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Abstract

Obesity has recently become a major global health problem. Epidemiologic studies 
indicate that obesity is an important risk factor for type 2 diabetes (T2DM), 
atherosclerosis and low testosterone in men. Importantly, testosterone replacement 
treatment (TRT) can improve the condition of these diseases. According to human 
and animal studies testosterone can act as an anti-inflammatory and anti- atherogenic 
factor leading to inhibition of the risk factors and consequence of T2DM and 
atherosclerosis. Consequences of these diseases include dysregulation in atherogenic 
factors such as apolipoproteins or pro-inflammatory mediators such as cytokines and 
chemokines and their receptors. The effect of testosterone on these factors remains 
unclear.

The objective of the present study was to demonstrate whether testosterone has anti
inflammatory and anti-atherogenic action and by which mechanisms. This was 
achieved by using in vivo human and mice studies as well as in vitro models. The in 
vivo human study was conducted on short and long term studies, to determine the 
effect of TRT on anti and pro-inflammatory cytokines, HDL fractions and 
apolipoproteins in diabetic hypogonadal patients. Samples of liver tissue from 
testicular feminization mice (Tfin) were studied to investigate the effect of 
testosterone therapy on mRNA expression of adiponectin, PP ARp/5, PAI-1, 
apolipoproteins and pro-inflammatory chemokines with their receptors. Additionally, 
models of cell culture were studied including human macrophage THP-1 cells and 
mouse 3T3L1 cells to study the effect of testosterone with or without blocked 
androgen receptor (AR) on CX3CR1 and CCR2 and pro-inflammatory cytokines in 
macrophage cells and on adiponectin, PP ARp/8, PAI-1, leptin and chemokines in 
adipocyte cells, respectively.

In the clinical studies, a reduction in adiponectin levels after 3months was seen in the 
short-term study and an increase in HDL2 and HDL2/HDL3 ratio in the long-term 
study. No significant effect of testosterone was observed on body composition and 
atherogenic factors in either the short or long-term studies. In the animal study, 
testosterone increased hepatic expression of mRNA adiponectin, PP ARp/8 and PAI- 
1 mRNA expression in Tfin. In the cell culture studies, testosterone treatment 
increased CCR2 mRNA expression and decreased secretion of IL-8 and TNF level in 
the supernatant of THP-1 macrophages. Testosterone decreased secretion of CCL2 
and CX3CL1 from 3T3L1 adipocytes while increasing PAI-1 mRNA expression in 
these cells. The action of testosterone was based on the type of cells and time, route 
and dose size of treatment.

In conclusion, although testosterone therapy showed a positive effect on some risk 
factors of obesity and its associated conditions, negative effects were also seen. 
However the exact mechanism of action of testosterone that influences risk factors of 
obesity and its associated conditions in men with low testosterone remain unclear, 
therefore further studies are needed to fully elucidate the above finding.
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1.1 Introduction

Obesity leads to a wide range of serious diseases such as metabolic syndrome, type two 

diabetes (T2DM), and atherosclerosis as well as in men, testosterone deficiency, which 

has resultant complications e.g. increased risk of cardiovascular disease (CVD). Obesity 

is a substantial public health problem that increases morbidity, mortality and has 

substantial long term economic and social costs. This raises public-health concerns 

(Saad et ah, 2012; van Stijn et ah, 2014).

1.2 Obesity

The prevalence of obesity has increased substantially over past decades in most 

industrialised countries. It is a disease that is present among all age groups in both 

genders and is rapidly reaching pandemic proportions (Ogden et ah, 2014). Prospective 

causes of this epidemic are attributed to a combination of factors in an individual, which 

lead to an imbalance between food intake and energy expenditure. The main factors are 

endocrine disorders, environmental and genetic contributors with inappropriate life style 

such as changes in dietary patterns and a lack of regular physical activity (Pradhan, 

2007).

1.2.1 Measurement of obesity

A clinical definition of obesity is known as a body mass index (BMI) or Quetelet Index 

of > 30 % Kg/m2 (Poirier et ah, 2006). Therefore, BMI is considered the main indictor of 

obesity (Table 1.1). Waist to hip ratio (WHR) is a second measure used for estimating the 

degree of obesity. Some studies established that the waist circumference, not WHR, is a 

better indicator of abdominal fat and a predictor of risk of cardiovascular disease and 

hypertension in diabetic patients (Balkau et ah, 2007; Alberti et ah, 2009). In a number 

of studies, WHR or waist circumference was considered more significant than BMI in 

measuring the body fat distribution (Table 1.2) (Seidell et ah, 1997, Yusuf 2005, Van 

Gaal et ah, 2006).
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Underweight < 18.5 Low (but risk of other clinical problems 
increased)

Normal Range 18.5-24.9 Average
Overweight
(pre-obese) 25.0-29.9 Mildly increased
Obese >30.0
Class 1 30.0-34.9 Moderate
Class 11 35.0-39.9 Severe
Class 111 >40.0 Very severe

Table 1.1: Classification of overweight and obesity in adults according to BMI and 

co-morbidities. (Adapted from Cheah and Kam, 2005).

Not overweight <94.0 <80.0

Pre-obese 94.0-101.9 80.0-87.9

Obese >102.0 >88.0

Table 1.2: Classification of abdominal obesity by waist circumference (cm)

(Adapted from Cheah and Kam, 2005).
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It also indicates abdominal (central, visceral, android) obesity, which is associated with 

an increased risk of morbidity, compared to gluteofemoral (peripheral, 

gynoid) obesity (Wang et al., 2005; Yusuf et al., 2005). The body fat percentage has 

been considered an additional approach to obesity measurement, which is calculated by 

taking height, age, gender, weight and waist measurement into account. This calculation 

gives the exact body fat and the measure can be used to determine the amount of body fat 

that should be lost to reduce risk of obesity associated conditions. A number of other 

measurement tools have been used to assess body fat composition, including the 

measurement of subcutaneous skin fold by means of a caliper or ultrasound, bioelectrical 

impedance analysis (BIA), densitometry, or imaging procedures; nevertheless, most of 

these measurements are not readily used in clinical practices, and do not add considerable 

information involving risks compared to BMI and waist circumference measurements 

(Jagannathachary and Kamaraj, 2010; Pischon et al, 2007).

Functional differences between peripheral and visceral adipose tissue (VAT) have been 

reported (Gesta et al., 2007). Visceral adipose tissue has higher metabolic activity than 

peripheral adipose tissue (Abate and Nicola, 2013). Furthermore, the subcutaneous fat 

accumulation in the abdomen is more contributory to diabetes, coronary vascular 

diseases (Hajer 2008; Bastard, 2006) and hypogonadism (Abate et al., 2002) than 

peripheral adiposity. This may explain why these diseases, in particular heart disease, are 

more widespread among men than women, because men have more upper fat body than 

women, who have more lower body fat in general. Also these conditions are more 

common among women with central obesity compared to women with peripheral obesity 

(Blouin et al., 2008).

1.2.2 Structure of adipose tissue

Mammalian adipose tissue is histologically identified as a loose association of lipid- 

filled cells, called adipocytes, which are held together by a framework of collagen 

fibres. Adipose tissue also contains fibroblastic connective tissue, leukocytes, 

macrophages, and preadipocytes, in various stages of development. It can be classified 

into two types: white adipose tissue (WAT) and brown adipose tissue (BAT). The 

presence, amount, and distribution of both types depend on the species, but the WAT is 

the main type of adipose tissue and is located under the skin (Witkowska-Zimny and
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Walenko, 2011). It usually surrounds the internal organs and prevents them from 

jarring. WAT is also found in the lymph nodes and the skeletal muscle. The WAT plays 

a significant role in insulation against heat loss and mechanical and/or structural support 

and most prominently, is a storage site for energy in the form of long chain fats 

Vazquez-Vela et al, 2008). Approximately 60 to 85% of the weight of WAT is lipid, 

with 90-99% being triglycerides. Small amounts of free fatty acids, diglyceride, 

cholesterol, phospholipid and minute quantities of cholesterol ester and monoglyceride 

are also present (Satterfield and Wu, 2011). BAT derives its name from the rich blood 

vessels and densely packed mitochondria in it. It is located near or around some organs 

including: brain, spinal cord, heart, lungs, and kidneys during cold stress. In infants, 

BAT comprises 5% of the total body mass and it decreases in humans as they age; it 

almost disappears by adulthood (Symond et al, 2013; Enerback 2010).

1.2.3 Development of adipose tissue

The differentiation of these cells starts at the adipoblast to pre-adipocyte stage and then 

to an immature adipose cell until it becomes a mature adipose cell, typically referred to 

as an adipocyte (Tang et al, 2008). Concerning the level of adipocytes, different cell 

populations at different stages of development are known to be present in adipose tissue 

during foetal life and early infancy. Some of these cells contain small amounts of lipid 

and represent the adipose cell mass at an early age. Then the level of the body fat 

increases after birth by increasing the fat cell size (Lonn et al, 2010). These processes 

are influenced by several factors including catecholamines, p-adrenoreceptor-mediated 

agents, thyroid hormones, insulin, growth hormone, glucocorticoids and sex steroids, 

which have been studied in vitro by using pre-adipocyte clonal cell lines, principally of 

mouse and rat origin (Zancanaro et al, 1995, Yang 2005). Both adipocyte number and 

size are responsible for increasing the size of adipose tissue mass (Tang et al, 2008). 

Hyperplastic growth is a means of enhancing the number of adipocytes by mitotic 

activity in the precursor cells. In contrast, hypertrophic growth is a means of increasing 

the size of adipocytes as a result of augmenting lipid accumulation within the cells 

(Schling and Loffler, 2002).
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1.2.4 Functions of adipose tissue

The fat storage capability of adipose tissue is associated with its traditional function as 

an energy storage tissue, but its role as an active immune-modulator and endocrine 

organ is a relatively new concept (Trayhun, 2005; Rosen et al, 2014). This concept has 

been an area of intense investigation and has been examined by highly varied 

experimental approaches to study the main secreted molecules from adipose tissue. 

Adipose tissue produces various substances with autocrine, paracrine and 

neuroendocrine actions (Figure 1.1). These substances have a role in glucose 

metabolism, insulin sensitivity, lipid oxidation, immune and vascular function and 

hormonal status (Lago et al, 2007; La Merrill et al, 2013).

1.2.5 Adipocyte endocrinology

At the beginning of the 1990s, a big advance in the recognition of the endocrine and 

secretory role of adipose tissue occurred (Rasouli and Kern, 2008). Adipocytokines or 

Adipokines is a general term that refers to a bioactive produced by the adipose tissue. 

Hotamisligil et a l (1993) reported that tumour necrosis factor alpha (TNFa) expression 

increases in obesity and has a significant responsibility in insulin resistance mechanisms 

(Hajer et al, 2008) and adipose tissue metabolism such as the stimulation of lipolysis 

and apoptosis (Dunger et al, 1996; Rabinovitch et al, 1999). However, a radical 

change in viewpoint occurred following the discovery of leptin in 1994 by Friedman 

and colleagues (Zhang et al, 1994). This vital hormone is made predominantly by white 

fat, assigning to the tissue an endocrine function. It plays a role in the regulation of 

food intake and energy expenditure by stimulating the hypothalamus, the centre of 

appetite and energy balance (Lago et al, 2007). Therefore, the discovery of leptin 

helped scientists understand the secretory role of WAT and its role in the regulation of 

metabolic and physiological homeostasis. It is now well established that adiponectin, 

leptin, adipsin, resistin, visfatin, complement factor 3, interleukin-6 (IL-6), IL-lp, IL-8 

IL-10, TNF-a, angiotensinogen and plasminogen activation inhibitor-1 (PAI-1) are also 

all produced and released by adipose tissue (Trayhum and Wood, 2005; Bullo' et al, 

2013).
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Figure 1.1: The multiple functions of white adipose tissue. The function of this tissue 

includes: synthesis, secretion and storage of lipids and production of cytokines, 

chemokines and other adipokines such as adiponectin, leptin, PPARp/5 and PAI. CCL: 

CC-chemokine ligand (CCL); CXCL: CXC-chemokine ligand (CXCL); IL: interleukin, 

PAI-1: plasminogen activator inhibitor 1, PPARp/5: peroxisome proliferator-activated 

receptor, TNF-a tumour necrosis factor, IFNy: Interferon gamma (Adapted and 

modified from Lago et al, 2007).
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Furthermore, adipose tissue is a source of chemokines including CCL2 (MCP-1) and 

fractalkine (CX3CL1) (Suganami and Ogawa 2010; Shah et al, 2011). In addition, 

overwhelming evidence has established that the residence of macrophage cells in WAT 

assists strongly in the secretory function of adipose tissue (Weisberg et al, 2003) 

(Figure 1.2).

It has been suggested that the main source of pro-inflammatory adipokines is 

macrophages, although other cells in adipose tissue such as adipocytes, preadipocytes 

and vascular cells contribute to their secretion (Fain, 2006, Sell and Eckel, 2009). Two 

types of macrophage (Ml and M2) are located in adipose tissue. Ml macrophages are 

predominantly found in adipose tissue of fatter people and they produce TNF-a and IL- 

6; thereby increasing inflammation, whereas M2 macrophages secrete IL-10 which is an 

anti-inflammatory cytokine. Both types of macrophage, together with fat cells have the 

ability to accumulate lipids and release cytokines (Fuentes et al, 2010).

Adipose tissue is an active endocrine organ, and its relationship to inflammation and the 

immune system has become the focus of much research aimed at understanding this 

relationship, its causes and consequences, in the hope that will offer new targets for 

drug development for controlling obesity and reducing its role in the occurrence of 

cardiovascular disease (CVD), T2 DM and testosterone deficiency.

1.3 Inflammation and key molecules

The key markers of inflammation include: immune cells, biological molecules such as 

cytokines, chemokines and innate effector mechanisms (Romagnani, 2002). Chronic 

systemic inflammation is associated with a reduced human life span (Finch and 

Crimmins, 2004). Although there is limited information on markers of systemic 

inflammation and their mechanism of action, there is an association between chronic 

inflammation and several diseases found in the developed world, including obesity (De 

Heredi et al, 2012), diabetes (Wang et al, 2013), atherosclerosis (Libby et al, 2009) as 

well as low testosterone, which leads to increased risk of other disease (reviewed from 

Saad et al, 2012). Therefore, a key to preventing and treating these conditions is 

reducing inflammation.
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Figure 1.2: Adipose tissue cellular components and molecules synthesized in lean 

and obese adipose tissue. Changes in adipocyte and fat size lead to physical changes in 

the surrounding area and modifications of the paracrine function of the adipocyte. 

Increased migration of monocytes to adipose tissue in response to CX3CLland CCL2 

via their receptors CX3CRland CCR2 leads to activation of macrophages from M2 to 

Mlphenotyp. This leads to reduction in anti-inflammatory factors including: 

adiponectin, IL-10 and PPARp/5 and increased secretion of free fatty acid (FFA) and 

pro-inflammatory factors including: IL-ip, IL-6, and leptin, PAI-1, CCL2, CX3CL1 and 

IL-8. The result of all these changes is damage to endothelial cells (EC) and 

development of insulin resistance (IR). (f) increase, (j) decrese. (Drawn using 

information from Ouchi et al, 2011, Shah et al, 2011; Yao et al, 2014).
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1.3.1 Factors linking obesity with inflammation

There is a causal link between obesity and the activation of the innate immune system 

(Bastard et al., 2006) leading to a low-grade inflammatory state, which has been 

observed in obese individuals and this could play a central role in obesity, T2DM- 

related IR and cardiovascular complications (De Heredi et al, 2012).

However, the occurrence of low-grade inflammation in obesity is not clearly 

understood, although hypotheses to explain this have been proposed. It could be a result 

of insufficient blood supply in growing adipose tissue, which leads to decreased 

oxygenation (Pasarica et al., 2009). Further evidence implicating adipocytes in innate 

immunity, is that fat cells have the ability to synthesize and release pro-inflammatory 

cytokines and chemokines (see section 1.2.5) (Monteiro and Azevedo 2010, Skurk et 

al, 2005, Wood et al., 2009).

These factors can activate inflammatory signalling pathways, resulting in the induction 

of further biological markers of inflammation. Although the expression, production and 

secretion of inflammation-related adipokines are augmented in adipose tissue with 

obesity, the major exception to this example of increased inflammation is adiponectin, 

the expression and concentration of which falls in obese individuals, given the anti

inflammatory action of the hormone. Adiponectin controls the level to which adipose 

tissue is in a state of ‘inflammation’ in the obese (Von Eynatten et al., 2006; Hoffstedt 

et al., 2004; Kumada et al., 2003).

In addition, in rodent genetic models of obesity, the expression of genes coding for 

these factors in WAT result from the infiltration of macrophages of obese mice (Bastard 

et al., 2006). This is a further biological clue demonstrating that immune cells are 

implicated in obesity. There is substantial evidence supporting the significance of body 

weight loss in reducing gene expression of pro-inflammatory factors and the infiltration 

of macrophages in WAT (Clement et al., 2004). Furthermore, there have been several 

suggestions that explain and clarify the process that led to such macrophage cells 

residing specifically in WAT. One of the explanations was that macrophage cell 

accumulation in the adipose tissue was a low-grade inflammation state in obesity 

(Wellen 2005; Ford 2003).
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Other research suggests that macrophages may derive from preadipocytes (Cousin et al, 

2003) while some studies have indicated that macrophages originate from bone marrow 

precursors (Weisberg et al, 2003). In addition, leptin may have a stimulatory role in 

macrophage infiltration from the blood circulation to the WAT (Curat, 2004). 

Moreover; adipocytes can produce and release chemokines including CCL2 and 

CX3CL1 which are chemoattractant recruiting factors for circulating monocytes. Both 

chemokines are now well acknowledged for over-production in obesity (Martinovic et 

al, 2005; Shah et al, 2011). Moreover, some factors can link obesity to the immune 

system via toll-like receptors (TLR). These receptors are a family of pattem-recognition 

receptors that play a significant role in the innate immune system. They can be 

stimulated by saturated fat to enhance the expression of pro-inflammatory IL-6 and 

TNF-a (Huang et al, 2006). There is a signalling cascade that promotes the NF-kB 

pathway of both TLR2 and TLR4 in fat and macrophage cells, which then activates the 

transcription of many pro-inflammatory genes that encode pro-inflammatory molecules 

including cytokines, chemokines and other effectors of the innate immune response 

(Brown et al, 2011).

1.3.2 Adipokines and their effects

Adipocytokines are biologically active factors which work locally and systemically to 

influence glucose and fatty acid metabolism, insulin sensitivity, adipocyte 

differentiation, inflammation and the immune response. These biomarkers are classified 

according to their action as pro or anti-inflammatory factors.

1.3.3 Pro-inflammatory Adipokines

1.3.3.1 Interleukin-lp

IL-lp is a pro-inflammatory cytokine produced by a variety of cells including 

macrophages, monocytes and adipocytes. The IL-1 family contains three polypeptides 

ILl-a, IL-lp and an interleukin-1 receptor antagonist (IL-Ira) (Kim et al, 2008). They 

play a potent role in the regulation of immune cells and inflammation. A positive 

correlation between IL-lp and BMI has been reported in humans. In both human and 

rodent obesity, adipose tissue expression of IL-lp is highly up-regulated in visceral
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compared with subcutaneous fat (Moschen et al, 2011; Shaul et al, 2010). Nov et al 

(2013) suggesting that IL-ip is a regulator of adipose inflammation by promoting 

leukocyte and macrophage recruitment and enhancing macrophage lipid accumulation. 

IL-lp is also positively associated with IR; the mechanism by which IL-lp causes IR 

and subsequently affects the development of diabetes is under investigation. It has been 

suggested that it could impair insulin secretion and its signalling by stimulating insulin 

receptor substrate-1 (IRS1) serine phosphorylation (Zeyda and Sultnig, 2007). In 

addition, it may induce pancreatic beta cell apoptosis in diabetic patients resulting in 

Type 1 diabetes (Zeyda and Sultnig, 2007). The available data certainly emphasise that 

the adipocytokines, IL-lp with IL-6, have been closely linked to endothelial cell 

dysfunction (Caballero, 2003). Both IL-ip and TNF-a play a role in the induction of 

CX3CL1 by primary endothelial cells where CX3CL1 can contribute to the 

pathogenesis of atherosclerosis (Jones et al, 2010). Furthermore, IL-ip similarly to IL- 

6 and TNF-a, can also induce the liver to produce C-reactive protein (CRP) a marker of 

inflammation (Malkin et al, 2004a).

1.3.3.2 Interleukin 6

IL-6 is produced by a number of cell types including macrophages, T helper 

lymphocytes and adipocytes (Papanicolaou and Vgontzas, 2000). A positive correlation 

between IL-6 and obesity has been reported (Rocha et al, 2011). In particular, 

circulating IL-6 levels increase with an increase in BMI. Abdominal subcutaneous and 

visceral depots are both considered as the main source of this cytokine as well as white 

blood cells. Other studies confirmed that IL-6 mRNA expression is higher in VAT than 

in subcutaneous adipose tissue (SAT) (Mohamed et al, 1998, Rocha et al, 2011).

IL-6 plays an important role in the development of inflammatory conditions such as

T2DM and CVD. According to animal model and human studies, IL-6 is involved

directly in progressing T2DM by causing IR in some distant tissues such as skeletal

muscle, liver and vascular endothelial cells (Hu et al, 2004, Wallenius et al, 2002;

Klover et al, 2003). The possible mechanism of action of IL-6 is by impairing the

action of insulin (Bastard et al, 2006). IL-6 binds to its receptor (IL6R) which pathway

leads to phosphorylation signals via the Janus-kinase/signal transducers and activators

of transcription (JAK/STAT). JAK/STAT pathway is employed in the signalling of

many cytokines. The phosphorylated sites on the receptor and JAKS serve as docking

sites for the SH2 (Src Homology 2) containing STATS. Phosphorylated STATS
12



dimerizes and translocates into the nucleus to regulate target gene transcription. 

However, the stimulation of the JAK/STAT receptor system via IL-6 could dysregulate 

insulin action by inhibiting serine/threonine phosphorylation of Insulin Receptor 

Substrate (IRS), which is an important ligand in the insulin response of human cells, or 

by increasing suppressors of cytokine signalling (SOCS) (Bastard et al, 2006; de Luca 

and Olefsky, 2008).

IL-6, in addition to its role in the reduction of insulin action, also has a role in causing 

CVD that is linked to inflammation by inducing hepatic CRP secretion (Rocha and 

Folco, 2011, Lee et al., 2012). It is established that the IL-6 content of adipose tissue is 

strongly correlated with circulating levels of both IL-6 and CRP, particularly, IL-6 is 

produced mainly via VAT, which might demonstrate the causal relationship between 

central depots and CVD (Hu et al., 2004). IL-6 secreted from the adipose tissue directly 

passes to the liver via the blood, where it augments hepatic triglyceride and very low 

density lipoprotein (VLDL) production, reduces lipoprotein lipase (LPL) activity and 

enhances lipolysis. This leads to dyslipidemia development which is considered as a 

cardiovascular risk complication in humans. Thus, IL-6 seems to play a role in the 

development of coronary disease and diabetes linking both diseases with obesity and 

inflammation (Bastard et al., 2006). Besides these diseases, IL-6 also has a role in 

reduction of testosterone levels by inhibiting hypothalamic production of GnRH and 

subsequent release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) 

from the pituitary. This causes a state of hypogonadotrophic hypogonadism (Kelly and 

Jones, 2013).

1.3.3.3 Tumour necrosis factor

TNF-a is a multifunctional cytokine secreted from a number of different cell types, 

principally macrophages and lymphocytes. It can also be released from muscle cells and 

adipose tissues (Sewter et al., 1999). It was initially identified as a suppressor of 

tumours; it is now involved as a significant factor in the progression of IR and heart 

disease (Pischon, 2007). TNFa was the first cytokine to be implicated in the 

pathogenesis of obesity and IR (Hotamisligil et al., 1993). TNF-a mRNA expression is 

similar in both VAT and SAT, where VAT is strongly associated with IR and 

hyperinsulinaemia (Dusserre et al, 2000).
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Other factors, such as leptin, have been proposed to induce TNF-a by other cell types 

including macrophages. TNF-a mRNA is over-expressed in adipose tissue in rodent 

models of obesity, however, the actual role of TNF-a in obese humans remains to be 

elucidated (Sakurai et al., 2013). Weight loss in fatter people is associated with a 

significant reduction in TNF-a mRNA expression in adipose tissue and improved 

insulin sensitivity (Manco et al., 2007). Therefore, it is thought that TNF-a expression 

in obese adipose tissue could originally derive from macrophage infiltration, under the 

control of leptin, rather than from the adipocytes themselves (Bastard et al., 2006). In 

addition, there is also a debate related to the physiological role of TNF-a in the 

development of IR and CVD. One possible link between IR and diabetes is that TNF-a 

can cause the phosphorylation of the insulin receptor substrate-I (IRS-I) protein on 

serine residues. This leads to impeding the interaction of insulin with its receptor beta 

subunit and its signalling pathway. Another mechanism suggested is that TNF-a may 

down-regulate glucose transporter type 4 (GLUT 4) an insulin-responsive glucose 

transport protein (Hotamisligil et al., 1996; Shi et al, 2004). TNF-a also reduced 

peroxisome proliferator-activated receptor (PPAR) expression a transcription factor that 

is abundant in adipose tissue, which may also play a role in the sensitivity of cells to 

insulin (Zehda and Stulnig, 2007). As for the role of TNF-a in the incidence of micro- 

vascular or macro-vascular complications in diabetes, TNF-a can also directly cause 

endothelial dysfunction by inducing endothelial cells, hepatocytes and adipose tissue to 

express plasminogen activator inhibitor (PAI-1) that leads to a pro-coagulant state 

(Laaksonen et al., 2005). TNF-a also sustains the development of CVD by promoting 

hepatic CRP synthesis that is the main predictor of CVD, (Figaro et al., 2006, Hu et al., 

2004, Malikan et al., 2004a). In addition, TNF-a controls IL-6 synthesis and both are 

pro-inflammatory factors associated with obesity, inflammation with diabetes and CVD 

(Hoffstedt et al, 2004). Additionally, TNF-a can, like IL-6, be associated with low 

testosterone and a state of hypogonadotrophic hypogonadism (Kelly and Jones, 2013).

1.3.3.4 C-reactive protein

CRP is the one of the acute phase proteins secreted by the liver. It is increased 

considerably during systemic inflammation/infection and is found to be a sensitive 

marker of low grade systemic inflammation. Several studies have observed that the 

level of CRP increses with increasing BMI (Ford, 2003), serum lipid and fasting blood
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glucose (Wexler et al, 2005, Thorand et al, 2003, Santos et al., 2005). In addition, 

following the Women’s Healthy Lifestyle study, losing body weight contributed to a 

reduction in CRP levels, indicating the important role of inflammation in body fat 

(Isidoris et al, 2000).

The nature of the association of CRP with IR and T2DM is not fully understood. 

Previous studies have confirmed that CRP concentration in plasma increased two fold in 

diabetic patients compared with non-diabetic subjects with acute coronary syndrome 

before and after coronary stenting (Aggarwal et al., 2003; Huoya et al., 2009). 

Furthermore, Barzilay et al., (2001) found at least a two-fold higher risk of T2DM 

within 3-4 years in obese individuals with higher CRP levels. Moreover, it is expected 

that a decrease in insulin sensitivity could lead to increased CRP expression by 

counteracting the action of insulin on hepatic acute-phase protein synthesis. The 

circulating level of CRP is a useful marker of CVD and stroke in men and women 

(Lowe et al., 2014, Kapoor et al., 2007). Evidence suggests that the production of CRP 

is induced by IL-1, IL-6, and TNF-a leading to the correlation of CRP with heart 

disease and inflammation (Klover et al., 2003, Laaksonen et al, 2005). Thus, CRP is 

considered as a marker of both inflammation and cardiovascular events; including 

myocardial infarction, stroke, peripheral arterial disease and sudden cardiac death 

(Spagnol et al, 2007).

1.3.3.5 Chemokines

Chemokines constitute a family of over 40 different cell signalling molecules. The 

structure of these chemokines is small disulphide-linked polypeptides of typically 60 - 

70 amino acids (Linton and Fazio, 2003). They have been classified into different 

subfamilies on the basis of these conserved structural features. Most chemokines 

contain four conserved cysteines which form two essential disulphide bonds, Cysl- 

Cys3 and Cys2-Cys4. The backbone of the chemokine molecule consists of beta strands, 

while the N and C terminus of the protein appear to have a less ordered structure (Table 

1.3). Chemokines are also associated with chronic inflammation related to obesity such 

as IR, T2DM and CVD (Ota et al., 2013). Adipose tissue chemokines increase in 

obesity and have an important role in leukocyte recruitment into inflammatory adipose 

tissues. It has been proposed that ffactalkine (CX3CL1) and monocyte chemotactic 

protein-1 (MCP-1/ CCL2) are vital factors for adipose tissue macrophage recruitment

and IR in obesity (Ferrante et al., 2007; Dahlman et al., 2005).
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Family

C chemokines XCLl Lymphotactina/SCMa XCR1
XCL2 Lymphotactinp/SCMp XCR1
CCL1 1-309, TCA3, P500 CCR8
CCL2 MCP-1, MCAF, (mouse; JE) CCR2
CCL3 LD78a, LD78b, MIP-la CCR1, CCR5
CCL4 Act-2, HC21or 400, MIP-lb, CCR5
CCL5 RANTES CCR6
CCL7 MCP-3 CCR1,CCR2, CCR5
CCL8 M CP-2, HC14 CCR3

CC chemokines
CCL11 eotaxin CCR3
CCL13 CCL12 NA I (mouse) MCP CCR2, CCR3
CCL14 MCP-4, NCC-1, CKblO CCR1
CCL15 HCC-1, HCC-3, NCC-2, MCIF CCR1, CCR4
CCL16 NCC-4, LEC, HCC-4, LMC, CCR1
CCL17 TARC CCR4
CCL18 DC-CK1, PARC, MIP-4, CKb7 Unknown
CCL19 ELC, MIP-3b, exodus-3, CKbll CCR7
CCL20 MIP-3a, LARC, exodus-1, CKb4 CCR6
CCL21 SLC, 6Ckine, exodus-2, CKb9 CCR7
CCL22 MDC, STCP-1, DC/B-CK CCR4
CCL23 MIP-3, MPIF-1, CKb8 CCR1
CCL24 MIP-3, MPIF-1, CKb8 CCR3
CCL25 TECK, Ckbl5 CCR9
CCL26 eotaxin-3, IMAC, MIP-4a CCR3
CCL27 ALP, ILC, ESkine, CTAK CCR10
CCL28 MEC, CCK1 CCR10

CXC chemokines CXCL1 GROa, MGSA-a, NAP-3 CXCR1, CXCR2
CXCL2 GROb, MIP-2a, MGSA-b CXCR2
CXCL3 GROg, MIP-2b, CINC-2b CXCR2
CXCL4 PF4 CXCR3B
CXCL5 ENA-78 CXCR2
CXCL6 GCP-2 CXCR1, CXCR2
CXCL7 NAP-2, LA-PF4, MDGF, LDGF CXCR2
CXCL8 IL-8, NAP-1 CXCR1, CXCR2
CXCL9 mig CXCR3
CXCL10 IP-10 CXCR3
CXCL11 I-TAC CXCR3
CXCL12 SDF-la, SDF-lb, PBSF CXCR4
CXCL13 BLC, BCA-1 CXCR5
CXCL14 BRAK, MIP-2g, BMAC, KS1 Unknown
CXCL16 - CXCR6

CX3C chemokines CX3CL1 Fractalkine CX3CR1

Table 1.3: Classification of chemokines and their receptors. To date, over 40 human

chemokines and 20 receptors have been discovered in humans. These chemokines are 

classified into four families (C, CC, CXC, and CX3C) dependent on the position of the 

first two cysteine motifs while chemokine receptors are classified on the basis of their 

ligand (Adapted from Mantovani et al., 2006).
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On the basis of their molecular structure, both chemokines are derived from the two 

subgroups: CC chemokine ligands (CCL) and CX3C chemokine ligand (CX3CL1) (see 

tablet.3), which bind to CC chemokine receptor (CCR), (Bruserud et al, 2010) or 

CX3C chemokine receptor (CX3CR) (Shah et al, 2009), respectively.

There is evidence demonstrating that CCL2, with its receptor CCR2, plays a key role in 

the recruitment of monocytes and infiltration of macrophage cells from the blood into 

adipose tissue. This comes from the study of CCR2-knock-out mice, where IR, hepatic 

steatosis, and macrophage accumulation in adipose tissue induced by a high-fat diet 

were reduced (Kanda et al, 2006). Moreover, there are high levels of CCL2 in both 

white adipose tissue and plasma in obese mice (Sartipy et al, 2003, Weisberg et al, 

2003, Xu et al, 2003) and it is secreted by the mouse 3T3L1 adipocyte cell line (Kanda 

et al, 2006). Additionally, CCL2- or CCR2-deficient mice showed a relative reduction 

in adverse metabolic outputs (Inouye et al, 2007).

In contrast, other studies found that lack of CCL2 neither attenuates obesity-associated 

macrophage recruitment to adipose tissue nor improves metabolic function, which 

indicates that CCL2 is not critical for obesity-prompted macrophage migration and 

systemic IR (Inouye et al, 2007 and Kirk et al, 2008). A further study reported that 

although CCR2/CCL2 is important for adipose tissue macrophage accumulation, 

deletion of these molecules only decreases macrophage recruitment to adipose tissue by 

~40% indicating that there are further chemotactic signals that are key to this process 

(Oh etal., 2012).

One of these signals is CX3CL1, which is a chemokine that has a dual structure and 

function as both an adhesion molecule and chemoattractant. Soluble CX3CL1 released 

from the cell membrane, strongly chemoattracts leukocytes (T cells and monocyte cells), 

while the membrane-bound chemokine induces strong adhesion of cells expressing the 

G protein-coupled receptor CX3CR1, through which it exerts its effect (Maegdefessel 

et al, 2009; White et al, 2010). It is thought that CX3CL1, with its receptor, is 

involved in recruitment of inflammatory monocytes and macrophages to adipose tissue 

as well. Shah and co-workers (2011) reported that CX3CL1 is elevated in the serum of 

obese patients, suggesting that CX3CL1/CX3CR1 may also be implicated in adipose 

tissue inflammation (Umehara et al, 2004; Morris et al, 2012).
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Recent data has reported that CX3CL1 is expressed in adipocytes and that CX3CR1 

signalling in macrophages is down-regulated by peroxisome proliferator-activated 

receptor (PPAR-y) agonists (Digby et al, 2010). It has been established that CX3CL1 is 

significantly increased in obesity but it can also be induced by induction of 

inflammation in vivo (Shah et al., 2011). In this study it was found that both the stromal 

vascular fraction and specific adipocytes were responsible for production of CX3CL1, 

promoting monocyte adhesion to human adipocytes. In addition, visceral adipose tissue 

is known to have greater inflammatory leukocyte infiltration (Baranova et al, 2005) and 

has higher CX3CL1 levels than subcutaneous fat. Adipose tissue macrophages in obese 

individuals express high levels of CX3CR1 (Zeyda et al, 2010). Moreover, humans 

with two common non-synonymous coding SNPs (single-nucleotide polymorphism) in 

the CX3CR1 gene and the variants causing greater expression of CX3CR1, tended to be 

associated with greater waist circumference, were more IR, and had higher leptin levels, 

but lower adiponectin levels in serum. Furthermore, these alleles tended to be associated 

with the presence of metabolic syndrome and T2DM. The association of SNPs in 

CX3CR1 with atherosclerosis and obesity (Sirois-Gagnon et al, 2011) was also 

reported (Kasama et al, 2010).

This suggests that CCL2 and CX3CL1 play important roles in the pathogenesis of 

metabolic syndrome, T2DM and CVD, therefore, inhibition of the interaction of these 

chemokines with their receptors might provide the basis for development of new 

therapies for these conditions.

1.3.3.6 plasminogen activator inhibitor

PAI-1, which is encoded by the SERPINE1 gene, is synthesised by WAT and is a key 

inhibitor of tissue plasminogen activator (tPA) (Kathiresan et al, 2005). Additionally, 

PAI-1 is produced by liver and endothelial cells but is synthesised largely by visceral 

adipocytes (Skurk and Hauner, 2004; Bastelica et al, 2002). It is noticeably elevated in 

serum in obese people and patients with IR, T2DM and CVD (Chen et a l , 2006). An 

increased in plasma PAI-1 level in obesity is well recognized in animals and humans 

(Bastard and Pieroni, 1999, Morange et al, 2000; Skurk and Hauner, 2004). More 

recently PAI-1 levels have been considered as one of the biomarkers used to predict
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obesity-associated diseases; weight loss leads to normalized or decreased levels of PAI- 

1 (Gonzalez et al., 2012).

There is increased expression of PAI-1 mRNA in adipose tissue through adipose 

differentiation processes in vitro (Bastelica et al, 2002). PAI-1 as an acute-phase 

protein, increases in response to inflammation or injury in the circulation. Inflammatory 

mediators, such as TNF-a, IL-1, IL-6 and transforming growth factor p (TGFp), have 

been shown to stimulate PAI-1 production (Hermans and Hazelzet, 2005). There are 

also hormones that regulate the expression of PAI-1 mRNA including insulin, 

glucocorticoids and sex hormones (Skurk and Hauner, 2004). Local hypoxia and the 

associated cellular stress stimulate the expression of angiogenic factors including 

vascular endothelial growth factor (VEGF), hepatocyte growth factor and PAI-1. These 

induce the inhibition of adiponectin gene transcription leading to reduction in 

adiponectin mRNA stability and in adiponectin expression in obese mice (Hosogai et al, 

2007; Bell et al, 2008). The induction of leptin and PAI-1 gene transcription 

simultaneously in adipose tissue suggests that the dysregulation of adipokine secretion 

is part of the cellular mechanism in response to hypoxia and associated cellular stress 

conditions (Chen et al, 2006). Clinical studies have shown that PAI-1 correlates obesity 

with T2DMM, CVD and low testosterone through indirect effects on insulin signalling, 

by influencing adipocyte differentiation or by regulating recruitment of inflammatory 

cells within adipose tissue, which ultimately leads to IR, characterized by visceral fat 

accumulation (Pergola et al, 2000; Alessi et al, 2007). Moreover, over-production of 

PAI-1 in excess visceral fat inhibits the fibrinolytic system and consequently may lead 

to thrombotic vascular disorders (Ryo et al, 2004). This is due to a shift in the balance 

between fibrinolysis and thrombosis, towards thrombosis facilitating the formation of 

micro-thrombi and by the ability of PAI-1 to inhibit plasminogen-induced migration of 

vascular smooth muscle cells (VSMCs) resulting in plaques prone to rupture with thin 

fibrous caps, necrotic cores and rich in macrophages (Chu et al, 2001 ).

1.3.3.7 Leptin

Leptin is a 16-kDa protein and was discovered by Friedman and colleagues (Zhang et 

al, 1994). It is one of the most important adipose-derived hormones and is encoded by 

the leptin gene (Lep (ob)) located on chromosome 7 in humans. It is a hormone that is 

almost exclusively expressed and produced by WAT and more particularly by



differentiated mature adipocytes, which binds to its receptor in the hypothalamus and 

other tissues (Ahima et al, 2000). This is evidenced from several human and animal 

studies (Trayhum and Beattie, 2001).

Leptin is a key appetite-regulating hormone, with effects on energy expenditure. There 

is a significant association between leptin and both BMI and fat mass. Circulating levels 

of leptin (Considine et al., 1996) and adipose tissue leptin mRNA expression are 

increased proportional to body fat mass, in obesity (Vidal et al, 1996). However in 

obese people, receptors of leptin are insensitive to the effects of leptin leading to leptin 

resistance (Myers et al, 2010). The pathway of leptin control in obese people is 

defective to some extent, thus the body does not sufficiently receive the satiety effect, 

subsequent to eating. Furthermore, although leptin functions predominantly at the level 

of the central nervous system to control food intake and energy expenditure, there is a 

relationship between leptin and the low-grade inflammatory state in obesity, suggesting 

that leptin could display peripheral biological activities as a function of its cytokine-like 

structure (Ahima et al, 2000). The role of leptin in the inflammatory response by 

association with the presence of hyperleptinemia, without obesity (Loffreda et al, 1998, 

van Dielen et a l , 2001; Bastard et a l , 2006) and in controlling TNF-a production by 

macrophages, although, the exact mechanisms have not been identified (Bastard et a l ,

2006). Moreover, the leptin receptor has been recently detected in peripheral tissues, 

suggesting further roles for leptin and a much broader range of actions than initially 

supposed. One of these functions is regulation of glucose metabolism, where 

considerable evidence suggests that insulin and leptin act in the brain as adiposity 

negative feedback signals (Morton and Schwartz, 2011). Certainly, recent study 

revealed that leptin has an effect on modulation of insulin action in the liver, normalizes 

hyperglycemia and hyperinsulinemia and increases insulin sensitivity (Amitani et al, 

2013).

An additional role for leptin in vascular diseases has been reported, with elevated 

plasma leptin leading to adipocyte dysfunction, which is associated with the presence of 

risk factors for vascular disease such as increased BMI, CRP, low density lipoprotein 

(LDL) and triglycerides (TG) (Wolk et al, 2004, Brennan et al, 2007; Iribarren et al,

2007). Finally, leptin has an inhibitive role on the hypothalamic -pituitary -testicular 

axis causing a state of hypogonadotrophic hypogonadism and low testosterone levels 

(Jones, 2010). Therapeutic potential of leptin in obesity, T2DM, testosterone deficiency 

and CVD has been proposed (Amitani et al, 2013).
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1.3.4 Anti-inflammatory adipokines

1.3.4.1 Adiponectin

Adiponectin is highly expressed in adipose tissues and has a varied nomenclature: 

ACRP30 (adipocyte complement-related protein of 30kDa), adipoQ in mouse and 

GBP28 (gelatin-binding protein 28) and/or APM1 (adipose most abundant gene 

transcript 1) (Kadowaki and Yamauchi 2005). Recent genetic studies have reported that 

the expression of adiponectin mRNA is dependent on the adipose tissue localization, 

with higher expression in SAT than in VAT (Bastard et al, 2006). Adiponectin has two 

receptors, adipoRl and adipoR2, adipoRl is expressed in skeletal muscle whereas 

adipoR2 is in the liver (Rocha and Folco, 2011; Yamauchi et al, 2003). In addition, as 

opposed to other adipose derived proteins, the level of adiponectin decreased with 

increased body fat and increased with weight loss. Therefore, low levels of adiponectin 

are correlated with T2DM, CVD and dyslipidemia (Lihn et al, 2004). Further 

investigation is required to understand how low levels of adiponectin lead to IR and its 

components. Studies in mice indicate injection of adiponectin stimulate non-esterified 

fatty acid oxidation and at the same time, reduce plasma levels of glucose (Fruebis et 

al, 2001). After treating these animals with adiponectin for the long term, there is a 

decrease in the triglyceride storage in liver and muscle, an improvement in insulin 

sensitivity by reducing hepatic glucose, a decline in triglyceride and free fatty acid 

levels and a rise in HDL concentration (Yamauchi et al, 2001; Hoffstedt et al, 2004). 

This was confirmed by clinical studies suggesting that circulating adiponectin was 

positively associated with enzymes that control lipid metabolism and also explained the 

negative correlation between adiponectin and CVD (Siasos et al, 2012). Furthermore, 

adiponectin is also considered as a potential anti-atherogenic factor, but it remains 

unclear which pathways mediate the inverse relationship between adiponectin and CVD 

and diabetes (Ouchi et al, 2001, Diez and Iglesias et al, 2003; Siasos et al., 2012). 

relationship may relate to the role of adiponectin in the inhibition of TNF-a induced 

activation of NF-kB suggesting a role as an anti-atherosclerotic factor. TNF-a and IL-6 

both decrease human adipocyte mRNA expression of adiponectin, which is an 

additional means by which these two adipokines induce IR (Ouchi et al, 2000, Bruun et 

al, 2003). Additionally, adiponectin can stimulate adenosine monophosphate-activated 

protein kinase (AMPK), which it is known to mediate the cellular malonyl CoA 

concentration by suppressing acetyl CoA and this demonstrates additional mechanisms
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1.3.4 Anti-inflammatory adipokines

1.3.4.1 Adiponectin

Adiponectin is highly expressed in adipose tissues and has a varied nomenclature: ACRP30 

(adipocyte complement-related protein of 30kDa), adipoQ in mouse and GBP28 (gelatin- 

binding protein 28) and/or APM1 (adipose most abundant gene transcript 1) (Kadowaki and 

Yamauchi 2005). Recent genetic studies have reported that the expression of adiponectin 

mRNA is dependent on the adipose tissue localization, with higher expression in SAT than in 

VAT (Bastard et al, 2006). Adiponectin has two receptors, adipoRl and adipoR2, adipoRl is 

expressed in skeletal muscle whereas adipoR2 is in the liver (Rocha and Folco, 2011). In 

addition, as opposed to other adipose derived proteins, the level of adiponectin decreased 

with increased body fat and increased with weight loss. Therefore, low levels of adiponectin 

are correlated with T2DM, CVD and dyslipidemia (Lihn et al, 2004).

Further investigation is required to understand how low levels of adiponectin lead to IR and 

its components. Studies in mice indicate injection of adiponectin stimulate non-esterified 

fatty acid oxidation and at the same time, reduce plasma levels of glucose (Fruebis et al,

2001). After treating these animals with adiponectin for the long term, there is a decrease in 

the triglyceride storage in liver and muscle, an improvement in insulin sensitivity by reducing 

hepatic glucose, a decline in triglyceride and free fatty acid levels and a rise in HDL 

concentration (Yamauchi et al, 2001; Hoffstedt et al, 2004). This was confirmed by clinical 

studies suggesting that circulating adiponectin was positively associated with enzymes that 

control lipid metabolism and also explained the negative correlation between adiponectin and 

CVD (Siasos et al, 2012). Furthermore, adiponectin is also considered as a potential anti

atherogenic factor, but it remains unclear which pathways mediate the inverse relationship 

between adiponectin and CVD and diabetes (Ouchi et al, 2001, Siasos et a l , 2012). This 

relationship may relate to the role of adiponectin in the inhibition of TNF-a induced 

activation of NF-kB suggesting a role as an anti-atherosclerotic factor. TNF-a and IL-6 both 

decrease human adipocyte mRNA expression of adiponectin, which is an additional means by 

which these two adipokines induce IR (Ouchi et al, 2000, Bruun et al, 2003). Additionally, 

adiponectin can stimulate AMPK which it is known to mediate the cellular malonyl CoA 

concentration by suppressing acetyl CoA and this demonstrates additional mechanisms
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of action for adiponectin in improved insulin sensitivity (Bastard et al, 2006). 

Adiponectin also plays a role in regulating liver glucose production by reducing mRNA 

expression of phosphoenol pyruvate carboxykinase and glucose-6-phosphatase, two key 

enzymes in neoglucogenesis (Kadowaki and Yamauchi, 2005). Furthermore, 

adiponectin might protect the vascular wall by controlling the atherogenesis process: 1) 

by alteration of endothelial cell adhesion molecules, 2) conversion of macrophages into 

foam cells and 3) modulating vascular smooth muscle cell proliferation. Moreover, an 

inverse relationship was seen between adiponectin and the level of testosterone in 

diabetic men (Kapoor et al, 2007; Bai et al., 2011). In addition, testosterone 

administration is associated with a decline in serum adiponectin in animals and by 

reduced protein secretion in cultured adipocytes (Nishizawa et al., 2002). However, the 

mechanism of the reduction in adiponectin levels during testosterone treatment is not 

understood.

1.3.4.2 Interleukin -10

Interleukin-10 is an anti-inflammatory cytokine, which is a major inhibitor of pro- 

inflammatory cytokine and chemokine production (Hong et al., 2009). It is secreted by 

lymphocytes, macrophages and monocytes. Juge-Aubry et al. (2008) have found that 

IL-10 is also produced by human WAT explants following lipopolysaccharide (LPS) 

and TNF-a treatment in vitro. In addition, Esposito et al. (2003) conducted the first 

study which showed a significant relationship between lower levels of IL-10 and 

metabolic syndrome in women, independent of age and body weight. However, the 

main actions of anti-inflammatory cytokines in human obesity are unclear. Studies have 

reported that anti-inflammatory cytokines are suitable for the treatment of T2DM as IL- 

10 was shown to promote pancreatic P-cell function in response to glucose in vitro 

(Pennline et al, 1994). In this regard, plasma levels of IL-10 are strongly associated 

with insulin sensitivity in healthy subjects and decrease in obese and diabetic patients 

(Scarpelli et al., 2006).

Animal studies have demonstrated the protective effect of IL-10 against some 

inflammatory conditions including atherosclerotic lesion formation and stability 

(Esposito et al, 2003). All these anti-inflammatory effects for IL-10 may relate to its 

role in the inhibition of TNF-a effect, lowering CRP (Manigrasso et al, 2005) and IL-6 

(Ouyang et al., 2011). Furthermore, a positive relationship has been noted between IL-
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10 and adiponectin, where adiponectin is able to increase the level of IL-10 in human 

macrophages (Kumada et al., 2003).

1.4 Testosterone deficiency

Low testosterone is associated with a number of health problems in men including 

obesity, metabolic syndrome, diabetes and CVD, but the exact mechanisms involved are 

unclear. There is an association between testosterone levels and mortality in men, but 

causality has not been proven (Ma and Tong, 2010). Testosterone replacement therapy 

leads to improvement the signs and symptoms of low testosterone in men (Jones and 

Saad, 2010). Testosterone is an androgen male hormone, synthesised in Leydig cells of 

the testis and to a lesser extent in the adrenal glands and female ovaries. The core of its 

structure is cholesterol, which is the initial substrate in steroidogenesis (Figure 1.4). The 

steroidogenesis of testosterone is usually under luteinizing hormone (LH) control, 

which is produced by pituitary gland. The secretion of LH hormone is regulated by 

GnRH (Veldhuis et al., 2009).

The binding of testosterone to specific proteins is required for transportation through the 

blood stream. 60-80% is bound to the sex hormone binding globulin (SHBG) and 20- 

40% is bound to albumin, whereas approximately 2% is transported as free testosterone 

(FT) (Kapoor et al., 2005; Schwarcz and Frishman, 2010) (Figure 1.3). The 

physiological action of the androgen depends on diverse factors such as the number of 

androgen molecules, distribution of the androgen and its metabolites inside the cells and 

interaction with its receptors. The key functions of testosterone are maintenance of male 

reproductive organs and spermatogenesis, the induction of primary and secondary 

sexual characteristics in males and in the regulation of lipid metabolism (Nieschlag et 

al., 2012). \Testosterone acts following conversion to dihydrotestosterone by 5a- 

reductase, which is the bioactive form, in order to bind to its receptors (AR). It is 

converted to estradiol by aromatase and then stimulates the estrogen receptor (ER) 

(Corbould, 2007) (Figure 1.4)., Testosterone action is regulated by both genomic and 

non-genomic mechanisms. For genomic mechanisms, the AR plays a role in the 

mediation of androgen action via activating transcription and altering gene expression. 

Testosterone can directly bind to inactive ARs in the cytoplasm, which forms a complex 

with its ligand (Pratt and Toft 1997, Deffanco 2000; Wilson et al., 2011).
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Figure 1.3: Fractions of circulating total testosterone in men. Non-SHBG-bound 

testosterone is called bioavailable testosterone and comprises both albumin-bound 

testosterone and free testosterone. Bioavailable testosterone is readily available to the 

tissues. T: testosterone. SHBG: Sex hormone binding Glubin (Adapted from Kapoor, 

2005).
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Upon ligand binding, the nuclear receptors translocate from the cytosol to the nucleus, 

where they dimerize and bind to regulatory DNA sequences on target genes, activate 

transcription leading to protein synthesis (Simental et al, 1992, Isaacs, 2004; Wilson et 

al, 2011). In addition, testosterone can act in a genomic mode, when it is converted to 

DHT in the cytoplasm by 5a-reductase by the same process (Rommerts, 2004). 

However, it should be noted that DHT has a much higher affinity for the AR than its 

precursor testosterone and has a slower detachment rate from the receptor complex, 

amplifying the effects of testosterone more than two-fold, therefore it is considered a 

more potent androgen. The other form of androgen activation is transformation of 

testosterone to estradiol by the enzyme aromatase, which diversifies androgen action by 

facilitating effects mediated via ERs. Consequently, while DHT may be considered a 

potent androgen because of its ability to bind to the AR, testosterone has a wider 

spectrum of action which includes diversification by aromatisation and hence ER 

mediated effects (Rommerts, 2004). In addition to this genomic effect for testosterone 

and DTH, it has been reported that androgens, as well as progesterone and estrogen, can 

exert quick, non-genomic actions (Falkenstein et a l, 2000).

Non-genomic androgen activity implicates the rapid induction of conventional second 

messenger signal transduction cascades, compared to significant delay between ligand 

binding and the effect on the genomic androgen receptor pathway. Furthermore, second 

messenger induction by non-genomic steroid action is insensitive to inhibitors of 

transcription and translation. Testosterone may display these non-genomic effects by 

binding to a G-protein coupled receptor specific for the SHBG-testosterone complex, 

which, in turn, initiates a cAMP-mediated non-transcriptional pathway, rapidly 

affecting intracellular calcium concentrations (Heinlein et al, 2002). Calcium 

fluctuations are subsequently involved in the activation of intracellular signalling; 

ultimately influencing specific target proteins and cellular responses (Heinlein et al,

2002) (Figure 1.5). As testosterone acts in genomic and non-genomic modes, it can 

have multiple functions in several tissues (Diano et al, 1999; Schwarcz and Frishman, 

2010). Several types of androgen receptor blockers such as flutamide, nilutamide and 

bicalutamide are used for determining the mechanism by which these androgens act. 

Inhibition of the main enzymes involved in metabolism of androgen, such as aromatase 

or 5a-reductase, is a further approach for understanding the action of this androgen.
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Figure 1.5: Summary of genomic and non-genomic of androgen action. The

genomic signalling of androgen (A) converts testosterone to dihydrotestosterone by 5a 

reductase which binds to the AR. The binding of dihydrotestosterone to AR results in 

translocation to the nucleus. The androgen receptor dimer binds to a specific sequence 

of DNA known as a hormone response element. In the non-genomic of androgen action 

(B), testosterone mediates rapid effects through G-protein coupled receptors leading to 

effects including fast intracellular Ca2+ increases, activation of Ca2+-dependent enzymes 

and second messenger cascades including cAMP, which activates protein kinase. AR: 

androgen receptor; DHT: dihydrotestosterone, mAR: putative membrane AR, ARE: 

androgen response element, GDP: Guanosine diphosphate, GTP: Guanosine-5'- 

triphosphate, ATP: adenosine triphosphate; cAMP: cyclic adenosine monophosphate, 

PK: protein kinase. (Drawn using information from Lattouf et al, 2006; McGrat et al, 

2008).
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Advancing age and conditions such as diabetes and obesity are common causes of low 

testosterone (Gooren, 2003). According to the Endocrine Society’s Clinical Practice 

Guideline, low testosterone is defined as a total testosterone (TT) concentration of less 

than 300 ng/dl or less than 10.4 nmol/1 for total testosterone and less than 5 ng/dl or less 

than 0.17 nmol/1 for free testosterone (Hall et al, 2008).

Diagnosis of testosterone deficiency is dependent on both biochemical and clinical data. 

The period of the secretion of testosterone, which is usually in the early morning 

between 8:00 am and 11:00 am, should be taken into consideration when measuring TT 

in serum. Variations in laboratory methodology are another factor to be considered 

when reviewing these data (Crawford, 2007, Kapoor et al, 2007; Schwarcz and 

Frishman, 2010).

1.4.1 Low testosterone and the link to obesity

The incidence of testosterone deficiency has increased along with the increase in obesity 

in aging men (Surampudi et al, 2012). In recent studies, where body fat has been 

determined in relation to sex hormone concentrations in men, testosterone (or free 

testosterone) concentrations associate negatively with measures of central fat 

accumulation, rather than other peripheral adipose tissues (Alexandersen and 

Christiansen, 2004). Several epidemiological studies indicate an inverse relationship 

between serum testosterone and obesity. Low serum testosterone predicts the 

development of central obesity and accumulation of intra-abdominal fat. Also, low total 

and free testosterone and SHBG concentration are related to an increased risk of 

developing MetS, independent of age and obesity (Allan and McLachlan, 2010, 

MacDonald et al, 2010; Brand et al, 2011). Lowering serum testosterone levels in 

older men with prostate cancer, treated with androgen deprivation therapy (ADT), 

increases body fat mass (Faris and Smith, 2010). In the same way, high BMI and central 

adiposity are accompanied by and predict low serum total, and to a lesser extent free, 

testosterone and SHBG concentrations (Laaksonen et al, 2005; Wang et al, 2011). 

Low testosterone influences the increase in the degree of obesity, particularly in central 

positions, which indicates the inverse relationship between both total and free 

testosterone and SHBG and WHR (Van Aders et al, 2005, Chandel et al, 2008 and 

Mohasseb et al, 2013). This may explain the development of IR as a result of obesity 

among low testosterone patients (Pradhan, 2007). It also explains the significant
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relationship between the spread of T2DM and CVD among hypogonadal patients (Fu et 

al., 2008). Furthermore, in ADT of prostate cancer patients, both visceral and 

subcutaneous abdominal fat increased in a 12-month prospective observational study 

(Hamilton et al, 2011). Generally, androgens can regulate different phases of adipocyte 

functions such as lipid metabolism and differentiation by their effect on ARs, which 

regulate its functions by activating the downstream genes in human adipose tissues. 

This seems to be related to the function of testosterone as a suppressor of lipoprotein 

lipase in adipose tissue, whereby this enzyme plays a significant role in the regulation of 

triglyceride uptake and lipid mobilization; it ultimately leads to reduction in visceral fat 

mass (Cohen, 1999; Traish et al., 2009). This action is usually absent in the low 

testosterone individual and it consequently lead to augmentation of the level of 

abdominal fat body in a cycle of low testosterone levels and obesity (the hypogonadal- 

obesity cycle hypothesis) (Figure 1.6).

Other possible mechanisms of testosterone actions are related to its structure as a steroid 

hormone, which can be aromatized by aromatase in the adipose tissue to estradiol, 

causing a reduction in the level of testosterone. The aromatase level is often high in 

adipose tissue of obese individuals and is associated with testosterone conversation to 

17b estradiol (E2). E2 has inhibitive action on hypothalamic production of GnRH and 

subsequent release of LH and FSH from the pituitary. This, in sequence, decreases 

gonadal stimulation and inhibits testosterone release, thus causing a state of 

hypogonadotrophism and the increase in obesity (Kelly and Jones, 2013). As a result of 

the increase in obesity, there is an increase in production of IL-6, TNF-a and leptin from 

visceral adipocytes. These mediators have the ability to inhibit LH and FSH hormone 

secretion by binding to their receptors in the pituitary gland. Therefore, the role of both 

hormones in the stimulation of released testosterone from the testes is absent. This leads 

to exacerbation of the testosterone deficiency state in obese people (Ding et al, 2006, 

Jones, 2010). In addition, testosterone therapy led to a decrease in obesity in 

hypogonadal and eugonadal men (Dandona and Rosenberg, 2011). Moreover, 

testosterone replacement reduced IR and increased insulin sensitivity in obese people, 

which leads to decreasing symptoms of T2DM and CVD (Jones et al, 2011). However, 

clinical findings are not as clear, for example, there was no change in visceral fat mass 

in aged men with low testosterone levels following 6 months of transdermal TRT, yet 

subcutaneous fat mass was significantly reduced in both the thigh and the abdominal 

areas when analysed by magnetic resonance imaging (MRI) (Frederiksen et a l, 2012b).
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Figure 1.6: The Hypogonadal-Obesity-Adipocytokine hypothesis, (i) An increase in 

aromatase activity in adipocytes converts testosterone to estradiol. This decreases the 

suppressive testosterone action on lipoprotein lipase, (ii) Activation of lipoprotein lipase 

increases triglyceride up-take by adipose tissue, (iii) Increased adipocyte mass is 

associated with greater insulin resistance, (iv) Estradiol and adipocytokines TNF-a, IL-6 

and leptin (as a result of leptin resistance in human obesity) impairs the hypothalamic- 

pituitary-testicular axis response to declining androgen levels (blue arrows). The orange 

arrows represent the hypogonadal-obesity cycle. Green arrow, low testosterone 

stimulates the formation of adipocytes from pluripotent stem cells. LH: luteinizing 

hormone +, positive effect; -  negative effect. (Adapted from Jones, 2010).
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In addition, testosterone treatment in the short-term decreased WC in diabetic patients 

(Jones 2010), whereas a placebo-controlled clinical study in middle-aged obese men 

found a neutral effect of testosterone on lean tissue mass after eight months of treatment 

and effects on fat tissue mass depended on the region measured (visceral fat tissue mass 

decreased, whereas subcutaneous fat tissue mass remained unchanged) (reviewed from 

Saad et al., 2012).

1.5 Type two diabetes

Type two diabetes mellitus (T2DM) is a set of related diseases in which the body cannot 

regulate the amount of glucose in the blood. This is a result of IR, which is identified as 

the failure of target organs to respond normally to the action of insulin. IR causes the 

incomplete suppression of hepatic glucose output and impaired insulin-mediated 

glucose uptake in the periphery (skeletal muscle and adipose), leading to an increase in 

insulin requirements (Adilson et al., 2008). The outcomes of IR include impaired 

insulin action which is known as the first stage of T2DM, glucose intolerance, 

hyperglycemia, hyperinsulinemia and dyslipidemia, which are collectively referred to as 

metabolic syndrome (MetS) (Tony and Sudhesh, 2005; Van Gaal et al., 2010). 

Progressive development of IR is a prediabetic state which is today a common 

metabolic abnormality of people living in developed societies. According to the 

American Heart Association and the National Heart, Lung and Blood Institute (Tony 

and Sudhesh, 2005) clinical criteria for diagnosis of IR or MetS is dependent on the 

following features:

• Waist circumference >102cm in men and in women more than 88cm.

• Fasting triglyceride (TG) concentration >150mg/dl (1.7 mmol/1).

• HDL cholesterol <40 mg/dl

• Blood pressure >130/85mmHg

• Fasting glucose level >1 lOmg/dl (>6.1 mmol/1).
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1.5.1 The role of insulin in glucose and lipid metabolism

Insulin assists the transport of glucose from the blood by stimulating the translocation of 

GLUT4 to the plasma membrane (de Luca and Olefsky, 2008). It promotes storage of 

glucose in the form of glycogen in the liver by stimulating enzymes that are directly 

involved in glycogen synthesis such as phosphofructokinase and glycogen synthesase. 

When the liver is saturated with glycogen, any further glucose is converted to fatty acid 

synthesis (De Luca and Olefsky, 2008; Kaipe et al., 2011). These fatty acids are 

exported from the liver to other tissues by lipoproteins in the blood circulation. 

Lipoproteins act as transporters of fatty acids to other tissue such as adipocytes, which 

use them to synthesise triglycerides. Insulin also suppresses the degradation of fat in 

adipose tissues by inhibiting the lipoprotein lipase that hydrolyses triglycerides to 

release fatty acids (Frayn et al., 2006). By these mechanisms, insulin is associated with 

further accumulation of triglyceride in fat cells leading to an increase in fat 

accumulation in adipose tissue (Nussey and Whitehead, 2013).

1.5.2. The effect of absence of insulin action on glucose and lipid 
metabolism

The absence of insulin action is usually as a result of a defect in insulin secretion or IR 

(Bailey, 2007). In cases of IR, there is a reduction in tissue capacity to respond to 

insulin even though there is hyperinsulinemia. Because of this, the body acts as if it is 

fasting in an insulin absence state. Thus, all the aforementioned effects of insulin are 

reversed. Firstly, an increase in the glucose concentration in blood leading to 

hyperglycemia is seen. Secondly, glycogenolysis and hepatic gluconeogenesis are 

increased (Silvio et al., 2012). Finally, it provokes lipolysis in fat tissue as a 

consequence of the stimulation of hormone sensitive lipase and the inhibition of 

lipogenesis. This causes hydrolysis of the stored triglyceride, releasing large quantities 

of fatty acids into the blood (Figure 1.7). Consequently, the plasma FFAs then become 

the main energy substrate used by essentially all tissues of the body besides the brain. 

The excess of fatty acids in plasma also promotes liver conversion of some of the fatty 

acids into phospholipids and cholesterol, two of the major products of fat metabolism 

(Blaschke et al., 2006). These two substances, along with excess triglycerides formed at 

the same time in the liver, are then discharged into the blood as lipoproteins with their 

co-receptors such as, Apo Al and Apo B, Apo E.
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Figure 1.7: Association of lipolysis in adipose tissue with insulin resistance 
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Occasionally, plasma lipoproteins increase as much as three fold in the absence of 

insulin leading to a dyslipidemia state leading to CVD in T2DM patients (Tony and 

Sudhesh, 2005; Mooradia 2009).

1.5.3 Obesity and diabetes

The development of T2DM relates to several risk factors, but the most significant ones 

are defined by an increase in the prevalence of sedentary lifestyles and the incidence of 

obesity. Obesity is a powerful risk factor involved in the development of T2DM with 

more than two-thirds of patients with T2DM being obese (Hossain et al, 2007). The 

risk of developing diabetes increased five-fold with BMI of 25kg/m2 compared with 

those with BMI of 22 kg/m2. The risk becomes higher, reaching 28-fold with BMI of 30 

kg/m2 and 93-fold with a BMI > 35 kg/m2. IR is a common association with obesity, 

where obese people cannot use insulin efficiently and this leads to the progression to 

T2DM and its complications including, hyperglycaemia, dyslipidemia, hypertension and 

CVD (Tony and Sudhesh, 2005). There are different pathways and mechanisms that 

link obesity with IR, including the distribution of body fat, the role of free fatty acids 

(FFA), adipokines, pro and anti-inflammatory mediators and genetic factors.

1.5.4 The role of obesity in insulin resistance induction and diabetes

1.5.4.1 Adipose tissue distribution

The distribution of adipose tissue is an important factor in IR, for instance, visceral

depots contribute more than peripheral adipose tissues to IR. The reasons include:

visceral adipose tissue is metabolically and hormonally more active than other body fat

tissue (Ferrannini et al, 2008). The level of FFAs in central fat tissue is higher than in

other sites (Fain, 2006). These higher FFAs can flux directly from the central fat tissue

into the liver via the hepatic portal vein, compared with other adipose tissues, which

drain into the liver via the systemic blood circulation (Kapoor et al, 2005). In addition,

the number of macrophages is higher in central body fat than in peripheral fat depots

(Trayhum and Wood, 2005). IL-6, which enhances CRP liver synthesis and induces IR,

is also largely expressed in visceral abdominal adipose tissue, compared with

subcutaneous abdominal tissue (Fried et al, 1998; Kershaw and Flier, 2004). Moreover,

the expression of genes for angiogenesis and fatty acid-binding protein 4 (require for
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fatty acid transfer in adipocytes) are higher in visceral adipose tissue than in 

subcutaneous abdominal tissue (Wagenknecht et al, 2003). Conversely, TNF-a 

synthesis is similar in both fat sites, whereas leptin secretion is mostly in subcutaneous 

adipose tissue (Bastard et al., 2006).

1.5.4.2 Free fatty acid and Toll-like receptor 4

FFAs are more resistant to the metabolic effect of insulin and more sensitive to lipolytic 

hormones. An increased delivery of FFAs to the liver may reduce insulin binding to 

hepatocytes, and impair insulin action with increased hepatic glucose production 

(Caballero, 2003). These FFAs can also compete with glucose as an alternative source 

of energy. FFAs also reduce the response of cells in the liver and adipose tissue to 

insulin, via their effect on the receptors for insulin, which causes hyperinsulinemia 

(Boden et al, 2005; Guilherme et al, 2008). FFAs can stimulate TLR4 which belongs 

to the family of Toll-like receptors that function as pattern recognition receptors that 

guard against microbial infections as part of the innate immune system. The stimulation 

of TLRs leads to activation of NFkB, JNK and IkB kinase (IKK) signal pathway and 

then increased expression of TNF-a and plasma levels of CCL2, which enhance IR (Shi 

et al, 2006; Huang et al, 2006) (Figure 1.8).

1.5.4.3 Adipocyte-derived factors

Fat cells and macrophages in adipose tissue produce a range of mediators including 

TNF-a, IL-ip, IL-6 , resistin, PAI-1 ad CCL2, which play a role in the development of 

IR and T2DM in skeletal muscle, liver and endothelial cells (Caballero, 2003, Olefsky 

and Glass, 2010, Schenk et al, 2008; Donath et al, 2011). These adipocytokines can 

impair glucose tolerance through specific intracellular signalling pathways, involving 

NF-kB, IKK, Activating Protein-1 (AP-1) and JNK signalling pathway. All these 

pathways could interact with insulin signalling via serine/threonine inhibitory 

phosphorylation of IRS (Hajer et al, 2008, Pradhan, 2007; Blaschke et al, 2006) 

(Figure 1.8). On the other hand, a low concentration of anti-inflammatory cytokines 

such as adiponectin and IL-10 is associated with IR and hyperinsulinaemia (Makki, 

2013). Adiponectin and IL-10 both reduced the level of IL-6 and TNF-a, which induce 

IR and correlate negatively with insulin sensitivity in human (Bruun et al, 2003; Makki, 

2013).
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Figure 1.8: The pathway of insulin signalling and its impairment in inflammation.

(A) Insulin binds to receptor with both a and p subunits. This ligand binding activates 

IRS, triggering of PI3K leading to the activation of AKT. The PI3K/AKT pathway 

regulates the insulin action on metabolic effects including glucose uptake and utilization, 

lipid synthesis, glycogen synthesis, protein synthesis, and glycogen synthesis). (B) 

Activation of TLRs by FFA inhibits IRS directly through activation of the NFkB and 

AP-1 signallings pathways or indirectly via stimulating pro-inflammatory cytokines (IL- 

6 and TNF-a) production, which prevent action of SOCS. TNF-a supresses GLUT4 or 

IRS via stimulation of the serine kinases, Ikkb. IL-6 and leptin act as negative regulators 

via stimulation of the Jnkl. All these action links inflammation to obesity-induced IR. 

IRS: Insulin Receptor Substrate, GLUT4: glucose transport 4, PI3K: Phosphoinositide 

3-kinase, Akt: Protein Kinase B, FFA: free fatty acid, TLRs: Toll-like receptors, NFkB: 

nuclear factor kappa, AP-I: Activator Protein-I, IKKb: IkappaB kinase, JNK: Jun N- 

terminal kinases, SOCS: Suppressor of cytokine signalling, (Drawn using information 

from De Luca and Olefsky, 2008; Friihbeck et al., 2001).
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Furthermore, low adiponectin level, as well as leptin, may negatively affect biochemical 

reactions of glucogenesis and glucose uptake (Kajowaki and Yamauchi, 2005). Leptin 

as an insulin-sensitizing hormone and its deficiency, or resistance, as a potential link 

between obesity and diabetes, has been reviewed recently (Martin et al, 2008; 

Cummings 2013) (Figure 1.8). Additionally, CX3CL1 and CCL2 are significantly 

increased in obesity and are good predictors for the development of T2DM (Panee 

2012). Their role as important immune mediators in physiological and pathological 

processes might also translate into increased macrophage infiltration into adipose tissue, 

as observed in obesity (Tateya et al, 2010; Shah et al., 2011).

1.5.4.4 Peroxisome proliferation activated receptors (PPARs)

The peroxisome proliferator-activated receptors (PPARs) are a family of nuclear 

receptors which are ligand-modulated transcription factors that regulate gene expression 

of numerous proteins involved in lipid metabolism, glucose homeostasis and 

inflammatory pathway regulation (Shoelson et al., 2006). PPARa, PPARp/5 and PPARy 

are expressed in several tissues includes smooth muscle, vascular wall and adipose 

tissue (Issemann et al., 1993, Shulman et al., 2005; Filip-Ciubotaru et al., 2011). These 

receptors are essential for the actions of many insulin sensitizers (Bhatia and 

Viswanathan, 2006). For example, PPARa null mice demonstrated that PPARa 

activates genes implicated in lipid metabolism in the liver including fatty acid uptake 

and p-oxidation taking place in the mitochondria (Im et al., 2011). PPAR6 is expressed 

in metabolically active sites such as liver, muscle, and fat, and has a role in metabolic 

syndrome (Lee et al, 2006). PPARS ligands reduce triglyceride accumulation in BAT 

and liver and enhance fatty acid oxidation in genetically obese mice (Tanaka et al.,

2003).

In models of high-fat diet-induced obesity, PPARS ligands result in retarded weight 

gain indicating that clinical use of PPARS activators could be beneficial as anti-obesity 

agents (Cho et al., 2012). PPARS is an important regulator of energy expenditure and 

glucose and lipid metabolism (Billin et al, 2008), where it increases 

glycolysis/lipogenesis in the liver while activating fat burning in muscle (Lee et al, 

2006). PPARy shows a significant anti-inflammatory action at the level of macrophage- 

mediated pro-inflammatory responses. It inhibits recruitment of macrophages to sites of 

inflammation via the suppressor of transcription of CCL2 as well as its receptor CCR2
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(Szanto et al, 2008). PPARy activation has been shown to inhibit macrophage pro- 

inflammatory cytokines synthesis, TNF-a, IL-lp and IL-6 via an effect on NF-kB 

(Lefebvre et al, 2006; Szanto et al, 2008). However, it is clearly noted that PPARs 

contribute to the development of IR or impaired insulin secretion through their role in 

lipid metabolism, glucose homeostasis and inflammatory factor production, thus, 

PPARs are potential therapeutic targets for IR.

1.5.5 Low testosterone and the link to T2DM

IR and hyperglycemia are key features of T2DM, which is usually combined with 

abdominal obesity. Abdominal obesity is also associated with testosterone deficiency; 

therefore, obesity is linked to testosterone deficiency and T2DM. Overwhelming 

evidence demonstrates that a reduction in testosterone is associated with the progress of 

several clinical features linked to T2DM: total testosterone is conversely correlated with 

IR and insulin concentration in men (Simon et al, 1997 and Jones, 2010). Furthermore, 

numerous studies indicate that testosterone deficiency is a predictor for the prevalence 

of IR and T2DM in healthy men (Oh et al, 2002; Jones and Saad, 2009). Testosterone 

deficiency is more widespread among male diabetic patients (Grossmann et al, 2008) 

and hypogonadism cases are also coupled with T2DM (Kapoor et al, 2007).

It is known that central obesity is associated with low testosterone and vice versa. In a 

German study, low level testosterone was observed with an inverse correlation with 

BMI in 155 diabetic patients compared to 155 healthy controls (Zietz, 2000). An 

improvement in IR and a significant reduction in the level of fasting post-prandial and 

mean daily blood glucose were initially observed in men with T2DM who were treated 

with testosterone (Boyanov et al, 2003). Possible explanations for the inverse 

relationship between testosterone and IR are: firstly, a significant reduction in central 

obesity following testosterone treatment leads to reduced level of aromatase in adipose 

tissue, thus inhibiting conversion of testosterone to estradiol and prevention of a 

negative feedback of estradiol on testosterone secretion via the hypogonadal pituitary 

axis (Dandona and Dhindsa, 2011). Secondly, FFAs are associated with IR, therefore, 

testosterone replacement therapy by decreasing abdominal fat mass leads to reduced 

circulating levels of FAAs and subsequently IR. The effect of testosterone on reduction 

of central obesity could be by decreasing the uptake of triglycerides to adipocytes
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through inhibition of the lipoprotein lipase enzyme activity (Marin et al, 1992; Kapoor 

et al., 2005). Finally, further actions of testosterone in T2DM include: the action of 

testosterone as an anti-inflammatory factor that inhibits pro-inflammatory cytokine and 

chemokine expression especially associated with IR (Pittas et al., 2004; Norata et al., 

2006).

It has long been known that testosterone acts as an immune-modulatory factor and its 

reduction is accompanied by the development of subclinical inflammatory states 

(Malikan et al., 2004). It is known that an increase in inflammatory factors such as IL-6, 

TNF-a and IL-ip is accompanied by lowering of testosterone in obesity cases. 

Therefore, this may demonstrate the presence of an inverse relationship between the 

pro-inflammatory factors and testosterone level. Accumulating evidence suggests that 

testosterone can inhibit pro-inflammatory factors secretion and stimulate anti

inflammatory mediator release (Vodo et al., 2013). Furthermore, reduction in the levels 

of IL-6, IL-ip and TNF-a secreted by monocytes was noted in androgen deficient men 

with T2DM after testosterone treatment (Corrales et a l, 2006). Short-term studies 

indicated that there was an inverse relationship between testosterone level and CRP, IL- 

6 and TNF-a, in diabetic and non-diabetic hypogonadal men (Kapoor et al., 2007). 

However, the reason for this inverse relationship is not fully known, (Beavers et al.,

2010) but the reduction of fat mass by testosterone treatment may be the reason for a 

lower inflammation and explain this inverse relationship. However, the cellular 

mechanism of testosterone action on inflammatory factors remains unclear.

1.6 Atherosclerosis

Atherosclerosis is the main cause of increased rates of cardiovascular death in the 

developed world. It is an inflammatory disease, characterized by lesions in the large and 

middle arteries containing lipids, immune infiltrates, particularly monocytes/ 

macrophages and T cells, connective tissue elements and debris (Hansson et al, 2006; 

Erzengin, 2014). This can lead to myocardial infarction in the heart and/or to ischemic 

stroke (Koelink et al., 2012). The cause of atherosclerosis is a complex combination of 

genetic factors and metabolic disorders such as obesity and T2DM. Endothelial 

dysfunction is central to the pathogenesis of atherosclerosis (Tardif, 2009). The result of 

endothelial injury is an increase in leukocyte adhesion molecules such as intercellular
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cell adhesion molecules-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) 

(Nakashima et al, 1998, Monaco and Paleolog, 2004; Lucas and Greaves, 2001). There 

is also an increase in pro-inflammatory and pro-atherogenic factors including cytokines, 

chemokines and their receptors. All these contribute to exacerbation of the damage to 

the endothelium, with increased monocyte recruitment into the sub-endothelial space, 

where they differentiate into macrophages. These recruited macrophages take up LDL 

via scavenger receptors to form foam cells, the hallmark of fatty streak lesions (Qiu et 

al., 2006 and Stenmark et al., 2013). The lesions develop into fibro-fatty plaques, which 

contain large numbers of macrophages, fibrous cap and migrated and proliferated 

smooth muscle cells (Figure 1.9). When plaques are damaged and rupture, pro- 

thrombotic material is exposed to the coagulation system, with ensuing inhibition of 

blood flow and induction of CVD (Libby et al, 2011; Frostegard, 2013).

1.6.1 The role of monocyte / macrophage cells in atherosclerosis

In humans, accumulation of foam cells derived from phagocytosis of lipids by 

monocytes and macrophages is seen in aortic fatty streaks (Auffray et al., 2009, Gordon, 

2003; Takahashi et al., 1996) and these are the main leukocyte subset that accumulates 

at lipid laden vascular sites in atherosclerosis (Ley et al., 2011). The production of 

leukocyte chemoattractant molecules activates receptors on rolling monocytes leading 

to integrin-dependent firm adhesion to the endothelium and subsequent diapedesis into 

the sub-endothelium (Golias et al., 2007). Migration of monocytes into the vessel intima 

leads to differentiation of these cells into macrophages in response to the local over

expressed macrophage-colony-stimulating factor (M-CSF) (Libby et al., 2002, 2010, 

Glass and Witztum 2001; Koelink et al, 2012). Inside the arterial intima and under 

atherogenic conditions, macrophages accumulate in the aorta and show reduced 

emigration from lesions (Hansson et al., 2001; Ley et al, 2011). In ApoE and MCS-F 

(op/op) deficient mice, which are deficient in tissue macrophages, are dramatically 

protected from atherosclerosis, despite high levels of cholesterol (Smith et al., 1995; 

Linton and Fazio, 2003).

Macrophages secrete TNFa and IL-lp and chemokines including CX3CL1, CCL2 and 

IL-8 which are associated with local inflammation (Lusis, 2000, Lucas and Greaves, 

2001, Braunersreuther et al, 2007, Tabas et al., 2007; Koltsova and Ley, 2011).
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Figure 1.9: The progression of atherosclerotic plaque as a result of obesity and its 

complications. The conditions associated with obesity including high levels of 

proinflammatory factors, insulin resistance, hyperglycemia and dyslipidemia can causes 

endothelial dysfunction. This leads to production of adhesion molcules, VCAM1, ICAM 

and chemokines by endothelial cells (EC). Monocytes migrate into the arterial wall in 

response to binding of their chemokine receptors, CX3CR1 and CCR2 with ligands 

CX3CL1 and CCL2. Monocytes differentiate into macrophages in response to local 

macrophage colony-stimulating factors (M-CSF). The LDL in the artery wall is modified to 

oxidized LDL (oxLDL) and loaded onto macrophage scavenger receptors (ScRs) resulting 

in formation of foam cells. Ox-LDL and chemokines stimulate the production of IL-lp, IL- 

6, IFNy and TNF-a by macrophages and foam cells. More advanced stages of 

atheroseclerosis include smooth muscle cell proliferation, formation of fibrous caps, 

necrotic cores, calcification, rupture, haemorrhage and thrombosis. IEM: internal elastic 

membrane. (Drawn using information from Lucas and Greaves, 2001, Barlic and Murphy, 

2007, Liu and Jiang, 2011).
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Macrophages are considered as the main source of IL-8 in atherosclerotic plaques, 

which can modulate migration of monocytes and accumulation of macrophages in the 

endothelial space (reviewed from Apostolakis et al., 2007). Thus, IL-8 is suggested as a 

proatherogenic chemokine acting as a factor linking immune activity and lipid 

metabolism (Autieri et al., 2012). Scavenger receptors (ScRs) associated with uptake of 

modified LDLs by macrophages are under the control of cytokines in lesions (Menno et 

al, 2000). ScRs regulate the load of oxidised LDL in macrophages and lead to LDL 

cholesterol accumulation and subsequently the transformation of macrophages into 

foam cells in early- through to mid-stage atherogenesis (Greaves and Gordon, 2009, 

Hansson 2005; Williams and Tabas, 1998). Foam cells are generated from the massive 

uptake of modified LDLs and the intra-cytoplasmic accumulation of cholesteryl esters, a 

source of growth factors, pro-inflammatory and pro-atherogenic factors in all stages of 

atherosclerosis. All these factors contribute to smooth muscle cell proliferation, matrix 

production and actions of metalloproteases, leading to matrix degeneration (Dollery et 

al., 2006, Libby, 2008; Libby, 2009). The continued accumulation and subsequent 

apoptosis of plaque cells, leads to the formation of a necrotic core and results in the 

progressive narrowing of the arterial lumen. This can then trigger thinning of the fibrous 

cap and its disintegration, with plaque erosion or rupture, leading to thrombus formation 

and vascular occlusion underlying coronary syndromes, myocardial infarction, or stroke 

(Glass and Witztum, 2001, Libby, 2002, Hansson, 2005, Hansson and Libby, 2006, 

Libby, 2008; Weber et al., 2008).

1.6.2 The role of atherogenic biomarkers in atherosclerosis

Measurement of standard lipid cholesterol and TG and lipoproteins are vital for 

assessing the risk of CVD. These measurements are obtained routinely in clinical 

practice (Blaha et al., 2008). Lipoproteins are essential in the metabolism and 

redistribution of lipids such as cholesterol, phospholipids and triacylglycerol. There are 

several classes of lipoproteins, which are used to transport lipids throughout the body 

and range in density and content (protein/lipid ratio); chylomicrons (contain dietary 

lipids), intermediate low density lipoprotein (IDL), VLDL, LDL and the high density 

lipoprotein (HDL) (Acevedo, 2012). Lipoproteins contain small particles termed 

apolipoproteins that function as regulators of binding between lipoproteins and 

receptors. These proteins act as enzyme co-factors during lipid metabolism, helping to
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stabilize lipoproteins during transportation from cell or tissue to its destination (Han, 

2004). Apolipoproteins are one of the key players in progression of atherosclerosis. 

Alaupovic (1971) first suggested that measuring apolipoproteins might be more 

valuable in predicting the risk of CVD than measurement of the lipid components or 

lipoprotein (Rainwater et al., 1999 and Mora, 2009; Jacobson, 2011). Furthermore, 

Cholesterol, TG and lipoproteins have been studied extensively for their effect and role 

in atherosclerosis. Recently, it has been suggested that studies should focus on other 

factors that have roles in atherosclerosis e.g, studies have investigated the role of 

oxLDL, fractions of HDL such as HDL2 and HDL3 and apolipoprotein (Parish et al., 

2009).

1.6.2.1 The role of oxLDL in atherosclerosis

Animal studies have provided evidence to support the role of oxidative stress in 

atherosclerosis, particularly through oxidative modification of LDL (Fraley and 

Tsimikas, 2006; Bossola et al., 2011). oxLDL is a useful marker for CVDs (Itabe et al, 

2011, Fraley and Tsimikas, 2006, Itabe and Ueda, 2007; Holvoet et al., 2008). The 

measurement of oxLDL correlates with CVDs and indicates that oxLDL is a potential 

prognostic marker for future health events (Itabe et al, 2011). oxLDL has the ability to 

stimulate a number of pro-atherosclerotic effects, including endothelial cell activation, 

smooth muscle proliferation and monocyte/macrophage recruitment (Ahmed et al.,

2009).

Berliner and co-workers (1990) stated that the oxidative modification of LDL, through 

co-culture with endothelial cells, had stimulatory effects on many cell types and that 

these effects were due to the oxidized phospholipids generated by oxLDL. For example, 

oxLDL and its free lipid constituents have been shown to promote monocyte 

recruitment and inhibit macrophage motility. The effect of oxLDL has been clearly seen 

through control of monocyte gene expression (Tontonoz et al., 1998). OxLDLs induce 

functional alteration of monocytic regulation of monocyte chemoattractant receptors, by 

inducing specifically differentiation of CCR2hlgh CX3CRllow monocytes to CCR2low 

CX3CRlhlgh macrophages that strongly adhere to CX3CL1+ expressed by primary 

human coronary artery smooth muscle cells (CASMCs) under static conditions (Barlic 

et al, 2006). This observation indicates that in atherogenesis, there is oxidized lipid- 

driven activation of macrophage PPARy in the intima which results in a pro-adhesive 

chemokine receptor switching CCR2 off, CX3CR1 on, causing cessation of CCR2-
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dependent migration and activation of CX3CR1-dependent retention mechanisms, 

which together promote macrophage accumulation in the vessel wall (Wong et al., 

2002; Lesnik et al, 2003). Moreover, oxLDL can increase migration of monocyte cells 

by enhancing VCAM-1 expression by endothelial cells, which leads to adhesion of 

these cells within the endothelial space (Calara et al., 199; Aikawa et al, 2002). In 

addition, oxLDL is recognized to induce foam cell formation and inflammatory 

responses, where it stimulates expression of a wide diversity of pro-inflammatory 

cytokines and chemokines in macrophages (Lee et al, 2000). Finally, it has a role in 

promoting endothelial cell expression of M-CSF leading to differentiation of monocytes 

to macrophages (Cushing et al, 1990 and Lee et al., 2000). OxLDL also helps to induce 

release of CCL2 from endothelial cells (reviewed by Pirillo et al, 2013). Although the 

pathological features of OxLDL have been well considered, the formation, distribution, 

and overall fate of OxLDL in vivo remains unclear (Itabe et al., 2011).

1.6.2.2 The role of Apo A l and HDL in atherosclerosis

Apolipoprotein Al is a protein (264 amino acids) that in humans is encoded by the 

APOA1 gene (Eriksson et al, 2009). It has a specific role in lipid metabolism, is a 

major protein constituent of HDL particles, has pleiotropic biological functions such as 

stimulating macrophage cholesterol efflux within artery walls, making the macrophage 

cells less likely to become fat overloaded, transform into foam cells, die and contribute 

to progressive atheroma. It also functions by motivating reverse lipid transport, 

inhibiting LDL oxidation and scavenging toxic phospholipids. Furthermore, it has the 

ability to improve pancreatic p-cell health and function, can act as an anti-thrombotic 

factor as well as having anti-inflammatory properties (Navab et al., 2011, Shah 2011). 

HDL cholesterol and its major protein constituent, (ApoAl), have been shown through 

clinical and epidemiological studies to have a strong inverse correlation with the 

development of atherosclerosis and myocardial infarction (reviewed by Chapman et al.,

2010).

HDL particles have multiple functions including cholesterol transport (Dastani et al.,

2006) and modulation vascular endothelial function by promoting the production of the

atheroprotective signalling molecule NO (Mineo et al., 2006), protection against LDL

particle oxidation and anti-inflammatory properties (Genest et al., 2003; Marcil et al.,

2004). Their role in reverse cholesterol transport, which is transport of cholesterol from

peripheral tissues to the liver for secretion into the bile for excretion, made HDL
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particles the most important protective factor against the development of atherosclerotic 

cardiovascular disease (Maeda et al, 2011). Two pathways are involved in these 

processes. A first pathway is the production of apoAl from liver and intestine which 

binds to the cellular ATP-binding cassette transporter (ABCA1) and forms of nascent 

HDL particles (Wang et al, 2008). Nascent HDL becomes mature HDL following 

loading by cholesterol from peripheral, extra-hepatic tissues, and arterial tissue 

(potentially including cholesterol-loaded foam cell macrophages of the atherosclerotic 

plaque). The esterification of free cholesterol in HDL occurs by lecithin-cholesterol acyl 

transferase (LCAT) leading to spherical HDL3 and HDL2 particle formation. These 

subfractions mediate transport of cholesterol to the liver for excretion (Natarajan et al,

2010). The second pathway is by the esterification of free cholesterol in HDL which is 

made by cholesterol ester transfer protein (CETP), exchanging the core cholesteryl 

esters of HDL for triglycerides to Apo B-containing lipoproteins mainly VLDL and 

LDL and then subsequent uptake primarily by hepatic LDL receptors or into the 

circulation (Kontush et al, 2006; Chapman et al, 2010). Therefore, defects in the gene 

encoding Apo Al are associated with HDL deficiencies (Alexander et al, 2009).

HDL can be separated by ultra-centrifugal methods into two main subfractions: lipid- 

rich HDL2 and lipid-poor HDL3. In addition, it is thought that one or both of the HDL 

fractions is more related to the risk of CVD than total HDL cholesterol (Bakogianni et 

al, 2001; Superko et al, 2012). Prospective studies were reported that lower HDL2 and 

HDL3 is predicted risk for CVD, one showed lower HDL2 cholesterol is powerful 

indicators of CHD (Williams et al, 2012). A low HDL level in subjects with insulin 

resistance primarily results from a decrease in the HDL2 and, to some extent, HDL3 

levels (Muth et al, 2010). However, suggestions that all subfractions of HDL particles 

display atheroprotection, through one or more mechanisms, are plausible (Superko et al, 

2012). Furthermore, high circulating levels of ApoAl of HDL have been shown to 

predict decreased risk of CHD (Chapman et al, 2010).

1.6.2.3 The role of Apo E in atherosclerosis

Apolipoprotein E (ApoE) is a glycoprotein (299 amino acids) and a constituent of 

chylomicrons, intermediate-density lipoprotein (ILD), LDL, HDL and VLDL. ApoE is 

encoded by APOE gene and mainly produced by the liver, monocytes and macrophage 

cells (Hara et al., 2009). It acts as a ligand for lipoproteins with receptors for clearance

of lipid from the circulation and for cholesterol metabolism (Singh et al, 2002).
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According to studies in mice lacking ApoE (Wu and Huan, 2007) there was 

accumulation of remnant lipoproteins (VLDL and chylomicron) with total plasma 

cholesterol levels exceeding 400 mg/dl, even though mice were fed on low fat chow 

(Kunjathoor et al, 1996). Similarly, in humans with deficiency in ApoE there is 

increased plasma cholesterol and triglycerides, which are the consequence of impaired 

clearance of chylomicron, VLDL and LDL remnants (Tennert et al, 2007).

The role of ApoE in atherosclerosis development relates to its synthesis and metabolism 

by macrophages within vessels (Rosenfeld et al, 1995), which has a local effect on 

cholesterol homeostasis and on inflammatory reactions in atherosclerotic vessels. In 

macrophages, the anti-atherogenic effects of endogenous and exogenous ApoE are the 

induction of cholesterol efflux, thereby stimulating reverse cholesterol transport 

(Greenow et al, 2005, Curtiss and Boisvert, 2000, Burt et al, 2008). An additional 

significant atheroprotective effect of ApoE in macrophages was observed through its 

inhibition of LDL-oxidation and stimulation of enzymes that are associated with 

lipoprotein metabolism (Walpola et al, 1993, Miyata and Smith, 1996). Furthermore, 

ApoE has anti-inflammatory actions by regulation of inflammation and cell 

proliferation, inhibiting expression of adhesion molecules, decreasing the migration of 

monocytes into the lesion (Stannard et al, 2001) and preventing the migration and 

proliferation of smooth muscle cells (Kothapalli et al, 2004; Zhu and Hui, 2003).

To assess the role of ApoE in atherogenesis, a number of approaches have been taken 

including: bone marrow transplantation and transgenic overexpression. Previous studies 

reported that transplanting bone marrow from mice with normal Apo E gene onto Apo 

E deficient recipients led to normalization of cholesterol level in the serum and 

prevented atherosclerosis. This was a result of an increase in ApoE in the serum 

enhancing lipoprotein clearance (Linton et al, 1995; Huang et al, 2013). Hepatic 

overexpression of ApoE in ApoE knockout mice prevented the development of 

atherosclerotic lesions, suggesting plasma ApoE has a role in protecting the arterial 

intima (Stevenson et al, 1995; Kashyap et al, 1995). This was noted through 

accumulation of ApoE within preexisting atherosclerotic lesions and also through the 

induction of morphological changes in lesions, including decreased foam cells and 

increased smooth muscle cells and extracellular matrix content (Tsukamoto et al, 1999).
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In further research, transplantation of ApoE-/- bone marrow onto C57BL/6 (B6) mice 

did not lead to changes in plasma lipid and lipoprotein levels, but increased 

atherosclerosis and foam cell formation compared to controls transplanted with 

ApoE+/+ bone marrow. The athors showed that the expression of ApoE in macrophages 

was responsible for the anti-atherogenic effect of transplanted bone marrow (Fazio et al, 

2002). Moreover, Shimano et al. (1995) established transgenic mice that expressed 

human ApoE in the vessel wall and identified a reduction in atherosclerotic lesions, in 

the absence of any change in plasma cholesterol. In addition, ApoEh/hLdlr_/“Mxl-cre 

mice develop spontaneous hyperlipidemia and atherosclerosis on a chow diet 

(Gaudreault et al., 2012) but following inducible repair of the hypomorphic ApoE 

alleles in these mice had decreased plasma lipids and ApoB lipoprotein levels, rise in 

plasma HDL-cholesterol and ApoAl levels (Eberle et al., 2013) supporting the role that 

of hepatic ApoE in the clearance of remnant lipoproteins in the absence of the LDL 

receptor (Linton et al., 1995) and in promoting HDL expansion and remodelling 

(Mahley et al., 2006).

1.6.2.4 The role of Apo B in atherosclerosis

Apolipoprotein B (ApoB) is a large protein (4536 amino acids) structural component of 

all lipoproteins including LDL, intermediate density lipoprotein (IDL), very low-density 

lipoprotein (VLDL), and LP (a) with the exception of HDL (Kappelle et al, 2011; Lee 

et al., 2011). ApoB is encoded by APOB gene and has two forms, ApoB-48 and ApoB- 

100. In humans, ApoB-48 is synthesized in the intestine, where it is complexes with 

dietary TG and free cholesterol, absorbed from the gut lumen, to form chylomicron 

particles. ApoB-100 is synthesized in the liver and is found in LDL, DDL and VLDL 

particles (Walldius and Jungner, 2004). In mice, both ApoB-48 and ApoB-100 are 

secreted from the liver (Dallinga-Thie, 2010). ApoB is absolutely required for formation 

of LDL and assist with binding to its receptor in different tissues, allowing cells to 

internalize LDL and thus absorb cholesterol (Parish et al., 2009).

Increasing evidence indicates that ApoB is a superior marker of vascular disease

compared with LDL cholesterol, as ApoB represents the total amount of potentially

atherogenic circulating lipoproteins (Walldius and Jungner, 2004, Barter et al., 2006,

Ley et al., 2010; Kappelle et al., 2011). Control studies for patients with CHD have

found plasma Apo B levels to be more characteristic of disease than other plasma lipids

and lipoproteins (Kwiterovich et al., 1992). A further study showed that ApoB was a
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stronger predictor of risk than LDL-cholesterol in both men and women (Walldius et al, 

2001). This study found that ApoB and the Apo B/Apo Al ratio should be taken into 

account as it is highly predictive in evaluating cardiac risk.

In recent years, several groups have used homologous recombination in mouse 

embryonic stem cells to generate Apo-E-deficient mice and LDL receptor-deficient 

mice (Maeda, 2011). Both of these targeted mutations interfere with the clearance of 

Apo-B-containing lipoproteins from the plasma; in both of these animal models, the 

plasma levels of the Apo-B-containing lipoproteins are elevated and there is increased 

susceptibility to the development of atherosclerosis. In Apo-B transgenic mice, the high 

levels of LDL in chow-fed mice were clearly due, at least in part, to the over-production 

of Apo-B in the liver (Linton et al, 1993). However, mice with modified ApoB-100 

had decreased, not increased, LDL particles, in part because of a reduced secretion of 

modified-ApoBlOO particles (Toth et al, 1996, Johnson et al, 2008).

The inconsistencies in the literature when considering Apo B as a good predictor risk of 

atherosclerosis may be due to the absence of standardised assays for measuring plasma 

ApoB levels and attempts to develop these methods are ongoing (Carmena et al, 2004; 

Contois et al, 2011).

1.6.2.5 The role of lipoprotein (a) in atherosclerosis

Lipoprotein (a) LP(a) is a protein that is encoded by LPA gene. LP(a) consists of an 

LDL-like particle and is bound to the highly glycosylated Apo(a) and Apo B in a 1:1 

molar ratio, through one or more disulphide bridges (Carmena et al, 2004 ). Apo (a) is 

detected in the liver where it is expressed by hepatocytes. The assembly of Apo (a) and 

LDL particles occurs at the outer hepatocyte surface (Saba and Oridupa, 2012). The 

half-life of LP (a) in the circulation is about 3 to 4 days, (Rader et al, 1993) and there is 

limited information about its metabolism. Similarly, the physiological function of LP (a) 

is largely unknown (Itabe et al, 2011).

LP(a) levels are genetically determined and are an independent risk factor for

atherosclerosis {Enas et al, 2006). Moreover, its level in serum has been found to be an

inherited risk factor for IHD (Dembinski et al, 2000) and myocardial infarction

(Kamstrup et al, 2008; Kamstrup et al, 2011). The relationship between elevated LP

(a) levels and CHD was confirmed by a number of retrospective case-control studies. A

meta-analysis of prospective studies showed that plasma LP (a) concentration is an
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independent risk factor for CHD in both men and women (Craig et al., 1998). Another 

prospective study found that LP (a) is an independent risk factor for MI and CHD in 

elderly men (Gaw et al., 2005).

However, four studies found no relationship between LP(a) and CVD (Seman et al., 

1999). These discrepancies may result from the lack of standardization and the failure of 

some immunoassays to measure all Apo (a) isoforms equally (Seman et al., 1999). 

However, this was finally clarified with the data obtained from Epidemiological Study 

of MI (PRIME) which included 9133 men with no history of CHD or use of 

hypolipidemic medicines, that indicated LP (a) as a strong predictor of CHD risk (Luc 

et al, 2002). In addition, Apo (a) in LP (a) has a similar structure to plasminogen and 

can compete with plasminogen for binding to the plasminogen receptor. This leads to 

inhibited conversion of plasminogen to plasmin. Plasmin decreases fibrin blood clots 

therefore with less plasminogen to degrade fibrin, the concentration of fibrin increases 

and promotes thrombogenesis (Caplice et al., 2001; Sofi et al., 2007). Because of the 

unique structure of LP(a) combined with the potential atherogenic risk associated with 

LDL particles and the thrombogenic risk attributed with Apo (a), LP(a) is considered as 

a risk factor for atherosclerosis and CVD (Nordestgaard, et al., 2010). Moreover, Lp(a) 

transports the more atherogenic pro-inflammatory oxidized phospholipids, which attract 

inflammatory cells to vessel walls (Gouni-Berthold et al., 2011; Tsimikas et al., 2008) 

and causes smooth muscle cell proliferation (Ichikawa et al., 2002).

1.6.3 The role of pro-inflammatory cytokines in atherosclerosis

Pro-inflammatory cytokines including IL-ip, IL-6, TNF-a and IFN-y together or 

individually play a role in development of atherosclerosis. These cytokines that are 

produced at a distance from adipose tissue or locally in the artery wall can affect 

atherosclerosis and potentially play a role in various stages of atherosclerosis 

(Kleemann et al., 2008). In the early stages, TNF-a and IFN-y can cause imbalance in 

barrier function of endothelial cells and promote leukocyte transmigration by changing 

the distribution of vascular endothelial cadherin-catenin complexes and, inhibiting the 

formation of F-actin stress fibres (Kleinbongard et al., 2010). TNF-a is able to 

transiently induce a rise in calcium and stimulation of myosin light chain kinase, which 

causes endothelial junction impairment (Komarova et al, 2010; Ait-Oufella et al.,

2011).
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Pro-inflammatory cytokines can stimulate attraction of monocytes to endothelial cells 

by enhancing expression of adhesion molecule, such as ICAM-1 and VCAM-1 and 

enhancing the up-regulation of selectins and integrin ligands, which are part of the 

leukocyte adhesion cascade (Weber et al, 2008; Ait-Oufella et al., 2011). Furthermore, 

IL-ip, IL-6, (Bazan et al., 1997; Garcia et al., 2000), TNF-a (Ahn et al., 2004; Ollivier 

et al., 2003; Lesnik et al, 2003), IFN-y (Bazan et al., 1991, hnaizumi et al., 2000, 

Ollivier et al., 2003; Lesnik et al., 2003) mediate the migration of monocytes through 

endothelial cells by activating expression of chemokines (e.g. IL-8, CCL2 and 

CX3CL1) on endothelial cells, which bind to their receptors on monocytes and 

macrophages. Similarly, these locally synthesised cytokines, produce by macrophages 

cells, SMCs and ECs, can regulate and accelerate the transformation of macrophages 

into foam cells by increasing the expression of scavenger receptors and enhancing cell- 

mediated oxidation (Ait-Oufella et al., 2011). While IFN-y has the ability to amplify the 

expression of pro-inflammatory cytokines including TNFa and IL-ip by monocytes 

(Butler et al., 1994; Haworth et al, 1991) and macrophages (Mallat et al., 2001), TNF-a 

can trigger the release of IL-lp, IL-6, IL-8 from monocytes, macrophages and 

neutrophils (Le Page et al, 1999 and Hayes et al., 1995).

TNF-a, IL-6 and IL-lp strongly up-regulate PAI-1 expression at the protein and mRNA 

level in different cell types, including endothelial cells, smooth muscle cells and 

monocytes (Wiesbauer et al., 2002, Alessi et al., 2006, Dong et al., 2007). This effect is 

as a result of altering the fibrinolytic modulator of ECs, reducing the secretion of t-PA 

and increasing the production of PAI-1 (Kruithof et al, 2008). Thus, pro-inflammatory 

cytokines increase thrombus formation and stimulate the progress of acute coronary 

syndromes (Ait-Oufella et al., 2011). Furthermore, IFN-y and IL-lp can act as pro- 

atherogenic modulators through inhibition of the ATP-binding membrane cassette 

transporter Al (Yin et al., 2010), whereas IL-8 is considered as an important pro- 

atherogenic cytokine due to enhancing lesion formation by expediting leukocyte 

extravasation and EC adhesiveness (Gerszten et al., 1999).

In the advanced stage of atherosclerotic plaques, cytokines IL-1, TNF-a, and IFN-y 

stimulate apoptosis of SMCs, ECs and macrophages (Clarke et al., 2006, Stoneman et 

al., 2009; Ait-Oufella et al., 2011). Robaye et al. (1991) established apoptosis induction 

of ECs by TNF-a. LPS-induced apoptosis in macrophages is mediated mostly through
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the autocrine production of TNF-a (Xaus et al., 2000). The consequence of this is 

endothelial dysfunction and macrophage apoptosis, which leads to the accumulation of 

cellular debris contributing to an increase in the lipid core. Plaque SMC apoptosis leads 

to thinning in the fibrous cap, leading to its rupture (Mallat and Tedgui, 2000, Tabas et 

al., 2005; Clarke et al, 2006).

The involvement of pro-inflammatory cytokines in the pathogenesis of atherosclerosis 

is supported by their detection in human atherosclerotic plaques. Furthermore, high 

circulating levels of these factors in individuals with atherosclerosis reflect this 

association. Evidence also comes from the study of genetically modified mice (Ohta et 

al., 2005; Kamari et al., 2007) or mice with genetic mutations in these cytokine genes 

(Schieffer et al, 2004; Koga et al., 2007) which show inhibition of the atherosclerotic 

lesion stages. Anti-inflammatory cytokine, IL-10, can inhibit the production of these 

pro-inflammatory cytokines. IL-10 is synthesised by T lymphocytes and macrophages 

and has anti-atherogenic properties (Stoner et al., 2013). These facts are based on 

studies of atherosclerosis mouse models (Eefting et al., 2007), in which the expression 

of IL-10 increased in both coronary arteries in atherosclerosis (Satterthwaite et al.,

2005). Individuals with atherosclerosis have greater serum levels of IL-10 compared to 

healthy people. However, it is the balance between anti-inflammatory and pro- 

inflammatory cytokines which is as a major determinant of plaque stability (Tedgui et 

al., 2006).

1.6.4 The role of chemokines in atherosclerosis

During the process of vascular inflammation, chemokines play a central role, mediating 

the recruitment and activation of inflammatory cells (Keane et al., 2000; Liu and Jiang,

2011). Chemokines and their receptors can up-regulate selectins and integrin ligands, 

supporting leucocyte arrest, either directly or involving their presentation by binding to 

proteoglycans. In addition, they provide important anti-apoptotic survival cues to 

leucocytes (Weber, 2008; Zemecke and Weber, 2010). A number of chemokines are 

expressed by monocytes, macrophages, SMCs and ECs in response to inflammatory 

mediators in human atherosclerotic plaques (Lucas and Greaves, 2001; Braunersreuther 

et al., 2007).
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1.6.4.1 The role of CCL2 and its receptors CCR2 in atherosclerosis

CCR2 is a member of the G-protein coupled receptor family and is expressed on the cell 

surface of monocytes and macrophages (Singh and Sobhia, 2013). Two independent 

mouse models of atherosclerosis have illustrated the role of CCL2 in atherosclerosis 

(reviewed by Koenen and Weber, 2010). These animal models have a genetic deletion 

of CCL2 or its receptor CCR2 in atherogenic LDL receptor-deficient (LDLR-/- or 

apolipoprotein E-deficient (ApoE-/-), mice. These genetic deletions led to reduced 

atherosclerotic lesions, together with a decrease in macrophage infiltration (Dawson et 

al, 1999). In addition, CCL2 has been identified in macrophage-rich areas bordering 

the lipid core, on endothelial cells, SMCs in human and mouse atherosclerotic lesions 

(Yla-Herttuala et al., 1991, Nelken et al, 1991; Rayner et al, 2000). This was 

confirmed by other studies reporting that CCL2 and CCR2 interaction accounted for 

most of the macrophage accumulation in atherosclerotic arteries (Peeters et al, 2009). 

Blockade of CCL2-CCR2 interaction by using gene therapy in atherosclerosis-prone 

mice caused inhibition of the formation of fatty streak lesions and limited the 

progression of pre-existing plaques, without affecting serum lipid concentrations (Coll 

et al, 2007). Furthermore, the overexpression of CCL2 in ApoE'7' transgenic mice 

accelerated atherosclerosis by increasing the number of macrophages in artery lesions 

(Aiello et al, 1999).

In humans, numerous clinical studies have shown elevation of CCL2 levels in serum of 

patients with CVD (De Lemos et al, 2007, Martinovic et al, 2005, Arakelyan et al, 

2005; Herder et al, 2006). A positive correlation was observed between CCR2 

expression on circulating monocytes and serum CCL2 with carotid intima-media 

thickness and cardio-ankle vascular index, measures of atherosclerosis, in chronic 

haemodialysis patients (Okumoto et al, 2009). Other genetic human studies indicated 

that men with (SNP)-2518G (altematively-2578G) in the regulatory region of CCL2, 

which causes increased promoter activity, is associated with elevated, circulating levels 

of the CCL2 gene and increased risk of MI (McDermott et al, 2005; Szalai et al, 2001).
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1.6.4.2 The role of CX3CL1 and CX3CR1 in atherosclerosis

CX3CL1 is the only known chemokine expressed in both a soluble/shed and a 

membrane-tethered form. The soluble form of CX3CL1, cleaved from the membrane by 

the enzyme TACE (TNF-a converting enzyme), is involved in chemotaxis, while the 

membrane-anchored form promotes adhesion and retention of leukocytes (Fong et al, 

1998; Shah etal., 2011).

The expression of fractalkine and its receptor CX3CR1 which, is a G-protein coupled 

receptor, are up-regulated in atherosclerosic lesions (Umehara et al, 2001, Landsman et 

al, 2009, Wong et al, 2002; Combadiere et al, 2003). The importance of 

CX3CL1/CX3CR1 in atherosclerosis was supported by two common coding 

polymorphisms which are associated with a lower risk of CVD (Moatti et al, 2001; 

McDermott et al, 2001) while alternative study (Niessner et al, 2005) did not support 

these findings. However, the significance of CX3CR1 in atherosclerosis was clearly 

observed through reduction of plaque size and increased lesion stability after using an 

inhibitory antibody against CX3CL1 in animal models (Bursill et al, 2004). Deletion of 

the gene encoding CX3CR1 or CX3CL1 in mice prevented the formation of 

atherosclerosis and reduced monocyte infiltration in murine disease models 

(Combadiere et a l , 2003, Lesnik et al, 2003; Teupser et al, 2004; Saederup et al, 

2008).

According to epidemiologic studies, patients with CVD have increased expression of

CX3CR1 in peripheral blood mononuclear cells (PBMCs) (Fraticelli et al, 2001;

Damas et al, 2005) and elevated serum CX3CL1 levels (Damas et al, 2005). CX3CL1

levels in patients with unstable angina pectoris are even higher than in those patients

with stable angina pectoris (Ikejima et al, 2010). However, neither CX3CL1 nor

CX3CR1 have been found in normal mouse or human arterial wall (Barlic et al, 2007).

CX3CR1 expression has been found on numerous different cell types associated with

atherosclerosis, both in vivo and in vitro, including monocytes, macrophages, T cells,

NK cells, dendritic cells and vascular SMCs (Imai et al, 1997; Combadiere et al, 1998).

Its ligand, CX3CL1, is only detected in advanced lesions, where it is expressed by

SMCs, ECs and macrophages (Imai et al, 1997, Lucas et al, 2003, Cheng et al, 2007,

Wong et al., 2002; Lesnik et al, 2003). Therefore, CX3CL1 may act by attracting

macrophages that express CX3CR1; while CX3CR1 expressed by SMCs may facilitate
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the function of macrophages as well as the migration of SMCs towards endothelium that 

express high levels of CX3CL1 during atherosclerosis (Wong et al, 2002, Lesnik et al, 

2003; Liu and Jiang, 2011). Furthermore, the CX3CL1/CX3CR1 axis possibly leads to 

the development of atherosclerosis by stimulating monocyte recruitment, as well as 

enhancing pro inflammatory cytokine production and inducing SMC proliferation 

(Koenen and Weber 2011).

This interaction between CX3CL1 and CX3CR1 besides directly regulating migration 

and adhesion, also acts as a signal transduction pathway to coordinate the function of 

CX3CL1 and other cytokines (Liu and Jiang, 2011). Additionally, one study reported 

that soluble CX3CL1 stimulates extracellular signal-related kinases and stress-activated 

protein kinases to enhance the interaction between monocytes and vascular cells 

(Cambien et al, 2001). Landsman et al, (2009) found that the absence of CX3CL1- 

CX3CR1 interaction led to increased macrophage apoptosis and inhibited plaque 

development, which indicted that CX3CR1 is essential for macrophage survival.

1.6.5 Obesity and atherosclerosis

The number of atherosclerosis and CVD patients and their rate of death are increased 

among obese people. Moreover, excess weight was an independent predictor of CVD 

death and congestive heart failure, after adjusting to other known recognised risk factors 

(Sucharda, 2010; Rocha and Folco, 2011). The site of adipose tissue deposition such as 

central obesity also is important in the incidance of atherosclerosis and ultimately CVD 

(Kershaw and Flier, 2004). There are a number of mechanisms by which expansion in 

adipose tissue could critically affect the vessel wall. An enlargement in adipose tissue is 

associated with hypertension, IR, hyperglycaemia, lipid/lipoprotein metabolism changes 

and an inflammatory state, including macrophage infiltration. These conditions lead to 

increased pro-inflammatory and decreased anti-inflammatory profiles, which may 

contribute directly and indirectly to local (adipose tissue) and distant (artery wall) 

inflammation (Glass and Witztum, 2001; Lusis, 2000). These consequences of obesity 

are the main reason for atherosclerosis, causing endothelial dysfunction by several 

mechanisms leading to progression of CVD, stroke and myocardial infarction (Rocha 

and Folco, 2011).
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1.6.6 Low testosterone and atherosclerosis

The importance of studying the relationship between testosterone and the development 

of atherosclerosis and CVD is highlighted by: (a) the diversity between genders in the 

rate of CVD and atherosclerosis may be related to sex hormones as estrogen is 

protective factor (Ng et al, 2003). (b) the rate of mortality from these diseases is higher 

among men than in women (Jones and Saad, 2009) (c) A previous study reported that 

the incidence of death from heart disease was higher among patients with low 

testosterone compared to normal individuals (Nettleship et al, 2007). Others studies 

suggested that this increase in cardiovascular risk is not due to male gender, but is due 

to low testosterone levels associated with age (Jones and Saad, 2009) or obesity (Kelly 

and Jones, 2013). Undoubtedly, testosterone deficiency in men is accompanied with 

several cardiovascular risk factors including IR and MetS (Kapoor and Jones et al, 

2008). The features of these states including hyperglycemia, hypertension, an 

atherogenic lipid profile, inflammation, a pro-thrombotic fibrinolytic profile and 

hyperinsulinemia can be individually responsible for the development of CVD, 

atherosclerosis (Jones, 2010), congestive heart failure and stroke (Ma and Tong, 2010). 

Notably, some short-term studies found that testosterone replacement therapy (TRT) 

improved these conditions (reviewed by Jones and Saad, 2009). Furthermore, IR is 

linked to the classical cardiovascular risk factor, T2DM where the most diabetic patients 

are at risk of CVD (Hossain et al, 2007). Normalisation of testosterone after a period of 

treatment improved insulin sensitivity and T2DM via reduction of visceral adiposity and 

IR in diabetic patients (Kapoor et al, 2006). Testosterone treatment may exert its 

beneficial actions through an effect on cellular components and mediators of 

atherosclerosis and CVD.

Dyslipidemia is postulated as a mechanism linking low testosterone with CVD in men, 

Testosterone has a role in lipid and lipoprotein metabolism (Fahed et al, 2012). 

Previous cross-sectional studies reported that endogenous low plasma testosterone 

levels are associated with increased total and LDL cholesterol (Saad et al, 2008; Barud 

et al, 2002). Epidemiological studies also indicated that testosterone levels in serum are 

inversely linked with the serum concentrations of triglyceride and LDL-C (Wu, 2003) 

while other studies found no notable link to TG (Isidori, 2005). Interestingly, 

testosterone treatment was shown to reduce total cholesterol in 27 hypogonadal men 

who were at risk of CHD and who were treated with statins (Jones and Saad, 2010).
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Testosterone therapy in earlier studies reduced the levels of total and LDL cholesterol, 

(Saad et al, 2007; 2008). In contrast, a positive relationship was seen between 

testosterone level and HDL level and Apo Al in healthy and diabetic men (Uyanik et al, 

1997; Van et al, 2003). Contradictory results related to this association have also been 

reported. For example, Malkin et al, (2004a) and Kapoor et al, (2006) detected no 

change in HDL, whereas other studies showed a decrease in HDL with testosterone 

supplementation in hypogonadal men with and without T2DM (Wittert et al, 2003; 

Jones et al, 2009). Another study reported that the different doses of testosterone had 

no effect on plasma lipids and apolipoproteins, only the highest dose of testosterone 

(600 mg/wk) was associated with a reduction in plasma HDL and Apo Al in young, 

healthy men (Singh, et al, 2002) and in serum HDL, HDL2, and HDL3 in elderly men 

(Herbst et al, 2003). Testosterone treatment has also been shown to reduce Lp (a) level 

in normal men (Zmunda et al, 1997).

In animal studies, hypotestosteronemia and hypertestosteronemia increased significantly 

the total LDL cholesterol, TG, and Apo B while physiological levels of testosterone had 

a beneficial effect on serum lipids, lipoproteins, and apolipoproteins in castrated rabbits 

(Qiang, 2003). Similar beneficial effects were observed in the testicular feminization 

mouse (Tfm) model, which is considered a model of atherosclerosis, where testosterone 

treatment decreased the plaque area and aortic intimal thickness (Nettleship et al, 2007). 

A recent study indicated that the physiological concentration of 5a-dihydrotestosterone 

(5a-DHT) reduced the progression of atherosclerosis via inhibiting intimal foam cell 

formation from macrophages in a New Zealand white rabbit model (Qiu et al, 2010). 

Physiological testosterone treatment also attenuated atherosclerosis in orchidectomised 

LDL'7' mice and significantly attenuated aortic cholesterol accumulation in 

orchidectomised male rabbits fed a pro-atherogenic diet for 120 days (Nathan et al, 

2001). Despite differences in the association of testosterone treatment with lipid, 

lipoprotein and apolipoprotein levels in human studies, animal experiments offer 

important data on the protective effect of testosterone on these parameters. The 

mechanism by which testosterone acts is unclear. The effect of testosterone on 

atherogenic factors may be by reducing the lipid uptake through inhibiting lipoprotein- 

lipase (LPL) activity in adipocytes and activating lipolysis through increasing the 

number of lipolytic beta-adrenergic receptors (Divers et al, 2010). Furthermore, 

testosterone can also inhibit the differentiation of adipocyte precursor cells (Shiyama
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and Adrian, 2004). Moreover, as a result of obesity-related testosterone decline, the 

liver is exposed to products of adipocyte metabolism, FFAs, in high concentrations and 

may induce metabolic disorders due to perturbation of lipid metabolism of the liver 

(Kelly and Jones 2012). Elevated plasma FFA enhances TG synthesis, leading to 

hypertriglyceridemia and high level of VLDL. Additionally, testosterone has a role in 

regulation of hepatic lipoprotein lipase (HLP) activity which catalyses the hydrolysis of 

triacylglycerols and phospholipids, mediating the removal of lipoproteins from plasma 

such as LDL, HDL, HDL2 and HDL3 (Herbst et al, 2003). Hypogonadism causes 

dysregulation in the processes of lipoprotein metabolism and increases atherogenic risk 

(Deeb et al., 2003).

Testosterone, as mentioned previously, has an inhibitive effect on some pro- 

inflammatory cytokines and chemokines, associated with atherosclerosis. Especially in 

vitro human and muose studies, reduction of TNF-a, IL-6, IL-1 and IFNy and increase 

in IL-10 production was seen after incubation of vascular cells such as monocytes (Li, 

1993), macrophages (D’Agostino, 1999), and endothelial cells (Hatakeyama, 2002) with 

testosterone. In in vivo studies, the production of TNF-a was augmented after LPS 

administration into castrated male mice, which was attenuated by testosterone treatment 

(Spinedi et al, 1992). Testosterone replacement also significantly reduced TNF-a and 

CRP and increased IL-10 in a cohort of hypogonadal men with coronary heart disease 

(Malkin et al, 2004a).

1.7 Summary

Obesity is associated with elevated pro-inflammatory modulators such as cytokines and 

chemokines, reduction in anti-inflammatory factors such as adiponectin and IL-10 and 

dyslipidemia. These alterations link obesity with other disorders such as T2DM, 

atherosclerosis and testosterone deficiency in men. The latter condition, which increases 

with age, also causes central obesity in men (figure 1.10). However, improvements have 

been seen in T2DM and atherosclerosis conditions after normalizing testosterone levels, 

using testosterone replacement treatment. Some studies report that, testosterone displays 

beneficial effects on levels of pro-inflammatory cytokines and chemokines, while others 

showed a positive effect on reduction in body composition or reduced dyslipidemia by 

changes in lipid profile including lipoprotein and apolipoprotein.
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Figure 1.10: Association of obesity and hypogonadism with risk factors of T2DM 

and atherosclerosis. Obesity can cause low testosterone leading to hypogonadism (red 

line) and hypogonadism is associated with abdominal obesity which contributes to risk 

factor for atherosclerosis, CVD and IHD, whether through a direct effect of pro- 

inflammatory factors on the vasculature or through increasing the prevalence of further 

risk factors of atherosclerosis such as, IR, T2DM, dyslipidemia and endothelial 

dysfunction (blue line). T2DM: type 2 diabetes mellitus, CVD: cardiovascular disease, 

IHD: ischemic heart disease, IR: insulin resistance.
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Although several pharmacological blockers of different testosterone receptors have been 

used to identify the mechanisms behind these beneficial effects, this is still not fully 

elucidated. Therefore, there needs to be further work to elucidate the beneficial role 

played by testosterone as a potential treatment of T2DM and atherosclerosis in obese 

men.
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1.8 Aims of this thesis

The aim of the research is to investigate the effect of testosterone on biomarkers of 

diabetes, atherosclerosis and obesity and to elucidate the mechanisms controlling these 

interactions.

A combined in vitro and in vivo strategy was taken with the following objectives:

1. Investigate the effects of physiological testosterone replacement on body 

composotion, biomarkers and parameters associated with inflammation using two 

clinical patient cohort studies, one short term and one long term.

2. Investigate whether testosterone modulates the expression of anti/ pro-inflammatory 

markers and anti-atherogenic factors in liver tissue from animal model of low 

testosterone.

3. Investigate the effects of testosterone on the modulation of inflammatory and 

adipocyte drived associated proteins in cell culture models of macrophages and 

adipocytes, respectively.
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Chapter 2

The effect of testosterone treatment in hypogonadal men with T2DM in short and 

long-term studies
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2.1 Introduction

The association of low testosterone with T2DM and CVD is well recognized 

(Muraleedharan and Jones, 2010; Kelly and Jones, 2013). Epidemiological studies have 

indicated that up to 40% of men with T2DM have testosterone deficiency (Corona et 

al, 2006, 2009, Ding et al, 2006; Kapoor et al, 2007a). Furthermore, it is clear that the 

prevalence of diabetes increases following induction of a hypogonadal state during 

treatment for prostate cancer (Keating et al, 2010).

Other studies established that endogenous testosterone (total and free) was lower in 

subjects with MetS compared with those without (Brand et al, 2010, Corona et al,

2011). In addition, low testosterone is associated with impaired insulin sensitivity, 

increased percentage of body fat, truncal obesity, dyslipidaemia, hypertension and CVD 

(Wang et al, 2011). Decrease in biologically available testosterone in aging men could 

be associated with the increased prevalence of CVD. This evidence suggests that TRT 

for hypogonadal men, with diabetes or CVD may be favourable in decreasing the risk or 

the consequence of these diseases. One of these risk factors is increased inflammatory 

factors and decreased anti-inflammatory factors in serum in T2DM and atherosclerosis 

as a result of obesity. Pro-inflammatory cytokines such as TNFa, IL-1 and IL-6 have an 

essential role in T2DM and atherogenesis development, while IL-10 and adiponectin are 

anti-diabetic and anti-atherogenic factors (Malkin et al, 2004a; Saad, 2009). 

Testosterone has immunomodulatory actions, and current in vitro evidence indicates 

that testosterone could suppress the expression of pro-inflammatory cytokines TNF-a, 

IL-lp, and IL-6 and promote the expression of the anti-inflammatory cytokine IL-10 

(Malkin et al, 2004a; Corrales et al, 2006).

However, inflammation and infection decrease testosterone concentration as a 

consequence of the inhibitive action of inflammatory cytokines on the hypothalamic- 

pituitary-testis axis (Saad, 2009; Muraleedharan and Jones, 2010). The effective role of 

testosterone within the immune system is clearly documented, where the higher rate of 

immune-mediated disease in women and androgen deficient men has been associated 

with the immunosuppressive action of androgens compared with estrogens (Cutolo and 

Wilder, 2000). Furthermore, administration of testosterone to hypogonadal men with 

CHD reduced serum TNFa and IL-lp, but not IL6 levels and raised levels of IL-10 

(Saad, 2009). In testosterone deficient men suffering from T2DM, baseline testosterone

levels were inversely correlated with IL-6 and CRP levels (Kapoor et al, 2007).
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Dyslipidaemia is another important risk factor which has an impact on atherosclerosis 

development and is a consequence of diabetes and obesity (Kelly and Jones, 2013). 

Lipid profiles including total cholesterol and TG and lipoproteins play a central role in 

the development of atherosclerotic cardiovascular disease in humans. The plasma 

concentrations of lipoproteins and their metabolic fates are regulated by apolipoproteins 

on the surface lipid-rich particles (Davignon et al., 1988). The HDL-C and HDL2-C 

levels are known to increase in response to the elimination of obesity and smoking, the 

adoption of habitual exercise, and alcohol consumption (reviewed from Moriyama et 

al, 2014). The suggestion has been made that investigations in LP (a), apolipoproteins 

A-I and B (Apo A-I, ApoB), or HDL density subfractions may identify improved drug 

treatment and lifestyle changes to lower lipid levels, prevent atherosclerosis and limit 

the consequence of T2DM.

Strong evidence has been provided by several studies for a relationship between plasma 

lipoprotein and their apolipoproteins, and development of atherosclerosis (Olofsson et 

al., 2007). In addition, diabetic dyslipidemia is characterized by hypertriglyceridemia; 

increased LDL, decreased HDL, high Apo B and low ApoAl, which can be the most 

important cause of atherosclerosis in diabetic patients (Hashemi et al, 2012). 

Furthermore, previous studies suggest that Apo B might be of greatest value in the 

diagnosis and treatment of persons with normal or low concentrations of LDL 

cholesterol (Walldius et al, 2001) For example, patients with T2DM frequently have 

hypertriglyceridemia together with hyper-apo B, an atherogenic lipid profile that is 

often unrecognised because of concomitant low or normal levels of LDL cholesterol 

(Sniderman et al, 2001). The lack of Apo E in the Apo E-deficient mouse model leads 

them to develop lesions ranging from lipid-laden fatty streaks to advanced 

fibroproliferative lesions by the age of 30 weeks (Candido et al, 2002). Increased levels 

of Lp (a) is an associated with coronary atherosclerosis (Armstrong et al, 1986) and are 

as an independent risk factor of atherosclerosis. Therefore, it is thought that the one 

mechanism of testosterone as a protective therapy would be its beneficial influence on 

serum apolipoproteins as androgens are known to affect lipid metabolism. In addition, 

because the effects of TRT on apolipoprotein levels in both atherosclerotic and diabetic 

patients are not yet defined, the effects of testosterone on lipid and its carrier 

lipoproteins, generally and apolipoprotein especially remain controversial. Therefore, an 

investigation of the effect of testosterone on inflammatory factors on the one hand and
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on apolipoprotein on the other, could be important to point out by which mechanism 

testosterone treatment has improved T2DM conditions and prevents atherosclerosis.

This part of the study involved two patients groups. (1) A double-blinded placebo- 

controlled group of hypogonadal men with T2DM treated with intramuscular 

testosterone injection, compared to a control group of patients who received a placebo; 

this study was a short-term study over 6 months. (2) A group of hypogonadal men with 

T2DM treated with testosterone in a longitudinal study. For the data analysis these 

patients were divided into 3 groups 1) normal testosterone, 2) low testosterone without 

testosterone treatment, 3) low testosterone with testosterone treatment. In addition, for 

some analyses the patients were divided into four subgroups according to the patient 

IHD status at initial diagnosis.
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2.1.1 Aims

This study had two key aims:

1. To investigate the effects of physiological TRT on body composition (BMI, WC, 

W/HR), anti/pro-inflammatory cytokines (adiponectin, IL-lp, IL-6, IL-10, CRP and 

TNFa) and atherogenic factors (HDL, HDL2, HDL3, HDL2/HDL3 ratio, ApoAl, ApoB, 

ApoE and LP(a)) in serum of hypogonadal men with T2DM at risk of CVD in a short 

duration placebo-controlled study (6 months).

2. To investigate the difference between groups of diabetic patients (normal testosterone, 

low testosterone no treatment, low testosterone with treatment +/- IHD) by measuring 

body composition (BMI, WH, WHR), anti/pro-inflammatory cytokines (adiponectin, 

IL-lp, IL-6, IL-8, IL-10, IFNy and TNFa), atherogenic factors (HDL, HDL2,HDL3, 

HDL2/HDL3 ratio, ApoAl, ApoB, ApoE and LP(a)) levels in serum in a longitudinal 

observational study (follow up after 5-6 years).
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2.2 Materials and methods

2.2.1 Patients of the double-blinded placebo-controlled study

Testosterone therapy was given to group of hypogonadal men with T2DM in a 

randomized, double-blind, placebo-controlled study. This study was conducted at the 

Andrology Outpatient Department, Sheffield Cardiology Research Department, Royal 

Hallamshire Hospital Sheffield (RHH) and the Centre for Diabetes and Endocrinology, 

Barnsley District General Hospital, Barnsley, UK. The study included a total of 24 male 

patients, over the age of 40 years (range, 52-73 years; mean ± SEM 59.6 ± 11.9 years) 

with T2DM at risk of CVD. The local regional ethics committee approved the protocol 

(05/Q2308/140), and the patients provided their written informed consent. The inclusion 

criteria were Type 2 diabetic men with HbAlc (the term HbAlc refers to glycated 

haemoglobin) up to 9.5%, reflecting no significant symptoms of hyperglycaemia. 

Hypogonadism was defined as the total testosterone level <12 nmol/1 and bioavailable 

testosterone < 4 nmol/1 with symptoms of hypogonadism. Hypogonadal men were 

referred to the andrology clinic; they were androgen deficient and androgen replacement 

was deemed clinically indicated by a consultant endocrinologist. Patients were excluded 

if they had current or previous breast or prostate cancer or an elevated prostate specific 

antigen (PSA) or irregular digital rectal examination suspicious for prostate cancer. 

Other exclusion criteria were strict symptoms of benign prostatic hypertrophy, treatment 

with testosterone in the 3 months prior to the trial, investigational drug treatment in the 

3 months prior to the trial and known allergy to Sustanon or peanuts. Participants were 

also excluded who had peripheral vascular disease defined as either confirmed in a 

previous diagnostic assessment by a specialist vascular surgeon or an ankle brachial 

pressure index (ABPI) less than 0.92 and ischaemic leg pain or distal complications 

such as ulceration or gangrene.

2.2.1.1 Randomisation and drug treatment

The participants were randomly selected by a computer-generated assignment to 

testosterone treatment or placebo. 11 patients received a total of 12 testosterone 

injections intramuscularly over 6 months, (i.m. injection was given once every 2 

weeks). Testosterone was given as 0.8 ml Sustanon 250 injection (200mg testosterone 

esters; Organon Laboratories Ltd, Cambridge, UK). This regimen is commonly used as
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a standard physiological TRT in men with androgen deficiency. The same protocol was 

followed with 13 control patients who were given placebo. The placebo was 0.8 ml of 

0.9% normal saline. Drugs were drawn in identical syringes and were prepared by 

research staff in a separate clinical room away from the patient and the doctor assessing 

the patients.

2.2.1.2 Assessment of patients and sample collection in double-blinded placebo- 

controlled study

Blood samples were taken from all participants at baseline, 3 and 6 months. All patients 

and controls were required to complete a detailed questionnaire recording their medical 

history and their current medications at the screening visit in the morning before 10.00 

am and in the fasted state at screening/ baseline, 3 and 6 months, having only taken 

water to drink since midnight the night before. Smokers were asked not to smoke on the 

morning of an assessment visit. All patients were instructed to follow their usual diet 

and physical activity as well as taking supplements including anti-diabetic treatment, 

anti-hypertensive and lipid-lowering medications, without dose adjustment for the 

duration of the study. Their height and weight were recorded and the BMI was 

calculated using the equation (BMI = weight (kg)/height (m)2. The waist circumference 

was measured; a waist was defined as the point midway between the iliac crest and the 

costal margin (lower rib). Glucose level, HbAlc and blood pressure were available from 

the research database. ^

2.2.2 Patients of the longitudinal study

This study involved 120 men with T2DM who had testosterone levels determined at

RHH between 2002 and 2005. Subjects were allocated to two groups based on the

Endocrine Society Guidelines recommended cut-off level: i) Total testosterone levels

<10.4 nmol/1 and ii) Total testosterone >10.4 nmol/1. This study involved participants

who were assessed and managed routinely within the district-wide diabetic retinopathy

screening clinic, as well as the hospital diabetic clinic, and provided a representative

sample from the general community. In addition, patients were identified with T2DM

from the hospital database. The study was approved by the South Yorkshire Research

Ethics Committee (05/Q2308/140). For the purpose of data analysis carried out in the
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current study this group were divided into patients with normal testosterone, low 

testosterone without treatment and low testosterone plus TRT. All the patients were 

initiated and monitored within the routine clinics in the diabetes and endocrinology 

department at RHH. There were a number of reasons for patients with low testosterone 

not receiving testosterone treatment, including patient choice, or the patient declined to 

attend for further clinical assessment, however all patients still remained in contact with 

the clinic, and responded when requested to provide a follow-up sample. For the present 

analysis this group of patients was also divided into 4 subgroups based on IHD status 

into normal testosterone, IHD with normal testosterone, IHD with low testosterone not 

receiving testosterone treatment and IHD with low testosterone treated with testosterone.

2.2.2.1 Drug treatment

TRT was given to men with testosterone levels less than the local laboratory normal 

assay range (<8.4 nmol/1) without a concomitant diagnosis of prostate cancer or other 

contra-indications to TRT. This group received testosterone treatment as 2% gel 

testosterone, (average treatment time 5.8±1.3 years). The choice of initial therapy was 

based on the combined decision between patient and doctor. Doses were adjusted to 

achieve testosterone levels within the mid to upper normal range (>18nmol/l). The 

duration of treatment and dosage were based on each individual patients and their needs.

2.2.2.2 Assessment of patients and sample collection in longitudinal study

All blood samples were taken between 0800 and 1100 am. Baseline data on age, height, 

weight, BMI, smoking, glycaemic control (HbAlc), CVD were obtained from the 

hospital records.

2.2.3 Determination of pro and anti-inflammatory biomarkers in patients of 

double-blinded placebo-controlled study by Bead Cytometric Array Assay

BD™ Cytometric Bead Array (CBA) is a flow cytometry application assay that offers a 

powerful approach to quantify a variety of soluble proteins simultaneously in a single 

sample. This applies the principles of flow cytometry and considerably decreases 

sample requirements and time to results. The method uses the same principle as ELISA 

and applies it to uniquely identifiable antibody-coated beads. These beads are coated
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with specific antibody for a single analyte and have an unique fluorescence intensity 

(http://www.bdbiosciences.com/research/cytometricbeadarray/formats/index.jsp).

In addition, the beads have an internal colour with two different fluorescent dyes (red 

and infrared). Different concentrations of red and infrared dyes are used to generate up 

to 100 distinct bead regions by flow cytometry. Each defined bead is conjugated to a 

specific target analyte followed by binding with a biotinylated detection antibody and a 

reporter dye, streptavidin-conjugated phycoerythrin. Following incubation and 

subsequent washing, the samples are analysed on a flow cytometer where these beads 

are transported in a fluid stream in the cytometer to the laser beam for interrogation. 

The optics system consists of lasers to illuminate the particles in the sample stream and 

optical filters to direct the resulting light signals to the appropriate detectors. These 

detectors convert light signals that can be processed by the computer, to electronic 

signals (voltages) and then are assigned a channel number in an appropriate position on 

a data plot. List mode data are collected on each particle of bead or event. This data can 

be analysed to provide information about subpopulations within the sample (Figure 2.1) 

by using the FCAP Array analysis software that gates on each individual bead 

population and defines the median fluorescence intensity (MFI) for each analyte in the 

array. It creates a standard curve and allows interpolation of sample concentrations 

compared to the standard curve and creates an analysis report in tabular format.

Method

All reagents were obtained from BD Biosciences (UK). All sample and reagent 

preparations were performed on the day and stored at 4°C until used. Suspension of the 

capture bead stock solutions by vortex was carefully performed. The preparation of 

capture bead working solutions was made by adding capture bead reagent (by using 

each bead for target analyte ILlp, IL-6, IL-10 and TNF-a) to the capture bead diluent. 

This was in accordance to the number of standards and samples to be tested and to the 

volume required for each reaction well (25 pi). Similarly, these processes were followed 

in the preparation of working solution of the PE detection reagent by using PE detection 

reagent for each target analyte and detection reagent diluent based on required volume 

(lpl) per reaction and the number of test samples (standard and samples) to generate an 

ultimate volume of 25pl per well.
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Figure 2.1: Cytometric Bead Array (CBA) principle. The steps of flow Cytometric Bead 
Array start by adding capture beads which have a distinctive fluorescence intensity and coated 
with capture antibody specific for the target analyte in a single tube (1) to different beads with a 
sample or standard and a mixture of detection antibodies (2) that are conjugated to Phycoerythrin 
(PE). This reaction leads to the formation of a complex of capture bead with PE, conjugated 
detector antibody and single target analyte (3). Following incubation and consequent washing 
steps (4), the samples are acquired and analysed (5) on a flow cytometer by the FCAP Array 
analysis software gates on each distinct bead population and illustrates the median fluorescence 
intensity (MFI) for each single analyte in the array. It creates a standard curve and determines 
sample concentrations compared to the standard curve. Adopted and modified from 
(http://www.bdbiosciencescom/research/cytometricbeadarray/fonnats/index.jsp).
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Following reconstituting the standards with 4 ml of assay diluent and leaving for 15 

minutes, serial dilution of standards (0, 10, 20, 40, 80, 156, 312.5, 625, 1250, and 2500 

pg/ml) were prepared to create a standard curve for each single bead or multiplex assay.

Micro-plates of 96 wells were pre-wetted by the addition of lOOpl of wash buffer into 

each well, which was then immediately removed. 25 pi of capture bead stock was added 

per well and then followed by 25 pi of standard (IL-6 IL-ip, IL-10 and TNF-a) and 

samples. Plate were then mixed by digital shaker for 5 minutes at 500 rpm and 

incubated for 1 hour at room temperature (RT). 25 pi of PE detection reagent was 

pipetted into each assay well and mixed by a digital shaker for 5 minutes at 500 

rpm and then incubated at RT for 2 hours. Aspiration of buffer in the plate was made 

and all wells were further drained by vacuum. For bead suspension, 300pl of wash 

buffer was added to each well and mixed as before. Following insertion of the micro- 

plate into the BD FACS Array™ flow cytometer, data was acquired and analysis was 

performed by FCAP Array™ software.

2.2.4 Determination of pro and anti-inflammatory biomarkers in 
patients of longitudinal studies by Enhanced Sensitivity CBA

The above principle of CBA flow cytometric assay is a standard method to detect target 

proteins down to 2-10 pg/ml, while, CBA Enhanced Sensitivity Master Buffer Kits are 

applicable for difficult to detect very low concentrations. The working assay can detect 

as low as 0.274 pg/ml concentration (from 274 to 200.000 fg/ml) by using a two-step 

detection system of PE detection reagent (a) and (b). This ensures binding and detection 

further target analyte and offers reliable quantification and a highly sensitive method for 

generating accurate results (http://www.bdbiosciences.com/research/cytometricbeadarr 

ay/formats/enhanced.j sp).

Method

All reagents were obtained from (BD Biosciences, UK). The principle of this method 

was as described in the previous section (2.2.3). Following reconstituting the standards 

with 4 ml of assay diluent for 15 minutes, serial dilution of standards (0, 274, 823, 

2,469, 7,407, 22,222, 66,667, 200,000 fg/ml) were prepared to create a standard curve 

for each analyte. Furthermore, the same steps such adding capture bead and PE
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detection reagent were performed as in previous section (2.2.3) (by using each bead and 

PE detection for target analyte, TNF-a, IFN-y, IL-1 (3, IL-6, IL-8 and IL-10). An 

additional step in this method was made by adding 1 OOpl of the Enhanced Sensitivity 

Detection Reagent (Part B) to each assay well. Mixing the plate for 5 minutes at 500 

rpm using a digital shaker was performed and the plate was incubated at RT for 1 hour. 

For bead suspension, 200pl of wash buffer was added twice to each well in plate and 

mixed on a digital shaker for five minutes at 500 rpm. The assay thenfollowed the same 

protocol as previously described.

2.2.5 Determination of adiponectin by ELISA in patients on both of 
double-blinded placebo-controlled and longitudinal studies

Enzyme-Linked Immuno-Sorbant Assay (ELISA) is utilized to distinguish a specific 

antigen in the target analyte by employing the quantitative sandwich enzyme 

immunoassay technique. This technique depends on the specificity of antigen-antibody 

type reaction. Due to the high degree of its sensitivity and specificity, it is considered a 

fast and accurate method to investigate the concentration of antigen in a sample. The 

binding of two antibodies with the target antigen is usually performed with serial steps 

of adding multiple liquid reagents, incubations, washes, which are followed by a visual 

change in the colour of liquid (figure 2.2A). The primary antibody is adsorbed (capture 

antibody) to the micro-well, the sample to be analysed is added and then after 

incubation, unbound materials are washed away. Then the second antibody is added and 

binds to the primary antibody producing an antibody-antigen-antibody complex. The 

second antibody is attached to an enzyme (horseradish peroxidase) following a wash to 

remove any unbound antibody-enzyme reagent, a substrate solution is added which 

produces colour in proportion to the amount of antigen present in the sample. The 

colour development is stopped by stop solution and the intensity of the colour is 

measured by spectrophotometry on a microplate reader. The antigen concentrations in 

the samples can be determined by creating a standard curve.

Method

Adiponectin was investigated by using the Human total adiponectin/Acrp30 Quantikine 

ELISA kit (R&D Systems, UK). The plate was pre-coated with a mouse monoclonal 

antibody against adiponectin antigen. Serum samples were diluted to 100-fold dilution



with buffered protein base (Calibrator Diluent RD6-39). 100 pi of assay diluent 

(Calibrator Diluent R1DW) was added to each well followed by 50pl of different 

adiponectin standards (0, 3.9, 7.8, 15.6, 31.2, 62.5, 125 and 250 ng/ml). Test samples 

were pipetted into the wells in duplicate and incubated for 2 hours at RT. Following 

aspiration and washing each well four times with 400 pi wash buffer, the plate was 

inverted and blotted against clean paper towels. 200pl of adiponectin antibody-enzyme 

conjugate was added to each well and the plate incubated for 2 hours at RT. After that 

washing was repeated and then 200 pi of substrate solution (Tetramethylbenzidine, 

TMB) was added to each well and the plate incubated and protected from light for 30 

minutes at RT. Following adding 50 pi of stop solution (Sulphuric Acid) per well to end 

the reaction, the plate was read in a microplate reader (Wallac victor2 1420 multilabel 

counter, UK) at 450 nm after 30 minutes.

2.2.6 Determination of CRP by ELISA in patients of double-blinded 
placebo- controlled

Method

All reagents and 96 well microplate contained in the Human total CRP Quantikine 

ELISA kit (R&D Systems, USA) were brought from 4°C to RT. The microplate was 

pre-coated with a mouse monoclonal anti-body against CRP antigen. Serum samples 

were diluted 100-fold with buffered protein base (Calibrator Diluent RD-P). 100 pi of 

assay diluent (Calibrator Diluent RD1F) was added to each well followed by 50pl of 

CRP standards (0, 0.78, 1.56, 3.12, 6.25, 12.5, 25 and 50 ng/ml) and test samples were 

pipetted into the appropriate wells in duplicate and then the plate incubated for 2 hours 

at RT. The assay followed the same protocol as described above for adiponectin.

2.2.7 Determination of TNF-a by High Sensitivity ELISA in patients of 
double-blinded placebo-controlled

The principle of this kit is the same as the standard ELISA that was previosly described 

however, there was a further step for the improvement of sensitivity (figure 2.2B). This 

is for the detection of low protein concentrations from serum or cell culture
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Figure 2.2: The principle of standard ELISA and high sensitivity ELISA method.

Capture antibody (1, A&B) (primary antibody) binds to antigen in the target analyte (2, 
A&B). Biotinylated detection antibody (3, A&B) with streptavidin (4, A&B). In the 
standard ELISA method detection substrate is then added (5, A) and absorbance measured 
(6, A). In the high sensitivity ELISA method, following the addition of biotin-streptavidin- 
HRP as amplification reagent I and further streptavidin-HRP and amplification (6, B) is 
added to bind to the additional biotin tyramide sites (5, B). Substrate detection is added (7, 
B) following washing steps to measure absorbance reading (8, A&B) by microplate 
reader. Modified from http://www.ebioscience.com/knowledge-center/product- 
line/elisa/high-sensitivity-elisa kits.htm.
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samples, by further enhancing the signal obtained from conventional HRP-based 

ELISA. The signal amplification step uses biotinylated Tyramide resulting in an 

increased sensitivity without loss of resolution or increase in background. This assay 

detects low cytokine concentrations < 1.0 pg/ml with reliable quantification.

Method

All reagents and 96 well microplate contained in the Human TNF-a High Sensitivity 

ELISA kit (eBioscience, UK) were brought from 4°C to RT. The TNF-a microplate was 

coated with monoclonal antibody to human TNF-a antigen. Serum samples were diluted 

to 100-fold dilution with buffered protein base. lOOpl of TNF-a standards (0, 0.031, 

0.063, 0.125, 0.250, 0.500, 10.0 and 20.0 pg/ml) were added to appropriate wells. 50 pi 

of sample diluent added to wells and then 50 test samples were pipetted into the 

appropriate wells in duplicate. Biotin- conjugated anti-body was added to all wells and 

the plate incubated for 2 hours at RT on a shaker (100 rpm). Following aspiration and 

washing each well six times with 400 pi wash buffer, the plate was inverted and blotted 

against clean paper towels. lOOpl of streptavidin-HRP was added to each well and the 

plate incubated for 1 hour at RT on a shaker. Washing steps were then repeated and then 

100 pi of Amplification Solution I (biotin tyramide) was added to each well and 

protected from light for 15 minutes at RT on a shaker. Plate was washed again and 100 

pi of Amplification Solution II (streptavidin-HRP) was added to each well and protected 

from light for 15 minutes at RT on a shaker (100 rpm). Washing steps were then 

repeated and then 100 pi of substrate solution (TMB) was added to each well and 

protected from light for 10 minutes at RT. Following adding 100 pi of stop solution 

(phosphoric acid) per well to end the reaction, the plate was subjected to a microplate 

reader at 450 nm during 30 minutes.

2.2.8 Determination of apolipoprotein by ELISA in patients of double
blinded placebo-controlled and longitudinal studies

2.2.8.1 Apo A1 ELISA 

Method

All reagents and microplate of 96 well contained in the apolipoprotein A1 Human



ELISA kit (abeam, UK) were brought from 4°C to room temperature. The ApoAl 

microplate was pre-coated with a mouse polyclonal antibody against the Human Apo 

A1 antigen. Serum samples were diluted 400 fold with buffered protein base. 25pi of 

ApoAl standards (0, 0.625, 1.25, 2.50, 5, 10, 20 and 40 pg/ml), biotinylated antibody 

and test samples were pipetted into the appropriate wells in duplicate and the plate 

incubated for 2 hours at RT. Following aspiration and washing each well five times with 

200 pi wash buffer, the plate was inverted and blotted against paper towels. 50pl of 

enzyme conjugate was added to each well and the plate incubated for 30 minutes at RT. 

Washing steps were then repeated and then 50 pi of substrate solution (TMB) was 

added to each well and protected from light for 10 minutes at RT. Following adding 50 

pi of stop solution (hydrochloric acid) per well to end the reaction, the plate were 

subjected to a microplate reader at 450 nm during 30 minutes.

2.2.8.2 Apo B ELISA 

Method

All reagents and microplate of 96 well contained in the MaxDiscovery apolipoprotein B 

ELISA kit Manual (BIO SCIENTIFC, USA) were brought from 4°C to RT. the 

Apolipoprotein B microplate was pre-coated with an antibody to the Human Apo B 

antigen. Serum samples were diluted 10.000-fold with buffered protein base. lOOpl of 

Apo E standards (0, 3, 6, 12, 24, 50, 100 and 200 ng/ml) and test samples were pipetted 

into the appropriate wells in duplicate and the plate incubated for 1 hour at 37°C. 

Following aspiration and washing each well five times by 250 pi wash buffer, the plate 

was inverted and blotted against paper towels. lOOpl of ApoB antibody-enzyme 

conjugate was added to each well and the plate incubated for 1 hour at 37 °C. After this 

point the assay followed the same protocol as described as before.

2.2.8.3 Apo E ELISA 

Method

All reagents and 96 well microplate contained in the apolipoprotein E Human ELISA 

kit (abeam, USA) were brought from 4°C to RT. The Apolipoprotein E microplate was 

pre-coated with a mouse polyclonal antibody against the Human Apo E antigen. Serum
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samples were diluted 400-fold with buffered protein base. 50pl of different Apo E 

standards (0, 0.031, 0.063, 0.125, 0.250, 0.500, 10.0 and 20.0 pg/ml) and test samples 

were pipetted into appropriate wells in duplicate and incubated for 2 hours at RT. 

Following aspiration and washing each well five times with 200pl wash buffer, the plate 

was inverted and blotted against paper towels. 50f.il biotinylated antibody was added to 

each well and the plate was incubated for lhour at RT. Washing steps were then 

repeated and then 50pl of enzyme conjugate was added to each well and the plate 

incubated for 30 minutes at RT. After this point the assay followed the same protocol as 

described as before.

2.2.8.4 Lp (a) ELISA 

Method

All reagents and 96 well microplate contained in the Human Lp (a)/ Apo A1 ELISA kit 

(DRG instruments GmbH, Germany) were brought from 4°C to RT. Lp (a) microplate 

was pre-coated with a mouse monoclonal anti-Apo (a). Samples of serum were diluted 

to 1: 202 with Sample Buffer (provided as part of the kit). 25 pi of Lp(a) Calibrator (0, 

0.32, 1.1, 2.8, 4.4 U/L) and test serum were pipetted into the suitable wells in duplicate 

and then 50pl of enzyme conjugate mouse monoclonal anti-Apo(a) was added and the 

plate incubated on shaker for 1 hour at RT. After this point the assay followed the same 

protocol as described above for adiponectin.

2.2.9 Determination of HDL subfractions in serum from patients of 
double-blinded placebo-controlled and longitudinal studies

To measure the level of HDL3 and HDL2 with HDL2/HDL3 ratio in serum, this firstly 

required determination of the level of total HDL in serum. Secondly, a single 

precipitation procedure for selectively separating HDL3 from both the apo B-containing 

lipoproteins and HDL2 is needed. Heparin, manganese chloride (MnCk) and dextran- 

sulphate (DS) are usually used for precipitating lipoprotein and HDL2 in the 

supernatant (Hirano et al, 2008).
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2.2.9.1 Precipitation method with Heparin/MnC12/DS to separate HDL3 and 

HDL2 patients serum of double-blinded placebo-controlled and longitudinal 

studies

Method

All reagents and samples were brought from 4°C to RT before using. For preparing the 

precipitation reagent heparin (Sigma Aldrich, UK) (8.25 mg/ml), MnCk (Sigma 

Aldrich, UK) (98.7 mg/ml), and DS (Sigma Aldrich, UK) (12 mg/ml) were mixed 

together in 1ml of dfUO. After that, 15pL of the precipitation reagent was added to 

75pL of serum and incubated at RT for 30 min, and then centrifuged at 10,000g for 10 

min at 4°C. After the centrifugation step the pellet contained the HDL2 and the HDL 3 

remained in the supernatant which was then ready for measurement by the method 

below (2.2.9.2).

2.2.9.2 Determination of total HDL and HDL3 subfraction by using Amplex Red 

cholesterol assay

Method

Following preparation of the supernatant containing HDL3, all reagents of the 

Amplex® Red Cholesterol Assay Kit, (Invitrogen™, UK) were brought from 4°C to RT. 

Serial dilutions of standards were made (0, 2, 4, 6, and 8pg/ml) to create the standard 

curve. In duplicate, 50pl of standard, control and samples of total HDL and fractionated 

HDL3 serum were pipetted into each a 96 well microplate (Fisher Scientific, UK) and 

incubated with 50pl of Amplex Red reagent /HRP/cholesterol oxidase/cholesterol 

esterase working solution for 30 minutes at 37°C. This working solution was 300pM 

Amplex® Red reagent containing 75pl of Amplex® Red reagent stock solution, 50pl of 

the HRP stock solution, 50pl of the cholesterol oxidase stock solution and 5 pi of the 

cholesterol esterase stock solution, which was added to 4.82 ml of Reaction Buffer. 

Following incubation, the plate was read in a microplate reader at 570nm within 30 

minutes. The HDL3 values were multiplied by 1.2 to correct for dilution by the 

precipitation reagent. HDL2 was calculated by subtracting the HDL3 value from the 

total HDL value. Moreover, the ratio of HDL2/HDL3 was calculated by dividing HDL2 

by HDL3.
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Number 24 120

Type of 
treatment

intramuscular testosterone 
injection

Gel treatment

Period for 6 months 5-7years

Investigated
parameters

Body composition, 
apolipoproteins, TNF-a, IL-6, IL- 
1 p, IL-10, adiponectin, CRP and 
HDL3, HDL2 and HDL2/HDL3

Body composition, I 
apolipoproteins, TNF-a, IL- 
6, IL-lp, IL-10, IFN-y 10, 
adiponectin, IL-8 and HDL3, 
HDL2 and HDL2/HDL3

Assay
technique

ELISA, Cytometric Bead Array 
and Amplex Red cholesterol 
assay

ELISA, Cytometric Bead 
Array and Amplex Red 
cholesterol assay

Table 2.1: Summary table of human in vivo study. The details of samples patients, 
analysis method, target parameters, period and of type treatment used in this study
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2.2.10 Statistical analysis of assay data

Data is presented as mean ± SEM, unless otherwise stated. In a short-term study, the 

data were analysed with a statistical software package (SPSS version 20, SPSS Inc, 

Chicago, Illinois USA), Prism Graphpad 5 software and StatsDirect. Comparison 

baseline data for treatment groups (placebo and testosterone) was analysed by using t- 

test. Generalized Linear Model (GLM) was used to compare the difference between 

groups for data followed by a post-hoc Tukey's test. Mest was also used to compare the 

mean change from 0 to 3 and 6 months between groups. Two way ANOVA was used 

with a post-hoc Tukey's test for HDL and its fraction. In the longitudinal study, the 

normal distribution of data was assessed by the D’Agostino test for normality. Kruskal- 

Wallis test was used for non-parametric data followed by a post-hoc Conover-Inman 

test. All results were considered as statistically significant at P < 0.05.
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2.3 Results

2.3.1 Patients in double-blinded placebo-controlled study

The baseline clinical characteristics are displayed in Table 2.2. The study population 

included a group of 24 hypogonadal men with T2DM treated with testosterone (n=ll) 

and a group treated with placebo (n=13). The baseline data of the treatment group and 

the placebo-treated groups were not statistically different by using the t test.

2.3.1.1 Analysis of change in body composition in the double-blinded placebo- 

controlled study patients

No significant change in BMI, WC and W/H R was seen in either treatment group 

during the study. There was not significant diffference in BMI, WC and W/H R in 

patients with testosterone treatment compared to patients with placebo from baseline to 

6 months (Table 2.3A) (Table 2.3B).

2.3.1.2 Analysis of pro and anti-inflammatory biomarkers by CBA assay

The results measuring IL-lp, IL-6, IL-10, and TNF-a from CBA method were all under 

the detection limit. Therefore, they were not available for analysis.

2.3.1.3 Analysis of adiponectin by ELISA in the double-blinded placebo-controlled 

study patients

There was a reduction but not significant in the level of adiponectin in both groups from 

baseline to 6 months. However, there was a significant difference in adiponectin levels 

in patients with testosterone treatment, which were lower after 3 months compared to 

the placebo treated group (2978.10 ± 672 vs 5452.48 ± 836 P=0.03) (Table 2.4A) and 

the reduction in adiponectin with testosterone by analysis of thechange of levels over 

time remained significant (-16.90±11.33 vs. 9.85±6.85 ng/ml; P=0.04) (Table 2.4B).

2.3.1.4 Analysis of TNF-a by high Sensitivity ELISA in the double-blinded 

placebo-controlled study patients

Testosterone treatment tended to lead to a decrease in TNF-a level in serum from
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Age year 61.7 ± 11.8 56.6 ±11.9

BMI Kg/m2 32.65 ±1.1 34.36 ± 1.5

W/H (cm) 1.06 ±0.01 1.07 ± 0.01

WC (cm) 115.96 ±3.6 119.12 ±3.4

Adipo (ng/mL) 5502.28 ±1186 3800.87 ± 764

CRP (ng/mL) 5685.43 ±741 4271.96±621

TNF-a (pg/ml) 0.56 ±0.11 0.55 ±0.11

LP(a) (U/L) 41.14 ±8.1 57.14 ±13

ApoB (mg/ml) 1.08 ±0.17 1.21 ±0.11

Apo A1 (pg/ml) 753 ±120 482 ± 87

Apo E (pg/ml) 123.2 ±8.8 131.9 ±11

HDL mmol/l 0.91 ± 0.06 0.94 ± 0.06

HDL2 (mmo/I) 0.791 ± 0.06 0.742 ± 0.08

HDL3 (mmol/l) 0.138 ±0.02 0.197 ±0.03

HDL2/HDL3 Ratio 5.731 ± 1.2 5.7 ± 1.6

HbA1c (%) 7.82 ±1.52 7.46 ±1.12

Glucose (mmoi/1) 8.85 ± 4.42 10.64 ± 4.59

Systolic BP (mmHg) 138.4 ±20.7 135.7 ±16.3

Diastolic BP 
(mmHg) 70.8 ±10.0 72.6 ± 9.6

Table 2.2: Baseline characteristics (mean ± SEM) of hypogonadal men with T2DM 

administered testosterone treatment or placebo groups. The baseline values of each 

parameter between the placebo and testosterone groups were not statistically different. 

BMI: body mass index. WC: waist circumference. W/H R: waist to hip ratio. Adipo: 

adiponectin. CRP: C-reactive protein. TNF-a: tumour necrosis factor. LP (a): 

Lipoprotein (a). Apo B: apolipoproteins B. Apo Al: apolipoprotein Al. HDL: Hig 

density lipoprotein cholesterol. HblAlc: glycated haemoglobin. Bp: blood pressure. 

SEM: Standard error mean.
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Parameter
Placebo (n=13) Testosterone (n = ll)  Baseline

_________ Mean ± SEM Mean ± SEM_______________ comparison
Baseline 3 6 Baseline 3 6 P-value

BMI Kg/m2 32.65 ±1.1 32.74 ±1.2 32.64 ±1.3 34.36 ±1.5 34.65 ±1.6 34.82 ± 1.6 0.3

W/H (cm) 1.06 ±0.01 1.06 ±0.01 1.06 ±0.01 1.07 ±0.01 1.08 ±0.01 1.07 ±0.02 0.7

WC (cm) 115.96 ±3.6 115.20 ±3.6 115.12± 3.9 119.36 ±3.4 119.72 ±3.6 120.04 ±3.9 0.4

Table 2.3A: Comparison of the effect of placebo and testosterone treatment on 
body composition in hypogonadal men with T2DM at baseline, 3 and 6 months.
BMI: body mass index. WC: waist circumference. W/H R: waist to hip ratio. SEM: 
Standard error mean. GLM: generalized linear model. Baseline comparison analysed by 
/-test.

Placebo (n=13) Testosterone (n=l 1)
Parameters % change % change p-value p-value

Mean ± SEM Mean ± SEM (0-3) (0-6)

(0-3) (0-6) (0-3) (0-6)

BMI Kg/m2 0.72 ±0.46 0.33 ± 0.84 0.86 ±0.48 1.31 ±0.52 0.8 0.6

W/H (cm) 0.38 ±0.40 0.41 ±0.44 0.94 ±0.71 0.37 ±0.97 0.4 0.9

WC (cm) 0.72 ±0.46 0.41±0.85 0.25±0.30 0.45 ± 0.69 0.5 0.9

Table 2.3B: Comparison of the effect of placebo and testosterone treatment on 

body composition in hypogonadal men with T2DM at 3 and 6 months expressed as 

percentage from baseline. BMI: body mass index. WC: waist circumference. W/H R: 

waist to hip ratio. SEM: Standard error mean. Group comparison analysed by /-test.
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baseline to 6 months. There was no significant difference in TNF-a levels in the 

testosterone group compared to placebo treated group at any time point (Table 

2.4A)(Table 2.4B).

2.3.1.5 Analysis of CRP by ELISA in the double-blinded placebo-controlled study 

patients

The serum levels of CRP increased from baseline to 6 months in the testosterone-treated 

group whereas it decreased in the placebo-treated. However, there was not a significant 

difference between the two groups at any time point (Table 2.4A) (Table 2.4B).

2.3.1.6 Analysis of apolipoproteins by ELISA in the double-blinded placebo- 

controlled study patients

Neither serum LP (a) nor Apo B concentration changed during the course of the study 

in either treatment group, and values for the testosterone-treated group were not 

significantly different from the placebo-treated group. Similarly, no significant change 

was seen in level of Apo Al and Apo E in patients treated with testosterone, compared 

to the placebo treated patient from baseline to 6 months (Table 2.4A) (Table 2.4B).

2.3.1.7 Analysis of HDL subfractions by Amplex Red cholesterol assay in the 

double-blinded placebo-controlled study patients

There was no effect of testosterone on level of HDL2, HDL3 and HDL2/HDL3 ratio in 

both groups from baseline to 6 months and in patients with testosterone treatment 

compared to patients with placebo over six months (Table 2.5A) (Table 2.5B).
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Parameters
Placebo: (n=13) 

Mean ± SEM
Testosterone (n=ll) 
Mean ± SEM

Baseline
comparison

Baseline 6 Baseline 6 (P)

HDL ( mmol/l) 0.91 ±0.06 0.97 ± 0.08 0.94 ± 0.06 0.91 ± 0.06 0.7

HDL2 (mmol/l) 0.791 ±0.06 0.820 ± 0.09 0.742 ± 0.08 0.743 ± 0.07 0.6

HDL3 (mmol/l) 0.138 ±0.02 0.168 ±0.02 0.197 ±0.03 0.156 ±0.07 0.2

HDL2/HDL3 Ratio 6.98 ±1.2 5.38 ± 0.6 5.77 ±1.6 5.5 6± 0.94 0.5

Table 2.5A: Comparison of the effect of placebo and testosterone treatment on 

serum of HDL and its fractions in hypogonadal men with T2DM at baseline and 6 

months. HDL: High density lipoprotein. SEM: Standard error mean. P: P-value. Two 

way ANOVA. Baseline comparison analysed by Mest.

Parameters
Placebo: (n=13) 

% change 
Mean ± SEM

Testosterone (n = ll)  
% change 

Mean ± SEM p-value
(0-6) (0-6)

HDL ( mmol/l) 5.62± 4.91 -2.80 ±2.94 0.1

HDL2 (mmol/l) 0.90 ±5.13 5.65 ± 7.43 0.6

HDL3 (mmol/l) 32.02 ±13.99 4.77 ± 20.47 0.2

HDL2/HDL3 Ratio -13.49 ± 12.89 84.51 ±65.91 0.1

Table 2.5B: Comparison of the effect of placebo and testosterone treatment on 

serum of HDL and its fractions in hypogonadal men with T2DM at 6 months 

expressed as percentage from baseline. HDL: High density lipoprotein. SEM: 

Standard error mean. Group comparison analysed by Mest.
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2.3.2 Patients in longitudinal study

Table 2.6 shows the baseline characteristics of the 120 diabetic males included in the 

longitudinal study with an average age of 66 years (range 40-79 years). This group was 

divided based on the baseline level of serum testosterone into normal testosterone 

participants (n=76), low testosterone participants without testosterone treatment (n=29) 

and low testosterone with testosterone treatment participants (n=15). Within the groups 

these were also divided into four subgroups according to IHD status. Patients with IHD 

and normal testosterone (n=14), IHD with low testosterone without testosterone 

treatment (n=6) and others had IHD and treated with testosterone therapy (n=4) 

compared to a further subgroup of patients with normal testosterone without IHD 

(n=52) and used as untreated (no testosterone) control group.

2.3.2.1 Analysis of change in body composition in the longitudinal study patients

There was no significant difference in BMI, W/H ratio and WC between patients with 

low testosterone and patients with low testosterone treated with testosterone compared 

to control samples who had normal testosterone (Table 2.7). Likewise, no significant 

difference was seen in body composition in IHD subgroups compared to untreated 

control samples who had normal testosterone without IHD (Table 2.8).

2.3.2.2 Analysis of pro and anti-inflammatory biomarkers by Enhanced Sensitivity 

CBA in the longitudinal study patients

The level of IL-ip, IL-6, IL-8, IL-10, TNF-a and IFN-y in serum of patient in this study 

was measured by Enhanced Sensitivity CBA assay. The data for IL-8 was reliable (the 

coefficient of variation between sample measures was below 10%), however the 

obtained data for IL-ip, IL-6, IL-10, TNF-a and IFN-y were not reliable and excluded, 

due to the much higher variability among these data.

2.3.2.3 Analysis of IL-8 levels by Enhanced Sensitivity CBA assay in the 

longitudinal study patients

No significant difference was observed in the mean serum IL-8 level in patients with 

low testosterone either with or without treatment compared to untreated control samples
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Age year3 56.13 ±1.00 56.55 ±1.68 57.13±1.19

BMI Kg/m23 32.22 ±0.71 33.16 ±1.05 35.03±1.12

W/H (cm)3 0.62 ± 0.01 0.64± 0.01 0.66 ± 0.01

WC (cm)3 108.97 ± 1.68 112.32 ±2.58 116.85±2.46

HbAlcac 7.19± 0.15 7.21 ±0.19 7.61±0.31

IHDb,c 26.31% 24.13% 13.3%

Insulin treatmentb’c 34.21% 24.14% 60%

Metformin15’c 60.52% 41.37% 40%

Table 2.6: Baseline characteristics for patients and untreated controls groups in 

the longitudinal study. BMI: body mass index. W/H R: waist to hip ratio. WC: waist 

circumference. aMean with standard error of mean, dum ber as a percentage, c data 

were obtained from the hospital records. IHD: ischemic heart disease.
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P aram eter NT (n=76) 
Mean ± SEM

LT (n=29) 
Mean ± SEM

LT+TRT(n=15)
Mean ± SEM

BMI Kg/m2 32.42 ±0.8 32.91 ±1.0 34.19 ± 1.4

W/H R(cm) 0.56 ±0.01 0.54 ± 0.02 0.59 ± 0.02

W C (cm) 97.73 ± 2.4 99.01 ±4.2 104.4 ±3.7

Table 2.7: Comparison in body composition between patients and untreated 

controls with normal levels testosterone at the end of the longitudinal study. NT:

normal testosterone. LT: low testosterone. LT+TRT: low testosterone with testosterone 

replacement treatment. BMI: body mass index. W/H R: waist to hip ratio. WC: waist 

circumference. SEM: Standard error mean. Kruskal-Wallis test.

Parameter NT (n=52) 
Mean ± SEM

IHD+NT (n=14) 
Mean ± SEM

IHD+LT (n=6) 
Mean ± SEM

IHD+TRT (n=4) 
Mean ± SEM

BMI Kg/m2 32.06 ±0.9 31.6 ± 1.4 29.9 ±1.8 33.55 ± 2.5

W/H R(cni) 0.55 ± 0.01 0.55 ± 0.02 0.50 ± 0.03 0.57 ±0.04

WC (cm) 95.9 ± 2.9 96.29 ± 4.6 83.9 ± 5.8 98.03 ± 7.7

Table 2.8: Comparison in body composition between IHD patients and untreated 

controls with normal levels of testosterone at the end of the longitudinal study. NT:

normal testosterone. IHD+NT: ischemic heart disease with normal testosterone. 

IHD+LT: ischemic heart disease with low testosterone. IHD+TRT: ischemic heart 

disease with testosterone replacement treatment. BMI: body mass index. W/H R: waist 

to hip ratio. WC: waist circumference. SEM: Standard error mean. Kruskal-Wallis test.
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(Table 2.9). Similarly, there was no significant difference in levels of IL-8 among all 

IHD subgroups compared to untreated control samples (p>0.05) as shown in table 2.10.

2.3.2.4 Analysis of adiponectin levels by ELISA in the longitudinal study patients

As shown in table 2.9, no significant change was seen in mean serum levels of 

adiponectin between patients with low testosterone with or without treatment and 

untreated control samples. In the same way, there was no significant difference in 

adiponectin level between the 3 subgroups and untreated control samples (Table 2.10).

2.3.2.5 Analysis of apolipoprotein factors by ELISA in the longitudinal study 

patients

There was no significant difference in all apolipoprotein concentrations (Apo Al, Apo 

B, Apo E and LP (a)) between patients with low testosterone who were treated with or 

without testosterone therapy as seen in table 2.9. Similarly, no significant change was 

seen in the level of these apolipoprotein among all IHD subgroups compared to 

untreated control samples as shown in table 2.10.

2.3.2.6 Analysis of HDL subfractions by Amplex Red cholesterol assay in 

longitudinal study

As shown in table 2.11, the mean serum level of HDL (p=0.05) in patients with low 

testosterone was approaching significantly lower than in the untreated control group. 

Although not statistically significant, an increase in the level of HDL was seen in 

patients treated with testosterone compared to patients with low testosterone. In contrast, 

no significant difference was observed in the mean serum HDL2 levels in patients with 

low testosterone and the untreated control group, whilst the mean serum HDL2 levels in 

patients treated with testosterone was approaching significantly (p=0.06) higher than in 

the untreated control group. There was a significant increase in the level of HDL2 

(p=0.01) in patients treated with testosterone compared to patients with low 

testosterone. It is worthy to note that while there was no a significant difference in the 

level of HDL3 in patients with low testosterone and the untreated control group, there 

was significant reduction in its level (p=0.004) in patients treated with testosterone
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Param eter NT (n=76) 
Mean ± SEM

LT (n=29) 
Mean ± SEM

LT±TRT (n=15) 
Mean ± SEM

Adipo (ng/ml) 10731 ±941.8 10812± 1460 10220± 1847

IL-8 (pg/ml) 1.96 ±0.26 2.40 ± 0.68 2.51 ± 0.33

LP(a) (U/L) 175.28 ±25.3 209.1 ±51.1 144.7 ±53 .5

Apo B (mg/ml) 1.59 ±0.69 1.69 ±0.11 1.49 ± 0 .16

Apo A1 (pg/ml) 1725 ±104.1 1734 ± 131.2 1549 ± 136.6

Apo E (pg/ml) 121.3 ±7.8 119.2 ± 11.97 112.9 ± 13.34

Table 2.9: Comparison of adiponectin, IL-8 and apolipoprotein between patients 

and untreated controls with normal levels testosterone in the longitudinal study.

NT: normal testosterone. LT: low testosterone. LT+TRT: low testosterone with 

testosterone replacement treatment. IL-10: interleukin 10. IL-8: interleukin 8. LP (a): 

lipoprotein. Apo: apolipoprotein. SEM: Standard error mean. Kruskal-Wallis test.
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Param eters NT (n=52) 
Mean ± SEM

IHD+NT (n=14) 
Mean ± SEM

IHD+LT (n=6) 
Mean ± SEM

IHD+TRT(n=4) 
Mean ± SEM

Adipo (ng/ml) 11559± 1241 8836± 1281 14134 ±2984 13813 ± 5928

IL-8 (pg/ml) 1.52 ± 0.22 1.67 ±0 .26 2.51 ± 0.73 2.07 ± 0.60

LP(a) (U/L) 194.9 ±31.82 181.1 ± 68.09 198.8 ± 142.8 329.8 ± 147.6

Apo B (mg/ml) 1.62 ± 0.07 1.56 ± 0.17 1.44 ± 0.28 1.85 ± 0 .53

Apo A 1 (pg/ml) 1835± 133 1649 ± 227 1803 ± 268 2 061± 798

Apo E (pg/ml) 110.5 ±7.1 140.4 ± 25.9 107.6 ± 23.6 123.2 ±45.1

Table 2.10: Comparison of adiponectin, IL-8 and apolipoprotein between IHD 

patients and untreated controls with normal levels testosterone in the longitudinal 

study. NT: normal testosterone. IHD + NT: ischemic heart disease with normal 

testosterone. IHD + LT: ischemic heart disease with low testosterone. IHD+TRT: 

ischemic heart disease with testosterone replacement treatment. IL-8: interleukin 8. LP 

(a): lipoprotein (a). Apo: apolipoprotein. SEM: Standard error mean. Kruskal-Wallis 

test.
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Param eters NT (n=76) 
Mean ± SEM

LT (n=29) 
Mean ± SEM

LT+TRT (n=15) 
Mean ± SEM

HDL(mmoI/I) 1.40 ± 0 .02 1.31 ± 0.04 1.38 ± 0.05

HDL2 (mmol/l) 1.09 ±0 .02 1.01 ± 0.05
nn

1.17 ± 0 .05

HDL3 (mmol/l) 0.31 ± 0.01 0.30 ± 0.03 0.21 ± 0.02*

HDL2/HDL3 Ratio 4.24 ± 0.25 4.07 ± 0.34 ** nn 
5.90 ± 0.50 ’

Table 2.11: Comparison of HDL, HDL2, HDL3 and HDL2/HDL3 ratios between 

patients untreated controls with normal levels testosterone in the longitudinal 

study. NT: normal testosterone. LT: low testosterone. LT+TRT: low testosterone with 

testosterone replacement treatment. HDL: High density lipoprotein cholesterol. SEM: 

Standard error mean. * P< 0.05, ** PO.Ol vs NT, DD PO.Ol vs LT. Kruskal-Wallis 

test.
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compared to the untreated control group. In addition, there was an almost significant 

decrease in concentration of HDL3 (p<0.05) in patients treated with testosterone 

compared to patients with low testosterone. No significant difference was seen in the 

HDL2/HDL3 ratio between patients with low testosterone and the untreated control 

group. Conversely, there was a significant increase in the HDL2/HDL3 ratio in patients 

treated with testosterone (p=0.003) compared to the untreated control group and 

(p=0.01) compared to the patients with low testosterone. As shown in table 2.12, no 

significant change was seen in levels of HDL in all IHD subgroups. A significant 

decrease was only seen in the level of HDL2 (p=0.02) in IHD patients with normal 

testosterone compared to the untreated control group. However, no significant 

difference was seen in levels of HDL3 and H2/H3 ratio in all IHD subgroups compared 

to the untreated control subjects.
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Param eters NT (n=52) 
Mean ± SEM

IHD+NT (n=14) 
Mean ± SEM

IHD+LT (n=6) 
Mean ± SEM

IHD+TRT (n=4) 
Mean ± SEM

HDL ( mmol/l) 1.43 ±0.01 1.36 ±0.04 1.37 ± 0.11 1.29 ± 0.12

HDL2 (mmol/l) 1.12 ±0.02 1.02 ±0.04* 1.07 ±0.09 1.08±0.11

HDL3 (mmol/l) 0.31 ± 0.02 0.34 ± 0.03 0.30 ± 0.05 0.21 ±0.06

HDL2/HDL3 Ratio 4.31 ±0.30 3.60 ± 0.51 4.11 ±0.61 6.15 ± 1.80

Table 2.12: Comparison of HDL, HDL2, HDL3 and HDL2/HDL3 ratios between 

IHD patients and untreated controls with normal levels testosterone in the 

longitudinal study. NT: normal testosterone. IHD + NT: ischemic heart disease with 

normal testosterone. IHD + LT: ischemic heart disease with low testosterone. 

IHD+TRT: ischemic heart disease with testosterone replacement treatment. HDL: High 

density lipoprotein cholesterol. SEM: Standard error mean. * p < 0.05 vs NT. Kruskal- 

Wallis test.
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Body composition NC NC NC

Adiponectin Reduction after 3 months NC NC
TNF-a NC NR NR

CRP NC NI NI

IL-8 NI NC NC

Apolipoprotein NC NC NC
HDL NC NC NC
HDL2 NC Increased NC
HDL3 NC Decreased NC

HDL2/HDL3 Ratio NC Increased NC

Table 2.13; Summary of results the effect of testosterone treatment on serum 

factors in hypogonadal men with T2DM in Double-blinded placebo-control and 

longitudinal studies. NC: no change, NR; no result, NI=not investigated, IHD: 

ischemic heart disease, Adipo: adiponectin, CRP: C-reactive protein, TNF-a: tumour 

necrosis factor, IL-8: interleukin 8, HDL: high density lipoprotein.
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2.4 Discussion

2.4.1 Patients in double-blinded placebo-controlled study

This study investigated the effect of testosterone replacement therapy over a six 

month period in men with low testosterone and T2DM.

2.4.1.1 The effect of testosterone on body composition in patients in a double

blinded placebo-controlled study

All of the patients were suffering from obesity as defined by the baseline of BMI 

criteria and central adiposity, as defined by waist or waist-hip ratio. No significant 

changes in BMI, WC and W/HR following TRT were found in this study. In a similar 

study, no significant changes in BMI or waist circumference were observed in diabetic 

Japanese men, following administration of the testosterone enanthate for 6 months 

(Ueshiba, 2013). Furthermore, no significant changes were observed in the BMI of 

diabetic patients following 6 months of testosterone treatment (Kapoor et al, 2007). 

Similar results were obtained in a study by Frederisen et al. (2012) in that, there was no 

change in visceral fat mass in aged men with low testosterone levels following 6 months 

of transdermal testosterone treatment, However, subcutaneous fat mass was 

significantly reduced in both the high and the abdominal areas when analysed by MRI. 

A further study found that testosterone treatment for 8 months in 23 middle aged, 

abdominally obese men was followed by a decrease in visceral fat mass, without 

changes in body mass, subcutaneous fat and lean body mass (Marin et al, 1992a).

The beneficial effects of testosterone on body composition have been reported in other 

studies. Rebuffe-Scrive et al (1991) showed a reduction in the W/HR in 9 of 11 middle 

aged men who were moderately obese, after intramuscular injection of testosterone over 

a 6 weeks period. Furthermore, Saad et al. (2009) reported that a decline in WC was 

observed in both groups treated with a high dose testosterone undecanoate (TU; 1000 

mg) and testosterone gel (50 mg/day) for 9 months in two cohorts of elderly men with 

late-onset hypogonadism. In a study by Kapoor et al. (2006, 2007) testosterone therapy 

(200mg sustanon) for 3 months reduced WC and W/HR, improved IR and glycemic 

control in men with testosterone deficiency and T2DM. Moreover, testosterone therapy 

for 52 weeks reduced visceral fat accumulation in proportion to the increase in
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testosterone levels in 60 non-obese aging men (Allan et al, 2008). Other studies have 

similarly demonstrated an improvement in WC (Saad et al, 2007, 2008) and decreased 

fat mass (Agledahl et al, 2008) with TRT.

The dose, duration of treatment, route of administration of testosterone and design of 

study (Alexandersen and Christiansen, 2004, Jones and Saad, 2009; Traish and Kypreos 

., 2011; Kapoor et al, 2007) or the way of measuring regional distribution of fat such as 

ultrasound, which may not give reliable result (Frederiksen et a l, 2012a) are known 

factors which impact on any change in body composition in response to testosterone.

The latter points may demonstrate why TRT did not show beneficial effects on BMI, 

WC and W/RH in the current study. However, the mechanisms by which testosterone 

decreases body composition are still poorly understood, improved understanding of how 

testosterone is associated with beneficial effects in T2DM is needed.

2.4.1.2 The effect of testosterone on adiponectin in patients in a double-blinded 

placebo-controlled study

It was found that testosterone treatment reduced serum adiponectin levels significantly 

after three months of treatment, in comparison to levels in samples from those with the 

placebo. This agrees with findings by Kapoor et al. (2007) who reported a significant 

reduction in the level of adiponectin after 3 months testosterone treatment in men with 

T2DM. Similarly, two other studies found that testosterone treatment reduced 

adiponectin plasma levels following 6 months, in young hypogonadal non-diabetic men 

(Lanfranco et al, 2004) and in ageing men with low to normal testosterone levels 

(Frederiksen et al, 2012). Furthermore, it has been reported that the percentage 

composition of the high molecular weight (HMW) fraction of adiponectin was reduced 

by TRT in both animal models (mice) and hypogonadal men (Xu et al, 2005). A 

previous study that induced low testosterone levels in normal men experimentally, 

resulted in an increase in adiponectin levels following a supplement of testosterone this 

increase was prevented (Page et al, 2005b). This was strongly supported by an animal 

study whereby castration of mice was associated with an increase in adiponectin which 

was reversed following TRT in both sham-operated and castrated mice (Nishizawa et 

al, 2002). According to Kapoor et al. (2007), the suppressive action of testosterone on 

the adiponectin levels is thought to be as a result of a reduction in body fat composition 

related to TRT, which led to a decrease in adiponectin production from adipocytes. In
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support of this hypothesis, previous studies reported that plasma adiponectin levels 

showed a more significant correlation with the amount of visceral adipose tissue than 

the subcutaneous adipose tissue (Yatagai et al, 2003; Park et al, 2004; Kwon et al, 

2005), while another study stated that the subcutaneous adipose tissue was 

independently correlated with the HMW adiponectin levels in aging men (Fujikawa et 

al, 2008). A further study provides contrasting evidence supporting the beneficial effect 

of testosterone on body composition without affecting the level of adiponectin (Page et 

al, 2005a). The latter studies reported opposite findings to this current study with no 

significant change in body composition being seen in patients treated with testosterone. 

Moreover, Heufelder et al. (2009) found that testosterone therapy in combination with 

diet and exercise in T2DM men resulted in increase in adiponectin, demonstrating that 

other factors in addition to testosterone can contribute to a positive outcome. However, 

the mechanism involved in this action is not fully understood. Therefore, further studies 

important to determine the mechanism through which this occurs.

2.4.1.3 The effect of testosterone on pro-inflammatory factors in patients in the 

double-blinded placebo-controlled study

The present study showed no effect of TRT on patient serum CRP levels for 6 months. 

Similar findings were observed in several studies with different types of testosterone 

treatment. One of these demonstrated that treatment with anastrozole, which inhibits the 

conversion of testosterone to estradiol, did not significantly affect inflammatory 

markers CRP or IL-6 in elderly men with mild hypogonadism (Dougherty et al, 2005), 

this study demonstrates that when testosterone is acting via the AR no change in these 

markers is seen. Additional studies reported that there were no effects on CRP levels at 

any dose of testosterone in young eugonadal men, who received an analogue of 

gonadotrophin-releasing hormone to block gonadal steroid production, followed by 

supplementation with graded doses of testosterone (Singh et al, 2002). Similarly, no 

change was seen in levels of CRP and IL-6 following 3 months of androgen treatment 

with either dihydrotestosterone or recombinant human chorionic gonadotropin in elderly 

healthy men with partial androgen deficiency (Ng et al, 2002). At the level of the gene 

in vivo, Corcoran and co-workers, (2010) found that both physiological and 

supraphysiological concentrations of testosterone had no effect on macrophage CRP 

mRNA expression in older men. Additionally, a significant inverse correlation between 

baseline CRP and total testosterone was observed in diabetic men (Kapoor et al, 2007)

99



while in a second study, free testosterone had a negative correlation with CRP in older 

age males (Yang et al, 2005). Haider et al. (2007) found that ADT was associated with 

an unfavourable increase in CRP levels in diabetic men with advanced prostate cancer. 

However, in the present study the short time of treatment (6 months) might explain the 

lack of effect of testosterone on anti-inflammatory actions, and long-term treatment 

would be required to clarify the effect of testosterone on CRP.

In this current study, testosterone had no effect on serum levels of TNF-a patients, this 

is consistent with the data reported in human and animal studies that testosterone did 

not show an effect on TNF-a levels (Kapoor et al., 2007; Kelly et al, 2012). In contrast, 

Malkin et al. (2004) indicated that testosterone treatment induced a small but significant 

reduction in TNF-a in hypogonadal men, compared with the placebo group. Similarly, 

another study found that transdermal testosterone reduced serum TNF-a but not IL-6 in 

normal elderly men (Khosla et al, 2002). A further study stated that while TRT caused 

a decrease or complete abolition of spontaneous ex vivo production of IL-1, IL-6 and 

TNF-a by antigen-presenting cells in diabetic patients with partial androgen deficiency, 

testosterone, in in vitro, had no effect on the secretion of inflammatory cytokines by 

these cells after stimulation with LPS plus IFN-y this suggests that APCs preserve their 

constitutive machinery to produce inflammatory cytokines under androgen treatment 

(Corrales et al, 2006). In support of testosterone as an anti-inflammatory agent, 

induction of acute hypogonadism in normal elderly men performed by administration of 

GnRH which led to the contrary effect, where this increased the circulating levels of 

TNF-a and IL-6. In this regard, testosterone showed immune modulatory action through 

its effects on different inflammatory diseases including rheumatoid arthritis and 

systemic lupus erythematous, in which androgens have improved the clinical status and 

decreased inflammatory factors (Cutolo et al, 1991).

However, the lack of change in TNF-a and CRP levels after TRT might be as a result of 

the lack of influence of testosterone on the mean BMI, WC and W/HR in the group 

treated with testosterone. The present study data indicated a high degree of obesity 

among thesis patients, which did not change with testosterone treatment, and obesity is 

known to be correlated positively with these inflammatory factors.
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2.4.1.4 The effect of testosterone on atherogenic factors in patients in double

blinded placebo-controlled study

Testosterone treatment had no significant effect on HDL, or its fractions HDL2, HDL3 

and HDL2/HDL3 ratio. Similarly it had no effect on serum apolipoproteins levels 

including Apo Al, Apo B, Apo E and LP (a). This is supported by previous findings, 

where Agledah et al. (2008) found that after normalising for testosterone levels in 

elderly men with subnormal testosterone levels, no significant change in levels of HDL 

was noted. Further studies reported that testosterone treatment, for one month, did not 

affect triglycerides or HDL, in 27 hypogonadal men (Malkin et al, 2004a). Similarly, 

two other studies in which men with Leydig cell insufficiency, firstly as a result of 

cytotoxic chemotherapy (Howell et al., 2001) and secondly as a result of age > 65 years 

of age (Snyder et al, 2001) were treated with transdermal testosterone replacement, 

reported no change in HDL. These studies showed that the route of administration is a 

vital factor, because transdermal testosterone seemingly did not affect plasma 

lipoproteins in healthy elderly men. Others thought that TRT in hypogonadal and 

elderly men may have a beneficial effect on lipid metabolism, through decreasing total 

cholesterol and the atherogenic fraction of LDL, without significant alterations in HDL 

levels or its subtractions HDL2 and HDL3 (Zgliczynski et al, 1996). However, other 

studies showed contrasting findings with regards to HDL or its fractions following 

testosterone treatment. An increase (Ozata et al, 1996), or reduction (Bagatell et al, 

1992, Behre et al, 1994, Lapauw et al, 2009, Bagatell et al, 1994; Herbst et al, 2003) 

in HDL and its fraction have both been reported. Hence, although testosterone treatment 

had no clear effect on HDL and their fractions, it also did not associate negatively with 

their levels. Especially, as there were previous data related to the inhibiting effect of 

testosterone treatment on HDL (Frederikse et al, 2012a) in men causing concern for 

using testosterone as therapy.

Similarly, controversial data have been stated for LP (a) which is considered as risk 

factor for CVD. Previous studies reported an increase in LP (a) levels with testosterone 

treatment (Berglund et al, 1996; Von Eckardstein et al, 1997) while a control study 

(Snyder et al, 2001) found no link between testosterone and LP (a). Similarly, two 

studies reported no change in LP (a) after testosterone treatment in hypogonadal men 

(Ozata et al, 1996) and in elderly obese men (Herbst et al, 2003). An uncontrolled 

study established a 25-59% decline in Lp(a) following testosterone injection in men
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with a LP(a) concentration less than 25 nmol/1, but no effect on LP (a) when the level 

was above 25 nmol/1, prior to testosterone administration (Marcovina et al, 1996). A 

further study indicated that a decrease in LP (a) levels was associated with GnRH 

analogue therapy in patients with prostate cancer (Arrer et al, 1996). However, more 

recently, in a double blind, placebo controlled study over a 6-month period, transdermal 

testosterone treatment was associated with favourable effects on IR, total and LDL- 

cholesterol, and LP(a), in hypogonadal men with T2DM and/or MetS (Jones et al, 

2011)

Regarding Apo B, while two studies found no alteration in levels of Apo B (Herbst et 

al, 2003; Tan et al, 1998), others found that androgens were associated with decreased 

ApoB levels and LDL cholesterol (Dickerman et al, 1996). In an animal study, 

Zhongguo and Li, (2000) showed testosterone, at physiological serum levels, had a 

positive effect on lipid profiles, lipoprotein, ApoB, in rabbits whilst 

hypotestosteronemia and hypertestosteronemia have a negative effect. Testosterone 

treatment had no effect on ApoE. Similarly, Snyder et al. (2001) found no change in 

ApoE after testosterone administration. However, at the level of the gene in vitro, 

testosterone therapy increased ApoE mRNA in the liver of Tfin mice (Kelly et al, 

2012a) and in human macrophages (Kelly et al, 2012b). Limited information is 

available regarding ApoE and correlation with testosterone treatment.

In most of the previous studies, there was a reduction in both the lipid profiles and body 

composition (Malkine et al, 2004, Saad et al, 2008; 2009) whereas in the present 

study, there was no change in body composition based on the average BMI and W/HR, 

this may explain why testosterone had not effect on HDL and its fraction or in 

apolipoprotein. However, these studies were also for a longer time period than the 

present study or used route of administration of testosterone different from in the 

current study. This may explain the difference results found in the current study.

2.4.2 Patients in the longitudinal study

This part of the study was conducted on 120 men between the ages of 40 and 79 who 

had T2DM and received gel or intramuscular testosterone treatment. These patients 

were initially assessed and diagnosed between 2002 to 2005 years, then followed up 

6-7 years later when a serum sample was taken, this sample was analysed in the
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current study. In the current study 120 men were divided into a normal testosterone 

group and groups with low testosterone with or without testosterone treatment. This 

was based on the testosterone levels at the time of the original assessment (2002-

2005). Additionally, these groups were divided based on IHD status into 4 subgroups; 

normal testosterone subject, normal testosterone subject with IHD, low testosterone 

subject with IHD with and without testosterone treatment.

2.4.2.1 The effect of testosterone treatment on body composition in patients in the 

longitudinal study

The results demonstrated that at the end of the period of study there was no significant 

difference in body composition (BMI, W/HR ratio and WC) between subgroups treated 

with testosterone compared to untreated control subjects. This was similar to the 

findings in the double-blinded placebo-controlled study where six months testosterone 

intramuscular injection had no effect. In the similar way, two studies did not find a 

change in VAT after treatment with a transdermal testosterone patch for 1 year in 

nonobese aging men (Allan et al, 2008) and in elderly men (Svartberg et al, 2008). 

This involved non-obese patients in the first study and measured regional distribution of 

fat by computed tomography (CT) in the second study, which may not give reliable 

results, this may explain the lack of effect of testosterone on VAT. This is despite the 

fact that in previous studies, an inverse correlation between the total testosterone levels 

of 110 men and accumulation of visceral fat, but not other fat deposition, was seen after 

a 7.5-year follow-up (Tsai et al, 2000). In long term studies (5-6 years) using a high 

dose of parenteral testosterone undecanoate 1000 mg, reduction in WC and BMI was 

observed in obese men with testoserone deficiency (Saad et al, 2013; Yassin et al, 

2013), in obese hypogonadal men with T2DM ( Haider et al, 2013, 2014) and in ageing 

men with metabolic syndrome (Francomano et al, 2014). Therefore, the contrast of the 

current data with the above studies may be attributed to differences dose/duration of 

treatment and in age of men in these studies.

2.4.2.2 The effect of testosterone treatment on adiponectin in patients in the 

longitudinal study

The mean serum adiponectin level was not affected by testosterone treatment in

103



patients with low testosterone with or without treatment compared to untreated 

control group. There was also no difference in adiponectin levels between IHD 

subgroups. This is in agreement with a previously published study in which 200mg 

testosterone enanthate had no effect on adiponectin levels over 36 months period in 

older men (Page et al, 2005a). This was in contrast to the effect of intramuscular 

testosterone treatment for 3 months that decreased the level of adiponectin in diabetic 

patients in a double-blinded placebo-controlled study in this thesis. Similarly, 

Frederiksen et a l (2012a) reported that gel testosterone treatment over 6 months 

significantly decreased adiponectin levels in aging men and suggested this action was 

as result of reduction in subcutaneous fat in the abdomen and on the lower extremities. 

However, in both groups, testosterone treatment as intramuscular injection or gel had 

no effect on body composition. Thus, it could be beneficial to investigate the effect of 

testosterone treatment on adiponectin gene expression in vitro.

2.4.2.3 The effect of testosterone treatment on IL-8 levels in patients in the 

longitudinal study

There was no effect of testosterone on the level of IL-8 in patients treated with 

testosterone compared to the untreated control group and between all IHD subgroups. 

IL-8 acts as a pro-inflammatory factor and has a role in progression of atherosclerosis 

(Boekholdt et al, 2004) and inflammation in adipose tissue (Trayhum et al, 2004). 

Therefore, testosterone did not show modulation of other inflammatory factors. 

Furthermore, there is limited evidence on the role of testosterone on IL-8 thus; it is 

difficult to explain the lack effect of testosterone treatment on IL-8.

2.4.2.4 The effect of testosterone on atherogenic factors in patients in the 

longitudinal study

Testosterone treatment increased the level of HDL, but not significantly, compared to 

patients with low testosterone without treatment. Testosterone significantly increased 

HDL2, and the HDL2/HDL3 ratio compared to patients with low testosterone without 

treatment. In addition, testosterone significantly decreased HDL3 in the low 

testosterone group compared to the untreated control group and tended to decrease it 

compared to patients with low testosterone who were not treated with testosterone. This 

decrease appeared to be due to the effects of testosterone, as the HDL3 levels in both
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the untreated groups (normal and low testosterone) were very similar, whereas the 

levels in the treated group were lower. Additionally, testosterone treatment was not 

associated with any change in HDL and its fractions between all IHD sub-groups. 

However, it was recognized that both total HDL and HDL2 levels have inverse 

associations with the risk of acute myocardial infarction and may thus be protective 

factors in IHD, whereas the role of HDL3 remains unclear (Salonen et al., 1991). 

Another recent study suggested that subjects with higher HDL2 levels were better 

protected from atherosclerosis, while a shift towards HDL3 was reported in T2DM and 

MetS. This shift might be due to defect in production of HDL3 or in LCAT which is 

responsible for convertion of HDL3 to HDL2 (Maeda et al, 2011). Moreover, the 

HDL2/HDL3 ratio is correlated positively and strongly with the HDL-C level, but 

negatively and moderately with BMI, WC, and TG (Moriyama et al., 2014). Therefore, 

the result of the current study demonstrating an increase in HDL2 and HDL2/HDL3 

ratio and a decrease in HDL3 in patients treated with testosterone may reflects the anti

atherogenic action of testosterone. An additional study found that androgens 

significantly increased the level of HDL2 with no change in HDL and HDL3 (Ozata et 

al, 1996). Moreover, Tan (1998) found that there was a reduction in HDL3 sub

fractions and a decrease in HDL, after treatment with testosterone as a parenteral 

testosterone ester for 4-weeks.

In the current study, there was no significant change in HDL even though there was a 

numerical increase in HDL in patients treated with testosterone, compared to untreated 

patients with low testosterone. Further a single-blind, randomised design study without 

placebo control, with patients either receiving diet and exercise advice alone, or diet and 

exercise advice in conjunction with 50mg testosterone gel once daily was conducted by 

Heufelder and colleagues (2009) in men with T2DM. In that study, testosterone 

significantly increased levels of HDL and decreased LDL and TG compared with diet 

and exercise advice alone. In Tfin mice, physiological testosterone replacement 

augmented HDL levels and this effect was independent of the androgen receptor or 

ERa-dependent pathways after conversion of testosterone to 17p-estradiol (Nettleship et 

al, 2007a). Saad et al. (2008) reported that testosterone undecanoate decreased the 

levels of cholesterol and LDL and increased HDL in men with sexual dysfunction and 

MetS.
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In studies carried out by Singh et al. (2002), the highest dose of testosterone (600 

mg/wk) caused a reduction in plasma levels of HDL and Apo Al in healthy young men. 

Suppression of testosterone with GnRH antagonists increased plasma HDL, HDL2 and 

HDL3. A meta-analysis indicated that intramuscular testosterone injection to 

hypogonadal men caused a small, dose-dependent decrease in HDL (Whitsel et al., 

2001). Androgens were associated with decreases in HDL cholesterol and ApoAl levels 

in 12 competitive bodybuilders who used anabolic steroids (Dickerman et al., 1996). 

According to Tan (1998), this reduction might come as a result of the effect of 

testosterone predominantly on hepatic lipase activity. For this, it concluded that the 

effects of androgen on HDL and its fraction, nevertheless, depend on the formulation 

and type of androgen used, and the dose and route of administration. Supraphysiological 

doses of androgens, especially orally administered, nonaromatizable, androgen steroids, 

will decrease plasma HDL levels significantly (Schwarcz et al, 2010).

In the present study, testosterone had no effect on the levels of LP (a) in patients with 

low testosterone who were treated with testosterone compared to the untreated patients 

with low testosterone or untreated control group. This is supported by previous studies 

(Ozata et al., 1996 and Herbst et al, 2003). In contrast to the current data, testosterone 

treatment has been shown to decrease the levels of LP (a) (Klentze et al., 2005 and 

Lapauw et al., 2009). No significant change was seen in the levels of ApoAl, ApoB, 

and ApoE in low testosterone patients with or without testosterone treatment, compared 

to untreated control group with normal testosterone. Similarly, testosterone treatment 

had no effect on levels of any apolipoproteins in the IHD subgroups. However, as in the 

double-blinded placebo-controlled patient study, testosterone did not associate with a 

change in level of apolipoprotein in diabetic patients. This might be due to the lack of 

the effect of testosterone treatment on body composition.

2.5 Limitations of the study

Limitations of this study include the small number of patients in both studies and the 

short duration of treatment in the double-blinded placebo-controlled study which may 

limit in the benefit of testosterone treatment, thus using a longer study period both 

before and after treatment would better control more variables, match for age, body 

composition, stage of disease and interaction with other medications e.g. statins,
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metformin. An additional factor limiting the ability of the trial to detect changes in 

inflammatory cytokines, following testosterone treatment, was the lack results of these 

parameters by using CBA array assay, therefore alternative methods of assessing these 

parameters will be considered for future studies.

2.6 Summary

The short term double-blinded placebo-controlled patients study extended previous 

findings by providing further support for the notion that testosterone therapy decreases 

adiponectin levels as seen in diabetic patients after three months. However, no alteration 

in body composition, levels of pro-inflammatory factors or apolipoproteins after 

testosterone therapy was found in this group of patients. Similarly, testosterone did not 

affect HDL levels and its fractions, whereas previous studies found a decrease. In the 

longitudinal study, testosterone treatment also was not associated with any changes in 

body composition, the level of pro-inflammatory factors and apolipoproteins in diabetic 

patients. Beneficial effects on HDL fraction were seen in patients with low testosterone 

were treated with testosterone, but not in IHD subgroups. However, the effect of 

testosterone supplementation may be elucidated when larger populations and longer 

study period of testosterone treatment trials are carried out in double-blinded placebo- 

controlled studies patients or using the same group of patients both before and after 

treatment in a longitudinal study, as well as for estimating the longer term outcome of 

testosterone treatment.
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Chapter 3

The effect of testosterone treatment on the expression of metabolic markers in the 

liver of the Tfm mouse model
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3.1 Introduction

Animals have been used to study the causes, impact and complications of many diseases 

affecting humans including T2DM and heart disease related to obesity and have been 

widely used as models of metabolic syndrome, obesity and androgen insensitivity 

(Jones and Saad, 2009). These studies have relied on various approaches to explore the 

mechanisms by which diseases develop or to discover the appropriate strategies that 

may help protect against these diseases (Malkin et al, 2004). Animal studies have 

employed different approaches such as using varying degrees of reduction or an 

increase in nutrition, pharmacological methods, genetic manipulation or surgical 

techniques to produce useful animal models (Bertram and Hanson, 2001). The ability to 

modify the genetic make-up of mice and to create ‘transgenic’ or ‘knockout’ mice has 

allowed the progress of several interesting and suitable obesity, T2DM and CVD 

models (Gajda et al, 2007). Additionally, to achieve a better understanding of human 

obesity, rabbits, rats and mice are used as models as they readily gain weight when 

supplied with a high-fat diet and this increases/also other risk factors related to MetS. 

Moreover, atherosclerotic lesions comparable to those established in humans can be 

developed after longer feeding times in Testicular feminized mice (Tfm) which are 

considered as a model of effect of testosterone.

3.1.2 Testicular feminization identification

An inherited syndrome of testicular feminization has been described in several species 

in addition to man, including the cow, the rat and the mouse (He et al, 1991). It is also 

called androgen insensitivity syndrome (AIS). This syndrome was initially termed 

testicular feminization but this name at present is used for animals, while androgen 

resistance or androgen insensitivity is used for humans (Howden, 2004). It is identified 

as a syndrome resulting from unresponsiveness of the target cell to the action of 

androgenic hormones due to mutations in the androgen receptor genes (Hughes et al.,

2006). The first proof that AIS was caused by AR mutations was published in 1989 by 

Brown and his group. The androgen receptor is a high-affinity androgen-binding protein 

that mediates the effect of testosterone and dihydrotestosterone by functioning as a 

trans-acting inducer of gene expression (Brown et al, 1989).
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3.1.3 Tfm mice

Tfin mice are totally insensitive to androgen due to a single base deletion in the N- 

terminal domain of the androgen receptor, resulting in a frame shift mutation creating a 

premature, stop codon at amino acid 412 and the expression of non-functional truncated 

androgen receptors (Rizk et al., 2005, He et al., 1991, Monks et al., 2007; Chang et al., 

2013). Furthermore, AR binding is greatly decreased in various tissues. Therefore, Tfin 

in these mice is considered an X-linked genetic disorder in which males carrying the 

mutation in the AR gene have female phenotypic characteristics (Gilbert et al., 2000). In 

addition, the lack of functional ARs results in complete infertility of the Tfin male mice 

(Rizk et al., 2005). Moreover, the testes of these mice are very small and cryptorchid 

(Reddy and Ohno, 1981).

The physiological consequence of the genetic disorder and histological structure of the 

testes in these mice is a low testosterone level in the circulation. The reduction of 

biosynthesis and production of testosterone are due to reduction in 17a hydroxylase, 

which is the main enzyme of the steroidogenesis process. The reduction of 17a 

hydroxylase may be as result of the placement of testes in the intra-abdominal area and 

a lack of action of testosterone in utero. In addition, these mice have high levels of LH 

hormone which is due to AR dysfunction and the low levels of testosterone. Both AR 

dysfunction and low testosterone lead to the absence of the negative long loop feedback 

mechanism of testosterone on the activation of pituitary ARs.

Recent studies have used this type of mouse as a model of atherosclerosis. These studies 

found that Tfin mice exhibited a significant increase in aortic root lipid deposition 

compared to littermates, following feeding with a high-fat diet. Furthermore, this fatty 

streak formation was significantly decreased after physiological testosterone 

replacement therapy (TRT). The effect was independent of the classic AR androgen 

receptor and was mediated in part by activation to 17p-estradiol (Nettleship et al., 2007). 

Similarly, Kelly and colleagues in 2012b reported that the beneficial effect of 

testosterone (both AR-dependent and AR independent) was seen on reduction of fatty 

streak formation in the Tfin mice (Kelly et al., 2012b).

However, recent studies also found that Tfm mice can be used as models for studying 

the relationship of low testosterone with hepatic glucose and lipid homoeostasis (figure 

3.1). For instance, Kelly et al., (2012a) reported that a high-cholesterol diet induced
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significant hepatic lipid accumulation in Tfin mice compared to wild-type mice, and 

intramuscular TRT considerably abolished this effect, suggesting AR-independent 

effects on hepatic steatosis and lipid metabolism in these mice. It is known that, the 

liver is the most important active metabolic organ together with adipose tissue and 

muscle. The liver has a role in glucose and lipid metabolism (Emanuelli et al, 2014).

3.1.4 Molecules involved in hepatic metabolism

The regulation of glucose and lipid metabolism is the under the control of a number of 

hormones including insulin and testosterone which led to elevated glucose oxidation by 

increasing significantly mRNA expression of the receptor in the Chang human liver cell 

line (Parthasarathy et al., 2009). In an animal study, castration of mice was associated 

with elevation of blood glucose, reduced insulin levels and decreased glucose uptake. 

Furthermore, testosterone deficiency plays a key role in induction of IR in the liver by 

its association with increased adiposity, which leads to the flow of FFA from adipose 

tissue to liver and a consequent decrease in insulin sensitivity (see figure 3.1) (reviewed 

by Kelly and Jones, 2013). FFA can stimulate NFkB, JNK, and IKK activation through 

TLR-4 in hepatocytes, some of which suppress insulin signalling. Activation of these 

kinases leads to increase in pro-inflammatory cytokines and chemokine genes 

expression (Ota et al, 2012). Chemokine-mediated macrophage infiltration into the 

liver might therefore be related to the pathology of IR. Chemokines such as CCL2- 

CCR2 (Panee et al, 2013) as well as CX3CL1-CX3CR1 (Shah et al, 211) connect 

inflammation with IR. PAI-1 is another factor which can be induced in the liver by 

inflammation (Lagoa et al, 2005). It was noted that the liver of obese mice 

overexpresses PAI-1 (Westerbacka et al, 2007). PAI-1 is known as a regulator of the 

fibrinolytic system in blood by inhibiting both urokinase-type and tissue-type 

plasminogen activators. High levels of PAI-1 are found in patients with T2DM or 

atherosclerosis, which is associated with imbalance in glucose and lipid homeostasis 

(Dimova and Kietzmann, 2008; Kietzmann and Andreasen, 2008). In general, IR can 

impair glucose and lipid metabolism in the liver by different pathways. Increased levels 

of FFAs transported from adipose tissue to the liver induce gluconeogenesis and VLDL
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Figure 3.1: The association of low testosterone with inflammation and insulin 

resistance in adipose tissue and liver. Testosterone deficiency leads to increase 

adiposity with IR causing fat accumulation and hyperglycaemia. Adipose tissue 

expansion stimulates the release of FFAs via lipolysis into the circulation, increased 

pro-inflammatory factors (IL-6, TNF-a, CX3CL1 and CCL2) and decreased anti

inflammatory factors (adiponectin and PPAR5/p). FFAs, IL-6 and TNF-a induce IR in 

the liver, leading to impairment in glucose metabolism, glycogen synthesis, 

gluconeogenesis, lipogenesis and ultimately to hepatic steatosis and hyperglycaemia. 

FFA, free fatty acid. IL-6, interleukin 6. TNF-a, tumour necrosis factor alpha. PPAR5, 

Peroxisome proliferator-activated receptor delta (Adapted and modified from Kelly and 

Jones, 2013).
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synthesis, that leads to inhibition of lipolysis of chylomicrons and promotes 

hypertriglyceridemia and decreased of HDL. The latter and the formation of small, 

dense LDL particules are linked to a higher risk of CVD (Chapman et al., 2010).

The plasma concentration of HDL-cholesterol is to a large extent determined by the 

production and catabolic rates of its principal apolipoprotein, Apo Al. The plasma 

concentration of ApoAl on average reflects the corresponding concentration of HDL- 

cholesterol (Jung and Choi, 2014). Therefore, Apo Al is also a powerful predictor of 

CVD in men, since its role is in reverse transport of cholesterol from peripheral tissues 

to the liver for clearance. In addition, Apo E is structurally close to Apo Al (Getz et al, 

2009). The liver is the important source for Apo E in plasma (Getz et al., 2009). Apo E 

has a vital role in the receptor-mediated uptake of lipoprotein by the liver and therefore 

acts in regulating lipoprotein metabolism (Kolovou et al, 2009). It has also been 

previously found that ApoE deficient mice accumulate large amounts of triglyceride in 

their livers (Kuipers et al, 1996). Therefore, hepatic Apo E production is thought to 

contribute to secretion of VLDL-TG. Notably, the plasma levels of triglycerides are key 

molcules in the pathogenesis of atherosclerosis (Talayero and Sacks, 2011)

Adiponectin also has a role in lipid and glucose metabolism where it increases lipid 

catabolism by decreasing TG storage and FFA levels and augmenting HDL 

concentration in the liver. This leads to improved insulin sensitivity and reduced IR and 

T2DM (Vazquez-Vela et al, 2008). An additional function of adiponectin is to inhibit 

the effects of TNF-a, suppressing expression of adhesion molecules in vascular 

endothelial cells, thus lowering atherogenic risk. The effects of adiponectin are 

mediated by its receptors, AdipoRl and AdipoR2 that are expressed located in mouse 

liver (Kadowaki et al, 2005). It is found that the adiponectin levels are decreased in 

obesity, T2DM and atherosclerosis. Administration of adiponectin in mice improves 

these conditions (Chandran et al, 2003).

PP ARp/5 is another beneficial factor regulating the expression of specific target genes 

involved in lipid metabolism, insulin sensitivity, energy homeostasis, obesity, and 

inflammation. In addition, PP ARp/5 acts as an anti-inflammatory mediator through 

reducing, TNF-a, adhesion molecules, decreasing triglycerides and increasing HDL 

(Fan et al, 2008, Karpe et al, 2009; Di Paola et al, 2010). The use of newly developed 

selective agonists and genetic approaches showed the substantial association of 

PPARp/5 in lipid homeostasis and IR (Kaipe et al, 2009).
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Therefore, in this chapter, cDNA samples of liver tissue from Tfin mice with and 

without testosterone treatment were investigated. The effect of testosterone treatment on 

expression of anti-inflammatory modulators (adiponectin, PP ARp/5), pro-inflammatory 

factors (CX3CL1, CX3CR1, CCL2, CCR2 and PAI-1) and anti-atherogenic parameters 

(Apo A-l and Apo E) was assessed in these mice due to all these factors being 

implicated in MetS, T2DM and atherosclerotic conditions. Samples of cDNA from Tfin 

mice treated with placebo and XY littermate mice were used as controls.
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3.1.5 Aim

To investigate whether testosterone modulates the expression of anti and pro- 

inflammatory markers (adiponectin, PPARp/8, PAI-1, CX3CL1, CX3CR1, CCL2, and 

CCR2) and anti-atherogenic factors (Apo A-l and Apo E) in liver tissue from Tfm mice 

fed a high-cholesterol diet.
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3.2 Materials and Methods

Tfin and littermate mice were used at age 8 weeks at which time point they were fed on 

a high fat diet for a period of 28 weeks, ad libitum. This diet contained 42% butterfat 

and 1.25% cholesterol, along with 0.5% cholate, which is required for cholesterol 

absorption in the mouse (Special Diet Services, UK).

Prior to receiving this high-cholesterol diet for the duration of the study, treated Tfin 

mice with testosterone, control Tfin mice and littermate received a normal chow diet. 

This part of the study was performed by Dr. Daniel Kelly at University of Sheffield. All 

procedures were carried out under the jurisdiction of UK Home Office personal and 

project licences (project licence number 40/3165, personal licence number 60/11754), 

governed by the Animals Scientific Procedures Act 1986. Mice received intramuscular 

injections of testosterone or saline treatment. A sterile 0.3mL 30G needle (BD, UK) was 

introduced at a right angle to the skin surface into the centre of the muscle mass and 

lOpL of either Sustanon® 100 (20mg/mL testosterone propionate,40mg/mL 

testosterone phenylpropionate, 40mg/mL testosterone isocaproate; equivalent to 

74mg/mL testosterone) or physiological saline was injected. Mice were injected once 

fortnightly, from 7 weeks of age, alternating the leg injected to minimise discomfort or 

irritation (Kelly et al., 2012b).

Hepatic complementary DNA (cDNA) samples from Tfin mice were obtained from 

animals sacrificed at 36 weeks. The steps of extraction of RNA and synthesis of cDNA 

were performed by Dr. Daniel M Kelly and Sarnia Akhtar. 20 cDNA samples were 

from Tfin mice that were treated with testosterone, 4 cDNA samples were from Tfin 

mice that were treated with placebo and 12 cDNA samples were from XY littermates 

controls.

3.2.1 Molecular investigation of gene expression in liver tissue of Tfm 
mice using semi-quantitative real-time reverse transcription 
polymerase chain reaction (qRT-PCR)

Real-time reverse transcription quantitative PCR (qRT-PCR) results are based on 

several steps, including cell processing, RNA extraction, RNA storage and assessment
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of RNA concentration, cDNA synthesis and selection of an appropriate constitutively 

expressed control gene.

qRT-PCR is a development of the basic polymerase chain reaction (PCR), which is used 

for amplifying a DNA sequence specific to a particular gene, into multiple DNA copies 

in a quantitative manner. The cDNA can be run on an agarose gel to assess the size and 

purity of the sample. PCR involves three-steps which are denaturation, annealing and 

extension, known as a cycle that is repeated a specified number of times in a thermal 

cycler. The PCR reaction usually includes four phases that are shown in the 

amplification plot (figure 3.2) the linear-ground phase, the exponential phase, the linear 

phase and the plateau phase. Through the ground-linear phase, only background 

fluorescence is detected. The cycle at which the amplification fluorescence exceeds a 

chosen threshold above the background fluorescence is called the Cycle threshold or Ct 

value and this indicates the initial exponential phase. During the exponential phase, the 

amount of DNA is theoretically doubled with each cycle and it is at this point that 

measurements are made, i.e. when the CT value is obtained. Once the plateau phase is 

reached, all of the reagents are consumed and no further product is generated.

3.2.1.1 qRT-PCR using SYBR® Green dye methodology

RT-PCR monitors the amplicon amount as the reaction take place. Commonly, the 

amount of product is directly related to the fluorescence of a reporter dye. Since it 

distinguishes the amount of product as the reaction develops, RT-PCR offers a wide 

linear dynamic range, reveals high sensitivity and is quantitative. The preliminary 

amount of template DNA is inversely related to a parameter measured for each reaction 

and the Ct value. SYBR Green-based detection is the least expensive and flexible 

procedure available for RT- PCR (Wang et al, 2006). Other methods (such as TaqMan) 

need an expensive third primer labelled with a dye and a quencher (Bustin et al., 2005). 

SYBR Green dye binds to all double-stranded DNA present in the sample by inserting 

between base pairs (Wang et al., 2006). Signal is generated during the PCR cycle at the 

end of either the annealing or the extension stage, when the highest amount of double

stranded DNA product is generated. Therefore, the result is an increase in fluorescence 

intensity proportional to the amount of PCR product created, (figure 3.3).
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Figure 3.2: Amplification plot of qRT-PCR. Four phases are displayed in the 

amplification curve the linear-ground phase, the exponential phase, the linear phase and 

the plateau phase. In the exponential phase the level of fluorescence can be detected 

whereas the linear phase represents the doubling of PCR product every cycle and 

plateau phases indicate the end of the reaction. The orange horizontal line represents the 

threshold above background fluorescence; the cycle at which the amplification 

fluorescence crosses this line is termed the cycle threshold or Ct value.
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A) Reaction setup: The SYBR Green I dye fluoresces when bond to double-stranded DNA.

__________________________________________________

B) Denaturation: when the DNA is denatured, the SYBR Green I dye is released and 
the fluorescence is drastically reduced.

C) Polymerization: During extension, primers anneal and PCR product is generated.

Forward primer

3 E 1

Reverse primer

D) Polymerization completed: When polymerization is completed. SYBR Green I dye 
binds to the double-stranded product resulting in a net increase in fluorescence 
detected by 7900HT PCR system.

Figure. 3.3: Shows the principle of SYBR Green dye detection in qRT-PCR assay.

The steps from A-D demonstrate the action of SYBR Green I dye in three phases of the 

PCR reaction which are annealing, extension and denaturation. The signal is only 

detectable during annealing and extension, since the denaturation step contains 

predominantly single-stranded DNA. It was adapted and redrawn from 

http://www.lifetechnologies. com/uk/en/home/lifescience/pcr/real-time-pcr/qpcr-

education/what-can-you-do-with-qpcr/introduction-to-gene-expression.html.
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Method

Each 20pl PCR reaction contained 1 Ojj.1 of SYBR green PCR master mix (Qiagen, UK), 

5 pi of a 1:10 dilution of cDNA of the sample or control, 1 jul of target primer 

(PrimerDesign, UK) and 4 pi of RNAse free water. All of these amounts were pipetted 

in duplicate for each sample into 96 well-plates (Applied Biosystems, UK) on ice. 

Plates were covered with an adhesive film, centrifuged to ensure that all solutions were 

collected at the bottom of the wells. The analysis of these samples was performed by 

using the 7900HT PCR system or StepOne™ real-time PCR system (Applied 

Biosystems, UK) which was according to the cycles below.

Initialization 95°C for 5 min

Denaturation 94°C for 15 seconds

Annealing 60°C for 30 seconds ~ 40 cycles

Final elongation 72°C for 30 seconds J

Hold 4°C

Melt curve 

95°C 60 seconds

55°C for 30 seconds increasing in 10°C increments.

3.2.1.2 Selection of endogenous control reference genes

In qRT-PCR, the selection of the housekeeping gene is important for the normalization

of quantitative gene expression results. The candidate housekeeping gene is usually

used as reference in qRT-PCR assays to control for error between samples and to

measure variations in the levels of a target gene mRNA compared to a housekeeping

gene. The level of reference gene expression has to be stable in the same tissues or cell

types under the defined experimental conditions. Genes most generally used as internal

controls in qRT-PCR studies include: beta actin (ACTB), glyceraldeyde-3-phosphate

dehydrogenase (GAPDH), beta glucuronidase (GUSB), hypoxanthine guanine

phosphoribosyl transferase (HPRT1) and ribosome small subunit (18S) ribosomal RNA

(Choesmel et al., 2007). However, some studies have reported these classical

housekeeping genes as appearing to give irregular expression levels in diverse
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experimental states (Ohl et al, 2005; Silver et al, 2008). Therefore, it is essential that 

reliable control genes are specific for the sample group and does not alter under 

different experimental treatments under investigation. Validation of the control avoids 

misinterpretation of gene expression data and identifying the most stable housekeeping 

gene has to be performed from a set of tested candidate reference genes. For this 

identification, a comprehensive range of bioinformatically validated assays such as 

geNorm (Vandesomple et al, 2002); NormFinder (Andersen et al, 2004) and 

BestKeepe (Haller et al, 2004) software programs for housekeeping genes can be used.

Method

RT-PCR was applied to 12 mouse housekeeping genes (ACTB, SDHA, RPL13, ATPSB, 

EIF4A, 18S, YWHAZ, CYC1, B2M, CANX, UBC, and GAPDH) (PrimerDesign, UK) 

on 8 biological samples with different experimental conditions used in this study. Each 

reference gene was tested with each sample in duplicate. This was done by mixing in 

each well of a 96 well-plates on ice (lpl of 1:10-dilution of sample or control cDNA, 

lpl of target reference gene primer, 8pl of RNA free water and lOpl of SYBR Green 

master mix). Threshold (Ct) values were used for the expression ratio that was 

calculated by the comparative Ct method (Livak and Schmittgen, 2001). These values 

were imported into the GeNorm software (Vandesompele et al, 2002), which 

determines the most stable housekeeping genes. A gene expression stability measure (M 

value) was determined for each housekeeping gene. The housekeeping gene with an M 

value less than 1.5 was identified as the most stable one.

3.2.1.3 Amplification efficiency of PCR primers determination

It is important to determine the amplification efficiency of the qRT-PCR assay to 

obtain accurate data. This means that during the logarithmic phase of the reaction, the 

PCR product of the target gene is doubling with each cycle. Perfect amplification 

efficiency is 100%, (Livak et al, 2001). Amplification efficiency between 90 and 110% 

is considered as acceptable. 100% PCR efficiency demonstrates a change of 3.3 cycles 

between 10 fold dilutions of template. This is achieved by a 10-fold serial dilution of 

the template cDNA ranging (from 1:1 to 1:1000 in RNA free water) for obtaining 

primer efficiencies. The Ct values obtained for all target and reference genes are plotted 

against log dilution factor on the graph. A linear trend line was applied, with the slope
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of the line used to calculate the percentage efficiency of each primer by the following 

equation:

Efficiency = 10 <‘l/slope)- l

The R-squared value >0.95 of linear correlation demonstrates that the Ct values 

adequately correspond to the trend line fitted.

Method

To determine the primer efficiency, template cDNA was diluted in a series (neat, 1:10, 

1:100 and 1:1000); each PCR reaction was carried out in duplicate for the target gene 

and reference gene. The Ct values obtained were plotted by using logio of dilution of the 

cDNA sample against the Ct values, to create the graphical and linear curve at R2 > 0.95 

by Microsoft Office Excel.

3.2.1.4 Validation of primer targets by electrophoresis

Validation can be done for the amplified products of the SYBR® Green qRT-PCR 

analysis by running each amplified target on an agarose gel for visualisation. A single 

and sharp band should be observed demonstrating that only one specific sequence has 

been amplified.

Method

7pi of qRT-PCR product for each target gene was mixed with 3pi of lx loading dye 

(Promega, UK) and loaded onto a 1.5% agarose gel (Invitrogen, UK) and separated at 

110V for 30min. A 200bp ladder (Promega, UK) was also loaded onto the gel. The 

agarose gel was made from 0.75g of agarose powder (Bioline, UK) was dissolved in 

50ml IX TAE as electrophoresis buffer (Beckman Coulter, UK) and then stained with 

3pl ethidium bromide (lOmg/ml) (Sigma-Aldrich, UK). Bands were visualised using a 

UVP bioimaging system (BioRad, UK) and appeared as a single and sharp band 

referring to specific target gene.
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3.2.1.5 Relative quantification analysis of qRT-PCR data

By measuring the Ct values in qRT-PCR analysis, determination of the relative 

expression of a target gene in the test sample using a reference gene(s) as the normalizer 

is calculated by using the 2“AACT method (Livak et al., 2001; Schmittgen and Livak, 

2008) as follows:

Normalizing the CT of the target gene to that of the reference (Saunders and Lee, 2013) 

gene, for both the test sample and the calibrator sample is calculated as follows:

ACT (test) = CT (target, test) -  CT (ref, test)

ACT (calibrator) = CT (target, calibrator) -  CT (ref, calibrator)

Then normalizing the ACT of the test sample to the ACT of the calibrator is by:

AACT = ACT (test) -  ACT (calibrator)

Calculation of the expression ratio is by:

2~a a c t

This method is usually used when the target and reference genes have similar and 

approximately 100% amplification efficiencies. However, if the target and the reference 

genes do not have similar amplification efficiencies the Pfaffi method can be used 

(Pfaffl, 2006) which leads to modification of the 2-AACT method by replacing the 2 in the 

equation by the actual amplification efficiency as follows:

Ratio = (E target) ACT, target (calibrator-test)

(Eref) ACT, ref (calibrator -  test)
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Number 12 4 20

Type of 
treatment

None placebo testosterone

Investigated
parameters

Adiponectin, PAI-1, 
PPARp, Apo A l, ApoE, 
CX3CL1 and CX3CR1, 
CCL2 and CCR2

Adiponectin, PAI-1, 
PPARp, Apo Al, 
ApoE, CX3CL1 and 
CX3CR1, CCL2 and 
CCR2

Adiponectin, PAI- 
1, PPARp, Apo Al, 
ApoE, CX3CL1 
and CX3CR1, 
CCL2 and CCR2

Assay
technique

qRT-PCR qRT-PCR qRT-PCR

Table 3.1: Summary table of Tfm mice in vivo study. The details of Tfm mice 
samples, target genes, analysis method used in this study
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3.2.2 Statistical Analysis

Data is presented as mean ± SEM. All statistical tests and applications were performed 

by using Prism 5 Graph pad software and Stats Direct. Statistical differences between 

groups were analysed by one way ANOVA or Kruskal-Wallis test to analysis 

parametric and nonparametric data, respectively. When the tests, (one way ANOVA or 

Kruskal Wallis test) revealed significant differences, multiple comparisons of groups 

were performed using Tukey's test or Conover-Inman post hoc, respectively. All 

comparisons were two tailed and p  values less than 0.05 were considered statistically 

significant.
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3.3 Results

3.3.1 Selection of endogenous control reference genes

12 mouse housekeeping genes were tested (ACTB, SDHA, RPL13, ATPSB, EIF4A, 

18S, YWHAZ, CYC1, B2M, CANX, UBC, and GADH) on 8 samples with different 

experimental conditions using qRT-PCR. GADPH was the most stable housekeeping 

gene, where its M value was less than 1.5. Therefore GADPH was used as the internal 

control for calculation of relative expression ratios and comparison with the target genes.

3.3.2 Primer efficiency

Following 10-fold serial dilution of the template cDNA ranging (from 1:1 to 1:1000 in 

RNase free water) primer efficiencies were determined. The Ct values for each dilution 

were collected during the exponential phase of the PCR, log-transformed and plotted 

with the slope of the regression line representing the sample’s amplification efficiency. 

The results related to a slope and percentage efficiencies of target genes and reference 

gene where some were in the ideal range and others had primer efficiencies less than 

90% as seen in (figure 3.4 and table 3.2). Therefore, Pfaffi method was used to 

determine the relative expression of target genes in this study.

3.3.3 Validation of primer targets

Primer products for target genes and reference genes from the qRT-PCR assay were run 

on 1.5% agarose gel electrophoresis. As shown in (figure 3.5a, b) a single product was 

visible and sizes of primers was as excepted between (83-129bp) for all target and 

reference genes for both Tfm mice (A) and XY littermate mice (B).
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GADPH 1.968 96.84
Adiponectin 1.941 94.08
PPARp/6 1.863 86.33
PAI-1 1.931 93.04
CX3CL1 1.863 86.33

CX3CR1 1.92 91.99

CCL2 1.896 89.57
CCR2 1.86 86.32
APO Al 2.00 99.66
APOE 1.941 94.08

Table 3.2: Primer efficiencies of target and reference genes. Calculated primer 

efficiency percentage was determined by using E = io('1/slope)-l. These should be in the 

range of 100 ± 10% for optimal PCR.



40

30

C 20 

10 

0

GAPDH
y = -3.4x+27.6 

R2 = 0.9797 Adiponectin y = -3.4x+33.2 
R2 = 0.9861

2 3
Log Dilution Factor

PPAR
y =-3.7x + 27.S 

R2 = 0.9956

Log Dilution Factor

PAI-1
y = -3.5x+ 33.8 

R2 = 0.9973
40

C 20

0 1 2 3 4

Log Dilution Factor

CX3CL1
y = -3.7x + 29.8 

R2 = 0.9956

Log Dilution Factor

CX3CR1
y =-3.53x + 29.64 

R2 = 0.9643
40

30 

C 20 

10

0
0 1 32 4

Log Dilution Factor
2 3

Log Dilution Factor

CCR2CCL2 40

C 20

“ 1

4 0 41 2
Log Dilution Factor

3

Log Dilution Factor

Apo Al
y=-3.33x + 32.05 

R2 = 0.9954 Apo E y = -3.4x+33.6 
R2 = 0.9797

2 3
Log Dilution Factor

1 2

Log Dilution Factor

Figure 3.4: Standard-curve plot for calculation of primer efficiency genes. The efficiency of 
amplification of target genes and internal control (GADPH) was determined using real-time 
PCR and SYBR Green detection. The Ct values for each dilution were used to calculate slope of 
the line representing the log of their amplification efficiencies. An ideal slope should be -3.32 
for 100% PCR efficiency.
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Figure 3.5: Amplification of qRT-PCR products on 1.5% agarose gel 

electrophoresis for the liver of Tfm mice (A) and XY littermates mice (B). L-

Ladder, Lane 1- GADPH Lane 2- Adiponectin, Lane 3- PPARp/5, Lane 4- PAI-1, Lane 

5- CX3CL1, Lane 6- CX3CR1, Lane 7- CCL2, Lane 8- Apo Al, Lane 9- Apo E, Lane 

10- CCR2. All PCR products obtained were between 83 and 129bps which matched the 

expected sizes as provided by the supplier, PrimerDesign.
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3.3.4 Analysis of adiponectin mRNA expression in the liver by qRT- 
PCR

There was a significant increase (p=0.04) in the expression of adiponectin in the 

testosterone treated Tfm mice (n=20) compared to the placebo treated Tfm mice (n=4). 

There was no significant difference in adiponectin expression in either Tfm mouse 

group compared to XY littermate mice (n=12) (figure 3.6).

3.3.5 Analysis of PPARp/S mRNA expression by qRT-PCR

A significant increase was seen in the expression of PP ARp/8 (p=0.04) in Tfm mice 

treated with testosterone (n=20) compared to Tfm mice with placebo treatment (n=4). 

Whilst, there was a trend towards an increase in expression of PPARp/5 in Tfm mice 

treated with testosterone relative to XY littermate mice (p=0.08), no significant change 

in expression of hepatic PPARp/5 in Tfm mice treated with placebo compared to XY 

littermate mice (n=12) was observed (figure 3.7).

3.3.6 Analysis of PAI-1 mRNA expression by qRT-PCR

In figure 3.8, it can be seen that there was a significant decrease (p=0.03) in expression 

of PAI-1 in the liver in Tfm mice treated with placebo (n=4) compared to XY littermate 

mice (n=12) while no significant change in the liver of Tfm mice was seen with 

testosterone treatment (n=20) compared to the XY control group. In contrast, 

testosterone treatment increased considerably (p=0.01) expression of hepatic PAI-1 in 

Tfm mice relative to Tfm mice treated with placebo.

3.3.7 Analysis of CX3CL1 mRNA and its receptors CX3CR1 
expression by qRT-PCR

The expression of CX3CL1 was not significantly different in the liver in Tfm mice 

treated with testosterone (n=20) or with placebo (n=4) compared to XY littermate mice 

(n=12) (figure 3.9a). There was a decrease in expression of CX3CR1 in the liver of Tfm 

mice treated with testosterone, compared to the liver of Tfm mice treated with placebo 

and XY littermate mice, although this did not reach statistical significance (figure 3.9b).
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Figure 3.6: Expression of hepatic adiponectin mRNA by qRT-PCR in Tfm mice 

and XY littermate. A significant increase in its expression in Tfin T compared to Tfm 

P (Tfm mice with placebo, n=4) whilst, no significant difference was seen in expression 

of Adiponectin in Tfm T (Tfin mice with testosterone, n=20) compared to XY mice 

(XY littermate mice, n=12) One Way ANOVA, (n=3). #<0.05 Tfin P vs Tfm T.
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Figure 3.7: Expression of hepatic PPARp/S from qRT-PCR in Tfm mice and XY 

littermate. A significant increase was observed in its expression compared to Tfm P 

(Tfm mice with placebo, n=4) whereas no significant change was seen in expression of 

PPAR in Tfm T (Tfin mice with testosterone, n=20) compared to XY mice (XY 

littermate mice, n=12), Kruskal-Wallis, (n=3). #P<0.05 vs Tfm P.
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Figure 3.8: Expression of hepatic PAI-1 from qRT-PCR in Tfm mice and XY 

littermate. A significant reduction was observed in expression of PAI-1 in Tfin P 

(Tfm mice with placebo, n=4) compared to XY Tfm (XY littermate mice, n=12). A 

significant increase was seen in Tfm T (Tfm mice with testosterone, n=20) 

compared to Tfin P (Tfm mice with placebo, n=4). Kruskal-Wallis, (n=3). 

*P<0.05vs XY mice, ## P<0.01 vs Tfm P.
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Figure 3.9: Expression of hepatic CX3CL1 (A) and CX3CR1 (B) by qRT-PCR 

in Tfm mice and XY littermate. No significant change was seen in expression of 

CX3CL1 (A) and CX3CR1 (B) in Tfm T (Tfm mice with testosterone, n= 20) 

compared to Tfm P (Tfm mice with placebo, n= 4) and XY mice (XY littermate 

mice, n= 12), One way ANOVA, (n=3).
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3.3.8 Analysis of CCL2 mRNA and its receptors CCR2 mRNA 
expression in the liver by qRT-PCR

No significant change was seen in expression of CCL2 in the liver Tfm mice treated 

with testosterone (n=20) or with placebo (n=4) compared to XY littermate mice (n=12) 

(figure 3.10a). There was a trend to decrease the hepatic expression of CCR2 in Tfin 

mice with testosterone compared to Tfin mice treated with placebo and XY littermate 

mice, but this effect did not reach statistical significance (figure 3.10b).

3.3.9 Analysis of apolipoprotein mRNA expression (Apo aland Apo E) 
in the liver by qRT-PCR

There was a slight increase in expression of Apo Al in the liver of Tfin mice treated 

with testosterone (n=20), but this alteration did not reach statistical significance 

compared to Tfin mice treated with placebo (n=4) and XY littermate mice (n=12) 

(figure 3.11a). There was no significant differencea in the expression of Apo E in the 

liver of both Tfin mice treated with testosterone or with placebo compared to XY 

littermate mice, as shown in (figure 3.1 lb).
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Figure 3.10: Expression of hepatic CCL2 (A) and CCR2 (B) by qRT-PCR in 

Tfm mice and XY littermate. No significant change was notable in expression of 

CCL2 (A) and CCR2 (B) in Tfm T (Tfm mice with testosterone, n= 20) compared 

to Tfm P (Tfm mice with placebo, n= 4) and XY mice (XY littermate mice, n= 12), 

Kruskal-Wallis, (n=3).
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Figure 3.11: Expression of hepatic Apo Al (A) and Apo E (B) by qRT-PCR 

in Tfm mice and XY littermate. No significant change was seen in the 

expression of Apo Al and Apo E in Tfin T (Tfm mice with testosterone, n=20) 

compared to Tfm P (Tfm mice with placebo, n=4) and XY mice (XY littermate 

mice, n=12), One way ANOVA, (n=3).
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Parameters TFM+T

Adiponectin Increased

PPARp/8 Increased

PAI-1 Increased

CX3CL1 NC

CX3CR1 NC

CCL2 NC

CCR2 NC

ApoE NC

Table 3.3: Summary of results the effect of testosterone treatment on mRNA gene 

expression of all parameters in Tfm mice study. Tfm: testicular feminization mice, 

T: testosterone, NC: no change, PPAR: Peroxisome proliferator-activated 

receptor, PAI-1 Plasminogen activator inhibitor-1, Apo: apolipoprotein.
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3.4 Discussion

This part of the study, investigated the gene expression of anti-inflammatory 

(adiponectin, PPARp/5), anti-atherogenic factors (Apo A-l and Apo E) and pro- 

inflammatory factors such as PAI-1 and chemokines with their receptors, (CX3CL1, 

CX3CR1, CCL2 and CCR2) mRNA was qualified using liver tissue following 

testosterone treatment in Tfin mice compared to XY littermate and placebo Tfin mice 

controls where all these groups were fed on high fat diet.

As previously mentioned, Tfin mice have low testosterone besides having a non

functioning AR, so they cannot respond to the classical genomic signalling pathways 

(Monks et al., 2007). Therefore, it was hypothesised that testosterone treatment for 

these mice may show, firstly whether testosterone can influence the target genes and 

secondly, whether testosterone is acting via mechanisms other than through the AR.

The first finding was that PCR confirmed the expression of the target genes in hepatic 

cDNA samples from Tfin mice and XY littermate mice. Secondly, testosterone 

replacement did have an effect either positively or negatively, on some of the target 

genes which indicate that testosterone has the ability to act via ER or non-genomic 

signalling pathways.

3.4.1 The effect of testosterone treatment on hepatic adiponectin 
mRNA expression in Tfm mice

The current study demonstrated that testosterone significantly increased hepatic mRNA 

expression of adiponectin in Tfin mice compared to Tfin mice treated with placebo. 

This is in contrast with the study by Nishizawa et al. (2002) reporting that castration in 

mice increased plasma adiponectin and testosterone treatment reversed this effect 

without changes in the mRNA and protein levels of adiponectin in the adipose tissue. 

These results suggste: 1) changes in adiponectin mRNA expression do not always 

correspond to changes in plasma adiponectin concentrations, (Combs et al, 2003; Behre 

et al., 2007). 2) This observation supports the proposal that post-transcriptional and 

post-translational mechanisms in adiponectin production are differentially regulated 

(Swarbrick and Havel, 2008).
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However, the increase in hepatic mRNA expression of adiponectin may be related to the 

Tfin mice condition, because it is well recognized that there is an inverse relationship 

between testosterone and adiponectin (Lanfranco et al, 2004, Page et al, 2005a, Bai et 

al, 2011; Frederikse et al, 2012) even though both have anti-inflammatory and anti

atherogenic actions (Malkin, et al, 2003; Lanfranco et al, 2004), where adiponectin 

can improve insulin sensitivity and prevent T2DM by promoting the ability of insulin to 

suppress glucose production by hepatocytes. Recent studies established that adiponectin 

increased fatty acid oxidation (Fruebis et al, 2001), increased insulin action in the 

muscle and liver and additionally improved IR in lipoatrophic and genetically obese 

mice, both of which had hypo-adiponectinemia (Yamauchi et al, 2001; Berg et al, 

2001).

In comparison, testosterone treatment of patients with T2DM in the present study 

reduced significantly the serum adiponectin concentration after 3 months (chapter 2). 

Testosterone did not show the same effect on adiponectin expression in the liver of 

these mice. Further clinical studies on the influence of testosterone therapy have 

reported a reduction in adiponectin levels in men with T2DM (Kapoor et al, 2007) and 

in aging men using supraphysiological doses of testosterone (Page et al, 2005a), while 

no changes were observed in adiponectin levels in aging men treated with physiological 

doses of testosterone (Page et al, 2005b). The mechanism of the diminution in 

adiponectin concentration during testosterone therapy is unclear. It is suggested that, the 

negative effect of testosterone therapy on adiponectin levels may be mediated by factors 

that are responsible for adiponectin production or synthesis at the same time as their 

activity is modulated by testosterone. However, this reduction was not observed in the 

present study with Tfin mice suggesting that testosterone acted by ER or non-genomic 

pathway. In a study using rats fed a high-fat diet and treated with testosterone it was 

found that testosterone treatment reduced adiponectin levels in the serum. In this study 

testosterone decreased fat accumulation in these rats even though they had body weight 

higher than untreated rats with the same food (Nikolaenko et al, 2013). Tfin mice in the 

current study had no significant difference in body weight compared to Tfin mice with 

Placebo or XY mice (Kelly et al, 2012). However, although not statistically significant, 

Tfin mice receiving testosterone replacement were observed to be heavier and gained 

more weight over the 28 week experimental period than saline-injected Tfin mice and 

XY littermates. However, fat accumulation was not investigated in that study by Kelly 

et al. (2012). Further investigations in these mice are needed to explain why under
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certain circumstances, testosterone increases mRNA expression of adiponectin in liver 

of these mice.

3.4.2 The effect of testosterone treatment on hepatic PPARp/5 mRNA 
expression in Tfm mice

A significant increase in hepatic mRNA expression of PPARp/5 was seen following 

testosterone treatment in mice compared to those treated with placebo. To the best of 

current knowledge no studies have been performed on the effect of testosterone on 

PPARp/5 compared to another isoforms of PPAR. For example, testosterone treatment 

increased the sensitivity of PPAR-a receptors in patients with T2DM (Nieschlag et al, 

2012). On the contrary, Kilby and colleagues (2013) found that testosterone treatment 

did not associate with any change in hepatic expression of PPARa and PPARy in the 

same mice with the same condition. In an alternative study, testosterone has recently 

been shown to inhibit PPARy activity in a transcriptional activity (Du et al, 2009).

PPARp/5 ligands have been shown to reduce triglyceride accumulation (Tanaka et al, 

2003) glucose and lipid metabolism (Billin et al, 2008). According to the anti

inflammatory and anti-atherogenic role of PPARp/5 in different tissues in the animal 

models and humans, therefore, the increase of this factor by testosterone may reflect the 

role of testosterone via AR-independent pathway as anti-inflammatory and anti

atherogenic factor in reduction of atherosclerosis development and T2DM.

3.4.3 The effect of testosterone treatment on hepatic PAI-1 mRNA 
expression in Tfm mice

Data reported here shows an increase in mRNA PAI-1 expression in the liver following 

testosterone therapy in Tfin mice, compared to Tfin mice treated with placebo. It is 

known that PAI-1 has a significant role in the development of coronary heart disease 

(CHD). Additionally, high levels of PAI-1 are associated with IR and lipid 

abnormalities, (Gruzdeva et al, 2013). Therefore, several studies were conducted to 

investigate whether testosterone influences the level of PAI-1 in serum or its gene 

expression in human and mice (Goglia et al, 2010). Cross sectional studies have 

reported a negative association between testosterone levels and PAI-1 and fibrinogen 

(Rosano et al, 1999; Webb et al, 1999). Replacement of testosterone in hypogonadal
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men and treatment of normal men with dehydroepiandrosterone (DHEA) reduces PAI-1 

serum levels (Bavenholm et al, 1998). In addition, Philips et al, (1994) studied the 

association between testosterone levels and fibrinolytic factors in men with CAD. 

Results showed that the testosterone levels were correlated negatively with CAD and 

PAI-1. An additional study investigated the relationship between testosterone levels, 

fibrinolytic activity and lipid levels, in hyperlipidaemic men (Glueck et al, 1993). It 

was found that testosterone was inversely associated with PAI-1 activity and fibrinogen 

levels (Glueck et al, 1993). Similarly a potentially beneficial effect of testosterone on 

coagulation was reported in men in the period after an acute MI (Pugh et al, 2002). 

Moreover, there was an increase in fibrinogen, PAI-1 and tPA in diabetic prostate 

cancer patients during androgen deprivation therapy (Haidar et al, 2007). Former 

studies using DHT (Norata et al, 2006) or testosterone (Jin et a l , 2007) found that the 

reduction of PAI-1 association with androgen was via AR pathway. This was clearly 

after blocking these receptors by bicalutamide or flutamide in human endothelial cells, 

respectively. Therefore, since Tfm mice in the current study have a non-functional AR, 

the increase in mRNA PAI-1 expression of liver might be as result of an AR- 

independent pathway, in a similar way to the effect on adiponectin mentioned above.

In contrast, Smith and colleagues (2005) found that physiological testosterone 

replacement did not affect the coagulation system such as PAI-1 and fibrinogen level in 

men with CHD. PAI-1 has the ability to inhibit fibrinolysis processes via suppresses 

tPA and urokinase (uPA).

The source of PAI- 1 levels in plasma in humans or mice includes: adipocytes, liver 

cells and endothelial cells (Bastard and Picroni, 1999). Previous reports have revealed 

that PAI-1 mRNA expression per total RNA mass in adipose tissue was higher in 

rodents made obese, either genetically or by lesioning the ventromedial hypothalamus, 

than in their lean counterparts, (Shimomura et al, 1996; Sierra-Honigmann et al, 1998). 

This finding suggests that the contribution of the mass of adipose tissue is at least as 

important as upregulation of PAI-1 synthesis in the increase in circulating PAI-1 levels 

observed in obese mice (Morange et al, 2000). As previously mentioned, Tfin mice 

with testosterone in the current study were heavier and gained more weight over the 28 

week experimental period than Tfm mice with placebo and XY littermates even though 

this was not statistically significant. Consequently, this could explain the increase in 

expression of PAI-1 in these Tfin mice regardless of testosterone treatment. However,
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evidence from other studies showed that plasma PAI-1 levels are more closely related to 

fat accumulation and PAI-1 expression in the liver than in adipose tissue in obese mice 

(Alessi et al, 2003). Therefore, investigation of fat accumulation in the livers of these 

mice could be valuable in explaining the increase in mRNA PAI-1 expression.

In rat study, results showed that the modifications of aortic expression of PAI-1 were 

associated with castration and expression returned with the administration of a 

physiological amount of testosterone but not with a pharmacological dose of the same 

hormone (Goglia et al, 2010). Supraphysiological doses of testosterone therapy caused 

a decrease in fibrinogen and PAI-1 activity, (Anderson et al, 1995). Nevertheless, Smith 

et al. (2000) suggested that no changes in the levels of PAI-1 following a physiological 

dose of testosterone therapy were due to the low dose compared to the effect of 

supraphysiological doses of testosterone therapy in the previous study. In contrast, 

Goglia et al. (2010) found that the higher doses of testosterone or DTH resulted in an 

increase in mRNA for PAI-1 in endothelial cells of both young men and in 

premenopausal women.

The conflicting results of testosterone increasing simultaneously PAI-1, adiponectin and 

PPARp/8 in the liver are hard to explain. It is known that a negative correlation between 

PAI-1 and both PPARp/8 and adiponectin is seen in obesity (Garg et al, 2012). 

Obesity-induced inflammation is associated with increase in PAI-1 and a decrease in 

both adiponectin and PPARp/8 in the obese (Dandona et al, 2004; Stienstra et al, 

2006). It may be expected therefore, that testosterone treatment would reduce PAI-1 

and increase adiponectin and PPAR5/p, however the PAI-1 results do not follow this 

expectation, this finding may be specific to Tfm mice.

3.4.4 The effect of testosterone treatment on hepatic CX3CL1 and 
CCL2 mRNA and their receptors expression in Tfm mice

In the present study, testosterone treatment also did not associate with any change in

hepatic mRNA gene expression of CX3CL1 and CCL2 or their receptors. Several

hepatic cell populations, including hepatocytes, Kupffer cells, sinusoidal endothelial

cells and hepatic stellate cells, can secrete chemokines upon activation (Karlmark et al,

2008). Weisberg et al. (2006) studied the role of CCR2 and established that mice

lacking CCR2 had decreased adipose tissue macrophage infiltration, decreased hepatic
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steatosis, reduced inflammatory profiles and enhanced systemic insulin sensitivity 

(reviewed by De Luca and Olefsky, 2008). Furthermore, the CX3CL1/CX3CR1 

interaction can moderate chronic inflammatory diseases, including atherosclerosis; 

independent of CCL2/CCR2 (Yao et al, 2014). In addition, Shah et al, (2011) 

demonstrated that CX3CL1-CX3CR1 is a novel inflammatory adipose chemokine 

system that moderates monocyte adhesion to adipocytes and is accompanied by obesity, 

IR, and T2DM. Furthermore, Kanda and co-workers (2006) found that expression of 

CCL2 receptor, CCR2, was detected in the liver and inhibition of CCL2 function 

ameliorated both IR and hepatic steatosis as well as reduced the extent of macrophage 

infiltration into adipose tissue of obese mice.

These data offer evidence for CX3CL1-CX3CR1 as a diagnostic and therapeutic target 

in cardio-metabolic disease. Furthermore, Kanda et al, (2006) demonstrated that 

overexpression of CCL2 in adipose tissue caused hepatic steatosis along with adipose 

tissue inflammation, while systemic deletion of CCL2 inhibited HFD-induced steatosis.

However, a previous study reported that CX3CL1 and its receptor were detected in 

plaque regions of artery walls of Tfin mice, fed a high fat diet, but were not influenced 

by testosterone or AR function (Kelly et al, 2012b). In the same study, CCL2 

concentrations were significantly elevated in XY littermate and Tfin mice following a 

high-cholesterol diet compared to normal diet-fed XY littermate, but concentrations of 

CCL2 were not significantly different in serum of Tfin mice treated with testosterone 

compared to placebo-treated Tfin mice and XY littermates. Studies investigating the 

effects of testosterone therapy on chemokines and their receptors in animal models have 

been limited. However, it is actually difficult to conclude whether testosterone treatment 

has the ability to influence these receptors and ligands as anti-inflammatory modulator. 

Therefore, the results presented here are not able to confirm an effect of testosterone.

3.4.5 The effect of testosterone treatment on hepatic Apo A l and Apo 
E mRNA expression in Tfm mice

This study has found no significant effect of testosterone therapy on mRNA expression 

of Apo Al and ApoE. Both apolipoproteins have anti-atherogenic actions. It is 

hypothesised that as testosterone has anti-atherogenic action thus testosterone may lead 

to increase the expression both of Apo Al and Apo E.
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Animal experiments indicated that testosterone influences apo Al gene activity in 

inbred strains of mice (Tang et al, 1991), while the outcome of cell culture studies 

demonstrate that the hormone acts by antagonizing the actions of estrogen, and that 

androgens have no direct effect on gene transcription in human hepatoma cells (Tang et 

al., 1991; Tam et al., 1986). However, the outcome of cell culture is not the same as 

outcomes from whole liver tissues. Pharmacologic doses of estrogen hormone used to 

treate rodents resulted in larger concentrations of Apo Al mRNA and gene transcription. 

While these actions should lead to higher levels of Apo Al protein, the hormone also 

had post-transcriptional effects which reduced the abundance of the protein (Seishima et 

al., 1991; Tang et al., 1991). Clinical studies demonstrate that the mechanism of 

estrogen increasing the concentration of Apo Al in post-menopausal women was by 

inhibiting the activity of hepatic triglyceride lipase (HTGL) (Applebaum-Bowden et al., 

1989; Colvin et al., 1991) or by stimulating lipoprotein synthesis (Schaefer et al, 1983; 

Sacks etal., 1995).

However, the effect of androgens on Apo Al expression, especially in animal models is 

uncertain as a result of the lack of information. In human studies, Singh and colleagues 

(2002) found that a 600mg dose of testosterone enanthate, which was associated with 

extremely supraphysiological testosterone concentrations, reduced HDL and Apo Al 

levels in healthy young men while Tan and co-workers (1998) found that a minimum 

effective dose of testosterone replacement in the form of parenteral testosterone ester 

given 4-weekly significantly decreased levels of ApoAl. In line with our findings, 

previous studies report neither the serum HDL cholesterol nor the ApoAl 

concentrations altered following transdermal testosterone treatment in healthy young 

men (Berglund et al., 1996; Arrer et al., 1996) and following gel testosterone treatment 

in older men (Rubinow et al, 2012). Nevertheless, other studies found physiological 

testosterone treatment increased both HDL cholesterol and ApoAl levels in 

hypogonadal, elderly men (Zgliczynski et al., 1996) and in normal men (Bagatell et al., 

1992).

Testosterone treatment did not show an effect on hepatic mRNA Apo E expression gene 

in Tfin mice. It is known that Apo E deficient mice (ApoE-/-) mice are severely 

hypercholesterolemia and develop advanced atheroma independent of diet. These mice 

are clear evidence of the importance of Apo E as the atheroprotective factor against
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atherosclerosis development. Furthermore, injection of cetrorelix, which is used to 

reduce gonadotropins and sex steroids in treatment of prostate carcinoma and ovarian 

cancer, into ApoE deficient mice (ApoE-/-) suggests that the associated suppression of 

testosterone leads to increased atherosclerosis, despite lower cholesterol levels in the 

male mice (Von Dehn et al., 2001). On the other hand, in female ApoE-/- mice, the 

reduction in testosterone leads to reduction in estradiol, insulin and HDL levels without 

effects on atherosclerosis (Von Dehn et al., 2001).

It is recognized that some factors moderate Apo E synthesis such as hormones, dietary 

cholesterol and fat. Estradiol enhances VLDL production from rat hepatocytes and the 

VLDLs contain Apo E. Regulation of Apo E gene expression by estradiol occurs both at 

the transcriptional and post-transcriptional level in rats (reviewed by Ajit et al., 1997). 

Previous studies report that increases in Apo E synthesis were also observed in castrated 

C57/BL6 mice given either physiological or pharmacological replacement doses of 

estradiol, but not testosterone, suggesting that the effect of estradiol was specific to the 

distribution of Apo E mRNA in the translationally active polysomal pool (Srivastava et 

al., 1997).

In human macrophage cells, cells were exposed to testosterone 10-8 M for 24, 48 and 

72h to investigate expression of the LXR-target gene APOE and Apo E gene. LXR- 

target gene Apo E is responsible for encoding the protein Apo E, involved in binding 

cholesterol following its removal from the cell. The results showed that testosterone 

stimulated expression of LXRa and APOE in human macrophages. This suggests that 

firstly, testosterone activates LXR acting through this nuclear receptor to control the 

expression of ApoE to aid cholesterol efflux. Secondly, this could explain the role of 

testosterone as an anti-atherogenic factor (Kilby et al., 2012). However the increase in 

ApoE seen in other studies compared to the lack of change seen in the currrent study 

may be due to differenes in the models used for aplication the presene or absence of 

androgen receptors and the targets studied (transription fators or RNA).

3.5 Limitations of the study

The small sample size of Tfin mice in the present study might be associated with the 

lack of a clear conclusion. Using adipose tissue samples would be useful to explain the
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influence of testosterone on the above genes. Fat distribution was not measured in these 

mice which made it difficult to draw conclusions on the changes in expression of some 

genes related to obesity. The absence of receptor blockers for ER or aromatase 

inhibitors in this study made it difficult to determine the mechanisms by which 

testosterone exerted its effect.

3.6 Summary

The present study showed that testosterone treatment did not induce significant changes 

in hepatic expression of mRNA for CX3CL1, CCL2 and their receptors CX3CR1 and 

CCR2 and atherogenic factors Apo Al and Apo E in Tfin mice following a high- 

cholesterol diet compared to placebo controls and XY littermates. However, 

testosterone showed a beneficial effect by significantly increasing mRNA expression of 

adiponectin and PPARp/8 suggesting an effect via the AR-independent pathway. On the 

other hand, this finding was contradicted by the result for the inflammatory factor PAI-1, 

where testosterone increased its expression in the liver which was also mediated by the 

AR-independent pathway. It is possible that more definitive results for the effect of 

testosterone in Tfin mice may be found with larger numbers of animals thus further 

work should be performed.
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Chapter 4

The in vitro effect of testosterone treatment on THP-1 macrophages and 3T3L1 

adipocytes
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4.1 Introduction

4.1.1 Monocyte/macrophage cell recruitment in atherosclerosis

Increased understanding of the mechanisms underlying atherosclerosis has highlighted 

prospective targets for new therapeutics. One of these mechanisms involves the 

contribution of chemokines to inflammation and migration of immune cells into the 

arterial wall, which is a consequence of interaction between chemokines within the 

endothelium and their receptors on infiltrating immune cells. Recently, therapeutic 

approaches to target inhibition of these interactions, with the aim of stopping the 

recruitment of immune cells into the tissue have been reported (Koenen and Weber, 

2011).

The specific immune cells implicated in atherosclerosis are monocyte cells. These cells 

differentiate into macrophage-derived foam cells, which are the core of the detectable 

fatty streak in the earliest atherosclerotic lesions in the sub-endothelial space (Zemecke 

and Weber, 2010). These cells, with their inflammatory mediator production (IL-1 p, IL- 

6, IL-8, TNF-a and IFNy) can be associated with inflammation in the arterial wall while 

anti-inflammatory cytokines (IL-10) can reduce the inflammatory condition (see chapter 

1). Macrophage cells also have the ability to secrete these factors in the same way, also 

in the arterial wall. These factors are present in all stages of atherosclerosis. They can 

(except IL-10) cause dysfunction in endothelial cells and promote leukocyte 

transmigration into the endothelial space by stimulating secretion of chemokines from 

immune cells. TNF-a and IFNy can activate macrophages to secrete TNF-a and IFNy 

and other pro-atherogenic factors including IL-8 and CCL2. IL-8 is produced by several 

different immune cells but mainly by macrophages. It has the ability to attract 

monocytes at an early stage and accumulate macrophage cells in advancement of 

atherosclerotic lesions. IL-6 (reviewed by Fernandez and Kaski, 2002) and IL-1 p 

(Dinarello et ah, 2010) have a role in atherosclerosic events by stimulating the 

migration and differentiation of the activated macrophages. They also act by triggering 

the synthesis of metalloproteinases and the expression of LDL receptors in the 

macrophages, as well as an increase in LDL capture and the secretion of 

chemoattractants, such as CCL2 and adhesion molecules. However, IL-10 which acts as 

an anti-inflammatory molecule is also secreted from macrophages. This cytokine has a 

role in the inhibition of inflammatory cytokines such as TNF-a, IL-6, and IL-1 p, and
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has been found at high levels in individuals with atherosclerosis in response to the pro- 

inflammatory environment of atherosclerosis (Huang et al, 2004; Szodoray et al., 2006).

Monocytes and macrophages also express a number of chemokine receptors including: 

CX3CR1 and CCR2. Each receptor binds its ligand, CX3CL1 and CCL2 respectively, 

which are secreted from endothelial, and smooth muscle and macrophages cells 

(Zemecke et al., 2008; Liu and Jiang, 2011). In particular, CX3CR1/CX3CL1 

synergizes with CCR2/CCL2 to maximize foam cell formation and the inflammatory 

response during atherogenesis (Tacke et al., 2007). Blockade of CCR2 and/or CX3CR1 

may therefore be beneficial in atherosclerotic cardiovascular disease (Barlic and 

Murphy, 2007). These chemokine receptors are G protein-coupled receptors containing 

7 transmembrane domains that are found predominantly on the surface of leukocytes 

(Colvin et al, 2006). Many factors can modulate the expression of these receptors 

including chemokine and proatherogenic and inflammatory cytokines. Pro- 

inflammatory cytokines, IFN-y and TNF-a are critical mediators of atherosclerosis in 

murine models (Boehm et al, 1997) being crucial in the establishment of the 

inflammatory microenvironment that promotes accumulation and activation of 

monocytes/macrophages in the arterial wall (Apostolakis et al., 2007). TNF-a and IFNy 

induce expression of the CX3CL1/CX3CR1 system in macrophages cells through 

activating NF-kB, AP-1, STAT and MAPK (Liu and Jiang, 2011). These inflammatory 

cytokines can also affect the expression of CCL2/CCR2 and thus modulate the 

recruitment of monocytes and accumulation of macrophges in sites of acute and chronic 

inflammation, including the developing atherosclerotic lesions (Tangirala et al., 1997 

Weber etal., 1999).

4.1.1.1 Monocyte/macrophage cells and testosterone treatment

There was improvement in the health of patients who suffered from CHD following 

testosterone treatment in short-term studies (Jones and Saad, 2009). Furthermore, 

according to animal studies, there was a significant reduction in deposition of lipid in 

the arterial walls of an atherosclerotic mouse model, following testosterone treatment 

(Nettleship et al., 2007b, 2009; Kelly et al., 2012b). In addition, testosterone had the 

ability to reduced inflammatory factors including TNF-a, IL-6 and IL-1 P and increased 

anti-inflammatory cytokines in murine macrophages (D’Agostino et al., 1999). These 

factors have a role in atherosclerosis events. Therefore, replacement therapy for this
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testosterone deficiency may lead to reduced atherosclerosis. Moreover, stimulation of 

the AR influences the expression of chemokine receptors CCR2 (Lai et al, 2009) and 

CCR1 (Akashi et al, 2006), and consequent chemokine responses, in mice 

macrophages and in prostate cancer cells, respectively.

It is thought that the effect of testosterone could be through modulating the expression 

or action of both chemokine receptors, CX3CR1 and CCR2, expressed on macrophages 

therefore reducing atherosclerosis events. However the effect of testosterone on these 

receptors has not yet been investigated in macrophages. The action of testosterone could 

be via stimulation of the AR on macrophages. Furthermore, testosterone can act through 

an ER mechanism. A previous study found that macrophages had the ability to express 

aromatase and estrogen receptors (Mor et al, 1998). The same group in 2001 confirmed 

that monocytic (undifferentiated) THP-1 cells had no aromatase activity, upon 

differentiation with PMA into tissue macrophages, they express aromatase and have 

aromatase activity, (Mor et al, 2001). Therefore, testosterone could be converted to 

estradiol and via ER on macrophages. Additionally, others have observed that 

testosterone can exhibit its action on immune cells (Wehling et al, 1997, Benten et al, 

1999; Heinlein and Chang, 2002) or macrophages (Cutolo et al, 2005) via non-genomic 

receptors. This effect is on intracellular signaling pathways where testosterone has the 

ability to rapidly induce an increase in intracellular Ca2+ which is linked to a G protein- 

coupled receptor in immune cells (Gradisnik et al, 2008) and macrophage cells (Benten 

eta l, 1999).

4.1.2 Adipocyte-derived proteins in T2DM and atherosclerosis

The development of adipose tissue is regulated by a complex interaction of transcription 

factors and adipocytokines. As mentioned in chapter 1, adipose tissue acts as an 

endocrine organ secreting adipocyte-derived proteins. Adiponectin, PP ARp/5, leptin, 

PAI-1, CCL2 and CX3CL1 are involved in the development of adipose tissue in normal 

and obesity cases. Adiponectin and PP ARp/8 are reduced with obesity and correlated to 

insulin-sensitizing and anti-inflammatory properties (reviewed from Cefalu et al, 2011; 

Szanto et al, 2008). In contrast, leptin, PAI-1, CCL2 (Taube et al, 2012; Morton and 

Schwartz, 2011; Alessi et a l , 2007; Guilherme et al, 2008) and CX3CL1 (reviewed by 

Cefalu et al, 2011; Shah et al, 2011) have been found to be increased in obesity and 

associated with T2DM and CVD. Moreover, the production of chemokines (CX3CL1
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and CCL2) by adipose tissue infiltrated with macrophages is a further cause of 

endothelial dysfunction in adipose tissue and in the artery wall leading to the 

development of inflammation (Cefalu et al., 2011; Gustafson et al., 2007; Taube et al., 

2012). Recently, it has been reported that CX3CR1 and CCR2, with their ligands, have 

important roles in monocyte-adipocyte interactions by recruitment of leukocytes to 

adipose tissue in obesity (Cefalu, 2011). Especially, detection of CX3CR1 (Polyak et al., 

2014, Shah et al., 2011; Lumeng et al., 2007) and CCR2 (Kanda et al., 2006) on 

macrophages as well as their ligand CX3CL1 (Shah et al., 2011) and CCL2 (Kanda et 

al., 2006) in adipose tissue led to support this concept.

4.1.2.1 Adipocyte cells and testosterone treatment

Adipose tissue expands in obesity cases and this is accompanied by low testosterone 

levels as clearly documented in an 11-year follow-up patient study (Laaksonen et al., 

2005). A further study suggested a strong inverse correlation between body fat and 

testosterone levels (Kapoor et al., 2005), with hypogonadal men exhibiting a reduced 

lean body mass and an increased fat mass. Several studies have shown that TRT in 

obese men reduces BMI and visceral fat mass as well as IR (Rebuffe'-Scrive et al., 

1991; Marin et al., 1992a, b, 1995; Saad et al., 2007, 2008; Agledahlet al., 2008; Kelly 

and Jones, 2013).

Nevertheless, the mechanism by which testosterone affects fat storage and obesity is 

unclear. There are specific receptors for androgens in adipose tissue, which indicate an 

important role for these hormones in the regulation and function of this organ. These 

sex steroid hormones perform their action in adipose tissues via stimulation of both 

genomic and non-genomic pathways. It is now recognized that there are ER and AR in 

adipose tissues, so their actions could be direct by AR or by ER after conversion of 

testosterone to estradiol by aromatase in adipose tissue (Saad, 2009). For instance, in 

stem cell culture studies, testosterone treatment showed a direct effect on adipogenesis. 

Singh et al., (2003) stated that treatment of isolated mouse pluripotent stem cells with 

testosterone stimulated the growth of cells of myocyte lineage rather than adipocytes, 

whereas testosterone deficiency induced the development of adipocytes over myocytes. 

Singh et al. (2006) reported that testosterone and dihydrotestosterone inhibit adipocyte 

differentiation in vitro through an AR-mediated nuclear translocation of beta-catenin 

and activation of downstream Wnt signalling. In addition, sex steroid hormones could
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stimulate hormone-sensitive lipase leading to lipolysis in adipose tissue by activation of 

the cAMP cascade (Mayes and Watson, 2004).

In a clinical study, it was shown that testosterone inhibits triglyceride uptake and 

lipoprotein lipase activity. In this study, testosterone administration returned 

testosterone levels to mid normal values with a treatment duration of 8-9 months, 

leading to a decline in the visceral fat mass (Saad, 2009). Therefore, the action of 

testosterone seems to be implicated in the regulation of both preadipocyte proliferation 

and differentiation by affecting lipoprotein lipase action. The above studies are 

examples on the effect of testosterone in modulating adipose tissue and adiposity; 

however, other studies have been carried out to investigate the correlation between 

testosterone and adipocyte-derived proteins (Kalinchenko et al, 2010). Changes in 

these adipocyte-derived proteins as well as in testosterone levels in obesity resulting in 

MetS were observed (Allan et al, 2007). The role of testosterone is established by 

findings in men with prostate cancer who undergo androgen ablation therapy 

(Kalinchenko et al, 2010) particularly in the longer-term, which affects all components 

of the MetS (Braga-Basaria et al, 2006). The resulting metabolic consequences include 

abdominal obesity, IR, and atherogenic dyslipidemia along with a pro-thrombotic, 

inflammatory profile (Maneschi et al, 2012).

Previous studies in hypogonadal men showed that TRT inhibits adiponectin levels, even 

though both adiponectin and testosterone have an inverse correlation with obesity 

(Lanfranco et al, 2004). There have been contradictory results related to the effect of 

testosterone treatment and adiponectin. While in one study, testosterone treatment led to 

increased levels of adiponectin (Heufelder et al, 2009), in another study a decrease was 

observed in diabetic patients (Kapoor et al, 2007); a decrease was also seen in studies 

using high doses of testosterone (Page et al, 2005a) however a further study saw no 

change (Page et a l , 2005b). In contrast to adiponectin, leptin levels increased in direct 

proportion to the adipose tissue mass (Kapoor et al, 2007). Leptin has a suppressive 

effect on testosterone production (Saad and Jones 2010). An inverse relationship has 

been reported between serum testosterone and leptin concentrations in men (Isidori et 

al, 1999). TRT has been found to decrease serum leptin levels in hypogonadal men (Sih 

et al, 1997). PAI-1 is also secreted highly in obesity and acts as a pro-thrombotic factor 

(Russo et al, 2012). TRT was associated with reduction in its level in endothelial cells 

(Jin et al, 2007), whereas others found no change (Smith et a l , 2005). In contrast, to
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the best of our knowledge, no research has been performed to investigate the effect of 

testosterone treatment on CX3CL1, CCL2 and PPARp/5 in adipose tissue. Sex 

hormones have been reported to influence the differentiation process of adipocytes 

(Monjo et al., 2005). However, it is unclear whether testosterone treatment could 

influence these factors through adipogenesis processes and adipocyte differentiation 

including adiponectin, PP ARp/5, PAI-1, leptin, CX3CL1 and CCL2.
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4.1.5 Aims of this chapter

1. To investigate the effect of testosterone on CX3CR1 and CCR2 mRNA expression in 

PMA-differentiated THP-1 cells, as a model of macrophages involved in atherosclerosis, 

in the presence or absence of cytokines.

2. To investigate the effect of testosterone on the secretion of anti/pro-inflammatory 

mediators by PMA-differentiated THP-1 cells before and after stimulation with pro- 

inflammatory cytokines.

3. To investigate the effect of testosterone on mRNA expression of adipocyte derived 

associated proteins (adiponectin, PPARp/8, PAI-1, leptin, CX3CL1 and CCL2) during 

the differentiation process in the mouse 3T3L1 cell line, as a model of preadipocyte 

differentiation.

4. To investigate the effect of testosterone on the secretion of adiponectin, CX3CL1 and 

CCL2 from mature 3T3L1 adipocyte cells.

5. To investigate whether testosterone is acting via an androgen-receptor (AR) or non

androgen receptor mechanism, by blocking the AR with flutamide in each of the above 

studies.
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4.2 Materials and methods

4.2.1 Cell culture models

Both cell lines (Human acute monocytic leukaemia cell line (THP-1) and Mouse 

Preadipocyte 3T3L1 cell line) were maintained for indefinite periods in a defined 

culture medium. Sterile cell culture techniques were used throughout to avoid microbial 

contamination. All experiments were repeated three times with two replicates for all 

experimental conditions.

4.2.1.1 THP-1 cell line

THP-1 is a human acute monocytic leukaemia cell line isolated from the peripheral 

blood of a 1 year old human male with acute monocytic leukaemia (AML) at relapse in 

1978 and was originally obtained from the European collection of cell cultures (EC ACC, 

UK). The THP-1 cell line is a valuable model for studying the mechanisms involved in 

macrophage differentiation, physiological functions and the expression of plasma 

membrane receptors, and cytokines (Apostolakis et al, 2007). Phorbol myristate acetate 

(PMA) induces differentiation of THP-1 to macrophage-like cells.

4.2.1.2 3T3-L1 preadipocytes cell line

Mouse 3T3-L1 preadipocyte cell line was developed by clonal expansion from murine 

Swiss 3T3 cells and was originally obtained from American Type Culture Collection 

(ATCC, UK). The mouse embryonic fibroblast cell line 3T3-L1 is a favoured model for 

metabolism and obesity research, because the cells can be chemically induced to 

differentiate into adipocytes, where they are sensitive to lipogenic and lipolytic 

hormones and drugs. The mixture of dexamethasone (DEX), 1-methyl-3- 

isobutylxanthine (MIX), and insulin is used for stimulating cell differentiation of the 

Mouse 3T3-L1 preadipocyte to mature adipocytes.
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4.2.2 Growing and maintaining of cell lines

4.2.2.1 Human monocytic THP-1 cells

THP1 cells were seeded in suspension and maintained in 75 cm2 tissue culture flasks 

(Fisher Scientific, UK) containing RPMI 1640 (GIBCO®, UK) media supplemented 

with 2mM glutamine, 10% foetal bovine serum (FBS), (GIBCO®, UK), 1% (2mM) 

penicillin/streptomycin (GIBCO®, UK) and 1% (lOOmM) sodium pyruvate (GIBCO®, 

UK) at 37°C with relative humidity in a 5%COil 95% air incubator (Heraeus Instrument, 

Germany). At 70-90% confluence, medium was changed from the culture flasks and 

cells were placed into universal 30 ml tubes (Fisher Scientific, UK) and centrifuged for 

5 minutes at 200g (Kendro Laboratory, USA). Media was changed approximately every 

72 hours. The passage number of this cell line was unknown.

4.2.2.2 Mouse 3T3L1 cells

Cells were maintained in growth medium (preadipocyte medium, PM) containing 

Dulbecco’s modified Eagle’s medium (DMEM) (GIBCO®, UK) supplemented with 

10% FBS and 1% (2mM) penicillin/streptomycin into 175 cm2 tissue culture flasks. 

They were kept at 37°C with 5% C02/95% air in a humidified incubator until use and 

subcultured every 5-7 days. The passage number of this cell line was 7-10 in all 

experiments.

-At 70-90% confluence, medium was removed from the culture flasks and cells were 

washed twice with phosphate buffered saline (PBS) (Invitrogen, UK) and then aspirated. 

One ml of trypsin/EDTA solution (0.5% trypsin and 0.53nM EDTA (GIBCO®, UK)) 

was added to the cells in al75 cm2 flask and incubated at 37°C for 3 minutes. The flask 

was tapped gently to remove cells from the bottom surface and an equal amount of 

complete medium was added to the flask to neutralise the actions of trypsin/EDTA. The 

cell suspension was transferred to a sterile 50 ml-Falcon tube and centrifuged for 5 

minutes at 200g as above. After removing the supernatant, the cells were suspended in 

lml of fresh medium. Viable cell numbers were determined by adding lOpI of this cell 

suspension to lOpl of trypan blue solution (Sigma-Aldrich, UK) and incubated for 5 

minutes. Viable cells do not stain whereas dead cells stain blue. Cells were counted 

using an automatic cell counter designed to measure cell count and viability
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(Countess™, Invitrogen, UK). Cells were then further diluted to working densities and 

used in the experimental procedures, sub-cultured or cryopreserved.

4.2.3 Differentiation of THP-1 cells into macrophage cells

Induction of terminal differentiation from monocyte-like state to macrophage-like cells 

was performed by using PMA. PMA (Sigma-Aldrich, UK) was dissolved in DMSO at 

1 mg/ml and stored at -20°C as a stock solution. Additional dilutions of PMA were made 

in medium at 1:1000. Working concentration of PMA lOOng/ml was added to THP-1 

cells, which is an effective dose for differentiating these cells. The cells were plated in 

six-well plates (Fisher Scientific, UK) in duplicate at a density of 3x105 cells/ml (2.5ml 

per well) for 24,48, 72 and 96 hours.

4.2.4 Differentiation of 3T3L1 preadipocyte cells

To differentiate mouse preadipocyte cells to mature adipocyte cells, they were seeded 

into six-well plates in duplicate a density of 4xl05 cells/ml (2.5ml per well). Once the 

cells were confluent, they were incubated for an additional 48 hours before initiating 

differentiation by incubating in differentiation medium (DM), DMEM supplemented 

with 0.5 pM isobutylmethylxanthine (Sigma-Aldrich, UK), lpM dexamethasone 

(Sigma-Aldrich, UK) and 10 pg/ml insulin (Sigma-Aldrich, UK) for 3 days. DM was 

replaced with adipocyte maintenance medium (AM) containing 10 pg/ml insulin only. 

The medium was changed every 2-3 days and replaced by AM until ready for use. 3T3- 

L1 adipocytes were suitable for most assays 7-14 days post differentiation, where more 

than 80% of the cells had differentiated by 7 days.

4.2.5 Freezing cells protocol

Both cell lines were frozen with freezing medium (70% medium, 20% FBS, 10% 

Dimethyl sulphoxide, (DMSO), (Sigma-Aldrich, UK)) at lxlO6 cells/ml. In brief, cells 

were collected from tissue culture flasks into Falcon universal tubes and centrifuged at 

200g at 20 °C for 5 min. The supernatant was discarded and cells were re-suspended and 

counted, as described above. 3 ml of freezing media was added to the cells following re

suspension of cells and 1ml was aliquoted into labelled cryovials (Nalgene, Fisher, UK)
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and packed with plenty of tissue in a polystyrene container (Nalgene, Fisher, UK) and 

stored at -80 °C freezer overnight. Following this cryovials were transferred into a 

dewar containing liquid nitrogen (Forma Scientific, USA).

4.2.6 Thawing cells protocol

Cell vials were removed from liquid nitrogen and quickly thawed in a water bath at 

37°C until thawed. In a laminar flow hood, 1 ml of warm complete medium was added 

to cells in the cryovial, and then transferred to 10 ml of medium in a sterile universal 

tube, gently mixed and then centrifuged at 200g for 5 min. After discarding the 

supernatant cells were re-suspended and viable cells counted as above.

4.2.7 Collection of supernatants and adherent cells for analysis

Cells were treated as in section 4.2.2.2 and supernatants were collected in 5ml tube 

(Fisher Scientific, UK) to analyse cytokines production from these cells in media and 

cell pellets were stored at -80 freezers for extraction of RNA.

4.2.8 Oil Red O staining and 3T3L1 cells

The Oil Red O method is a common staining technique used for demonstrating the 

presence of fat or lipids in fresh and frozen tissue sections. The basis for staining lipids 

with an oil-soluble dye lies in its high solubility in fatty substances. For staining 3T3L1 

cells, the stain must be freshly prepared from the stock solution and the cells fixed. A 

stock solution of stain was prepared by dissolving 0.3 g of Oil Red O (Sigma-Aldrich, 

UK) in 100 ml of isopropanol. A working solution was prepared by dilution of 30 ml of 

the stock stain with 20 ml of distilled water and left to stand for 10 minutes and then 

filtered using filter paper (Fisher Scientific, UK) into a Coplin jar, and covered 

immediately. Fixation of cells was performed by incubation of cells in wells of a 6-well 

plate in 4% paraformaldehyde (Sigma-Aldrich, UK) for 30-40 minutes at RT. Then, the 

fixative was aspirated and cells were rinsed three times for 5-10 minutes with PBS. 

Following aspiration of PBS, cells were washed twice with H2O and then stained with 1 

ml of freshly prepared Oil Red O working solution. The Oil Red O solution was 

removed and cells were washed three times with H2O. Once the cells were dried the red
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colour of lipid particles was monitored and photographed using a microscope with Xli 

camera (Leica Microsystems, UK Ltd).

4.2.9 Experimental treatment of THP-1 cell

4.2.9.1 Experimental conditions for testing the effects of testosterone with or 

without flutamide on CX3CR1 and CCR2 expression in THP-1 cells

Testosterone (Sigma-Aldrich, UK) was dissolved in absolute ethanol (Fisher Scientific, 

UK) at an initial concentration of 10‘3M and stored as a stock solution at 4°C until used. 

Additional dilution was performed at 1:1000 in medium and then further dilutions were 

made to prepare working concentrations. Furthermore, flutamide (Sigma-Aldrich, UK) 

was dissolved in absolute ethanol (Fisher Scientific, UK). Flutamide was stored at 4°C 

as a stock solution at 10'3 M. Dilution was performed in medium at 1:1000 and then 

further dilutions were made to prepare working concentrations before use.

Cells were cultured at a density of 3 x 105 cells/ml in six well plates (2.5 ml) for 24 h 

and then differentiated with PMA (100 ng/ml) for 48h. Testosterone was added to cells 

at 10 and 100 nM per well in duplicate and incubated with testosterone from 24 to 96h 

alone and in combination with flutamide at concentration of 100 and 1000 nM, 

respectively. Untreated cells were used as the negative control. Ethanol, at a volume 

equal to that of the diluted working solution of testosterone or flutamide was not added 

to control cells as vehicle because previous studies have shown no effect of ethanol at 

this concentration on these cells (Kilby et al, 2012). Following collection of cells as 

detailed in section (4.2.7), cells and supernatants were stored at -80°C prior to RNA 

extraction and flow cytometric bead assay analysis.

4.2.9.2 Experimental conditions for testing the effects of 24h cytokine and 

testosterone with or without flutamide on CX3CR1 and CCR2 expression in THP- 

cells

THP-1 cells were seeded in 6 well plates at a density of 3 xio5 cells/ml (2.5 ml per 

well) and then differentiated with PMA as described in section (4.2.3. In the presence of 

cytokines TNFa plus IFNy combined, at concentrations of 10 and 100 ng/ml, cells were 

treated with testosterone at 10 and lOOnM alone and in combination with flutamide at 

100 and 1000 nM, respictivley. Untreated cells without cytokines and cells with
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cytokines but without testosterone were used as negative controls. Collection and 

storage of cells and supernatants were performed as described above.

4.2.10 Measurement of pro- and anti- inflammatory concentrations in 
supernatants of THP-1 macrophages by Human Enhanced Sensitivity 
Cytometric Bead Array

The principle of this method was described in chapter 2 and was used for investigating 

levels of pro- and anti-inflammatory biomarkers in serum. Here, this method was used 

for measuring levels of IL-ip, IL-6, IL-8 and IL-10 TNF-a, and IFN-y in the 

supernatants from THP-1 macrophages, following treatment with the previous 

experimental conditions. The assay followed the same protocol as described in chapter 2 

section (2.2.4).

4.2.11 Experimental treatment of mouse 3T3L1 cells

4.2.11.1 Experimental conditions for testing the effects of testosterone with or 

without flutamide on adipocyte derived associated proteins in mouse 3T3L1 cells

Cells were seeded at a density of 4 x 105 cells/ml (2.5ml per well) in six well plates (for 

3, 5 and 9 days following differentiation. Testosterone was added at 10, 100 nM with 

DM for 3 days followed by AM for 5 and 9 days alone and in combination with 

flutamide at 100 and 1000 nM to cells per well in duplicate, respectively. Untreated pre

adipocyte and mature adipocyte 3T3L1 cells were used as negative controls and 

untreated cells were used as the negative control. Ethanol, at a volume equal to that of 

the diluted working solution of testosterone or flutamide was not added to control cells 

as vehicle because previous studies have shown no effect of ethanol at this 

concentration on these cells (Tang et al, 2012). All treatments were applied in duplicate, 

with experiments that were repeated at least three times for each condition. Collection 

of cells and supernatants were performed as previously above.

4.2.12 Measurement of the secretion of adiponectin, CX3CL1 and 
CCL2 in supernatants of mouse 3T3L1 cells by ELISA
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Adiponectin, CX3CL1 and CCL2 were measured in supernatants of adipocyte cells 

following the above treatments using ELISA kits from R&D Systems. The method for 

each ELISA was the same apart from the volumes of reagents used and the 

concentrations of standards, as detailed below.

4.2.12.1 Investigation of adiponectin in supernatants of mouse 3T3L1 adipocyte by 

ELISA

Method

All reagents and 96 well microplate in kits the Mouse adiponectin/Acrp30 Quantikine 

ELISA kit (R&D Systems, USA) were brought from 4°C to RT. 50pl of assay diluents 

was added to each well and then 50pl of adiponectin standards (0, 0.16, 0.31, 0.62, 1.25,

2.5, 5 and 10 ng/ml) and test supernatants were pipetted into the wells in duplicate and 

left at RT for 3 hours. Following aspiration and washing each well five times with 400 

pi wash buffer, the plate was inverted and blotted against clean paper towels. lOOpl of 

adiponectin antibody-enzyme conjugate was added to each well and left for 1 hour at 

RT. After that washing was repeated and then 100 pi of substrate solution (TMB) was 

added to each well and left protected from light for 30 minutes at RT. Following 

addition 100 pi of stop solution (hydrochloric acid) per well to end the reaction, the 

plate was read on a microplate reader within 30 minutes at 450 nm.

4.2.12.2 Investigation of CX3CL1 in supernatants of mouse 3T3L1 cells by ELISA 

Method

CX3CL1 was investigated by using the Mouse CX3CLl/fractalkine Quantikine ELISA 

kit (R&D Systems, USA). Reagents were brought from 4°C to RT. 50 pi of assay 

diluent was added to each well and then 50pl of fractalkine standards (0, 0.62, 1.25, 2.5, 

5, 10, 20 and 40 ng/ml) and test supernatants were pipetted into the wells in duplicate 

and left for 2 hours. Subsequently, the plate was processed as above for the adiponectin 

assay.
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4.2.12.3 Investigation of CCL2 in supernatants of mouse 3T3L1 adipocyte by 

ELISA

Method

CCL2 was investigated by using the CCL2/JE/MCP-1 Quantikine ELISA kit (R&D 

Systems, USA). 50j_il of assay diluent was added to each well and 50pl of CCL2 

standards (0, 15.6, 31.2, 62.5, 125, 250, 500 and lOOOng/ml) and test supernatants were 

pipetted into the wells in duplicate and left for 2 hours at RT. The assay then followed 

the same protocol as described above for adiponectin

4.2.13 Investigation of gene expression in THP-1 macrophages and 
mouse 3T3L1 cells using qRT-PCR

The qRT-PCR principle was previously described in chapter 3 section (3.2.1) using 

SYBR Green Dye I.

4.2.13.1 Isolation of RNA

RNA was extracted using RNeasy Lipid Tissue Mini Kit (Qiagen, UK). This method is 

designed to inhibit RNases with the ability to remove contamination by using 

QIAzollysis reagent (Qiagen UK), which is a monophasic solution of phenol and 

guanidine thiocyanate. Adding chloroform (Sigma-Aldrich, UK) leads to protein, DNA 

and RNA separating into phases of aqueous and organic layers in a RNeasy spin column.

Method

According to the manufacturer’s protocol, RNA was extracted by adding 1ml of 

QIAzollysis reagent (Qiagen UK) to cell pellets in Eppendorf tubes and incubated for 

5min at RT. 200pl of chloroform was added and the tubes were vigorously vortexed for 

15 s, then samples were centrifuged (Heraeus Fresco 17 Refrigerated Micro Centrifuge, 

USA) at 12,000 g for 15min at 4°C to separate protein, DNA and RNA into three layers. 

The upper aqueous layer containing RNA was separated and collected (about 600pl) 

into a clean 1.5ml Eppendorf tube and mixed with 600pi of 70 % ethanol. Samples were
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removed to the RNeasy spin column in two steps, in each one about 600pl were 

transferred, and centrifuged for 15s at > 8000g. The supernatant was discarded and the 

precipitated RNA pellet was washed with 700 pi of buffer RW1 in the spin column and 

centrifuged at 8000g for 15s. The supernatant was discarded and the precipitated RNA 

pellet was washed with 500 pi of buffer RPE in the spin column and centrifuged at 

8000g for 15s. Again, the supernatant was discarded and the precipitated RNA pellet 

was washed with 500pl of buffer RW1 in the spin column and centrifuged at 8000g for 

2min. The RNeasy column was transferred to a clean 1.5ml Eppendorf tube and 

centrifuged for lmin at 8000g. Finally, the RNeasy column was transferred to a clean 

1.5ml tube and mixed with 30-40pl of RNA free water and then centrifuged for lmin at 

8000g. The precipitated RNA pellet was stored at -20°C initially and then at -80°C prior 

to use in cDNA synthesis and q-RT-PCR.

4.2.13.2 Quantification of RNA concentration

Quantity and high quality of RNA extraction from samples are essentially required for 

reduing the variation among these samples when reverse transcription of RNA applied 

for cDNA synthesis. For this the determination of exact of RNA concentration without 

contamination is advantageous and was performed by using The NanoDrop® ND1000 

(Labtech International Ltd, UK).

The purity of RNA can be determined via the ratio of 260/280nm. The ratio of 260/280 

in close proximity to 2.0 reflects purity of nucleic acids with respect to protein or 

solvent contaminants but this is not only enough for determination of purity nucleic 

acids, therefore, estimate the absorbance of nucleic acids at 260nm relation to 230nm 

can be also used as a further indication of purity ranging between 1.8-2.0 (Gallagher, 

2007)

Method

RNA free water was used to blank The NanoDrop® ND1000, 2pl of sample was placed 

on the measurement pedestal, the measurement column was then drawn between the 

ends of two optical fibres to establish the measurement path. The measurement is 

normally finished at 5-10 seconds, and the spectrum and its analysis is shown on the 

screen of the attached PC. Once the measurement was made, the sample was wiped
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from the measurement pedestals. Between each sample measurement, 2 pi of RNA free 

water was used as a blank and to avoid any contamination between samples.

4.2.13.3 Investigation of RNA quality

An additional method used alongside the Nanodrop to examine the integrity of total 

RNA was to run an aliquot of the RNA sample on a denaturing agarose gel stained with 

ethidium bromide. RNA with high integrity is visualized as sharp, clear 28S and 18S 

rRNA bands. The 28S rRNA band should appear approximately twice as intense as the 

18S rRNA band. This 2:1 ratio (28S:18S) is considered an excellent signal 

demonstrating that the RNA has high integrity (Huggett et al, 2005; Sambrook and 

Russel, 2001).

Method

In an Eppendorf tube, 3pi of the extracted RNA sample was mixed with 5pi loading 

buffer, (Invitrogen, USA) and run on a 1.5 % agarose gel pre-stained with ethidium 

bromide (Sigma-Aldrich, UK). Using TAE as the buffer, the gel was run for 30 minutes 

at 110 v and the resulting gel was visualised on a UVP Bioimaging system using Lab 

Works 4 software (Bio-Rad, UK).

4.2.13.4 Synthesis of cDNA

Process of complementary DNA (cDNA) synthesis is called Reverse Transcription 

where high quality mRNA template is reverse transcribed into (cDNA) in vitro. 

Preparing cDNA requires mRNA, primers and the Reverse Transcriptase (RT) enzyme. 

It is advantageous to generate these cDNA samples by using random primers which can 

efficiently prime any RNA present in the sample. In addition, this type of primer can 

extend the RNA template at non-specific points and also give higher cDNA yields from 

limited mRNA. Therefore, random primers were used as a suitable method for cDNA 

synthesis. It is important that the initial RNA sample is free of genomic DNA. 

Consequently, RNA samples were mixed with gDNA wipeout buffer to remove 

contaminating genomic DNA from RNA samples. Then, the RNA template is reverse 

transcribed into cDNA by the enzyme reverse transcriptase (RT). The RT primer mix
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contains a specially optimized mixture of oligo-dT and random primers, RT elongates 

the sequence using dNTPs to produce highly accurate cDNA.

Method

cDNA synthesis was performed by using a QuantiTect ©Reverse Transcription kit, 

(Qiagen, Germany). In brief, 2pl of the gDNA wipeout buffer was mixed with template 

RNA sample and specific RNA free water to give 14pl of total volume in the first 

microcentrifuge-tube (Sigma-Aldrich, UK). Following 2min incubation at 42°C in a 

thermocycler, tubes were immediately placed on ice. In the second tube, 1 pi of reverse- 

transcription master mix, 4pl of Quantiscript RT buffer and lpl of RT Primer Mix with 

14pl of RNA template from the first tube and then incubated at 42°C for 15min in a 

thermocycler followed by 3min at 95°C to inactivate Quantiscript RT. Synthesized 

cDNA samples were stored at -20°C for RT-PCR analysis.

4.2.13.5 Selection of endogenous control reference genes

For perfect and reliable gene expression analysis, normalization of gene expression data 

against housekeeping genes (reference or internal control genes) is needed. The steps 

involved are described in chapter 3 section (3.2.1.2). However, the list of house keeping 

gene in this part were 12 human housekeeping genes (ACTB, SDHA, RPL13, ATPSB, 

EIF4A, 18S, YWHAZ, CYC1, B2M, CANX, UBC, and GADH) for THP-1 cell line 

and similarly 12 mouse housekeeping genes (B actin, P2M, GADPH, TOPI, RPL13A, 

SDHA, UBC, YWHAZ, 18S, UCB, EFI4A2 and ATP5B) for 3T3L1 cell line on 8 

samples from each cell line, at different conditions of experiments that were used in this 

study. Each reference gene was tested with each sample in duplicate.

4.2.13.6 qRT-PCR using SYBR® Green dye methodology

The same protocol was performed as previously described in chapter 3. Products 

amplified by the SYBR® Green qRT-PCR analysis for each target were validated by 

visualisation on an agarose gel with a lOObp ladder (Invitrogen, UK) for THP-1 

macrophages and 200bp ladder (Promega, UK) for 3T3L1 adipocyte cells.
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Media RPMI 1640 containg 
FBS
sodium pyruvate 
glutamine (2mM) 
penicillin/streptomycin(2mM)

DMEM containing I 
FBS
penicillin/streptomycin
(2mM)

Media differentiation RPMI 1640 + PMA DMEM + INS/IBMX/Dex

after differentiation Macrophage cells Mature adipocyte cells

Investigated
parameters

CX3CR1, CCR2, IL-1 p, IL-6, 
IL-8, TNF-a and IFNy

Adiponectin, PPARp/5, 
PAI-1, CX3CL1,CCL2 
and Leptin

Assay technique qRT-PCR and Cytometric Bead 
Array

qRT-PCR and ELISA

Table 4.1: Summary table of in vitro study. The details of cell lines, media 
composition, target genes, analysis method used in this study.
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4.2.14 Statistical Analysis

Data is presented as mean ± SEM. The statistical analysis was made by using GraphPad 

Prism 5 and StatsDirect. To determine statistical differences of relative fold 

increase/decrease in expression of target gene between untreated (control) and treated 

samples and between groups were analysed by one way, two way ANOVA or Kruskal- 

Wallis and Friedman test for parametric and nonparametric data, respectively. When 

these tests revealed significance differences between the groups, then multiple 

comparison of groups were performed. All comparisons were two tailed and p  values 

less than 0.05 were considered statistically significant.
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4.3 Results

4.3.1 Differentiation of Human THP-1 cells and Mouse 3T3L1 cells line

4.3.1.1 Human THP-1 cells

In the present study, differentiation of human monocytic cell line THP-1 in response to 

PMA stimulation at time different periods showed that PMA treatment resulted in 

remarkable phenotypic changes; according to cell adherence to the bottom of the culture 

flasks, which increased with incubation time with PMA. In addition, change to the 

irregular shape of these cells was seen from 24h incubation and this was clearer at 96h 

treatment with PMA (figure 4.1).

4.3.1.2 Mouse 3T3L1 cells

Figure 4.2 illustrates the morphological changes observed when monitoring the 

accumulation of lipid droplets in the cytoplasm where the preadipocyte 3T3-L1 cells 

start to take on adipocyte morphology. Lipid droplets, which are triglycerides, appeared 

within 4-7 days following induction of differentiation. The size of lipid droplets 

increased during the experiment period. The droplets extremely small initially and then 

fuse to form several large ones indicating that the 3T3-LI cells were efficiently 

differentiated into mature adipocytes based on the Oil Red O staining (figure 4.3).

4.3.2 qRT-PCR in THP-1 and 3T3L1

4.3.2.1 RNA extraction and cDNA synthesis

RNA was extracted for all samples and separated by agarose gel electrophoresis assay. 

The presence of two sharp bands corresponding to the two ribosomal bands 28S and 

18S rRNA subunits that reflect adequate RNA integrity was obtained for the majorty of 

samples (figure 4.4).
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v j ■*. . ,,»

Figure 4.1: Morphological changes of THP-1 cells in response to PMA. Human 

monocyte THP-1 cell line before differentiation (A) compared to post treatment with 

PMA (lOOng/ml) for 24, 48, 72, 96h (B-E respectively). Cells changes from regular, 

round cell morphology to irregular shapes over time. PMA (Phorbol 12-myristatel3- 

acetate).
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Figure 4.3: 3T3-L1 cells have differentiated into adipocytes and stained with Oil

Red O. Visualization of cells after staining for the presence of neutral lipids with Oil 

Red O.
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Figure 4.4: Agarose gel electrophoresis of RNA extracted from THP-1 

macrophages. The 18S and 28S ribosomal RNA bands are clearly visible in the intact 

RNA sample where each lane represents a separate extracted RNA sample, with perfect 

quality RNA indicated. The same results were obtained for 3T3-L1 cells (not shown).
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43.2.2 Selection of endogenous control reference gene

To select the best housekeeping gene for use as an internal control to determine the 

relative expression change in target genes, in THP-1 macrophages, 12 housekeeping 

genes (ACTB, SDHA, RPL13, ATPSB, EIF4A, 18S, YWHAZ, CYC1, B2M, CANX, 

UBC, and GAPDH) were tested on 8 samples at different treatment conditions in 

experiments using qRT-PCR. The results were calculated by utilising geNorm software 

analysis. Housekeeping genes with an M-value above 1.5 were removed. Results 

showed that ACTB was the most stable gene because it had M-value less than 1.5, 

indicating its constant stability in relative mRNA expression under different 

experimental conditions. Similarly in the mouse 3T3L1 cell line, 12 mouse 

housekeeping genes (B actin, 02M, CANX, GADPH, TOPI, RPL13A, SDHA, 

YWHAZ, 18S, UCB, EFI4A2 and ATP5B) were tested on 8 samples of 3T3L1 cells 

using qRT-PCR. Following calculation of M values for each housekeeping gene 

demonstrated that CANX was the most stable housekeeping gene which had a M value 

less than 1.5.

4.3.2.3 Primer efficiencies and validation of primer targets

Determination of primer efficiency for target genes and reference gene in these cells 

was undertaken to validate the constant amplification of each PCR product at two 

cycles each time. In THP-1 macrophages the target and reference genes have similar 

and nearly 100% efficiencies in the range (93%-110%) as shown in table 4.2A and 

figure 4.5. Therefore, the 2'AAct (Livak) method was used to determine the relative 

difference in expression level of target gene in different samples compared to the 

internal control, reference gene. In contrast, the Pfaffl method was used in the 3T3L1 

cell line to determine the relative expression of the target gene in different samples 

because amplification efficiencies of target and reference genes were not in an 

acceptable range of ideal amplification efficiencies as shown in table 4.2B and figure

4.6. Data from the two cell lines was compared to control data, which was normalized 

to a value of 1. Primer products from qRT-PCR revealed a single product and expected 

sizes when analysed by agarose gel electrophoresis. Figures 4.7 and 4.8 show the 

expression of target genes AR, CD14, CX3CR1, CCR2 and ACTB, in human THP-1 

macrophages, whereas figures 4.9 and 4.10 show target genes AR and adiponectin, 

PPARp/8, leptin, PAI-1, CX3CL1 and CCL2 respectively in mouse 3T3L1 cells.
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A

ACTB 1.968 96.84

CX3CR1 1.941 94.08

CCR2 1.931 93.04

CD14 2.102 110.18

B

CANX 2.4 142.00

Adiponectin 2.1 115.00

PAI-1 2.346 134.00

PPARp/5 2.2 121.00

Leptin 2.276 127.59

CX3CL1 2.29 128.976

CCL2 2.054 105.35

Table 4.2: Primer efficiencies of PCR amplification in THP-1 macrophages and 

3T3L1 cells. Determination of primer efficiency percentage for target genes and 

reference gene in THP-1 macrophages (A) and 3T3L1 cells (B) using the formula, E =
jQ (-l/slope) _ |
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Figure 4.5: Standard-curve plot for calculation of primer efficiency genes in THP- 

1 macrophages. The efficiency of amplification of target genes and internal control 

(ACTB) was determined using real-time PCR and SYBR Green detection. The Ct 

values for each dilution were used to calculate the slope of the line representing the log 

of their amplification efficiencies. An ideal slope should be -3.32 for 100% PCR 

efficiency.
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Figure 4.6: Standard-curve plot for calculation of primer efficiency genes in 3T3L1 

cells. The efficiency of amplification of target genes and internal control (CANX) was 

determined using real-time PCR and SYBR Green detection. The Ct values for each 

dilution were used to calculate the slope of the line representing the log of their 

amplification efficiencies. An ideal slope should be -3.32 for 100% PCR efficiency.
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Figure 4.7: Agarose gel electrophoresis for PCR product amplification in human 

THP-1 macrophages. Androgen receptor (AR) mRNA was expressed from 24h to 96h 

while CD 14 mRNA was observed following 48h treatment with PMA (lOOng/ml).

Figure 4.8: Agarose gel electrophoresis showing RT-PCR amplification for primer 

product in human THP-1 macrophages. Single shaip bands indicate a single 

detectable product for all target genes. L- Ladder, lane - 1 CX3CR1, lane - 2 CCR2, 

and lanes 3-5 ACTB.
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Figure 4.9: Agarose gel electrophoresis showing RT-PCR amplification for primer 

for androgen receptors in 3T3L1 cell line. Single and sharp bands indicate single 

detectable product for AR gene. L-ladder, lanes-1 and 2 AR in preadipocytes, lanes-3 

and 4 AR in mature adipocyte cells.

500bp—

200bp—

Figure 4.10: Agarose gel electrophoresis showing RT-PCR amplification for 

primer product in 3T3L1 cell line. Single sharp bands indicate single detectable 

product for all target genes. L-ladder, lane-1 CCL2, lane-2 CX3CL1, lane-3 

adiponectin, lane-4 PPARp/5, lane-5 leptin and lane-6 PAI-1.



4.3.3 Analysis of CX3CR1 and CCR2 mRNA expression in human 
THP-1 macrophages by qRT-PCR

4.3.3.1 Analysis of CX3CR1 and CCR2 mRNA expression in THP-1 macrophages 

following testosterone treatment, with or without flutamide

At low testosterone concentrations, no significant change was observed in mRNA 

expression of CX3CR1 following testosterone treatment at lOnM concentration, even 

though there was a trend to a decrease in expression after 24 and 72h compared to 

untreated control samples. This effect was reversed, but not significantly by flutamide at 

lOOnM particularly following 24 to 72h (figure 4.1 la). Conversely, there was a trend to 

increase mRNA expression of CCR2 following the same concentration of testosterone 

treatment. This effect was reversed, but not significantly with flutamide from 24 to 96h 

at a concentration of lOOnM as shown in figure 4.12a.

At high testosterone concentration and compared to untreated control samples, no 

significant alteration was seen in mRNA expression of both receptors CX3CR1 (figure 

4.11b) and CCR2 (figure 4.12b) from 24 to 96h following 100 of testosterone treatment 

with or without flutamide at concentrations of lOOOnM, respectively.

4.3.3.2 Analysis of CX3CR1 mRNA expression in THP-1 macrophages following 

24h cytokines and testosterone treatment, with or without flutamide

As shown in figure (4.13 a, b), incubation of THP-1 macrophages with TNFa plus IFNy 

treatment at lOng/ml resulted in a decrease, although not significant, in mRNA 

expression of CX3CR1 after 24h compared to untreated control cells. However, the 

addition of testosterone treatment at 10 or lOOnM had no effect on mRNA CX3CR1 

expression in THP-1 macrophages treated with lOng/ml TNFa plus IFNy stimulation for 

24h (4.13a, b). A significant difference was seen in mRNA expression of CX3CR1 

(p<0.05) after co-treatment with lOOOnM flutamide (figure 4.13b).
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Figure 4.11: CX3CR1 mRNA expression in THP-1 macrophages following testosterone 

treatment, with or without flutamide from 24 to 96h by qRT-PCR. Results shown as 
mean±SEM from three separate experiments. Con=control, (A) T10=Testosterone lOnM, 
F100=Flutamide lOOnM, (B) T100=TestosteronelOOnM, F1000=Flutamide lOOOnM. Two way 
ANOVA.
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Figure 4.12: CCR2 mRNA expression in THP-1 macrophages following testosterone 

treatment, with or without flutamide from 24 to 96h by qRT-PCR. Results shown as 
mean±SEM from three separate experiments. Con= control, (A) T10=Testosterone lOnM, 
F100=Flutamide lOOnM, (B) T100=Testosterone lOOnM, F1000=Flutamide lOOOnM. Two way 
ANOVA.
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Figure 4.13: CX3CR1 mRNA expression in THP-1 macrophages following 24h cytokine 

and testosterone treatment, with or without flutamide by qRT-PCR. Results are shown as 
mean±SEM from three separate experiments. Con=control, C10=cytokine (TNF-a+IFN-y) 
lOng/ml, (A) T10=testosterone lOnM, F100=flutamide lOOnM, (B) T100=testosterone lOOnM, 
F1000=flutamide lOOOnM.##P<0.01 vs CIO, QP<0.05 vs C10+T100. Kruskal-Wallis.
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In addition, as shown in figure (4.14 a, b), stimulation of THP-1 macrophages for 24h 

with TNFa plus IFNy treatment at lOOng/ml led to reduced, but not significantly, 

expression of CX3CR1 mRNA compared to untreated control cells. Although not 

statistically significant, lOnM testosterone decreased expression of CX3CR1 mRNA 

following stimulation with lOOng/ml TNFa plus IFNy compared to cells treated with 

cytokines alone. This reduction was significantly abolished by flutamide at lOOnM 

(P<0.05) (4.14a). In contrast, lOOnM testosterone increased, but not significantly, 

expression of CX3CR1 mRNA, an effect that was not altered by blocking the AR with 

lOOOnM flutamide (figure 4.14b).

4.3.3.3 Analysis of CCR2 mRNA expression in THP-1 macrophages following 24h 

cytokine and testosterone treatment, with or without flutamide

There was a trend towards a decrease in expression of CCR2 mRNA following 

incubation of THP-1 macrophages for 24h with cytokines treatment at lOng/ml 

compared to untreated control cells (P=0.06). Conversely, the combination of 24h 

cytokine treatment at lOng/ml and testosterone treatment at lOnM or lOOnM with cells 

tended to increase expression of mRNA for CCR2 (P=0.08 and P=0.06 respectively) 

compared to cells stimulated with cytokines at lOng/ml (figure 4.15 a, b). No significant 

effect was seen after flutamide treatment at 100 or lOOOnM.

In addition, 24h cytokine treatment at lOOng/ml significantly down regulated expression 

of CCR2 mRNA compared to untreated control cells (p<0.01) (4.16 a, b). However, 

lOnM testosterone treatment significantly increased expression of CCR2 mRNA 

following stimulation with lOOng/ml cytokines compared to cells treated with cytokine 

treatment alone (p<0.001). This increase was significantly and partly reduced by co

treatment with lOOnM flutamide (4.16a). Moreover, combination of testosterone 

treatment at lOOnM with lOOng/ml TNF-a plus IFNy for 24h significant increased 

(p<0.01) CCR2 mRNA expression compared to cells treated with cytokine treatment 

alone. This increase in expression of CCR2 mRNA was not altered by lOOOnM 

flutamide (figure 4. 16b).
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Figure 4.14: CX3CR1 mRNA expression in THP-1 macrophages following 24h cytokine 

and testosterone treatment, with or without flutamide by qRT-PCR. Results shown as 
mean±SEM from three separate experiments. Con=control, C100=cytokine (TNF-a+IFN-y) 
lOOng/ml, (A) T10=testosterone lOnM, F100=flutamide lOOnM, (B) T100=testosterone lOOnM, 

F1000=flutamide lOOOnM. °P<0.05 vs C100+T10, Kruskal-Wallis.
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Figure 4.15: CCR2 mRNA expression in THP-1 macrophages following 24h cytokine and 

testosterone treatment, with or without flutamide by qRT-PCR. Results shown as 
mean±SEM from three separate experiments. Con=control, C10=cytokine (TNF-a+IFN-y) 
lOng/ml, (A) T10=testosterone lOnM, F100=flutamide lOOnM, (B) T100=testosterone lOOnM, 
F1000=flutamide lOOOnM. IUi?<0.0\ vs CIO. Kruskal-Wallis.
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Figure 4.16: CCR2 mRNA expression in THP-1 macrophages following 24h cytokine and 

testosterone treatment, with or without flutamide by qRT-PCR. Results shown as 
mean±SEM from three separate experiments. (Con=control, C100=cytokine (TNF-a+IFN-y) 
lOOng/ml, T10=testosterone lOnM, F100=flutamide lOOnM, T100=testosterone lOOnM, 
F1000=flutamide lOOOnM. **P<0.01 vs Con, ><0.01, #><0.001 vs C100, QDP<0.01vs 
C100+T10, Kruskal-Wallis.
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4.3.4 Investigation of pro and anti- inflammatory secretion by human 
THP-1 macrophages measured by CBA

There was high variability in the results of the CBA analysis. For IL-lp, IL-6, IL-10, 

TNF-a and IFN-y the results were not reliable due to high coefficients of variation in the 

supernatant of THP-1 macrophages. IL-8 was the only analyte determined by this 

method in the supernatant of the unstimulated cells. This is probably due to very low 

levels of the other cytokines, with higher levels of IL-8 detected. In addition, TNF-a 

and IL-8 were detected reliably following incubation with 24hr cytokines and 

testosterone treatment, with or without AR blocked, again this is due to the higher levels 

of these analytes on stimulating the cells with cytokines, compared to the other analytes.

4.3.4.1 Analysis of IL-8 levels in supernatants of THP-1 macrophages following 

testosterone treatment, with or without flutamide

At the low concentration of testosterone (lOnM), there was generally a trend to decrease 

IL-8 levels from 24 to 48h but this was not significant. Furthermore, there was a large 

increase but not significant in IL-8 after incubation with testosterone for 96h compared 

to untreated control cells. This may be due to high levels of variability or small number 

of samples. An effect that was reversed by flutamide at lOOnM but this effect was not 

significant as shown in (figure 4.17a).

Testosterone treatment (lOOnM) with or without flutamide (lOOOnM) had no significant 

effect on levels of IL-8 from 24 to 96h, compared with untreated control cells (figure 

4.17b).

4.3.4.2 Analysis of IL-8 levels in supernatants of THP-1 macrophages following 

24h cytokine and testosterone treatment, with or without flutamide

As shown in figures 4.18 a, b cytokine treatment at lOng/ml led to a significant increase 

in the production of IL-8 (P<0.01) compared to untreated cells. In contrast, testosterone 

treatment at lOnM or lOOnM reduced significantly levels of IL-8 (P<0.05) in cells 

stimulated with cytokines for 24h. However, this reduction did not approach the levels 

secreted from untreated control cells. The effect was significantly abrogated by 

flutamide at lOOnM (PO.05) and at lOOOnM (P<0.05) compared to cells treated with

187



IL-8
16 

14 

12 

f  10 
1  8 
3 6

4

2

0

■ T10

■ F10+100

Con 24 48

Hours

72 96

B IL-8
16 

14 

12 

f  io
*oS „ ■  T-100OL O
» g J  ■ F-1000

i t
Con 24HR 48HR 72HR 96HR 

Hours

Figure 4.17: CBA analysis of IL-8 level in supernatant of THP-1 macrophages following 

testosterone treatment, with or without flutamide from 24 to 96h. Results shown as 
mean±SEM from three separate experiments Con=control, (A) T10=Testosterone10nM, 
F100=Flutamide lOOnM, (B) T100=Testosterone lOOnM, F1000=Flutamide lOOOnM. Kruskal 
Wallis.
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Figure 4.18: CBA analysis of IL-8 levels in supernatant of THP-1 macrophages following 

24h cytokine and testosterone treatment, with or without flutamide. Results from three 
separate experiments shown as mean±SEM. Con=control, C10=cytokinel0ng/ml (TNFa+IFN- 
y), (A) T10=Testosterone lOnM, F100=Flutamide lOOnM, (B) T100=Testosterone lOOnM, 
F1000=Flutamide lOOOnM. **P<0.01 vs Con, # P<0.05 vs CIO, D P<0.05 vs C10+T10, Kruskal 
Wallis.
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combination of lOng/ml cytokine and testosterone treatment at 10 and 100 nM, 

respectively. Furthermore, cytokine treatment at lOOng/ml significantly increased IL-8 

levels (P<0.001) (figure 4.19 a, b) compared to the untreated control. However, 24h 

cytokine and testosterone treatment at lOnM significantly reduced (P<0.001) IL-8 levels 

compared to cells treated with cytokine alone (figure 4.19a). Blocked AR with 

flutamide at 100 nM prevented the decrease in IL-8 levels as a result of lOnM 

testosterone treatment (p<0.01). This increase in IL-8 level due to flutamide was 

significantly (P<0.05) lower than its level in media of cells treated with lOOng/ml 

cytokine alone (figure 4.19a). In addition, testosterone treatment at lOOng/ml plus 

lOOng/ml cytokines for 24h down-regulated production of IL-8 compared to cells 

treated with lOOng/ml cytokines alone (P<0.01) (figure 4.19b). Blocked AR with 

flutamide at lOOOnM prevented significantly (P<0.01) the reduction in IL-8 levels as a 

result of testosterone treatment (lOOnM).

4.3.4.3 Analysis of TNF-a level in supernatants of THP-1 macrophages following 

24h cytokines and testosterone treatment, with and without flutamide

TNF-a was not detectable in supernatants of unstimulated THP-1 macrophages controls 

in all experimental conditions. However, 24h cytokine treatment at lOng/ml increased 

markedly levels of TNF-a (P<0.01) compared to untreated cells. lOng/ml cytokines plus 

10 or lOOnM testosterone treatment was associated with a significant reduction in level 

of TNF-a (P<0.01) compared to cells treated with cytokine alone. However, 

testosterone treatment reversed the stimulatory effect of cytokine treatment and reduced 

TNF-a to levels which were not significantly different from untreated controls (figure 

4.20 a, b). No effect on levels of TNFa were seen after flutamide treatment at 100 

compared to cells treated with lOnM of testosterone (figure 4.20a). Conversely, 

blocking the AR by flutamide at lOOOnM significantly (P<0.05) reversed the reduction 

in TNFa level due to 100 nM testosterone treatment (figure 4.20b).

100 ng/ml cytokine treatment for 24h significantly increased concentrations of TNF-a in 

the media of THP-1 macrophages (P<0.01) compared to untreated cells (figure 4.21a, b). 

This increase was significantly abrogated with testosterone treatment at 10 or lOOnM 

(P<0.05) compared to cells treated with cytokine alone. Flutamide at lOOnM did not 

prevent the decline in TNF due to lOnM testosterone treatment (figure 4.21a) while this 

decrease was almost significant (P=0.06) and partly reversed by flutamide at 1000 nM 

(figure 4.21b).
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Figure 4.19: CBA analysis of IL-8 levels in supernatants of THP-1 macrophages following 

24h cytokine and testosterone treatment, with or without flutamide. Results shown as 
mean±SEM from three separate experiments. Con=control, C100=cytokine 100 ng/ml 
(TNFa+IFN-y), (A) T10=Testosterone 10 nM, F100=Flutamide 100 nM, (B) T100=Testosterone 
100 nM, F1000=Flutamide 1000 nM. **P<0.01, ***P<0.001vs Con, #P<0.05, ##P<0.01 vs C100, 
anP<0.01 vs C100+T10 or C100+T100, Kruskal-Wallis.
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Figure 4.20: CBA analysis of TNF-a levels in supernatants of THP-1 macrophages 

following 24h cytokine and testosterone treatment, with or without flutamide. Results 
shown as mean±SEM from three separate experiments. Con=control, C10=Cytokine 
(TNFa+IFN-y) lOng/ml (A) T10=Testosterone lOnM, F100=Flutamide lOOnM, (B) 
T100=Testosterone 1 OOnM, F1000=Flutamide lOOOnM, **P>0.01vs Con, ##P>0.01 vs CIO, a 
P<0.05 vs C10+T100, Kruskal-Wallis.
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Figure 4.21: CBA analysis of TNF-a levels in supernatants of THP-1 macrophages 

following 24h cytokine and testosterone treatment, with or without flutamide. Results 
shown as mean±SEM from three separate experiments. Con=control, C100=Cytokine 
(TNFa+IFN-y) 100 ng/ml, (A) T10=Testosteronel0 nM, F100=FlutamidelOOnM, (B) 
TlOO^TestosteronelOO nM, F1000=Flutamide lOOOnM. **P>0.01vs Con, #P>0.05 vs C100, 
Kruskal-Wallis.
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mRNA expression CX3CR1 NC NC
CCR2 NC NC

protein level IL-8 NC NC

Table 4.3: Summary of results of effect of testosterone on chemokines receptors 
expression and level of IL-8 in human THP1 macrophages cells. NC=no change.

mRNA expression CX3CR1 NC NC NC NC
CCR2 NC +*** NC

protein level IL-8 I*  ̂*** I**
TNF-a I** I** 1* i*

Table 4.4: Summary of results of effect of testosterone on chemokines receptors 
expression, level of IL-8 and TNF-a following cytokines stimulation in human 
THP1 macrophages cells. T: testosterone, C: cytokines, NC=no change.AEC. (t): 
increase, (j): decrease, *P<0.05, **P<0.01, ***P<0.001.
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4.3.5 Analysis of expression of adipokines and inflammatory factors in 
mouse 3T3L1 cells by q-RT-PCR

4.3.5.1 Analysis of adiponectin mRNA expression in 3T3L1 cells following 

testosterone treatment, with or without flutamide

No significant change was seen in mRNA expression of adiponectin in adipocyte cells 

treated with low or high testosterone, with or without flutamide over time up to 9 days 

compared to untreated preadipocytes or mature adipocyte control cells as shown in 

figures 4.22a, b.

4.3.5.2 Analysis of PAI-1 mRNA expression in 3T3L1 cells following testosterone 

treatment with or without flutamide

In figure 4.23a after 3 days, there was an non-significant increase in expression of PAI- 

lmRNA in untreated mature adipocyte cells compared to untreated preadipocyte cells. 

PAI-1 mRNA expression following testosterone at 10 nM decreased but not significant 

(p=0.06) compared to untreated preadipocyte cells and non-significant change was seen 

compared to untreated mature adipocyte cells after 3 days. No significant difference 

between the effect of flutamide at lOOnM and testosterone at lOnM on the expression of 

mRNA PAI-1 was seen. Following 5 days, a significant (P=0.01) reduction was seen in 

expression of mRNA PAI-1 in untreated adipocytes compared to untreated preadipocyte 

cells. Testosterone at lOnM significantly increased (p<0.01) PAI-1 mRNA expression 

compared to untreated mature adipocyte cells; an effect which was significantly 

(p<0.01) abrogated by lOOnM flutamide. After 9 days, decrease in PAI-1 mRNA 

expression (p=0.05) was observed in untreated mature adipocyte cells compared to 

untreated preadipocyte cells. No significant change in expression of PAI-1 mRNA was 

seen in cells treated with testosterone (lOnM), with or without flutamide (lOOnM) 

compared to both untreated control cells.

In figure 4.23b, there was no significant change in expression of PAI-1 mRNA in 

untreated mature adipocyte cells compared to undifferentiated cells or in cells treated 

with testosterone (lOOnM), with or without flutamide (lOOOnM) compared to both 

untreated cells after 3 and 9 days. However, there was a significant reduction in 

expression of PAI-1 mRNA after 5 days in untreated mature adipocyte cells (p<0.01) 

and in cells treated with testosterone (p<0.05), with or without flutamide (p<0.05),

195



A Adiponectin

I C on l 

Con2 

IT10 

10+F100

B Adiponectin
3

2.5 -

■  C onl

■ Con2

■ T100
■ T100+F1000

Figure 4.22: Adiponectin mRNA expression in 3T3L1 cell following testosterone 

treatment, with or without flutamide from 3 to 9 days by qRT-PCR. Results shown as 
mean±SEM from three separate experiments. (A) T10=testosterone lOnM, F100=Flutamide 
lOOnM, (B) TIOCMestosterone lOOnM, F1000=Flutamide lOOOnM. Friedman test.
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Figure 4.23: PAI-1 mRNA expression in 3T3L1 cell following testosterone treatment, with 

or without flutamide from 3 to 9 days by qRT-PCR. Results shown as mean±SEM from 
three separate experiments. (A) T10=testosterone lOnM, F100=Flutamide lOOnM, (B) 
T100=testosterone lOOnM, F1000=Flutamide lOOOnM. *P<0.05, ** P<0.01, *** p<0.0001vs 
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compared to only untreated preadipocyte cells; however the changes in expression level 

were small.

4.3.5.3 Analysis of PPARp/5 mRNA expression in 3T3L1 cells following 

testosterone treatment, with or without flutamide

No significant alteration was observed in expression of PPARp/8 mRNA in untreated 

mature adipocyte cells and cells treated with testosterone, with or without flutamide at 

low and high concentrations compared to untreated preadipocyte cell controls as a result 

of time or treatment (figures 4.24a, b).

4.3.5.4 Analysis of leptin mRNA expression in 3T3L1 cells following testosterone 

treatment, with or without flutamide

After 3 days, a significant decrease was seen in expression of leptin mRNA (p<0.001) 

in untreated mature adipocyte cells compared to untreated preadipocyte cells (figure 

4.25a). Similarly, there was a significant reduction in leptin mRNA expression 

following testosterone treatment at 10 nM (p<0.05) compared to untreated preadipocyte 

cells, but not untreated mature adipocyte cells. Following 5 days, no significant change 

was observed in expression of leptin mRNA in untreated adipocyte cells compared to 

untreated preadipocyte cells. While testosterone treatment at lOnM significantly 

reduced leptin mRNA expression (p<0.01) in mature adipocyte cells compared to 

untreated preadipocyte cells, testosterone tended to reduce mRNA leptin expression 

(p=0.06) in mature adipocyte cells compared to untreated mature adipocyte cells. At 9 

days, there was a significant reduction in expression of leptin mRNA in untreated 

mature adipocyte cells (p<0.01) compared to untreated preadipocyte cells. Testosterone 

significantly decreased leptin mRNA expression (p<0.01) in mature adipocyte cells 

compared to untreated preadipocyte cells but not untreated mature adipocyte cells. 

Finally, there was no significant difference between the effect of flutamide at lOOnM 

and testosterone at lOnM on the expression of mRNA leptin in treated cells over all 

time points.

As shown in figure (4.25b), a significant decrease was seen in expression of leptin 

mRNA in untreated mature adipocyte cells at 3 days (p<0.001) compared to untreated 

preadipocyte cells. Similarly, significant reduction was observed in cells treated with 

lOOnM testosterone at 3 days (p<0.01) compared to untreated preadipocyte cells but not
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Figure 4.24: PPARp/5 mRNA expression in 3T3L1 cells following testosterone treatmen, 

with or without flutamide, from 3 to 9 days by qRT-PCR. Results shown as mean±SEM 
from three separate experiments. (A) T10=testosterone lOnM, F100=Flutamide lOOnM, (B) 
T100=testosterone lOOnM, F1000=Flutamide lOOOnM. *P<0.05 vs Conl. Friedman test.
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Figure 4.25: Leptin mRNA expression in 3T3L1 cell following testosterone treatment, with 

or without flutamide, from 3 to 9 days by qRT-PCR. Results shown as mean±SEM from 
three separate experiments. (A) T10=testosterone lOnM, F100=Flutamide lOOnM, (B) 
T100=testosterone lOOnM, F1000=Flutamide lOOOnM *P<0.05, ** P<0.01, *** PO.OOOlvs 
Conl, Friedman test.

|  Con l=untreated preadipocyte 
] Con2=untreated mature adipocyte 
£  Mature adipocytes treated with testosterone 
| Mature adipocytes treated with testosterone and flutamide
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to untreated adipocyte cells. At 5 days, no significant alteration was seen in expression 

of mRNA leptin in untreated adipocyte cells compared to untreated preadipocyte cells. 

Testosterone at lOOnM tended to reduce (p=0.08) expression of leptin mRNA in mature 

adipocyte cells compared to untreated adipocyte cells. Following 9 days, a significant 

reduction was observed in expression of leptin mRNA in untreated adipocyte cells 

(p<0.01) and in cells treated with testosterone at lOOnM compared to untreated 

preadipocyte cells. There was no significant change between cells treated with 

testosterone and untreated adipocyte cells. Flutamide at 1000 nM did not alter the action 

of testosterone at 100 nM in the expression of leptin mRNA over all time points.

4.3.5.5 Analysis of CX3CL1 mRNA expression in 3T3L1 cells following 

testosterone treatment, with or without flutamide

Testosterone treatment at lOnM, with or without AR blocked at lOOnM, had no effect 

on expression of CX3CL1 mRNA in mature adipocyte cells compared to both untreated 

control cells after three and five days (figure 4.26a). While no difference in expression 

of CX3CL1 mRNA was seen between untreated preadipocyte cells and untreated 

mature adipocyte cells after 3days, there was a trend to slightly decrease (p=0.05) the 

expression of CX3CL1 mRNA in untreated mature adipocyte cells compared to 

untreated preadipocyte cells after 5 days. However, there was a non-significant increase 

in expression of CX3CL1 mRNA in untreated mature adipocyte cells and cells treated 

with testosterone at lOnM compared to untreated preadipocyte cells following 9 days. 

Testosterone increased (but not significantly) CX3CL1 mRNA expression in mature 

adipocyte cells compared to untreated adipocyte cells. This might be as result of high 

variability among data. Flutamide at 10 nM did not prevent this alteration.

In figure (4.26b), there was a slight but significant decrease in mRNA CX3CL1 

expression in untreated adipocyte compared to untreated preadipocyte cells after 

three(p<0.05) and five (p<0.01) days. Conversely, after 9 days, there was increase (but 

not significant) in mRNA leptin expression in untreated adipocyte compared to 

untreated preadipocyte cells. Testosterone at lOOnM, with or without flutamide at 

lOOOnM had no effect on CX3CL1 mRNA expression compared to untreated control 

cells after 3 and 5 days. At 9 days, an increase in expression of CX3CL1 mRNA due to 

testosterone treatment (lOOnM) was seen but this was not significant compared to 

untreated preadipocyte cells. Flutamide at lOOOnM abrogated, (but not significantly) 

this increase.
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Figure 4.26: CX3CL1 mRNA expression in 3T3L1 cell following testosterone treatment,

with or without flutamide from 3 to 9 days by qRT-PCR. Results shown as mean±SEM from
three separate experiments. (A) T10=testosterone lOnM, F100=Flutamide lOOnM, (B)
T10O=testosterone lOOnM, F1000=Flutamide. *P<0.05, ** PO.Ol, vs Conl. # P<0.05 vs
Con2. Friedman test.

Con 1 =untreated preadipocyte
Con2=untreated mature adipocyte
Mature adipocytes treated with testosterone
Mature adipocytes treated with testosterone and flutamide
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4.3.5.6 Analysis of CCL2 mRNA expression in 3T3L1 cells following testosterone 

treatment with or without flutamide

CCL2 mRNA expression was not changed in untreated mature adipocytes compared to 

untreated preadipocyte cells and in treated cells with testosterone compared to untreated 

mature adipocytes at 3 days (figure 4.27a). However, at 5 days, a significant reduction 

in CCL2 mRNA expression was seen in untreated mature adipocyte cells (p<0.01) 

compared to untreated preadipocyte cells. There was not significant change in CCL2 

mRNA expression in cells treated with testosterone compared to untreated mature 

adipocytes. After 9 days, no significant alteration was seen in mRNA expression of 

CCL2 in untreated mature adipocyte cells compared to untreated preadipocyte cells. 

There was trend to decrease mRNA expression of CCL2 in treated cells with 

testosterone compared to untreated mature adipocyte cells. Flutamide at 100 nM did not 

alter the action of testosterone at 10 nM on the expression of mRNA CCL2 over all time 

points.

In figure (4.27b), no significant alteration in expression of mRNA CCL2 expression in 

untreated mature adipocyte cells compared to untreated preadipocyte cells as well as in 

treated cells with testosterone treatment (lOOnM) compared to untreated mature 

adipocyte cells after 3 days. In contrast, there was considerable reduction in expression 

of CCL2 mRNA in untreated mature adipocyte (p<0.01) and in cells treated with 

testosterone (p<0.05) compared to untreated preadipocyte cells over 5 days. However, 

there was no significant change in mRNA CCL2 expression in treated cells with 

testosterone compared to untreated mature adipocyte. Following 9 days, expression of 

CCL2 mRNA increased but this was not significant in untreated mature adipocyte cells 

compared to untreated preadipocyte cells. There was a non-significant reduction in the 

expression of CCL2 mRNA in cells treated with testosterone (lOOnM) compared to both 

untreated mature adipocyte cells. Flutamide at 1000 nM did not alter the action of 

testosterone at 100 nM on the expression of CCL2 mRNA over all time points.

203



CCL2

■ T10+F100

B
1.8
1.6
1.4

1.2

3  13 0-8
0.6
0.4

0.2
0

Figure 4.27: CCL2 mRNA expression in 3T3L1 cell following testosterone treatment, with 

or without flutamide from 3 to 9 by qRT-PCR. Results shown as mean±SEM from three 
separate experiments. (A) T10=testosterone lOnM, F100=Flutamide lOOnM, (B) 
T100=testosterone lOOnM, F1000=Flutamide lOOOnM. *P<0.05, ** P<0.01, vs Conl. Friedman 
test.

|  Con l=untreated preadipocyte 
Con2=untreated mature adipocyte 

|  Mature adipocytes treated with testosterone
Mature adipocytes treated with testosterone and flutamide
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4.3.6 Analysis of adiponectin, CX3CL1 and CCL2 by ELISA in 
supernatants of adipocyte 3T3L1 cells

4.3.6.1 Analysis of adiponectin levels in supernatants of adipocyte 3T3L1 cells 

following testosterone treatment, with or without flutamide

There was no significant change in the level of adiponectin in media from cells treated 

with testosterone (10 or lOOnM) or after blocking the AR by flutamide (100 or lOOOnM) 

compared to untreated mature adipocyte control following 3, 5 and 9 days (figure 4.28a, 

b). There were significant differences in the adiponectin levels in media from cells 

treated with flutamide compared to those treated with testosterone after 9 days at both 

concentrations, however as there was no difference between the controls and the 

testosterone treated cells in adiponectin secretion, this finding is unlikely to be of 

biological significance.

4.3.6.2 Analysis of CX3CL1 levels in supernatants of adipocyte 3T3L1 cells 

following testosterone treatment, with or without flutamide

There was a significant reduction in the level of CX3CL1 in the media of cells treated 

with testosterone (lOnM) (p<0.05) after 3days compared to untreated mature adipocyte 

cells. Flutamide (lOnM) did not prevent this reduction. After 5 days, no significant 

change in CX3CL1 secretion in cells treated with testosterone, with and without 

flutamide (lOOnM). A significant decrease was seen in CX3CL1 secretion from cells 

treated with testosterone (lOnM) compared to untreated mature adipocyte cells after 9 

days. There was a significant difference in CX3CL1 secretion between cells treated with 

testosterone and flutamide (p=0.01) (figure 4.29a). The reduction due to flutamide was 

significantly higher than the reduction due to testosterone treatment which is unlikely to 

be of biological significance. No alteration was observed in CX3CL1 secretion in cells 

treated with lOOnM testosterone, with or without lOOOnM flutamide after 3 and 5 days 

compared to untreated mature adipocyte cell (figure 4.29b). Nevertheless, the level of 

CX3CL1 in media of cells was reduced by testosterone (but not significantly) and 

flutamide at lOOOnM did not prevent this reduction after 9 days.
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Figure 4.28: ELISA analysis of adiponectin levels in supernatants of 3T3L1 adipocytes 

following testosterone treatment, with or without flutamide from 3 to 9 days. Results 
shown as mean±SEM from three separate experiments. (A) T10=testosterone lOnM, 
F100=Flutamide lOOnM, (B) T100=testosterone lOOnM, F1000=Flutamide lOOOnM. °P <0.05 
T10 vs T10+F100 or T100 vs T100+F1000, Friedman test.
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Figure 4.29: ELISA analysis of CX3CL1 level in supernatant of 3T3L1 adipocyte following 

testosterone treatment, with or without flutamide from 3 to 9 days. Results shown as 
mean±SEM from three separate experiments. (A) T10=testosteronel0nM, 
F100=flutamidelOOnM, (B) T100=testosteronelOOnM, F1000=Flutamide lOOOnM. *P<0.05 vs 

Con, ><0.01 T10 vs T10+F100, Two way ANOVA.

Con ^untreated mature adipocyte 
|  Mature adipocytes treated with testosterone

Mature adipocytes treated with testosterone and flutamide
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4.3.6.3 Analysis of CCL2 levels in supernatants of adipocyte 3T3L1 cells following 

testosterone treatment, with or without flutamide

After 3 days, a slight but significant reduction in the level of CCL2 (p<0.05) was 

observed in cells treated with testosterone treatment at lOnM compared to untreated 

mature adipocyte cells, an effect which was markedly (p<0.001) abrogated by flutamide 

at (lOOnM). In contrast, production of CCL2 was significantly elevated after 

testosterone at lOnM (p<0.01) following 5 days, an effect that was significantly 

reversed by flutamide at lOOnM. Similarly after 9 days, testosterone significantly raised 

levels of CCL2 in the media of adipocyte cells; an effect that was markedly abolished 

by flutamide at lOOnM (p<0.001) (figure 4.30a).

However, no change was seen in levels of CCL2 in media of cells treated with lOOnM 

testosterone, with or without lOOOnM flutamide, compared to untreated mature 

adipocyte cells following 3 and 5 days (figure 4.30b). Conversely, the production of 

CCL2 in media of cells increased, but not significantly following testosterone at lOOnM 

treatment compared to untreated mature adipocyte cells after 9 days. This increase was 

reversed significantly by blocking the AR by flutamide at lOOOnM (p<0.05).
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Figure 4.30: ELISA analysis of CCL2 levels in supernatants of 3T3L1 adipocytes following 

testosterone treatment, with or without flutamide, from 3 to 9 days. Results shown as 
mean±SEM from three separate experiments. (A) T10=testosterone 1 OnM, 
F100=flutamidelOOnM, (B) T100=testosterone lOOnM, F1000=Flutamide lOOOnM. * P<0.05, 
** P<0.01, vs Con, # P<0.05, T100 vs T100+F1000, m P<0.01, *##P<0.001 T10 vs T10+F100, 
Friedman test.

Con =untreated mature adipocyte 
^  Mature adipocytes treated with testosterone

Mature adipocytes treated with testosterone and flutamide
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mRNA
expression

Adiponectin NC NC
PPARp/5 NC NC

PAI-1 Increased at 5 days NC

Leptin NC NC

CX3CL1 NC NC
CCL2 NC NC

protein level 
in

supernatant

Adiponectin NC NC

CX3CL1 Decreased at 3 and 9 days NC

CCL2
Decreased at 3 days and 

Increased at 5 and 9 days NC

Table 4.5: Summary of results of effect of testosterone on expression of gene and 
protein of all parametersin mouse 3T3L1 adipocyte cells. T: testosterone. NC=no 
change.
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4.4 Discussion

4.4.1 Human THP1 macrophages

As monocytes migrate from circulating blood into the endothelial space they become 

activated and differentiate into macrophages. This part of the study aimed to investigate 

the expression of some of the key molecules expressed during this process using PMA- 

stimulated THP-1 cells as a model of macrophages. It was hypothesized that the 

interaction of CX3CR1 and CCR2 with their ligands is a crucial step in the migration of 

monocyte cells from circulating blood into the endothelial space of the artery wall, 

therefore, testosterone as an immune modulator and anti-inflammatory factor may 

influence this process by modulating the expression of these receptors and other 

markers of macrophage activation and inflammation such as IL-8 and TNF-a 

production. In particular, Veillard and colleagues (2006) suggested that the reduction of 

inflammation by inhibiting chemokines and their receptors is a novel therapeutic target 

for CVD. Testosterone can act through a number of mechanisms, including via ARs 

therefore the AR blocking agent, flutamide, was included in the experiments to 

investigate the mechanism of action of any effect seen with testosterone.

4.4.1.1 Expression of CX3CR1 and CCR2 mRNA in human THP-1 macrophages

A first set of experiments was conducted to establish whether the CX3CR1 and CCR2 

receptors for CX3CL1 and CCL2 respectively, were expressed by THP-1 macrophages. 

mRNA expression of both chemokine receptors were observed in THP-1 macrophages 

by using qRT-PCR.

4.4.1.2 The effect of testosterone treatment with or without flutamide on CX3CR1 

and CCR2 mRNA expression in THP-1 macrophages

Testosterone treatment, with or without blocked AR using flutamide, did not induce 

with any significant changes in expression of both receptors over 96h. To our 

knowledge, there is no other research studying the effect of testosterone on these 

receptors in THP-1 macrophages. Previous studies were performed to study the 

expression of chemokine receptors and their ligands in other cell types following 

androgen treatment with flutamide and other receptor blockers. Some of these studies
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found that regulation of these chemokines and their receptors was controlled by 

androgen, and these actions were reversed by anti-androgen receptors (Dole and 

Holdsworth, 1997, Akashi et al, 2006; Jamieson et al, 2008) while others found no 

changes (Kelly et al, 2012b). However, the presence of AR receptors was identified in 

the present study by qRT-PCR to exclude the fact that loss of its influence was the 

result of a lack of AR. Testosterone may not have an effect on unstimulated 

macrophages in absence of inflammation therefore activation of macrophages by 

cytokines was investigated.

4.4.1.3 The effect of cytokine stimulation on CX3CR1 mRNA expression in THP-1 

macrophages for 24h

THP-1 macrophages incubated with cytokines, TNF-a plus IFNy, at 10 ng/ml 

concentration for 24h tended to reduce CX3CR1 mRNA expression, whilst at lOOng/ml 

there was no effect. Previous studies have investigated the effect of TNF-a plus IFNy on 

CX3CR1 in THP-1 cells and found that CX3CR1 protein expression was upregulated, 

however these studies were carried out on undifferentiated cells (Apostolakis, 2007; 

Sung et al., 2010). Therefore the data presented here implies that the effect of cytokines 

on chemokine receptor mRNA expression varies depending on the stage of 

differentiation of the cells.

4.4.1.4 The effect of cytokine stimulation on CCR2 mRNA expression in THP-1 

macrophages for 24h

CCR2 mRNA was also down regulated after stimulation for 24h with TNF-a plus IFNy 

at lOOng/ml. This was seen in previous studies by Tangirala et al. (1997) and Weber et 

al. (1999). In these studies TNF-a induced a down-regulation of CCR2 mRNA and 

surface expression in THP-1 cells, isolated blood monocytes and Mono Mac 6 cells 

suggesting that pro-inflammatory cytokines can decrease as well as increase chemokine 

receptor expression. Several in vitro studies have established that selective changes in 

the expression of specific chemokine receptors occur during the differentiation of blood 

monocytes to macrophages (Opalek et al, 2007). For example, the reduction of CCR2 

expression takes place after 4 hours in monocyte cultures (Kaufinann et al, 2001). This 

decline in CCR2 expression continues for up to seven days, at which time no CCR2 is 

detected (Fantuzzi et al, 1999). While it is supposed that endogenous maturational
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events lead to lack of CCR2 expression in monocytes differentiated in vitro, some 

studies suggest that the lack of CCR2 expression is a direct consequence of binding 

secreted CCL2 (Mack et al, 2001). In a related study, Sica and colleagues (1997) found 

that LPS induced inhibition of CCR2 mRNA expression was associated with a 

reduction of both CCL2 binding and chemotactic responsiveness. Another study 

established that exposure of monocytes to OxLDL reduces CCR2 expression, causesing 

a rapid loss of functional CCR2 protein, and inhibition of the physiological response of 

monocytes to CCL2, suggesting that it acts as a negative regulator of monocyte CCR2 

expression (Han et al, 2000). CCR2 may be important to promote the arrest of newly 

recruited monocytes in the arterial wall, allowing for their cytokine- and growth factor- 

induced maturation to macrophages (Han et al, 1998). The results presented in the 

current study support the hypothesis that CCR2 is down-regulated on the surface of 

monocytes as they undergo in vitro differentiation to macrophages (Fantuzzi et al, 

1999; Kaufmann et al, 2001) and indicate that PMA-differentiated THP-1 cells 

stimulated with cytokines can be considered a model of differentiated macrophages at 

the stage where they have migrated into the arterial wall. The difference in the response 

to cytokines of CCR2 and CX3CR1, where a greater effect was seen on CCR2 mRNA 

expression confirms finding by Umehara et al., (2001) who found a differential 

response of these two chemokine receptors in a THP-1 cell line model of chemotaxis.

4.4.1.5 The effect of testosterone with or without flutamide on CX3CR1 mRNA 

expression in THP-1 macrophages stimulated with 24h cytokines

This present study showed no significant change in expression of CX3CR1 mRNA in 

THP-1 macrophages following 24h incubation with cytokines and testosterone, in the 

presence or absence of flutamide. This finding was observed at all cytokines and 

testosterone concentrations studied. In a parallel study, Kelly and co-workers (2010) 

found that testosterone or dihydrotestosterone (DHT) had no effect on the expression of 

CX3CL1, the ligand of CX3CR1, in vascular cells. This indicates that testosterone 

appears not to influence mechanisms involved in CX3CR1 regulation in macrophages 

with or without inflammation.
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4.4.1.6 The effect of testosterone with or without flutamide on mRNA CCR2 

expression in THP-1 macrophages stimulated with 24h cytokines

In contrast, testosterone induced an increase in CCR2 mRNA expression in TNF-a plus 

EFN-y stimulated THP-1 macrophages. This increase was only significant with 

testosterone treatment at lOnM and lOOnM after stimulating with cytokines at 100 

ng/ml concentration. This action for testosterone was markedly abrogated by lOOnM 

flutamide suggesting testosterone may act via AR.

The effect of testosterone on CCR2 mRNA expression following stimulation by 

cytokine treatment demonstrates that testosterone has the ability to influence the 

regulation of this receptor. In accordance with the hypothesis stated in section (4.4.1.4) 

(that PMA-differentiated THP-1 cells stimulated by cytokines can be used as a model of 

macrophages in the arterial wall), the results presented here imply that testosterone may 

play a beneficial role by inhibiting the conversion of these cells to lipid laden foam cells 

which are consequently involved in atherosclerotic events. This is demonstrated by the 

upregulation of CCR2 by testosterone indicating that the cells are arrested at an earlier 

stage of this process when increased CCR2 is required for chemotaxis of monocytes. 

Taken together the CCR2 results imply that this action of testosterone comes from its 

effect on secondary pro-inflammatory factors rather than its direct effect on CCR2 

receptor. This is indicated by the lack of an effect of testosterone on CCR2 in THP-1 

macrophages that were not previously treated with cytokines.

4.4.1.7 The effect of testosterone on pro and anti-inflammatory cytokines in 

supernatants of THP-1 macrophages before and after stimulation with cytokine 

for 24h

The levels of IL-lp, IL-6, IL-8, IL-10, TNF-a and IFN-y in supernatants of THP-1 

macrophages are measured by Enhanced Sensitivity CBA assay. The obtained data for 

IL-ip, IL-6, IL-10, and IFN-y were not reliable and excluded due to the high variability 

among these data. The values of IL8 secretion by macrophages following testosterone 

treatment before and after cytokines stimulation were reliable. Furthermore, TNF values 

was reliable following treated THP-1 macrophage cells with combination of testosterone 

and cytokine treatment.
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4.4.1.8 The effect of testosterone with or without flutamide on IL-8 levels in 

supernatants of THP-1 macrophages before and after stimulation with cytokine 

for 24h

Testosterone treatment with or without flutamide was not associated with any change in 

levels of IL-8 in the media from cells prior to cytokine treatment. However, testosterone 

treatment and blocking the AR showed an effect on IL-8 following cytokine treatment. 

24hr cytokine treatment significantly increased the IL-8 levels at both cytokines 

concentrations compared to untreated cells. Furthermore, testosterone significantly 

decreased level of IL-8 in the media of the cells after 24h stimulation with cytokine. 

Testosterone showed its inhibitive action on IL-8 only after using cytokines; therefore, 

its action may not be directly on IL-8 but indirectly by inhibiting the action of TNF-a 

and IFNy; this agrees with the effect of testosterone on CCR2 discussed in the previous 

section. This effect of testosterone was via AR as the addition of flutamide reversed the 

effect of testosterone.

Previous studies using testosterone treatment at pharmacological doses have shown that 

testosterone suppresses the production of IL-8 in human granulocytes and monocytes 

stimulated with LPS or zymosan and a similar effect was observed in differentiated HL- 

60 cells (Boje et al, 2012). In the latter study, flutamide was unable to antagonize 

testosterone suppression of IL-8 secretion, which is in contrast to the present study.

4.4.1.9 The effect of testosterone with or without flutamide on TNF-a levels in 

supernatants of THP-1 macrophages before and after stimulation with cytokine 

for 24h

A significant increase was seen in the level of TNF-a following cytokines treatment at 

both concentrations compared to untreated cells. Furthermore, testosterone significantly 

reduced the level of TNF-a in the media after 24h cytokines treatment. Flutamide 

partially blocked this effect, indicating that the action of testosterone was partly via AR, 

but also via the AR-independent pathway. The low levels of TNF-a measured in the 

testosterone treated cells also indicates that most of the added TNF as one of the 

cytokines used for stimulation was no longer present in the media at the time point 

studied as the TNF-a added was at ng/ml concentrations and the levels measured by the
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assay were at pg/ml levels.. Therefore the effect observed was on TNF-a secretion by 

the cells, and not due to the added TNF-a.

In previous cell culture studies, testosterone incubated with human monocytes obtained 

from younger individuals, fibroblasts, and rodent macrophage cell models led to a 

decline in pro-inflammatory cytokine expression of TNF-a, IL-lp, and IL-6 (Chao et al, 

1995, Kanda et al., 1996, Kanda et al, 1997, Parkar et al., 1998, D’Agostino et al., 

1999, Gomstein et al., 1999; Corcoran et al., 2010). Previous clinical studies have 

shown conflicting results about the effect after using physiological and 

supraphysiological concentrations of testosterone on TNF-a level. An increase 

(Metcalfe et al, 2008) no change (Kapoor et al, 2007) or a decrease (Hatakeyama et al., 

2002, Malkin et al, 2004a, Malkin et al, 2004b; Corrales et al., 2006) in the level of 

TNF-a have all been reported. In animal studies, no significant change was seen in 

serum levels of TNF-a following testosterone treatment in Tfm mice on high-fat diet 

compared to litteimates and placebo controls (Kelly et al, 2012b). In contrast, it has 

been stated that castrated mice show heightened TNF-a responsiveness to the injection 

of LPS, while testosterone replacement decreased this (Spinedi et al., 1992).

A similar anti-inflammatory effect has been shown for androgen in human endothelial 

cells, where DHT or testosterone decreased TNFa-induced inflammatory responses 

through the inhibition of NF-kB signalling pathways (Hatakeyama et al., 2002, Norata 

et al, 2006; Jin et al, 2009). In an interesting study using human macrophage cells 

obtained from elderly men and postmenopausal women, testosterone, but not estrogen 

treatment reduced expression of TNF-a in cells from both men and women (Corcoran et 

al, 2010). Therefore, the authors suggested that the effect seen with testosterone 

treatment was not due to aromatization to estrogen but was due to an androgen specific 

action of testosterone via the AR. When considered with the results of the current study 

in which flutamide only partially blocked the action of testosterone on TNF-a secretion, 

it can be suggested that testosterone mediates TNFa secretion in part via AR and also by 

an AR-independent pathway.

Taking the data presented in the current study together, testosterone treatment increased 

expression of CCR2 mRNA after stimulation with cytokines via the AR. Therefore 

testosterone may be exerting its effect by preventing or arresting the process of change 

to lipid laden foam cells at the early stage when CCR2 expression is higher. Indeed, 

this was clear from the decreased levels of IL-8 via AR and TNF-a via AR and AR-
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independent pathway in media of these cells in response to the addition of testosterone 

indicating a downregulation of inflammatory processes. All these outcomes will lead to 

a reduction in atherosclerosis development and reflect the role of testosterone as anti

inflammatory factor. On the other hand, the lack an effect of testosterone on CX3CR1 

in macrophage cells can be explained by previous study which indicates that these two 

receptors are controlled by separate mechanisms (Umehara et al., 2001).

4.4.1.10 Limitations of the study

The in vitro conditions used in present study may not reflect the in vivo environment in 

artery wall. Furthermore, research on expression of CX3CR1 or CCR2 by macrophages 

alone is limited as it does not take into account the interaction with receptors in vascular 

cells thus it is difficult to address the full role of testosterone in this situation. In 

addition, THP-1 cells are a cancerous cell line derived from a 3-4 year old boy; 

consequently, they do not reflect typically normal human monocytes/ macrophage cells. 

It would be better to use isolated human monocyte-derived macrophage (HMDMS) 

from, particularly older people who have a high prevalence and severity of 

atherosclerosis with increasing age (Lloyd-Jones et al, 2010).

4.4.1.11 Summary of finding in THP-1 macrophages

The key finding of the present study demonstrated that PMA-differentiated THP-1 cells 

stimulated with cytokines are a good model of differentiated macrophages at the stage 

where they have migrated into the arterial wall and for studying chemokine receptors 

CX3CR1 and CCR2 expression by these cells. Testosterone had no significant influence 

on the expression of CX3CR1 and CCR2 and on IL-8 levels secreted by unstimulated 

THP-1 macrophages cells. Cytokines treatment had no effect on CX3CR1 mRNA 

expression whereas they significantly decreased expression of CCR2 mRNA. However, 

while testosterone treatment did not modulate CX3CR1 mRNA expression after 

cytokines stimulation, testosterone was associated with a significant increase in CCR2 

mRNA via AR following cytokines treatment. Testosterone inhibited levels of IL-8 via 

AR and TNF-a via AR-dependent and or AR-independent pathways indicting the role 

of testosterone as a modulator of inflammation.
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4.4.2 Mouse 3T3L1 cells

In this part of the study, 3T3L1 adipocyte cells were treated with testosterone with or 

without flutamide to block AR with the aim to investigate whether testosterone can 

influence expression of adiponectin, PPARp and leptin or on factors involved in 

obesity-induced inflammation including: PAI, CX3CL1 and CCL2 during adipogenesis 

processes and adipocyte differentiation. The presence of AR receptors was identified in 

these cells by qRT-PCR which was previously reported by (Singh et al, 2006). This 

also points to a role for testosterone and its receptors in these cells.

4.4.2.1 The effect of testosterone with or without flutamide on adiponectin mRNA 

expression and secretion of adiponectin in mouse 3T3L1 cells

The current study found that testosterone had no effect on adiponectin mRNA 

expression or its secretion into the media by 3T3L1 cells with or without the addition of 

flutamide. There was a significant difference in the levels of adiponectin in the 

flutamide treated cells, compared to the testosterone treated cells at both testosterone 

concentrations. However, the fold change was very small and as there was no observed 

difference between cells treated with testosterone and the control cells this is unlikely to 

be of biological significance.

In a previous study using the same cells, it was found that testosterone or 5-DHT 

reduced levels of adiponectin in the media of 3T3L1 without any change in adiponectin 

protein or mRNA expression (Nishizawa et al, 2002). In that study testosterone therapy 

reduced plasma adiponectin concentration in both sham-operated and castrated mice 

without changing mRNA and protein in adipose tissue, indicating that the process of 

adiponectin secretion from intracellular stores is controlled independently from 

transcription and it is this secretion mechanism that is influenced by testosterone. 

Similarly, Bai et al. (2011) found that testosterone decreased adiponectin secretion and 

mRNA expression in human adipocytes. This was in agreement with the findings of in 

vivo patient studies reported in chapter 3, indicating that testosterone treatment 

decreased the production of adiponectin in plasma after 3 months. In contrast, Combs et 

al, (2003) found that castration of mice in neonatal life but not adult life resulted in 

increased plasma adiponectin concentrations compared with adult females, proposing 

that additional influences besides gonadal steroids may be responsible for sex
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differences in serum adiponectin concentrations (Gui et al., 2004). Furthermore, in vivo 

in Tfin mice in the current study reported in chapter 3, a significant increase was seen in 

hepatic mRNA adiponectin expression in Tfin mice treated with testosterone compared 

to Tfin treated with placebo. However, it is unknown whether these testosterone effects 

on adiponectin expression occur in other tissues. Therefore, this increase may be related 

to the liver tissue and the Tfin condition.

4.4.2.2 The effect of testosterone with or without flutamide on PAI-1 mRNA 

expression in mouse 3T3L1 cells

A significant increase was seen in PAI-1 mRNA expression following lOnM 

testosterone treatment after five days; compared to the untreated mature adipocyte 

control. This slight increase was reversed by the addition of flutamide (lOOnM). At 

lOOnM testosterone the only significant effect was a reduction seen at five days 

compared to the undifferentiated control. These results are consistent with the data 

presented in chapter 3 in the in vivo Tfin mouse study, where testosterone treatment 

increased hepatic PAI-1 mRNA expression. However, other studies established that 

testosterone had an inhibitive effect on PAI-1 synthesis (Jin et al., 2007). PAI-1 is 

known to increase with obesity while testosterone will decrease (Plaisancea et al., 2009). 

Furthermore, adiponectin is reduced with obesity and has an inverse relationship with 

PAI-1 and leptin (Furukaw et al., 2004; Swarbrick and Havel, 2008). Interestingly, a 

deterioration of cardiovascular biochemical risk markers is observed after initiation of 

androgen deprivation therapy, as evidenced by increased fibrinogen, PAI-1 and t-PA 

(Haidar et al., 2007). In addition, physiological doses of testosterone or DHT, are 

associated with decreased PAI-1 expression by endothelial cells, where both hormones 

act on endothelial cells through the AR or via conversion to estradiol. However, these 

actions are largely lost when higher doses of testosterone were used, (Goglia et al., 

2010). The changes in PAI-1 shown in the data presented here, although significant, are 

small and therefore may not be of biological relevance.

4.4.2.3 The effect of testosterone with or without flutamide on PPARp/8 mRNA 

expression in mouse 3T3L1 cell,

In this study, mRNA expression of PPARp/5 was not affected by testosterone treatment 

over a 9 day period. On the contrary, as reported in chapter (3) testosterone therapy
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significantly increased hepatic expression of PP ARp/8 in the in vivo Tfin mouse study. 

Limited information is available regarding the effect of testosterone therapy on 

PPARp/5 especially in adipocytes or generally in adipose tissue. Therefore the lack of 

the effect of testosterone on mRNA PPARp/5 expression in this in vitro 3T3L1 cell 

study cannot be fully explained at the present time. Further experiments are needed to 

see testosterone has an effect after stimulating these cells with pro-inflammatory 

cytokines.

4.4.2.4 The effect of testosterone with or without flutamide on leptin mRNA 

expression in mouse 3T3L1 cells

Leptin mRNA expression was decreased in most treatments of mature adipocytes 

compared to untreated preadipocyte cells. The expression of leptin mRNA was 

previously reported in 3T3L1 preadipocytes (Chen et al, 1998). There was no difference 

in expression of leptin mRNA between testosterone treated cells and control mature 

adipocytes at either concentration of testosterone. This is an agreement with a previous 

study that reported testosterone treatment for 24h was ineffective in modulating leptin 

gene expression in differentiated 3T3L1 adipocytes (Monjo et al, 2005). In contrast, 

another study showed that testosterone reduced leptin secretion and mRNA expression 

in human adipocytes (Bai et al., 2011). A negative relationship between serum leptin 

and testosterone was observed in previous studies (Luukkaa et al., 1998, Behre et al., 

1997; Isidori et al., 1990). Furthermore, it was found that men had lower levels of leptin 

than women (Saad et al., 1997, Nishizawa et al., 2002). In line with this, human studies 

reported that testosterone treatment decreased leptin levels in hypogonadal men with 

T2DM (Kapoor et al., 2007) and in healthy men with testosterone deficiency (Simon et 

al, 2001) also in young and old hypogonadal men (Jockenhovel et al, 1997; Sih et al., 

1997). Conversely, in a study in mice, castration was not associated with any change in 

levels of leptin (Nishizawa et al., 2002). Furthermore, other clinical studies found no 

correlation between leptin and testosterone in older hypogonadal men (Sih et al., 1999) 

in non-diabetic men (Haffner, 1997) or in diabetic patients (Kapoor et al., 2007). 

Importantly, the use of an aromatase inhibitor which can inhibit conversion of 

testosterone to estradiol is associated with a decrease in leptin concentrations as well as 

a rise in testosterone (Blouin et al., 2005). Furthermore, it is known that high levels of 

leptin are not only associated with increased adipose tissue but also has an undesirable 

influence on testosterone production via the negative effect of leptin on Leydig cell
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function or by reducing the hypothalamic-pituitary-testicular axis (Caprio et al, 1999; 

Kelly and Jones, 2013).

4.4.2.5 The effect of testosterone with or without flutamide on mRNA expression 

and secretion of CX3CL1 in mouse 3T3L1 cells

Testosterone had no effect on CX3CL1 mRNA expression, however it significantly 

reduced its secretion level into the supernatant of adipocyte cells at 10 nM after 3 and 9 

days compared to control mature cells. Flutamide at lOOnM did not reverse this effect 

(in fact it significantly increased the effect). There are limited details in the literature 

about the action of testosterone on chemokines expression in adipocyte cells. However, 

previous studies have been conducted to investigate the effect of testosterone treatment 

on these chemokines in other cells. For example, Kelly and colleagues (2010) found no 

effect of testosterone or DTH on TNFa and IFNy-induced CX3CL1 mRNA expression 

in vascular cells. The latter study suggested that this could be due to testosterone's 

inability to affect the greatly elevated expression of these molecules caused by the 

combined cytokine stimulation used.

4.4.2.6 The effect of testosterone with or without flutamide on mRNA expression 

and secretion of CCL2 in mouse 3T3L1 cell

CCL2 mRNA expression decreased significantly in mature adipocytes on day 5 

compared to control undifferentiated cells. Testosterone, with or without flutamide, 

tended to decrease of CCL2 mRNA expression after 5 and 9 days, compared to the 

control undifferentiated cells. This reduction reached significance with lOOnM 

testosterone after 5 days. However, no significant difference was seen in the 

testosterone treated cells compared to the mature adipocyte control cells. In contrast, 

testosterone (10 nM) reduced secretion of CCL2 into the culture media after 3 days and 

then increased this secretion after 5 and 9 days. The action of testosterone was reversed 

by flutamide at 100 and lOOOnM at the same time, suggesting that testosterone may act 

through an AR-dependent mechanism. Similarly, a previous study found that elevated 

secretion of CCL2 by 3T3L1 cells treated with testosterone for 24h, which was 

dependent on NF-kB signalling (Su et al., 2009). On the contrary, Kelly et al. (2010) 

reported that no change in expression of CCL2 following testosterone or DTH treatment 

in human aortic vascular cells and in the level of CCL2 in serum of Tfin mice with
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testosterone (2012b). Norata et al., (2006) reported that DTH reduced CCL2 by 

mediating the AR and this was partly reversed by AR antagonism. The same group in 

2010 found that, 17p estradiol did not associated with any changing in CCL2 expression. 

It is worth mentioning that in latter studies androgen treatment was used after 

stimulating vascular cells with pro-inflammatory markers such as (TNF-y and IFN-y or 

IL-1) which was not done in the present study.

4.4.2.7 Limitations of the study

3T3L1 preadipocytes are a cell line derived from mice therefore, they do not represent 

human adipocyte cells. It would be better to investigate the effect of testosterone 

treatment on adipocyte-derived protein in human adipocyte cells as well as in the 

absence and presence of inflammatory condition. This could give a clearer picture for 

the effect of testosterone treatment. Furthermore, using receptor blockers for AR and 

ER or aromatase inhibitor can demonstrate the mechanism by which testosterone acts.

4.4.2.8 Summary

Considered together, testosterone had no effect at the level of gene expression for 

adiponectin, PPARp, leptin, CX3CL1 and CCL2. However, PAI-1 mRNA was 

increased by testosterone and this varied depending on the dose and time of treatment. 

Testosterone decreased secretion of CX3CL1 and increased CCL2 in the media of cells 

and this also varied depending on dose and time of treatment. Furthermore, the effect of 

testosterone and its action was mediating by both AR-dependent and AR-independent 

mechanisms. In addition, it is recognized that most of the changes in expression of the 

target genes were at five days. This may be because these cells contain the enzymes 

involved in lipolysis and lipogenesis at this time point (Ntambi et al., 2000). It is 

possible that testosterone can show more clearly its beneficial action after stimulating 

these cells with pro-inflammatory factors to create inflammatory conditions particularly, 

leptin and PAI-1 that increase with obesity-induced inflammation. Similarly, pro- 

inflammatory chemokines CX3CL1 and CCL2 increase with obesity and are involved in 

the migration of macrophage cells to adipose tissue by binding to their receptors on 

these cells. Lastly, it would be worth investigating the effect of testosterone on key
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transcription factors at various points in the adipogenic and lipogenic processes, to 

determine the transcription pathways involved.
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5.1 General discussion

This study was designed to assess a role for the effect of testosterone on factors 

associated with the diabetes and atherosclerosis and the obesity, which are associated 

with low testosterone levels in men. The role of testosterone in these conditions was 

examined to assess whether it has anti-inflammatory and anti-atherogenic actions 

through investigating parameters related to these conditions including markers of 

obesity ( BMI, WC and W/HR), adipocyte-derived associated proteins (adiponectin, 

PPAR8, PAI-1 and leptin), pro-inflammatory cytokines and chemokines and their 

receptors (TNF-a, CRP, IL-8, CX3CL1, CCL2, CX3CR1 and CCR2) and 

apolipoprotein and HDL with its fractions (Apo Al, Apo B, Apo E, LP (a), HDL2, 

HDL3 and HDL2/HDL3). For these investigations different techniques were used 

including: CBA, ELISA and qRT-PCR in samples from human patients, animal and cell 

culture models. In vitro, testosterone treatment was used at two different concentrations, 

with and without blocked AR (using flutamide), which helped to define the mechanism 

by which testosterone acts and whether any actions of testosterone were a direct result 

of its action on the AR or was through other mechanisms. In patient groups, 

testosterone was administered either by intramuscular injection or gel application.

5.1.1 Background to the investigations

An association between obesity and low testosterone in men has been reported. Low 

testosterone is associated with components of MetS including IR, increased central 

obesity, dyslipidaemia, and CVD (Wang et al., 2011). This relationship between low 

testosterone and these conditions is not yet fully defined with obesity-induced androgen 

deficiency and hypogonadism- induced obesity both likely contributing to a 

bidirectional effect on disease pathology (Kelly and Jones 2013). Cohen (1999) 

suggested that obesity impairs testosterone levels while low testosterone levels promote 

increased fat deposition based on the hypogonadal-obesity cycle hypothesis. In this line, 

many prospective studies on ADT-treated men with prostate cancer have shown 

increased fat mass and metabolic and cardiovascular perturbations (Choong et al., 2010). 

A longitudinal study demonstrated association between a low testosterone concentration 

in men independently predicting the future development of IR and T2DM (Haring et al.

2009).
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An increase in pro-inflammatory modulators such as cytokines and chemokines, 

reduction in anti-inflammatory factors such as adiponectin and IL-10 are a link between 

obesity and CVD, T2DM and testosterone deficiency (Mazur et al., 2014; Malkin et al.,

2010). Moreover, there is evidence based on studies involving castration of mice as 

well as female mice treated with testosterone, that males have a lower incidence of 

autoimmune diseases compared to females (Liva et al, 2001). In particular, an 

inhibitive effect of testosterone on pro-inflammatory factors was seen in previous 

studies (Malkin et al, 2004a; Kalinchenko et al, 2010). Additionally, improvements in 

central obesity, lipid profile and insulin sensitivity were observed when men were 

treated with testosterone (Kapoor et al, 2007; Saad et al, 2008). Thus it is important to 

study the role of testosterone and its use as a treatment to compensate for its deficiency, 

and its positive role in preventing disease. This role for testosterone may be through an 

effect on body composition, inflammation factors, and atherogenic markers. It is also 

necessary to elucidate the mechanism by which testosterone beneficially acts on these 

factors i.e. whether it is by AR- dependent or AR- independent pathways.

5.1.2 Testosterone as an anti-adipogenic factor and its effect on fat 
distribution/body composition

It is known that testosterone deficiency is associated with abdominal obesity and vice 

versa. Abdominal obesity is associated with IR. IR is the key central biochemical 

defect in development of the MetS, T2DM and atherosclerosis (Jones 2010). The 

present 6 months study found that testosterone had no effect on body composition (BMI, 

WC and W/HR) in the double-blind placebo study on diabetic patients. This is 

supported by data from diabetic patients in the longitudinal study where no change was 

seen in body composition in patients treated with testosterone and in IHD patients 

compared to the untreated control group. Similarly, previous studies did not find 

changes in W/HR (Tripathy et al., 1998) and in BMI and W/HR (Lee et al., 2005) after 

androgen treatment. In contrast to the present studies data, some clinical studies 

reported that a significant reduction was seen due to testosterone treatment in WC 

(kapoor et al., 2006; Gooren and Beher, 2008; Saad; Gooren, 2009 and Heufelder et al.,

2009) in diabetic patients even though there was no change in BMI in those studies. 

However, the difference is likely explained by the amount and length of time 

testosterone was administered or study design. In spite of the fact that BMI has an

inverse relationship with total testosterone (reviewed by Dandona et al, 2011).
226



Furthermore, in cases of treatment of IR by rosiglitazone which works as an insulin 

sensitizer, by binding to the PPAR receptors in fat cells, this led to restored testosterone 

levels to mid-normal values in men with T2DM (Kapoor et al, 2008). Similarly, TRT 

decreases fat mass and increases lean body mass in men in middle-age over 52 weeks 

(Allan et al, 2008) and in older hypogonadal men over 36months (Page et al, 2005). 

Testosterone therapy also decreased visceral fat accumulation in proportion to the 

increase in testosterone levels (Allan et al, 2008). However, the lack of change in BMI, 

WC and W/HR in diabetic patient from the double-blind placebo study undertaken here 

may be due to the shorter duration and smaller study group size. Testosterone treatment 

for 6 months may not be sufficient for testosterone to exert its action. Additionally, the 

small population studied may not show the effect of testosterone treatment in as a larger 

population. Finally, the diverse and small population especially in the IHD subgroup 

and small numbers of patients in longitudinal study on diabetic patients could also 

explain the absence of an observed effect of testosterone on body composition. 

Therefore, a long-term controlled study with limited variability in patient population 

would be required to elucidate effect of testosterone on obesity.

The mechanism by which testosterone acts in reduction of adipose tissue mass is 

thought to be by inhibition of LPL enzyme, a key regulating enzyme for energy 

metabolism, catabolizing plasma triglycerides into free fatty acids and glycerol. It is 

known that testosterone acts by binding with AR by genomic and non-genomic 

mechanisms in adipose tissue. Stimulation of the cAMP cascade by sex steroid 

hormones, would activate hormone-sensitive lipase leading to lipolysis in adipose 

tissues (Saad, 2009). A possible beneficial mechanism of testosterone treatment in 

addition to reduction in fat mass, is, the influence of adipocyte derived associated 

proteins during the differentiation processes of preadipocyte cells to mature adipocytes 

(Blouin et al, 2005 and 2008). These proteins include adiponectin, PPARp/8, leptin and 

PAI-1.

Adiponectin has a role as an anti-diabetic, anti-atherogenic and anti-inflammatory factor. 

In human cross-sectional studies, plasma adiponectin levels are negatively correlated 

with obesity, W/HR, IR, dyslipidemia, diabetes and cardiovascular disease (reviewed by 

Matsuzawa 2005). In the current study, testosterone showed contradictory results with 

regards to adiponectin at the level of genes and protein. In the current clinical study, 

reduction in levels of adiponectin was observed in diabetic patients in the double-blind
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controlled study after 3 months of testosterone treatment, however it increased in the 

Tfin study and did not change in the other studies. Previous research has shown that 

testosterone treatment reduced adiponectin level in clinical (Kapoor et al, 2007) and 

experimental studies (Nishizawa et al, 2002). A decrease in total adiponectin levels was 

seen in healthy boys during puberty, simultaneously with increasing endogenous 

androgen production (Bottner et al, 2004). Furthermore, adiponectin levels in 

hypogonadal men are higher than in eugonadal males, and decreased after testosterone 

treatment (Lanfranco et al, 2004). Additionally, testosterone deficiency leads to 

increased adiponectin in hypogonadal men with diabetes (Kapoor et al, 2007) and 

without diabetes (Page et al, 2005b), despite of the fact that adiponectin and 

testosterone have anti-inflammatory actions and are both associated with improvement 

in T2DM and atherosclerosis development (Rasul et al, 2011; Saad et al, 2012). 

However, other studies have shown that testosterone treatment over one year increased 

levels of adiponectin (Heufelder et al, 2009). Moreover, a positive correlation between 

adiponectin and serum levels of total testosterone in the diabetic male (Rasul et al,

2011), in non-diabetic men (Yasui et al, 2007) and in men and postmenopausal women 

(Laughlin et al, 2007) has been established. This is consistent with the data from the in 

vivo Tfin mice in the current study. Testosterone treatment increased hepatic 

adiponectin mRNA expression compared to mice treated with placebo. However, in the 

present study there was a lack of testosterone modulation on expression and secretion of 

adiponectin in the media of 3T3L1 adipocytes in the in vitro study. This confirmed a 

previous report at the level of the gene in this model (Nishizawa et al, 2002). This 

agreed with data from the longitudinal study on diabetic patients in this thesis where 

testosterone treatment had no effect on the levels of adiponectin in patients treated with 

testosterone and in IHD subgroups.

The contrasting effects of testosterone on adiponectin in previous studies have been 

clearly represented in the current study. However, the reduction in adiponectin in 

patients after 3 months in the double-blind placebo study may be a temporary effect of 

testosterone as this was not sustained at 6 months. As Gooren and Bunck (2004) 

reported, the reduction in circulating adiponectin concentrations might be due to the 

different routes of testosterone administration used, or after intramuscular testosterone 

injections, circulating testosterone levels are known to peak above the physiologic range, 

whereas transdermal testosterone gel produces testosterone levels within the reference 

range for young adults. This may explain the reduction in adiponectin in diabetic patient
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in the double-blind placebo study, who were treated with intramuscular injections while 

in the second study no effect was seen on adiponectin level in those treated with 

testosterone gel. Furthermore, other studies indicated that there are further factors 

associated with the changes in adiponectin levels for instance, smoking (Miyazaki et al, 

2003), age (Adamczakt et al., 2005) and dietary factors such as a carbohydrate-rich diet 

and alcohol consumption (Thamer et al, 2004). Thus, these factors which affect 

testosterone treatment especially in human in vivo studies need to be controlled for.

In the mouse study, the lack of effect of testosterone on adiponectin at the mRNA and 

protein levels in 3T3L1 adipocytes might be related to this specific mouse strain. Thus, 

it may be better to study the effect of testosterone on adiponectin by analysing other 

mouse models or cells from whole adipose tissue. Other possible explanations are that 

changes in adiponectin can be due to the type of testosterone treatment, the level of dose 

or its metabolites (Page et al., 2005b). This might explain the increase in hepatic 

adiponectin mRNA expression in Tfin mice after testosterone treatment. This increase 

was mediated either by ER after aromatising testosterone to estradiol or via a non- 

genomic pathway since these mice have non-functional ARs, especially since a recent 

study found that 17-p estradiol increased adiponectin mRNA expression in adipocyte 

cells (Capllonch-Amer, 2014). However, this action of testosterone could be specific for 

the liver of Tfin mice. Alternatively, testosterone may act on adiponectin receptors such 

as adipo-Rl and adipo-R2, which are involved in production and secretion of 

adiponectin; it was found that testosterone and E2 increase adiponectin receptor-1 and - 

2 mRNA and protein in adipose tissue in women with polycystic ovary syndrome (Tan 

et al., 2006). Thus, it would be worthwhile to carry out further work to investigate 

whether testosterone influences adiponectin receptors in human adipocyte cells.

PAI-1 is a further factor produced by adipose tissue and has positively correlation with 

obesity, T2D, CVD and low testosterone (Pergola et al.L 2000; Alessi et al, 2007). PAI- 

1 was investigated in 3T3L1 cells and Tfin mice. Testosterone treatment increased it at 

a concentration of 10 nM after 5 days and this was mediated by AR, this is supported by 

the in vivo Tfin mice data where hepatic PAI-1 mRNA expression was elevated after 

testosterone treatment; however this was mediated by AR-independent mechanism. 

Although, contradicting the data from the mouse model, where the AR is non-functional 

and therefore not involved in the observed effects, In previous study using human
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endothelial cells, it was found that higher doses of DHT or testosterone increased 

expression of PAI-1 mRNA where DHT exerted these actions through AR, testosterone 

acted in part through aromatase-dependent conversion to 17p-estradiol (Goglia et al.,

2010). In that study, testosterone and DHT also had similar action on expression of 

PAI-1 mRNA in the aorta of Wistar rats. Therefore, this may explained the action of 

testosterone on mRNA expression of PAI-1 by mediating ER in the current study of 

Tfin mice. However, these observations are in opposite of the previous studies in which 

reduction in PAI-1 was seen after androgen treatment (Bavenholm et al., 1998; Pugh et 

al., 2002). The changes in PAI-1 seen in in mouse 3T3L1 adipocyte, although 

significant, are small and therefore may not be of biological relevance. The effect of 

testosterone on PAI-1 in the Tfin mice may related to the condition of these mice and to 

other factors such as body weight or HFD as explained in section (3.4.3). The reason 

behind this increase in both study unclear and thus certain conclusions cannot be made. 

Since the limited of details related to the effect of testosterone on PAI-1 gene in the 

liver of Tfin mice, therefore, further research need to be performed with involving 

receptor blockers for AR and ER or involving aromatase inhibitor. This can demonstrate 

the mechanism by which testosterone acts.

PPARp is another factor expressed in adipose tissue and has valuable effect on lipid 

metabolism, glycaemic control and is a potential target of anti-obesity agents. The 

current study showed that testosterone had not an effect on PPARpin 3T3L1 adipocyte. 

These findings are inconsistent with data of in vivo Tfin mice in which testosterone 

increased significantly mRNA PPARp gene expression of liver. This may due action of 

testosterone via AR-independent pathway. The lack of influence of testosterone on 

PPARp in 3T3L1 cell cannot be elucidated as well as a little is known about the 

association between PPARp/5 and testosterone in different tissues such as liver and 

adipose tissue.

Leptin is an additional factor produced by adipose tissue and increases with obesity. It 

has an inverse relationship with adiponectin and testosterone. It is associated with 

reduction of testosterone level in obese men and CVD, T2DM. There was no significant 

effect for testosterone on mRNA leptin expression compared to untreated mature 

adipocyte cells. This is in an agreement with previous study where testosterone 

treatment for 24h was ineffective in modulating leptin gene expression in differentiated 

3T3-L1 adipocytes (Monjo et al., 2005). Similarly, in animal study, plasma levels of 

leptin were similar in male mice with or without castration (Nishizawa et al., 2002).
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This is in contrast to previous study that found decrease in leptin following testosterone 

treatment (Jockenhovel et al, 1997; Sih et al, 1997; Simon et al, 2001 and Kapoor et 

a l , 2007). Furthermore, a considerable decline in serum leptin levels after short-term 

aromatase inhibition in healthy young and elderly men has been observed (Lapauw et 

al, 2009). However, the differences in the observations could be due to the different 

type of studies and multiple factors involved in mRNA expression of leptin.

The conflicting results related to adiponectin, PAI-1, PP ARp/5 and leptin during 

differentiated processes in in vitro 3T3L1 adipocyte and in vivo Tfin mice studies make 

it difficult to draw convinced conclusion that gives the correct interpretation of the 

action of treatment. However, the effect of testosterone on these parameters could be 

clear after stimulated 3T3L1 adipocyte with pro-inflammatory mediator as the condition 

in obesity. Furthermore, measuring the level of secretion of PA-I-1 and leptin in the 

media of 3T3L1 adipocyte would be valued to elucidate effect of testosterone on obesity. 

Additionally, using human adipocyte cells would be more useful advantageous for 

future investigations. Involving of receptor blockers for AR and ER or aromatase 

inhibitor in vivo Tfin mice study, would answer how testosterone acts.

5.1.3 Testosterone as an anti-inflammatory factor

5.1.3.1 Pro-inflammatory cytokines

Testosterone act as an anti-inflammatory factor through its beneficial effect on 

decreasing levels of inflammatory factors such as 3L-1 p IL-6, TNF-a, IFNy and IL-8, 

where these factors are raised as a consequence of obesity and are involved in the 

development of T2DM, atherosclerosis and testosterone deficiency (Ferroni et al, 2004; 

Shoelson et al, 2007; Heufelder et al, 2009; Jones, 2010). CRP which is synthesized in 

the liver under stimulation of IL-6 and TNFa, is also known as general indicator of 

inflammation (Fahed et al, 2012).

In the present study, cytokines were measured in serum samples from diabetic patients 

in the double-blinded placebo-controlled and longitudinal studies, and also were studied 

in THP-1 macrophages. However, some of these factors (IL-lp, IL-6, IL-10, IFNy) were 

not reliably detected. No significant change was seen in TNF-a and CRP levels in serum 

samples from diabetic patients over six month's testosterone treatment. In addition, there
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was no difference in serum levels of IL-8 between patient subgroups in the longitudinal 

study. Similarly, in human THP-1 macrophages, there was no significant change in 

levels of IL-8 in media of cells after testosterone treatment in unstimulated cells. 

However, in cells stimulated with cytokines, testosterone significantly decreased TNF-a, 

and IL-8 levels in the media. Effects on TNF-a were via both AR and AR-independent 

pathways whereas IL-8 production was only influenced via AR-dependent pathways. 

Testosterone therapy had no effect on CRP levels in diabetic patients in either clinical 

study. A previous study showed that CRP increased in male rats after testosterone 

treatment (Wataru, 1990). An inverse correlation between CRP and testosterone levels 

was seen in some clinical studies (Bhatia et al, 2006; Kapoor et al, 2007). Similar to 

the present clinical study other studies (Ng et al, 2002, Lanffanco et al., 2004; Kapoor 

et al., 2007) did not report changes in TNF-a and CRP levels. In the present cell culture 

study, testosterone decreased TNF-a and IL-8, which is in agreement with a previous 

cell culture study (Hatakeyama, 2002; Boje et al, 2012) and a clinical study (Malkin et 

al, 2004a).

To summarise, although the clinical study did not show positive effects of testosterone 

on pro-inflammatory factors, in cell culture however, beneficial effects of testosterone 

were observed, it may be because the clinical study was more complex due to variability 

of the patients group.

5.1.3.2 Pro-inflammatory chemokines and their receptor expression

Chemokines, CX3CL1 and CCL2, and their receptors, CX3CR1 and CCR2, are 

associated with chronic inflammation related to obesity such as IR, T2DM and CVD 

(Ota et al, 2013). This association is by mediating recruitment and accumulation of 

leukocytes and trigging low-grade chronic inflammation in adipose tissue, liver and the 

arterial wall (Panee et a l , 2012, Shah et a l , 2011; Yao et al, 2014).

This study demonstrated that CX3CR1 mRNA was expressed in the liver of Tfin mice, 

although testosterone treatment was not associated with any change in its expression. 

This is in agreement with the data from the in vitro study using human THP-1 

macrophages. These cells were shown to express CX3CR1 mRNA, however, 

testosterone had no effect on CX3CR1 mRNA expression, with or without flutamide 

over 96 hours. Similarly, when cells were treated with TNF-a plus IFNy and 

testosterone with or without flutamide there was no effect of testosterone on effect
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CX3CR1 mRNA expression. A previous co-culture study reported that CX3CL1 and 

CX3CR1 are involved in monocyte/macrophage accumulation in the atherosclerotic 

plaque, where pro-atherogenic factors such as oxLDL induce a chemokine receptor 

switch: CCR2 off, CX3CR1 on (Barlic and Murphy, 2007). In the presence of ox-LDL, 

the CCR2hieh CX3CRl'°w monocytes will be differentiated into CCR2low CX3CRlhi6h 

subtype and this CX3CRlon-CCR2ofr regulation is helpful to inhibit CCR-dependent 

monocyte migration and to enhance the CX3CR1 -dependent monocyte recruitment and 

adhesion (Barlic et al, 2006). This pro-adhesive chemokine receptor switch may 

prevent CCR2-dependent migration and may induce CX3CR1-dependent retention 

(Barlic and Murphy, 2007). Therefore macrophages and foam cells are prone to 

accumulate in vascular wall (Liu and Jiang, 2011). As a result the absence of oxLDL in 

the media of THP-1 macrophages in the present study, may explain the lack of effect of 

cytokine stimulation on this receptor. Thus, addition of oxLDL into media in 

combination with TNF-a plus IFNy could actually reflect the conditions of the site of 

inflammation in the artery wall and consequently this system could then be used to test 

the effect of testosterone on CX3CR1 expression.

Expression of CCR2 mRNA was seen in the liver of Tfm mice and in THP1 

macrophages. Testosterone did not show any effect on CCR2 mRNA expression in the 

liver of Tfin mice. Similarly, testosterone had no effect on CCR2 mRNA expression in 

the in vitro study of unstimulated THP-1 macrophages. However, incubation of these 

cells with lOOng/ml of TNF-a plus IFNy for 24h significantly decreased the expression 

of CCR2 mRNA. The data from the present THP-1 macrophage study extended the 

previous findings on the reduction of surface expression of CCR2 and mRNA 

expression in monocyte/ macrophages (Han et al., 2000, Fantuzzi et al, 1999 Opalek et 

al, 2007). These studies suggested that the down regulation of CCR2 mRNA 

expression may be vital to promote the arrest of newly recruited 

monocytes/macrophages in the arterial wall, allowing for their cytokine- and growth 

factor-induced maturation to macrophages. Therefore, this study provided evidence in 

agreement with previous findings and indicated that that PMA-differentiated THP-1 

cells stimulated with cytokines can be considered a model of differentiated 

macrophages at the stage where they have migrated into the arterial wall.

High and low concentrations of testosterone treatment significantly increased 

expression of CCR2 mRNA following stimulation with lOOng/ml of TNF-a plus IFN-y



in THP-1 macrophages. This increase was abrogated by 100 nM flutamide, suggesting 

testosterone may function through AR-dependent mechanisms. This is consistent with 

the data from the Tfm mice which have non-functional AR and no effect for 

testosterone on CCR2 expression was observed in these mice. The CCR2 results 

indicated that this action of testosterone comes from its effect on pro-inflammatory 

factors rather than a direct effect on the CCR2 receptor. This is evidenced by the 

absence of an effect of testosterone on CCR2 expression in unstimulated THP-1 

macrophages. The action of testosterone may be through suppression of the NF-kB 

signalling pathway which is a master transcription factor in inflammation (Norata et al., 

2006; Jin et al., 2009). Testosterone exerted its effects by arresting the 

monocytets/macrophages in the artery wall preventing the conversion of these cells to 

lipid laden foam cells which are consequently involved in atherosclerotic events. 

However, the beneficial effect of testosterone on these receptors or on regulatory of 

macrophage function remains under debate, especially since recent study has shown that 

testosterone treatment increase genes related to atherosclerosis in macrophage cells 

including atherogenic and pro-inflammatory factors (Ng et al, 2003).

The present study is the first study to investigate the effect of testosterone as an anti

inflammatory modulator of CCR2 and CX3CR1 mRNA in THP1 macrophages, 

therefore, little is known about the effect of testosterone on these receptors an further 

research is needed. In addition, the expression of CX3CR1 and CCR2 mRNA was only 

investigated after 24h with cytokines treatment, therefore, it may be advantageous to 

investigate this expression at earlier time points, particularly, as previous studies 

showed that the maximal surface expression of CX3CR1 was observed after 15 min 

after stimulation with pro-inflammatory modulators (Green et al, 2006). Furthermore, 

as earlier mentioned, oxLDL differentiated macrophages into CCR2low CX3CRlh,gh 

subtype, thus, investigation of the effects of testosterone treatment on CX3CR1 and 

CCR2 mRNA expression in the presence of oxLDL plus cytokines in THP-1 

macrophages, may actually give a clear picture on this effect.

This study demonstrated that CX3CL1 and CCL2 mRNA were expressed in the liver of 

Tfin mice and in preadipocyte and mature adipocytes of the mouse 3T3L1 cell line. 

Testosterone treatment was not associated with any change in CX3CL1 mRNA 

expression in the liver of Tfin mice. In addition, testosterone treatment had no effect on 

expression of mRNA CX3CL1 in mouse 3T3L1 cells supporting the data from the
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animal model. However, testosterone reduced significantly the level of secreted 

CX3CL1 at low testosterone concentrations after three and nine days. This reduction 

was not reversed by AR blockade. This reduction in CX3CL1 in the media may indicate 

a beneficial effect of testosterone as an anti-inflammatory factor. There is little previous 

work on CX3CL1 in other cell types e.g. vascular or hepatocyte cells, and this effect 

may be cell specific. In support of this, previous work in our laboratory found that an 

apparent reduction of CX3CL1 expression in aortic lipid streaks of Tfin mice receiving 

testosterone treatment proposing the protective effect of testosterone in atherogenesis is 

via local anti-inflammatory actions and at least partially via AR-independent 

mechanisms (Kelly et al, 2010). In that study, testosterone treatment reduced cytokine- 

induced expression of CX3CL1 at the molecular level in HASMC, an effect not 

prevented by blockade of the AR. Therefore further work should include cell culture 

studies on the effect of testosterone on other cell types present in liver and co-culture 

systems. In addition, the process of CX3CL1 secretion from intracellular stores may be 

controlled independently from transcription and it is this secretion mechanism that is 

influenced by testosterone, in a similar way to that of adiponectin as discussed 

previously.

Testosterone had no effect on expression of CCL2 mRNA in the liver of Tfin mice. 

Similarly, there was no significant effect of testosterone on CCL2 mRNA expression 

compared to the untreated mature adipocyte cells in 3T3L1. However, testosterone 

treatment significantly reduced the level of secreted CCL2 by these cells following 3 

days at a low concentration, whereas testosterone increased CCL2 protein level after 5 

and 9 days in culture. This effect was prevented by blockade of the AR by increasing 

CCL2 mRNA expression after 3 days while decreasing it after 5 and 9 days suggesting 

an AR-dependent mechanism. Although, there are limited studies regarding to 

testosterone effects on CCL2, the inconsistency of data of testosterone effects on CCL2 

at the level of gene or protein in the present study was similarly observed in previous 

studies in vivo in animals (Kelly et al, 2012b) and in vitro cell culture studies (Su et al, 

2009; Norata et al, 2006,2010) as shown in chapter 3 and 4.

The lack of the effect of testosterone on hepatic CCL2 mRNA expression in Tfm mice 

might be due to the lack of AR function suggesting that if testosterone does influence 

CCL2 expression it is via AR-dependent pathways. This was supported through the 

effect of testosterone on secretion of CCL2 via the AR pathway in mouse 3T3L1 

adipocytes. In addition, the modulation of secretion of CCL2 by testosterone was
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dependent on the time and treatment dose. Moreover, the contradicting data on the 

impact of testosterone on mRNA expression and secretion of CCL2 from these cells 

may be due to the lack of correlation between the mRNA expression of CCL2 and 

protein level in media. However, it is not always the case that mRNA expression 

reflects the level of protein expression, the differences between mRNA and protein 

quantification may be due to some factors including the half-lives of specific mRNAs or 

proteins, and the intracellular location that can affect the of post-transcriptional 

processes and the translation rate of the proteins (Gygi et al., 1999). Therefore, the 

difference in the response of mRNA and protein expression of CCL2 to testosterone 

may depend on the ability of testosterone action on the level of gene expression or 

protein secretion.

Since, there is limited published information related to the effect of testosterone on 

chemokine receptors and ligands in THP-1 macrophages or 3T3L1 adipocytes and Tfin 

mice respectively, contradictions in the results of the present study cannot be fully 

explained. However, the presence or the absence of appropriate atherogenic stimulator 

in ideal media in THP-1 macrophages or pro-inflammatory cytokines in 3T3L1 

adipocyte could reveal clearly the influence of testosterone treatment. Furthermore, 

using further receptor blockers for AR and ER or enzyme inhibitors for aromatase or 

reductase would be valuable to understand the mechanism by which testosterone works.

5.1.4 Testosterone as anti-atherogenic factor:

Apolipoproteins are considered more sensitive indicators of cardiovascular risk than 

lipid and lipoprotein levels (Sotiropoulos et al, 2008). These proteins act as enzyme co

factors during lipid metabolism, helping to stabilize lipoproteins during transportation 

from cell or tissue to their destination (Han, 2004). In the current study, apolipoproteins 

were investigated after testosterone treatment in human and mice in vivo.

Testosterone had no effect on apolipoprotein (Apo Al, Apo B and Apo E) and LP (a) 

levels in sera of diabetic patient in both studies. This is also supported by the result from 

the Tfin mice study where testosterone treatment was not associated with any change in 

apo Al and apo E at the level of the gene. The absence of action of testosterone on 

apolipoprotein levels was also observed in another study using physiological 

testosterone concentrations (Snyder et al., 2001; Herbst et al., 2003) while alternative
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studies showed opposing data with a decrease or increase in some of these parameters 

(Singh et al, 2002, Von Eckardstein et al, 1997, Jones et al, 2011; Dickerman et al, 

1996). It was suggested that the mechanism of action of testosterone in modulation of 

apolipoproteins would be through inhibition of fat mass and this may explain the lack of 

apolipoprotein changes because there was no change in WC, W/HR and BMI of patients 

in the clinical study.

In the present study, testosterone similarly did not modulate the level of HDL and its 

fractions including (HDL2, HDL3 and HDL2/HDL3 ratio) in sera of diabetic patients of 

the double -blind placebo- controlled study. However, there was an increase, but not 

significant, in levels of HDL, and a significant increase in HDL2 and HDL2/HDL3 ratio 

while there was significantly decreased levels of HDL3 in serum of diabetic patients 

who were treated with testosterone in the longitudinal study. No change was seen in 

HDL and its fraction in the IHD subgroup in the latter study. HDL has atheroprotective 

functions and is negatively associated with atherosclerosis (Traish et al, 2009). It is 

widely accepted that spherical HDL possesses atheroprotective functions such as 

antioxidant and anti-inflammatory properties, while it also promotes reverse cholesterol 

transport from peripheral tissues to the liver, where it delivers cholesterol to hepatocytes 

through binding to the HDL-receptor (Maeda et al, 2011; Traish et al, 2009). HDL 

subftractions includes HDL2 and HDL3, which play an important role in the function of 

the HDL molecule. Case control studies have shown that the higher HDL2 levels rather 

than HDL3 are responsible for the inverse relationship between HDL levels and CAD 

(Sotiropoulos et al, 2008). Lagos et al. (2009) recently reported that the HDL 

phenotype includes a greater percentage of small HDL3 and fewer large HDL2, 

resulting in a lower HDL2/HDL3 ratio which is associated with an increase in MetS 

components. In this regard, it was previously found that the HDL2/HDL3 ratio 

correlated positively with the HDL levels, suggesting that when the HDL cholesterol 

level decreases, a decrease in the large HDL2 subclass also occurs (Moriyama et al, 

2014). Thus, Moriyama et al. (2014) suggested that the maintenance of a high 

HDL2/HDL3 ratio might be important for subjects with MetS. This may explain the 

finding in the current study where numerical increase in HDL and significant elevated 

in HDL2 and HDL2/HDL3ratio were seen in patient treated with testosterone.

There were data related to the adverse effect of testosterone on HDL and its fractions 

which some of them were partly similar to the current data. 250 mg testosterone esters 

for 3 months reduced significantly the HDL3 subfractions, while it had no effect on



HDL and HDL2 levels in young patients with hypogonadotropic hypogonadism 

(Taslipinar et al, 2010). An additional study found that androgen increased 

significantly the level of HDL2 with no change in HDL and HDL3 (Ozata et al., 1996). 

Moreover, Tan (1998) found that there was a reduction in HDL3 sub-fractions after 

treatment by testosterone as a parenteral testosterone ester for 4-weeks. In contrast to 

the present study, previous studies found that reduction in HDL, HDL2 and HDL3 

(Thompson et al., 1989, Tan 1998; Bagatell et al., 1992) or in HDL and Apo Al (Singh, 

2001 ) or in HDL alone (Emmelot-Vonk et al, 2008, Lapauw et al, 2009; Frederiksen et 

al., 2012a) was seen following androgen treatment. High dose, formulation and type of 

androgen and route of administration may explain these discrepancies. Furthermore, 

Heufelder et al. (2009) reported a synergistic effect between testosterone treatment and 

lifestyle in increasing HDL levels and decreasing TG levels, in recently diagnosed 

T2DM subjects. However, the lack of effect of testosterone on HDL and its fractions 

may be due to the small duration of intramuscular testosterone injection and small group 

size of patients in of the double -blind placebo- controlled study. In the longitudinal 

study, testosterone showed beneficial effects by increasing HDL and HDL2 and HDL2/ 

HDL3 ratio and reducing HDL3 and this may be related to the gel testosterone treatment 

and length of treatment.

5.1.5 Limitation

Diverse results found in the present study may be a result of the small number of 

samples, or also be due to using different samples from animal and human in in vivo and 

in vitro conditions. In addition, in the part of in vitro studies, it was involved cancerous 

cells or mouse cells which may not reflect the actual status of the normal and human 

cells in vivo. Further factors could contribute to contradictory data among these studies 

including differences in study design, doses, formulations and delivery modes of 

testosterone. In clinical studies, factors such as age, smoking, diet, physical exercise, 

body fat distribution and hypogonadal state could affect the action of testosterone 

treatment. Moreover, the lack of normal distribution requiring the use of non-parametric 

statistics for assessing the differences may lead to the absence of statistical significance 

of the data that seemed to include significant changes. On other hand, the usage of 

testosterone as treatment is still subject to controversy. There are many causes for 

controversy in the practice of medicine. These reasons are related to the risk of
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testosterone therapy which previously was observed. Cancer, liver toxicity and 

reduction of HDL and adiponectin have been the main risks associated with testosterone 

and causes for concern. Furthermore, the precise mechanistic explanations for the action 

of testosterone as beneficial or risk treatment remain undetermined. This was a clear in 

the recent studies where Muraleedharan and co-workers reported that testosterone 

treatment improved the survival of men with T2DM (2013) while other did not find any 

beneficial effect (Vigen et al, 2013). However, some contributors factor such as super- 

physiological dose of testosterone, formulation of testosterone and mode of delivery is 

thought to be associated with these risks, while physiological doses and balancing 

testosterone with the relative abundance of estradiol could aid to achieve the beneficial 

effects while reducing these risks, Indeed, it cannot be ruled out the benefit testosterone 

in improvement of lean body mass and muscle strength, erythropoiesis and bone 

mineral density, sexual function, mood and reduction of fat mass insulin sensitivity, 

vascular tone, blood which have been improved in previous study.
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5.1.6 Future work

5.1.6.1 In vivo study (human)

A longer study and larger population samples in well-controlled clinical trials may give 

a clearer explanation of the mechanism of testosterone, taking into account of BMI, age, 

and treatment with drugs; it was difficult to adjust for these variables with the sample 

size of the current study. It may be valuable to investigate other ways of analysing 

testosterone such as the measurement of SHBG, FT and BT which may better reflect 

biologically relevant concentrations of testosterone and its action. Furthermore, it would 

be valued to investigate additional parameters including subfractions of adiponectin, 

leptin and PAI-1.

5.1.6.2 In vivo study (mice)

It would be useful to study adipose tissue from Tfin mice to see the effect of 

testosterone action on markers and key transcription factors in adipogenic procedures. 

Furthermore, the effect of testosterone treatment on factors involved in fat accumulation 

such as LPL could be investigated. These experiments could be extended by 

investigating the effect of DHT or further blockers of the ER or inhibitors of aromatase 

or reductase enzymes; this will elucidate the mechanism by which testosterone acts. 

The effect of testosterone in other mouse models could also be investigated, for example 

the Apo E knock-out mouse model which is a model of atherosclerosis.

5.1.6.3 In vitro study

Testosterone's effect on CX3CR1 and CCR2 expression in macrophage cells may be 

seen more clearly if these cells are studied in conditions closer to those seen in 

atherosclerosis, inflammation and atherogenesis. Indeed, there is evidence from 

different studies showing the role of testosterone in the reduction of fatty streak 

formation. Therefore, macrophage cells could be stimulated with LDL or native LDL 

such as oxLDL which will offer a closer model of atherogenesis conditions including 

the secretion of pro-inflammatory cytokine and chemokine factors. Therefore, this 

experiment would be worthwhile to investigate the effect of testosterone in a more 

complete atherosclerosis model. Furthermore, it would be favourable to use isolated
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adult human monocyte/macrophage cells from patients with atherosclerosis as an 

atherosclerosis model to investigate what happens in reality in the artery wall instead of 

using cancerous cells (monocyte/macrophage THP-1 cell line). These cells could be 

cultured in conditions which mimic more closely the formation of foam cells. As with 

the studies in mice the addition of receptor blockers or aromatase enzyme inhibitors 

would provide further evidence of the mechanisms of testosterone action.

There is no currently available human adipocyte cell line which is why the data 

presented here was generated using mouse cells. However, the use of isolated human 

preadipocyte cells could be beneficial to get answers for the unknown questions related 

to the role of adipocyte derived associated proteins, in the development of T2DM, 

atherosclerosis and low testosterone in obesity before and after testosterone treatment. 

Furthermore, similar to the experiments suggested above, the use of different 

testosterone receptor and enzyme blockers could be used to investigate how testosterone 

mediates its action. It would be valuable to stimulate these cells by using pro- 

inflammatoiy factors including TNF-a, IFN-y and IL-1 p and so on. This would lead to a 

more adequate model of inflammatory adipocyte cells secreting pro-inflammatory 

factors such as CX3CL1, CCL2, PAI-1 and leptin. Therefore, the effect of testosterone 

on the improvement of the development of an inflammatory response with IR could be 

studied in this model. Moreover, by stimulating these cells, a co-culture model can be 

used by involving human THP-1 macrophages with human preadipocyte type cells. In 

addition, it would be advantageous to investigate the effect of testosterone therapy on 

LPL enzymes as well as key markers of differentiation and transcription factors.
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5.1.7 Conclusion

The aim of this study was investigate of the actions of testosterone in diabetes, 

atherosclerosis and obesity. This was carried out using two patient cohort studies, an 

animal model and cell culture methods. According to the results presented here, both 

positive and negative effects of testosterone were found. Positive effects of testosterone 

included improvement in HDL fraction and HDL2/HDL3 ratio and decreased TNFa, 

IL-8, CCL2, CX3CL1, However, negative effects included a lack of change in BMI, 

WC and W/HR in patients and adverse changes in mediators e.g decreased adiponectin, 

and increased PAI-1. In addition testosterone treatment also had different effects on 

adiponectin in the three investigations undertaken i.e human, mouse and cell culture. 

Conflicts in the data indicate the complexity of the relationships and underlying 

interactions. Therefore the work presented here has yielded positive results indicating 

that testosterone has a beneficial effect on some parameters, other results are more 

difficult to explain; it is clear that further detailed and extensive work is needed to 

clarify the benefits and mechanisms of testosterone treatment for hypogonadism in 

define patients with diabetes, atherosclerosis or obesity.
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