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Abstract

Results are presented from molecular dynamics simulations of binary liquid crystal mix­

tures using a generalisation of a well established Gay-Berne intermolecular potential. The 

simulations are undertaken in both the microcanonical (N V E ) and the isoenthalpic-isobaric 

(N P H ) ensembles.

Firstly a 50:50 mixed system is simulated in the N V E  ensemble containing gen­

eralised Gay-Berne (GGB) rod-like molecules with length to breadth axial ratios of 3.5:1 

(molecules A) and 3:1 (molecules B).  The molecules in this system differs only slightly from 

the well-characterised Gay-Berne (GB) potential with length to breadth ratio of 3:1. It 

is shown that the system exhibits isotropic (/) , nematic (N ) and smectic-B (S m B ) phases 

with both the I - N  and N - S m B  phase boundaries not clearly defined. Competition between 

two density waves parallel to the director of the same wavelength but different phase lead 

to a pre-smectic ordering preceding the N -Sm B  phase transition. The longer molecules are 

shown to have a consistently higher order parameter the difference being greatest in the 

nematic phase and decrease with lowering temperature. Although a degree of local ordering 

is shown within each smectic layer the smectic phase is fully commensurate.

Secondly, phase behaviour diagrams are presented from a series of constant-NPH  

simulations over a range of pressures and concentrations. The binary mixtures exhibit a 

rich phase behaviour, displaying isotropic, nematic, smectic-A (SmA), induced smectic-A 

and smectic-B phases depending on the choice of pressure and concentration. It is shown 

that the temperature range over which the nematic phase is stable can be extended greater 

than either homogeneous system by elevating the system pressure and /or by choice of 

concentration, agreeing with experimental results. The mixture exhibits a stable SmA  

island at a mole fraction of x a  = 0-50 depending on the choice of pressure and a narrow 

induced SmA  phase at x a  — 0.25.
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Chapter 1

Introduction

1.1 A brief history

In a novel by Edgar Allan Poe [1], written in 1838, the first description of an 

anisotropic fluid arguably appears [2]. It was some 15 years later until the first scientific 

discovery of their existence was reported by R. Virchow [3]. During the examination of the 

outer covering of nerve fibres under polarised light, Virchow noted tha t the samples showed 

patterns which were typical of solids but which clearly were not.

One of the dominant figures in the early research was O. Lehmann. In 1889 he 

noted tha t some substances do not crystallise from clear liquids, rather they change first to 

an amorphous form [4]. Several chemists (P. Planar [5], O. Lobisch [6] and B. Raymann [7]) 

reported that cholesteric esters produce iridescent colours when cooled. However, the credit 

for discovering liquid crystals is usually given to F. Reinitzner [8]. In 1888, he reported

1



CHAPTER 1. INTRODUCTION

that cholesterol has two melting points; at 145.5°C (cloudy liquid) and at 178.5°C (clear). 

Lehmann performed a series of experiments with samples provided by Reinitzner. Finally, 

Reinitzner was convinced that these samples displayed intermediate phases (or mesogenic 

phases1) and invented the term liquid crystals.

The unique properties of mesogenic materials have been exploited in many devices, 

noticeably in condensed m atter systems such as display systems. A lot of progress has been 

made in understanding the properties of liquid crystals but many outstanding properties 

are still not fully understood.

1.2 Classification of liquid crystals

Mesogenic materials can be classified in two distinct categories; disordered crys­

tal mesophases and ordered fluid mesophases. Disordered crystal mesophases have their 

constituent molecules fixed at lattice sites, preventing translation, but have orientational 

freedom. These mesophases are termed plastic crystals as they are easily deformed under 

stress. Ordered fluid mesophases exhibit long range orientational order w ith or without 

some long range translational order and, hence, are termed liquid crystals. They are con­

ventionally classified in two categories; thermotropic and lyotropic liquid crystals. Ther­

motropic materials form mesophases upon variation in temperature, whereas lyotropic do 

so by changes in concentration. Friedel [9] was the first to propose the mesophasic classes

of nematic, cholesteric and smectic by their inherent symmetry (Figure 1.1). For example, 

derived  from mesomorphic meaning intermediate
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Figure 1.1: Schematics of some calamitic and discotic liquid crystals: a) crystal, b) nematic, 
c) isotropic, d) smectic-A, e) smectic-5, f) smectic-C, g) cholesteric, h) discotic columnar 
and i) discotic nematic [10 , 11].

nematics and smectics consist of molecules which are mutually oriented along some pre­

ferred direction (or director) but differ regarding translational order among the molecular 

centres of mass; nematics have no long range translational order (Figure 1.1b), whereas, 

smectics (Figure l . ld - f )  possess quasi-long ranged layer ordering. Numerous classifications 

of smectics exist depending upon the degree of ordering within the layers, i.e. translational, 

orientational and tilt (see, for example, Chandrasekhar [10] and Luckhurst and Gray [11]).

Early investigations of Lehmann [4] and others [12] originated the principle tha t 

molecules had to be rod-like in shape (calamitic liquid crystals) in order to form mesophases.
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In the late 1970’s, Chandrasekhar [13] and coworkers (see [14] for review), showed tha t disk­

like molecules (or discotic liquid crystals) may also exhibit mesophases, e.g. discotic nematic 

(Figure l .li)  and discotic columnar (Figure l .lh ) . Interest in discotic liquid crystals has 

grown since the discovery that derivatives of benzene and triphenylene form mesophases 

which possess unique properties which can be utilised in a variety of applications such as; 

low power display devices, optical data storage and molecular wires.

1.3 M ixtures of Liquid Crystals

It is far from hard to conceive that the combination of two or more molecules of 

varying chemical composition, geometric size and shape opens up the possibility of novel 

phases not attainable in either pure systems. Scientists with interests in liquid crystals 

have long since exploited this phenomenon and readily developed novel mesophases from 

the combination of two or more “off the shelf’ mesogens. The use of mixtures in display 

devices is widely practised whereby, for example, the nematic can be shown to be stable 

over a wider range of temperatures thus increasing the utility of the device.

A problematic feature of mixtures is that they may not be stable. T hat is to say 

that not all components of a mixture are necessarily miscible with each other. Some systems 

will mix and others demix or phase separate into two phases if the constituent molecules 

are sufficiently unfavourable in some sense. Aggregation in other systems can be a further 

problem. Yet the physical explanation of many of these phenomena, although scientifically
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fascinating, is generally unresolved.

1.4 The Role of Computer Simulations

Computer simulations are becoming increasingly im portant, as they essentially fill 

the gap between experimental and theoretical routes as illustrated by Allen and Tildes- 

ley [15] (Figure 1.2). The first computer simulations of liquids were performed in the 

early 1950’s. This work lead to many advances in both theories of liquids and simulation 

techniques. W ithin statistical mechanics, computer simulations provide an essentially exact 

solution for the model system which would otherwise be difficult to solve or only be solvable 

via approximate methods.

1.5 Aims

The work described in this thesis relates to computer simulations performed with 

the aim of providing a greater understanding of the phase behaviour and structural prop­

erties of binary liquid crystal mixtures. Specific attention has been focused on the pressure 

and concentration dependence of a much used intermolecular potential, the Gay-Berne [16]. 

As an initial step to study the phase behaviour of a bi-disperse system, a recent gener­

alisation of the Gay-Berne intermolecular potential [17] was employed in a system where 

one molecular species differed slightly from the other. The basic param eterisation used was 

one for which there is a considerable volume of published data. This study was conducted

5
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Figure 1.2: The role of computer simulations as described by [15].

mainly to evaluate the viability of the Generalisation Gay-Berne intermolecular potential. 

Its successful evaluation would offer a viable and computational efficient route to the study 

of multicomponent and even polydisperse systems.

The studies of the pressure and concentration dependence of the phase behaviour 

and structural properties of binary liquid crystal mixtures were conducted mainly as to gain 

a greater understanding of the underlying processes taking place in a generic liquid crystal 

mixture. More explicitly, the studies aimed to construct phase diagrams resembling those 

found experimentally and, if successful in this, used to corroborate theories. An additional
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goal was to explore any properties or phases not obtainable from either pure system.

1.6 Layout of Thesis

The remaining chapters are arranged as follows. In chapter 2, a brief review of 

experimental, theoretical and simulation work is presented within the field of liquid crystal 

mixtures. Chapter 3 presents an overview of the modelling techniques used for liquid phases 

including the parameterisation of Generalised Gay-Berne intermolecular potential.

Chapters 4 and 5 contain results and analysis from computer simulation of bi- 

disperse liquid crystals with length to breadth axial ratios of 3.5 to 1 and 3 to 1. Particular 

attention is paid to the effect of concentration and pressure on phase behaviour and struc­

tural properties. Two main studies have been undertaken:

1 . (Chapter 4) A constant-NVE  molecular dynamics simulation of a bi-disperse liquid 

crystal mixture at a fixed concentration of 50:50; attem pts to evaluate the viability 

of the intermolecular potential, quantify the difference in order param eter between 

molecular species and investigate the nature of phase transitions.

2. (Chapter 5) Chapter 5 consists of two sections a) “Influence of pressure” (section 5.2) 

and b) “Influence of concentration” (section 5.3) each study comprising of a series 

of constant-NPH  molecular dynamics simulations of bi-disperse liquid crystal mix­

tures at various pressures and concentrations; attem pts to construct phase diagrams, 

qualitatively describe phase behaviour properties and identify novel phases.

7
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And finally, chapter 6 summarises the key conclusions and makes suggestions for 

future work.
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Chapter 2

Literature review

In this chapter, a brief review of experimental, theoretical and simulation work is 

presented within the field of liquid crystal mixtures.

2.1 Experimental

Over the last two decades, liquid crystal mixtures containing a variety of chemical 

compositions, molecular shapes and sizes have demonstrated many rich phase diagrams and 

novel mesophases. Reentrant phenomena in liquid crystal mixtures, generally associated 

with weakly stable smectic phases, have been reported in many polar rod-like systems. 

Cladis [18] (1975) reported the first such reentrant phenomenon in mixtures of two cyano 

compounds. Subsequently, Cladis et al [19] reported reentrance in a pure compound at 

elevated pressures. In 1979, the first observation of a transition between two smectic-A 

phases was made by Sigaud et al [20]. A year later, Yu and Saupe [21] presented the first

9
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conclusive evidence of a biaxial phase in a mixture of rod-like and disk-like molecules.

Multiplexed twisted nematic displays requiring fast electro-optic characteristics 

can be achieved using hybrid liquid crystal mixtures of terminally cyano-substituted ne- 

matogens and non-polar nematogens [22]. These hybrid mixtures possess the required low 

bend to splay elastic constant ratio, k ^ / k \ \ .  Increasing the alkyl chain length can further 

reduce this ratio but often results in the introduction of an injected smectic phase [23, 24]. 

Gruler [25] postulated that the temperature dependencies of the elastic constants can be a t­

tributed to the change in local ordering of the nematic. The four nematic regions described 

are;

1. pre-transitional isotropic ordering,

2 . nematic without any local positional ordering,

3. pre-transitional nematic ordering (increase in k n  and £33) and

4. smectic-like local ordering (increase in k n  and decrease in £33).

Bradshaw and Raynes [26, 27, 28] measured the elastic constants of various hybrid mixtures 

and successfully identified the latter two ordering phenomena. In particular, the isotropic- 

nematic transition temperature varied linearly with mole fraction across the phase diagram 

for the mixture composed of BDH eutectic mixture E l (terminally cyano-substituted ne­

matogens) and a p-dialkyl nematic mixture (non-polar end group nematogen) i.e. a four 

component system. W ithin the pre-transitional ordering region, the smectic layers cannot

10
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support bend deformation and thus the increase in £33 is attributed to short-lived pseudo 

layers which oppose such deformation. In contrast the increase in k n  is related to the 

smectic layer compression elastic constant. The results reveal a strong correlation between 

^11/^33 and smectic-like ordering. Furthermore, they substantiate the theory of van der 

Meer et al [29] which predicts a correlation between k n /k z z  and the mean square molecular 

displacement.

Lydon and Coakley [30] investigated the miscibility of 8CB and ODOBAF via X- 

ray diffraction. They found that the smectic layer spacing thickness varies smoothly across 

the compositional range, in spite of the difference in molecular lengths and the two different 

pure smectic phase structures. The resulting smectic layers were found to adhere to one of 

several different symmetries; segregated into domains several layers think, randomly mixed 

within each layer or one out of a range of intermediate possibilities.

TEM PERATURE

iso

*S,100

tso<t
ODOBAF

10 40 SO 00 70 10 to

C O M PO S IT IO N , b y  w t .

Figure 2.1: Phase diagram for binary mixture of 8O C B  and O D O B A F  [30].
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Shashidhar and co-workers [31, 32, 33] investigated a binary mixture of the polar 

molecules DB8ONO2 and DBIOONO2 . They reported a rich phase diagram with no less 

than 3 reentrant nematics, 2 reentrant smectic phases and a smectic-A-reentrant nematic- 

reentrant smectic-A(re) tricritical point. At a mole fraction of 55%, the phase diagram in 

Figure 2.2 reveals 11 phase transitions. A great deal of interest still surrounds the extremely

—o-220
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^  160
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140

120

100

80

20 40 600 80 100
X(mol •/•)

Figure 2 .2 : Phase diagram for binary mixture of DB8NO2 and DBIONO2 [31].

rich phase diagram of polar liquid crystal mixtures. A recent paper by Nounesis et al [34] 

shows evidence of a first-order transition between two nematic phases in the vicinity of the 

smectic-A-smectic-A(re) phase boundary. The understanding of this rich phase behaviour 

has largely been based on phenomenological models of frustrated smectics in which there is

12
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a competition between smectic layer thickness and molecular lengths.

The reentrant phenomena in polar smectic liquid crystals are well established. In 

recent years, the possibility of an isolated reentrant nematic region (or a “nematic island”) 

near a smectic-smectic critical point has been reported experimentally by Hardouin et al [35] 

and Pfeiffer et al [36, 37] in mixtures of lOOPCBOB and ll.O .N CS. This behaviour has 

also been predicted theoretically by Prost and Toner [38] and more recently by Sear and 

Jackson [39]. A high-resolution ‘ac calorimetric’ investigation by Wu et al [40] confirms the 

findings of the early work of Pfeiffer et al [36] and Heppke et al [41].

Heppke et al [42] investigated the effect of adding mesogenic chiral compounds 

with high twisting power to a nematic mixture RO-TN404 consisting of cyano-substituted 

pyrimidine and biphenyl derivates. The authors reported tha t an induced blue phase can 

be obtained with less than 10% of a chiral compound. Under the influence of an electric 

field, a reentrant cholesteric phase can be observed.

Prior to 1990, no paper had reported a miscibility gap (or coexistence curve) 

and consolute critical point for liquid crystal mixtures. In a paper by Sigaud et al [43], 

the severely limiting experimental conditions were given explaining the lack of such an 

observation;

1. stability of the mesophase with respect to any other phases or crystallisation,

2 . unlike mesogens with similar mesophasic temperatures and,

3. stability of the mesophase over the concentration-temperature phase diagram.

13
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Sigaud et al [43] reported the first observation of a miscibility gap and consolute critical 

point in a smectic- A phase for a mixture of unlike chemical structures rather than dissimilar 

geometrical sizes (Figure 2.3a). In common with previous work [44] the first component 

(molecule A) was a polar molecule with a layer spacing to molecule length of d/l  — 37.2/32.5. 

There are no reports of a miscibility gap in a mixture of the common non-polar liquid crystals 

with two aliphatic chains. Instead, a second non-polar molecule was chosen (molecule B) 

which has one aliphatic and one perfluoralkyl chain with d/l  = 30.4/31.0. The authors claim 

the success of the investigation relied upon two characteristics of the perfluoro component; a 

greater stiffness owing to the steric hindrance of the fluorine atoms and the incompatibility 

of the perfluoro chains with the aliphatic ones. The nematic eutectic (or negative azeotrope) 

at a mole fraction of x b  — 45% confirms tha t the unlike A B  interactions are unfavourable to 

mixing in the smectic phase. The authors regard the approximate position of the consolute 

critical point and that of the nematic eutectic not to be an accident. Rather the proximity of 

the two points is taken to be in qualitative agreement with Brochard’s theory of demixing 

in mesomorphic mixtures [45]. The result of mixing/demixing is also evident within the 

smectic layer spacing (Figure 2.36).

2.2 Theoretical

W ith a handful of exceptions, for instance the two-dimensional Ising model [46], 

there are no exact solutions for the statistical mechanics of non-trivial systems [47]. A brief
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Figure 2.3: a) Phase diagram for binary mixture of a polar molecule and non-polar molecule. 
b) Layer spacing as a function of composition at constant tem perature of slightly above 
TC [43].

review is presented of some commonly used approximations for liquid crystals.

In the late 1940s, seminal work by Onsager [48] proved tha t the isotropic-nematic 

transition can be explained in terms of excluded volume terms alone, w ithin a system of 

hard spherocylinders in the limit of infinite length to width (L /D)  ratio. Onsager focused 

on the minimisation of the Helmholtz free energy [49]. The Helmholtz free energy of a 

canonical ensemble is,

F ( N ,V ,T )  =  - k BT \ n Q N (V,T)  (2.1)

where Qn (V,T)  is the canonical partition function comprising contributions from the con-
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figuration partition functional, Z ^ (V ,T )  and de Broglie thermal wavelength, Q°(T),

Qn (V,T) = Q°(T)?-n (V ; T ) . (2.2)

Thus the Helmholtz free energy can be calculated from the difference between a reference

chemical potential, A*o, Mi, • • •) and F(N,  V,T),

A F(N,  V,T) = J V C r ./ io .m , • • •) -  N k g T l a  ( q ° ( T ) ^ ^ L L )  (2.3)

which, from an appropriate density expansion of the configurational integral, can be ex­

pressed as a virial expansion,

A W . T )  1 + lD( V \ +B2p+ A W  + - .  (2.4)
N k BT  kBT  \ N J  *r  V2 .

where B 2 and B$ are the second and third virial coefficients. Hence, the spatial correlations 

are expanded in terms of cluster integrals in which the virial terms account for effects 

of coupling within the ensemble amongst clusters of 2 ,3 ,4 , .. .  , N  particles. In the limit 

L / D  —> 00 , Onsager argued that all virial coefficients higher than the second are negligible, 

i.e. B n/ B 2”” ^  —> 0. The system is able to form the nematic through its ability to gain 

translational entropy at the expense of some orientational entropy. However, Onsager’s 

excluded volume theory is in poor agreement with the typical experimental values for order 

parameter and change in density at the transition. Despite these limitations, it remains the 

only exactly solvable model exhibiting an isotropic-nematic transition w ith full translational 

and orientational degrees of freedom.

Almost a decade later, Maier and Saupe [50] proposed an alternative theory using
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a system of classical spin vectors constrained on a cubic lattice. The system, solved by 

mean-field approximations, takes into account attractive intermolecular nearest neighbour 

interactions. Compared to the Onsager, the Maier and Saupe theory predicts a strongly first 

order isotropic-nematic transition and a nematic order param eter closer to tha t observed 

experimentally.

Experimental work of Yu and Saupe [21] substantiated the prediction of Alben [51] 

that a biaxial phase could be formed by a mixture of rod-like and disk-like nematogens. 

Recently, the Onsager theory has undergone several extensions, primarily by Lekkerkerker 

and coworkers, to incorporate mixtures of geometrically different molecules. Encouraged by 

the work of Yu and Saupe [21] and Alben [51], Stroobants and Lekkerkerker [52] extended 

the theory to solutions of cylindrically symmetrical rod-like (molecule A) and disk-like 

(molecules B)  particles showing that the mixture forms three mesophases depending on 

the concentration and composition (Figure 2.4); a uniaxial nematic (N+) within rod-rich 

mixtures, a uniaxial nematic (N - ) within disk-rich mixtures and a biaxial phase (B ). The 

phase diagram is predicted to be symmetrical around x a  =  0.5. The first-order isotropic- 

nematic transition for rod-like molecules is predicted to become weaker and move towards 

a lower density as the mole fraction of disk-like molecules is increased towards x a  — 0.5. 

The authors report tha t the free energy of the biaxial phase is lower than  tha t of the 

coexisting uniaxial phases at equivalent densities. In addition, the nematic-biaxial transition 

is predicted to be second-order.
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Figure 2.4: Predicted phase diagram for cylindrically symmetrical rod/disk-like mixture 
from Stroobants and Lekkerkerker [52] extension of Onsager theory.

From a Maier-Saupe mean-field theory of a mixture of rod-like and disk-like 

molecules interacting via an anisotropic pseudo-potential, Palffy-Muhoray et al [53] pre­

dicted the two uniaxial and one biaxial mesophases similarly to [52] (Figure 2.5a). However, 

they concluded tha t the biaxial phase is thermodynamically unstable since the correspond­

ing free energy is greater than the two coexisting uniaxial phases (Figure 2.5b) in marked 

contrast with the Onsager theory prediction of Stroobants and Lekkerkerker [52]. Similar 

mean-field work by Goetz and Hoatson [54] used a generalised pseudo-potential for biaxial
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Figure 2.5: Palffy-Muhoray et al [53] mean-field theory predicted a) phase diagram and b)  
free energy for rod/disk mixture.

molecules within rod/rod, disk/disk and rod/disk mixtures. They concluded tha t a mixture 

of slightly biaxial rod-like and disk-like molecules (whose anisotropic shapes are comparable 

to those of real mesogens) will phase separate into two uniaxial phases in preference to a 

biaxial phase, agreeing with [53]. Nevertheless, in terms of free energy, a stable biaxial 

phase is predicted for highly asymmetric rod-like and disk-like molecules.

A numerical analysis by Lekkerkerker et al [55] and an analytical Gaussian ap­

proximation by Odijk and Lekkerkerker et al [56] extended the Onsager theory to solutions 

of rod-like molecules with the same diameter but two different lengths, i.e. a bi-disperse 

system. Both sets of analysis predicted a number of salient features (Figure 2.6) for two 

different length ratios L a ! L b  = 2 and 5. For the smaller ratio;
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i) strong fractionation effect (the longer molecules preferentially enter the nematic phase),

ii) widened biphasic gap (the isotropic-nematic coexistence may be wider than tha t of a 

one component system),

iii) in the nematic phase, the long molecules are consistently more ordered than than the 

short molecules,

and for L a / L b  > 3.5,

iv) reentrant nematic phase,

v) Ni  — N 2 biphasic region which is independent of pressure (as predicted by Vroege and 

Lekkerkerker [57] and confirmed 1 by van Roij and Mulder [59] )

v) I  — N\ — N 2 triphasic region (as [58]),

and as predicted by Mulder [60] and Sluckin [61],

vi) postponement of nematic-smectic transition to higher densities arising due to a widened 

nematic phase.

In a recent paper by Vroege and Lekkerkerker [57], the nematic-nematic transition of a 

bi-disperse mixture of rigid hard rods is attributed to a balance between orientational 

entropy and entropy of mixing and not the excluded volume effect. Further Maier-Saupe- 

like and Onsager-like analysis by Sluckin [61] confirms the widening of the biphasic gap and

postponement of smectic transition to higher densities in polydisperse systems.
^ irshtein  et al [58] predicted the N \ — N 2 biphasic to be closed by a critical point which effectively 

makes the biphasic phase dependent on pressure
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Figure 2.6: Gaussian approximate (Onsager) predicted pressure (II) vs. concentration phase 
diagram [55] of bi-disperse system for L a / L b  =  2 (left) and L a / L b  =  5 (right). Dotted 
line represents the difference in mole fractions.

Sear and Jackson [39] predicted an isolated reentrant nematic (Figure 2.7) in a 

binary mixture of associating cylindrical molecules whereby an intermolecular potential 

mimics hydrogen bonding allowing a pair of molecules to dimerise end-to-end. Unlike 

experiments by Hardouin et al [35] and Pfeiffer [36], no smectic-smectic critical point is 

predicted. The reentrant nematic island is attributed to competing tendencies of smectic 

layer spacings of differing wavelengths.
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Figure 2.7: Constant pressure phase diagrams of associating cylindrical molecules [39]. 
Pressure is reduced from top to bottom diagrams.

2.3 Simulation

In the early 1980’s, Hashim et al [62] performed a Monte Carlo (MC) simulation 

of an equimolar mixture containing rod-like and disk-like molecules constrained to the sites 

of a simple cubic lattice. The molecules interacted via an anisotropic potential which was 

restricted to nearest and next nearest neighbours. From this simple model, they concluded 

that the mixture phase separated into two uniaxial phases substantiating the claims of
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Palffy-Muhoray [53] that the biaxial phase is thermodynamically unstable. A decade later, 

Hashim et al [63] re-addressed this problem. Two models were developed; in M o d e l  I 

phase separation was not allowed as the molecules were confined to the sites of a simple 

cubic lattice so that each rod-like molecule had 6 nearest neighbour disk-like molecules, 

and vice versa; in M o d e l  II particle exchanges were allowed to enable the possibility of 

phase separation. They concluded M o d e l  I demonstrated a biaxial nematic phase whereas 

M o d e l  II separated into two uniaxial nematic phases. However, the later predictions of 

Goetz and Hoatson [54], tha t a mixture of highly asymmetric rod-like and disk-like molecules 

can exhibit a stable biaxial phase, remains unresolved.

A similar lattice based simulation by Hashim et al [64] investigated the 95% solvent 

and 5% solute mixture of anisotropic molecules. The presence of the solute molecule was 

found to stabilise the nematic phase, in agreement with a molecular field approximation of 

Humphries, James and Luckhurst [65]. However the theory did over estimate the isotropic- 

nematic transition temperature by 12%.

Following the extension of the Onsager theory to bi-disperse system [52], Stroobants 

[66 , 67] used a constant-pressure MC simulation to investigate a binary mixture of hard 

parallel aligned spherocylinders beyond the nematic phase. The shorter spherocylinder was 

fixed at L \ / D  =  1, where L\  is the length of the cylindrical segment. While the longer 

spherocylinder ranged between 1.3 < L 2 / D  < 2.1 where the mole fraction was adjusted to 

maintain equal molecular volumes. For L 2ID  > 1.6 the system exhibited a thermodynam­
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ically stable columnar phase which is not present for a homogeneous system (Figure 2.8). 

The nematic-smectic transition was postponed approximately linearly by increasing L 2ID  

and was preempted by a nematic-columnar phase for L 2 / D  > 1.9.
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Figure 2.8: Phase behaviour of a binary mixture of hard parallel spherocylinders as a 
function of L 2 /D .

Computer simulations of bi-disperse systems using soft potentials have considered 

mixtures of Gay-Berne particles and Lennard-Jones sites [68]. More recently, Lukac and 

Vesely [69] have reported a brief investigation of a mixture of Gay-Berne molecules based 

on Lorentz-Berthelot mixing rules and modified well-depth exponents fi and v  (Refer to 

Chapter 3 for further details). However, it must be noted tha t this modified potential fails 

to differentiate between all of the T-configurations available to this system. Nevertheless, 

from a stable smectic phase 50% of the molecules within the simulation were converted 

to a variety of new species interacting with the modified Gay-Berne potential, and the 

effects noted thereafter. The authors reported some systems to demix and others not. No
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explanation of these occurrences was offered. However, the longer molecules were observed 

to be more ordered than the short molecules in agreement with the theoretical predictions 

of Lekkerkerker and co-workers.

Camp and Allen [70] studied a mixture of hard rod-like and disk-like molecules 

with aspect ratios of 10:1 and 1:10 respectively using a constant-pressure MC simulation. 

Two mole fractions were investigated; for Xrods = 0.5 isotropic-biaxial-nematic and for 

Xrods — 0*6 isotropic-uniaxial-nematic-biaxial-nematic phase transitions were observed. 

Comparisons were drawn between the simulation results, Onsager theory and Onsager 

theories incorporating higher virial coefficients indirectly by resummation such as the y- 

expansion-Onsager theory (Barboy) and renormalised two-particle theory (Parsons). Of 

these, the latter theory determined the most accurate prediction of the isotropic-nematic 

transition density (within 10%). However there was some evidence of demixing of the bi­

axial nematic phase at higher densities. Subsequently in a later paper, Camp et al [71] re­

addressed this phase separation problem in a mixture of hard rod-like and disk-like molecules 

using molecules with greater elongation. They concluded tha t the region of biaxial-nematic 

phase stability is very small and is limited severely by demixing into two coexisting uniaxial- 

nematic phases. To date, all theoretical phase diagrams of such systems are symmetrical 

around Xrods =: 0-5 (refer to section 2.2 and references therein). By contrast, these simula­

tions show there to be a considerable asymmetry. Bolhuis [72] (a co-author of [71]) suggests 

that this symmetry found in the theoretical predictions is an artifact due to the fact tha t
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higher virial coefficients were neglected.

26



Chapter 3

M odelling Liquid Crystals

In this chapter, an overview of the modelling techniques used for liquid phases is 

presented.

3.1 Molecular Dynamics

3.1.1 E quation  o f m otion

The microscopic state of a system can be expressed in terms of the positions q* 

and momenta p; of a constituent set of particles so that, assuming a classical description 

is adequate, the Hamiltonian % of a system of N  particles is a sum of the kinetic /C and 

potential energy V functions,

H( p,q) = /C (p)+V (q). (3.1)
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The kinetic energy JC takes the form,

K =  E E P i a / 2 m i  (3.2)
i=l a

where mi  is the molecular mass and a  represents the different (x, y , z) components of the ith 

molecular momentum. For an atomistic system, the potential energy V may be separated 

into terms depending on the coordinates,

external field pair potential three—body potential

v =  Y ^ v i ( r i )  + J 2 Y l V2(ri' r^ +  Y 1 J 2  J 2  ^3(ri,rj,rib ) +  . . .  (3.3)
i i j^ i  i j^ i  k^j^i

where J2i J2j^i  indicates a summation over unique pairs i and j  (for example, including i j  

but excluding j i ) .  In the absence of an external field, the first term, iq, becomes zero. Three- 

body terms (and above) are rarely used in computer simulations, owing to the computer

overheads of the summation, despite their sizeable potential energy contribution [73]. The

many-body effects can be partially included by replacing V2 with an effective pair potential 

which fortunately provides a remarkably good description of liquid properties.

Following Goldstein [74], it is possible to construct classical equations of motion 

in Hamiltonian, Lagrangian or Newtonian forms each of which can be used to integrate the 

time-evolution of the system and all of its mechanical properties. It is convenient to express 

equation 3.1 in the form of the Lagrangian equation of motion for generalised coordinates 

q*; and their time derivatives q^,
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Here, the Lagrangian, defined in terms of kinetic and potential energies £  =  K — V, is

assumed to be a function of 2(3N — a) +  1 independent variables,

( Q I j ^ - - -  5q3Ar-a), (Qi,Q2j • • • ,^3 N -a ) , t  (3-5)

where a  is the number of constraint equations. For a system of atoms with Cartesian 

coordinates r{ with kinetic energy of equation 3.2 and interacting via a potential energy of 

equation 3.3 the Lagrangian equation of motion (equation 3.4) becomes,

TUi v'i= fi (3.6)

where ra* is the mass of particle i and the force on tha t particle is,

f* =  V ri£  =  - V riV. (3.7)

Considering first spherical molecules, the equations of motion of equation 3.6 are 3N  cou­

pled second-ordered differential equations which, other than for a very limited number of 

molecules, cannot be solved directly. These coupled equations must therefore be solved 

numerically by finite difference methods. There are a number of finite difference methods 

available in the simulators toolbox, the Verlet algorithm [75] being the commonest choice 

(refer to section 3.1.2). The equation of motion for non-linear molecules takes a similar 

form and is discussed later 3.1.2.2.
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3.1 .2  V erlet a lgorith m

3.1.2.1 Translational motion

As described by Allen and Tildesley [15], the general scheme involves taking the 

known molecular positions at time t  and advancing them to a later time t + 8t to a sufficient 

degree of accuracy. The choice of 8t should be significantly smaller than the time taken to 

traverse its own length. The Verlet algorithm offers a direct solution to equation 3.6. The 

molecule i has coordinate at times t ±  8t given by a Taylor expansion about rj,

r i(t ±  St) = Ti(t) ±  Vi(t)St +  ^Sii(t)6t2 ±  ia i(t)< ft3 +  . . .  (3.8)

The central-difference prediction for ri(t +  St) is obtained by the summation of the two 

expressions of equation 3.8, ignoring all term greater than or equal to 0(<5t3), to give

Ti(t +  dt) = 2r i(t) -  ri(t -  St) +  a i(t)St2. (3.9)

Subtracting the two expression of equation 3.8 gives an estimate for the velocity,

V«M =  2^  M *  +  St) -  Ti{t -  tft)]. (3.10)

Despite ignoring higher terms of St and the introduction of some numerical imprecision, 

equation 3.10 is simplistic in implementation and symmetrical around rj(t), making it time- 

reversible. More accurate estimates of velocities can be obtained by using the predictor- 

corrector method at the expense of increased memory storage and complexity of the algo­

rithm  (not shown). Alternatively, many modifications to the basic Verlet scheme have been
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proposed to address these deficiencies. A common choice is the so-called half-step leap-frog 

scheme which stores the current position r *(£), acceleration a i(t) and mid-step velocities

ri(t  +  6t) =  Ti(t) +  5ta.i(t + 15t) (3.11)

Vi(t +  \dt) =  Vi(t - 18t) +  5t&i. (3.12)

The velocity equation 3.12 is implemented first such tha t the velocities leap over the posi­

tions to give the next mid-step Vi(t +  3^ )-  Subsequently, the position equation is applied

to advance the positions to r i(t +  5t) where the a i(t + 8t) are evaluated. Velocity at time t,

required to calculate the kinetic energies, can be gained from,

y z W =  ^  [vi(t +  %8t) + Vi(t -  |<ft)j . (3.13)

3.1.2.2 Rotational motion

Molecular systems typically consist of non-spherical bodies and are not rigid bodies 

in any sense. If a classical treatment is applied to modelling such molecules, as in some of 

the early simulations of Harp and Berne [76, 77, 78], the molecular bond vibrations would 

occur so rapidly that an extremely short simulation time-step 5t would be required to solve 

the equation of motion. More importantly, it is im portant to choose a time-step suitable 

for the phenomenon under investigation. A common solution to these problems is to fix the 

intramolecular bond lengths and simplify the molecule as shown, for example, in Figure 3.1. 

In classical mechanics, the translation of the centre of mass and rotation about the centre of
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Figure 3.1: Simplification process of ethylbenzene: centre) electron cloud density represen­
tation, bottom) ethylbenzene model representation [79]

mass can be regarded separately [74]. Translational motion can be handled by the manner 

of the previous section 3.1.2.1. Following Allen and Tildesley [15], the rotational motion of 

a non-linear molecular is governed by the torque T{ about the centre of mass r* which can 

be regarded as being the vector sum of all intramolecular forces acting on the molecule i,

a
(3.14)

For a linear molecule, equation 3.14 simplifies as the angular velocity and the torque must

be perpendicular to the unit vector e; along the molecule’s long axis. Thus the net torque

is

n  = ei X g i (3.15)
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where gi is determined from the intermolecular potential and for a uniaxial molecular can 

be replaced by the perpendicular component g j- such that,

gi1 =  g* -  (g» • ei)e,-. (3.16)

The rotational equation of motion can be expressed as two first-order differential 

equations [80],

e* =  u  i (3.17)

e-4-
u i =  = j-  +  Xei (3.18)

where I  is the moment of inertia, the term Ae* is a force along the bond which constrains 

it to be a unit vector and A is a Lagrangian multiplier. The molecule i has angular velocity 

Uf at times t  ±  \8 t is given by a Taylor expansion about u i(t) (refer to 3.8),

u i{t ±  \8t ) =  u i(t) ±  ^ ju i(t)8t +  i i i i ( t ) ^ 2 ±  . . .  . (3.19)

Subtraction of the two expressions of equation 3.19, ignoring all terms greater or equal to 

0(6 t3), gives

u i(t +  2^ )  =  Uj(i — 2 St) +  u  i(t)5t. (3.20)

The central-difference prediction for u i(t) is obtained by the combining equations 3.20

and 3.19 and eliminating u i(t +  \dt) to give,

u i{t) = u i(t -  \8 t) +  | u i(t)6t. (3.21)

33



CHAPTER 3. MODELLING LIQUID CRYSTALS

Inserting equation 3.18 into the above equation and taking the dot product of both sides

with ei(t) gives an equation for the Lagrange multiplier,

A6t =  -2 u i(t — \8t) • ei(t). (3.22)

Leading on from equation 3.20, the integration algorithm used to advance molecule i a full 

time-step is,

crocanonical, or constant-NVE  ensemble, as used in the simulations of Chapter 4. Although 

constant volume simulations are generally easy to implement, they do possess a number of 

disadvantages over ensembles which allow the volume and box shape to vary, for example 

the isoenthalpic-isobaric ensemble, constant-NPH, as used in Chapter 5. In a constant vol­

ume simulation, the natural structure of the distribution of constituent molecules may be 

suppressed in order to be commensurate with the periodic images due to boundary condi­

tions (refer to Section 3.3). Another problem associated with constant volume simulations 

is that the system cannot change density leading to perhaps metastable phases. For exam­

ple, it is possible that a crystal may not melt, even at high temperatures, if a high density

The step is completed by advancing the unit vector,

Gi{t +  5t) — e i(t) +  Uj(t +  2 8t)5t. (3.24)

3.1.3 Isoen th alp ic-isobaric  ensem ble, con stan t-NPH

The Verlet algorithm in section 3.1.2 allows simulations to be performed in the mi-
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is used. A further problem concerns first order transitions such as the isotropic-nematic 

transition. In the region of phase coexistence, simulation observables, such as the internal 

energy per particle, are found to be continuous. As a consequence the transition region is 

hard to locate. In a constant pressure simulation, the phase transition is discontinuous as 

reflected in the discontinuity of densities (ignoring finite system sizes).

Anderson [81] proposed that the average pressure can be conserved by considering 

the system in terms of the scaled variables R* and R j, both functions of position, r*, 

momentum, p* and volume, V,

R, =  (3.25)
V  3

Ri =  —̂ i-r. (3.26)
m V s

The systems Hamiltonian can then be written as,

N  N  N

V)  =  §V*£  m Ri • R i +  £  E » +  |M F 2 +  P ,xlV  (3.27)
i= l  i= 1 j^ i

where M  is a constant and Pext is the external pressure.- The first two terms can be

considered to be the Hamiltonian of equation 3.1 whereas terms three and four are the

kinetic and potential energies associated with the change in volume. A simple physical 

interpretation of the Hamiltonian equation 3.27 can be given. Suppose a system can be 

compressed by a piston of mass M  which acts upon the fluid to change its volume V  in 

an isotropic fashion. Then, the third term represents the motion of the piston whereas the 

fourth term is an external pressure acting on the piston.
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The coupled Newtonian equations of motion of this system have been given pre­

viously by Haile and Graben [82],

Hi

V

Fz V
m V  I  ^
(P  -  Pact)

M

(3.28)

(3.29)

However, since equation 3.28 contains a term involving R* it cannot be directly applied to 

the Verlet leapfrog algorithm. Instead, equation 3.26 is first differentiated with respect to

time,

1_ 

V 3
(3.30)

Inserting equation 3.26 gives an equation relating momentum and velocity,

Pi
m

i V
= ri ~ 3 ri y • (3.31)

Differentiating equation 3.30 with respect to time,

i .  v V  I V

and substituting equations 3.28 and 3.30 gives,

V _ g  V 
V 3 \ V

(3.32)

(3.33)

Prior to integrating the equations of motion, an estimation of the pressure P(t)  has to be 

found to satisfy equation 3.29. Generally the momenta p*(£) are needed to calculate the

pressure P(t)  but these are calculated after the integration of particle positions. Following
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Brown and Clarke [83], the estimation of pressure P ( t ) is found from the kinetic contribution 

to the pressure from the momenta calculated from the previous two time-steps applying the 

Verlet algorithm to momenta rather than position (ignoring terms G(6t2) and higher),

p i(t) =  2p i(t -  dt) -  p i ( t -  28t). (3.34)

Before integrating the equations of motion, the Verlet algorithm is used to obtain the change 

in volume,

V(t  + 6t) =  2V(t)  - V ( t - S t ) +  St2 (3.35)

V(t)  = +  (3.36)
2 dt

Finally, the half-step Verlet algorithm of equation 3.12 and equation 3.33 are used to update 

the velocities,

F •
V i ( t  +  \ 5 t ) =  V i ( t  -  \ S t ) H— -  +

m
£ _  * ( y \ 2
V  3 \ V

(3.37)

3.2 Generalised Gay-Berne intermolecular potential

Previous GB simulations have been restricted to mono-disperse systems or mix­

tures of GB objects and Lennard-Jones spheres. Recently, Cleaver et al [17] have proposed 

a generalised GB (GGB) potential which gives the interaction between two non-identical, 

anisotropic particles. For cylindrically symmetric but non-identical particles ‘A’ and ‘£ ’,
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AB

Figure 3.2: Interaction between two non-identical anisotropic particles.

the GGB potential may be expressed in the standard GB form,

00U{u a , u b , t a b ) = 4e(u>i,U B ,r>iB)
tab ~  cf(vla, u b , t a b ) +  cro 

6

12

(3.38)
j a b  -  cr(uA, Us, t a b ) +  cro. 

but with modified anisotropic range parameter, ct(u a , u b , t a b ) and well depth parameter, 

e(UA,UBjAB)-

The modified range parameter is of the form,

cr(uA,UB,f\4B) =  0*0 J _  1 [  (piTAB  • UA +  a  v A b  • u b Y
2X l  1 +  %(u a - u b )

- 1 /2

+
(a fA B -U A -a  1t a b - u b )

I
(3.39)

1 -  x (ua • u b )

where the new scalar quantity a  is defined in terms of the lengths I and breadths d of the

two interacting molecular species A and B  as,

2 _  / ( f l - <3 )(% +<% )
V (lB -  W a  +  t f l )

(3.40)
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and the quantity x  1S now given by,

x = ,/iS (341)
x  V ( 4 + < » ) ( $  + 4 ) '

The role of a  is to distinguish between the two independent tee configurations available to 

a bi-disperse system. The anisotropic well depth function is modified by the introduction 

of the new parameter a ',  and takes the form,

e(uA,UB,TAB) =  (3.42)

where

e i ( u A ,  u B )  =  [1  -  X 2 ( u a  • u b )2)] 1/2 (3.43)

and

 ̂ 1 1 / J (<* r A B  ' & A  +  a  1 t A b ' ^ b ) 2
«*(«>.,u fl. r ^ )  =  l - - x | -l  +  ^ . f r , ) --------------------

+  ( « ^ ; .^ 7 a '~ 1^ - a « )a 1 .  (3.44)
1 -  X  ( u a  • U b )  . J

The parameter a  is required to enable the two non-equivalent tee configurations to have 

different well-depths. It should be noted that in the limit I Aid A Ib ^ b , both a  and a 7 

go to unity and the potential reverts smoothly to the original GB form.

3.2 .1  G G B  param eterisation

The GB potential has traditionally been parameterised with reference to the in­

teraction of sets of Lennard-Jones sites. Following a similar param eterisation route, the
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comparison with arrays of discretised sites was found to be an unreliable approach since 

the potential of two such arrays in a tee configuration reflects the internal structure of the 

cross-bar molecule. Specifically, the well-depth minimum of a tee configuration shows an 

odd-even dependence on the number of sites being used to represent th a t cross-bar molecule. 

A parameterisation characterised by the differences in its tee configurations was determined 

to be particularly sensitive to this effect. To avoid this difficulty, the GGB potential was 

parameterised with reference to the interaction between two Lennard-Jones jellium lines, 

given by,

'rB + ^ H J UB r r A+Lh3uA (  _ L J  \  12r  t  C T b + l , b  u b  r r A :  ~ A  - / i  I  0 - - -

UAB( r A , r B , U A , U B ) = £ o  /  /  ‘
J tr—LWur J ta —r b -Db &b Jta- L ^ ua V IF>1 r J51

drAdr'B . (3.45)
LJ \ 6<7n I

\ | M  B \ /

Where the terms and are half line lengths of the two lines. The parameterisation 

route is briefly outlined below;

1. Evaluating the separations of two infinite/semi-infinite Lennard-Jones jellium lines, 

at which the potential is zero for the tee and cross configurations.

2. Equating these separations with the equivalent GGB separations thus obtaining L  

and Ltq .

3. Least squares fit parameterisation of the numerical evaluations of equation 3.45 to the 

unparameterised GGB potential.
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3.2.2 Evaluating separations

Assuming infinite Lennard-Jones jellium lines, an analytical evaluation of the sep­

aration at repulsion can be determined. A minimum of two configurations are required for 

Stage 2; tee and cross configurations. The integral for the tee configuration (Figure 3.3) is 

given by,

oo,y

A

Ay

s
>11 v

- oox <— Ax —► 00,X

Figure 3.3: Tee configuration of infinite Lennard-Jones and semi-infinite jellium lines.

(3.46)

Where the inner integral in equation 3.46 has the solution [84] in terms of n,

(3.47)
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Therefore equation 3.46 simplifies to,

77TeeUAB
r

( x , v )  =  J
’» V ? r ( 5 |)  V 5Fr(2i)

i/l l r(6) j/5 r(3)

-1 1   ̂ - 5 , y -  aV dv=  v * r  - - u  3 - 6J s 256'

ypK T 63 _6 3
s4 [25605 32

For the tee configuration, the potential is equal to zero when,

■ 2 iy /6 
.8 0 /

s = _ L J 
CTn .

Similarly, the integral for the cross configuration (Figure 3.4) is given by,

- oo

- oo

oo.

oo.

Figure 3.4: Cross configuration of two infinite Lennard-Jones jellium lines.

/OOx rO O y  1 1
/   r ------------------------ o dxdy.

■ooj-ooy (x2 +  y2 +  s2f  (x2 + y 2 +  s2f

In terms of n  the integral reduces to,

r°°* f°°y 1 _  y / n V ( n - ± )  r°°y 1
J-ooj-ooy (x2 + y2 + S2)" r(n) J-oo,, (y2 + s2)n-5 V

7rr(n  —1) 1
f (n )  g2n—2 *

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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Returning to equation 3.52, evaluation of the integral becomes,

7r

For the cross configuration, the potential is equal to zero when,

•2 N 1 / 6

S 5
_ L J <T0 ■

(3.53)

(3.54)

3.2 .3  D eterm in ation  o f L™ and L™.

Equating the equivalent Generalised Gay-Berne separations, where the potential

is zero, the lengths and and the scale unit o f  J of equation 3.45 can be determined

in terms of erfB. For the cross configuration, taking a f B =  (d^ +  d ^ )1/2,

1 / 3

( ldA)2 + {jdB)2 =  (o-qJ ) 2 (3.55)

where 7  relates <rfB to oqJ units and assuming dA =  dB =  d, the Lennard-Jones length

parameter is,

(a„u )2 = s g r w (3.56)

A similar approach can be used for the two T\ and T2 tee configuration. Equating the T\

configuration gives,

[1 + ( iS B)2] (7  d f  =
21 \  1/ 6Z1 ) 4_ 7-LJ
8 0 / +La

L J \ 2
K u ) (3.57)

where L9b is the half length of the Gay-Berne major axis. Using equation 3.56,

b  <«■> ’ ] ( l ) ' " -  *
21 \  1/ 6 \  4- r LJ
80 /  + L a

(3.58)
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the half Lennard-Jones jellium line length is,

^  ^  [l + (^ B )2] 1'2 ( | ) 1/6 -  ( g ) V# - (3-59)

Similarly, for the T2 configuration, Lrg is

ĵ=^[i+^ b)2]i/2 (I)1/6 -( 1 )1/6- (3-6°)
W ith respect to the l / d  ratio of the Gay-Berne molecules for the values L §B =  3.5 

and Z,£B =  3.0 the two half line lengths are =  1.409 and L#J =  1.119. These separations 

at repulsion are matched to within 1% for GB molecules with l / d  of 2.5 or greater.

3.2.4 Least squares fit.

Since it was expected that the smectic layers would be disrupted in the mix­

ture, a relatively strong side to side intermolecular potential was chosen, with /z =  1 and

v =  2 as used by Luckhurst et al [85]. The four remaining variables, a ', x ', e^~A/e^~B

and €q~b / eB~B were determined by performing a least squares fit to curves generated by

numerical integration of equation 3.45, subject to the constraint €q~b  =  y 6q~A6^~b  (i.e. 

the Lorentz-Berthelot mixing rule). From this, the remaining values were determined to be 

a 1 =  1.011, x 1 =  0.6662, €o~A/eB~B =  1.103. A further constraint which could have been 

applied was to set the side to side : end to end well depth ratio for mixed interactions to 

5, to match the value used for unmixed interactions. In the event, the unconstrained fit 

gave a value of 4.992 for this ratio. The parameters for the mixed (GGB) and unmixed 

(GB) interactions that have be used for the studies of Chapters 4 and 5 are summarised in
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Table 3.1 where the label F IT  indicates those values obtained using the parameterisation as 

described above. Also, this parameterisation of the GGB potential is illustrated for various 

configurations in Figure 3.5.

A - A B - B A - B B - A
3.5:1 3.0:1 mixed

IIob 1.0 1.0 1.0 1.0
X 0.849 0.800 0.824 0.824/
X 0.666r 0.666r F IT

eo F IT 1.0 ! -A-A B - B
V eo eo/

a 1.0 1.0 F IT

Table 3.1: Parameter values used for this investigation. Those marked F IT  were obtained 
via parameterisation described in this section.

3.3 Periodic boundary conditions

It is impracticable to simulate a real system of the order 1023 molecules due to the 

computational overheads (before even considering the allocation of random access memory). 

Typical molecular simulations consider 102 to 104 molecules confined to a geometrical box 

which is replicated throughout space to form an infinite lattice which overcomes surface 

effects. This requires the deployment of periodic boundary conditions; as a molecule leaves 

one face its periodic image enters the opposite face thus conserving the number density 

(refer to Figure 3.6).

Despite the popularity of periodic boundary conditions there is a well known prob-
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Figure 3.5: Generalised Gay-Berne intermolecular potential between two non-identical 
anisotropic particles 3.5:1 (molecules A) and 3:1 (molecules B)  for configuration arrange­
ments a) side-side, b) end-end, c) tee and d) cross. Molecular species interaction key: A —A  
(long dash), A —B  (dotted), A —B k , B —A  (dot dashed), B —A  (dashed) and B —B  (solid).

lem; may the small infinitely periodic system represent the macroscopic system? Obviously 

this will depend on the phenomenon under investigation and the length scale of the in­

termolecular potentials employed. Periodic boundary conditions will suppress any density 

waves greater than the length of the simulation box, for example, at the gas-liquid critical 

point where the fluctuations range over all length scales. It is also known th a t first-order 

transitions under periodic boundary conditions may exhibit the characteristics of higher or-
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Figure 3.6: 2D representation of periodic boundary conditions. As a molecules leave one 
face its periodic image enters the opposite face.

der transitions. In addition, if the length scale of the intermolecular potential is comparable 

to the size of the simulation box, for example charged ions or dipolar molecules, then the 

molecule may ‘sense’ the presence of itself.

3.4 Order parameters and structural properties

3.4.1 O rientational order param eter

W ithin the field of liquid crystal simulation, probably the most commonly used 

structural quantity to measure the degree of orientational order of the system is the nematic 

orientational order parameter S  (or simply the ‘order param eter’),

(3.61)
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where e, is the unit vector of molecule i and d  is the systems director. The order parameter 

ranges from «  N ~ 2 for a system with no orientational order (i.e. isotropic) to 1.0 for a 

perfectly aligned crystal. Following Zannoni [11], the order param eter can be determined

by diagonalising the Q —tensor,

i=l

(  \  
qi(x, x) qi(x,y) qi(x,z)

Qi{y,x) qi(y,y) qi(y,z) 

qi(z,x) qi(z,y) qi(z,z) 

where qi(x,y)  is the product of the x  and y component direction cosines of molecule i.

\

(3.62)

Diagonalising equation 3.62 produces three eigenvalues, the largest of which Ai is used to 

evaluate the order parameter,

(S) =  A1 - J (A 2 +  A3) = ! ( 3 A j - 1 ) (3.63)

where Ai +  A2 +  A3 =  1 .

3.4 .2  Pair d istr ib u tion  functions

Structural information can be gained from a set of distribution functions based on 

molecular positions. The most simple of these functions is the pair distribution function, 

g(r), which represents the probability of finding a pair of molecules at distance r  apart. The 

histogram H (r ) is compiled of the number of molecules found in concentric shells of radius 

r  and width dr around each particle and normalised against the probability expected for a
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completely random distribution at the equivalent density,

=  N  (  inp* [(r +  i - ) 3 -  r 3] )  ’ (3'64)

where N  is the number of molecules within the whole system and < >  represents the average 

over configurations. Typically, the distribution peaks around r cz 1.1a corresponding to the 

first coordination shell. The probability of finding a molecule in subsequent coordination 

shells diminishes with increasing r. By considering the distances resolved parallel and 

perpendicular to the director, two additional histograms can be compiled, namely <7||(r) 

and g±{r). Here, the appropriate histogram is normalised with respect to the probability 

of finding a molecule in a slice of the sphere and a cylinder with the difference between two 

hemispherical caps of radius r  and r+ d r  respectively. Density waves resolved parallel to the 

director can be revealed in p||(r); isotropic and nematic phases show no significant density 

waves in contrast to the smectic phase. Coordination shells are readily distinguishable 

within g±(r), more so than g(r).

3.4.3 B ond  orien tation al order param eter

Whereas g±(r) reveals the extent of packing within smectic layers it is unable 

to distinguish between smectic-A and smectic-B; both have hexagonal ordering but the 

smectic-B phase should show a loss of long range positional order but not of the bond 

orientational ordering of the hexagonal crystals (refer to Figure 3.7). Correlation of bond 

orientational order at separation r can be gained from the bond orientational order param-
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jk

a) b)

Figure 3.7: Hexagonal crystals at distances r apart within a) smectic-A and b) smectic-B. 
Both showing a loss of long range positional order but b) has bond orientational order. Note: 
hexagonal crystals are drawn oversimplified as the packing arrangements within smectic-A 
and smectic-B layers are only pseudo-hexagonal.

eter ge(r). A local axis is defined around molecule i, the reference molecule, whose 2-axis 

is parallel to the system’s director. The angle <j)jk (refer to Figure 3.7) makes with the 

reference molecule i of all (j, k) molecule pairs enclosed within a disk of height ±0.75cro 1 

perpendicular to the director is used to calculate,

1 nj
O j  =  — cos(6(f>jk) +  i  sm(6(f)jk).Tin .

(3.65)
3 k=l

Here nj  is the number of nearest neighbours of molecule j  and (f)jk is defined as

(f)jk =  tan -1 ( —— . (3.66)
\  x k xj  J

The histogram H b (t ) is compiled for the correlation between bond orientations of molecular

pairs between concentric cylinders of width r  and r + d r  and height ± 0 .7 5 c r o  and normalised

1 se lec te d  fro m  e x a m in a tio n  o f  <7| | ( r )
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by the number of molecules found within each concentric cylinder N d,

9e(r) = H B(r) /Nd. (3.67)

3 .4 .4  O rientational correlation  function

For a system of rigid rod-like molecules, the n th — order orientational correlation 

function, Gn(r), may be used to describe orientational correlations as a function of separa­

tion. It is defined as,

<M r) =  - l y  ( J 2  £ > n ( c o s  7ij)

where Pn(cos 7 y) is a Legendre polynomial and 7 ^  is the angle between the unit vectors 

ei and e/. The 2nd—order correlation function is commonly used to characterise long range 

orientational order in the nematic phase, P 2(cos 7 y) being given by |( e j  • e^)2 —

(3.68)
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Chapter 4

Length dispersity study

4.1 Introduction

The review in Chapter 2 illustrated tha t liquid crystal systems of relevance to 

device applications are seldom single-component, or mono-disperse, but normally multi- 

component. Such systems offer an attractive route to material properties otherwise unattain­

able [47]. However, use of full atomistic or ab-initio models to simulate phase behaviour 

of liquid crystal materials are beyond current computational resources. As with single­

component systems, previous models have been simplified to retain only the essential char­

acteristics such as geometrical considerations and “hard” or “soft” intermolecular potentials 

and still remain accessible via computer simulations.

Previous, hard particle simulations of bidisperse systems have been limited to per­

fectly aligned spherocylinder [66] and cylinder [86] models. Although these have produced
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qualitative agreement with the theoretical predictions of Lekkerkerker and co-workers [55, 

56, 87, 57] it must be noted that these simulations offer no insight into the effects of free 

rotation and/or attractive interactions. Computer simulations of bi-disperse systems of 

soft potentials have considered mixtures of Gay-Berne particles and Lennard-Jones parti­

cles [16, 68], or lattice models of various symmetries [88].

There is a considerable volume of published data from simulations of GB particles 

with a length to breadth axial ratio of 3 to 1. As an initial step in determining the properties 

of the GGB potential and the effect of length dispersity, this chapter reports a constant- 

N V E  molecular dynamics (MD) simulation of a system differing only slightly from this 

well-characterised 3 to 1 case: a 50:50 mixed system containing GGB rod-like molecules 

with length to breadth axial ratios of 3 to 1 and 3.5 to 1. This length dispersity was 

considered to be sufficiently large to induce a change in phase behaviour and /or structural 

properties. More pronounced difference was avoided since if the length dispersity was too 

large, that is to say the shapes of the two molecular species were too dissimilar, it might 

promote phase separation (refer to Frenkel [89]).

A consistent nomenclature for the axial ratios of the two species has been adopted 

for this and the following chapters viz; molecules A  refers to long rod-like particles with 

ae/ a s of 3.5 to 1 and molecules B  refers to short rod-like particles with oej o s of 3 to 1. 

Order parameters and correlation functions have been calculated over all molecules, e.g. 

gall(r*), where no distinction is made between molecular species, and over each species
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independently, either molecules A or molecules B, e.g. gA~A (r*) and gB~B (r*) respectively.

4.2 Simulation details

A molecular dynamics simulation was undertaken in the constant-IVFE ensemble 

with 250 GGB rod-like molecules of each species, i.e. N  = 500 molecules in total. One 

should bear in mind that the MD N V E  simulations alone are not the best technique for 

the study of phase transitions without “thermodynamic integration” methods [90] since the 

system may be forced into metastable states. This investigation must therefore be regarded 

as an initial investigation in determining the properties of the GGB potential within a 

mixture of mesogenic molecules. An unequivocal characterisation of the stable states will 

be addressed by applications of the constant-A PP ensemble in the following chapter.

Intuitively, one might expect the smectic layers to be disrupted in the mixture. To 

prevent phase separation of the smectic phase a relatively strong side to side intermolecular 

potential was used as of Luckhurst et al [85], with // =  1 and v  =  2. The choice of 

exponents does not influence the relative well depths of the side-by-side or end-by-end 

configurations but it is seen that the side-by-side configurations is relatively more stable 

in comparison to the cross and tee configurations. The remaining GGB parameters are 

summarised in Table 3.1 of Chapter 3. For both species, the mass m  was set to unity 

and the reduced moment of inertia I* — I  f o \  =  4.0. The integration time-step used was 

St* =  (ef_B/o’o)1/2t =  0.003. At each state point the system underwent equilibration
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and production periods of 20,000 and 25,000 time-steps, respectively. These periods were 

doubled over the temperature range 2.0 < (T*) =  (k s T / e ^ 8 ) <  2.3. The potential cut-off 

for both species was r* =  tc/ oq — 4.5. A neighbourhood list was used to save computational 

time, with a radius of r^iist =  5.1. Changes in temperature were achieved by reducing the 

previous configuration’s velocities by 2% for temperatures (T*) > 1.35 and by 5% for lower 

temperatures. Preliminary investigations at a reduced density of p* =  pa$ =  0.23 revealed 

incomplete smectic layers whereas no such problems were observed at p* =  0.25 and so this 

latter density was used thereafter.

4.3 Results and analysis

The computer simulation of the liquid crystal mixture commenced from an isotropic 

configuration melted from a f.c.c. lattice. The system was cooled through the reduced tem­

perature range 2.5 > (T*) > 1.0. Equipartition between the reduced translational and 

rotational kinetic energies per particle was observed for each state point. Temperature 

dependencies of several observables are shown in Figure 4.1 and Table 4.1.
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Figure 4.1: Molecular dynamics simulation results for a 50:50 mixture of GGB rods with 
axial ratios of 3.5:1 (molecules A) and 3:1 (molecules B).  Order param eter over all molecules, 
{S all) (o), with corresponding order parameters for (SA) (A) and (SB) (v)-  Potential 
energy of all molecules, (U*) (+). In addition, results are shown of subsequent heating cycle 
for order parameter over all molecules, (S all) (-----) and potential energy of all molecules,m  ( - ) .
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(T*> (17*) (■P *) (Sal1) (SA) (S5 ) (SA - S B)

2.50(4) -2.24(10) 4.99(20) 0.11(05) 0.14(06) 0.10(04) 0.033(49)
2.46(4) -2.36(10) 4.87(19) 0.18(07) 0.20(07) 0.16(07) 0.045(40)
2.38(4) -2.41(10) 4.70(18) 0.13(04) 0.15(05) 0.12(04) 0.035(41)
2.33(5) -2.53(12) 4.58(20) 0.18(04) 0.20(04) 0.17(06) 0.037(48)
2.32(4) -2.50(11) 4.58(18) 0.16(05) 0.18(06) 0.14(06) 0.040(46)
2.25(4) -2.55(10) 4.45(18) 0.11(04) 0.14(04) 0.10(04) 0.035(42)
2.24(4) -2.74(10) 4.31(18) 0.27(06) 0.31(08) 0.24(06) 0.069(46)
2.21(5) -2.88(12) 4.20(18) 0.34(07) 0.39(08) 0.29(06) 0.096(47)
2.13(5) -2.92(11) 4.06(17) 0.29(08) 0.34(09) 0.25(08) 0.081(50)
2.14(4) -3.13(10) 3.93(17) 0.43(05) 0.49(05) 0.38(05) 0.108(40)
2.13(4) -3.34(10) 3.79(18) 0.52(04) 0.58(04) 0.46(05) 0.124(41)
2.07(4) -3.40(11) 3.66(16) 0.51(06) 0.57(06) 0.45(06) 0.122(37)
2.04(4) -3.53(10) 3.54(17) 0.57(03) 0.63(03) 0.51(04) 0.114(42)
2.01(4) -3.64(10) 3.43(16) 0.57(03) 0.64(03) 0.51(04) 0.137(44)
1.97(4) -3.74(09) 3.30(15) 0.61(03) 0.68(03) 0.55(04) 0.123(38)
1.94(5) -3.85(13) 3.19(15). 0.63(05) 0.68(05) 0.58(06) 0.095(30)
1.90(4) -3.94(09) 3.07(16) 0.65(03) 0.70(03) 0.60(04) 0.101(38)
1.85(4) -4.02(09) 3.00(16) 0.65(02) 0.71(03) 0.60(02) 0.113(28)
1.82(4) -4.13(09) 2.86(15) 0.69(02) 0.73(02) 0.64(03) 0.090(31)
1.78(4) -4.20(09) 2.78(15) 0.68(02) 0.74(03) 0.62(03) 0.117(31)
1.76(3) -4.32(08) 2.67(16) 0.71(02) 0.76(02) 0.66(03) 0.096(28)
1.74(3) -4.44(08) 2.56(16) 0.73(02) 0.77(02) 0.68(02) 0.090(23)
1.68(4) -4.48(10) 2.46(14) 0.72(03) 0.77(02) 0.68(04) 0.095(31)
1.65(4) -4.56(09) 2.40(14) 0.73(02) 0.78(02) 0.69(03) 0.091(29)
1.64(3) -4.68(08) 2.31(14) 0.76(01) 0.80(02) 0.72(03) 0.082(34)
1.61(4) -4.79(09) 2.22(15) 0.77(02) 0.81(02) 0.72(03) 0.093(23)
1.59(4) -4.89(09) 2.15(14) 0.78(02) 0.82(02) 0.74(02) 0.079(23)
1.55(4) -4.95(10) 2.05(13) 0.78(02) 0.83(02) 0.74(03) 0.083(23)
1.53(4) -5.06(09) 1.99(13) 0.79(02) 0.83(01) 0.76(02) 0.078(22)
1.50(3) -5.12(08) 1.90(13) 0.80(01) 0.83(01) 0.76(02) 0.072(20)
1.51(4) -5.29(09) 1.86(13) 0.81(01) 0.85(01) 0.77(02) 0.083(24)

Table 4.1 continued...
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{T*) {U*) (P*) (Sal1) (SA) (SB) (SA - S B)

...continuation of Table 4.1

1.49(4) -5.38(09) 1.80(13) 0.82(01) 0.86(01) 0.77(02) 0.084(23)
1.47(3) -5.47(08) 1.75(13) 0.82(01) 0.86(01) 0.78(02) 0.083(20)
1.46(3) -5.58(08) 1.70(12) 0.83(01) 0.87(01) 0.79(02) 0.076(16)
1.44(3) -5.68(08) 1.63(12) 0.84(01) 0.88(01) 0.80(02) 0.080(22)
1.42(3) -5.77(09) 1.58(13) 0.85(01) 0.88(01) 0.81(02) 0.069(23)
1.42(3) -5.90(07) 1.53(14) 0.86(01) 0.89(01) 0.82(02) 0.064(18)
1.39(3) -5.99(08) 1.45(12) 0.85(01) 0.90(01) 0.81(02) 0.083(23)
1.38(3) -6.08(08) 1.43(12) 0.86(02) 0.90(01) 0.82(02) 0.079(24)
1.37(3) -6.17(08) 1.36(12) 0.85(01) 0.90(01) 0.81(02) 0.088(18)
1.36(3) -6.30(08) 1.30(12) 0.87(01) 0.91(01) 0.84(02) 0.069(22)
1.35(3) -6.39(08) 1.27(12) 0.87(01) 0.91(01) 0.83(02) 0.075(20)
1.32(3) -6.47(07) 1.21(11) 0.88(01) 0.91(01) 0.86(01) 0.053(14)
1.28(3) -6.69(07) 1.04(11) 0.90(01) 0.92(01) 0.87(01) 0.048(15)
1.24(3) -6.91(08) 0.88(10) 0.90(01) 0.93(01) 0.88(01) 0.042(12)
1.21(3) -7.12(08) 0.76(10) 0.91(01) 0.93(01) 0.89(01) 0.038(10)
1.17(3) -7.33(07) 0.59(11) 0.92(01) 0.94(01) 0.90(01) 0.034(09)
1.14(2) -7.51(06) 0.46(11) 0.92(01) 0.94(01) 0.90(01) 0.039(09)
1.09(2) -7.67(06) 0.36(10) 0.93(01) 0.95(00) 0.91(01) 0.041(11)
1.06(2) -7.87(06) 0.23(10) 0.93(01) 0.95(00) 0.90(01) 0.048(11)
1.01(3) -8.01(07) 0.07(11) 0.94(01) 0.96(00) 0.91(01) 0.042(10)
1.00(2) -8.23(06) 0.04(08) 0.94(00) 0.95(01) 0.92(01) 0.035(07)

Table 4.1: Molecular dynamics simulation results of cooling a 50:50 mixture of GGB rods 
with axial ratios of 3.5:1 (molecules A) and 3:1 (molecules B).  Columns key: (T*) reduced 
temperature, (U*) reduced potential energy per molecule (no long range correction), (P*) re­
duced pressure (no long range correction), (Sal1) order param eter resolved over all molecules, 
{S A) molecules A order parameter, (S B) molecules B  order param eter and (SA — S B) order 
parameter difference.

An isotropic phase was established at (T*) =  2.50 ±  0.04 with an order parameter 

resolved over all molecules of (S all) =  0.11 ±  0.05. Inspection of pair correlation functions 

resolved over all directions, gall(r*) (Figure 4.2), and parallel and perpendicular to the di­

rector (Figures 4.3 and 4.4) showed no significant density waves (shown as dashed lines). 

Furthermore, at (T*) > 2.32 the second rank orientation correlation function, (G2^(r *))
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(T*) {U*) (P*) {Sal1) (SA) (SB) (SA - S B)

1.97(4) -3.73(10) 3.31(18) 0.61(03) 0.67(03) 0.56(04) 0.105(33)
1.99(4). -3.58(10) 3.42(16) 1.99(04) 0.61(04) 0.50(05) 0.109(37)
2.04(4) -3.52(10) 3.55(16) 0.56(04) 0.62(04) 0.51(05) 0.108(36)
2.09(4) -3.44(11) 3.66(16) 0.55(05) 0.61(06) 0.49(05) 0.116(37)
2.11(4) -3.26(10) 3.81(17) 0.47(05) 0.53(05) 0.42(05) 0.113(40)
2.16(4) -3.16(11) 3.93(17) 0.45(06) 0.50(06) 0.39(06) 0.113(36)
2.17(5) -2.97(12) 4.09(17) 0.36(07) 0.41(08) 0.31(07) 0.101(53)
2.21(4) -2.85(11) 4.22(18) 0.33(05) 0.38(06) 0.28(06) 0.102(40)
2.25(4) -2.70(10) 4.35(18) 0.27(06) 0.31(07) 0.23(06) 0.082(50)
2.30(4) -2.60(10) 4.48(18) 0.22(08) 0.25(09) 0.19(07) 0.065(44)
2.35(4) -2.48(11) 4.63(18) 0.16(05) 0.19(06) 0.14(05) 0.044(47)
2.41(4) -2.39(10) 4.77(18) 0.14(06) 0.16(07) 0.13(06) 0.031(41)
2.47(4) -2.31(10) 4.92(19) 0.15(05) 0.17(06) 0.14(04) 0.032(45)

Table 4.2: Molecular dynamics simulation results of heating a 50:50 mixture of GGB rods 
with axial ratios of 3.5:1 (molecules A) and 3:1 (molecules B).  Columns key: as of Table 4.1

approached zero at large distances (Figure 4.5). The order param eter spontaneously in­

creased to (S all) = 0.29 ±0.08 at (T*) =  2.25 ±0.05, with an associated discontinuity in the 

potential energy. A second increase in order parameter, to a value of (S all) =  0.45 ±  0.05, 

ensued at (T*) =  2.14 ±  0.04. At these temperatures the orientation correlation functions 

adopted a non-zero limiting values at large distances. Due to the finite systems size, it is 

irresolvable whether these trends are quasi-long ranged or not. The pursuant heating cycle 

did not show a similar “double step” transition (Table 4.2 and shown as dashed lines on 

Figure 4.1). The ambiguity is thought to be related to several interesting phenomena of 

the I - N  transition of a mixed system e.g. widening of the coexistence region, fractionation 

effect etc. For this system, the I - N  transition appears to lie in the tem perature range
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Figure 4.2: Pair distribution functions over all molecules, gall(r*), in the isotropic phase
at (T*) =  2.5 ±  0.04 (----- ), nematic phase at (T*) =  1.65 ±  0.04 (—), smectic phase at
(T*) =  1.32 ±0.03 (+) with corresponding pair distribution functions for gA~A(r*) (A) and 
< ,* -> * ) (V).

2.10 < (T*) < 2.25. However, the width of this coexistence region has to be further studied 

using the Gibbs ensemble [91].

On further cooling over the temperature range 2.0 > (T*) > 1.5, {Sal1) increased 

but the system remained in the nematic phase. The order param eter shows a weak disconti­

nuity at (T*) =  1.38 ±  0.02. Inspection of the potential energy reveals three discontinuities 

at (T*) =  1.50 ±  0.03, 1.42 ±  0.03 and 1.36 ±  0.03. At the last of these temperature, strong 

peaks in gall(r*) are evident at r* =  1.1, corresponding to a shell of nearest neighbours (Fig­

ure 4.2). Equivalently, Figure 4.4 shows peaks in g°[l{r*) a t r* =  1.1, 2.1, 3.1, but there 

was no significant growth of transverse positional correlation and the system remained liq­

uid like. Below (T*) < 1.36, the six-fold in-plane bond orientation correlation function,
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Figure 4.3: Pair distribution functions over all molecules resolved parallel to the director, 
in the isotropic phase at (T*) =  2.5±0.04 (— ), nematic phase at (T*) =  1.65±0.04 

(—), smectic phase at (T*) =  1.32±0.03 (+) with corresponding pair distribution functions 
resolved parallel to the director for g^~A(r*) (A) and g^~B (r*) (v)-
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Figure 4.4: Pair distribution functions over all molecules resolved perpendicular to the
director, in the isotropic phase at (T*) =  2.5 ±  0.04 (------), nematic phase at
(T*) = 1.65 ±  0.04 (—), smectic phase at (T*) =  1.32 ±  0.03 (+) with corresponding pair 
distribution functions resolved perpendicular to the director for g j^A(r*) (A) and g ^ B {r*)
(v)-
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Figure 4.5: Second-rank orientational correlation functions over all molecules, (G ^ ir* )), in
the isotropic phase at (T*) =  2.32 ±  0.04 (-----), nematic phase a t (T*) =  2.25 ±  0.06 (—),
smectic phase at (T*) =  1.32 ±  0.03 (+) and pre-smectic region a t (T*) =  1.65 ±  0.04 (x ) 
with corresponding second-rank orientational correlation functions for (G^-j4(r*)) (A) and 
( G f - V ) )  (V)-

g%ll(r*) adopts a non-zero limiting value at large distances (Figure 4.6) and the existence 

of layering is apparent from the pair correlation function resolved parallel to the director, 

£|fW(r *) consistent with the SmB  phase. As with the I - N  transition, the N - S m B  transition 

is not well defined.

Intriguingly between 1.5 < (T*) < 1.7, density waves resolved parallel to the 

director, pj“w(r*), for the different molecular species are measurable and were found to have 

the same wavelength although different phases (Figures 4.7). The tem perature dependency 

of the maximum and minimum density waves resolved parallel to the director, shown in 

Figure 4.8, resemble weak smectic order. The pre-smectic like ordering of the nematic phase 

is postulated to arise from the competition between the two molecular species of differing
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Figure 4.6: Bond orientational correlation function over all molecules, g f l (r*) (+), with 
corresponding bond orientational correlation functions for g£~A(r*) (A) and g^~B (r*) (v )-
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Figure 4.7: Pair distribution function over all molecules resolved parallel to the director, 
pj|H(r*)with corresponding amplitudes of the pair distribution functions resolved parallel
to the director for g^~A{r*) (A) and g^~B (r*) (v)-  Pre-smectic region extends over the
reduced temperature range 1.5 <  (T*) < 1.7

lengths. Gruler [25] postulated tha t this precursor should be accessible by experiment by

studying the temperature dependencies of the bend to splay elastic constant ratio, ^33/^11 •

The suppression of the smectic phase to higher densities has been predicted by Mulder [60]

and Sluckin [61]. However, from a single simulation, no conclusions regarding suppression

of the smectic phase can be drawn. This point will be addressed in the Chapter 5. As the

SmB  transition is approached, the density waves associated with each species move into

phase (Figure 4.3).

Throughout the simulation the long molecules have a consistently higher value

of (S) than the short molecules, as shown in Figure 4.1 and Table 4.9. It is believed

that this behaviour is a consequence of the short molecules’ greater orientational freedom.

A+
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Figure 4.8: Maximum and minimum amplitudes of the pair distribution function over all 
molecules resolved parallel to the director, ^yW(r*)as a function of reduced temperature, 
(T*) with corresponding amplitudes of the pair distribution functions resolved parallel to 
the director for g^~A(r*) (A) and g^~B (r*) (v)-  Pre-smectic region extends over the reduced
temperature range 1.5 < (T*) < 1 .7
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Figure 4.9: Difference between (S A) and (S B) as a function of reduced temperature, {T*).

Indeed, this feature has been predicted by theoretical calculations of Lekkerkerker and co­

workers [55, 56, 87, 57] and Sluckin [61]. Nevertheless, these calculations do not predict 

the behaviour shown in Figure 4.9: the difference in order of the long and short molecules 

is greatest immediately below the I - N  transition and then decreases as the smectic region 

is approached. Theory predicts strong fractionation associated with the I - N  transition 

where the long molecules preferentially enter the nematic before the short molecules. Thus 

it can be inferred the greater difference in order below the I - N  transition is due to the long 

molecules driving the system into the nematic phase with the short molecules subsequently 

ordering within the field of the long molecules.
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Correlation function Coordination number

gA-A(r>) 3.10
gB- B(rt ) 2.78
9aU(r') 5.24

Table 4.3: Numerical integration over the first coordination shell within the smectic phase, 
(T*) = 1.32, of the pair distribution function over all molecules, gall(r*), with corresponding 
functions for gA~A(r*) and gB~B {r*).

For this mixed system no evidence of demixing was observed either within the 

nematic or smectic phase. Notwithstanding, some evidence of different local ordering be­

tween the two molecular species is evident from pair distribution functions, as shown in 

Figure 4.2. Numerical integration of 4n f ^ '7 r*2g(r*)dr* over the first coordination shell 

at (T*) = 1.32 ±  0.03 reveals tha t the nearest neighbour shell of a long molecule is more 

highly coordinated than that of the nearest neighbour shell of a short molecule (Table 4.3 

and 3D visualisation of configuration in Figure 4.10). However, there was strong evidence 

of demixing in a preliminary investigation of a 50:50 mixed system containing GGB rod­

like molecules with length to breadth axial ratios of 3:1 and 4.5:1. Therefore, it can be 

assumed tha t the unlike interactions (A B  and BA)  of the molecules used in this study are 

not sufficiently dissimilar to promote demixing.
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a) b)

Figure 4.10: Three dimensional visualisation at (T*) — 1.21 ±  0.03 of a) the smectic phase 
and b) a single smectic layer viewed parallel to the director. Molecular species key: dark 
particles are 3.5:1 (molecules 4̂) and light particles are 3:1 (molecules B ). These show some 
local compositional ordering within the smectic layers but no evidence of demixing.
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4.4 Conclusions

The simulations undertaken involved a 50:50 mixture of Gay-Berne rod-like molecules 

with axial ratios of 3.5 to 1 and 3 to 1 using the Generalised Gay-Berne intermolecular po­

tential. The results show that the mixture exhibits both nematic and smectic-B phases, 

with the I - N  phase boundary not clearly defined. Throughout the simulations, the long 

molecules had a consistently higher order parameter than tha t of the short molecules, con­

sistent with theoretical and experimental behaviour. The difference between these order pa­

rameters was greatest just below the nematic transition and then decreased with decreasing 

temperature. The N -S m B  transition was preceded by a relatively wide pre-smectic region 

identified by resolving p||(r*) for the individual species. This extended pre-smectic region 

appeared to be associated with the competition between the two different density waves of 

the same wavelength but different phase. The smectic phase was fully commensurate and 

no evidence of demixing was observed albeit the long molecules possessed a higher degree 

of local ordering. The results indicate that the Generalised Gay-Berne intermolecular po­

tential offers a viable and computationally efficient route to the study of multicomponent 

and even polydisperse systems.

Clearly, this simple model has also presented some unresolved questions: namely, 

to what extent does the use of the constant-NVE  thermodynamic ensemble affect the phase 

behaviour. Thus, an unequivocal characterisation of stable states cannot be fully resolved. 

Moreover, many phenomena associated with mixed systems (such as the concentration,

69



CHAPTER 4. LENGTH DISPERSITY STUDY

width of the I - N  coexistence region, fractionation effect etc) are inaccessible with this 

ensemble. In the next chapter, therefore, an ensemble perm itting adiabatic volume and 

energy fluctuations was employed to address these concerns.
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Chapter 5

Concentration and pressure study

5.1 Introduction

In chapter 4 results were presented for a 50:50 mixture of 3.5:1 and 3:1 molecules 

within the microconical, constant-NVE, ensemble to study the effect of length dispersity. 

It was shown that a finite length dispersity leads to a more complicated phase diagram 

than that of a homogeneous system. The results of chapter 4 have been limited to a 

fixed molar concentration of two components. In this chapter the the phase behaviour 

of liquid crystal mixtures is expanded to include an addition inherent degree of freedom, 

namely concentration. To facilitate this it is necessary to undertake these simulation studies 

within an ensemble permitting adiabatic volume and energy fluctuations. For this study the

isoenthalpic-isobaric, constant-NPH  ensemble1 was chosen thus enabling a more meaningful

A nother candidate is the isothermal-isobaric, constant- N PT , ensemble. The construction of such en­
semble involves combining the c o n s t a n t - a n d  constant -N P H  schemes.
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comparison of simulations performed at different concentrations and equal pressures.

This chapter is divided in two studies, each study comprising of a series of simula­

tions. First, results are presented detailing the influence of pressure on the phase behaviour 

of liquid crystals at a constant mole fraction of x a  — 0.5 (section 5.2). Following this, in 

section 5.3 the determination of phase behaviour and structural properties of liquid crystal 

over a range of mole fractions is presented.

For ease of reading, a number of tables of observable averages are confined to 

Appendix A and B owing to the number of simulations.

5.2 Influence of pressure

The influence of pressure on the phase behaviour of liquid crystals has long been 

known experimentally. Both the nematic-smectic and isotropic-nematic transition temper­

atures increase by raising the system pressure; a pressure induced mesomorphism. More­

over, the slope d T ^ / d P  for the latter is greater which equates to a wider nematic phase 

at elevated pressures. The location of a wide nematic range would be beneficial for the 

study of the effect of concentration. There are a limited number of papers in the litera­

ture which report widening of the nematic phase under the influence of adiabatic volume 

fluctuations. Of these papers, Hashim et al [92] remarked on the lack of a nematic phase 

in a system of homogeneous 3:1 Gay-Berne molecules at a reduced pressure of (P*) < 1.0. 

Meanwhile, Mills and Cleaver [91] reported a small widening of a nematic phase in a sys-
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tem of 2:1 and 2.5:1 Generalised Gay-Berne molecules over a reduced pressure range of 

0.5 < {P*) < 2.0. Similarly, in a recent paper Bates [93] reports a widening of the nematic 

phase over 1.0 < (P*) < 2.0 for a homogeneous system of 4.4 Gay-Berne molecules with a 

novel intermolecular potential Gay-Berne parameterisation. More extensive studies of the 

dependence of the phase behaviour of homogeneous systems upon molecular length [94] and 

intermolecular strength [95] has been reported by de Miguel and co-workers. They report 

the growth of a stable SmA island in the phase diagrams of molecular lengths above 3:1.

The primary aim of this section is to select an appropriate reduced pressure from 

analysis of (T*)vs.(p*) and (P*)vs.{T*} phase behaviour diagrams which is then used for 

the subsequent concentration study. The secondary aim is to answer the following question; 

is there a stable SmA  phase in a mixture of 3.5:1 and 3:1 molecules? In keeping with the 

previous chapter, the same choice of Gay-Berne exponents were used. To this end, a series 

of simulations at different reduced pressures were undertaken. Each simulation consisted 

a 50:50 mixtures of 3.5:1 and 3:1 rod-like molecules (total of N  = 500), as in chapter 4, 

within the isoenthalpic-isobaric, constant-NPH, ensemble where the reduced pressure was 

taken to be one of the following values (P*) =  1.0,2.0,3.0,4.0 or 5.0.

5.2.1 S im ulation  details

The constant-NPH  ensemble can be constructed from a combination of isoen- 

thalpic and isothermal constraints, as described in chapter 3. For both species, the mass, 

m, was set to unity, and the reduced moment of inertia, I* =  / /oq =  4.0, whilst the Gay-
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Berne exponents were p  =  1 and v  =  2. The remaining GGB param eters are summarised in 

Table 3.1 of chapter 3. The potential cut-off was r* =  r c/oo =  4.5 and a neighbourhood list, 

of radius r„list =  5.1, was used to save computational time. The integration time-step was 

St* =  (e jf^ /o o )1/ ^  =  0.003. The external mass of the piston of M* = M o§m ~ l =  0.0019 

was arrived at from preliminary investigations where the frequencies of volume fluctuations 

were approximately equal to those of pressure fluctuations in a constant-N V E  system [82].

5.2 .2  O nset o f  orien tational order, Tj-n

Each series of simulations commenced with the molecules A and B  distributed 

randomly on an f.c.c. lattice at a reduced density of (p*) =  0.17. A relatively high reduced 

temperature of (T*) =  3.0 was employed for each simulation to melt the molecules off the 

lattice. The order parameters for individual simulations decreased to values of typically 

(S) ~  0.1. Each simulation was identified to be within an isotropic phase from exami­

nation of the pair distribution functions resolved in all directions, gall(r*) and parallel to 

the director, ^ ( r * )  which revealed no significant density waves. The second-rank orienta­

tional correlation function, {G ^ir*))  was found to decay to zero at large distances thereby 

establishing an isotropic phase at each pressure.

The onset of orientational order was signified by sizeable time-scale fluctuations of 

the order parameter, reduced density and reduced potential energy. Extended equilibration 

periods of typically 500,000 time-steps were required, proceeded by production runs of 

equal magnitude. Away from a transition, the distribution of an observable, 0 ,  will have a
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single (near-Gaussian) peak, $ (0 ) . For real systems of infinite size first-order transition are 

characterised by discontinuities in the first derivative of the free energy leading to ^-function 

singularities in the specific heat. However, for simulations such singularities do not occur 

due to the finite system size leading to finite peak height in the specific heat and the shift 

of the location of the maxima in a size dependent fashion. Although the specific heat is not 

calculated for this study, the fluctuations of the reduced potential energy diverged at the 

onset of orientational order. Close to first-order transitions the distribution &(d) will closely 

represent two overlapping Gaussians [96] where the system samples both  phases either side 

of the transition. Following the analysis of Berardi et al [97], normalised histograms of the 

order parameter S  were constructed to study the long time-scale orientational fluctuations. 

For ease of interpretation only the analysis of the simulation carried out at a reduced 

pressure of (P*) =  4.0 is presented in Table 5.1 and Figure 5.1. (Similar histogram analysis 

was performed on each simulation in the pressure study series). In common with the results 

presented in chapter 4 for the 50:50 mixtures within the constant-NVE, long molecules have 

a consistently higher value of (S ) than the short molecules as a consequence of the short 

molecules’ greater orientational freedom.

The skewness and kurtosis characterises the degree of asymmetry of the distribu­

tion around its mean. Close to a transition the distribution 4>(O ) would be expected to 

be skewed towards the transition reflected in a positive value of skewness (3rd moment). 

For this to be meaningful, the degree of skewness should be several times larger than its
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Order Parameter, S

8000 10000
Order Parameter, S

Figure 5.1: Order parameter evolution (left column) and normalised distribution functions 
(right column) for a 50:50 mixture of GGB rods with axial ratios of 3.5:1 (molecules 4̂) and 
3:1 (molecules B)  and reduced pressure of (P*) — 4.0. Order parameter resolved over all 
molecules (5) (+), (SA) (A) and (SB) (y ).

standard deviation. In practice this can be judged by comparing the skewness to the stan­

dard deviation of the skewness of an idealised Gaussian distribution, which is approximately 

y/\S]W s  where N s  is the number of samples. Similarly, the kurtosis needs to be several 

times larger than that of the standard deviation of the kurtosis of an idealised Gaussian 

distribution, which is approximately y/96/Ns-  Both estimates are presented in Table 5.1. 

At (T*) = 2.35 ±  0.04 there is some, but not conclusive, evidence of two overlapping peaks 

in 4>(S'i4) and $ ( S B). Both distributions are skewed towards values typical of orientational
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ordering although care has to be taken in the interpretation since the the distribution is 

limited to 0.0 < $ (£ ) < 1.0. Upon cooling to (T*) =  2.26 ±  0.05 orientational ordering 

was observed although not persisting indefinitely. The equilibrium period was extended to 

1,000,000 time-steps in an attem pt to study the long time-scale fluctuations. The $ (5 ) 

distribution widened considerably, as reflected in a negative kurtosis, and there is some 

evidence of overlapping peaks. Further extensive runs are required to resolve the nature 

of the peaks. Upon further cooling to {T*} = 1.98 ±  0.04 the order param eter and density 

spontaneously increased with an associated discontinuity in potential energy which is char­

acteristic of a first-order transition. The fluctuations of these observables was observed to 

be persistent and the phase was identified as nematic from the inspections of a non-zero 

limiting value of at large distances and the absence of significant density waves

within <7[|H(r*). Fluctuations in the reduced potential energy aided the location of the I -  

JVtransition temperatures and are presented in Table 5.2. Nematic ordering was observed 

upon cooling each of the remaining simulations.

5.2 .3  H igher ordered phase and m etastab ility , T̂ -sm

The temperature and pressure dependencies of (S ), (p*) and (U*) are displayed 

in Tables A .l through to A.5, Table 5.2 and within Figures 5.2, 5.3, 5.4, and 5.5. Before 

embarking on a qualitative discussion of the nematic phase tem perature range, the Tjt-sm 

phase boundaries are discussed in this section and their approximate locations are super-
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Reduced
Temperature

Order
Parameter

Mean Mean
Deviation

Variance Skewness 
y/15 /N s

Kurtosis
V 9 6 /N s

(T*) = 2 .35  ± 0 .04 (.Sa“) 0.124 0.039 0.002 10.61 2.03
{S A ) 0.146 0.045 0.003 9.81 0.41
( S B ) 0.115 0.036 0.002 11.87 4.17

(T*) =  2.26 ±  0.05 {SaU) 0.216 0.070 0.007 2.80 -6.46
( S A ) 0.244 0.078 0.009 2.97 -6.03
( S B ) 0.193 0.062 0.006 4.16 -5.81

Table 5.1: Histogram analysis of long time-scale orientational fluctuations close to the onset 
of orientational order for simulation at a reduced pressure of (P*) = 4 .0  (Refer to Figure 5.1). 
Where the number of samples N s  =  5000 for (T*) =  2.35 ±  0.04 and N s  = 10,000 for 
(T*) =  2.26 ±  0.05, each sample equivalent to 100 MD steps.

imposed on the various phase behaviour diagrams to aid the eye. This section is further 

subdivided into two sub-sections; 1.0 < (P*) < 3.0 (section 5.2.3.1) and 4.0 <  (P*) < 5.0 

(section 5.2.3.2).

Before discussing the phase behaviour diagrams, a salient feature of these diagrams 

is the behaviour of the each simulation at high order parameter, (S ) «  0.9. Close to first- 

order transitions a small system may experience van de Waals heating as a consequence of 

the system entering a metastable phase space region. A schematic diagram showing the 

temperature and volume relationship2 and corresponding Gibbs free energy as a function 

of temperature for a first-order transition a t constant pressure is shown in Figure 5.6. The 

line traced out by ABCDE represents the coexistence region where the Gibbs free energy

of the two phase are equal. Points B and D present the limits of metastability whereas

2The standard  thermodynamics literature commonly report pressure and volume relationship with 
isotherms of constant temperature. Figure 5.6 schematic was based on evaluating the van de Waals equation 
at constant temperature with isobars of constant pressure.
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Transition Pressure
<P *)

Temperature
<T*>

Transition ratio 
'I'N—SmA /  Tj-N

Density
<P*>

Energy
<£/*>

I - N 1.0 1.39(03) 0.203(001) -3.56(06)
2.0 1.73(04) - 0.223(001) -3.53(08)
3.0 1.98(04) - 0.242(001) -3.97(08)
4.0 2.22(05) - 0.248(001) -3.53(10)
5.0 2.46(05) - 0.255(001) -3.34(11)

N -S m A 1.0 1.33(03) 0.96 0.233(002) -5.55(07)
2.0 1.50(03) 0.87 0.259(001) -6.15(00)
3.0 1.61(04) 0.81 0.275(001) -6.55(08)
4.0 1.73(04) 0.78 0.284(001) -6.40(09)

Sm A-Sm B 1.0 1.28(03) - 0.249(002) -6.93(07)
2.0 1.44(03) - 0.273(001) -7.64(07)
3.0 1.59(04) - 0.284(001) -7.62(10)
4.0 1.63(04) - 0.292(001) -7.34(08)

N -S m B 5.0 1.80(06) - 0.298(001) -7.31(14)

Table 5.2: Approximate location of Tf-yy, T^-smA TsmA-SmB transition tem perature and 
estimations of the nematic-smectic-A transition strength [98] over the reduced pressure 
range 1.0 <  (P*) < 5.0.
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Figure 5.2: Temperature dependencies of a) order parameters, (S all) and b) reduced po­
tential energy, (U*) of constant-NPH  molecular dynamics simulations for 50:50 mixtures 
of GGB rods with axial ratios of 3.5:1 (molecules A) and 3:1 (molecules B ) over reduced 
pressure range 1.0 < (P*) < 5.0. Approximate location of phase boundaries are shown.
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Figure 5.3: Temperature dependencies of a) reduced densities, (p*) for mole fraction =  
0.5 over reduced pressure range 1.0 < (P*) < 5.0 and b) schematic representations of (T*) 
vs. (p*) phase diagram of GB fluid.
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Figure 5.4: Temperature dependencies of a) reduced densities, (p*) for mole fraction x a  =  
0.5 over reduced pressure range 1.0 < (P*) < 5.0 and b) schematic representations of (P*) 
vs. (T*) phase diagram of GB fluid and isobar of traced out by simulation.
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Figure 5.5: Pressure dependencies of reduced densities, (p*) for mole fraction x a  — 0.5 over 
reduced pressure range 1.0 < (P*) < 5.0

BCD is mechanical unstable. Recalling the reduced temperature is not constrained in the 

constant-NPH  ensemble, for this study it is unclear at what tem perature the simulations 

enter (AB) or leave (DE) the metastable region (the crosses over from one branch of G(T)  

to the other). Knowing the location of B and D would not be sufficient to locate T ^Sm  as 

the transition temperature is located where the areas enclosed by ABC and CDE are equal. 

For a large system size these enclosed areas will diminish and the transition tem perature 

will be become more apparent.

5.2.3.1 1.0 < (P*) < 3.0 s im u la tions

Upon further cooling (P*) =  1.0, 2.0 and 3.0 simulations, the following stable

phases were observed; I - N - S mA - S m B  (the identity of each phase is discussed below). The
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Figure 5.6: Temperature and volume relationship and corresponding Gibbs free energy as 
a function of temperature for a first-order transition at constant pressure.

3-dimensional representation of the isotropic, nematic, smectic-A and smectic-B phases are 

shown in Figure 5.7.

At higher densities each system underwent an apparently weak transition to a 

SmA  phase reflected in the discontinuity in reduced potential energies and densities. The 

Tjt-smA transition temperature moves to a higher density as the pressure is increased. Just 

below Tflf-smA the behaviour of g°[l(r*) showed no significant growth of transverse posi­

tional correlation and remained liquid-like (refer to Figure 5.8 for (P*) =  2.0); whereas, 

strong density waves parallel to the director were established. However, clearer indication 

is apparent in the six-fold in-plane bond correlation function gQll(r*) (equation 3.67) which 

approached zero at large distances clearly identifying SmA  phases. Analysis of the reduced 

potential energy fluctuations over 600,000 time-steps determined the stability of the SmA  

phase for both pressures (not shown). It has been previously demonstrated th a t a homoge-
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Figure 5.7: 3D visualisation of a) isotropic, b) nematic, c) smectic-A and d) smectic-B of a 
50:50 GGB rods mixture (represented as unit vectors) with axial ratios of 3.5:1 (thick lines) 
and 3:1 (thin lines) at a reduced pressure (P*) = 2.0
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Pair Distribution Functions 
<P*>=2.0

Distance / o Q

Figure 5.8: Identification of smectic-A and smectic-B phases, a) pair distribution functions,
b) in-plane six-fold bond orientation functions, c) and d) pair distribution functions resolved 
parallel and perpendicular to the director respectively at reduced pressure (P*) = 1.0.
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neous system of 3:1 molecules do not show a stable SmA  phase [94] whereas molecules with 

aspect ratios of greater or equal to 3.6:1 do however show a stable SmA  phase. This study 

is believed to be the first simulation to report a stable SmA  phase in a mixture of 3:1 and 

3.5:1 molecules. The nematic to smectic-A transition is commonly regarded as harder to 

measure because of the weak nature of the transition; which is shown to be true for these 

simulations. The order of the N -S m A  transition is estimated by the McMillan ratio [98] 

TN-SmA/Tj-Ni shown in Table 5.2, which considers the coupling between the nematic and 

smectic order parameters. When large fluctuations within the nematic order parameter 

are perm itted over a narrow nematic extent the phase transition is first order. A nematic 

phase of large extent, however, would result in the suppression of nematic order parameter 

thereby reducing the significance of the coupling so the transition becomes second order. 

The McMillan theory predicts that for a ratio Tn-Sttia/T i-n  < 0.89 the transition should 

be second order which therefore leads to the assumption tha t the (P*) =  1.0 is apparently 

weakly first-ordered. For (P *) — 2.0 and 3.0 simulations the McMillan ratio decreased with 

increased pressure, as reported experimentally [99], so the transition should be continuous. 

However, it must be noted that in spite of the considerable research activity over the past 

two decades the identity of the N -S m A  transition remains one of the principle unsolved 

problems in equilibrium statistical physics. In particularly, there has been a lot of contro­

versy of the theoretical predictions [51, 100, 101] which has spurred numerous experimental 

studies by Garland and co-workers [102, 103, 104, 105] and simulations by Frenkel and
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co-workers [106, 107, 108, 109, 110].

A third transition is apparent upon cooling the SmA  phase. The T s mA-SmB transi­

tions displays characteristic properties of a first-order process. The developing structure in 

gall(r *) an(j a weak split jn the 2nd correlation shell of gall(r*) indicate transverse positional 

correlation (Figures 5.8). Hexagonal ordering, as expected for a smectic-B, is evident in the 

six-fold bond orientational ordering within the layers persisting across length of simulation 

box. However, the smectic-B phase should possess a loss of long range positional order but 

not orientational ordering of the hexagonal crystals. Due to the finite size of the simulation 

box, it is hard to determine whether this is the case. In addition, the shift of the first peak 

in g±l(r*) to r* ~  0.6<ro is indicative of correlation between adjacent layers. The density 

range over which the SmA  phase is stable diminishes upon increasing the pressure (refer 

to Figure 5.5) indicating a small SmA island. It is therefore argued th a t the transition 

from the SmA  phase to the geometric symmetry of the SmB  phase would be more suited 

to a first-order process as a continuous second-ordered phase can not lead to a change in 

symmetry, as reported experimentally in great detail by Chao et al [111]. The existence of 

a N -S m A -S m B  triple point at a higher pressure and density is discussed in the following 

subsection.

5.2.3.2 4.0 <  (P*) <  5.0 s im u la tio n s

For the (P*) =  4.0 simulation, the following stable phases were observed; I -  

N -Sm A -Sm B .  The identity of each phase was, again, distinguished by examination of
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pair distribution functions and inlayer six-fold orientational correlation functions. The 

McMillan ratio T^-smA/Tj-N suggest that the transition should be second-order. There 

is some evidence of a knee in reduced potential energy verses tem perature relationship 

corresponding to the T^SmA  transition. Further cooling produced an apparent first-order 

TsmA-SmB  transition. It is argued tha t the limit of the smectic-A stability is approached 

as can be seen from the narrowing of the smectic-A island as a function of pressure (refer 

to Figure 5.5). For the (P*) = 5.0 simulation, there is an absence of a stable SmA  phase 

resulting in the following observered stable phases; I -N -S m B .  There is some evidence of a 

N -S m A  transition but the stability of the SmA  phase is questionable since the fluctuations 

in reduced potential energy grow after the ambiguous T^-smA transition tem perature (shown 

in Figure 5.9). On cooling, the system passes through close to the vicinity of the N -S m A -  

SmB  triple point, as inferred from the sizable amplitude and time-scale fluctuations of the 

reduced potential energy in comparison to lower pressure simulations.

5.2 .4  P h ase  behaviour diagram s

The temperature and pressure dependencies were used to construct phase be­

haviour diagrams from the approximate location of phase boundaries and are presented 

in Figures 5.3 and 5.4 with their corresponding schematic diagrams. It should be noted 

tha t all of these diagrams should be regarded as a slice through constant concentration and 

no attem pt is made within this section to determine how exactly the addition of an extra 

degree of freedom, namely concentration, would change these diagrams. This is the topic of
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the next study (section 5.3). The approximate location of the phase boundaries are shown; 

clearly reliability of the specific boundary locations has to be resolved by detailed specific 

heat calculations. Nevertheless, extrapolations of the phase boundaries show the I - N  slope 

of dTj-N/dP  to be larger than the equivalent N -S m  slope in accordance with experimen­

tal [112] and theoretical predictions of the Clausius-Clapeyron equation. This leads to an 

increased nematic range i.e. the temperature range over which the nematic phase is stable 

increases as the pressure is increased. The increased nematic range may be a consequence of 

the reduction of the molecules’ free space such tha t the smectic phase is suppressed and the 

system remains nematic. In addition, the greater slope of the I - N  phase boundary in com­

parison to the N -S m A  phase boundary suggests tha t the nematic phase may vanish at low 

pressures, {P*) < 1.0. Therefore the location of the I - N - S m  triple point, T0 is suggested 

to be in the vicinity of (T*) = 1.25 ±  0.10, (P*) = 0.75 ±  0.25 and (p*) = 0.21 ±  0.02.

In common with the results presented in chapter 4 for the 50:50 mixtures within 

the constant-N V E  ensemble, long molecules have a consistently higher value of (S) than the 

short molecules as a consequence of the short molecules’ greater orientational freedom. The 

difference in order of the long and short molecules is greater proceeding the I - N  transition 

and then decreases as the smectic phase is approached (Refer to Table A .l through to A.5). 

As a precursor to the smectic phase, density waves resolved parallel to the director for each 

molecular species are present in the nematic phase. This pre-smectic ordering is believed 

to be associated with the suppression of the smectic phase and arises from the competition
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between the two molecules of differing lengths.

5.2.5 Summary

In this study a series of simulations are reported characterising the behaviour of 

binary mixtures consisting of 3.5:1 and 3:1 Generalised Gay-Berne molecules at a fixed 

Xa =  0-5 concentration over a range of pressure 1.0 < (P*) < 5.0 within the constant-NPH  

ensemble. The binary mixture exhibits isotropic, nematic, smectic-A and smectic-B phases 

depending on the choice of pressure. This study is believed to be the first report of a sta­

ble SmA  phase in a mixture of 3:1 and 3.5:1 molecules. Phase diagrams are presented for 

(T*)vs.(p*) and (P*)vs.(T*). A small smectic-A island appears in the phase diagrams above 

(P*) =  1.0 which is bounded by a N -S m A -S m B  triple point at approximately (P*) cz 5.0. 

The phase boundaries show the I - N  slope of dTj-^ /dP  larger than the equivalent N -S m  

slope resulting in an increased nematic range in agreement with experimental data. Ex­

trapolation of the phase diagram suggests that the nematic may be absent at low pressures 

of (P*) < 1.0.

5.3 Influence of concentration

So far the discussion has been restricted to discussing fixed 50:50 mixtures of 

3.5:1 and 3:1 rod-like molecules. The remainder of this chapter examines the effect of 

concentration on the phase behaviour and structural properties of bidisperse liquid crystal.
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Much of the theoretical background of bidisperse liquid crystals are limited to rigid hard 

rods and are based around extensions of the Onsager theory developed in the mid-eighties by 

Lekkerkerker and co-workers [55, 56, 87, 57], Sluckin [61], and recently revisited by Mulder 

and co-workers [60, 113, 114, 59, 115, 116, 117] (refer to section 2.2 of chapter 2). However, 

there are a limited number of bidisperse simulations of hard (or soft) rod-like molecules in 

the literature. Of these, Stroobants [66, 67] investigated the effect of length dispersity on the 

stability of the smectic phase using parallel aligned bidisperse spherocylinders. Stroobants 

reported tha t the smectic phase is suppressed to higher densities and, for large deviations 

from monodispersity, is pre-empted by the columnar phase (refer to Figure 2.8 of chapter 2). 

More exotic biphasic ( / - / )  and triphasic (I - N - N ) coexistence phases have recently been 

studied by van Roij et al [118,115] using a binary mixture of rod-like molecules (colloids) and 

ideal needles each of extreme length-to-breadth ratios. Escobedo [119] and Mills [91] studied 

the I - N  coexistence region in bidisperse simulations where the constituted molecules had less 

extreme length-to-breadth ratios. The aforementioned simulations have their limitations. 

Aligned rod-like molecules of Stroobants’ simulations do not posses orientational freedom. 

Meanwhile, all four phase coexistence studies exploited the Gibbs ensemble and, as such, 

are limited to low densities. No bidisperse simulations to date have shown an extended 

nematic range (defined by T jv-sm — T/_at) which depends on concentration. It is the aim 

of this section to characterise the effect of a concentration on the phase behaviour and 

structural properties of a liquid crystal mixture.
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Before commencing the series of simulations, it was not clear whether the choice 

of constitute molecules would phase-separate as the composition of each mixture varies. 

In a homogeneous mixture held at constant temperature and pressure, the system will 

separate into two phase if the total Gibbs free energy of both phase configurations is less 

than tha t of the homogeneous mixture. W ithin an inhomogeneous mixture the condition 

for thermodynamic equilibrium of any mixture at constant tem perature and pressure the 

system still has to satisfy the condition that the Gibbs free energy is a minimum. The 

only difference which the introduction of several components makes is tha t the Gibbs free 

energy contains a greater number of variables and, as such, has a greater degree of phase 

space to explore [120]. In general, phase separation is governed by the competition between 

entropy of mixing and changes in energy associated with the energy of interactions between 

dissimilar and similar molecules. The entropy of mixing behaves in the same way as mixing 

two ideal gases. The energy of mixing is essentially independent of the tem perature but 

the entropic contribution is proportional to the tem perature and increasingly favours the 

mixed state as the temperature is raised.

In this section, the phase behaviour and structural properties are investigated for 

several systems of 3.5:1 and 3:1 rod-like molecules (total of N  =  500) at one of the following 

mole fractions, x a  =  0, 0.25, 0.75 and 1 each at a reduced pressure of (P*) =  5.0. The 

simulation at x a  =  0-5 is taken from the previous study and not repeated. The choice 

of reduced pressure should maximise the nematic range across the concentration range. It
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has been shown in the previous section tha t simulations performed at a reduced pressure 

of (P*) =  5.0 and mole fraction of xa  =  0.5 do not exhibit a smectic-A phase. Therefore, 

reappearance of such phases in the x a  vs. (T * }  phase diagram can be characterised as a 

concentration dependency and not pressure induced mesomorphism.

5.3 .1  S im ulation  deta ils

The simulation details for this investigation are identical to those used in sec­

tion 5.2.

5.3 .2  R esu lts  and analysis

The series of simulations were carried out in essentially the same manner as the 

previous study. Each starting configuration was generated at the appropriate mole fraction 

and commenced with the molecules A and B  distributed randomly on an f.c.c. lattice at 

a reduced density of (p*) =  0.17 and melted off the lattice at a relatively high reduced 

temperature of (T*) =  3.0. After establishing an isotropic phase for each system from 

examination of order parameter pair distribution and orientational correlation functions, 

each system was steadily cooled by reducing the rotational and translational velocities by 

a scaling factor typically of 0.9 with respect to the previous tem perature and by 0.95 close 

to transition temperatures. The temperature dependencies of order param eter, reduced 

potential energy and reduced density are shown in Figures 5.10 and 5.11 and in Tables B .l 

through B.4 of Appendix B and Table A.5 of Appendix A.
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These simulations share common salient features with those in the previous study 

and are briefly discussed here. The onset of orientational order was signified by sizeable 

time-scale fluctuations in order parameter, reduced potential energy and reduced density. 

Upon cooling each simulation showed a discontinuity in the aforementioned observables, 

characteristic of a first-order transition. The long time-scale fluctuations were observed 

to be persistent thus establishing a stable nematic phase. Throughout the nematic phase 

the long molecules had a greater order parameter than their smaller counterparts. This 

difference was greatest proceeding the I - N  transition and diminished prior to the N -S m  

transition.

5.3.3 C om parison o f  hom ogeneous 3:1 sim u lation  to  litera tu re

The exponents of the Gay-Berne parameterisation well depth function e(u^, u #, ta b )  

used in all simulations of chapters 4 and 5 differs from the original Gay-Berne parameter­

isation; =  1 and v  =  2 were used rather than fi =  2 and v  =  1 (refer to section 4.2 of 

chapter 4). The systems at the extremes of the concentration phase diagram, x a  == 0 and 

X a  — are homogeneous. A comparison can be drawn between the simulation at x a  — 0 

(monodisperse 3:1 rod-like molecules) and the constant-N V E  simulation of Luckhurst et 

al [85] at a reduced density of (p*) =  0.3. Equivalent reduced temperatures and densities 

from both simulations are shown in Table 5.3. No pressure data is reported by Luckhurst. 

Order parameters from Luckhurst’s simulation was estimated by linear extrapolation be­

tween two data points with the nematic phase and are shown to be in reasonable agreement
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(T*> <s>

A/"—-V
-3d
rV

</>*> P\l)
1.92(04) 0.60(03) 0.55 0.293(001) 0.3
1.82(04) 0.73(02) 0.65 0.302(001) 0.3

Table 5.3: Comparison between Luckhurst et al [85] c o n s t a n t - s i m u l a t i o n  (displayed 
with the suffix “L”) and results obtained from the x a  =  0 constant-NPH  simulation of this 
study.

with the x a  — 0 simulation.

5.3 .4  C oncentration  d ep en d en cy  on Tj_jv

Following the analysis of the previous study, the approximate location of transi­

tion temperatures for each mole fraction were determined by identifying discontinuities in 

reduced potential energies and densities, growth of increased correlation within pair distri­

bution functions and, in part, from studying fluctuations of the reduced potential energy 

(refer to Table 5.4). The transition temperature dependencies of each simulation were used 

to construct the phase behaviour diagram (the location of the transition are shown as a 

dotted grey lines on Figure 5.12). The I - N  transition dependence on concentration is in­

teresting. The transition temperature varies essentially linearly over 0 < x a  < 0-75 and 

then breaks from lineararity at x a  = 0*75. Two explanations are offered: a) The x a  ~  0.75 

simulation is not in thermodynamic equilibrium and does not reflect the true location of 

the I - N  location. This would not seem likely as after the transition long time-scale fluctu­

ations of the order parameters, reduced potential energy and density were observed to be
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Transition 
or Phase

Mole Fraction 
Xa

Temperature
(T*>

Density
<P*>

Energy
m

I - N 0.00 1.96(04) 0.287(001) -3.22(09)
0.25 2.19(05) 0.270(001) -3.21(10)
0.50 2.46(05) 0.255(001) -3.34(10)
0.75 2.70(06) 0.239(001) -3.23(13)
1.00 2.70(05) 0.232(001) -3.37(11)

SmA 0.25 1.63(03) 0.308(001) -6.16(09)
N -S m A 1.00 2.10(05) 0.264(001) -6.24(10)

Sm A-Sm B 0.25 1.60(04) 0.315(001) -6.87(07)
1.00 2.02(05) 0.275(001) -8.03(11)

N -S m B 0.00 1.47(03) 0.327(001) -6.18(09)
0.50 1.80(03) 0.298(001) -7.31(14)
0.75 2.01(06) 0.284(001) -7.82(15)

Table 5.4: Approximate location of T/_#, Tj^smA TsmA-SmB transition temperatures

persistent, b) The short molecules miscible (25%) within the greater number long molecules 

(75%) make no significant contributions to changing the kinetics of the system on the whole 

as evident from the temperature dependency of the reduced potential energy (Figures 5.10). 

This is backed up by mean field theory prediction [56] and Gibbs ensemble simulations of 

Mills et al [91] of the I - N  coexisting envelope (shown in the schematic of Figure 5.12). 

Although the simulation cannot trace the coexisting envelope outline, it is suggested tha t 

the I - N  transition temperature will reflect the upper envelope.
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5 .3 .5  P ostp on em en t o f S m ectic  P h ases and Layer Spacing

Before embarking on a qualitative discussion of the concentration dependency 

of the nematic range the location of the N -S m  transitions were determined by similar 

analysis previously described in section 5.2.3.1. In summary, the x a  =  0.00, 0.50 and 

0.75 simulations demonstrated the following stable phases I -N -S m B .  Whereas, the x a  =  

0.25 and 1.00 simulations revealed the following stable phases I -N - S m A - S m B  (refer to 

Figures 5.18 and 5.14). The possibility of an induced SmA  phase is discussed in the following 

section.

The location and nature of the N -S m B  transition in the concentration phase dia­

gram is of particularly interest. Theory predicts the postponement of the N -S m  transition 

to higher densities [61, 60] reflecting the fact tha t molecules of different lengths will interfere 

with the natural layering of the homogeneous smectic phases thus destabilising them with 

respect to the nematic phase. This was demonstrated by simulations of Stroobants’ [66, 67] 

and McGrother et al [121] but the effect of concentration was not established. The post­

ponement of the smectic phase to higher densities is clearly shown in Figure 5.11 as the 

mole fraction of molecule A (3.5:1 length-to-breadth ratio) is reduced. The following con­

jecture is made by the author: the postponement of the smectic phase to higher densities 

is achieved by,

• increasing the molecular dispersity, keeping the mixtures a t their equivalence point so 

tha t the partial volume fractions of both compounds are equal [66, 67],

102



CHAPTER 5. CONCENTRATION AND PRESSURE STUDY

• or by decreasing the mole fraction of the longer molecule, effectively reducing the 

systems free volume.

This conjecture is not surprising since both parameters, length dispersity and concentration, 

can be regarded as independent to each other in param eter space.

The x a  = 0.0 simulation (3:1 molecules) showed no evidence of a stable SmA  

phase, whereas the x a  =  1-0 simulation (3.5:1 molecules) indicates the presence of a narrow 

stable SmA  phase at (T*) =  2.05±0.04, (p*) =  0.280±0.001 and (U*) = —8.76±0.09 (refer 

to Figures 5.13 and 5.14). This results is consistent with the conclusion of Brown et al [94] 

that the SmA  phase is possibly ju st becoming stable as the molecular elongation increases to 

3.4:1 ratio (just below the molecules’ elongation used in this study). Brown et al employed 

the original Gay-Berne potential exponents. Considering tha t the mixture would disrupt 

the formation of smectic layers an alternative choice of Gay-Berne potential exponents were 

used in all simulations of Chapters 4 and 5 (refer to section 4.2). Nevertheless, the location 

of the SmA  phase for the x a  = 1*0 simulation is in agreement with the equation of state 

diagram of Brown et al [94].

The SmB  layer spacing immediately proceeding the transition also shows a cubic 

relationship similar to the T j t s m transition temperatures. The SmB  layer spacing is in good 

agreement with experimental results of Lydon and Coakley [30] (refer to section 2.1). At no 

concentration is the SmB  layer spacing greater than or less than tha t of the homogeneous 

systems x a  =  0.0 and x a  =  1*0 respectively. Figures 5.15 presents two extreme models
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suggested by Lydon and Coakley [30] for molecular packing arrangements of mixed smectic 

phases. In model a) the molecules are segregated into domains of like molecules, where 

each domain extends over several smectic layers. In model b) the molecules are randomly 

mixed within each smectic layer where, therefore, the smectic layer thickness relies on the 

competition between the two molecular species of differing lengths. However, a range of 

intermediate possibilities exists incorporating variations of domain size to a single layer and 

in-plane local ordering of an appreciable area. For this study, the smectic phases across 

the concentration phase diagrams are found to be fully commensurate. Therefore, it is 

suggested that the molecular packing arrangements of mixed smectic phases in this study 

are more suited to model b). This could account for a certain degree of local order seen in 

gall(r*) as previously reported in Chapter 4.
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Figure 5.15: Two extreme models for the molecular arrangements in a mixed smectic 
phase [30] Model a) segregated into domains of like molecules. Model b) randomly mixed 
smectic layers.

5.3 .6  Induced SmA P h ase  for xa =  0-25 sim ulation

One of the most intriguing phenomena reported experimentally [122, 123] and 

predicted theoretically [124] for the binary mixture of liquid crystals is the induced (or 

injected) smectic phase. According to Kyu et al [124], the question of whether or not an 

induced smectic phase occurs in a nematic mixture can be considered via the tem perature 

dependency of the coupling terms involving the cross-nematic and the cross-smectic order 

parameters. An induced smectic phase becomes stable when the cross-smectic order param­

eter, which has a similar characteristic to the McMillan smectic order parameter, becomes 

significant with respect to the homogeneous mesogens. The stability of the induced SmA  

phase at x a  =  0-25 was determined by analysis of reduced potential energy fluctuations 

(Figure 5.17). These fluctuations diminished near to the N -S m A  transition tem perature
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Figure 5.16: Concentration dependencies of smectic layer spacing at mole fractions x a  =  
0, 0.25, . . .  , 1 and reduced pressure of (P*) = 5.0 immediately proceeding SmB  transition.

of (T*) =  1.63 ±  0.03. The possibility that the induced SmA  phase is metastable cannot 

be ruled out. Just below T^.smA the behaviour of g±l(r*) showed no significant growth of 

transverse positional correlation and remained liquid like (refer to Figure 5.18). Whereas, 

strong density waves parallel to the director were established. However, clearer indication 

is apparent in the six-fold in-plane bond correlation function gQll{r*) which approached 

zero at large distances identifying a SmA phase at (T*) =  1.58 ±  0.03, (P*) = 4.99 ±  0.01, 

(p*) =  0.312 ±  0.001 and (U*) = —6.61 ±  0.08. The presence of an induced SmA  phase 

also gives rise to the existence of two N -S m A -S m B  triple points either side of x a  =  0.25, 

although the size of the induced SmA island is not resolved. This does open up future 

studies employing, say, a binary mixture of 3:1 and 4:1 molecular elongation in an attem pt 

to locate a stable induced SmA  island over a greater tem perature range.
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Figure 5.17: Temperature dependencies of reduced potential energy (+) and fluctuations 
analysis of reduced potential energy (x) for x a  = 0.25.

5.3.7 Extended N em atic Range

The combination of two or more “off the shelf” mesogens of varying chemical 

composition, geometric size and shape to attain  novel properties or phases unobtainable in 

either pure systems has long been exploited by experimental chemists. For example, ex­

tending the temperature range over which the nematic phase is stable increases the utility 

of the device. The concentration dependency on the nematic range is shown on Figure 5.19. 

An extended nematic range is clearly evident at approximately x a  — 0.75 i.e. the nematic 

range is greater than that of the homogeneous system of either molecules. It is believed 

that this is the first reported simulation of an extended nematic as a consequence of concen­

tration. The McMillan relationship of Tj^sm/Tl-N (Figure 5.20) reveals that concentration
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Figure 5.18: Identification of smectic-A and smectic-B phases, a) pair distribution functions,
b) in-plane six-fold bond orientation functions, c) and d) pair distribution functions resolved 
parallel and perpendicular to the director respectively at concentration x a  — 0.25.
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Figure 5.19: Concentration dependence of nematic range defined at Tj-w — T^-Sm- The 
nematic range at xa  — 0.75 greater than that of the homogeneous system of either molecule.

plays little role in the coupling between the nematic and smectic phase which, although 

rather surprising, is in agreement with experiments[125].

5.3.8 Summary

In this study a series of simulations are reported characterising the behaviour of 

binary mixtures over a range of concentrations 0.0 < Xa < 1-0 consisting of 3.5:1 and 3:1 

Generalised Gay-Berne molecules at a fixed pressure (P*) = 5.0 within the constant-iVP# 

ensemble. The binary mixture exhibits isotropic, nematic, smectic-A, induced smectic-A 

and smectic-B phases depending on the choice of concentration. The x a  =  1-0 simulation 

(3.5:1 molecules) indicates the presence of a narrow stable SmA  phase consistent with 

recent understanding that the SmA phase just becomes stable as the molecular elongation

0.25 0.5 0.75
Mole Fraction, %A
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Figure 5.20: Concentration dependence of the McMillan ratio.

is greater or equal to 3.4:1 length to breadth ratio. More intriguing is the existence of a 

narrow induced SmA phase at x a  — 0.25. This is believed to be the first simulation to 

report an induced SmA  phase in a binary mixture of liquid crystals.

The concentration dependency phase diagram of the transition temperatures is 

presented. The I - N  transition temperature portrays the upper limit of the coexisting 

envelope. The postponement of the N - S m  transition to higher densities reflects the fact 

that molecules of different lengths will interfere with the natural layering of the homogeneous 

smectic phases thus destabilising them with respect to the nematic phase. The following 

conjecture is offered; the postponement of the smectic phase to higher densities is achieved 

by increasing the molecular dispersity or by decreasing the mole fraction of the longer 

molecule. At no concentration is the SmB  layer spacing greater or less than that of the

111



CHAPTER 5. CONCENTRATION AND PRESSURE STUDY

either homogeneous systems.

An extended nematic range is clearly evident at approximately x a  — 0-75 where 

the nematic range is greater than that of the homogeneous system of either molecules 

thereby successfully demonstrating the acquisition of a property unobtainable in either 

pure systems. The McMillan relationship of Tn-stti/T i-n  reveals tha t concentration plays 

little role in the coupling between the nematic and smectic phase.

5.4 Concluding Remarks

The main difficulties arising from these studies are associated with the increased 

computational inefficiency of the constant-NPH  ensemble with respect to the constant-N VE  

ensemble. The onset of phase transitions were signified by sizeable time-scale fluctuations 

of the order parameter, reduced density and reduced potential energy requiring extended 

equilibration periods of typically 600,000 simulation time-steps. However, it was not uncom­

mon for equilibration periods too extended to over 1,000,000 simulation time-steps where 

the system sampled both sides of the transition. In addition, the absence of a tem perature 

constraint of the ensemble resulted in van der Waals heating in the vicinity of the N -S m  

transitions. Although at first unwelcome, the physical interpretation was appreciated and 

did not detract attention from either study.

The conclusions gained from both studies advanced the understanding of the phase 

behaviour of binary liquid crystal mixtures. It is reassuring to obtain an extended nematic
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range greater than tha t of the homogeneous system of either molecules. Moreover, it was 

heartening to gather evidence of an induced smectic-A phase in the concentration phase 

diagram.

Clearly more work has to be undertaken to complete the picture of phase behaviour 

and structural properties of binary liquid crystal mixtures. Thus, the following items are 

offered:

• Perform future studies in the constant-APT ensemble in order to remove van de Waals 

heating or alternatively increase the system size to minimise the heating effect.

• A judicious choice of constituent molecules leading to increased smectic-A stability, 

columnar phases and/or smectic layer spacing greater than of the homogeneous system 

of either molecules.

• Determination of the Sm A-Sm B  transitions order via specific heat calculations.

113



Chapter 6

Conclusions and Future Work

Liquid crystal mixtures are not only of physical interest but also play an impor­

tant role in many applications. The current study allowed the investigation of bidisperse 

liquid crystals on such properties as the effect of length dispersity, concentration and pres­

sure. Despite the relative simplicity of the model, the results are in good agreement with 

experimental and theoretical predictions. These results go some way to improving the 

understanding of this field.

6.1 Concluding remarks

The constant-N VE  simulation of a 50:50 mixture presented in Chapter 4 exhibits 

isotropic, nematic and smectic phases with the I - N  phase boundary not clearly defined. 

Pre-smectic ordering precedes the N -S m  phase transition for a considerable tem perature 

range, which is attributed to competition between two different density waves of the same
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wavelength but different phases. Measurements of <7||(r*) resolved for the individual species 

supports this hypothesis. The smectic phase is randomly mixed and fully commensurate in 

spite of the different local ordering observed for the two molecular species. The (S ) order 

parameter is consistently higher for the longer of the molecule types throughout the ordered 

phases. The difference is greatest in the nematic region and then decreases with decrease 

in temperature. The results demonstrate that the Generalised Gay-Berne intermolecular 

potential offers a computationally efficient potential, and appears, therefore, to be a viable 

route for studying multicomponent and polydisperse systems.

Chapter 5 aimed to achieve greater understanding of the effect of pressure and 

concentration of liquid crystal mixtures. The binary mixtures exhibit isotropic, nematic, 

smectic-A, induced smectic-A and smectic-B phases depending on the choice of pressure 

and concentration. Phase diagrams are presented for both studies.

In a binary mixture, the results presented in Chapter 5 indicate th a t the tempera­

ture range over which the nematic phase is stable can be extended by elevating the system 

pressure and/or by choice of concentration. The latter method is of significant technological 

importance since a nematic range can be obtained which is greater than th a t of the ho­

mogeneous system of either molecules thereby acquiring a property unobtainable in either 

pure system.

The smectic-A phase appears in both the (T*) vs. (P*) (section 5.2) and (T*) vs. x a  

(section 5.3) phase diagrams. The x a  — 1*0 simulation (3.5:1 molecules) indicates the
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presence of a narrow stable SmA  phase consistent with recent understanding that the SmA  

phase just becomes stable as the molecular elongation is greater or equal to 3.4:1 length 

to breadth ratio. This work advances current understanding by successfully demonstrating 

tha t a stable smectic-A island exists for x a  — 0.50 simulations depending on the choice of 

pressure. More intriguing is the existence of a narrow induced SmA  phase at x a  =  0.25. 

The question of whether or not an induced smectic phase occurs in a nematic mixture can 

be considered via the temperature dependence of the coupling terms involving the cross­

nematic and the cross-smectic order parameters. This is believed to be the first simulation 

to report an induced SmA  phase in a binary mixture of liquid crystals.

6.2 Final Remarks and Future work

When considering the thesis as a whole it has been shown th a t a relatively sim­

ple model of liquid crystal mixtures can reveal a rich number of phases and properties 

unobtainable in either pure system. In terms of future work, two separate studies could 

be immediately performed. Firstly, changing the degree of length dispersity could yield 

interesting results. Future work could consider mixtures of non-nematic mesogens or non­

nematic and smectic-A mesogens. Secondly, the use of different Generalised Gay-Berne 

exponents which do not favour the side-by-side configurations in comparison to the cross 

and tee configurations may have an profound effect on the smectic-A island and induced 

smectic-A phase reported in this study.
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There are also numerous modification which can be applied to the model. First 

of all, the absence of a temperature constraint of the ensemble resulted in van der Waals 

heating. Clearly, performing these studies within the constant-N P T  ensemble would be 

beneficial in locating temperature transitions. Secondly, it is proposed tha t replacement of 

the current mechanical change in simulation volume with a stochastic volume change would 

hopefully aid movement through phase space.
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APPENDIX A. APPENDIX OF SECTION 5.2 OF CHAPTER 5

A . l  ( P * )  =  1.0

< n (,Sall) <^> <s*> t f A) -  (SB) (■P *) <P*> (U*)

2.09(06) 0.05(02) 0.07(02) 0.06(02) 0.007(028) 1.00(10) 0.157(003) -1.94(05)
1.83(03) 0.06(02) 0.08(02) 0.07(02) 0.008(029) 1.00(08) 0.169(002) -2.25(05)
1.63(03) 0.07(02) 0.09(03) 0.08(02) 0.010(035) 1.00(08) 0.181(002) -2.60(05)
1.47(03) 0.12(04) 0.14(05) 0.11(03) 0.030(057) 1.00(08) 0.192(002) -3.02(05)
1.39(03) 0.34(05) 0.38(05) 0.30(05) 0.088(071) 1.00(09) 0.202(002) -3.56(06)
1.38(03) 0.59(03) 0.65(03) 0.53(04) 0.115(048) 1.00(09) 0.213(002) -4.23(07)
1.35(03) 0.72(02) 0.76(02) 0.67(02) 0.090(029) 1.00(10) 0.223(002) -4.85(06)
1.33(03) 0.80(01) 0.84(01) 0.76(02) 0.076(023) 1.00(10) 0.233(002) -5.55(07)
1.31(03) 0.86(01) 0.89(01) 0.83(01) 0.058(017) 1.00(11) 0.242(002) -6.26(07)
1.28(03) 0.89(01) 0.91(01) 0.87(01) 0.039(012) 1.00(11) 0.250(002) -6.94(06)
1.31(03) 0.92(00) 0.94(00) 0.90(01) 0.030(008) 1.00(13) 0.260(002) -7.77(07)
1.28(03) 0.94(00) 0.95(00) 0.93(01) 0.023(006) 1.00(13) 0.270(001) -8.49(06)
1.22(03) 0.95(00) 0.96(00) 0.94(00) 0.018(005) 1.00(14) 0.279(002) -9.07(06)
1.16(02) 0.96(00) 0.97(00) 0.96(00) 0.014(004) 1.00(15) 0.289(001) -9.64(05)
1.06(02) 0.97(00) 0.98(00) 0.96(00) 0.013(003) 1.00(15) 0.296(001) -10.13(05)

Table A .l: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A) and 3:1 (molecules B)  a t mole fraction x a  — 0.5 and reduced pressure 
(P*) =  1.0. Columns key: (T*) reduced temperature, (S all) order param eter resolved 
over all molecules, (S A) molecules’ A order parameter, (S B) molecules’ B  order parameter 
and (SA) — (SB) order parameter difference. (P*) reduced pressure (no long range correc­
tion), (p*) reduced density and (U*) reduced potential energy per molecule (no long range 
correction),
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A.2 ( P * )  =  2.0

<T*) (Sal1) <sA> (SB) (SA) -  (S B) <P*> </>*> (U*)

2.36(05) 0.07(02) 0.08(02) 0.07(02) 0.010(033) 2.00(15) 0.192(002) -2.28(06)
2.10(04) 0.08(02) 0.09(03) 0.08(02) 0.013(036) 1.99(14) 0.202(002) -2.61(06)
1.85(03) 0.11(03) 0.13(04) 0.10(03) 0.028(049) 2.00(12) 0.213(001) -3.01(06)
1.73(04) 0.30(08) 0.34(09) 0.27(08) 0.071(118) 2.00(12) 0.223(001) -3.53(08)
1.70(04) 0.60(03) 0.65(03) 0.55(03) 0.098(044) 1.99(15) 0.232(002) -4.23(07)
1.63(04) 0.71(02) 0.76(02) 0.67(03) 0.088(034) 1.99(15) 0.241(002) -4.83(07)
1.55(03) 0.79(01) 0.83(01) 0.76(02) 0.064(022) 2.00(16) 0.250(002) -5.45(07)
1.50(03) 0.85(01) 0.87(01) 0.82(01) 0.051(015) 2.00(14) 0.259(001) -6.15(07)
1.46(03) 0.89(01) 0.91(01) 0.87(01) 0.034(011) 2.00(15) 0.265(001) -6.90(07)
1.44(03) 0.91(00) 0.93(00) 0.90(01) 0.030(009) 2.00(16) 0.273(001) -7.64(07)
1.48(03) 0.94(00) 0.95(00) 0.93(01) 0.021(006) 2.00(18) 0.283(001) -8.47(07)
1.39(03) 0.95(00) 0.96(00) 0.94(00) 0.017(005) 2.00(18) 0.291(001) -9.08(06)
1.29(03) 0.96(00) 0.97(00) 0.95(00) 0.015(004) 1.99(17) 0.299(001) -9.62(06)
1.18(02) 0.97(00) 0.97(00) 0.96(00) 0.013(003) 2.00(17) 0.305(001) -10.11(05)

Table A.2: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A) and 3:1 (molecules B)  at mole fraction x a  — 0.5 and reduced pressure 
(P*) =  2.0. Columns key: as of Table A .l
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A .3 ( P * )  =  3.0

CT *) (,Sall) {SA) (SB) (SA) -  (SB) (P*) (P*) (U*)

2.26(04) 0.09(03) 0.11(03) 0.09(03) 0.018(042) 2.99(16) 0.223(001) -2.75(07)
2.03(04) 0.19(05) 0.22(06) 0.17(05) 0.049(075) 3.00(17) 0.232(001) -3.21(07)
1.98(04) 0.55(03) 0.60(03) 0.50(04) 0.101(049) 3.00(16) 0.242(001) -3.97(08)
1.90(04) 0.70(02) 0.74(02) 0.66(03) 0.083(033) 3.00(18) 0.251(001) -4.61(07)
1.78(04) 0.78(01) 0.81(01) 0.75(02) 0.066(023) 2.99(18) 0.260(001) -5.24(07)
1.67(03) 0.83(01) 0.86(01) 0.81(01) 0.051(017) 2.99(18) 0.268(001) -5.84(07)
1.61(03) 0.87(01) 0.89(01) 0.86(01) 0.037(013) 3.00(18) 0.275(001) -6.55(08)
1.54(03) 0.90(01) 0.92(01) 0.89(01) 0.027(010) 2.99(18) 0.282(001) -7.20(07)
1.56(04) 0.93(00) 0.94(00) 0.92(01) 0.021(007) 2.99(20) 0.292(001) -8.31(08)
1.48(03) 0.94(00) 0.95(00) 0.93(01) 0.023(006) 2.99(20) 0.296(001) -8.64(07)
1.37(03) 0.95(00) 0.96(00) 0.94(00) 0.019(005) 3.00(20) 0.303(001) -9.21(06)
1.28(03) 0.96(00) 0.97(00) 0.95(00) 0.014(004) 2.99(19) 0.309(001) -9.73(06)
1.18(02) 0.97(00) 0.97(00) 0.96(00) 0.011(003) 3.00(20) 0.314(001) -10.18(05)

Table A.3: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A)  and 3:1 (molecules B)  at mole fraction x a  =  0-5 and reduced pressure 
(P*) =  3.0. Columns key: as of Table A .l
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A A  ( P * )  =  4.0

c n (Sal1) {s A) (SB) (SA) -  (SB) <P*> (P*) (U*)

2.35(04) 0.13(03) 0.15(04) 0.12(03) 0.038(053) 4.00(19) 0.239(001) -2.89(08)
2.26(05) 0.24(06) 0.27(07) 0.21(06) 0.060(092) 3.99(20) 0.243(001) -3.16(09)
2.22(05) 0.42(06) 0.47(06) 0.38(06) 0.094(085) 3.99(20) 0.248(001) -3.53(10)
2.20(04) 0.57(03) 0.62(03) 0.52(04) 0.102(048) 3.99(20) 0.252(001) -3.94(09)
2.15(04) 0.66(02) 0.70(03) 0.61(03) 0.089(037) 3.99(20) 0.257(001) -4.29(09)
2.08(04) 0.71(02) 0.75(02) 0.67(02) 0.081(032) 4.00(22) 0.261(001) -4.60(09)
1.97(04) 0.78(01) 0.81(01) 0.75(02) 0.063(023) 3.99(21) 0.269(001) -5.14(08)
1.87(04) 0.82(01) 0.84(01) 0.79(02) 0.052(019) 3.99(21) 0.274(001) -5.53(08)
1.79(04) 0.85(01) 0.87(01) 0.82(01) 0.044(015) 3.99(21) 0.279(001) -5.94(08)
1.73(04) 0.87(01) 0.89(01) 0.85(01) 0.038(013) 3.99(22) 0.284(001) -6.39(09)
1.68(04) 0.89(01) 0.91(01) 0.88(01) 0.030(010) 3.99(22) 0.288(001) -6.87(08)
1.63(04) 0.91(00) 0.92(01) 0.89(01) 0.026(009) 3.99(21) 0.292(001) -7.34(08)
1.77(05) 0.93(00) 0.94(00) 0.92(01) 0.022(007) 3.99(24) 0.294(001) -7.96(09)
1.73(04) 0.94(00) 0.95(00) 0.93(00) 0.019(006) 3.99(23) 0.300(001) -8.46(07)
1.65(03) 0.95(00) 0.96(00) 0.94(00) 0.018(005) 3.99(24) 0.304(001) -8.87(07)
1.56(03) 0.95(00) 0.96(00) 0.95(00) 0.015(005) 3.99(24) 0.309(001) -9.24(07)

Table A.4: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A)  and 3:1 (molecules B)  a t mole fraction x a  =  0.5 and reduced pressure 
(P*) =  4.0. Columns key: as of Table A .l
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A .5 ( P * )  =  5.0

T) {Sal1} (SA) (SB) (^> -  (sB) (P*) (P*) (u*)

2.63(05) 0.12(04) 0.13(04) 0.11(03) 0.022(053) 4.99(22) 0.246(001) -2.64(09)
2.54(05) 0.15(05) 0.17(06) 0.13(04) 0.040(072) 4.99(23) 0.249(001) -2.80(09)
2.46(05) 0.22(07) 0.24(08) 0.19(06) 0.050(100) 4.99(23) 0.252(001) -2.99(10)
2.46(05) 0.43(05) 0.47(06) 0.38(05) 0.090(077) 4.99(22) 0.255(001) -3.34(10)
2.44(05) 0.54(03) 0.59(03) 0.50(03) 0.090(046) 4.98(24) 0.258(002) -3.66(10)
2.40(05) 0.61(03) 0.66(03) 0.57(03) 0.092(043) 4.99(25) 0.261(002) -3.93(09)
2.35(05) 0.65(02) 0.70(02) 0.61(03) 0.085(038) 4.99(23) 0.264(001) -4.16(09)
2.31(04) 0.70(02) 0.74(02) 0.66(02) 0.084(030) 4.99(24) 0.267(001) -4.41(09)
2.26(05) 0.73(02) 0.77(02) 0.70(02) 0.070(029) 4.99(24) 0.270(001) -4.62(09)
2.20(05) 0.76(01) 0.79(02) 0.73(02) 0.066(025) 4.99(25) 0.273(001) -4.83(09)
2.15(04) 0.78(01) 0.81(01) 0.75(02) 0.059(023) 4.98(25) 0.276(001) -5.03(08)
2.09(04) 0.80(01) 0.83(01) 0.77(01) 0.054(019) 4.98(24) 0.279(001) -5.22(08)
2.04(04) 0.82(01) 0.84(01) 0.79(01) 0.050(019) 4.99(24) 0.281(001) -5.40(08)
1.99(04) 0.83(01) 0.85(01) 0.81(01) 0.049(017) 4.99(24) 0.284(001) -5.58(08)
1.93(04) 0.84(01) 0.86(01) 0.82(01) 0.043(016) 4.99(25) 0.286(001) -5.77(08)
1.85(04) 0.87(01) 0.89(01) 0.85(01) 0.038(014) 4.99(24) 0.291(001) -6.19(09)
1.80(04) 0.89(01) 0.90(01) 0.87(01) 0.031(011) 4.99(24) 0.295(001) -6.66(09)
1.80(06) 0.91(01) 0.92(01) 0.90(01) 0.025(010) 4.99(24) 0.298(001) -7.31(14)
1.90(04) 0.93(00) 0.94(00) 0.92(01) 0.020(007) 4.98(26) 0.303(001) -8.17(08)
1.92(05) 0.93(00) 0.94(00) 0.92(01) 0.020(007) 4.99(25) 0.301(001) -7.91(10)
1.81(04) 0.94(00) 0.95(00) 0.93(00) 0.018(006) 4.99(26) 0.308(001) -8.56(08)
1.71(03) 0.95(00) 0.96(00) 0.94(00) 0.016(005) 4.99(27) 0.312(001) -8.95(07)
1.62(03) 0.96(00) 0.96(00) 0.95(00) 0.015(004) 4.99(27) 0.316(001) -9.30(07)

Table A.5: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A) and 3:1 (molecules B)  at mole fraction x a  — 0-5 and reduced pressure 
{P*) =  5.0. Columns key: as of Table A .l
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APPENDIX B. APPENDIX OF SECTION 5.3 OF CHAPTER 5

B .l  XA =  0 .0

<T*> (Sal1) (SA) (SB) (.P *> (P*) (U*)

2.80(05) 0.06(02) 0.00(00) 0.06(02) 4.99(24) 0.256(002) -1.92(08)
2.44(04) 0.08(02) 0.00(00) 0.08(02) 4.99(22) 0.266(001) -2.24(07)
2.16(04) 0.09(03) 0.00(00) 0.09(03) 4.99(22) 0.275(001) -2.55(07)
1.96(04) 0.40(06) 0.00(00) 0.40(06) 4.99(21) 0.287(001) -3.22(09)
1.93(04) 0.60(03) 0.00(00) 0.60(03) 4.99(23) 0.293(001) -3.72(08)
1.83(04) 0.73(02) 0.00(00) 0.73(02) 4.99(24) 0.302(001) -4.30(07)
1.69(03) 0.80(01) 0.00(00) 0.80(01) 4.99(23) 0.310(001) -4.80(07)
1.56(03) 0.84(01) 0.00(00) 0.84(01) 5.00(23) 0.318(001) -5.28(07)
1.48(03) 0.88(01) 0.00(00) 0.88(01) 4.99(24) 0.325(001) -5.87(08)
1.48(04) 0.89(01) 0.00(00) 0.89(01) 5.00(23) 0.327(001) -6.18(09)
1.62(03) 0.92(00) 0.00(00) 0.92(00) 4.99(25) 0.332(001) -6.93(07)
1.50(03) 0.94(00) 0.00(00) 0.94(00) 4.99(25) 0.339(001) -7.45(06)
1.38(03) 0.95(00) 0.00(00) 0.95(00) 4.99(25) 0.345(001) -7.90(06)

Table B .l: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A)  and 3:1 (molecules B)  a t mole fraction x a  — 0.0 and reduced pressure 
(P*) =  5.0. Columns key: (T *) reduced temperature, (Sal1) order param eter resolved 
over all molecules, (S A) molecules’ A order parameter, (SB) molecules’ B  order parameter 
and (S A) — (SB) order parameter difference. (P*) reduced pressure (no long range correc­
tion), (p*) reduced density and (U*) reduced potential energy per molecule (no long range 
correction),
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B.2 XA =  0.25

< n (Sal1) {SA) <s*> <P*> CP*) (17*)

3.04(05) 0.06(02) 0.10(03) 0.07(02) 4.99(25) 0.242(002) -1.94(09)
2.66(05) 0.08(02) 0.11(03) 0.08(02) 4.99(24) 0.252(001) -2.28(08)
2.36(04) 0.11(03) 0.15(04) 0.11(03) 4.99(22) 0.261(001) -2.64(08)
2.19(05) 0.36(07) 0.42(08) 0.34(07) 4.99(23) 0.270(001) -3.21(11)
2.13(04) 0.64(03) 0.71(03) 0.62(03) 4.99(23) 0.278(001) -3.98(09)
2.00(04) 0.74(02) 0.79(02) 0.73(02) 4.99(23) 0.287(001) -4.56(08)
1.87(04) 0.80(01) 0.84(01) 0.79(01) 4.99(23) 0.295(001) -5.06(07)
1.73(03) 0.84(01) 0.88(01) 0.83(01) 5.00(24) 0.302(001) -5.57(07)
1.63(04) 0.88(01) 0.90(01) 0.87(01) 4.99(23) 0.309(001) -6.16(09)
1.58(03) 0.90(01) 0.92(01) 0.89(01) 4.99(23) 0.312(001) -6.61(08)
1.69(04) 0.92(00) 0.94(01) 0.92(00) 4.99(26) 0.317(001) -7.43(08)
1.62(03) 0.93(00) 0.95(01) 0.93(00) 4.99(26) 0.321(001) -7.82(07)
1.53(03) 0.94(00) 0.96(00) 0.94(00) 4.99(25) 0.325(001) -8.16(07)
1.45(03) 0.95(00) 0.96(00) 0.95(00) 4.99(24) 0.329(001) -8.46(06)
1.35(03) 0.95(01) 0.96(01) 0.95(01) 4.98(27) 0.331(003) -8.70(11)

Table B.2: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A) and 3:1 (molecules B)  at mole fraction x a  =  0*25 and reduced pressure 
(P*) =  5.0. Columns key: as Table B .l
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B.3 x a  =  0.5

Please refer to Table A.5 of Appendix A
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B.4 x a  =  0.75

(T*> (Sal1) (SA) (SB) (P*> (P*) (U*)

4.17(08) 0.06(02) 0.07(02) 0.08(03) 4.98(28) 0.206(002) -1.56(11)
3.47(06) 0.07(02) 0.08(02) 0.09(03) 4.98(25) 0.219(001) -2.04(10)
2.95(05) 0.11(03) 0.12(04) 0.11(03) 4.99(24) 0.231(001) -2.56(10)
2.79(05) 0.15(05) 0.16(05) 0.14(04) 4.99(23) 0.235(001) -2.81(10)
2.70(06) 0.27(09) 0.29(09) 0.24(07) 4.98(23) 0.239(001) -3.11(12)
2.71(06) 0.34(07) 0.36(08) 0.29(07) 4.99(23) 0.240(001) -3.23(13)
2.68(06) 0.54(04) 0.57(04) 0.47(05) 5.00(24) 0.245(001) -3.75(11)
2.64(06) 0.62(03) 0.64(03) 0.55(04) 4.99(24) 0.248(001) -4.05(11)
2.62(05) 0.66(02) 0.68(02) 0.59(04) 5.00(24) 0.250(001) -4.22(10)
2.54(05) 0.72(02) 0.74(02) 0.66(03) 4.98(24) 0.254(001) -4.61(09)
2.49(05) 0.74(02) 0.76(02) 0.68(03) 4.99(24) 0.256(001) -4.77(09)
2.44(05) 0.76(02) 0.78(02) 0.71(03) 4.99(24) 0.259(001) -4.95(09)
2.31(04) 0.80(01) 0.82(01) 0.76(02) 4.98(24) 0.265(001) -5.42(09)
2.14(04) 0.85(01) 0.86(01) 0.82(02) 4.99(24) 0.272(001) -6.07(09)
2.03(04) 0.89(01) 0.90(01) 0.86(01) 4.98(25) 0.279(001) -6.85(11)
2.01(06) 0.92(01) 0.92(00) 0.90(01) 4.99(25) 0.284(001) -7.82(15)
2.11(05) 0.94(00) 0.94(00) 0.92(01) 4.98(26) 0.289(001) -8.67(11)
2.03(04) 0.95(00) 0.95(00) 0.93(01) 4.98(27) 0.294(001) -9.21(09)
1.93(04) 0.95(00) 0.96(00) 0.94(00) 4.99(26) 0.298(001) -9.62(08)
1.83(04) 0.96(00) 0.96(00) 0.95(00) 4.99(27) 0.302(001) -10.01(08)
1.71(03) 0.96(00) 0.97(00) 0.95(01) 4.98(28) 0.305(002) -10.39(09)

Table B.3: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A) and 3:1 (molecules B)  at mole fraction x a  =  0-75 and reduced pressure 
(P*) =  5.0. Columns key: as Table B .l
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B.5 xa =  1.0

cn (Sal1) (SA) (S*> (P*) (P*) (U*)

3.15(06) 0.08(03) 0.08(03) 0.00(00) 4.99(26) 0.214(001) -2.08(10)
2.79(05) 0.14(04) 0.14(04) 0.00(00) 4.98(23) 0.223(001) -2.51(09)
2.71(05) 0.20(06) 0.20(06) 0.00(00) 4.99(24) 0.226(001) -2.70(10)
2.70(06) 0.53(04) 0.53(04) 0.00(00) 5.00(24) 0.231(001) -3.37(11)
2.58(05) 0.71(02) 0.71(02) 0.00(00) 4.99(25) 0.240(001) -4.17(10)
2.40(05) 0.79(01) 0.79(01) 0.00(00) 4.99(25) 0.249(001) -4.85(09)
2.22(04) 0.84(01) 0.84(01) 0.00(00) 4.98(26) 0.257(001) -5.50(09)
2.10(05) 0.88(01) 0.88(01) 0.00(00) 4.99(26) 0.264(001) -6.24(10)
2.03(04) 0.91(01) 0.91(01) 0.00(00) 4.99(26) 0.269(001) -7.01(10)
2.02(05) 0.93(00) 0.93(00) 0.00(00) 4.99(26) 0.275(001) -8.03(11)
2.05(04) 0.95(00) 0.95(00) 0.00(00) 4.99(26) 0.280(001) -8.76(09)
1.96(04) 0.96(00) 0.96(00) 0.00(00) 4.98(27) 0.284(001) -9.23(08)
1.85(04) 0.96(00) 0.96(00) 0.00(00) 4.98(28) 0.289(001) -9.65(08)
1.75(03) 0.97(00) 0.97(00) 0.00(00) 4.98(28) 0.292(001) -10.03(07)

Table B.4: Molecular dynamics simulation results of GGB rods with axial ratios of 3.5:1 
(molecules A)  and 3:1 (molecules B)  a t mole fraction x a  — 1*0 and reduced pressure 
(P*) = 5.0. Columns key: as Table B .l
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