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ABSTRACT
TRANSPORT PROPERTIES OF MICELLAR SOLUTIONS AND 
MICR0BNUL5I0N5
DY THERESA A. BOSTOCK

Binary nonionic surfactant-vater systems were 
studied prior to the more complex nonionic surfactant- 
water-oil' systems. Phase diagrams were determined for 
the tetraoxyethylene dodecylether (0^oE^)-water and the
Brij 30~'v'rater systems; the available hexaoxyethylene 
dodecylether (C^^Eg)-vater phase diagram was confirmed.
Conductivity measurements were made in the isotropic 
liquid regions of these systems and self-diffusion measure­
ments were made in the isotropic liquid regions of the 
C E,,-water and C^Eg-water systems, in order to elucidate 
the structures of these regions. Self-diffusion measure­
ments' were made by the NMR spin-echo method with a pulsed 
field gradient using the nucleus ,H. The results in­
dicated that the surfactant is aggregated and water plus 
oxyethvlene chains form the continuum up to 100/6 surfactant.

Phase diagrams were determined for the C ^ - H ^ . O -  
heptane system and the Brij 30-H^O-hexane system. Con­
ductivity measurements were made in the isotropic liquid 
regions. The existence of both water-continuous and oil- 
continuous isotropic liquid regions is confirmed. The 
possibility of a percolation mechanism leading to high 
conductivities in oil-continuous samples is discussed as 
is phase inversion within the isotropic liquid region, 
at low water content. The effect of different hydro­
carbons on the phase behaviour at low surfactant content 
was studied by means of phase diagrams and conductivity 
measurements. The conductivity results at low surfactant 
content are interpreted in terms of water-continuous 
and oil-continuous structures and also bicontinuous 
structures via which phase inversion can occur.

Phase diagrams were determined for C^oE^-H00-
triacetin and Brij 30-Ho0-triacetin. The differences 
between these systems and those with heptane and hexane 
as third components are explained on the basis of the 
different structure and polarity of the triacetin 
molecule.
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ABSTRACT

TRANSPORT PROPERTIES OF MICELLAR SOLUTIONS AND 
MICROEMULSIONS

BY THERESA A. BOSTOCK

Binary nonionic surfactant-water systems were 
studied prior to the more complex nonionic surfactant- 
water-oil systems. Phase diagrams were determined for 
the tetraoxyethylene dodecylether (C^f1E^)-water and the
Brij 30-water systems; the available hexaoxyethylene 
dodecylether (C^9Eg)-water phase diagram was confirmed.
Conductivity measurements were made in the isotropic 
liquid regions of these systems and self-diffusion measure­
ments were made in the isotropic liquid regions of the 
C E^-water and C^nE^-water systems, in order to elucidate 
the structures of these regions. Self-diffusion measure­
ments were made by the NMR spin-echo method with a pulsed 
field gradient using the nucleus 'H, The results in­
dicated that the surfactant is aggregated and water plus 
oxyethylene chains form the continuum up to 100/b surfactant.

Phase diagrams were determined for the C r Ê, -If,0- 
heptane system and the Brij 30-H^0-hexane system. Con-£mi
ductivity measurements were made in the isotropic liquid 
regions. The existence of both water-continuous and oil- 
continuous isotropic liquid regions is confirmed. The 
possibility of a percolation mechanism leading to high 
conductivities in oil-continuous samples is discussed as 
is phase inversion within the isotropic liquid region, 
at 1 o w t water content. The effect of different hydro­
carbons on the phase behaviour at low surfactant content 
was studied by means of phase diagrams and conductivity 
measurements. The conductivity results at low7 surfactant 
content are interpreted in terms of water-continuous 
and oil-continuous structures and also bicontinuous 
structures via which phase inversion can occur.

Phase diagrams were determined for C^rE/t-Ho0-
triacetin and Brij 30-If0-triacetin. The differences 
between these systems and those with heptane and hexane 
as third components are explained on the basis of the 
different structure and polarity of the triacetin 
molecule.



1. INTRODUCTION
The nonionic surfactants which will be discussed

here are the polyoxethylene alkyl ethers, ^gn+l
(0CIio CH0) OH, which will be abbreviated to C E .2 2 m 7 n m

1.1 THE INTERACTION OF POLYOXYETHYLENE ALKYL ETHERS 
WITH VfATER

1.1.1 SOLUBILITY OF THE OXYETHYLENE CHAIN IN WATER
The structure of the molecule renders it amphiphilic 

in nature, the hydrocarbon chain being soluble in oil 
whilst the oxyethylene chain is soluble in water. The 
solubility in water of the oxyethylene chain is partly 
explained by hydrogen bonding to the ether oxygens (l)
That other factors are involved is indicated by the lower 
solubility of corresponding polyoxymethylene compounds (2). 
It has been suggested (l) that there is a relationship 
between the helical conformation of the oxyethylene chain 
in water and the structure of the water itself, which may 
partly explain this high solubility. Other authors have 
suggested that the oxyethylene chain exists in’ water as 
interrupted helices (3) or in a randomly coiled configur­
ation (4); this does not necessarily preclude a relation­
ship between the solubility and the water structure.

1-1-2 MICELLE FORMATION
These surfactants only exist as m onomer solutions

in water at very low coneentrations: the critical
micelle concentrations (croc's) are very low. C^IDy has 

-5 -3a cmc of 3x10 mol dm . Above the cmc there is ag- 
gr^ation of the surfactant to form micelles, the hydrophobic
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hydrocarbon chains forming the interiors of the micelles.

When the surfactant molecules have come together to 
form micelles, the oxyethylene chains will be hydrated; 
a maximum of two water molecules will be hydrogen bonded 
to each ether oxygen; close to the hydrocarbon core 
geometrical constraints may reduce the number of hydrogen 
bonded water molecules to well below the theoretical 
maximum. In addition water molecules will be trapped 
between the oxyethylene chains and this will be greater 
the longer the oxy;ethylene chains. For a range of com­
mercial surfactants, from to the micellor
hydration has been reported to vary from 5*2 to 10.6 
water molecules per ether oxygen (5)* Schott reports 
that the number of water molecules per ether linkage 
varies from 0.4 to 6.3 (6).

These micelles are not necessarily spherical^
Tanford et al (4) have concluded that a disklike shape 
is in agreement with experimental evidence and theore­
tical predictions for the series where m ranges
from 8 to 23* For surfactants with very long oxyethylene 
chains (eg C-^Eg^ and a spherical shape is possible.

1.1.3 CLOUD POINT

When a dilute aqueous micellar solution of a nonionic 
surfactant of this type, is heated, a point comes when 
the hydrogen bonding of the oxyethylene chains is in-



1.1.3 Cont’d.
sufficient to maintain the stability of a single phase.
The systen clouds as it separates into two phases and 
the temperature at which this occurs is known as the 
"cloud point.” Although the cloud point is frequently 
quoted for a 1% solution, the phenomenon occurs over a 
range of concentrations above the cmc.

The currently held view is that on approach to the 
cloud point secondary aggregation of small micelles 
occurs (8); at the cloud point water containing sur­
factant below the cmc separates from the secondarily 
aggregated system; this surfactant-rich phase still con­
tains a very large proportion of water (as much as 97/al in 
some cases)•

The cloud point depends on concentration and also 
on the lengths of the hydrocarbon and oxyethylene chains. 
For a given hydrocarbon chain length the longer the 
oxyethylene chain the higher the temperature required to 
reduce the hydrophilic properties of the molecule suf­
ficiently for phase -separation to occur and hence the 
higher the cloud point.

Some systems such as the C10E_-II 0 system (Fig. l.l)l£- 5 "
cloud then clear again at a higher temperature before 
clouding a second time. This phenomenon is referred to 
as a ’’double cloud point."

3
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1.1.4 LIQUID CRYSTAL FORMATION

At higher concentrations in water the polyoxye­
thylene alkyl ethers form liquid crystals over a p p r e c ­
iable ranges of composition and temperature. In the 
series C^E^-C-j^Eg hexagonal, lamellar and viscous iso­
tropic liquid crystalline phases occur to varying 
extents (9)« Fig. 1.1 shows the hexagonal and lamellar 
phases in the C^E^-¥L^O system. It has since been shown 
that the isotropic region occurring between the hex- 
ogonal and lamellar phases is a viscous isotropic liquid 
crystalline phase (10).

Hexagonal and lamellar phases are birefringent 
and their structures are well-defined (Fig. 1.2). The 
viscous isotropic phase has a high viscosity and is not 
birefringent (hence the name); the structure is not 
well-defined and the term viscous isotropic phase covers 
more than one type of structure (9)«

1 .2 EMULSIONS FORMED BY POLYOXYETHYLENE ALKYL ETHERS
1.2.1 THE STABILITY OF THE EMULSIONS

An emulsion is a system of one liquid phase dis­
persed in another liquid phase which is thermodynamically 
unstable and will separate into two phases, albeit in 
some cases extremely slowly.

Surface active agents stabilize emulsions by forming 
a surface monolayer on the emulsion droplets which

5



1.2.1 Cont'd.
presents a barrier to coalescence. In the case of 
ionic surface active agents stabilizing oil-in-water 
(0/W) emulsions the droplets are charged and so there 
is an electrical force of repulsion opposing coalescence 
of the droplets. The stability of emulsions stabilized 
with nonionic surface active agents has been ascribed 
to some sort of mechanical barrier opposing coalescence 
imposed by heavily hydrated polyoxyethylene chains or 
by the formation of a liquid crystal, either as a layer 
around the droplet itself or by the coming together of 
surfactant layers when two droplets approach* Becher and 
Tahara (ll) have found that the droplets of 0/V7 emulsionsy 
made using mixtures of the commercial surfactants Span 
60 and 80 and Tween 60 and 80 are charged. The emulsi­
fiers were used without further purification. No details 
of possible impurities are given, and hence no indi­
cation of any part they might play in producing a charge. 
The explanation given of the charge, is that it is due 
to hydrogen-bonding at the ether oxygens of the polyox- 
ethylene chains and subsequent ionisation of a number of 
these hydrogen-bonded water molecules to give oxonium 
ions and hydroxide ions.

1.2.2 PHASE INVERSION TEMPERATURE (PIT)
A hydrocarbon, non-ionic surfactant, and water can 

be mixed to form an 0/17 emulsion at a low temperature,

6
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1.2.2 Cont1d •

the actual temperature depending on the surfactant and 
also the hydrocarbon used. Initially the surfactant 
monolayer surrounding the hydrocarbon droplets is convex 
towards the water (Fig. 1.3). As the temperature is 
increased the hydrophilicity of the surfactant is re­
duced. The curvature of the surfactant monolayer de­
creases, until the surfactant layer becomes planar when 
the hydrophilic and oleophilic tendencies balance, 
at which point the surface areas occupied by the hydro­
carbon and oxyethylene chains are equal. Above this 
temperature the surfactant layer becomes concave towards 
the water and convex towards the oil, the hydrophilic 
tendency now being weaker. A water in oil (YT/O) emulsion 
results. Mixing may be required to prevent phase 
separation. The temperature at which the surfactant layer 
becomes planar and the emulsion changes from 0/Y7 to 
Y7/0 is known as the "Phase inversion temperature" (PIT).

Various factors affect the PIT (12,13)•
i) The surfactant itself - the relative lengths of 

the hydrocarbon and oxyethylene chains and in the 
case of a commercial surfactant the oxyethylene 
chain length distribution,

ii) the concentration of the surfactant,
iii) the nature of the oil e.g. whether it is an ali­

phatic or aromatic hydrocarbon.
iv) the ratio of the oil phase to the water phase,
v) the presence of additives or impurities in the

three components.

8
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Since the PIT depends on the surfactant (i) it 
is related to the cloud point: the PIT increases with
increasing surfactant cloud point (12).

1.3 MICROEMULSIONS
1.3.1 HISTORY

The term "microemulsion" was first used by 
Schulman in 1959 (14) to describe a transparent, iso­
tropic system obtained from an emulsion of hydrocarbon 
and water stabilized by a soap, by the addition of 
an alcohol of medium chain length, such as pentanol. 
Systems of this type, containing high percentages of 
both oil and water with a smaller percentage of emulsifier 
mixture, but remaining transparent or translucent had 
been known for many years as commercial preparations (15) 
such as self-polishing floor waxes and stable cutting 
oil emulsions for machine tools. Schulman had observed 
the systems which he later came to call microemulsions 
as early as 19^3 (l6)^

1.3.2 USES OF MICROEMULSIONS
One of the attractions of microemulsions commercially 

is their stability, which may be measured in years and 
is generally much greater than that of conventional 
emulsions, although they can contain large proportions 
of the "disperse" phase. Pharmaceutical preparations,

9
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domestic and industrial cleaners and dry-cleaning 
fluids may be microemulsions (17)- Microemulsions are 
of interest commercially not only because of their 
present uses but because of their potential uses which 
include oil extraction (l8,19)- After the primary 
drilling when oil comes to the surface under its own 
pressure the well may be flushed with water; a con­
siderable amount of oil still remains in the rock - 
estimates suggest a third of the total quantity. In­
jection of a suitably chosen microemulsion into the 
reservoir can result in the extraction of a significant 
quantity of the remaining oil.

Microemulsions may be used in catalysis to bring 
water soluble substances into closer contact with oil 
soluble substances and as a means of adding water soluble 
substances to petrol and diesel fuel in order to improve 
combustion so as to reduce knock and to reduce pollution
(19)- Where mixtures of surfactants, water and lipids 
occur in industrial processes and effluents, it is im­
portant to determine the extent to which microemulsions 
are formed in these mixtures. Perhaps one of the most 
obvious uses for microemulsions is in detergency where 
their occurrence and stability is important for soil 
removal and prevention of redeposition.

10



1.3-3 TYPES OF MICROEMULSION
Microemulsions may be divided into two classes 

according to the emulsifier used. One class is that 
into which Schulman's microemulsions fall: an ionic
surfactant is used with a cosurfactant, normally a 
medium chain length alcohol such as pentanol. Such 
microemulsions require relatively large quantities of 
emulsifier: as much as 25% by weight for one of Schulman's
systems, though this can be reduced by careful choice of 
surfactant and cosurfactant to about 15% for a water: 
hydrocarbon ratio of 1:1 (20). These microemulsions 
also have large stability ranges versus temperature.
Nonionic surfactants give rise to a second class of micro­
emulsions. Large amounts of both water and hydrocarbon 
can exist as a microemulsion with the addition of much 
smaller amounts of surfactant, about 5% by weight (I9i20), 
but the range of temperature over which these systems 
are stable is small. Polyoxyethylene alkyl ethers are the 
nonionic surfactants commonly used. 1-propanol and
2-propanol not normally regarded as emulsifiers have 
been found to produce micro emulsions with hexane and 
water in the absence of other emulsifiers (21). Micro­
emulsions have also been produced using mixtures of nonionic 
surfactants with small amounts of ionic surfactants (22).

V7ithin these broad classes the microemulsions may 
be oil-continuous or water-continuous, or of an as yet 
indeterminate structure (see section 1.4.7)(l)•

11



i.3.4 THE OCCURRENCE OF MICROEMULSIONS FORMED BY 
POLYOXYETHYLENE ALKYL ETHERS

1.3.4.1. SOLUBILIZATION
Organic compounds that are insoluble or sparingly 

soluble in water can often be dissolved in an aqueous 
solution of a suitable surfactant. This phenomenon is 
known as solubilization. Below the cmc there is little 
or no uptake of solubilizate indicating that uptake 
depends on the micelles. In the case of nonionic sur­
factant micelles there are three possible modes of in­
corporation of solubilizate into micelles (Fig, 1.4)
Non polar molecules are located in the micellar core 
where the hydrocarbon chains of the surfactant form the 
solvent; paraffins fall into this category. Amphiphilic 
molecules, such as long chain alcohols, are located in 
the micelle in such a way as to allow the hydrocarbon 
chain to mingle with the other hydrocarbon chains in the 
core, whilst the more hydrophilic group, such as the 
OH group, protrudes into the polyoxyethylene outer layer.
A third group of substances which have an affinity for 
polyoxyethylene may be located in the outer layer of the 
micelle amongst the hydrated polyoxyethylene chains. 
Phenols fall into this category and have been shown to 
form complexes with polyethylene glycol, probably by 
binding of the phenolic hydroxy group with an ether oxygen 
of the polyoxyethylene (23).

Of particular interest here are hydrocarbons. Fig.1.5
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shows the effect of adding small amounts of different 

hydrocarbons to a 1% aqueous solution of polyoxyethylene

(9.7) nonylphenyl ether. For n-heptane there is a small 

(about 3°C) initial decrease in the cloud point on 

adding heptane, followed by a sharp rise; for ethyl­

benzene the decrease is large (about 45°Ci) and the sub­

sequent increase gradual; cyclohexane produces an in­

termediate effect (24). The difference in behaviour 

between the straight chain aliphatic and the aromatic 

hydrocarbon may be due to the fact that the aromatic 

hydrocarbon is more polarisable and can be partly solubil­

ized in the polyoxyethylene shell as well as in the core 

of the micelle.

Close to the cloud point the solubilization may in­
crease considerably (Figs. 1.5 and 1.6) and where ap­
preciable quantities of hydrocarbon are solubilized the 
system may be termed a microemulsion. Similarly the 
hydrocarbon solution of the nonionic surfactant may 
solubilize water; this solubilization increases near 
the haze point (equivalent to the cloud point in aqueous 
solution). Maximum solubilization occurs at a higher 
temperature than in aqueous solution. Again the highly 
solubilized system may be termed a microemulsion (24,25). 

As can be seen from Fig. 1.6 for a given surfactant at a 
given concentration, the maximum solubilization of 
hydrocarbon (water) in aqueous (hydrocarbon) solution, 
occurs over a very narrow temperature range.
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Fig. 1.6 shows the phases present in the two and 

three phase regions, in addition to the isotropic 
liquid phases of the micellar solutions and micro­
emulsions. It is clear that the maximum solubilization 
i.e. the microemulsion formation, occurs in the region 
of the phase inversion temperature.

In the system polyoxyethylene (9•7) nonyl phenyl- 
ether (7% bywt), water and cyclohexane, at low cyclo- 
hexane content and above the cloud point, two phases 
exist - water containing surfactant below the cmc and a 
phase richer in surfactant and containing some cyclo­
hexane known as the surfactant phase. At high cyclo­
hexane content, below the microemulsion region oil 
(containing a small amount of surfactant) separates from 
a phase richer in surfactant and containing some water, 
also known as the surfactant phase. This phase richer 
in surfactant can dissolve large amounts of both water 
and cyclohexane. In the central three phase region the 
phases are water, oil and surfactant phase. Fig. 1.7 
shows schematically the effect of temperature on the 
volume fractions of water, oil and surfactant phases 
for a system composed of equal quantities (by wt.) of 
water and oil plus a small percentage of surfactant 
(e.g. water plus cyclohexane plus 39° by wt. of poly­
oxyethylene (8.6) nonylphenylether)(27)• It can be seen 
that the low temperature water phase changes continuously 
to the surfactant phase which then changes continuously
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Fig* 1.7* Schematic diagram of water, surfactant (d), and oil 
phases, after the complete phase separation of the 
system, composed of equal quantities (bywt.) of water 
and cyclohexane plus 3/C by wt. of polyoxyethylene(8*6) 
nonylphenyl ether. The phase inversion region is 
exaggerated, (from ref.27)*
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to the oil phase at high temperature, and that this 

change occurs in the region of the phase inversion 

temperature. The surfactant phase in the three phase 

region contains large amounts of both oil and water.

The phase diagrams of many polyoxyethylene alkyl 

ether-water-hydrocarbon systems are similar to that 

shown in Fig. 1.6 for surfactant concentrations in the 

range 0-10?o (24). They are shifted to higher or lower 

temperature according to the PIT of the system.

1.3.4.2. EFFECTS OF CHANGES IN THE NONIONIC SURFACTANT

For optimum solubilization at a given temperature

the surfactant chosen should have a hydrocarbon:oxy- 

ethylene chain length ratio such that solubilization is 

taking place close to the PIT with the oil in question.

Solubilization is larger when the nonionic sur­

factant is pure than when the distribution of hydro­

philic chain length is broad as in a commercial material

(20). As the oxyethylene chain length distribution 

becomes sharper.solubilization is increased.

A greater degree of solubilization is obtained with 

a nonionic surfactant having a larger hydrocarbon chain. 

If a surfactant with a longer hydrocarbon chain is used 

and solubilization is required at a specific temperature 

then the oxyethylene chain length also needs to be longer 

in order to keep the PIT constant (28). In order to act
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as a solubilizer a surfactant has finally to be in 

micellar form in solution, so that the hydrophilic 

group of the surfactant must have a certain minimum 

size, which will depend on the size and characteristics 

of the hydrophobic group. Within this limit, a sur­

factant, of which the hydrophilic portion is smaller, 

seems more efficient for solubilizing hydrocarbons (24). 

For example, in 1% aqueous solutions of polyoxyethylene

(n) nonyl phenyl ethers the maximum amount of n-heptane
3 3solubilized increases from llg/dm to l?g/dm when n 

decreases from 11.4 to 7.4, n being the average number 

of oxyethylene groups in the surfactant mixture.

i.3.4.3 EFFECTS OF DIFFERENT HYDROCARBONS

Just as the PIT depends on the hydrocarbon so the 

solubilization at a given temperature depends on the 

hydrocarbon, and very considerable differences can occur 

(Fig. 1.5)(l). The maximum solubilization, at whatever 

temperature this occurs may also change considerably.

The previous discussion of micro emulsion has con­

sidered phase diagrams in surfactant-water-hydrocarbon 

systems at a given surfactant concentration, with temp­

eratures as ordinate. These are sections of the complete 

system; the three component system can be plotted on a 

triangular diagram at a given temperature*Friberg and 

Lapczynska have determined the triangular phase diagrams
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for several hydrocarbons at various temperatures with 

tetrethylene glycoldodecvl ether as surfactant (Figs. 5*1) 

(29). These show that a surfactant phase can exist 

in the absence of other phases, taking it to be a phase 

of approximately equal amounts of oil and ivater and a 

relatively low surfactant concentration, about 10%.

It can be seen in the diagrams for hexadecane and decane. 

For a straight chain aliphatic hydrocarbon a reduction 

in the chain length from sixteen to ten carbon atoms 

produces similar phase diagrams but at a temperature 

10°C 1 ower. Reducing the chain length further, to six 

carbon atoms, has a similar effect, the similar isotropic 

liquid regions appearing in the phase diagrams but 10°C 

belowT the temperatures for the hydrocarbon with the ten 

carbon chain (29). However, closer scrutiny of the 

phase diagrams for hexadecane and decane reveals that 

the manner in which the surfactant phase unites wTith the 

isotropic liquid phase wThich extends along the surfactant 

oil axis is not exactly the same, the union taking place 

close to the oil corner of the decane diagram but close 

to the centre of the hexadecane diagram.

A change in the hydrocarbon from aliphatic to 

aromatic, causes a marked reduction in the PIT (l). The 

net result is that the phase diagrams are shifted to 

lower temperatures. Since dodecyl-benzene gives rise to
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solubilization similar to that of benzene, in spite 

of the fact that its molecular size is similar to that 

of hexedecane, the effect of aromaticity is not simply 

an effective reduction in chain length (29). The 

difference is at least partly due to the higher polar- 

izability of the aromatic molecules. At room temperature 

and below surfactant does not dissolve in benzene and 

dodecylbenzene, whereas it is soluble in the aliphatic 

hydrocarbons considered. Up to about 60% of these 

aromatic hydrocarbons can be dissolved by C^0Ê, at these 

temperatures.

1.3.4.4. TRIGLYCERIDES AS THE THIRD COMPONENT

The discussion, given by Prince (30) of micro­

emulsion formation, or rather the the lack of it, by 

triglycerides using two component emulsifiers - sur­

factant plus cosurfactant - is also applicable to systems 

with nonionic emulsifiers. Triglycerides, because of 

their polarity,do not reside in the centre of micelles 

with the hydrocarbon tails of the surfactant molecules, 

but at the interface, with the glyceride heads in the 

water phase. This tends to expand the film but because 

of the nature of the triglyceride molecule with its 

three ester linkages, the film fails to remain coherent 

so greatly reducing any possibility of microemulsification.

Friberg and Rydhag (31) found that tricaprylin and 

a nonionic emulsifier (an alkyl aryl polyethylene glycol)
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were completely soluble in each other, and that this 

combination dissolved a weight of water roughly pro­

portional to the weight of emulsifier and reaching a 

maximum of about 20%, when there was very little tri- 

caprylin present. They did succeed in solubilizing 

tricaprylin, up to a maximum of about 15%» in an 

aqueous solution of sodium xylene sulphonate and mono- 

caprylin.

1.4 NATURE OF MICROEMULSIONS

1.4.1 THE TERM MICROEMULSION

When Scbulman first observed his transparent W/0 

dispersions he called them oleopathic hydromicelles (l6 ) 

Later he called them oleophilic hydromicelles and the 

0/W d ispersions hydrophilic oleomicelles (32). In 1959 

examples of these systems were photographed directly 

by electron microscopy after staining with osmiun 

tetroxide, and shown to consist of spherical droplets of 

oil or water dispersed in the appropriate continuous 

phase (14). Schulman applied the term "micro emulsion" 

to these systems. Microemulsions were thought to be 

emulsions of very small droplet size (l4) and to differ 

from true emulsions only with respect to the droplet 

size which was sufficiently small for them to be trans­

parent (droplet diameter < ̂ A ) or translucent, scat­

tering light in the Tyndall range.

22



1.4.1 Cont'd.

Since the recognition of these systems there has 

been considerable investigation of their occurrence and 

discussion of their structure, formation and stability.

The precise use of the term "microemulsionn varies be­

tween authors. Generally it refers to systems which 

contain large amounts of both oil and water and a smaller 

amount of surfactant mixture and which are transparent 

and which show long-term stability. Many of these 

systems are now regarded as micellar systems characterised 

by extremely high solubilization ratios and as such are 

thermodynamically stable (33)• This has led some 

authors to refer to them as "so-called microemulsions.”

On this basis the term microemulsion may cover systems 

which vary from crystal clear to densely turbid.

1.4.2. SOLUBILIZED MICELLAR SYSTEMS

There is no dividing line between micellar systems 

containing solubilized material and microemulsions of 

this type (section 1.3«4.l). The systems may be micellar 

or inverse micellar, oil forming the continuous medium.

It is possible to prepare Schulman’s microemulsions from 

the pure hydrocarbon via the addition of alcohol, followed 

by the addition of water and soap. No phase transition 

is observed during this process indicating that the system 

is still one-phase rather than a two-phase emulsion (28).

Zulauf and Eicke (34) make a distinction on the 

basis of results from the system Aerosol-OT-water-isooctane^
T Aerosol-OT is sodium di-2-ethylhexylsufosuccinate.
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studied by photon correlation spectroscopy. In the 

oil-continuous region they found that below a certain 

water content the aggregates behaved as rigid macro­

molecules and they interpreted this as meaning that the 

water in the interior of the aggregates ivas highly 

structured by hydrogen bonds. This they regarded as a 

micellar solution. At higher water contents they ob­

served less rigidly bound water in the aggregates separa­

ted from the continuous phase by a well defined sur­

factant monolayer. This they regarded as a microemulsion.

1 .4.3. FORMATION OF MICROEMULSIONS

Unlike ordinary emulsions which require an ex­

penditure of energy (e.g. vigorous shaking in the simplest 

case) to form them, microemulsions are usually formed 

on gentle mixing of the components. This should be so 

if the systems are thermodynamically stable and if all 

the components are liquid (more agitation may be re­

quired to break down liquid crystalline material within 

a reasonable length of time). Spontaneous emulsification 

is thought to occur by one of three processes or by 

a combination of them. These are interfacial turbulence, 

diffusion and stranding and a process resulting from 

negative interfacial tension (35*36).

1.4.4. NEGATIVE INTERFACIAL TENSION

Much interest has centred on interfacial tension.

It was thought to be a factor in the formation of micro­

emulsions when these were regarded as thermodynamically
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unstable systems as well as when they were regarded as 

thermodynamically stable systems (37*38). A negative 

interfacial tension between the oil phase and the 

aqueous phase will cause an increase in interfacial area 

until the interfacial tension reaches zero; the increase 

in interfacial area is produced by a breakdown of one 

of the phases into smaller and smaller drops, resulting 

in a microemulsion. Negative interfacial tensions have 

not been measured but extrapolation of measurements which 

can be made tend to indicate such negative interfacial 

tensions in the systems under consideration. These 

measurements have been made on systems where an ionic 

surfactant plus a cosurfactant has been employed (36).

In the case of nonionic surfactants interfacial tensions 

which are very low and at a minimum have been found close 

to the PIT when a surfactant phase (l.3-4.1) is formed 

containing large amounts of both oil and water (36).

Consideration of interfacial tensions between the 

two phases led to a consideration of the nature of the 

interface itself. Where an ionic surfactant and an 

alcohol are used the interfacial film consists of these 

two components appropriately orientated with hydro­

philic ends in the aqueous phase and oleophilic ends in 

the oil phase. In the case of the nonionic surfactant 

the interfacial film is of surfactant again appropriately
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orientated. The interfacial film, which is also re­

ferred to as the interphase has been considered as a 

duplex film, with different tensions on either side of 

it (39). If the surfactant-oil tension and surfactant- 

water tension are different in the flat film then 

curvature of the film is required to equalise them (c.f. 

section 1 .2.2), the side having the higher tension 

becoming convex. This can occur where there is a net 

negative interfacial tension in the flat film.

1 .4 .5 • THEORETICAL ASPECTS

A negative interfacial tension is not necessarily
#

a condition for obtaining a microemulsion. The free 

energy of the system is not only a function of the sur­

face energy, but also of other parameters such as the 

chemical potentials of the components and entropy.

A negative interfacial tension or a very small posi­

tive interfacial tension will favour microemulsion 

formation.

Microemulsion systems have been considered both 

from the points of view of thermodynamics (40) and of 

statistical mechanics (41) . Phase inversion from one 

type of microemulsion to the other has been predicted (40) 

as well as phase separation (42). Theories have become 

more extensive and more detailed; Robbins (43) has 

developed a model which quantitatively predicts phase 

behaviour in micro emulsions. This model treats the
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interface between a droplet and its contacting external 

phase as a duplex monolayer of oriented surfactant 

molecules. The respective hydrophilic heads and 

lipophilic chain sides of the interface are treated as 

independent interphases; water interacting with the heads 

and oil with the chains. Direction and degree of curva­

ture are imposed by a lateral stress gradient in the 

interface wThich is expressed in terms of surfactant mole­

cular volume, interfacial tension and compressibility which 

are physically measurable quantities. Phase behaviour, 

expressed in terms of water and oil uptake, is described on 

an idealized ternary phase diagram. The theory, assuming 

monodispersity, predicts droplet size and interfacial 

concentrations of adsorbed surfactant in terms of mole­

cules per droplet.

Talraon and Prager (44) have proposed a statistical 

mechanical model for microemulsions which suggests that 

over certain ranges of the model parameters it is possible 

for a bicontinuous phase (1.4.7) to coexist with an 0/W 

and a \$/Q micro emulsion; such three-phase equilibria 

have been reported (4^). Also the results imply that a 

very thin layer of the bicontinuous phase can reduce the 

interfacial tension between a V/G and an 0/W microemulsion 

by several orders of magnitude.

Ruckenstein (42) has also attempted to explain the 

low values of the interfacial free energy between twTo
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micro emulsion phases in equilibrium using a thermo­

dynamic treatment.

Gerbacia et al (46) considered micro emulsion as 

thermodynamically unstable systems, distinct from thermo­

dynamically stable swollen micellar solutions. The long 

term stability of such systems was assumed to arise from 

the presence of the surfactant-cosurfactant-solvent film 

surrounding the droplets. A theory was developed to 

explain the stability. This work was based on evidence 

by Rosano (47) using a surfactant pips a cosurfactant that 

mixing the components in one order produces stable micro­

emulsions but mixing them in a different order produces 

no emulsion. This is contrary to the bulk of the evidence 

concerning microemulsion formation.

Microemulsions are generally regarded as thermo­

dynamically stable systems and theories have been developed 

to explain their thermodynamic stability.

Theories concerned with microemulsions formed with 

nonionic surfactants do not have to take into account the 

effects of the charged surfactant head groups and the co­

surfactant molecules involved in the interface that are 

present in microemulsions formed by a surfactant plus a 

cosurfactant.
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1.4.6. PARTICLE SHAPE

Most theories consider monodisperse spherical drop­

lets of the disperse phase; these have been observed.

If the interfacial tension is zero then there would 

appear to be no requirement for spherical droplets (48) 

but this is not necessarily so. For an ionic surfactant, 

the microemulsioni droplet contains most of its soap ions 

in the interface and very few in the bulk. A small 

deformation will increase the surface area so reducing the 

adsorption density. Further adsorption from the bulk 

to compensate for this decrease would lead to a rather 

large decrease in the bulk concentration and to a strong 

rise in the interfacial tension, so driving the shape 

back to spherical (49). It would appear possible that this 

effect could occur in systems containing nonionic sur­

factant, thus ensuring spherical droplets.

Rosoff and Giniger demonstrated, by light scat­

tering, micellar clustering in microemulsions as phase 

boundaries were approached, (50). The micellar clusters 

differed in size and structure depending on their location 

within the phase diagram.

Whilst nonionic surfactants form typical W/0 and 

0/WT swollen micellar solutions with the expected spherical 

droplets, phases are also formed of an indeterminate 

structure. A representative composition of surfactant 

phase is 10% surfactant and equal quantities of hydro­

carbon and water. Shinoda and Sagitani show some sort of 

lamellar structure for the surfactant phase in their
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schematic diagram (27). Since the phase is an isotropic 

liquid a regularly layered structure is excluded.

Friberg and Rydhag considered a non-regular structure 

in which both oil and water are dispersed and continuous; 

they do not think it probable, on the basis of calculations 

concerning the energy involved when the layers are bent.

1.4.7 BICONTINUOUS STRUCTURES

Scriven has considered the possibility of bi­

continuous structures arising in liquids, (5l)» These 

would be analogous to porous media where one subvolume 

is solid or semi solid e.g. sandstone and sponge. An 

interspersion of two phases is bicontinuous only if each 

phase is connected across the specimen. Scriven suggests 

that such structures could occur in microemulsions con­

taining comparable amounts of water and hydrocarbon. The 

surfactant would form the partitioning surface between 

oil and water. Periodic minimal surfaces exist such 

as the Neovius minimal surface, which has simple cubic 

symmetry. The surface curvature varies continuously 

throughout the structure; a positive curvature in one 

direction is balanced by a negative curvature at right 

angles to it so that almost every point is a saddle point 

(9)• The problems associated with the wide variation in 

curvature of the interface which occur in some proposed 

structures are avoided. The Neovius minimal surface 

would not produce a birefringent structure because of the
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cubic symmetry but it would be a very viscous structure. 

It has been suggested that certain cubic liquid crystal 

phases could have this structure (51 * 9)(1•1.4). The 

much less viscous microemulsion cannot have such a 

highly ordered structure. Thermal fluctuations can alter 

lattice distance and symmetry in periodic bicontinuous 

structures. As the temperature rises periodicity and 

symmetry can be destroyed by the increasing deviations 

from its original shape of the partitioning surface.

In microemulsions this is likely to cause fluctuations 

in connectivity as necks are pinched off and rewelded.

As the temperature rises this can gradually destroy the 

continuity of one of the sub volumes until it becomes a 

dispersion of discrete droplets. This type of behaviour 

may explain how microemulsions can continuously evolve 

into water-continuous solutions of oil-swollen micelles 

on addition of water or oil-continuous solutions of 

water swollen micelles on the addition of oil (51). This 

continuous evolution from water-continuous to oil- 

continuous is shown clearly in Fig. 1.7.

Lalanne et al (52) and Larche et al (53) also des­

cribe bicontinuous structures and continuous evolution 

from oil-continuous to water continuous systems. These 

are discussed in sections 1.5-2, Viscosity and 1.5-5*

Self-diffusion.
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1.4.8 CRITICAL PHENONEMA AND METASTABILITY

Skoulios and ^uillon (54) propose that critical 

phenomena may account for the stability of micro­

emulsions in some regions of their occurrence on the 

phase diagram. They consider that tricritical or other 

polycritical points can occur in systems of water, oil 

and emulsifier. In the neighbourhood of such a point 

the state of the system is governed by the competition 

between two order parameters. For microemulsions the 

authors refer to these as micellar ordering and osmotic 

demixing. There are local fluctuations between micellar 

and emulsion structures and if the rate of emulsion 

coalescence is slow and the rate of micelle formation rapid, 

under the influence of these order parameters then 

the system can behave as though it is stable, whilst 

constantly renewing itself. It is possible that this 

dynamic stability may exert an influence over an 

extended region of the phase diagram.

It has been suggested (50,55) that metastable states 

may occur in parts of the rnicroemulsion regions shown 

on phase diagrams, in the vicinity of phase separation 

areas. Such states would be analogous to supercooled 

liquids, where nucleation can take an increasingly long 

time as the critical point is reached.

Rosoff and Giniger (50) have studied systems con­

taining water, sodium dodecyl sulphate and pentanol with
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hexadecane and benzene. In samples containing hexa­

decane it was found that it was possible to mix two 

solutions, giving the required final composition, which 

did not clear on vigorous shaking but only on mild 

sonication. Heating such a "microemulsion" caused 

turbitity but on cooling the system cleared again shovr- 

ing reversibility. They concluded that m etastable 

states were involved since the expected transition did 

not always take place. They suggested that a liquid 

crystalline phase might be involved, producing a 

kinetic barrier to the formation of the W/0 micelles 

which is not overcome by ordinary mixing.

Ahmad, Shinoda and Friberg (56) found certain 

"solutions" which appeared to be microemulsions in the 

sodium dodecyl sulphate pentanol, water, benzene system. 

These "solutions" occurred near the boundary of a 

lamellar liquid crystalline phase. Separation was 

achieved by ultracentrifiguration at 30,000g for lhr.

The bulk birefringence of these "solutions" is not 

mentioned.
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1-5 PHYSICAL PROPERTIES AND PHYSICAL METHODS OF
INVESTIGATION

1.5,1 LIGHT SCATTERING

Microemulsions are normally translucent, scattering 

light in the Tyndall range, appearing bluish by re­

flected light and yellowish when the transmitted light 

is observed. They may also be transparent or turbid 

depending on the precise definition of microemulsion 

which is assumed.

Light scattering depends on:

1. The particle size: as this decreases systems go 

from turbid to translucent to clear.

2. the difference in refractive index of the con­

tinuous and disperse phases

3. the droplet size distribution: the scattering 

by a few large droplets may . mask that due to 

many smaller ones

4. particle shape

Droplet size distribution is not usually important 

in microemulsion systems since these systems are not 

likely to exhibit a high degree of polydispersity.

Where the droplets or aggregates are extremely uniform 

in size, colours other than blue and yellow can be seen 

when the sample is viewed from different angles to the 

incident beam of light (37)• The spectral colours are 

purer for a higher degree of monodispersity.
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Light scattering can be used to determine particle 

size and also to give information about particle shape. 

Ballaro et al (58) used it to show that particles in 

their four component system (using a surfactant plus 

a cosurfactant) were spherical in the microemulsion and 

emulsion regions but rods and possibly lamellar in the 

intervening liquid crystalline regions. The micro­

emulsion droplet size changed on traversing the regions; 

for both types of micro emulsion it increased on 

approaching the liquid crystalline phase.

1 .5.2. VISCOSITY

When dispersed aggregates are other than spherical 

they offer more resistance to flow than when they are 

spherical, so that the viscosity of the system is 

greater. In systems in which microemulsions occur liquid 

crystals often occur also. These exhibit a high 

viscosity; a large increase in viscosity as composition 

or temperature is changed is usually one indication of 

the formation of a liquid crystalline phase. Falco et al 

(59) measured viscosities in the system potassium oleate, 

hexanol, water and hexadecane as a function of the water 

to oil phase volume ratio. They found low viscosity 

W/0 and 0/W microemulsions separated by a high viscosity 

liquid crystalline region. The viscosity of the F/0 

microemulsion measured as a function of increasing water 

content indicated spherical aggregates which then changed 

to cylindrical aggregates as the liquid crystalline phase
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was approached. It would appear from their evidence 

that formation of cylindrical aggregates precedes the 

actual formation of the liquid crystalline phase.

Kumar and Balasubramanian (60) used viscosity 

measurements in their studies of Triton X-100,

alcohol-water-cyclohexane systems (section 1.5.6). They 

found systems of spherical reverse micelles exhibiting 

Newtonian viscosity. For a surfactant: alcohol ratio 

of 4:1 on adding water to the initial reverse micellar 

system they obtained an optically anisotropic phase 

in which there was a considerable rise in the relative 

viscosity as the water content was increased and which 

exhibited thi xotropy. The viscosity increased still 

further on adding more water to obtain macroemulsions.

Lalanne et al (52) studied the viscosity in the 

system sodium dodecyl sulphate, n-butanol, water and 

toluene and considered their results in conjunction with 

ntnr spin-lattice relaxation time (T., ) measurements (Fig.1.8). 

They found evidence for spherical micelles of 0/W and 

also of W/0 ; these regions (£,H) exhibited low vis­

cosity but a high ’’microviscosity” (their interpretation 

of Ij) for the disperse phase and a low viscosity for the 

continuous phase. Between these regions, region I

OH
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Ttlvenc

Fig,l,8*The sodium dodecyl sulphate - n-hutanol -water -toluene 
system with lines of isoviscosity, and the maximum 
viscosities in zones I and L indicated, (from ref, 52)*
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exhibited a low "microviscosity" for both oil and water 

but the highest macroscopic viscosity. They suggested 

that in this region there was a progressive phase in­

version from water continuous to oil-continuous. Their 

suggestion for the structure, admittedly styelised and 

hence "not satisfactory”, was of networks of micelles 

of oil and water overlapping and separated by sur­

factant. Region L close to the surfactant corner of 

the phase diagram showed a high "microviscosity" for 

both oil and water and a high macroscopic viscosity.

They suggested that this was compatible with water in a 

"pseudo oil” consisting mainly of surfactant and co­

surfactant with a small amount of oil.

Region J was intermediate between regions I and L 

in its properties.

1.5-3- ULTRA c e n t r i f u g a t i o n m e a s u r e m e n t s

The ultracentrifuge has been used to investigate 

microemulsions. Smith et al (6l) used it to look at 

samples from the ternary system 2-propanol, water and 

hexane. Microemulsion samples showed some sedimentation 

after ultracentrifugation but returned to homogenity 

on standing. Other samples which were not regarded as 

microemulsions showed no sedimentation. They also found 

some samples which were unstable to the high centrifugal 

forces and classified these are metastable micro­

emulsions •
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Hwan et al (62) used ultracentrifugation to 

investigate phase continuity and drop size in micro­

emulsions containing synthetic petroleum sulphonate 

surfactants, an alcohol cosurfactant, sodium chloride 

brine and an oil.

Dvolaitzky et al (63) used ultracentrifugation in 
conj-.unction with neutron scattering in their studies 

of water in cyclohexane microemulsions produced using 

sodium dodecyl sulphate and 1-pentanol. The volume 

fraction of the dispersed phase was very low (1-4%) 

wThich is much lower than in many microemulsion systems.

1.5.4. HIGH RESOLUTION NMR

High resolution NMR has been used in the investi­

gation of the structure of microemulsion systems. Changes 

in the chemical shifts of the constituent groups of the 

components of the system give information concerning 

the different chemical environments of these groups; 

the bandwidths of the resonances give an indication of 

the mobility of the groups concerned.

Kumar and Balasubramanian (64,65) used ”4l NMR to 

investigate systems formed by adding water to Triton X-1G0 

plus hexanol in cyclohexane. They found that the initial 

addition of water led to the formation of reverse micelles 

with a decrease in the mobility of the ethylene oxide 

chains. At low concentrations most of the water was 

bound to the ethylene oxide groups. This surfactant
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hydration increased as water was added levelling off to 

a value suggesting a limiting ratio of one molecule of 

water bound per two oxyethylene units. This is a much 

lower value than that which has been found in most 

cases for normal micelles (section 1.1.2). As the 

water concentration increased "free" water pools were 

formed indicated by a change in the chemical shift of 

the-OH signal from its initial high value of 5-8 'X to 

the normal bulk water value of around 5 -0 T.

Detergentless microemulsions can be formed from 

hexane, water and 2-propanol; NMR showed that "bulk"

water was present in these systems (66).

Hansen and Mast investigated the system sodium 

dodedyclbenzenes sulphonate, water and xylene using 

NMR. This showed that xylene was solubilized in 

surfactant micelles, initially distributed along the 

surfactant molecules and only above a certain higher con­

centration accumulating in the core of the micelle. Sur­

factant line width variations were attributed to in­

creased mobility of the surfactant chains when xylene 

molecules were distributed between them. The surfactant, 

and xylene chemical shifts showed no discontinuity in 

going from the one-phase solubilized system to the two- 

phase macroemulsion, indicating continuity of the 

molecular environment.

Shah used NMR in studying the system hexadecane,
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potassium oleate and hexanol, Kith added water (6?*

68,69)- He measured chemical shift and band width 

for the water, methylene and methyl protons as a function 

of the ratio of water to oil. As the water content 

was increased there was a transition from a W/0 micro- 

emulsion to a reversed hexagonal liquid crystal phase, 

then to a lamellar liquid crystal phase and then to an 

0/W microemulsion. The chemical shift of the water 

protons changed significantly and by different amounts 

in the two liquid crystalline phases. The bandwidth 

increased in the liquid crystalline phases for all the 

protons measured, though by different amounts due to the 

reduced mobility.

1.5.5- SELF-DIFFUSION

The pulsed field gradient NMR technique for measuring 

self diffusion coefficients is outliined in section 2.2. 

Lindrnan et al (?0) have used this technique and also a 

tracer technique using radioactive labelling, to measure 

self diffusion coefficients in isotropic liquid regions 

of the systems 0E^ -water-hexadecane and sodium 

octylbenzene sulphonate-pentanol-sodium chloride-water- 

decane. In the nonionic surfactant system at high water 

contents they found diffusion coefficients typical of a 

normal micellar solution; in the ionic surfactant system 

normal micelles only appeared to occur to a very limited 

extent at very high water contents. Diffusion coefficients
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typical of reversed micellar solutions were found in 

the nonionic surfactant system at high hexadecane 

contents and in the ionic surfactant system only at 

very high decane contents. Both systems exhibited large 

regions at high coneentrations of both hydrocarbon and 

water where diffusion coefficients indicated bicontinuous 

structures with high self-diffusion coefficients for both 

hydrocarbon and water. No distinct transition from a 

normal to a reversed structure was found.

Larche et al (53) used self-diffusion measurements 

(made by the open-ended capillary tube method with 

radioactive tracers) and conductivity measurements in 

their study of the system sodium p-octylbenzene sulphonate- 

1-pentanol-water (+0.3wt% Nacl) - decane. By maintaining 

a constant alcohol: surfactant ratio (2.1) they worked

in a pseudo-ternary system which exhibited a large iso­

tropic liquid region. At high water content similarly 

low values of surfactant and decane self-diffusion co­

efficients and a high value for the sodium ion self­

diffusion coefficient were in agreement with an O/tf 

microemulsion. At low water content the sodium ion, 

chloride ion, water and surfactant exhibited similarly 

low self-diffusion coefficients (of the order of 

1x10 ^  nT s ^) whilst the decane had a higher self­

diffusion coefficient (8x10  ̂̂  m^s ^) in agreement vrith 

a W/0 microemulsion structure. At intermediate volume 

fractions of water all the diffusion coefficients were
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greater than the surfactant diffusion coefficient which 

remained almost constant; there was a continuous change 

from values appropriate to an 0/W structure to those of 

a W/0 structure. The authors suggest an intermediate 

bicontinuous structure comparing the instantaneous 

structure with that of porous media. The continuous 

variation of the conductivity from low values 

( <0.05 Sm a) in the W/0 region to high values ~1.0 Sm ^) 
in the 0/W region is in agreement with this,

1.5.6 . ELECTRICAL CONDUCTIVITY

Conductivity measurements have been used in the 

investigation of several microemulsion systems, both 

oil-continuous and water-continuous. Such measurements 

can be a convenient way of determining the nature of 

the continuous phase.

Kumar and Balasubramanian (60) measured conductivity 

in the Triton X-100-alcohol-water ̂ clohexane system.

The water was doped with potassium chloride for these 

measurements; the alcohols used were pentanol, hexanol 

and octanol, similar results being obtained for all.

The conductivity was measured for increasing amounts of 

water added to a fixed volume of solution of surfactant 

and alcohol in cyclohexane. For a Triton X-100: alcohol 

ratio of ^:2 the initial low conductivity of about 0.5m Sm 

remained virtually the same until just before phase
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separation occurred to form macroemulsions, when it 

rose steeply. The authors state that there is no ap­

preciable barrier to conduction in the macroemulsions 

■which would be the case if these are 0/W emulsions.

The conductivity changed by a factor of about 100 from

the initial oil-continuous phase to the final macroemulsion.

For the surfactant:alcohol ratio k:l the variation 

of conductivity with added water is more complex (Fig.1.9)• 

The initial low conductivity of about 0.5m Sm  ̂ (as 

before) rose prior to the phase transition to the ani­

sotropic phase. The conductivity then fell, the 

explanation given being that the effect of the increase 

in the medium viscosity outweighs the effect of the 

relatively easy conduction pathways in the lamellar/ 

cylindrical micellar configuration; however, the viscosity 

of the medium is not necessarily related to the con­

ductivity. Beyond the anisotropic region macro­

emulsions were again formed and the conductivity rose as 

in the system with the surfactant;alcohol ratio of 3 :2.

Smith et al (6l) measured conductivity in their 

investigation of the system 2-propanol-water-hexane, 

which they found to exhibit an oil-continuous micro­

emulsion region. They proposed structures for regions 

covering most of the phase diagram on the basis of con­

ductivity and ultracentrifugation data. The conductivity 

increased steadily through the microemulsion region as 

the propanol content was increased; this behaviour was 
ascribed to an increasing amount of water in the continuous
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Fig. 1.9* Variation of the conductivity of the micellar dispersion 

as a function of aqueous KC1 uptake into a 20% 
solution of Triton X-100 - alcohol (ratio 4:1 ) 
in cyclohexane. Single arrow indicates transition to 
anisotropic phase and double arrow indicates region.
of phase separation pentanol; x*** hexanol;
ooeo octanol. (from ref.60.)

So

Fig. 1.10.' The pseudo three component phase map of Tween 60- 
n-pentanol -water -hexadecane. The arrows denote 
compositions employed for the conductivity measurements, 
(from ref.71)*
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phase (rather than in the reverse micelles). The 

conductivities measured in this region ranged from 

about 10 MSm  ̂ to about 200 ydSm  ̂ according to the 

water content and propanol content of the sample.

Mackay and Agarwal (?) have measured the con­

duct ivity of a number of 0/W microemulsions containing 

added electrolyte in the systems surfactant-n-pentanol- 

water-oil where the oil was hexadecane or Nujol and the 

nonionic surfactants were various Tweens. They studied 

the Tween 60-n-pentanol-water-hexadecane system in 

more detail. They replaced the water with 0.1M sodium 

chloride solution fir the conductivity measurements.

For a constant emulsifier:oil ratio (see Fig. 1.10) 

they found that the equivalent conductance (A ) obeyed 

the relation

A  = A "  (1 - a  0)n  - -  1 . 1comp

where 0 is the disperse phase volume estimatedcomp
from the composition and density of the microemulsion

and ’a 1 and 'n' are parameters to be found for the

system. The systems obeyed the relation well except

at the highest values of / . The clear region extendscorap *
to the emulsifier-oil axis so it is suggested that these 

deviations from the linearity of the above expression 

are a result of a transition from the 0/W micellar 

solution (i.e. the microemulsion) to some other isotropic 

phase. The maximum values of were 0.80 and 0.85;o rnp
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the maximum disperse phase volume for monodisperse 

hard spheres in 0.74 so that it is not surprising 

if the microemulsion breaks down at these phase volumes.

The ’a 1 values were generally found to be about

1.2. Mackay and Agarwal discussed the meaning of the

'a* term and thought the most likely possibility to be

that the effective phase volume with respect to con­

ductivity measurements differed from 0 and was incomp
fact larger than 0 so that 0 = a 0 where 0 is° comp comp
the effective phase volume. This could be accounted for 

on the basis that some of the water should be included 

as part of the drop, in the form of water of hydration 

of the ethylene oxide groups. If the bound water/ 

surfactant ratio is constant then constant ’a' values 

result. Calculations of the quantity of water involved 

gave values of 1-2 moles of water per ethylene oxide 

group). The authors suggest that the presence of 

pentanol in the system may account for the constancy 

of the fa ’ value for different Tweens.

The 'n' values were constant at constant emulsifier 

oil ratios but decreased on increasing the oil concen­

trations ranging from about 1.5 to 1.1. A tentative 

explanation of the change in fn f values is given, based 

on the behaviour of the alcohol in the system.
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The results were compared with theoretical 

equations for macroemulsions (the Maxwell and Bruggeman 

equations - chapter 2) and also with the usual be­

haviour of macroemulsions. The conductivity measured 

in the present system was considerably lower than that 

which would be expected if the theoretical equations 

were obeyed or if the system behaved as a macroemulsion. 

Converting the equation 1.1 to the same form as the 

Bruggeman equation (Equation 2.1) gives:

= (1- 0)2,3 - 1.2
m

where K is the conductivity of the emulsion and K the 

conductivity of the continuous phase; 0 is the disperse 

phase volume. The exponent is 2.5 instead of 1.5 as 

in the Bruggeman equation.

No mention is made of the impurities occurring in 

the commercial surfactants used and whether these are 

likely to affect the results in any way.

Roux and Viallard (72) measured conductivity in 

dilute (0.002M) aqueous solutions of nonionic sur­

factants (polyoxyethylene nonylphenyl ethers of varying 

oxyethylene chain length), to wThich methyl benzoate 

was added. At about 0.5% (v/v) ester transparent 

solutions were obtained which they described as a micro- 

emulsions. Sedimentation velocity measurements indicated 

the presence of large aggregates. The location of the
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ester in the aggregates is not discussed. These micro­
emulsions are much more dilute than man3r systems so 
described.

Conductivity was related to changes in viscosity in 
the micellar solutions and the emulsions (occurring at 
lower ester concentration) and the microemulsions.

Shah et al have measured electrical resistance 
(reciprocal of conductance) in the same systems for which 
they recorded the NMR (67»68,69) (Section 1.5*^-)- 
Since their system contained an ionic surfactant, doping 
with a salt was not necessary. Electrical resistance 
was measured as water was added to the mixture of hexa- 
decane, hexanol and potassium oleate. The resistance 
dropped initially as water was added to the system.
(Fig l.ll). They accounted for this on the basis of 
"molecular solubilization" of water in the hexadecane - 
hexanol-potassium oleate mixture, NMR supporting this 
interpretation. The resistance then remained fairly 

constant throughout the W/0 microemulsion region, in which 
the interface between the oil and water is the main 
barrier controlling ion transport between the electrodes.

The resistance then dropped abruptly as the system 
became birefringent on the formation of a liquid 
crystalline region. The sharp decrease in resistance 
within the birefringent region appears to coincide with 
the change from a reversed hexagonal to a lamellar phase
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Fig, 1.11. Variation in electrical resistance, optical clarity 
and. birefringence of a system consisting of 1cm of 
hexadecane, 0«4cm? ofhexanol and 0*2g of potassium 
oleate as water is added, (from ref.69).
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which the authors discuss in relation to their NMR data.
The resistance then increases again; this is at­
tributed to the disruption of lamellar structures. It 
then decreases as the 0/W microemulsion is formed.
Throughout this system the resistance changes by a 

kfactor of 10 ; the difference between the resistance 
of the W/0 and the 0/W mi croemulsions is a factor of; 
between 10^ and 10^.

1.5.7. PERCOLATION
The conductivity variation with composition, which 

has been observed in some microemulsions, is of a form 
typical of a percolation mechanism as described in 
chapter 2.

Lagues et al (73) have studied microemulsions con­
sisting of sodium dodecylsulphate, 1-pentanol, water 
and cyclohexane, using neutron scattering and con­
ductivity measurements. They titrated each mixture 
with alcohol. A maximum in the value of the conductivity 
was observed at the clearing point and was considered 
as the conductivity of the microemulsion. The com­
positions of -the samples are not stated. A plot of con­
ductivity versus the volume fraction of water (0^) in 
the microemulsion shows a dramatic increase in conductivity 
(twTo orders of magnitude) between 0^ = 0.06 and 0^ = 0 .09. 
The results are found to agree satisfactorily with per­
colation theory: in the expression:-

K«V = % (0W - ^
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t is found to be 1.55 + 0,1, in agreement with the 

theoretical value of 1.6; 0 is found to be O.O78
which is the water volume fraction at the threshold.

This yields a value of 0.l4 for the total volume fraction 
occupied by the droplets (this includes the soap and 
some alcohol). This agrees with the theoretical threshold 
value of 0.15 obtained for site percolation on various 
lattices (74). Models more appropriate to real systems 
yield higher threshold values (0.25, 0.29) but these 
are again based on static models (appropriate to solids).
A "stirred percolation" model has been pr esented(75) which 
is applicable to conducting droplets undergoing Brownian 
motion in an insulating medium but no threshold value is 
quot ed•

Below the threshold the conductivity is not zero and 
the authors compare it with theory for non-zero con­
ductivity in this region; they account for the discrepancy 
on the basis of the mobility of the droplets - the 
theory is valid for fixed conducting elements. They 
suggest that the droplets are charged to the extent of 
one ion for 600 molecules of soap in the interfacial film.

. The neutron scattering results indicate a structure 
modification at a water content which coincides with the 
break in the conductivity curve at 0^ = 0.33 (Fig.1.12). 
The volume of the droplets agrees with the random packing
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12. Variation of conductivity with water concentration in a 
W/0 microemulsion composed of sodium dodecyl 
sulphate, 1-pentanol, water and cyclohexane.
(from. ref.73),
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13. Variation of conductivity with disperse water 
volume fraction in a W/0 microemulsion composed 
of potassium oleate, butanol, water and toluene, 
(from ref. 76),
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volume for hard spheres (0.637). The authors compare 
the conductivity with that of a sodium chloride solution 
and finding it to be low, propose that conduction in 
the interfacial films is the principal mechanism 
between the threshold and 0̂ >T = 0.33* Neutron scattering 
results show that the aqueous cores of the droplets 
are not connected in this range. They suggest that the 
increase of conductivity above 0^r=O.33 could arise from 
progressive connection of the aqueous phase, related to 
the structural inversion which is observed by neutron 
scattering.

Lagourette et al (76) measured changes in conductivity 
writh increasing water content, in oil-continuous micro­
emulsions consisting of water, toluene, potassium 
oleate and butanol which were said to be characteristic 
of percolative conduction. The potassium oleate:butanol 
ratio was kept constant at 0.5. Measurements were made 
for several series of samples in each of which the mass 
fraction of emulsifier (potassium oleate plus butanol) 
was kept constant as the water fraction was increased. 
Plots of conductivity versus the phase volume of water 
(0ir) showed a sharp increase as 0TT passed a critical value.

\\ U

The percolation threshold 0 was determined in terms of x c
1 6water volume fraction by plotting K * versus 0^

(K(0^r) (0\$~0C)  ̂) • The value of O.I76 obtained was
somewhat different to that of Lagues et al; however, a
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comparison of this value with an appropriate theoretical 

threshold value of G .29 yielded the ratio of the disperse 

globule exeternal radius to the water core radius of l.l8 , 

which is in excellent agreement with that obtained by 

Lagues et al by neutron scattering.

The plot of K versus 0^ (Fig* 1.13) is quite

different from that of Lagues et al (Fig. 1.12), the

conductivity continuing to increase steeply instead of

increasing more gradually after the rapid increase; the

ranges of 0^ are similar extending to values just over
1 60.4. K ( & r) =* (0,̂ -0̂ ) * ̂ is applicable in the vicinity of

0^, then for higher values of 0, the relation

| (0 - })
1

where 0 is the volume fraction of the disperse phase 

(water cores plus shells of combined surface active 

agents) and is the conductivity of the disperse phase 

itself, becomes applicable. For values of 0> 0.4 there 

is excellent agreement with theory both with respect to 

slope and intercept.

For values of 0,r below the threshold value the con­

ductivity is not zero as it would be were a rigorous 

percolative conduction exhibited by the system; it is 

suggested that electrophoretic movement of the droplets 

could account for this.
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Lagourette et al also regard the conduction 

mechanism as interfacial on the basis of the fact that 

for a fixed mass fraction of combined surface active 

agents K increases with 0 whilst K-, remains constant 

and that increases' in proportion to the amount of 

surfactant and that values are considerably lower 

(e.g. about -̂) than those of an aqueous solution con­

taining the same molar fraction of solubilized KC1.

They suggest that the droplet interlinking and 

clustering process suggested by the percolative behaviour 

of the microemulsion conductivity might precede phase 

inversion from W/0 to 0/W via a bicontinuous structure.

Lagues and Sauterey (75) also studied W/0 micro­

emulsions consisting of sodium dodecyl sulphate, 1- 

jjentanol, water and. cyclohexane. They studied systems 

with different water: soap ratios and also with added 

sodium chloride. Their conductivity curves as a function 

of the water content of the system are of a similar 

form to that of Lagues et al (above). At low water 

content (0 , 0.05) they explain the conductivity on the

basis of the motion of charged droplets. They estimate
*

the charge to be equivalent to one ion per molecules

of soap but do not explain its origin.

At higher concentrations of the disperse phase 

they use a "stirred" percolation model to account for 

the variation in conductivity with water content. This 

makes allowance for the Brownian motion of droplets in
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microemulsion systems which is not present in the 

static systems for which percolation models have 

previously been developed. They develop an expression 

which appears to be:

S ^ c - V 1 '2

For three of their microemulsions the exponent is 

found to be 1.4, 1.3 and 1 .1 ; it is not determined for

the other microemulsion investigated.

This "stirred" percolation model is not used to 

predict a threshold value. These values were determined 

experimentally and varied from 0.10 to 0.26 for the 

"hard-sphere" volume of the droplets. The authors 

suggest that the variations may be due to variations in 

the interactions of the droplets in the different 

microemulsion systems, polydispersity and nonsphericity.

For values of 0  ̂ the expression used was the 

same as that used by Lagues et al (73) and Lagourette 

et al (76 ) :
Ko< (0W - 0c)t

where theory gives t=1.6. Values of 1.6, 1.6, 1.4 and 

1.8 were obtained for the exponent.

These authors also determined an inversion (from 

W/0 to 0/W microemulsions) concentration of droplets 

of around 0.60 "hard-sphere" droplet volume, in agree­

ment with the previous work (73).
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1.6 A SUMMARY OF MICROEMULSIONS AND THE PROGRAMME OF WORK

1.6.1 SUMMARY

The term microemulsion covers a wide range of systems, 

even if solubilized systems containing relatively small 

amounts of oil (in water) or wTater (in oil) (say < 5%) 
are excluded. Such a dividing line is entirely arbitrary 

in the case of water continuous systems since there is a 

continuous evolution from surfactant micelles to sur­

factant micelles containing solubilized oil to sur­

factant "micelles" containing larger amounts of solubilized 

oil which can be described as microemulsion droplets 

(Section 1.4.2). In the case of oil-continuous systems 

there may be a dividing line below which all the water 

is bound to the hydrophilic groups of the surfactant 

and above which "free" water pools exist. Within these 

limits the term microemulsion covers systems whose 

structures are:-

1. just what the name implies (i.e. micro-droplets of 

oil (or water) surrounded by a surfactant film and 

dispersed in water (or oil)

2. bicontinuous (though the exact structures of such 

phase remain to be determined) (Section 1.4.?) or

3. as yet undetermined.

The currently held view* is that microemulsion 

systems are thermodynamically stable. Metastable states 

may be confused with microemulsions in some systems 

(section 1.4.8).
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Various theories have been proposed to account for 

the occurrence and stability of microemulsions. These 

are usually based on micro emulsion structures. 

Solubilized systems and the microemulsions stemming 

from them at slightly higher concentrations of the dis­

perse phase are generally regarded as extensions of 

micellar systems. There does not appeal' to be any one 

generally accepted theory for the occurrence and stability 

of microemulsions; indeed a complex theory would be 

required to cover the whole range of microemulsions.

A variety of methods of investigation of micro­

emulsion structures has been used. Of particular interest 

here are conductivity and self-diffusion measurements. 

Conductivity measurements are relatively easy to make 

but their interpretation can be difficult (sections

1.5.6 and 1.5»7)« Self-diffusion measurements have only 

recently been used in two microemulsion systems (section 

1.5*5 )• Other methods include light-scattering, NMR 

and viscosity measurements.

Microemulsions are important commercially in many 

fields (Section 1.3»2). Microemulsions formed with 

hydrocarbons are important in tertiary oil recovery.

Animal and vegetable fats and oils are composed mainly of 

triglycerides; thus, these are important in industrial 

processes using these raw materials in food processing 

and also in the domestic wash process, where they form part 

of the soil. Triglycerides are not readily solubilized
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(section 1.3 »̂ t*̂ ) and have not been observed to form 

mi cro emulsions.

i.6.2 THE PROPOSED PROGRAMME OF WORK

Nonionic surfactants were chosen for use since the 

alternative ionic surfactants also require a cosurfactant 

in order to form microemulsions and this introduces 

another variable. was known to form extensive

microemulsion regions with hydrocarbons (29) so this 

was chosen as the nonionic surfactant. Brij JO was 

a convenient commercial surfactant of this type with a 

nominal average oxyethylene chain length of four units. 

This had the advantage of being available in larger 

quantity than the pure surfactant, and so was useful for 

preliminary measurements as well as being of interest for 

the purposes of comparison with the pure material.

It was decided to investigate the binary surfactant- 

water phase diagrams prior to the microemulsion systems, 

in the hope that some knowledge of the structures 

occurring in the isotropic liquid regions of the binary 

systems might help in the elucidation of the structures 

occurring in the ternary systems. The Cn r,E^-Hr. 0 phase 

diagram had not previously been determined. The C1oE^-Hr,0 

phase diagram was available in the literature (77); an 

isotropic liquid region extends from 0-100% C^r,Eg. In 

the C^oE^-Ho0 system the isotropic liquid regions found 

were not continuous from 0-100% Cj9E^ so it was decided to 

investigate the C^E^-H^O system also.
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Conductivity and self-diffusion were the methods 

used to study the isotropic liquid regions. Conductivity 

measurements can be a convenient way of distinguishing 

between water-continuous and oil-continuous systems; 

the latter were expected to occur in the ternary systems 

to be investigated but also possibly in the binary 

systems if all the water was enclosed within inverted 

surfactant micelles with the surfactant hydrocarbon chains 

forming the continuum. It was hoped that self-diffusion 

measurements would distinguish between micellar and 

continuous phases and so give further information con­

cerning the structures of the systems.

Hexane was chosen as the hydrocarbon for the first 

ternary system, Brij 30-Hr,0-hexane to be studied; 

a short chain aliphatic paraffin was required, as a 

simple third component prior to investigations of more 

complex third components such as triglycerides. Short 

chain aliphatic paraffins were known to form micro­

emulsions with C^r;E^. Hexane has a freezing point below 

0°C so that problems due to crystallisation of the oil 

would not be encountered. However, the high volatility 

of hexane (b.p. 69°C) was a disadvantage particularly 

when studying the system at higher temperatures (r*50°C) 

so heptane (b.p. 98°C) was used for studies with the 

pure surfactant, Ĉ ,,Ê  . Phase diagrams were determined 

to locate the isotropic liquid regions which were to be 

studied by conductivity measurements.
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The data available in the literature (29) showed 

a different phase behaviour for hexane and hexadecane 

in the 0E^-HnO-oil system. Partial phase diagrams

were determined to confirm this and then conductivity 

measurements were made in the isotropic liquid regions. 

It was decided to make limited studies of the equivalent 

decane and octadecane systems.

Studies were to be made of the ternary systems for 

C^rEj. and Brij with different triglycerides as the 

third component. Triacetin was the first member of 

this series, for which phase diagrams were to be de­

termined. An attempt was to be made to elucidate the 

reasons for the lack of microemulsion formation by 

triglyc erides.
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2. THEORY

2.1 CONDUCTIVITY THEORY

2.1.1 INTRODUCTION

The systems studied consisted of three components - 

water, pure nonionic surfactant or commercial nonionic 

surfactant and an aliphatic hydrocarbon. The water was 

doped with sodium chloride. Water itself is a relatively
—4 —6 —1poor conductor ( H = 10 — 10 Sm ) but the addition of

ions in the form of sodium chloride produces a highly 

conducting solution (H = 0.1 Sm  ̂for 0.01M NaCl solution). 
It is not appropriate here to discuss the theory of 

electrolytic conductance applicable to such a solution; 

this is reviewed by Fuoss (?8). The pure nonionic sur-
—  7factant is also a poor conductor (H - 10 Sm ). The 

aliphatic hydrocarbon is an insulator ( H = 10 ^  Sm  ̂

for hexane (79))•

2.1.2 CONDUCTIVITY OF EMULSIONS

Various theoretical equations have been developed 

expressing the conductivity of an emulsion in terms of 

the conductivity of its constituents and the phase 

volumes. For an 0/W emulsion the conductivity of the oil 

is so low, compared to that of the water, that it can be 

neglected. According to Mackay and Agarwal (71) 

polydisperse 0/W emulsions are best described by the 

Bruggeman equation:

K_ = (1 - 0)3/>2 2.1
Km

whereKand K are the specific conductivities of the 1 m
emulsion and the continuous phase, respectively, and
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0 is the phase volume of the disperse phase. For 
monodisperse systems the data lie between the Bruggeman 
and the Maxwell equations:

K 2(1 - 0) 2.2
K m  2 + 0

The analogous equation to equation 2.1, for 17/0 
emulsions, where the conductivity of the oil is very 
much less than that of the aqueous phase, is:

H I
Hm (1-0)3

where the symbols have the same meaning as above with 
regard to continuous phase and disperse phase. (80).

These equations were developed for emulsion systems 
where the disperse phase consists of spherical droplets 
and any surfactant forming an interfacial film is 
neglected. De la Rue and Tobias (8l) developed an 
empirical formula from the Bruggeman equation:

Ĥ
 = (l - 0)n z.k
m

where n is chosen to fit the data. For suspensions 
of spherical glass beads, irregular sand particles and 
polystyrene cylinders in electrolyte solutions they 
found values of n close to 1.5 as in the Bruggeman 
equation.

A parallel set of equations exists for the di­
electric constants of emulsions. Hanai (80) has re-
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viewed the work which has been done to compare the 

measured dielectric constants and conductivities with 

the theoretical equations. Several of these systems are 

so unlike oil and water emulsions that (e.g. dog blood 

suspensions and bakelite hemispheres in tap water) that 

any agreement with the theoretical equations is irrelevant 

to the present work. Hanai et al measured the con­

ductivities of emulsions of nujol-carbon tetrachloride 

mixtures in 0.05N aqueous potassium chloride solutions 

prepared with the nonionic surfactants, Span 20,

Tween 20 and polyoxyethylene glycol cetylether. Good 

agreement with the Bruggeman equation for dielectric 

constant at high frequency, was found for W/0 emulsions 

consisting of water in a nujol-carbon tetrachloride 

mixture using the surfactants Arlacel 83» Span 20 and 

Tween 60, and for water in kerosene, transformer oil 

and terpene using surfactants such as polyoxyethylene 

oleates, polyoxyethylene nonyl phenyl ethers and zinc 

stearate•

Chapman (82) measured dielectric constants for 
W/0 emulsions consisting of water in paraffin oil using 

magnesium stearate as emulsifier and found good agree­

ment with the Bruggeman equation.

Clausse et al (83) measured the conductivity (and 

also dielectric constants) of "microemulsionsn of 

benzene in water produced using the nonionic emulsifiers 

Tween 20 and Span 20. Although described as microemulsions
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these systems were raetastable emulsions (creaming after 
three or four days) with a very small droplet size. The 
conductivity results were in agreement with the 
Bruggeman equation.

The system most akin to those studied in the present 
work is that of Mackay and Agarwal (section 1.5-6).

2.1.3. PERCOLATION
Percolation is a conduction phenomenon which may 

be relevant to some microemulsions. A hypothetical 
static system, consisting of an insulator (e.g. a 
hydrocarbon oil) and a conductor (e.g. water containing 
dissolved ions) dispersed in it, will be considered first. 
When there are only a few water droplets dispersed in 
the oil there will be no connection between them and 
the medium will still behave as an insulator. As the 
number of water droplets is increased (by adding more 
water), a point will come when some start to touch each 
other and as the number is increased further sufficient 
droplets will touch each other for a conduction channel 
to be formed through the system. On further increase 
in the number of droplets the number of conduction 
channels will increase rapidly. The result of this is 
that conduction will not occur below a certain droplet 
concentration; when this threshold concentration is 
reached conduction •will occur and then there will be a 
rapid increase in conduction as the droplet concentration
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is increased further. In real systems of two liquids 
like that above, the water droplets will not be static 
so that conduction channels will be established through 
them by means of their collisions, at a lower droplet 
concentration than in the static system.

Vari°us models have been used in order to derive 
theoretical equations for percolation (?^)« A model 
in which the conducting medium consists of identical 
spheres, permitted to overlap with centres distributed 
at random, gives a threshold volume fraction for the 
conducting medium, of 0.29. Other models used for 
deriving the threshold volume fraction are less appropriate 
to microemulsions. Derivation of the behaviour of the 
conductivity near the threshold has proved more difficult. 
Kirkpatrick (7^) has derived an expression

ft (n) ^  k (n - n )1,6 2.3c

where K depends on the model chosen and n refers to
the number of sites in the model and n the number atc
the threshold. He suggests that this should be accurate 
to about 20/6 near the threshold. For a\microemulsion 
this would be expressed as:

K (0 )« (0 - 0 J1*6 2.6

wh er e 0C is the threshold volume fraction.
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At higher values of 0 ( 0.4) the following equation

is applicable

if - 2  (* - A) 2 7ft, 2 ^  3

where n is the conductivity of the system, K , the

conductivity of the conducting constituent. (76, 84).

The equation is of the form K (0) (0 - 0 ) so that 0c c
appears to be ~  but this is an overestimate. Equations

2.6 and 2.7 would suggest that the Bruggeman equation (2.1) 

for oil-continuous emulsions is only applicable to 

emulsions of low (less than about ~) disperse phase 

volume. This assumes that the only barrier to perco­

lation is too small a disperse phase volume.

It would appear that if the conductivity of an oil 

continuous microemulsion system can be described by these 

percolation equations then the microemulsion is ex­

hibiting percolation. However, if the equations do not 

fit although the general form appears to be that of 

percolative conduction (sharp rise in conductivity after 

a threshold value of 0, is reached), then percolation 

may still be a likely explanation of the results.
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2.2 SELF-DIFFUSION MEASUREMENTS 
2.2•1 INTRODUCTION

Self-diffusion may be studied directly by the 
NMR spin-echo technique (section 2.2,2)(85). This 
method of measurement detects diffusion occurring over 
a time period between a few’ milliseconds and a few 
seconds in most of the systems to wThich it can be applied. 
The distances traversed in these times are comparable 
to the dimensions of colloidal structures. Hence, the 
observed diffusion wTill depend whether colloidal 
structures restrict the diffusional motion. The effect 
will be most pronounced when the distance diffused is 
of the same order of magnitude as the dimensions of the 
restricting structure; the diffusion measured will depend 
on the time during which diffusion is observed.

The spin-echo method has been used to investigate 
self-diffusion in a wide variety of systems e.g. yeast 
cells, vermiculite crystals, liquid-liquid emulsions (85) 
and surfactant liquid crystals (both lamellar and cubic)
(86,87).

Although is the nucleus often used in these ex-
2 7 * 19p>eriments, other nuclei can be used e.g. H, F.

Where more than one diffusing species contains the
same nucleus, separate diffusion coefficients can be
obtained (without having to make a substitution such as 
2 1H for H ) if they are of sufficiently different 
magnitude.
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2.2.2 THE N3S1R MAGNETIC-FIELD-GRADIENT. SPIN-ECHO EXPERIMENT

The sample is placed in a magnetic field which is as 

near to homogeneous as possible. The net magnetisation,

M, of the ensemble of nuclear spins, is parallel to this 

static field, H • Application of a small rotating field, 

at the resonance frequency of the nuclear spins of interest, 

in the form of a radiofrequency pulse, tips the magneti­

sation vector M, away from the preferred direction parallel

to H , and it then precesses about H at the Larinor o ’ o
frequency until components perpendicular to H decay by 

relaxation or other means. It is convenient at this 

point to consider the rotating frame in which M is static.

By use of a radiofrequency pulse of appropriate magnitude 

and duration, it is possible to tip M through 90° so 

that it is perpendicular to H (Fig. 2.1). After the 

pulse the magnetisation, M, returns to the preferred 

direction, parallel to , at a rate determined by the 

relaxation processes and the static field inhomogeneity. 

Components of M "fan out" in the xy plane (due to 

slightly different precession rates) reducing the net 

component of M in this plane.

Since M is in fact precessing about Hq , the com­

ponent of M perpendicular to Ii can produce a signal in 

an appropriately placed coil. This signal decays as the 

component of M in the xy plane decays. This signal is 

known as the "free induction decay."

If a pulse of appropriate duration and magnitude to 

cause reversal of the spins (l80°pulse) is now applied the
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Fig.2*1. The nmr spin-echo experiment.

Fig.2.2. Pulse sequence used in self-diffusion measurements
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components of M in the xy plane will gradually refocus 
(Fig. 2.1). They will then fan out again as before.
This results in an increase in the signal up to a maxi­
mum and then a decrease in the signal as before (in fact 
two free induction decay signals back to back); this
signal is known as a uspin-echo". If the l80° pulse is 
at a time ̂  after the 90° pulse, then refocussing is 
complete at 2 T  and the spin-echo occurs at 2 T . The 
movement of molecules to slightly different values of H 
(possible because of inhomogeneities in the field) 
produces some irreversible defocussing of components of M 
so that exact refocussing does not occur and the echo is 
therefore a smaller signal than the first free induction 
decay after the 90° pulse; the longer T  the smaller the 
echo.

A pulsed magnetic field gradient is applied in the 
experiment to measure self-diffusion. A field gradient 
pulse is applied after the 90° pulse (Fig. 2.2). This 
causes a loss of phase coherence as different parts of 
the sample are exposed to different magnetic fields; 
thus the spin-echo is reduced in intensity (in the ex­
periment its height on the oscilloscope screen is reduced 
to zero. A second field gradient pulse is applied after 
the 180° pulse which is equal (in magnitude and duration) 
and opposite to the first pulse; this counteracts the 
effects of the first pulse, restoring the echo to its 
full height, provided there has been no movement of spins
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within the sample. If diffusion is occurring the spins 

move between the times of application of the two pulses 

and so they do not experience an equal and opposite field 

when the second magnetic field gradient pulse is applied. 

Thus the effect of the first pulse is not completely 

counteracted, resulting in incomplete refocussing of the 

components of M and a smaller echo. The decrease in 

the echo size will depend on how much diffusion has 

occurred betveen the times of application of the magnetic 

field gradient pulses and on the magnitude of the field 

gradient pulses used.

The relationship between the loss of echo height 

and the magnetic field gradient pulses applied is given 

by the following equations:

~  = - D. L 2.8ho

where h is the echo height and hQ the echo height in 

the absence of field gradient pulses.

L  - v 2 / 2M - / )3 2.9

where I> is a constant, the gyromagnetic ratio of the 

nucleus concerned (*̂ H in this experiment), £  the duration 

of the field gradient pulses,^ the time between them 

and Grt their strength.

Q t V 2.10
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where V is the voltage used in the production of the 

pulses•

The echo height is observed as Ĝ_ is varied.

For samples with one species containing protons all of 

which diffuse at the same rate, a plot of In ~
o2against is a straight line from the gradient of wThich 

D can be calculated if the constants are known. Water 

is used for calibration since its diffusion coefficient 

is known; this is much easier than determining Gx 

itself. In order that a reasonable rate of decrease

in In h is obtained over a convenient range of G4 , 

^  and ̂  are altered according to the sample, larger 

values being used for samples with slower rates of self­

diffusion.

If the sample contains a number of species i, with 

self-diffusion coefficients , then the echo height is 

given by equation 2.11.

5 i -LD.h = . h . e i o n tg l 10 2.11

where h. is the contribution to h of species i.10 o x

For a system where two diffusion coefficients 

are observed (such as the surfactant - H00 systems) 

the graph obtained is not linear (Fig. 2.3). Where one 

component diffuses much faster than the other (water 

diffuses much faster than surfactant) at high values of G^
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Fig. 2.3. Example of graph obtained when measuring self-diffusion 
coefficients in surfactant-HgO samples.
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the contribution of the fast-moving component to the 
echo height measured is negligible. In the present 
case surfactant - Do0 samples give a straight line 
(using the nucleus) so that it is possible to 
extrapolate the straight line obtained at high values 
of G ,, for surfactant Ho0 samples, back to the h-axis.

L>

If log-linear graph paper is used this line can
be subtracted from the original curve to give the

2contributions to h, which are linear with V . The 
self-diffusion coefficient of the water in the surfactant 
system can be calculated from this second line. In cases 
where the graph is inadequate at high values of G^ it is 
possible to use the surfactant self-diffusion coefficient 
determined for the equivalent surfactant - sample
and draw the line such that when it is subtracted from 
the curve a straight line is obtained for the water in 
the sample. The large difference between the self­
diffusion coefficients of water and surfactant means that 
accurate values cannot usually be obtained for both from 
the same set of measurements. When obtaining values for 
water, the gradient of the surfactant part of the graph 
is usually close to unity and consequently there is a 
large error in it. Nevertheless, because it is so much 
smaller than the gradient of the water line, it is quite 
adequate for subtraction from the original curve, to obtain 
the water line.
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2.3 THE PHASE RULE

The Gibbs phase rule provides a general relationship 
between the degrees of freedom of f , the number of 
phases,p, and the number of components, c:

f = c - p + 2 2.12

The number of degrees of freedom, f, is equal to the 
number of intensive variables required to describe the 
system, minus the number that cannot be independnetly 
varied.

It is convenient to study many systems at atmospheric 
pressure and to regard this pressure as constant (the 
variations occurring having little effect where vapour 
phases are not involved). This leaves temperature and 
compositions as the intensive variables.

For a two-component system the concentration of 
only one component is required in order to specify the 
composition of the system. Thus there are two degrees 
of freedom (at constant pressure) and the system can be 
described by a two-dimensional diagram (Fig. 2.4). The 
maximum number of phases present in a given area of the 
diagram is two:

p = c + 2 - f 
= 2 + 2 - 2

Single phase regions can also exist. It is possible for 
three-phase regions to exist but only along a line in 
the diagram, temperature and composition no longer being



Fig.2*4* Phase diagram for a 2-component system (hypothetical).
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Fig.2.5. Phase diagram for a 3-component system (hypothetical).

7&



2.3 Cont' d. .

independent so that there is only one degree of freedom. 

AB in Fig. 2.4 is such a line; liquid, liquid crystal 

and solid are in equilibrium at compositions and 

temperatures specified by this line.

The proportions of the two separate phases at a 

point in the two phase region can be deduced from the 

tie line - this line links the two single phase regions 

at constant temperature (Fig. 2.4). The proportions of 

the two phases are in inverse ratio to the distance 

of the point (e.g. X) from the edge of the single phase 

regions (measuring along the tie line).

For a three-comp°nent system at constant pressure 

there are three degrees of freedom: the concentrations

of two of the comx3onents and the temperature are required 

to specify a point in the system. This results in a

such systems are frequently drawn at constant temperature, 

to be stacked on a vertical temperature axis. The 

composition diagrams at constant temperature are tri­

angular (Fig. 2.3); each corner represents a composition 

of 100% of a particular component; each side represents 

compositions of binary mixtures. A line drawn parallel 

to the surfactant water axis (line AB for example) represents

At X:

proportion of isotropic liquid of composition y
proportion of water

three-dimensional phase diagram. Phase diagrams for
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a constant oil content.

In such systems at constant pressure and temperature 

one-, two- and three-phase regions occur, over areas of 

the phase-diagram. In theory four phases can be present 

at compositions specified by a line in the phase 

diagram:
f = 1

p = c + 2 - f 
= 3 + 2 - 1

The three-phase regions are triangular in shape, the 

corners being points on the phase boundaries of single 

phase regions (Fig. 2.5)- The relative proportions of 

the three phases are in inverse ratio to the distance of 

the point under consideration, from the corners of the 

triangle.

Where two-phases are in equilibrium tie-lines 

between the two single-phase regions have to be determined 

experimentally - they are not parallel to the composition 

axis as in the binary system. As before the proportions 

of the components are in inverse ratio to the distances 

of the point from the single-phases measured along the 

ti e-line.
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3. EXPERIMENTAL
3.1 MATERIALS

The nonionic surfactants used were the commercially 
available "Brij 30" (Honeywill-Atlas Ltd.), which is a 
mixture of polyoxyethylene dodecyl ethers with an average 
oxyethylene chainlength of four units, and pure tetra- 
oxyethylene dodecyl ether (Ĉ , 2^4) (Nikkol, Japan) and pure 
hexaoxyethylene dodecyl ether ^ 22^6  ̂ (Nikkol,Japan); 
all were used as received. The tetraethylene glycol (E^) 
(Aldrich Chemical Co. Limited) was used as received. 
Distilled deionised water was used. The following hydro­
carbons were used as received: n-hexane, spectrographic 
grade (Fisons Ltd.); n-heptane, laboratory reagent grade 
(99»5%» BDH Chemicals Ltd.); n-decane,laboratory reagent 
grade (99»5%i BDH Chemicals Ltd.); n-hexadecane, puriss 
grade (99% Koch Light); n-octadecane, laboratory reagent 
grade (99% BDH Chemicals Ltd.). The triacetin was 
approximately 99% (Sigma Chemical Co.). The dekalin was 
a cis/trans mixture of laboratory reagent grade (BDH 
Chemicals Ltd.). Sodium chloride and potassium chloride 
were Analar grade.

3.2 APPARATUS
The polarising microscope used was a Reichert instru­

ment with heating and cooling stages.

Conductance was measured with a Wayne Kerr Universal 
Bridge, model number B224, operating at 1592 Hz.
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The self-diffusion coefficient measurements were made 

using a Bruker-Physik pulsed mnr spectrometer (B-KR 322s) 
operating at 60 MHz, with the Bruker-Physik field gradient 
unit accessory (B-KR-300 Zl8).

High resolution nmr measurements were made at 60MHz 
using a JEOL C-60 HL spectrometer with variable temp­
erature facilities.

An MSE High Speed 18 centrifuge with a variable 
temperature facility and a heated centrifuge constructed 
from an MSE Minor centrifuge contained in an air thermo­
stat with a Laboratory Thermal Equipment temperature 
control unit were used in tie line determinations. Poly­
propylene tubes were used in the MSE High Speed 18 centri­
fuge and glass tubes were used in the MSE Minor centri­
fuge.

Viscosity measurements were made using an Ostwald 
viscometer with a time of passage for water at 2f>°C of 75s •

Sodium in Brij was determined using a Perkin Elmer 
AA 360 atomic emission spectrometer.

3.3 THE CONDUCTANCE CELLS
3.3.1 THE COPPER CELL

Preliminary measurements were made using a cell con­
sisting of two 0.8mm thick copper plates set into a piece 
of teflon and secured with a nylon screw and nylon nut 
(Fig. 3-1). The plates were cleaned briefly in concentrated
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3-3.1 Cont'd..
nitric acid before the cell was assembled. The distance
between the plates was fixed at 2.5mm. The cell was
used in stoppered test tubes (stoppered to facilitate the
storage of samples between measurements), 100mm long,
and having an internal diameter of 15mm. A volume of 

3sample of 5cm was sufficient to cover the plates. An
3increase in sample volume to, say, 6cm , did not affect 

the conductance measured.

This cell had a number of drawbacks; these includedJ-

1. The susceptibility to oxidation of the copper,
2. the fact that the position of the cell in the sample

tube was not fixed, leading to a small variation in
the cell constant from one measurement to another,

3* the presence of tiny spaces between the copper plates 
and the teflon support and between the nylon screw in 
its hole and the teflon support; aqueous solution 
could be retained in these spaces when the conductivity 
of a non-aqueous sample was being measured and by 
providing a route for conduction through this aqueous 
channel lead to an erroneously high value of the con­
ductance measured.

3-3-2 THE PLATINUM CELL
The platinum and glass cell was designed to eliminate 

these problems, and to minimise the volume of solution 
used, whilst retaining a suitable cell constant for the
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conductivities to be measured. The cell also needed to 
be easily cleaned since liquid crystalline material was 
likely to be left on it after some measurements.

Two cells of the design shown in Fig. 3-2 were made. 
Bright platinum plates 20mm by 10mm and 1.0mm thick were 
soldered onto tungsten wires of 1mm diameter; these were 
sheathed in glass and set into the glass stem. Tungsten 
wires were used since platinum wires of a thickness 
sufficient to make the cell robust enough, could not be 
sealed in the glass satisfactorily because of the dif­
ferent coefficients of expansion of platinum and glass.
The plates were fixed 2mm apart. The leads inside the 
stem were screened and the screening was connected to the 
screening of the leads of the conductance bridge, during 
measurements. The screening of the leads inside the 
stem was necessary because of the Parker effect; in the 
absence of screening this led to conductances being re­
corded, for poorly conducting nonaqueous samples, wThich 
were higher than the true values.

The top of the stem was a ground glass joint so that 
the cell fitted into the flat bottomed tubes, long
with an external diameter of 17mm. A line was marked on 
the top edge of each tube so that the line on the cell 
could be aligned with it. In this way small variations in 
cell constant due to different alignments of the cell in
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each tube were avoided; these occurred because neither
the cell nor the tubes were perfectly symmetrical. A

3sample volume of 3*75cm was sufficient in all the tubes. 
Above this value the conductance measured was independent 
of the sample volume.

Before use for the first time these cells were 
cleaned with dilute hydrochloric acid and with acetone to 
remove any grease and soaked in water overnight. The 
cells were stored in water.

3.3.3 THE STANDARD CELL
A Mullard cell, type E7591/B, which is a glass cell 

with platinised platinum electrodes was also used for 
standardisation measurements in conjunction with the copper 
cell.

3.4 DETERMINATION OF PHASE DIAGRAMS
3.4.1 DETERMINATION OF PHASE DIAGRAMS FOR SYSTEMS 

CONTAINING BRIJ 30.
The Brij was stored at room temperature. It was

shaken before use to suspend the traces of crystalline
material present in it at room temperature. The Brij and
water or Brij, water and hydrocarbon or triacetin, were
weighed into stoppered test tubes; a total weight of 5g
was used. In the binary systems samples were made up at
10% (composition by weight) intervals; additional samples
were then made up, where necessary, to delineate the
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isotropic liquid region more precisely. In the ternary 
systems thirty-six samples at 10% intervals were examined, 
so covering the whole diagram Fig. 4. 0 (pU5).Extra samples 
of intermediate composition were made up as in the binary 
systems. Cross sections through the phase diagrams were 
determined by adding a third component in aliqnots to an 
initial binary mixture.

The samples were observed whilst being stirred with a 
thermometer (-10 to 110 °C) as they were heated and 
cooled, usually in a water bath. The temperatures be­
tween which the single phase liquid regions existed were 
thus determined. Where appropriate a sleeve was used with 
the thermometer to reduce evaporation of volatile com­
ponents at higher temperatures. Observation of any bir­
efringence in the bulk samples (with the exception of 
Brij-II^o samples) aided the determination of the phase 
boundaries of the isotropic liquid regions. A box, having 
opposite faces of polaroid sheet, 25mm apart, was used; 
the pieces of polaroid sheet were crossed; the tube 
containing the sample was placed within the box. When 
the box was held up to the light it could be seen whether 
the sample was birefringent. Streaming birefringence, 
when present, could be observed with the same device when 
the thermometer was moved briskly up and down.

Daylight was used, in most cases, for the observation 
of the clarity or otherwise, of the samples and the presence
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or absence of birefringence. This was particularly 
important in the observation of samples which were blue 
translucent; blue translucence was not easily observed 
in artificial light.

Since the commercial surfactant, B^ij is a
mixture of polyoxyethylene chain lengths, the transitions 
to and from single phase liquid regions were in some cases 
very poorly defined; in some samples the second phase 
was very slow" to form or to dissolve at the transition.
The temperature of the transition was estimated from the 
temperatures obtained on cooling and the temperatures 
obtained on heating the sample; a weighted average was 
taken.

Long term stability studies were not carried out on 
the samples.

Some observations of liquid crystalline samples 
were made on the variable temperature stage of the polar­
ising microscope in order to identify the types of liquid 
crystal present.

3.4.2 DETERMINATION OF PHASE DIAGRAMS FOR SYSTEMS 
CONTAINING C ^ E ^  and C ^ E g

The ancj C^lSg were stored in a refrigerator;
they were warmed to melt them before use and wreighed out 
in the liquid state. The C-j^E^-H,^ an(j c^Eg-I^O systems
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were investigated using series of samples made up by 
dilution of the initial samples with water, up to a 
maximum of about 8g; above this sample size stirring was 
inadequate. The ^ 2^4 “ ^2^ ~ heptane system was studied 
using the set of thirty-six samples at 10% intervals 
(Fig. 4.0 ); samples of a total weight of 2g were used. 
Additional samples were made up, where necessary, to 
delineate the isotropic liquid regions more precisely.
The ^2.2^4 ” "triace^in system was studied using
series of samples made by diluting initial C^E^-triacetin 
samples with water; again additional samples were made 
where necessary.

Cross sections through the phase diagrams were obtain­
ed by diluting initial binary mixtures with the third 
component. Only partial diagrams obtained in this way 
were determined for ^2.2^4 ternary systems with decane, 
hexadecane and octadecane as the third component.

The determination of the phase boundaries of the 
isotropic liquid regions was carried out as for the Bri.j 
systems (3.4.1.). In general the phase boundaries were 
more sharply defined with the pure surfactants. At low 
temperature and low surfactant content the phase trans­
itions in C-^E^ - H^o - heptane and C^0E^ - H0o*-decane 
samples took place only slowly; for this reason some of 
these samples were observed over periods of several hours 
at 0, 4 and 6 °C.
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3 o  CONDUCTANCE MEASUREMENTS

3.5.1 CONDUCTANCE MEASUREMENTS WITH THE COPPER CELL

This cell was stored dry so that the nylon screw 

would not stretch as it was liable to do when wet.

Before use and before storage the cell was washed 

thoroughly with deionised water and dried with a tissue.

When the plates became tarnished they were cleaned by 

placing the cell in deci-normal nitric acid; such clean­

ing did not significantly change measured conductances 

(except in the case of potassium chloride solution - see 

below). Between measurements with different samples the 

cell was dipped in acetone, then washed with water and dried 

wTith a tissue. The acetone was needed to remove the 

liquid crystalline coating which often formed on the cell 

when it was removed from the sample.

The cell constant could not be determined directly 

wTith potassium chloride solution because this tended to 

react with the copper plates, giving widely varying re­

sults and drifting readings on the conductance bridge.

The cell constant of the Mullard cell was determined w^ith 

0.01 molar potassium chloride solution. The conductivities 

of Brij-Ho0 and Brij-H^O-hexane mixtures, which gave iso­

tropic liquid phases at room temperature, were determined 

with the calibrated Mullard cell. Measurements were then 

made with these mixtures and the copper cell; hence its 

cell constant was determined. This was only determined 

at room temperature.
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Conductivities of samples containing Brij were 

measured with this cell. 5g samples were used, made up 

as for the phase diagram determinations. The larger 

volumes of samples containing high proportions of hexane 

or heptane did not affect the measurements. Initially 

the conductance of the water used to make up these sam­

ples was measured before use and water distilled within 

a few days was used, provided that its conductance re­

mained sufficiently low. This procedure ivas later dis­

regarded when the ionic impurity in the Brij was dis­

covered, since any conduc tivity due to the water would 

have been negligible compared to that due to the ions 

from the Brij itself.

Conductance measurements were made at varying 

temperatures by placing the cell in a thermostated water 

bath.

3.5.2 CONDUCTANCE MEASUREMENTS WITH THE PLATINUM CELLS

The cells were stored in distilled deionised water. 

After an initial thorough cleaning wTith dilute hydro­

chloric acid and acetone no further cleaning of the plate 

was required except washing with acetone to remove the 

sample material. The cell was cleaned and dried with 

acetone between samples.

The cell constants were determined directly using 

0.01 demal potassium chloride solution at 25.0- 0.2°C.
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The cell constants were determined daily at 25«0°C when 

condu ctance measurements were being made. A series of 

measurements made at temperatures ranging from 0 to 75°C 

enabled the change in cell constant with temperature to 

be determined.

Samples of a minimum weight of 3»75g were used.

These were made up as for the phase diagram determinations 

except that for samples containing and 0.01M

sodium chloride solution was used instead of distilled 

deionised water. This solution was made up from Analar 

sodium chloride and distilled deionised water. The use of 

sodium chloride swamped errors due to traces of elec­

trolyte contaminating the samples and gave a more con­

venient range of conductance for measurement.

The narrow salient region (^) in the C^E^-H^O- 

heptane system has only a very small temperature range of 

occurrence for a given composition and only a narrow7 

range of composition at a given temperature. Therefore, 

the following procedure was used to measure conductance 

in this region at specific temperatures. Binary mixtures 

of C^nE^ and water were made; heptane was added grad­

ually, reducing the temperature of occurrence of the - 

region. When the desired temperature of occurrence was 

reached the conductance was measured. Further heptane 

was then added for another measurement to be made at a 

lower temperature. Up to four measurements were made in 

this way with each initial sample.
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A series of thermos tatted water baths was used so 

that a cell could be placed in a given sample and 

measurements made at several temperatures without re­

moving the cell from the sample. It was necessary to 

loosen the stopper to alloi^ the pressure within the cell 

to return to atmospheric as the temperature was changed. 

Care was needed when making measurements at higher 

temperatures to ensure that the whole of the tube was in 

the water bath, so that evaporation of the more volatile 

components of the mixture and subsequent condensation 

in the cooler top of the tube did not occur; this could 

lead to alterations in sample composition and to in­

homogeneity in the sample. With the exception of the 

refrigerated baths used for measurements below room 

temperature, the baths were of glass so that the state 

of the samples could be easily observed.

3.6 PULSED NMR MEASUREMENTS

Pulsed nmr was used to measure self-diffusion co­

efficients in the C] r,E^-water and C^0E^-water systems.

The samples were made up by weight (about 0.4g) 

in the nmr tubes, vrhich were then sealed. When not in 

use these samples were stored in a deep freeze. The 

samples were homogenized prior to use by heating or 

cooling to the temperature of the isotropic liquid phase 

and shaking. Since the temperature of the probe could
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only be altered by increments of one degree, obtaining 

the isotropic liquid phase throughout the sample 

was difficult when this phase had oiily a narrow temp­

erature range as in the case of the higher temperature 

isotropic liquid phase in the C^0E^ - water system. 

Possible small differences in temperature within the 

probe itself may also have contributed to the problem.

The proton resonance was observed at 60MHz, small 

adjustments away from this frequency being made, when 

necessary, to avoid local interference. A 90°-l80° pulse 

sequence was employed; the interval betwreen the 90° and 

l80° pul ses was ; this produced an echo. The signal 

was observed on an oscilloscope screen. Field gradient 

pulses were applied (see section 2.2) and the echo height 

on the screen was observed as a function of the strength 

of the field gradient pulses (G^); the applied voltage 

which is proportional to G , was the property recorded. 

Water was used for calibration since its self diffusion 

coefficient was known (iO&).In order that a convenient range 

of G^ would be used the duration of the field gradient 

pulses 6 0  and the time between them (A) were altered 

according to the sample, larger values being used for 

samples with slower rates of self-diffusion.

Typical operating conditions were:
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for water diffusion:

20ms 

3ms 

A 20ms

for surfactant diffusion:

'T' 4 0ms

cT 5ms 

A 50ms

90° pulses 3/rfS.

3.7 DETERMINATION OF TIE LINES

In order to confirm that certain isotropic liquid 

regions found in the C^0Ej-H^O-heptane and Cn 0E^ -H90 - 

hexadecane systems were genuine single phases and not 

metastable states, tie lines were investigated. In 

choosing compositions of samples an attempt was made to 

obtain two-phase liquid-liquid mixtures one phase being 

that under investigation; three-phase regions also 

occurred in these three-component systems.

A sample of 0^oE^, water and hexadecane was made up 

in a glass tube, homogenized at the required temperature 

(by vigorous shaking) then centrifuged in the heated 

centrifuge for lOmins at approximately 650rpm. Two 

layers were obtained which were analysed by high resolution 

nmr. The nmr was run at the same required temperature 

so that the samples remained as single phases; calculation
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of the relative amounts of the three components 

present, from the nmr spectrum, was only possible if no 

liquid crystalline material was present to give a broad 

line.

3g (approx) samples of , water and heptane

were made up in stoppered polypropylene tubes for use 

with the MSE High Speed l8 centrifuge. These were homo­

genized where possible by heating or cooling from a 

single phase since vigorous shaking was not effective 

with these more viscous samples. The samples were main­

tained at the required temperature before centrifuging.

3 mins at 7»000 rpm was sufficient to separate some 

samples at 12°C; lOmins at 10,000 rpm did not separate 

some at k C - these were highly viscous, possibly due to 

the presence of liquid crystalline material. Since the 

phases being investigated have only small temperature 

ranges of occurrence, fluctuations in the temperature 

of the centrifuge during its operation were a problem. 

The samples were separated and analysed by high reso­

lution nmr as in the case of the C^E^-H^O-hexadecane 

samples•
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3.8 INVESTIGATION OF WATER SOLUBLE IMPURITIES IN BRIJ 30

A mixture of Brij and water (73% Brij) was heated 

until it formed an isotropic liquid, being mixed thoroughly 

and then heated further so that it separated into two 

layers. The lower aqueous layer was separated from the 

upper surfactant layer, which contains some water, at 

this temperature (about 9C°C). Further water was added 

to the surfactant layer and the process repeated. Three 

extractions were done. The conductivities of the extrants 

were measured.

Further mixtures of about two parts of Brij to one 

part of water, or Do0 were treated similarly. Only one 

extraction of each was carried out; these extracts 

were used in further tests for impurities in the Brij,

(see section 4.7 ). The high resolution nmr spectra 

of Do0 extracts were obtained.

3.9 DETERMINATION OF THE SODIUM IN BRIJ 30

The amount of sodium in the Brij was measured by 

atomic emission spectroscopy. 0.5%, 1%, 1.5% and 2%

mixtures of Brij in water were made up and shaken well, 

before being measured in the spectrometer (a Perkin Elmer 

AA 360). At these concentrations the mixtures were not 

isotropic solutions; they were cloudy and a thin upper 

layer of surfactant tended to separate out. The ionic 

material would have been expected to be in the bulk 

aqueous layer though. The spectrometer was calibrated 

with standard sodium solutions. To check that surfactant

98



3.9 Cont’d.

did not interfere in any wayi such as by altering the 
rate of solution uptake, 1% and 2% of deionised Brij 
was added to a ^0 ppm standard solution. No difference 
in the reading was found.
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4. RESULTS

The bulk of the results are presented in the form 

of phase diagrams, graphs and tables at the end of this 

chapter. The following is a description of those points 

which cannot be shown adequately in the diagrams and 

graphs. All percentage compositions quoted in these 

results are weight/weight.

4.1 PHASE DIAGRAMS

Figs. 4.1-4.26 show binary and ternary phase dia­

grams; fig. 4.0 shows the numbering system used for 

three component samples. The partial phase diagrams 

for three components are drawn at constant temperature 

(triangular diagrams) or at a constant ratio of two of 

the components (and thus at varying temperature).

Isotropic liquid regions are shown in all the phase 

diagrams. In the surfactant-water diagrams narrow two- 

phase liquid plus liquid crystal regions are not shown 

and are included in the liquid crystalline regions on 

the edges of which they occur. The boundaries between 

liquid crystalline and solid phases are not shown. In 

the ternary diagrams only the boundaries of the isotropic 

liquid regions are shown precisely. The approximate 

location of the liquid crystalline region is indicated on 

some of the diagrams.

The isotropic liquid regions include those samples 

which are clear but exhibit streaming biregringe?ice(but 

not static birefringence). Streaming birefringence is

100



4.1 Cont’d .

only indicated in the isotropic liquid regions although 
it can occur in other parts of the phase diagrams. The 
method of observing streaming birefringence was crude, 
where it is shown in the diagrams it occurs but it may 
occur to a greater extent than indicated. Also the onset 
of streaming birefringence when traversing the phase 
diagrams is very gradual so that its limits cannot be 
located precisely.

The isotropic liquid region also include samples 
which are blue-translucent (rather than colourless) by 
reflected light and yellowish-brown by transmitted light. 
In some cases a sharp boundary was found between blue- 
translucent regions and obviously two-phase (or three- 
phase) regions. In other cases there is not a sharp 
boundary. Where the boundary is very indistinct this is 
indicated.

Phase boundaries are located more precisely in the 
binary diagrams than in the ternary diagrams since ob­
servation of a given composition as a function of temp­
erature gives points on the binary diagram but only gives 
points on the ternary diagram if the phase changes occur 
at the actual temperatures for which the diagrams are 
drawn; the phase boundary is extrapolated from the be­
haviour of the compositions studied.

Birefringence in the samples was observed by means 
of crossed polars using white light. Whilst many samples 

containing liquid crystalline material showed the normal
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birefringence transmitting white light through the 
crossed polars other samples exhibited rainbow colours 
when viewed through crossed polars; the sizes of the 
rainbow patterns in the samples varied from one sample 
to another. These effects were more pronounced with the 
pure surfactants. They normally occurred in fairly 
fluid samples containing liquid plus liquid crystalline 
material. It was not determined whether "rainbow 
birefringence" could occur in single liquid crystalline 
phases where these were less viscous.

4.1.1 THE C E^-H 0 PHASE DIAGRAM (Fig. 4.1)

Different batches of C-̂ 2^4 produced small differences 
in the temperature of occurrence of the phase changes
but the diagram was otherwise unchanged. C oE.-Do0iJL-C-. ft e~4

samples showed the same phase changes but 2°C lower than 
the C^2E^-Ho0 samples, using the same ^ 2^4 *

Below 16% the samples in the upper clear
region are blue-translucent and become more so with 
decreasing surfactant content. Samples in this region 
are stable above about 2/6; below this concentration it 
is still possible to obtain blue translucent samples at 
about the same temperature but they separate out in a 
few minutes.

No streaming birefringence was observed in the upper 
clear region on either side of the break in this region
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between about 54 and 63% C^nE^. There were slight 
variations (/v' 3/0 in the length of the break and its 
composition of occurrence according to the batch of

C12E4-

C^0E^ in air, saturated with water vapour at 35°C, 
absorbs water until the sample composition reaches about 
70% • At this composition and temperature the
sample is a lamellar liquid crystal.

4.1.2 THE C12E6-H20 PHASE DIAGRAM (Fig. 4.2)

As in the C^gE^-HgO sys^em sni£ill differences were 
found between the phase diagrams according to the batch 
of surfactant used.

The isotropic region between the hexagonal and 
lamellar liquid crystalline phases, was found to be 
highly viscous and glassy clear. It has been shown ( 10) 
that this is a viscous isotropic liquid crystalline phase.

4.1.3 THE BRIJ 30 - H20 PHASE DIAGRAM (Fig. 4.3O

The Brij itself is a commercial surfactant and con­
tains a mixture of surfactant chain lengths. At room 
temperature it is a cloudy liquid; by about 28°C it is 
clear but the clearing point is not sharp. The phase 
changes in the Brij system are not as sharp as with the 
pure surfactants.
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The clear region in the Brij-Ho0 system becomescL

blue-translucent below about l6/o Brij, and becomes 

progressively more so as the Brij concentration de­

creases. A continuation of this region exists below 

about 10.3% Brij, but is not stable: the blue trans­

lucent liquid is only obtained on heating from room 

temperature or below and is only stable for about 3 

minut es•

Streaming birefringence is not observed in the 

narrow part of the clear region, even in the region of 

maximum viscosity at 55% Brij.

Repetition of the investigation of the Brij-water 

phase diagram after 12 months showed that it was of the 

same form but that the temperature of occurrence of the 

narrow part of the clear region was l ^ C  lower. The 

Brij had been stored at room temperature in a plastic 

can •

4.1.4 THE C1 -Ho0-HYDR0CARB0N SYSTEMS

Only the heptane system (Figs.4.5 * 4.6 and 4.7) has 

been investigated in detail. The boundaries of the 

low temperature isotropic liquid region (S) which is 
joined to the water corner at the lowest temperatures 

are difficult to locate precisely; at the lowest temp­

eratures the samples tend to be viscous presenting prob­

lems with stirring and metastable states seem to be 

readily formed. The isotropic regions are formed only
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slowly from cloudy (possibly birefringent) states and 
clear isotropic samples can take hours to become cloudy; 
similarly long times can be required for cloudy samples 
to clear. Blue-translucent states also occur through­
out the temperature range and there is no clear boundary 
between the blue-translucent samples and cloudy samples 
on the low surfactant side of the region. The drawing 
of this boundary was therefore somewhat arbitrary.

The problem with the blue-translucent samples also 
occurred, to some extent, on the low surfactant side of 
the £-region.

In the C^oE^-Hp0-decane and -hexadecane systems 
(Figs. 4.11 and 4.12) metastable states again occurred 
adjacent to the J' -region on its low temperature boundary. 
The low-surfactant content boundaries of the J"- and <5- 
regions of the decane system, where blue-translucent 
solutions occurred, were similarly ill-defined.

In the C-^E^-H^O-heptane system blue-translucent 
solutions also occurred in the extension of the high 
temperature clear region, which occurred as heptane was 
added, at similar compositions t© those at which the 
blue-translucence occurred in the binary system.

In the C^E^-H^O system the break in the high- 
temperature clear region between 54 and 63/0 ^12^4 disappears

105



4.1.4. Cont *d.

on addition of heptane; about 2/6 is sufficient.

Many of the samples in this system (C^E^-H^O-heptane ) 
which were birefringent due to the presence of liquid 
crystalline material exhibited rainbow colours when 
viewed between crossed polars with white light. A 
glassy clear liquid region existed at compositions around 
10% C^0E^, 10/6 H^O plus 80% heptane belowT 10°C; below 
about 2°C the sample became more viscous but remained 
clear. This clear liquid exhibited rainbow birefringence 
and so wTas not included in the isotropic liquid regions 
delineated; it did not appear to be connected to these.

4.1.5 THE BRIJ 30-H 0-HEXAKE SYSTEM (Figs 4.8 and 4.9)

The phase boundaries in this system are less well 
defined because of the mixture of chain lengths present 
in the Brij. At room temperature and below it is not 
possible to draw the phase boundary close to the Brij- 
hexane axis because cloudiness develops so gradually with 
changes in composition and also to some extent with time.

Samples of compositions close to 10?6 Brij, 40°6 water 
and 50/o hexane are blue-translucent.

No detailed investigation has been made of the 
liquid crystalline phases. A lamellar phase has a large 
area of occurrence but other liquid crystalline phases 
may also be present. Samples of 50% Bri j , 4 0/6 water,
10/6 hexane and 60% Brij, ^0% water and 10% hexane shov: a
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viscous isotropic phase between 40°C and 4l.5°C, and 
between 40°C and 45°, respectively. This is a very 
viscous, glassy clear phase which is not birefringent 
until prodded with the thermometer when a flash of 
birefringence is seen.

4.1.6 THE C E^-H90-TRIACETIN SYSTEM (Figs. 4.23 and 4.24)

Again blue-translucent solutions occur where the 
high temperature clear region extends on the addition 
of triacetin.

The limit of compositions exhibiting birefringence 
(due to the presence of liquid crystalline material) is 
shown approximately at 0°C; liquid crystal, as a single 
phase or a component of a two-or three-phase system, 
does not occur for water: surfactant ratios greater
than about 50:50.

4.2 CONDUCTIVITY
Conductivity results are shown graphically in 

Figs.,4.5 - 4.9 on the phase diagrams, Figs. 4.27 - 4.46 
and in tables 4.1 - 4.9.

4.2.1 THE CELL CONSTANTS
n +The cell constant of the copper cell was o.3~

0.2 m  ̂ at 22°C. The cell constant of the Mullard cell 

was 15 1a*'( error < lm ^) at 25°C.
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The cell constants measured for the first platinum 

cell at 25•0- 0.2°C were as follows:

6.92 m"1
6.83 m"1
7.15- 0.04 nT1

The first two Values refer to a small number of measure­

ments made on two days with the newcell. After this

one platinum plate dropped off due to inadequate solder­

ing; its replacement resulted in a slightly different 

cell constant.

The cell constants measured for the second platnum 

cell at 25.0- 0.2°C were:

7.62 i 0.04 m-1 
7.69 - 0.04 m”1

The difference arose because the tube in which the cell

constant was measured was changed correction factors

(cell constant for cell in tube y=cell constant measured

in tube x multiplied by the correction factor) were

determined for the different tubes and varied between

0.995 and 1.035. These correction factors were different
for the two cells.

The variation of the cell constants with temperature 

was estimated to be 0.003m ^ °C ^ , the cell constants 

increasing with increasing temperature. Values of the 

conductivity of potassium chloride solution at varying 

temperature,obtained from The International Critical 

Tables ,were used.
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4.2.2 SOURCES OF ERROR
Except at very low conductivities instrumental 

error was outweighed by other factors. Below lOnS 
conductance readings could only be obtained to two 
figures on the Wayne Kerr conductance bridge. Below 
InS only one approximate figure was obtained which ser­
ved only as an indication of order of magnitude.

Errors arose due to changes in sample composition: 
part of the volatile hydrocarbon component could be lost 
at higher temperatures (above™ 50°C); part of the water 
component could be lost at the highest temperatures in 
the binary systems (above^ 80°C); the sample could 
absorb water particularly at higher temperatures, because 
of the humid atmosphere above the water baths used. 
Although the stoppered tubes reduced these problems they 
were opened and closed several times in the course of 
measurements so that these changes could occur. Slight 
changes in the water content of samples containing only 
a small proportion of water could cause significant 
changes in conductivity; this was particularlyso for 
the pure surfactants which tended to absorb water.

For certain samples, in the C^E^-HgO-hydrocarbon 
systems, very small temperature variations (<0.1°C) 
caused large changes in conductivity (e.g. sample number 
7). Some of these samples were studied in detail in a 
thermostatted water bath with a high degree of temperature 
stability (temperature change on 0.1°C thermometer too
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small to observe over 4hr.). Figs. 4.42 and 4.43 show 
these results. Others on the edges of the € and % - 
regions were not studied in detail and the conductivities 
quoted could have been considerably different at 
temperatures only very slightly different.

The conductivities of samples in the Brij-Ho0 and 

Brij-H^O-hexane systems were measured with the copper 

cell. Measurements in the ternary system at 10% water 

content were repeated with the platinum cell. The 

results from measurements with the copper cell are sub­

ject to rather more error due to the design of the cell 

(section 3-3«l)•

To exclude the possibility of changes in conductivity 

being due to the presence of sodium chloride, the con­

ductivities of the following samples were also measured 

in the absence of sodium chloride (the samples were made 

up with distilled deionised water):

maximum IC minimum K

sample number 6 8.0 ̂ tSm ^(133) 2.7/<-Sm ^ (21.3)

sample number 11 1.2 mSm ^(20.9) 0.38/̂ Sm ^ (O.58)

13.0% C_0E, - 31* 0%li 0 - 34.0% decane± ̂ I
1.3 mSm“1 (23.2) 11 /<Snr1 (l43)

The conductivity versus temperature curves for these 

samples were of the same form as those of samples doped 

with sodium chloride. The maximum and minimum values 

of conductivity measured in the clear regions are quoted, 

with values for the equivalent samples containing sodium 

chloride, in brackets (in the same units).
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4.3 HIGH RESOLUTION NMR

High resolution nrnr spectra were obtained for 
samples of 20%, 30% and 40% wa’ter below 25°C.
Table 4.14 shows the line widths (at half height) for 
the hydrogens of the oxyethylene chains and the hydro­
carbon chains. Above the temperature of occurrence of 
the isotropic liquid region the 20% and 30% samples are 
cloudy and birefringent; the 40% sample is almost clear 
but birefringent. The surfactant lines are so broad that 
they are virtually indistinguishable; only the v,rater 
lines are clear at these temperatures (> 21°C).

Within the isotropic liquid region the oxyethylene 
line is each sample is sharper than the hydrocarbon chain 
line and broadens only slightly with decreasing temp­
erature. The hydrocarbon chain line broadens considerably 
so that at the lowest temperatures its width cannot be 
measured, the CH^ and CH^ lines forming one broad line. 
There is no measurable change in the width of the water 
line in this region. No sharp changes occur in line 
widths, in keeping with the gradual development of 
streaming birefringence with decreasing temperature. In 
this single phase liquid region stirring with a glass rod 
shows that, qualitatively, there is a marked increase 
in viscosity as the ^ 2^4 concenti'ation is increased.
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4.4 VISCOSITY
Figs. 4.4? and 4.48 show viscosity in the Brij- 

water system, in the narrow high temperature isotropic 
liquid region. Absolute values of viscosity have not 
been determined. The viscometer was calibrated at 
25°C wTith water; the measurements were made at around 
67°C. The change in the dimensions of the viscometer 
was not allcwed for but this error will be almost the 
same for most measurements, since most were made over 
small temperature ranges, of about 5°C, though the 
range was l6°C in one case. The density of the samples 
also needs to be known to calculate the viscosity from 
the present measurements. A value the same as that 
of water at 25°C was assumed although the true density 
is likely to be a little lower than this, considering 
the temperature and the density of the Brij used 
(0.943 gem  ̂ at 25°C). However, it is variations be­
tween the samples and with temperature which are of 
greater importance; changes in density of the same order 
of magnitude as changes in the viscosity would have 
produced noticeable volume changes in the samples.

4.5 SELF-DIFFUSION

Self-diffusion measurements are subject to con­
siderably more error than the conductivity measurements, 
as indicated by the scatter on some of the graphs.
Error bars, where these are shown, are estimated from the

112



4.5 Cont'd .
2plots of In h versus V ; there is a considerable 

variation in the errors estimated in this way, due 

in part to the conditions for measuring the self­

diffusion coefficient, in some samples being closer 

to the instrumental limits. This does not account for 

the scatter in some of the graphs (Figs.4.49 - 4.35^ •

A large error may have arisen in some cases because the 

sample was not a single isotropic phase; the problems 

in achieving this state are described in the experimental 

section (section 3 .6 ).

4.6 TIE LINES

Two tie lines were determined in the O-heptane

system and one in the Ĉ, -Hn0-hexadecane system.

In each case only one determination was made. Table 4.16 

gives the compositions of the initial and separated 

samples.

4.7 IMPURITIES IN BRIJ-30

4.7.1 SODIUM IN BRIJ-30

A concentration of sodium of 0.060 mol dm was 

found.

4.7.2 WATER SOLUBLE IMPURITIES IN BRIJ 30

The high resolution nmr spectra o 0^0 extracts are 

consistent with the organic matter in the extracts being 
polyethylene glycol : the peaks in the spectrum are at

3.80 and 4 .8 5*6’.
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The conductivities of three successive extracts 
were as follows:

conductivity of first extract = 28 . jnSm ^
n M second M = 12 mSm
n M third n = 5  . mSm ̂

The nature of the anion present was not determined. 
Tests on the first extract for chloride and sulphate 
were negative, indicating that if these anions were 
present their concentrations were insufficient to give 
positive test results (with silver nitrate solution or 
barium chloride solution).
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systems.



Key to symbols used in the phase diagrams 

WV'j Blue translucence (not snown in all diagrams)

or . Streaming birefringence

Phase boundary which could not be located precisely, 
or boundary of metastable region*
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samples.Samples doped with sodium chloride.
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Fig.4.36. Variation of conductivity with temperature in Brio-water 

samples.
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Fig.4.37* Variation with temperature of the conductivity of Brij 
and Brij-water samples.
At 80^ Brij a correction has been made to allow for a 
difference ofl*r% in the water content of the two 
samples measured.
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Fig,4.40.Conductivity of C._E.-water- 
heptane samples containing 
10 % water( doped with sodium 
chloride).Numbers in brackets 
refer to the % of water in each 
sample•

100 -

70zo so



lio

Fig.4.41. Conductivity of 20*1% C12E^-10 ̂ sodium chloride solution- 
69*7/̂ heptane (sample 3 )» and of 30*0/£ C-^E^- 10*0£sodium 
chloride solution- 59*9/{heptane (sample 6), as a function 
of temperature.
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Fig.4.42. Conductivity of an initial mixture of 55*2^sodium chloride 
solution and 44*8 Yn heptane to which 10*0% C^E. was added. 
(Sample 11 ). 12 4

\

Fig.4*45* Conductivity of an initial mixture of 60*2% sodium chloride 
solution and 39*8?idecane to which 9#8J^C was added.
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Fig.4*44* Conductivity of:
A - an initial mixture of 60»0% sodium chloride solution 

and 40*0% hexadecane to which 18«0/*C-jp®/ wa/S added. 
B - an initial mixture of 60*1% sodium chloride solution 

and 39*9/4kexadecane to which 14*0 was added.
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Fig.4*46. Variation in conductivity of Brij- ^0- hexane samples 
containing approximately 10 %  H^O.
Numbers in brackets give the ym of H^O in each sample,
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Pig.4.49. Water diffusion coefficients in the £ -region and/2-region

too

of the C^gB^-water system,

•o

"35b

Pig.4.50. Surfactant diffusion-coefficients in thfe^-region and 
P -region of the C^E^-water system.



Fig, 4*51* Surfactant diffusion coefficients in theoC-region of the 
C..0E.-water system (activation energy plot),12 4
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Fig*4*52# Water diffusion coefficients in the <<-region of the 
water system.
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Fig. 4*55* Self-diffusion coefficient of water in solutions with 
at 42*C. The value at 62% is extrapolated*
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In the following tables of conductivity results is the value 
calculated from the equation of Kackay and Agarwal:

The disperse phase volume,was assumed to be the same, as the 
volume fraction of surfactant.

171



TABLE 4.1 CONDUCTIVITY IN THE C,0E , - H O  SYSTEM12 4 2

Sample Composition 
C^r,Ê  NaCl solution
%(W/W) %(W/W)

2.55
3.04

10.0

20. 0

3 0 . 1

40. 2

5 0 . 1

67.9

75.2

97-4-5
96.96

9 0 . 0

80.0

69.9

59.8

49.9

3 2 . 1

24.8

Temp. 
/°C

53.6
53.9
4.1 
0.0

58.5 
7 . 6

4.2 
0.0

62.5
12.9 
10.0
4.2 
0.0

66.2
19.5
14.7 
10.0
4.1 
0 . 0

69.4
14.7
1 0 . 0

4.2 
0.0

71.2
0.0

72.7
7 1 . 6

79.9
79.1
76.5
74.2
69.1
64.2

-1

114.6mS 
113.4mS 
67.2mS 
59.7rnS 

106mS 
62. 6rr.S 
57.OmS 
50.6mS 
88.5mS 
5 2.9mS 
49.4mS 
4 2.2mS 

37.3mS 
70.OmS 
43.7mS 
39.9mS 
35•9mS 
31.3mS 
27.7mS 
54.3mS 
27.7mS 
24.6mS 
19.9mS 
17.98mS 
33.lmS 
11.06mS 
8.88mS 
9.OlmS 
4.56ms 
4 0 6 2mS 
4.82mS 
4.93mS 
5•08mS 
5.15mS

H calc.
/ m ^

177mS 
176mS 
66.3roS 
5 9.OmS 

153mS 
59.7mS 
54.4mS 
48.4mS 

117.9mS 
50.5mS
46.9mS 
39.9mS 
35.5mS 
86. 5niS 
40.5mS 
36.8mS 
32.9mS 
28.lmS 
24.9mS 
5 9•7mS 
24.5mS 
21.9mS 
18•7mS 
16.6mS 
38•2mS 
10.4mS 
12.6mS 
12.4mS 
7.OOraS 
6.96mS 
6•78ms 
6.6 2mS 
6 •27mS 
5.93mS
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Table 4 

80.3

89.9

100

1 Cont'd

19.7

10.1

85.4
80.0
75-1
Maximum 
2,89mS

69.9
64.9
59.9 
55.3
55.2
8 3 . 0
70 n < ̂  * (
64.3
55.1
40.1 
3 0 . 0  

20.0
1 3 . 0  

8 . 1

72.7
64.4
55.5
40.1
3 0 . 1

3 0 . 0

2 5 . 0

2.805mS 
2.867mS 
2.885mS 

of 2.88- 
between 70 and 

2•864mS 
2.79mS 
2.698mS 
2.586mS 
2.5 77niS
831 /'S,'
6 36 / tS

555 /tS
465//S
331/^S
247/<S
173.5/*3
128. 6/45
102.8//S
1 . 13/«S

8l8nS
784nS
5 8 8 n s

453nS
435nS
397n s

75

4.09mS 
3.88mS 
3.7OmS

>C
3.5 OmS 
3.3OmS 
3.12mS 
2.93mS 
2.93niS
755/i - 
68l/*S 
620//S 
554/<S 
445/<S 
373/S 
304//S
2.6 O^S 
228//S
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TABLE 4.2 CONDUCTIVITY IN THE CinE^-Ho0 SYSTEM12 b

Sample Composition Temperature K K calc
C^0Eg NaCl solution yO ̂ /^-l /m~^
°/o(W/W) %(W/W)

5.24 94.76 52.5* 170.5mS 163.9mS
43 l48.3mS 142.9mS
32.0 121.9mS 118.4mS
22.1 99.8mS 97.5mS
15.0 85.1mS 83.OmS
7.1 69.4mS 68.2mS
0.0 56.7mS 55•9mS

15.2 84.8 52.5 129.9mS 124.lmS
42-43 113mS 108mS
32.0 92.6mS 89•7mS
22.1 75.6mS 73•8mS
15.0 64.5mS 62.9mS
7.1 52.3mS 51•6mS
0.0 42.4mS 42.4mS

25.2 74.8 52.5 96.7mS 90.8mS
43.0 83.7mS 79.lmS
32.1 68.9mS 65.6mS
22.1 55.3mS 54.OmS
15.0 46.6mS 46.OmS
7.1 37.4mS 37.8ms
0.0 30.lmS 31.OmS

35.0 65.O 60.0 78.3mS 70.4mS
52.5 71.OmS 63•9mS
43.0 6l.5mS 55.8mS
32.1 49.9mS 46•2mS
22.1 39.5mS 38.OmS
15.0 32.9mS 32.4mS
7.1 25.9mS 26.6mS
0.0 20.4mS 21•8mS

44.9 55.1 68.3 56.8mS 51•lmS
60.1 52.4mS 46.5mS
52.4 47.6mS 42.2mS
43.3 4l.3mS 36.9mS

174



Table 4

55.1

67.9

79.9

89.5

,2 Cont1d .

44.9

3 2 . 1

2.0.1

10.5

82.0 37•lmS
76.0 36.8mS
68.3 35.OmS
60.1 32.6mS
52.4 28.9mS
43 24.6mS
91.5 l6 .50mS
89.5 l6•56mS
88.2 l6.6lmS
maximum of 16.64mS
b etween 87 and 88°C
86. 9 16.6lmS
85.0 l6.53mS
83.5 16.47mS
80.8 l6.29mS
77-5 l6.05mS
72.6 15•66mS
20. 2 t 4.83ms
15.4 f 3.97mS
10.9 t 3.31mS
82.0 4.94mS
76.0 4.67mS
68.0 4.2OmS
60.1 3•68mS
52.5 3.17 mS
90.5 1.45mS
82.1 1.27mS
82.0 1.29mS
76.0 1.l6mS
68.0 1.OOmS
60.1 825^5
60.0 842juS
52.5 696/<S
52.5 699/<S
43.0 533/.S
32.1 36.1^5
22.0 238^3

35.4mS 
33-3mS 
30.7mS 
27.9mS 
25.3mS 
22.lmS 
16.6mS 
16.3mS 
16 . 2m S

16.OmS 
15.7mS 
15-5niS 
15.lmS 
14.6mS 
13.9mS 
6 . 25mS 
5 .63niS 

5 . 02mS 

4.75mS 
4.79mS 

4.09mS 
3.7 4mS 
3.4OmS 
l.OlmS 
0.936mS
0 . 936m s  

0.88lmS 
0 . 807mS 

738/ S  

73 G/tS 
6 7 O/4S
670yfcS

584/^S
484/<S
397/ ^ s
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Table 4.2 Cont'd.

100 74.6 11.5 Oy&S
(sample £>ossibly vet) 65 .1 9.64jus

54.2 7 .9O//S
44.3 6 .3O//S
34.1 75/Sco••4*C\i 3.4 7/S

*5-24/0 C Eg at 52.5°C slightly cloudy 

^Conductivity of* viscous isotropic liquid cryst



TABLE 4.3 Conductivity in the Brij System

Approximate results obtained ivith copper cell.

Sample Composition Temperature K
Brij 30 ^2^ /°C /mSm

2.52 97.48 57.7 6 .1 *
4.90 95.10 57.5 10.9*
8.05 91.95 57.6 13.8 *

11.1 88.9 57.9 20.8
l4. 2 83.8 58.3 23.5
17.3 82.7 59.9 30.1
20.0 80.0 60.2 33.9
22.1 77.9 60.0 35.2
25.0 75.0 61.3 38.3

61.3 39.0
61.3 37.9

30.2 69.8 62.3 43.3
63.5 43.3
63.7 43.7
64.0 43.7

35.0 65.0 65.3 46.0
39-9 60.1 66.6 47.7
44.9 55.1 66.1 47.4

67.7 47.7
68.9 46.4
70.0 45.3

45.1 34.9 67.5 47.8
49.9 30.1 68.7 43.7
51.7 48.3 68.3 44.9

72.0 42.7
55.1 44.9 69.0 42.4
59.8 40.2 69.0 38.8

69.0 39.3
59.9 40.1 72.3 32.9

72,3 32.2
73.4 28.6

60. 2 39.8 69.0 38.1
64.5 35.5 68.0 26.6

70.0 26.6
71.9 23. 0
74.6 21.7

64.3 35.5 69.0 29.8
69.9 30.1 66.3 20. 2

70.0 18.7
73.7 16.0
76.9 t 14.0

70.1 29.9 69.O 19.5
79.3 20.7 34.8 9.4

59.7 9.7
59.7 9.3
63 • 8 10.0
79.5 9.1
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Table 4.3 Cont'd.

80.4 19.6 69.0 9.2
69.0 9.4
72.3 9.3
72.3 9.0
75-0 8.9
79.6 8.3

89.1 10.9 69.0 3.98
90 10 12.0 0.76

17.1 O .92
27 1.18
33.0 1.45
40.0 1.80
49.7 2.31
59.3 2.66
70.3 3.11
80.5 3.4

94.9 9.1 69.0 1.29
100 - 27 0.0192

33.0 0.0233
40.0 0.0265
49.7 0.0323
99.3 0.0369
70.3 0.0404
80.5 0.0428

*The isotropic liquid region in these samples 
is not stable.

iSainple just cloudy at this temperature.
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Abbreviations useci m  xaoies to describe
the sample appearance

c - cloudy or hazy
bft - birefringent

All samples were clear unless otherwise stated,

TABLE 4, 4 Conductivity in the C^E^-II^O-heptane sys-tem

_A___________Samples containin.fr 10/o NaCl solution
Sample Sample Composition Temp, K
number ^12^4 NaCl heptane /°C, /*Sm

solution 
'oi ' ' %(W/W) D/0(\7/\-1)

1 10.1 10.3 79.6

3 20.1 10.4 69.5

10.1 10.2 69.7
Maximum

30.0 10.1 59.8

30.0 10.0 59.9

17.0 2.06
19.8 3.91
17.0 102.4
19.8 15.9
24. 9 13.0
29.8 15.7
14.1 35
16.0 134 r
16.1 120-130
16.7 84.3
16.7 89.4
18.0 33.0
20.4 12.62
24.2 12.58
25.2 13. li
28.9 15.3
13.1 119.0
17.0 64.4
20.0 4l. 1
24.9 26.3
29.9 nr> q
39.8 21.4
8.8 150
9.5 159

10.2 151.4
11.0 138,3
12.7 111.1
14.0 93.1
15.1 78.0
16.0 68.2
16.7 61.3
18.0 50.0
20.4 36.6
21.0 34.2
24. 2 26.5
24.8 25.7
25.1 25.3
28.9 21.5
29.0 22.7
37.1 21.3
39.4 21.5

Sample
appear­
ance

c , bft 
c , bft

c , bft
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10 40.0

15 49.8

21 59.6

28 ?0.0

36 79.3

9.9 50.1

10.1 40.1

10.4 30.0

9.9 20.1

10.5 10.2

42.3 21.3
43.3 21.1

0.0 74.6
0.0 75.1
4.0 75.0

13.1 64.9
17.0 58.6
20.0 53-6
24.9 46.6
29.9 40.6
40.2 31.7
53.1 21.0

0.0 67.2
13.0 78.6
17.0 80.7
19.9 81.4
24.9 81.2
29.8 79.0
40. 2 69.8
55.0 54.6

0.0 75.9
4.0 87.5

13.0 107.9
17.0 117.4
20.1 124. 2
24.9 133.
29.9 l4o. 0
40.2 146.4
55.1 138.3
0.0 68.2

13.0 110.6
17.0 124.8
20.0 135.7
24.9 153.6
29.8 171.O
40.2 201.9
55.0 236.1

4.2 94.3
13.1 l4l. 5
16.9 163.4
20.0 181.7
24.9 212.5
29.8 244.0
4o.o 307
55.0 396
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11 CcontM.) 7 .9-3.0 3.3-5-5mS c, bft
8.8 3.8 mS c, bft
9.5 3.2 mS c, bft

9.7-9.8 1.4-1.6mS c, bft
10.3 5*0 mS c
10.65 7 .26mS. just c.

10.8-10.9 5-2-5.5mS
11.1 4.24mS
11.35 2.31mS
11.75 246 juS
12.3 582 nS
12.6 264 nS just c
13.1 287 nS c

12 20.2 39.9 39.9 17* 0 2.86,43
20.1 1 .15/̂ S

13 30.1 29.9 40.1 20.0 398 /US
24.9 9.87/̂ S

14 40.0 19.9 40.1 25.O 385 /US
29.8 12 9.5 JUS
40.3 32 MS just c

16 10.0 59.9 30.1 4.0 27.7mS
12.1 3.7-3.9/tS

17 20.0 50.0 30.0 17.0 2.20-2.24jiS

18 29.8 40.1 30.1 20.0 792 juS
24.8 8.01juS

19 40.1 29.9 30.0 25.0 1.57mS
29.9 329 /“S

20 50.1 19.8 30.1 25.0 l.l02mS
29.9 859 MS
40.2 399 JUS

22 10.0 69.9 20.1 0.0 32-33 mS just c
4.0 35-^ mS

26 50.1 29.8 20.1 40.0 2.4lmS

27 59.9 20.2 19.9 40.0 1.546mS
55.0 907 /*S

34 59.9 30.2 10.0 55.O 6.04mS

35 69.9 20.2 10.0 55.3 2.19mS
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TABLE 4.4 Cont1d .
jB Samples containing more than 10/o NaCl solution

Sample 
numb er

11

Composition
'12^4 
SoOVlv)

NaCl
Solution 
% (W/17 )

Temp. H
heptane / C /m
% (w/v:)

-1

10.1 19.9 70.0 15.7 1.15/iS
15.8 I.16//S

10.0 30.0 60.0 13.1 16 /*S

19.8 20. 2 60.1 17.0 201 JxS
19.9 4.95/*S
24.8 7.12 jaS

9.9 40.2 49.8 5.8 15.7 mS
13.1 379 nS

11.0 40.0 49.0 4.1 14.68mS.
5.1 l4.07mS
5.7 15 . 08rnS
6 e 0 14.49mS
6.0 14.6lmS
6.1 13.82mS
6.3 13.87mS
6.4 13•35mS
7.0 10.4OmS ju:

11.5 4•21mS
11.7 3•88mS
11.85 2.54mS
11.9 2.9 2mS
12.3 520 JUS
12.65 11.4 JUS
13.0 1. 2-1. 5/̂ S
13.6 359 nS
14.0 771 nS
14.1 361 11S ju,

19.8 30.4 49.9 17.0 8.32/tS
minimum ±11H between 17

20
20.0 2.5 8/<S

30.0 19.6 50.4 20.0 295 /<$
24.8 22.7 juS
29.9 14.4 jaS

10.2 49.8 40.1 4.0 20.7 mS
12.1 4l /US
12.5 600-1000nS

10.0 49.7 40.3 2.0 19.08mS c
3.0 19.73mS c
4.0 20.38mS c
4.4 20.l8mS c
5.1 20.91mS
6.0 20.92mS
6.8 20.77mS
7.1 l4.47mS
7.4 9.3 niS C, bft
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C Conductivity in the ^  -region

Initial Sample Heptane Temperature
composition added / C

C E4 NaCl
Solution

50.1 49.9 - 71.2
v/ 54.7

40.2 59-8 —  69-4
^  39-9

30.0
930.1 69-9 - 66.

^  53-0
40.0

^  30.0
^  25.0

20.0 80.0 - 62.5
53-0

^  40.0
^  30.0

25.0

TABLE 4.5
Conductivity in the C^E^-II^O-decane system

Sample composition Temperature
^19^4 NaCl Decane /°C
% ( l.r/N  ) S o l u t i o n  Jo (T.v/17)

?S(wAT)
8.9 34.8 36.2 7.5

8.6
9.2
9-6
9-9310.0

10.7

11.4

12.0
12.7
13.25
14.25
14.95 
13-13 
13-43 
13.73
16.0
16.4
16.3

/mSm ^

33.1
23.2

34.3
32.0
17.13
70.0
39.6
43.7 
33.9 
25.6

83.5
79.6
61.6 
50.7 
44.2

25.9mS
26. 7mS
27. 55mS 
27.48rnS 
27.53mS 
27.53mS 
27.49mS 
27.72mS
27.55mS 
27.6lmS 
24.2mS 

12-15 mS 
7.6OmS 
5•19mS 

10.06mS 
11.16111S 
I3 .O8111S 
10.72mS 
8 .36111S 
5.03mS 
3.645mS

c
c
c

just c

c,bft 
c , bf t 
c , bft 
c , bf t 
c,bft 
c ,bft

183 Cont1d ..



TAULK *-1.3 tont'a.

13-1 52.0 3zi.8

16.73
16.83 
17.03
0.0
2.43
3.23
7.3
9.7

16.83 
17.23 17.8 
17 .75 
17.9 
18.2 
18.63 
18.8 
19.13 
19.7 
19.93 20. 2
20.83

1 • 6 4 9 m S 
1.043mS 
400/iS c

l8 .17mS t 
19.36mS t 
21•3 2mS 
22.37mS 
23•21mS 
6.83mS 
8 .36ms 
9.17mS 
9. 68mS 
8.79mS 
7.29mS 
3.OlmS 
4.23ms 
2.33mS 

5 2 3 jUS 
144.6/US 
33 .7juS
3 .08̂ *s

c,bft 
c, bft

Juste

1* Sample clear during measurement but metastable

TADLE 4.6
Conductivity in the C^E^-H^O-hexadecane syslem

Sample composition
'12*4 NaCl II ex a -

solution decane
% (V7AT) % (V7/V7) % (W/V7)

Temperature M
/°C /mSm-1

13.3 30.8 33.9 20.03 28.86
21.0 29.27
21.1 29.29
22.13 29.38
23.4 29.9
24.3 30. 08
23.4 30.12
26.23 30.01
26.9 27.26 c , bf t
27.1 26.33 c , bf t
27.6 23.22 c, bft
27.7 23.81 c , bf t
28.63 20.43 c , bft
29.3 18.98 c, bft
30.33 18.6 bft
31.1 21.89 just

bft
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TABLE 4 .6 Cont’d.

31.7 20.9
32.1 19.68
32.3 18.33
33.03 16.61
33.55 14.65 c

17.4 49.5 33-1 16.03 24.41 f
16•8 24.88 ^
18.4 23.64
14.43 26.02
20.65 26.38
21.5 26.63
22.5 26.91
23.5 27.17
24.55 27.41
25.6 24.73 just c
30.4 4.48 c,bft
30.9 5.58 bft
31.35 8.27 bft
31.8 16.03 bft
32.25 18.72 just

bft
32.6 18.14
32.9 17.30
33.35 16.19
33.95 14.74
34.35 13.62
34.95 11.70
35.35 10.68 c

12.3 52.7 35.0 25,4 35.5
26.25 35.3
26.9 35.2
27.6 34.6
27.7 34.5
28.65 33.1
29.5 31.4
30.55 27.1
31.1 24.4 Just c

t Sample clear during measurement but metastable

185



TABLE 4.7
Conductivity in the Brij 30-Hr>O-hexane system

A Measurements made with the platimum cell with 
samples containing 1 0% water.

Sample Sample Composition Temperatur e K
numb er Brij 30 h2o 

% (V7A 0
hexane
% W \ f )

/°c /^Sm 1

1 10.0 10.3 79.7 33.2 0.7

34.1 0.8

34.4 0.8

34.4 0.3

35.8 0.7
37.2 0.7

39.0 -

6 30.1 10.1 59.8 0.0 3.90
7.7 9.72

18.2 16.3
23.2 20.6
32.7 24.3
40.7 26.9

10 40.6 9.9 49.5 0.0 9.34
7 • 7 12.6

18.2 18.1
23.2 22.1
32.7 26.8
40.7 31.6

15 50.2 10.2 39.6 0.0 9.43
7.7 13.4

18.0 20.6
23.2 26.8
32.8 33.9
40.7 41.9

21 59.1 10.2 30.7 0.0 36.3
7:7 31.3

18.0 76.O
23.2 93-5
32.8 116.4
40.7 139.0

28 69.9 9.9 20. 2 0.0 134.1
7 • 7 190.6

16.1 238
23.2 344
32.8 4l8
40.7 497

slight
haze
slight
haze
slight
haze
slight
haze
slight
haze
slight
haze
c
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36 79.6 10.1 10.3 7.8 4il
17.3 613
24.9 796
33.2 1020
41.4 1231

B Approximate results obta ined with the copper cell with-
sample s containing more than 10/6 wat er •

Approximat e composition Temp. H _
Brij 30 H2° hexane / c //Sm
?o(W/T7) XI)

OC-t 10 20 70 33 2
40 1.7

4 10 30 60 33 1.3
3 20 20 60 27 6

33 3 • 2
7 10 40 30 27 0.6
8 20 30 30 27 7
9 30 20 30 22 3

27 7.3
33 9.3

12 20 40 4o 18 3
20 1-2
22 2

13 30 30 4o 20 20 9 9
27 3

14 40 20 4o 18 8
20 6
22 ~4
27 6
33 7.6
40 10

17 20 30 30 16 0.7
18 30 40 30 20 0.4

22 0.4-0.8
19 40 30 30 27 2

33 1.7
20 30 20 30 27 17

33 21
23 4o 40 20 33 5.4
26 30 30 20 40 63
2? 60 20 20 40 730 ,
33 70 20 10 33 4. 4x10-

40 4.6x10-

18?
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TABLE 4.7 Cont'd.

C Approximate results obtained with the copper cell in 
the narrow salient ( ^-region)

Sample composition Temperature HoĈ\
►-JP

•rj \
 

•HU w
P 

^

H o0
Z W w)

hexane
%(w/w)

/°C /mSm

20.0 76.0 4.0 32.9 19.6
22.0 73 0 4.5 31.3 19.8
27.0 66.9 6.1 33.0 17.1
20.1 77.4

65.3
2.5 33.7 22. 0

29.2 3.3 37.0 24.1
40.1 50.3 9.6 33.7 7 • 98

TABLE 4.8

Conductivity in the E^-Ho0 system

E4 NaCl Temperature H
%(W/W) Solution

?o(W/¥) / ° c / m ^

9.9 90.1 25.0 85.9mS
19.9 80.1 23.0 60,3mS
30.0 70.0 25.0 40.lmS
40.0 60.0 23.0 24.8mS
30.0 50.0 24 .9 13.83mS
60.4 39.6 24.9 6.83 mS
70.3 29.7 24.9 3.l4mS
80.4 19.6 24.9 1.24mS
89.9 10.1 24.9 404/ts

ti H 24.9 241 juS
10.4 89.6 0.0 43.3mS

9.7 38.2mS
r 20.4 76.4mS

30.0 94.7mS
39.3 113 • 3mS
30.8 139.4mS
39.9 139 • lmS

0.LfNcm 73 • 0 0.0 23.3 niS
9.7 32.5mS

20.4 44.7mS
30.0 36.7mS
39.4 69•7mS
50.8 86.6mS
39.9 101.7mS

40.2 59.8 0 . 0 9.9 2mS
9.7 l4.70mS

20.1 21.12mS
30.1 28.33mS
39.4 36.2mS
50.1 47.3mS
59.9 36.2mS

188 Cont1d .



TABLE 4 .8 Cont’d.

55.0 45.0

70.1 29.9

84.8 15.2

100.0

0.0 3•46mS
9.7 5 .49niS

20.1 8 . 44rnS
30.1 12.05inS
39.3 , 16•l4mS
51.0-0.3 21.97mS
59.9 27.02mS
0.0 880/<S
9.7 1.54mS

18.9 2•4 4mS
29.8 3.94mS
39.4 5 .69^S
50.7 8.OlmS
59.9 10.20mS
69.7 12.94mS
8O.5 16 • 3niS
88.1 18. 9niS

0.0 182//S
9.7 343/^S

18.9 5 7 8 ^
29.8 985/tS
39.4 1.45mS
50.7-0.1 2.l8mS
54.9 2.8OmS
69.7 3.7OmS
80.5 4.76mS
88.1 5.6 OmS

0.0 5 .6 9/US
20.6 l6 . l6yUS
39.4 30.8/fS
59.6 5 5.2/<S
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TABLE 4.9

Conductivity of the sodium chloride solution used

Temperature ^/mSm ^
/ C

0.0 63.9,
4.0 71.6

12.1 88.9
17.0 100.0
19.7 106.0
24.8 118.0
25.O 117-8 ,
29.7 131-8
29.8 132.0
29.9 130.2
40.3 156.7
54.3 194.3
60.5 208
64.4 217
69.2 238
72.7 238
76.0 244
81.9 260
82.9 264
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Table 4*12. Self-diffusion coefficients of C^E^-I^O samples. //o",0rv)V'/

03£

ZO O&O

02.9 Oil

3 2

'*222

113

GO

’V1 indicates results obtained for the viscous
isotropic liquid crystal.(Also Table 4«13*)
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Table 4.15* Self-diffusion coefficients of C^gEg-HgO samples. //cT’0™^"' 
Upper figure in square refers to surfactant diffusion, 
lower figure to water diffusion.

38-2. loo

22

327

70

76
J*33•672•796 

I7-1
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i ArsJLcy ft . JL ft

NIIR linevridths in the c< -region of the C E^-H^O system

Sample
# C12B4 (W/ \ I )

20

30

40

Temp­
erature
/°C

3104
i4f
174
2p

84124
17-1
214

14r: JLJ 2
104
134
194
23

Linevridth at half height 
oxyethylene chain hydrocarbon chain

Ah 
6
544
3
4

verv

4444
3
3

broad

very broad

5444
4
4
3
very broad

/Hz

broad
broad
21
13
12

very broad

broad
29 approx. 
2?
14-|
io|
very broad

broad
30 approx. 
21
164
13
very broad

TABLE 4.13

Compar ison 
heptane systems
Comparison of the Brij 30-H^O-hexane and Brij 30-Ho0-

Samp1e Temperature range of the isotropic liquid region
number T. . o^ TT o~Heptane C Hexane C

12 19 - 28 18 - 27
13 20 - 36 20 — 34
14 -1 01 iuv — 43 16 - 4l
17 no clear region 17 — r> r>
18 204 - 29 18 — 28
19 23 - 38 224 - 34
20 19 - 47 19" - 47
23 33 - 3 H 31 - 34
26 4i4 - 464 4l — 44
32 37“ - 4l 36 - 4l
33 42 48 42 - 50
34 42 - 584 46 - above
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5.1 SURFACTANT-WATER SYSTEMS

5.1.1 C_ E/- - WATER12 6_________
5.1.1.1 THE PHASE DIAGRAM

Fig. 4.2 shows the phase diagram of 0E^ and water.

A continuous isotropic liquid region extends from 0% 

to lOO/o C10E^t though its temperature of occurrence varies 

and its range of stability with temperature (0-60°C at 

2% by weight; 70-above 95°C at 65%). Hexagonal and 

lamellar liquid crystalline phases occur, separated by 

a cubic liquid crystalline phase, the hexagonal appearing 

first at lowest surfactant concentrations. At con­

centrations below that at which the hexagonal phase occurs 

an isotropic liquid region exists which shows streaming 

birefringence, evidence of anisotropic aggregates; this 

occurs between about 31% and 37% surfactant and about 

5 and 35°C. The viscosity in this region is slightly- 

greater than in the regions not exhibiting streaming 

birefringence.

The phase diagram is essentially the same as that 

of Clunie, Goodman and Symons (7?)i except for the cubic 

phase which these authors describe as a fluid isotropic 

phase continuous with the large isotropic liquid region. 

The cloud point is about 5°C higher in the present work; 

this is most probably due to differences in the small 

amounts of impurities present. The narrow two-phase 

regions bordering the liquid crystalline phases are not 

shown in the present work, nor are the solid hydrates 

which are not of interest here.
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5.1.1.2 CONDUCTIVITY

The solutions used for conductivity measurements 

were made up from ^2.2^6 anc* 0 .01M sodium chloride 
solution. The presence of this concentration of sodium 

chloride had no significant effect on the C 

phase diagram, or on any of the phase diagrams of the 

Cf^E^ systems studied.

Figs. 4.31 and 4.32 shows the conductivity of 

different compositions in the C^Eg-H^O system as a func­

tion of temperature. The curves are of a similar form 

up to and including 35 .0/° ln 'this sample con­

ductivity measurements were carried out in the region 

exhibiting streaming birefringence but there is no 

evidence of any discrepancy in the conductivity of this 

region.

Above 44.9/o ^22^6 s*iaPe curve changes;
below 44.9% d2H /dT1 is just positive-/^ is almost linear 

with T; at 55-1% d3K / d T a is negative. Fig. 4.32 shows 

the conductivity of samples containing 67 • 9/°, 79-9% 

and 89*5% ^12^6 Srea‘tcr detail than can be shown on the 

scale of Fig. 4.31. At 67*9% there is a maximum in H • 
above 87°C H decreases. Further discussion of behaviour 

of this type is given in section 5*1.2.2. At 79-9% 

dlH / dTx is probably just negative whilst at 89.5% it is 
probably just positive.

The alternative to the above treatment is to consider 

the conductivity as a function of composition at a given
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5•1.1.2 Cont'd.

temperature. It is not possible to take a line across 

the phase diagram such that an isotropic liquid phase 

exists from 0% to 100% at a given temperature.

At 5 2-J Cof the compositions used only 6?. 9% 0Eg is not 

liquid. Fig. 4.34 shows that M at 33°C plotted as a 

function of composition gives a smooth curve indicating 

that any major structural change, such as phase inversion, 

takes place gradually. It is possible to plot H at 76°C 

from 44.9% to 100% C^0Egj again no discontinuity is 

obs erved.

Figs. 4.34 and 4.28 show Af at 33°C and 0°C as a

function of composition for both C^2E^-Ho0 and tetra-

ethylene glycol (E^) - Ho0. was used for comparison;

it is soluble in water from 0% to 100% and does not

form micelles or liquid crystals; ether oxygens will be

hydrogen bonded in the water as are those of the ethylene

oxide chain of C_0Er . The curve for C. nE/- falls above12 b 12 6
that for E^ at both temperatures and also at 32 ( F i g , / t . f f ) . A t  

33° the curves are indistinguishable on the scale shown 

beyond 80%. At 85% at this temperature H is virtually 

the same for and £^ . Pure 0Eg has a conductivity

lower than that of E^ (K of C-^ Eg = 7*7 /uSm , of E^ =

47 /iSm  ̂ at 33°)• At the lower concentrations the magnitude 

of K for both solutions is typical of water continuous 

solutions. In the case of E^ the complete miscibility with 

water and absence of any tendency to form micelles indicates 

that the low concentration water continuous solution 

changes continuously to an continuous solution. The
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5.1.1.2 Cont’d.

C^r,Ê  appears to behave similarly though micelles are 

known to be present at the lower concentrations in the 

water continuous medium. The presence of the hydro­

carbon chains in the pure can explain at least

qualitatively, the lower conductivity than that of E;, (88). 

If the hydrocarbon micelle cores are considered as an 

excluded volume and the oxyethylene chains are dissolved 

in the water, the concentration of oxyethylene chains 

in the water is equivalent to a lower concentration of 

Thus the conductivity of 25% (W/W) CnnE^ might be com­

pared with the conductivity of 20% (W/W) E , or the 

conductivity of 2 5% (W/W) 0E^ might be compared with

that of 15% (W/W) Ej,:

4 at 0°C H at 0°C

25% c10E6 30mSm“1 20% E^ 29mSm_1

25% C 32mSm~1 15% IS. 36mSm_1

The excluded volume has been based on the hydro­

carbon chain length but the lnner part of the oxyethylene 

micellar mantle may also be regarded as part of the 

excluded volume since there can be little movement of 

ions in this region; thus the E;, concentrations used for 

comparison are only approximate.

Fig. 4.28 shows plots of the Bruggeman and Maxwell 

equations compared with the results for Cj 0E^ , C^r.Ê  and
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E^ at 0°C. These equations are applicable to macro- 

emulsions with spherical droplets, (Section 2.1.1).

The solid line represents the semi-empirical equation 

of Mackay and Agarwal (?l) (Sections 1.5.6 and 2.1l):

H  = (1 - 0)2 *̂  5.1
K

where K is the measured conductivity, the conductivity 

of the continuous phase and 0 the disperse phase volume. 

The weight fraction of C^0Eg has been used for 0 here; 

the density of (0.97gcm  ̂ at 29°C (96)) is such

that this is close to the volume fraction. This is not 

necessarily the same as the effective volume fraction 

since water is hydrogen bonded to the oxyethylene chains 

of the micellar mantle and trapped between them. Move­

ment of ions is likely to occur to some extent in the 

outer part only of this mantle. The effective volume 

fraction may also change slightly with temperature.

How*ever, this appears to be a good approximation to the 

effective value of 0 , since there is good agreement 

between this equation and the experimental results. This 

good agreement with equation 5*1 extends to the con­

ductivity results for almost the whole of the isotropic 

region of the Cj(JE^-Ho0 phase diagram Table 4.2. The 

discrepancies occur at 90% C^0E^ which has measured 

values of ft considerably lower than those predicted by 

the equation at the lower temperatures of its existance 

( «/K0 “ 0.0021 compared to the theoretical value of
0.0032 at 22°C) and too high at the higher temperatures
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studied ( /fa - 0.0047 at ?6°) so that there is only 

agreement in the middle of its temperature range at 

about 50°C.

The other sample showing some discrepancy is 68% 
which has the anomolous conductivity versus12 6

temperature curve* Even here the discrepancy is not 

great; /̂h<c 0*064 at 76°C and C. 06l at 85.5°C whereas

the theoretical value is O.O58.

It is remarkable that the equation developed by 

Mackay and Agarwal for their four component micro- 

emulsion system should fit the two component surfactant- 

water system so well. The fact that it fits over so 

much of the phase diagram suggests that no major 

structural changes occur over most of the isotropic 

liquid region. Mackay and Agarwal suggest that the 

principal factor responsible for lower values of the 

exponent (n) at higher oil content in their 0/¥ system 

(section 1.5 *6) is an increase in mean droplet size 

leading to polydispersity. As n decreases in their 

system it tends to the value in the Bruggeman equation. 

Thus the constancy of n may suggest that the system is 

monodisperse and/or of small droplet size.
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Self-diffusion measurements have been made for both 

the water and the surfactant in this system.

At high water content the diffusion coefficient of

the water is slightly less than that of pure water whilst

the diffusion coefficient of the surfactant is a factor

of 100 smaller. This agrees with the existence of

C ^ E g  as micelles in a water continuous medium with very

little monomeric C Ê- (monomers would tend to increase1 u
the diffusion coefficient); the surfactant monomer

concentration in this region is approximately the same
— 9 — 3as the cmc (~ 4 x 10 “ gdm (89)). As the concentration 

of C^nEg is increased, at constant temperature, the 

diffusion coefficient of the water decreases gradually 

and continuously. It was not possible to measure it 

beyond 80/6 C^r,Ê  because the signal due to the surfactant 

protons swamped that due to the water protons. We have 

analysed the self-diffusion coefficients of water at 

42°C as a function of concentration as follows (90):

The self-diffusion of molecules in an isotropic 

liquid which contains a number of different sites, i, 

is given by:

D = I p D 5.2
i

where p. is the fraction of molecules in site i.

In the present system wTe have twro sites for water (free
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or associated with surfactant), and two sites for sur­

factant (monomer or micelle). We anticipate that water 

diffusion will be much faster than micelle diffusion.

For water molecules, the volume occupied by the hydro- 

phobic part of the micelle, the hydrocarbon core, will 

represent a barrier to diffusion. In this case water 

diffusion is given by:

D = (1-V )(p„D„ + p D ) 5.3m f f s s

where V is the volume fraction occupied by the 

micelle core and subscripts f and s refer to free and 

surfactant (micellar) associated water. A third term, 

involving surfactant monomers is neglected because it 

is small. The surfactant bound water fraction is given

by p = Kc where c is the weight fraction of sur-s s s
factant, and K is the weight of water bound per unit 

weight of surfactant. Equation (5-3) can be arranged:

~ =  (l-hc ) (l-Kc (1-Sf-)) 5.4s s Df

Vm has been replaced by hcg with h representing the 

fraction of nonionic surfactants volume occupied by 

the hydrocarbon core. This can be determined from 

known densities. Values of water diffusion were measured 

at 42°C, where from the phase diagram (Fig. 4.2) a large 

range of compositions form isotropic solutions. The
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self-diffusion coefficients are given in Fig.4.55

(points) together with a curve calculated from equation

5.4 A good agreement between the calculated line and

experimental points is obtained with h=0.43 and

K(l-D /D„) = 1.1. The value of h was estimated assuming s i
equal densities for ethylene oxide groups and water

and a density of 0.9 for the alkyl groups. A change in

this value by + 10% has only slight effect on the

calculated, values. The value of D , for the local* s
a s s o c i a t e d  v ra te r

diffusion of surfactant/within the micelle is likely 

to be of the order of 5 x 10 ^ m V V l o w e r , so (l- ̂ s/D^) —'i
0.9-1. This implies that the fraction of water as­

sociated with the micelle is approximately equal to the 

weight of surfactant. The amount of water involved is 

far higher than that required to hydrogen-bond to ether 

oxygen atoms, and suggests that a proportion of the water 

is ’trapped’ within the polyethylene oxide network.

Insufficient results were obtained at other temp­

eratures for a similar analysis to be carried out.

Fig. 4.53 shows surfactant diffusion at 42 and 76°C.

At high water content the monomer concentration is
— 2 — 3approximately the same as the cmc ( ^ 4x10 gdm );

-9 2 -1assuming a monomer diffusion coefficient of 10 m s ' ,

the contribution of monomer to the observed diffusion
-13 2 — 1coefficients is less than 4 x 10 m^s . Since this is
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far smaller than the measured values it can be neglected

(90). Thus at high water content the measured diffusion 

coefficient is that of the micellar surfactant.

At high surfactant concentrations interactions

between micelles are expected to lead to a reduction

in the surfactant self-diffusion coefficient. However,

D increases with surfactant concentration. Thus either

the monomer contribution to the self-diffusion increases

or the micellar size decreases. The latter appears more

likely; the pure surfactant is thought to consist of

small aggregates, the aggregation number being between

about 2 and 20 (91). For pure surfactant the plot of

In D versus T  ̂ (where T is the temperature in degrees
(30±lk T i r W ' ^

Kelvin) from which the activation energy^may be determined, 

is a good straight line, indicating no change in 

aggregate state with increasing temperature.

At high surfactant coneentrations the D values of 

water (Table 4.13) are at least an order of magnitude 

higher than those of the surfactant indicating that the 

water is located in the continuous phase, presumably 

consisting of water plus oxyethylene chains. The highest 

concentration at which the water self-diffusion was 

measured was At this concentration therefore the

surfactant would be expected to exist as normal micelles 

with water plus oxyethylene chains forming the continuous
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phase. The ratio of the surfactant hydrocarbon and 

oxyethylene chains would tend to favour this: the

hydrocarbon chain length: oxyethylene chain length

ratio is very approximately 12:19 (by counting the 

number of atoms in the chains).

The surfactant self-diffusion increases continuously 

beyond 76.5%. There is no sudden change which might 

occur if inversion occurred, other than by some very 

gradual process. The results are consistent with the 

conductivity measurements which did not indicate in­

version to a hydrocarbon continuous system.

Fig. 4.54 shows surfactant diffusion for samples 

containing less than 30% 6^r;Eg. The hexagonal phase does 

not occur at these compositions and the clear region 

extends to lower temperature. At 2.5°C the surfactant 

self diffusion coefficient decreases markedly with in­

creasing surfactant concentration, by more than a factor 

of 10 between 8 .5% and 29.5% cr  E£, • At 22°c the rate of 
decrease is much less (less than a factor of 3 between 

8.5% and 29.5% 2i/E6 ^’ anc  ̂ diffusion coefficient is
lower than at 2.5°C at both 8.5% 'and 17.8% 0Eg ; at 

29.5% it is slightly higher. By 42°C the surfactant 

again diffuses faster than at 22°C though at 8.5% 
the diffusion is still slower at 42°C than it is at 2.5°C. 

Further results are required to confirm those already 

obtained in this region and to fill in the gaps, so that
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only tentative suggestions can be made concerning the 

behaviour of the surfactant in this region.

Most of the work on C7 micelles in aqueous

solution concerns dilute solutions. Balmbra et al (92) 

found, from light scattering measurements that the 

micellar molecular weight of C1 in water at con­

centrations below 2% (W/W) increased exponentially from 

15 to 45°C (they found the cloud point to be 48°C). They 

deduced that micelles of the size to be found above 2-5°C

could not be spherical and suggested a rod shape. From

more recent work (8 ) it appears that their experimental 

results are due to micellar aggregation, Ottewill et al 

(93)i working with Dr0 solutions at concentrations of 1% 
or less, found from sedimentation velocity and intrinsic 

viscosity, that at 5°0 the micellar molecular weight was 

not concentration dependent. Their results corresponded 

to heavily hydrated spherical mecelles with a radius of 

26a°. In the temperature range 15-35°C the micellar 

molecular weight increased considerably. The results 

suggested that the spherical micelles were aggregating 

to form larger units and that the aggregation processes 

were both temperature and concentration dependent.

Corkill and Walker (94) also found a transition temp­

erature of 15°C, wThich coincided with a change from the 

formation of a single micelle to the formation of a 

distribution of micelle sizes - later work suggests micellar
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aggregation rather than a size distribution. At 5°C they 

found considerable evidence for monodisperse micelles, 

Tanford et al (4) m©de sedimentation and gel chroma­

tography measurements at 25°C. They found small micelles 

only at the very lowest concentration employed, larger 

micelles occurring at higher concentrations (still below 

about 3%)« The equilibration between the initially 

formed small micelles and the larger micelles was a 

relatively slow process suggesting that the larger micelles 

were formed by a mechanism differing from that of the 

formation of the initial small micelles; this would 

agree with a process of micellar aggregation. At 5°C 

where no secondary aggregation occurs Tanford (93) 

concluded that they are of a disc-like shape.

Thus at 8.5% C-, at 2,5°C the system may consist

of monodisperse micelles which are not aggregated and 

hence the surfactant self-diffusion coefficient is 

relatively high (0.165 x 10 m^s ^). At 17.8% and 2.5°C 

D is less than at 8.5% and at 29-5% it is reduced still 

further; if aggregation does not occur at this temperature 

and at these concentrations this decrease in D is likely 

to be due to some combination of increasing micellar size 

and increasing micellar concentration (leading to more in­

teraction between micelles) as the surfactant concentration 

is increased. At 35% ^1°^5 streaming birefringence is not 

observed at 2.5°C, whereas it is observed at higher 

temperatures, suggesting that the aggregates are not
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markedly anisotropic at this temperature.

At 8.3% C^r,Eg at 22°C the surfactant self-diffusion 

coefficient is less than half its value at 2.3°C. 22°C

is above the threshold temperature for micellar ag- 

greation (13°C) in more dilute solutions, so that this 

decrease in D is likely to be due to micellar aggregation. 

The same is true at 17.8% C^0Eg. At 29*3% nEg although 

D at 22°C is less than that of 17.8% at the same temp­

erature, it has increased from its value at 2.3°C.

29.3% at 22°C is on the verge of the region exhibiting 

streaming birefringence. Anisotropic aggregates would 

be expected to start developing at a concentration below 

that at which the streaming birefringence is first ob­

served by the method used here. Since the region ex­

hibiting streaming birefringence is adjacent to the 

hexagonal liquid crystal phase the anisotropic aggregates 

are likely to be cylindrical..

By 42°C the rate of surfactant diffusion has in­

creased. At 8.3% C^0Eg D at 42°C is still below that at 

2.5°C, presumably because of the considerable effect of 

secondary aggregation and possibly a larger micelle size.

A few measurements have been made in the viscous 

isotropic phase which occurs between the lamellar and 

hexagonal phases. Only two values for water diffusion have 

been obtained in this region at 68.5% and 10°C, where

D , (2.2 x 10 is one tenth of the value for pureW a  I or
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water at room temperature, and at 6l.8/o and 32«5°C

—10 2 —1where Dwa^er (7*3 x 10 m s ) is rather higher, the 

increase being mainly due to the increase in temp­

erature. The water diffusion is of the same order of 

magnitude as that in the water oxyethylene chain con­

tinuous structure at high surfactant content and higher 

temperature. The surfactant self-diffusion coefficients 

in this region range from 0,03 to 0.09 x 10 *^m^s ^

(Tables 4.10 and 4,11) which are of the same order of 

magnitude as those of the surfactant in the water- 

continuous micellar system below 35% ^12^6 * These results 
suggest that this phase consists of surfactant micelles 

in a water-oxyethylene chain continuum, or a bicontinuous 

structure (section 1.4.7).
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5 .1.2 C E .  - WATER

5.1.2.1 THE PHASE DIAGRAM

The r>E^-water phase diagram (Fig. 4.1) shews three 

separate isotropic liquid regions, labelled for con­

venience , /? and ̂  . The o< -region shows streaming 

birefringence, evidence of anisotropic aggregates, at 

concentrations of surfactant above about 10% by weight 

and at temperatures below 9°C. The /I and ^ regions approach 

each other but are not connected, there being a gap 

between about ^k% and 62% C^r,Ê . T£ie lower phase boundary 

of the /3 region above 90% surfactant is not shown in 

detail; the occurrence of crystal hydrates might be 

expected here as in the Cn r?S^ - K o0 system (section 5 •!•!)• 

The 5 ~regi°n 5ias a very narrow temperature range of 
between 1°C and 2°C over most of its compositions. Below 

about l6%> surfactant it appears blue translucent becoming 

increasingly so with decreasing surfactant concentration. 

This is an indication of the presence of particles or 

aggregates large enough to scatter light (^lOOnm) in the 

visible range.

Only a lamellar liquid crystal occurs in this system 

above 0°C; the smaller oxyethylene group is less 

favourable for the formation of cylindrical aggregates.

A hexagonal liquid crystal phase has been found below 0°C

(9l). The phase d i a g r a m  shown in  ref.SS

.. is essentially

the same as that shown in Fig. 4.1, though its temperature
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of occurrence is about 5°C lower. The melting point of 

the surfactant itself is about 4°C lower. The gap 

between the and /3 regions is about 6%

compared to 10/o in the present work (Fig. 4.1). These 

differences are likely to be due to impurities in the 

surfactant which differ between batches.

5 .1.2.2. CONDUCTIVITY IN THE C19E^-Ho0 SYSTEM

Fig. 4.2? shows the conductivity of compositions in 

the low temperature clear region, o< . The curves are in­

distinguishable from linear. At k0% there appears

to be an inflexion but further results would be required 

to show’ whether this is merely due to experimental error. 

The presence or absence of streaming birefringence does 

not appear to be related to any change in the conductivity.

Fig. 4.28 shows the variation of conductivity with

composition at 0°C. At 4°C the behaviour is similar. The

curve at 0°C is very close to that for the C oE^-Ho012 6 2
system at the same temperature; the conductivity is 

greater than that of E^-H00 samples of the same percentage 

(by w’eight) composition. The same considerations (in 

particular the excluded volume effect of the hydro­

carbon) apply as were discussed in section 5*1«1«2. There 

is a marked increase in the viscosity of the samples with 

increasing Cp2^4 content, as observed on stirring in the 

tube with the thermometer. However, the conductivity
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does not appear to reflect this. E^-Ho0 samples do not 

show the same increase in viscosity; the C 0E,-Ho0X *2 ft £

curve remains above that of E,(-Ho0 by an amount which 

changes only slightly from lOJo to 50%.

Fig. 4.30 shows conductivity in the /3 -region. At 

67.9% C1 it was possible to make two measurements 

at 71.6 and 72.?°C; the decrease in H with increasing 

temperature, from 9.01mSm  ̂ to 8.88mSm ^, was greater 

than the experimental error. At 75-2% C^0E^, n again 

decreases with increasing temperature; at 80.3% there 

is a maximum at 75°C; at 89-9% H increases with temp­

erature and d‘ K /dT~ is positive; at 100% (not

shown) H increases with temperature. In the pure C^0£^ 

the rapid absorption of water by the sample tended to 

increase the conductivity further.

The decrease in conductivity with increasing 

temperature occurs only over a very limited part of the 

phase diagram, in the -region, at high temperature and 

close to the phase boundary between and +wTater, and 

in the narrow salient below 70% ^t $9.9%

the conductivity measurements were not made at a suf­

ficiently high temperature (because of practical con­

siderations above 80°C) to show whether a decrease in
2 2conductivity or a change in d‘ K /dT to negative from 

positive occurs at above 82°C, though the increasing
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gradient of the graph suggests that k is not about to 

decrease at a temperature just a few degrees higher.

The decrease in K with temperature is presumably due 

to some structural change in the system. This may be 

related to the inability of the system to retain the 

quantity of water present and hence the separation of 

water at a temperature several degrees higher. Localisation 

of some of the water as very small droplets (still within 

the one-phase system) would reduce the conductivity.

At these compositions H is very sensitive to the per­

centage of water present; from a graph of n versus 

composition at 72°C it is possible to estimate that at 

80% C^r,Ê, a reduction in the quantity of water present 

from 20.0 to 19*5% produces a reduction of 0.2mSm  ̂ in k .

At 75.2% C^0E^ an effective reduction by a maximum of 

about 2.5% (i.e. from 24.8 to 22.3%) in the water in the 

continuous phase is required to account for the decrease 

in conductivity over the complete temperature range 

(64.2-79•9°C). The systems contain sodium chloride so 

that if there is a tendency for the ions to be prefer­

entially located in the isolated water "droplets" the 

above effect will be accentuated. Thus isolation of 

small amounts of water several degrees below the temp­

erature of phase separation may account partially if not 

completely for this anomolous behaviour of the conductivity.
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Since the^region is so narrow, series of measure­

ments at varying temperature and fixed composition 

could not be made. Also the temperature of the in­

dividual measurements across the region is not the same, 

because the temperature of occurrence of the region 

changes. The values for the E. system plotted for com­

parison are at the same temperatures as the C^0E^ 

system so that the E^ line can be compared directly with- 

out regard to the varying temperature. The Cir,E/i-Ho0 

line is lower than that of E^-Ilo0. Below k0% 
the discrepancy is large and increases with increasing 

dilution to over 60mSm  ̂ at 3% . Above k0% C^nE^

the discrepancy is less - about lOmSm ^. The 0E^ 

curve continues to fall below that of , in the /3 region.

Regardless of the behaviour of E^ and the problems 

of comparison outlined previously (section 5 »1 «2) the 

conductivity of the £  region is exceptionally low. 

Extrapolating the curve back to the axis at Q% C^0E^ 

would give a value for H nearly 80mSm  ̂ below that of 

sodium chloride solution at a similar temperature. One 

reason for this behaviour could be large micelles of 

some shape such that they tend to obstruct the flow of 

charge, or aggregates of smaller micelles. Both of 

these possibilities could account for the blue trans- 

lucence of the system below about 16% C-j 0E^ which is 

evidence of light scattering by bodies in the solution.
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Tanford et al (4) investigated micelle shape in

the C 0EV series and concluded that disc-like micelles 1 2 X
occurred in such systems except for very high values of 

x (at least 32) where sperical micelles occurred.

However, these disc-like micelles were only proposed for 

systems where x > 8.

The systems were also considerably more dilute than 

those at present under discussion ( 1%) and the

temperatures were 35°C or below,

Boyle (96,97) has used dielectric measurements to 

study the present system. The oc - and -regions agree well 

with a theoretical equation for an oil phase dispersed, 

as spherical droplets, in a continuous aqueous phase.

The equation converted for conductivity instead of 

dielectric results is:

H TTI
77 = (1 - 0) 1 A 5.5

where 0 is the disperse phase volume and 'A* is y for 

spherical droplets so that the equation reduces to the 

Bruggeman equation for spherical droplets. 'A1 is the 

depolarising factor which can be calculated for prolate 

or oblate ellipsoids for different axial ratios. Boyle 

found that the results for the region could be fitted 

if oblate ellipsoidal micelles (i.e. disc-like micelles) 

were present the axial ratio increasing with increasing 

dilution.
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In the regions (c< and /? ) where Boyle suggested 

spherical micelles the Bruggeman equation does not fit 

the present conductivity results. Equation 5-1 fits 

well in the °< -region but not in the /Z- region where 

the results are rather lower than this equation would 

suggest (Table 4.1). 0 in equation was calculated
_ o

using a value of 0.94gcm for the density of 0E^

(the density at 23°C (96)).

In the ̂ -region the results are considerably lower 

especially at lower concentrations. It is possible that 

axial ratios for ellipsoidal micelles could be calculated 

using equation 5.1 and a factor similar to the 'A' 

in equation 5*2. Equation 5»2 does not fit the con­

ductivity results when the values of ’A' derived from 

Boyle’s dielectric results are used: e.g. at 10% C., r

the axial ratio was found to be 3«6 for oblate spheroids9 

with an 'A' value of 0.68; the calculated conductivity 

at 58.5°C is l45mSm  ̂whereas the measured conductivity 

was lO^mSm

The alternative to ellipsoidal micelles in ^  is 

aggregates of micelles, possibly spherical micelles. 

Tanford et al (4) suggested that micelles formed by 

n-alkyl polyoxyethylene surfactants might aggregate where 

the polyoxyethylene chain length falls below a critical 

level. They confirmed the phenomenon of concentration - 

dependent growth of particle size for C12E6 - Tl,ey 
suggested that the large particles might be formed from
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small micelles by association between polyoxyethylene 

groups. Staples and Tiddy (8) have shown by nmr that 

for small micelles aggregate to form larger

units as the cloud point is approached. They propose 

a looser association than Tanford et al based on the 

balance between the Van der Waal’s attraction force 

and a hydration-repulsion force arising from the attraction 

between surfactant head groups and water which gives a 

repulsive force between micelles. This force decreases 

with increasing temperature as the hydration decreases 

with increasing temperature. However in samples in the 

C12E6-H2° system where secondary aggregation is known 
to occur, no evidence of a reduction in conductivity, 

which could be ascribed to this, was found. The maximum 

in conductivity with increasing temperature at 67-9%

Cj 2^6 more likely to be due to isolation of small
amounts of water prior to phase separation. The type of 

secondary aggregation proposed by Staples and Tiddy for 

the C^E^-HgO system is a loose association which would 

tend to present little barrier to the movement of charge. 

Thus secondary aggregation of this type does not seem a 

likely explanation of the low conductivities recorded 

in the -region of the system.
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The self-diffusion coefficient of water in C^E^-H^O 

mixtures is shown as a function of composition for the

steadily with increasing surfactant concentration from 

values approximately half that of pure water at 10.0?6

plus oxyethylene chain at high Ĉ ID/j. concentration) is 

the continuous phase and that its self-diffusion is «. 

hindered by the surfactant micelles. At low con­

centration extrapolation of the curve back to the axis 

at 0% would give a value close to half of that for

pure water; this is similar to the behaviour of the 

conductivity at these concentrations (Fig. 4.29); the 

reduction in the conductivity and the self-diffusion of 

the water at the lov,r-surfactant end of the £  -region is 

larger than would be expected on the simple excluded 

volume basis and hence the proposal of some sort of 

secondary aggregates of ellipsoidal or lamellar micelles. 

That very large ellipsoidal or lamellar micelles are not 

present is indicated by the fact that self-diffusion 

measurements were possible by the technique used. If 

the nmr line were very broad, as in the case of large 

(^lOOnm) micelles, (8) this technique could not be used. 

The light scattering (causing the blue translucence in the

4.49. It decreases

Cj2^4 to something less than a quarter of that value at 

79-l?o C^E^. These values tend to confirm the con­

ductivity measurements and indicate that the water (water
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^  -region at lower concentrations) must be due to 

aggregates of micelles rather than the micelles them­

selves, The behaviour of the water diffusion coefficient 

in the 2̂ -region of the C^oE^-Ho0 system is different 

to that in the isotropic liquid region of the 

system where the water diffusion coefficient decreases 

smoothly and continuously from the value for pure water 

(section 5 «1* 1»3)«

The water diffusion coefficient continues to de­

crease in the -region of the C E^-Ho0 system. No 

discontinuity (beyond the limits of experimental error) 

is observed at the gap between the - and /2-regions.

The system is still water - oxyethylene chain continuous.

Measurements of the water diffusion coefficient have 

been made in the o> -region and show a decrease with 

increasing surfactant concentration (Fig. 4.32). The 

results are in agreement with the system being water- 

continuous and the decrease in the diffusion coefficient 

with increasing concentration is likely to be due to the 

increasing excluded volume of the surfactant micelles and 

to the increasing amount of water hydrogen bonded to 

the increasing number of ether oxygens. Only one 

measurement was obtained for water at a comparible 

temperature and composition in the system; this

is of the same order of magnitude, which is consistent 

with the phase structure being similar.
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Surfactant self-diffusion has been measured in 

the -region (Fig. 4.50). The results show considerable 

scatter which may partly be due to changes in surfactant 

aggregation occurring over the narrow temperature range 

of the region in addition to the experimental problems 

outlined in section 3.6. For C10EZ, -D,,0 samples the 

loiver surfactant D values in the ^  -region tend to occur 

at fractionally higher temperatures (Table 4.10).

Viscosity results in the Brij system (5.1.3-2 and 5.1*3«3) 

indicate that significant changes may occur over this 

narrow temperature range. At high water content such 

changes might have less effect on the ivTater-diffusion 

than on the surfactant. In the -region there is 

probably a slight rise in the surfactant diffusion co­

efficients with increasing concentration. In the/3-region 

there is a pronounced rise as in the C^nEg system at these 

concentrations. This may be due to decreasing micelle 

size as a result of packing considerations as in the 

C1 system. The magnitude of the surfactant self­

diffusion coefficient indicates that the surfactant is 

aggregated. Measurements of the water diffusion co­

efficient up to 79.1% Cp2®4 indicate that water or water 

plus oxyethylene chain is the continuous phase. Beyond 

this surfactant concentration there is no discontinuity 

in surfactant D values versus concentration which might 

indicate inversion. Thus it would appear that the sur­

factant exists as small aggregates even in the pure
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surfactant.

The activation energy graph for self-diffusion

in pure C^0E^ is a good straight line indicating that

no structural change occurs; the value obtained for
(27±l frTK "'mol'1) 

the activation energy/is close to that for C_,0Sg.

Values for the activation energy for surfactant self­

diffusion in 89.6% C^oE^-Do0 and 79.1/c C E^-H^O are 

similar, which is in agreement with the structure being 

similar•

The surfactant diffusion coefficient is higher in 

pure than it is in pure C Eg. This may reflect

a smaller aggregate size for an increase in

the proportion of monomers present could also have the 

same effect.

The surfactant self-diffusion coefficient has been 

measured in the o<-region in C10E^-D00 samples (Table 

4.10) and is consistent with the system being sur­

factant micelles in water. The surfactant diffusion co­

efficient shows little change with concentration, within 

the limited number of measurements made, suggesting 

that there is little change in micelle size. The large 

increase in viscosity (determined qualitatively only by 

stirring with a glass rod) on increasing the C con­

centration, is presumably due to increasing interactions 

between micelles. Streaming birefringence indicates the 

presence of anisotropic micelles or aggregates of micelles 

at the lower temperatures; it decreases with increasing
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temperature indicating a decrease in the anistropy of

the micelles or aggregates. This change in structure

is reflected in the non-linear activation energy plot
(F ig. 4,.51.).

for the surfactant diffusion ^Secondary aggregation of 

the type occurring in the CloEg-Ho0 system (8) may also 

be involved as the temperature is increased and cause 

deviation of this plot from linearity. Surfactant 

diffusion values for different compositions fall on the 

same curve.

High resolution nmr spectra of 20?o, 30% and k0%o

C^?E^-Ho0 show line-broadening of the surfactant peaks 

as the temperature is lowered (Table 4.l4). The changes 

are gradual. The hydrocarbon chain peak broadens con­

siderably; the oxyethylene chain peak broadens only 

slightly. This indicates that the motion of the hydro­

carbon chains in the anisotropic micelles is restricted 

considerably more than that of the oxyethylene chains 

which extend into the water continuous phase.
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5.1.3. BRIJ 30 ~ WATER

5.1.3.1 THE PHASE DIAGRAM

Brij 30 is a commercial surfactant having an 

average oxyethylene chain length of four units; higher 

and lower oxyethylene chain lengths will certainly be 

present. The hydrocarbon chains are nominally C7 r. 

but probably include some and 0 ^̂ .

The Brij-water system (Fig. 4.3) contains some of 

the features present in the C^nE,, -water system. The ^ 

and ft-regions have apparently joined, and this region 

starts to widen above about 2 3% surfactant so that its 

range increases from about 2°C at 23% to about 6°C at 

6O/0. Below about l6%o Brij the liquid is blue-translucent 

as in the C^E^-water system; below about 1 0% it is 

unstable. A lamellar liquid crystal occurs at similar 

compositions to that in the C^E^-water system. The ̂  

region is absent.

The fact that the phase diagram differs from that 

of C^0E^ is due to the mixture of chain lengths present 

and other impurities present.

5.i.3.2. CONDUCTIVITY

Conductivity measurements were made in the isotropic 

liquid region. In order that conductivity could be 

measured as a function of composition, measurements had 

to be made at slightly different temperatures below 3 5% 
Brij; the temperatures were chosen so as to be near the
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middle of the clear region for each sample. Differences 

in conductivity due to slightly different temperatures 

of measurement were small compared to the differenes due 

to changes in composition (Figs. 4.35-4.37).

At 1owt Brij concentrations the conductivity increases 

with increasing Brij concentration. This is not un­

expected since the liquid would be expected to be water 

continuous and increasing the Brij concentration increases 

the number of ions, as these are present as an impurity 

in the Brij. Calculations show, however, that the 

conductivity is lower than would be expected for a fully 

dissociated sodium salt at the concentration known to 

be present, from atomic emission determinations. For 

example, a 8 ,8 3% Brij-wrater solution has a conductivity 

of 17*nSm  ̂ at 3 8°C and a sodium concentration of 

5m mol/lOOOg; the conductivity of a 5m molar solution 

of sodium chloride at 60°C is approximately H O m S m  ~. 

Similarly a 3*5% Brij solution (not a stable solution) 

has a conductivity of 8mSm  ̂ at 57° 1 whereas a sodium

chloride solution of a similar sodium concentration of
-3 -12m mol dm , has a conductivity of approximately 45mSm

at 60°C. There are at least two factors which may be 

responsible for this. Firstly, the anion in Brij is not 

known; there may be several different anions present.

If any of these anions are included in the micelles then 

the sodium ions will be present as counter ions and the

22 2



5.1.3.2 Cont'd.

contributions of these sodium ions to the conductivity, 

will be much reduced. Secondly, the C Ê -H,_,0 system 

shows exceptionally low conductivity in the ^ -region 

especially at the lowest concentrations. The Brij 

system may be structurally very similar to the C^2®4 

system in this region, so that the conductivity may be 

reduced in the same way. This second factor would 

only account for part of the discrepancy unless the 

lamellar micelles or aggregates of micelles are very 

much bigger in the impure system. The above figures at 

8.83% and 3 .5% Brij do not allow for the excluded 

volume of the Brij itself which causes an effectively 

higher salt concentration in the aqueous phase but 

produces some barrier to conduction at the same time.

As the phase diagram is traversed the conductivity 

increases until 43% Brij when it starts to decrease.

At this y>°int the effect of the increasing phase volume 

of the surfactant becomes greater than the effect of 

the increasing number of ions present. There is no 

discontinuity in the conductivity across the phase 

diagram indicating that any structural changes are 

gradual.

Measurements of conductivity as a function of 

temperature at fixed compositions (Figs. 4.36 and 4.37) 

give results similar to those in the C^oE^-Ho0 system 

(Fig. 4.30). At 100% and 90% Brij the conductivity
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increases with temperature. At 80% Brij the changes 

in conductivity over a range of 25°C are only slightly 

greater than experimental error; there is a maximum 

at about 67°C. At Brij there is a decrease in con­

ductivity with increasing temperature. At 60% the 

temperature range is smaller (69° to 73°C) and there is 

a greater decrease in H (l2mSm ). At lower con­

centrations of Brij it was still possible to make some 

measurements as a function of temperature because of 

the \tfider temperature range of the isotropic region.

The changes in conductivity with temperature were small 

less than about 6% over temperature ranges of about 

4°C or less.

5.1.3.3. VISCOSITY IN THE BRIJ SYSTEM

Fig. 4.47 shows the viscosity of Brij-H^O samples 

across the high temperature clear region as a function 

of sample composition. There is a maximum at about 

56% Brij. Whilst the impure nature of the Brij renders 

it impossible to draw any firm conclusions concerning 

this maximum in the viscosity, it is of interest that 

at 56% C1 r,E^-Hr.O the lamellar liquid crystal melts 

directly to a two-phase liquid-liquid mixture. This gap 

between £7 and ft in the C^,,E^-Hr0 system extends from 

about 54% to 73% C., , 2/, . Possibly the Brij system in 

this region contains large lamellar micelles. Streaming 

birefringence was not observed in this region, however.
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Fig. 4.48 shows viscosity as a function of 

temperature at four compositions, two on each side 

of the peak. There is a decrease in viscosity with 

increasing temperature which is greater in the samples 

closer to the composition of peak viscosity. The com­

positions showing larger decreases in viscosity with 

increasing temperature are similar to those showing 

marked decreases in conductivity with increasing temp­

erature, presumably due to a structural change which 

affects both properties. A breakdown of lamellar 

micelles into smaller units could have this effect.

5.1.4 CONCLUSIONS CONCERNING THE C _ £  -WATER SYSTEMS ---------- ------------ --- ----- 1-2-- rt   —
The Cj0Eg-water system has one extensive isotropic 

liquid region which is water continuous at high water 

concentrations and water-oxyethylene chain continuous 

at low water concentrations. Normal micelles at low 

surfactant content decrease in size as the solution 

becomes more concentrated, until in the pure surfactant 

they are more properly described as small aggregates.

At surfactant concentrations below that at which the 

hexagonal liquid crystalline phase occurs surfactant 

self-diffusion results reflect changes in micellar size 

shape and aggregation, whilst the conductivity is ap­

parently unaffected by these changes (equation 5.1 would 

not fit throughout this region if factors other than 

the surfactant concentration were involved). Below about 

5°C the micelles are possibly spherical; at higher 

temperatures and concentrations approaching 3&% at which
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the hexagonal phase occurs, streaming birefringence 

and self diffusion results are consistent with rod 

shaped micelles. Approaching the cloud point there is 

secondary aggregation of micelles.

Fig. 1.1 shows the C-^E.-water system (7).

Hexagonal and lamellar liquid crystalline phases occur, 

separated by a viscous isotropic phase as in the 

v;ater system (91). The high surfactant content iso­

tropic liquid phase, the -region, is now separated from 

the low surfactant content isotropic liquid phase, the 

cx -region, by the lamellar liquid crystalline phase. On

the basis of results from the - and - water1 2 b 1 2 4
systems it seems probable that the o< -region is T\Tater- 

continuous with normal surfactant micelles, whose shape 

may vary with temperature and concentration, possibly 

being rod-like in the vicinity of the hexagonal liquid 

crystalline phase, and which exhibit secondary aggregation 

as the cloud point is approached. The p  -region is 

likely to be water-oxyethylene chain continuous w^ith 

normal micelles decreasing in size to small aggregates 

in the pure surfactant. As the temperature is increased 

water-oxyethylene chain interactions become less 

favourable resulting in the formation of collections 

of water molecules prior to phase separation. In the 

C^E^-water system this results in decreasing conductivity 

with increasing temperature as the phase boundary is
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approached. In the C^0Eg-water system this behaviour 

was only observed at 6?»9%» The longer oxyethylene 

chain enables the system to retain more water to 

higher temperatures at high surfactant content. This 

results in phase separation into water plus the y5-phase 

occurring at lower surfactant concentration at a given 

temperature for the longer oxyethylene chain. In the

-water system 67 •9% is the only sample where this 

phase boundary was approached sufficiently closely 

for the decrease in H to be observed. At the lower 

concentrations studied too much water was present for 

this behaviour to be observed.

The Cj,0E„-water system exhibits double cloud points, 

a ^  -pha se occurring at high water content as in the 

C_r)E^-water system. The ^ -phase occurs about 10cC 

higher in the C^Ej.-water system, but as in the C^0E^- 

water system it is immediately above the highest 

temperature of occurrence of the lamellar liquid 

crystalline phase (either as a single phase or with water). 

Its structure is likely to be similar in both surfactant- 

water systems, possibly some sort of large aggregates 

of lamellar or disc-like micelles which reduce the 

water self-diffusion coefficient and the conductivity to 

a significantly greater extent than the excluded 

volume effect would do alone. These effects are most 

pronounced at high water content, where the large 

aggregates scatter light causing the solutions to appear
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blue-translucent. The factors producing this phase 

are so delicately balanced that it has only a narrow 

temperature range of existence.

The c< -region in the C^0E/,. system is smaller than 

in the C^oErr.-Ho0 system extending only to about 21°C 

rather than 50°C. This phase is water continuous and 

the conductivity follows the equation of Mackay and 

Agarwal (equation 5*1). The changes in the micelle 

structure with decreasing temperature, indicated by the 

appearance of streaming birefringence and the line 

broadening of the hydrocarbon chain resonance in high 

resolution nmr, are not reflected in any marked deviation 

from this equation.

The hexagonal liquid crystal phase is absent, above 

0°C, in the -water system. The shorter oxyethylene

chain length is less favourable for the formation of 

this phase which occurs in the C E.-water system and tolei >
a greater extent in the C^0Eg-water system.

The Brij 30-water system bears considerable re- 

serablence to the C E  -water system (Fig. 5.1(9)), a 

reflection of the polydispersity of this commercial 

surfactant, in particular of lower oxyethylene chain 

lengths than the nominal four units and of possibly some 

longer hydrocarbon chain lengths than the nominal 

12-carbon chain. The wider ^  -region now joined to the 

-region makes measurements within this region possible.

228



5.1.4. Cont'd.

It appears to be similar in structure to the ^  -region 
in the C ^E^-water systems; it occurs just above the 
lamellar phase. The -region is absent, lamellar 
liquid crystal and lamellar liquid crystal plus water 
occurring in this part of the phase diagram. Again this 
is similar to the C^E^-water system. There is sufficient

^12^3 °r P er*iaPs Ci4E4 ^orm a lamellar liquid crystal 
at these compositions.



5 .2 SURFACTANT-HYDROCARBON SYSTEMS

5.2.1 C -HEPTANE

5.2.1.1 THE PHASE DIAGRAM

The phase diagram of C^0E^-heptane is shown in 

Fig. 4.4. Above the surfactant melting point the sur­

factant and hydrocarbon are completely miscible. On 

cooling ClpE^ crystallises out until the C^r;E ;, content 

is reduced to 2% y by weight, or less, when the system 

is still an isotropic liquid at 0°C.

Polyoxyethvlene alkyl ethers have been reported to

form reversed or "inverted" micelles in hydrocarbon

solvents, the polyoxyethylene chains forming the interiors
(107)

of the micelles. Miura and Nakamura/used heats of

mixing to study the series C^E^, where n= 1 to 5 , in

dodecane; they found that these surfactants exhibited

a well defined cmc (shown as a discontinuity in the

A H  versus concentration curve) ranging from 1.4 to 0.26 
-3mol m '. Below the cmc they deduced that the 

oxyethylene chains were in a cyclic state, the terminal 

-OH group being intramolecularly hydrogen bonded to 

an ether oxygen.

Tiddy et al (98) using vapour pressure measurements 

on the series plus heptane at 35°C, have found

no well defined cmc1s for the lower members of the series. 

They found a cmc of about 2% for 0^oE^r,. For C^0E^ 

there was a gradual association (dimers, trimers etc.) 

at about 8%. ^12^8 ^orrne(̂  larger aggregates (about 20 units)
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at about k%. C^0E^ exhibited a lower association con­

centration in hexadecane.

At high surfactant concentration the heptane is 

expected to be solubilised in the surfactant in the 

hydrocarbon cores of surfactant aggregates.

5 . 2.1.2. CONDUCTIVITY IN THE C „E2,-HEPTANE SYSTEM

The conductivity of heptane itself is very low; 

conductance measurements made with the platinum cell 

were so low that they were on the limit of what was 

measurable with the Wayne Kerr conductance bridge. 

Results obtained in this system are given below:

Sample Conductivity/nSm ^
20° 30° 53° C

Heptane 2 - 1  6 - 1

C^n&i, (see also section 5 -1 -2.2) 470 - 10

C12E^/heptane 1 9 - 1  22 - 1 27 - 1

(5 0% by wt)
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5.2.2. BRIJ 30 ~ HEXANE

5.2.2.1 THE PHASE DIAGRAM

The polydispersity of Brij resulted in such ill- 

defined phase boundaries that no phase diagram has been 

drawn for this system. Brij itself does not have a

very well defined melting or clearing point. As the

volume of added hexane is increased the clearing point 

becomes even less well defined. The low solubility 

in hexane of components with long oxyethylene chains 

and the presence of ionic impurities and traces of vrater 

result in small amount of solid material remaining even

at higher temperatures (e.g. 40°C at 20% Brij).

5. 2.2.2 CONDUCTIVITY IN THE BRIJ-HEXANE SYSTEM

Fig. (1.38 shows the conductivity in this system 

measured as a function of composition. Many of the 

samples on which measurements were made contained traces 

of solid material. The decrease in conductivity with 

increasing hexane content shows no discontinuity which 

might indicate an inversion of the system from ethylene 

oxide continuous to oil continuous. Since some water is 

present in the Brij, the situation is more complex than 

the C1rE^-heptane system. The effect of added water is 

discussed in section 5«3.1.2 - The -region. Since 

the ions in the system come from the Brij itself, the 

effect of a decreasing number of ions is superimposed 

on the effect due to structural change.
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5.3.1 C ,,E.-HnO-HEPTANE12 4 2__________

5.3.1.1 THE PHASE DIAGRAM

Figs. 4.5 - 4.7 show the phase diagrams of C^E/,- 

H fO-heptane at various temperatures. The isotropic 

liquid regions are shown, and in some diagrams the 

approximate boundary of the lamellar liquid crystalline 

phase is shown. Another clear liquid region exists 

(sample number 1 is clear between about 10 and 2°C) 

at high heptane content but is not shown; on obsex’ving 

the sample between crossed polars birefringence is ob­

served. Such "solutions" have been observed near the 

boundary of a lamellar liquid crystalline phase in the 

sodium dodec3;rl sulphate-pentanol-water-benzene system (56),  

(Section 1.4.8).

The <x -region

At 0°C the c* -region is at its most extensive, with 

regard to the temperatures studied. This region is an 

extension of the <X -region in the binary system (Fig.4.1). 

The extent of the q< -region is reduced as the temp­

erature increases; it does not occur at temperatures 

above 21°C, its maximum temperature of occurrence in 

the binary system. The heptane is presumably solubilized 

in the hydrocarbon cores of the micelles. Their structure 

is such that they are unable to take more than a small 

amount of heptane and remain stable. About 3% of heptane 

in 3 0% C^9E^-Hr 0 is sufficient to cause phase separation
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The d* -region

The o -region is also at its most extensive at 0°C 

(studies were not made below 0°C). It appears to join 

the oc -region close to the water corner at C°C; the 

problems encountered in investigating this region, par­

ticularly at the lower temperatures are discussed in section 

4.14. At the 1 owest temperatures studies many of the 

samples in this region are highly viscous although iso­

tropic. As the temperature is increased the -region 

definitely becomes detached from the water corner; its 

extent decreases until by 8°C it has disappeared.

Samples in parts of this region exhibit streaming 

birefringence indicating the presence of anisotropic 

aggregates or easily deformable particles. The higher 

surfactant content side of the region is adjacent to a 

part of the phase diagram where a lamellar liquid 

crystalline phase is one of the phases present. If the 

structure of this region is heptane droplets surrounded 

by a surfactant monolayer, in water, then as two droplets 

approach each other closely the surfactant monolayers on 

coming together will tend to form a liquid crystalline 

layer which will be a barrier to coalescence of the 

droplet. The position of the phase relative to the 

lamellar liquid crystalline phase ensures this, because 

close approach of the droplets locally increases the 

surfactant concentration. Thus the system will be 

stabilized. This has been found to occur in emulsions (99)-
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This may also account for the appearance of streaming 

birefringence, as the "streaming" brings the droplets 

close together, especially if they are relatively easily 

deformed.

The low surfactant content side of the region 

exhibits blue-translucence indicating the present of 

large aggregates. This phase boundary follows approx­

imately a constant surfactant: oil ratio; in view of 

the difficulty in locating the phase boundary precisely 

(Section 4.14) deviations from the straight line shown 

in the phase diagrams could easily be due to experimental 

error. It is possible to estimate the droplet diameter 

at this surfactant: oil ratio (about 12:88) using the 

value of 4400 nrcf for the surface area per molecule, a 

value obtained by Tiddy and Lyle (100) for the lamellar 

liquid crystal. A value of about 90nm is obtained which 

is consistent with the light scattering observed. As 

the surfactant concentration decreases across the region 

(taking a constant heptane: water ratio) the heptane 

droplets need to increase in size in order to reduce the 

total surface area and decrease the surfactant require­

ment. Such an increase in droplet size with decreasing 

surfactant concentration can explain the gradual 

appearance of blue translucence and then cloudiness.

There appears to be a gradual change to macro-emulsion.

The limit of the ^-region at high heptane content 
is determined by the amount of water required to fill the
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interstices between droplets and to hydrate the 

oxyethylene chains.

That the cT-region or at least part of it, is

thermodynamically stable is indicated by the tie line

shown in Ta'ble 4*1(> > though ideally a repeat determination

is required.
The y-region

The £ -region occurs at a surfactant-water ratio of 

9:1 (wt:wt), and a little above and below this. It 

does not join the surfactant-vater axis until the 

temperature is increased to 8°C when it joins the ex­

tension of the ft -region of the C^r.E^-Hr,0 system. The 

solubility of C Ê _ in heptane increases with increasing 

temperature so that the % -region extend along the 

heptane-surfactant axis as the temperature is increased.

The £ -region

At 13°C another isotropic liquid region (£) is 

present and part of it overlaps the cT-region wTiich 

occurred at lower temperatures. The 6 -region is not 

connected to the ct-r egion. A three-phase system con­

taining liquid crystalline material occurs in this part 

of the phase diagram at intervening temperatures. The 

d -region is blue translucent at lowest surfactant con­

tent; this can be ascribed to large aggregates. The 

low-surfactant phase boundary tends to follow’ a line of 

constant surfactant: water ratio particularly at the

lower temperatures of occurrence of the region (e.g. 13°C).

If it is assumed that the structure is of water droplets
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surrounded by a surfactant monolayer, in heptane, the 

droplet size can be estimated as above for the cT -region.

A value of about 50nm is obtained for the diameter. As 

in the O -region on decreasing the surfactant content 

at a given heptane: water ratio, the system becomes 

gradually blue translucent and then cloudy; again this 

may be explsined by increasing droplet size in order to 

reduce the surfactant requirement. There appears to be 

a gradual change to a macro-emulsion.

Part of this region at the high water content :end 

and at the lowest temperatures of occurrence, shows 

streaming birefringence, evidence of anisotropic aggregates 

or easily deformable aggregates. Further discussion 

of the structure of this region is given in sections

5.3.1-2 and 5 .3.2.2.

As the temperature is increased the & -region joins 

the -region close to the heptane corner. The two 

regions merge completely at higher temperatures.

Behaviour of this type is exhibited by the C r,E^-Hr,0- 

hexane system reported by Friberg and Lapczynska (29).

Since they do not record the behaviour of the system 

below 10°C, the presence or absence of a cT-type region 

is not shown.

The ^ -region

The ^-region appears as a narrow isolated region 

initially. It is in fact an extension of the ^-region 

in the CjoE^-11,,0 system (Fig. 4.1). Heptane added to this

237



5.3.1.1 Cont'd.

region reduces its temperature of occurrence -without 

appreciably altering its narrow temperature range 

(about 2°C). Where the ”5 -region contains the highest 

heptane concentration it exhibits streaming birefringence.

At higher temperatures this region joins up with the 

-region. In the C^0E^-water system there is a gap 

between the ^  - and /3-regions (the /3-region joints the 

/-region). It requires very little heptane (2-3%) 

to remove this gap so that the *§ “ anc* -regions join.

The ^-region occurs in the oE^-Ho0-hexane system 

of Friberg and Lapczynska, and they show how it moves 

towards higher surfactant content with increasing 

temperature, but since the highest temperature they record 

is 35°C no amalgamation with the -region is shown.

5.3.1.2. CONDUCTIVITY IN THE C ^E/t -Ilo0-HBPTANE SYSTEM

Figs. 4.5-4.7 show conductivity in the C E.-Ho0- heptan 

system on the phase diagrams.

The cT -r eg ion

These results indicate that the cT-region is water 

continuous. The conductivity decreases with increasing 

heptane concentration as expected. Since the region is/ 

water continuous presumably the heptane exists in the 

interiors of the micelles, surrounded by a layer of sur­

factant. As the heptane content of the system is in­

creased the excluded volume is increased so that the 

conductivity decreases. Application of the equation of 

Mackay and Agarwal (equation 3*3) to the series of samples
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containing 10% 0E^ at 4°C shows little agreement

(Fig. 4.39).

h = H (l - 0)295 3.3m

The Bruggeman equation (equation 3*4) shows much better 

agreement (Fig. 4.39)

k = H (1 - 0)1,:> 3.4rn

Above 20% (W/W) heptane the results lie between the 

Bruggeman and Maxwell (equation 3.5) equations, and are 

closer to the Maxwell equation at the highest heptane 

concentration.

H Km 2 + 0

The phase volume, 0, has been calculated on the basis 

of the densities of the components so is open to some 

error in that slight changes may occur when the com­

ponents are mixed e.g. heptane in micelles may not 

exactly have the same effective density as the pure 

component. A much larger source of error is the fact 

that the volume of the disperse phase has been taken as 

the volume of heptane plus the volume of Cn 0E^. The 

volume assumed for the disperse phase is discussed in 

section 5.1*1*2. It appears that the conductivity in 

the -region shows a much greater resemblance to the 

conductivity in a normal emulsion than it does to the 

conductivity in the c< -region of the binary system, or 

to Mackay and Agarw^al's micros emulsion (section 1.3.6).
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The conductivity of monodisperse 0/W emulsions generally 

lies between that predicted by the Bruggeman and Maxwell 

equations whilst that of a polydisperse system generally 

follows the Bruggeman equation (section 2.1.2). If the 

assumptions mentioned above are valid then from 30% (W/W) 

heptane to 3 0% the system is showTing conductivity 

behaviour typical of a monodisperse macro-emulsion.

The <£ -region

The 6 -region shows very low conductivity over most 

of its range, of the order of 1/tSm  .This is so low 

that the system cannot be water continuous. It is of 

the same order of magnitude as the conductivity of the 

pure surfactant and rather higher than that of heptane.

Some higher values of conductivity are recorded on 

the edge of the region. The reasons for these higher 

values are discussed below and in section 3 »3 «2.2.

The ̂ -region

In this region conductivity has been measured for 

the series of samples containing 10% water, at varying 

temperature (Fig. 4.40 and 4.4l).

90% C^oE^-10% Ho0 consists of surfactant aggregates 

in an oxyethylene chain-water continuum. The conductivity 

of sample number 36 behaves in a similar manner as a 

function of temperature, suggesting a similar structure; 

now* that heptane has been added this will be localised in 

the cores of the surfactant aggregates wThile the oxyethylene
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chains and water form the continuous phase as before.

The presence of heptane would be expected to reduce the 

conductivity, since it increases the volume of the cores 

of the aggreagtes and so reduces the volume available for 

conduction. This is seen at higher temperatures, though 

apparently not below about 30°C. However, the nominally 

90% Cjr:,E/t-Hr0 sample contained 10.1% water whilst 

sample number 36 contained 10.5% water. It can be 

deduced, from measurements of conductivity in the /3 -region 

of the binary system, that, in the region of 90% C^0E^- 

10% Ho0, a difference of 0.5% in the water content can 

produce a difference of as much as 50 yUSm  ̂ in the con­

ductivity at 60°C. This difference would decrease with 

decreasing temperature as the measured conductivities 

themselves decrease. Thus the slightly different amounts 

of water in the 90% sample and sample number 36 combined 

with the slightly different slopes of the conductivity 

versus temperature graphs lead to the crossing of these 

graphs. The graph of sample number 21 crosses that of 

sample number 28 at about 11°C for the same reason; 

sample number 21 containing 10.4% water whilst sample 

number 28 contains 9-9% water.

The conductivity of sample number 28 behaves 

similarly to that of sample number 36. The conductivity 

of sample 28 is lowered as would be expected considering 

the increased volume of heptane present, presumably 

within the surfactant micelles as in sample number 38.
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At the opposite end of this series of samples are 

those containing large proportions of heptane and 10% 

water. Water can have a considerable effect on the 

micelle formation of polyoxyethylene alkyl ethers in 

nonaqueous solvents. The water bcomes associated 

with the polyoxyethylene chains so converting them to 

more hydrophilic species; the micelles, therefore, grow 

with the water solubilized in the micellar core (101). 

Sample number 1 must either be oil-continuous with sur­

factant micelles containing solubilized water, or some 

sort of "molecular" solution, since it contains 80% 

heptane by weight (more than 80% by volume) which is 

an impossibly large proportion to disperse in tie sur­

factant and water unless the heptane droplets are 

polydisperse as in certain types of emulsion. There is 

more water present than is required to hydrate the 

oxyethylene chains even on the basis of two water 

molecules for each oxygen, so that "free" water must be 

present in the system. On this basis and also in view 

of the evidence (101) for micelles containing solubilized 

water in this type of system, it seems highly improbable 

that the system consists of anything other than reversed 

surfactant micelles containing solubilized water in a 

heptane continuum. Some of the water in the micelles 

is hydrogen-bonded to the surfactant ether oxygens and 

the rest exists as water "pools" (sections 1.4.2 and 

1.5.4).
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The above structure would be expected to have an 

extremely low conductivity, about twice that of pure 

heptane if it obeyed the Bruggeman equation for an oil- 

continuous emulsion (equation 2.3), even allowing for 

the presence of the sodium chloride. The measured 

conductivity of 2.06 / S m   ̂ at 17.0°C, and 3.91 //Sm 

at 19.8°C, is far in excess of this (the conductivity of 

heptane is about 2nSm ) . In oil-continuous systems 

abnormally high conductivities may be due to percolation 

(sections 1.3*7 and 2.1.3). The disperse phase volume 

of sample 1 is 13% if all the surfactant is included in 

the disperse phase, this is well below theoretical and 

experimental threshold values for percolation (section 

2.1.3). Lagues et al (73) have suggested that in their 

micro emulsion system the non-zero conductivity below the 

percolation threshold was due to electrophoresis, the 

microemulsion droplets having a small charge (estimated 

to be one ion per 600 molecules of soap in the inter­

facial film). They report that this conductivity below 

the threshold was much greater than that of the con­

tinuous phase (cyclohexane) ranging from 1 to 1 0 0 ‘ .

An ionic surfactant was used in combination with an 

alcohol in contrast to the present nonionic surfactant. 

Ions would be expected to be located in the aqueous 

interior of the micelles in the present case and not 

in the interfacial film as in the system of Lagues et al. 

Conductivites of samples thought to be heptane-continuous 

fall in the lower part of the above range (<623 Sm ‘, say)
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except close to phase boundaries (this is discussed 

below). Non-zero conductivity below the percolation 

threshold has also been observed by Lagourette et al (?6 ). 

Electrophoretic movements of the disperse globules was 

suggested as a possible explanation; the system again 

contained an ionic surfactant plus a cosurfactant. 

Peyrelasse et al (102) suggested that droplet electro­

phoretic movement could contribute to microemulsion bulk 

conductivity.

If electrophoresis is the explanation for the 

surprisingly high conductivity of the oil-continuous 

phase, factors affecting the micelle size in the high- 

heptane content part of the £ -region would be expected 

to have some effect on the conductivity. Larger par­

ticles will be less mobile and so unless there is an 

equivalent increase in their charge or their number, the 

conductivity of the system will be less. It has been 

found that the micellar weight of polyoxyethylene nonyl 

phenols in cyclohexane solutions increases linearly 

with the mole ratio of added water (103). Thus sample 2 

might be expected to have a lower conductivity than 

sample 1. However, although the conductivity is loiter 

(1.2 juSm  ̂ at 15.8°C compared to 2.06/^Sm  ̂ at 1?.0°C 

for sample l) this may be due entirely to the temperature 

difference; extrapolation from the two results for 

sample 1 suggests tjiis« Where the volume of water is 

increased to a greater extent relative to the surfactant
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the expected drop in conductivity occurs as in 

samples 7 and 11 in the £ -region, in the upper part 

of their temperature range (section 3 .3.2.2).

Where the quantity of water remains constant 

ivTiilst the surfactant is increased some increase in 

conductivity might be expected as long as there is suf­

ficient water present. A larger number of smaller 

micelles will be produced provided that there is suf­

ficient water to hydrate the surfactant chains. If 

electrophoreris forms the major part of the conduction 

mechanism, the conductivity is likely to rise because 

the aggregates are smaller. Sample 3 does appear to 

show this effect with respect to sample 1, at the upper 

end of its temperature range.

The conductivity of samples 3 and 6 is recorded 

in greater detail over their complete temperature 

range in Fig. 4.4l. Both samples show* a considerable 

increase in conductivity wTit.h decreasing temperature at 

the lower ends of their temperature ranges. No such 

increase was observed in the case of sample number 1 ; 

the lower temperature of measurement is 1.2°C above 

phase separation, so any increase in conductivity can 

only occur over a very limited temperature range within 

the clear phase.

The maximum in the conductivity is very close to 

the lower phase boundary for both sample 3 and sample 6 .
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As decreasing temperature leads to phase separation 

the conductivity falls. One of the phases which 

separates is a liquid crystalline phase.

To exclude any possibility of the presence of

sodium chloride causing this conductivity behaviour,

measurements were made on sample 6 , using distilled

deionised water instead of 0.010 M sodium chloride

solution. The presence of 0.010 M sodium chloride has

not been found to affect phase boundaries significantly.

The form of the conductivity versus temperature curve

was the same; the measured conductivities were ajDpreciably

lower: 3/*Sm  ̂ at 30°C as opposed to 22.5/<Sm  ̂ at 29»9°C,
-Iand y&Sm at the maximum close to the phase transition, 

as opposed to 159/<Sm The effect of the sodium

chloride is much larger where the conductivity increases 

close to the phase transition. There is nevertheless 

a significantly greater conductivity in sample 6 at 

the higher temperatures, where it is likely to be an 

oil-continuous micellar system. This increase due to 

the presence of sodium chloride is likely to exist 

to some extent throughout the oil-continuous region.

Boyle et al (104) have made dielectric measurements 

in the C^0E^-Hr. 0-heptane system. For samples 1,2,4 and 

5 their results for the high temperature ends of the 

isotropic liquid regions are consistent with a W/0 

structure. At the lower ends of the temperature ranges
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they suggest that large lamellar aggregates are present 

and that these change to inverted micelles with in­

creasing temperature. For samples 3 (in this case l6%

C^0Ej, , 10% Ho0 and ?4% heptaaie) and 6 , where the

surfactant: water ratio is higher, their results at 

the high temperature ends of the clear regions agree with 

calculated values for a W/0 + S structure (in these 

cases the calculated permittivities are based on water 

dispersed in an ideal mixture of oil plus surfactant).

At the low temperature ends of the clear regions the 

permittivities increase towards values for 0/W structures 

though they do not reach these magnitudes. This 

behaviour is similar to that of samples 1,2,4 and 5 in. 

which lamellar aggregates were proposed.

The low temperature phase transitions of samples 

1 to 6 are to mixtures containing lamellar liquid 

crystal as one component. Thus the occurrence of 

lamellar aggregates prior to the phase transition is not 

unreasonable. Some streaming birefringence might be 

expected in the region where these lamellar aggreagates 

are thought to occur. Slight streaming birefringence 
was observed only in sample number 2. However, the 

factors such as particle size and the viscosity of the 

medium which determine whether streaming birefringence 

is observed by the crude method used, are not known.

The mere presence of lamellar aggregates in samples 

3 and 6 at their lower temperatures of occurrence would 

not be sufficient to account for the increase in conductivity.
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Some mechanism for conduction is required since the 

continuous phase is still heptane. It has been sug­

gested that percolation occurs in oil-continuous micro- 

eniulsion systems and accounts for unexpectedly high 

conductivities (sections 1.5.7 and 2.1.3); in the 

systems studied ionic surfactants plus cosurfactants 

were used and the conduction was thought to take place 

through the droplet interfaces (73 » 76). With 

nonionic surfactants this cannot occur; the sodium 

chloride ions added to the present system are located 

in the aqueous interiors of droplets or micelles, 

surrounded by a barrier of nonionic surfactant.

Collision of the droplets does not normally allow 

charge transfer to take place. This can explain why 

some oil-continuous phases observed in the present work 

do not exhibit conductivity indicative of the occurrence 

of percolation although the disperse phase volume is 

above the threshold for percolation (section 2.1.3 )

(e.g. samples 5 at its highest temperature of occurrence 

and samples 7 and 11 at the highest temperature of 

occurrence of the £ -region). However, the situation 

may be different when the aggregates are lamellar: if

collisions allow contact of the aqueous layers there is 

the possibility of charge transfer. If there is a 

dynamic situation in which the aggregates break up and 

recombine the means of charge transfer is improved.

248



5.3.1.2 Cont'd.

Such a structure could account for the high con­

ductivities observed in samples 3 and 6 at the lower 

ends of their temperature ranges. The structure 

becomes most favourable for charge transfer as the 

phase boundary is approached on decreasing the temp­

erature, and then as lamellar liquid crystalline 

material phase separates, the means of charge transfer 

is lost and the conductivity falls. The fact that 

sodium chloride increases the conductivity close to the 

lower phase boundary to a greater extent than at the 

high temperature end of the region agrees with a con­

duction mechanism of this type.

The disperse phase volume of sample 3 is below the 

theoretical percolation threshold (0 = 0.29 in section 

2.1 .3); that of sample 6 (0.32 approx) is close to it,

if all the surfactant (as well as the water) is in­

cluded in this volume. However, this theoretical per­

colation threshold is based on a static hard sphere 

model. If the disperse phase is in the form of disc­

like micelles or lamellar aggregates in a dynamic system 

the percolation threshold may be lowered considerably.

Sample 1 has a disperse phase volume of about 0 . 15 ; 

this may be too low for percolation to occur, if similar 

structures to those suggested for sarrrples 3 and 6 , 

are formed close to the phase boundary as the temp­

erature is reduced. This may account for the fact that 

no evidence of a rise in conductivity was found in sample 1 .
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The high and rapidly changing conductivities 

observed elsewhere on the edges of this oil-continuous 

region (the ^ -region and the (/-region both at high 

heptane content), may be attributed to the same struc­

tural changes e.g. the following values of conductivity 

were measured for sample number 5 *

Temperature/°C Conductivity/yuSm ̂

17.0 201

19.9 4.95
24.8 7.12

17.0°C is only just above the temperature of the lower 

phase boundary.

The disperse phase volume (0.l6 approx.) of 

sample 3 is too low for phase inversion to occur. That 

of sample 6 (0.21 approx) is also too low7 since only

the oxyethylene chains of the surfactant can be included 

with the water in the calculation of the aqueous phase

volume. A minimum of 0.26 by volume is required to

fill the interitices of a system of close-packed spheres. 

The conductivities of samples 3 and 6 do approach those 

of samples in which the oxyethylene chains form the con­

tinuum (samples 28 and 36). However, the hydrogen- 

bonding of all the water to the oxyethylene chains in 

samples 28 and 36 (at least over most of the temperature 

range studied) results in a continuous phase with a 

relatively low conductivity, although it is water
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oxyethylene chain continuous.

Fig. 4.40 shows the variation of conductivity

versus temperature for the series of samples containing
2 210/o water. d k/dT‘ changes from positive (90% C^riE^- 

Ho0) to negative (sample 28 above about 30°C); in 

sample 21 the trend is continued so that H exhibits a 

maximum at about 40°C. Sample 15 shows a maximum in H 

between 21 and 22°C. In sample 10 there is very little 

change ink between 0 and 4 C and a decrease above 4°C. 

Within this region (the -region) the continuous phase 

changes, with no discontinuity from oil to oxyethylene 

chain plus water. In the low surfactant content samples 

some "free" water remains whilst in the high surfactant 

content samples it is all hydrogen-bonded to the 

oxyethylene chains. The hydration of the oxyethylene 

chains has been reported to vary widely; Schott(6) 

reports values ranging from 0.4 to 6.3 water molecules 

per ether oxygen whilst El Eini et al (5 ) report values 

ranging from 5*2 to 10.6 for a range of commercial sur­

factants from C1^Ej_ to C^^-E^0. These values were for 

normal micelles and include water which is "trapped" 

between the polyoxyethylene chains as well as that 

actually hydrogen-bonded to them, hence the values in 

excess of the t h e o r e t i c a l  2 molecules of water per ether 

oxygen. Kumar and Balasubramanian (65) studied inverse 

micelles of Triton X-100 plus hexanol in cyclohexane and
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found much lower values; a limiting value of one mole­

cule of water per ether oxygen was found as water was 

added. Geometrical factors are involved in the degree 

of hydration and also temperature since hydrogen- 

bonding is reduced at higher temperatures.

Where the surfactant: water ratio at the given 

temperature is such that all the water can be accommodat< 

by bonding to the oxyethylene chains the system is 

unlikely to invert to oil-continuous provided that the 

phase volumes are appropriate for oil to remain as the 

disperse phase. Boyle et al (104) suggested that when 

the hydrogen-bonding breaks down on increasing temp­

erature and the entropy of mixing is insufficient, the 

water becomes encapsulated. The continuous phase bcomes 

oil plus surfactant hydrocarbon chains. In sample 10 

there are five water molecules for each surfactant mole­

cule (i.e. four ether oxygens plus one alcohol oxygen). 

This is a little in excess of the limiting value for 

hydration found in inverse micelles by Kumar and 

Balasubramanian (65). The volume of the heptane phase 

(5O/0 by weight) is about 60%. Thus inversion is likely 

to occur at compositions around that of sample 10. The 

conductivity is in agreement with the system containing 

oil-cored micelles at the lowest temperatures and water- 

cored micelles in heptane at the highest temperatures 

(Fig. 4.40) when the hydrogen-bonding has decreased.
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The dielectric results of Boyle et al indicate this 

type of behaviour. Between the two extremes there is 

a continuous change presumably within a surfactant 

matrix. Both oil-cored and water-cored micelles may 

be present at the same time or polydisperse small 

aggregates or some sort of bicontinuous structure may 

occur, with surfactant at the interface separating oil 

and water (section 1.4.7).

Boyle et al report that sample 10 was the sample 

with the lowest water: surfactant ratio to display a

W/O+S structure as indicated by dielectric results,

(i.e. the results agreed with calculated values based on 

a dispersion of water in an ideal mixture of oil plus 

surfactant. The conductivity of sample 15 at the higher 

temperatures measured is not as low as that of sample 10 

but the fact that it decreases above 22°C may be an 

indication that the sample is starting to invert by 

the same mechanism as sample 10, though it never reaches 

complete inversion at the temperatures studied. This 

behaviour is also observed in the conductivity of sample 

21 at higher temperature (above about 40°C). At the 

higher surfactant contents and lower heptane contents 

a higher temperature is needed before the inversion process 

starts. In sample number 28 the only indication that 

inversion may occur at a temperature above the range

studied is the change in slope of the versus temperature
2 2curve (d‘/f/dT becomes negative with increasing temperature).
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In sample number 3& there is no indication of the 

beginning of an inversion process.

There is a similarity between this inversion

process and the changes occurring in the binary C E,-Ld L

water samples at 68 to 80% C1 0E^ , where small aggregates 

of water form with increasing temperature prior to 

phase separation and the conductivity is reduced 

(section 5.1.2.2).

Conductivity in the (z. -region

Conductivity in this region indicates that it is 

oil-continuous. Only about lOJo of surfactant is 

necessary to solubilize large amounts of water (up to 

at least 50% by volume) at the lowest temperatures 

leading to relatively large droxolets-the solutions are 

blue-translucent at the lo\vTest surfactant contents.

The large droplet size may account for the extremely 

low conductivities recorded, 0.38>idSm M in sample 7 

and 0.58/*Sm  ̂ in sample 11; these are lower than the 

conductivities recorded in the oil-continuous part of 

the y -region, the lowest being 2.l^Sm 1 in sample 1.

As in samples 3 and 6 at the low temperature end of the 

clear region a rapid rise in conductivity with decreasing 

temperature was found up to the phase boundary -when the 

system became cloudy and birefringent due to the presence 

of lamellar liquid crystal. This conductivity be­

haviour -was found on the higher surfactant content edge
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of the region where the phase transition is from 

isotropic liquid to a system containing liquid 

crystalline material; this is essentially the same 

as the low temperature phase boundary, because of the 

way the € -region moves across the phase diagram with 

temperature. This behaviour was ascribed to the 

formation of lamellar aggregates as in samples 3 and 6 .

It is discussed for samples 7 and 11 in section 5»3*2.2.

As the € -region moves across the phase diagram 

with increasing temperature, and becomes continuous writh 

the ft -region, conductivity measurements on the samples 

involved indicate behaviour intermediate between that 

of the oil-continuous region with the lamellar aggregates 

at its lowest temperatures, and the surfactant plus 

water continuous region which inverts as in sample 10.

Conductivity in the ^  -region

system, and is water continuous. The conductivity 

decreases with added heptane as would be expected if it 

is going into the interiors of the micelles and either 

their size or their number is increasing. As heptane is 

added to samples containing 20% and 30/o C^0E^ the con­

ductivity decreases almost linearly with the decreasing 

temperature of the narrow clear region. The temperature

of occurrence of the clear region decreases almost linearly

This is an the binary
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with added weight of heptane (Fig. 4.15). Doth the 

increasing heptane volume fraction and the decreasing 

temperature (assuming no structural change with temp­

erature) will cause K to decrease.

The region is joined to the J  -region at higher 

temperatures. The conductivity was measured at fixed 

temperatures and compositions; within these limitations 

no discontinuity was observed in the conductivity where 

the regions joined. The high water content end of the &  

region where water is the continuous medium merges 

continuously into the water plus oxyethylene chain con­

tinuous part of the ^  -region.

5.3.2. WATBR-HYDROCARDON MIXTURES WITH ADDED SURFACTANT 
Cx 0EZi -WATER-HEPTANE

5.3.2.1. THE PHASE DIAGRAM

Fig. 4.10 shows the phase diagram obtained on 

adding C., 0EZj to a mixture of 59-7/0 water plus 40.3/o 

heptane. This shows the cT and £ -regions as a function 

of temperature for this water: heptane ratio. Between 

these regions there is a three-phase region, which has 

the lamellar liquid crystal as one component. The regions 

diverge with increasing surfactant content, the water- 

continuous </ -phase occurring at lower temperature whilst 

the oil-continuous 6 -phase occurs at higher temperature. 

The cT - and <£ -regions are discussed in section 5-3.1.1.
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C_ E. -H O-HEPTANE SYSTEM

-L fa I  eL_________________________________

Sample 11 is close to the composition shown in the 

segmental phase diagram described above (Fig. 4.10)

at 10% C ^E.. The conductivity as a function of temp-X cl
erature is shown in Fig. 4.42. The high conductivity 

in the water-continuous dT-region changes little with 

temperature. The sample is blue-translucent and 

exhibits streaming birefringence in this region. The 

conductivity decreases sharply at the phase transition 

when the sample becomes cloudy and birefringent. The 

conductivity decreases about a factor of ten. At least 

the middle part of the region between the ct and 6 -regions 

is 3-phase; lamellar liquid crystal is present through­

out. The conductivities measured here varied con­

siderably (by a factor 2 or 3) depending on how the 

inhomogeneous material was mixed.

The conductivity rises again before the phase 

transition to the £ -region and then starts to fall 

rapidly close to the phase boundary. The conductivity 

of the £ -region close to the phase boundary is about 

-5 of that of the <f-region. It falls from 7mSm  ̂ to 

3 OOnSm  ̂wTithin the £ -region.

That this conductivity behaviour is not due to the 

presence of sodium chloride was shown by measurements 

made on a sample made up with distilled deionised water 

instead of sodium chloride solution. The magnitude of
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the conductivity was reduced throughout but the form 

of the conductivity versus temperature curve remained 

the same.

Sample 7 behaves similarly to sample 11, though 

the higher heptane content causes some reduction in k 

throughout.

Conductivity in the cf-region has been discussed

(section 3*3«1»2 - The o -region). The conductivity of

the <£ -region at the high temperature end of its range

of existence is characteristic of an oil-continuous

system as discussed in sections 5•3*1*2 and 3«3«2.2.

As the temperature is reduced the conductivity increases
kcontinuously by a factor of 10 . It is possible to 

explain this by a percolation mechanism combined with 

changes in aggregate structure and interactions.

As the temperature is reduced the spherical droplets 

of the oil-continuous microemulsion change, by some 

gradual process, to lamellar aggregates. The inter­

actions of these aggregates enable conduction to occur 

by a percolation mechanism as in samples 3 and 6: 

breaking up and recombination of the aggregates enables 

charge transfer to occur. In the present case the 

conductivity rises far more than in samples 3 and 6.

The disperse phase volume of samples 3 and 6 is less, so 

that there are less aggregates via which charge can be
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transferred. Also phase separation may curtail the 

process which proceeds much further in sample 11 (and 

also sample ?)• Close to the phase boundary of sample 

11 a dynamic situation exists with the aqueous phase 

within lamellar aggregates formed by the surfactant, 

which rapidly break up and recombine. It is suggested 

that phase inversion has not occurred (as we suggested 

previously (88)) but that the system is still oil- 

continuous. According to equation 2.7 the conductivity 

of a percolating system with the disperse phase volume 

of sample 11 would be about 12mSm ^(assuming that half 

the surfactant is included in the disperse phase and 

that the conductivity of the disperse phase is the same 

as that of the 0.01 M sodium chloride solution at the 

same temperature) compared to the 7niSm  ̂ observed and 

the 21mSm  ̂ in the ct-region. Thus it would appear 

possible for the system to still be oil-continuous.

Both samples 7 and 11 show streaming birefringence in 

the region where these lamellar aggregates are proposed.

At the high temperature end of the clear region stream­

ing birefringence is absent, but on cooling it appears 

and increases in intensity so that it is strong just 

above the phase transition. This is consistent with 

the proposed structure of the system. The samples were 

blue in the region suggesting relatively large aggregates.
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Tlig surfactant monolayer curvature is concave 

towards the oil in tlie cT" —region. In tlie intervening 

3-pliase region it is planar. Tlien as the system passes 

into the € -region it changes from planar to convex 

towards the oil within the £ -region. If the system 

inverted completely within the £ -region, the sur­

factant monolayer, planar in the 3~pbase region, would 

then return to concave before becoming convex towards 

the oil, with increasing temperature.-

3.3*3 V.rATER-HYDROC ARB ON MIXTURES WITH ADDED SURFACTANT - 

C^0E^-V7ATER-n-decane

3.3.3.1 THE PHASE DIAGRAM

The phase diagram for 60.0% H^O^O.O^ n-decane as 

0^oE^ is added, is shown in Fig. 4.11. It does not differ 

markedly from the analogous diagram with heptane as the 

hydrocarbon. The cf-region is probably a little wider, 

though the lower boundary could not be determined very 

precisely. The cT - and (E -regions occur at slightly 
higher temperatures. Friberg and Lapczynska (29) have 

determined the triangular phase diagrams for this 

system above 13°C (Fig. 3*/)j the et -region occurs 
below 15°C and so is not shown. The isolated £ -region 

extends to higher water contents than in the heptane case; 

on increasing the temperature it then joins the ^ -region 

close to the decane corner as in the heptane system. On 

further increase in temperature it rapidly amalgamates
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Fig. 5»1. Phase diagrams of the systems C^E^-water-hexadecane 
and C, pE -water-decane.
From ref7 29.
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completely vrith the ^-region and a narrow salient 

pointing to the water corner, has already formed by 

25°C. In the heptane case the formation of this narrow 

salient is by linking with the £ -region and occurs 

between 30 and 39°C.

3-3-3.2 THE CONDUCTIVITY OF SAMPLES OF 60% n-decane- 

k0% WATER PLUS C E

Fig.443 shows the conductivity of 60,2% water- 

39- S/o decane plus 9 • 8% added C^E^. The cT -region 

appears to be water-continuous. The £ -region shows 

decreasing conductivity as in the heptane case but the 

conductivity never reaches the very 1 o w t values that it 

reaches for heptane. lmSm  ̂ is the lowest value for this 

sample within the clear region. 39.9% water - k0% decane 

plus 13.1% C-^E^ show-s similar behaviour. The lowest
_ ivalue of K in the £ -region is 0.3 mSm . At 9•S%

C^nE^ the £ -region is blue and shows streaming bire­

fringence; at 13.1% no l°n S er blue but still

show's streaming birefringence.

This behaviour could be attributed to large lamellar 

aggregates as in the heptane system, inversion having 

occurred in the intervening region (between the cT- and 

£ -regions) where lamellar liquid crystal is one of the 

phases present. Complete inversion, to the oil- 

continuous system with spherical water droplets and 

the surfactant iponolayer preventing percolation, never 

takes place, however.
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5 . 3 • ̂  WATBR-IIYDROCARBON MIXTURES WITH ADDED SURFACTANT -

C^0E^-WATER-n-hexadecane

5.3-4.1 TIIE p h a s e d i a g r a m

The phase diagram of 5 9.8/6 ^0-40.2/6 hexadecane + 

^12^4 s^°^n -*-n Fig. 4.12. The cT- and 6 -regions
have been shifted to higher temperature and now join 

at their low surfactant content ends. The clear region 

is blue at the lower surfactant contents and shows 

streaming birefringence only in the lower half of the 

cT-region. Friberg and Lapezynska (29) have determined 

the triangular phase diagrams for this system. There is 

a marked difference from the heptane and decane systems 

in that the cT-region, which joins the water corner at 

low temperatures, moves away from the water corner and 

towards lower surfactant content and then becomes the 

6 -region (ie.the ct-region is continuous with the 

£ -region). This £ -region then moves towards higher 

surfactant content and joins the ^-region near the 

middle of the phase diagram, between 30 and 35°C.

3.3.4.2. THE CONDUCTIVITY OF SAMPLES OF 6 056 WATER - 40% - 

n hexadecane plus C^0E^

Conductivity was determined for 14. 056, 18.0/6 and 

21.0/6 of added C^0E^ as a function of temperature. Fig. 

4.44 shows the results for 14.056 and 18.0/6; the results 

at 21.056 of added Ĉ Ê/j. were virtually the same as those 

for 18.056. At l8.05o and 21. 056 the / -region ajDpears to

263



5»3*^«2. Cont’d .

be water continuous. Conductivity in the £ -region

remains high; although it shows some decrease with

increasing temperature the lowest values recorded in

the clear region were 17mSm 1 at 18.0% C^0E^ and 12mSm 1
-1 -1at 21% compared to 30mSm and 27mSm respectively

in the water-continuous cT-region.

At lk% Ej the conductivity decreases from 

35-5tfiSm  ̂ to 24.4mSm  ̂ over the clear region. This sample 

appears to be water continuous at the low temperature 

end of the clear region.

The £ -region joins the ^-region near the middle 

of the phase diagram where the surfactant neater ratio 

favoured inversion via a surfactant continuous phase 

in the samples with only 10% water, as in sample 10.

The conductivity data for the £ -region is consistent 

with some sort of disordered bicontinuous structure both 

oil and water continuous in which surfactant forms the 

interfacial film.

Further information on this system is available: 

Lindraan et al (70) have made self-diffusion measurements 

in this system. Their results showed that in the (/-region 

at high water content (> 5 0% by weight) normal micelles 

existed in a water-continuous phase - the hexadecane 

and surfactant diffusion coefficients were small (they 

were not measured separately) and approximately the same 

whilst the water diffusion was reduced from that of pure
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water by less than a factor of 2. This is in agreement 

with the conductivity results.

In the V -region Lindman et al measured self­

diffusion for samples in which the surfactant:hexadecane 

ratio was kept about 45:55 and the water content varied, 

and also at one point with a much higher hexadecane 

content. The hexadecane diffusion was rapid in all these 

samples. In the water-rich part of the | -region, close 

to where it joins the £ -region at slightly higher 

temperature, the water diffusion was slower by a factor 

of about 10, than in pure water; this is still a 

relatively high value compared to that of water in 

inverted micelles. The surfactant diffusion was about 

the same as that of the pure surfactant in all the 

samples measured in the ^ -region, except in the absence 

of water when it was considerably higher (by a factor of

2.4).

In the e -region, referred to as the surfactant 

phase by Lindman et al, they found that both water and 

hexadecane diffusion were relatively rapid, demonstrating 

that the phase is both water and hydrocarbon continuous.

They also found an increased C^^E^-hexadecane dif­

fusion coefficient in the cT-region for two samples 

at the lowTest water contents where the region is closest 

to the £ -region and the y-region. These might reflect
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the approaching changes from water continuous to the 

bicontinuous structure. The high values for water 

diffusion in the water rich part of the X  -region might 

again be an indication of a bicontinuous structure here.

The results of Lindman et al are consistent with 

the conductivity results. To summarize, the water 

continuous o -region changes to the bicontinuous <=. -region 

at low surfactant content. The bicontinuous <£ -region 

joins the ft-region where this is inverting from sur­

factant -wat er continuous to surfactant-oil continuous.

The bicontinuous structure does not show the stream­

ing birefringence associated with the lamellar aggregates 

proposed in the oil-continuous £ -region in the 0E;, - 

Ho0-heptane system. The low surfactant content parts 

of the £ -region and the ct-region and particularly the 

part of the system where these two regions join show 

the blue-translucence associated with large aggregates 

of some form.

The bicontinuous structure suggested is a disordered 

bicontinuous structure in which the interface in this 

case is formed by the so that water and hexadecane

are not incontact. The system can change continuously 

to a water or oil continuous phase via changes in cur­

vature of the surfactant interface. Such a bicontinuous 

structure appears to be closely related to the large 

lamellar aggregates of surfactant and water dispersed in 

the hydrocarbon which were proposed in the decane system.
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This is not unreasonable - a little more linkage of 

the lamellar aggregates could lead to a bicontinuous 

structure.

The bicontinuous structure proposed for the £ -region 

changes continuously to the structure of the ^-region 

where inversion occurs. This may also be a bicontinuous 

structure (section 5«3»1*2. - The y-region) but of a 

rather different form, there being much less water 

present.

5.3.5. THE IMPORTANCE OF THE HYDROCARBON IN THE FORMATION 

OF BICONTINUOUS STRUCTURES IN TERNARY SYSTEMS

The hydrocarbon appears to determine the ternary 

phase behaviour. Figs. 4.13 and 4.l4 show the section 

through the phase diagram at 60% water plus k0% hydro­

carbon with added C^0E^ for 11-octadecane and decalin.

The octadecane diagram is similar to that of hexadecane 

except that the c/-region is not as extensive because 

of the separation of crystalline material. The decalin 

diagram is quite different and without further phase 

studies it is not possible to say exactly what is hap­

pening, but the single phase region which is shown, 

appears to be from its shape and temperature dependence, 

the £ -region shifted to lower temperature. The shape 

of the decalin molecule (two fused cyclohexane rings) 

is very different from the straight chain n-alkanes dis­

cussed above.
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In the C^oE^-Ho0-heptane system water continuous 

and oil-continuous microemulsions exist, at low sur­

factant content. As the temperature is increased in­

version from the water-continuous to the oil-continuous 

system occurs via an intervening 3-phase region containing 

lamellar liquid crystal. When the hydrocarbon is changed 

to decane which is still just shorter than the sur­

factant hydrocarbon chain, the water continuous and oil- 

continuous micro emulsions still exist though the oil- 

continuous microemulsion shows a trend towards the bi­

continuous structure. When the hydrocarbon chain length 

is increased to 16, which is longer than the surfactant 

hydrocarbon chain, the water continuous microemulsion 

changes at low surfactant content with no phase boundary 

into a bicontinuous structure which can then change to 

an oil continuous structure at much higher surfactant 

content. For octadecane the situation appears to be 

similar to hexadecane though more evidence would be 

required to substantiate this. Thus the hydrocarbon chain 

length determines whether a low surfactant-content oil- 

continuous microemulsion will be formed or "whether a 

bicontinuous phase will be formed. Decalin with its 

oddly shaped molecule would not fit in between surfactant 

hydrocarbon chains in the same way and so changes the 

phase behaviour.
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5.3.6. THE BRIJ 30-H00-HEXANE AND HEPTANE SYSTEMS

5.3.6.1 THE PHASE DIAGRAM OF BRIJ 30-H O-HEXANE

Figs. 4.8 and 4.9 show the Br i j -IinO-hexane phase 

diagrams. At 1°C the oc -region present in the C^0E^- 

Hr,0-heptane system is absent (it is also absent from 

the Brij-Ho0 phase diagram) and also the cl" -region. 

These regions were not observed at higher temperatures. 

Thus it appears that Brij is unable to produce an 0/W 

microemulsion at low surfactant content. The ft -region 

is present at 1°C; its low water content boundary is 

too ill-defined to be shown.

As the temperature is increased no new isotropic 

liquid phases are observed until l6°C when a small 

isolated region occurred around 20% Brij-45% Ho0 - 

35% hexane. This appears to be a remnant of the £ -regi 

(see conductivity results 5 .3.6 .2) which is much more 

extensive in the nE^-II00-heptane system. As the 

temperature is increased this joins the -region in 

the middle where the surfactant and hexane proportions 

are similar.

The ^-region then extends and a narrow salient 

appears pointing towards the water corner. By 27°C a 

small narrow isolated region has appeared close to the 

water corner; this is an extension of the narrow high- 

temperature clear region in the binary system, the 

^-region (Fig. 4.3). As the temperature is increased 

further the ^-region joins up with the salient of the
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^-region. Both ends of these regions exhibit streaming 

birefringence before the union takes place; this may 

reflect the presence of lamellar aggregates. Streaming 

birefringence was not observed where the ^  -region joined 

the /3 -region in the Brij-water system; the joining 

of the ^ -region to the ft -region is an extension of this 

in the presence of hexane (the /^-region joins the 

3f-region). Streaming birefringence was observed at 40°C 

whereas it was not at 70°C; the anistroxDic aggregates 

may be larger.

The ^-region first appears at a similar temperature 

in both the C^E^-H^O-heptane and Brij-Kr, O-hexane systems. 

However, in the Brij system the ft -region also extends 

at this temperature to include compositions of relatively 

high water and hexane content with low surfactant content. 

This is due to different fractions of the polydisperse 

oxyethylene chains assuming imjoortance at toiiperatures 

different to those of the tetraoxyethylene system. At 

the lowest surfactant content, around 5 0% hexane, 40/6 water 

and 10/6 Brij, the liquid is blue-translucent indicating 

large aggregates. This is likely to be due to the Barne 
factors producing blue-translucence in the C-^E^ system 

at low surfactant content, i.e. larger aggregates are 

produced because of the small amount of surfactant 

available to form the interfacial film (section 5 -3 -1-1 
the ct -region and the 6 -region).
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As the temperature is increased further this 

extension of the y -region moves to higher hexane 

content and then recedes, though at 50°C the ^-region 

in the Brij-H0q-hexane system remains more extensive 

at high hexane content than the ^-region in the C^rE}_- 
IInO-heptane system.

5.3.6 .2. THE PHASE DIAGRAM OF THE BRIJ 30-HoO-HEPTANE SYSTEM

A detailed study has not been made of this system.

Table 4.13 gives the temperature ranges of samples with 

isotropic liquid regions and sample numbers greater than 

11 (i.e. the high hydrocarbon content samples are not 

included). Figs. 4.l8 and 4.19 show the behaviour of the 

^-region at 35*3% Brij in the presence of heptane and 

33•4% Brij with added hexane. There are small temperature 

differences (mostly 3°0 or less) between the isotropic 

liquid regions in the heptane and hexane systems but no- 

significant differences in the general behaviour; 

no comparison has been made at high hydrocarbon content 

and low surfactant content.

If as suggested in section 3-3«3j C E^-H^O-heptane, 

the difference between the hydrocarbon chain length and 

the length of the surfactant ^hydrocarbon chain is im­

portant then no qualitative change might be expected in 

replacing hexane by heptane since both are considerably 

shorter than the dodecyl chain.
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5 • 3 • 6 . 3 • CONDUCTIVITY IN THE BRIJ-Hr, O-HEXANE SYSTEM

Figs. 4.8 and 4.9 show the conductivity measured at 

discrete points in the phase diagram.

The conductivity indicates that the £ -region is 

oil continuous - hence the designation. At 20.1% Brij;

4 4 . 9 $  Ho0 and 35«C% heptane the conductivity in this 

region at l8.6°C is 0.39/<Sm ^ which is as low as the 

lowest values obtained in the € -region of the C^0E/,- 

H00-heptane system. Throughout the temperature range 

of clarity of this sample the conductivity changed very 

little (Table 4.7)• A similar sample in which heptane 

replaced the hexane behaved in the same way. No trace 

of the very rapid increase in conductivity close to the 

lower (with respect to temperature) "phase boundary" was 

found. However, some of the components of the polv- 

disperse Brij may separate before others so that the 

observed phase boundary (at the separation of the first 

components) is not the same as in the system with the 

pure surfactant.

The behaviour of the conductivity in the ^-region 

looks rather different to that in the C..0£, -Ho0-heptane 

system in Figs. 4.5-4.7* Samples 36, 28 and 21 appear to 

be water-oXyethylene chain continuous. The conductivities 

are relatively high and increase steeply with increasing 

temperature. The situation is more complex than with the 

pure surfactant, because, not only are there impurities
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present in -the Brij, including ionic impurities (section 

4.7) and a distribution of oxyethylene chain lengths, 

both of which factors affect the structure of the system 

but also the quantity of ions varies according to the 

quantity of Brij present instead of with the quantity 

of water present. Since there is some water present in 

the Brij there is slightly more than 10% water in the 

samples nominally containing this amount of water. As 

in the Cn -Hf., O-heptane system small differences 

(-0.1%) in the amount of water have a significant effect 

on the conductivity.

Sample 21 shows no decrease in conductivity at higher 

temperatures, but 4l°C is the maximum temperature of 

measurement and in the C^nE^-Kn0-heptane system the 

decrease in K for sample 21 occurred above 40°C. The 

behaviour of samples 15 and 10 suggests that such as 

decrease is unlikely to occur. The conductivities of 

samples 15 » 10 and 6 all increase with increasing temp­

erature up to 4l°C (again measurements were not made
2 2above this temperature). Whilst d‘ H /dT is positive 

for samples 10 and 15 » i for sample 6 is changes from 

probably just positive to negative. Sample 3 exhibits

significantly lower conductivity; K increases with
2 2temperature; d H / d T ' is negative.

The conductivities of samples 6, 10 and 15 are 

surprisingly close (Fig. 4.4 6) considering that the 

differences in the quantities of Brij present result

2?3



5.3•6 .3• Cont'd .

in equivalent differences in the number of ions present. 

Either the number of ions present has only a small effect 

on the measured conductivity or structural changes take 

place with increasing Brij concentration which if the 

concentration of ions could be maintained constant would 

actually reduce the conductivity. The conductivities of 

samples 3 * 6 and 10 are of the same order of magnitude 

as those of the equivalent samples, at the upper ends of 

their temperature ranges, in the C^0Ej, -H^O-heptane system. 

These samples were regarded as oil-coritinuous at the upper 

ends of their temperature ranges (section 5 •3-1*2 - the 

j'-region) . The conductivity of sample 15 is considerably 

lower than that of the equivalent sample in the C 0Ej,- 

Ho0-heptane system (at 0°C H is 9 - 4/tSm  ̂ compared to 67* 2/*Sm 

at 40°C K is 42y(xSm  ̂ compared to 70/fcSm ^ ) • If samples 

6 , 10 and 15 are oil-continuous this could account for 

the surprisingly close values of their conductivities.

The number of ions present would have little effect on 

the conductivity of systems where percolation does not 

occur. Some discussion of the conduction mechanism in 

such systems has been given previously (section 5 -3-1-2 - 

the £ -region). Sample 3 exhibits a lower conductivity 

which could be explained by a larger droplet size. Sample 1 

barely cleared at around 34°C. It showed a very low con­

ductivity (0.7f/tSm ) which is considerably lower than

that of sample 1 in the CjoE^-Ho0-heptane system at 17°C 

(2.06/^Sm ^) and is comparable with the lowest values of
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conductivity measured'in both systems. This suggests 

a relatively large droplet size (approaching that of 

samples appearing blue-translucent due to light scat­

tering). In the Brij system the droplet size in the oil- 

continuous samples with 10% water appears to increase 

with decreasing surfactant content, to a far greater 

extent than in the 0E^ system.

Sample 6 is clear at 0°C unlike that in the 

r,E/f -IIo0-heptane system. Sample 3 has its isotropic 

liquid range about 10°C higher than in the Cn0E^ system. 

In sample 6 the lower phase boundary is below the 

temperatures investigated. The absence of the rapid rise 

in conductivity at the lower end of the temperature 

range of sample 3 may be due to the nature of the lower 

phase boundary as described previously wTith regard to 

the £ -region in the Brij system.

When conductivity is plotted versus composition 

(for the samples containing 10% water)(Fig. 4.45) there 

is an ill defined break in the curve at the composition 

corresponding to sample 15* Between sample 15 and sample 

21 the system appears to change continuously from oil- 

continuous to water-oxyethylene chain continuous, pre­

sumably via a similar structure to that occurring in the

-H00-heptane system. The change seems to occur over 

a shorter composition range than in the 0-heptane

system. Also there is no evidence of inversion from oil-
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continuous to water-oxyethylene chain continuous with 

temperature, as in the r>E^-Hr,O-heptane system.

As the X -region extends to low surfactant content 

at 27°C the conductivity decreases with decreasing sur­

factant content. This accords with increasing droplet 

size (as in the Cn 0E;, system) ; the blue translucence 

on the low surfactant edge of this region suggests 

larger droplets here. Drifting readings of conductivity 

obtained on the low surfactant boundary of this region may 

be an indication of rapid changes occurring in conductivity 

as a function of temperature close to the phase boundary, 

or to the limitations of the copper cell when used to 

measure very low conductivities (section 3-3»l)«

The behaviour of conductivity in the 'C -region is very 

similar to that in the system. Since the maximum

temperature at which measurements were made was 40°C 

the conductivity in the narrow salient of the X -region 

was still considerably lower than that in the £ -region.

This is also similar to the C^0E^ system below the temp­

erature at which the two regions unite, suggesting 

that similar structures occur in both systems.

The differences between the isotropic liquid regions 

of the Brij - Hr O-hexane system and the C^nE^-Hr,O-heptane 

system stem from the impurities present in the Brij 

and the polydispersity of the oxyethylene chains. The 

Brij-water phase diagram bears considerable resemblance to 

the C^rE 0-w'ater phase diagram. If a significant proportion 

of C E is present in the Brij this will tend to favour W/0



rather than 0/W emulsions to a greater extent than 

C^0E^. The longer chain homologues present will tend 

to favour 0/W rather than ¥/0. The binary phase diagram 

and the absence of the cT -region in the ternary system 

combined with the extension of the Y -region at higher 

temperatures are a reflection of this. That the £ -region 

is so reduced though a ¥/0 dystem is produced at higher 

temperature is a indication of different oxyethylehe 

chain length component assuming importance at higher 

t emjoeratur e .

5.4 SURFACTANT-TRIACETIN SYSTSMS

5.4.1. C - TRIACETIN

Fig 4.21 shows the Cn 0E,(-triacetin phase diagram. 

Above the melting point of C^0E^ the two are completely 

miscible, At lower temperatures crystalline material 

(C^nE^) separates out; the temperature at which it does 

so, decreases with increasing triacetin concentration.

5.4.2. BRIJ 30- TRIACETIN

Fig. 4.22 shows the Brij-triacetin system. Above the 

clearing point of the Brij the two are completely miscible 

At lower temperatures the system becomes two-phase (or 

multi-phase) as solid (or liquid crystlline-no distinction 

was made during the determination) material separates out. 

The peculiar shape of this lower phase boundary is due to 

the impure nature of the Brij; the diagram shown is not 

strictly a binary phase diagram because Brij is not a singl
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component but a mixture. In region B the solid material 

which separates out is and other bomologues. In

region A the solid or liquid crystalline material which 

separates may be ionic impurities possibly with any water 

present (it is not ^2 ,̂ as this woiild be against the 

phase rule).

5.5 SURF ACT ANT-V7ATER-TRIACETIN SYSTEMS

5.5.1 C.. 0E,-Ho0-TRIACETIN 12 4 2___________

The triangular phase diagrams of this system are 
shown in Fig's".' 4.23 and 4.24

The !X -region

At 0°C the -region is much more extensive than

when the third component is heptane. Very little heptane

could be accommodated in the C_ _E; micelles of the oC-region.12 4
The structure of the oC -region can accommodate much more 

triacetin, though not necessarily within the micelles as 

in the case of heptane. The structure of triacetin:
9h,c-o-c-ch5

I 9H-C-O-C-CHj
I 9H^C-O-C-CHj

is likely to lead to partitioning with the oxyethylene 

chains rather than with the hydrocarbon chains forming 

the micellar core. This is apparently possible with the 

oC-region micelle structure.

As the temperature is increased the -region moves 

aivay from the triacetin in water solution (at 0°C about 

7% of triacetin is soluble in water). The extensive region



showing streaming birefringence is much diminished at 

13°C. The origins of the streaming birefringence are 

presumably the same as in the C nEj-Ho0 o( -region. By 

27°C the streaming birefringence is no longer observed.

The -region has moved to higher surfactant content, 

is rather smaller in extent and no longer extends to 

the surfactant-water axis since the oC-region in the 

binary system does not occur at this temperature. At 

37°C the o<-region has joined the ^-region. This 

behaviour is quite different to that in the ternary system 

with heptane. It bears more resemblence to the C^0Eg- 

H r 0 system where the oC -region and /2-region are joined to 

form a single extensive isotropic liquid region. If the 

triacetin is located with the oxyethylene chains this 

will tend to extend the water-oxyethylene chain medium 

(heptane extends the hydrocarbon medium) so that is is 

possible to maintain the normal micellar structure from 

high water content to high surfactant content with no 

break. Also triacetin does not favour the formation of 

the lamellar liquid crystalline phase. At 0°C the extent 

of the region exhibiting birefringence and therefore con­

taining either liquid crystalline material or solid 

crystalline material (with or without other phases) is shown 

011 the phase diagram (Fig. 4.23). In the heptane system 

the liquid crystalline phase occurred as one component 

of the system at much lower surfactant concentrations.

This difference was also observed at higher temperatures.
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In the ^E^-H^O system the lamellar liquid crystalline 

phase separates the c< -and /^-regions.

The £ -region

At 0°C the ^-region extends nearly to the C^oE^-H00

axis but only as far as 20% triacetin. This is quite

different from the C 0E,-Ho0-heptane system. As the1 <- I
temperature is increased the V -region joins the -region 

of the binary system. The tiny isotropic liquid region 

at the triacetin corner (water is slightly soluble in

triacetin at 0°C as is extends along the triacetin-
^ axis as the solubility of in triacetin
12

increases with increasing temperature. Presumably 

triacetin and C ̂ 9 E ̂ form some sort of molecular solution 

at higher triacetin content. At low triacetin content 

the normal micelles or smaller aggregates of C . , p l u s  

around 10% water still exist with the triacetin in the 

continuous phase.

By. 20°C the two parts of the -region have joined. 

The region still does not include many of the 10% water 

samples which are included in the ^-region in the 

0^oEj-H^O-heptane system. Sample 15 is just included in 

the ^-region at 20°C; at higher tenperatures sample 10 

is included also. Samples 15 and 10 in the r,E;, -Hn,0- 

heptane system, are those that are thought to invert 

from water-oxyethylene chain continuous to oil-continuous
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with increasing temperature. Samples with lower C^0E^ 

content are thought to be oil-continuous and these do 

not give clear regions in the system with triacetin as 

third comx^onent. The does not appear to form

inverted micelles with water as the core in triacetin.

Since triacetin is likely to have little affinity with 

the dodecyl chain this seems reasonable.

In samples 10 and 15 either the triacetin is able 

to fit into the inverting structure (possibly bicontinuous) 

or the system does not invert and the surfactant remains 

as some sort of normal micelle with oxyethylene chains, 

water and triacetin forming the continuous phase. This 

phase can transform continuously to the molecular solutions 

of triacetin and C^0E^.

The CL -region

This region is completely absent as might be expected 

from the above discussion, that is if the conclusions 

drawn from the C^0E^-Ho0-heptane system are correct. The 

6 -region is thought to be an oil-continuous microemulsion. 

The equivalent triacetin system would consist of water 

in the droplets surrounded by surfactant with the 

oxyethyelene chains in the water and the hydrocarbon chains 

in the continuous phase of triacetin; its occurrence was 

not observed.
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The cT - reg ion

This is thought to be a water continuous micro- 

emulsion phase in the -Hf ,0-heptane system. Again

it was not found to occur in the triacetin system. The 

equivalent structure in the C70E;-K,O-triacetin system 

would be normal micelles with triacetin in the interior 

of the micelles with the hydrocarbon chains which is 

not likely. Triacetin is more likely to be localised with 

the oxyethylene chains as probably occurs in the extended 

o<-region. That the -region does not extend further to 

cover compositions of the cT-region is probably due to 

the fact that sufficient surfactant oxyethylene chains 

would be required with which the triacetin could be 

associated: the cT-region is of low surfactant content.

The ^-region

This first appears at much higher temperature than 

in the C^nE^.-Ho0-heptane system and by 60°C it is still 

widely separated from the ft -region. Fig. 4.1? shows 

the effect of adding triacetin to 34.9/0 C E. -H 0. The
JL X

phase can accommodate very little triacetin; it can 

accommodate very much more heptane (Fig. 4.15) with an 

associated drop in its temperature of occurrence.

Although the ^-phase is water continuous its structure 

remains unclear; it is thought to consist of aggregates 

of lamellar micelles in the water. Just as triacetin 

is not readily taken into the lamellar liquid crystalline
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phase but heptane is, so it is not readily taken into 

the ^  -phase whilst heptane is. Perhaps the same 

factors are operating in the ^  -phase as in the lamellar 

liquid crustalline phase. This behaviour tends to 

strengthen the evidence for some sort of lamellar 

micelle in the ^  -region, associated with the lamellar 

liquid crystalline phase which occurs at slightly lower 

temperature than the -phase.

5-5.2 THE BRIJ 30-H^O-TRIACETIN SYSTEM  £____________________

The only extensive isotropic liquid regions 

occurring in this system are the ^ - and ^  -regions 

(there is a small isotropic liquid region 011 the Ho0- 

triacetin axis due to the solubility of triacetin in 

water)(Figs. 4.25 and 4.26 ).

The -region

At 0°C only a tiny part of this region exists at 

the triacetin corner. There is no clear region near the 

Brij as in the case of C-^E^, because of the higher 

melting point of components of the Brij.

By 5°C this high Brij content part of the ^-region 

has appeared. It joins the Brij-triacetin axis in a 

different manner because of the different binary phase 

diagram
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The ^-region in the Brij-H0O-heptane system 

extends to low surfactant content sample numbers and 

relatively high water and oil content. This part of 

the V -region is thought to be oil-continuous from the 

conductivity measurements. With triacetin as the third 

component this part of the Y -region was not observed. 

The same factors which prevent the oil-continuous phases 

occurring in the 0E/l-H0O-triacetin system are likely

to be operative here.

As the temperature is increased a salient develops 

pointing towards the water corner. This eventually 

joins the ^-region.

The ^  -region

This again occurs at higher temperature than in 

the equivalent system with heptane as the third com­

ponent. Fig. 4.20 shows the effect of adding triacetin 

to 32.2% Brij-Hr,0. Although rather more triacetin can 

be accommodated than in the C1 system it is still

not nearly as large as the quantity of heptane which 

can be accommodated and the temperature of occurrence 

of the ^  -region drops only slightly.

At 6l°C the ^-region has joined the ^-region.

In the Brij system the impurities and the mixture of 

oxyethylene chain lengths appear to enable more triacetin 

to be taken in to the 'C, -region. The gap between the
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^  -region and the/#/ft -region in the C-gEh system is 

not closed at 60°C in the presence of triacetin. In 

the Brij system no such gap exists and by 6l°C the 

isolated ^-region has joined the V -region.

The c* - , cl-- and £ -regions

The c<-region does not occur in the binary system 

or the ternary system with heptane; it was not observed 

in the ternary system with triacetin.

The -region does not occur in the ternary system 

with heptane or in the C^E^-H^O-triacetin system so it 

is not expected in the present system.

Only a trace of the d -region exists in the ternary 

system with heptane. From the behaviour of the C^0E^- 

H,.,0-triacetin system it would not be expected to occur 

in this system.

Only the ft -region is shown in the system Emu 09-

IIri0-tricaprylin (31) presumably at room temperature;

Emu 09 is a commercial polyoxyethylene alkyl-aryl ether.

The phase diagram is similar to that of Brij-H^O-triacetin

at similar temperatures. Isotropic liquid regions

occurring at high water content were not investigated by

these authors. The l-monocaprylin-Ho0-tricaprylin system 
o

at 20 C (105) bears more resemblance to the Brij-IIoO- 

triacetin system between 30 and 40°C.
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In this system 1-nionocapDiin is taking the place of 

a more usual surfactant. At 20°C the ^-region is 

beginning to extend into a narrow salient at this temp­

erature though whether this develops at higher temp­

erature or was connected to an -region at lower temp­

erature, is not shown. There is a difference from the 

Brij-Ho0-triacetin system, along the tricaprylin - 

nionocaprylin axis because at 20°C the two do not form an 

isotropic liquid below k0% tricaprylin. Apart from 

the ^ -region there is only a very small isotropic liquid 

region at the water corner.

5.6 CONCLUSIONS

The Ĉ  r£^-H,.0 system has a low-temperature liquid 

region consisting of surfactant micelles in water. At 

high surfactant content the system is shown, by self­

diffusion and conductivity measurements to be water- 

oxyethylene chain continuous; the aggregate size de­

creases with decreasing water content to small ag­

gregates in the pure surfactant. A high-temperature 

water-continuous isotropic liquid region with a very 

narrow temperature range also exists above the melting 

point of the lamellar liquid crystal and extends to lo\vT 

surfactant content (2.3%)• The structure of the sur­

factant aggregates remains unclear; it is such that 

both water self-diffusion and conductivity are reduced 

to a significantly greater extent, particularly at the
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lowest surfactant content, than would be expected if 

the surfactant formed normal micelles. In the 

C E/--HnO system the low temperature water-continuous 

micellar solution changes continuously to the high sur­

factant content system with smaller aggregates. The 

narrow high temperature region is absent.

In the Brij-Ho0 system the oxyethylene chain

length distribution and impurities result in the low'

temperature water continuous region being absent. The

high surfactant content region appears similar to that

of the and C^0Eg-H00 systems. The narrow high

temperature liquid region is w'ider and is continuous

with the high surfactant content region. The structure

of the narrow high temperature region appears to be

similar to that of the narrow high temperature region in

the C_ _.E;-Ho0 system: the variation in the concentration12 4 2  J ’
of the ions as the Brij concentration varies, and the 

unknown anion, renders interpretation of the conductivity 

results more difficult.

The 0E^-H0O-hydrocarbon system produces an 0/W

microemulsion at low surfactant content and low temp­

erature containing up to 60/o (W/W) hydrocarbon. At 

higher temperature and similarly low surfactant content 

W/0 microemulsions and bicontinuous phases occur depending 

on the hydrocarbon used, the longer hydrocarbon chain 

favouring bicontinuous structures. When the hydrocarbon
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is hexadecane the 0/W microemulsion changes continuously 

to a bicontinuous structure. The self-diffusion results 

of Lindman et al (?0) indicate that both water and 

hydrocarbon are continuous; whilst the conductivity 

results are in agreement with this it is not possible to 

distinguish, on the basis of conductivity alone, 

systems which are water continuous with some restriction 

of conductivity, bicontinuous systems and oil-continuous 

systems where conduction takes place by a percolation 

mechanism. When the hydrocarbon is heptane the low 

temperature 0/¥ micro emulsion is not continuous with the 

higher temperature microemulsion for which conductivity 

results provide unequivocal evidence of an oil-continuous 

structure at its highest temperatures of occurrence; at 

similarly low surfactant content to the 0/W microemulsion, 

the W/0 micro emulsion extends to 60% water. As the 

temperature is reduced the conductivity of the W/0 

microemulsion increases to a similar order of magnitude 

to that of a water-continuous or bicontinuous structure.

It is possible to explain this abnormally high (for an 

oil-continuous system) conductivity by a percolation 

mechanism, occurring when the aggregate structure changes 

without invoking phase inversion within the isotropic 

liquid phase. When the hydrocarbon is decane the 

behaviour is intermediate between that of the systems 

containing hexadecane and heptane: the two micro­

emulsion regions are separate but the conductivity at
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the highest temperatures of the upper region does not 

decrease to the very low values observed at the highest 

temperatures of the oil-continuous microemulsion of 

the heptane system.

The narrow high temperature clear region of the 

C^oE^-Ho0 system extends into the ternary system as 

heptane is added,occurring at lower temperature with 

increasing heptane content, but remaining narrow with 

respect to both composition and temperature. The low 

temperature water-continuous micellar system can only 

take a small amount of heptane (< 3%) before phase 

separation occurs.

At low water content the 0E^-H0O-heptane system 

changes continuously from water-oxvethylene chain con­

tinuous at high surfactant content, to oil-continuous at 

high hydrocarbon content. Whilst these changes are re­

flected in the conductivity results,evidence from other 

methods of investigation is needed to elucidate the 

structures involved.

Replacement of C7 r,2j, by Bri j results in the loss of 

the water-continuous microemulsion at low surfactant 

content and a severe reduction in the W/0 microemulsion, 

a remnant of which occurs at slightly higher surfactant 

content. The W/0 phase is more extensive at high oil- 

content. These differences can be ascribed to the 

mixture of chain lengths in the Brij and the impurities
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present. At low water content there is again a con­

tinuous evolution from water-oxyethylene chain con­

tinuous to oil-continuous with increasing oil content 

(in this case hexane); conductivity results suggest 

that the structural changes do not follow exactly the 

same pattern as in the case of the pure surfactant.

The narrow’ high temperature clear region behaves simi­

larly to that in the r,£̂, -Hr,O-heptane system, re­

maining slightly wider than in the pure surfactant 

system, as it does in the binary system.

When the third component is triacetin, which is 

more likely to partition -with the oxyethylene chains than 

with the hydrocarbon chains, the 0/W and W/0 micro­

emulsions at low surfactant content do not occur. The 

oil-continuous regions do not occur except for essentially 

molecular solutions of triacetin plus surfactant containing 

little wrater. The narrow high temperature region is 

much reduced in the pure surfactant system but not in the 

Brij system. The low-temperature water-continuous 

micellar solution of the C^oE^-Ho0 system is extended by 

the addition of triacetin and joins the high surfactant 

content region.

Without further information from other methods of 

investigation it is not possible to make more than 

tentative suggestions concerning the structures of many 

of the isotropic liquid phases. Conductivity results may
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show whether oil or water is the continuous phase 

but this is not always the case. Where self-diffusion 

measurements are also available the continuous phase or 

phases can be determined but detailed structures are 

still not laiown.
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