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Abstract

This thesis addresses the problem of tracking rigid objects in video sequences.

A novel approach to reducing the tem plate size of shapes is presented. The 

reduced shape tem plate can be used to enhance the performance of tracking, de­

tection and recognition algorithms. The main idea consists of pre-calculating all 

possible positions and orientations th a t a shape can undergo for a given state space. 

From these states, it is possible to extract a set of points th a t uniquely and robustly 

characterises the shape for the considered state space. An algorithm, based on the 

Hough transform, has been developed to achieve this for discrete shapes, i.e. sets 

of points, projected in an image when the state  space is bounded.

An extended discussion on particle filters, th a t serves as an introduction to the 

topic, is presented, as well as some generic improvements. The introduction of 

these improvements allow the data  to be better sampled by incorporating additional 

measurements and knowledge about the velocity of the tracked object. A partial 

re-initialisation scheme is also presented th a t enables faster recovery of the system 

when the object is temporarily occluded.

A stencil estim ator is introduced to identify the position of an object in an image. 

Some of its properties are discussed and demonstrated. The estim ator can be effi­

ciently evaluated using the bounded Hough transform algorithm. The performance 

of the stencilled Hough transform can be further enhanced with a methodology tha t 

decimates the stencils while maintaining the robustness of the tracker. Performance 

evaluations have dem onstrated the relevance of the approach. Although the m eth­

ods presented in this thesis could be adapted to full 3-D object motion, motions 

th a t m aintain the same view of the object in front of a camera are more specifically 

studied.

The work presented in this thesis was funded by the European Union 5th Frame­

work Programme, project No: IST-2001-33567, through the MiCRoN project.
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Chapter 1

Introduction

1.1 Rationale and motivation

“There is plenty of room at the bottom ” Richard R  Feynman (1959)

The field of micro-manipulation and micro-robotics is in its very early stage of 

development and there only exist a handful of useful industrial applications within 

this area so far. It is predicted th a t in the near future a wider variety of application 

fields, from high-precision and fast assembly of mechanical micro-components in 

industry to the handling of cells in medical or biological applications will require ef­

ficient systems for micro-manipulation. M icro-manipulation systems promises many 

benefits for society as well as very high returns to the players th a t will create t he '  

technology. To operate such systems require generic feedback. Currently, there 

are six main technologies. [2] than  can estim ate the pose of an object and track its 

motion:

• mechanical sensing, generally using electro mechanical transducers.

•  inertial sensing usually through MEMS (micro-electronic mechanical systems).

•  acoustic sensing with ultrasonic waves.

•  magnetic sensing using captors th a t measures the local magnetic field th a t can 

be altered by using local sources.

•  radio and microwave sensing on the time of flight principle.

• optical sensing using charge-coupled devices (CCDs).

2
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Considering the size of the objects and their, environment visual feedback will be a 

key component in the realisation of micro-manipulation systems. These are amongst 

the m ajor motivations for the work presented in this thesis.

The origin of the work th a t is presented here is intim ately related to and emerges 

from the  development of two European union funded projects.

1.1.1 T h e  M IN IM A N  p ro je c t  The main objective of the MINIMAN project 

[3] was the development of a sm art micro-robot with 5 degrees of freedom and a 

size of a few cubic cm, capable of moving around by the use of tube-shaped multi­

layered piezo-actuators. Controlled by visual and force/tactile sensor information, 

the micro-robot is able to perform manipulations with a motion resolution down to 

a few nano-metres (nm) in either a tele-manipulated or. semi-automated mode. The 

intention was to free humans from the tedious task of having to  handle minuscule ob­

jects directly. Equipped with micro-machined grippers, the robot is able to perform 

high-precision grasping, transportation, manipulation and positioning of mechani­

cal or biological micro-objects, under an optical microscope or w ithin the vacuum 

chamber of a scanning electron microscope. A powerful computer system using in­

expensive PC-compatible hardware components ensured the robot operation was 

carried out in real-time. The key to closed loop control was vision-based feedback. 

The vision system was used to locate objects and tools within the workspace. This 

project was successfully completed and was then followed by the MiCRoN project.

1 .1 .2  T h e  M iC R o N  p ro je c t  The MiCRoN project [4] was a continuation of 

the MINIMAN project. The MiCRoN project involved eight European partners and 

its aim was to utilise a co-operative set of micro-robots th a t could form the basis 

of a micro or nano factory (figure 1.1). The work-packages th a t the Microsystems 

& Machine Vision Laboratory (MMVL) at Sheffield Hallam University (SHU), UK, 

was involved in, comprised the design and implementation of the vision control 

system, position sensors and support in path  planning. Figure 1.2 shows the actual 

set up during the integration phase. In figure 1.3 a close up of the work area is 

shown. The methods presented in this thesis was used for providing visual feedback 

using a camera with a magnifying lens and were developed using the set-up shown 

in figure 1.4. The graphical interface is presented in figure 1.5. Some of the robots, 

built by the consortium members, are shown in figure 1.6. Powering, actuation and
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Figure 1.1: An artist impression of the MiCRoN project made for the project pro­
posal: mini robots, 1 cm across, working cooperatively in an assembly task

Figure 1.2: Overview of the MiCRoN set up during the integration stage. The 
camera is mounted on a Miniman robot. In the front, an infrared communication 
device is mounted on a USB port.

locomotion modules were integrated into a single miniature package.

1.2 Research aims and objectives

One of the main issue of the project was the development and implementation of 

a vision system to give 3-D visual feedback for the manipulation tasks carried out 

by the micro robots. Since the manipulation task was not pre-determined, the
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Figure 1.3: A tethered MiCRoN robot with its gripper under the microscope camera.

robot tools needed to be developed and the manipulated objects selected during 

the course of the project, the delivered vision system had to be generic enough to 

be adapted to the final objects that were used for the demonstration tasks of the 

project. Additionally, the pose estimation had to be done in real-time so that it did 

not become a bottleneck in the overall system. Moreover, since the system that took 

images was constrained in size, the image quality was impaired and the developed 

methodology had to be robust to these induced disturbances.

In order to address the real-time issue the focus was first put on tracking. To 

address the issue of adaptability the model of the object was built using an image of 

the object, the 3-D pose estimation was done with 4 degrees of freedom -2  sideways 

translations, orientation and depth of the object- and the robustness issue was dealt 

with by using a robust similarity measure.

1.2.1 C ho ices a n d  d iscu ss io n  One of the main topic of this thesis is tracking, 

an important problem, since it has a wide range of applications (e.g. visual feedback, 

data compression in videos, scene interpretation, etc), that has been extensively 

researched by the computer vision community.

In this thesis, tracking refers to a technique that significantly reduces the search 

space on where to look for an object using information that can help predict its
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Figure 1.4: The set up at Sheffield Hallam university, the camera support is mounted 
on a piezo-electric three degree of freedom translation stage. Green LEDs are used to 
illuminate the scene. Green has been chosen to avoid interferences with the infrared 
communication of the MiCRoN robots. 1 pixel in the obtained image corresponds 
to 1 micrometre (/mi).

position such as its previous estimated position and speed or the dynamics of the 

system. Some researchers advocate the terminology time coherence. Taking these 

considerations into account, object tracking is a process that consists in identifying 

sets of pixels in an image sequence that correspond to the same object. In contrast, 

detection achieves the same feat but without any prior assumption on the location
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classes.

To estim ate the position of an object some knowledge about the object and a 

way to use this knowledge with the image sequence is required. This leads to two 

interlinked issues: how to represent the object and how to m atch this representation 

in the image. As explained above, it was chosen to model this knowledge by using a 

sample image of the object, often called a tem plate image, taken in the first frame 

of the sequence. One way to locate the object in the scene image is to  compare all 

parts of the image with the model i.e. to measure the similarity between parts of 

the image and the tem plate image. At this stage the following issues need to be 

addressed:

•  Clutter: due to the limitation of the chosen measurement method, parts of the 

image can m atch well the object model even when the object is not present.

•  Occlusion: the tracked object might be partly occluded, extend beyond the 

image, or, move beyond the image for a few frames. W hen it becomes visible 

again the algorithm should be able to locate it again.

•  Noise: given a scene tha t does not change, the image acquisition system pro­

duces images th a t are slightly different. This is often due to limitations in 

the sensors or electronics. Comparison algorithms should be able to cope with 

these small variations th a t can often be modelled by Gaussian noise.

•  2-D images of the 3-D world: the image acquisition process is not a bijective 

mapping; information about the scene is lost in the process, however supple­

mental information can be used to compensate for this loss.

•  The slow evolution of the appearance of the tracked object due to changes in 

illumination, orientation and shape for deformable object.

•  The search space, often due to its high number of dimensions, can be very 

large making the real-time objective challenging.

One way to cope with the problems of partial-occlusion, noisy scene images and 

changes of the properties of the object is to define and use a  probabilistic framework. 

For instance, a probability value for the location of the object can be estim ated using 

a distance measure between the scene image and the tem plate image. Note th a t the
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choice of this distance measure is crucial for reliable, robust and efficient tracking. 

If the measure is applied at any point of the image, a probabilistic density functions 

for the object location is obtained.

The observation tha t, in most applications, object motion is tightly bounded, i.e. 

the object’s positions do not differ much between following frames, can be used to 

. achieve the real-time requirement. Moreover knowing the speed of an object or the 

characteristics of its movement can help to better predict the future object location.

The usage of statistical methods, namely Monte-Carlo methods, to estimate the 

location of an object has proved useful to reduce the search area. Note tha t since 

the matching has to be done in multiple locations, according to the algorithm used, 

parallelisation is likely to scale up well the speed of the tracking process.

In a class of algorithm the tracking process can essentially be divided into two 

sub-processes:

• A process to decide where to look. This restricts the search area and thus 

addresses the real-time objectives

• A process to decide how to look. This measure the probability of presence of 

an object.

One such technique tha t makes this distinction, and th a t we explore in more 

detail in this thesis, is the particle filter. Chapter 3 provides a detailed discussion 

based on the implementation of particle filters to track a translucent micro-pipette 

tip.

While particle filters are efficient the measurement m ethod th a t were used were 

both inefficient and inaccurate. To remediate to this issue alternative techniques 

were explored. One such comparison technique th a t was considered is very much 

related with the Hough transform. It roughly consists of counting the number of 

features th a t match a model at a given position. Not only is the technique robust 

and suitable for microscope images th a t can be noisy, but it can also be implemented 

in such an efficient way th a t an exhaustive search of a bounded region of interest can 

be carried out in real-time. This is because for microscope m anipulation the motion 

of object can generally be constrained to have 4 degrees of freedom: 3 translations 

and one rotation around an axis perpendicular to the field of view, resulting in a 

state space small enough to be explored in real-time with the presented technique.
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This led to the main contribution of this thesis: tem plate reduction of point 

feature models. A novel framework has been introduced in order to reduce the 

number of points a point feature model requires to robustly and efficiently identify a 

shape in an image. Since fewer points are required the matching can be done more 

efficiently. Recognition, identification and tracking algorithm efficiency can benefit 

from this improvement.

In order to perform this tem plate reduction the state  space of the object is 

considered: sets of points th a t characterise a unique state of the object across the 

whole state  space are reduced tem plate candidates. Constraints of robustness to 

missing feature points and additional feature points not corresponding to the object 

are also examined. A practical algorithm based on a generalised version of the 

Hough transform  is presented to implement the tem plate reduction.

1.3 Research m ethodologies

A m ajor part of the work undertaken in this thesis has consisted of developing and 

implementing algorithms. Implementations have been made publicly available on­

line as open source so th a t it may be publicly scrutinised. Much of it can be found 

integrated into the Mimas [5] library.

Mimas is a C + +  vision system toolkit built in-house, a t Sheffield Hallam uni­

versity, with an emphasis on real-time applications. The library provides the in­

frastructure to load images from a wide range of formats due to the integration 

with other open source libraries such as the ImageMagick library, video by using 

the Xine library and cameras supporting Video for Linux and Firewire. Mimas also 

provides a number of low level image processing algorithms, such as edge/corner 

detection, disparity map, morphological operators or camera calibration. As well as 

higher level algorithms for object recognition and tracking such as geometric hash­

ing and particle filters. Various optimisation schemes, such as POSIX threads, are 

implemented in order to achieve the real-time objectives.

1.4 Contributions

The main contributions of this thesis, and its associated chapters are:

•  The development of a novel framework to reduce tem plates th a t are made-up
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of point features for rigid objects. The framework considers the state space of 

an object in order to determine a subset of features of the original tem plate 

th a t characterises uniquely and robustly the state  of the object across all the 

state  space. An algorithm based on the Hough transform is used to select these 

features. An introduction to the problem and its formalisation is presented in 

chapter 4. M aterial presented in chapter 5 is closely related w ith the issue.

•  A new shape estim ator:the stencil estimator. It is shown how the estim ator can 

be evaluated in an efficient manner using a variation of the Hough transform. 

This is presented in chapter 5 and an evaluation of the m ethod can be found 

in section 6.2.

•  Generic improvements to the particle filter algorithm in the imaging context. 

An algorithm is introduced to cluster particles. Subsequent analyses follow­

ing the measurement process, th a t evaluate the posterior probability density 

function of the state of the object, is discussed. These analyses can provide 

feedback to the particle filter to partially reinitialise the sampling of the par­

ticles. This is found in sections 3.5 and 3.6.

•  Application of the the stencil estim ator in a microscope environment where 

objects are subject to changes in appearance. Microscopes have a narrow 

depth of field and the features of an object changes w ith its distance to the 

microscope’s objective. This characteristic can be used to determine the dis­

tance of an object to the microscope’s objective by using a model of the object 

th a t consists of a stack of images of the object taken a t different depths. This 

contribution is presented in section 6.1.

1.5 Organisation of the thesis

C hapter 2 of this thesis presents a literature review focused on computer vision 

techniques related to the efficient identification and tracking of 2-D shapes in images.

The particle filtering algorithm is then presented on a concrete application, the 

tracking of a translucent p ipette tip, and a few generic improvements are proposed 

in chapter 3.

In chapter 4 a novel approach to selecting sets of characterising points of a shape 

is presented. W hen these sets of points are identified in an image, they allow the
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state of a shape to be uniquely and robustly identified. The novelty consists of 

using the state  space to select these characterising sets of points. This technique 

can be used during a pre-processing stage to obtain a more efficient representation 

of tracked objects.

In chapter 5 we present the stencilled Hough transform. The technique is a 

modification of the bounded Hough transform [6]. The introduction of the stencil 

estim ator combined with a methodology to reduce the area of the stencils improves 

the speed and memory usage of the algorithm substantially, as shown by the test 

results presented in section 2 of chapter 6.

In chapter 6, experimental results are presented where the tracking of micro­

objects under a microscope was performed with 4 degree of freedom using a vari­

ation of the bounded Hough transform. In other experiments the bounded Hough 

transform and the the particle filter were compared on the tracking of a translucent 

pipette tip. Advantages and limitations of both  techniques are discussed.

C hapter 7 concludes this thesis, and future research directions are proposed.



Chapter 2

Literature review

2.1 Introduction

Identifying a shape in an image is one of the fundamental problems in com puter and 

machine vision. The Hough transform and the wide variety of techniques th a t are 

derived from it are able to tackle this challenge to some extent. O ther approaches 

include active contours [7] such as snakes [8] or level sets [9], matching techniques 

such as the inefficient cross-correlation coefficient [10] or boosted filters [11], and 

neural networks [12]. Each of them  can outperform the others in specific application 

domains. While active contours can handle smooth deformable shapes th a t change, 

neural networks have been used extensively for hand-w ritten character recognition. 

Boosted filters have been used for the recognition of object classes such as the human 

face whereas Hough transform techniques are well suited for rigid objects. Hough 

transform related techniques have been used, for many years now, to recognise 2-D 

objects in real-time on standard desktops. Although the shape of an object needs 

to be known, Hough transform related techniques do not need to  be trained, are 

resistant to noise and partial occlusions and can accurately determ ine a specific 

object location.

Choosing the right technique for a given application, although essential, is not 

straightforward given the wide choice of techniques currently available. One of the 

major concerns, th a t has to be kept in mind and may help in this choice, is the 

real-time constraint. Indeed, the machine vision system should not be a bottleneck 

in the application th a t it is embedded into and, as a consequence, should be as fast 

as possible. A general way to speed up object location algorithms is to  constrain

13
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the search area. Com putational costs tend to increase dram atically with the size of 

the search area. To constrain the search area a number of techniques can be used. 

Nevertheless, they share a common trait: to utilise the object’s previous location or, 

more accurately, its estim ated location and some knowledge of the object motion.

These techniques are commonly referred to as tracking techniques. From a util­

itarian point of view tracking has to deal with a number of issues th a t have been 

presented in section 1.2.1, page 5, and will be further examined on a practical ap­

plication in section 3.3, page 40. A few different approaches to  tracking will be 

discussed in the visual tracking section of this chapter. One group of approaches 

consists in distinguishing a component th a t selects the locations where to look for 

the object from a component th a t identifies the object. W hen this distinction is 

possible, tracking often refers to the first stage of these approaches.

Nevertheless to be able to track an object its initial position has to be determined, 

the review is started  by presenting the initialisation stage, this stage can make use of 

an approach th a t is often overlooked: motion detection, and when the background 

remains stable background subtraction.

In this thesis, we deal mostly with tem plate matching as the identifying method,

i.e. the usage of an image of the object to identify its characteristics in another image 

which is usually larger and th a t contains other elements. However other methods 

exists, for instance, the usage of param eter or generative models [13] could be used. 

Moreover, the focus has been put on matching techniques th a t are feature based. 

The underlying assumption being th a t by reducing the da ta  from colour images to 

a set of features, the data  may be more efficiently utilised. This is arguable and 

discussed in Zitova and Flusser [14], who provide a survey on image registration 

techniques. The efficiency of determining the characteristics of an object in an 

image depends on:

• how discriminative the features are i.e. how many of them  are needed to 

determine the characteristics of an object.

•  the cost of evaluation of these features.

• how features are compared and used to determine the object characteristics.

Since the solutions to each of these issues are interdependent and also depend on a 

variety of param eters on the problem under consideration it is an open and complex
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topic of research. Some elements th a t have to be considered will be discussed in 

this thesis. More specifically, the issue of reducing an object representation th a t 

consists of feature points while keeping a discriminative object representation will 

be tackled.

Another approach th a t has been the focus of research for the matching of tem ­

plates is the hit-or-miss method which emerged from the field of m athem atical mor­

phology. A review of this approach is provided in this chapter.

There are many other alternatives to characterise, represent and analyse shapes, 

Loncaric [15], in a not so recent survey, presented a number of these techniques. 

This survey can serve as an introduction to shape analysis. Walker, Cootes and 

Taylor [16] proposed another interesting alternative for 2-D object representation: 

the use of salient features to track an object in a video sequence and autom atically 

build its appearance model [17][18]. As previously mentioned our focus is on feature 

points representation, techniques to match point sets are reviewed in the section 

justly  named: techniques to match point sets.

Distortions can be quite common when working with custom cameras and mi­

croscopes. A few issues related to image distortions as well as how to handle them  

are presented.

The main results of this thesis are related to the Hough transform, hence after 

an introduction presenting a generalised Hough transform the link with tracking 

is established and more advanced topics, which are related to the work, are then 

discussed in the last section. They deal with improvements to the original Hough 

transform algorithm.

2.2 Connected techniques to visual tracking

2.2.1 D e te c tio n  a n d  in itia lis a tio n  Tracking essentially makes use of the pre­

vious position of the object to reduce the search space where the object is searched 

for in the next frame. However, the object has to be located in the first frame. 

Moreover, when the tracking fails, a recovery system needs to be used to locate the 

object again. For these two reasons, it is practical to use a tracking algorithm in 

combination w ith a detection algorithm.

As detection techniques become more efficient they supplant tracking methods 

in some applications since it is possible to track object in an image w ithout any
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assumption on its probable location. Detection algorithms may be simpler to imple­

ment, bu t they come with a cost penalty in term s of efficiency due to the fact th a t 

im portant informations such as the previous location of the object are discarded. 

As usual, the choice depends on the resources available (computational power, time, 

etc.) and the application under consideration.

Nevertheless, when multiple instances of the same object are present, such as 

cars on a motorway or people in underground transport, tracking cannot be replaced 

entirely by detection when the object identity needs to be known.

2 .2 .2  B a c k g ro u n d  s u b tra c t io n  a n d  m o v e m e n t d e te c tio n  For the problem 

of initialisation a very useful cue is the object’s motion. If the background is not 

moving or if its appearance is stable (of uniform colour, for instance) then object 

features can be selected by subtracting features in the background. A review of 

background subtraction techniques is provided by Piccardi [19].

Sugrue and Davies [20] developed an original approach which consists of applying 

a 3-D spatio-temporal filter on a stack of sequential images to detect motion. Its 

advantages over background modelling techniques are th a t no information from the 

background is needed, which makes it faster. The technique is also inherently robust 

to noise.

2 .2 .3  M a th e m a tic a l  M o rp h o lo g y  Ronse, Naegel and Passat [21] [22] [23] pre­

sented a very impressive and elegant theoretical framework by combining multiple 

research strands on tem plate matching using the tools of m athem atical morphology 

and their generalisation for grey-level images. The algebraic approach has its lim­

itations though, it focuses more on the exactitude of the methodology rather than 

performance evaluation and implementation issues.

A characteristic of morphological operators is th a t they are not forgiving; when a 

shape of a binary image differs by a single point from the structuring elements then 

the whole “shape” is discarded. Although the hit-or-miss transform  for grey level 

images provides some tolerance to additive Gaussian noise, it is not very robust 

to perturbations. To cope with this issue, rank order filters have been designed 

[24]. Also the notion of fuzzy sets has been used to further improve robustness as 

discussed by G asteratos and Andreadis [25]. This idea of a more tolerant framework 

using fuzzy morphology is also discussed in [26].
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The literature is very scarce in algorithm implementation and performance com­

parisons. Using the openCV library a few tests were run. For a colour image of 

512 x 512 (~  250000) pixels on an Intel Core 2 Duo (T5450) 1.66 GHz (~  3300 

bogomips) the approximated processing times are given in the following array:

Diameter of the 

structuring element

3 5

Opening or closing 

operator

180 ms 230ms

Erode or dilate 

operator

95 ms 140 ms

It can be seen th a t morphological operators can be time consuming. To cir­

cumvent this issue different approaches have been taken: using field-programmable 

gate arrays (FPGA ), using optical processors, bu t the most promising approach 

. might be, because of its future availability and sheer processing power, to make use 

of GPGPUs (General-Purpose computation on Graphical Processor Unit) such as 

CUD A  (Compute Unified Device Architecture) enabled GPUs.

One of the main advantage of expressing tem plate matching in terms of morpho­

logical operators is th a t they can be implemented on hardware like FPGA.  Baum ann 

and Tinem bart [27] provide an overview of the tools and insights in the methodology 

th a t could be used to implement morphological operators on a FPGA.  A hardware 

implementation is also discussed in [25].

The literature also contains references to an optical implementation [28], i.e. by 

using an optical processor however this is beyond the scope of this review.

A notable issue with morphological operators is th a t they are translation in­

variant operators relative to a structuring elements. In [23], which presents an 

application for the segmentation of blood vessels from 3-D angiographic1 data, this 

issue is circumvented by rotating the structuring elements.

2 .2 .4  T ech n iq u es  to  m a tc h  p o in t s e ts  The selection of a measure to identify 

an object depends on its properties and its motion. Different techniques may be 

more or less suitable and efficient when an object is deformable and moving in a 3-D

1The examination of the blood vessels using X-rays following the injection of a radio-opaque 
substance.
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space, or rigid and undergoing 2-D translations. If practical results are expected, 

identifying these characteristics is critical for the selection of an efficient technique.

W hen distortions, due to an imperfect lens can be neglected, the transforma­

tions th a t a 2-D plane undergoes can be modelled by projective transformations. 

Moreover, when the object is small compared with its distance to the camera and if 

it moves by a small distance according to the same criteria, perspective effects can 

be neglected and the object features can be put into correspondence using affine 

transformations. An affine transform ation of the plane consists of a linear transfor­

m ation followed by a translation. An affine transform ation can be considered as a 

composition of a dilation, a rotation, a shear and a translation. Note th a t lengths 

and angles do not remain the same under affine transformations. The affine trans­

formation subset th a t have these properties is called the similarity group; it consists 

of the Euclidean transformations and the mirror transformation.

Gope and Kehtarnavaz [29] provided a review of affine invariant comparison 

techniques of point sets. They also described a technique where an image point 

set and a tem plate point set are compared relatively to an affine transformation. 

In order to do th a t the  param eters of the affine transform ation are evaluated by 

determining affine invariant points for both sets of points and comparing them. Then 

the m atch is validated using an enhanced Hausdorff distance m ethod. Finally, the 

technique is compared, using a dataset, to three popular affine invariant techniques. 

The outcome is favourable for the presented technique and dataset in terms of 

efficiency, noise and occlusion resistance. The Hausdorff distance between two sets 

of points U and V  is defined as:

R ( U , V ) = m a x ( h { U , V ) M V , U ) )  (2.1)

where

h(U, V) = m axm in ||w,u|| (2.2)
u€U v&V

In order to cope with occlusions and outliers different schemes have been used in­

stead. For instance instead of using the maximum, the k th ranked distance can be

used. The paper proposes an interesting variation of the Hausdorff distance. For

more details on the Hausdorff distance and its implementation the reader may also 

refer to [30].

The techniques above assume th a t individual features are not distinguishable.
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However the measure could be adapted by taking into account an additional criteria, 

such as colour for instance, conditioning the evaluation of the distance of points 

belonging to the two sets U and V.  Combining global geometric characteristics 

with local appearance characteristics of an object is an idea th a t can greatly improve 

reliability and efficiency of many measures. Many interesting studies examining the 

synergy of these two fundamental aspects of object identification could be done.

A useful m athem atical structure to represent and m anipulate transform ations of 

the general affine group, GA(2), or the projective transform ations in R 2, where P(2), 

is the Lie algebra [31][32][33]. It allows the separation of different components of a 

transform ation in terms of, for instance, translation along the x  and y axes, rotation, 

dilation, shear and shear a t 45 degrees. This is valuable when these information are 

needed by a system like a robotic arm [33].

Another useful technique to compute corresponding sets of points is the Chamfer 

distance. It consists in evaluating the distance of a pixel to its closest feature 

points. Such a distance map can be evaluated efficiently [34]. It allows the usage of 

optimisation algorithms using gradient techniques such as Levenberg-Marquardt to 

minimise an energy function th a t characterises the matching of two sets of points.

In Robust Registration of 2-D and 3-D Point Sets [32] Fitzgibbon has compared 

the iterative closest point (IC P ) algorithm and a Levenberg-M arquardt based al­

gorithm. These techniques require a previous approximation of the location of the 

object and are therefore well suited for tracking when the. object position does not 

change significantly from one frame to another.

Breuel [35] [36] presented a technique to m atch geometric primitives, such as 

points, given a transform ation space. The techniques based on branch-and-bound 

methods finds a global optimal solution to the matching problem. It works by 

recursively subdividing the transform ation space and computing the upper bound 

of the number of points th a t can be potentially m apped by a transform ation of a sub­

transform ation space. This is referred to as the matching quality of the sub-region 

and denoted by Q(T). The computation of the bound of Q(T) for a transform ation 

space T is easy, th a t is why the technique works well, for more details on this point 

refer to the paper. The technique is exhaustive and guarantees a  globally optimal 

solution to the geometric matching problems.

The algorithm works as follows:
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1. The algorithm maintains a priority queue of search states. W hen two search 

states have the same priority, the state with the higher depth in the search 

tree is preferred. The queue is initialised with a state representing all possible 

solutions.

2. Each search state T* is associated with a sub-region of the transformation 

space Tfc C ¥ 0«. It is further associated with an upper bound such tha t 

VT G Tfc : Qk =  Q(¥fc) >  Q(T)\  the upper bound serves as the priority of the 

state. For term ination and correctness, the upper bound needs to satisfy tha t 

the sub-region is small enough and th a t its quality still remains above a given 

pre-determined threshold.

3. The algorithm removes the state with the highest upper bound from the pri­

ority queue. In case of ties, states with higher depth in the search tree are 

preferred. Breuel showed th a t depth first search is almost as fast as breadth 

first and uses only a tiny fraction of memory.

4. The transform ation T  G T*; if Q{T) = Q(Tk), term inates the search and 

returns T  as a solution.

5. Otherwise, the region ¥*, is split into two disjoint sub-regions ¥ 2*; and ¥ 2/0+1 

such th a t Tk = ¥ 2̂  U ¥ 2̂ +1 along its largest dimension. Q{T2k) and Q(T2k+1) 

are evaluated and these sub-regions are inserted back into the priority queue.

Geometric hashing is another technique to estimate an object position using 

feature points. It consists of selecting group points from the tem plate image tha t 

would characterise the location of the object if they could be m atched in the image. 

For instance, if translation and rotation on the plane of an object are considered, 

the correspondence of any group of 2 points between the tem plate and the image 

features is sufficient to determine the object position. Each of this group of points 

can be characterised by the geometric distribution of the remaining feature points. 

For instance, expanding on our example, a group of two points determines an axis 

th a t can be used to position a grid on the tem plate image. By using the number of 

features belonging to the respective elements of the grid the group of two points can 

be characterised by a signature. In the image, a group of potentially characterising 

points is randomly selected, its signature is evaluated and compared w ith the signa­

ture of the tem plate group of points. W hen a m atch is found the potential position
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of the object is evaluated. The operation is iterated  until the time allocated has 

expired or enough evidence has been accumulated to estim ate the object position 

beyond reasonable doubt. Our experiments have shown th a t, for the example we 

mentioned, the first match is sufficient. Details of our implementation is available 

in Wedekind et al. [37]. The method has been extended to recognise objects using 

focus stacks, allowing the distance of the object from the lens of a microscope to be 

estimated.

As mentioned in the introduction there are other alternatives for identifying a 

shape. One of these alternatives is the use of moments. Moments [38] can be ef­

ficiently evaluated [39] and can provide a compact representation of a shape by 

characterising its global features. For instance, using the moments up to the sec­

ond degree a shape can be approximated by an ’ellipse. Many applications in image 

analysis have been found for them: object classification, pose estimation, pattern  

recognition and compression. However, the global characterisation of a shape is not 

robust to occlusion which reduces its application domain to specific but neverthe­

less useful environments, for visual servoing for instance. Even though moments can 

not be used to characterise the global shape of an object in case of occlusion, by 

characterising local patches, for instance by using the orthogonal and rotation in­

variant Zernike moments [40], the global pose of an object can still be efficiently and 

robustly determined. Thus moments can be used to characterise features. Having 

distinguishable features redefines the problem of matching sets of feature points and 

reduces drastically its complexity [41]. In appendix B.2 other feature characterising 

methods are mentioned.

2 .2.5 Im ag e  d is to r t io n  It is not uncommon th a t the lens system of microscope 

produces image distortions. To correct them, so th a t the shape of an object remains 

the same independently of its position within an image, the image acquisition system 

has to be modelled. In most cases, distortions exhibit a central symmetry on the 

principal point of the image th a t can be corrected by an adequate mapping of the 

image.

The mapping of the world - the geometry of which can be modelled with a 

3-D vector space - to a 2-D discrete space, the image, has already been modelled 

successfully through various methods [42]. According to the chosen model, a slightly 

different set of param eters have to be found. These param eters depends on the
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characteristics of each camera. The process of determining these parameters is 

known as camera calibration.

Cam era calibration is still an active field of research, although the technology is 

m ature enough so th a t different implementations are freely available. Such imple­

mentations can be found for instance in the Mimas, OpenCV and G andalf libraries. 

Thus, the camera calibration problem boils down to identifying a suitable model for 

our requirements and an implementation to obtain the model’s param eters.

Cam era param eters are generally classified into two classes: the intrinsic and 

the extrinsic param eters of the camera. The intrinsic param eters are the focal 

length, the coordinates of the principal point and a few param eters to model , the 

geometric distortions characteristic of the lens system. The extrinsic param eters are 

the position of the camera, i.e. location and orientation compared to an arbitrary 

external frame.

Image frame

Camera frame

M’

Figure 2.1: By obtaining the intrinsic param eter it is possible to determine where 
each point expressed in the camera frame will be projected onto the image.

The process of calibration needs to be performed only once and thus can be 

conducted off-line. The calibration process involves taking images of a scene where 

3-D points of the scene are known. By finding the correspondence points in the 

resulting images, the parameters are found by solving a system of equations. Once 

the camera is calibrated it is possible to associate a 3-D ray to each pixel of the 

image as illustrated in figure 2.1 or to predict the 2-D location in an image of a 3-D 

point of the scene.

We have tested a method th a t uses a  calibration object [42]. This object is a grid 

similar to a checker board with known measures. The calibration grid is shown in 

figure B.5 on page 176, in the appendix. Once the intrinsic param eters of the camera
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are known it is possible to project a model of an object in the image as illustrated in 

Figure 2.2. Using the intrinsic parameters of the camera we have mapped a cuboid 

having the dimensions of the chess board with the chess board in the image. The 

mapping was performed manually by trials to estim ate the location and rotation of 

the chess board.

This process can be autom ated if there exists a way to estim ate the pose of the 

object. This is actually the basis of model-based 3-D pose estim ation which was one 

track th a t was considered to pose estimate microscope objects. In appendix B .l, 

stereo-vision is discussed in more depth, however for microscope m anipulation the 

physical space available to position the image acquisition system is limited making 

it complex to have multiple image acquisition systems. Different systems of mirrors 

were also considered but were judged too complex to be implemented. The results 

of some experiments made with a Rubik’s cube are presented in section C.2 of this 

thesis. For 3-D pose estimation of an object the conclusion th a t a 3-D representation 

of an object is needed was reached, in appendix B.2 a  few alternatives are considered 

to this purpose.

In figure 2.2, the white line a t the top of the image is curved due to lens defor­

mation. The line is mapped on the image to the approximated, manually estimated, 

position of an edge of the power supply unit at the top left corner of the image. It 

demonstrates th a t the deformations of the image by the lens system are taken into 

account by the model when a model is re-projected onto the image.

Distortion param eters can also be used to rectify an image. A rectified image is 

an image such th a t lines into the image are projections of lines from the real world. 

This is illustrated by figure 2.3.

2.3 Visual tracking

Amongst the various visual tracking algorithms, one class of algorithms divides the 

tracking problem into two sub-sections: where to look for the object and how to 

look for it. Kalman filtering and particle filtering belongs to  th a t class of algo­

rithms. They are first reviewed. Nevertheless, this division is not always possible. 

For instance, energy minimising methods are designed to perform both  operations 

simultaneously. Some examples of this category of algorithms are subsequently re­

viewed.
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Figure 2.2: A red parallelepiped and a white line projected on the image using the 
image formation model

Figure 2.3: The right image is the rectified left image. Notice that the power supply 
edge highlighted in previous figure appears straight.
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Predict

Predicted object position

Objectv
Estimated object position

Correct

Measured position

New estim ated object position 

Previously estim ated 
object position

Figure 2.4: The Kalman filter can be divided into 2 stages

2 .3.1 K a lm a n  f il te r  b a se d  v isu a l t ra c k in g  In the Kalman filter the hypoth­

esised state  of the tracked object is described by a random vector assumed to follow 

a Gaussian distribution characterised by its most probable state  and its covariance 

matrix. Additionally, the evolution of the system is assumed to be modelled by 

a system of linear difference equations. Kalman filtering integrates the informa­

tion from the previous estim ated states of the tracked object, through the motion 

model of the system, and the new information provided by the image. The previous 

estim ated states of the object determines the search area in the image where addi­

tional information is collected to more accurately evaluate the pose of the object. 

According to the reliability of the measurements, characterised by its covariance 

matrix, the confidence on the new data and the previous collected d a ta  is weighted 

to obtain a new estimate of the state of the object. The numerical determ ination 

of these weights minimises the expectancy of the error covariance, which could be 

interpreted as the uncertainty of the state  of the object. Welch and Bishop [43] 

provide an introduction with the mathematical derivation of the technique and a 

simple example on which the Kalman filter is applied. Figure 2.4 illustrates this pro­

cess on a simple example where the x-y  position of a black sphere is being tracked. 

The dotted ellipses correspond to the one-cr distance from the expected value of the 

variables indicated by the captions.

At implementation time one usual issue is to evaluate the uncertainty of mea­

sures, however different case studies, experiments and simulations have shown th a t 

state  estimation tend to remain robust even with an approximative evaluation of the
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uncertainty of the object state. This robustness leads to the successful estimation 

of the state  of an object in spite of the imperfect knowledge of the measurement 

uncertainty th a t happens in practice.

The extended Kalman filter was designed in order to deal with systems which 

behaviour cannot be modelled by a system of linear stochastic difference equation. 

To solve the system of equations, the system is linearised using a Taylor expansion 

about the two first moments of the random vector representing the state  of the 

system. However, when the motion model is not linear, for visual tracking, the 

unscented Kalman filter [44] is almost always preferred.

In the unscented Kalman filter [44], by using the previous estim ated state of the 

object a number of states depending on the size of the random vector representing 

the state  of the tracked object are determined. This limited number of states, 

called sigma points, and th a t are distributed around the mean of the Gaussian 

distribution are used with the motion model to determine the locations where the 

measurements are taken in the subsequent image. Compared w ith the extended 

Kalman filter the implementation is facilitated as there is no need to evaluate any 

Jacobian matrix; also the unscented Kalman filter deals better w ith highly non linear 

functions since no linearisation is made and the search space is be tter determined 

thus more efficiently capturing the probability distribution of the state  of the object. 

They are similitudes with particle filtering however there exists two main differences: 

the distribution is assumed to be Gaussian and its sampling is structured as opposed 

to random.

Many references -  news items, papers, source code and applications -  about the 

Kalman fitler can be found on the webpage [45] maintained by Greg Welch and Gary 

Bishop.

Two examples of application are now provided. Stenger et al. [46] performs 

hand tracking using quadrics to model a hand and the unscented Kalman filter, 

notice th a t although the hand model has 27 degrees of freedom the tracking is only 

dem onstrated for 3-D rigid movements of the hand. Youngrock Yoon in his thesis [47] 

uses the extended Kalman filter to track in real-time with their 6 degrees of freedom 

rigid objects. The object model used corresponds to the edges of the object, the 

process to obtain these model from range images is thoroughly described. This work 

is quite characteristic of the hidden complexity of practical details: extracting edges 

from the image, discretisation issues with lines, self-occlusion of some edges by the
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object, only partial extraction of all edges which are usually truncated  and the list 

goes on. Developing schemes to work around these issues is complex, not merely 

the case of applying a well described algorithm such as the Kalman filter or its 

extensions. This shows an interesting contrast with the neat and clear description 

provided in the previously cited paper [46] which also masks completely all practical 

issues.

2.3.2 Particle filter based visual tracking Particle filtering is a  robust, ver­

satile, real-time2 component of a system for the visual tracking of objects in video 

sequences. Particle filters have been very popular in the last few years and a large 

number of publications have reported adaptations of particle filters w ith various 

image metrics [48] [49].

A number of tutorials [50], reviews and historical accounts on particle filters 

[51] [52] [53] are available. Only a brief summary of the most im portant points is 

given in this thesis. M athematical derivations [54] are not presented here, however, 

some of the current notation and vocabulary associated with particle filters are 

introduced. Particle filtering is a sequential Monte Carlo methodology th a t uses a 

Bayesian framework to predict the future probable location of an object and sample 

the state  space accordingly. This method is sequential or iterative because the 

information arrives in sequence, image after image. Monte Carlo methods are used 

when the state  space is too large to be explored exhaustively, typically due to a high 

number of dimensions, the state space is sampled in order to extract meaningful 

information and, in the case of tracking, to approximate the probability density 

function of the object state. It uses a Bayesian framework because Bayes’ theorem 

is used to infer the probability density function of the location of the tracked object 

knowing the measures taken on the current image.

As mentioned in the previous section, Kalman filtering [43] as well as other ap­

proaches where probabilistic density functions are assumed to be unimodal Gaussian, 

works relatively poorly in the presence of cluttered backgrounds. C ONDENSATION

2Particle filters alone cannot track an object or a shape, they have to be associated with 
a measure. Since the time consuming process is the measurement process, the realisation of a 
real-time implementations depends largely on the choice of this process. The infrastructure to 
implement particle filters does not require a huge amount of space or computation compared with 
the capabilities of a standard computer and the requirement in number of particles of efficient 
measurement methods.
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(CONDitional DENSity propagATION) [54], which is a particular instance of parti­

cle filtering, is an algorithm developed to solve the above problem. The condensation 

algorithm is capable of supporting multi-modal distributions. It is based on sam­

pling the posterior distribution estimated in the previous frame and propagating 

these samples or particles to form the prior distribution for the current frame. How­

ever, it requires a relatively large number of samples to ensure a fair maximum 

likelihood estim ate of the current state  and can be com putationally more expensive 

than  the unscented Kalman filter for instance.

The different properties (e.g. position, shape, size, configuration) of a tracked 

object are described in the time-stam ped state  vector X t while the vector Zt de­

notes all the observations, which are images, { z i . . .  z t} up to tim e t. Using the data 

obtained by a sensor device, X t  can only be known to a certain degree th a t is why 

probability density functions (pdf) are used to model the tracked object character­

istics. Compared with Kalman filters which assume Gaussianity and unimodality 

of the pdf, particle filters do not make any functional assum ption on the shape of 

the pdf. This is a major advantage since in practice, due to the presence of clutter, 

posterior density p ( X t \Zt) is often a multi-modal pdf. However, when the posterior 

density is unimodal there is an unnecessary com putational cost due to unnecessary 

additional measurements.

The key idea of particle filtering is to approximate the probability distribution 

of the current state by a weighted sample set: S  =  { (s^ ,7 r(n))|n  =  1 . . .  N } .  Each 

sample consists of an element s which represents the hypothetical state  of an object 

and a corresponding discrete sampling probability 7r where = 1* The

evolution of the sample set is described by propagating each sample according to a 

motion model as follows: each element of the set is weighted by applying a measure 

to the last captured image, i = p(z t \X t =  s ^ ) ,  and normalising the weights 

71-̂ 1 =  ; p(zt\Xt) is known as the observation or measurement density. The

prior for the next frame, also referred to as the prediction density, p(Xt+i\Zt)  is 

then evaluated by randomly drawing the samples { (s^ ,7 r^ )} i, w ith replacement, 

according to their weight and by applying to them  the motion model p ( X t+i \ X t). 

Moments, such as the mean of the samples, might then be evaluated to estim ate the 

state  of the object:
N

£[S] =  y V " > s (n) (2.3)
72=1
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Thus particle filters are able to consider multiple state  hypotheses simultaneously. 

Moreover, since less likely object states have a chance to tem porarily remain in the 

tracking process, particle filters can deal with short-lived occlusions.

Particle filtering can be used for tracking people, cars or faces in cluttered envi­

ronment where multiple instances of a class of objects can be present. In Nummiaro 

et al. [48] particle filters are combined with colour histograms. The B attacharyya 

distance measure, which is described in the section below, was used to evaluate the 

validity of the hypothesised locations. A methodology to adapt the object represen­

tation, i.e. the colour histogram of the tem plate, to cope w ith the slow variation 

of the appearance of the object has also been proposed by the authors: a mixture 

of the previous model and the current model is used as an updated tem plate when 

the probability of tracking the correct model is high enough. This avoids updating 

the model when the target is occluded or when the image is too noisy. Using the 

previous notations, with an additional time index in superscript this process is given 

by: Pi = (1 — Oi)q\ +  o $ -1 , a  € [0,1] where q represents the colour distribution of 

the estim ated object position and p the colour distribution of the tracked model. 

Moreover, the performance of the colour-based particle filter is compared w ith the 

mean shift tracker [55] based on the Battacharyya coefficient and the mean shift 

tracker associated with a Kalman filter th a t predicts the likely position of the ob­

ject in order to reduce the number of iterations needed by the mean shift algorithm 

when motion is fast. Computational performances are comparable and suitable for 

real-time tracking. Particle filtering is more consistent in the time needed to evalu­

ate the position of an object. This is because the number of operations depends on 

the number of particles used to locate the object which remains constant whereas, 

for the mean shift algorithm, the amount of operations to be carried out can vary 

depending on how fast the algorithm converges. Particle and Kalm an filtering have 

the additional advantage of taking scale changes into account. Particle filtering is 

more robust than  the two other methods but locates the object less precisely. This 

work could be extended by combining the tracking of different parts of an object. For 

instance, a face tracker could be designed by combining the tracking of the m outh 

and the eyes and checking the coherence of the results of the different trackers.

2 .3 .3  O th e r  v isu a l tra c k in g  a lg o rith m s  Comaniciu et al. [56] presents a gra­

dient optimisation approach to track objects. The method uses a metric derived from
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the B hattacharyya coefficient as the similarity measure which allows the tracking of 

deformable objects; as a result it behaves well during perspective transformations. 

For the given examples the m ethod coped well with noise, partial occlusions and 

clutter. The emphasis is put on the target representation. The distance between 2 

discrete distributions is defined as:

d(PA)  =  V1 ~ P ( P A )  (2-4)

where TO

p =  {p«}£o ^  A =  i
i=Z 0
TO

q = {<?i}” 0 I> = 1 <2-5)

are the m-binned colour distributions of the model and the target. And

TO

p( p,q) = ^ Z ^ *  (2-6)
*=0

is the sample estim ate of the Battacharyya coefficient. The usage of an isotropic 

kernel on the spatial domain allows the distance measure to be differentiable in the 

neighbourhood of the object position and gradient based optimisation to be used to 

determine the best match instead of an expensive exhaustive search.

Collins [57] presented a technique using blobs and the mean shift algorithm [55] 

to track a human body. A BLOB (Binary Large OBject) is an area of connected

pixels with the same logical state, for instance, a group of contiguous pixels having

a colour compatible with human skin and being large enough. Lindeberg’s theory 

of feature scale selection [58] [59] has been used to adapt the area size of the kernel 

where a measure to evaluate the blob shift is taken into account. Changes of the 

blob area size are thus taken into account. Collins also explains how to adapt the 

mean shift algorithm to take into account negative weights which is useful when the 

measure, which is used to determine whether a pixel belongs to the foreground (the 

blob) or the background, can be negative. The mean shift algorithm evaluates the 

position of an object by iteratively computing an offset A x from the current location
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to the next location using the following formula:

=  £ „  K ( a - x ) w ( a ) ( a - x )
H a \K ( a - x ) w ( a ) \

where x  is the current location, K  is a kernel function and w  a  function th a t evaluates 

the likelihood of the pixel to belong to the object.

An overview of different techniques to track rigid objects using a single camera is 

given in [60]. Amongst these techniques the Kanade-Lucas-Tomasi [61] [62] tracker 

is of special interest as it allows tracking to be performed in real-time. It also uses 

a  minimisation technique based on the Newton-Raphson optim isation algorithm 

where the sum of squared intensity differences, also referred as SSD matching, over 

a small window, typically 15 to 30 pixels, is used as the measurement method. The 

selection of features is also discussed. In this case features are square patches of 

images. The gradient over an image patch is evaluated and if its 2 eigenvalues are 

large enough, the image patch is considered to be a good feature. This leads to a well 

conditioned m atrix for solving the feature tracking equations. Not only does it avoid 

the aperture problem3 but it also makes the feature patch robust to noise. While 

tracking the features for an extended period of time, their appearance changes due 

to perspective deformation and non Lambertian surfaces of objects. Moreover some 

“good” features may not correspond to any physical point on an object: the patch 

may contain a. foreground and a background object a t the same time, and, occlusion 

should be detected for the tracking to be meaningful. Shi and Tomasi [63] proposed 

the use of an affine transformation model th a t allows these features to be detected 

and marked as,outliers. This could be beneficial for a subsequent processing stage, 

e.g. shape from motion. Jin et al. [64] extended this work to  be able to cope with 

illumination changes. A fast (20 frames per second, 1000 features on 1024 x 768. 

video) GPU-based implementation was developed by Sinha et al. [65].

There exists a  wide variety of tracking techniques adapted for specific environ­

ments, and due to their inherent differences no comparative study has been estab­

lished. Since there is no dominant technique, no steadfast rules exist to  select an 

adequate tracker. Nevertheless, a literature review presenting the best trackers with 

their specificity would be useful as it would provide some guidance in selecting a

3The aperture problem occurs when the feature patch cannot be used to characterise completely 
its movement. For instance, along an edge, when the feature patch is small enough, displacement 
in the edge direction cannot be detected .
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tracker according to the requirement of an application.

Moreover tracking cannot be considered independently of a certain number of 

connected problems: as we have seen, the choice of a tracking technique is tightly 

related to the choice of representation of an object. Object matching, object recog­

nition and detection, object representation and pose estim ation are other related 

issues to tracking. Some aspects of these issues are discussed in the remainder of 

this chapter.

2.4 The Hough transform

2.4.1 In tro d u c t io n  The Hough transform is a technique th a t has been used 

extensively to detect and recognise geometric patterns in images. Its advantages 

include robustness to noise and partial occlusion, the capacity to handle multiple 

occurrences as well as the possibility to be parallelised. However the m ethod suffers 

from excessive storage requirement and computational complexity [66] [67].

Many descriptions of the Hough transform in its basic form are available. It 

has been extensively used for the detection of lines, for which it even has an FPGA 

implementation [68].

Using figure 2.5 a generalised Hough transform is described. As will be appar­

ent in the next section, there are many variations of the Hough transform. This 

version is said to be generalised because it works for any kind of shape and not 

only param etrised shapes such as lines or circles. In figure 2.5 the location of the 

“ bust” shape th a t can be translated in the image space is considered. Therefore 

the param eter space consists of the x  and y  location of a prelim inary chosen and 

arbitrary point of the “bust” shape. To locate the shape a point on the image space 

is selected and assumed to belong to the shape. Using this assumption the possible 

positions of the shape are calculated and voted for. This is illustrated in the figure 

by colours: the green point votes for the positions in the param eter space th a t are 

in the same colour. The dashed light green arrow symbolises this process. After 

repeating this process a certain number of times, the param eter th a t is most voted 

for in the param eter space is considered to describe the object position. In figure 2.5 

only 6 points voted and the param eter th a t has been most voted for a t th a t stage, 

circled in red, happens to represent the position of the shape. Note th a t another 

param eter is voted for 3 times, a t another intersection of the violet, yellow and black
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Param eter space Image space

Figure 2.5: Diagram to explain the Hough transform, see text for explanation.

shapes, it would therefore be premature to conclude the position of the shape at 

that stage. As can be seen all sorts of variations can and have been adopted to 

make the Hough transform more robust, efficient and general; some of them will be 

discussed in more detail in the next section.

2.4 .2  H o u g h  tra n s fo rm  a n d  tra c k in g  Most recognition and detection algo­

rithms can be adapted to become tracking algorithms by focusing on a region of 

interest determined by the previous object locations. Within the context of this 

approach, the implementation of the Hough transform can be reorganised to be yet 

more efficient.

Except for the work by Greenspan et al. [6], we are unable to identify any other 

work where the Hough transform has been used for tracking in a similar way to the 

method presented in this thesis, possibly, because tracking involves a slight change 

of perspective. When using the Hough transform, the algorithm is implicitly set 

to be in a “writing” paradigm [69], i.e. for each image feature (say edge point) 

the accumulators of a parameter space are increased according to a reference table 

[70]. When performing recognition this factor is important because the parameter 

space is generally too vast to be handled rapidly whereas it is possible to consider 

relatively fewer image features. However, if the parameter space is kept small, which 

is possible when performing tracking, the unknown parameters can be determined 

in a different way: each possible transformation can be considered and the feature 

locations according to the transformation can be pre-calculated. This is equivalent
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to a “reading” paradigm, which might not be a sensible approach for detection when 

the param eter space is large.

These two paradigms are presented in [69] where it is shown how the Hough 

transform is related to the Radon transform, a different formalisation th a t generalises 

the Hough transform and allows it to be applied to a wider variety of m athem atical 

objects such as continuous functions. This dual aspect of the Hough transform  has 

been presented by many researchers [71] [72] but did not seem to have been linked 

with tracking.

The essence of the tracking technique introduced in chapter 5 resides in the fact 

th a t the transform ation space can be limited and th a t the feature positions can 

be pre-calculated and stored for all transformations. The transform ation space is 

limited to the relative moves an object can make between two frames (say small 

translations or rotations).

In this thesis the object is modelled by a set of feature points. This approach 

is simpler than  the more widespread Ballard’s general Hough transform  approach 

[70] since we do not take into account edge orientations. As such it relates more to 

Merlin and Farber’s work [73]. We also think this is a more generic approach, since 

by not taking into account the edge orientation, the technique can be used for 3-D 

tracking. The algorithm can be extended to take into account different cues related 

to the edge features, like edge orientation or colour [74], and even different types of 

features simultaneously.

2 .4 .3  T h e  ra n d o m ise d  H o u g h  tra n s fo rm  Our review of the randomised Hough 

transform is begun with a  reference to Fung et al. [75] th a t clearly illustrates the 

main ideas of the randomised Hough, transform. The image is first filtered to obtain 

edge features. The edge orientation is used like in the generalised Hough transform  

presented by Ballard [70].

One of the major differences consists in using a many-to-one mapping: two points 

are randomly selected and, using a reference table indexed on the direction of the 

edge underlying the point, a previously selected anchor point of the object can be 

determined. The.operation is iterated until the level of confidence on the solution 

is above a fixed threshold. Compared with the traditional Hough transform , th a t 

votes for many transformations compatible with a point, this technique is much 

faster since only one transformation is voted for in the transform ation space. The
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transform ation space is often referred to as the parameter space or, in relation with 

its implementation, an accumulator space. Usually a m ulti-array is used to store the 

votes th a t each transform ation obtains which leads to a problem of storage when 

the number of dimensions of the transform ation space increases. But since fewer 

transformations, or subsets of transformations to be precise, obtain votes when using 

the randomised Hough transform, another type of data  structure can be used. For 

instance a hash-table can drastically improve storage requirements.

The transform ation space th a t is being considered consists of translations com­

bined with scale on the rc-axis and y-axis, and thus has 4 dimensions. An extension is 

proposed to take into account rotations. However, it does not seem th a t shear trans­

formations can be accounted for by using this technique since angles are modified 

by these transformations.

Another issue is th a t lines cannot be located since the technique uses a reference 

table indexed on the orientation of the edge point which is the same for all points 

of a line.

We mentioned th a t a many-to-one mapping has been used. The article does not 

specify what was done when, in the reference table, one orientation correspond to 

a few points. One possible solution is to calculate the corresponding anchor point 

for any points th a t have the same orientation, and it would thus be a many-to-few 

mapping. Alternatively it could be implemented by selecting random ly one point 

th a t has the same orientation. Except for this imprecision, the description in pseudo 

programming language of the algorithm is particularly clear and straightforward.

To sum-up, the key characteristics of the randomised Hough transform  are: (1) 

only part of the image point features are used; they are selected randomly; (2) a 

many-to-one mapping is performed and (3) a list structure is used for the transfor­

m ation space instead of an accumulator array.

Kalviainen’s thesis [76] provides more details and discussions on the randomised 

Hough transform (R H T ). The literature review is of special interest. It completes 

the survey done by Leavers [67]. It is argued th a t the selection of an optimal and 

efficient resolution of the accumulator space are issues of the Hough transform  (H T ) 

and it presents several new extensions th a t have been proposed to overcome these 

issues. The literature review divides the presented techniques into two categories, 

non-probabilistic Hough transform and probabilistic Hough transform  (P H T ).

Gerig [77] [78] presents a technique called back-transform in the first paper and
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back-mapping in the second. It consists of first performing a classical Hough trans­

form and storing results in a first accumulator A.  As for the standard  Hough trans­

form (S H T ), each feature point is associated to a hyper-surface in the transformation 

space and the cells of the accumulator A  th a t are intersected by the hyper-surface 

receive a vote. Once this has been done for all feature points, a second accumulator 

B  is used, the hyper-surface associated with a feature point is evaluated again. Us­

ing A  which stores the vote of the previous stage, only the cell(s) th a t intersect(s) 

this hyper-surface and having the maximum number of vote is/are considered. The 

corresponding cell(s) in B  get(s) a vote and a reference to the feature point. Thus 

B  becomes a one to many mapping of the transform ation space to the image space. 

It is claimed in this paper th a t the number of false maxima is reduced and the 

interpretation of the accumulator space is considerably simplified. In addition, the 

feedback from cells in accumulator space to contributing feature points offers the 

possibility to apply more complex strategies to better identify shapes. Although the 

method may evoke the stencil approach th a t is presented in this thesis, the tech­

nique is different. The stencil approach consists in pre-evaluating the mapping of a 

shape given a reduced bounded transform ation space such th a t an inverse map of 

the transform ation space to the image space is obtained.

Li et al. [79] also refer to back-mapping but uses a different definition: the as­

sociation to a  hypercube of the transform ation space to the image points th a t have 

triggered a vote for this hypercube. They present a hierarchical implementation of 

the Hough transform to detect lines in images or planes in range images. The imple­

m entation uses the k-d tree structure and the complexity of the fast Hough transform 

(FHT)  algorithm is discussed in details. However efficient the im plem entation is, 

the application domain of the technique is limited since it requires the hyper-surface 

corresponding to a feature point in the transform ation space to be hyper-planes. 

Consequently, the article concludes by highlighting the need to extend the F H T  to 

higher order surfaces and /or to consider approaches th a t allow non-planar, possibly 

higher dimensional, problems to be recast as planar problems. The stencil approach 

described in this thesis allows a hierarchical approach of the Hough transform  to be 

implemented for any templates we are looking for, param etrised or not.

Kiryati et al. [80] presented a theoretical and experimental comparison of the 

randomised and probabilistic Hough transform to detect lines. The P H T  works like 

the S H T  developed by Duda and H art in 1972 [81]. Thus, it is a 1 to n  mapping
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of the image space to the transformation space where only p a rt of the points of 

the image space are considered. It is shown tha t, when the algorithms are used to 

detect lines, the R U T  is better suited for high quality low noise edge images since it 

is considerably faster than  the PHT.. However, for the analysis of noisy low quality 

images the P H T  is significantly more robust and the R H T  can no longer be used. 

In term s of speed the P H T  performs significantly better than  the SHT.

2.5 Summary

Different approaches to track and identify object states have been presented. In this 

work, a  model consisting of feature points of an object has been chosen. The object 

position is therefore characterised by the relative position of the features belonging 

to the object. This last point is further developed in chapter 4.

After initialisation, th a t can be helped by motion detection an d /o r background 

subtraction the object can be tracked, using a particle filter for instance as developed 

in chapter 3, to limit the region of interest where to look for the object. If distortions 

are not significant or corrected the set of feature points can be identified with the 

model using various matching techniques.

Variations of the Hough transform like the bounded Hough transform, th a t is 

called here the stencil estimator and th a t is presented and developed in chapter 5, 

allows to match, in real-time when the number of degrees of freedom of the motion 

can be limited, two sets of points in a bounded region th a t can be situated  around 

the previous object state.



Chapter 3 

Particle filters: a class of statistical 
methods for real-time tracking

3.1 Introduction

Particle filters are one of the main track th a t was followed to solve the real-time 

pose estimation problem th a t was faced. This chapter expands on the abstract 

review of particle filters as previously presented in section 2.3.2.A slightly different 

interpretation is proposed and discussed with a concrete example. In spite of being 

incomplete, since no Bayesian framework is taken into account, this interpretation 

does provide an intuitive explanation on how particle filters work, upon which a 

more precise understanding can be built.

Particles can be viewed as hypothetical states of the object being tracked. The 

validity of these hypotheses are quantified by measuring the image (say using a cor­

relation measure, an edge-based matching measure etc.). These measures are then 

integrated as the weight of the particles and represent the validity of the hypothe­

ses. The higher the weight, the more likely the hypothesis describes the state  of the 

tracked object or at least a state close to the object position. This assumes th a t 

the measure has a certain degree of continuity which is preferable to obtain better 

results and which could allow, for the best hypotheses, gradient descent optimisation 

to be used to locate the object. This is a common improvement in particle filters 

th a t is sometimes referred to as sm art particle filters [82].

To predict the hypotheses for the next frame, hypotheses are selected according 

to their likelihood, i.e. an hypothesis th a t is very likely to characterise the object

38
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state  is selected multiple times while an unlikely hypothesis might not be selected, 

and are propagated according to the system model. The system model could consist 

of simply shifting the hypothesis by an amount proportional to the previous speed 

of the object, or by a more acurate albeit more complex model if the kinematics of 

the objects can be determined more precisely.

In the micro-pipette tip  tracking scenario described later, the two features of 

a particle are the x  and y  location of the tracked object. The validity of each 

hypothesis was first evaluated by correlating a tem plate image of the pipette tip 

with the part of the image centered on the hypothesised location. However, in the 

tracking of the pipette, pure correlation of the grey scale tem plate image gave very 

poor results. The results were improved by filtering the image with an edge filter 

and correlating with an edge tem plate. Figure 3.1 is a simplified flow chart th a t 

sums up the steps involved in the particle filtering algorithm.

Next frame

Hypothesis validity is evaluated using the 
da ta  of the  current image

First frame, all hypotheses are  localised 
at the given position of the object

H ypotheses are  filtered and propagated 
according to their validity

The object position is estim ated by averaging 
hypothesis positions according to their 

validity or by using more sophisticated m ethods

Figure 3.1: Particle filtering stages.

3.2 A real world example

In this study an existing implementation of particle filters has been used [1]. The 

measure used is the correlation between a tem plate image th a t represents the object 

to track, here a pen tip, and the part of the image around a particle. Here, particles
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are 2-D points indicating the position of the image part that has to be correlated. 

The estimation of the pen tip position for a given image is evaluated by averaging 

the particles positions weighted by the correlation measure. Figure 3.2 shows the 

program at the end of its execution. Green dots represents the tracked location in 

previous images. They are located on the trajectory of the pen tip that appears due 

to the line that was drawn by the pen. Black dots in the surrounding of the pen tip 

represent the particles positions for the last frame. It can be seen that they are not 

spread uniformly around the pen tip. This is due to the hand shadow that correlates 

well with the image template. Nevertheless, the pen tip is successfully tracked.

{Sce«d (fet) - Ave aje 4 31 C uw  4 28

Figure 3.2: The original pen tip tracking algorithm using particle filters [1].

3.3 Typical encountered issues

The above mentioned implementation was adapted to track a micro-pipette tip for 

biological cell manipulation. The tracking of the pipette tip failed quickly as shown 

in figure 3.3. The image sequence has been captuered using an optical microscope. 

The white objects are cell holders that use electo-static charges to trap cells at the 

circular locations.

Before explaining the reason for the failure of the tracking a few images of the 

pipette sequence are presented. A short historical account of the investigations is 

then reported. Figure 3.4 shows a few images from the pipette sequence that il­

lustrates common issues related with tracking. Frame A is the first frame of the 

sequence where the template image of the pipette tip is captured. Frame B demon-
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Figure 3.3: The tracking of the pipette tip has failed. The white square is the 
tracked location (at the top centre position of the image). Top left hand corner is 
the template image.

strates the first problem encountered: motion blur. In frame C, a problem quite spe­

cific to our video sequence appears: the pipette tip is transparent and its appearance 

changes with the background which likely results in poor similarity measures with 

the initial template image. In frame D the illumination of the scene has changed i.e. 

the scene progressively gets darker. Finally, in frame E the whole scene is blurred.

3.4 Preliminary approaches to  solve these issues

The different approaches that have been considered in solving the problems above 

are as follows:

• updating the template image. This led to the following problems

— the periodicity of the update needs to be decided.

— when an update is performed parts of the background is incorporated 

into the template. Also, due to the transparency of the pipette, the 

backgroung can alter the look of the pipette.

• accounting for the orientation of the pipette.

• enhancing the particle filter.

• improving the matching method as well as integrating new matching methods.
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Frame A: the initial position Frame B: motion blurred micro-pipette tip
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Frame C: the changing background behind 
the micro-pipette tip modifies 

its appearance
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Frame E: the whole scene is blurred 
due to defocussing
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Frame D: the illumination level 
of the scene has changed

Figure 3.4: Problem atic frames from the micro-pipette sequence.
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In hindsight, the problems were not correctly identified, and so relatively complex 

methods were initially developed. This is a trap that is easy to fall into, especially in 

computer vision. This was due to the fact that the issue was not directly apparent, 

like the change of illumination of the scene was. We will proceed with the account 

of the steps we undertook to try to solve this issue.

Frame A: Updating the template 
image without storing the 
previous template images.

Frame B: Pen tip tracking with 
update of the template images. 

The previous template images are 
displayed at the top of the image.

Figure 3.5: Tracking with the template updating mechanism running

3.4 .1  D y n am ic  te m p la te  u p d a tin g  The tracker was improved by firstly im­

plementing a template update scheme. It was tested on the pen tip sequence as 

shown in figure 3.5. Nevertheless, when applied to the pipette sequence, tracking 

continued to fail after a few frames. The major issue is that we do not have any cri­

teria to decide when the update has to be performed. Thus there is a possibility for 

the update to be performed on a part of the image where the object is not present. 

It was later realised that by combining different measuring methods, sensitive to 

different variation of the pipette tip appearance, it may be possible to update the 

template. If measures start to give low values while others continue to give a high 

confidence value, it indicates that, it is time to update the model associated with the 

measure giving low values. However, since this continued to prove inconsistent, the 

idea was discontinued.
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3 .4 .2  T ak in g  m e a su re s  A few other improvements were experimented with un­

til it was decided to systematically take measures of the image sequence in order to 

better understand why the tracking was failing. Thus, the correlation of the tem­

plate image with the scene image, over a predefined region of interest, was measured. 

In other words, the tem plate image was convolved with an image region.

Figure 3.4.2 shows the scene images on which the correlation measure has been 

displayed with grey shades. In order to improve the visibility, we used the follow­

ing colour code: black was used to mark the points when the correlation measure 

is higher than  0.95 times the value of the best correlation measure in the region 

surrounded by the large rectangle. W hite was used to mark the points with a cor­

relation measure in the range 0.9, 0.95 times the the best correlation value. Next 

ranges were coloured in grey then white again and then transparent colour was used 

to see the underlying image. Therefore, a  small set of black points surrounded by 

white indicates a good candidate location for the p ipette tip. We focused on a 

few images where the tracking of the pipette was systematically failing. From the 

pseudo-coloured frames of figure 3.4.2 the following observations can be made.

Frame A shows th a t the cell holder on the background is highly correlated with 

the micro-pipette tip tem plate. The left boundary of the m icro-pipette has a good 

correlation value relative to the rest of the region. Note th a t the micro-pipette tip  is 

not yet present in the large rectangular region. However within this region, the top 

of the cell holder correlates quite well with the micro-pipette tip. This is confirmed 

by frame B.

In frame B it can also be seen th a t even though the tip of the micro-pipette is 

correctly located, the correlation values along the body of the m icro-pipette are high 

as well.

Frame C and. D again illustrates the fact th a t the body of the micro-pipette has 

got a high correlation value and in Frame D the micro-pipette failed to be detected 

because of this phenomenon. It appears th a t according to the correlation measure 

the micro-pipette tip  could be located at three different positions. Although the 

particle filter copes well with multimodality, the evaluation of the micro-pipette 

location, th a t is made by averaging the location of the particles w ith their weight, 

lead to an incorrect result.

Frames E and F  present two other examples where the tracking is lost. Because 

of the background, the best correlation is no longer found on the micro-pipette
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Frame A Frame B

Frame C

Frame E

Frame D

V% %

Frame F

Figure 3.6: Image showing the value of the correlation measure within a region of 
interest. The positions with high correlation values are coloured following the colour 
code described in page 44.
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tip. Although the particle filter can cope with occlusions the particle filter cannot 

recover because the micro-pipette tip  is occluded for too many frames and when the 

micro-pipette tip appears again, in a region further down, because clutter prevented 

particles spreading, no particles were present in th a t region th a t could have made 

the recovery possible.

3 .4 .3  Im p ro v in g  th e  m a tc h in g  p a ra d ig m  Once the problem was clearly iden­

tified as being the presence of clutter, a simple solution to deal with it was quickly 

found. To improve the quality of the tracker a measure th a t be tter discriminates the 

micro-pipette from the background clutter was required. We found th a t correlating 

edges, instead of grey scale images, greatly improves the matching. Indeed, edges of 

the pipette is a good characteristic to identify the micro-pipette since the body of 

the pipette changes due to its transparency. Frames A,B,C,D of figure 3.7 illustrate 

th a t the tracking of edge filtered images has been greatly improved.

C o m p a riso n  o f som e edge d e te c to rs .

W hen it was observed th a t edge correlation was superior than  the grey level tem plate 

matching, different edge detection algorithms were evaluated.

We tested a  variety of edge detector methods including the Laplacian of a Gaus­

sian LoG[83], C anny[84] and Susan[85]. Canny with the appropriate param eters is 

more consistent and faster than  LoG and because of its thinning edge step, edges 

are better located and thinner than LoG. The Susan edge detector m ethod is even 

faster than  Canny (by a factor of 10) and allows the particle filter to better locate 

the micro-pipette. Although software patents are not currently legal in Europe, 

Susan’s major drawback is th a t it is a patented technique. Figure 3.4.3 illustrates 

results obtained with the Susan and Canny edge detector.

O p tim isa tio n  a n d  p itfa lls

Edge tem plate matching using correlation, because it involves an additional step, 

is slower than  direct grey-level correlation. Since real-time performance is a pre­

requisite for us we explored the possibilities of optimising the edge detection process. 

Therefore the whole image was first filtered. To improve even more this scheme the 

egdes were extracted where measures were taken. Figure 3.4.3 shows the results



CHAPTER 3. PARTICLE FILTERS 47

frame A frame B

frame C frame D

Figure 3.7: Frames showing the tracking results using edge tem plate matching. The 
top left corner of images shows the edge tem plate of the m icro-pipette tip.
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frame A: one image filtered with frame B: the same image filtered
the Susan edge detector. with the Canny edge detector.

Figure 3.8: The same image filtered with the Susan and the Canny edge detector.

of this operation. The speed improvement due to this last optim isation is not sig­

nificant because the reduction of the filtered area is not huge. This illustrate the 

classical mistake of attem pting to optimise too much, too early on without profiling 

a program.

3 .4 .4  G e o m e tr ic  B ra n c h -a n d -B o u n d  M a tc h in g  The edge correlation method 

to m atch the model tem plate with the image was still not completely satisfactory: 

the tracking was still failing towards the end of the video sequence and the recovering 

time, when the track was lost, appeared to be too long. To improve the tracking we 

decided to further improve the matching measure. The geometric branch-and-bound 

matching method was selected for th a t purpose. For a description of the branch and 

bound (BB) algorithm please refer to the literature review on page 19.

Im p le m e n ta tio n

A Java implementation of the BB algorithm was provided by Breuel [35] but for 

compatibility reasons it was re-implemented in C + + . The original Java code takes 

into account the change of orientation of the object as well. But our implementation 

excludes this feature.
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frame A: the particles are widely frame B: the tracking fails,
spread on the image.

frame C: but is able to recover thanks frame D: end of the tracking sequence 
to the particle located near to the tip.

Figure 3.9: Frames showing the results of edge correlation w ith only part of the 
scene image processed in order to filter edges. Frame B illustrates one of the frames 
where edge correlation fails.



CHAPTER 3. PARTICLE FILTERS 50

T e s tin g

One of the m ajor issues of the BB algorithm is its speed. Determining theoretically 

the average and worst case complexity of these kinds of matching algorithms remains 

an open problem[35]. However, BB was found to be more tim e consuming than 

performing an exhaustive search on an area of the same size using a correlation 

measure. This supposedly depends on the area size selected. Nevertheless, adding 

other cues such as edge orientation, or colour can speed up BB.

In order to incorporate BB with the particle filter, a measure to quantify the 

goodness of match of the tem plate image and the scene image had to be provided. 

The ratio defined by the number of edge points matching the image by the total 

edge points of the tem plate image was used.

The usage of BB led to good tracking results but the tracking was too slow for 

real-time applications. Enhancements by incorporating the orientation and scale of 

the tem plate can be taken into account by the BB algorithm. Also, the BB algorithm 

can be extended to take into account different kinds of features simultaneously, e.g. 

colour points along with corner and edge features. BB is thus a  good candidate if 

different measures need to be combined and it was used as a complementary measure 

as explained further down.

3.5 Clustering particles

3.5 .1  L o c a tin g  th e  s ta t is t ic a l  m o d es  In particle filtering based methods, the 

predicted location of the object being tracked can be obtained by using a weighted 

mean of the particles’ positions (equation 2.3). W hen working in a cluttered envi­

ronment, the pdf is bound to be multi-modal. This is because similar objects in 

the background gives a probability measure which is very similar to the probability 

measure a t the actual location of the object. As a consequence the weighted mean of 

the particles position is not relevant anymore to identify the position of the tracked 

object (figure 6.44 and 6.45). W hat needs to be done is to isolate the different 

modes of the pdf. Once the modes are isolated, they will provide a much reduced 

set of relevant probable locations of the object. On these probable locations, more 

accurate, albeit more time consuming, measures can be applied to decide which of 

the modes is the actual location of the object. To isolate the different modes we 

defined the following methodology.
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3 .5 .2  M ethod formalisation Let

■ m S  = { s ^ ,  • • •, 5 ^ }  be the set of n  particles obtained using particle filtering. 

s G Mn the state space.

•  T  =  {5 G 5jev(5) >  thresholdjvalue} the subset of most relevant particles 

(samples, hypotheses), ev : E n M is the function th a t evaluates the validity 

of the sample, e v (s^ ) =  7r ^ ,  where 7 was defined in page 28.

•  t  G T  one of the thresholded particles

•  a subset of T

•  ||. || the Euclidean distance in Rn

T  is partitioned as follows

Vt €  T  : 3!i S N : t  €  M (<) (3.1)

V(<W, t<*>) £  T 2 : (||iW -  # > || <  d =► 3!i e  N : f(fc)} C M ^ )  (3.2)

The partition of T  depends on the distance d and the threshold value. Since

multiple partitions satisfy these two conditions we consider the one th a t has the 

maximum number of elements.

are sets of relevant hypotheses belonging to the same neighbourhood. As 

such, they are characteristic of the presence of the tracked object, we call them  mode 

sets. To optimise the use of the measurements the non-thresholded samples h are 

integrated within a mode set i f f  min5GM(i)(||s — t|| <  d). Note th a t samples

bordering mode sets might belong to more than  one set and th a t some particles are 

discarded from the process.

Ultimately, the weighted average of the elements belonging to a mode is evaluated

VM(i),m (i) -  ^ S M (0 s-ev(s) =  - y  sa)_wa) (3 .3)

so 4 « )

A graphical representation of the process is shown in figure 3.10.

3 .5 .3  A n  0 ( n ) a lg o r ith m  to  c lu s te r  p a r tic le s  A practical algorithm, with 

linear complexity, to cluster samples is now introduced. The underlying idea of the
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frame A frame B frame C

frame D frame E

Figure 3.10: In frame A points represents particles. Frame B shows the thresholded 
particles. In frame C, the boundaries show how these particles are grouped and can 
be seen as the set bounds . Frame D shows how the other particles are collated 
into the corresponding sets. Frame E shows the resulting peak points, compared 
with frame B the modes are shifted from the thresholded particles and the 2 closed 
thresholded particles have been integrated in the same mode.
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following heuristic method is to collate particles, starting w ith one located in the 

neighbourhood of a  mode and then to recursively cluster particles located near to 

it.

Let:

a mode be a  particle associated with a  weight and as such an element of Rn x R.

the weighted mean function of two hypotheses associated w ith their validity 

measure be

wm : (Rn x l ) x  (R” x R)

•  ||.||0 be the Euclidean distance between 

a mode.

We define recursively the set M  of modes on the set of samples S as follows:

M  :=  Mcard^S)

M 0 :=  0

M k :=

U 

U

At step k  of the construction of M , the kth sample is considered. It is merged 

with an existing mode as described by the first set of formula 3.5. Otherwise, if 

this is not possible, due to the distance constraint, and if its measure is high, it is 

considered as a new mode as described by the th ird  set in formula 3.5. The second 

set in formula 3.5 retains unchanged modes for the next recursion stage.

The resulting modes depend on the particle selection order and thus are dif­

ferent from the modes as previously defined. An improvement can be made 

by ordering particles according to their reliability, so th a t hypotheses located near 

to an undiscovered mode are not discarded and th a t the drift of a mode due to 

the subsequent incorporation of particles is minimised. The best complexity for a 

sorting algorithm is 0 (n lo g (n )) which in practice is not an issue since n  is small

{wm((s(fc),7r(fc)),ra) | ||(s(fc),m ) ||a < d , m £  M k~i}

{m  e  M k-1 | ||(s(fc),m ) ||a >  d}

{(*(V (fc)) ) l
(Vra G M k- 1, | | ( s ^ ,m ) | |a >  d)A(7r^ >  thresholdjvalue)}

R " x R  .
(3.4)

(a S k ’, » > + “ 2)

a particle and the n  first elements of
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for particle filters. Sorting particles provides deterministic results for the resulting 

modes, however, in practice, it remains to be shown th a t this is an advantage.

Figure 3.5.3 shows the test of an implementation of the above algorithm. In 

frame A, there are some modes in the body of the micro-pipette. This indicates 

th a t the body of the micro-pipette is very similar to its tip. Frame B shows the 

tracking just before the program looses the micro-pipette tip. Frame C, shows the 

tracking of the micro-pipette having recovered after a long period of tim e where the 

tracking was indicating the p ipette body instead of the tip. Again, the modes in the 

pipette body indicate th a t the body is very similar to the p ipette tip. The tracking 

of the micro-pipette eventually fails as shown in frame D.

3 .5 .4  L o c a tio n  o f  th e  m ic ro -p ip e tte  u s in g  f u r th e r  m e a s u re m e n ts  o f th e  

im ag e  Summing up the processing steps thus far:

•  The scene image is filtered using an edge filter.

•  Particles giving the probable locations of the object are generated using the 

particle filter. A correlation measure of the edge tem plate w ith the edge filtered 

image is used to weight particles’ importance.

•  The modes of the underlying pdf are located by collating, the weighted parti­

cles into groups.

At this stage two scenarios are possible:

•  If the object is not occluded and if the scene image is not cluttered, it is likely 

th a t the mode having the largest weight indicates a position close to  the object 

position.

•  However, if the object is being tracked in a noisy environment, it is probable 

th a t multiple modes with very similar weight are found.

In the second case, illustrated by figures 6.44 and 6.45, further processing is needed 

to decide which of the modes gives the most probable location of the object.

For th a t purpose, the branch-and-bound algorithm was performed in a region 

surrounding the detected modes. BB was performed using edge filtered images, the 

ratio of m atched points over the total number of edge point of the tem plate was the 

associated measure. To further discriminate the modes the surrounding region was
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P*T

Frame A: Large black squares 
are the modes.

Frame B: Large white dots are the 
tracked locations.

I'T <7 /

i ,

* v* *■ • y~.

Frame D: Tracking is lost, particles
very far from the micro-pipette tip. are on the bottom  right corner.

Figure 3.11: Tracking of the micro-pipette tip. Modes give an indication of the 
location of the peaks of the pdf sampled by the particles.
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correlated with a grey level tem plate image of the object. A combination of the two 

measures was used to select the appropriate mode: we attribu ted  a weight to each 

of the measure and took the barycentre of the measures.

3.6 Farther improvements

3.6 .1  O v erco m in g  th e  effect o f  c lu t te r  Reducing the spatial range of particles 

helps to avoid the effect of background clutter. W hen particles are bunched around 

the object position, the evaluation of the pdf sampled around the likely object 

position has a better chance to be unimodal (figure 6.43). The following method 

has to be performed cautiously in order to m aintain the robustness of the particle 

filter. The improvements discussed cannot always be applied but when conditions 

are favourable they improve the reliability of the filter. .

3 .6 .2  In te g ra t in g  th e  k in e m a tic s  o f th e  o b je c t  Based on the previous tracked 

location of the object its current speed and direction can be evaluated. An additional 

weight is given to particles describing object positions compatible w ith previous es­

tim ated kinematics. The additional weight augments the actual measure calculated 

from the image boosting up the weights of the particles compatible w ith the previous 

object kinematic and reducing the effect of the background clutter.

For the pipette problem, first a ttem pts in integrating the velocity (speed and 

direction) failed because the pipette movement is too random. However, the speed 

of the pipette tip  is more or less constant and integrating this da ta  to the particle 

weights helped discard high value measures due to background clutter.

Integrating the speed of the pipette tip using this method has the additional ad­

vantage th a t more particles are better situated. This be tter localisation of particles 

can be explained by the fact th a t since particle weights around the predicted object 

location are augmented the corresponding particle are more likely to be selected and 

propagated to the next frame. Consequently, those particles which are further away 

from the predicted location are more likely to be left out. It avoids processing those 

locations where background clutter may play a disruptive role.

In order to avoid affecting the robustness of the particle filter these additional 

weights must be modulated by the degree of confidence th a t we have in the tracking. 

After a few frames, when tracking is lost, no additional weight should be used and in
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cases of uncertainty in the tracked location the additional weights should be reduced 

and given relatively to the last previous location th a t can be trusted.

3 .6 .3  P a r t i a l  re - in it ia lis a tio n  Partial re-initialisation of the particles is an­

other proposed scheme th a t could be adopted to have a better sampling of the pdf 

of the object position. Partial re-initialisation assists the particle filter to better 

sample those regions of the state  space th a t are highly likely to  contain the tracked 

object position. The sampling of the remaining of the state space becomes sparser, 

but to a minor extent, ensuring th a t alternative possible states are still taken into 

account. Partial re-initialisation is particularly useful when the tracking fails due 

to occlusion. Indeed, when the tracking fails particles tend to spread across the 

state space which is the adequate behaviour to be able to recover the tracking of 

the object when these one reappears. However,, when the object reappears because 

the number of particles is small around the object, it is possible th a t, even if a few 

particles are able to correctly locate the object, their number is not high enough 

to be propagated correctly to the next frame. In order to help the particle filter 

recover more quickly and surely, the propagation of the particles can be modified 

by relocating more particles to the supposed recovered location. This also reduces 

the likelihood of mislocation due to clutter in subsequent frames.

W hen particles indicate th a t the object location has been recovered, the partial 

re-initialisation is done as follows. Amongst the current set of particles, a percentage 

of particles having lower weights, and hence more likely further away from the 

current probable tracked location, are randomly chosen and are re-located to the 

current probable tracked location of the object.

These two methods, weight addition and partial re-initialisation, help to integrate 

the additional information brought by measures made on the modes of the pdf. 

The main issue is th a t they have to be fine tuned, the additional weight has to 

be determined as well as the percentage of particles to be relocated in order not 

to affect the robustness of the particle filter. Relatively small changes suffice to 

affect the particle filter behaviour since a better sampling of the pdf  has the positive 

consequence of a better sampling of the pdf in the next frame and so on iteratively.

Figure 3.12 is a simplified flow chart th a t sums up the stages of the tracking 

procedure.
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Next frame.

Modes are identified.

Particles are selected according 
to their weight and propagated.

Initialisation, particles a re  localised 
to the  initial given position.

Additional m esures are  m ade around the m odes 
to  discriminate the  actual position of the  object.

W hen the degree of confidence that the object 
h as been correctly located is high, a  percentage 

of the particles is relocated to the  probable 
object location.

Particle weights are evaluated using the current image 
data. W hen the probable object position can  be infered 
from its previous tracking an  additional weight is given 

to the compatible particles.

Figure 3.12: Tracking stages.

3 .6 .4  M o d es  f il te r in g  Tests indicate th a t the m ethod described above per­

formed well. The tracked position sometimes jum ped to a far off location from 

the micro-pipette tip. To avoid this, another scheme was added to the tracking 

algorithm as described by the figure 3.12. The idea was to consider only the modes 

close to the previous tracked location. This has a second advantage of avoiding 

the need to perform measurements around modes far off from the pipette  tip, thus 

speeding up the application. Since the tracking of the pipette can fail, to be able to 

recover, far off modes of the previous location have to be taken into account. The 

following procedure has been used:

•  only the modes a t a distance d from the previous tracked location were con­

sidered.
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. •  if the measures are high, indicating th a t the p ipette tip  is currently being 

correctly tracked, then the distance d is reset to its initial value.

•  otherwise it is assumed th a t the tracking is lost and the distance d is increased.

This further improves the tracking of the pipette tip  and illustrates an additional 

way to incorporate high level information such as the tracked location of the pipette, 

as opposed to its pdf, to a higher filter stage, i.e. the modes stage, as opposed to 

the particles stage.

3.7 A generic particle filter architecture

We re-implemented the CONDENSATION filter from scratch. The CONDENSA­

TION algorithm is described in [54] and is a particular type of particle filter. Using 

the tem plate mechanism provided by C + +  we developed a generic implementation 

th a t can be adapted to track objects in different scenarios.

3 .7 .1  D e sc rip tio n  o f th e  a rc h ite c tu re  The underlying design principle tha t 

has been retained was flexibility. Therefore no arbitrary  choices were taken and 

whenever a choice has to be made the implementation takes it into account in 

order for users to make their choices without modification of the core architecture. 

Implementation wise these choices appear in functions, tem plate param eters and 

policy idioms. The negative consequence is th a t it introduces a  higher degree of 

complexity to the architecture. However, this degree of complexity can be made 

transparent by subsequent software layers.

3 .7 .2  Issu es  r e la te d  to  th e  in itia lis a tio n  o f  th e  c lass A brief description 

of the architecture choices and their rationale is provided here. The Doxygen1- 

commented implementation has been released in the Mimas C + +  open source com­

puter vision library. Examples of usage of the particle filter implementation, re­

named hypothesis filter, are provided in the examples of the version 2 of the library.

An architecture based on the policy idiom has been adopted. One of our motiva­

tions, albeit controversial in justifying its choice, was to try  to implement the policy 

idiom, a design pattern  described in [86]. For more on design patterns one may refer

1A tool to document source code
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to the famous, at least amongst the software designer community, “Gang-of-Four” 

book[87].

More reading on aspect oriented programming [88] and m eta programming [89] 

[90] is useful to understand the ideas behind the policy idiom. Compared with 

the inheritance mechanism, because classes are assembled a t compile time, more 

flexibility is provided; it is possible to define optional functions in the so-called 

host class th a t can be instantiated only if the policy classes implements a certain 

interface. For instance, in the h y p o th e s i s _ f i l t e r  class the t r a c k ( )  method is 

instantiated only if the im age_loader policy is providing a n e x t( )  method and the 

a n a ly s e _ re s u l t  policy an an a ly se  () method.

Nevertheless, although critical sections, such as correlation measuring algorithms 

and image filtering, still have to be w ritten, due to performance issues, in a low-level 

language such as C + + ; it is preferable to use higher level languages having meta­

language facilities, such as Python or Ruby, to implement generic logic for combining 

sub-systems. One may have a look at the required complexity of the code needed to 

implement m eta programming in a language not conceived for this purposes, namely 

C++[89] [90]. This being said, Koethe [91] [92] provides m atter to th ink about re­

usability of code in C + + . Koethe specifically discussed implementations relating to 

image datastructures for computer vision.

Adoption of a policy idiom based architecture brought to our attention the fol­

lowing issue: policies, such as the o b se rv er policy, can be quite different and need 

different initialisation parameters. However, the policy architecture requires the 

constructor prototype of policies to remain the same. In order, to solve this issue 

an embedded class, called s e t ,  is provided within each of the policies. For each of 

the policies this class has to be instantiated and given to the host constructor. This 

methodology has also the advantage of guaranteeing th a t policies are instantiated 

before the host class. Another advantage is th a t the order of call of the different 

policies constructors is done a t the level of the host constructor, therefore the user 

does not have to worry about this. To our knowledge this m ethod has not been 

previously documented.

3 .7 .3  C o n c e p tio n  The tracking algorithm has been divided into five, mostly in­

dependent, components. The p ic k in g  policy which ensures the propagation of the
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particles (hypotheses). The o b se rv e r policy which has the responsibility for mea­

suring the validity of an hypothesis (the weight of a particle). And which depends on 

the type of hypothesis selected, e.g. a 3-D location, a 2-D location associated with 

scale. The hypothesis type can be considered as a component, even if it not a policy. 

The a n a ly s e _ re s u l t  policy which is used to evaluate the position of the tracked 

object using the observation made on the image. The com pensation policy th a t has 

been used to implement partial re-initialisation of the particle filter. im age_loader 

policy which just facilitates the loading of images.

A previous implementation had fewer components th a t we called hypothesis 

filter, observer and custom hypothesis. The role of the particle filter was to propagate 

particles according to the system knowledge. The role of the observer is to update 

the knowledge of the system by taking measures on the image. The determ ination 

of the kind of hypothesis allows the filter to be adapted to the state  space with 

which we want to operate: 2-D translation, 3-D moves, n-dimensional contours, etc. 

Figure 3.14 presents a UML diagram of the system.

The particle filter implementation was tested on the micro-pipette sequence, the 

pen sequence, 3 ping-pong sequences and a Rubik’s cube sequence. These tests 

allowed us to refine the architecture and the implementation of the hypothesis filter, 

they are presented in section 6.3 page 143.

HypothesisFilter

Observer3D Hypothesls3DCondensation Hypothesis2DCorrelatlonObserver

virtual double cbserve(Hypothesls &p)():
Observer

+ v ir tu a l Hypothesis *d r lf t (v o ld ) const -  0 ():

Hypothesis

Figure 3.13: UML diagram of the first design of the particle filter
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Figure 3.14: UML diagram of the final implementation of the particle filter 

3 .7 .4  E x te n s io n s  

P a ra lle lis a tio n

Particle filter algorithms are well suited for parallelisation. The critical p a rt of 

the code consists in evaluating the particle weights, this load can easily be shared
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amongst different processors by assigning to each one the. evaluation of a number 

of particles. Therefore, the generalisation of multi-core processors provides another 

incentive to the usage of particle filters. M ulti-threading can be used to implement 

this facility[93].

Detection based on particle filter

Adapting the particle filter for detection can be done easily. Inspired directly by 

Isard and Blake’s paper on the ICONDENSATION[94] algorithm, the following two- 

stage-met hodology is proposed. Using a coarse and fast measure the sampling of the 

image can be determined. From this sampling, refined measurements can be made 

to evaluate an object configuration. The main issue th a t remains is to determine a 

fast measure, which is a  problem since conditions vary widely from one application 

to another. However, a relatively generic solution may involve the usage of colours.

3.8 Summary

In this chapter we have presented different methodologies, namely particle clustering, 

partial re-initialisation, integration of the dynamic of the system by over-weighting 

compatible particle weights, to track a translucent micro-pipette in a cluttered scene 

environment. The formulated procedures can be used to cope w ith problems arising 

from object occlusion and background clutter. Furthermore, by greatly reducing 

the number of measures th a t have to be taken after the first filtering stage, the 

particle clustering procedure allows the usage of more complex and precise matching 

method on a second filtering stage without significantly penalising the speed of the 

application.

The presented tracking algorithm, the particle filter, is robust, however the real­

time objective remains an issue. This is due to the fact th a t the measuring methods 

to localise the object are time consuming. The tracking m ethod per se is very 

efficient and allows tracking objects in high dimensional space. Future work can be 

carried out to determine some fast, highly discriminant measures. However, these 

measures are very dependent on the tracking scenario and ad-hoc solutions need to 

be provided for each case.
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3 .8 .1  P o ss ib le  im p ro v e m e n ts  By first using a coarse filtering .stage to deter­

mine the sampling of the state space, particle filters can be adapted for detection.

One of the m ajor issues in tracking moving objects using tem plate matching is 

th a t the original tem plate becomes invalid due to the change in lighting conditions 

or due to the changes of the detected object features. To handle this situation, the 

model tem plate could be updated. The simultaneous usage of different measures 

may give an indication when to update the template.

Depending on the number of processors available, parallelisation of the particle 

filters can be undertaken if the speed of the tracking algorithm only needs to be 

improved by a small multiplicative factor.



Chapter 4

State space, shape information 
and template reduction

4.1 Introduction

Objects or shapes are commonly represented by feature points. This chapter dis­

cusses how a subset of feature points representing a shape can still be robustly used 

for shape identification in an environment containing alternative shapes and in the 

presence of noise.

Two simple theoretical cases are discussed to introduce some of the issues th a t 

arise when trying to formalise and understand the nature of the problem of putting 

a shape into correspondence with another set of points. This issue arose in the 

field of computer vision while examining a broad range of variations of the Hough 

transform algorithm.

4.1 .1  S q u a re  ex am p le  Given a square, consider the number of points th a t are 

necessary to determine its characteristics, e.g. its position and size, w ithout am­

biguity. One point is insufficient since many squares have potentially this point in 

common as can be seen in figure 4.1.

Consider 2 points. Although it can be argued th a t 2 points provide more infor­

mation, they are still insufficient to uniquely determine a square: if it is assumed 

th a t these 2 points belong to an edge of a square then there are many different 

squares of various sizes to which these 2 points can belong to. However, if we have 

the additional information th a t these two points are corners, then the number of

65



CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION  66

possible squares intersecting these 2 points is finite and equal to 3, as the 2 points 

are either adjacent or on opposite corners. If they are adjacent there are 2 possi­

bilities (see figure 4.2) and if they are opposite there is only one. It appears that 

knowing the characteristic of the points conveys some information of the location of 

the square. Note that, in this example, corners are not distinguishable so the four 

squares rotated by 90 degrees around their centre are considered to be the same.

Knowing the dimension of the square provides further information: if the square 

edge size measures a and if the distance between the 2 points is \/2a  then there is 

only one possible square that fits these points, whereas there are still 2 possibilities 

when the distance between the 2 points is a.

Now, we shall assume that 3 points belonging to a square are known. W hat then 

can be inferred about the position of the square? If the 3 points are aligned they 

must belong to the same edge of the square. But there is insufficient information 

to determine the characteristics of the square since many squares of different sizes 

have these 3 points in common. We now consider the case when 3 points are not 

aligned. In appendix A.l it is shown that for 3 unaligned points there exists an 

infinite number of squares that intersect these points. Figure 4.3 illustrates this for 

two specific three point configurations, that multiple squares can have 3 points in 

common.

Restating the problem, the objective is to identify the minimum number of points 

belonging to a square that uniquely identifies that square. In other words, we are 

looking for a set of points that intersects only one square, modulo the four 90-degree- 

rotations around its centre, the parameters of a square being its size and position. 

Note that the fact that we are looking for a square provides implicit information. 

This quantity of information varies with the shape that is being considered. The

\i /i
A.! /  | / '

\ N I WW /\ s \ /\ > N \ / 
--------------  N \  /
' /

Figure 4.1: Squares sharing a common point.
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Figure 4.2: The three squares, modulo rotations, having these two points as corners.
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Figure 4.3: Two possible configurations of 3 points and example of squares th a t 
matches these configurations. On the left, 2 points are closer whereas on the right, 
points are equidistant.



CHAPTER 4. SHAPE INFORMATION AND TEMPLATE REDUCTION  68

Figure 4.4: The points a,b,c and d uniquely define a square.

square, this edge is labelled A  in the figure. The last point d must belong to the 

opposite edge of the square since its perpendicular projection on A  belongs to the 

segment defined by the 3 other points, the edge of the square intersecting this point 

is labelled C  in the figure. Moreover, the distance from d to A  determines the size 

of the square. This distance must be bigger or equal to the distance between a and 

c in order for a square that passes through these four points to exist. Note tha t if a 

point belongs to the shaded area, like the point / ,  no square can fit the configuration 

of points a,b,c and / .  However, if the distance between a point and the edge A is 

larger than the distance between a and c (|ac|), as illustrated by the point e, the 

configuration of points can be fitted by squares translated along the line passing 

through a and c, denoted (ac).

In general, it appears that some configurations of points intrinsically provide 

more information than others, even if the point configurations have the same number 

of points. In appendix A.2 we consider the problem of determining if there is a

more general problem of fitting any given shape to a set of points will be considered 

later. The previous cases demonstrate that some configuration of points will not 

provide sufficient information. For instance, n aligned points are not sufficient to 

uniquely determine the position of a square. However, configurations of 4 points exist 

that allow a square to be uniquely determined by these points. This is illustrated 

by figure 4.4. The 3 aligned points a ,b and c must belong to the same edge of a
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configuration of 4 points, when any 3 points extracted from the configuration are 

not aligned, th a t uniquely characterises a square. We do not solve the problem 

completely, however some ideas are provided to explore the problem in more depth. 

Note th a t many configurations of 4 points do not have any squares intersecting them. 

Another example is given in figure 4.5 (a). Figure 4.5 (b) and (c) illustrates th a t 4 

points can belongs to different squares.
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Figure 4.5: An impossible configuration and 2 possible configurations of 4 points 
th a t fit more than  one square.

Figure 4.6 presents a configuration of five points th a t uniquely determines a 

square. In general, for a five point configuration, 2 points must belong to the same 

edge, therefore if no three points of the configuration are aligned, there exists a t most 

a finite number of squares th a t have these five points in common; see appendix A.3 

for further details. It appears th a t the more points are considered, the more likely the 

point configurations will .not correspond to any square. More precisely, if a  random 

number of n  points are taken the probability th a t they do not to correspond to a 

square increases with the number of points. This can be understood by considering 

ra—l points of a configuration of n  points. Only certain squares, if any, fit these n — 1 

points. The n th point has to belong to one of these squares for the configuration of 

n  points to be compatible with any square a t all. Therefore, any additional points 

make the configuration more unlikely to be compatible with a square shape.

4 .1 .2  C irc le  ex am p le  The case of a  circle is now briefly discussed. One may 

consider th a t any group of 3 points contributes the same quantity of information 

since they specify the characteristic of a circle. The quantity of information is 

maximal since the position and size of the circle is completely known. If the diameter
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is known, 2 points at this given distance suffice to completely characterise a circle. 

If edge orientations of points are known, any 2 points are also sufficient to construct 

a circle. For an ellipse, 5 points are required.

Comparing the circle example and the square example, it appears that shapes 

convey implicit, information about their position. This information vary according 

to the shape of the object and might be characterised or defined according to the 

point configurations that are needed to determine the state of a shape.

To sum up, when fitting a shape to a set of points some information is contributed

by:

• the shape of the object.

• the transformation space, also referred to as the state space, associated with 

it. For instance, are only translations considered, or are rotations and scale 

required as well?

• the characteristics of the specified points, e.g. their colour, gradient direction, 

surrounding patch.

In this thesis we focus on a method that does not take into account the dis- 

tinguishability of points. The methods, we are going to deal with, focus only on 

extracting the information from the relative position of points.

Nevertheless, these methods could be greatly optimised by taking advantage

Figure 4.6: A configuration of 5 points that can be fitted by only one square.
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of supplemental local information of points, such as their surrounding patch, th a t 

would considerably reduce the number of possible correspondences between points.

From the above discussion, it appears th a t the more points extracted from a 

given shape are considered, the more precisely this shape can be identified. Can 

this, observation be quantified and in the case of a positive answer, can this be 

used to design more efficient algorithms? Also, how can configuration of . points 

contributing more information than  others be identified? For the last question two 

different perspectives can be adopted: points extracted directly from a shape and 

points extracted from a set of points to be fitted by a shape.

4 .1 .3  L o c a tin g  a  s h a p e  on  a n  im ag e  Now consider an image th a t contains 

points th a t belong to a shape, for instance, a square, and points not associated to 

this shape. Since it is known th a t a square can be fitted in this set of points, if a set 

of n  points, where n  does not need to be very high, e.g. 10 points, are compatible 

with a square shape, it is very likely th a t the n  points belong to the square and tha t 

its location is determined from these points. Of course if these points are aligned 

then multiple partially overlapping squares are compatible. To avoid this problem, 

the configuration of n  points should be such th a t the points belong to different 

edges. A condition on the distance of the points, for instance, would ensure th a t 

the points belong to different edges. Similarly a condition of no more th a n p  aligned 

points would ensure th a t the points belong to different edges too. Additionally, the 

number of points of the image should not be too high and densly positioned else 

the probability of configuration of points not belonging to the shape bu t compatible 

with it rises. This is usually not the case in real world applications.

W hat are the properties of a shape th a t can be used to characterise them? For 

the square we have been using the fact th a t edges are perpendicular and of the same 

size. If a shape is not a square, what criteria can be used to determ ine a set of 

points th a t uniquely characterises the shape? Given a set of points, is it possible 

to quantify the likelihood of the position of the shape th a t matches the points? In 

other words, given a set of points, is it possible to evaluate the probability density 

function (pdf) of the characteristics {e.g. its position) of the shape? Can points be 

determined to be part of the random set of points or of the shape? Is it possible 

to quantify the information contributed by an individual point? Is it possible to 

evaluate the additional information an additional point can contribute to a set of
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points?

Given a few conditions, all these questions can be answered for any shape and 

any 2-D transformations. In order to answer these questions the following abstract 

objects are defined:

• the shape S  consists of a set of points,

•  the transform ation space T  is another set representing the possible transfor­

m ation th a t the shape can undergo.

•  pi G I ,  i = 1 . . .  n, is a set of n  points belonging to the image I  c  R 2

• other prior knowledge (colour, edge orientation, moment of the surrounding 

patch etc.) can be represented by a mapping of the set of points S  into a 

property space. However we consider th a t all points are identical and thus 

this possibility is not considered here.

Here, a shape is considered to be a set of points, bu t the previous examples used 

shapes th a t can be defined by their geometric properties. To define a shape as a set 

of points allows the matching algorithm to work with a wider variety of objects of 

which the shape may not be easily described in term  of geometric properties. This 

allows the shape position to be parameterised independently of its nature. Another 

common approach used to describe a shape is by continuous contours; however, 

the discrete approach has many advantages over this approach, one of its major 

advantages is being able to take into account interior points, which bring significant 

information about the object, when it is partially occluded.

Considering a set of points in the image space we would like to, somehow, quan­

tify the number of transformations th a t relate points of the shape w ith this set of 

points. The smaller the number of compatible transform ations, the more informa­

tion the set of points is contributing. Formally, we consider the set {t|Vpi €  / ,  3s j € 

s C S ,t ( s j )  = P i , t  G T}.

So consider th a t the transform ation space is the set of translations of R 2 and 

the shape S  to be a square of a given size. Then for a given point p  of / ,  the set of 

transformations th a t correspond a point of S  to p , if the space of translations were 

represented on an orthonormal plane, would look like the square S. Similarly for 

when another point q of I  is considered.
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Now if we consider both  points at the same time we have to  consider the trans­

formations th a t put two points of S  in correspondence with p  and q. These trans­

formations are the intersection of the set of transformations th a t pu t a point of S  

in correspondence w ith p  and the set of transformations th a t put a  point of S  in 

correspondence with q. This set may:

• be the empty set (0), when the two points are too far apart.

•  contain exactly one solution if the two points correspond to opposite corners 

of the square.

•  contain 2 solutions when the 2 squares of the transform ation space intersect 

in 2 points.

•  contain an infinite number of solutions, when the 2 squares of the transfor­

m ation space have their edges intersecting. This happens if the 2 points are 

horizontally or vertically aligned and are close enough.

This shift in perspective, in which the transform ation space is considered, is 

the classical one th a t is used by Hough transform related algorithms. A point 

on the image space is selected and according to the transform ation space and the 

shape under consideration all possible transformations th a t are compatible with 

corresponding a point of the shape with the image point will get one vote. After 

considering a certain number of points in the image space the transform ations th a t 

obtain a similar number of votes are transformations th a t bring the points of S  in 

correspondence with almost all the points of the image th a t were considered.

According to the nature of the shape and the transform ation space, the set of 

transformations th a t are compatible with placing points of a shape in correspondence 

with a set of points of R 2 might be discrete points or manifolds of the transform a­

tion space. Explicitly, if we consider the topology of this set it might consist of 

isolated point, surfaces or volumes of different dimensions, lower than, or equal to 

the dimensions of the transform ation space.

Knowing the shape we are looking for, and the space of the transform ations th a t 

describes the modifications by which the shape can be affected, we would like to 

evaluate the quantity of information th a t is contributed by a set of points of the 

image. However, the set of transformations th a t are compatible w ith the points
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of the image under consideration might have different topological elements. For 

instance, a set may consist of a few isolated points and a line of points of length

I. Assuming th a t the transform ation space is of dimension 2 and th a t the quantity 

of information is given by info(/), info() being a decreasing function of the number 

of compatible transformations with the image points, then isolated points would 

possibly not be taken into account since the length of an isolated point is null. 

This is problematic since these points may contain the position of the shape and 

contribute a significant amount of information.

To avoid this issue balls of radius 5 are considered. W here 5 corresponds to 

the accuracy with which the transform ation is known. The dimensions of the balls 

(hyperballs) correspond to those of the the transform ation space. By considering 

the minimal number of balls th a t can cover the set of transform ations we obtain 

a number. The smaller this number, the better the shape state  is known. If this 

number is equal to 1, one may consider th a t the shape transform ation is known with 

sufficient accuracy.

Definition 1 Let T  be the transformation space, Bj(p) an open ball of the same 

dimension than T , of radius 5 and of centre p. P  a set of points of the image, S  

the set of points of the shape, C (P) the set of transformations compatible with the 

points of the image. We define the quantity of transformations 0%'S (P) contained 

in C (P ) as:

C (P) := {;t €  T|card(^(5') n  P )  =  card(P)}

Sf's (P):=mincaxd({Bf(p) |p€T>5 G R , B i ( p ) n C ( P ) # 0 } )  (4.1)

A set .of points P  is said to uniquely characterise a shape transform ation relative 

to a transform ation space T  and with an error S if 0%,S(P) is equal to 1.

In practice, when using images, a discrete bounded 2-D plane is considered. This 

plane is divided into cells or pixels (picture elements) so the position of a  point in 

this space is approximated by the pixel encompassing it. Therefore, we deal with 

a small 2-D surface instead of a single point. Similarly a tem plate is, in practice, 

given as a set of pixels. Considering th a t pixels are a set of points, in order not 

to miss any possible compatible transformation, one should take into account all 

transformations where the projection of a  tem plate pixel intersects an image pixel
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th a t is a feature point. As a consequence, if we consider th a t T  is the translation 

space, the tem plate is a pixel and the image contains one pixel as a feature, the set 

of transform ations compatible is a 2-D surface of the translation space.

We now consider a set of points S' extracted from a shape and we consider th a t T  

is bounded. The following quantifies the information contributed by a set of points 

of a shape relative to a transform ation space T  and an accuracy of 6.

l f s (S')-.= m ^ Q f s (t(S')) (4-2)

We call X j ,s(S') the characterising value of a set of points relative to a shape and 

a transform ation space. W hen the characterising value is equal to 1 it means tha t 

for any transform ation of the transform ation space of this set of points the position 

of the shape is characterised uniquely and completely, in th a t sense the information 

brought by the subset of points is maximal. If the value is n  it means th a t for a 

given position of the transformation space the set of points is compatible with n  

positions th a t are distant enough to be distinguished. Note th a t finding a set of 

points in an image, th a t characterises uniquely the position of a shape relatively to 

a transform ation space, does not mean th a t the shape is necessarily present since 

the points may have taken this shape by coincidence therefore a verification stage 

is needed, however if the size of a characterising set of points for a shape is chosen 

appropriately the number of verifications should be small.

W hen selecting a subset of points from a shape, the number of configurations 

to consider quickly becomes large: for k  point configurations out of n  points of the 

shape the number of cases to consider is (£). Arguably, only small sets of points are 

of interest in representing the object and therefore k  should be small, e.g. 10 to 40 

points, but the possible number of configuration th a t could represent the object may 

be quite large. Monte Carlo methods and genetic algorithms are good candidates to 

find configurations th a t are close to optimal. Details as to how to to evaluate X(S')  

are given in section 4.5.

4.2 Self similar set of points

Thus far, the state  of a shape has been characterised w ith a limited set of its points 

extracted from an image. Another fecund perspective to examine this question is to
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consider a group of p  points from the shape and to consider where else these points 

can fit the shape relative to a set of transformations. W hen the only transformation 

th a t allows the points to fit the shape is the identity, then the configuration is 

considered to be characteristic of the shape and will be qualified as such. If there 

exists transform ations th a t map the set of points to another set of points of the 

shape then this set of points is said to be self similar. Two-examples are given here:

1. We consider the problem of identifying a tem plate image in a  larger image. 

If points can be uniquely identified, for instance using their surrounding pixel 

values, and if only translations are considered, it suffices to m atch a point in 

the larger image with the tem plate image to determine the position of the 

tem plate image. Once a point of the tem plate image is located, all other point 

positions are known.

Nevertheless this is a different problem to the one we have been exploring up 

to now since we have been considering shapes consisting of indistinguishable 

points. Using distinguishable points requires less points to characterise an 

object but, as a trade-off, more com putation is needed to compare them. 

However, the techniques discussed can be adapted to the case of distinguishable 

points. Their advantages in terms of reducing the tem plate size might be less 

dram atic since templates using distinguishable points tend to be significantly 

smaller. A balance has to be found between the degree of distinguishability of 

points, its computational cost and the size of the set of characterising points 

needed to identify the state of a shape.

2. Considering again points with unknown associations; one point cannot char­

acterise a shape since it could be any point of the shape. However, if there 

is a set of two points having a unique configuration in the shape, i.e. if the 

vector from one point to the other is different from any other vector between 

2 points of the shape, then finding 2 points with the same configuration on an 

image th a t uniquely contains the shape allows its position to be characterised.

Note th a t when the transform ation space consists of translations, any shape 

made of more than  2 points does have such a unique configuration of 2 points. 

Consider 2 points of the shape th a t are furthest apart. Assuming th a t these 2 

points have a self similar configuration of points relative to a translation then
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there would exist 2 points th a t are further apart than  these 2 points. Indeed, 

the 2 points on a diagonal of the quadrilateral which corners would be the 

4 above mentioned points would be further apart than  the 2 points furthest 

apart. This would be absurd and proves the existence of such a configuration. 

For instance, a circle has a infinite number of such configuration of points: 

points diametrically opposed. None are self similar relative to translations 

and all of the are characteristic of the circle.

This also leads to an algorithm to identify the translation of an object: First of 

all, the shape, a set of points extracted from a tem plate image is considered. Since 

we want the algorithm to be robust to noise, matching points should be redundant. 

This avoids false matching when background points are present or feature points 

of the object are not detected. As a consequence the tem plate is not reduced to 2 

points furthest apart but to a few pairs of points characterising the shape. The data 

structures th a t are used to store the point associations and the image feature points 

affect the speed of the algorithm. Then each feature of the image is alternatively 

considered to be a point of the reduced shape, the point associations are probed and 

the points th a t account for most of the association are considered as good candidates 

to be points of the reduced shape. While checking for the associations the process 

can be stopped earlier in case of an apparent mismatch. O ther optim isation schemes 

could be devised here. To guarantee th a t the obtained m atch is correct a verification 

stage can be added.

The number of feature points in the image is critical. As a consequence the 

choice of the feature detector is also critical. Indeed it should not be much slower 

than  the shape locator and it should also be selective enough to have as few points as 

possible so th a t the location of the shape can be done efficiently. This rem ark might 

seem trivial bu t it comes out of experience in trying to deal w ith a large am ount of 

features because a feature detector with poor discrimination was used (in our case 

a Canny edge detector). This yielded tens of thousands of features for an image.

If the image is filtered with a selective feature detector and has fewer points it 

leads to an efficient recognition algorithm.

Note th a t points th a t are far apart relative to the size of the object are more 

likely not to be in a self similar configuration since there are fewer equivalent config­

urations in the object. Any other criteria th a t would reduce the number of possible
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configuration of points from the whole set of points might have this beneficial prop­

erty. It is possible to find counter shape examples where points far apart have self 

similar configurations, but since the number of such point configurations is limited 

compared w ith all possible configurations, the likelihood of having self similar con­

figurations relative to a translation is smaller than  taking any point configuration 

from the shape.

Finding a criteria to determine a set of points for transform ation spaces th a t 

are different from the translation space does not seem trivial. Moreover since any 

transform ation space has its own characteristic, such a criteria should be sufficiently 

generic. This is the problem th a t we tackle in the next section.

Note th a t the shapes th a t are considered should have many more than  a few 

features, e.g. hundreds or more rather than  say tens.

4.3 Robustness to  noise

We reiterate our objective: to reduce a shape tem plate to a few points th a t char­

acterise the shape and to identify it in a larger image more efficiently. One issue 

with real images is th a t some points belonging to the shape will be missing while 

many other points from the background might disrupt the detection of the shape 

by creating false positives. Also, additional points from the object underlying the 

shape might appear due to illumination changes or even sensor noise.

To cope with this issue a minimal set of points characterising the shape is not 

sufficient. Indeed, if a point of the configuration does not appear or, less probably, if 

a set of points, not all belonging to the object characterised by the shape, matches 

a minimal characteristic configuration of the shape, the shape position will not be 

detected correctly.

One way to work around this issue is to consider characterising point sets tha t 

remain characterising point sets even if one of their points is removed. Thus a margin 

of error of one missing point is obtained. Similarly, characterising sets of points 

might be built w ith a larger margin of error. Note th a t to construct a characterising 

set of points with a margin of error of one missing point, it may be necessary to  add 

multiple points to a minimal characterising set of points. Also, each point added to 

a characterising set of points decreases the possibility of a  m atch with a random  set 

of points. It should also be noted th a t the more points are used to represent the
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object, the more likely it is th a t some of them  may be missing.

4.4 Template reduction, a simple exam ple

Let us consider the shape S th a t consists of 7 pixels with its associated transforma-; 

tion space T th a t consists of horizontal translations in the range -2 pixels 2 pixels 

th a t are represented in figure 4.7. L represents the look-up table where colours con- 

respond to one or multiple transformations. There are 2 possible reduced templates 

th a t consists of 1 pixel. They are shown in figures 4.8 A and B. There are multiple 

possible reduced tem plates of 2 pixels, figures C and- D are two examples. As for 

figure 4.8 E and F they show two ambiguous tem plates th a t do not systematically 

refer to a unique transformation. By observing the look-up table (L) in figure 4.7 it 

can be seen th a t if one of these reduced tem plates was chosen, in the case where the 

blue and black shaded pixel and the purple and black shaded pixel of the look-up 

table were selected, it would not be possible to know if the transform ation was a 

translation by 1 or -2 pixels. Note th a t these 2 reduced tem plates are the only one 

th a t are self similar relative to the transform ation space (state space). Any reduced 

tem plates with 3 pixels or more uniquely characterises the shape. Indeed none are 

self similar; a systematical way to verifying this consists of using the look-up ta ­

ble and for each transform ation of the state space to check th a t the look-up table 

provides a unique transformation; which is necessarily the correct one.

4.5 Evaluation of the characterising value of a set o f points

A methodology to evaluate the characterising value of a set of points P  from an 

image is hereby discussed. Some experimental da ta  is presented in section 6.2.

A bounded transform ation space T  is divided into small hypercubes h £ H  such 

th a t H  is a partition of T. The reason why we consider hypercubes is because they 

are easy to implement. However, the term  “hyper-parallelepiped” would be more 

appropriate since the size for different dimensions may differ.

Take S  as being the set of points of the shape th a t undergoes a transform ation 

given by: t(S )  := {£(s)|s €>>}. k,j are the elements of L, which is a 2-D array of 

the size of the image, th a t correspond to the points overlapped by the pixel on line 

i and column j  noted R j .
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Figure 4.7: A template (S), its associated state space (T) and the corresponding 
look-up table (L). Colours are used to represent the states referenced by the look-up 
table.
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Figure 4.8: Figures A-D show non ambiguous reduced templates. Figures E,F show 
ambiguous reduced templates
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For each set of points h £ H  and for each t  £  h, t(S )  is evaluated and a reference 

to h is stored in R j  whenever Iitj f \ t ( S )  ^  0. This operation is not completely trivial 

to implement and needs some approximation to be done in a reasonable amount 

of time, but time is not critical since these operations can be performed offline. 

However, the amount of computation can be huge, especially when working with 

high-dimensional spaces in order, for instance, to take into account translations, 

rotations, change of scale, shearing and perspective transformations. Once this is 

completed, lifj  contains the references to the hypercubes th a t contain a transform a­

tion th a t projects a point of the shape to the pixel R tj. We note k  =  l..n ref the 

hypercubes referenced in Rj.

It is now shown th a t the number of references n rei th a t is contained by Rj is 

equal to f Q s ,S(R,j) with a < f  < b where (a , b , f ) £  M3, a and b are two constants 

th a t depends on the size of the hypercubes and the error ball.

All hypercubes are assumed to have the same size but the dem onstration holds 

with hypercubes of different size. In order to dem onstrate it, one just has to consider 

the extreme cases. If the minimal number of balls needed to cover one hypercube 

is m  then a t worst the minimal number of balls to cover all hypercubes would be 

m  • n ref thus Qs’S{R,j) < m  • n ref. If a ball can intersect a t most p  hypercubes then 

we need at least ^  balls to cover all transformations th a t are in the hypercubes 

and thus ^  <  Q f s (Iitj).

L e m m a  1 3 (a,b) £  R^2; such that a • Q j’S(A,7-) <  n rei < b • Q j ,S(Ii,j)

The most unfavourable case being when a set of transform ations, th a t can be 

covered by a unique ball, lie on the boundary of multiple hypercubes. If the dimen­

sion of the transform ation space is n, the number of hypercubes th a t cover the set 

of transformations can be as high as 2ra. As a consequence, in practice, not only 

must n ref be considered but also whether the hypercubes are contiguous or not.

Therefore, it is possible to have an evaluation of the quantity of the transform a­

tions compatible with a set of points P  by considering:

Qg’S(P) ~  card( p |  ( J A * ,) ' (4.3)
h3\k,j€P k

and as a  consequence, it is also possible to evaluate the characterising value of a
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subset of points S '  of the shape by considering:

l f S (S') ~m <uccard( f ]  \ J h - j )  (4.4)

which is much more computationally expensive to evaluate. In order to reduce 

com putation tim e it is recommended th a t the transform ation space is sampled. For 

instance by selecting a few transformations for each hypercubes, this may result in 

a good approximation. Proofs, experiments and more theoretical studies remain a 

future topic of research.

4.6 A generic algorithm for the pose estim ation of rigid ob­

jects

Decimating the tem plate shape and using it with a Hough transform ation algorithm 

is equivalent to reducing the number of transformations th a t a  point in the image 

space can vote for. Thus a l  t o n  mapping is obtained with n  being significantly 

smaller than  it would have been before the tem plate reduction. Additionally, the 

idea of the probabilistic Hough transform  (PHT), which determines the state of 

an object by randomly selecting a subset of the points in the image space, can be 

used. On top of which, using the idea from the randomised Hough transform  (RHT) 

which consists of a n  to 1 mapping from the image space to the param eter space, 

the simultaneous selection of a few points P  in the image space reduces further the 

number of transformations compatible with these points ( Q j’S (P )) resulting in a 

few to few mapping. Algorithm 1 combines these three ideas. These three ideas aim 

a t reducing the number of com putation to determine the pose of an object. The 

decimation of the tem plate does this by studying the shape of the object, the PH T 

by considering only part of the points from the image space, which, for tracking 

purposes, as most of the points considered in a region of interest belong to the 

tracked object, should perform well, and the RHT by limiting the number of votes 

to cast in the param eter space. In the next chapter, it will be shown th a t the usage of 

a lookup table provides yet another way to reduce the amount of operations needed 

to find the position of an object.

Examples of criteria th a t can be used in stage 2 are: when the transform ation 

space is distant invariant, are the distances between the selected points compatible
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A lg o r ith m  1: Outline of the proposed methodology to locate a shape in an 
image using features.

S ta g e  1: Select p  feature points from the image space.
S ta g e  2: Use different criteria to check if the feature points are compatible 
with the object underlying the shape. If it is compatible go to stage 3 else go 
back to stage 1.
S ta g e  3: Evaluate the transformations th a t are compatible w ith these 
features and vote for them. The smaller the number of transform ations the 
more discriminative is this stage.
S ta g e  4' If one of the transform ation th a t ju st get a vote on the previous 
stage received enough vote go to stage 5 else continue with stage 1.
S ta g e  5: Verification stage. If the shape has not been identified correctly 
remove the votes for this transform ation and go back to stage 1. Else return  
the object state.

with the distances of the points of the decimated tem plate? W hen the transform a­

tion space is not distant invariant because scale, skew or projective transform ations 

have to be taken into account, a non geometric criteria such as the colour of the 

features can be used. W hen scale is the only non distant invariant transform ation 

th a t is taken into account, the curvature of connected features may also be used. 

Stage 2 is critical since it can reduce considerably the com putation of the algorithm. 

Moreover, the number of irrelevant transform ations of the object location are thus 

reduced significantly, which results in a more robust algorithm. Alternatively, stage 

1 and 2 can be merged by selecting features according to one or more criteria.

The number of randomly selected features in stage 1 depends on the proportion 

of features belonging to the object relative to the to tal number of features, how 

much the tem plate shape has been decimated and the transform ation space under 

consideration. Currently, this number has to be determined experimentally for each 

given application. W hen the previous location of the shape is known features can be 

selected in a constrained area and are more likely to belong to the shape, which sub­

sequently can greatly reduce the number of operations needed for the determ ination 

of the shape position.

Similarly, the number of votes in stage 4, th a t is judged to be large enough to 

determine th a t a transform ation is good enough to be verified, has to be determined 

experimentally since it depends on the proportion of feature points th a t does not 

belong to the shape and th a t could be compatible with a transform ation of the 

shape. However this number should not be greater than  n  being the number of
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object features and p  being the number of randomly selected feature points at stage 

1, otherwise it would mean th a t the same , configuration of points belonging to the 

shape have to be selected more than  once. In practice, this number is much smaller.

Often stage 5 is om itted as the result from stage 4 is considered to be good 

enough. This allows a simpler algorithm implementation and arguably a more robust 

one, however the last stage may allow a better guarantee of the result than  it would 

be possible w ith the technique used in stage 4. Moreover, it allows more flexibility, 

and depending upon the efficiency of the technique chosen for the verification stage, 

a speed up might result with the right balance between the two stages. Indeed, 

the number of votes necessary to decide on a transform ation verification may be 

decreased in such a way th a t the object transform ation is found earlier.

The next chapter explains how stage 3 can be performed efficiently when an 

approximation of the position of the object is known, for instance, when the motion 

of the object is bounded and its previous position is known.

4.7 Summary

Considering a set of points characterising a shape and a transform ation space, the 

issue of selecting a subset of the points th a t can still characterises the original shape 

has been discussed and developed.

Given a set of points, a shape and a transform ation space the size of the set 

of transformations compatible with matching the shape to the set of points was 

considered and used to define the characterising value of a subset of points.

The relationship between self similarity between a set of points relative to a 

transform ation space and a characterising set of points of a shape was then explored. 

The issue of the robustness of a characterising set of points to randomly positioned 

points was mentioned and a definition for the margin of error of a  characterising set' 

of point was proposed.

A practical algorithm based on the Hough transform  was then developed to 

measure the characterising value of a subset of points of a shape for a given bounded 

transform ation space. The equivalence of the result provided by the modified Hough 

transform and our definition of the quantity of compatible transform ations was 

derived. This algorithm can be used to reduce the number of points of a tem plate 

such th a t recognition and tracking algorithms’ speed performances can be improved
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without significantly impairing the robustness of the tem plate.

Finally a methodology to estimate the pose of a rigid object was proposed and 

discussed. The focus of the discussion was on different optim isation technique to 

reduce the number of operations needed to determine the position of an object.

4 .7 .1  F u tu re  re se a rc h  It is possible to evaluate the reduced tem plate for some 

unbounded transform ation spaces such as rotations and translations. It is sufficient 

to consider a shape covered by all its possible translations and rotations. Since far 

away translations does not intersect the shape and the set of rotations is limited the 

same methods used for the bounded case can be employed.

For recognition, future work could include the development of a characteristic 

set of points relative to a set of shapes and not a unique shape. The outcome of 

defining, if possible, a scalable methodology to iteratively construct characteristic 

sets of points of a shape when an additional shape is added to a set of shapes will 

have significant consequences.

Finally, it should be explored if the concept of entropy which is linked with the 

concept of information could be used to determine the size of the minimum number 

of points needed to characterise a shape relative to a state space.



Chapter 5

The stencil estimator

5.1 Introduction

Inspired by [6] [95] [96], the use of stencils is proposed to estim ate the position 

of a shape, i.e. a set of points, in an image. It is shown th a t this estim ator can 

be efficiently evaluated using a variation of the Hough transform. In this chapter 

italicised capital letters shall be used to represent sets.

5.2 The stencil estim ator

The bounded transform ation space T , which is the set of transform ations a  shape 

can undergo, is partitioned into n  subsets of possibly different sizes. In practice, to 

ease the implementation, the subsets are “hyper-rectangles” th a t partition T .  Each 

subset U C T  is associated with what we refer to as a stencil Su,o which is the set 

of positions of the model features O (also referred to as the tem plate or the shape) 

occupied when the shape is moved according to the elements of the transform ation 

subset U.

Su,o =  {t(p) : t  G U,p £  0 }

In the remainder of this chapter, when there is no ambiguity, Su shall be used in 

place of Sup .  These notations are illustrated by figure 5.1.

We define:
<p0 : P(T) —» V(W?)

U I—* S u,o

86
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Figure 5.1: The stencils of the “star” shape corresponding to the coloured area of 
the transformation space have been drawn in the image space. The coloured regions 
are the set of points overlapped by the shape when it is moved according to the 
transformations of the subset having the same colour in the transformation space.
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which is the function th a t associates a transform ation subset to its corresponding 

stencil. V \E )  is the set of all subset of E.

Given a set of n  points P  = { Pi)}?=i £ M2 the stencil estim ator is defined to 

identify the set of the stencils th a t intersect the maximum number of points of P.

D e fin itio n  2 Let M  be a partition o fT ,  U £ M , O the object points and P  a set 

of points o f R 2 . The Stencil Estimator (SE) is defined as:

SEM,o{P)  :=  argm axcard(p  £  Su>0 : p  £ P)  (5.2)
U 6M

SEm , o { ' )  is the estim ator used to determine the position of the shape. The remainder 

of this section expands on a few properties of this estimator.

For a given point p, the span of a transform ation set is defined as the maximum 

distance between the resulting transformed points.

span (U) m ax dist (s(p),t(p))  (5.3)
s,t£U

where d ist(•, •) is the Euclidean distance. The subscript p  is om itted when the span 

is independent of the object points; this is the case for translations. For a set of 

points O, we denote span0 {U) as the maximum span over O:

span0 (£/) :=  max span (U) (5.4)
pGO F

We also use the following notations:

•  W  G M, Up := {t(p) : t £ U \  = * {p} (U)

•  Wt G T, t ( 0 ) :=  {t(p) : p  G 0 }

Note th a t with these notations =  Upgo Up

L e m m a  2 I f  Vp, q G O and V77, V  G M  we have Up D Vq =  0  with U ^  V  then

,/  ̂ f card(O) i f t £ U
card(p G S[/ : p  G t (0 ) )  =  <

[ 0 otherwise

Demonstration: t  £ U, thus t ( 0 )  G UPeo UP =  Su it follows that card(p G Su ’ P G 

t(O )) =  card(O) if i  £  EL
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If V ±  u, Sy n  Su =  (LU Vp) fl(lU Up) thus Sy n  Sn =  nuq) = 0
and therefore card (p £  Sy : p £  t (0 ) )  =  0 if t £ U ♦

According to this lemma, a necessary condition for a stencil Sy to  receive votes 

from t ( 0 )  with t  £  U ^  V is th a t UpnV q ^  0 .  This specific case may occur when the 

object’s points are “sparse” enough and the partition of the bounded transform ation

other point. Moreover, for a given point p, the condition Up fl Vp = 0  is true only

like scale transformations or rotations are considered.

L e m m a  3 I f t £ T ,  a set of transformations that is distance invariant, and i f  

MU £  M , span0 (£7) <  m i n ^ o , ^  dist(p, q) 
then MU £ M,Mp £  O, card(£(0) fl Up) < 1

Demonstration: If 3q £ O such th a t t(q) £ Up then Mr ^  q £ O we have:

spanp{U) < span0 (U) < d ist(q,r) = d is t(i(g ),t(r))

Thus, t(r) £ Up ♦

In other words, under these conditions the stencil of a point can receive a t most 

one vote from t (0 ) .

T h e o re m  1 I f  T  is a set of translations of R 2; i f t £ U  and 

if VF G M ,spano (I0  <  minpi960>p^9dist(p,g) 

then SEM,o(t{0)) is unique and equal to U

Demonstration: U £  SEM,o(t(0)) is trivial since card(£(0) fl Su) — card(O)

which is the maximum number of votes a stencil can get.

It will now be shown th a t all other stencils will obtain fewer votes. F irst consider 

the case card(O) =  1 then if t  £  U, t(p) £  Up by definition and t(p) ^ V p because we 

are in the case of a translation and Up fl Vp =  0

We now consider the case card(O) =  2 ,0  = {p , q}. We assume th a t 3 V  ^  U £  

M  such th a t Sy fl t ( 0 )  =  2 because Up fl Vp = 0  it means th a t t(p) £  Vq and

space th in  enough so th a t the stencil of a  point does not overlap the stencil of any

if translations are considered but becomes false when additional degrees of freedom

t(q) £ Vp which means th a t 3ti,t2  £ V  such th a t,t Since we are only

h + p = t + q  

t 2 + q = t + p
considering translations this can be written:
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=> 2(p — q) =  t2 — ti => 2 ||p — g|| =  ||ii — 2̂1| <  span(F) which is absurd since 

| |p - g | |  > sp an (K ).

Now consider the general case: card(O) = n ,n  > 2 G N, O = {pi}”=i- We 

are going to show th a t it is inconsistent to assume th a t ■TV ^  U G M  such tha t 

card(Sv D t (0 ) )  =  card(O) with the previous hypotheses. According to lemma 3, 

card(VpC\t{0)) <  1 thus it follows th a t Vp G O, card(V^fl£(0)) =  1. Since UpnVp = 0  

Vpu pj G 0 , i  3i £ V,tij{pi) — t(Pj) in other words, this hypothesis implies tha t 

there is a set of translations belonging to V  th a t generates a  perm utation without 

fixed points between O and t (0 ) .  Thus, there exists a cycle of size m  comprised

between 2 and card(O) such that:
✓

LjiPi) = t(P j)  (!)
I tki(pk) =  t (p i) (2)

w t j a i P j )  =  t ( P a )  ( m )

By multiplying the first equality by m  — 1 and subtracting all other equalities we

obtain: Uj -  t ki H h Lj -  taj = m(pj -  p*) =» m\\pj -  Pi\\ <  (m -  1) span(V).

W hich is absurd since m\\pj — p;|| > m  span(Vr) and thus proves the uniqueness of

the solution ♦

The practical results of this theorem are limited since, in reality the accuracy 

with which the features are located depends on the selected feature detector and 

there are a number of false positives and false negatives due to various reasons 

(e.g. discretisation, background objects, occlusion, accuracy of the feature detector). 

Moreover, more complex transformations than  translations are often of interest.

Note th a t if transformation spaces with more degrees of freedom are considered, 

in order to take into account rotations or scale changes for instance, the property 

Up fl Vp does not hold any longer and the stencil estim ator might indicate multiple 

sets. However, for rotations, as tests have indicated, this does not seem to be a big 

problem. The choice of partitioning T  into hypercubes, which seemed easier to im­

plement, might have beneficial properties regarding the robustness of the estimator. 

This result reinforces the intuition th a t having sparse features reduces the feature 

sets compatible with a stencil as mentioned in [6]. Also, the estim ator can be used 

to give a first approximation of the position of the object. Having multiple answers 

is thus not a  big issue.
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5.3 Robustness

Some aspects of robustness have already been discussed in section 4.3. In order to 

quantify robustness and characterise how well the stencil tracking can cope with 

disturbances, a few definitions are proposed. The ideal case, where only object fea­

tures are present, differs from real image data. These differences are often classified 

into two categories:

•  false positives, the set of features th a t appear and th a t could not have been 

predicted knowing the position of the object. We denote them  as P.

•  false negatives, the set of features th a t would have been predicted knowing the 

position of the object and th a t are missing in the filtered image. We denote 

them  as N .

Imperfections of the feature detector, which may be tuned to influence its ra te  of false 

positives and negatives, are not the only cause of false positives and false negatives. 

Indeed, since the object is not alone in the scene, background elements provide 

false positive features. The tracked object may also be occluded thus generating 

additional false positive and negative features.

D e fin itio n  3 The margin of error (ME) of a stencil relative to a set of stencils is:

MEm CS^o) :=  min (card(P) -f card(A7’)) :

3 V ^ U e M , V € S E M, o ( ( t ( 0 ) - N ) \ J P )  (5.5)

with M  being a partition of the transformation T ,  U and V  elements of M  and P  

and N  sets of points of N2

For a  given stencil, Su,o, its margin of error is defined such th a t, for any trans­

formation t  € U, the margin of error represents the minimum number of feature to 

remove from t ( 0 ) and to add to the image such th a t another stencil obtains the 

same number of votes. In other words, this defines the minimum number of errors 

th a t might trigger a different stencil than  the desired one.

D e fin itio n  4 The overall margin of error ME of a stencil estimator is:

ME(SEm,o) :=  minMEjvf(Si7)
TT A /f

(5.6)



CHAPTER 5. THE STENCIL ESTIMATOR 92

This represents the minimum margin of error of all stencils of the stencil estimator. 

In other words, this defines the minimum number of errors th a t might trigger an 

undesirable answer from the stencil estimator. A number of questions arise:

1. Is it possible to increase the margin of error as defined?

2. Does the margin of error accurately characterises robustness?

3. Is it possible to keep the same robustness while increasing the speed of the 

algorithm?

4. How does decimating the tem plate influence the margin of error?

To analyse these questions we have undertaken a few tests, bu t before presenting 

the results, the implementation of the stencil estim ator is first discussed.

5.4 Im plem entation of the tracking algorithm

The algorithm implementation to track an object using stencils is described here. 

Due to the constraints of the digital domain, only integer pairs are considered. So, 

instead of computing Sc/, only Sc/ :=  Su H N2 is evaluated.

First, the pre-computing stage is described, and since it is conducted off-line, time 

is not an issue as long as computation times are acceptable. Figure 5.2 presents a 

flow chart of this stage. The set O of feature point coordinates th a t describe the 

shape is first extracted from an image tha t shows the object to be tracked. A Canny 

edge detector was used but any other feature detectors could also have been used. 

A trade-off between the number of features resulting from the filtering stage and the 

time it takes to extract these features has to be found when selecting and tuning 

the feature extractor. The same feature detector is used to filter images during 

live tracking and thus it has to be fast. Moreover, it is generally faster to identify 

an object if a few reliable features characterise it. This is true for the presented 

algorithm. A list data  structure can be used to store this set of features.

The transform ation space is then chosen to characterise the set of possible trans­

formations the shape can undergo between 2 frames. According to the precision 

required to locate the shape, the transform ation space is divided into a number of 

subsets such th a t the maximum distance between two transform ations in a subset.
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Captured image 
of the object

Choose the transformation 
space and partition it in order 
to obtain the object position 

with the desired precision

Extract point features 
with the chosen feature 

detector

Compute the stencils

The stencils are stored 
in a look-up table

End of the offline 
pre-processing stage

Figure 5.2: Pre-processing stage

does not exceed the precision needed. To implement this a multidimensional ar­

ray, where each dimension corresponds to a transform ation dimension, can be used. 

Each element corresponds to a sub-transformation set.

Then, the most computationally expensive stage o f . the pre-tracking stage is 

performed, the stencils are computed and a 2-D array containing list of references 

can be used to store them. These references point to the multidimensional array of 

sub-transformations. To obtain this 2-D array, the list of feature points is used and 

these feature points are transformed according to the set of sub-transformations 

th a t an element of the multi-array represents. For each coordinate obtained, a 

reference to the sub-transformation element is added to the corresponding elements 

of the 2-D array. Once this stage has been performed the 2-D array contains all 

the information necessary to' identify a stencil. This 2-D array can be considered as 

the one-to-multiple element mapping th a t associates to each point p  G N2 the set of 

transform ation sets of M  th a t transforms a feature point of O to the point p :

array : N2 

V

V { M)

{U : S u C \ p ^ 0 }
(5.7)
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Indeed, for each element of the 2-D array th a t can be considered as a 2-D coor­

dinate, a list of the references of the sub-transformations th a t transform  a point 

of O to this coordinate is available. Given this 2-D array and a reference of the 

sub-transformation, the coordinates of the points of the corresponding stencil can 

be extracted by examining the 2-D array. This is the representation of ( S u ) u g m -

Figure 5;3 presents a flow chart of the tracking stage, it is performed as follows. 

The initial position of the object has to be determined. This can be done manually 

or using a detection algorithm. The detection algorithm is crucial in practice since, 

due to occlusion for instance, the tracking of the object can fail. The detection 

algorithm will then serve to re-initialise the tracking. Since detection algorithms 

are usually slower, because they are searching for the object in the whole image, it 

is not usually possible to use them directly for tracking. However, this distinction 

has become increasingly blurred over tim e due to the advancement of detection 

algorithms th a t are able to track objects under certain conditions.

The feature points, P , of the following image are extracted and their coordinates 

are expressed relative to the previous location of the shape. In practice, only feature 

points in the surrounding of the previous location of the object are needed. The 

coordinates are then used to look up the 2-D array of references. For each feature 

point, counters, cjy, where U E M , corresponding to the references listed by the 

element of the 2-D array, are incremented. This is equivalent to voting for each of 

the stencils covering a feature point. At the end of this process

E j l  if U G array(p)

_  i  0 else

The reference th a t has the highest count is then considered to correspond to the 

subset of transformations th a t contains the transform ations the shape has under­

gone. A transform ation from this subset is taken, for instance, one th a t minimises 

a distance with the other transformations of the subset, and, the new estim ated po­

sition of the shape is evaluated by combining this transform ation with the previous 

estim ated position of the shape.

For more details, the reader is invited to refer to appendix E where a minimal 

C+4- implementation for tracking objects th a t translate  in the 2-D plane is provided.

For the EU FP6 MiCRoN project a more complex implementation was developed.
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Figure 5.3: Tracking stage
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To be able to track objects depth-wise a stack of images was used. Indeed, because 

of the narrow depth of field of microscopes when objects are moving relative to the 

microscope lens their appearance changes. More details on how to take advantage of 

the focus effect for microscope images is provided in section 6.1 page 100. Rotations 

were also taken into account and it is shown how the algorithm can be parallelised. 

An analysis of the time and space complexity of the algorithm is also discussed.

The implementation was tested and combined with a detection stage as part of 

the MiCRoN project. The final software is available on the web and can be found in 

the MMVL wiki page1. O ther implementations are available in the Mimas library 

[97].

5.5 Stencil reduction

W hen profiling the tracking algorithm, most of the tim e is spent incrementing votes. 

This suggests th a t reducing the number of stencils covering each feature point would 

improve the speed of the algorithm. Moreover, most of the memory space is used 

to store the look-up table containing the stencils. Reducing the size of each stencil 

will reduce the memory footprint. Note th a t the algorithm speed and memory usage 

was not an issue for our tracking application. However, there are three reasons to 

do this:

•  In embedded systems, memory and processing power are limited.

• The number of degrees of freedom of the tracking algorithm can be increased.

•  Tracking is often only one component of a larger system. So if fewer resources 

are used by this stage then more can be used by other stages, either by lower 

level, or higher level algorithms.

The 2-D array structure th a t has been used to store the stencils can be used to 

achieve this aim. In the previous chapter we mentioned reducing shapes, however 

this idea emerged chronologically after we tackled this issue and w ith hindsight, 

the issue would have been tackled slightly differently. In other words, instead of 

directly reducing the tem plate of the object to a characteristic set of points and 

then create stencils from it, the stencils were first generated and then reduced. The

1http://vision.eng.shu.ac.uk/mmvlwiki, October 2007

http://vision.eng.shu.ac.uk/mmvlwiki
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reduction has to be done in such a way th a t a set of feature points th a t correspond 

approximately to the searched shape would still trigger the same stencil, even after 

the area reduction of the stencils.

Considering the 2-D array mapping th a t associates a  list of references to a fea­

tures point p , the time to increase all references is proportional to the size of the 

list, i.e. |array(p)| :=  card(f(p)). However, when the list of references is long, not 

only does the point not contribute much information, since any of the references 

might contain the transform ation th a t is being looked for, bu t it also takes more 

time to account for these features than  a feature th a t would contribute more relevant 

information.

This led to the idea of decimating the points of the stencils th a t are overlapped 

by many other stencils. In order to retain robustness to occlusions th a t may happen 

on localised area, i.e. on one part of an object, the decimation should be done 

across the whole stencil. Moreover, the area of a stencil should remain large enough 

to receive a significantly larger amount of votes when it covers the shape than  the 

number of votes received by other stencils. To implement this we proposed algorithm 

2.

A lg o r ith m  2: Stencil decimation 
fo reach  stencil S  do

w h ile  the stencil area is too large do  
fo reach  point p  of S  do  

calculate |array(p)| 
evaluate J2Pes larray(p) I
randomly eliminate a point according to its weight 

Where g is a monotonically increasing function.

This algorithm was tested in various ways using the identity function for g. The 

results are presented and discussed in section 6.2 page 112. We mentioned the g 

function because it is unlikely th a t the identity function provides the best results. 

The random elimination of a point according to its weight was directly inspired 

from the propagation stage of particle filters. The higher the weight of a  point, the 

more likely it is to be removed. As tests show in section 6.2, the m ethod works fine 

but much more investigation is needed to understand why and to explore how to
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improve it. The previous chapter had presented such an attem pt.

The presented algorithm is ju st one of many ways to decimate the stencils. Al­

though no direct (algebraic) link can be established w ith the margin of error2, as 

has been defined in this chapter, it seems logical to think th a t the more a stencil is 

overlapping another stencil the more likely it might be responsible for an incorrect 

estimation of the shape state. Hence, a policy th a t favours the reduction of the area 

of a stencil in its area th a t are overlapped by its most overlapping stencils3 may 

decimate the stencil in a way th a t does not alter the robustness significantly.

The random picking of the stencil points help remove points from the whole 

area resulting in a possibility for points having a high weight to remain. The tests 

th a t have been conducted show th a t by using this approach, the remaining points 

are spreaded over the whole stencil area. We propose another scheme to m aintain a 

uniform point repartition over the stencils in order to ensure th a t the stencil is robust 

to occlusion: a map of the stencil could be used to decrease the probability of a stencil 

point to be selected when a previously discarded point lies in its neighbourhood. In 

other words, the weight associated with each point of a stencil could be altered 

to decrease the probability of a point to be removed if a neighbouring point was 

previously removed.

Lastly, the minimum area size of a stencil has to be carefully considered. It 

should be as small as possible to optimise speed and memory but large enough 

to resist features th a t are not generated by the tracked shape. The next section 

provides some guidance on param eter tuning.

5.6 Summary

It has been dem onstrated th a t in ideal conditions the stencil estim ator can be used 

to uniquely determine the location of a shape when the transform ation space consists 

of translations. In general this property does not hold when a transform ation space 

has a  higher number of dimensions, for instance, when scale changes or rotations 

are considered, however, in practice, and especially if the set of points of the shape 

are sparse, the stencil estimator yields almost always the expected result. This will

2Because the transformation that defines the margin of error might not be covered or only 
partially covered by the stencil that most covers the stencil under consideration.

determining the most overlapping stencils is easy to implement using the tracking algorithm: 
the set of points of the stencil can be fed into the tracking algorithm. The number of votes obtained 
by a transformation space correspond to the size of the overlapped area
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be visible from the experiments presented in section 6.2, page 112

A few definitions were proposed to characterise the robustness of the stencil 

estimator. Then the implementation of the stencil estim ator using the bounded 

Hough transform, th a t is sometimes referred to as the stencilled Hough transform, 

was discussed. Finally an algorithm to decimate stencils in order to increase perfor­

mances w ithout altering significantly the robustness of the tracking is proposed and 

discussed. Testing of the stencilled Hough transform algorithm and the decimation 

algorithm on synthetic data  are provided in section 6.2 page 112.



Chapter 6 

Experiments

6.1 Tracking of M icroscopic Objects

6.1 .1  C o n te x t a n d  e x p e r im e n ta l  s e t t in g  Microscope images have a very nar­

row depth of field. Consequently part of the object can be in focus while the rest is 

out of focus as shown in figure 6.1. In these images, 1 pixel translates to approxi­

m ately 1 /im and the field of view is about 1 mm2. The stencilled Hough transform 

has been modified to make use of the fact th a t the global appearance of the object 

changes with its distance to the camera. Figure 6.2 shows a diagram of the set-up 

used for the experiments.

In order to estim ate the depth position of the object, a stack of images of the 

object, taken at different distances from the lens of the microscope, is used. The 

model of the object consists of the features extracted from this stack of images. 

Figure 6.3 illustrates the model of the micro-gripper th a t can be seen in figure 6.1. 

The vertical distance between each pair of images is approximately 10 /im. Thus a 

better resolution is achieved for the horizontal translations than  for the translation 

along the axis of the microscope. The top left corner image is a t the bottom  of the 

stack and the stack is sorted left to right and top to bottom . Since edges are blurred 

when the gripper goes out of focus, there are fewer features a t the beginning and 

the end of the stack. The maximum number of features is obtained when most parts 

of the gripper are in focus. So as to obtain these features, as speed is critical during 

tracking, a simple feature detector th a t is fast was used.

Let L  be the look-up table of the stencils th a t are created by moving the model 

image according to all sub-transformations. This look-up table is a 2-D array and,

100
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Figure 6.1: Images from the gripper tracking sequence. The grippers in the left and 
right images are at different depths.

Controller
Microscope
camera

Manual
platform

l

Computer with an 
analog-digital video 
acquisition card

Automated platform with 
-  sub micro-millimetre 

precision 

Tracked object

Figure 6.2: Diagram of the set-up used for the experiments. A photo of the set-up 
can be found figure 1.4, page 6.
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in the gripper case, its size was about 20 % larger than  the model image. This value 

depends on the selected transformation space which depends on how the object 

motion can be bounded. Conceptually, during the tracking phase, the look-up table 

is positioned over the image at the previous position of the tracked object. The 

stencil th a t encompasses the most features, relative to its size, is considered to 

indicate the displacement th a t the object has undergone. A reference point was 

taken at the centre of the model images. Let /  =  (x, y)  €  N2 be the position of an 

edge feature relatively to this reference point. In this case, the transform ation space 

• is a set of R 3 x N and we denote S  = {[TX1, TX2], [Tyi, [0l5 #2], ti} a  sub-set of this 

space. Rotations are centred about the reference point. By selecting the reference 

point a t the centre of the images of the stack, the displacement of the features due 

to the rotational of the stack is reduced component and results in a more compact 

look-up table.

6.1.2 Algorithm  

Pre-processing Stage

The following procedure can be used to obtain the stencil associated with a subset 

of transformations S :

1. Select the image i of the stack th a t corresponds to the depth component of S.

2. Consider the rotation part of the subset of transformations; each feature /  is 

transformed in a set of points th a t forms an arc centred about the reference 

point, with angle 62 — #i where the middle point of the arc is /  ro tated  around 

the reference point by 01 . To determine the pixel points, or digital points,

th a t correspond to this description, [^1,^2] is sampled every 56. Tests show 

th a t for the tracking of the gripper 0.5° is sufficiently small. However, this 

value depends on the model size, which is expressed in pixels. Thus, a set of 

digital points Pi is obtained. If a digital point is selected multiple times it 

should be considered only once.

3. Consider now the translation part [TX1,TX2]. For translations, the natural 

distance is expressed in pixels. Microscope calibration can be used to de­

termine the exact corresponding real-world distance. As the transform ation
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space is divided, the bounds of the segment Txx and TX2 may not be inte­

gers. Different policies to determine a range with integer bounds can then 

be applied. We first chose to consider the smaller range with integer bounds 

th a t include [TX1 ,TX2]. However, when the object moves in the middle of two 

ranges, two stencils are likely to receive a high count of features. Another 

policy would be to take the closest integer for each bound. Once a choice 

has been made, the set of points P2 obtained by the translation is calculated. 

P2 =  {(£ +  tx,y)  : tx G (pl([Txl,TX2]) D N) a n d (x ,y )  G Pi} where pi is a 

function th a t describes the chosen policy.

4. Proceed in the same way to obtain P3, the set of digital positions obtained by 

translating the set P2 along the y-axis.

5. P 3, which corresponds to the positions of the model feature if the model was 

moved by the set of transformations of S,  is used to fill L  by adding a reference 

to S  corresponding to each point of P 3.

Figure 6.4 illustrates some of the stencils obtained. Although it may not seem 

apparent, stencils with the same shape are slightly translated or ro ta ted  relatively to 

each other. Different shapes in this case correspond to stencils coming from different 

images of the stack.

Tracking Stage

The tracking stage is now described. Let pt :=  ( x , y , z , 6 ) be the estim ated position 

of the object a t frame t  through four degrees of freedom. The tracking is performed 

as follows:

1. The region of interest (Rol) of the image is selected. It is centred on (x,y)  

and has the size of L  and orientation 6 .

2. Features are extracted using the same edge detector used to extract the model 

features and their position is expressed relatively to the centre of the Rol with 

a frame rotated by 6 .

3. For each feature, we examine L  a t the corresponding position of the feature 

and increment the corresponding stencils by 1.
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Figure 6.4: A sample of some of the stencils produced

4. The stencil with the greatest hit number (votes) is considered to be the one 

associated with the sub-transformation S  th a t contains the movement of the 

object.

5. pt+1 =  (x  +  2k+Zk y + Zh+Zk g +

A  working system combined with a recognition algorithm [37] has been success­

fully implemented. The algorithm implementation, which relies on the open source 

Mimas vision toolkit framework [97], as well as some test da ta  are available on the 

Internet [98]. It serves as a good starting point to further test the algorithm.

6.1 .3  C o m p le x ity  an a ly s is  Experimental da ta  th a t dem onstrates how param ­

eter variations affect the speed and space complexity of the algorithm is hereby 

provided. In order to carry out this comparison we tracked the micro-gripper shown 

previously on a video sequence of 470 frames.

The feature extractor was tuned to obtain a successful tracking in more than 

90 percent of the 470 images. We then obtained a model th a t had 10 focus planes 

having respectively from top to bottom  containing 17, 33, 51, 75, 206, 324, 258, 71, 

26, 10 features. Figure 6.3 shows the model for the gripper. The last image has
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not been shown since it does not hold enough features and is not relevant for the 

tracking. Figures 6.6, 6.5 and 6.8 summarise the results of the tracking experiments 

carried out with 4 different sets of parameters.

Let us first examine the pre-processing stage. If N  is the number of model 

features and O the number of possible discrete transformations, by construction of 

L , a maximum of N  x O feature locations have to be determined and stored. Thus, 

0 ( N  x O) represents both  the maximum space complexity of the algorithm and 

the speed complexity of the pre-processing stage. Notice th a t O changes with the 

power of the transform ation dimensions i. e. doubling the size of the transform ation 

space multiply by approximately 2d the memory usage and the pre-processing time, 

d being the number of dimensions. However, if we look a t figure 6.6, the outcome is 

unexpected. The complexity analysis needs to take into account another im portant 

factor: how the state space is divided. The time complexity for the pre-processing 

stage is not affected by this factor since the transformed models have to be evaluated 

for every digital transformation. However, the space complexity depends on how 

the transform ation space is divided. To understand this consider a few transformed 

models, a certain number of their points will be the same, if these transformations 

belong to the same subset of transformations of the state  space all these points will 

refer to only one subset of transformations, bu t if the transform ations belong to 

different subset some of the points will refer to multiple subsets therefore increasing 

the size of the memory space used. W hen the points are not sparse, which is the 

case with the feature detector we are using, this phenomena is not negligible.

Returning to figure 6.6, the parenthesised values allow easy comparison of timings 

and memory usage between the different tests. Reference value 1 has been taken for 

the first experiment on the top left corner of the table. First of all notice th a t it is 

not possible to double the depth precision as we have chosen a value close to the 

limit of the depth resolution. If we take more images of the  object they will not be 

different enough to be discriminated by the algorithm. However, it would be possible 

to increase the resolution on the depth axis by having a camera w ith a narrower 

depth of view which would also bring a narrower operating field to simultaneously 

see different objects.

From the above analysis precision should not affect the memory usage. However, 

figure 6.6 shows th a t the memory usage has increased significantly (2.77 times more). 

This is partly  due to our policy to include pixels th a t intersects a transform ed feature
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How dimension are divided: 
translation along x, along y, depth, rotation 

Dimension sizes: 
pixel, pixel, number of images, degree 

Preprocessing time 
Number of elements stored in L  

Asymptotic behaviour of the tracking

Figure 6.5: Key for figure 6.6

even if the intersection is very small. The effect is not negligible because our stencils 

are “th in” .

It can be noticed, when comparing the top-left and the bottom -left parts of the 

array, th a t increasing the transformation space by 8 results in an increase of 6.19 in 

the space complexity, this is because rotational transform ation unlike translations 

do not increase proportionally the stencil area.

The tracking stage is now considered. W hen looking for the object, a region of 

interest, having the same size of L  and which holds P  image features, is considered. 

Considering th a t on average each element of L  refers to a constant number of stencils 

then the tracking complexity should be approximately proportional to the number 

of features present in the region of interest, so the average tim e complexity should 

be O(P).  Figure 6.8 confirms th a t this hypothesis is a good approximation, the 

linearity between the number of image features and the time to process an image 

appears clearly. To further dem onstrate this relationship we plotted, figure 6.9, the 

number of votes against the number of features of a tracked image. Notice th a t on 

figure 6.9 the trend line forks for small numbers of image features. This links with 

the similar pa ttern  th a t is visible on the bottom  right graph of figure 6.8.

Figure 6.6 and 6.8 show th a t the speed varies w ith the precision and the size 

of the search area in a non trivial way. The variation depends, amongst others, on 

the feature density and the shape of the object model. The trade-off between speed 

and precision and between the size of the search area boundary and the speed of the 

tracker is clear. The complexity analysis provides an idea of the trend behaviour of 

the speed of the tracker, so as to be able to forecast and guarantee the real speed 

of the algorithm requires to test the implementation.
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Precision

4, 4, 10, 2 (1)
20, 20, 10, 4 (1) 

12.13 s (1)
561 648 (1)

2.30 x  l0 “2a ; + 1.2 (1)

9, 9, 10, 3 (7.59)
20, 20, 10, 4 (1) 

21.34 s (1.76)
1 556 776 (2.77)

7.1 x 10-2z  +  6.79 (3.1)
9, 9, 10, 3 (7.59)
40, 40, 10, 8 (8) 

68.29 s (5.63)
3 477 125 (6.19)

9.77 x 10_2x +  0.87 (4.25)

18, 18, 10, 6 (60.75) 
40, 40, 10, 8 (8) 
166.93 s (13.71)

11 882 872 (21.15) 
28.2 x  W~2x  +  42 (12.26)

Figure 6.6: Tracking using 4 sets of parameters, see figure 6.5 for keys and figure 
6.1.3 for the corresponding tracking behaviour
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Synthetic comparison of the 4 complexity tests
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6.8: Visual comparison of the asymptotic tracking behaviour
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Figure 6.9: Number of stencil increment versus number of image feature
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Comparison using Qt threads and boost threads
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Figure 6.10: Comparison of Qt threads and boost threads, both implementation 
uses Qt mutexes

6 .1 .4  P a ra lle lis a tio n  The algorithm can be easily parallelised as follows: for 

each thread/processor we associate an array L in which a subset of the stencils is 

stored. The tracking can thus been carried out simultaneously by different thread­

s/processors.

Experiments were done with different implementations using threads from the 

Qt library, Boost library and different synchronisation primitives (mutex, condition 

and barrier).

In our test sequences threads from the Boost library were marginally faster and 

presented more consistent timings (perhaps due to the display thread of the Qt 

library that was used and that could have interupted more often the Qt threads) 

as shown in figure 6.10. It was also found that implementations which launch new 

threads for each new image will track slower. We were unable to find a reason 

why, since launching a thread should be extremely fast, we suspect that this is due 

to cache misses on the CPU. Figure 6.11 compares a few implementations of the 

parallelisation. The best implementation obtained was by using permanent Boost 

threads synchronised with barrier primitives.
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Figure 6.11: Comparison of the parallelisation on 2 processors using different im­
plementations

The best implementation was then used to compare the tracking speed using one 

and two threads. The results are shown in figure 6.12. The asymptotic speedup is 

=  1.59 which corresponds to an asymptotic parallelisation efficiency of — 

79%. Notice the few outliers that appear on the different figures which are probably 

due to time slicing.

6.1 .5  S u m m a ry  In this section it was shown how the stencilled Hough transform 

can be used to track rigid objects under a microscope in real-time (12 fps here). The 

change in appearance of the object has been taken advantage of to track the object 

depth-wise.

One pitfall is a lack of a recovery mechanism when the tracker fails, for instance 

if the gripper goes out of focus. To solve this, the tracker has to be coupled with 

a robust recognition algorithm that also serves as the initialisation process for the 

tracker.

The technique was adapted to track microscopic objects with 4 degrees of freedom 

in images with limited depth of field. The usage of colour cues, edge orientation or
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Comparison on a AMD Athlon MP 1600+ bi-processor computer 
with SMP architecture

Using 1 thread 
With 2 threads 

0.089x + 8.4 
0.056x + 6.9
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Number of point features of the considered image

Figure 6.12: Speed comparison, one thread versus two threads

different kind of features are a few of the possibilities to further improve the speed 

and robustness of the algorithm.

Finally, we have shown that parallelisation significantly increases the speed of 

tracking. An implementation in C + +  as well as test data is available on the web 

under the title “MiCRoN vision”.

6.2 Testing of the stencilled Hough transform using syn­

thetic data

6.2 .1  E x p e r im e n ts  a n d  re s u lts  In order to test the robustness of the stencil 

tracking algorithm, in a controlled manner, artificial images were generated. An 

arbitrary set of points was chosen and translated across an empty image. The 

displacement of the shape from one image to another was randomly selected in the 

range allowed by a chosen transformation space. Also, the movement of the shape 

was constrained to a certain distance out of the bound of the image. By using 

an arbitrary set of points, results were obtained independently of a given filtering 

method.
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A pixel can be in two different states, a “feature point” state or a “no feature 

point” state. To evaluate how the stencil reduction m ethod copes with disturbances, 

salt and pepper noise was added to the image sequences. Salt and pepper noise 

provides an extreme test case not present in real sequences, which enables the testing 

of the algorithm for robustness. The salt and pepper noise was uniformly distributed 

and expressed by its presence likelihood. It was generated as follows: for each pixel 

a random number between 0 and 1 is generated and according to the desired rate 

of error the pixel state  is set to its other state. The loss of information is maximum 

when the likelihood is .5. Indeed, whatever the original state  of a pixel, both  states 

are equally likely to occur after noise of th a t level has been added.

The rate  of false positives and false negatives were not considered separately. In 

practice false negatives, due to the feature detector for instance, tend to happen 

less often than  false positives, due to the background. However, such a detailed 

analysis would have complicated the generation and the interpretation of the tests. 

Although this kind of noise has little relationship with what happens with real 

images, it gives insight in how the algorithm behaves when severe disturbances are 

present in the image. As a simple example, when illumination changes due to the 

change of direction of its source, movement of the camera, shadow or movement of 

the object, it is not unlikely th a t a few features will shift slightly relative to each 

other. This generates false positives as well as false negatives, it is however complex 

to model and it is only one phenomena out of a m ultitude of others. Therefore a 

realistic modelling of disturbances is highly complex and for our purposes not within 

the bounds of this thesis.

The results obtained by comparing the ground tru th  of the shape position from 

the synthetic images we have generated with the results of the tracking algorithm 

are now described.

To carry out our tests, two sets of image sequences were generated. Figure 6.13 

shows the tem plate models used to generate the 2 sets of sequences. The same 

tem plate were used to track the object. For visibility reasons, the hand shape size 

has been displayed 3 times larger than  the watch shape. Note th a t although a 

hand is a deformable object the stencilled tracking is not appropriate, a t least in 

its current form, to track non rigid objects, the hand shape is simply an arbitrary  

rigid shape and any other set of points would have been convenient for testing. The 

first data  set was generated using the hand-drawn “hand” shape, containing 194
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Figure 6.13: Templates of the tracked shapes.

features, translated over 500 images; from this sequence 26 other sequences were 

generated with different levels of salt and pepper noise. Figure 6.14 shows the first 

images of some of these sequences and helps visualise the level of noise present 

in each sequence. The second da ta  set features the edge feature points extracted 

from an image showing a watch. The shape contains 2812 features. The image 

sequences consist of 800 images each. Again, sequences with different levels of noise 

were generated and figure 6.15 helps appreciate the content of noise in these images. 

For each tem plate we generated 26 videos with different levels of noise and these 

videos were tracked with 11 different levels of stencil decimation. Therefore, for 

each tem plate, the tracking was performed on 286 videos of 500 and 800 images 

each respectively.

W hen examining the figures in figure 6.14 the hand shape can be distinguished 

easily by the au thor’s vision system until 28% of noise is present. W ith 34% and 

up to about 40% of noise, the shape can still be distinguished by the human brain. 

If the image sequence is viewed as a video, perhaps due to the shape movement, 

it is possible to guess more easily where the hand shape is a t 40% of noise. For 

the watch shape shown in figure 6.15, maybe because the number of features is an 

order of m agnitude higher, the shape position can be guessed more easily than  the 

hand shape a t 42% of noise. .However, perhaps with a  stretch of imagination, the 

silhouette of the shape appears with 46% of salt and pepper noise indicating the 

shape position. We will return to this point later, for now it suffices to say th a t the 

performances to locate an object using stencils appear to be similar to the human 

vision system.

Figures 6.16 and 6.18 sum up the tracking performances of the stencilled Hough 

transform, each point represent the number of erroneous locations made by the 

tracker for a given video sequence. The z-axis corresponds to the number of frames
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Figure 6.14: Appearance of the first image of the hand shape tracking sequence for 
different noise levels. In percentage of image noise: 0, 4, 10, 16, 22, 28, 34, 40, 46 
and 50% respectively
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Figure 6.15: Appearance of the first image of the watch tracking sequence for dif­
ferent noise levels. In percentage of image noise: 0, 4, 10, 14, 20, 26, 30, 34, 38, 42, 
46 and 50% respectively



CHAPTER 6. EXPERIMENTS 117

where the tracking was incorrect, the rr-axis corresponds to the noise of salt and 

pepper in the video sequence and the y-axis to the level of decimation of the stencils 

that was used to track the object in the sequence. Figures 6.17 and 6.19 represent 

the same data with level lines. By examining these figures it can be observed that, 

for the hand shape, the maximum capabilities of the stencil estimator, before any 

decimation of the stencils, to correctly track the shape is roughly 40% noise, i.e. 

80% of the maximum possible level of salt and pepper noise. The outlier at ratio

0.8, 32% noise in figure 6.16 is due to the failure of the tracking algorithm at frame 

348.

490 ---------
Number of incorrect tracked positions 250 ----------

Percentage of noise

Ratio of kept stencil surface

Figure 6.16: The 2-axis corresponds to the number of images where the tracking 
result differs from the ground truth. The ratio of kept elements of the stencil is 
actually the ratio of the number of references listed in the 2-D array corresponding 
to the stencil elements kept. The colour lines outline error levels. This graph 
corresponds to the hand shape image sequences.

By examining figures 6.18 and 6.19 it can be seen that the tracking capability 

against noise for the watch shape is slightly higher at around 46%, that is 92% of 

the maximum possible level of noise. This is likely due to the much higher number 

of features resulting in a higher likelihood to reach a critical threshold of features to 

discriminate the shape from random noise. Arguably, and judging from figures 6.14 

and 6.15, a level of salt and pepper noise of around 20% is well above the maximum
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Iso lines for the number of tracking mismatches. 
(Hand shape sequence)
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Figure 6.17: The same graph as in figure 6.16 viewed from the top and with just 
the error line levels. The levels are the number of images out of the 500 images of 
the hand shape sequences where the tracking fails

that will be attained with most real images. According to figures 6.16 and 6.17 a 

suitable decimation ratio of the hand shape tracking would be roughly 0.3. For the 

watch tracking it would be 0.1. This suggests that the ratio of references is not a 

measure that could be directly linked with the level of robustness of the tracking. 

Consider the ratio of 1% for the hand stencils, three of these stencils are shown in the 

last row of figure 6.23. One of the stencils has only one element, that correspond to 

roughly 90 other stencils. At that level of decimation, the hand tracking has become 

meaningless as confirmed by the last row of the histograms of figure 6.25 that shows 

the number of votes that stencils get for three different images of the sequence. In 

contrast, at the same level of decimation for the watch, tracking is still feasible as 

shown by the last row of figures 6.34 and 6.36. This is again simply due to the fact 

that the watch shape has many more features than the hand shape.
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Number of incorrect trac

Ratio of kept stencil

Percentage of noise

Figure 6.18: The 2-axis corresponds to the number of images where the tracking 
result differs from the ground truth. The ratio of kept elements of the stencil is 
actually the ratio of the number of references listed in the 2-D array corresponding 
to the stencil elements kept. The colour lines outline error levels. This graph 
corresponds to the watch shape sequences
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Iso lines for the number of tracking mismatches.
(Watch shape sequence)
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Figure 6.19: The same graph as in figure 6.18 viewed from the top and with just 
the error line levels. The levels are the number of images out of the 800 images of 
the watch shape sequences where the tracking fails

It was first believed that a good criteria to stop the decimation of the stencil 

would be a threshold on the number of points of a stencil. However, when deter­

mining a suitable level of decimation relative to a given noise ratio it was realised 

that it did not. Let us consider the noise level at 20%. As mentioned above, the 

desirable corresponding decimation ratio for the hand shape and watch shape were 

respectively 0.1 and 0.3. By analysing a few stencils on figures 6.22, 6.23, 6.33 and 

6.34 with the corresponding level of decimation it can be observed that the number 

of stencil elements does not fully explain the tracking performances relative to salt 

and pepper noise. The number of stencil elements per surface area might be a better 

indicator for characterising a certain level of robustness to a given level of salt and 

pepper noise. If this is the case, it may allow the automatic selection of a threshold 

level to stop the stencil decimation, given a level of desired robustness, defined using 

the salt and pepper noise level.

Looking at the first column and first row of Figures 6.20 it can be seen that
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for the hand shape the maximum number of references, |array(p)|, is around 180. 

Half of the elements of about 4000 elements each refer to  less than  40 compatible 

transformations. The second column shows the histogram of the number of elements 

given the size of the reference list. The distribution may be be tter understood this 

way. It can be seen th a t the shape of the histogram changes significantly when 

stencils are reduced. The largest number of references an element of the array can 

have reduces quite steadily and significantly with the reduction of the stencil size. 

Tracking wise, the number of operations are reduced since for a given feature point, 

fewer references receive votes. The histograms of the second column also show tha t 

the wide m ajority of the elements of the array does not refer to any transformation. 

The first column is the cumulative histogram of the histogram of the second column, 

starting from elements having 1 reference. It therefore shows the maximum number 

of votes th a t could be obtained if all points having less than  n  references were 

selected. W hen tracking, not all of these points are selected. However it outlines 

the impact of points having a large number of references. Looking at the first row 

of figure 6.20, we mentioned th a t half of the elements, i.e. about 2000 for the hand 

shape, each contained less than  40 elements. The histogram on the first row of the 

th ird  column shows th a t they are roughly responsible for a sixth of the maximum 

number of votes th a t could be generated. In other words a minority of the elements 

of the look up table array are responsible for most of the tim e consumed during the 

tracking phase. The stencil reduction allows this to change: looking a t the fourth 

row of figure 6.20 it appears th a t the maximum number of elements is about 35 and 

th a t the maximum level of votes th a t could be generated is approximately 50000. 

When compared with the first row, it roughly corresponds to twice as many as the 

maximum number of votes th a t could be generated by half of the elements th a t were 

referencing about 40 stencils and less.

Figure 6.26 shows the average of the number of elements over all stencils for 

a  stencil th a t is not overlapped by its most overlapping stencil. W hen a stencil 

is intersecting the shape, because they share a large number of points, its most 

overlapping stencil is likely to be one of the other stencils th a t obtains the highest 

number of votes. Therefore, this value can be considered as an indicator of the 

robustness of the stencil estimator. Figure 6.26 shows the to tal robustness indicator

i.e. the minimum over all stencils of the number of elements of a stencil th a t are not 

overlapped by its most overlapping stencil. Both curves do not differ significantly,
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indicating a certain homogeneity from one stencil to another. Since only translations 

of the shape were considered and the sub-transformation space size was such tha t 

the stencil shape and the tem plate shape had the same number of elements this 

homogeneity can be interpreted as follows: the most overlapping stencil for a given 

stencil was one of the stencil slightly translated from the given stencil. This pattern  

was observed many times, except for some of the stencils corresponding to the 

boundary translation values of the transform ation space. For the boundary values 

of the transform ation space, the most overlapping stencil, when it did not correspond 

to the same translation pattern , intersected about the same number of elements of 

the stencil.

These observations are similar for the watch stencil estim ator as shown by figures 

6.37 and 6.38. However, the robustness indicator value is much higher. Nevertheless, 

the data  is insufficient to be able to correlate robustness with this proposed indicator.

Figures 6.28, 6.29,6.30, 6.39, 6.40, 6.41 sum up time measurements for the dif­

ferent tracking sequences. Each measure corresponds to the average time over, 

respectively, the 500 images of the hand shape sequences and the 800 images of the 

watch shape sequences. The average time appears to vary almost linearly versus the 

ra te  of noise and the ratio of kept references.
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Figure 6.20: Histograms characterising the 2-D array containing stencils generated 
off-line for the hand shape. Each row corresponds to a different tuning of the  area size 
of the stencils. These are 100 %, 56 %, 32 % and 18% of the references respectively
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Figure 6.21: Histograms characterising the 2-D array containing stencils generated 
off-line for the hand shape. Each row corresponds to a different tuning of the area 
size of the stencils. 11 %, 6 %, 3% and 1% of the references respectively
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Figure 6.22: Stencils for the hand shape. The z-axis represents the number of 
overlapping stencils. Each row represents a different stencil decimation level corre­
sponding to those of figure 6.20: 100%, 56%, 32%, 18%
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Figure 6.23: Stencils for the hand.shape. The z-axis represents the number of 
overlapping stencils. Each row represents a different stencil decimation level cor­
responding to those of figure 6.21 (11%, 6%, 3%, 1%) and each column a different 
stencil
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Figure 6.24: Number of votes for each stencil. Each row represents a different stencil 
decimation level corresponding to those of figure 6.20. Each column represents a 
different image from the hand image sequence
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Figure 6.25: Number of votes for each stencil. Each row represents a different stencil 
decimation level corresponding to figure 6.21. Each column represents a different 
image from the hand image sequence
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Average robustness of the stencils
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Figure 6.26: W hat has been termed average robustness is, in fact, the average 
difference of, the number of elements of a stencil, and, the number of overlapping 
elements of its most overlapping stencil
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Figure 6.27: By to tal robustness we refer to the minimum, for all stencils, of the , 
robustness such it is explained in figure 6.26
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Figure 6.28: Time taken to track a shape versus the level of noise and the decimation 
ratio of the stencils for the hand image sequences
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Figure 6.29: The graph of figure 6.28 from a different viewpoint. This shows how 
the level of noise affects the tracking time
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Figure 6.30: The graph of figure 6.28 from a different viewpoint. This shows how 
the stencil decimation ratio affects the speed performance of the tracking
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6.2 .2  C o m p a riso n  w ith  d iffe ren t s im ila r ity  m e th o d s  u s in g  a n  e x h a u s ­

tiv e  sea rc h  For comparison purposes, we implemented the stencil estim ator using 

algorithm 3.

A lg o r ith m  3: Tracking using the stencil estim ator by moving the shape across 
the region of interest.

fo reach  position near to the previous object location do  
fo reach  element of the shape o f the object do

if  the shape element corresponds to an image feature th e n  
| increase the number of votes for the current position by one

r e tu r n  the position that has the maximum number of votes

A correlation algorithm would iterate in the same way for a  small region of 

interest1, however this algorithm differs in two ways: firstly, instead of using a 

rectangular shape surrounding the image for computing the correlation the stencil 

estim ator can use the features of the shape only, thus reducing the number of op­

erations needed. Secondly, the measure used is not the correlation measure bu t the 

number of matching features to the shape. Since it is faster to evaluate the number 

of matching features than  to correlate the points (which involves various multipli­

cations), and less points are considered, only the shape points and not all those in 

the rectangular area surrounding the shape, this measure is faster (see table 6.1).

Tests for the watch sequence and the hand sequence were realised on two dif­

ferent computers and therefore cannot be directly compared in term s of speed (the 

computer used for the watch sequence was between 2 to 4 times slower). While no 

stencil reduction is needed to track the hand shape in real-time, it offers a marked 

improvement for the watch shape th a t contains many more points than  the hand 

shape.

Table 6.1 also shows the benefits of using the bounded Hough transform  algo­

rithm . This difference in speed can be explained by two factors: the two embedded 

for loop calculations are factorised into the pre-processing stage. Also, when the 

tracking is performed with the bounded Hough transform, votes are increased only 

for image feature points. It is therefore equivalent to om itting the check as to 

whether a shape point corresponds to an image feature when no feature is present

1If the region of interest becomes large it is more efficient to perform the convolution of the 
image and the template image in the frequency domain (using the fast Fourier transform).
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Figure 6.31: Histograms characterising the 2-D array containing stencils generated 
off-line for the watch shape. Each row corresponds to a different tuning of the 
area size of the stencils. These are 100 %, 80 %, 60 % and 30% of the references 
respectively
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Figure 6.32: Histograms characterising the 2-D array containing stencils generated 
off-line for the watch shape. Each row corresponds to a different tuning of the area 
size of the stencils. These are 10 %, 5%, 3% and 1% of the references respectively
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Figure 6.33: Stencils for the watch shape. The z-axis represents the num ber of 
overlapping stencils. Each row represents a different stencil decimation level corre­
sponding to figure 6.31
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Figure 6.34: Stencils for the watch shape. The 2-axis represents the number of 
overlapping stencils. Each row represents a different stencil decimation level corre­
sponding to figure 6.32
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Figure 6.35: Number of votes for each stencil. Each row represents a different stencil 
decimation level corresponding to figure 6.31 . Each column represents a different 
image from the watch image sequence
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Figure 6.36: Number of votes for each stencil. Each row represents a different stencil 
decimation level corresponding to figure 6.32 . Each column represents a different 
image from the watch image sequence
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Average robustness o f the stencils
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Figure 6.37: W hat has been termed average robustness is, in fact, the average of the 
difference of, the number of elements of a stencil, and, the number of overlapping 
elements of its most overlapping stencil
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Figure 6.38: By to tal robustness we refer to the minimum, for all stencils, of the 
robustness such it is explained in figure 6.37
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Figure 6.39: Time taken to track a shape versus the level of noise and the decimation 
ratio of the stencils for the watch image sequences
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Figure 6.40: The same graph as in figure 6.39 but with a different viewpoint. This 
shows how the level of noise affects the tracking time
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Figure 6.41: The same graph as in figure 6.39 but with a different viewpoint. This 
shows how the stencil decimation ratio affects the speed performance of the tracking

Image sequence description Hand shape sequence 
(194 feature points)

W atch sequence 
(2812 feature points)

B est tim e using cross correlation 
with a rectangular tem plate

1967 ms (lx) 
(windows size 50x50)

27931ms (lx) 
(windows size 161x213)

Best tim e using cross correlation. The 
tem plate have the shape o f the object

158ms (12.4x) 2050ms (13.6x)

B est tim e using using 
the stencil estimator

142 ms (13.8x) 1705ms (16.4x)

Average tim e using the stencil estimator 
with the bounded Hough transform  

algorithm  (full stencil)

5.5ms (358x) 
average over 500 images

75.4ms (370x) 
average over 800 images

Average tim e using partial stencils 50% 3.5ms (562x) 41ms (681x)
Average tim e using partial stencils 10% 2.3 ms (855x) . 12.4ms (2252.5x)
Average tim e using partial stencils 1% Not relevant: some stencils 

don’t even have a point
4.6ms (6072x)

Table 6.1: Comparison of the speed of different algorithms to track an object trans­
lated in 2-D in its surrounding.
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in the corresponding image position.

If the reader wishes to carry more tests, a  test bed, developed in C + + , has been 

provided on-line as an example application within the Mimas library (version 2.1). 

Facilities are also provided to generate image sequences as well as to display the 

results directly into diagrams.

6 .2 .3  S u m m a ry  Comparisons with the cross-correlation similarity measure show 

the superiority of the stencil estim ator in term  of speed performances, especially 

when the stencils are used in conjunction with the bounded Hough transform: a 

speed-up of a  factor of 358 and 370 respectively for the hand and the watch shapes. 

These performances can be further improved by decimating the stencils by a factor 

of 2 to 10 depending of the shape of the object and the robustness requirement of 

the application.

Interestingly the stencil estim ator seem to m atch or outperform the human vision 

system. Psycho-physicists might be interested to further investigate this maybe illu­

sory but striking correlation, especially when considering th a t the parallel gathering 

of information is not structurally incompatible with neural networks. However the 

extent of this study is lacking evidence to determine whether this is a coincidence 

or not.

F u tu re  re se a rc h

Having a criteria to decide automatically when the stencil decimation has to stop 

would remove the need , for manual tuning. The density of retained points of the 

stencil might provide a  criteria for a given level of salt and pepper noise resistance. 

Histograms presented in figures 6.20, 6.21, 6.31 and 6.32 could also be useful to 

determine a criteria to stop the stencil reduction.

The speed of the tracking is enhanced by the reduction of the stencils’ area while 

remaining robust. However, more research is needed to determine an optimal way 

to reduce the stencils’ area. For instance the weight of the stencils elements could 

be determined in a different way.

For detection of the shape in a whole image we propose a hierarchical approach. 

Large stencils could be used to coarsely determine th e  position of a  shape followed 

by successive refinements. Determining the number of stages th a t optim ally enhance 

the tracking performance is one of the issues th a t needs to be tackled. A t this point
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it also appears th a t the density of features present in an image can be a useful cue 

to locate an object, the bounded Hough transform  can be adapted to practically 

measure this density.

Similarly it is possible to separate the translation component of the state space 

from other transform ation such as scale, rotation and shear. One possible way to 

implement this would be to first make a stencil able to encompass the maximum 

size of the object and then filter the image to establish the regions of interest where 

the shape could be located; this would be followed by a second stage where the 

stencilled Hough transform could be operated on these pre-determined region of 

interest. However, in images where features are dense this may not work since any 

part of the image would potentially be a region of interest. Designing a stencil th a t 

better characterises the presence of a shape in a region of interest might solve this 

issue.

6.3 Testing the particle filter on the m icro-pipette tracking 

sequence

Figures 6.42 to 6.49 illustrate scene images and their corresponding pdf based on the 

edge tem plate correlation. Figure 6.42 and 6.43 illustrate the optimal case where 

particles are clustered around the micro-pipette tip, the resulting pdf is almost uni- 

modal. Figure 6.44 illustrates the case where particles are spread out, the resulting 

pdf (figure 6.45) is multi-modal because of the influence of background clutter. The 

multiple modes are subsequently resolved and the pipette tip  is correctly located 

by using further measurements to evaluate modes. Figure 6.46 illustrates the case 

where the correlation of the edge tem plate results in most of the peak points around 

the tip of the pipette. But the particles are spread out and subsequent measure­

ments incorrectly select the mode tha t is far away from the actual location of the 

tip. Improving the multivariate measure might correct this problem. Figure 6.48 

and 6.49 illustrate yet another scene where the background clutter and change in 

scene lighting give rise to multiple modes. However, in this case the multiple modes 

are correctly resolved by additional measurements.

The graph shown in figure 6.51 shows the plot of the actual location of the 

micro-pipette (manually traced) and the corresponding tracked location of the micro­

pipette tip. The histogram of figure 6.52 shows the repartition of all frames classified
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according the accuracy of the software tracked location. To give an idea of the 

accuracy, the actual location has been manually compared w ith an average error of 

less than 3 pixels despite all the constraints. The m icro-pipette w idth is 48 pixels. 

The graph shows th a t in 9 frames out of 329 frames the actual location and the 

probable tracked position differs by more than 21 pixels.

The graph showrl in figure 6.53 illustrates the same tracking scenario but with 

the tracked locations plotted only when the measure is above 0.8 (values ranging 

from 0 to 1). This graph, by showing th a t all the tracked location having a; high 

value measure associated are the expected ones, illustrates th a t a certain threshold 

level allows to be confident th a t the object is accurately located. It can also be 

seen th a t for dozens of frames, no tracked location information is available. Trusted 

tracked locations can typically be used to partially re-initialise the particle filter.

In a  scenario, where clutter comes from the presence of multiple instance of 

an object in the image, partial reinitialisation cannot be applied since measures of 

other object instances are almost identical to the tracked object. However, previous 

dynamic of the object can be incorporated to the particle filter with the above 

mentioned method.

Further tests of the implementation of the particle filter have been carried out, 

appendix C presents and discusses the adaptations needed for these tests and their 

results.
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Figure 6.42: The tem plate is shown on the top left corner. The small black dots are 
the particles. The centre of the square is the tracked location.

weight

0.26 r

Figure 6.43: The weight measures for this graph and the subsequent graphs rep­
resents edge correlation measure. This is an ideal case where the measure gives a 
unimodal pdf. x  and y  axis are the pixel coordinates of the image point measured. It 
can be observed th a t correlation measure is well localised which is a disadvantage for 
particle filters th a t are likely to sample the tracked object only on the neighbourhood 
of the object.



CHAPTER 6. EXPERIMENTS 146

Figure 6.44: In spite of the blurred features of the pipette, its location is found. Big 
black square dots are the peak points.

weight

Figure 6.45: The heavy background clutter is illustrated by the existence of multiple 
peaks in the graph. In spite of the heavy clutter the pipette tip  is well localised 
through further evaluation of the peak points.
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Figure. 6.46: A rare case where the tracking has failed. The centre of the square is 
the tracked location.

weight

0.1 r

Figure 6.47: The graph illustrates th a t most of the peak point obtained, though 
the correlation of the edge tem plate, are located around the .pipette tip. But subse­
quent m ultivariate feature measure picked up the wrong peak point as the probable 
location.
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Figure 6.48: Another cluttered image, this one is due to the change of the back­
ground of the p ipette and illumination of the scene. The small black square points 
are the peak points. Centre of the square is the tracked location.

weight

Figure 6.49: The graph illustrates the background clutter which gives rise to multiple 
peak points.
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Figure 6.50: Last image of the tracking sequence. M agenta points are previous 
tracked locations.
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Figure 6.51: Actual location of pipette (line) and tracked location (crosses).



CHAPTER 6. EXPERIMENTS 150

I
!
r*
i
ir
- i

Figure 6.52: Number of tracked frames versus distance of actual location and tracked 
location.
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Figure 6.53: Actual location of pipette (line) and tracked location (crosses). Only 
tracked location of points with high probability is displayed
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6.4 Testing the stencil Hough transform on the p ipette video  

sequence

6.4 .1  E x p e r im e n ts  a n d  re s u lts  For comparison purposes w ith the  particle fil­

ter, the algorithm presented in chapter 3, the stencil Hough transform  was evaluated 

on the pipette video sequence. As a reminder, figure 6.54 presents 2 images extracted 

from the video sequence.

i. V 'M  ,”?X ,

m m

Figure 6.54: Two images from the pipette tip  sequence. It is the same sequence th a t 
was used to discuss the particle filter algorithm.

A custom edge detector was used for the fast extraction of features. A Canny 

edge detector w ith 2 different settings was also tested, the feature extraction resulted 

to be 4 to 5 times slower but yielded more accurate tracking results. Our custom 

edge detector simply consists of thresholding the gradient of the image and, when 

multiple contiguous pixels with high gradient value are present on a same line, to  

select the pixel with the highest gradient value. The number of feature points is 

thus reduced and the filtered image consists of thin edges. Despite the simplicity of 

the m ethod the edge extraction process is rather slow (around 200 ms per image). 

For real-time processing, images can be down-sampled and a multi-core CPU used.

Figures 6.55 to 6.59 allow us to visualise and compare the behaviour of the track­

ing algorithms for different settings of its components; table 6.4.1 provides numerical 

data  th a t show the precision of the tracking. The best results were obtained with 

the first settings of the Canny feature detector and using the motion filter th a t is 

described later on. Although the motion filter visually improved the tracking in a
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Tracked positions
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Figure 6.55: Comparison of the tracked positions and the manually determined 
positions of the pipette tip when using our custom edge detector.
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Figure 6.56: Comparison of the tracked positions and the manually determined 
positions of the pipette tip using the Canny edge detector with the first set of 
parameters.
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Figure 6.57: Comparison of the tracked positions and the manually determined 
positions of the pipette tip when using using the Canny edge detector with the 
second set of parameters.

noticeable way: when the tracking is observed the pipette tip appears to be tracked 

correctly even when none of its features appears in the filtered image, this improve­

ment is not obvious and its utility might be questionable when looking at the table 

6.4.1. Nevertheless the computational cost of this improvement is negligible and 

the increase of corrected tracked frames, although minimal, can make the difference 

between losing the track or not and, ultimately, minimising the number of costly 

re-initialisation steps.

6 .4 .2  T h e  m o tio n  m o d e l The shape of the feature of the pipette, due to its 

transparency and changes in illumination, changes to an extent that for some frames 

most of the features of the pipette tip disappear and the stencil Hough transform 

can no longer locate the pipette tip. In the pipette sequence these changes span 

for a number of frames and the previous dynamics of the pipette can be used to 

estimate the tip position.

The following motion model was used: since the pipette tip has an erratic move­

ment but generally tend to move in the same direction it was assumed tha t the
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Figure 6.58: Comparison of the tracked positions and the manually determined 
positions of the pipette tip when using using the Canny edge detector with the first- 
setting and the motion filter.

speed of the pipette is constant for a few frames and becomes null a few frames 

later. This allows the tip to be tracked for a few frames in case of occlusion while 

not getting too far off the pipette in case of a change of its direction; an event which 

probability increases as time passes. Of course if the pipette direction changes when 

it becomes occluded the pose estimation provided by the motion model would be 

incorrect. However, for the pipette sequence this does not occur. In general, if the 

cause of an occlusion can also be the cause of a directional change of the tracked 

object, motion models relying uniquely on the previous dynamic of the object would 

not be very useful.

x t denotes the estimated position of the object after the evaluation of the mea­

surements, x~[ the position estimated using the motion model which is evaluated as 

follows: x~[ = x t- \  +  vt_i where vt- i  is the previous estimated speed of the object. 

All these variables are vectors, and for the pipette sequence they are 2 dimensional.

To take into account of the inherent uncertainty of the motion model which varies 

with the. measurement an additional variable u* is used, u* represents the maximum 

distance the object can be from the current estimated position of the object at frame
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Figure 6.59: Comparison of the tracked positions and the manually determined 
positions of the pipette tip when using using the Canny edge detector with the 
second setting and the motion filter.

Edge detection method Number of frames (out of 331) for which 
the distance between the tracked position 
and the manually determined position is:

< 6 pixels < 12 px > 12 px > 20 px > 40 px
Custom edge detector 176 220 104 76 49

Canny, first setting 224 262 65 38 12
Canny, second setting 206 220 77 54 20
With motion model:
Canny, first setting 227 265 62 36 7

Canny, second setting 210 256 70 43 20

Figure 6.60: Tracking accuracy

Edge detection method tracking speed (ms) feature detection time ms)
average max min average max min

Custom edge detector 64 155 24 197 368 174
feature collection time (ms)

Canny, first setting 22 52 6 34 66 22
Canny, second setting 46 117 13 44 96 18

Figure 6.61: Tests carried out on an Intel Celeron Northwood 2.7 GHz CPU
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t .

According to the validity of the measure given by the stencil Hough transform 

the param eters of the motion model (speed and uncertainty) are updated and the 

tracked location is determined. Algorithm 4 details the procedure.

Readers familiar with the Kalman filter would have noticed a number of simi­

larities such as the recursive integration of the novel information- about the speed 

of the object. There are also dissimilarities; because of the nature of the stencilled 

Hough transform, measurements are done exhaustively in a region of interest th a t 

is usually larger than  the region of interest indicated by the motion model. The 

motion filter is only used as an auxiliary feature when the measurements are not 

satisfactory or to check th a t the result, th a t depends on the measurements, is logi­

cally compatible with the previous location of the object and its motion model. This 

is because the reliability of the measurement is believed to be considerably higher 

than  the information th a t can be obtained from the motion model. Given the weak 

assumptions th a t could have been made on the motion model this is justified and 

results in this particular case of the Kalman filter where the motion estimation is 

used only when the image data  does not allow to locate the position of the object. 

The motion filter can also be used to position the region of interest where measure­

ment are made. However, given th a t the motion is small compared to the size of 

the region of interest, choosing the previous estim ated position of the object as the 

centre of the region of interest was not altering the tracking.

W ithout the motion filter the size of the state space has to remain large to be 

able to recover the pose of the tracked object when it is occluded. By reducing 

the uncertainty, the motion model allows the size of the region of interest where to 

look for the object to be reduced, thus reducing the size of the state  space along its 

translation dimensions. This also increases the speed of the feature extraction by 

reducing the region of interest in the image where to look for the object. For the 

pipette sequence, despite the weakness of the motion model,this reduction was not 

negligible: the size of the state space along the y-axis could be reduced by about 

40%, while it remained unchanged along the ;c-axis.

6 .4 .3  S u m m a ry  Compared with the particle filter algorithm the bounded Hough 

transform is faster. The particle filter was taking a few seconds per frame to track 

the object; this was essentially due to the matching m ethod th a t consisted of cross
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correlating edge features in the images. Using a better measure with the particle 

filter would solve this issue but may add some complexity to the implementation; 

for instance, a contour model of the p ipette tip  could be used but for each new 

tracked object a new model should be used which adds another level of complexity 

for the users of the algorithm and requires an additional module to the tracking 

system. For rigid objects, real-time can be achieved comfortably if the motion is 

planar (rotation and translation) for more degrees of freedom except if the motion 

can be tightly bounded the particle filter with an efficient similarity m ethod is likely 

to perform better.

The stencilled Hough transform did require significantly less tuning compared 

with the particle filter algorithm, the similarity method is very robust but less than 

what could be expected from the artificial data. This is because the p ipette is self 

similar along its axis of symmetry which occasionally results in the pipette body to 

better fit the p ipette tip stencils when the tip is occluded.

A m ajor difference between these two techniques is th a t the stencilled Hough 

transform performs an exhaustive search on the region of interest while particle 

filters sample this region. Depending on the requirement of the application this may 

provide a theoretically more satisfying guarantee th a t the object is more precisely 

located.
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A lg o r ith m  4: A motion filter for the stencil Hough transform 
Measurements are taken around x f  i f  measurements give the position with a 
high value o f certainty th e n

x t is set to the best measured position 
ut =  0
if  the previous pose was known with accuracy th e n  
| vt = x t - x t - 1 

else
I -  _  £ t - i+ K i ( x t —x t- i )
| u t  ~  1 + K i

i f  Measurements give the position with an intermediate value o f certainty 
th e n

u* =  U*_! +  Ui
fo r The n  poses having the best value in decreasing order o f likelihood do  

if  The pose is compatible with the motion model th e n  
x t is set to this pose
if  the previous pose was known with accuracy th e n

s. _  £ t - i + K 2 ( x t —x t - i )
vt - -------1+K2--------
Ui =  U2 
break 

else
s.   t > t _ i+ K 3 (x t— x t _ i )
V t  ~  -------I+K3--------
Ut =  U2 

break

if  No likely pose is compatible with the motion model th e n  
x t =  x t- i  +  v t —1

i f  Motion filter parameters have been updated in the last few  frames 
th e n

I vt = vt- 1 
else vt = 0

if  Measurement do not give any satisfactory value th e n
Ui =  Ui_! +  Ui
Xt = Xt = x t- 1 +  vt- 1

i f  Motion filter parameters have been updated in the last few  frames th e n
I vt = vt- 1 

else  vt =  0

Where K i, K 2 and K 3 are scalars th a t can depend on the measurement value 
and the uncertainty of the motion filter; and U\ and U2 are also scalars th a t 
can represent the maximum speed of the object and a distance th a t can 
depend on the value of the measurement.
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Conclusion

7.1 Contributions

An original framework th a t analyses a shape relative to its state  space has been 

established. This results in an additional step th a t can be performed offline and 

th a t refines the shape representation of a known rigid object. A set of characteristic 

points th a t are relevant for the robust identification of an object is thus determined, 

which increases the performance of tracking, recognition and detection algorithms.

For a  given state  space,, it has been shown how a variation of the Hough transform 

can be utilised to determine whether a, set of points uniquely characterises an object 

state. This algorithm works for sets of points, extracted from a rigid object shape, 

when the object motion can be bounded.

The concept of the stencil estim ator has been introduced and it has been shown 

how it is useful in improving the performance of the bounded Hough transform 

in terms of computational speed and memory space requirements. The modified 

tracking algorithm, which is independent of the selected feature detector, is referred 

to as the stencilled Hough transform. Performance comparisons have established 

th a t the approach is well founded. It has also been dem onstrated th a t the stencilled 

Hough transform can be parallelised efficiently with minor modifications.

The particle filter was presented by describing a simple example of its usage, 

it is hoped th a t this will aid in obtaining a deeper understanding of this tracking 

algorithm. Some generic improvements have also been proposed: the clustering of 

particles, the over-weighting of the particles, partial reinitialisation and the intro- 

dution of additional stages to incorporate other measurements in order to enhance
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the sampling of the new data. Some of these improvements, such as partial reini­

tialisation and the usage of additional measurements, had been already proposed 

previously by other researchers, bu t in a slightly different manner.

Additionally, as presented in section 6.1, it has been shown how the bounded 

Hough transform can be adapted for tracking, with 4 degrees of freedom (x-y  trans­

lations, rotation and  depth translation), of rigid objects under a  microscope. The 

evaluation of the depth translation was performed using a stack of object images 

taken at different depth levels. This takes advantage of the fact th a t due to the 

narrow depth of field of microscopes the appearance of an object changes with its 

distance to the microscope lens.

7.2 Future research

It has been argued [15] [99] th a t high curvature points convey significant information 

about a shape and as a consequence characterise shapes well. It would be useful to 

investigate if the selection of these points for a given shape also characterises the 

shape with the definition proposed in this thesis.

Three main directions to extend the work presented in this thesis are suggested:

1. Increasing the search space to obtain a detection or recognition algorithm: in 

this thesis, since the focus was on tracking, the transform ation space or state  

space was reduced to encompass a region of interest where the object was 

previously located. Further tests need to be performed to determine if it is 

possible to detect a shape in a whole image by simply increasing the. area of 

interest and to correlate the evolution of the memory usage when the number 

of dimensions of the state space increases. If we consider the stencilled Hough 

transform algorithm, the main issues are currently the quantity  of memory 

available and the number of features extracted. At the end of chapter 4 we 

suggested an algorithm (algorithm 1) for object detection. This algorithm may 

be implemented in many different ways and the stencilled Hough transform 

algorithm is an efficient way to implement stages three and four when the 

search space is relatively small.

2. Enhancing the object representation by selecting more discriminative feature 

detectors: another way to increase the robustness of the stencil estim ator
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is to incoporate additional information such as the gradient direction of the 

features or its colour, reducing the necessary number of feature points needed 

to characterise the object state. If distinguishability can be quantified, for 

instance features may belong to one of n  categories (e.g. 8 directions for the 

gradient, 12 hues for the dominant colour of the feature surrounding patch etc.) 

it may be possible to further develop the framework described in this thesis to 

determine which feature detector, in terms of its speed and distinguishability of 

its feature, can be used to optimise the speed of the stencilled Hough transform.

3. Generalising the algorithm to track objects in 3-D: the bounded Hough trans­

form has been shown to work with 3-D objects for movements in space. The 

stencilled Hough transform can be adapted for projective transformations of 

a 3-D object representation. One possibility is to use .a  stack of images of 

different object views.

The tem plate reduction scheme, originally developed for the stencil algorithm, 

still needs to be tested with different shape matching algorithms to evaluate its 

robustness and the performance enhancement it provides.



Appendix A 

Fitting a square to a set of points

A .l  3 points case

Figure A.l: An infinite number of squares can fit 3 points.

We shall use the following notations: (ab) for the line passing through the points 

a and 6, [ab] represents the segment having vertexes a and b and \ab\ the distance 

between a and b.

It is trivial that an infinite number of squares can fit 3 aligned points.

Consider 3 unaligned points as shown in figure A.l. The 2 points furthest apart 

are first considered. In the case of figure A.l these 2 points are a and c. The third 

point belongs by hypothesis to the intersection of the 2 discs of radius \ac\ and with 

the centre these 2 points. It is then possible to construct a square intersecting these 

3 points by considering that a and c belong to two opposite edges perpendicular to 

(ac), respectively called A  and C . One of the edge of the square goes through the
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last remaining point, in our example b. This is possible because if b is projected on 

line A  or C  on respectively a' and o', then |aa '| or \cd\ are smaller than  \ac\. The 

blue square.of figure A .l has thus been obtained.

It is in fact.possible to construct an infinite number of squares th a t passes through 

these 3 points. Instead of taking the edges passing through a and c perpendicular to 

(ac), one can consider them  to have a slightly different angle. We call this angle a. A 

square fitting the 3 points can be constructed this way as long as b remains between 

these 2 lines and th a t its projections on the 2 lines a7 and d  are such th a t \aar\ 

and | cd\ are smaller than  the square edge size. The square edge size is |ac| cos (a). 

W hen a  = 0 the maximum value for \aar\ and Icc^ is |ac| sin(arccos(0.5)), this would 

happen if c was a t the intersection of the circles. This gives a comfortable margin 

for a  to vary around 0 and still satisfy the previous above mentioned conditions 

th a t allow a square to fit the given points. The red square (or clear grey square) of 

figure A .l is an example of such a square.

A .2 4 points case

Consider th a t any 3 points of the configuration are not aligned. For this case we 

could not determine the conditions th a t ensure th a t more than  one square fitting four 

points can be constructed. As shown in chapter 4, figure 4.4, some configurations 

of 4 points can be fitted by only one square, nevertheless note th a t the presented 

configuration has 3 points aligned. However we present a  few starting  ideas to 

explore the problem.

A necessary condition for four points to belong to square edges is th a t it is 

possible to make a convex quadrilateral th a t has these four points as its vertexes. 

Considering the 3 points a, b and c of figure A.2 to have such a condition, a fourth 

point has to be taken on the non hatched area and outside the triangle abc. d and 

e are examples of such points. This may not however be a sufficient condition.

We now examine what happens when trying to generalise the constructive me­

thod .presented for the 3 points case. Figure A.3 exhibits an example where 2 points 

are furthest apart. Like in the previous method we assume th a t these points belong 

to opposite edges of the square. This leads to 2 parallel lines going through the 

points as shown in figure A.3.

If we assume th a t the 2 remaining points belong to the same edge there is at
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Figure A.2: abed and abce are 2 four point convex configurations.

Figure A.3: For this configuration of four points we consider the 2 points furthest 
apart.
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Figure A.4: The green shaded square was constructed by assuming that the 2 points 
furthest apart belong to opposite edges and the 2 remaining points to one of the 
edge.

Figure A.5: It is not always possible to fit a square that intersects the 4 points using 
the assumption that the 2 points furthest apart belong to opposite edges and the 2 
remaining points to one of the edge as shown with this configuration of four points.
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most one square satisfying these conditions. Such a square is shown on figure A.4. 

However it is not always possible to fit such a square as the example of figure A.5 

demonstrates this.

A special case is considered in figure A.4. Indeed, the convex quadrilateral 

which vertexes are the four points outlined in the yellow dotted  line is such that 

the longest distance between the four points is an edge of this quadrilateral. If 

the longest distance belongs to a diagonal of the quadrilateral then the assumption 

th a t the 2 points th a t are furthest apart belong to opposite edges of a square is 

inconsistent with the assumption th a t the 2 remaining points belong to the same 

edge of a  square.

Figure A.6: If the longest distance is an edge of the convex quadrilateral and we 
assume th a t the two remaining points belong to different edge of the square there 
exists a t most two squares th a t fit the four points.

We can also assume th a t the two remaining points belong to two different edges 

of the square. If once again, we consider the condition th a t the points furthest 

apart belong to the edge of the convex quadrilateral; to construct such a square the 

parallel lines can be rotated until one of the two remaining points belongs to one of 

the lines and the other point is between them. This might not be possible as shown 

in figure A.7 or possible as shown in figure A.6

So, examining the problem by considering the 2 points furthest apart, we see 

th a t multiple cases are possible and we have not reached a better conclusion than

166



APPENDIX A. FITTING A SQUARE TO A SET OF POINTS

some 4 point configurations can be fitted by one or more squares and some cannot.

If one is inclined to solve this problem a few ideas are suggested hereafter. A 

different approach to analysing the problem would be to divide the points into 3 

groups according.to the 6 intersection points of the lines of the convex quadrilateral 

which vertexes are the four points. By assuming th a t parallel lines intersect at 

infinity, parallel lines could be taken as a separate case or not, according to the need 

of the analysis. Figure A.8 illustrates this idea. Yet another approach would be to 

establish a system of equations th a t need to be satisfied for constructing a square 

and to solve it when possible. Figure A.9 illustrates such an approach.

Figure A.7: An example when the four points are fitted by a square assuming tha t 
the two points furthest apart are on opposite edges of the square and the remaining 
points belong to different edges.

A.3 5 points

We consider th a t any 3 points of the configuration are not aligned. Since the square 

has four edges, a t least 2 points belong to a  given edge. 2 points are chosen such 

th a t a line passing through them has the 3 remaining points on one of its side. If a 

convex pentagon can be made by joining the points w ith lines then there are 5 such 

possible choices. For each of these choices we are going to evaluate the maximum 

number of possible squares passing through all 5 points. On the rem ainder of the 

section we call A  the edge of the square passing through the chosen pair of points.
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Figure A.8: By considering the direction of intersection, represented by arrows, of 
the plain black lines the four points can be separated into 3 groups: the point circled 
in green, the other point on the dashed green line and the two remaining points.

Figure A.9: 2 Points are taken randomly, by assuming that they belong to opposite 
edges, for instance, a system of equations can be written and solved to check if it is 
possible to construct squares that are intersecting this four points. Curved arrows 
represent the possible rotations of the parallel lines.
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The 3 points are not aligned so either (1) the three points belong to 3 different edges, 

or (2) 2 points belong to one edge and the last remaining points to a  different edge.

1. In this ease a t most one square can pass through all 5 points. We consider 

the 3 lines perpendicular to A  th a t passes through the 3 remaining points. If 

there are only 2 lines it is categorised as case (2). No dem onstration is given 

but the point belonging to the middle line must belong to the opposite edge 

of A  and the points on each side to the adjacent edges of A. Given the points 

defining the direction of A  and the opposite edge of A  and considering the 

previous constraint only one square is compatible with these points. For the 

configuration to be compatible with a square shape, the 2 remaining points 

must belong to this square.

2. A minimum requirement for the configuration of points to be compatible with 

a square shape is th a t 2 of the 3 remaining points belong either to a perpendic­

ular line or to a line parallel to A. W ithout considering any other constraints 

a t most 6 squares can be compatible with this point configuration.

As a conclusion, if we consider a configuration of 5 points, only a small finite 

number of squares can pass through this configuration. Moreover if the points were 

taken randomly we believe th a t it is highly probable th a t there may not exist a 

square th a t passes through all points. Indeed in case (1) the 2 last points must 

belong to 2 segments of the plane for the configuration to be compatible with a 

square. This is unlikely even if we consider a small margin of error and a bounded 

surface for the possible position of the points. For case (2) to occur, 2 points out of 

3 must belong to a perpendicular line or a parallel line to A  which is also unlikely. 

Again considering a small margin of error and a bounded space the author believes 

th a t it is possible to prove th a t this is unlikely.

A .4 Perspective transformation

If a perspective transform ation is considered, one of the unique invariants th a t re­

main for geometric shapes is the alignment of points. Thus, when undergoing a 

perspective transform ation a square can become a quadrilateral. W ith  8 points, 

any 3 of them  not aligned, in a convex configuration it is possible to construct 2 

quadrilaterals th a t fit the points. This can be seen in figures A. 10. Therefore to
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determine a transform ation th a t a square undergoes to fit points a minimum of 9 

points, out of which there is necessarily a t least one group of 3 points aligned, is 

required. This example is given to underline the fact, th a t the number of dimensions 

of transform ation space under consideration affects the minimum number of points 

required to completely determine an object location. .

Figure A. 10: 8 points, any 3 of them  not aligned, in a convex configuration can be 
fitted by 2 quadrilaterals.
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Dense disparity map using 

epipolar geometry

B .l  D epth maps of 3-D scenes

Having a 3-D models of the objects th a t are being tracked is necessary to be able to 

track them  in full 3-D. However, obtaining a 3-D model of an object is not straight- 

worward. There currently exists a number of commercial applications [100]. To 

achieve this goal, in the following sections we shall explore the well known technique 

of stereo vision. Knowledge about the geometry of a scene provides interesting clues 

to identify and estimate the pose of an object.

We will conclude th a t stereo vision, although it has some interesting application 

domains, is, in our opinion, and despite the effort of many researchers, not appro­

priate to capture the 3-D geometry of an object. This is because better, simpler 

and more efficient techniques are available.

B .1 .1  S te re o  v is io n  Stereo vision is also known as stereopsis, stereoscopic vision 

or binocular vision. These techniques aim to provide a depth map of a scene using 

two cameras. It combines two images taken from two slightly different points of 

view.

This process can be compared with the human vision system. W hen our eyes view 

a scene, the images drawn on each retina differ by a small degree. This is illustrated 

by figure B .l [101]. From these two corresponding images and the position of the 

eyes, the brain creates a perception of depth.

171



APPENDIX B. DENSE DISPARITY MAP USING EPIPOLAR GEOMETRY

The whole stereopsis process can be divided into the following three stages:

1. Cam era calibration

2. Image correspondence

3. Triangulation

The m ethod has been generalised to more than  two cameras, i.e. trinocular and 

beyond [102].

B . l . 2 C a m e ra  c a lib ra t io n  The mapping of the world - the geometry of which 

can be modelled with a 3-D vector space - to a 2-D discrete space, the . image, has 

already been modelled successfully through various methods [42]. According to the 

chosen model, a  slightly different set of param eters have to be found. These pa­

rameters depends on the characteristics of each camera. The process of determining 

these param eters is known as camera calibration.

Camera calibration is still an active field of research, although the technology is 

m ature enough so th a t different implementations are freely available. Such imple­

m entations can be found for instance in the Mimas, OpenCV and G andalf libraries. 

Thus, the camera calibration problem boils down to identifying a suitable model for 

our requirements and an implementation to obtain the model’s param eters.

Camera param eters are generally classified into two classes: the intrinsic and 

the extrinsic param eters of the camera. The intrinsic param eters are the focal 

length, the coordinates of the principal point and a few param eters to model the 

geometric distortions characteristic of the lens system. The extrinsic param eters are 

the position of the camera, i.e. location and orientation compared to an arbitrary 

external frame.

The process of calibration needs to be performed only once and thus it can be 

conducted off-line. It involves taking images of a scene where 3-D points of the 

scene are known. By finding the correspondence points in the resulting images, the 

param eters are found by solving a system of equations. Once the camera is calibrated 

it is possible to associate a 3-D ray to each pixel of the image as illustrated in figure 

B.2 or to predict the 2-D location in an image of a 3-D point of the scene.

We have tested a method th a t uses a calibration object [42]. This object is a grid 

similar to a chess board with known measures. Figure B.5 shows the calibration grid.
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Figure B.l: The images seen by each eye are slightly different. Image from the 
Optometrists Network website.

Im age fram e

C am era fram e

Figure B.2: By obtaining the intrinsic parameter it is possible to determine where 
each point expressed in the camera frame will be projected onto the image.
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Once the intrinsic parameters of the camera are known it is possible, for instance, 

to project a model of an object in the image as illustrated in Figure B.3. Using the 

intrinsic parameters of the camera we have mapped a cuboid having the dimensions 

of the chess board with the chess board in the image. The mapping was performed 

manually by trials to estimate the location and rotation of the chess board.

This process can be automated if there exists a way to estimate the pose of the 

object. This is actually the basis of model-based 3-D pose estimation which was the 

initial direction of this research on stereo-vision. The results of some experiments 

made with a Rubik’s cube are presented in section C.2 of this thesis.

In figure B.3, the white line at the top of the image is curved due to lens defor­

mation. It is a line we have mapped on the image to the approximated, manually 

estimated, position of an edge of the power supply unit at the top left corner of the 

image. It demonstrates that the deformations of the image by the lens system are 

taken into account by the model when a model is re-projected onto the image.

Figure B.3: A red parallelepiped and a white line projected on the image using the 
image formation model

Distortion parameters can also be used to rectify an image. A rectified image is 

an image such that lines onto the image are projections of lines from the real world. 

This is illustrated by figure B.4.
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B .1 .3  S te re o  c a lib ra t io n  When a scene is captured from multiple points of 

view, knowing the relative location of the cameras is a preliminary step towards 

determining the geometry of the scene. In the case of a stereo rig the process of 

determining the relative position of the two cameras is known as stereo calibration.

Once calibration is achieved, it is then possible to obtain standardised images. 

Standardised images have been rectified such that when a point can be seen on the 

two images, this point belongs to the same base line on both images. Once the 

stereo-calibration has been performed off-line, the image standardisation process is 

reduced to a warping of the image pair. Image standardisation is useful as they 

provide a way to reduce the dimensionality of the correspondence problem.

Figure B.5 shows the two original images acquired with the stereo rig and the 

standardised images.

B .1 .4  C o rre sp o n d e n c e  p ro b le m  In its more general formulation, the corre­

spondence problem consists of finding, for a point in a scene, where it appears (if it 

appears) on different images taken from different points of view.

In the special case of stereo vision since the two points of view are close, most of 

the points are visible in both images. Moreover, the two images can be transformed 

in such a way that two corresponding points would appear on the same line. After 

such a transformation the images are said to be standardised.

A disparity map can be created to represent the relative position of two corre­

sponding points. Such a map can be visualised as an image as shown in figure B.6. 

Dark pixels represent small disparities and thus far elements and brighter pixels

Figure B.4: The right image is the rectified left image. Notice that the power supply 
edge highlighted in previous figure appears straight.
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Figure B.5: Top: pair of images taken by our stereo rig. Bottom: the same pair 
after standardisation. Black lines have been drawn to exhibit the alignment of the 
corresponding image elements.
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represent larger disparities and thus nearer elements.

Methods to solve the correspondence problem can be divided into two categories: 

sparse disparity maps where only the most reliable features are registered and dense 

disparity maps where a corresponding point is attributed to almost every points 

of the image. The usage of constraints such as continuity are used to match un- 

textured surfaces. The second formulation is ill-posed as some points do not have 

correspondent points on the other image. However in the case of stereo images these 

points are a minority. Dense disparity maps are less reliable than sparse maps, 

however they give an approximation of the distance between the camera system and 

the object for almost every pixel.

Figure B.6: Pair of standardised image and their disparity map. Red points are 
displayed when uncertainty is too high.

B .1 .5  D iscu ssio n  The major issue of dense disparity map evaluation is compu­

tational complexity. To illustrate this, assume that there exists a reliable method to 

decide if two pixels from different images correspond to the same point. If a brute 

force comparison algorithm is used to compare each pixel of one image with each
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pixel of the other image this hypothetical method would have to be used n 2 times 

where n  is the number of pixels. So for relatively small images, say 320 x 240 pixels, 

the m ethod would have to be applied around 6 x 109 times.

Considering th a t the hypothetical comparison m ethod may require a non negli­

gible amount of time, it appears th a t obtaining dense disparity maps, in real-time, 

on an entry level desktop computer is computationally expensive. As a result, many 

techniques have been developed th a t tries to limit computation. At the time of 

writing, a cost/energy minimisation formulation of the problem solved using a max 

flow/min cut algorithm [103] is one such approach [104] [105]. At the point of imple­

m entation we thought th a t this technique was too slow for our purposes. However, 

Boykov and Kolmogorov [106] have shown th a t it was possible to implement graph 

cuts for real-time applications. In a 2007 seminar, Blake [107] mentioned the ex­

istence of a graph cut implementation, for standard PC, operating a t a rate  of 2 

million pixels per second. It should be noted th a t graph cut algorithms provide an 

exact solution for a certain class of problem [108] modelled by a random Markov 

Field. They have also many other applications, notably for image segmentation 

[109] [110], image reconstruction and more atypical image m anipulations such as the 

creation of digital tapestries [111]. .

Another classic approach consists of using standardised images as described 

above. Thus, the search of a corresponding point is reduced to  a line, transforming 

a 2-D problem into a one dimensional one. To determine if two pixels correspond 

to the same physical entity, measures, based on intensity or colour of the pixels, 

are used. To overcome major problems such as illumination changes, noise, drift 

between lines and the lack of texture, a window of surrounding pixels is taken into 

account. Further discussion on this approach is provided in appendix B.

For reference purposes other approaches have been tried [112]: simulated anneal­

ing, cooperative algorithms, dynamic programming, divide and conquer algorithms 

to cite just a few. The implementations are often more complex and do not provide 

significant improvement on the quality of the result or speed of the algorithm.

B .1 .6  S u m m a ry  Although stereo-vision has naturally emerged for biological 

“systems” and proved to be useful in various applications [104], such as segmen­

tation or in robotics for obstacle avoidance, for systems aiming a t capturing the 

geometry of a relatively small object it is impaired with:
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1. unreliability when the object has insufficient texture to  correctly evaluate the 

depth map.

2. imprecision since depth accuracy is decreasing proportionally to the inverse of 

the distance between the camera system and the entity position.

3. slowness due to computationally expensive techniques to evaluate the depth 

map. Although this is not an issue anymore due to graph cut techniques.

Capturing a model of an object is better tackled using structured light, like a laser or 

a striped projector, or time of flight [113] methods. Therefore, stereo vision has to be 

considered w ith circumspection for model building of objects since other technology 

can achieve the same purpose by evaluating the 3-D geometry of a  visible scene in 

a more accurate, efficient and precise manner.

B.2 M odel building alternatives

Another approach th a t can be used to locate a 3-D object is to determine object 

features th a t are highly identifiable despite perspective changes, or more simply, 

affine deformations. In his thesis [114] Johnson introduced the concept of spin 

images which has this property. Another kind of feature th a t is robust to affine 

transformations is referred to as local image descriptors. Amongst the most reliable 

such features are scale invariant feature transform (SIFT) [115] [116] features and 

gradient location and orientation histogram (GLOH) features [117]. Mikolajczyk 

and Schmid [117] have done remarkable work in implementing a wide variety of 

popular and efficient local feature descriptors to compare them. Principal component 

analysis SIFT (PCA-SIFT) [118] and Speeded up Robust Features (SURF) [119] are 

two other interesting methods for local image invariants. In [120] Mikolajczyk et 

al. evaluate combinations of five region detectors and five region descriptors for 

the recognition of object classes. Results indicate th a t the usage of the Hessian- 

Laplace region detector combined with the extended SIFT (GLOH) image descriptor 

performs best for object class recognition. For an overview of image recognition 

videos of Pietro Perona conferences are available online [121] [122].

Having a 3-D model with these kind of features, it would then be possible to 

determine the pose of an object using a random sample consensus (RANSAC) algo­

rithm  [123].
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In order to acquire the geometry of a 3-D model a laser line can be used. Faucher 

[124] and Boissenin started  to implement such a solution, to  acquire the 3-D of the 

object it is positioned on a rotational platform. The project, named Bright, is 

available on the web. It makes use of the Mimas library.

Structure from motion (SFM) determines an object geometry by analysing ob­

jects movements relatively to a camera. Therefore no laser line is necessary. Chang 

and Wong [125] proposed to solve the SFM problem by using a two-stage bundle ad­

justm ent [126] method. The first stage uses an approximated model to estimate the 

pose of the object. The second stage uses the pose information to refine the model 

structure. The two stages are executed repeatedly until the difference between the 

observed data  and data  re-projected from the estim ated model is minimised. The 

tracking of the object is done using Lowe’s method [127]. A m ethod is used to track 

and estimate the 3-D pose of an object using a 3-D model of the object. A full 

perspective model of the camera can be adopted. A Newton minimisation method 

is used to solve the set of equation [128][129].

Wong et al. [130] discussed a method to acquire 3-D object using a video camera 

for the purpose of recognition and pose estimation.

B.3 Im plem entation

As mentioned in section B.1.5, a practical solution to compute dense disparity maps 

in real-time can be implemented by using the epipolar geometry of stereo images 

in combination with a correlation based algorithm. We have implemented such a 

method, th a t consists of calculating a similarity measure, say the sum of the ab­

solute difference of the values of the pixel in the neighbourhood of the two points 

under consideration, based on the intensity of the pixels. The most similar pixels in 

different images are considered to be matched. The speed requirement is achieved 

using two schemes. To reduce the amount of calculations, images are first standard­

ised (such th a t 2 corresponding pixels are in the same row in both  images) using 

stereo calibration. A window shifting technique [131] speeds up the com putation by 

eliminating redundant computations.

Figure B.7 shows a classical pair of standardised images from the Tsukuba uni­

versity repository and the corresponding disparity map obtained with our imple­

m entation of a  correlation based algorithm. The fed areas represent the pixels th a t
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are occluded. The lighter the colour the nearer the entity is to the camera.

Figure B.7: Result of our implementation on a well known pair of standardised 
images from the Tsubaka university repository.

Figure B.6 illustrates problems due to illumination. On the disparity map the 

computer box in the scene contains black regions wrongly suggesting that there are 

holes in the surface. Further analysis of the original image leads us to suggest that 

the light reflection dissimilarity due to the slight difference of the position of the 

camera is responsible for the erroneous result.

Figure B.8 presents different depth maps with a checker board placed at different 

positions.

B .4 Triangulation

All the necessary information to locate a point relative to the stereo vision system 

is now known. The calibration of each of the cameras allows the estimation of the 

coordinate of any line passing through the camera origin and a pixel. Moreover, 

stereo calibration gives the relative orientation and position of the two cameras. 

Therefore, knowing the corresponding pixel of an object point allows the complete 

determination of the triangle whose vertices are the two camera origins and the the 

object point.
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Figure B.8: Different disparity maps using our calibrated images.

■ : corresponent pixelsImaj
Frame!

Baseline
Frame 1

Line coordinate found 
thanks to the calibration

Image 1
the two lines seldom cut themselves

Figure B.9: Triangulation of a point.
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In practice, noise and discreteness of the data  results in a  triangle th a t presents 

an open angle as shown in figure B.9. The location of the object can be considered 

to be the nearest point to both  lines.

B.5 Summary

Although stereo-vision has naturally emerged for biological “systems” and proved 

to be useful in various applications, such as segmentation or in robotics for obstacle 

avoidance, for systems aiming a t capturing the geometry of an object it is impaired 

with:

1. unreliability when the object has insufficient texture to correctly evaluate the 

depth map.

2. imprecision since depth accuracy is decreasing proportionally to the inverse of 

the distance between the camera system and the entity position.

3. slowness due to computationally expensive techniques to evaluate the depth 

map. Although this is not an issue anymore thanks to technique like graph 

cuts.

Creating a model of an object is better tackled using structured light, like a laser 

or a projector, or time of flight [113] methods. Therefore, stereo vision has to 

be considered with circumspection for model construction of objects since other 

technology can achieve better results by evaluating the 3-D geometry of a visible 

scene, in a  more accurate, efficient and precise manner.
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Farther testing of the particle 
filter

C .l Table tennis sequence

Figures C .l and C.2, show the results of the tests of the implementation of the 

particle filter on 2 ping-pong sequences. In this case a correlation measure and the 

modified particle filter th a t takes into account the speed of the object were used. 

Some param eters, such as the distance of relocation of particles for the propagation 

step of the particle filter, needed to be tuned bu t this was done quickly and the 

tracking worked almost immediately.

C.2 Rubik’s cube sequence

In order to make sure the implementation was robust and generic enough a third 

tracking scenario was selected: the 3-D tracking of a R ubik’s cube. The measure 

associated with this scenario differed from previous tracking scenarios since a 3-D 

wireframe model was used instead of a tem plate image of the object.

Brown et al. [132] proposed a method to acquire a 3-D wireframe model using a 

semi-automatic method. Outlines of the tracked object are drawn on the image. It 

is then tracked using a Kalman filter, the accumulated information then serves to 

determine the wireframe model. The method also explains how lines can be tracked 

in 3-D. For more references on 3-D tracking and 3-D models see page 179.

In a  first a ttem pt to track the Rubik’s cube the outline of the cube was projected 

on the image and the number of edge points close to this outline were counted. Figure
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Figure C .l: Tracking of a ping-pong ball. Top left corner, the ball tem plate image. 
The large white dots represent the previous tracked positions of the ball. The large 
black dot, the current position of the ball and the small white dots, the particles’ 
positions.

i-

Figure C.2: The large black square is the probable actual position of the ping-pong • 
ball. The small white dots indicate the particles’ positions and the larger white 
squares represent the earlier tracked positions.

C.3 shows th a t the tracking failed quickly.

To improve our model a hand-crafted 3-D wireframe model of the R ubik’s cube
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Figure C.3: After a few frame the tracking fails completely.

was made by determining the 3-D coordinate of the 54 square elements lying at the 

surface of the Rubik’s cube. Edges corresponding to the boundary of these squares 

were used to represent the Rubik’s cube. A projective model of the camera was used 

to project these lines on the image and comparison with an edge filter image of the 

sequence were used to validate hypotheses. Although the particle cloud appeared to 

stay focused longer around the Rubik’s cube, the particles still spread quite quickly 

resulting in the tracking failing again.

In order to improve the filtering method the following was undertaken. First, a 

coarse colour filter was applied to the image. Morphological operators, opening and 

closing, were used to roughly identify the position of the Rubik’s cube. In indsight 

the use a colour filter based on the hue saturation ligthness (HSL) colour space 

would be preferable and morphological operator parameters could have been better 

tuned to eliminate the unnecessary square appearing in the third image of figure C.4 

and which does not correspond to the Rubik's position. This first segmentation was 

then used as a stencil to select the edges filtered with a Canny edge detector. Then 

a distance map was created such that each pixel indicates the distance to its closest 

edge. This allows the application of minimisation techniques to better position the 

model on the image as described further down. Figure C.4 illustrates these steps. 

Figure C.5 shows this distance map in false colour.

The next improvement was to remove hidden lines from the measurement data. 

This is a well-known problem discussed at length by the computer graphics com­

munity. The literature review shows that there is no easy algorithm that allows the 

determination of which edges are occluded by the surface of an object. Hidden line
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Figure C.4: Different stage of the image filtering process

Figure C.5: The filtered image with false colours.

187



APPENDIX C. FURTHER TESTING OF THE PARTICLE FILTER

removal is considered as one of the most “tedious tasks in 3-D programming” [133]. 

An analysis of the paper [134] shows th a t there is a  huge number of special cases to 

take into account th a t largely justifies this statem ent. Some implementations can be 

found, nevertheless they do not exhaustively remove hidden lines, culling of back- 

face polygon is generally the only operation done. While the algebraic approach 

proved to be difficult, hardware implementations using a Z-buffer technique (also 

called stencil [135] buffer) to implement efficiently hidden line removal are read­

ily available. Lines are w ritten in the buffer and overwritten with the background 

colour when another polygon hides them. OpenGL1 has been used to render the 

corresponding cube to a particle. A major issue of this technique is th a t primitives 

are lost during the rendering process. Thus to obtain the outline of the cube the 

image was rendered and then filtered to obtain the points corresponding to edge 

locations. This process is slow and directly obtaining the visible edges primitives 

would have been more desirable. For further information, [136] presents a  taxonomy 

of different hidden line removal algorithms.

Despite this last improvement, the tracking continued to fail as shown in figure

C.6. The presented frames indicates th a t one of the reasons was the clustering of 

particles around positions th a t match some of the Rubik’s edges bu t not the correct 

ones. The technique discussed in section 3.5.4 th a t involves using a complemen­

tary  measure could be implemented using the colour segmentation based measure. 

However a different approach was utilised. In order to reduce the number of p a rti­

cles used and thus increase the tracking speed, a  gradient descent implementation 

technique was employed. The particles having promising results were relocated 

using a gradient descent algorithm in order to maximise their weight. Although 

this improved the tracking, it did not completely succeed. However, the successive 

implementations allowed us to refine the genericalness of the particle filter imple­

mentation.

After further consideration of the problem, the following m ethod was conceived: 

using the Hough transform some of the main line of the cube could be determined. 

The intersection of the lines could then provide some of the points of the R ubik’s 

cube at the intersection of the Rubik’s cube edges. Point correspondence, using a

1A standard used by graphic cards to render 3-D surfaces.
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frame C frame D

frame A frame B

Figure C.6: Tracking a Rubik’s cube, transparent white doted lines indicates the 
hypothesis location.
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RANSAC2 method would ultim ately provide the position of the R ubik’s cube. Al­

though this m ethod does not involve particle filters it enabled a be tte r acquaintance 

with the Hough transform method. This was eventually used during the MiCRoN 

project and constituted the starting point for the research in tem plate reduction 

presented in previous chapters.

2Random sampling consensus, see page 179
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Machine vision and computer 

vision

The distinction between machine vision and computer vision is often misunderstood 

and a short explanation is given. The various techniques developed in “machine 

vision” usually tend to be related to the needs of industry and includes the design of 

the physical vision system (camera, light source, laser, lenses, interface, processing 

unit etc.) in an industrial environment as well as evaluating risks associated to the 

system. In contrast “computer vision” is more concerned with the algorithmic issues 

and is considered to be a sub-field of artificial intelligence [137]. The two fields are 

closely interrelated and the boundary is blurred. However it is often the case th a t 

machine vision development is industry based and com puter vision academically 

based.

Computer vision comprises a vast body of knowledge th a t intersects with di­

verse scientific fields (computer science, psycho physics, m athem atics, engineering) 

and also has its own sub-development, e.g. the theory of cam era calibration. The 

number of techniques and ideas it encompasses is so vast th a t it is difficult to in­

tuitively grasp this field in its totality. Some idea of its extent can be gained by 

browsing CVonlirie, an evolving, distributed, non-proprietary, on-line compendium 

of computer vision. Many researchers have claimed th a t computer vision has come 

of age. Recent technical improvements (support vector machines, the generalised 

usage of statistical methods etc) along with developments related to  the Internet 

have led experts to suggest tha t, despite the incredible complexity of the task, it 

might be possible to mimic the vision capability of the brain for scene interpretation.
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It has been estim ated th a t roughly 60 percent of the human brain cortex is involved 

in vision processes.
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Tracking source code

A minimalistic implementation of the tracking algorithm follows. It is also available 

in the Mimas library in the examples/tracking/stencil_minimalist directory. The 

header file:
#  i f n d e f MMVL_STENCIL_TRACKING_HHJNCLUDED 
# d e f  i n e  MMVL-STENCIL_TRACKING_HH_INCLUDED

# i n c l u d e  < i o s t r e a m >
# i n c l u d e  < f s t r e a m >
# i n c l u d e  < i o m a n i p >
# i n c l u d e  < v e c t o r >
^ i n c l u d e  < s e t  >
# i n c l u d e  < a l g o r i t h m >
# i n c l u d e  C b o o s t / m u  11 i . a r r a y  . hp p >
#  i n c l u d e  < b o o s t  /  n u m e r i c  /  u b l a s / v e c t o r  . h p p >

# i n c l u d e  < i m a g e _ f i l e i n p u t  . h>
# i n c l u d e  < i m a g e . f  i 1e o u t p u t  . h>
# i n c l u d e  < i m a g e . h >

/ * *
♦ F e a t u r e  —i m a g e  h a s  t o  be  g i v e n  in a  c o o r d i n a t e  s y t e m  c e n t e r e d
♦ on  t h e  m i d d l e  o f  t h e  p r e v i o u s  p o s i t i o n  o f  t h e  o b j e c t .
♦
♦ I n s p i r e d  f r o m  t h e  b o u n d e d  h o u g h  t r a n s f o r m .

♦ " E f f i c i e n t  T r a c k i n g  w i t h  t h e  Bo u n d ed  h o ug h  T r a n s f o r m .
♦ M i c h a e l  G r e e n s p a n ,  L i mi n  S h a n g  , P i o t r  J a s i o b e d z k i ”

♦ As  i t  m i g h t  be  l o n g  t o  p r e —c a l c u l a t e  t h e  d a t a  s t r u c t u r e  
♦ n e c e s s a r y  f o r  t h e  t r a c k i n g  i t  wou l d  be  i n t e r e s t i n g
♦ t o  s a v e  t h e  o b j e c t  o n c e  i t  ha s  b e e n  i n s t a n t i a t e d  an d  i n i t i a l i s e d  .
♦ At  t h e  moment  t h e  b e s t  s o l u t i o n  s e e m s  t o  u s e
♦ s e r i a l  i z a t  i o  n . T h i s  i s  p r o v i d e d  by
♦ b o o s t  s e r i a l i z a t i o n  a v a i l a b l e  i n  v e r s i o n  1 . 3 2  o f  t h e  b o o s t  l i b r a r y

♦ How t o  t a k e  i n t o  a c c o u n t  o t h e r  c l u e s  l i k e  c o l o r  , f e a t u r e  o r i e n t a t i o n  . . .
♦

♦ T i me —s t a m p  : <2005 — 01 — 28 1 2 : 1 0 : 4 5  e ngmb>
♦ C o p y r i g h t  (C)  2005 by Manue l  B o i s s e n i n
♦

♦ © a u t h o r  M an u e l  B o i s s e n i n
♦ © d a t e  1 7 / 0 1 / 2 0 0 5
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*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * /

/ / i n t e r v a l . t y p e  c a n  be  c o n t i n u o u s  o r  d i s c r e t e  ( f o r  s t a c k  o f  i m a g e s )

c l a s s  I n t e r  v a l {  
p u b l i c  :

enum i n t e r v a l . t y p e  { C o n t i n u o u s  =  0 ,  D i s c r e t e } ;  
enum i n t e r v a l . t y p e  t y p e ;

/ / f o r  C o n t i n o u s  t y p e  
f l o a t  l o w e r - b o u n d ;  
f l o a t  u p p e r - b o u n d ;

/ / f o r  D i s c r e t e  t y p e  
i n t  v' a 1 u e ;

I n t e r v a l  ( f l o a t  l o w e r B o u n d  , f l o a t  u p e r B o u n d )
: t y p e ( C o n t i n u o u s )  , l o w e r  . b o u n d  ( l o w e r B o u nd  ) , u p p e r - b o u n d  ( u p e r B o u n d  )

{} ;

I n t e r v a l ( i n t  v a l u e )
: t y p e (  D i s c r e t e ) , v a l u e ( v a l u e )

{} ;
};

/ *  *

* A t r a n s f o r m a t i o n  c o n s i s t s  o f  a c l o s e d  s u b s e t  o f  t h e  t r a n s f o r m a t i o n
* s p a c e .

* F o r  t h e  s t e n c i l  t r a c k i n g  t h e  i d e a  i s  p a r t i t i o n  t h e  t r a n s f o r m a t i o n  s p a c e .
* Th e  r e s u l t i n g  d i s c r e t e  s e t s  h a v e  t o  be  s m a l l  e n o u g h  t o  c o n s i d e r  t h a t
* a ny  o f  t h e i r  e l e m e n t s  i s  w i t h i n  t h e  t o l e r e n c e  e r r o r  o f  t h e  a v e r a g e  o f
* t h e  s u b s e t  e l e m e n t s .  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

c l a s s  T r a n s f o r m a t i o n {  
p u b l i c  :

s t d : : v e c t o r < I n t e r v a l >  i n t e r v a l s ; 
i n t  v o t e s  ;

T r a n s f o r m a t i o n  ( ) :  
v o t e s ( 0 ) { }

s t r u c t  I t t r a n s f  : p u b l i c  s t d : :  b i n a r y  . f u  n c t  i on  < T r a n s f o r m a t  i on  , T r a n s f o r m a t i o n ,  b o o l >  {
b o o l  o p e r a t o r  ( ) (  T r a n s f o r m a t i o n  x ,  T r a n s f o r m a t i o n  y )  { r e t u r n  x . v o t e s  <  y .  v o t e s ; }

};

/ .*  *

♦ F e a t u r e  i s  u s e d  t o  d e s c r i b e  t h e  x , y  p o s i t i o n  o f  a f e a t u r e
*
♦ I t f e a t u r e  i s  u s ed  t o  c o m p a r e  two f e a t u r e s  by s t d  : :  s e t
*
* © a u t h o r  Man u e l  B o i s s e n i n
♦ © d a t e  1 8 / 0 1 / 2 0 0 5
♦***********************************************************************/

t y p e d e f  b o o s t : :  n u m e r i c  : : u b I as  : : v e c t o r  < i n t >  F e a t u r e ;

s t r u c t  l t f e a t u r e  

{
b o o l  o p e r a t o r ( ) (  c o n s t  F e a t u r e  &f 1 , c o n s t  F e a t u r e  &f  2 ) c o n s t  

{
i f  ( f 1 ( 0 )  =  f 2 (0  ))

{
r e t u r n  f 1 ( 1 )  <  f 2 ( 1 ) ;

}
r e t u r n  11 ( 0 )  <  f 2 ( 0 ) ;
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}
};

c l a s s  s t e  n c i I _ t r a c k i n g  { 
p u b l i c  :

/ / P u t  t h e  f r a m e  o f  t h e  mode l  i n  t h e  m i d d l e  o f  t h e  i m a g e .
/ / F e a t u r e s  a r e  g i v e n  i n  a mode l  c e n t e r e d  c o o r d i n a t e  s y s t e m .
/ / W e  a s s u m e  t h a t  a l l  mode l  i m a g e s  a r e  o f  t h e  s ame  s i z e  and
/ / t h a t  t h e  o b j e c t  h a s  t h e  s ame  o r i e n t a t i o n  
/ / a n d  i s  c e n t e r e d  in  t h e  m i d d l e  o f  t h e  i m a g e .

s t e n c i l . t r  a c k i n g (  c o n s t  s t d : : v e c t o r < F e a t u i r >  & r e a t u r e _ i m a g e ,  
i n t  m o d e l . w i d t h  , i n t  m o d e l . h e i g h t  , 
i n t  x . m i n , i n t  x . m a x , i n t  x . s u b  ,
i n t  y . m i n , i n t  y . m a x , i n t  y . s u b ) ;

/ / T h i s  i s  u s e d  as  an  i n d i c a t o r  ( wh e n  c o m p a r e d  w i t h  t h e  n um b e r  of  
/ / h i t  f i n d )  f o r  t h e  s u c c e s s  o f  t h e  t r a c k i n g  
i n t  n u m b e r . o f . f e a t u r e s  ;

/ *
P s e u d o —c o de

f i l l . i m a g e . s p a c e  ()

{
f o r  e a c h  t r a n s f o r m a t i o n
f o r  e a c h  f e a t u r e  o f  t h e  i m a g e  c o r r e s p o n d i n g  t o  t h e  t r a n s f o r m a t i o n  

{
c a l c u l a t e  l o c u s  o f  p o i n t  a c c o r d i n g  t o  t h e  s u b —t r a n s f o r m e d  s p a c e ;  
ad d  t r a n s f o r m a t i o n  r e f e r e n c e  t o  t h i s  l o c u s  t o  t h e  i m a g e . s p a c e  a r r a y ;

}
}

* /

/ / t h i s  i s  s e p a r a t e d  f r o m  t h e  c o n s t r u c t o r  a s  t h e  d a t a  
/ / s t r u c t u r e  i t  f i l l s  m i g h t  be  l a t t e r  l o a d e d  

v o i d  f i 11 _i m a g e . s  p a c  e ( v o i d  ) ;

/ / T h e  f e a t u r e  s h o u l d  be  e x p r e s s e d  in a o b j e c t  c e n t e r e d  c o o r d i n a t e  s y s t e m  of  
/ / t h e  p r e v i o u s  t r a c k e d  l o c a t i o n .
T r a n s f o r m a t i o n  t r a c k  ( s t d  : :  v e c t o r < F e a t u r e >  & t e a  t u r e s  ) ;

i n t  g e t  . m o d e l . w  i d t  h ( v o i d  ) c o n s t  { r e t u r n  m o d e l . w i d t h ;  } 
i n t  g e t  . m o d  e 1 . h e  ig h t  ( voi  d ) c o n s t  { r e t u r n  m o d e l . h e i g h t ;  }

p r i v a t e  :
i n t  m o d e l . w i d t h ;  
i n t  m o d e l . h e i g h t ;  
i n t  x . s u b ; 
i n t  y . s u b  ;

/ / T o  s t o r e  t h e  v e c t o r  o f  f e a t u r e  o f  a n  i m a g e  
s t d  : :  v e c t o r  < F e a t u r e >  f e a t  u r e . i  m a g e  ;

b o o s t  : : m u 11 i _a r  r a y  < T  r a  n si'n r in a t  i o  n ,2 >  t r a  n s i o  r in a t  io n _s p a c e  ;
/ • / t o  i n d e x  t h e  t r a n s f o r m  s p a c e
t y p e d e f  b o o s t  : :  m u l t i - a r r a y  < T r  an  sf o r  m a t  ion  , 2 > : : i n d e x  i d x . t s  ;

/ / s i z e  o f  t h e  i m a g e  s p a c e  d e p e n d s  o n  t h e  i m a g e  m o d e l  s i z e  and 
/ / t h e  t r a n s f o r m a t i o n  s p a c e .
b o o s t  : :  m u l t i - a r r a y  < s t d  : :  v e c t o r  < T r a n » f  o r  m a t  i o n  * > , 2 >  i m a g e . s p a c e ;

s t d  : :  v e c t o r  < T r a n s f o r  m a t i o n  * > : :  i t e r a t o r  t r a n s f . i t  ;
/ / t o  i n d e x  t h e  i m a g e  s p a c e
t y p e d e f  b o o s t  : :  m u It  i . a r r a y  < s t  d ::  v e c t o r  < T r a n s f o r m a t  io n * > , 2 > : : i n d e x  i d x . i s ;
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};

t y p e d e f  b o o s t  : :  s h a r  e d . p t  r <  s t e n c i l . t r a c k i n g  >  s t e n c i l . t r a c k i n g . p t r  ; 

# e  n d i f

The stencil_tracking.ee file:
/ * *

* A m i n i m a l i s t  c o d e  t o  h e l p  u n d e r s t a n d  t h e  e s s e n t i a l
* e l e m e n t s  o f  s t e n c i l  t r a c k i n g .

. *
* T i me —s t a m p  : < 0 5 / 1 0 / 1 9  2 1 : 0 6 : 1 1  e ngmb>
* C o p y r i g h t  (C)  2005 by  Manue l  B o i s s e n i n

* ® a u t h o r  Man u e l  B o i s s e n i n
* © d a t e  1 7 / 0 1 / 2 0 0 5
*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /  
# i f n d e f  NDEBUG
# i n c l u d e  < b o o s t  /  m ul t  i . a r r  a y  . h p p >
# e  n d i f
# i n c l u d e  < u t i l i t y >
#  i n c 1 u d e " s t e n c i l . t r a c k i n g . h 11

# i f n d e f  NDEBUG 
u s i n g  n a m e s p a c e  b o o s t ;

# e n d  if

•  t e s c i l . t r a c k i n g : :  s t e n c i l .  t r a c k i n g  ( c o n s t  s t d : :  v e c t o r  < F e a t u r e >  & f e a t u r e _ i m a g e ,
i n t  m o d e l . w i d t h ,  i n t  m o d e l . h e i g h t  ,
i n t  x . m i n  , i n t  x . m a x  , i n t  x . s u b  ,
i n t  y . m i n  , i n t  y . m a x  , i n t  y . s u b ) :

m o d e l  _w i d t  h ( m o  d e l .  w i d t h )  , 
m o d e l . h e i g h t  ( m o d e l . h e i g h t  ) , 
x . s  ub  ( x . s  ub  ) , y . s u b  ( y . s u b  ) , 
f e a  t  u r e _ i m a g e ( t e a t  u r e . i  m a g e  ) ,
t r a n s f o r m a t i o n _ s p a c e ( b o o s t  : :  e x t e n t s  [ x . s u b ]  [ y . s u b ] )  ,
i m a g e . s p a c e ( b o o s t  : :  e x t e n t s  [ m o d e l . w i d t h  +  ( x . m a x  — x . m i n )  ] [ mo  d e l . h  ei g h t +  ( y . m a x y . m i n  ) ])

f l o a t  x . s i z e  =  f l o a t  ( x . m a x  — x . m i n ) /  x . s u b ;  
f l o a t  y . s i z e  =  f l o a t  ( y . m a x  — y . m i n ) /  y . s u b ;

/ / F i l l  t h e  t r a n s f o r m a t i o n  s p a c e  w i t h  i t s  v a l u e s  . 
f o r  ( i d x . t s  x =  0; x <  x . s u b ;  x + + )  

f o r ( i d x _ t s  y =  0;  y <  y . s u b ;  y + + )

{
s t d  : : v e c t o r < I n t e r v a l >  t m p . i n t e r v ;
t m p . i n t e r v  . p u s h . b a c k  (  I n t e r v a l  ( x . m i n  +  x * x . s i z e ,  x . m i n  +  (1 +  x ) *  x . s i z e  ) )  ;
t m p . i n t e r v  . p u s h . b a c k  ( I n t e r v a l  ( y . m i n  +  y * y . s i z e ,  y . m i n  +  (1 + y )*  ) )  ;

T r a n s f o r m a t i o n  t m p . t r a n s f ;  
t m p . t r a n s f  . i n t e r v a l s  =  t m p . i n t e r v ;

t r a n  sf  o r  m a t  io n . s p  a c e  [ x ] [ y ] =  t m p . t r a n s f ;

}

n u m b e r  _o f _f e a  t u r e s  =  f e a t u r e . i m a g e  , s i z e  ()  ;

}

/*
P s e u d o —c o de

f i I 1 _i m a g e . s p a c e  ( ) 

{

196



APPENDIX E. TRACKING SOURCE CODE

f o r  e a c h  t r a n s f o r m a t i o n
f o r  e a c h  f e a t u r e  o f  t h e  i m a g e  c o r r e s p o n d i n g  t o  t h e  t r a n s f o r m a t i o n  {

c a l c u l a t e  l o c u s  o f  p o i n t  a c c o r d i n g  t o  t h e  s u b —t r a n s f o r m e d  s p a c e ;  
ad d  t r a n s f o r m a t i o n  r e f e r e n c e  t o  t h i s  l o c u s  t o  t h e  i m a g e . s p a c e  a r r a y ;

}
}

t h i s  f u n c t i o n  i s n ’ t  c a l l e d  by t h e  c o n s t r u c t o r  i n  t h e  ho p e  l a t e r  t o  s e r i a l i z e  t h e  
t r a c k e r  ( i t  c an  be  v e r y  l o n g  t o  c a l c u l a t e  t h e  d a t a  s t r u c t u r e  e s p e c i a l l y  f o r  h i g h  
d i m e n s i o n a l  s p a c e s )

* /

v o i d  s t e n c i l . t r a c k i n g  : :  f i l l . i m a g e _ s p a c e ( v o i d ) {
#  i f n d e f NDEBUG 

u n s i g n e d  n =  0;
# e  n d i f

f o r ( i d x _ t s  x =  0;  x <  x . s u b ;  x + + )  
f o r  ( i d x . t s  y =  0;  y <  y . s u b ;  y + + ) {

T r a n s f o r m a t i o n  * t m p _ t r a . n s f  =  &'t r a n  s f  o r  m a t  i o n . s p  a c e  [ x ] [ y  ] ;

s t d  : : s e t < F e a t  u r e ,  l t f e a t u r e >  x . t r a n s . l o c u s ;
f o r ( i n t  x =  i n t ( t  m p . t r a n s f  —>  i n t e r v a l s  [ 0 ] .  l o w e r  . b o u n d  );  

x < =  t  m p . t  r a n s f  —>  i n t  e r  v a 1 s [ 0 ] . u p p e r . b o u n d  ; x + + )

{
f o r  ( s t d  : : v e c t o r < F e a t u r e  > : :  c o n s t . i t e r a t o r  f e a t . i t  =  f e a t u r e . i m a g e  . b e g i n  ( ) ; 

f e a t . i t  != f e a  t u r e . i  m a g e  . e nd  ( ) ; f e a t _ i t + + )

{
F e a t u r e  t m p . f  e a t u r e ( 2  ) ; 
t  m p . f e a t u r e ( 0 )  =  ( * f e a t _ i t  ) ( 0 )  4- x;  
t m p . f e a t u r e ( l )  =  (* f e a t . i t  ) ( 1 ) ;  
x . t r a n s . l o c u s .  i n s e r t  ( t  m p . f  e a  t  u r e  ) ;

}
}

s t d : : s e t < F e a t u r e ,  ] t f e a t u r e >  x y  -  t r a n s - l o c u s ;  
f o r  ( i n t  y =  i n t  ( t m p . t r a n s f  —>  i n t e r v a l s  [ 1 ] .  l o w e r - b o u n d  ) ;  

y < =  t m p . t r a n s f  —> i n t e r v  a l  s [ 1 ] .  u p p e r . b o u n d  ; y + + )

{
f o r (  s t d : : s e t < F e a t u r e ,  I t f e a t u r e  > : :  c o n s t ,  i t e r a t o r  f e a t . i t  =  

x . t r a n s . l o c u s . b e g i n ( ) ;  
f e a t . i t  != x . t r a n s . l o c u s ' . . e n d  ( )  ; f e a t . i t + + )

' {
F e a t u r e  t m p . f e a t u r e ( 2  ) ; 
t m p . f e a t u r e ( O )  =  (* f e a t . i t  ) ( 0 ) ;  
t  m p . f  e a t  u r e  ( 1) =  (* f e a t  _i t  ) ( 1)  +  y ;  
x y . t r a n s . l o c u s  . i n s e r t  ( t m p . f e a t u r e ) ;

}
}

/ / f i l l  t h e  i m a ge  s p a c e  w i t h  t h e  p o i n t e r  t o  t h e  t r a n s f o r m a t i o n
f o r (  s t d : :  s e t  < F e a t  u r e ,  I t f e a t u r e  > : :  c o n s t . i t e r a t o r  f e a t . i t  =  x y . t r  a n  s . I o c  u s  . b e g i n  ( )  ; 

f e a t . i t  != x y . t r a n s . l o c  u s  . e n d  ( ) ; 
f e a t . i t  H—1-)

{
/ / t r a n s f o r m  b a c k  t o  t o p  l e f t  c o o r d i n a t e  s y s t e m  
i n t  x =  (* f e a t  _i t  ) ( 0)  +  i m a g e . s p a c e  . s h a p e  ( )  [0] /  2 ; 
i n t  y =  i m a g e . s p a c e . s h a p e ( ) [ l ] / 2  — ( * f e a t _ i t  ) ( 1 ) ;

/ / N o t  t o  add t w i c e  t h e  s ame  t r a n s f o r m  i f  
/ / t h e  s ame  sub —t r a n s f o r m a t i o n  b r i n g  t wo  p o i n t s  
/ / t o  t h e  s ame  p l a c e

i f  ( (  i m a g e . s p a c e  [ x ]  [y ] .  e m p t y  ( ) )  | |  ( i m a g e . s p a c e  [ x ]  [v ]■ b a ck  ( )  ! =  t m p . t r a n s f ) )

{
i m a g e . s p a c e  [x ] [y  ] . p u s h  . b a c k  ( t m p . t r a n s f  ) ;

}
}
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}

}
T r a n s f o r m a t i o n  s t e n c i l . t r a c k i n g  : :  t r a c k ( s t d  : :  v e c t o r < F e a t u r e >  ^ f e a t u r e s )

{
/ / r e i n i t i a l i z e  t h e  n u mb e r  o f  v o t e
f o r  ( u n s i g n e d  i n t  n =  0; n <  t r a n s f o r m a t  i o n . s p a c e  . m i m . e l e m e n t s  ( )  ; n ++ )

t r a n s f o r r a a t i o n . s p a c e . d a t a ( ) [ n ] . v o t e s  =  0;

f o r  ( s t d  : : v e c t o r < F r a t u r e  > : :  c o n s t . i t e r a t o r  f e a t u r e . i t  =  f e a t u r e s  . b e g i n  ( )  ; 
f e a t u r e . i t  != f e a  t u r e s  . end  ( ) ; f e a t u r e . i t + + )

{
F e a t u r e  t e mp  ( 2 ) ;
t e m p ( 0 )  =  (* f e a t . u r e . i t  ) ( 0 )  +  i m a g e . s p a c e  . s h a p e  ( ) [ 0 ] /  2 ; 
t e m p  ( 1) =  i m a g e . s p a c e  . s h a p e ( ) [ l ] / 2  — (♦ f e a t u r e . i t  ) ( 1 ) ;

f o r  ( t r a n s f . i t  =  i m a g e . s p a c e  [ t e mp  ( 0 ) ]  [ t e mp  ( 1 )] , b e g i n  ( )  ; 
t r a n s f . i t  != i m a g e . s p a c e  [ t e m p  ( 0 ) ]  [ t e m p  ( 1 ) ]  . end  ( )  ; 
t r a n s f . i t  H—|-)

(* t r a n s f . i t  )—>  v o t e s  + + ;

}

T r a n s f o r m a t i o n  m a x . e l e m e n t  =  * (  s t d  ; : m a x . e l e m e n t  ( t r a n s f o r  m a t i o n . s p a c e  . d a t a  ( )  ,
t r a n s f o r m a t i o n . s p a c e  . d a t  a () +  
t r a n s f o r m a t i o n . s p a c e  . n u m _ e l e m e n t s ( )  , 
l t t r a n s f ( ) ) ) ;

r e t u r n  m a x . e l e m e n t ;

}

Part of the main file. The whole implementation is provided with the Mimas exam­

ples in the tracking/stenciljuinimalist repertory.
i n t  m a i n ( i n t  a r g c  , c h a r * *  a r g v )

{
i n t  r e t V a l  =  0; 
t r y  {

g ! u t l n i t (  & a r g c , a r g v  );  
x 1 1 _d i s p 1 ay  d i s p  ;
i m a g e . m e s a o u  t p u t  < u  n s ig ne d  c h a r  >  d i s p l a y  ( & d i s p  ) ;

/ / b e g i n  l o a d  p a r a m e t r e s

s t r i n g  m o d e l . i m a g e  =  a r g v  [ 1 1 ] ;  
s t r i n g  b a s e . n a m e . i  m a g e  =  a r g v  [ 1 2 ] ;

i m a g e < u n s i g n e d  c h a r >  c u r r e n t . i m a g e  ;

mi mas  : :  hf  ::  i m a g e . l  o a d e i  < u n s  ig n e d  c h a r >  i m . l d  ( c u r r e n t . i m a g e  ,
m i m a s : :  h f : :  i m a g e _ l o a d e r < u n s i g n e d  c h a r  > : :  s e t  ( b a s e . n a m e . i m a g e  , 4  i " ■ PSra " > 0 >299 ) ) ;  
i n t  t h r e s h o l d  =  a t o i ( a r g v [ 1 3 ] ) ;

i n t  m o d e l . w i d t h  =  a t o i  ( a r g v  [ 1 ] )  ; 
i n t  m o d e l . h e i g h t  =  a t  o i ( a r g v  [ 2 ] ) ; 
i n t  c e n t e r - x  =  a t o i ( a r g v  [ 3 ] ) ;  
i n t  c e n t e r . y  =  a t o i ( a r g v [ 4 ] ) ;

o b j e c t . p o s i t i o n  c u r r e n t . p o s i t i o n  
c u r r e n t . p o s i t i o n . x  =  c e n t e r - x ;  
c u r r e n t . p o s i t i o n .  y =  c e n t e r . y ;

i n t  x . m  in =  a t o i ( a r g v  [ 5 ] ) ;
i n t  x . m a x  =  a t o i ( a r g v [ 6 ] ) ;
i n t  x . s u b  =  a t o i ( a r g v [ 7 ] ) ;

i n t  y . m i n  =  a t o i ( a r g v [ 8 ] ) ;
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i n t  y . m a x  =  a t o i  ( a r g v  [9]  ) ; 
i n t  y . s u b  =  a t o i ( a r g v [ 1 0 ] ) ;

s t d  : : v e c t o r <  F e a t u r e  >  mode!  =  c r e a t e . m o d e !  ( m o d e l . w i d t h  , m o d e l . h e i g h t  ,
c e n t e r . x  , c e n t e r . y  , m o d e l . i m a g e  , t h r e s h o l d ) ;

# i f n d e f  NDEBUG
d i s p 1 a y  _f e a  t  u r e s ( model  , & d i s p ) ;

# e  n d i f
/ / t h e  c l a s s  c an  t r e a t  more  c o m p l e x  mode l  ( s t a c k  o f  i m a g e s ) .

s t e n c i l . t r a c k i n g  t r a c k e r  ( m o d e l ,  m o d e l ,  w i d t h ,  m o d e l . h e i g h t ,  
x . m i n  , x . m a x  , x . s u b  , 
y . m i n  , y . m a x  , y . s u b  );

t r a c k e r ,  f i l l - i m a g e .  s p a c e  ( ) ;

w h i l e  ( t r u e  )

{
i m . l d  . n e x t  ( ) ;
s t d  : : v e c t o r <  F e a t u r e  >  c e n t e r e d - f e a t u r e s  =  
g e t . f e a t  u r e s  ( m o d e l . w i d t h  +  x . m a x  — x . m i n  , 

m o d e l . h e i g h t  . +  y . m a x  — y . m i n ,  
c u r r e n t . p o s i t i o n  . x ,  c u r r e n t . p o s i t i o n  . y , 
c u r r e n t . i m a g e  , t h r e s h o l d  );

#  i f n d e f NDEBUG
d i s p l a y ,  f e a t  u r e  s ( c e  n t e r e d . f e a t  u r e s  , S i d i s p ) ;

# e  n d i f

T r a n s f o r m a t i o n  r e s u l t  =  t r a c k e r  . t r a c k  ( c e n  t e r e d . f e a t  u r e s  ) ;
f l o a t  p e r c e n t a g e  =  f l o a t  ( r e s u l t ,  v o t e s )  /  t r a c k e r ,  n u m b e r . o f . f e a t u r e s ;

# i f n d e f  NDEBUG
c e r r  « "  I nd i c a t  o r  of s u c c e s s  i s  " « p e r c e n t a g e « e n d l  ;

# e  n d i f

c u r r e n t . p o s i t i o n  . x  + =
( i n t  ) ( (  r e s u l t  . i n t e r v a l s  [ 0 ] .  l o w e r  . b o u n d  +  
r e s u l t ,  i n t e r v a l s  [ 0 ] .  u p p e r  . b o u n d )  /  2 . 0  ) ;

c u r r e n t . p o s i t i o n  . y  + =
( i n t ) (  ( r e s u l t  . i n t e r v a l s  [ 1 ] . l o w e r . b o u n d  +  
r e s u l t ,  i n t e r v a l s  [ 1 ] . u p p e r . b o u n d )  /  2 . 0  ) ;

c u r  r e n t  . i m a g e  . s e t P i x e l  ( c u r r e n t . p o s i t i o n  . x ,  c u r r e n t . p o s i t i o n  . y  , 2 5 5 ) ;
d i s p l a y  «  c u r r e n t . i m a g e  ;

}
} c a t c h  ( e x c e p t i o n  See )

{
c e r r  «  "An e x c e p t i o n  o c c u r r e d :  “ «  e . w h a t ( )  «  e n d  I;
r e t V a l  =  1;

}
r e t  u r  n r e t  V a l ;

}
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Abstract -  A novel approach for the analysis o f shape is 
proposed. A shape is hither considered to be a set of points. 
The idea consists in analysing a shape relatively to the set 
o f transformations the shape can undergo. The set of trans­
formation is also referred as state space. From this analysis 
it is concluded that some points contribute more informa­
tion about the shape than others. A framework to define 
and quantify the information contributed by set o f points is 
developed in here. By doing so, it is then possible to deci­
mate a set ofpoints to obtain a reduced template of a shape. 
The proposed method has positive consequences for track­
ing and recognition algorithms.

I Locating a shape on an image
The information implicitly contributed by a shape might 

be defined according to the point configurations that are 
needed to determine its characteristics (e.g. position and 
scale).

By identifying a subset of points of a shape that charac­
terises a shape, an algorithm to locate and track an object 
can be optimised to reduce the memory usage and improve 
their speed performances. We focus on quantifying the in­
formation contributed from the relative position of uniden­
tifiable points, extracted with an edge detector for instance, 
and the state space under consideration.

While studying this problem the following questions 
arise: for a given set of points what criteria can be used 
to determine a subset of points that uniquely characterises 
the shape? Given a set of points, is it possible to quantify 
the likelihood of the position of a shape that matches im­
age points? In other words, given a set of image points, is 
it possible to evaluate the probability density function (pdf) 
of the shape state? Can points extracted from an image be 
determined to be part of a random set of points or of a given 
shape? Is it possible to quantify the information contributed 
by individual points to a set of points?

In order to answer these questions the following notation 
are used:

• the shape S  which is a set of points,

• the transformation space T, or state'space, is another 
set representing the possible transformation that the 
shape can undergo.

• pi G I, i = 1. . .  n, is a set of n  points belonging to the 
image I c R 2

Considering a set of points in the image space, we quan­
tify the transformations that are compatible with putting 
into correspondance points from the shape with points of 
the image. The smaller this set of transformations is, the 
more information the set of point is contributing to the 
knowledge of the shape state. Formally, we consider the 
set {£|Vpi G J, 3sj G s C S, t(sj) = p i , t € T }

This shift in perspective that consists in considering the 
transformation space is the classical one that is used by 
Hough transform [2] [4] [3] related algorithms. A point on 
the image space is selected and according to the transfor­
mation space and the shape under consideration all possible 
transformations that are compatible with bringing a point 
of the shape in correspondence with the image point get a 
vote. After considering a certain number of points in the 
image space, the transformations getting almost the same 
number of votes are transformations that bring the points 
of S  in correspondence with almost all the point of the im­
age that were considered. With additional considerations 
we propose the following definition:

Definition 1 Let T  be the transformation space, Bs(p) a 
sphere o f the same dimension than T, o f radius 8 and of 
centre'p. P  a set ofpoints o f the image, S  the set ofpoints of 
the shape, C (P ) the set o f transformations compatible with 
the points o f the image. We define the quantity o f transfor­
mations Q(P) contained in C (P ) as:

C{P)  := {£ G T|card(£(S) flP) =  card(P)}

Qj(P)  := min card({B^(p)\p £ T , 8  G R,'B*(p)nC(P) =4 0})
(1)

A set of points P  is said to uniquely characterises a shape 
transformation relative to a transformation space T  and with 
an error 8 if Q j  (P) is equal to 1.

We now consider a set of points S  extracted from a shape 
and we consider that T  is bounded. The following quanti­
fies the information contributed by a set of points of a shape 
relative to a transformation space T  and an accuracy of 8.

Zf  (s ) :=  SUP QJ(Ks )) (2)
t£T

201

http://www.shu.ac.uk/mmvl


The number of configurations to consider becomes huge 
very quickly: for k  point configurations out of n  points 
of the shape the number of cases to consider is (£), even 
though, possibly, only a small set of points are sufficient to 
represent the object and therefore k  should be small, this 
may be quite large. Monte Carlo methods and genetic al­
gorithms are good candidates to find configurations that are 
close to optimal. Implementation details to evaluate T{S) 
are given in the following section.

II Evaluation of the quantity of information con­
tributed by a set of points

A methodology to evaluate the quantity of information 
contributed by a set of points P  from an image is now dis­
cussed.

A bounded transformation space T  is divided into small 
hypercubes h £ H  such that H  is a partition of T. We note 
t(S) := {£(s)|s £ 5"}. A is a 2-D array of the size of the 
image, ai j  are the elements of A and correspond to the 
points overlapped by the pixel on line i and column j  noted 
Ii,j-

For each set of points h £ H  and for each t £ h, t{S) 
is evaluated and a reference to h is stored in a ij  whenever 
I i j  n t{S) 7̂  0. This operation is not completely trivial 
to implement and needs some approximation to be done 
in a reasonable amount of time, however time is not crit­
ical since these operations can be done offline. Once this 
is done, d ij  contains the references to the hypercubes that 
contain the transformations that shift a point of the shape to 
the corresponding pixel I i j .  We note A* •, k =  l..nre/  the 
hypercubes referenced in aij.

It is now shown that the number of references nref  that 
is contained by aitj  is equal to f Q j { I i j )  with a < f  < b 
where (a, b, f ) £ R3, a and b are two constants that depends 
on the size of the hypercubes and the error sphere.

All hypercubes are assumed to have the same size but the 
demonstration holds with hyper-volumes of different size. 
One just has to consider the extremal cases. If the minimal 
number of spheres needed to cover one hypercube is m then 
at worst the minimal number of spheres to cover all hyper­
cubes would be m  • nref  thus Qj{I i j )  < m  • nref.  If a 
sphere can intersect at most p hypercubes then we need at 
least spheres to cover all transformations that are in 
the hypercubes and thus — < Q j  {Iij).

Lemma 1 3{a, b) £  R^2, such that a • Qj{Ii  j) < n ref  <

The most unfavourable case being when a set of transfor­
mations, that can be covered by a unique sphere, lie on the 
interface of multiple hypercubes. If the dimension of the 
transformation space is n, the number of hypercubes that 
cover the set of transformation can be as high as 2n. As a 
consequence, in practise, not only must nre/  be considered 
but also if the hypercubes are contiguous or not.

Therefore, it is possible to have an evaluation of the quan­
tity of the transformations compatible with a set of points P  
by considering:

• eF(P)~card( 0 * i j )  ®
k ,

i J l h j e P

and as a consequence the quantity of information of a subset 
of points S'  of a shape can be estimated by:

i f  {S') ~  sup card( P | h%j) (4)
t e T  k,

)^0

which is much more computationally expensive to evaluate. 
In order to reduce computation it is suggested that sampling 
the transformation space might give a good approximation: 
by selecting a few transformations from each hypercube for 
instance. Proofs, experiments and more theoretical studies 
remain open to research.

Ill Conclusion
We proposed a measure to quantify the information con­

tributed by a subset of point of a shape. By shape we refer to 
any set of points associated to a transformation space. We 
then proposed an algorithm to evaluate this measure. The 
algorithm allows to identify subsets of points of a shape 
that characterise uniquely its state for a given transforma­
tion space (perspective transformations for instance). The 
technique has been successfully combined with a tracking 
algorithm that uses decimated template with significant im­
provement for its speed (by a factor of 6000 in a specific 
instance) and memory usage. For reason of space, results 
can not be developed here.

It has been argued that high curvature points [5][1] con­
veys more information on a shape than other points. The 
presented framework, that takes into account the state space 
of a shape, provides a way to quantify this.
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