm thickness. The matrix of the composition of PCPH, the



extent of dilution and overall resulting gel composition examined in this chapter is 

given in table 2 .6 .

Table 2.6. The matrix of diluted PCPH gels examined in this chapter.

Sample (from thermally initiated PCPH) Overall composition

100% .25Cio 9.759o PNIPAM, .259b clay, 909o water

75% .25Cio, 259o water 7.31259oPNIPAM, .18759b clay, 92.59b water

50% .25Cio, 50% water 4.8759o PNIPAM, ,1259b clay, 959o water

1009b .5Cio 9.59b PNIPAM, .59o clay, 909o water

759o.5Cio, 259owater 7.1259bPNIPAM, .3759b clay, 92.59o water

509o .5Cio, 509o water 4.759oPNIPAM, .259b clay, 959o water

1009b lCio 99oPNIPAM, 19b clay, 909b water

759o lCio, 259o water 6.759bPNIPAM, .759o clay, 92.59o water

509o lCio, 509o water 4.59o PNIPAM, .59o clay, 959o water

2.2.4.8 Formation of Gelatine -  doped clay/ PNIPAM nanocomposite 
hydrogels

Please refer to section 2.2.1.3.

2.2.4.9 Formation of hyaluronic acid (HA) -  doped clay/ PNIPAM 
nanocomposite hydrogels

Please refer to section 2.2.1.4.

2.2.5 Chapter 7 PCPH as an injectable, functional therapy for
degenerative disc disease.

2.2.5.1 Materials used in chapter 7

The materials used in this chapter to synthesise PNIPAM/ clay PCPH materials are 

detailed in section 2.2.1.1. The synthesis, nomenclature format and compositions of 

PNIP AM/clay PCPH formulations are detailed in section 2.2.1.2, and compositions of 

PNIPAM/clay/gelatine and PNIPAM/clay/HA PCPH formulations are detailed in 

section 2.2.1.3, and 2.2.1.4, respectively. For materials used for the synthesis of a 

PNIPAM/ clay/ DMAc PCPH, the materials used are detailed in section 2.2.1.1, with 

the addition of N, N-Dimethylacrylamide (DMAc) (Aldrich, 99%), which was used as 

received. For materials used for the synthesis of a PNIPAM/ clay/ DMAc PCPH, the
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materials used are detailed in section 2 .2 .1.1 with the addition of glycidyl methacrylate 

(GMAc) (Aldrich, 99%), which was used as received.

2.2.S.2. P reparation  of a PNIPAM / clay/ DMAc PCPH

In all cases, the % DMAc in the system refers to the % of overall monomer. 

Polymerisations were carried out using the protocol detailed in section 2.2.1.2. The 

nomenclature format is as follows:

XCyDZ

Where jc is the overall percentage of clay by weight, and y denotes the overall percentage 

of “solids” (discounting A IB N , therefore clay + NIP AM + DMAc), D denotes 

comonomer DMAc and z is the % DMAc as a function of total monomer by weight. All 

overall DMAc/PNIPAM PCPH compositions and their sample codes are given in Table 

2.7.

Table 2.7. PNIPAM  PCPH  and DMAc/PNIPAM PCPH  form ulations used in 

chapter 7

Sample code Overall composition w/w

i c 10 9% NIPAM, 1 % clay, 90% water

lCioDIO 8.1% PNIPAM, .9% DMAc, 1% clay, 90% water

1C ioD 13 7.83% PNIPAM, 1.17% DMAc, 1% clay, 90% water

IC 10D2O 7.2% PNIPAM, 1.8% DMAc, 1% clay, 90% water

1C ioD 3 0 6.3% PNIPAM, 2.7% DMAc, 1% clay, 90% water

2.2.5.3. P reparation  of a PN IPA M /clay/G M A c PCPH

In all cases, the % GMAc in the system refers to the % of overall monomer. 

Polymerisations were carried out using the protocol detailed in section 2.2.1.2. The 

nomenclature format is as follows:

xCyDz

Where x is the overall percentage of clay by weight, and y denotes the overall percentage 

of “solids” (discounting AIBN, therefore clay + NIPAM + GMAc), D denotes
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comonomer GMAc and z is the % GMAc as a function of total monomer by weight. All 

overall GMAc/PNIPAM PCPH compositions and their sample codes are given in Table 

2 .8 .

Table 2.8. PNIPAM PCPH and GMAc/PNIPAM PCPH formulations used in 

chapter 7

Sample code Overall composition w/w

1C10 9% NIPAM, 1 % clay, 90% water

1Ci0G20 7.2% PNIPAM, 1.8% GMAc, 1% clay, 90% water

1CioG50 4.5% PNIPAM, 4.5% GMAc, 1% clay, 90% water

IC 10G8O 1.8% PNIPAM, 7.2% GMAc, 1% clay, 90% water
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The Development of a PNIPAM/ Clay 
Nanocomposite Liquid Gel Precursor



Chapter 3 - The Development of a PNIPAM/ Clay 
Nanocomposite Liquid Gel Precursor.

3.1 Introduction

Many potential functions of PNIPAM can be achieved by producing gels with specific 

behavioural profiles which can be tailored through cross-link type, initiation method 

and incorporation of copolymers. The full utility of PNIPAM gel is realised when these 

gels are specifically tailored for their intended purpose. For example, flat sheets, films 

and various "shapes" of PNIPAM have been produced by; end-grafting PNIPAM 

bushes on surfaces [1], using a Theologically complex spin coating technique [2] 

attaching to a support by photo cross-linking of preformed polymer chains [3], photo 

polymerisation in situ in the presence of a cross-linking agent [4], or initiation of 

polymerisation from self-assembled monolayers [5]. Haraguchi [6] synthesised 

PNIPAM sheets in situ via thermal free radical initiation by bringing the aq. monomer/ 

initiator solution up to the disassociation temperature of the initiator and allowing 

polymerisation to proceed in the desired shape. All of the aforementioned techniques 

require several processing steps, some degree of specialist equipment and expertise and 

therefore moderate financial cost.

Haraguchi successfully synthesised clay/ PNIPAM gels in situ [6] in the form of flat 

sheets at ambient temperature using potassium persulfate (KPS) as a thermally- 

dissociated free-radical initiating agent with tetramethylethylenediamine (TEMED) as 

an accelerator. Numerous attempts in the presented research to devise a method of 

polymerising PNIPAM sheets in situ at high temperatures (specifically 60-80 °C to 

allow dissociation of AIBN) whilst keeping the system devoid of oxygen (and thus 

preventing chain growth termination) were met with failure, largely due to 

pressurisation issues and the thermal expansion of the gel during propagation causing 

any air-tight seal to become dislodged.

The problem was solved with the following novel discovery: When clay/PNIPAM  

formulations are subject to thermally initiated free-radical polymerisation, polymer 

propagation and the process of cross-linking occur separately. After 20-25 minutes at 

80°C, the NIPAM/ clay/ AIBN/ water solution quickly and spontaneously loses its 

transparency, transforming from a clear monomeric suspension to a watery milk-like
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liquid. It is after this point that subsequent cooling of the liquid (which shall henceforth 

be referred to as the polymer-clay precursor hydrogel or PCPH) to a temperature below 

the LCST of the polymer (~33°C for PNIPAM), results in the spontaneous formation of 

a transparent gel, a process which shall henceforth be referred to as "phase transition 

triggered nanoparticle anchored gelation", or PTTNAG. The PTTNAG of the PCPH and 

subsequent formation of the gel is permanent and the gel does not re-liquefy when the 

temperature is increased, but is instead a fully thermally switchable PNIPAM/ clay 

nanocomposite hydrogel capable of all the very high swelling/ deswelling capacity and 

optical transparency changes reported by Haraguchi [7-12].

In this chapter we examine this phenomenon in depth and put forward possible reasons 

for its occurrence. Conclusions regarding electrostatic interactions during PTTNAG are 

drawn from attenuated total reflectance -  Fourier transform infrared spectroscopy 

(ATR-FTIR), the viscosity of the PCPH is investigated using Ostwald viscometery, 

mechanism of polymerisation in situ, as well as z-average hydrodynamic diameter of 

aqueous particles during polymerisation and PTTNAG is determined using dynamic 

light scattering (DLS).

3.2 Preparation of a PNIPAM/ clay nanocomposite liquid gel 
precursor

The materials and methods used to synthesise PNIPAM/ Clay/gelatine nanocomposite 

liquid gel precursor are given in section 2.2.1.1.

3.3 Monitoring the PTTNAG of PNIPAM/ Clay 
Nanocomposite Liquid Gel Precursor using Attenuated Total 
Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR).

The dominant intermolecular force in a very large number of natural and synthetic 

polymers is hydrogen bonding. It carries huge influence on behaviours such as phase 

transition, melting temperature and glass transition temperature (Tg). ATR-FTIR is a 

simple, effective and very widely utilised technique in the investigation of hydrogen 

bonding in polymeric systems and is also ideally suited to the acquisition of structural 

information. Although infrared spectroscopy is very sensitive to changes in hydrogen 

bonding, intermolecular and intramolecular O-H oscillator coupling results in highly 

complex water spectra (coupling is observed between symmetric v(OH) and 

antisymmetric v(OH) and between O-H oscillators on other molecules). In order to
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achieve isolation of distinct O-H vibrations, decoupling of vibrational modes using 

mixtures of HOD and H2O or D2O have been examined [13]. Two separate models 

exist which explain spectral bands for water. The mixture model represents water 

molecules as existing in two states; hydrogen bonded and non-hydrogen bonded, and 

the continuum model where the spectral band consists of a continuum of progressively 

strengthening hydrogen bonds as the electromagnetic frequency decreases.

A great deal of spectroscopic work has been published which addresses the binding 

states of water in polymers, which behaves quite anomalously when compared to pure, 

“free” water. Techniques employed for this purpose include FTIR [14-23], Raman [24- 

28], NMR [29-33], and neutron scattering [34-38]. The nature of water present in 

polymers depends on several factors, including component fraction and polymer 

hydrophilicity. Up to four water hydration levels or “states” have been reported, and the 

literature has been well reviewed [39].

IR spectroscopy has been a particularly useful tool in the determination of hydrogen 

bond change during polymer hydration, particularly the study of hydration and 

hydrogen bonds of amide groups [40]. The timescale for the formation and destruction 

of hydrogen bonds (10“12s) is longer than that of vibration (10'14s) [18], which enables 

the observation of several v(OH) absorbance bands manifested from separate hydrogen 

bond types [18]. Absorbance bands arising from water-water and polymer-water 

interactions are broadened and intensified with increasing water concentration. 

Simultaneously, peak centre shift of v(OH) bands to lower frequencies are observable, 

whilst the v(OH) peak centre shifts to a higher frequency [19,41]. Generally speaking, a 

change in hydrogen bond strength is observable in ATR-FTIR spectra as "shifting "of 

the corresponding band; weakening bonds shift the band to higher wavenumbers, 

strengthening bonds shift the band to lower wavenumbers [18].

ATR-FTIR was used to probe the thermal phase transition of PNIPAM and 

accompanying PTTNAG behaviour of PCPH suspensions. The parameters for data 

collection are given in section 2.1.1. A IC 10 PCPH suspension was prepared as detailed 

in Section 2.2.1.2. Blue-tac was used to create a ~3mm-deep circular well which just 

covered the heating stage and crystal of the ATR. The stage thermocouple was set to 

40°C and left to equilibrate for 20 minutes before a further background spectrum was 

taken. This process was repeated to obtain backgrounds at 38°C, 36°C, 34°C, 32°C,

30°C, 28°C, 26°C, and 24°C. After re-equilibration at 40°C, enough hot IC 10 PCPH was
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pipetted carefully into the well to fill it completely. A warm glass plate was placed over 

the top of the well carefully as to omit any trapped air and create an air-tight seal around 

the top of the well. The apparatus was left to equilibrate at 40°C for 30 minutes before 

the measurement was taken. The background was ratioed against the measurement 

spectrum obtained at 40°C. The process was repeated at 2°C decrements, subtracting the 

spectrum from the corresponding background each time. Since the resolution of these 

experiments is 4wavenumbers cm '1 and observed shifts begin at 2 wavenumbers, close 

repeatability must be demonstrated. 5 repeats of the experiment were performed, and a t 

test was carried out to determine whether there existed a significant difference between 

each observed shift and the average of those shifts (table 3.1). The absolute value of the 

t Stat is lower than the t Critical two-tail for all data sets, and the probability that the 

null hypothesis is true is larger than Alpha (0.05). Therefore the null hypothesis is 

affirmed that there is no statistical difference between the values obtained for each 

wavenumber shift and their average.

Table 3.1. Average observed IR frequencies and assignments of a lC io PC PH  a t 

40°C (above LCST of PNIPAM) and subsequent lCio PNIPAM / clay hydrogel a t 

24°C (below LCST of PNIPAM), along with t S tat and t Critical statistical values. 

n=5.

Wavenumber
Assignment 40°C 24°C shift cm '1 t Stat t Critical

Vas(CH2) 2937 2938.6 +1.6 -0.35 3.18

Vas(CH3) 2977.4 2983.4 +6 1 3.18-

Amide I 1632.4 1630.2 -2.2 0.5 3.18

Amide II 1556 1560.8 +4.8 -0.2 3.18

v(Si-O) 999.4 1001.4 +2 -0.2 3.18
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Figure 3.1. Typical full ATR spectra of a lCio PCPH at 40°C and subsequent 

PNIPAM/ clay nanocomposite hydrogel when the PCPH is cooled to 24°C.

For clarity, only spectra for the highest and lowest experimental temperatures are 

shown. The full ATR-FTIR spectra are shown in figure 3.1. Bands of interest were 

expanded for closer inspection and are shown across figures 3.2 -  3.5. Wavenumbers 

and wavenumber shifts of peaks observed in these spectra are given in table 3.1.
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Figure 3.2. Comparison of typical ATR-FTIR v(OH) band intensities and evolving 

band shape of a lCio PCPH at 40°C and subsequent PNIPAM/ clay nanocomposite 

hydrogel when the PCPH is cooled to 24°C.

Polar functional groups absorb strongly in the mid infrared region, and the infrared 

intensity is governed by the magnitude of the change in dipole during vibration. Figure

3.2 shows the v(0H) band for the sample at 40°C and 24°C. Band intensity change is 

explained by the change in net dipole magnitude. A less intense v(OH) at 40°C is 

indicative of fewer water- water and water-polymer interactions in a relatively high 

energy system. As the temperature is reduced from 40°C to 24°C, changes the relative 

band proportions are observable, also changing the band shape. A greater intensity at 

lower wavenumbers changes the band shape, which as mentioned previously, is 

indicative of strengthening hydrogen bonding interactive forces. Therefore, when the 

amount of energy in the system is decreased, the capacity for hydrogen bond formation 

is increased [42].
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Figure 3.3. Comparison of typical ATR-FTIR vas(CH2) and vas(CH3 ) band 

intensities and evolving band shape of a lCio PCPH at 40°C and subsequent 

PNIPAM/ clay nanocomposite hydrogel when the PCPH is cooled to 24°C.

The two spectral bands shown in figure 3.3 at ca. 2983 cm-1 and 2931 cm-1 are assigned 

to antisymmetric methylene vas(CH2) and symmetric methyl vs(CH), respectively.

A shift to higher wavenumbers during temperature decrease is accompanied by an shift 

in peak position for Vas(CH2) and vas(CH3) absorptions by 1.6 and 6  wavenumbers 

respectively (see table 3.1). As a positive shift in wavenumber is indicative of 

weakening hydrogen bond interactions, in turn revealing dehydration of the CH3 and 

CH2 groups which a conclusive indication of phase transition [43-46].
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Figure 3.4. Comparison of typical ATR-FTIR Amide I and Amide II band 

intensities and evolving band shape of a lCio PCPH at 40°C and subsequent 

PNIPAM/ clay nanocomposite hydrogel when the PCPH is cooled to 24°C.

The strong absorbance band located between 1580cm'1 and 1700cm'1 in figure 3.7 

consists of 2 overlapping bands, the amide I C =0 stretching vibration at 1646cm'1 and 

8 (OH) atl 630cm'1. There is no change in 5(OH) as a function of temperature, so any 

thermal shifts in this band can be attributed to the C =0 vibration. The peak position is 

highly dependent on the carbonyl environment, and will shift depending on the strength 

of hydrogen bonding within it [44-45]. At 40°C, the PNIPAM chains are in the globule 

conformation and less carbonyl sites are available to form hydrogen bonds with water. 

At 24°C, the PNIPAM chains are in the coil conformation; water has better access to the 

polymers and can hydrogen bond at and around a larger number of carbonyl sites. This 

explains the 2.2 wavenumber negative shift to lower wavenumber from 1632.4 to

1630.2 cm '1 above and below the LCST of PNIPAM in this system (see table 3.1). 

Conversely, the Amide II v(NH) band shifts from 1556 cm '1 to 1560.8 cm '1 

wavenumbers upon the cooling and subsequent hydration of PNIPAM. The analysis of 

these 2 diagnostic bands determines conclusively that the PNIPAM has undergone 

globule to coil phase transition between 40°C to 24°C [44-45, 47].
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Figure 3.5. Comparison of the ATR-FTIR v(Si-O) (1001 wavenumbers) band 

intensities and evolving band shape of a lCio PCPH at 40°C and subsequent 

PNIPAM/ clay nanocomposite hydrogel when the PCPH is cooled to 24°C.

The spectral band at ca. 1001cm-1 in figure 3.5 is assigned to v(Si-O) of the laponite 

clay, and is associated with Si in a tetrahedral environment (figure 1.13). Weakening Si- 

O/ hydrogen bond interactions are observed as a 2 wavenumber increase as temperature 

decreases. The hydrogen bonds in this instance are those donated by the NH groups of 

PNIPAM. A the temperature decreases, the number of Si- O- NH interactions decrease 

as the globule-state PNIPAM adopts the coil conformation and extends outward into the 

aqueous matrix.
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3.4 Viscosity determination of a standard PCPH suspension.

A 1C 10 PCPH suspension was synthesised as detailed in Section 2.2.1.2. The dynamic 

viscosity of the PCPH suspension at 54°C was measured using a simple glass capillary 

Ostwald viscometer, which consists of a U-shaped glass tube where one arm of the glass 

tubing contains a precise narrow capillary of a known length and radius.

The time taken for a fixed volume of liquid to pass through the viscometer under the 

influence of gravity was recorded and the following equation was used to calculate 

viscosity, with water at 54°C used as the reference liquid:

Equation 3.1.
■ o

Where: q -  dynamic viscosity (Pa s), p = density (kg m" ) and t= time (s). Subscripts s 

and w represent sample and water, respectively.

For comparison, values for water and sunflower oil were generated using an identical 

method. Densities were calculated by weighing a fixed volume of liquid at 54°C to 4 dp.

All flow times were generated from liquids equilibrated at 54°C for 15 minutes prior to 

analysis, and all experiments were performed in triplicate with a fresh sample used for 

each measurement. The values given in table 3.2 consist of the average of 3 

measurements.

Table 3.2. The dynamic viscosity of water, 1C 10 PCPH and sunflower oil as 

determined by Ostwald viscometery, n=3.

Liquid at 54°C
Density

Kg3'1

Standard

Error

Viscosity 

mPa s

Standard

Error

Water 986.1 3.928 0.512 0.008

1C10 1059.7
«

4.163 0.917 0.004

Sunflower Oil 890.8 3.940 20.32 1.307
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The measured viscosity of IC 10 is approximately double that of water at the same 

temperature, but comparable to that of water at 25°C, demonstrating their similarity in 

viscosity. This is emphasised with the measured viscosity of sunflower oil, whose 

viscosity is more than twenty times that of IC 10.

3.5 Preparation of a PNIPAM/ Clay/ Gelatine Nanocomposite
liquid gel precursor

The materials and methods used to synthesise PNIPAM/ Clay/gelatine nanocomposite 

liquid gel precursor are given in section 2.2.1.3.

3.5.1 Rationale for incorporating gelatine

Gelatine (or gelatin) is primarily used as a gelling agent [48] and creates strong, 

transparent, flexible and thermoreversible water soluble gels. It is a mixture of peptides 

and proteins and is usually the product of the thermal denaturation of animal bone, skin 

and ligament- derived collagen, usually in the presence of a dilute acid. Less commonly 

it is extracted from fish skins.

The range of applications of gelatine matrices and colloids in the food [49], 

pharmaceutical [50] and photographic [51] industries have made the properties of 

aqueous and gel state gelatine of significant interest to the polymer scientist and 

continue to be extensively studied [52-54]. The structure of gelatine consists of multi or 

single-stranded polypeptides consisting of left-handed polyproline helices containing 50 

- 1000 amino acid residues [54].

The relatively inexpensive nature of gelatine, as well as its hydrophilic nature, 

biocompatibility and ability to withstand the relatively high temperatures necessary to 

allow the PCPH to remain in a liquid state made it an ideal candidate for initial PCPH 

doping/ incorporation studies.



3.6 PNIPAM/ Clay/ Hyaluronic Acid nanocomposite liquid gel 
precursor

The materials and methods used to synthesise PNIPAM/ Clay/ Hyaluronic Acid 

nanocomposite liquid gel precursor are given in section 2.2.1.4.

3.6.1 Rationale for incorporating Hyaluronic Acid (HA)

Hyaluronic acid is a ubiquitous component of extracellular matrix and is found in all 

vertebrate connective tissues. It is a structurally linear, viscoelastic, high-molecular- 

weight (1-2 million Da) glycosaminoglycan copolymer of A-acetyl-D-glucosamine and 

D-glucuronic acid [55], and plays an integral role in biological processes such as cell 

proliferation (cell growth and division resulting in an increase in cell number), adhesion 

and cell motility. HA is continuously digested and synthesised by cells, and directly 

influences tissue repair [56-57], morphogenesis [58-59], metastasis [60-61] and 

inflammatory response [57, 62] via cell surface receptor interaction [63-64]. Recent 

biomedical applications of HA include material implantation, the treatment of arthritis, 

ophthalmic surgery, wound healing scaffolds and tissue engineering [65]. The range of 

important biological functions as well as structural properties (due to its viscosity, water 

retention capabilities and hydrophilic nature) makes HA an obvious candidate as a 

dopant species in the PCPH technology.

3.7 The physical manifestation of PCPH PTTNAG

PTTNAG in this system refers to the mechanism by which the PCPH solidifies to form 

the cross-linked hydrogel, the stages of which are shown in figures 3.6 a-f.

Figure 3.6 shows the visible process by which the PCPH undergoes PTTNAG to form a 

polymer/ clay precursor hydrogel. After 20-25 minutes at 80°C, 15ml of the NIP AM/ 

clay/AIBN/ water solution spontaneously loses transparency and transforms into a low 

viscosity opaque liquid, or PCPH, which resembles milk. The PCPH remains in this 

state indefinitely until it is cooled to a temperature below that of its PTTNAG 

temperature -  at or very close to the LCST of the polymer. In the case of lCio (pictured) 

this temperature is 33°C. For illustration purposes, 2ml of hot IC 10PCPH suspension 

was drawn from a glass vial with a dropping pipette (a) and transferred drop-wise to a 

heart-shaped steel mould (b). After a few minutes cooling to room temperature (c), the 

PCPH begins to undergo PTTNAG, with the cooler outer edges of the mould gelating
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first (d). PTTNAG and subsequent solidification is indicated by the spontaneous change 

in gel opacity. During the course of the following 10 minutes, the gel becomes 

completely optically transparent (e), and the solid PNIPAM/ clay hydrogel can easily be 

removed from the mould having taken its precise shape (f). The gel is rubbery in texture 

and exerts all of the thermally reversible phase-change characteristics of “regular” 

PNIPAM/ clay nanocomposite materials.
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Figure 3.6. Photographs a-f dem onstrate the visible PTTNAG steps of the polym er/ 

clay precursor hydrogel (PCPH).
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3.8 Real-time Dynamic Light Scattering (DLS) study of
polymerisation and PTTNAG of PCPH of various clay concentrations

In the case of PNIPAM, dynamic light scattering (DLS) has been used to examine the 

Z- average hydrodynamic diameter (D h) of microgels (cross-linked latex particles that 

are swollen in solvent) and nanoparticle/polymer hybrid micrOgels in dispersion [66- 

70]. Commonly, PNIPAM microgel particles are synthesised by the free-radical 

precipitation polymerisation of NIP AM in the presence of a physical cross-linking agent 

such as methylenebisacrylamide (BIS) [71-76]. DLS has been used to successfully 

monitor the increase/ decrease.in PNIPAM/ BIS microgel Dr as a function of 

temperature [68, 77].

To understand the process of particle growth in the presented precipitation 

polymerisation system, DLS was employed to give an approximate calculation of the 

Dr of particles formed in real time during the initial 6h of polymerisation with and 

without the presence of clay. The increase in Dr of particles was observed in real time 

during polymerisation at 80°C, with the D r being obtained every 3-4 minutes during the 

polymerisation process. After 6h at 80°C, the instrument settings were altered to record 

the D r of the particles every 3 minutes as the solution as it cooled at a rate of 1 °C/ 3min. 

To .reduce the negative influence of sample concentration on the reliability of the 

results, the quantity of solids used in this study are half that of typical formulations, and 

the sample codes altered accordingly. To avoid dust contamination, the solutions were 

filtered using syringe filters with pore size of 20 nm immediately before use.

The derived count rate (the back-scattered signal intensity, measured in kilo counts per 

second (kcps)), which is proportional to the amount of photons reflected from the 

sample solution, was taken simultaneously.
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Figure 3.7. The Z-Average diam eter of a OC5 PNIPAM solution (see Section 2.2.1.2 
and table 2.1) as observed by DLS during precipitation polym erisation a t 80°C.
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Figure 3.8. The derived count rate of a 0C5 PNIPAM solution (see Section 2.2.1.2 
and table 2.1) as observed by DLS during precipitation polymerisation a t 80°C.
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Figure 3.9. The Z-Average diam eter measured during the cooling of a OC5 

PNIPAM solution (see Section 2.2.1.2 and table 2.1) a t a rate of l°C/3 min. The 
solution had previously been held at 80°C for 6 h.
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solution (see Section 2.2.1.2 and table 2.1) at a rate of l°C/3 min. The solution had 
previously been held at 80°C for 6 h.
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In the OC5 system, the Dh data (figure 3.7) indicates that at t = 0, the water/ monomer/ 

initiator solution contains particles with a diameter of approximately 170 nm. This 

observation is logically inaccurate, and can be explained by an insufficient quantity of 

backscattered light causing the instrument to predict a starting point for the size 

measurement, and bases this entirely on the polystyrene standards used in the 

instrument calibration. This is confirmed by the derived count rate at t = 0 for the same 

measurement (figure 3.8), which at -700 kcps, is insufficient for meaningful size data to 

be determined. Therefore, for this particular data set, size values should be ignored and 

conclusions regarding particle size behaviour should be drawn from the curve shape and 

relative particle size changes alone. From this data, there is insufficient backscattered 

light to produce meaningful data until the reaction has proceeded for 17 minutes, by 

which time the derived count rate has jumped from ~800kps (at 14 minutes) to 

~26,800kps. The sudden increase in quantity of backscattered light is indicative of the 

“crashing out” of PNIPAM particles from the solution. That is, a critical chain length 

has been reached and the polymer chain has collapsed into a globule-like conformation. 

The “blip” in the data between 17 and 27 minutes could be attributed to the stabilisation 

of the particles, or the instrument adjusting to the sudden intensity of backscattered 

light. After 27 minutes, the particles have reached their final Dh and remain practically 

unchanged for the following 5 and half hours, which according to this data are ca.60nm 

larger than the initial recorded value of the monomer solution.

Figures 3.8 and 3.10 show the Dh and derived count rate of OC5 polymerised polymer 

particles cooling at a rate of l°C/3min, respectively. The Dh remains largely unchanged 

during the cooling process between 80°C and 32°C, and the slight decrease in count rate 

over this temperature change is not significant. Upon cooling beyond 32°C, the Z- Dh is 

seen to increase very sharply (figure 3.9) whilst the derived count rate is simultaneously 

significantly reduced (figure 3.10). The cause of this phenomenon is the reformation of 

water-polymer hydrogen bonds and subsequent reswelling of the PNIPAM particles, 

which switch sharply from the globule to the coil conformation. The occurrence of 

globule-to-coil phase.transformation is accompanied with a marked increase in optical 

clarity of PNIPAM solutions, which explains the abrupt decrease in backscattered light 

and as such, the abrupt decrease in derived count rate.
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Figure 3.11. The Z-Average diam eter of a .5Co clay solution (see Section 2.2.1.2 
and table 2.1) as observed by DLS during precipitation polymerisation a t 80°C.
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Figure 3.12. The derived count rate of a .5Co clay solution (see Section 2.2.1.2 and 
table 2.1) as observed by DLS as a function of time at 80°C.
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Figure 3.13. The Z-Average diam eter of clay particles during the cooling of a .5Co 
solution (see Section 2.2.1.2 and table 2.1) at a rate of l°C/3 min. The solution had 
previously been held at 80°C for 6h.

Derived Count Rate of .5Co cooling 1C/ 3min
14000

12000

10000 ^
03P4
c
3oU
-3a>>

8000

6000

P  4000

2000

> *****
*******

+ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

80 75 70 65 60 55 50 45

T em peratu re °C

40 35 30 25

Figure 3.14. The derived count rate measured during the cooling of a .5Co solution
(see Section 2.2.1.2 and table 2.1) at a rate of l°C/3 min. The solution had
previously been held at 80°C for 6h.
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In order to understand the effect of high temperature polymerisations on the aggregation 

behaviour of laponite clay platelets (a manufactured clay with a similar structure to that 

of hectorite composed of monodisperse plate-like particles of ca. lnm  thickness and ca. 

30nm diameter) and to determine whether any of the observed phenomena can be 

attributed to clay behaviour alone, clay/ water solutions were subject to the same 

heating/ cooling process as the NIP AM and NIP AM/ clay formulations. The 

concentration of clay chosen for this experiment was precisely that of .5CX formulations 

and the volume otherwise occupied by NIP AM/ AIBN was replaced with water. The 

solution was exfoliated, degassed and filtered in the same way as all other formulations. 

The Dh for this solution at t = 0 at 80°C is 28nm (figure 3.11), which begins to increase 

rapidly after 15 minutes and reaches 36 nm at 37 minutes. The derived count rate (figure 

3.12) follows a near identical pattern, indicating a possible aggregation of the clay 

platelets.

To illustrate the aggregation phenomena of clay particles in wat6r, a model of van der 

Walls and electrostatic interactions between Laponite platelets was shown in a study by 

of Kutter et al [78]. This model indicates a negative charge over the face of the laponite 

platelets and a positive charge distributed around its edge. This results in the formation 

of a “house of cards” platelet conformation through ionic interactions [79] which is 

illustrated in figure 3.15.

An important consideration when observing this data is the samples were filtered, and 

therefore agitated, immediately prior to analysis. It is feasible that the initial abrupt 

increase in derived count rate and perceived Dh is due to the “settling” of the clay 

suspension and the initial formation of an aggregated “house of cards” structure. The 

sustained and steady increase in derived count rate and perceived Dh during the 

remainder of the experiment is likely to be attributed to observations made previously 

by Tawari et al [80], who used DLS measurements to conclude that laponite rim 

charges increase with increasing temperature in aqueous solutions, and Harguchi et al 

[81] who concluded that among other factors such as clay concentration, the viscosity 

(and therefore aggregation) of aqueous clay suspensions also show time dependence. As 

the aggregates grow, they become less mobile and perceived Dh therefore increases.
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N a + Na+

“House of Cards” structure

Figure 3.15 Schematic representation of the exfoliation of an aqueous clay 
suspension (b) from a stacked clay structure (a) and the subsequent formation of 
the house-of-cards structure (c) [81].

Over the course of the cooling experiments, the Dnand derived count rate (figures 3.13 

and 3.14 respectively), show a follow-on increase in clay aggregation which gradually 

slows and reaches a plateau at temperatures below ~55°C. This could be due to the 

absence of thermal aggregative effects, or the thermodynamic stabilisation of the 

system.

99
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Figure 3.16. The Z-Average diam eter of a .5Cs PNIPAM/ clay solution (see Section
2.2.1.2 and table 2.1) as observed by DLS during precipitation polym erisation at 
80°C.
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Figure 3.17. The derived count rate of a .5Cs PNIPAM solution (see Section 2.2.1.2 
and table 2.1) as observed by DLS during precipitation polymerisation a t 80°C.
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Figure 3.18. The Z-Average diam eter of PNIPAM / clay particles during the cooling 
of a .5 C5 PCPH solution (see Section 2.2.1.2 and table 2.1) at a rate of l°C/3 min. 
The PCPH had been synthesised by free radical precipitation polymerisation at 
80°C for 6h.
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Figure 3.19. The derived count rate measured during the cooling of a .5Cs PCPH
solution (see Section 2.2.1.2 and table 2.1) at a rate of l°C/3 min. The PCPH was
previously synthesised by free radical precipitation polymerisation at 80°C for 6h.
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The Dh and derived count rate (figures 3.16 and 3.17 respectively) of a .5 C5 monomeric 

solution was observed in real time during its polymerisation at 80°C over the course of 6 

hours. The DLS instrument records a Dh at t = 0 of 30.7nm, which is in good agreement 

with the previously recorded Dh of laponite in this system (figure 3.11) which was 

28nm. The derived count rate at t = 0 is ca. 3600 .kcps, which is very similar to the count 

rate to that taken from the clay/ water solution at t = 0, which is ca. 3500kcps (figure 

3.23) (It should be noted here that the amount of light scattered from monomers during 

the initial phase of the reaction is negligible and the monomers are considered 

“invisible” in a light scattering context for DLS). The Dh and derived count rate remain 

stable (and the monomers/ oligomers remain “invisible”) at 80°C up to a critical point at 

-19  minutes, where a very sharp increase in both values is seen (786000 kcps count rate 

and 55 d.nm Z- average at 24 minutes). This is the point at which the polymer chains 

have reached a critical length and have collapsed into a globule conformation, a 

phenomenon also observable in clay devoid systems (figures 3.7 and 3.8). Following 

this, a gradual increase in Dh and simultaneous decrease in scattering intensity is 

observable. Although seemingly counter-intuitive, this could be attributed to the 

following factors:

- Scattering intensity depends on both the size of the aggregates and their concentration. 

PNIPAM globules may have begun to aggregate and large particles do not scatter 

significantly in the backward direction [82].

- A decrease in scattered light may arise from a refractive index change as PNIPAM 

molecules undergo transition from random -coil to condensed globule. A low count rate 

(and hence quantity of scattered light) equates to a low refractive index [83]. It is 

therefore feasible from this data that the particles/ aggregates are growing in size but are 

backscattering less light.

Upon cooling (figures 3.18 and 3.19), very little change in either parameter is 

observable between 80- 33°C, and the system remains stable until cooling proceeds 

beyond 33°C. It is beyond this temperature that the condensed PNIPAM globules 

undergo phase transition and adopt the “coil” conformation, the process during which 

irreversible cross-linking takes place. Since the particles are no longer free to move at 

this stage, the recorded correlation functions cease to be indicative of particle size, and 

any data recorded below 33°C should be considered unreliable.
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Figure 3.20. The Z-Average diam eter of a .25Cs PNIPAM/ clay solution (see 
Section 2.2.1.2 and table 2.1) as observed by DLS during precipitation 
polymerisation at 80°C.
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Figure 3.21. The derived count rate of a .25C5 PNIPAM solution (see Section
2.2.1.2 and table 2.1) as observed by DLS during precipitation polym erisation a t 
80°C.
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Figure 3.22. The Z-Average diam eter of PNIPAM / clay particles during the cooling 
of a .25C5 PCPH solution (see Section 2.2.1.2 and table 2.1) at a rate  of l°C/3 min. 
The PCPH was previously synthesised by free radical precipitation polym erisation 
at 80°C for 6h.
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Figure 3.23. The derived count rate measured during the cooling of a .25Cs PCPH
solution (see Section 2.2.1.2 and table 2.1) at a rate of l°C/3 min. The PCPH was
previously synthesised by free radical precipitation polymerisation at 80°C for 6h.
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The Dh and derived count rate (figures 3.20 and 3.21 respectively) of a .25Cs 

monomeric solution was observed in real time during its polymerisation at 80°C over 

the course of 6 hours. The DLS instrument records a Dh at t = 0 of 30.9nm, which is in 

good agreement with the previously recorded Dh of laponite in this system (figure 3.11) 

and that.of the .5Cs formulation (figure 3.16) which were recorded as 28nm and 30.7nm 

respectively. The derived count rate at t = 0 is ca. 3600kcps, which is almost identical to 

that taken for the .5Cs formulation at t = 0 (figure 3.17) and very similar to the count 

rate to that taken from the clay/ water solution, which was ca. 3500kcps (figure 3.12). 

This is confirmation that as in the previous data set (.5C5), the amount of light scattered 

from monomers during the initial phase of the reaction is negligible and the monomers 

are considered “invisible” for DLS.

The Dh and derived count rate remain stable (and the monomers/ oligomers remain 

“invisible”) at 80°C up to a critical point at -24  minutes, where a very sharp increase in 

both values is recorded (458000 kcps count rate and 69 d.nm Z- average at 30minutes). 

This is indicative of the reaching of a critical chain length which has resulted in the 

collapse if the polymer chains which have adopted a globule conformation. Although in 

the previous data set (for the .5C5 formulation), this increase is recorded to occur at 19 

minutes, it should be noted that each measurement takes approximately 4 minutes and 

therefore each data point should be given an approximate + and -  2 minute error. 

Following this, a small decrease in Dh and sharp simultaneous decrease in scattering 

intensity is recorded. As noted in the .5C5 data, the decrease in scattering intensity 

could be attributed to the aggregation of the PNIPAM/ clay particles and which do not 

scatter significantly in the backward direction [82], or a refractive index change as 

PNIPAM molecules undergo transition from random -coil to condensed globule [83].

Upon cooling (figures 3.33 and 3.34), as observed in the .5C5 data, very little change in 

either Dh or count rate is observable between 80- 33°C. As mentioned previously, 

beyond 33°C the condensed PNIPAM globules undergo phase transition and adopt the 

“coil” conformation and irreversible cross-linking takes place. Since the particles are no 

longer free to move at this stage, the recorded correlation functions cease to be 

indicative of particle size, and any data recorded below 33°C should be considered 

unreliable.
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3.9 Proposed mechanism of polymerisation of a PCPH

The fact that linear PNIPAM undergoes phase transition at temperatures above ~30- 

35°C causing the chains to separate and collapse [84] can be exploited in high 

temperature precipitation polymerisations of PNIPAM. The technique has been used to 

successfully produce monodisperse micron and submicron PNIPAM hydrogel particles 

in a single phase without the need for surfactants [76, 85] which are required for room 

temperature emulsion polymerisations [86]. PNIPAM-based microgels first appeared in 

literature as the result of ‘surfactant-free emulsion polymerisation’ of NIP AM and N,N'~ 

methylenebisacrylamide (BIS) in aqueous media, by Pelton et al [76]. Successful 

PNIPAM particle formation was achieved at 60-70°C, temperatures at which the 

persulfate initiator dissociates and propagating PNIPAM chains phase separate to form 

colloidal precursor particles. The procedure has been replicated by several authors [87- 

92]. The mechanism proceeds as follows; a hydrophilic sulfate radical engages a water- 

soluble NIP AM monomer molecule and initiates a free-radical polymerisation. When 

the PNIPAM chain reaches a critical chain length, the growing chain undergoes phase 

transition and collapses into a colloidally unstable PNIPAM precursor globule particle. 

At this stage, the intact microgel particle morphology of the PNIPAM can be ensured 

with the use of a chemical cross-linking agent such as BIS. The cross-linker plays a 

crucial role in preventing the dissolution of the polymer particle when it is cooled below 

the LCST of PNIPAM. The globule particles aggregate and colloidally stabilise 

themselves electrostatically, as hydrophilic sulfate groups with which the polymer 

chains are terminated concentrate at the surface of the aggregate, until they form a 

colloidally stable particle.

In 2002, Haraguchi et al [12] reported a novel nanocomposite PNIP AM-based hydrogel 

which was cross-linked with exfoliated inorganic clay particles and polymerised by 

free-radical polymerisation in aqueous media in situ using potassium persulfate (KPS) 

as an initiator at 20°C. The gels exhibited excellent transparency, a rapid 

swelling/deswelling rate and improved mechanical properties when compared to their 

chemically cross-linked predecessors. In subsequent years, the concept has been 

replicated and modified with different monomeric species [93], clay types and 

concentrations [94-95], and using cationic exchange to modify the clay surface [96].

The mechanism of the PNIPAM/ clay composite formation was considered to be as 

follows; The KPS initiator, with a divalent anion, ionically interacts with the surface of

106



the clay platelet and as a result, the polymer chains begin propagation at the clay surface 

and grow outwards, with one end always firmly anchored to the clay. The polymer 

chains are thought to then extend to, and form interactions with, other neighbouring clay 

platelets in situ. The net result is a stable, cross-linked 3-dimensional PNIPAM/ clay 

hydrogel network.

KPS and ammonium persulfate (APS) are commonly used for the free radical 

polymerisation of PNIPAM, and both possess a divalent anionic structure. AIBN does 

not contain an anionic group, and since cross-linking of clay/ PNIPAM nanocomposite 

systems was thought to be based on clay/ initiator interactions, AIBN is not routinely 

used as an initiator during the synthesis of clay nanocomposite hydrogels. Recently, 

however, Wang et al [93] successfully used AIBN to initiate the synthesis of poly(N,N'- 

dimethylacrylamide) (PDMAc)/ clay nanocomposite hydrogels (and as a side note, 

unexpectedly found that they possessed superior mechanical properties to identical gels 

prepared with KPS).

In the presented system, PNIPAM particles were formed using AIBN as an initiator in 

the presence of clay at 80°C, whereby elements from both aforementioned synthetic 

procedures are combined to create a previously unreported system. In the absence of 

clay/ AIBN ionic interactions, initiation is thought to occur in the aqueous phase, 

separate from the clay particles (figure 3.24a). Polymerisation proceeds (figure 3.24b), 

and electrostatic interactions between the electropositive NH groups of PNIPAM and 

electronegative clay surfaces cause precipitation to proceed very close to the clay 

platelet surface. At a critical chain length, the polymer separates from the aqueous phase 

to form tightly-packed PNIPAM globules around the individual clay platelets, thus 

• forming colloidal precursor particles (figure 3.24c). Since AIBN is hydrophobic, it is 

more favourable for the AIBN to reside within the PNIPAM particles at elevated 

temperatures. At the same time, the polar groups on the collapsed PNIPAM particles 

preferentially present on the outer surface, which reside in close proximity to the clay 

forming electrostatic interactions with it, as is shown spectroscopically in section 3.4.

As long as this PNIPAM/ clay suspension remains at temperatures above the LCST of 

PNIPAM, the polymer remains in a hydrophobic “globule” conformation and the 

polymer/ clay particles exist discreetly in a colloidal suspension. The suspension 

remains colloidally stable at temperatures higher than that of the LCST of the polymer.
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Figure 3.24. Schematic of the proposed mechanism of polymerisation of a typical 
PCPH suspension (monomers not shown), a) AIBN and clay platelets existing 
separately in monomer solution, b) free-radical initiation of NIPAM, c) 
precipitation of PNIPAM  at critical chain length, PNIPAM  globule particles reside 
in close proximity to the clay particles via electrostatic interactions.

3.10 Proposed mechanism of PTTNAG of a PCPH

The PTTNAG mechanism is thought to be the physical manifestation of the following 

theory:

“Globule” (hydrophobic) state PNIPAM chains residing in close proximity to the clay 

(figure 3.25a) platelets transform to a “coil” (hydrophilic) state when the temperature is 

lowered to that which is below the LCST of PNIPAM (figure 3.25b). In the coil 

conformation, polymer chains extend between and attach to neighbouring exfoliated 

clay particles, forming strong direct PNIPAM- clay anchor points as well as polymer- 

polymer entanglements (figure 3.25c).
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Figure 3.25. Schematic of the proposed a) structu re of PCPH suspension, b) & c) 
mechanism of PCPH PTTNAG and c) resulting network structure model of a 
typical PNIPAM/ clay nanocomposite hydrogel.

In 2002, Haraguchi [97] successfully developed a unique PNIPAM / clay 

nanocomposite hydrogel system with highly utilisable swelling/ deswelling, optical and 

mechanical characteristics. His methodology involved the KPS-initiated in situ free 

radical polymerisation of PNIPAM in the presence of a degassed, exfoliated clay 

suspension at room temperature. The materials produced were proven candidates for 

cell cultivation platforms [6] and effective wound management materials for artificial 

wounds in adult goats [98], but only after “extensive dialysation against fresh water to 

remove residual monomers” [6, 98]. The processability of the system was restricted to 

maintaining the monomeric suspension at low temperatures and allowing the 

polymerisation to proceed inside an oxygen-devoid vessel of the desired shape.

Although literature points toward many avenues in the endeavour of commercial 

material processing, it is inherently difficult to process cross-linked materials and 

approaches are usually made by in situ polymer synthesis or stimuli responsive gelation.

3.11 Summary
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This work has presented the development of a series of novel PNIPAM-based 

nanocomposite materials and their applications. The “base” material is a fully v 

polymerised, low viscosity liquid (a PNIPAM/ clay precursor hydrogel, or PCPH) and 

remains thus indefinitely until cooled beyond a predetermined temperature, whereupon 

the low viscosity liquid undergoes PTTNAG spontaneously and irreversibly. The 

material it forms is a thermally-responsive hydrogel which not only contains and 

absorbs large amounts of water, but has excellent optical and swelling/ deswelling 

properties- attributes which are explored in detail in chapter 6.The PCPH can be doped 

with biological polymers in the liquid phase. Upon cooling and subsequent PTTNAG, 

the resulting gel is a homogenous, stimuli-responsive multi-component polymer 

nanocomposite network.

Dynamic light scattering (DLS) was employed to shed light on the mechanisms of 

polymerisation and PTTNAG. It would appear that the polymers reside in close 

proximity to the clay platelets and collapse close to the clay surface upon reaching a 

critical chain length at ca. 24 minutes, forming discreet polymer/ clay particles which 

indefinitely remain as such at elevated temperatures. These particles may colloidally 

stabilise over time to form larger aggregates in solution. Upon cooling, the polymer 

chains undergo globule - to - coil transition and "unravel" from the clay surface, 

indicated by a very large and sharp increase in hydrodynamic diameter at 32-33°C. This 

is further supported by spectroscopic data which reveals a decrease in Si-O/ Hydrogen 

bonding during PTTNAG. Although DLS cannot provide any further inferences than 

this, it is predicted that the mechanism of PTTNAG involves the interaction of 

PNIPAM with neighbouring clay platelets, enabling the clay to act as a multi-functional 

cross-linker, a phenomenon which has been detailed in literature [7-8, 81, 97, 99-104]. 

This may be accompanied by polymer-polymer interactions and entanglements.
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Chapter 4 - The Processability of PNIPAM/ Clay 
Nanocomposite Liquid Gel Precursor formulations.

4.1 Introduction

A major technical issue for PNIPAM / clay nanocomposite materials is their 

processability, more specifically, the straightforward creation of physical shapes and 

forms which make them adept for their intended purpose. In this chapter, the 

processability of PNIPAM / clay-based hydrogels achieved through the PCPH 

technology described in chapter 3 is demonstrated. The successful electrospinning of 

cross-linked PNIPAM / clay-based fiber mats, which have not previously been reported 

in literature, and the industrial extrusion of continuous PNIPAM / clay thin films in a 

manner also previously unreported, effectively demonstrates the versatility and 

processability of this material.

4.2 Materials used in this Chapter and the Synthesis and 
Preparation of the PCPH

The materials used in this chapter as well as materials synthesis are detailed in section 

2 .2 .2 . 1.

4.3 A Novel Method for the Electrospinning of Fine Fibre 
Mats of PNIPAM/ Clay Hanocomposite Hydrogels.

Interest in electrospinning has gained popularity in recent years as a method for 

fabricating polymeric nanofibres, due to the growing interest in technologies which 

exploit nanoscale properties. Electrospun polymer fibres, which generally have 

diameters ranging from 3 nm to more than 5 pm  [1], have a very large surface area to 

volume ratio as well as vastly improved mechanical properties and flexibility when 

compared to alternative polymer forms. These characteristics allow for their potential 

use as catalytic nanofibres, filtration media and fibre-based nanosensors [2], In the 

medical field, electrospun polymers have been investigated as wound dressing materials 

and tissue engineering scaffolds since they emulate the nanoscale characteristics of 

native extracellular matrix [1-3].
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Figure 4.1. A schematic representation of a typical electrospinning apparatus.

The electrospinning phenomenon is illustrated in figure 4.1, and was detailed by 

Reneker et al, who described the extruded polymer as being composed of four regions: 

the base, jet, splay, and collector [4]. At the base, the polymer solution emerges from 

the needle tip in the form of a small “Taylor cone”. The precise dimensions and shape 

of the Taylor cone depend largely upon the strength of the electric field and surface 

tension of the liquid polymer- it is possible for a polymer jet to be ejected from a flat 

surface if the electric field is sufficiently strong.

The electrical charging of the polymer jet occurs at the base, and electric forces 

accelerate the liquid polymer jet toward the collector, stretching and decreasing the 

diameter of the jet as it moves away from the needle. The evaporation of solvents may 

also occur at this stage, further decreasing the jet diameter [2]. Reneker et al [4] 

presented a hypothesis detailing a radial charge repulsion which subsequently results in 

the splaying of polymer fibres of consistent charge and diameter onto the collector. The 

result is a non-woven fabric (mat) made of easily processable electrospun polymer 

nanofibres.

It has been well documented in literature that electrospinnabilty, fibre diam eter and 

subsequent properties of a range of polymers strongly depend on a number of factors, 

including polymer solution viscosity, concentration, solvent composition and presence 

of additives such as salts. The main objectives of this exercise were to (i) test the 

capabilities of the PCPH as a candidate for electrospinning, and (ii) to explore the 

possibility of development and optimisation of the PNIPAM / clay electrospun mats in

121



order to produce novel PNIPAM based nanomaterials with highly desirable industrial 

properties.

4.3.1 Electrospinning procedure

The synthesis of the PCPH formulations used in this work was performed my Dr. 

Subodh Sabnis of Sheffield Hallam University, under direction.

The hydrogel precursor liquid formulations 1 Cio and 1 CioGl5 were synthesised and 

prepared as described in sections 3.3 (see table 2.1) and 3.6.1 (see table 2.2), 

respectively. The electrospinning apparatus was manufactured and assembled by Yflow 

Ltd. (Spain), supplied by Nanobiomatters S.L. (Spain). A stainless steel needle with an 

internal diameter 0.9mm was fitted to a 5ml syringe and connected to the positive 

electrode of a variable high voltage power supply, whilst the negative electrode was 

connected to an aluminium foil- covered copper grid, used as the collector. The syringe 

was placed inside a digitally- controlled syringe pump in a horizontal position pointing 

toward the collector. The liquid PCPH was helped to remain at sufficient elevated 

temperatures thus avoiding premature solidification with the use of a thermocoupled 

heated “wrap”, set to 50°C and placed around the syringe and part of the needle. The 

tip-to-collector distance was 10cm, and experiments were carried out in stable 

conditions in air at 50°C and 60% relative humidity by enclosing the apparatus in a 

temperature and humidity-controlled chamber. Any residual solvent remaining in the 

fibres was left to evaporate at room temperature.

Initial electrospinning trials were carried out usinglCio at room temperature at a voltage 

of 14kV. It was immediately noted that the viscosity of the lCio PCPH alone was not 

sufficient to produce a continuous jet. The 1C ioG15 formulation (table 2.2) was chosen 

for the subsequent trial as sufficient gelatine content was anticipated to increase the 

PCPH viscosity to such a degree that electrospinning could occur, as well as the added 

advantage of functionalising the electrospun fibres with a biologically relevant 

macromolecule. Fibres were successfully produced at a voltage of 1 IkV. SEM images 

of the resulting fibre mat as well as morphological details can be found in section 4.3.2 

and figure 4.2.

The solvent l,l,l,3,3,3-hexafluoro-2-propanol (HFIP) was added to the 1 CioGl5 

formulation for the third trial in order to investigate any morphological changes it would 

impart on the resulting mat. HFIP is commonly utilised solvent in electrospinning 

protocol and it plays a dual role in polymer solubilisation, with a mildly acidic

122



secondary alcohol hydroxyl serving to break hydrogen bonding and hydrophobic 

interactions being disrupted with two trifluoromethyl groups [5]. A 9/1 wt.-% 1 CioGl5 

PCPH/ HFIP solution was prepared and magnetically stirred at 50°C for 15 minutes. 

Fibres were successfully produced at a voltage of 1 lkV. SEM images of the resulting 

fibre mat as well as morphological details can be found in section 4.3.2 and figure 4.3.

It has been shown that that the conductivity of a solution is an integral factor in 

influencing the spinning current and fibre diameter. Salts strongly affect the 

electrospinning process by enhancing the conductivity of the polymer solution and 

subsequently altering the properties of the fibres produced [6-8]. For the fourth trial, a 

9/1 wt.-% 1C ioG 15/ 1.42 m NaCl solution was prepared and magnetically stirred at 

50°C for 15 minutes. Fibres were successfully produced at a voltage of 1 lkV. SEM 

images of the resulting fibre mat as well as morphological details can be found in 

section 4 .3 .2  and figure 4 .4 .

4.3.2 Fibre morphology

The effects of solution and processing variables such as concentration, viscosity, 

solvent, voltage, conductivity, tip-to-collector distance and feed rate on electrospun 

fibre morphology have been examined for a range of polymeric systems [4, 9-12]. For 

many polymer/ solvent systems, an increase in solution viscosity or concentration 

reduces beading defects and somewhat increases the overall electrospun fibre diameter 

[10]. For the presented system, comparisons with previous observations should be 

made tentatively, as the polymer behaviours and mechanism of solidification are 

entirely different.

Figure 4.2 shows SEM images of the electrospun 1 CioGl 5 PCPH formulation obtained 

in trial 2. The mat consisted of large areas containing polymer bead defects and fibres of

significant size variation, some with flat, ribbon-like morphologies with rough fibre
\

surfaces (a). There appears to be a high degree of variation in fibre diameter in areas of 

more uniform tubular-like fibres, which have a cross-section o f -150 — 760 nm (b).
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Figure 4.2. Typical SEM m icrographs of electrospun fibre mats obtained with the 

1CioG15 PCPH form ulation at 7000x (a) and 30,000x (b) magnification.

Figure 4.3 shows SEM images of the electrospun 9 /1 wt.-% l C i()G 15 PCPH/ HFIP 

formulation obtained in trial 3. It was observed that although the fibre diam eter 

distribution is large and strikingly similar to the electrospun 1C|0G15 formulation (~
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1 lOnm —  770 nm), fibre beading was greatly reduced, and neat, smooth, continuous 

ribbon-like fibre formation is evident.

V spot mode WD mag HV j det 
* j 3 0 None 4 9 mm j 10 000 x I 5 00 kV ! Helix

Figure 4.3. Typical SEM m icrographs of electrospun fibre mats obtained with 9/1 

wt.-% 1CioG15 PCPH / H FIP at 10,000x (a) and 30,000x (b) magnification.

Figure 4.4 shows SEM images of the electrospun 9/1 wt.-% 1 C ioG l5 PCPH/ NaCl 

formulation obtained in trial 3. The average diameters of 1 C ioG l5 fibre mats were
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lower when NaCl was used as an additive when compared to HFIP. The fibres are 

continuous, straight, and smooth, and fibre diameter distributions are narrow when

a)

b)

Figure 4.4. Typical SEM m icrographs of electrospun fibre mats obtained with 9/1 

wt.-% 1 CioG l5 PCPH/ NaCl solution at 10,000x (a) and 20,000x (b) magnification.

compared to other formulations used in the study. This narrow size distribution 

observation is in good agreement with other studies involving the electrospinning of salt
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incorporated polymer solutions [6, 13], and is thought to be a result of enhanced 

conductivity of the polymer jet which in turn enhances jet elongation.

Atomic force microscopy (AFM) could also be carried out on the fibres in order to 

better resolve the topology of the fibres. It may give a better understanding fluid 

mechanical effects and possible fibre skin formations, as well as alternative collapse 

modes (ribbon-like fibres can be a product of fibre collapse during solvent evaporation). 

Furthermore, the distribution of dispersed clay nanoparticles within the fibres could be 

examined using bright field TEM imaging. It is anticipated that extensional forces 

applied by the electrospinning process may cause the clay nanoparticles to align along 

the axis of the fibre, as reported previously [14-16].

4.4 A novel method for the industrial casting of thin films of
PNIPAM/clay nanocomposite hydrogels.

Smith & Nephew Extruded Films (SNEF) are independent manufacturers within the 

global manufacturer Smith & Nephew PLC and the producers of extruded films, tapes, 

apertured meshes and nets, with experience in providing innovative solutions in 

intelligent polymer technology. Their manufacturing site in Gilberdyke, UK has a large 

production capacity including custom net and film production, as well as adhesive 

coating and foam casting [17]. The trial line used for the PCPH and subsequent 

PNIPAM/ clay films was a bespoke “Cutinova” setup (also referred to as a “PU gel 

casting line”) which is depicted in figure 4.5. The temperature of the casting room was 

kept cool (19°C) to help the PTTNAG process and the humidity was recorded as 29- 

30% relative.

The purpose of the film casting trial day was to establish the viability of the PCPH as a 

candidate for film production on an industrial scale. 600mls of lCio PCPH (in separate 

100ml sample jars) were produced for the trial. For COSHH and health and safety 

reasons, one 100ml batch per day was synthesised over 6 days and maintained at 80°C 

prior to the trial. Sample 1 was initiated 7 days prior to the trial and samples were 

labelled in numerical order on subsequent days, with sample 6 being initiated the day 

before the trial.
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Poly-coated silicone release papers from Loparex BV were drawn through the Cutinova 

apparatus as shown in figure 3.8 and 3.9a. These papers were waterproof and stable to 

the moisture levels and temperatures required for casting the material.

The PCPH was very gradually manually poured onto the casting table (figures 4.5 and 

4.6 b and c) where it was drawn through a gap between the coating bar and casting table 

between the 2 sheets of release paper at a speed of 0.6m/ m in'1. This coating method is 

known in the industry as a “spreading box”- a coating bar method where coat weight is 

controlled by the dimensions of a gap. A continuous sheet of PCPH (and subsequent 

nanocomposite hydrogel sheet) sandwiched between the 2 release papers was created 

and was allowed to cool and undergo PTTNAG on top of the steel slats inside the 

“drying tunnel” of the setup (which was turned off for this trial) for 1-2 hours (figures 

4.5 and 4.6 e and f). The winding bar was used for speed control only and product was 

not rewound. After this time, the release paper was peeled back to reveal the 

transparent, uniform PNIPAM/ clay film (figure 4.6g and h). Films of 300pm, 500pm, 

800pm 1000pm were successfully manufactured with this process by adjusting the 

height of the gap, with mechanical stability of the films improving respectively.
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g)

Figure 4.6. The various equipm ent and production steps at SNEF with which flat 

films of PNIPAM/ clay nanocomposite gel were m anufactured in a one-step 

process directly from IC jo PCPH formulations.
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Figure 4.6. shows the gel-casting process at SNEF, showing a) top and bottom poly­

coated silicone release papers rolls (above and below respectively), b) the “spreading 

box” apparatus showing the two guard plates between which the PCPH (c) is gradually 

poured. The PCPH is squeezed through a precise predetermined size gap between the 

coating bar and casting table between the upper and lower coated silicone release 

papers, which are simultaneously pulled through the tunnel (d and e) by the winding bar 

at a speed of 0.6m/ m in'1. The nanocomposite film, sandwiched between two silicone 

release papers is allowed to cool on top of the steel “slats” of the drying tunnel (f) 

before the paper is peeled back to reveal the transparent, uniform PNIPAM/ clay film (g 

and h, both showing film of 1000pm thickness).

4.5 Summary

Previous reports on the electrospinning PNIPAM are limited, but show that the polymer 

can be electrospun into fine fiber mats by dissolving commercially produced linear 

PNIPAM in various solvents, such as methanol [18], water, acetone, THF [19], and 

DMF [20] prior to electrospinning the resulting solution. Despite this, the non-cross- 

linked networks of such mats would not be capable of retaining any o f their fibrous 

structure upon reswelling, rendering the useful stimuli responsive properties of 

PNIPAM in solution effectively useless. In this chapter, the production o f  novel fine 

(100-800nm), uniform, cross-linked PNIPAM/ clay nanocomposite fibers of various 

compositions is presented. The facile incorporation of additives to the solution prior to 

electrospinning is related to the morphologies of the resulting fibers.

The only PNIPAM/ clay hydrogel sheets apparent in literature have been synthesised by 

warming a monomer/ initiator/ accelerator solution inside a flat mould to temperature 

above which initiator dissociation occurs, and allowing polymerisation to proceed in 

situ [21]. Inconveniently, this method requires the complete encapsulation of the entire 

apparatus in an oxygen-free, nitrogen atmosphere and whereby the solution is highly 

toxic until fully polymerised. The method does not facilitate the addition of dopants 

prior to PTTNAG and the resulting sheets must be purified extensively after synthesis to 

remove unreacted species. Here is presented a novel, simple, safe and convenient 

method of producing thin films of PNIPAM/ clay nanocomposite hydrogel of uniform 

and controllable thickness (as thin as300pm) on an industrial scale, using industrial 

film- extrusion apparatus.
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Chapter 5 - The Characterisation of PNIPAM/ Clay 
Nanocomposite Liquid Gel Precursor Formulations 
Post-PTTNAG.

5.1 Introduction

This chapter explores the characterisation carried out on PCPHs post PTTNAG. Clay 

distribution of the PNIPAM / clay formulations of various clay concentrations is 

determined using X-ray diffraction (XRD), and their thermal stability examined using 

thermogravimetric analysis (TGA). Mechanical properties of various gel formulations 

with and without biologically active dopants are compared using data obtained from 

dynamic mechanical analysis (DMA). Limitations of certain M olecular weight (Mw) 

characterisation approaches are also presented and discussed.

Clay concentrations present in the samples are confirmed using ATR-FTIR, and an 

ATR-FTIR study of the formation and destruction of hydrogen bonding in PNIPAM / 

clay, PNIPAM / clay / gelatine and PNIPAM / clay Hyaluronic acid (HA) hydrogel 

formulations during dehydration at 27 °C is presented.

5.2 Materials used in this chapter and the synthesis and 
Preparation of a PNIPAM/ Clay nanocomposite hydrogel precursor 
liquid

The materials, synthesis, nomenclature format and formulation compositions are 

detailed in section 2.2.3.1.

5.3 Separation of PNIPAM from clay nanocomposite 
hydrogels by Hydrofluoric Acid (HF) digestion.

In order to remove the clay from the PNIPAM / clay network and thus allow molecular 

weight data to be obtained and compared between PNIPAM gel systems synthesised 

with various clay loadings, hydrofluoric acid (HF) was chosen to digest and remove the 

clay particles.

HF reacts with most silica- based minerals, including clays and quartz, and aqueous HF 

solutions decompose clay platelets in PNIPAM / clay gels [ 1 ]. The reaction between HF 

and Laponite is thought to be:
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[Mg5.34Lio.66Si802o(OH)4] Nao.66 + 58.86 HF —>

5.34MgF2 I  8SiF62'6+ 0.66Li+ + 0.66Na+

Equation 5.1.

Removal of clay from the PNIPAM/ clay system can be verified by monitoring the loss 

of intensity of the v(Si-O) band in ATR spectra.

The removal of clay from PNIPAM gels has been successfully performed previously by 

Haraguchi et al [1], who selected an adequate HF concentration (0.2wt %) to completely 

decompose the clay whilst posing no damage to the PNIPAM chains. Haraguchi’s 

system differed from the one presented only in method of synthesis, and therefore it was 

deemed appropriate to select the same HF concentration in the following procedure;

In order to observe the effect of clay loading on the molecular characteristics of 

PNIPAM/ clay gels, .25Cio, .5Cio and lCio were prepared using the protocol described 

in Section 2.2.1.2. The gels were cut into cubes of ~ 5mm x 5mm x 5mm and placed 

into an excess of aqueous HF under rapid stir. The amount of aqueous HF solution 

required was 30ml (HF = 0.2 wt %) per lg  of the gel. This was sufficient to induce clay 

decomposition. After 24h of constant stirring, the linear PNIPAM was retrieved from 

the solution by inducing PNIPAM phase- transition at 50°C. Purification was achieved 

by alternating the temperature between 20 - 50°C, and exchanging water at 50°C. The 

handling of HF (the digestion and purification steps) in this procedure was carried out 

by Daniel Capon, Senior Technologist at Glass Technology Services Ltd, Sheffield.

The linear PNIPAM obtained from an xCy nanocomposite gel is denoted as xCyc.

Spectroscopic data of the xCy' polymers show that despite HF treatment, a small 

v(Si-O) -1000 cm-1 (figure 5.1) is observed and indicates that although the majority of 

the clay was decomposed, a small amount remains. As such, no GPC data could be 

obtained or compared for the clay cross-linked PNIPAM gels.
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Figure 5.1. ATR-FTIR spectra of .25Cio’C, •5Cio"( and 1Cio'c polymers which have 

been dried overnight at 80°C prio r to analysis. v(Si-O) vibrations -1000 cm-1 in all 

systems are clearly observable when com pared to the pure polymer system 0C10.

A greater degree o f success with regards to clay removal may be achieved in future 

work by increasing the HF concentration from = 0.2 wt % to 0.25 wt%, and extending 

the stirring period to 36-48h.
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.25C10-C
0C10
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5.4 Gel permeation Chromatography (GPC) analysis of linear
PNIPAM at various stages of polymerisation.

To follow the propagation of the PNIPAM chains during synthesis, gel permeation 

chromatography (GPC) analysis was employed to attempt to determine molecular 

weights and molecular weight distribution of pure PNIPAM at various time intervals (1, 

2 , 5 and 24 hours) during polymerisation. In light of the difficulties encountered during 

the removal of clay from the PNIPAM nanocomposite materials (section 5.3), only 

pure, linear PNIPAM (OCio) was included in this study. The polymers were synthesised 

as described in section 3.2. After the precise required polymerisation time had elapsed, 

the sample was removed from the hot oil bath and immediately quenched in an ice bath. 

The aqueous polymers were dried at room temperature overnight and ground to a grainy 

consistency (the samples were not completely dried at a higher temperature for reasons 

discussed later). 5mg of each sample was added to 5ml GPC grade tetrahydrofuran 

(THF) (Fisher Scientific) in separate sample vials and stabilised with 250ppm butylated 

hydroxytoluene (BHT) (Aldrich). The solutions were swirled gently for 24h to dissolve 

(although they appeared simply to swell). Each sample was injected into the GPC 

system through a 0.45pm  sieve.

7

—  1 hour
6

— 2 hours
5

5 hours
4

— 24 hours

3

2

l

0
24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5

Retention time/ min

Figure 5.2. Influence of polymerisation time on GPC chrom atogram s of OCio 

PNIPAM polymers, based on polystyrene standards. PNIPAM
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concentration = 1 mg/ ml-*, and flow rate = 1 ml/ min 1. Filter pore size = 0.45 pm 

and 2 pm (guard column).

Table 5.1. Average molecular weight (Mw) and molecular weight distribution (Mw/ 

Mn) data obtained for linear PNIPAM by GPC.

Polymerisation time Mw Mn Mw/Mn (MWD)
1 hour P l=  651 P l=  590 P l=  1.10

P2= 224 P2= 204 P2= 1.11

2 hours P l=  377 PI =267 P l=  1.41

5 hours P l=  231 P l=  215 P l=  1.10

24 hours PI =257 PI =250 P l=  1.03

P2= 150 P2= 146 P2= 1.03

GPC chromatographs of the samples are shown in figure 5.2, and the corresponding 

molecular weight (Mw) and molecular weight distribution (Mw/ Mn) data is shown in 

table 5.1. The average Mwin all systems is not.only unexpectedly very low, but appears 

to decrease as polymerisation time increases, which.is counter-intuitive. The erroneous 

nature of these results can be explained by the reasons outlined below.

Literature gives an array of solvents which have been used as GPC mobile phases for 

PNIPAM. These include THF [2-5], DMF[6], chloroform [7], methanol [8], and water 

[9-10]. There exists, however, some uncertainties regarding the accuracy of 

measurement data obtained for PNIPAM analysis. These uncertainties are thought to be 

linked to problems such as to chain aggregation [11], filtration [10, 12-13] and solvent 

effects [10]. Xu et al [13] reported particular difficulty analysing PNIPAM by THF- 

phase GPC and attributes the'data irreproducibility to the lack of solubility, which 

results on the trapping of PNIPAM by the filter and/or guard column. It is reasonable to 

conclude that solubility and polymer trapping issues are at play in the data presented in 

figure 5.2. It is likely that only very short chain polymers and oligomers in the samples 

were sufficiently solubilised to pass through the guard column filter. Further to this, 

Ganachaud et al [11] concluded that completely drying PNIPAM causes chain 

aggregation which is not undone when the sample is dissolved in THF, and it could be 

possible that air drying at room temperature is also sufficient to induce such 

aggregation.

In addition to solvent issues, inaccurate molecular weights will be obtained if the 

standards used in the calibration and the sample are of a different chemistry.
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GPC does not separate polymer chains on the basis of Mw, but on their size in solution. 

During GPC calculations, it is assumed that a particular Mw corresponds to a particular 

polymer coil size in solution (hence retention time), as shown by the calibration. 

Polymers of different chemistry coil differently in solution, forming polymer spheres of 

different size and therefore have a different size/ Mw relationship. Therefore, only 

relative Mw could have been achieved with this system.

More data are needed to make mechanistic inferences on the Mw of PNIPAM in the 

presented system. Possible future approaches are discussed in chapter 8.

5.5 Matrix-Assisted laser desorption/ ionisation time-of-flight
mass spectrometry (MALDITOF MS) analysis of PNIPAM/ clay films

Sometimes, number-average molecular weight (Mn) and polydispersity values can be 

calculated by appropriate averaging of peak heights from matrix-assisted laser 

desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS), and the 

technique can be used to determine the terminal structure of polymers.

In this study, PNIPAM/ clay nanocomposite films were cast from the PCPH 

formulations .25Cio, -5Cio and IC 10 (table 2.1 and Section 2.2.1.2), using PTFE moulds 

with the dimensions 10 x30x5mm. The films were removed from the moulds and left to 

air dry at room temperature for 2 days, becoming flat, transparent sheets of .4- .5mm 

thickness. Pure PNIPAM film obtained from a OCio formulation (table 2.1 and Section 

2.2.1.2) was obtained by pouring the reacted aqueous polymer mixture into an identical 

mould and drying under the same conditions.

Samples were fixed onto a stainless steel slide and 2 spots of matrix, 1,8,9- 

trihydroxyanthracene (dithranol) (Aldrich, 97%) were placed on the surface of each 

sample. The sample spots were scanned averaging -50  shots per spectrum with constant 

laser intensity.

The MALDI-TOF MS spectra for all samples obtained in this study is shown in

figure 5.2.What would be expected in the MALDI-TOF MS spectra are a series of peaks

with a regular interval of 113.08, which corresponds to molar mass of the monomer

unit. What appears instead, however, is a series of regularly-spaced peaks corresponding

to the dithranol matrix (table 5.2). The detection of the matrix and not of the analyte

may be owed to a number of contributing factors. One of the integral requirements of

solvents that are used in MALDI sample preparation is their ability to dissolve all
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components of the sample. It is possible that suitable solubility was not achieved in this 

case. Also, analysis of PNIPAM via this method is difficult due to its lack of ionic 

character, and therefore laser desorption would only yield neutral gas phase molecular 

species. A future approach to this problem would involve the addition of a suitable 

catonisation agent or salt solution (such as NaCl or KC1), to form charged analyte 

clusters.

OcIC ♦
.25C10 •

0c1C ♦
25C10 ♦

20000

15000

10000

5000

500 1000 1500 2000 30002500

Figure 5.3. MALDI TOF-MS mass spectra of dried films of OCIO, .25C10, .5C10 
and 1C10 PNIPAM / clay nanocomposite hydrogels. In all instances, the regularly- 
spaced peaks are indicative of dithranol m atrix clusters and no polym er was 
detectable.
Table 5.2. m/z and intensity values recorded for the MALDI TOF-MS peaks shown 
in figure 3.11 for the .5C10 PNIPAM / clay film. For all samples, the m/z values 
recorded were near identical. The m/z values are  very close multiples of the Mw of 
dithranol, which is 226.23. This is indicative of the detection of dithranol m atrix  
clusters.

m/z Intensity

685 8721

905 9015

1131 4005

1357 2759

1582 2047

1810 1602
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5.6 Thermogravimetric Analysis (TGA) of dry PNIPAM/ clay
nanocomposites.

In this study, TGA was performed to observe thermal degradation of the polymer 

samples with respect to their clay content, and to observe the effects of clay content on 

the thermostability of the polymer/ clay composites.

50-

Lab: Vicky Boyes METTLER TOLEDO STAR6 SW 7.01

Fig.5.4. TGA data of therm ally initiated PNIPAM  & clay cross-linked PNIPAM  of 

various clay concentrations.

Thermogravimetric analysis results for PNIPAM and the clay nanocomposites are 

shown in 5.4. All samples in this study were synthesised as described in Section 2.2.1.2 

before being dried at 80°C for 24h, crushed to a granular consistency using a mortar and 

pestle, then dried for a further 12h before being crushed once more to a powder. The top 

trace shows the normalised % weight of the sample plotted against temperature. The 

lower traces show a negative derivative of these results, to show the changes in rate of 

decomposition more clearly. Both sets of data show pyrolysis (heat-induced chemical 

decomposition) in a single step process with a peak maximum at approximately 430°C 

for all gels. In both sets of data, decomposition of pure PNIPAM begins at 360°C and 

has reached completion at 500°C, whereas the nanocomposite materials begin 

decomposition at the slightly lower temperature of around 320°C, with pyrolysis 

complete at 500°C. The more gradual weight changes of the nanocomposite materials
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indicate improved thermal stability when compared to the pure polymer, and the clay 

platelets appear to have had a shielding effect and slowed down the decomposition rate. 

As expected, the stability of the inorganic component meant that residual sample weight 

at the end of the experiment increases in accordance with clay content. The only 

anomaly in this finding is the behaviour of pure PNIPAM initiated by UV, as it has a 

higher than expected residual weight. A possible future approach to this experiment 

would be to re-run the sample in an O2 atmosphere, removing any char which could 

contribute to the residual weight of the samples.

5.7 X-Ray Diffraction (XRD) data of dry PNIPAM/clay
nanocomposites.

When X-rays- interact with regular, repeated structures which have approximately the 

same repeat distance as X-ray wavelength, diffraction occurs. Crystalline solids have 

interatomic distances of just a few angstroms, which is the approximate wavelength of 

X-ray radiation. X-rays are diffracted from minerals (such as clay) which have regular 

repeated structures, and XRD analysis was used to determine degree of clay exfoliation 

and/ or intercalation of clay in dried clay/ polymer nanocomposite samples. It is 

expected that disordered exfoliated clay nanocomposites would produce no diffraction 

pattern due to a lack of an ordered internal structure; whereas an unexfoliated phase 

separated microcomposite (or system of "stacked" clay platelets) would produce a 

strong diffraction pattern. An ordered intercalated nanocomposite produces signal 

intensity dependent on the extent of platelet ordering and subsequent diffraction.

All polymer samples in this study were synthesised as described in Section 2.2.1.2 

before being dried at 80°C for 24h, ground to a granular consistency using a mortar and 

pestle, then dried for a further 12h before being ground once more to a powder. The 

powder was placed inside the well of an aluminium sample holder and pressed firmly to 

achieve a flat sample surface. The data are shown in figure 5.5.

Laponite clay is notoriously difficult to observe using XRD* as it has weak reflections 

due to imperfect platelet registration and small size [14]. Observing intercalation of 

Laponite in PNIPAM nanocomposites is especially difficult as the broad diffraction 

pattern of the polymer masks the Laponite peaks at 20 = 9° and 20 = 19°. The 

crystalline peaks at 9° in both sets of data loosely follow a pattern of decreasing
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XRD Ana lysis data of dry Clay/PNIPAM Hydrogels of 
Various Clay Concentrations
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Figure.5.5. XRD data of fure laponite clay, the sample holder, linear PNIPAM  & 

clay cross-linked PNIPAM of various clay concentrations (see table 2.1).

intensity with increasing clay content. This is opposite to what one would normally 

predict, as increased number of clay platelets should, in theory, result in increased 

number of repeated structures and therefore increase in diffraction intensity. It is 

possible that the observations made here are attributed to a regular, ordered polymer 

structure which is being disrupted by the presence of exfoliated clay platelets. If the 

experimental parameters were perfect (more specifically, the sample was ground into a 

very fine powder and pressed to form a flat sample surface), it could be assumed that an 

increasing baseline is an indication of good clay exfoliation within the polymer 

network. Since the parameters were imperfect (extraordinary hardness of the dried gel 

made grinding extremely difficult, resulting in a possible inhomogeneous sample 

density and uneven sample surface), it is impossible to derive tentative conclusions 

from these baseline observations. If there were no parallel planes within the structure of 

the material (i.e. the clay was well exfoliated and the polymer amorphous), what would 

be observed is a smooth, featureless diffraction pattern, curved with a high baseline.
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5.8 ATR-FTIR spectroscopic analysis of dry PNIPAM/ clay
nanocomposite and doped nanocomposite films.

5.8.1 ATR-FTIR analysis of PNIPAM/ clay nanocomposite materials

Shown in figure 5.6 are the ATR-FTIR spectra of PNIPAM and its clay nanocomposites 

of Various clay concentrations. All samples were synthesised as described in Section 

2.2.1.2 before being dried at 80°C for 24h, crushed to a granular consistency using a 

mortar and pestle, then dried for a further 12h before being crushed once more to a 

powder.

This sample treatment prior to data collection allowed for improved sample/ crystal 

contact and helped significantly reduce the large v(OH) vibration associated with sorbed 

water which masks the characteristic v(NH) band of PNIPAM at ~3300cm_1. The pure 

PNIPAM material is also characterised by the amide I band at -1649 cm-1 and amide II 

band at -1546 cm-1. For the clay nanocomposites, the band -1000 cm-1 is assignable to 

the stretching vibration of S i-0 in the clay. The intensity of the Si-O band increased 

with increasing concentration of clay, as expected.

This sample treatment prior to data collection allowed for improved sample/ crystal 

contact and helped significantly reduce the large v(OH) vibration associated with sorbed 

water which masks the characteristic v(NH) band of PNIPAM at ~3300cm_1. The pure 

PNIPAM material is also characterised by the amide I band at -1649 cm-1 and amide II 

band at -1546 cm-1. For the clay nanocomposites, the band -1000 cm-1 is assignable to 

the stretching vibration of S i-0 in the clay. The intensity of the S i-0 band increased 

with increasing concentration of clay, as expected.

An integrated area plot of the Si-O/ Amide I ratio versus clay content (figure 5.7) shows 

a linear relationship as predicted by the Beer- Lambert law.
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Figure 5.6. FTIR spectra of dry PNIPAM / clay hydrogels of various clay 

concentrations.
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Figure 5.7. An integrated area plot of the Si-O/ polymer FTIR bands of dry  Clay/ 

PNIPAM hydrogels of various clay concentrations.
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5.8.2 ATR-FTIR monitoring of the ambient dehydration of various
hydrogel formulations.

In this section, the water evaporation dynamics from "pure", gelatine- doped and 

hyaluronic acid- doped PNIPAM films were studied by following the real- time 

dehydration of thin films using attenuated total reflectance Fourier- transform infrared 

spectroscopy (ATR-FTIR). As model systems 1C 10; IC 10GIO andlCioHAlO 

formulations (see Section 2.2.1.2 of this thesis for precise compositions) were 

examined. The dynamics of water-polymer interactions in PNIPAM hydrogels have 

been described in literature [15-17].

5.8.2.1 Conformational states of water molecules in polymers and water
movement in polymers

The understanding of water/ polymer interactive behaviour is crucial to the development 

of behaviour specific polymeric systems, and the “states” of water existing in, 

evaporating from, and being absorbed into such systems has been of significant interest 

[ 18-31 ]. The presence of a polymer can transform water behaviour, and the association 

of the two phases (whether physical or chemical) dictates this behaviour.

The general theory of water conformation in polymeric systems involves the division of 

possible water states into 3 categories [19-26]."Non-freezable bound" water is thought 

to be associated, through hydrogen bonds, with polar polymeric functional groups. As 

the name describes, the bonds are very strong and this water is not possible to freeze. 

"Freezable bound" water exhibits a characteristic lower phase transition temperature 

than that of bulk or "unbound" water. "Free" or unbound water is thought to exist free of 

electrostatic influence from the polymer chains. The freezable bound and non-freezable 

bound water fractions are collectively referred to as the "bound water" content.

Diffusion is the process by which atoms or molecules migrate through space with the 

absence of a bulk flow. Commonly, the cause of this movement is the presence of a 

concentration gradient, during which the component concentrations are continually 

altered until equilibrium is reached [32]. The diffusion of liquids through solids has 

been of key interest in the field of materials science for more than a century, beginning 

with the empirical formulation of Fickian diffusion which examines the effect of 

concentration gradient of a system on the resulting a diffusion flux. Later, Einstein 

would postulate revolutionary theories regarding the relationship between spontaneous 

movement of liquids through matter and random molecular movement.
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The movement of liquid in polymeric systems have been studied extensively with 

techniques such as gravimetry [33], dynamic light scattering [34-37], membrane 

permeation [38-39] fluorescence spectroscopy [40-43], NMR [44-46] and ATR-FTIR 

[23, 27, 47-49]. The understanding of principles governing these phenomena has led to 

the development of several theoretical models and enhanced understanding of polymer 

structure and behaviour. The specifics all of such models are beyond the scope of this 

thesis but have been reviewed by Masaro et al [50] and Duda [51]. Although the 

swelling kinetics and behaviour of various hydrogel types have been extensively 

studied, the availability of information regarding the kinetics of hydrogel dehydration is 

comparatively poor.

For polyiners, the mechanism of dehydration is complex and depends fundamentally on 

structural parameters such as the reordering of the polymer chains during solute escape 

(and hence polymer structure and chemistry), the nature and density of cross-links and 

branches, and the nature and levels of fillers and other additives [31, 52-54];

5.8.2.2 Rate of dehydration measured by attenuated total reflection Fourier
transform infrared spectroscopy

Real-time Fourier transform infrared attenuated total reflectance (FTIR-ATR) 

spectroscopy has proven a convenient, reliable and accurate method to study sorption 

kinetics in polymers [55]. Unlike data provided by gravimetric methods, FTIR-ATR 

spectroscopy provides short time data such as time-dependent alterations in local 

environment for the polymer and penetrant, such as penetrant-polymer and penetrant- 

penetrant hydrogen bonding [56].

Barbari et al showed that diffusion coefficients for polymers obtained from FTIR-ATR 

spectroscopy were in good agreement of those measured gravimetrically, lying well 

within their experimental error [56-57]. It is therefore implied that that diffusion 

coefficient values obtained gravimetrically can be indicative of those obtained 

spectroscopically, and vice versa. In ATR measurements, the intensity of absorbance of 

a particular functional group correlates directly to the concentration of that functional 

group within the evanescent field. The equivalent relationship in FTIR-ATR 

spectroscopic experiments is more complex than that of gravimetric data because of the 

exponential decay of the evanescent field extending into the polymer. Fieldson et al [58] 

used ATR- FTIR to measure the diffusion of water through polyacrylonitrile, and
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devised an equation which allo.wed the convolution of the evanescent electric wave field

[51].

The most common approach of measuring solvent sorption and evaporation in polymers 

using ATR involves the close adherence of a polymer film to the ATR crystal and 

presenting a gas or liquid to the exposed side. Despite its numerous advantages 

associated with ATR monitoring of these systems, sufficient contact can often be 

difficult to maintain during polymer structural rearrangement and delamination can 

occur.

5.8.2.3 The data fitting process

In order to obtain diffusion coefficient values with the short term approximation of the 

Fieldson equation [51] (equation 5.2), data were plotted against the square root of time 

and the slope of the linear section was calculated by applying a linear trendline to this 

section.

Mt  
M oo

Equation 5.2

Where Mt is the mass sorbed at time t, Mffl is the mass sorbed at equilibrium, D is the 

diffusion coefficient, and L is the sample thickness.

The relationship between the slope of the linear trendline, sample thickness and 

diffusion coefficient D is given by:

2
m = L

Equation 5.3

Which can be rearranged to give the diffusion coefficient:

Equation 5.4

The delay in appearance of structural changes within the evanescent field is derived 

from the intercept “y” value.

D
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5.S.2.4 ATR-FTIR monitoring of the dehydration of 1C10 hydrogels.

A IC 10 PCPH suspension was synthesised as described in Section 2.2.1.2. 50pl of 1Cio 

was pipetted onto the ATR crystal which had been preset to 27°C, and a PTFE mould of 

exactly 1mm thickness was immediately placed on top. As the PCPH cooled, it 

undergoes PTTNAG precisely in conformation to the mould depth. After exactly 10 

minutes, the mould was removed revealing the disk-shaped hydrogel adhered to the 

ATR crystal. Data collection was immediately commenced with 64 scans per spectrum 

at a resolution of 4cm _l on a Thermo Nicolet Nexus instrument, and the spectra were 

ratioed against a single beam spectrum of the clean crystal at 27°C. Using a series setup, 

a spectrum was taken automatically every 15m for 720m (12h), with all parameters kept 

constant throughout. Figure 5.8 shows a series of reference spectra of all of the 

individual components used in the formulations characterised in this section. Figure 5.9 

shows a selection of the drying lCio spectra in their entirety, and figures 5 .10-5.13 

shows expansions of these spectra to highlight the observable peak intensity changes 

and peak shifts during the drying process.
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Figure 5.8. Reference spectra of water, hyaluronic acid, gelatine and dry  ICio 
taken a t 27°C.
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Figure 5.9. Full spectra of w ater evaporating from a lCio hydrogel at 27°C.
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Figure 5.10. Amide I and Amide II spectral bands (from left to right) taken during  
the drying of a lCio hydrogel a t 27°C.
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Figure 5.11. r as(CH3) and vas(CH2) spectral bands (from left to right) taken during  
the drying of a lCio hydrogel a t 27°C.
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Figure 5.12. CH Rocking and v(Si-O) spectral bands (from left to right) taken 
during the drying of a lCio hydrogel at 27°C.
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Table 5.3. Observed IR frequencies and assignments of a lCio hydrogel disc after 
Omin and 720min drying at 27 °C.

_________________ Frequency/ cm '1_______________
. . W avenumber

ssignmen ^ mjn cm-i

H- bonded Amide I 1633 1639 +6
Amide I 1633 1622 -11
Amide II 1556 1541 -15
Vas(CH3) 2981 2972 -9
Vas(CH2) 2939 2933 -6

CH Rocking 1078 1072 -6
v(Si-O) 1001 999 -2
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Figure 5.13. v(OH) (3700-300cm1) and v(OH) with visible v(NH) (3270cm 1) taken 
during the drying of a lCio hydrogel at 27°C.
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Figure 5.15. Kinetic profile of evaporation of w ater from  a lCio hydrogel into the 
atm osphere as a function of Vtime, including intercept “ F” and R2.
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Table 5.4. Diffusion coefficient "D" and intercept values obtained for the drying of 
lCio.

Sample
Thickness D value 

(cm2 s '1) 
1.26E-04 
1.28E-04

(cm) Intercept
Experiment 1 0.009 128.3
Experiment 2 0.009 129.6

5.8.2.5 ATR-FTIR monitoring of the dehydration of 1C10G10 hydrogels.

A IC jo G IO  PCPH suspension was synthesised as described in section 2.1.1.3.2. 50pl of 

lCio was pipetted onto the ATR crystal which had been preset to 27°C, and a PTFE 

mould of exactly 1mm thickness was immediately placed on top. As the PCPH cooled, 

it undergoes PTTNAG precisely in conformation to the mould depth. After exactly 10 

minutes, the mould was removed revealing the disk-shaped hydrogel adhered to the 

ATR crystal. Data collection was immediately commenced with 64 scans per spectrum 

at a resolution of 4cm '1 on a Thermo Nicolet Nexus instrument, and the spectra were 

ratioed against a single beam spectrum of the clean crystal at 27°C. Using a series setup, 

a spectrum was taken automatically every 15m for 720m (12h), with all parameters kept 

constant throughout. Figure 5.8 shows a series of reference spectra of all of the 

individual components used in the formulations characterised in this section. Figure 

5.16 shows a selection of the drying I C jo G I O  spectra in their entirety, and figures 5.17- 

5.19 shows expansions of these spectra to highlight the observable peak intensity 

changes and peak shifts during the drying process.

157



0.00

1C10G10 Drying at 27°C
0 min

150 min

180 min
Polymer

dehydration270 min

720 mm0.30

-P 0.25
Water 

evaporation<  0.20

3600 3100 2600 2100 1600
W avenum bers c m 1

100 600

Figure 5.16. Full spectra of w ater evaporating from a IC 10GIO hydrogel a t 27°C.
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Figure 5.17 Amide I and Amide II spectral bands (from left to right) taken during  
the drying of a IC 10GIO hydrogel at 27°C.
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Figure 5.18. vas(CH3) and vas(CH2) spectral bands (from left to right) taken during 
the drying of a IC 10GIO hydrogel at 27°C.
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Figure 5.19. CH Rocking and v(Si-O) spectral bands (from left to right) taken 
during the drying of a IC joGIO hydrogel at 27°C.
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Table 5.5. Observed IR frequencies and assignments of a IC 10GIO hydrogel disc 
after Omin and 720min drying a t 27 °C.

_________________ Frequency/ cirT1_______________
. . W avenumber

Assignment 0 min 720 min shift c m 1
H- Bonded Amide I 1633 1639 +6

Amide I 1633 1628 -5
Amide II 1556 1540 -16
vas(CH3) 2980 2972 -8
Vas(CH2) 2939 2933 -6

CH Rocking 1078 1072 -6
v(Si-O) 1001 999 -2
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Figure 5.20. v(OH) (3700-300cm‘1) and v(OH) with visible v(NH) (3270cm 1) taken 
during the drying of a IC 10GIO hydrogel a t 27°C.
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Figure 5.21. Kinetic profile of evaporation of water from a IC10GIO hydrogel into 
the atmosphere as a function of Vtime.
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Figure 5.22. Kinetic profile of evaporation of water from a IC10GIO hydrogel into 
the atmosphere as a function of Vtime, including intercept “F” and R2.

Table 5.6. Diffusion coefficient "D" and intercept values obtained for the drying of 
ICioGlO.

Experiment 1

Sample
Thickness

(cm)
0.012

Intercept
117.9

D value 
(cm2 s '1) 
2.35E-04
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5.8.2.6 ATR-FTIR monitoring of the dehydration of 1C10HA10 hydrogels.

A IC 10HAIO PCPH suspension was synthesised as described in section 2.1.1.4.2. 50pl 

of 1Cio was pipetted onto the ATR crystal which had been preset to 27°C, and a PTFE 

mould of exactly 1mm thickness was immediately placed on top. As the PCPH cools, it 

undergoes PTTNAG in conformation to the mould depth. After exactly 10 minutes, the 

mould was removed revealing the disk-shaped hydrogel adhered to the ATR crystal. 

Data collection was immediately commenced with 64 scans per spectrum at a resolution 

of 4cm ’1 on a Thermo Nicolet Nexus instrument, and the spectra were ratioed against a 

single beam spectrum of the clean crystal at 27°C. Using a series setup, a spectrum was 

taken automatically every 15m for 720m (12h), with all parameters kept constant 

throughout. Figure 5.8 shows a series of reference spectra of all of the individual 

components used in the formulations characterised in this section. Figure 5.23 shows a 

selection of the drying IC 10HAIO spectra in their entirety, and figures 5.24- 5.26 shows 

expansions of these spectra to highlight the observable peak intensity changes and peak 

shifts during the drying process.
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Figure 5.23. Full spectra of w ater evaporating from a IC 10HAIO hydrogel a t 27°C.
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Figure 5.24. Amide I and Amide II spectral bands (from left to right) taken during 
the drying of a IC 10HAIO hydrogel at 27°C.
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Figure 5.25. vas(CH3) and vas(CH2) spectral bands (from left to right) taken during  
the drying of a IC 10HAIO hydrogel a t 27°C.
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Figure 5.26. CH Rocking and v(Si-O) spectral bands (from left to right) taken 
during the drying of a IC joHAIO hydrogel a t 27°C.

Table 5.7. Observed IR frequencies and assignments of a IC 10HAIO hydrogel disc 
after Omin and 720min drying at 27 °C.

_________________ Frequency/ cm '1________________
. . x W avenumber

ssignment Omin 720 min shift cm '1
H- Bonded Amide I 1633 1639 +6

Amide I 1633 1628 -5
Amide II 1558 1541 -17
Vas(CH3) 2981 2974 -8
Vas(CH2) 2939 2935 -4

CH Rocking 1078 1076 -2
v(Si-O) 1004 1001 -3
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Figure 5.27. v(OH) (3700-300cm‘l) and v(OH) with visible v(NH) (3270cm 1) taken 
during the drying of a IC iqHAIO hydrogel a t 27°C.
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Figure 5.28. Kinetic profile of evaporation of w ater from a I C j o H A I O  hydrogel 
into the atm osphere as a function of Vtime.
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Figure 5.29. Kinetic profile of evaporation of water from a IC 1 0HAIO hydrogel 
into the atmosphere as a function of Vtime, including intercept “P ’ and R2.

Table 5.8. Diffusion coefficient "D" and intercept values obtained for the drying of 
IC 1 0HAIO.

Sample Thickness D value
(cm) Intercept (cm2 s '1)

Experiment 1 0.011 109.60 1.84E-04
Experiment 2 0.011 106.27 1.79E-04

5.8.2.7 Discussion

The objective of this study was to monitor in real time the evaporation of the aqueous 

solvent from the PNIPAM- based hydrogels. Several experimental attempts were made 

for each formulation; and the data sets shown are those for which the starting spectra 

were near identical, making the data directly comparable. For the IC 10GIO formulation, 

for which Ihe data is presented in section 5.8.2.5, only a single experiment endured to 

completion without delamination occurring. Typically, in the case of 1 CioGl0 

formulations, contact was lost between sample and crystal between 3-6 hours. 

Delamination of other formulations during drying was also commonplace, typically 

occurring at 8-10 hours. Due to the post-drying treatment of the samples required for 

further analysis, the samples used to collect the data could not be removed in order to
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obtain exact sample thickness. The thickness was approximated by allowing the drying 

of 3 separate samples of identical dimensions and composition and under the same 

conditions as those analysed, and recording an average thickness across the sample 

centre. The thicknesses were consistent in all cases with an error of +/- .003mm or less.

Hydrogen bonding as a result of hydration principally occurs at electronegative atoms 

on polar groups, e.g. the oxygen atoms of hydroxyl and carbonyl groups and nitrogen 

atoms of amino groups. In general terms, a change in hydrogen bond strength is 

observable in ATR-FTIR spectra as spectral "shifting" of the corresponding band; 

repulsive forces shift the band to higher wavenumbers, and attractive forces shift the 

band to lower wavenumbers [18].

Tables 5.3, 5.5 and 5.7 give the characteristic peak wavenumbers and spectral shifts 

during the dehydration of lCio, I C jo G I O  and IC 10HAIO formulations, respectively. The 

main spectroscopic changes observable for spectra shown for all formulations in this 

study are changes in intensity and band position associated with the polymer and water. 

These can be associated directly to the redistribution of water molecules during 

dehydration. In all cases, “Free” or “unbound” water will escape first, leaving 

increasing proportions of bound and unfreezable water classes, thus inducing negative 

band shifts. As the density of the hydrogel increases and water vaporises from the gel 

surface, the number of attractive interactions between hydrophobic groups (hydrophobic 

polymer-polymer interactions) also increases [59]. Su et al found that the vas(CH3) at 

2981cm'1 is particularly sensitive to hydrophobic interactions in PPO-PEO copolymer 

systems [60], and records a wavenumber shift of -10cm '1. In this data collected for all 

3 formulations, wavenumber shifts of 8- 9cm '1 strongly supports the hydrophobic- 

hydrophobic interactive theory during the drying of our polymers. This can almost 

certainly be attributed to the close methyl-methyl group proximities during polymer 

dehydration.

The peak of the Amide I (C=0) vibration at 1633cm'1 is expected to shift toward a 

lower wavenumber upon hydration due to an increase in hydrogen bonding hydration 

and to a higher wavenumber upon dehydration. Observable in this data is the apparent 

peak splitting of this band during the drying of all formulations, indicative of the 

formation of 2 carbonyl populations - one "free" and one strongly hydrogen-bonded to 

water. This manifests itself as an apparent positive shift of the free population and 

negative shift of the hydrogen-bound populations. The peak centre of the hydrated 

carbonylgroup is -1639cm '1 and that of the free group is -1628cm '1. The magnitude of
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this difference (11cm'1) is very similar to that observed by Iwamoto et al [30] during 

the drying of Nylon 6, who recorded a carbonyl split of 13cm'1 during the dry air purge 

of a thin Nylon-6 film.

All other band shifts in all spectra are negative, indicative of increasing prevalence of 

stronger hydrogen bond interactions at all spectroscopically visible hydrogen-bonding 

loci.

Figures 5.13, 5.20 and 5.27 show the v(OH) of spectra between 0 and 720min as the 

lCio, IC 10GIO and ICjoHAIO formulations dry at 27°C, respectively. The peak height 

at 3393 wavenumbers (chosen for its non-interference from the v(NH) at 3270cm'1) 

was plotted against the square-root of time, and this typical dehydration curve is shown 

in figures 5.14, 5.21 and 5.28 , respectively. Expansion of the linear slope together with 

the corresponding y and R values are given in figures 5.15, 5.22 and 5.28.

Pseudo diffusion coefficients were obtained from the short time approximation of 

Fickian diffusion detailed in section 5.8.2.3, and are given in tables 5.4, 5.6 and 5.8.

Also included in these tables are the intercept values obtained during the data-fit 

process. Values obtained for the slope of drying are not significantly different between 

data sets and therefore replacing a percentage of PNIPAM / clay within the systems 

with either gelatine or HA solution does not affect the rate at which water evaporates 

from the evanescent field. Interestingly, values obtained for the y intercepts (the point at 

which the trendline crosses the y axis) do show significant variation between data sets. 

The linear drying slope during the drying of lCio gels occurs between 165-240 minutes, 

that of IC 10GIO occurs between 120-210 minutes and that obtained for 1C10HA10 gels 

occurs between 105- 165 minutes, and giving average intercepts of 128.95, 117.9 

and 107.94 respectively. A similar effect was observed by Muthudoss [29] who, using 

ATR-FTIR recorded similar D values within data-sets, yet simultaneous temperature- 

dependent intercept shifts during the evaporation of various solvents from solid 

pharmaceutical dispersions. Since the vibrational spectra represent the molecular 

constituents and interactions within the evanescent field (dp is in the order of l-2pm  at 

1000 cm '1, and because of the wavelength dependence the penetration depth increases 

by a factor of 10 between 4000 and 400 cm '1), the “delay” in evaporation time can be 

attributed to the restriction of interstitial water escape from regions within a few pm of 

the crystal surface during the drying process. Tables 3.1, 3.4 and 3.5 give the precise 

compositions of the respective gels. The comparatively faster water loss from HA and 

gelatine-doped gels could be partly due not only to their more loosely-crosslinked



structure (as they both contain 10% less clay than their lCio counterpart), but because of 

the fact that the clay itself is very hydrophilic and highly swellable in nature [61]. A 

looser polymer matrix in addition to a lower quantity of clay-bound water could feasibly 

assist the dehydration process of the doped systems. HA-doped gels reach a maximum 

dehydration rate faster than those doped with gelatine, despite an identical clay 

concentration. This observation could be attributed to the higher water content of the 

former (90.8%) compared to the latter (86%), which in turn will incur larger interstitial 

“unbound” water-filled spaces. Tentative conclusions require further experiments and 

generation of statistical error data in order to draw more reliable and scientifically- 

sound conclusions, however.

5.8.3 ATR-FTIR imaging of doped PNIPAM/ clay nanocomposites.

Commonly, and as described in sections 5.8.1 and 5.8.2, ATR- FTIR spectroscopy is 

carried out on a single sample surface point which is determined to be chemically 

indicative of the whole sample under observation. In certain cases however, such as 

polymer blends or layer interfaces, chemical data are required in a spatial or lateral (2- 

dimensional) context. Imaging ATR-FTIR is a relatively recent alternative approach to 

conventional ATR-FTIR as it offers the ability to achieve simultaneous multiple 

laterally resolved spectra using a focal plane array detector. The technique allows 

images to be generated which show the distribution of a specific peak area or intensity, 

peak area or intensity ratio or more complex principal component analysis, whivh in 

turn is related to the distribution a particular component within the system. FTIR relies 

on the characteristic absorbance of corresponding molecular vibrations in a sample and 

therefore does not require any labelling methods or dyes in order to visualise separate 

chemical components within a sample. Each pixel of the spatially resolved chemical 

image is representative of a single data point and are coloured according an arbitary 

scale depending on the numerical value assigned to them by the image generation 

method used.

The technique was chosen to determine the spatial distribution of PNIPAM, clay and 

dopant species separately within the doped PCPH gels in order to investigate domains 

within the systems. For these experiments, the samples were prepared as described in 

sections3.3, table 2.1, section 2.1.1.3.2, table 2.2, section 2.1.1.4.2 and table 2.3. A thin 

(~300pm) layer of each sample was cast onto a metal substrate and allowed to dry at 

room temperature. The samples were carefully removed from the substrate and placed
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onto the diamond ATR crystal. Since the technique requires the sample to be in optical 

contact with the crystal, controlled pressure was applied to the sample. Each spectrum 

was collected by accumulating 128 scans at a resolution of 4 cm-1, and the images, 

along with their constituent spectra are shown in figures 3.9 and 3.10. The image field 

of view was 640 x 640pm, and the measured spatial resolution was 18pm.
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Images were constructed based on the area of the 5 (CH3) vibration of PNIPAM (1480-1415 

cm '1), the v(Si-O) vibration of laponite (1034-951 cm '1), and the amide-III vibration of 

gelatine (1298- 1192 cm '1). The 8 (CH3) vibration of PNIPAM was chosen instead of the more 

commonly used amide I and amide II bands to avoid overlap with gelatine peaks. The 5 (CH3) 

vibration has a lower vibrational contribution from gelatine. Some typical spectra showing 

the bands with which the images were generated are also shown in figures 5.30 and 5'.31. In 

all instances, it is observable that apparent variations in peak area for all components are not 

attributed-to domain separation of the components, but to variations in the optical quality of 

crystal/ sample contact. This is especially evident in figures 3.9a and 3.9b, where areas of 

green and light blue are of very poor contact, and dark blue areas have virtually none. For 

HA-doped PNIPAM samples (figures 3.40a and b), no characteristic HA bands, including the 

very small vibration located at 1410cm'1 shown in section 3.8.2, could be located in any of 

the image spectra during these experiments. The very strong characteristic HA vibrational 

band at 1033 cm'1 is not identifiable in this data due to overlap with the v(Si-O) of laponite. 

The distribution of all components is therefore determined by the respective spatial 

distributions of clay and PNIPAM, which are both clearly identifiable and homogenous in 

this data, with no voids in the polymer or clay distribution.

Since the images indicate qualitative and not quantitative data and the colour scales are 

allocated arbitrarily for each image, the variation in colour within an image is only 

comparable to other colours within that image. Evidently, there is no “real” variation in gel 

composition in within the field of view for any of the systems under study and they are 

deemed to be homogeneous on the micron length scale. Multivariate curve resolution (MCR) 

analysis [62], which is a collection of techniques which help determine the number of 

components in a mixture, their concentrations and response profiles to help resolve them, 

was applied to the data in this study and confirmed the homogeneity of all formulations.
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5.9 Dynamic Mechanical Analysis (DMA) frequency scan data of
PNIPAM/ clay and doped PNIPAM/ clay hydrogels.

Polymeric hydrogels have found use in several biomedical devices both in medical and 

veterinary disciplines, most popularly as drug delivery vehicles and wound management 

devices. It has been previously demonstrated that the mechanical properties of such devices 

directly influence their clinical behaviour and performance [63-64]. It is therefore crucial to 

characterise the rheological/ mechanical properties of any material intended for biomedical 

applications to as part of the formulation, design and therefore performance optimisation 

protocol.

Amongst the many techniques employed to mechanically analyse polymers [65], dynamic 

mechanical methods are non- destructive and enable accurate and rapid determination of the 

viscoelastic properties of polymeric systems.

Some very commonly used DMA terminology is defined as follows:

Storage modulus- refers to a material’s resistance to deformation (given in Pa).

Tan delta (8) -  refers to the ratio of the storage modulus to loss modulus. It quantifies of the 

presence and extent of elasticity in a material.

Strain- refers to the amount by which the sample is deformed.

Damping- a measure of the internal friction of a material which is indicative of the amount of 

energy loss from a material as dissipated heat.

Stress- refers to the force per unit area (given in Pa) required to bring about sample 

deformation.

DMA was carried out to investigate the viscoelastic properties of PNIPAM/ clay hydrogels as 

well as those with added dopants as described in sections 3.6 and 3.7. In all cases, the liquid 

PCPH was freshly synthesised using the protocols described in sections 3.6 and 3.7 and 

sonicated at 80°C for 30 minutes to remove any trapped air. The appropriate amount of PCPH 

was carefully transferred to a mould (a srtiall glass Petri dish) with a depth of 4.5mm, filling 

it to the brim. After approximately 2 minutes at room temperature, the PCPH cooled 

sufficiently to undergo phase transition, lose its opacity and solidify to the precise dimensions 

of the mould. The mould was then air-sealed and stored at room temperature for 24h. A
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circular biopsy punch with a 4.5mm internal diameter was used to punch cylindrical samples 

from the hydrogel, thus maintaining sample dimension consistency. The geometry of the 

samples was measured, and they were then clamped between the DMA compression plates. A 

PerkinElmer DM A8000 model was used in compression mode at room temperature (recorded 

as 25.2°C - 25.5°C) and the spectra were acquired during a frequency scan between 0.1 and 

10 Hz. The displacement for each experiment was set to 0.05mm.Each experiment was 

performed 3 times using a fresh sample each time. A sample of bovine nucleus pulposus, a 

component of spinal disc tissue discussed in detail in chapter 7, was analysed using identical 

parameters by Dr. Kerstin M ader of the Materials and Engineering Research Institute at 

Sheffield Hallam University for comparison. The average storage modulus (Pa) and tan 5 

were plotted against frequency with standard error shown. The results are given in figure 5.32 

and 5.33, respectively.
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Figure 5.32. Frequency sweep data obtained using DMA for the PNIPAM / clay 

hydrogel and its doped variants, showing their relative storage moduli (Pa). The 

experiments were perform ed at room tem perature. n=3.

During a frequency scan, oscillatory stress is applied to the sample and the resultant storage 

modulus is plotted as a function of frequency. DMA characterisation revealed that storage
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modulus for all formulations very gradually increased with increasing frequency (in other 

words, the material becomes marginally less elastic and “tougher” at higher oscillatory 

frequencies, which is typical viscoelastic behaviour). Also, the viscoelastic behaviour of the 

PNIPAM / clay formulations more resembled that bovine NP tissue with increasing HA 

content, not only by a decrease in storage modulus, but also displaying a greater degree of 

linear viscoelasticity during compression [66]. W hilst the viscoelastic behaviour of 

formulations containing 10% gelatine solution ( IC 10GIO) closely resemble that the standard 

clay/ polymer (lCio) formulation, further increasing the gelatine solution concentration to 

20% (1CioG20) induces a decrease the storage modulus of the material, more closely 

bringing it in line with that of bovine NP tissue.
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Figure 5.33. Frequency sweep data  obtained using DMA for the PNIPAM / clay 

hydrogel and its doped variants, showing their relative tan 5 values. The experim ents 

were perform ed at room tem perature. n=3.

The tangent of phase difference, "tan 6" or "damping ratio", provides information regarding 

energy dissipation properties of the gels (in this case as a function of frequency), and is given
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by the ratio G" (loss modulus)/G' (storage modulus), the elastic and inelastic components 

respectively.

In principal, the larger the tan 5, the greater the dampening force. This reduces the amplitude 

of the oscillatory force, effectively reducing the "shock of impact".

Figure 5.33 shows the relationship between tan 8 and oscillatory frequency of various gel 

formulations in comparison to bovine NP tissue. The overlapping standard error of the 

PNIPAM based gels make them largely indistinguishable from a damping perspective, 

although all formulations exhibit a marginal increase in tan 8 at higher frequencies. The tan 8 

values obtained for bovine NP far exceed those of any of the gel formulations, indicating that 

they possess markedly higher energy dissipation properties. The energy dissipation properties 

of the bovine NP also improve with increasing frequency, by a magnitude comparable to the 

PNIPAM-based gels. This may be related to the hierarchal structure within the native NP, 

where fibres on the mm scale are interconnected with nanofibres.

5.10 Summary

Approaches undertaken to determine Mw and molecular weight distribution of the polymers 

have been met with very limited success, owing to the nature and behaviour of the. polymer 

during and following the precipitation polymerisation process. Several characterisation 

approaches have been proposed for future work, focussing primarily on different approaches 

to existing techniques.

The ability of PNIPAM to form strong cohesive entanglements when cooled after 

precipitation polymerisation may help explain the difficulty in dissolving the polymer for Mw 

analysis.

The accuracy of clay content of the resulting gels has been demonstrated by ATR-FTIR 

integration and XRD analysis proves excellent clay platelet distribution. It. was established 

using ATR-FTIR that kinetic of isothermal dehydration of various hydrogel formulations can 

be controlled with the addition of biologically active dopants. This is thought to be due to 

cross-link density and initial water volume fraction of the starting film. Although some initial 

data sets indicate consistency, more data and a larger sample matrix is required to draw 

definitive conclusions with regards to the mechanism of this process and the factors which 

influence it.

The dynamic mechanical properties of several PNIPAM/ clay/ biological dopant gel

formulations have been compared to bovine nucleus pulposus tissue. The viscoelasticity of
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the gels can be tailored with varying the nature and quantity of dopant materials. Of the gel 

formulations examined, those containing a hyaluronic acid (HA) solution most closely 

resemble bovine spinal disc tissue from a viscoelastic perspective. In addition to this, tan 8 

data concludes that bovine disc tissue possesses a far greater capacity for energy or impact 

dissipation than any of the PNIPAM-based gel formulations, regardless of dopant nature or 

concentration. The cytocompatibility of all formulations and their feasibility as medical 

devices, specifically spinal disc tissue scaffolds, is examined in detail in chapter 7.
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Chapter 6 -  The Influence of Alcoholic Solutions and 
Dopants on the Phase Behavior of PNIPAM.

6.1 Introduction

Typically, a hydrogel consists of a 3- dimensional cross-linked polymer structure which 

exists in equilibrium with a solvent medium [1-2], whereby the solvent occupies a far larger 

volume fraction than the polymer. Hydrogels exhibit observable osmotic swelling or 

deswelling kinetics depending on the hydrodynamic relationship between polymer and 

solvent, which potentially give rise to dramatic volume phase transitions. Such transitions 

have been observed for physically and chemically cross-linked hydrogels in a variety of 

thermodynamic conditions [3-11].

As explained in chapter 1, the LCST observed in PNIPAM systems and accompanying 

changes in morphological polymer conformation arise from changes in the delicate balance 

between hydrogen bonding and hydrophobic interactions in aqueous media. Physical changes 

at LCST, such as degree of swelling, change in optical transparency and mechanical modulus 

can be modified and engineered by altering cross-link concentration and type, polymerisation 

method and incorporating different monomer species as a copolymer network. As the 

temperature is raised, increasingly unfavourable entropic contributions are made to the Gibbs 

free energy of mixing, and eventually these contributions override the favourable enthalpy 

attributed to hydrogen bonds between the polymer and water. As such, the LCST of 

PNIPAM is attributed strongly to the composition of the medium with which it interacts. 

Some cosolvents modify water structures and conformations, affecting the delicate hydrogen 

bonding and hydrophobic interactions in PNIPAM systems. For example, aforementioned 

physical changes are also observed when the gels are placed in alcoholic solutions.

Pure water and pure lower alcohols are good solvents for PNIPAM, but mixtures of the two 

over a certain concentration range are not. It is thought that water molecules form a 

disordered tetrahedral (clathrate) structure around an alcohol molecule, and Onori et al and 

Zhu et al \ 12-13] found that a greater number of water molecules were required to form such 

a clathrate structure around EtOH than MeOH. In water alone, water molecules form cage­

like structures around isopropyl groups of the PNIPAM chains whilst forming hydrogen 

bonds with the amide groups. With the addition of an alcohol, it is the removal of water 

molecules swelling the PNIPAM chains in order to favourably form clathrate hydrate



conformations around the alcohol molecules which causes the gel to collapse, as hydrogen 

bonding and hydrophobic interactions are disrupted. Reswelling occurs when the volume 

fraction of alcohol molecules exceeds a critical concentration (xmin), such that they can no 

longer be encapsulated in the clathrate structure. The alcohol molecules then interact directly 

with the PNIPAM chains [14].

In this chapter we examine the dependence of the PNIPAM network composition (cross-link, 

type, cross-link density, addition of biologically active dopants and extra water in the liquid 

precursor phase), initiation method and solvent composition (as a function of type and 

volume fraction of alcohol) as well as increase in temperature on the de/reswelling behaviour 

of PNIPAM gels.

6.2 Materials used in this chapter

Materials used in this chapter are detailed in section 2.2.4.1. The synthesis and sample 

preparation for all formulations is described in sections 2.2.4.2- 2.2.4.9.

6.3 Characterisation techniques used in this chapter

6.3.1 Temperature-dependent deswelling of PNIPAM hydrogels

The temperature-dependent volume change of cross-linked PNIPAM gels was measured as 

follows;

A PNIPAM cylindrical rod of the given composition and initiation method with the 

dimensions 35mm x 10mm was synthesised according to the appropriate method given in 

section 6.6. The rods were sliced perpendicularly to their length to yield circular discs with a 

thickness of ~2mm. The gel discs were placed into individual glass vials, each containing 

20ml of water. The vials were placed into a water bath which was set to 20°C, 30°C, 32 °C, 

34°C, 36°C, 38°C, 40°C and 50°C respectively during the course of the experiments. The 

temperature range used in this experiment was designed to cross over the LCST of PNIPAM, 

with smaller increments in temperature over the range of particular interest. The apparatus 

was allowed to thermally stabilise and the gels to reach equilibrium for a minimum of 24 

hours before each measurement was taken. The gel diameter (with a starting diameter of. 

10mm) was recorded to the nearest 0.5mm. The experiments were performed in triplicate, 

each with independently synthesised samples and fresh water. The mean of these experiments 

were plotted as a function of % total deswelling.
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The temperature-dependent volume change of gelatine and hyaluronic acid doped PNIPAM 

gels were measured as follows;

A gelatine or hyaluronic acid - doped PNIPAM/ clay hydrogel precursor of the appropriate 

composition, as described in section 6.4, were made. Precisely 0.265ml of the solution was 

pipetted into a cylindrical mould of 13mm diameter in order to create gel discs of 2mm 

thickness. The moulds were sealed and the gels were allowed to "set" at room temperature for 

at least 4 hours. The gels were carefully removed from the moulds and one disc of each 

composition was sealed inside an individual glass vial containing 20ml water. The vials were 

placed into a water bath which was set to 20°C, 30°C, 32 °C, 34°C, 36°C, 38°C, 40°C and 

50°C respectively during the course of the experiments. The apparatus was allowed to 

thermally stabilise and the gels to reach equilibrium.for a minimum of 24 hours before each 

measurement was taken. The gel diameter (with a starting diameter of 13mm) was recorded 

to the nearest 0.5mm. The experiments were performed in triplicate, each with independently 

synthesised samples and fresh water. Average results were plotted as a function of % total 

deswelling.

6.3.2 Alcohol-induced deswelling observations of PNIPAM hydrogels.

The alcohol induced volume change of cross-linked PNIPAM gels was measured as follows;

Cylindrical gel rods of each composition and initiation method were sliced into disks of 

approximately 2mm thickness. One disc of each composition was sealed inside an individual 

glass vial containing a 20ml aqueous solution of either 0% 20%, 40%, 60%, 80% or 100% 

alcohol, and left to equilibrate for 28 days. The diameter of the gel was recorded to the 

nearest 0.5mm. The experiments were performed using ethanol and methanol solutions and 

were repeated in triplicate for each, with fresh samples and solutions used each time. The 

average result was taken and plotted as a function of % deswelling.

The alcohol induced volume change of cross-linked PNIPAM gels was measured as follows;

A gelatine or hyaluronic acid - doped PNIPAM/ clay hydrogel precursor of the appropriate 

composition, as described in section 6.4, were made. Precisely 0.265ml of the solution was 

pippetted into a cylindrical mould of 13mm diameter in order to create gel discs of 2mm 

thickness. The moulds were sealed and the gels were allowed to "set" at room temperature for 

at least 4 hours. The gels were carefully removed from the moulds and one disc of each 

composition was sealed inside an individual glass vial containing a 20ml aqueous solution of
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either 0% 20%, 40%, 60%, 80% or 100% alcohol, and left to equilibrate for 28 days. The 

diameter of the gel was recorded to the nearest 0.5mm. The experiments were performed 

using ethanol and methanol solutions and were repeated in triplicate for each, with fresh 

samples and solutions used each time. The average result was taken and plotted as a function 

of % deswelling.

6.4 Results and discussion

6.4.1 Thermally induced deswelling of clay cross-linked PNIPAM gels

In order to determine the thermal deswelling properties of PNIPAM/ clay nanocomposites, 

the diameters of ~2mm thick circular PNIPAM discs of various clay loadings were measured 

after 24h of equilibration at various temperatures, covering the LCST range of PNIPAM. The 

starting diameter of the freshly prepared discs was 10mm.

Figure 6.1 shows the overall percentage deswelling of thermally-initiated clay cross-linked 

PNIPAM at various clay concentrations as a function of temperature. All gels undergo 

significant volume phase transition at temperatures higher than 30°C, afterwhich they follow 

a crosslink concentration-dependent deswelling trend. Low clay concentrations appear to 

allow for deswelling to a greater degree at lower temperatures (.25Cio reaching 40% its 

original volume during complete phase transition at 34-38°C) and gels with higher clay 

concentrations gels achieve a slower, more sustained rate of deswelling, with ICjo gels 

reaching complete deswelling (around 40% original volume) at a temperature between 40- 

50°C.

The distinct behaviour change upon alteration of clay loading in this particular system 

prompted an experiment to determine whether this effect could produce a dramatic 

macroscopic control of behaviour of the gel upon heating. The temperature at which the 

separation of deswelling behaviour was most pronounced (34°C) (figure 6.1) was chosen for 

this experiment. A square PTFE mould was engineered and into it was poured a measured 

volume of ICjo, .5Cio and .25Cio respectively, with each layer left to cool and solidify for 4 

hours before adding the next (figure 6.2).
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Therm ally Initiated PNIPAM/ Clay Gels -
Deswelling 011 Temperature Increase
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Figure 6.1. The % deswelling of therm ally-initiated clay cross-linked PNIPAM  of 
various clay concentrations upon increasing tem perature, n = 3.

.25Cio 

.5Cio 

1C 1 0

Figure 6.2. A schematic of the triple later sheet formed for this experiment. Each layer 

contained progressivlely less clay in o rder to observe w hether the combined deswelling 

action of each would result in a curving of the gel sheet.

The triple-layer gel sheet was removed from the mould and placed into a clean water bath 

which was subsequently warmed to 34°C.

The high variation in swelling behaviour o f the different layers forced the gel sheet to curl 

back on itself, almost forming a ball (figure 6.3). The effect was completely reversible and 

the sheet reswelled to its original square flat sheet form when apparatus was cooled.



20°C

34°C

Figure 6.3. Photographs of the gels before and after heating to 34°C. The separate 

dewelling behaviours of each layer caused the gel sheet to curl dram atically.
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UV Initiated PNIPAM/ Clay Gels - D e s w e l l i n g  on
Temperature Increase
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Figure 6.6. The % deswelling of UV-initiated clay cross-linked PNIPAM of various clay 

concentrations upon increasing tem perature, n = 3.

Figure 6.4 shows the overall percentage of deswelling of UV-initiated clay cross-linked 

PNIPAM at various clay concentrations. Much like their thermally-initiated counterparts, all 

UV intitiated gels undergo rapid deswelling at temperatures above 30°C, with gels of a low 

cross-linking density deswelling to a greater degree at a lower temperatures. . 5 C i o U  and 

IC 10U gels display very similar and slow deswelling behaviour relative to the . 2 5 C i o U  

formulation. Complete desewelling in all UV -initiated clay gels is achieved at around 36°C 

before what appears to be a slight reswelling of the gel, although the overlap of error bars 

shows that this may not be a consclusive finding.

6.4.2 Thermally induced deswelling of BIS cross-linked PNIPAM gels

In order to determine the thermal deswelling properties of BIS cross-linked PNIPAM gels, 

the diameters of ~2mm thick circular PNIPAM discs of various BIS concentrations were 

measured after 24h of equilibration at various temperatures covering the LCST range of 

PNIPAM. The starting diameter of the freshly prepared discs was 10mm.

Figure 6.5 shows the overall percentage of deswelling of thermally-initiated BIS cross-linked 

PNIPAM at various BIS concentrations. As expected, the chemically cross-linked gels
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Figure 6.5. The % deswelling of therm ally-initiated BIS cross-linked PNIPAM  of 

various clay concentrations upon increasing tem perature., n = 3.

deswell to a much smaller extent than those cross-linked with clay. The deswelling rate 

follow s the same pattern o f lower cross-linking densities deswelling faster and at lower 

temperatures, with 10% cross-linked gel deswelling as little as 6%. Unlike any other gel type 

observed in this study, complete phase transition o f all gels is reached at approximately 36°C, 

with very little or no further deswelling taking place at temperatures above this point. There 

is also an unusually large distinction between the gel volum es at complete phase transition. 

Proportionally small error bars in the data for this experiment indicate excellent repeatability 

and clear distinction in the gels respective deswelling behaviours.

Figure 6.6 shows the overall percentage o f deswelling o f UV-initiated B I S  cross-linked  

PNIPAM at various B I S  concentrations. Upon intitial observation, the deswelling behaviour 

o f these gels does not seem to follow  the regular pattern o f other gels in this study. However, 

overlap o f standard indictates that there is little difference in the deswelling behaviour 

between samples at temperatures below 34°C. Above 34°C, I B I S 1 0U  gels undergo phase 

transition over a broad temperature range (34-40°C) and to a smaller extent (to approximately 

7 5 % ) ,  with repect to . 5 B I S i o U  gels which exhibit behaviour very similar to . 2 5 B I S i o U  gels, 

deswelling more sharply between 34-38°C.
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Figure 6.6. The % deswelling of UV-initiated BIS cross-linked PNIPAM of various clay 

concentrations upon increasing tem perature., n = 3.

6.4.3 Thermally-induced deswelling of gelatine/ HA-doped clay cross-linked 
PNIPAM hydrogels

In order to determine the thermal deswelling properties o f gelatine- incorporated clay cross- 

linked PNIPAM gels and quantify possible changes in deswelling behaviour as a direct result 

o f gelatine incorporation, the diameters o f  2mm thick circular PNIPAM / gelatine discs o f  

various gelatine loadings were measured after 24h equilibration at a range o f temperatures 

covering the LCST o f PNIPAM. The starting diameter o f the freshly prepared discs was 

13mm.

Figure 6 .7  shows the overall percentage deswelling I C i o G x  gels o f various gelatine 

concentrations as a function o f temperature.

Gels at all gelatine concentrations deswell to a lesser degree than the lCio control, with most 

deswelling to around 91 % their original size when equilibrated at 32°C, compared to a 

deswelling o f the control o f 78-84%. 1C ioG5 exerts a behaviour at this temperature which 

strikes some balance between the two. Certainly, overlap o f standard error concludes that the 

incorporation o f gelatine into the interstitial spaces o f the PNIPAM retards desw elling in a 

consistent manner regardless o f gelatine concentration. All I C i o G x  gels equilibrate at 5()°C
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lC io / Gelatine Gels- Deswelling on Temperature
Increase
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Figure 6.7. The % deswelling of gelatine doped lCio of various gelatine concentrations 

upon increasing tem perature., n = 3.

having deswollen to 59-69% their original size compared to the gelatine-free control which 

was significantly more deswollen (38- 45%) at the same temperature.

T > LCST

b)

Figure 6.8. A diagram m atic representation of the collapse of a PNIPAM/clay system as 

it is heated to a tem perature beyond its LCST. The gel collapses into a tightly packed 

hydrophobic network as w ater is ejected from the interstitial spaces.

Figure 6.8 is a diagrammatic reprsentation of the mechanism of collapse o f a standard 1 C jo 

gel. As the PNIPAM undergoes phase transition from the coil (swolen and hydrophilic)(a) to
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globule (collapsed and hydrophobic) (b) conformation, the 3-dimensional polymer network 

collapses as thermodynamic forces pull the PNIPAM chains together forming a tightly 

packed PNIPAM / clay network. W ater is expelled from the network as interstitial spaces 

shrink.

The observations made in this study with regards to the retardation of collapse with 

interstitial gelatine can be attributed to one or both of two main considerations:

Firstly, the incorporation of a solid material such as gelatine into the interstitial spaces of the 

PNIPAM / clay network (figure 6.9a) could offer a physical barrier to its full deswelling. It is 

possible that although gelatine solution is thermally reversible, that is to say, gelatine 

solutions melt under the effect of heat; it is probably not completely expelled from the system 

but becomes trapped between the polymer chains (figure 6.9b) and hence gives rise to an 

apparent hindrance in its collapse.

T > LCST

PNIPAM

Clay platelet Trapped 
gelatine

Figure 6.9. A diagram m atic representation of the first proposed mechanism of collapse 

of a gelatine-incorporated PNIPAM / clay gel as it is heated to a tem perature beyond its 

LCST.

Secondly, the formation of the gelatine incorporated clay/PNIPAM involves dissolving a 

gelatine solution into a pre-formed PNIPAM / clay precursor hydrogel solution (PCPH) 

before cooling to form a “set” gel (section 2.2.1.3). The extension of PNIPAM chains to 

neighbouring clay platelets upon cooling and subsequent solidification of the precursor

194

T < LCST

a)

PNIPAM
Clay platelet

Gelatine



depends somewhat on free their free interation. If the gelatine chains were to somehow 

interfere with this free interaction and prevent some crosslinks forming (figure 6 .10a), the 

resulting gel could contain separate domains of PNIPAM / clay and gelatine whereby the 

collapse of separate PNIPAM / clay domains do not exert influence on one another and 

“pockets” of gelatine solution appear, across which no or very few PNIPAM chains stretch 

(figure 6.10b). Since the deswelling measurements involve the macroscopic dimensions of 

the whole gel, the net recordable result of this occurance would be the apperance of a 

hindrence in deswelling when perhaps, more accurately, gelatine-filled voids are appearing 

throughout the network as separate PNIPAM domains collapse. The existence and formation 

of PNIPAM/ gelaine domains under these conditions could be explored with the use of 

temdem electron microscopy (TEM) or hot-stage imaging ATR-FTIR in further study.

T < LCST
a)

/
PNIPAM Q ay p|ate |et

Gelatine

T > LCST

\
PNIPAM

Clay platelet
Gelatine

Figure 6.10. A diagram m atic representation of the second proposed mechanism of 

collapse of a gelatine-incorporated PNIPAM / clay gel as it is heated to a tem peratu re 

beyond its LCST.
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Figure 6.11. The % deswelling of HA doped lCio of various HA concentrations upon 

increasing tem perature., n = 3.

Figure 6.11 shows the overall percentage deswelling I C ioH A x gels o f  various HA 

concentrations as a function o f  temperature.

As with the gelatine incorporated gels, all HA incorporated gels exert reduced deswelling 

capabilities when compared to the lCio control, and an overlap in standard error concludes an 

almost identical pattern of deswelling as the gelatine gels (shown in figure 6.7) regardless of 

HA concentration within the polymer matrix. A sharp decrease in gel volume is observable 

between 32- 34°C before a steady and sustained shrinking is obseved at higher temperatures. 

At 50°C, all I C ioH A x gels were beween 61- 75% their original size, and the HA- free control 

was 42-49%. Curiously, the behaviours of Gelatine and HA-incorporated gels exert this 

similar behaviour despite the HA solution being 25 times more dilute than the gelatine 

solution, and therefore far less of the dopant polymer is available to exert a deswelling 

hinderance.

Therefore the reasoning behind the effects observed follow two trains of thought; that the 

incorporation of a dopant species interrupts the formation of PNIPAM/ clay interactions 

when the PCPH solution is cooled and undergoes PTTNAG, and therefore the hypothesis 

with regards to domain and void formation for the gelatine incorporated systems is also at 

play in the HA system (figure 6.10). Also, HA solution usually expands as the temperature 

rises [ 16], and the retardation in deswelling of the network could be a result of highly

196

1C 10/ HA Gels- Deswelling oil Temperature
Increase

110.00

100.00

90.00

80.00

70.00

60.00

50 00

40.00

30.00
20°C 30°C 32°C 34°C 36°C 38°C 40°C 50°C

T em perature



hydrophilic HA existing in direct thermodynamic conflict with an increasingly hydrophobic 

PNIPAM network upon an increase in temperature, thus preventing some water leaving the 

interstitial spaces of the PNIPAM/ clay and causing disruption to its collapse.

6.4.4 Thermally induced deswelling of diluted clay/ PNIPAM hydrogels

In order to test the hypotheses made in section 6.4.3, an experiment was devised by which the 

PCPH system would be diluted and “separated” with pure water, without the addition of 

dopants, to examine whether this altered their deswelling capabilities.

PCPH solutions of 3 different clay loadings were diluted by precise quantities of water before 

being allowed to cool and solidify. The diameters of 2mm thick circular PNIPAM / clay discs 

of each composition were measured after 24h equilibration at a range of temperatures 

covering the LCST of the PNIPAM in order to determine their deswelling properties. The 

starting diameter of the freshly prepared discs was 10mm.

Diluted 1C10 Gels - Deswelling on Temperature 
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Figure 6.12. The % deswelling of diluted lCio of various water concentrations upon

increasing temperature., n = 3.
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Figure 6.13. The % deswelling of diluted .5Cio of various w ater concentrations upon 

increasing tem perature., n = 3.
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Figure 6.14. The % deswelling of diluted .25C iq of various w ater concentrations upon 

increasing tem perature., n = 3.
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Astonishingly, all diluted gels (figures 6,12 -  6.14) follow a pattern of deswelling different 

from their original, undiluted form, and this pattern of deswelling was the same regardless of 

amount of additional water added (up to 50%) or clay loading (.25-1%) of the original PCPH. 

Curiously still, their behaviours differ slightly but consistently with those of gelatine and HA- 

doped PNIPAM/ clay gels (section 6.4.3) in that although their collapse is comparatively 

hindered at temperatures up to 38°C, above this their deswelling behaviours become similar 

to that of their respective controls (when the gels are doped with HA or gelatine, deswelling 

at 50°C remains -15%  less than that of their respective controls).

It could therefore be hypothesised that the deswelling mechanism of diluted gels involve 2 

separate phases.

Figure 6.15a illustrates the manner in which the undiluted control is proposed to be cross- 

linked below its LCST. The lengths of the polymer chains are sufficient to anchor 

neighbouring clay platelets firmly together, thus forming a continuous 3 dimensional 

polymer/ clay network. Figure 6.15b illustrates the manner in which a diluted gel is proposed 

to be cross-linked; The lengths of polymer chains are sufficient to join some neighbouring 

clay platelets, and although the gel appears to be homogeneously cross-linked and has a fair 

(although reduced) degree of mechanical stability, many of the clay platelets are not anchored 

to others in close proximity. Figure 6.15c illustrates how the diluted clay/ PNIPAM network 

is proposed to appear at temperatures just above the LCST of PNIPAM. This is phase I. As 

water solubility becomes compromised, separate domains (circled) collapse and large water- 

filled spaces appear between the domains. Although the polymer has undergone phase 

transition, the size of the whole gel network is comparatively large, and the pseudo-hindrance 

in deswelling is attributed to the large water-filled voids within the network.
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Figure 6.15. A diagram m atic representation of the 2 proposed phases of deswelling of a 

diluted PNIPAM/ clay hydrogel as it is heated to a tem perature beyond its LCST. The 

proposed structure of an undiluted gel is show for com parion (a). The dilution of the 

PCPH has prevented some cross-links form ing (b) and an increase in tem perature 

causes the collapse of individual domains (circled), leaving large water-filled voids and 

thus giving the apprearance of a decrease in deswelling capability (c). As the 

tem perature is increased further, an increase in entropy and hydrophobic interactions 

force the domiains to coagulate, leading to full collapse of the network (d).

Figure 6.15d illustrates how the diluted clay/ PNIPAM  network is proposed to appear at 

temperatures between 38- 50°C. This is phase II. It has been previously shown that after an 

initial phase separation at LCST, a further increase in temperature enhances the unfavourable 

contribution of entropy to the PNIPAM system, and further to this, the relative m agnitude of 

this “hydrophobic effect” is directly proportional to thermal input [ 17-18]. It is proposed that 

this increase in entropy causes the previously separated domains to coagulate, causing a sharp 

decrease in gel size and thus emulate the behaviour of the undiluted gel control.

K L C S T

T = 38- 50°C
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6.4.5 Alcohol volume fraction-dependent deswelling of clay- PNIPAM
nanocomposite hydrogels

In order to determine the swelling/ deswelling capacity of clay cross-linked PNIPAM gels as 

a function of matrix alcohol concentration by cononsolvency, the diameters of ~2mm thick 

circular PNIPAM discs of various clay densities were taken after their equilibration in 

various concentrations of ethanol and methanol for 28 days. The starting diameter of the 

freshly prepared discs was 10mm.

The variation in % deswelling of the gel as a function of the volume fraction of alcohol is 

shown across figures 6 .16 -6 .1 9 .

Thermally Initiated C l a y /  PNIPAM Gels- 
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Figure 6.16. The % deswelling of therm ally-initiated clay/PNIPAM gels in various 

methanol concentrations., n = 3.
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Thermally Initiated Clay/PNIPAM Gels
Equilibrated in Ethanol
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Figure 6.17. The % deswelling of therm ally-initiated clay/PNIPAM gels in various 

ethanol concentrations.., n = 3.
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Figure 6.18. The % deswelling of UV-initiated clay/PNIPAM gels in various m ethanol 

concentrations., n = 3.
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Figure 6.19. The % deswelling of UV-initiated clay/PNIPAM gels in various ethanol 

concentrations., n = 3.

6.4.6 Alcohol volum e fraction-dependent deswelling of BIS cross-linked
PNIPAM  hydrogels

In order to determine the swelling/ deswelling capacity of BIS cross-linked PNIPAM gels as 

a function of matrix alcohol concentration by cononsolvency, the diameters of ~2mm thick 

circular PNIPAM discs of various BIS cross-link densities were taken after their equilibration 

in various concentrations of ethanol and methanol for 28 days. The starting diameter of the 

freshly prepared discs was 10mm.

The variation in % deswelling of the gel as a function of the volume fraction of alcohol is 

shown across figures 6.20 - 6.23.
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Thermally Initiated BIS/ PNIPAM Gels
Equilibrated in Methanol
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Figure 6.20. The % deswelling of therm ally-initiated BIS/PNIPAM gels in various 

methanol concentrations., n = 3.
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Figure 6.21. The % deswelling of thermally-initiated BIS/PNIPAM gels in various

ethanol concentrations., n = 3.
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UV initiated BIS/ PNIPAM Gels Equilibrated in 
Methanol
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Figure 6.22. The % deswelling of UV-initiated BIS/PNIPAM gels in various m ethanol 

concentrations., n = 3.
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Figure 6.23. The % deswelling of UV-initiated BIS/PNIPAM gels in various ethanol

concentrations., n = 3.
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Initial results conclude that the two experimental systems (UV and thermally-initiated) afford 

strikingly similar behaviours despite a distinct difference in their respective behaviour during 

thermally-induced deswelling. The observed differences in deswelling behaviours argue that 

the mechanisms involved in thermal and cononsolvency induced collapse are quite different.

In every case, the gels undergo phase separation and collapse to a minimum size in the water- 

rich region, before reswelling as the alcohol concentration is further increased. It would 

appear that neat water and neat alcohol are both good solvents for PNIPAM, but the same 

cannot be said for mixtures of the two. In pure water, water molecules form cage-like 

structures around the hydrophobic groups around the PNIPAM chains, whilst forming 

hydrogen bond interactions with the hydrophilic amide groups. It is thought that water 

molecules form a disordered tetrahedral structure around the alcohol molecules, and further 

increase in alcohol volume fraction causes the removal of water molecules from the PNIPAM 

network in favour of forming clathrate hydrates, dehydrating the gels and thus causing them 

to collapse. This phenomenon is observable in the presented data, with re-entrance swelling 

behaviour of clay/PNIPAM gels (figures 6 .1 6 -6 .1 9 ) occurring more sharply upon 

equilibration in ethanol solutions than those equilibrated in methanol. The observation that 

NIPAM gels deswell to a greater extent with an increase in alcohol chain length is consistent 

with theories presented by Onori et al and Zhu et al [12, 19] who found that the 

encapsulation of the alcohol breaks down at lower alcohol volume fractions upon increasing 

length of the alcohol molecules, explained by the requirement of a greater number of water 

molecules required to form the clathrate cage. After a point of maximum deswelling, all gels 

reswell upon increasing the volume fraction of alcohol further. This swelling is thought to 

occur as a direct result of the clathrate structure encapsulating the alcohol molecules no 

longer being able to form, allowing the alcohol to interact freely and directly with the 

PNIPAM chains.

As with heat-induced phase transition experiments, the magnitude of deswelling is heavily 

influenced by cross-link type, with clay cross-linked gels deswelling to a far greater extent 

than those cross-linked with BIS. The de- and reswelling behaviour of the BIS/PNIPAM gels 

(figures 6.20 -  6.23) is highly restricted by the comparative rigidity and inhomogeneous 

distribution of BIS cross-links when compared to the dynamic “sliding” cross-link 

interactions afforded by PNIPAM/ clay interactions.

In conclusion, the evidence shows that although cross-link type has a profound effect on 

swelling/deswelling capacity of the presented PNIPAM-based systems (in agreement with
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thermal deswelling data shown in 6.5.1 and 6.5.2); it is independent o f alcohol size (at least 

from methanol to ethanol).

6.4.7 Alcohol volum e fraction-dependent deswelling of gelatine- doped
clay cross-linked PNIPAM  hydrogels

In order to determine the swelling/ deswelling capacity o f gelatine- incorporated clay cross- 

linked PNIPAM gels and quantify possible changes in deswelling behaviour as a direct result 

of gelatine incorporation and as a function o f matrix alcohol concentration, the diameters o f  

2mm thick circular PNIPAM / gelatine discs o f  various gelatine loadings were taken after 

their equilibration in various concentrations o f ethanol and methanol for 28 days. The starting 

diameter o f the freshly prepared discs was 13mm.

The variation in % deswelling o f the gel as a function o f the volume fraction o f alcohol is 

shown in figures 6.24 and 6.25.
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Figure 6.26. The % deswelling of lOCio/gelatine gels in various methanol

concentrations., n = 3.
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Figure 6.25. The % deswelling of lOCio/gelatine gels in various ethanol concentrations, 

n = 3.

The variation in % deswelling o f the gel as a function o f the volume fraction o f alcohol is 

shown in figures 6.24 and 6.25. The experiments were performed with 10, 20, 30 and 100% 

alcohol solutions only, and data outside o f these parameters is extrapolated and should be 

ignored. The purpose o f these experiments was to examine the possibility o f storing the gels  

in a sterile environment with a view to utilizing them as medical devices. As shown 

previously (section 6.5.4), the presence o f alcohol causes PNIPAM gels to collapse 

spontaneously at room temperature by a process o f cononsolvency [14], and data presented in 

section 6.5.3 shows that the presence o f gelatine hinders the deswelling process in this type o f  

hydrogel. Here is examined how these two effects combine in alcoholic solutions where the 

concentration o f ethanol (10-30% ) may be less likely to be harmful to living tissue.

All gels undergo collapse as alcohol concentration is increased, with the effect being more 

exaggerated in ethanol systems than those in methanol. This can be explained by the 

cononsolvency theory proposed by Onori et al and Zhu et al [12-13], whose models propose 

that larger alcohol m olecules require larger numbers o f water m olecules to form clathrate 

hydrate cages around them and indirectly cause PNIPAM to collapse to a higher degree and 

at a lower alcohol concentration. It could be argued that this effect is responsible for the som e 

degree o f separation in gelatine concentration- dependent behaviour in methanol system s (up
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to 30% methanol) and the uniformity of deswelling behaviour of all gels in ethanol systems 

(up to 30% ethanol). .

It should be noted here that although water is a good solvent for lower alcohols, gelatine is 

not soluble in alcohol. By a process called coacervation, summarised in detail in several 

references [20-23], water molecules preferentially adhere to the alcohol molecules in the 

presence of gelatine, and the resulting binary mixture is a poor solvent for gelatine [22]. In 

addition, a decrease in the dielectric constant [23] causes an increase in electrostatic 

interactions between charged segments the polyion gelatine, and the net result is the collapse 

of gelatine molecules. This process is separate to that of precipitation, as coacervative 

solutions are concentrated and polymer-rich, and equilibrium exists between the polymer and 

supernatant. Re-entrant swelling behaviour of PNIPAM expected at high alcohol 

concentrations [14] is hindered by the presence of gelatine in all systems.

Swelling Capacity Increase/ Decrease of Gelatine 
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Figure 6.26. A rearrangement of data shown in figure 2.24 to demonstrate the increase 

in swelling and deswelling capacity of gelatine-incorporated clay cross-linked PNIPAM 

hydrogels (ICIOGx), as compared to a gelatine- free (lCio) control in matrices of 

various methanol concentrations.
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Unlike the deswelling hindrance posed by gelatine in thermally deswollen systems (section 

6.5.3), the degree of reswelling hindrance in alcoholic solutions relies upon the concentration 

of gelatine within the system, therefore indicating that the cause of the hindrance in alcoholic 

systems is separate from that causing hindrance in thermal systems. The % swelling capacity 

of all gelatine- doped gels at various alcohol concentrations relative to the IC jo control are 

shown in figures 6.26 and 6.27. Generally speaking, gels containing lower concentrations of 

gelatine have a much larger swelling capacity in 20% alcohol solutions than their gelatine- 

free counterparts. A further increase in gelatine content results in a trend of restriction in this 

swelling capacity. Also, gels containing higher concentrations of gelatine reswell to a lesser 

extent in the alcohol-rich region than those containing lower concentrations of gelatine. It is 

observed that the gelatine % and the difference in deswelling/ reswelling capacity differ 

dramatically. That is to say, for example, a gel containing 5% gelatine does not have it 

swelling/ deswelling capacity altered by 5%, but in some circumstances, as much as -64%  

(figure 6.27).
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Figure 6.27. A rearrangement of data shown in figure 2.25 to demonstrate the increase 

in swelling and deswelling capacity of gelatine-incorporated clay cross-linked PNIPAM 

hydrogels (ICIOGx), as compared to a gelatine-free (lCio) control in matrices of 

various ethanol concentrations.
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It is thought that this observation is owed to the hydrophobic effect gelatine exerts at high 

alcohol volume fractions, and whilst PNIPAM chains freely interact with pure alcohol 

solutions, gelatine chains coacervate and coagulate, disrupting the thermodynamic balance 

and possibly preventing alcohol entering the interstitial spaces of the PNIPAM network. The 

degree of disruption to the thermodynamic process of reswelling of PNIPAM in alcoholic 

solutions (namely, the rupture of hydrogen bonds between gelatine and water molecules) 

directly correlates with the concentration of gelatine in the system.

6.5 Summary and Conclusions

The rate and magnitude of thermal deswelling in aqueous media is affected by the organic 

cross-linking agent BIS and clay cross-link density in all types of gel. The initiation method 

dramatically affects the deswelling behaviour of gels cross-linked with BIS. Upon very 

gradual warming, thermally initiated PNIPAM/ BIS gels have reached their full deswelling 

capacity at around 36°C, whilst UV initiated PNIPAM/ BIS gels sustain realtively steady 

deswelling rate up to at least 50°C.

Gels cross-linked with clay exhibit larger volume changes than those cross-linked with BIS, 

and the ratio of gel volume below LCST: above LCST increases with decreasing cross-linker 

content for both organically and clay cross-linked PNIPAM hydrogels. The deswelling 

behaviour of PNIPAM gels cross-linked with clay is sharper and more defined than those 

cross-linked with BIS. Gel flexibility varies between the two systems, as expected. All gels 

prepared using BIS were extremely brittle and could not withstand any significant degree of 

deformity. Contrarily, all gels prepared with clay as a cross-linking agent adopted rubber-like 

behaviour and can withstand high degrees of deformation regardless of clay loading and 

preparation method, unless they are diluted.

PNIPAM materials exhibit interesting optical properties. BIS/ PNIPAM gels exhibit 

consistently poor transparency regardless of temperature, which is thought to be due to the 

spatial cross-link inhomogeneity within the polymer network.'Clay/ PNIPAM gels exhibit 

considerable transparency changes at LCST (excellent transparency below LCST and poor 

transparency above it) regardless of initiation method or clay concentration, suggesting 

uniform dispersion within the gel network regardless of cross-link density.

The incorporation of gelatine into the PNIPAM/ clay network severely hinders its ability to 

deswell upon an increase in temperature, and the degree of this hindrance is independent of 

the concentration of gelatine.
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The incorporation of hyaluronic acid (HA) into the PNIPAM/ clay network severely hinders 

its ability to deswell upon an increase in temperature, and the degree of this hindrance is 

independent of the concentration of HA.

The dilution of PNIPAM/ clay precursor hydrogels (PCPHs) with water before solidification 

hinders the deswelling ability of the network as a function of temperature up to 38°C, and this 

degree of hindrance is independent of degree of dilution between 25 and 50%. Beyond 38°C, 

diluted PNIPAM/ clay gels undergo a large degree of collapse which brings their deswelling 

behaviours in line with that expected of non-diluted PNIPAM/ clay gels.

Although the deswelling capabilities of PNIPAM/ clay gels can be controlled somewhat by 

dilution with water, the mechanical stability of the gels is greatly affected, with weaker gels 

attributed to higher degrees of dilution.

The de/reswelling behaviour of PNIPAM/ clay gels and gelatine incorporated PNIPAM/ clay 

gels can be controlled by adjusting the alcohol volume fraction of the media, and although 

gels cross-linked with BIS exert restricted swelling/ deswelling behaviours compared to those 

cross-linked with clay, the cross-link density within systems does not have a significant 

impact on this de/reswelling behaviour.
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PCPH as an Injectable, Functional 
Therapy for Degenerative Disc Disease



Chapter 7. PCPH as an injectable, functional therapy 
for degenerative disc disease.

7.1 Introduction

Synthetic biomaterials have been gaining an ever growing interest in the replacement, 

regeneration and restoration o f lost and diseased/ dysfunctional biological tissue in recent 

years. Polymeric hydrogels are o f particular interest because o f their ability to retain large 

amounts o f water and their morphological and mechanical similarity to natural tissue [1-2]. 

Their interactions with aqueous matrices induce thermodynamically driven equilibrium  

swelling/shrinking phenomena which result in utilisable properties in biochemical delivery 

systems [2].

Therapeutic hydrogel formulations which are capable o f administration by injection are 

particularly attractive not only because o f their ease o f administration, but their minimally 

invasive delivery, reduced risk o f infection, reduced healing time and minimal scarring when 

compared with surgically implanted devices [3]. Injectable formulations also prove to be o f  

particular use when the size and shape o f the final device is defined by the dim ensions o f  

space or void to be filled, even moreso when the cavity is complex and/or contains very 

narrow fissures [4].

Cross-linking o f polymer materials in situ is usually achieved through enzymatic processes 

where injectable precursors are administered separately and react within the body, or photo 

irradiation following the injection o f a photo-reactive hydrogel precursor. Both o f these 

techniques harbour some significant drawbacks. For example, the toxicity risk o f side 

reactions to nearby biological tissue, the risk o f som e leachable chemical species remaining 

unreacted within the cavity ( cross-linking agents and monomers, for exam ple) and the 

requirement for the reaction to take place in biologically compatible conditions [5-7]. The 

material must possess low enough viscosity to allow injection yet form a mechanically stable 

gel quickly enough to prevent burst release. For enzymatic processes, kinetics o f the cross- 

linking dictates a very precise injection time and constituent quantity. Hydrogels can also be 

pre-formed into micro or nano-sized particles, thus rendering them injectable. However, these 

particulate systems are injectable by virtue o f their small size and offer limited mechanical 

support in situ.
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7.1.1 Degenerative disc disease and low back pain

Intervertebral discs (IVDs) provide spinal structural support by anchoring adjacent vertebral 

bodies to one another, as well as act as shock absorbing “sponges” capable o f withstanding 

stress created by normal human movement. Their very high water content and subsequent 

high elasticity are integral in allowing this [8].

Figure 7.1. Schematic showing hum an spinal anatomy and the difference between a) a 

healthy spine and b) a spine affected by degenerative disc disease [9].

IVDs are located within very close proximity to the nerve root o f the spine (figure 7.1), and a 

decrease in disc height with age and disease not only alters and restricts the mechanical 

movement o f the spine, but also inflicts pressure on the spinal nerve and can be the cause o f  

significant pain. Approximately 40% o f low back pain cases are associated with the 

degradation and disease o f intervertebral disc tissue.

In the centre o f the disc is a jelly-like material called the nucleus pulposus (NP) which in a 

healthy individual, consists o f  80-90% water. The NP is constrained around the peripherals o f  

the spinal disc by a very tough structure called the annulus fibrosus, which consists o f  

concentric rings o f collagen. Figure 7.2a demonstrates the appearance o f healthy 1VD tissue. 

Figure 7.2b shows an IVD which exhibits a number o f features consistent with degenerative 

disc disease. These include the formation o f fissures or slits within the IVD, damage to the 

end plates. It is via the endplates that the majority o f nutrients enter and waste products such 

as lactic acid exit the IVD via the circulatory network within the vertebral body. When this 

area is damaged, cells within the disc begin to exhibit abnormal morphologies and a
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subsequent loop o f cell death and end plate damage ensues. Loss o f vertebral height and the 

physical bulging out o f the NP from the disc is also clearly identifiable.

a)  b)
End phite

End plates   damage

Vertebral /  \  Disc
bodies /  \ bulging

Loss of y
intervertebral

h e ig h t

Annulus fibrosus Nucleus pulposus ^

Slit formation 

Altered cell

(AF) (NP) characterised by 
cluster formation

Figure 7.2. S tructure of the hum an IVD showing annulus fibrosus, nucleus pulposus 

and position of end plates and vertebral bodies in a) a healthy spinal disc and b) a disc 

subject to degenerative disc disease [10].

Although not a life threatening condition, low back pain sufferers experience a severe 

decrease in quality o f life. At present, treatments for the condition are generally unsuccessful 

from a long-term viewpoint and do not directly target the cause. Several previous treatments 

such as spinal fusion [11] and disc prostheses [12] have been abandoned in recent years by 

many spinal surgeons as the subsequent side-effects, such as adjacent segment degeneration 

113] and movement restriction, do not outweigh the benefits o f such procedures, and indeed 

many cause accelerated degeneration in adjacent spinal discs.

The IVD consists o f 3 morphologically separate regions, as indicated in figure 7.2. These are 

the nucleus pulposus (NP), which is a hydrogel-like material located at the centre o f the IVD. 

The annulus fibrosus (AF), is a fibro-cartilaginous region comprised o f ~ 15 -2 5  concentric 

lamellae o f type I collagen, adapted to dissipate mechanical impact and tensile loading during 

normal movement [14]. It encapsulates the NP and holds it in place. Cartilage endplates 

(CEP) is a ~0.6 -1mm thick layer o f tissue which resembles articular cartilage [14]. It is 

located at the interface between the vertebral body and the adjoining IVD and is sufficiently  

permeable to allow the diffusion o f nutrients and waste products to and from the avascular 

IVD, whilst limiting the escape o f osmotically active proteoglycan [15].
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The biochemical composition o f spinal disc tissue reflects the specialist functions o f each 

tissue type. In addition to their high water content (typically 70-90% ), their biochemical 

constituents include proteoglycans, (figure 7.3a), collagen type II (figure 7.3b), and other 

non-collagenous proteins, which are differentially distributed throughout the different tissue 

types. The number and distribution o f proteoglycans is a determining factor in the tissue 

swelling behaviour and compressive mechanical properties [16-18].
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Figure 7.3. Light microscopy images showing the distribution of of a) proteoglycans 

(stained purple), collagen type II (stained brown), and c) the effect of destructive 

enzymes on healthy living NP cells [10].

Collagen type II is a constituent o f the loose hydrogel-like NP network and forms a scaffold  

to which the proteoglycans attach [19]. A clear indication o f IVD degeneration is a reduction 

in production o f collagen II, and therefore proteoglycans, in the central NP [20-21]. Instead, 

there is an increased production o f a number o f enzym es which chem ically break down the 

collagen and proteoglycan matrix (figure 7.3c), and a degenerative cycle ensues. In addition 

to this, a reduction in collagen II stimulates an increase in production o f collagen I within the 

NP, making the soft, jelly-like substance tougher and more fibrous.

Ideally, new therapies would involve the development o f a hydrogel-like material which 

would replace and help regenerate NP material, relieve pain and provide support to the 

healing disc without the need for surgical removal o f existing tissue. Except in the case o f  

herniation, for which keyhole surgery can be applied in the removal o f the prolapsed material 

which can subsequently be replaced.
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7.1.2 Potential regenerative options/ maintenance of tissue architecture

A number of strategies are currently in place to reduce low back pain in patients with 

degenerative disc disease. These include surgical intervention with complete IVD removal 

and arthodesis (the artificial induction of fusion between the two vertebral bodies), and more 

conservative measures such as annuloplasty [22] (a heated wire is inserted into the IVD, 

sealing disc ruptures and burning nerve endings), percutaneous disc decompression [23-24] 

(the removal of herniated disc tissue using rotary action through a needle, which creates a 

vacuum within the disc and pulls the bulge or herniation backward) and percutaneous 

discectomy [25] (the surgical removal of bulging or herniated IVD tissue that exerts pressure 

on a nerve root or the spinal cord). Further to this, the use of analgesia, corticosteroids, and 

muscle relaxants are commonplace [26]. As treatments are aimed toward the reduction of 

pain, their results are often palliative and do not prevent degeneration of adjacent tissues 

caused by alterations in disc height, intradiscal pressure, poor load distribution, and 

consequently, unnatural motion [27]. New treatments would involve the regeneration of the 

spinal disc involving restoration of disc height as well as biomechanical function.

7.1.2.1 Hum an mesenchymal stem cell (MSC) therapy

Cell-based IVD therapy used in conjunction with the dynamic restoration of the spinal 

segment as a future treatment concept looks promising [28].

MSCs are multipotent stromal cells that have robust clonal self-renewal and multilineage 

differentiation potential, capable of differentiation to chondrocytes (cartilage cells), 

intervertebral disc cells (IVDs) osteoblasts (bone cells), and adipocytes (fat cells). The MSCs 

used in this study are harvested from adult human bone marrow, and as part of spinal disc 

regeneration therapy are injected directly into the degenerated spinal disc where they are 

proposed to produce the correct type of matrix.

Presented in this chapter is a novel, injectable hydrogel delivery system which may assist in 

the restoration of mechanical function and disc height, inhibit the spinal degeneration cycle 

and deliver human mesenchymal stem cells (MSCs) as well as growth factors which can 

trigger the IVD tissue regeneration process.

7.1.3 An injectable hydrogel carrier system.

When designed into an injectable format, invasiveness of the insertion of hydrogel materials 

into the body is greatly reduced, the risk of infection is diminished, healing time is 

minimised, and surgical costs are lowered.
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The overall goal o f  the next line o f enquiry was to combine MSCs with PCPH in order to 

create a double-approach therapy to IVD disease. The system would allow the M SCs to be 

delivered to the IVD via injection, whilst the hydrogel scaffold formed in situ on order to 

provide som e o f the mechanical properties that may have been lost during disk degenaration.

Figure 7.4. Dr. Christine Le M aitre passing a warm IC 10 PCPH form ulation through a 

21 gauge needle with ease.

A vital consideration in the design o f injectable hydrogels is the requirement for the precursor 

to be injectable through a very fine bore needle, as the insertation o f a wide needle into the 

IVD may cause further degeneration issues. Figure 7.4 shows Dr. Christine Le Maitre at the 

Biomedical Research Institute at Sheffield Hallam University passing a warm lCio PCPH 

formulation through a 21 guage needle and into a sample vial with ease. Immediately 

following this, the PCPH which had collected in the sample vial cooled and underwent 

PTTNAG, forming a rubbery lCio polymer/ clay nanocomposite hydrogel.

7.2. Human cell viability studies in the presence of various hydrogel
formulations

Although the NIPAM in its monomeric form is toxic to living cells [2 9 1 cytocompatibility o f  

purified, fully-reacted PNIPAM has been demonstrated |30-37J. The methodology used in 

PCPH synthesis requires that in contrast to previous work involving PNIPAM and live 

tissues, no purification steps may be performed between initiation and injection. This 

potentially allows for cytotoxic monomers and oligomers to remain in the “fully reacted”
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PCPH solutions. A series o f cytocompatibility tests were designed and carried out by Dr. 

Christine Le Maitre and Mrs. Becky Barthrop at the Biomedical Research Institute, Sheffield  

Hallam University.

7.2.1 Cells used in this study

The cells used for the work carried out in this chapter were human adult mesenchymal stem  

cells (M SCs) derived from bone marrow tissue (Lonza).

7.2.2 MSC cell viability study in the presence of PNIPAM/ clay 
nanocomposite hydrogels

A 5mm2 piece o f cast l C i o  prepared as described in Section 2.2.1.2, was suspended via cell 

culture inset (Nunc), as illustrated in figure 7.5, in cell culture media containing human 

M SCs at a concentration o f 100,000 cells/ ml. Cells were maintained at 37°C, 5% CO2 for 14 

days.

Hycli ogel*■ v

MSC

Figure 7.7. Schematic of the appara tus used to determ ine the cell viability of hum an 

MSCs in the presence of unpurified PNIPAM / clay nanocomposite hydrogels.

The experiment was conducted to establish whether any toxic elements were being leeched  

by the hydrogel which would affect the cell viability. A cell viability assay using Hoechst 

/propidium iodide staining and live/ dead cell counts was performed and compared to that o f  

controls inoculated from the same cell cultures without the presence o f hydrogel. Hydrogel 

formulations tested included . 5C io  and 1C 10.
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Figure 7.6. A light m icrograph of hum an MSCs cultured for 2 weeks in the presence of 

a 1C10 PNIPAM / clay nanocomposite hydrogel and suject to a live/ dead assay. Live 

cells appear blue/ purple and dead cells appear red.

A light micrograph o f the assay derived from the lCio formulation is shown in figure 7.6.

This assay highlights live cells with normal morphologies which appear as bright blue/ purple 

dots on the micrograph, and dead cells/ those with abnormal nuclear morphologies which 

appear red. The single dead cell locatable in the 200 cells counted is shown to the middle left 

o f the micrograph.

Figure 7.7 shows the viability graph for cells which are in a control environment (without the 

presence o f hydrogel), in the presence o f a lCio hydrogel, and in the presence o f a .5Cio 

hydrogel, respectively. It was concluded that culture media containing gel sheets o f  any clay  

concentration did not affect viable cell numbers, conclusively showing that the hydrogels did 

not leech any toxic substances into the culture media which was cytotoxic to the human 

MSCs.
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Figure 7.7 Live/ dead assay cell viability graphs for MSCs cultured alone in cell culture 

media and in the presence of PNIPAM/ clay nanocomposite hydrogels of 2 clay 

concentrations (see table 2.1) for 2 weeks.

7.2.3 MSC cell viability study in contact with PNIPAM/ clay
nanocomposite hydrogels

To examine interaction behaviour between MSCs and the PNIPAM/ clay nanocomposite 

hydrogel, gelated 5mm2 sheets of lCio hydrogel of ~2mm thickness, prepared as described in 

Section 2.2.1.2, were placed on the bottom of in vitro cell culture plates filled with cell 

culture media. ~ 100,000 MSCs were labelled with a green fluorescent membrane dye 

(Sigma) and inoculated onto the sheet surface. The plates were then incubated at 37°C, 5% 

CO2 for 2 weeks.

Figure 7.8a shows the light micrograph of the bottom of the cell culture plate after 24 hours. 

Clearly visible are live cells, which appear as bright green spots, adhered to the plate. To 

establish whether cell/ hydrogel interactions were occurring elsewhere in the system, the 

microscope was focussed onto the surface of the hydrogel (figure 7.8b). The micrograph 

revealed live cells adhered to the hydrogel upper surface, positively rendering the hydrogel a 

viable environment for MSC attachment after 1 day.
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a)

Figure 7.8. Live MSCs, visible as bright green dots, were applied to the surface of a 

block of assembled lCio hydrogel. The m icrographs show a) cells adhered to the bottom  

of a cell culture plate and b) cells adhered to the upper surface of the hydrogel afte r 24h 

culture.

a) b) c)

Figure 7.9. Live MSCs, visible as bright green dots, were applied to the surface of a 

block of assembled lCio hydrogel. The m icrographs show a) cells adhered to the bottom  

of a hydrogel-free control cell culture plate, b) cells adhered to the bottom of the cell 

culture plate containing lCioand c) cells adhered to the upper surface of thelC io 

hydrogel after 2 weeks culture.
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Figure 7.10. Live/ dead assay cell viability graphs for MSCs cultured alone and adhered 

to PNIPAM/ clay nanocomposite hydrogels of 2 clay concentrations (see table 2.1) for 2 

weeks.

Figure 7.9 shows the optical micrographs taken of the fluorescent dyed cells after 2 weeks’ 

culture. 7.9a shows the control system, cells kept in identical conditions proliferating on the 

bottom of a culture well plate without the presence of hydrogel for comparison purposes.

7.9b shows n optical a micrograph taken when focussed onto the bottom of a well plate which 

contained lCio hydrogel. Many live, proliferating cells are clearly seen. 7.9c shows an optical 

micrograph taken when focussed onto the upper surface of the 1C io hydrogel where many 

live, proliferating cells are also clearly observable.

The live/ dead assay cell viability graph shown in figure 7.10 shows that regardless of clay • 

content, direct cell/polymer interactions do not have an effect on MSC cell viability during 

after 2 weeks.

For the purposes of IVD tissue regeneration in the presence of a tissue scaffold, it is 

important that the cells do not preferentially adhere to the outer surfaces of the hydrogel but 

migrate through it, repopulating the disc. To clearly determine whether cell migration is a 

feasible occurrence in an assembled PNIPAM/ clay system, the experiment was repeated 

using a 5mm diameter x 15mm length cylinder of lCio hydrogel. -100,000 cells were applied 

to the surface of the hydrogel and incubated at 37°C, 5% CO2 for 14 days, following which 

time Hoescht stain was applied to visualise cell nuclei. The cells were then visualised inder
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Figure 7.11. Live MSCs, visible as small blue dots, were applied to the surface of a block 

of assembled lCio hydrogel. The cell m igration process, shown schematically in a), was 

visualised microscopically and imaged at various depths of the gel from the surface to 

the culture plate bottom and m icrographs are shown in figures b-e respectively.

an inverted florescent microscope. Figure 7.11 shows a schematic o f the migration process 

(7.1 la) as well as series o f micrographs taken at regular sectioned intervals through the gel o f  

2.5mm (7.11 b showing the upper gel surface, 7.1 le  showing the culture plate bottom). The 

cells appear in the micrographs as small blue dots. Each section clearly showed new, viable
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cells. This conclusively demonstrates the cytocompatibility of the unpurified PNIPAM/ clay 

hydrogels, also that they allow for MSC cell proliferation and migration through interstitial 

hydrogel spaces.

7.9b shows n optical a micrograph taken when focussed onto the bottom of a well plate which 

contained lCio hydrogel. Many live, proliferating cells are clearly seen. 7.9c shows an optical 

micrograph taken when focussed onto the upper surface of the lCio hydrogel where many 

live, proliferating cells are also clearly observable.

The live/ dead assay cell viability graph shown in figure 7.10 shows that regardless of clay 

content, direct cell/polymer interactions do not have an effect on MSC cell viability during 

after 2 weeks.

For the purposes of IVD tissue regeneration in the presence of a tissue scaffold, it is 

important that the cells do not preferentially adhere to the outer surfaces of the hydrogel but 

migrate through it, repopulating the disc. To clearly determine whether cell migration is a 

feasible occurrence in an assembled PNIPAM/ clay system, the experiment was repeated 

using a 5mm diameter x 15mm length cylinder of 1 Cjo hydrogel. -100,000 cells were applied 

to the surface of the hydrogel and incubated at 37°C, 5% CO2 for 14 days, following which 

time Hoescht stain was applied to visualise cell nuclei. The cells were then visualised inder 

an inverted florescent microscope. Figure 7.13 shows a schematic of the migration process 

(7.1 la) as well as series of micrographs taken at regular sectioned intervals through the gel of 

2.5mm (7.1 lb  showing the upper gel surface, 7.1 le  showing the culture plate bottom). The 

cells appear in the micrographs as small blue dots. Each section clearly showed new, viable 

cells. This conclusively demonstrates the cytocompatibility of the unpurified PNIPAM/ clay 

hydrogels, also that they allow for MSC cell proliferation and migration through interstitial 

hydrogel spaces.

7.2.4. The viability of human MSCs when incorporated into the PCPH
prior to PTTNAG.

In a clinical setting, it is anticipated that the cells would be mixed with the liquid PCPH and 

injected above the polymer PTTNAG temperature in order to form a PNIPAM/ clay 

nanocomposite hydrogel doped with live MSC cells at a desired location in vivo. The next 

line of enquiry involved the determination of cell viability during a simulation of this process.

For these experiments, a IC 10PCPH formulation, prepared as described in Section 2.2.1.2, 

was cooled to 38°C, remaining as a low viscosity liquid. One million fluorescently labelled
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MSCs were added to 1ml o f the PCPH, o f which 0.05m l was pipetted into a well plate which 

was briefly cooled to 35°C to facilitate gel PTTNAG. 0.2ml growth media was added to the 

gel and the system was allowed to incubate at 37°C, 5% CO2 . After 24h incubation, a 

micrograph (figure 7.12a) showed an abundance o f live MSCs through the centre o f  the gel. 

After 28 days incubation, MSCs were still visible throughout the gel (figure 7.12b), 

demonstrating very good viability. Encouragingly, it appeared as though cells were creating 

“lacunae” within the gel matrix. In simple terms, these are small spaces the cells generate in 

order to produce its own specific functional environment.

a) b)

Figure 7.12. A m icrograph of live MSC cells which had been combined with liquid 

phase PCPH prio r to immediate polym er PTTNAG a) 24h after incubation, and b) 28 

days incubation.

7.2.4.1 The production of cell m atrix in the presence of PNIPAM / clay
nanocomposite hydrogels

In figure7.13, specific histological stains performed after 28 days incubation provided 

evidence o f the production o f proteoglycan (a) with alcran blue stain and collagen (b) with 

masson trichrome stain (which appear blue/purple following staining) within the gel by the 

proliferating cells, seen as small dark spots (arrowed) within white circles (pericellular 

matrix). This is natural behaviour demonstrated by healthy, naturally occurring cells within 

the human spinal disc integral for several natural biological processes.
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Figure 7.13. W hite light m icrographs showing conclusively tha t MSC cells begin to 

produce natural proteoglycans and collagens within the m atrix of the PNIPAM / clay 

hydrogels within 28 days incubation. M atrix production is a natural process perform ed 

by healthy cells in their native environm ent.

7.3 The feasibility of PCPHs as cell delivery vehicles and structural
support mechanisms for degenerative disc disease therapy

7.3.1 Visualisation of the injection of a PCPH into diseased spinal disc
tissue

Nucleus pulposus (NP) tissue damage and cavity generation closely resembling degenerative 

disc disease was induced in bovine disc tissue via injection o f 0.1ml 1 mg/ml collagenase type 

II, which effectively digests all collagens types within the IVD. The collagenase was allowed  

to degrade the disc tissues for 24hrs whilst being incubated at 37°C. The resulting tissue 

contains holes and fissures that are visible under white light microscopy (figure 7.14a).A  

IC ioPCPH was prepared as described in Section 2.2.1.2 and held in the liquid phase at 40°C.

0 .1-0.2ml o f the PCPH containing a very small amount o f alcran blue dye was injected 

through the annulus fibrosus (outer intervertebral disc) into the NP cavity using a 21 gauge 

needle. Tissues were allowed to cool to 35°C for 10 minutes to facilitate PTTNAG o f the 

PCPH inside the disc, and then immediately placed inside an incubator set to 37°C. After 

24h, the NP regions o f the disc was excised from the spinal tissue, embedded in paraffin wax 

and sliced into 4pm sections. Polarised light microscopy (under which highly organise 

collagen fibers appear white and the hydrogel appears blue-green due to the inclusion o f the 

dye), it was observed that the gel not only filled the cavities in the disc created by the 

collagenase treatment including the very narrow fissures, but appeared to be well adhered to
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the internal cavity surfaces (figure 7.14b). The gel was also observed to have filled the 

injection channel formed through the healthy tissues (shown in figure 7.15).

a)

b)

Figure 7.14. Fine fissures in the IVD were completely filled by the PCPH. a) shows a 
white light m icrograph of the finely sliced tissue following PCPH injection and b) shows 
a polarised light m icrograph of the same sample area, were the hydrogel appears green/ 
blue (arrowed).
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Figure 7.17. a) shows a white light m icrograph of the injection channel through which 
the PCPH  was injected into the IVD, and b) shows a polarised light m icrograph of the 
same sample area, were the hydrogel appears green/ blue. The hydrogel completely 
filled the injection channel.

The micrographs confirm that the assembled hydrogels successfully and com pletely fill the 

holes (large and small) and microscopic fissures generated by the collagenase digestion.

7.4 Combinations of monomer and their effect on PTTNAG
temperature, mechanical properties and cell viability.

An important requirement for in situ PTTNAG o f the injectable hydrogel precursor is that 

PTTNAG is capable o f occurring in biological conditions. Since the “usual” PNIPAM / clay- 

based PCPH formulations undergo PTTNAG at temperatures at the LCST o f PNIPAM, their 

injection into a region which is maintained at 37°C (the normal core body temperature o f a 

healthy, resting adult human) would result in the PCPH remaining in the liquid phase, failing 

to cool sufficiently to undergo PTTNAG. In addition, any attempt to force a drop in 

temperature o f the PCPH in situ could result in acute shock and necrosis o f  the MSC cells as 

well as the surrounding tissues.

The temperature at which the PCPH system undergoes PTTNAG can be increased with the 

addition o f a relatively hydrophilic monomer and reduced with the addition o f a relatively 

hydrophobic monomer to the monomer/ clay suspension prior to polymerisation. The addition 

o f comonomers to PNIPAM systems for the purpose o f altering the LCST has been explored  

in literature [38-47]. As discussed in Chapter 1, the principals involved in a thermoreversible 

coil to globule transition involve interactions between the polymer and solvent which result 

in negative values for the changes in entropy (ASm) and enthalpy (AHm) o f mixing. If 

thermally-induced phase separation is to occur in aqueous solutions, the relative magnitudes
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of AiSm and AHm must be sufficient as to result in reversal in the sign of the free energy 

change, AGm, at temperatures below 100 °C [46, 48]. It has been reasoned that the LCST 

behaviour of an aqueous polymer will depend entirely on its hydrophilic - hydrophobic 

equilibrium [49]. In addition, it is proposed that the LCST of a matrix of polymers containing 

a common thermoresponsive monomer can be continuously increased by the incorporation of 

increasingly hydrophilic component through copolymerisation, and decreased by 

incorporation of increasingly hydrophobic species. This has been proven by the LCST 

evaluation of a range of comonomers [48-50] .

Cloud point measurements and fluorescence techniques have been employed to examine 

hydrophilic/hydrophobic balance alterations in NIPAM/N,N-dimethylacrylamide (DMAc) 

statistical copolymers in aqueous media [45-46], and it was found that an increase in LCST 

of the resulting polymer was directly proportional to DMAc content. It was noted by Barker 

[45], however, that the use of such a hydrophilic modifier reduces the magnitude of the coil- 

to-globule thermal collapse and consequently is of value only in applications not requiring 

significant thermally- switchable carrier/release properties. For the purposes of cell delivery 

and structural support, a hydrogel polymer which undergoes phase change at a temperature 

very close to that of the human body is useful to the point of PTTNAG in situ, after which it 

is favourable for the material to remain in a swollen, hydrophilic state indefinitely. This 

renders the aforementioned “limitation” for PNIPAM-co-DMAc hydrogel systems an 

advantage for the purposes discussed in this research. PNIPAM-co-DMAc - based films have 

been previously shown to be cytocompatible materials for medical devices and drug delivery 

products, therefore DMAc was chosen as the candidate comonomer to be incorporated into 

the PCPH system for the purposes of raising the PTTNAG temperature to a more biologically 

utilisable range.

In this section, a series of NIP AM-based PCPH formulations were synthesised, within which 

the LCST (via hydrophilic/hydrophobic balance) and hence PTTNAG temperature, has been 

increased through copolymerisation with varying concentrations of DMAc, and in order to 

demonstrate versatility, has been decreased with the copolymerisation with glycedyl 

methacrylate (GMAc). It was shown, in agreement with the aforementioned previous work 

[45-46], that an increase in LCST of a NIPAM/DMAC copolymer is observable upon 

increasing the DMAc concentration present in the system. It was also demonstrated that a 

decrease in LCST is observable in a pseudo linear fashion upon increasing fractions of 

GMAc in the system.
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Mechanical properties of assembled hydrogel systems were affected by DMAc incorporation. 

These gels were examined using dynamic mechanical analysis and the data was compared to 

DMAc-free systems. Also included are cell viability data for DM Ac-incorporated gels which 

showed excellent system cytocompatibility comparable to that of PNIPAM/ clay systems.

7.4.1 The synthesis and preparation of a PNDPAM/ clay/ DMAc PCPH

Please refer to section 2.2.5.2

7.4.2 The synthesis and preparation of PNEPAM/GMAc/clay .copolymer
nanocomposite precursor liquid

Please refer to section 2.2.5.3.

7.4.3 * Effect of co-monomers on PTTNAG temperature

To measure the PTTNAG temperature of the PCPH formulations, a thermocouple setup was 

used as shown in figure 7.17. The end of the thermocouple probe was positioned to reside in 

the centre of a stabilised glass sample vial (7.17a). 3ml of a given PCPH suspension of a 

starting temperature of ~80°C was carefully pipetted into the vial and the apparatus was 

allowed to cool slowly at room temperature. Figure 7.17b shows the appearance of alCioD20 

PCPH suspension above its PTTNAG temperature. The liquid is completely turbid and the 

probe is not visible. When the PCPH undergoes PTTNAG, it spontaneously loses its turbidity 

and transforms to an optically transparent gel. Initial formulations of lCio (as a control), 

IC ioP IO , 1C ioD 20, 1C ioD 30, 1C ioG 20, 1C ioG 50 andlCioG80 were examined this way.

Natural temperature gradients across the sample vial during cooling result in the very centre 

cooling and gelating last, appearing as a “ball” of opaque PCPH which gradually shrinks and 

eventually disappears, elegantly demonstrating the sharpness of the thermal transition 

process. When the probe became just visible through the centre of the gel, as shown in figure 

7.17c, the temperature was recorded and plotted as a function of DMAc concentration, a plot 

of which is shown in figure 7.18.
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Figure 7.17. The therm ocouple setup used to find approxim ate PTTNAG tem peratures 

of PCPH  form ulations examined in this chapter. The tem perature was recorded when 

the therm ocouple probe became visible through the centre of the gel.
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Figure 7.18. The effect of DMAc and GMAc fraction on the measured PTTNAG 

tem perature of a range of PNIPAM/DMAc and PNlPAM /GM Ac PCPH form ulations. 

From this data it was deduced that a 1C i<)D13 PCPH form ulation will undergo 

PTTNAG at the hum an core tem perature of 37°C.
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The PTTNAG temperatures of PCPH formulations with high GMA volume fraction were 

extremely low and difficult to characterise. In the case of 1 C io G 5 0 ,  the PCPH remained in 

liquid form at room temperature and began to exert loss of opacity characteristic of PTTNAG 

only when chilled in a refrigerator with a measured temperature of 4°C. At GMA volume 

fractions above this, the gels appeared to possess PTTNAG temperatures below freezing 

temperature of water. Predictably, the incorporation of hydrophilic DMA as a co-monomer in 

the PCPH formulations leads to an increase in the PTTNAG temperature and the 

incorporation of hydrophobic GMA leads to a decrease in the PTTNAG temperature. The 

magnitude of this change is fully controllable by the adjustment of the relative composition of 

either comonomer.

7.4.4 Effect o f D M Ac incorporation on gel m echanical properties

Figures 7 . 1 9  and 7 . 2 0  show the results of the dynamic mechanical analysis of gelated lCio 

and co-monomer (DMAc)-incorporated 1 C i o D M A 1 3  formulations (section 2 .2 .5 .2 ) ,  with 

natural bovine NP of the same dimensions for comparison.The experimental parameters used 

for this data series are detailed in section 2 .1 .9 .1  of this thesis.
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Figure 7.19. Frequency sweep data  obtained using DMA for the PNIPAM / clay 

hydrogel and a co-monomer (DM Ac)-incorporated variant, showing their relative
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storage moduli (Pa) in comparison to bovine NP. The experiments were perform ed at 

room tem perature. n=3.
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Figure 7.20. Frequency sweep data obtained using DMA for the PNIPAM / clay 

hydrogel and a co-monomer (DM Ac)-incorporated variant, showing their relative tan  6 

values. The experiments were perform ed a t room tem perature. n=3.

The pseudo-linear increase in storage modulus as a function of frequency is indicative of 

visco-elasticity. In other words, the material becomes marginally less elastic and “tougher” at 

higher oscillatory frequencies. From this data it is clear that the incorporation of DM Ac as a 

comonomer into the PCPH has a significantly greater impact upon the resulting hydrogel 

mechanical properties than the incorporation of biologically active dopants, the data for 

which are presented in section 5.9. Consequently, it is evident that mechanical behaviour can 

be tailored by careful selection of dopant and comonomer.

7.4.5 Effect o f incorporation of DM Ac on cell viability

For this experiment, a 1CioD13 PCPH formulation was prepared as described in section 

2.2.5.2. The PCPH was cooled to 38°C, remaining as a low viscosity liquid. One million 

fluorescently labelled MSCs were added to 1ml of PCPH, and 0.05ml of this suspension was 

pipetted into a well plate which was subsequently cooled to 37°C to facilitate gel PTTNAG.

0.2ml growth media was added to the gel and the system was allowed to incubate at 37°C, 

5% C 0 2, for 7 days.
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Figure 7.21. A white light m icrograph of live hum an MSCs within a 1 C ioD 13  hydrogel 

matrix after 7 days incubation. Histological staining shows the MSC cells produce 

natural proteoglycans and collagens within the m atrix of the hydrogel.
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Figure 7.22. H um an MSC viability in 1 C ioD 13 when the cells are added to the PCPH 

prior to PTTNAG.
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Alcran blue and masson trichrome histological stains performed after 7 days incubation 

provided evidence of the production of both proteoglycans and collagen (which appear 

purple/ blue in the micrograph shown in figure 7.21) within the gel by proliferating cells 

(arrowed white). It appeared as though cells were also creating lacunae within the gel matrix 

(arrowed red), which strongly indicate native cellular behaviour and importantly, that 

1 CioD 13 formulations are entirely suitable for the inhabitation of live human MSCs. This 

evidence is supported by cell viability tests (figure 7.22), which indicate that the presence of 

1C ioD 13 causes no adverse effect on the survival a proliferation of the cells.

7.4.6 Mechanical properties of the assembled hydrogel following
administration into the IVD.

As discussed in the introductory paragraphs, the function of the spinal disc is to act shock 

absorbing sponges, capable of withstanding stress and load generated by movement. A 

preliminary experiment was designed to test whether the hydrogel materials, once injected 

and PTTNAG has occurred, will remain in place inside the IVD once reasonable stress is 

applied.

The following experiment was carried out by Dr David Asquith of Mechanical Engineering at 

Sheffield Hallam University and Mrs. Debra Booth of the Biomedical Research Institute at 

Sheffield Hallam University. An IVD within a bovine spinal column was subject to 

collagenase type II digestion treatment and incubation (2mg/ ml for 30 minutes. A 

1C ioDMA13 PCPH was prepared as described in Section 2.2.1.2 and 0.1-0.2ml was injected 

into the subsequent IVD cavities. The spine was inserted into a loading system (figure 7.23a), 

in which 1.5K Newtons of pressure was applied longitudinally to the spine (1.5K Newtons is 

force in excess of that applied to the spine during daily activities [51]) and during the 

experiment, the spine deformed excessively.

Following loading the spine was dissected and the IVD containing the hydrogel was 

examined closely. Just visible in figure 7.23b is the hydrogel located firmly in place within 

the NP at the disc centre, still fully occupying the cavities and voids created by the 

collagenase treatment.
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Figure 7.23 a) shows the loading system setup into which the spine was inserted. The 

photograph was taken toward the end of the experim ent and the deform ation in the 

spine is clearly observable, b) shows the hydrogel (arrowed) still in place within the NP 

after the experiment.

7.5 Summary

This chapter presented a method which incorporates living human cells into a biocompatible 

hydrogel which is injectable via a narrow bore needle as a low- viscosity liquid which 

solidifies to form a live cell-containing cell scaffold in situ.

In addition to those mentioned above, the material exerts a basic set of properties that are 

advantageous for the purpose of cell delivery and cell scaffold, such as;

• Easily injectable, even through very narrow-gauge needles.

• Fast PTTNAG which prevents the extrusion of the gel under pressure.

• High water content and excellent biocompatibility, demonstrated by the proliferation 

of MSCs and their production of extracellular matrix.

• Ability to fill even very narrow fissures and holes (clOOpm), and solidify to exact

dimensions of the cavity.
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• Simple, effective cell-loading.

• No purification steps required.

• Ability to tune both mechanical properties and PTTNAG temperature with the 

addition of a hydrophilic comonomer, which itself does not have any adverse effect 

on cell viability.
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Chapter 8 - Conclusions and Further Work.

The principal aim of this thesis was to explore new avenues for the utilisation of stimuli- 

responsive PNIPAM/ clay nanocomposite materials. More specifically, to devise methods by 

which the phase- transitional behaviour of these materials can exploited in the medical and 

biological fields. Their physical and chemical properties had already made them attractive 

materials in these scientific disciplines; they showed excellent potential as cell scaffolds and 

biological delivery vehicles. The principal difficulty arose in the processing of such cross- 

linked materials, and researchers have looked at in situ polymerisation or stimuli responsive 

gelation to overcome this. These approaches have significant drawbacks, mainly stemming 

from the cytotoxicity of unreacted chemical species and absence of cross-links, making them 

unsuited to clinical applications or those which require short term or long term mechanical 

stability.

Chapter 3 details a new synthetic method which allows the fully-reacted PNIPAM/ clay 

system to remain liquid until it is cooled to a predetermined temperature. Below this 

temperature, it spontaneously undergoes PTTNAG to a hydrogel that does not re-liquefy 

upon re-heating, but exhibits the highly utilisable stimuli-responsive properties reported by 

Haraguchi in 2002 [1].

This process opened a wealth of processing possibilities. The successful facile incorporation 

of biologically active components in the liquid phase, which were shown to become 

homogenously distributed throughout the system, as well as casting, extruding, injecting and 

electrospinning effectively demonstrates the high processability of these nanocomposite 

materials.

The morphology of well defined, uniform electrospun fibres with diameters ~300nm was 

examined using SEM in chapter 4. The data represent the first time electrospun cross-linked 

PNIPAM hydrogel mats have successfully been produced. This chapter also highlights the 

novel and straightforward production of continuous, uniform flat PNIPAM/ clay films of 

300pm -1000pm thickness achieved using an industrial film extrusion line at Smith & 

Nephew Extruded Films, Gilberdyke.

Characterisation of various PNIPAM/ clay-based hydrogel formulations post- PTTNAG is 

presented in chapter 5. The absence of clay diffraction patterns in XRD data proved the 

exfoliation or near-exfoliation of clay in the nanocomposite system. DMA investigations
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revealed that the viscoelasticity of the gels can be tailored by varying the nature and quantity 

of dopant materials, and those containing a HA solution closely resemble the mechanical 

properties bovine NP tissue.

Attempts to remove the clay from the polymeric system post- PTTNAG in order to establish 

Mw, and Mn were unsuccessful. GPC analysis, of the linear, uncross-linked polymers was met 

with very limited success. This was attributed to the nature and behavior of the polymer 

during and following the precipitation polymerisation process. A protocol to address these 

issues is presented in section 8.1. The electrostatic interactions/ hydrogen bonding present in 

3 separate formulations were examined by monitoring the drying of these formulations with 

ATR-FTIR. The diffusion coefficient D (in this instance, the diffusion of water out of the 

polymer matrix) was calculated for each of the formulations. It was observed that although D 

was indistinguishable between formulations, the intercept value y  was altered significantly.

The swelling and deswelling behaviour of the composite gels are integral to their utilisable 

potential. In chapter 6, the magnitude and rate of swelling of the clay nanocomposite 

materials was compared to those synthesised in the presence of the chemical cross-linking 

agent BIS. A matrix of PNIPAM based gels were synthesised which enabled the direct 

comparison of deswelling behaviours of gels containing various cross-link densities of both 

cross-link types. In addition, 2 distinct methods of free-radical initiation (thermal dissociation 

of the free-radical initiator AIBN and UV irradiation dissociation of diethoxyacetophenone) 

were added to the matrix for comparison. In summary, gels cross-linked with clay exhibit 

larger volume changes than those cross-linked with BIS, and the magnitide of deswelling 

increases markedly with decreasing cross-linker content for gels of both cross-link types, as 

expected. Gels synthesised in the presence of clay adopted rubber-like physical 

characteristics and could withstand high degrees of deformation irrespective of clay loading 

and preparation method. Conversely, gels prepared using BIS were extremely brittle and 

could not withstand any significant degree of deformation. Thermal deswelling is markedly 

hindered in dopant-incorporated networks. This is thought to be due to the formation of 

separate polymer/ dopant domains upon PNIPAM collapse above the system LCST. The 

aqueous dilution of the nanocomposite in the liquid phase yields hydrogels which undergo 

similar magnitudes of deswelling as their undiluted counterparts.

The phenomenon of cononsolvency-induced swelling/ deswelling of PNIPAM in alcoholic 

solutions are also presented in chapter 6. The de/reswelling behaviour of PNIPAM- clay as
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well as gelatine-doped formulations can be controlled by adjusting the alcohol volume 

fraction of the media. BIS cross-linked gels exhibit restricted swelling/ deswelling behaviours 

compared to those cross-linked with clay, as expected. The cross-link density within systems 

does not have a significant impact on this de/reswelling cononsolvency behaviour, although. • 

the incorporation of gelatine imposes some restriction on it, relative to gelatine concentration.

The excellent biocompatibility of the composites in both liquid and solid phases was proven 

by extensive cell viability studies, detailed in chapter 7. The temperature at which the liquid 

material undergoes PTTNAG can be tailored by i) the aqueous dilution of the PCPH in the 

liquid phase ii) adjusting the clay-loading of the material, and iii) incorporating comonomers 

of carefully selected polarity into the system. It has also been shown that not only do none of 

these approaches have an adverse effect on cell viability, but they alter the mechanical 

properties of the resulting hydrogel. This therefore also allows the resulting mechanical 

properties to easily be tailored to the intended purpose.

Human MSC cells proliferate, migrate and produce extracellular matrix in the presence of the 

hydrogel whether they have been combined in the liquid phase or the gel had undergone 

PTTNAG prior to cell-loading, despite no purification steps of the hydrogel being taken in 

either case. The hydrogel, after injection through a narrow (21 gauge) needle into an 

artificially degenerated bovine IVD, integrates with the digested tissue, easily filling narrow 

fissures and large voids alike. The hydrogel is then retained in place even during excessive 

stress loading of the vertebrae.

These initial studies demonstrate the potential for the development of a minimally invasive 

degenerative disc disease treatment. Other potential medical applications for this material 

include:

• Cartilage applications/ replacement.

• Injectable fixation of synthetic joints.

• Skin regeneration/ wound management.

• Drug delivery vehicles - as an injectable subcutaneous substrate.

• Bone fracture treatment by filling micro cracks, and treatment for osteoporotic 

patients.
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8.1. Further Work

The work in this thesis could be expanded on in several ways:

A IC 10 PCPH suspension has been observed to remain in a liquid phase for periods of 

time exceeding 2 weeks at 80°C post- initiation, and this same PCPH was still capable 

of assembling to. a solid gfel upon cooling. A clearer understanding of the limitations 

posed on PCPH retention at elevated temperatures for extended periods of time would 

be achieved by the examination of physical and chemical properties of the gel after 

extended timeframes have elapsed.

The method of measuring optical clarity, and therefore phase-transition, upon cooling 

may be significantly improved through the use of a turbidimeter equipped with 

thermocoupled warming device.

DLS measurements would be repeated in triplicate in order to establish standard error 

of results.

More data are needed to make mechanistic inferences on the Mw of PNIPAM in the 

presented system. Possible future approaches could include;

1) Inducing phase transition of the aq. PNIPAM solution at 50°C before 

filtering the precipitant and exchanging the solvent with THF to help reduce 

chain aggregation.

2) Use a viscosity technique such as online viscometery, whereby the sample 

is injected into a triple detection GPC device without the use of a separation 

column, equipped with a differential refractometer/viscometer. The precise 

polymer concentration is calculated from the refractometry signal, which is 

used to calculate the intrinsic viscosity using the specific viscosity (given by 

the viscometer). One important limitation with this technique is that it does not 

give reasonable values for low Mw polymers [2].

3) Membrane osmometry is a technique employed to directly measure the 

osmotic pressure of a polymer solution separated from pure solvent by a semi- 

permeable membrane. It can be used to very accurately measure the Mw of 

colloidal suspensions without a limit on sample concentration, although it 

requires a time- consuming calibration process and large sample volumes.

Also, due to membrane porosity, it may not be suitable for very small polymer 

molecules.
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Expansion and completion of the full range of gelatine and hyaluronic acid-doped gel 

swelling/ deswelling experiments in response to cononsolvency phenomena in the 

presence of alcohols of increasing chain length.

Determination of the survival and differentiation of MSCs in the presence Of the 

hydrogel under natural vertebral loading patterns would be a requirement prior to any 

foreseeable clinical trials of the material.

Rheological data to be generated for PNIPAM/ clay-based hydrogels of several 

formulations, including those of various solids: water ratios, diluted formulations and 

those containing dopants.

A larger selection of comonomers will be incorporated into the PNIPAM/ clay 

system, and these systems will be examined for cell viability, swelling/ deswelling 

capacities and mechanical properties. Hydrophilic (PNIPAM LCST- raising) 

comonomers could include; hydroxyl ethyl vinyl ether (HEVE), N-vinyl-2- 

pyrrolidone (NVP) and 2-hydroxyethylacrylate (HEA). Hydrophobic (PNIPAM 

LCST- reducing) comonomers could include hydroxyethyl methacrylate (HEMA), 

vinyl phenyl ether (VPE). and vinyl butyl ether (VBE).

Different clay species could be incorporated in place of laponite. It is anticipated that 

clay platelets with larger surface areas/ aspect ratios may enhance gel mechanical 

stability, whilst possibly compromising optical clarity and/ or efficient platelet 

separation (swellability) in water. An optimisation of clay type and concentration to 

various eventual hydrogel applications would be desirable.
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