
Message passing: How software engineers use talk.

BATES, Christopher David.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19328/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19328/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Sheffield Hallam University
Learning and Information Serv ices

Adsetts Centre, City C am pus
Sheffield S1 tW D

R EFEREN CE

ProQuest Number: 10694209

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10694209

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Message Passing - How Software
Engineers Use Talk

Christopher David Bates

A thesis subm itted in partial fulfillment of the requirements of
Sheffield Hallam University

for the degree of Doctor of Philosophy

October 22, 2014

Dedication

I would like to dedicate this thesis to my mother Margaret, to my
late father George, to my wife Julie and our wonderful daughters

Sophie and Faye.

Acknowledgements

I would like to acknowledge the support and help I've had from
my supervisory team.

Dr. Kathy Doherty has been an inspirational guide into the world
of ethnomethodology.

Dr. Karen Grainger has given invaluable help w ith the nuances
and minutiae of conversation analysis.

My fieldwork took place at a num ber of companies in Sheffield
and Nottingham. I am immensely grateful for the access which
they gave me and for the time which individual members of staff
spent w ith me.

Finally I'd like to acknowledge the contribution of Professor Simeon
Yates at the outset of this project.

Abstract

In this thesis I present software engineering as a social process in which pro
grammers work together to create technical solutions. I propose that the social
structures which developers create and w ithin which they work provide the
foundations from which they are able to collaborate to build software. In do
ing so I characterise software engineering as being as much a social enterprise
as it is a technical one.

Since its origins in the late 1960s, the discipline of software engineering has
been one that is concerned prim arily w ith tools, techniques and processes.
Research and writing w ithin the area, by both academics and practitioners,
have been interested in developing better ways to deliver better software and,
hence, better customer satisfaction. Relatively little effort has gone into under
standing what it is that software developers, in particular programmers, do as
they work collaboratively.

Starting from an ethnomethodological position, I present an examination
of those activities of program m ers which enable both sense-making and co
ordination. The research examines the work of developers in teams that self-
identify as adherents to the Agile Manifesto. These teams are interesting be
cause of the Manifesto's commitment to a social view of software develop
ment.

Three teams of professional developers are studied in their norm al work
ing environments as they work on commercial projects for their clients. The
first is a failing team which I follow as they begin to use Scrum whilst the sec
ond team has been using Scrum for a num ber of years. The final team uses a
mixture of techniques from XP, TDD and Kanban to create their own way of
working.

By revealing the ethnom ethods of developers across the three organisa
tions I show that the design and implementation of code is enabled through
social interaction.

Contents

Dedication i

Acknowledgements ii

Abstract iii

Contents iv

List of Figures 1

1 Introduction 1
1.1 Software E n g in ee rin g ... 4
1.2 The structure of this t h e s i s .. 7

1 Background 9

2 Software Engineering Practices 10
2.1 In tro d u c tio n .. 10
2.2 The difficulty of developing software ... 11
2.3 Structuring work as projects .. 16
2.4 Chandler: a project in c r is is .. 20
2.5 Agile m e th o d s ... 24

2.5.1 Extreme p ro g ram m in g .. 25
2.5.2 Scrum ... 28

2.6 The Agile M anifesto .. 37
2.7 Agile p ra c tic e s ... 40
2.8 Software Engineering as C r a f t ... 49

2.8.1 C raftsm anship... 50
2.9 S u m m ary ... 52

3 Talking about Software Engineering 54

Contents

3.1 In tro d u c t io n .. 54
3.2 E th n o g ra p h y ... 55
3.3 Ethnomethodology ... 60

3.3.1 Conversation a n a ly s is ... 64
3.3.2 F a c e -w o rk .. 68

3.4 Negotiating d e s ig n .. 69
3.5 Finding m e a n in g ... 73
3.6 The role of representation in talk about p ro g ram m in g 76
3.7 Communication and c o o rd in a tio n ... 80

3.7.1 Organising te am w o rk ... 82
3.7.2 Communicating w ithin development teams 84
3.7.3 Discussing technical i s s u e s .. 87
3.7.4 Shared perspectives w ithin t e a m s 89
3.7.5 Being a c o m m u n ity .. 91

3.8 Empirical research into software en g in ee rin g 93
3.8.1 Criticisms of empirical software en g in ee rin g 96

3.9 Ethnography and Software E n g ineering .. 98
3.10 S u m m a ry .. 101

4 M ethodology 103
4.1 In tro d u c tio n .. 103
4.2 Principles which underpin the design of the s t u d y104
4.3 On doing ethnography .. 106

4.3.1 Fieldwork .. 106
4.3.2 Field n o t e s .. 110
4.3.3 Writing e th n o g ra p h y ... I l l

4.4 Implementing the s tu d y .. 113
4.4.1 Finding cases ... 115
4.4.2 Designing and doing the field w o r k 117
4.4.3 Taking n o t e s ... 122
4.4.4 Transcribing the record ings... 124
4.4.5 Answering the q u e s t io n s ... 125

4.5 Ethical con sid era tio n s ... 126
4.6 The three c a s e s .. 128

4.6.1 Z * .. 131
4.6.2 A*, c o m ... 134
4.6.3 E * .. 137

4.7 Analysing the d a t a .. 139
4.8 A mixed m ethods ap p ro ach .. 142
4.9 S u m m a ry .. 144

v

Contents

II Case studies 146

5 Z* 147
5.1 In tro d u c tio n .. 147
5.2 The com pany .. 149

5.2.1 DVD authoring s o f tw a re .. 149
5.3 Measuring success ...152
5.4 Negotiating ac ce ss ...153
5.5 The first d a y .. 157
5.6 The staff... 161

5.6.1 Project m anagem ent..162
5.6.2 The d e v e lo p e r...167
5.6.3 Quality au d itin g ..171
5.6.4 The product m a n a g e r s ... 174

5.7 The first S c ru m ... 176
5.8 The Daily Scrum M eetin g .. 179
5.9 D isc u ss io n ... 181

6 A*.com 185
6.1 In tro d u c tio n .. 185
6.2 The com pany.. 186

6.2.1 The p r o d u c t .. 187
6.2.2 Approaches to developm en t.. 189
6.2.3 The staff and their working en v iro n m en t...........................190
6.2.4 Technologies.. 192

6.3 Working p ra c tic e s ... 195
6.3.1 Being a g i le ... 196
6.3.2 S k y p e .. 198

6.4 The s ta n d -u p .. 199
6.5 Managing the m eeting ...201

6.5.1 Taking t u r n s .. 201
6.5.2 Ending the m e e tin g ..207
6.5.3 A uthority .. 208

6.6 A ccounting ... 212
6.7 Humour .. 216

6.7.1 Successful h u m o u r ..217
6.7.2 Unsuccessful h u m o u r ...220
6.7.3 Banter ... 223

6.8 D iscu ss io n ... 226

7 E* 230
7.1 In tro d u c tio n .. 230

Contents

7.2 The c o m p an y ..233
7.3 The developm ent team ...236

7.3.1 W orkflow ..238
7.3.2 C o d in g ...240

7.4 Gathering the d a t a .. 244
7.5 Working w ith existing c o d e .. 245
7.6 Talking about testing .. 253
7.7 Implementation or d e s ig n ? .. 263
7.8 D is c u s s io n ... 271

III D iscussion 275

8 Discussion 276
8.1 In tro d u c tio n .. 276
8.2 Research th e m e s ..277
8.3 Contribution to k n o w le d g e .. 280

8.3.1 Negotiating shared unders tan d in g ..281
8.3.2 Coordinating w o r k .. 286
8.3.3 The Agile M o v e ...291
8.3.4 Qualitative software engineering research295

8.4 Further w o r k .. 296
8.5 Conclusions .. 299

IV Bibliography 303

Bibliography 304

V Appendices 324

A CA Symbols 325

B Website 326

C Consent form 335

D Stand-up at A* 337

E Existing code at E* 346

F Testing at E* 353

List of Figures

2.1 The waterfall model, (Boehm; 1 9 8 8) .. 17
2.2 The spiral model, (Boehm; 1 9 8 8).. 18
2.3 Structure of S c ru m .. 30

5.1 Old and new communication s truc tu res..163

7.1 The developers7 organisational structure at E*...................................... 237
7.2 The database structure ... 248
7.3 The architecture of the s y s te m ... 251

1

Introduction

This thesis is a study of software engineers and software engineering. The

research questions which are addressed here are:

• how do software teams coordinate their work through their talk-in-interaction

about that work?

• how do software development teams which use agile m ethods create

and sustain an agile culture?

• how do software engineers talk about code so as to make sense of it?

In anwering these questions this thesis will reify software engineering as

an activity which is both social and technical.

Software engineering research has a strong focus on tools, languages and

techniques but H arper et al. (2013) see this research as "noticeable for the lack

of attention they give to the felt-experience of software engineers". Some aca

demics and practitioners have begun to challenge purely technocentric concep

tualisations of software development by foregrounding an alternate view of

it as a social activity. Typically, this more social view of development has ex

amined the relationship between developers and the end-users of software,

trying to improve the gathering of requirements or the usability of software

Chapter 1 Introduction

applications. There has been far less interest in the social relationships be

tween developers as they produce code.

Whilst academics in the 1990s examined communication with users, some

practitioners were bringing the communications needs of developers to the

fore. The agile methods movement takes as one of its core principles that im

proving communication within a team can improve the performance of that

team. The Agile Manifesto, (Beck et al.; 2001), and the working practices which

are used by agile teams present a challenge to established tropes of software

engineering in their explicit appeal to developers. These methods privilege

interactions within teams and the use of tools and techniques such as Test-

Driven Development over documentation and project management.

There is evidence that agile approaches lead to a range of benefits from

happier developers, (Muller and Padberg; 2004) and to more productive teams,

(Benefield; 2008). DyM and Dingsoyr (2008) write that it is not clear how ag

ile methods are used in practice nor are their benefits and the causes of those

benefits necessarily well-defined. In particular the role of communication is

under-researched and under-theorized. Are agile developers more produc

tive because they are placed in situations such as Daily Scrums in which they

have to talk about their work or despite this? Does pair-programming lead to

better code through talk-in-interaction about code?

The development of software happens in many places and at many times

but this work is interested in professional programmers working on commer

cial projects. Llewellyn and Hindmarsh (2010) write that research into organ

isations rarely turns an analytical focus to questions of what work is and how

work is accomplished. Research into software development seems rarely to re

2

Chapter 1 Introduction

veal the working practices of developers, often being more interested in tools

and techniques than in the work which they support. Schultze (2007) points

out that much research into knowledge work has focused on the classification

of knowledge rather than on the work of producing it which has meant an

interest in what people know rather than in how they come to know.

This thesis grew from an interest in what programming is and in what pro

grammers do when they program. Software development in general and pro

gramming in particular, are situated in "work" whether that is seen through

the abstractions of project and team or seen as simply another type of white-

collar office work. This research shows how programmers work together to

create software and how the ways in which they talk about their work and the

software which they are making frame and formulate that work.

Software engineering has a disciplinary orientation towards the tools, pro

cesses and products of software engineering and significant improvements

have been made in all of these. But because the discipline's interest in process

means that whilst there has been significant research into aspects of agile such

as project management relatively few studies have been made which look at

communication within agile teams. Those studies which do exist have tended

to look at the management of agile teams or at the process of designing soft

ware. The work which is presented in this thesis is specifically and exclusively

an examination of that part of programming which is the writing and testing

of software source code. It addresses the ways in which agile developers talk

about their work and how that talk, in turn, enables agile practices.

3

1.1 Software Engineering

1.1 Software Engineering

The development of software is a multi-faceted activity which includes both

the technical and the social. It is heterogeneous engineering, (Law; 1987), in

which technologies arise through the negotiation of a complex network of so

cial and technical factors mediated through conflict. Law is aware that en

gineers are as much products of a mix of factors as the artefacts which they

create are. The engineer and client both bring complex ideas, experiences and

requirements to the negotiation of a product. In a sense this has been known

since the formulation of Conway's Law which states that "[a]ny organization

which designs a system (defined more broadly here than just information sys

tems) will inevitably produce a design whose structure is a copy of the or

ganization's communication structure", (Conway; 1968). Any examination of

engineering practices which omits these wider contexts is, Law argues, in dan

ger of over-simplifying the activity.

The IEEE has defined software engineering in (Abran et al.; 2004) as:

(1) The application of a systematic, disciplined, quantifiable ap

proach to the development, operation, and maintenance of soft

ware; that is, the application of engineering to software. (2) The

study of approaches as in (1).

Software engineering and computer programming are different things yet

even some professional programmers might struggle to identify what it is that

differentiates software engineering and computer programming. The differ

ences between the two terms might become clear after looking at some defini

tions. The terms work as effective synonyms in general usage because whilst

4

1.1 Software Engineering

relatively few people have heard of software engineers everyone has heard of

computer programmers even if they have no idea what a computer programmer

actually does.

The Association of Computing Machinery write in (ACM; 2012) that:

Software engineering is concerned with developing and maintain

ing software systems that behave reliably and efficiently, are af

fordable to develop and maintain, and satisfy all the requirements

that customers have defined for them. It is important because

of the impact of large, expensive software systems and the role

of software in safety-critical applications. It integrates significant

mathematics, computer science and practices whose origins are in

engineering.

(Sommerville; 2004), a popular introduction to Software Engineering, widely

used on University courses, states that:

Software engineering is an engineering discipline that is concerned

with all aspects of software production from the early stages of

system specification to maintaining the system after it has gone

into use.

Those definitions all include notions of:

• Disciplined processes.

• Lifecycles running from the specification of a system through develop

ment and on to maintenance.

• Engineering.

5

1.1 Software Engineering

But the notion of programming, of writing and developing code is not a

core part of them. Programming is implicit in terms such as "development",

"maintenance" or "production", yet, surely, writing code is software engineer

ing. The authors of those definitions place the design and creation of high-

quality code as neither more nor less important than requirements gathering,

project management or the writing of a specification.

The idea that software can be "engineered" is fundamental to contempo

rary understanding of the software development process. Professionals across

IT take engineering to mean the application of rigour and of numerical analy

sis and the creation of controlled and reproducible processes, (Brechner; 2007).

Engineers from other fields have more nuanced ideas of what engineering can

mean. Florman (1976) writes that engineering is "the art or science of making

practical application of the knowledge of pure sciences" and that engineers

"solve problems of practical interest.. .by the process we call creative design".

Engineering "has as its principle object not the given world but the world that

engineers themselves create", (Petroski; 1992).

The larger thesis put forward by Petroski is that engineering is an essen

tially human activity and that engineered structures and products sometimes

fail but that the important thing is to learn from those failures so that they are

not endlessly reproduced. Software engineering is a discipline born of crisis,

(Naur and Randell; 1968), one which see itself as still in crisis, (Glass; 2006b),

and one which is ill at ease with itself, (Bryant; 2000), because of its failures.

Both practice and research in software engineering are framed within an over

arching need to reduce both the frequency and severity of systems failure. The

rigour of engineering provides possible route from crisis to reliable software.

6

1.2 The structure of this thesis

Yet software engineering's vision of engineering as rigorous and process

driven differs from the engineer-authors who see it as a practical and creative

activity in which there is continuous learning. Counter movements such as

Agile, see Section 2.6, and Craftsmanship, Section 2.8, whilst not rejecting the

software engineering agenda have started to re-formulate software develop

ment as something which is more akin to the design-led ideas of engineering.

1.2 The structure of this thesis

This thesis is divided into three parts.

In the first part, Chapter 2 introduces software engineering as a discipline

in which the delivery of product can be problematic. A case study shows why

producing software can be so difficult. The Chapter then examines alternative

approaches to team working and looks at the role of the skills of individual

developers in the production of software.

Chapter 3 studies the importance of talk as a method for the production

of understanding and coordination. Finally in this part, Chapter 4 includes a

discussion of relevant research methods and the design of the research used

in this work.

The second part contains the three case studies which were undertaken.

The first case study, Chapter 5 follows a software house as they introduce the

agile method Scrum into a project. It shows their working practices before

they started to use Scrum, discusses the problems managers in the company

identified as drivers for the move to Scrum and, finally, shows how the team

applied some of Scrum's methods.

The second case study is of a company which had been using Scrum for a

7

1.2 The structure of this thesis

long time. In this Chapter a single event, one of their daily stand-up meetings,

is analysed in detail. The analysis reveals how their social interactions within

the meeting enable the coordination of work, the sharing of technical detail

and strengthen the personal relationships within the team.

The final case study is a detailed analysis of the sense-making in which

two developers are engaged as they work in a "pair" to understand existing

code and write more code based upon it. This case study is presented as a

conversation analysis of a series of interactions which took place in a period

of three weeks.

The final part of the thesis contains a discussion Chapter in which the key

ideas and themes of the thesis are brought together to demonstrate that the

practices of software engineers as they try to understand their code and as

they coordinate their work are socially situated. This discussion shows that,

although software development is at its core a technical activity, the social

context within which it happens affects how it is done and what it produces.

8

Software Engineering Practices

2.1 Introduction

This Chapter gives an introduction to the professional activities of software

engineers, specifically those activities which help them when they write, test

or understand code. The practices of software engineers are the m ain topic

of interest w ithin their discipline, a discipline which arose from a perceived

need to identify and codify practices which helped improve the delivery and

quality of software. Software engineering is a diverse activity which changes

as technologies change and as our expectations of the capabilities of software

and systems change.

In the last decade an important, and radical, change has revolutionised

the working lives of many programmers. Low-cost, rapid, iterative and incre

mental approaches to development which place the skills and knowledge of

program m ers at the heart of the engineering of software have become m ain

stream. These agile methods are, in part, a response to a variety of types of

project failure. But they may be as m uch a response to the changing needs

of developers as they are to the problems faced by project managers or cus

tomers.

2.2 The difficulty of developing software

Communication is a core idea in the agile community and is central to

the ways in which many agile practices are implemented. This Chapter in

troduces those agile practices which are concerned with communication but

looks specifically at a subset which were found in the fieldwork for this thesis.

Examining agile communication as seen in the commercial development of

software and provides a context within which to read the later empirical and

analytical Chapters.

2.2 The difficulty of developing software

We have been programming computers since the 1940s and for most of that

time there has been talk of a crisis in software development. That crisis stems

from the perception that most IT systems are delivered late, over budget and

with less functionality than was originally specified. The situation became so

bad that in 1968 NATO convened a conference of 50 experts to examine the

situation and suggest a way forward. Much of the discussion of this event in

Naur and Randell (1968) remains pertinent today, indeed we often repeat the

same discussions with the technologies simply updated. This conference pop

ularised the use of the term Software Engineering and set its basic parameters.

The new discipline was based on study of methodologies, how programs are

designed and written, and tool support for development.

The noticeable omission from both the 1968 conference, and most later

work, is the idea of the software engineer as a person who designs and writes

computer programs whilst working collaboratively and creatively. In part that

has been deliberate: the discipline of software engineering was established

with an engineering bent, dAgapayeff was quoted as saying "[program m ing

11

2.2 The difficulty of developing software

is still too much of an artistic endeavour. We need a more substantial basis...".

This view prevailed in 1968 and continues to dominate today. The idealised

"software engineer" who rises from the Garmisch conference regards engi

neering as an activity which is essentially rigorous because the mathematical

certainty of "engineering" brings repeatability and "measurability" to soft

ware development, (Brechner; 2007). By constituting the creation of software

as a process which can be measured and managed the process became an ob

jective reality. The formulation of this reality happened so quickly that by the

time that NATO reconvened its conference in Rome in 1969, Brian Randall no

ticed that participants talked of "software engineering" as an established fact,

(Rosenberg; 2007).

The 1968 NATO conference was convened because of widespread percep

tions that there was a crisis in software development. At the time the most

infamous example of a failed project was IBM's development of its O S /360 op

erating system. The OS/360 project had gone disastrously wrong: the system

was delivered over a year late, required 5,000 person-years effort, cost $500

million (four times the original estimated cost) and was full of bugs which

would take years to track down and fix. Projects like OS/360 were failures

along both technical and managerial dimensions. Other projects were failing

because the needs of users were not considered deeply enough so that time

and money were being spent to build systems which weren't needed or which

didn't perform as their users expected or required.

It was clear that software development, as constituted in 1968, was unable

to keep pace with the changing needs of customers or with the pace of devel

opments in hardware. Something had to change. Naur and Randell report

12

2.2 The difficulty of developing software

two of the Garmisch participants talking about the ways in which they saw

systems being developed.

Kinslow: The design process is an iterative one. I will tell you one

thing which can go wrong with it if you are not in the laboratory.

In my terms design consists of:

• Flowchart until you think you understand the problem.

• Write code until you realize that you don't.

• Go back and re-do the flowchart.

• Write some more code and iterate to what you feel is the cor

rect solution.

If you are in a large production project, trying to build a big sys

tem, you have a deadline to write the specifications and for some

one else to write the code. Unless you have been through this be

fore you unconsciously skip over some specifications, saying to

yourself: I will fill that in later. You know you are going to iter

ate, so you don't do a complete job the first time. Unfortunately,

what happens is that 200 people start writing code. Now you start

through the second iteration, with a better understanding of the

problem, and it is too late.

The problem of software development which Kinslow identifies stems from

incomplete specification. The specification contains the requirements for the

system. Those requirements come from an understanding of the problem do

main and of the solution domain. However, that understanding only comes

13

2.2 The difficulty of developing software

gradually. Understanding requirements then designing software to imple

ment a solution to those requirements necessarily has to be an iterative pro

cess. But systems are large and complex. In the 1960s software was intimately

tied to hardware with operating system, application software and, sometimes,

the hardware itself being built concurrently. Project teams quickly became

large and their members became specialists in particular aspects of the so

lution. Once an approach had been determined and the team had started to

implement it changing course was very difficult. Projects tended not to iterate,

they tended to build the thing which they first defined.

Another participant agreed that requirements presented a problem.

The most deadly thing in software is the concept, which almost

universally seems to be followed, that you are going to specify

what you are going to do, and then do it. And that is where most

of our troubles come from. The projects that are called successful,

have met their specifications. But those specifications were based

upon the designers' ignorance before they started the job.

Not everyone agrees that there really is a crisis. If there is a crisis in soft

ware development it "represents a damning condemnation of software prac

tice. The picture it paints is of a field that cannot be relied upon to produce

valid products", (Glass; 2006b). Yet we know that innumerable software ap

plications ranging from Websites to operating systems are successfully devel

oped and deployed. Glass blames a lack of studies looking at the industry's

successes: "Many academic studies assert the software crisis is the reason be

hind the concept the particular study is advocating, a concept that is intended

to address and perhaps solve this particular crisis".

14

2.2 The difficulty of developing software

The best way to understand the failure of projects may be to look at lots of

them. Consultants DeMarco and Lister have studied and worked on many

software projects over the last forty years. Every year from the late 1970s

through to the end of the twentieth century they surveyed project teams about

their results. In examining over five hundred projects they found "15 per

cent... came to naught" because they were, for some reason, cancelled or never

used. "25 percent of projects that lasted twenty-five work years or more failed

to complete". For those failed projects the "overwhelming majority" had "not

a single technological issue to explain the failure". The most common reason

given for project failure was "politics". When they unpicked the idea of poli

tics they found that the term was used to cover a host of people-related issues

such as communication or staffing problems, difficulties with the client or a

lack of motivation within the team, (DeMarco and Lister; 1999).

When projects fail because of organisational politics or culture, improving

those things, or at least recognising that they have become problems and re

sponding accordingly, ought to bring more successful development. Chapter

5 examines exactly this situation.

The development of software is difficult but so are many other types of

engineering. Software is different because it is an ephemeral manifestation of

ideas. It may be software's very lack of substance, its ability to become any

thing which is sufficiently different that its creation requires its own special

crisis. "Software is different because of its intangibility and plasticity", (Diaz-

Herrera; 2009). Perhaps because software is not concrete the processes which

are used to develop it become as plastic as their product: "the great majority

of software produced is developed following ad-hoc methods, and it remains

15

2.3 Structuring work as projects

true today that software engineers have not been able to put together a co

herent engineering design method for the systematic production of software,

specifically for large, complex, ill-defined systems", (Diaz-Herrera; 2009).

An intangible product rather than a lack of rigour in its development might

be the reason we have a software crisis. In some ways, perhaps, the software

crisis exists because it is so widely talked about. It could be that "[o]ur basic

problem is simply the success of modern computer science. History has shown

that this truth is very hard to believe. Apparently we are trained to expect

a software crisis, and to ascribe to software failures all the ills of society: the

collapse of the dot.com bubble, the bankruptcy of Enron, and the millennial

end of the world", (Noble and Biddle; 2002).

2.3 Structuring work as projects

Software is developed by teams of people whose work is generally structured

as projects. Much of the discipline's focus is on improving the industry's ap

proach to managing different types of project using a variety of structures. Or

ganisations such as the Software Engineering Institute have developed models

of best-practice for project teams and organisations which are widely followed,

(Software Engineering Institute; 2010). Most people have some commonsense

understanding of what a project is, but what is a software engineering project?

How is the term understood by practising software developers?

The Software Engineering Institute defines a software engineering project

as "a managed set of interrelated resources that delivers one or more prod

ucts to a customer or end user. This set of resources has a definite beginning

and end and typically operates according to a plan. Such a plan is frequently

16

2.3 Structuring work as projects

documented and specifies the product to be delivered or implemented, the

resources and funds used, the work to be done, and a schedule for doing the

work. A project can be composed of projects", (CMMI Product Team; 2001).

That definition is self-explanatory and is probably not too dissimilar to the

commonsense definitions which most people would give.

System ^
requirements A.

Software
requirements

V| Analysis A
N Program design K

V] Coding A
N Testing A

V Operations

Figure 2.1: The waterfall model, (Boehm; 1988)

Although projects can be ad-hoc and free-form, the conventional approach

to development is plan-driven, (Boehm and Turner; 2004). These projects move

naturally through a num ber of distinct phases from initial requirements-gathering

towards a deployed solution. This approach to software development has, in

theory, a num ber of benefits for developers and their employers, not least that

resourcing needs, costs and due dates can be agreed upon at the start of a

project. The best known approach to plan-driven development is the water

fall model which is shown in figure 2.1.

In an idealised project which is following the waterfall model, all of the

customers' requirements are specified at the start of a project and codified in

17

2.3 Structuring work as projects

architectural documents, designs, models and implementation plans, (Som-

merville; 2004). Of course reality is never this straightforward which is why

the waterfall model is often criticised for its simplicity. (McBreen; 2001) writes

that with waterfall "it is easy to consume half the available time before any

thing can be demonstrated to the users". The problem is that the project struc

ture is heavily front-loaded so that effort is put into the definition of require

ments and the design of the software rather than into implementation. Few

projects are either so straightforward or so heavily resourced that a perfect set

of documentation can be produced such that it will naturally lead on to devel

opment, testing and deployment. Over the years a number of variants have

appeared which maintain a well-structured project but which allow for more

flexibility during the lifetime of the project. The spiral model, for example,

describes a more realistic project structure, Figure 2.2 shows how it works.

Cumulative cost

Progress
2. Identify and

reso lve risk s1. D eterm ine o b jec tiv es

Review
P ro to ty p e 1 \ P ro to ty p e 2 | P ro to type j

C oncept of
Draft

Detailed
design ,

D evelopment

Code

IntegrationTest plan

Test4. P lan th e n ex t
ite ra tio n ImplementationRelease

3. D evelopm ent and T est

Figure 2.2: The spiral model, (Boehm; 1988)

The majority of software development has been done using, or attempt-

18

2.3 Structuring work as projects

mg to use, a structured approach in which the structure and functionality of

the product is understood relatively early in the development cycle. In a sig

nificant proportion of projects understanding of the functionality which will

appear in the completed product is not developed until well into the develop

ment process and project structures can act to restrict understanding within

teams, (Banker et al.; 1998). Iterative development is a successful answer to

the problems of incomplete requirements and limited understanding of the

necessary path to a completed implementation, (McBreen; 2001, Harper et al.;

2013).

In iterative development the team adds new functionality as and when it

is needed. The project continually cycles through requirements definition,de

sign and implementation phases. Usually the developers agree the function

ality which they will implement in the next cycle with the customer, or their

proxy, and determine the length of the cycle and the resources which are re

quired to complete it, (Deemer et al.; 2010). Often the "new" requirements in

clude the need to modify functionality which has already been implemented.

Studies such as Hanssen et al. (2009) which look at changes made to code bases

show that the same sections of code or the same parts of a product are repeat

edly reworked. However repeatedly changing programs leads to "code en

tropy" in which the source code becomes so complex, or varies so much from

its original form, that errors begin to appear within it. The developers then

risk misunderstandings which "lead to a fear of changing the code, both for

adding new features and for refactoring", (Hanssen et al.; 2009).

The need to constantly alter code is a common factor in three of the case

studies presented in this dissertation. Chapter 6 is a study of a daily meeting

19

2.4 Chandler: a project in crisis

within a small team whose discussion focuses on difficulties each of them has

with their code. Chapter 7 follows two programmers as they work together

to understand some existing code as they write code which uses it. Chapter 5

follows a small software house as they introduce agile processes in response

to their customers' ever-changing needs.

2.4 Chandler: a project in crisis

Rosenberg (2007) gives a detailed journalistic account of a long-running project

to create an information management system called Chandler. The Chandler

project was initiated and funded by Mitch Kapor who made his money from

the creation of the seminal spreadsheet application Lotus 1-2-3. Kapor and

his team wanted to build an application which competed with Microsoft's Ex

change Server and Outlook email client but with some fundamental differ

ences in technology and approach:

• Chandler was an Open Source project with a core team of paid devel

opers and a wider volunteer community contributing code, bug fixes,

design ideas and documentation.

• Chandler was to be built using a peer-to-peer architecture rather than a

more conventional client-server one.

• The application was to be programmed in the language Python.

The project structure was similar to that used by others in the Apache

Foundation, to some extent by the Linux Foundation, and by Mozilla as they

created the Firefox browser. Each of these projects has a talented core team

paid to design and implement the application which is supported by a com-

20

2.4 Chandler: a project in crisis

munity of volunteers. Often these developers are employees of companies

such as IBM, Apple or RedHat who are paid to work on external Open Source

projects. The team at Chandler was reasonably large, twenty seven develop

ers at its peak, but never managed to build a supportive community effort.

Instead almost all of the development work was done in-house.

The first prototype of Chandler was written by programmer Andy Hertzfeld

using the platform-independent language Python. One of the benefits of Python

is that it has a really simple syntax which means that programmers using it

can be very productive, making it ideal for prototyping early version of appli

cations. Python doesn't have its own GUI toolkit but there are bindings to an

number of alternatives. Hertzfeld used a toolkit called WxWidgets, at the time

called WxWindows, in his prototype. At the time of the Chandler prototype

WxWidgets was still in heavy development with new features being added all

the time and existing features changing in the way that they worked.

Because of the choice of technologies, building Chandler was always go

ing to be a struggle. The peer-to-peer architecture was different to the archi

tecture of other email and calendaring applications which use a centralised

server. The changing GUI toolkit meant that Chandler's code was always in

flux but that the rate of change was, in part, being determined by another

project. Rosenberg gives many examples of the problems which this created

for the team but one illustrates many of their difficulties.

The data held by each client needed to be held in a local database. Most

projects would use a simple relational database - these are a well-understood,

robust and relatively simple technology. The Chandler team decided to take

a different approach called an object database. Specifically they would use a

21

2.4 Chandler: a project in crisis

product called ZODB which is written in Python. Learning to use such com

plex technologies immediately slowed development at a time when they were

trying to produce the first release of their software.

Rosenberg describes a team meeting at which they argued about whether

to ditch ZODB and instead write their own wrapper around Berkeley DB. Pro

gramming large systems often comes to a choice between re-using code and

wiring together components or building things from the ground up. There

is a constant debate between those who want to re-use and those who think

software development is easier if you build just those parts which you need

to complete your project. "Modularity, and interchangeable modular compo

nents are a key component of the modernist approach in software, as in archi

tecture, marketing, production, and elsewhere", (Noble and Biddle; 2002).

This Utopian vision has been written about and discussed for at least twenty

years but has never really come to fruition. This is because re-using code is

hard, (Glass; 2001). Re-use in the small is easy, that problem was solved in

the 1950s when programmers "built huge, useful collections of mathematical

and data-processing library routines". We still do that in every software shop

today. However when we try to re-use large amounts of code it "is and always

has been an unsolved problem. In spite of the enthusiasm of the components

crowd, finding in a library of components the precise one that will solve your

problem at hand is nearly an impossible task". The major difficulty in re-using

code is, Glass argues, "the variability in the problems we solve, and in the so

lutions we create".

Chandler ran continually late and over budget. During development the

team was still evolving their ideas about what the product was going to be.

22

2.4 Chandler: a project in crisis

As they moved through beta versions new functionality was constantly being

added to the application. Some of the new functionality had major impacts

upon the architecture of the application. For example between release 0.3 and

0.4 they abandoned the peer-to-peer architecture in favour of one which sup

ported the, then new, WebDAV standard for collaboration over HTTP connec

tions. Whilst the WebDAV standard would become more widely supported

at the time there were no Free implementations and the Chandler team found

themselves having to write their own server.

Constant changes of functionality, implementation strategy or technology

are enough to de-rail any project. Fred Brookes' inspiration for The Mythical

Man-month was the failures he saw developing IBM's System/360 software.

The team building Chandler knew about Brookes' work and about the many

other failures of large development projects yet they repeated as many of those

mistakes as they could. The Chandler project was doomed to failure from the

start because neither its objectives nor its technologies were clearly defined.

The project continues today at h t t p : //ch an d le rp ro j e c t . o rg /. The most

recent version at the time of writing is 1.0.3 which was released in April 2009.

The fieldwork presented in this dissertation demonstrates some of the same

failings that were found in the Chandler project. Technological change is a

major factor in many software development efforts. Chapters 6 and 5 look

at teams who have moved from custom frameworks to using ones which are

more common. This is the inverse of the move Chandler made around ZODB

but the drivers were similar: a desire for more control and for something

which was a better fit to the current needs of the project.

23

2.5 Agile methods

2.5 Agile methods

Software development throws up many examples of failing projects. The ques

tion for the profession is how to address the causes of failure so as to improve

both process and product.

The introduction of structured project and team management techniques

through the 1980s and 1990s promised improved oversight and control of de

velopment teams. The efforts of the Software Engineering Institute, the pro

fessional bodies and others meant that by the end of the Twentieth century

practitioners and academics knew how to manage a software development

project. Yet projects such as the computerisation of patient records in the NHS

continue to fail to this day. The complexity of projects and the size of the teams

involved in implementing them is one reason that projects fail. Large projects

cannot be specified accurately from the outset and it is, according to Brian

Randall, "far better to employ evolutionary acquisition, i.e. to specify, imple

ment, deploy and evaluate a sequence of ever more complete IT systems, in a

process that was controlled by the stakeholders", (Flinders; 2011). James Mar

tin, quoted by Flinders says "I've also seen 'best practice' lead to 'worst result'

projects far too often and I believe that's the root cause of the problem: process

has greater emphasis than outcome and that's not going to get a project over

the line".

Those who manage developers have a wide range of techniques at their

disposal, but when projects fail it is most often because of poor application

of conventional project management, (Jurison; 1999, Jiang et al.; 2004). The

"managerial side of the software development project, meanwhile, is often

conducted without adequate planning, with poor understanding of the over

24

2.5 Agile methods

all development process, and a lack of a well-established management frame

work", (Jiang et al.; 2004).

Developers knew all of this a long time ago: iterative and incremental de

velopment was being discussed as long ago as 1957, (Larman and Basili; 2003,

Abbas et al.; 2008), and the 1968 NATO conference was, in part, an attempt

to find ways of avoiding problems in project management. For whatever rea

son the "software crisis" continued and as it did so the search for alternatives

grew. Abbas et al. (2008) list numerous studies which argued that linear mod

els of development, and modifications such as Rational Unified Process and

the V-model, were failing to address the realities of modem software devel

opment.

2.5.1 Extreme programming

In the early 1990s Kent Beck and his colleagues at Chrysler began to codify a

way of working which came to be called Extreme Programming, (Beck; 2000).

They were building a payroll system using traditional approaches. The project

was failing so badly that two months before it was due to go into production

it still didn't "compute the right answers". With the agreement of senior man

agement the project started again using a small team and a radical approach

to development. Using three week long iterations, user stories and a local do

main expert the team was able to turn the project round.

Building on the Chrysler experience, Beck defined an approach to software

development which he called Extreme Programming, usually more simply

called XP. XP is a radical alternative to conventional software projects which,

its proponents regard as rigid, hierarchical and driven by the needs of the de

25

2.5 Agile methods

velopers' managers rather than by the requirements of either the developers

themselves or their customers and end-users.

Extreme Programming is built from four values which are deliberately dif

ferent to those which are normally found in business. A fully-functioning XP

team places value on communication, simplicity, feedback and courage.

The XP values are not meant to be merely abstract concepts, they imply a

common-sense understanding of four ideas. Communication is any type of

communication between people who are involved in the project using any ap

propriate medium. Simplicity means to do the simplest thing possible. Feed

back means that developers require immediate feedback on the state of the

system which they are building, usually this comes from automated build and

testing tools. Courage requires that individuals are empowered to speak out

about the state of their own work and that of their colleagues.

Courage, feedback and simplicity are important values but they can only

become meaningful to a team if members are able to communicate with each

other. When members communicate they must be able to exchange both for

mal and informal information. Communicating like this requires trust, (Holm-

strom et al.; 2006), and mutual respect, (Beck; 2000).

Team members should communicate openly and freely with each other

and, in XP teams, they will often use a techniques such as pair program

ming as a focus for that communication. These techniques, allied to mod

ern tool support, provide constant feedback about the project throughout the

development phase so that problems can be identified and handled quickly.

When there is regular and open communication, problems in the design or

implementation can be raised, logged in bug-tracking software and prioritised

26

2.5 Agile methods

quickly.

Problems have less impact if the code and design are as simple as possible.

Beck writes that "it is better to do a simple thing today and pay a little more

tomorrow to change if it needs it than to do a more complex thing today that

may never be used". It is easier to estimate the effort required to complete a

simple task than to do so for a large, complex series of tasks. But learning to

value simplicity is difficult for programmers who by training and inclination

enjoy complexity. The final XP value is courage which means having the abil

ity, as teams or as individuals, to do the right thing even if it is more difficult

than not doing so. For example, work may need to be discarded even after a

major investment in it.

Whilst the four values of XP are linked, they do not make a development

approach on their own. XP builds a set of less abstract principles on top of ts

values. The principles are implemented using XP's practices such as unit test

ing, pair-programming and small releases. All the values, principles and prac

tices of XP combine into a flexible, iterative and cyclical approach to the devel

opment of software and systems. Chong (2005) found that the XP approach

"provides a framework for standardizing the work of software development

and making this work more effortlessly visible and accessible to members of

a software development team".

In a longitudinal ethnographic study of an XP team by Sharp and Robinson

(2006), working practices were seen to evolve from those of a waterfall team to

suit the requirements of the XP approach:

"Daily rhythm : Start of day —> stand-up —> pairing conversations

— end of day

27

2.5 Agile methods

Rhythm of the iteration : Pre-planning —> planning game —> daily

rhythm —)• retrospective

These rhythms are important to the team and their continued pro

ductivity. These rhythms are sometimes referred to as the heart

beat of XP".

In practice XP is an approach which might not suit every team. Sharp

and Woodman noted that developers found pairing to be "intense and tiring"

and th a t"... continual interactions between developers and the 'customer', i.e.

the person who represents the business domain and end user of the product"

could lead to "clashes of culture between the two roles". When pair program

ming developers can work unusually closely for long periods of time. This can

become "like a marriage", (Robinson et al.; 2007).

The values and practices of XP, and other agile approaches, "are created

and sustained by practice", (Sharp and Robinson; 2003), and may be "consti

tute a community of practice with mutual engagement, joint enterprise and a

shared repertoire". Section 3.7.5 will discuss the creation of culture and com

munity through shared ideas and experiences in detail.

2.5.2 Scrum

When most programmers think of Agile Methods today, what they envisage

is likely to be Scrum. This method was developed by Jeff Sutherland and

Ken Schwaber along with a large number of collaborators from industry and

academia, (Sutherland and Schwaber; 2007).

The essence of agile processes is the ability to react to changing require

ments. Each agile method has its own approach to the running of a software

28

2.5 Agile methods

development team but all of them place flexibility at the heart of their ap

proach. Developers work through a number of core activities regardless of

the process they use to create their software and manage their work. Instead

of gathering all of the requirements of a project at the beginning before design

ing then testing and finally deploying the entire product, agile teams work on

smaller pieces. An agile team will gather sufficient requirements for a short

burst of work lasting from a couple of weeks to a few months. The project team

will repeatedly rim short cycles with new requirements driving each iteration

through incremental change until the entire product has been deployed.

Proponents of iterative software development sometimes claim that it can

only happen successfully if a number of conditions are met, (Rising and Janoff;

2000). These include placing individual developers and their skills at the heart

of the process, collaborating with customers throughout development, treat

ing working code as the major artefact of the project and reacting to change

instead of blindly following a plan.

Scrum projects are organised around small closely knit teams working on

rapid iterations of a develop-release cycle. Development takes place in tightly

focused sprints which last just a few weeks. At the start of each sprint goals

are set including the functionality to be included in the next release and a

hard deadline is set at which time the software should be released. During the

sprint, brief daily meetings are held to ensure that the team remains on-track.

Sutherland began to evolve Scrum at Easel Corporation in 1993. Working

with Schwaber he codified the approach at OOPSLA '95. Figure 2.3 shows

the structure of a generic Scrum. A product backlog, which contains all work

that needs to be done on the product, is created and continually updated. A

29

2.5 Agile methods

Product Backlog Sprint Backlog Sprint Working increm ent
of the software

Figure 2.3: Structure of Scrum

subset of the backlog is selected to be worked on in the next iteration, aka

sprint, which typically lasts for three weeks. Within the sprint their is a cyclical

structure of daily meetings and at the end of the sprint a new version of the

software may be released.

How Scrum works

The rationale behind, and use of, Scrum are thoroughly documented in Schwaber

(1995), Rising and Janoff (2000), Sutherland and Schwaber (2007), Deemer et al.

(2010) amongst many others. It is w orth discussing briefly the key parts of the

m ethod because some of them will be interrogated in detail in later empirical

Chapters.

Scrum divides the development process into a series of short iterations

called sprints. Each sprint lasts approximately one m onth and includes major

product development steps such as the refinement of requirements, design,

implementation, testing and deployment. A sprint is time-boxed w ith a due

date upon which it ends even if the scheduled work is incomplete. Scrum

30

2.5 Agile methods

includes a number of roles which should be filled. The key ones are Product

Owner, Team and Scrum Master. Analogues of these roles don't really exist in

a waterfall project where there will be layers of management, developers and

customers with whom there isn't usually a structured relationship.

The Product Owner helps identify those features of the product which

need to be worked on, assigns a value to each and helps prioritise them. The

Product Owner sits outside the Scrum team but interacts frequently with them.

The Team is the group of developers who are working on the project. Teams

are typically around seven members strong. Ideally each member will be

multi-skilled and the Team should be, or become, capable of self-organisation

so that interference from external management is kept to a minimum. The

key role is the Scrum Master who works with the Team and Product Owner

to achieve their goals but, crucially, is not their manager. Scrum Masters facil

itate the development and act as a bulwark against external forces which may

move the Team off track.

Scrum is structured around a number of meetings. The main ones being

the daily scrums, planning meetings and retrospectives.

Daily Scrum Meetings are probably the method's best-known feature. Each

day the development team gathers for a short meeting and discusses their

work. The meeting is lead by the Scrum Master. Each team member is asked

three questions: what have they done since the last meeting; what are they

planning to do next; and what impediments they face.

The Daily Scrum Meeting is not designed as a management meeting but

as a co-ordination point - there are no long discussions and contributions

from the team are kept to a minimum when each of them speaks. When team

31

2.5 Agile methods

members find impediments those are noted so that they can be solved outside

the meeting often through discussion with the Scrum Master. The stand-up

gives the team "the context in which expertise can emerge through interac

tion", (Faraj and Sproull; 2000). "Recognizing when and where expertise is

needed is at the heart of heedful interrelating" according to Faraj and Sproull.

The meeting demonstrates to the whole team where information, expertise or

help is needed - these can be provided once the meeting concludes.

Daily Scrum Meetings have the potential to be socially awkward situations,

particularly when there are difficulties with the development. Alternatively

they can work to bond a team together through success or adversity. Chapter

6 examines the detail of one such event.

Each Sprint is defined at a planning meeting which is lead by the Product

Owner. The team works with a Product Backlog, a list of tasks which need to

be completed, to decided how much work they can achieve during the next

sprint. The backlog is an organic list which grows and shrinks as the project

progresses, often it is linked to bug-tracking software and includes some no

tion of priority, or relative importance, of the tasks. Teams choose tasks for

a Sprint based on those factors which they feel matter most. These may in

clude the customers' needs, the priority assigned to bugs or the amount of

work which they can manage in a single iteration. The amount of work they

can complete is estimated based on person-hours or on story points.

The third Scrum ceremony is the Sprint Review which happens at the end

of each sprint. This meeting examines the team's achievements by looking

at what they managed to deliver during the sprint. "A key idea in Scrum is

inspect and adapt. To see and learn what is going on and then evolve based

32

2.5 Agile methods

on feedback, in repeating cycles", (Deemer et al.; 2010). The review is an op

portunity to learn whether one's estimates were accurate and for the Scrum

Master to determine if the work is "done". Anything which is not deemed

to be done goes back into the backlog from where it may be selected by the

Product Owner for the next iteration.

The final ceremony used in Scrum is the Retrospective. These are not al

ways used but when they are undertaken retrospectives give the team a chance

to examine and modify their process.

Research into Scrum

A number of authors have written about the use of Scrum in their own organ

isations. Kniberg (2007) provides a details discussion of his experiences using

Scrum from managing the team to arranging the room in which they work.

His book was written to help beginners, "[o]ne of the most valuable sources

of information, however, was actual war stories. The war stories turn Prin

ciples and Practices into... well... How Do You Actually Do It". Pikkarainen

et al. (2012) surveyed developers and managers and discovered the importance

of management buy-in and of tailoring Scrum to the needs of specific teams.

The idea that Scrum should be both adaptable and adapted has influenced

a change in terminology from one of its originators who once wrote of pro

cess, (Schwaber; 1995), but now writes of framework, (Sutherland and Schwaber;

2007).

The question of how Scrum works out in practice is addressed by Benefield

(2008) who examines the roll out of Scrum at Yahoo. Benefield joined Yahoo

in 2005 to help them adopt agile methods. She found that they "started with

33

2.5 Agile methods

Scrum, using its lightweight framework to create highly collaborative self-

organising teams that could effectively deliver better products faster". The

reasons given for Yahoo's choice of agile methods which are expressed here

provide some possible metrics against which the success of the approach might

be measured: collaboration; self-organisation; product quality; and speed of

delivery. These metrics are, themselves, difficult to define and measure be

cause they are subjective, but through carefully constructed questionnaires or

interviews some meaningful data can be generated.

Perhaps surprisingly Yahoo did not have an engineering process until 2002

when they implemented a "globally mandated waterfall process called the

Product Development Process (PDP). Unfortunately, many teams simply ig

nored the process or, where they couldn't ignore it, paid lip service and made

it look like they had adhered to the steps retroactively. The teams that did

follow the PDP found that it was heavy, slowed them down, and added little

real value". A number of teams had run unofficial agile projects but the first

formal trial of Scrum at Yahoo took place early in 2005. Teams which took part

in the trial had to commit:

1. to complete comprehensive Scrum training (which translated into Cer

tified Scrum Master training for most members of the team);

2. to work with outside Scrum coaches during the first several Sprints;

3. to use all the standard Scrum practices described in Ken Schwaber's "Ag

ile Project Management with Scrum"; and

4. to complete at least one Sprint.

Teams were free to leave the trial once their formal commitment to a single

sprint had been met. Yahoo provided consultants, including Benefield, plus

34

2.5 Agile methods

coaching and training from agile leaders including Ken Schwaber, Paul Hod-

getts, Mike Cohn, and Esther Derby. The organisational infrastructure around

the Scrum teams was modified to remove impediments: "working with facili

ties to secure meeting rooms and take down cube walls, removing governance

gates where processes were overly bureaucratic, and changing the way we con

ducted resource planning and portfolio management".

At the end of the trial period reactions were overwhelmingly positive. Bene

field surveyed those involved and found:

• 74% saw some improvement in productivity across a 30-day period.

• 80% said their team's goals were clearer.

• 89% said that collaboration and communication improved within their

team.

• 64% felt their team produced more value.

• 68% saw a reduction in waste.

• 77% felt positively toward scrum at the end of the trial.

Only one measure was more evenly balanced. 54% of those surveyed felt

that the quality of their product improved during the experiment. 5% thought

quality was reduced with the remainder feeling that the new way of working

made no difference to the quality of their outputs.

Rising and Janoff (2000) report on their experience using Scrum with small

teams at AG Communications Systems, AGCS, who build and install telecommu

nications infrastructure. AGCS were faced with the common problem of ill-

defined or changing requirements. Developers would say "[m]ake the chaos

go away! Give us better requirements!" but changing requirements are a fea

ture of modern developments and companies such as AGCS need to find a

35

2.5 Agile methods

way to live with this reality. Rising and Janoff talked to the more successful

development teams at AGCS and found that reasons they gave for their suc

cess included:

• We did the first piece and then re-estimated - learn as you go!

• We held a short, daily meeting. Only those who had a need attended.

• The requirements document was high-level and open to interpretation,

but we could always meet with the systems engineer when we needed

help.

These indicators look like a high-level view of Scrum. The match between

practices which worked for some of their teams and an established software

development methodology encouraged AGCS to experiment with Scrum. Three

teams, working on different products, trialled Scrum. Each team found its own

way of using Scrum, and whilst none of them followed all of the practices re

ligiously, all found benefits from the approach.

Daily Scrum Meetings saw "the team began to grow together and dis

play increasing involvement in and delight with others' successes". Prob

lems moved from being there for individuals to being owned by the whole

team. "Because the team is working together toward a shared goal, every

team member must cooperate to reach that goal. The entire team immediately

owns any one individual's problems". Achieving this idealised team owner

ship of work and, especially, the artefacts which are produced, and creating

an "egoless team", (Weinberg; 1999) is difficult. Individual egos can easily

inhibit progress, (Doershuck; 2004). Even when colleagues share openly and

freely they may do so for egotistical reasons rather than for altruistic ones,

36

2.6 The Agile Manifesto

(Perlow and Weeks; 2002). Even when the team structure is a flattened hier

archy and the team runs as a democracy it can still fail. Jurison (1999) reports

that egoless teams are ineffective in software development "because people,

particularly highly talented software developers, do have egos". It is not clear

that agile methods have solved this problem, there is talk of shared ownership

and egoless teams but the reality within teams may be different. This area is

currently under-researched, Chapter 6 shows how ego and personality impact

upon the conduct of a daily stand-up in one Scrum team.

At AGCS one team suffered from changing requirements and a change in

the organisational context for their product. Daily meetings and the use of a

backlog, held in a spreadsheet, helped them prioritise their work because in

"the daily meetings, the Scrum Master would call attention to backlog-item

priority". Another team had a heavy testing schedule but found that regular

meetings were an efficient way to share information so that "[t]he group as a

whole decided the kind of testing to perform in the next test time, not just the

tester who worked that test time".

Rising and Janoff conclude that although Scrum's practices are not new,

it is basically "incremental time-boxed development" with added daily meet

ings, Scrum is appropriate for those projects which have ill-defined require

ments or which exist within chaotic and changing conditions.

2.6 The Agile Manifesto

The originators of a number of agile methods and advanced software devel

opment techniques came together at the turn of the Century to write a state

ment expressing their core shared values. This statement became The Agile

37

2.6 The Agile Manifesto

Manifesto, (Beck et al.; 2001), and was aimed at the whole industry as. The

Manifesto has four values which are based on twelve principles. It states that

signatories value:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

Each of these values can be applied to any agile method and most teams

who use agile methods would agree with all four statements. The first and

third values express the importance of the people on a project, including cus

tomers and end-users; the second and fourth values have more technical foci.

The Manifesto has had an impact which is far wider than its own values. It has

created a new culture of software development which modifies the traditional

engineering approach through the deconstruction of monolithic projects into

small iterations.

All of the seventeen people who co-wrote the Manifesto came from similar

development communities based around the programming language Smalltalk,

early work on object-oriented development and software design patterns, (Haz-

zan et al.; 2010). Their backgrounds meant that they were used to using both

iteration and collaboration. One said "Smalltalk was so interactive that we just

said, well, let's just program it and see", another respondent thought "some of

the influence [on agile development] was object-oriented design, when peo

ple [used... incremental development, rather than trying to figure out [all the

requirements a priori]".

38

2.6 The Agile Manifesto

It is often assumed that the Agile Manifesto grew out of the failures of

the software industry. Hazzan et al show that, at least in part, "technological

forces fostered cultural changes". The Agile Manifesto came at a time when

many developers were working on smaller Web-based projects, when time-

to-market was reduced from months or years to periods measured in internet

time. Developers were beginning to have more interaction with customers and

those customers often knew more about what they wanted from their systems

than had been true ten years before. The Manifesto has been signed by hun

dreds of people. It clearly spoke, and speaks, to many working programmers.

The values of the Agile Manifesto appeal to developers who work within the

context of changing requirements, short development timescales and multi

disciplinary teams. Part of its appeal is that it captures the daily realities of

the working lives of many modern programmers.

Not everyone thinks Agile is the solution to problems of software develop

ment. Rakitin (2001) wrote "I've been waiting a long time for software engi

neering to become a respected engineering discipline". Rakitin characterises

developers as either hackers or engineers. Hackers "talk to people when they

are stuck, since they often prefer to work without specification" and who sim

ply want to produce "something which works". Software development, Rak

itin thinks, "will change for the better only when customers refuse to pay for

software that doesn't do what they contracted for". Perhaps ironically this is

also the view of the creators of agile methods who want to maximise value

for their customers but who feel that excessive project management and rigid

structures get in the way of achieving that aim.

39

2.7 Agile practices

Recent discussions on forums and email lists show that tensions between

project managers and agile developers remain today. Project managers fear

that agile methods empower developers who do not understand the "complex

realities of organisational change management, governance, financial controls

and longer horizon planning activities". Whilst agile developers think that

status and ego play a more significant role: "the Project Manager is the project's

hero and the Plan is sound (reality is wrong - when it doesn't conform, cor

rective action is taken). In agile, the project manager is a team member like

any other, and reality always trumps the plan (so when they don't match, the

plans are revised)", (Elssamadisy; 2010).

2.7 Agile practices

All agile methods share some common features based on the Manifesto's core

values. They structure projects through iteration, they strongly emphasise the

need to communicate with the customer and within the development team

and they value the delivery of working software most highly. Each agile method

takes its own approach to meeting the goals of the Agile Manifesto through

the selection of a set of practices. Developers can choose from a wide range

of practices: the methods tend not to be rigorous or prescriptive. Thus one

can find Scrum teams using Kanban boards or XP projects without on-site

customers or with optional pair-programming. Any agile practice may be

adopted by any team because developers believe that they "have the expe

rience needed to define and adapt their processes appropriately", (Turk and

France; 2002).

Whichever practices are chosen the day-to-day lived experiences of agile

40

2.7 Agile practices

developers are largely the same as those of developers on non-agile projects.

However, those experiences are found within structures which are created

to enable software development rather than to simplify project management.

Such experiences will be revealed by the developers' talk in the case studies

in this work.

About Daily Scrum Meetings

The Daily Scrum Meeting provides a space for co-ordination and communica

tion across the whole Scrum team. Agile approaches tend to share the belief

that "a team can be more effective if

• the cost of moving or sharing information is reduced

• the time between making a decision and seeing its effects is reduced",

(Cockburn and Highsmith; 2001).

Developers talk about their work in front of their colleagues in relatively

general terms. The Scrum Master should work to avoid the meeting becoming

becalmed in technical detail whilst letting each developer share information

about their work.

The rituals of Scrum all meet Cockburn and Highsmith goals but the daily

stand-up is especially important because it is lightweight and information is

shared quickly and easily with those who need it. Instead of emailing the rest

of the team with details of changes they have made or problems they have

found, each developer can tell them directly at the meeting. The entire team

knows where the problems are, how they might be solved and where changes

must be made to the code base.

41

2.7 Agile practices

In the meeting's context "communication" is being conceptualised as the

sharing of information. It tends to be a one-way channel in which the devel

oper explains their work to the Scrum Master with no expectation of further

detailed discussion. Other team members who are present at the meeting re

ceive the information as a side-effect. Whitworth and Biddle (2007) found that

team meetings "provide high levels of social accountability and support, and

awareness of activity in a project, such as provided by information radiators,

was seen to increase feelings of security and control in the team environment"

One of the side-effects of a stand-up meeting is that the shared informa

tion leads naturally to other talk outside the meeting. Because each of the

developers knows what their colleagues are working on they are able to talk

about to each other about the work of the entire team. Nothing is hidden from

colleagues..

Teams do not have to adopt Scrum or use stand-ups to gain some of these

benefits. Sawyer et al. (1997) examined a company in which teams were given

access to a computer-supported team room. Teams would use the room to

examine and discuss designs and code. Use of the room meant that group

discussions became easier, "[t]he direct effect is to make it easier for develop

ers to work together; enabling the production aspects. So, software develop

ment improvements at this site have emerged without increased engineering.

Rather, they have emerged due to increased discussion".

Distributed meetings

In a globalised industry such as software development teams are increasingly

dispersed across locations, often in different time zones. Many software de

42

2.7 Agile practices

velopers have experienced working in multinational and multicultural teams

as sections of projects are outsourced and offshored. The day-to-day manage

ment of these projects becomes more complex because of the team's distribu

tion. Holding meetings is difficult when members are at multiple sites and

when the morning meeting at one site is actually the mid-afternoon meeting

at another.

Successful collaboration relies upon the sharing of knowledge and, more

importantly, the creation of social relationships, (Layman et al.; 2006). Mem

bers of successful teams trust each other but trust is "more likely to be built

if personal contact, frequent interactions and socializing between teams and

individuals are facilitated", (Kotlarsky and Oshri; 2005). Distribution of teams

"challenge[s] project processes such as communication, coordination, and con

trol", (Holmstrom et al.; 2006).

An important, but often unacknowledged, problem for developers on dis

tributed projects is simply knowing who talk to at other sites. Holmstrom et

al note that staff on distributed projects have the same requirements of each

other as if they were physically together but that servicing those needs can

be difficult: "[ajlthough the need for informal conversation is extensive, peo

ple find it far more difficult to identify distant colleagues and communicate

effectively with them".

Large teams, distributed teams or sub-contracted teams always have com

munication difficulties. Herbsleb and Mockus (2003) found that communi

cation and co-ordination always provide difficulties in the development of

software. Distributed working adds new difficulties which can severely slow

the development process, in part because the amount of communication be

43

2.7 Agile practices

tween team members drops off sharply as distance between them increases.

Engineers with offices just thirty metres apart communicate as infrequently

as those who work twenty-seven miles apart. "In organizations with rapidly

changing environments and unstable projects, informal communication is par

ticularly important", a situation for which agile approaches are designed. In

formal communication is especially important to developers. In distributed

teams "[t]he nearly complete lack of informal, water cooler conversation ap

pears to have the consequence that people know much less about what distant

colleagues are doing, who has expertise in what area, what the current status

of plans is, and so on. In general, it seems that there is relatively little un

derstanding of the overall context or background information at distant sites",

(Herbsleb and Mockus; 2003).

Communication builds relationships. Where team members have strong

relationships they trust each other more and are able to work together more ef

fectively, (Kotlarsky and Oshri; 2005). Good communications leads to shared

understanding so that "when team members have familiarity with their ap

plication domain and shared knowledge of the task and each other they are

more coordinated and perform better", (Espinosa et al.; 2002).

Communication difficulties in distributed teams are not just caused by dis

tance and cannot easily be solved using IT systems such as video conferencing.

The distance between team members may be physical, temporal or cultural but

the main problem in today's multinational teams is often language. One of the

respondents in Holmstrom et al. (2006) says "[wjhen you have language dif

ficulties initially causing confusion, I think cultural differences can actually

drive further awkward situations, and it snowballs". These problems can be

44

2.7 Agile practices

avoided when their is greater rapport between the members of the team but

"[l]ittle is known about creating rapport between globally distributed teams",

(Kotlarsky and Oshri; 2005).

There are many examples of successful distributed projects. Sutherland

et al. (2006) report on a Scrum-based project which was distributed between

teams in the USA and USSR. Distributed Scrum teams usually follow a best-

practice in which each site runs daily stand-ups which are brought together for

a "scrum of scrums" which act a synchronisation point between sites. Suther

land et al. (2006) saw developers who, whilst physically located at a particular

site, could be on any of the project's teams. In effect each team was distributed

which increased the managerial effort required to run the project. The devel

opers could work in any combination which helped them acquire collective

knowledge of the project. Collective knowledge is "elements of knowledge

that are common to all members of an organization... Collective knowledge is

defined as a knowledge of the unspoken, of the invisible structure of a situa

tion, a certain wisdom", (Kotlarsky and Oshri; 2005).

When staff are co-located informal talk such as war-stories happens at the

water cooler or in the lunch room. In the days of punch-cards these stories

were shared whilst waiting for the machine to load and run a program, (Wein

berg; 1998). Sometimes workers simply have to make space to meet and share

stories. (Orr; 1996) describes the working lives of photocopier repair techni

cians who spend their working lives on the road or at customer sites, rarely

visiting their own company's headquarters. These technicians gather daily at

a diner for breakfast when they talk about their work, their customers and the

copiers which they maintain. Informal talk happens when people are physi

45

2.7 Agile practices

cally close to each other and collaboration and co-operation arise directly from

that informal talk, (Kraut et al.; 1988).

Distributed teams rarely have the chance to replicate the ad-hoc sharing of

programmers waiting for punch cards of copier technicians waiting for pan

cakes. Instead their opportunities for talk tend to be limited to email, chat or

online meetings. Layman et al. (2006) show that simple information-sharing

strategies such as responding immediately to emails or supplying continuous

access to data about processes and products can help form a united team.

Pair programming

Pair programming is one of the defining practices of Extreme Programming,

see Section 2.5.1. In pair programming "two people program with one key

board, one mouse and one monitor", (Beck; 2000). Because the two program

mers only have one machine they must divide their work so that both think

about the code which they are creating but only one types the code and con

trols the PC. The person doing the typing is sometimes called the driver, the

other member is then called the navigator. The navigator must think about the

problem and the solution and try to contribute ideas and alternatives.

Working successfully as a "pair" requires active participation from both

programmers through continual discussion of the work. The navigator can

not simply relax until it is their turn to type but must work with the driver

to produce a joint solution. Navigators do not "manage" the driver, rather

the intellectual work of programming is divided between them, (Bryant et al.;

2008). Although thinking and designing are shared, (Plonka et al.; 2011) show

that the division of labour between driving and navigating is not evenly split

46

2.7 Agile practices

across the pair: some individuals drive more than others. Additionally, the

effort of a pair is not totally focussed on the computer because they "spend

on average a third of the session without any computer interaction focusing

mainly on communication", (Plonka et al.; 2011).

Using pair programming requires a commitment from both the program

mers and their managers. Developers tend to change partners frequently,

sometimes twice each day which means they all become familiar with the

whole of the codebase. It also means that any piece of code that a developer

writes may well be read by all of their colleagues at some point. This has a ten

dency to encourage simpler, more readable code which is self-documenting

and strongly encourages the use of good test cases. Weaker programmers

build skills more quickly in a pairing environment because they are exposed to

the knowledge, ideas and problem-solving strategies of all of their colleagues.

Sometimes new or inexperienced team members struggle because they do not

know who to approach for help with their problems. Studies have shown "that

knowing where expertise resided in their teams had a positive effect on per

formance", (Espinosa et al.; 2002).

When developers pair, especially when they switch partners regularly, ex

pertise spreads across the team. This might seem obvious, that the weaker pro

grammer will learn from the stronger but within a pair a "significant amount

of talk is at an intermediate level of abstraction", (Plonka et al.; 2011).

Pair programming would have benefits such as increased team cohesion,

wider understanding, even if it did not lead to better quality code. Beck writes

that pairs are "more productive than dividing the work... and integrating the

results". One might assume that a pair would produce less work than two

47

2.7 Agile practices

developers working independently but that seems not to be the case. Pairs,

Beck argues, produce better code which requires less re-working and which

has lower life-cycle maintenance costs.

Hannay et al. (2009) looked at a number of studies of pair-programming

to examine whether common-sense understandings, such as Beck's, of the ap

proach stand up to rigorous enquiry. Studies tend to look at simple measures

such as the productivity of paired programmers, the time they take to com

plete task or the quality of the code which they write. Hannay et al. performed

a meta-analysis of a number of studies which shows that the measurable ben

efits of pair-programming are contestable. There is evidence that better solu

tions are created for complex problems and that simple tasks are solved more

quickly. However, the former requires much more effort and the latter tends

to lower the quality of the solution.

More rigorous studies are needed before we can say that we really under

stand pair programming. "Only by understanding what makes pairs work

and what makes them less efficient can we take steps to provide beneficial

work conditions, to avoid detrimental conditions, and to avoid pairing alto

gether when conditions are detrimental", (DyM et al.; 2007).

Many programmers enjoy working in a pair. Some choose to do so even

when the approach is not mandated by their employers. Because pairing is not

statistically more productive than working alone this seems strange. A pro

grammer in a pair loses ownership of their code and has to work at someone

else's pace. A common-sense view of work would suggest that both of these

are undesirable attributes of a working practice. If developers are choosing

pairing then there must be other benefits which outweigh any costs. Muller

48

2.8 Software Engineering as Craft

and Padberg (2004) found that a "feelgood factor" exists for pairs. The per

formance of a pair does not correlate with their experience but does correlate

with their work satisfaction which is greater for developers working in pairs.

Some people like working with others and it might be that a particular per

sonality type is best suited to pairing. The increase in feelgood which Muller

and Padberg report might be a product of personality type. But other stud

ies show that personality type does not correlate with productivity and is far

less significant than the developers' experience or the complexity of the task,

(Hannay et al.; 2010).

The studies by Muller and Padberg and Hannay et al. show that research

into the impact of pair programming is still incomplete and slightly contra

dictory. These studies show that developers enjoy pairing, that pairs handle

complex tasks better than individuals do and that these benefits are nothing to

do with personality type. In Chapter 7 pair programming is examined using

Conversation Analysis to reveal how the developers' talk-in-interaction affects

their development of software.

2.8 Software Engineering as Craft

The idea that software is, or can be, engineered has largely been accepted by

the community. Ideas of engineering lie at the heart of widely used metrics

such as the Capability Maturity Model. Some developers have a rather dif

ferent view of their discipline. The Software Craftsmanship movement looks

backwards to notions of craft, skill and trades guilds to suggest that our cur

rent approaches to the development of software might be flawed in a number

of ways.

49

2.8 Software Engineering as Craft

2.8.1 Craftsmanship

The idea that we ought to be engineering software grew out of the perceived

failures of major development projects through the 1960s. Software engineer

ing brought rigour, control and management to projects but those same types

of project continue to fail to this day. Some developers have set out an alter

native which is based on the idea that developers with high levels of skill and

commitment will produce better software.

The engineering view has prevailed and continues to dominate but an al

ternative one which places people at the heart of the development process

does exist. This may range from structuring development as an intellectual

activity within the workplace as DeMarco and Lister (1999) do, to seeing it as

a craft activity as described by McBreen (2001), Glass (2006a), Sennett (2008).

The debate between craftsmen and engineers is far from settled. Brech-

ner (2007) makes a strong case for both agility and engineering. Brechner's

view is that you "craft a desk, engineer a car" and that the process of building

software should be consistent and measurable. As evidence for this he cites

a study in which he and other developers at Microsoft measured themselves

writing code. Not surprisingly when solving a problem under experimental

conditions, experienced developers wrote similar amounts of code and took

similar time to complete the task. Brechner uses this as evidence that, whilst

the software they build differs, developers are consistent and measurable. But

it doesn't follow that because something can be measured under test condi

tions it can also be measured in real work with customer's requirements.

The craft movement takes its lead from the Agile Manifesto in viewing soft

ware development as a fundamentally human activity. It is something which

50

2.8 Software Engineering as Craft

is undertaken by skilled people who need, wherever possible to maintain their

skills through their professional practice. This is expressed most succinctly in

the Manifesto for Software Craftsmanship (McBreen; 2001). For craftsmen, en

gineering is not a bad thing. Tool support is necessary but must never distract

from the skills and knowledge of programmers working in teams. A program

mer learns from, and teaches, her colleagues and is able to move from appren

tice through journeyman to become a master craftsman1. This journey is one

of learning through talking and doing which sees the developer moving be

tween teams, organisations and approaches. Ultimately, methodologies and

project management should be there to help us build better software not to

help us be better at following methodologies or at being managed.

Building software requires that the developer be fluent with the rules of

the programming language, more than competent with a range of tools and

able to understand the language and nuances of the problem domain. Soft

ware development is an expression of bricolage, Levi-Strauss (1966), in which

developers must be neither jack-of-all-trades handymen or experts at a single

task but skilled craftspeople who are masters of their trade. The traditional

project following a waterfall model sees development split into specialised

phases such as requirements gathering, design, coding or testing. Each uses

different people who have become skilled in just one thing and who lack the

knowledge and experience to see projects holistically.

Software craftsmen do not have to work in an agile way. Most professional

developers care about skills, personal development and the impact of their

work on clients and colleagues. However, the craft movement foregrounds

:The gender-specific terminology comes through the Software Craftsmanship movement
paying a knowing homage to medieval craft guilds rather than through sexism.

51

2.9 Summary

ideas such as Test-Driven Development, iteration and continual integration.

These are the very practices to which Agile developers have turned in recent

years. The relationship between Agile and Craft is very close because of the

fundamental overlaps between their philosophies. This relationship mirrors

the one between the object-orientation and design patterns communities and

the early Agile thinkers in the mid to late 1990s. All of these groups place

developers and the code which they produce at the core of their thinking about

software. Many of the practices which are shown in empirical Chapters 5, 6

and 7 can be found in McBreen (2001), Hoover and Oshineye (2010) and other

texts on craft.

2.9 Summary

Software is developed through a complex and diverse set of activities. There

isn't a single standardised process which developers have to follow. As one

reads and listens to practitioners and academics it can seem that there are

as many approaches to development as there are developers. Some ideas

have come to be commonly accepted throughout the industry and within the

academy. Software development is seen to be in permanent crisis, software

ought to be engineered like other products, documentation is always going

to be useful and so on. All of these ideas are contested but, as this Chapter

has shown, their roots are found in the community's response to the failing

projects of the 1960s.

By the 1990s Software Engineering was being formalised and, concurrently,

once radical ideas such as object-orientation were gaining mainstream accep

tance. New ideas in project management and an early interest in agility came

52

2.9 Summary

from the same root: the desire to deliver working software on time and to

budget. In many ways the Agile Manifesto and Capability Maturity Model

Integration may be orthogonal ideas but each is a logical endpoint of the de

bates of the 1990s.

Throughout this Chapter a number of Agile methods and practices have

been presented. They were selected not because they are the most widely used

practices but because they are the ones which were found in the fieldwork.

Each of them is a poster child for a different aspect of agile. Pair programming

is the signature activity in Extreme Programming, Scrum is synonymous with

the stand-up meeting and estimation underpins both XP, Scrum and newer,

lightweight approaches such as Kanban.

Those activities are used Agile projects to support project management,

coding and design but all have one thing in common. If they are to be used

successfully they require that the developers, managers and customers talk to

each other. In the next Chapter the role of talk as a work practice, and as a way

of configuring work, is examined.

53

Talking about Software

Engineering

3.1 Introduction

Chapter 2 discussed the origins of the discipline of Software Engineering, the

recent appearance of agile methods and some practices of agile developers

which are pertinent to this thesis. Software development was positioned as

both a matter of technical competence and practice and as a social activity in

which groups work collaboratively to design, test and build applications. If we

are to understand software development then we must necessarily understand

both the technical and professional competencies of software developers and

software engineering as a social process.

One way to understanding the social processes within which software is

constructed work is to observe that construction as it happens. Ethnography

is a well-established and widely used approach to the gathering of data about

cultures and to analysing and interpreting those data. In this Chapter the use

of ethnography in studying workplace cultures is discussed.

This Chapter introduces the idea of ethnomethodology and positions the

talk-in-interaction of software developers as a matter which merits detailed

3.2 Ethnography

study. Ethnomethodology provides an analytic framework within which so

cial activities, including those at work, can be studied. This Chapter examines

why an ethnomethodological approach is useful when studying work and

how it might be applied to the activities of software developers. It should

be noted that whilst some ethnomethodologists choose to ignore the broader

context within which their informants are working, preferring to focus on the

ways in which the immediate context is made relevant by participants, this

is not the approach which will be taken here. The activities of professional

developers are of interest precisely because they are situated within organi

sational contexts, because they are oriented to the accomplishment of work-

related goals and because they relate to the expertise of individual workers.

This Chapter will discuss a range of literatures from ethnomethodology,

conversational analysis and studies of group working to reveal relevant ideas

and arguments from them. The operationalisation of these ideas is discussed

in Chapter 4. This Chapter starts with an examination of ethnography and

its use in studying work, 3.2. Section 3.3 introduces the ethnomethodological

perspective on work. Section 3.5 discusses how meaning is formulated in the

communications of developers and Section 3.7.2 considers how shared under

standings might form within teams as part of their common culture.

3.2 Ethnography

Ethnography is perhaps the most commonly used of the subjective research

methods within software engineering. This Section introduces ethnography,

particularly as a way of understanding work, to show that it provides an ap

proach to understanding the work of professional software developers which

55

3.2 Ethnography

is rich in detail and analysis.

The researcher who is in the field studying work is immersed in an often

alien culture, observing and interrogating members of the culture to uncover

the ways in which they produce, understand and sustain that culture. This ap

proach to research is, broadly, ethnography but, more specifically ethnography

is a "written account of a culture (or selected aspect of a culture)", (Van Maa-

nen; 2011).

The subject of an ethnography is culture and its method, the way in which

data are gathered, is fieldwork. The essential purpose of ethnographic writing

is to pull together the fieldwork and culture in such a way as to reveal details

of the culture to outsiders, or sometimes to its members. In so doing, ethno

graphic accounts may reveal the choices and restrictions which are the heart

of social lives, (Van Maanen; 2011). Anderson (1997) writes that many social

scientists blur the boundary between fieldwork and ethnography but that the

latter is an "analytic strategy for assembling and interpreting the results of

fieldwork".

The idea of "culture" may not seem to be immediately applicable to the

workplace but workplaces, companies and even individual teams each have

their own cultures. Developing an understanding the work which they do,

how they do it and why they do it means developing an understanding of

their unique workplace culture. O'Riain (2008) demonstrates that workplaces

have these unique cultures when he writes, of a project he is investigating,

that " [t]he team takes on a culture of its own, manifested in the mimed hos

tility to [managers] suggestions but also in the information-sharing, problem

solving and solidarity building within the team on an everyday basis". Soft

56

3.2 Ethnography

ware developers have used ethnography to study the cultures of organisations

for many years as part of their requirements gathering or usability processes,

(Suchman; 1987, Dourish and Button; 1998). More recently academic software

engineers have begun to use the same approach to understand aspects of the

software development process, (Sharp and Robinson; 2003, Lethbridge et al.;

2005).

In this research, the researcher is an experienced software engineer. En

tering the workplace means entering its culture and observing developers at

work means observing them as they orient to that culture. A researcher who

knew nothing about software engineering would observe and be interested

in a different set of phenomena to those which a fellow developer would see.

Some aspects of work which are mundane or predictable to the insider might

be of intense interest to an observer who was not familiar with the discipline.

For example, the use of test-driven development says something about the

ways in which developers organises their work to another engineer. To an out

sider, the whole idea of testing could be something which is worthy of deeper

interrogation.

The outsider is unlikely to have sufficient time to be trained in program

ming or testing and hence can never be a participant who is fully immersed

in the workplace culture, (Crang and Cook; 2007). In these studies the field

work was done by an insider who naturally became a participant in the work

through conversations with the developers about their work. This insider per

spective is a different one to the perspective of the stereotypical anthropologist

who spends years observing, understanding and gradually joining a culture.

Van Maanen (2011) writes of fieldwork as the quintessential ethnographic

57

3.2 Ethnography

activity and that analysis only has credibility if it based on things which the re

searcher has seen or been told by a member of the society. Data from the field

give ethnographic writing its credibility and, Anderson (1997) argues, legit

imise the ethnographer by grounding their analysis in empirical data. Those

data are gathered in myriad ways. In the studies which are presented here,

the data sources are contemporaneous field notes and audio recordings with

the former being the primary source for ethnographic writing.

The attraction of going into the field to see what users do, or to see how

developers organise their work, is that it gives rich data which are embedded

in context and which can be written-up in ways that are both interesting and

insightful. Such writing could become a journalistic re-telling of scenes which

were observed and conversations which were recorded but ethnography is

not this type of straightforward write-up of field notes. When ethnographers

leave the field they do so to "write up the culture" (Crang and Cook; 2007).

Such a write-up presents a detailed understanding of that culture including

an understanding that "things are not what they seem" and that appearances

are often deceptive, (Anderson; 1997).

If appearances are deceptive, members are unlikely to have a comprehen

sive understanding of their own culture which is why the ethnographer does

not simply ask them for their explanations as a journalist might. Instead mem

bers' accounts are interrogated alongside the researcher's observations, some

times recorded in contemporaneous notes, other data sources such as audio or

video recordings and sociological or anthropological theories of culture. The

ethnographer tries to produce a rich picture of a culture, a picture which is

supported, and which supports, academic theories and positions.

58

3.2 Ethnography

The write-up is not a value-free neutral activity, it requires that the au

thor undertake a post hoc, analysis and interpretation of the data, (Anderson;

1997). Researchers such as Sharp and Robinson, who are immersed in the

domain which they study, have their own cultural values which, necessarily

and rightly, inform their analyses of their data. The impact of this on software

engineering, especially when using ethnography as part of requirements gath

ering, is the death of certainty about "facts".

It is important to recognise that debates about status, legitimacy and mean

ing exist. A post-modern deconstruction views ethnographic writing as sub

jective literature rather than as objective science, (Linstead; 1993). For post

modern ethnographers their texts are, Linstead argues, active descriptions

rather than neutral recordings of the worlds of "others". A single authorial

voice is replaced with a multitude of voices in which all interpretations are

possible and rigour is knowingly and willingly, lost.

Whether an ethnographic account is read as a neutral account of a culture

or as a living representation of that culture, it shows something of the cul

ture. Ethnography is, ultimately, both a rich description and revealing analy

sis. When working life is studied through ethnography the workers and their

practices are the principle matters of interest. This differs from traditional

studies of work which can be exercises in organisational structures and power

relationships as they are codified in "org charts" and human-resources docu

mentation.

When observers look at work they can easily lose sight of the worker and

of the work which they do. By using ethnography and, specifically, by looking

at the sense-making activities which form the basis of the work its "hidden"

59

3.3 Ethnomethodology

nature can be shown. Two ideas inform such a study: Goffman's idea that

people's talk is a social domain which can be studied as an institution in its

own right; and Garfinkel's idea that the production of sense in talk is due to

"ethnomethods", (Heritage; 2008).

The following Sections introduce the ideas of ethnomethods, sense-making

and conversation analysis.

3.3 Ethnomethodology

Scholars of work often focus their studies on large problems of structure, of

management or of process but if work is to be understood then the actions

of the workers must be examined in detail, (Llewellyn and Hindmarsh; 2010).

Ethnomethodology originates in work which explicitly confronts the study of

the structures and functions of societies by "respecifying" the production and

accountability of those societies, (Garfinkel; 1996). GarfmkeTs respecification

was that social order arises from, and is made to work by, the actions and

interactions of its members, (Dourish and Button; 1998), and that the produc

tion of this order is accountable. Ethnomethodological accountability means

that as a basic grounding of everyday activity we each strive to understand

the actions of others and to make ourselves understandable and explainable

to them, (Suchman et al.; 2002).

Ethnomethodology, following Garfinkel, takes as its analytical locus the

actions of the members of a community which are analysed to understand

how those actions create stable social orders. For ethnomethodologists "there

is order in the most ordinary activities of everyday life in their full concrete

ness, and that means in their ongoing procedurally enacted coherence of sub

60

3.3 Ethnomethodology

stantive, ordered phenomenal details", (Garfinkel; 1996). By examining the

raw details of the structure of typical social phenomena the social order can

be revealed.

The production of social order is "part of ordinary, everyday life, woven

into the fabric of all activity", (Dourish and Button; 1998). Developers gath

ered in a daily stand-up have a mutual interest in constructing the meeting as

a stand-up and must orient to it as such. Their actions, their talk, should, rea

sonably and usually, be expected to be about their work since that is the matter

of interest around which they have gathered, (Dourish and Button; 1998).

Ethnomethodology is interested in sense-making, the ways in which m u

tual understanding is achieved. In its methods, ethnomethodology examines

those taken-for-granted meanings and assumptions which underpin mem

bers' social actions. GarfmkeTs work revealed "that meaning requires order,

and the empirical elaboration of how this is achieved through sequential de

vices and reflexive attention, are [his] unique contribution to social theory",

Rawls (2008). If social order is required for there to be meaning, then the

context of the production of the action is important because the order is cre

ated within that context. Actions are located within organisational structures

whose boundaries, both internal and external, affect the ability, or willingness,

of members to understand each other, (Suchman; 2003, Orr; 2006), and so de

fine the context of accountability. Boundaries, whether explicitly defined or

implicit, such as the ones described between managers and technicians in (Orr;

1996), impact upon mutual understanding but do so through their impact on

members' accounts, (Rawls; 2008).

Although a manager and a technician or a programmer and a sales agent

61

3.3 Ethnomethodology

may not understand each others' technical jargon, they are able to interact suc

cessfully because of their ability with conversational techniques. Garfinkel

was "concerned with the patterned and instructable ways in which order prop

erties of situated action are made public and mutually recognizable objects by

workers at worksites from the contingencies at hand", (Rawls; 2008). People

engaged in conversation have an interest in preserving mutual intelligibility.

The methods used to ensure understanding, and their use, becomes the object

of analysis. Whilst much talk is routine in structure or content, in any partic

ular work situation the talk will be situated and contingent upon the working

activity at that moment. This research shows software developers talking as a

sense-making activity - they talk to each other to help them understand prob

lems, pieces of code or the design of software. Their talk is not only situated

within their work activities, it produces those activities.

Ethnomethodology provides a theoretical orientation to interaction which

reveals actions and their sequencing and shows how workers orient towards

these as they do their work. At the same time the ethnomethodological analy

sis is located within the context of the production of the actions and preserves

the contingencies of that context. A context is not a fixed set of social or cul

tural factors which act from the outside upon a situation, rather it is a set of

reflexively produced relationships between actions and the meaning of those

actions in a specific place and time, (Lynch and Peyrot; 1992). For example a

semi-formal stand-up meeting as part of a Scrum or an ad-hoc conversation be

tween two programmers provide a situated context for their actions. Events

such as stand-up meetings can be understood as concrete phenomena, eth

nomethodology argues, because the people involved are constantly reproduc

62

3.3 Ethnomethodology

ing them in that way, (Llewellyn and Hindmarsh; 2010).

What Durkheim and Coser (1997) call the shared competencies of develop

ers' in programming and its associated activities provide the lingua franca of

software development. They become a basis from which ideas can be both sus

tained and challenged. Many software developers work in distributed multi

national, multi-cultural teams in which the culture of software engineering

and its situated practices provide the only common framework on which the

social order of the team or project can be established, (Grinter et al.; 1999, Ye

et al.; 2004, Kotlarsky and Oshri; 2005).

The idea of indexicality is central to ethnomethodology. Indexicality is the

property of some expressions to mean different things in different situations,

(Suchman; 1987, Dourish and Button; 1998). Expressions such as the user or

the database change their meaning within conversations, (Rawls; 2008). Many

reasonably complex pieces of software connect to numerous databases but the

documentation may not refer to the user database or the customer details database.

Instead the particular database and its use must be inferred by the reader from

the context within which the phrase is used. Context is complex and impor

tant because almost anything we say can be interpreted in different ways de

pending upon the situation. However the context of each statement which we

make is not included in the statement itself, instead we "wave our hands" at

it, (Suchman; 1987).

The ethnomethodological meaning of indexicality goes beyond the con

text within which statements are used. In his early writings Garfinkel stressed

that indexicality requires action as speaker and listener work together to create

context, (Atkinson; 1988, Goodwin; 2000). By studying talk as it is produced

63

3.3 Ethnomethodology

within the context of its production the ethnomethodologist is able to reveal

the reasoning and understanding which it embodies, (Gephart; 1993). But in-

dexical expressions are "specifically ordinary and uninteresting", (Garfinkel;

1996). Whilst they can readily be observed, Garfinkel stresses that these ex

pressions should not be subjected to a cognitive analysis. The analyst can see

that the expression is actively working for both the speaker and the hearer

but cannot make the leap from there to understanding why that work is being

done.

If the concept of indexicality is extracted from the study of speech it can

be used to reveal the understanding which is developed and shared in the

workplace. Revealing shared meaning is an important part of many work

place studies whether Latour (1987) studying how science is created, Heath

and Luff (2000) looking at the use of control systems, Orr (1996) following re

pair technicians or, radically perhaps, Faulkner and Brecker (2009) describing

the making of jazz music on the concert stage. Each of these studies demon

strates work in which communication is central to the activity as it is lived by

its participants. In each case before there can be communication there has to

be understanding. The ways in which people interact during their work builds

a shared context within which they are working.

3.3.1 Conversation analysis

Conversation analysis was created by Harvey Sacks in collaboration with Emanuel

Schegloff and Gail Jefferson in the 1960s under the tutelage of the Harold

Garfinkel, (Heritage; 2008). Sacks was interested in practical reasoning in in

stitutional settings such as police work or psychiatric counselling. Using tape

64

3.3 Ethnomethodology

recordings, transcribed and annotated using a scheme developed by Jefferson,

of phone calls or meetings Sacks and Jefferson were able to reveal the practical

work within the talk-in-interaction.

Sacks, Schegloff and others moved from studying talk in institutional set

tings to studying general features of talk and interaction such as turn-taking.

Other conversation analysts were interested in studying talk within institu

tions to discover how those institutions were produced, (Heritage; 2005).

Conversation analysts studying institutional talk link the meaning of talk

to the context of its production. The meaning of an action is formed within

the context of previous actions and the social context for interaction is cre

ated dynamically through the sequential ordering of interactions, (Heritage;

2005). This then leads to a theory of the ways in which participants orient to

an interaction:

• Participants construct talk within the context of previous statements.

• When people construct an utterance they have an expectation that the

response will come from a limited set of possibilities. They are creating

the context for the response with their own statement.

• Responding to an action, a statement, requires and demonstrates an un

derstanding of previous actions.

Conversation analysis has been a productive methodological application

of ethnomethodology. The two have different agendas: the former being in

terested in the sequential nature of talk, (Heritage; 2008), whilst the latter is

interested in "mundane reasoning", (Atkinson; 1988). The ethnomethodolog

ical project seeks to understand work as a mundane, observable activity in

which the sequence of actions, activities and talk reveal both the work and

65

3.3 Ethnomethodology

the participants understanding of it as it is embedded in social interaction.

This concern with detail can, Atkinson argues, mean that ethnomethodologi-

cal analyses can "merely recapitulate the observed sequences of activities with

little or no framework for selection, or for the representation of those activities

in any other discourse".

It doesn't have to be the case that analyses of conversation are analyses of

language, structure and sequence. Hymes (1994) writes that "it is not linguis

tics, but ethnography, not language, but communication which must provide

the frame of reference within which the place of language in culture and so

ciety is to be assessed". Much good work in conversation analysis, goes far

beyond description, providing illumination of institutions or situations which

would otherwise be only through common sense understandings. Studying

doctor-patient relationships, counselling, classrooms and so on has "drawn

attention to the detail and complexity of everyday life, and to the delicacy

with which participants monitor the unfolding conversation as they collab

orate in its production", (Atkinson; 1988). The context is important because

"the boundaries of the situations within which communication occurs... are

conditioned by properties of the linguistic codes within the group, but are not

controlled by them", (Hymes; 1994).

In conversation analysis, the ethnomethodological interest in indexicality

becomes a concern with conversational structure and sequence. Ethnomethod

ological reflexivity becomes an interest in the work which is done by indi

vidual statements and sequences of interactions, (Potter; 1996). The struc

ture of conversational interactions are neither accidents nor artefacts but are

crafted by speakers with a sensitivity to both the sequential context of their

66

3.3 Ethnomethodology

production and to their role in the interaction. Within conversation analysis

the "messy" details of delivery such as changes in intonation, pauses, repe

titions and so on become matters of interest in a way that is fundamentally

different to the techniques used by linguists. These details matter because

they are used by speakers as part of their method for interacting and hence

they are there to serve the action which the speaker is performing, (Heritage;

2008).

Analysing the things which people say to each other about their work can

reveal their understanding of that work. Sharp et al. (2004) write that "[i]t is

via language-in-use that people reveal, perhaps inadvertently, implicit knowl

edge and meaning. This knowledge and meaning might well be different to

what their companies would like to portray or what they themselves might

rationalize". Conversation analysis reveals more than surface facts, it exposes

ideas, opinions and tacit judgements which might be rationalised away or ig

nored in a higher-level analysis. However, that analysis should be grounded

in "categories" which might be relevant to the participants, (Hutchby; 1999).

Annotated transcriptions of conversations between developers are given

in Chapters 7 and 6. Details of the annotation scheme are given in Jefferson

(2002) and in Appendix A. The scheme used here is taken from Ten Have (2007)

and is a subset of Jefferson's complete set of symbols. This subset was chosen

because it is rich enough to provide coverage of the features of talk which

are required for these analyses yet is sufficiently simple that the transcriptions

remain clear to non-specialists.

67

3.3 Ethnomethodology

3.3.2 Face-work

When people interact they perform both verbal and non-verbal acts through

which they express their view of the situation and of the other participants,

(Goffman; 1964). Together these acts form, for each individual, a line through

the interaction which a person uses to claim social value. Goffman calls this

claimed social value face and identifies it as something which might wish to

maintain, if they "feel good" about a situation or change if they "feel hurt".

Participants are not only interested in their own face, they have feelings about

and for the face of those with whom they are interacting.

Face is constructed in the moment but is built on a history of interactions.

Goffman (1964) writes that a person maintaining face in one situation is "some

one who abstained from certain actions in the past that would have been dif

ficult to face up to later". The current interaction may be dependent on wider

social considerations if those involved interact repeatedly but if they will not

meet again they do not need to worry about maintaining face for each other.

The case studies in this research are focused on teams of colleagues who

work together every day. It is important that they are able to maintain their

own face and that they do not damage the face of their colleagues. Goffman

writes that when people are "in wrong face or out of face" they feel inferior to

those around them, especially if they were relying on the encounter to "sup

port an image of self" which is now threatened. Bargiela-Chiappini (2003)

expands this idea by noting the role which emotion plays in interactions "so

that harm to another's face causes 'anguish', and harm to one's own face is

expressed in 'anger' ".

Because of the consideration given to the face of others, face-work is re

68

3.4 Negotiating design

lated to politeness. But face-work is about "self-presentation in social en

counters", (Bargiela-Chiappini; 2003), and is a set of actions which make the

individual's actions consistent with their face. Politeness is about "rational,

goal-oriented behaviour", "politic behaviour" or "appropriate behaviour" ac

cording to Bargiela-Chiappini (2003). Face is found in the interactional order,

(Goffman; 1964), whilst politeness derives from the social rules governing in

teractions, (Bargiela-Chiappini; 2003).

The importance of both face-work and politeness in Daily Scrum Meetings

is shown in Chapter 6, and face-work when pair programming is shown in

Chapter 7.

3.4 Negotiating design

Programming is a collaborative, social activity which is not only performed

at the computer. Programmers work in teams, they talk to each other, they

communicate more widely with customers or users and, wider yet, with com

munities of programmers at conferences and on Web forums. Aspects of this

have been studied, often as part of the design process in the creation of pro

gramming tools or in computer-supported cooperative working projects. Soft

ware development has many features in common with both engineering and

design, both of which have been extensively studied.

Studies of collaborative design, engineering and software development

have often taken a task-oriented approach in which conversational practices,

representations such as sketches and the use of shared references are worthy of

study only as they orient towards the completion of the task-at-hand, (Cahour

and Pemberton; 2001). When design is studied as a social practice both the

69

3.4 Negotiating design

aims of the researchers and their analytic approaches have more in common

with Conversation Analysis of non-technical situations. In studies of, and by,

designers such as Cross and Cross (1995), Cross (1997), Cahour and Pemberton

(2001) "the goals of participants, whether explicit or not, will be not only the

creation of a design representation but also the management of interpersonal

relationships". These studies show that transactional talk and interpersonal

talk are woven together throughout conversations in a complex relationship.

Interpersonal talk can inhibit task-oriented talk if the need to manage the so

cial situation is strong so that, for example, a developer may accept a weaker

solution to save another participant's face, (Cahour and Pemberton; 2001).

The problems on which product designers work are, as with those which

concern software developers, often ill-defined so that "analysing and under

standing the problem is an influential part" of the process, (Cross and Cross;

1995). The development of understanding is widely recognised to happen

through a cycle of talk-based propose-evalucite iterations, (Cahour and Pember

ton; 2001), which are, at least superficially, similar to the cycles of an agile

method. Cyclical design processes inevitably means that the design remains

changeable and changing well into the process. Ronkko et al. (2002) shows that

in software development even the naming of variables is contingent, tempo

rary and subject to change. There is a cost associated with the constant changes

which teamwork can bring but teamwork is likely to lead to a better overall so

lution. A team will propose more potential solutions than can be generated

by an individual. Not only is the solution space larger, the team must work to

gether to negotiate it as they move towards a final design. Collaborators must

identify, avoid and resolve conflict as they search for a solution, (Cross and

70

3.4 Negotiating design

Cross; 1995).

Incomplete specifications are common in engineering. An engineering de

sign manager interviewed in Lloyd (2000) describes one process for handling

the problem. The requirements documents which the sales team produces

are so vague that a process has to be invented to handle them: "for every new

project that comes in I'm going to put a requirement for a variance document.

The reason I'm doing that is because the orders come in so open—the one

pitch quote". But the sales documents are so vague that the engineers have to

"you know, get on the telephone, or go and talk to the people involved to find

out what in fact is really required, to get some idea of, you know, to try and

summarise it in some kind of simple way". This is an ad hoc process developed

on the ground to handle a specific type of problem in the company. Because

the process is informal it isn't documented and could easily be glossed over

by the manager and engineers who use it. Conversation analysis gives us a

way to understand how the engineers create usable requirements and make

decisions about products.

Problems of misunderstanding, poor communication or lack of trust can

be seen across organisations at all levels. For example, Laine and Vaara (2007)

examine the understanding of strategy in an engineering consultancy. They

show that there is a difference between the strategic discourses of the man

agement and the interpretations of, and orientation towards, those discourses

by consulting engineers. The various discourses which develop around or

ganisational strategy are important because different discourses are used to

create and support positions around strategy. Much research into strategy

takes a top-down managerial view whilst silencing or, at best, side-lining al

71

3.4 Negotiating design

ternative voices. Laine and Vaara reveal those voices and in so doing reveals

an organisational "battle over power, hegemony and individualized sense of

identity". In studying software development we should expect to see multi

ple discourses around sales, functionality or approaches to engineering. Such

discourses can be revealed by studying the ways in which they are embodied

in, and accountable to, the working practices, documents and, most clearly,

the talk of members of the organisation.

In a software project with specialist requirements analysts liaising with the

client, those analysts are assumed to understand what the developers know

without having to ask, acting as buffer, translator and clarifier. The "members

of the requirements development groups were experts in their fields, in some

ways more expert than the customers. Developers used this expertise to make

sense of the incomplete and ambiguous input they received from customers

and translated it to their own domains", (Crowston and Kammerer; 1998).

The informants in Crowston and Kammerer (1998) represent an ideal form

of analyst for whom misunderstandings are minimised and for whom the

worlds of developer and end-user are equally transparent. Usually under

standings are contingent upon external factors such as the prior knowledge,

skills and experience of the analyst or developer. An experienced developer

will use a different approach to those which are chosen by developers with

less experience, (Detienne; 1995), and that approach may not depend upon

the problem which is being solved. The generic structure of the solution may

be the same regardless of the particular problem. This might seem surprising

but apparently different applications often have similar architectures and the

documentation produced by analysts is frequently out of date by the time that

72

3.5 Finding meaning

code is written, (Lethbridge et al.; 2003).

3.5 Finding meaning

Project teams have to share large volumes of information, and the larger the

team, the greater the volume of information which must be shared. Communi

cation can be especially difficult when products are built by distributed teams.

Although team members can talk to each other using a variety of media, rang

ing from chat systems through email and video conferencing, communicating

meaning can be difficult. Teams which work as cohesive units become, in ef

fect, isolated communities, developing their own ways of talking about their

work. Over time these different approaches to talk can become different lan

guages which are mutually incomprehensible. Such teams form communities

of practice, an idea which is discussed in Section 3.7.5.

When members of the team talk to members of other teams they have to

reach a shared understanding of the conversation. If they fail to do so each

will leave with a different interpretation of the conversation, its meaning and

its outcome. This is not a problem of technical language: the vocabulary of

software development is understood across roles and skill sets and becomes

the lingua franca of parts of the project. Everyone on the project will know

what is meant by class or entity. Much of the talk during a project uses lan

guage which is less precise and is more open to interpretation because the

architecture of a piece of software is a plastic construct, (Smolander; 2002).

Architectural decisions, even the very concept of a software architecture, have

different meaning for different stakeholders. These meanings are both con

current and divergent which makes them a source of misunderstandings and

73

3.5 Finding meaning

mistakes.

It is not only new code which requires that the programmer understand

what was expected and why. Much of the effort across the life of a piece of

software is maintenance which can be anything from fixing bugs to meet

ing changed requirements and on to adding whole new areas of functionality.

Maintaining code requires detailed understanding of it both as an artefact and

as a historical document which expresses the purpose behind its original cre

ation and the set of changes which have so far been made to it. Seibel (2009)

quotes Simon Peyton Jones of Microsoft saying "[o]ne of the most depress

ing things about life as a programmer, I think, is if you're faced with a chunk

of code that either someone else wrote or, worse still, you wrote yourself but

you no longer dare to modify". Software engineering has made little progress

since 1969 in helping programmers maintain code, (Glass; 2006a). Each pro

grammer has to use the code, any documentation they can find and the help

of any willing colleagues they can find as they search for meaning. Useful

changes can be made only once the programmer understands the source with

which they are working.

Many programmers consider that the source code is the canonical truth

of the system on which they are working. Code, necessarily, explains its own

inner workings but even well commented code does not explain how or why

it was written. The history of the code is often invisible so that "knowledge

about the code and the design decisions remain in the head of developers",

(Nakakoji et al.; 2006). Full understanding of code, even when documented,

can only come through revealing the context of its production: why it was

made, how it was made and where it failed to meet its original specification,

74

3.5 Finding meaning

(Banker et al.; 1998).

The context within which code is produced includes knowing the context

and culture of the group producing it sufficiently well to reveal hidden mean

ings in the idiomatic forms they use. To develop or maintain code based solely

on a requirements document, the developers needed to acquire membership

of the group which produced that documentation. Without such member

ship they are constantly searching for understanding. Documentation is, in

ethnomethodological terms, indexical: it only makes sense within the context

of its production. If the program is to be a solution to the problems which the

requirements documents present the developers must have adequate indexical-

ity, (Ronkko; 2007).

Software is almost always subject to some form of design representation

before it is implemented as code. These representations, often written works,

range from long text documents which describe the functioning of the finished

systems and the constraints upon it, shorter written user stories, which describe

how a user will interact with specific parts of the system, though to jottings

on post-it notes. Alongside these writings software engineers use a myriad of

diagramming techniques to create visual representations of the system's ar

chitecture (UML) or its graphical interface (wireframes). In recent years there

has been a move to creating prototypes, partial implementations, to demon

strate understanding. "[Ljiterary devices continue to have their uses, but the

centre of gravity shifts from the production of system specifications and var

ious other abstract renderings of system functionality, to the prototype and

associated practices", (Suchman et al.; 2002).

Any representation reveals different meanings at different readings. A

75

3.6 The role of representation in talk about programming

wireframe diagram is adequate when talking to a user but may be less so

when used as the basis of a graphical interface, a long text document may be

prefect for an audit of a project but lack detail when given to a programmer.

Prototypes are regarded as useful because they can be used to uncover work

requirements, technological possibilities and the (mis)understandings of both

users and developers. Thus a prototype becomes a device for the creation of

better indexicality than that which can be created through the use of either

diagrams or text documents. Cost and time constraints mitigate against the

use of prototyping on many software projects.

3.6 The role of representation in talk about programming

Understanding of software projects is built on more than talk. Projects gener

ate extensive documentation ranging from formal statements of requirements

through structured diagrams and even post-it notes on an informal Kanban

board. All of this documentation is used to share information about the project

and its product and to help the developers co-ordinate their work.

During development the most useful documents may be diagrams. As

students, all programmers learn to create diagrams of both problems and so

lutions. Drawing the system becomes a natural part of their search for the

adequate indexicality which Ronkko (2007) identifies as necessary. Drawings,

whether diagrams, formal UML models or ad hoc scribbles, establish relation

ships between the parts of a program, (Suchman and Trigg; 1996, Blackwell

et al.; 2001, Bates et al.; 2011). Dittrich and Ronkko (2002) followed a team

of student developers as they work on a large project and found that "they

achieve a physical sharing of key objects with the help of drawings on the

76

3.6 The role of representation in talk about programming

whiteboard".

What does it mean to look at a set of diagrams and at the code which was

created from them? How does the programmer come to understand what the

structure of the code means - and how they might alter that structure without

breaking it? These are questions which form part of developers' everyday talk

about their work. And they are answered by thinking through the various

representations that the developers create.

Suchman and Trigg (1996) follow two researchers as they design an arti

ficial intelligence application. They show how ideas are shared and devel

oped both through the creation of transient informal drawings on a white

board and through the developers' talk around and about those diagrams

as they are produced. They call this process "socially organised craftsman

ship", reformulating technical activity as craft almost a decade before the rise

of the software craftsmanship movement. Formulations such as this have been

used elsewhere to characterise other technical activities as craft. The labora

tory work of scientists may appear to be structured and controlled but when

examined closely it has many similarities to common-sense notions of craft,

(Latour; 1986, Sennett; 2008).

Scientists, programmers and craft workers use informal representations as

physical manifestations of their thought process. Blackwell et al. (2001) call

these ephemeral representations talking sketches, diagrams which provide a

focus for discussion between colleagues.

The process of creating and manipulating physical objects such as draw

ings gives those thoughts and processes what Latour calls "immutable mobil

ity" and renders them persuasive because of the "reflexive relation" between

77

3.6 The role of representation in talk about programming

their production and use. Documents such as drawings which are created or

used as part of a development have meaning beyond the moment of their cre

ation. They encapsulate a process at a specific time and place. The document

will be moved and used later, possibly by many different people but carries

with it something of when and why it was made.

Suchmann and Trigg write that "devices for seeing" are particularly rele

vant to studies of science. Documents such as drawings or notes "stand for the

structure of an investigated phenomenon". For programmers the tests which

they write, the backlog entries they maintain, their code and even talk-about-

code are devices for seeing. When developers document their code or talk to

colleagues about it, the explanation which they give stands in lieu of both the

code and the intent of the program.

When Suchman and Trigg's informants create artificial intelligence soft

ware they are encoding their own lived experiences and common-sense un

derstanding of the world in symbolic systems which "delegate human com

petence to machines". This encoding requires that the problem be simplified

and that the process of simplification happens through negotiation. Al re

search is characterised in this paper as being a two-stage process: in the first

stage the researchers take activities which are "thorny problems of represen

tation" and try to understand them; in the second stage they encode those

activities symbolically in computer simulations. The same is true for most

programmers. Complex problems are represented symbolically, for example

in a UML diagram, before being converted into a different symbolic form as

code before being reified as a functioning program within the computer.

The scientists use whiteboards as their primary "representational technol

78

3.6 The role of representation in talk about programming

ogy" and such boards are ubiquitous within their lab for this purpose. Having

a common writing area helps a team, be it a wall, (Evans; 2003), a table top,

(Weinberg; 1998), or post-it notes and scraps of paper. In a sense the medium

doesn't matter since it provides a locus for the real work which is being done in

the developers' talk-about-code. The drawings on the whiteboards are largely

meaningless to an outsider but, ethnomethodologically, their production is in

teresting and meaningful. The symbols and notes on the board may not make

sense to a casual passer-by after the discussion but when seen "in relation

to the activity of their production and use... they come alive as the material

production of 'thinking with eyes and hands' that constitutes science as craft-

work", (Suchman and Trigg; 1996).

Representation is at the core of all stages of software development. One

of the main themes of academic software engineering has been the creation

of suitable representations. These range from mathematical notations (such

as Z) to diagramming techniques (UML) and on to programming languages.

Software engineers understand that the representation affects what is repre

sented. Where the cost of using a representation is great, as with maths, it will

be used sparingly. Representations which are lightweight yet expressive will

probably be used more often and more effectively as is seen with post-it notes

on a Kanban board. Suchman and Trigg develop an anthropological sense of

such representations in which they are part of "a socially organised activity

producing certain publicly available artefacts".

The question of what to represent is a matter of both the problem domain

and of the expertise of the developers. In Suchman and Trigg the domain is

of a research program, for the developers in this study the domains are a vari

79

3.7 Communication and coordination

ety of embedded and Web applications. The types of representation made in

each case will differ because the cases themselves differ: the plasticity of soft

ware results "in relatively greater freedom regarding the form of the diagram

elements", (Blackwell et al.; 2001).

Talk arises out of and around representations. Software is composed from

myriad complex systems as well as the code which the developers create. That

is, the final product builds on code in libraries and uses other systems through

API calls and both process and network messages. Part of the talk of develop

ers has to be to manage and control this complexity. Experienced developers

perform this control by applying prior knowledge but the team needs to talk

this through with types of talk which describe, explain, argue for solutions or

articulate the work, (Dittrich and Ronkko; 2002).

3.7 Communication and coordination

Software projects are complex ecosystems built on relationships between the

artefacts being produced, the individual developer and a wider developer

community, (Nakakoji et al.; 2006). The importance of the artefact as the locus

of meaning was discussed in Section 3.5, the importance of the individual is a

matter of education, training and psychology which lies outside the scope of

this work. In this Section the importance of the development community, in

particular of the team, is examined.

The structure and functionality of the final software arises from negotia

tion within a group of customers, users, management and developers. This

group collectively arrives at a vision for the application as they work together.

In creating code the developers build upon a wide range of resources includ

80

3.7 Communication and coordination

ing their own fundamental knowledge, complex development frameworks and

trends or fashions within the industry.

The systems which teams build are solutions to customers' problems but

these solutions have to be created within pre-determined budgets, timescales

and technical constraints. These external determinants constrain any nego

tiation around the structure or functionality of the software. The placement

of those constraints and the effect which they have on the shape of both the

project and the product arises from negotiation. Those constraints are subject

to a range of discourses which act upon the developers' own ideas about how

the system might be implemented to create a solution space and, ultimately, a

final solution for the problem-at-hand.

Software is developed by teams whose members have diverse skills and

knowledge and who may fulfil more than one role within the team or who

may work across a number of teams. Modern software development teams are

often distributed across sites, sometimes even across countries or time zones.

Distributed teams are not necessarily problematic for their members or their

managers. When the team members orient positively to distribution and the

use of tools such as video conferencing they can work effectively. More typi

cally, though, distribution, especially across time zones brings a range of prob

lems of understanding, coordination, trust and ownership, (Sillito and Wynn;

2006).

Coordinating the work of a team is a social problem rather than a techni

cal one, although one which is often given a technical gloss through the use of

tools such as backlogs, IM or video conferencing. Sharing information doesn't

always improve communication. One development manager quoted by Sillito

81

3.7 Communication and coordination

and Wynn (2006) said that in their organisation "everyone is inundated with

email and newsletters. We just scan them. So how do you get the word out

there?". The code which many teams build has to be used by other teams, ei

ther immediately or in the future. Both requirements and the resulting code

need to be consistent and to meet the needs of all teams. This becomes a fun

damental problem of coordination, of understanding and of effort.

Coordination can be supported by tools which let developers find the infor

mation they require when they require it. Backlogs, Kanban boards, in-code

comments and formal documentation are all ways of sharing information in

which the information is pulled rather than pushed.

3.7.1 Organising teamwork

Team work is difficult. Simply putting developers into a "team" will not make

them more productive - most teams deliver software which is substantially

late or over budget, (Teasley et al.; 2000). Improvements to the performance

of a team require that actions be taken which impact upon the workings of

the team. Examples include "radical co-location", (Teasley et al.; 2000), or the

original XP project, (Beck; 2000), which both had the whole team working to

gether in the same room, or radical exposure to Scrum including a daily Scrum

of Scrums, (Sutherland et al.; 2006). These approaches, and many other, have

shown that massive gains in productivity and reductions in costs can be asso

ciated with entirely unconventional ways of working.

The literature around radical ways of organising software development,

and here Agile approaches are not necessarily radical, tells us that coordi

nation and communication are the areas of working practice which can be

82

3.7 Communication and coordination

changed most radically and from which the most benefit arises. Coordination

moves from a function of project management or team leads to become a func

tion of everyone on the team. Developers share information about their work

and, as a result, everyone on the team is able to find out who is doing what,

when they are doing it and how it will impact on their own work. One of the

major drivers behind information sharing is a reduction in the time between

taking a decision and implementing it, (Cockburn and Highsmith; 2001).

When people talk about their work as part of that work, they typically have

a specific goal in mind. They are gathering or sharing information or coordi

nating tasks with, or for, colleagues. Such task oriented talk differs from talk

which is used within work but in more social ways, (Holmes; 2005). Task ori

ented talk is more focused and has different structures which are related to

the nature and complexity of the task. More complex tasks engender more

complex patterns of communication, (Tushman; 1978, Tschan; 1995).

Like most knowledge workers, software developers talk in different ways

to achieve different goals. Information seeking is a different practice to asking

for help which is different, in turn, to relaying generally useful information. A

developer seeking information may ask "is anyone using the build server?",

if she asks for help she may want to know "how do I abort a build?" whilst

in giving information she may offer an unprompted "the build server is free

now". Each statement may be used to initiate a conversation or as part of an

ongoing conversation. Each is potentially problematic in its own way - there is

a risk to one's face in asking for help or for information, there is a risk to other's

face in offering unsolicited information - but it is a problem space which has

to be negotiated many times during each working day.

83

3.7 Communication and coordination

Traditional engineering disciplines have a culture which mitigates against

information seeking and sharing. Engineering is seen as "individualistic" and

"macho", (Eonardi; 2003). Software engineering appears to be different in that

the culture of the discipline is a culture of sharing information, (Kotlarsky and

Oshri; 2005, O'Riain; 2008). However this sharing is not simply a matter of

talking to colleagues.

In seeking information the relational aspects of the interaction are as im

port as the transactional ones. Generally developers prefer to use informal in

formation sources such as conversations with colleagues over formal sources

such as documentation, (Milewski; 2007). The cliched developer who is more

interested in technical aspect of their work than in the social ones does exist.

Sometimes those people are the very experts who need to be consulted most

often but they can easily be sidelined, if their communication skills are poor,

(Skowronski; 2004).

3.7.2 Communicating within development teams

Once a developer decides to make a change they need to be able to commu

nicate it to their colleagues, assess its impact and evaluate its cost. Commu

nicating change, and planning its impact, requires effort and the application

of a suitable strategy. The developer making a change needs to be aware of

the impact of that change on their own work and on that of their colleagues

and clients. One important variable is the "size of the impact network, the

set of software developers being impacted or impacting a specific developer",

(de Souza and Redmiles; 2008). A large change may have to be communicated

widely and may need to be rolled out in a coordinated way so as to minimise

84

3.7 Communication and coordination

its impact on the work of others throughout the project.

Individuals can only coordinate how they work if they are able to share

information freely, cheaply and quickly. "[Ijnformal, unplanned, ad hoc com

munication is extremely important in supporting collaboration", (Grinter et al.;

1999). The costs of coordination here are measured in the effort which is re

quired to enable it. Those costs can include "cultural and language differences,

trust and commitment, extended feedback loops, asynchronous communica

tion, and knowledge management", (Layman et al.; 2006). However, easy, in

formal access to colleagues provides valuable benefits in both coordination

and information sharing, (Kraut and Streeter; 1995, Cherry and N.; 2004). Oral

communication is the least formal form that can be used. It tends to provide

information and context which are more current and more relevant than those

provided by any other medium, (Tushman; 1978).

If communication is made easier then coordination can improve and the

consequent benefits in quality and productivity will follow, (Gopal et al.; 2002,

McChesney and Gallagher; 2004). One thing which can improve communica

tion is to have people who need to talk to each other working near each other.

In organisations which introduce agile methods, managers often require co-

location of the development team, (Boehm and Turner; 2005). The original

XP team worked together in a single room to facilitate communication, (Beck;

2000). When teams are co-located, changing the structure of their office space

to facilitate communication can improve their performance. The use of white

boards, placing desks next to each other and removing partitions can all help

to simplify communication, (Sharp and Robinson; 2004).

Even if the team doesn't work together all day, having a space in which they

85

3.7 Communication and coordination

meet facilitates their work. Sawyer et al. (1997) examined a company in which

teams were given access to a computer-supported team room. Teams would

use the room to examine and discuss designs and code. Use of the room meant

that group discussions became easier, "[t]he direct effect is to make it easier

for developers to work together; enabling the production aspects. So, soft

ware development improvements at this site have emerged without increased

engineering. Rather, they have emerged due to increased discussion".

Distance is a major disincentive to communication. When projects are ge

ographically dispersed communication between parts of the project are often

difficult. Herbsleb and Mockus (2003) give many reasons for this: staff at dif

ferent sites are less likely to identify as being on the same project; it is diffi

cult to identify remote colleagues as expert; the view of priorities will differ

between sites. Staff at each site can engage in group think, (Moorhead et al.;

1998), and develop ideas about the project which are different to those held

elsewhere. The tendency to think in a similar way to those with whom one is

surrounded can, Moorhead et al. posits, lead to defective decision making by

the team.

Even with increasingly ubiquitous technologies such as instant messaging,

on-line forums and video conferencing, people are far more likely to com

municate with those who are local than with those who are distant. Once

the distance between two people passes just thirty metres they are no more

likely to communicate than if they were on opposite sides of an ocean, (Teasley

et al.; 2000, Herbsleb and Mockus; 2003). Since most software projects are dis

tributed, either because the developers work in different locations or because

customers are not co-located with the developers, effort has to be put into facil

86

3.7 Communication and coordination

itating communication across the project. Where social networks exist across

organisational and other boundaries there is more communication and project

teams are better informed and coordinated, (Kraut and Streeter; 1995). Build

ing a social network across sites is difficult. Team building exercises where

staff from different sites come together can help as can working with one or

two named individuals at the remote sites, (Kotlarsky and Oshri; 2005).

Distance can be broken down by the use of tools such as instant messag

ing which support ad hoc interaction and which use a conversational style of

interaction, (Handel and Herbsleb; 2002). However the introduction of these

types of tool does not mean that they will be successful. Herbsleb et al. (2002)

found that there has to be a critical mass of users at each site before any com

munication technology is adopted usefully. Using the tool has an associated

transactional cost, (Kraut and Streeter; 1995), and if few people are doing so

the user is less likely to find the person or answers that they need.

3.7.3 Discussing technical issues

Learning new technologies, products and approaches is part of the life-long

learning which all software developers expect. Good developers need to be

aware of their shortcomings or of areas about which they need to learn more.

Hoover and Oshineye (2010) describe two patterns that are helpful when en

countering something new: Expose Your Ignorance and Confront Your Ignorance.

Their book is a guide to apprenticeship, it describes many ways to learn to be

come a better programmer. Followers of the book form a community of prac

tice around the idea that a developer can improve their skills and knowledge

and around tools and techniques for doing so. Each approach in the book is

87

3.7 Communication and coordination

defined as a pattern, a common approach in modern computer science which

builds on the approach used by Alexander (1978) in writing about architec

tural forms. Hoover and Oshineye (2010) give thirty-four different patterns

which any programmer might follow as they strive to become better at their

craft. Each is given a meaningful name, its context is described, the problem

outlined and a solution described and demonstrated.

Expose Your ignorance

The context for this pattern is that those who are paying you to be a software

developer are depending on you to know what you are doing.

It is not only employers or customers who rely on a programmer's exper

tise. Colleagues depend upon each other knowing what they are doing and

doing it to the best of their ability. Assuming that one's colleagues know what

they have to do and how to do it ought to be a safe bet. After all that is what

they are paid for. However, in programming, developers constantly encounter

new technologies and new problems and are expected to assimilate complex

information quickly.

Confront Your ignorance

In this pattern a programmer realises they have gaps in knowledge or skills.

Whilst some, perhaps all, of their colleagues possess the knowledge or skill

the programmer may struggle to ask them for help.

Dweck (1986) studied the ways in which students approached failures in

skill or knowledge-based tasks. She found that "many of the most accom

plished students shied away from challenge and fell apart in the face of set-

88

3.7 Communication and coordination

backs. Many of the less skilled students seized challenges with relish and were

energized by setbacks".

In defining these two patterns, Hoover and Oshineye (2010) are motivated

by their solutions. In the first case they suggest that one asks questions, but

recognize that "this is easier said than done, particularly when the person

you're asking has assumed that you already know the answer". In the sec

ond case they suggest that programmers ask their mentors if anyone already

has this skill and is willing to share what they know.

3.7 .4 Shared perspectives within teams

If people communicate carefully and regularly then their ideas about the project

and the product which they are building begin to align. The team will be

more cohesive as they are "pulling together" in the same direction. However

to achieve this state the team members need a shared perspective. "The prob

lem of integration of knowledge in knowledge-intensive firms is not a prob

lem of simply combining, sharing, or making data commonly available. It is a

problem of perspective taking in which the unique thought worlds of differ

ent communities of knowing are made visible and accessible to each other",

(Boland and Tenkasi; 1995). Collaborative tasks such as product design re

quire that a team reach a state of shared perspective on aspects of the problem

which they are solving, (Cross and Cross; 1995).

The shared perspective arises not only from foregrounded and shared in

formation. Some of it comes from tacit knowledge which is constructed as

people attempt sense-making activities, (D'Eredita and Barreto; 2006). Tacit

knowledge can be developers' perspectives, their mental models of the world

89

3.7 Communication and coordination

or the concrete skills which they require in specific contexts. Perspectives are

abstractions which become more solid, more meaningful as a result of activity

and experience - as they are tested by experience.

Shared perspectives are an important aspect of coordination within a team,

especially in a large team. A number of theories have been developed to ex

plain how a group of individuals develop this type of communal understand

ing. Collective Mind Theory is one such explanation, (Weick and Roberts;

1993). "The major claim of collective mind theory is that individuals develop

shared understandings of the group's tasks and of one another that facilitate

group performance", (Crowston and Kammerer; 1998). For ethnomethodol-

ogists this process is always going to be one which is dynamic and which is

never resolved because understanding changes as the group works together.

Collective Mind Theory requires a that team members have a "disposition to

heed", (Crowston and Kammerer; 1998), through which they behave in ways

which foster the aims of the group. Such a disposition is developed through

social interaction, (Kotlarsky and Oshri; 2005).

When team members share perspectives and context they begin to make

assumptions about what their colleagues will do and plan their own actions

accordingly, (Espinosa et al.; 2002). Stewart and Gosain (2006) suggest that

one reason for the effectiveness of some Open Source software development

projects is that members start from exactly this position of a common idea

about what is required from the project.

90

3.7 Communication and coordination

3.7.5 Being a community

Workers are typically organised into formal groupings which give structure to

an organisation. Organisation groupings such as development, sales or testing

are used to define functional areas within which similar tasks are performed.

Most project based organisations such as software houses have another, or

thogonal, set of groupings based around individual projects or specific clients

within which each member is nominally working toward the same goals. Most

people are used to the idea that these types of structure can be drawn onto an

organisational chart but each of us has any number of additional informal net

works made of the people with whom we interact and which cannot easily be

mapped. Such networks have been called "communities of practice", (Lave

and Wenger; 1991, Wenger; 1998).

A community of practice is different to other sorts of community such as

the people with whom we eat lunch or watch sport. A community of practice

is based around some activity - the practice - something we do together and

about which we learn by being engaged in it communally. Wenger suggests

that a community of practice is instantiated through

• "sustained mutual relationships — harmonious or conflictual

• shared ways of engaging in doing things together

• local lore, shared stories, inside jokes, knowing laughter

• certain styles recognized as displaying membership".

These four ideas have a combined focus on social practices as ones which

are productive of a working culture, but a community of practice does not

have to be based in work or the workplace. It is a shared culture, but one

91

3.7 Communication and coordination

which is specifically shared around a practice. In reality work is made from

myriad practices which together form a whole and it is the orientation to this

set of practices which becomes the workplace culture.

The community aspects of workplaces differ, but so does the way in which

people actually work. Even common tools such as Visual Studio can be applied

in many different ways, they are, in fact, designed to be flexible and to not

impose a style of usage. Within a team a common understanding will develop

around how to use the tools, around what errors actually mean to them, even

around how to structure or manage a codebase. Team members "engage with

these practices in virtue of their place in the community of practice, and of the

place of the community of practice in the larger social order", (Eckert; 2006).

Part of a community of practice is the development and sharing of collec

tive knowledge and understanding. This may be knowledge about the project,

the code and designs, the clients or the development techniques which are

used. The knowledge of the team is a function of the people within it and

of the social networks which they build, (Becks et al.; 2004). Within a com

munity of practice members are engaged in mutual sense-making about their

work and about the context within which they undertake it. They are making

sense of their daily activities within the project, of their customers and of the

products which they build, (Eckert; 2006).

The community's knowledge is a collective knowledge of successes and

failures - what works and what doesn't, both individually and collectively.

Some of this information is shared formally in meetings but more often it is

shared informally. Staff can spend significant amounts of time talking infor

mally, Herbsleb and Mockus (2003) suggest over an hour per day and one

92

3.8 Empirical research into software engineering

informant in Chapter 5 suggested almost three hours. Yet a project such as

Chandler, which was described in Section 2.4, (Rosenberg; 2007), or the com

puterisation of the London Ambulance Service, (Heath and Luff; 2000), can

fail because the community lacks a historical memory of past problems and

no knowledge of failures in other communities.

3.8 Empirical research into software engineering

Research in software engineering tends to study "better" ways to build "bet

ter" software, (Parnas; 1998). Software engineering's origins as a technical

discipline have lead researchers to "a preference for quantitative research ap

proaches that lend themselves to measuring causal relationships for success

ful software process improvement", (McLeod et al.; 2011). This preference, in

turn, leads to a preference for those studies which create new designs or imple

mentations over those which look at the people who make software, (Hevner

et al.; 2004).

However, the increasing diversity and complexity of the processes involved

in software development mean that research performed under the general cat

egory of "software engineering" is becoming more diverse. Within the disci

pline there is a growing interest in finding ways of understanding how soft

ware developers actually behave. Those behaviours can only be discovered by

visiting and studying developers at their place of work as they undertake that

work, (Sjoberg et al.; 2007).

When researchers study developers at work they are able to uncover how

individuals and teams work and to reveal "human issues" within the disci

pline, (Seaman; 1999). Studying the people who develop software is not new,

93

3.8 Empirical research into software engineering

perhaps because software engineering is a technical discipline there has been

"a preference for quantitative research approaches that lend themselves to

measuring causal relationships for successful software process improvement".

Quantitative studies of software engineers, especially studies which are based

around laboratory experiments tend to give an incomplete picture because

the subject sits at the intersection of machine capabilities, human capabilities

and human behaviours, (Seaman; 1999). Most researchers have worked on

the first two of those areas, only relatively recently have researchers started to

think about the third one. In particular the role of developers' behaviour has

become a topic of interest and relevance, (Lethbridge et al.; 2005).

Researchers have, typically, struggled with the design and implementa

tion of quantitative studies in software engineering. In particular experimen

tal approaches work badly because the research must work with human sub

jects, typically sample sizes are too small to give statistically significant results,

running experiments is expensive and revealing the context of the findings is

difficult in an experiment, (Carver et al.; 2004).

Because qualitative and experimental studies fail to reveal the intricacies

of software engineering practice some researchers are turning to qualitative

studies including Seaman (1999), Lethbridge et al. (2005), Sjoberg et al. (2007),

McLeod et al. (2011). Qualitative studies produce data "which are represented

not by numbers but by words and pictures" and in which the complexity of the

phenomena of behaviour are revealed rather than being abstracted away as it

is in much quantitative work. This approach gives researchers the opportu

nity to create a "holistic" data set, which reveals "shared values, assumptions

and beliefs, and the influence of particular individuals" within development

94

3.8 Empirical research into software engineering

teams, (Sharp et al.; 2000, Robinson et al.; 2007).

The majority of research in computing, and certainly in software engineer

ing, comes from a positivist tendency. Such research provides a way of pro

ducing knowledge which can be applied directly to the activities of develop

ers without too much difficulty. Problems are classified as solvable and the

positivist researcher works through a structured process toward the solution,

(Lazaro and Marcos; 2005). If a solution is found, further studies may follow

its application to "real world" problems as a way of providing some external

validity. House (1970) suggests that researchers working in this way need to

publicly demonstrate their results so that theories and laws are not formulated

on the basis of weak hypotheses.

People act in ways which are subjective and contingent. Subjective re

search methods recognise the complexity of peoples' activities and reject the

more explicit determinism of scientific experimentation. Subjective methods

attempt to create verstehen, an understanding, of the sense-making in which

people are engaged, (Abel; 1948). People's activities are seen as purposeful

rather than being determined by external forces such as social structures or

economic factors.

If software development is "engineering" then a common-sense under

standing would suggest that it is surely based on rigour and on reproduceable

processes. Authors such as Florman (1976), Petroski (1996), Molotch (2003)

demonstrate repeatedly that engineering isn't like this, it is a human process

which is often successful because of its unstructured nature. As with much en

gineering there are aspects of software development which are subjective or

contingent. The choice of algorithm, for example, may not be based on neutral,

95

3.8 Empirical research into software engineering

value-free factors. It is the result of a choice which is based on personal pref

erences, experience, the type of project and existing systems and code with

which one must interact.

Empirical software engineering research reveals the realities of software

development processes. When subjective methods such as ethnography are

used to gather data the subtleties, nuances and complexities inherent in de

velopment processes are brought to the fore and become matters which are

worthy of study in their own right.

3.8.1 Criticisms of empirical software engineering

Using qualitative methods does not provide a panacea for all of the criticisms

of Carver et al.. In a meta-analysis of empirical studies of agile software devel

opment DyM and Dingsoyr (2008) found that the studies were weak because

"methods were not well described; issues of bias, validity, and reliability were

not always addressed; and methods of data collection and analysis were often

not explained well".

Even large studies are not immune to some of these criticisms. Studies

which examined pair programming were found to "have not accounted for

the moderating effect of the complexity of the programming tasks, which, in

turn, may depend on the complexity of the system being developed or main

tained and the expertise of the programmers", (Arisholm et al.; 2007). Basic

flaws in the design of studies support the idea that qualitative studies are use

ful only for exploratory studies, are subject to bias and are inadequate for gen

eralization. Such criticisms can be addressed through clarity in the research

design and in its description, by providing a clear evidence chain and through

96

3.8 Empirical research into software engineering

triangulation between studies. The difficulty which researchers have inter

preting or generalizing their work on agile methods should not be. McLeod

et al. (2011) state that software engineering is "a complex and intersubjective

social reality that is interpreted rather than discovered". Qualitative, empiri

cal studies of software engineering must work in this intersubjective reality to

"uncover and elucidate problems and thereby delineate their solution spaces;

challenge received views; and provide rich narrative accounts of practice",

(Robinson et al.; 2007).

Longitudinal studies provide clear benefits over shorter ones. Processes

are connected to outcomes in ways which are both unpredictable and emer

gent and which are only discernible through a fuller, temporal, immersion in

a project. Researchers who are immersed in a project over time can discover

events, meanings and rationales which might not be found through interview

ing participants at the end of the project because of faulty memories or post hoc

rationalisations. Indeed participants views, positions and ideas change dur

ing a project and it is only by being present that the researcher can see these

changes and place them in context.

A genuinely holistic understanding of a project requires that the views of

a range of participants are considered within the analysis. Relying too heavily

on one perspective or a few sources can, perhaps unwittingly, introduce bias.

Organisational policy documents such as corporate strategies, programming

guides or Human Resources procedures are especially likely to give a limited

perspective unless one is analysing corporate discourses. The "big picture"

provides a useful context but may have little useful to say about software de

velopment as it is actually done "on the ground" by developers working with

97

3.9 Ethnography and Software Engineering

clients. The experience of those developers can only be understood by talking

to them about their work as they work, (Sharp et al.; 2000, McLeod et al.; 2011).

3.9 Ethnography and Software Engineering

There is a long history of cross-fertilisation between ethnography and software

engineering. Typically this relationship is the use of ethnographic techniques

as part of software development projects, there are fewer ethnographies of

software engineering projects. This Section will briefly examine this relation

ship.

The problem that on software projects requirements are constantly chang

ing and that this creates problems has long been recognized and there have

been many different approaches to fixing requirements or otherwise solving

the problem. One solution is to work closely with end-users so that the re

quirements and design documents closely reflect their needs, (Jarke et al.;

1999). This may involve embedding an outsider such as an ethnographer

with the user community and with the developers, (Sommerville et al.; 1993,

Twidale et al.; 1993). Techniques from outside the software engineering disci

pline such as ethnography can dramatically influence key aspects of the design

of systems, particularly around the Human-Computer Interface, (Anderson;

1997).

The gap between technologists and ethnographers is far from insurmount

able. In the last twenty years a large number of projects in engineering, medicine

and the media have benefited from the presence of ethnographers, (Heath and

Luff; 2000, Button; 2000). Many of these efforts built on the work of (Suchman;

1987) in working on the development of artificial intelligence for a photocopier.

98

3.9 Ethnography and Software Engineering

Suchman's early work clearly showed that the data gathering techniques and

analytical approaches of social scientists could be used to inform the design

of technology in ways which benefited both developers and users.

The benefit to software developers of engaging with studies of the ways

in which their customers work, or understand their work is clear. By better

understanding the customer they are able to work to a more refined set of re

quirements. The detailed studies of ethnographers look beyond documented

working practices or talk to examine the ways in which people actually work.

They "serve as a foundation with which to consider how artefacts... feature

in the production and co-ordination of social actions and activities", (Heath

et al.; 2000).

The idea that an ethnographer might be able to help design software can

still seem counter-intuitive to traditional software developers, but ethnogra

phers have skills which ideally suit them to the task of understanding the

needs of users, (Sommerville et al.; 1993, Hughes et al.; 1995). Ethnographers

and computer programmers use different technical jargon and may perceive

the same thing in different ways and may attribute different meanings to it.

Sommerville et al. write of ethnographers that "although they produced in

sights into the organisation of work which are clearly of interest to systems de

signers, it is not clear how to translate their results into system requirements".

The difficulty often is one of identifying material which is relevant to a system

design within the detailed anecdotal and observational writing which charac

terizes ethnography.

Anderson (1997) argues that the social scientists who followed Suchman

appeared to offer a methodology through which requirements capture might

99

3.9 Ethnography and Software Engineering

be improved. They offered an approach using fieldwork and ethnography.

The fieldwork would often be participant observation, whilst ethnography of

fered "a particular analytic strategy for assembling and interpreting the results

of fieldwork". System analysts and requirements engineers have tended to be

more interested in the phenomena seen in the field work than in the analysis

provided in the ethnography.

Systems design is a social process built on the relationships users have with

developers and that developers have with each other. When development is

considered in the social realm rather then in the technological realm, it can be

analyzed in different ways. Conceptual and practical similarities can be seen

between foundational aspects of IT design and those of ethnomethodology.

These similarities were called technomethodology by Dourish and Button (1998).

Both software development and ethnomethodological analyses of social inter

actions share the need for abstraction, the creation of accounts and, ultimately,

accountability.

Increasingly those developers with an interest in using ethnographic ap

proaches to understand users are doing the fieldwork themselves rather than

using a specialist. This work is "in danger of diluting the initial thrust of so

ciological studies of work for design purposes", Button (2000) because it too

often concentrates on what is seen in the field rather than what is uncovered

through an analysis of the data from the field. Rather than revealing the un

derstanding of participants, or their methods for creating it, studies which

lack an analytical framework become no more than "scenic fieldwork", (But

ton; 2000).

Whether rigorous or superficial, the engagement between software devel

100

3.10 Summary

opers and social scientists is part of an important trend in development which

foregrounds social concerns. These include not only the specific and situated

concerns of users but also those of the developers who must deliver function

ing programs on time and on budget. Agile methods, which address devel

opers' concerns, were appearing at the same that Anderson and others were

trying to merge ethnomethodological practices with those of software devel

opment. In introducing technomethodology, Dourish and Button (1998) make

a persuasive case for a model of development in which an integration of ap

proaches leads to better outcomes for developers, users and social scientists.

3.10 Summary

As this Chapter has demonstrated, ethnography provides a useful approach

to understanding work. Software engineering is a specialised type of knowl

edge work whose practices are arcane and hidden yet whose artefacts are fun

damental to so much of life. Researchers using ethnography are able to study

the working practices of software developers as they strive to reconcile the

needs of customers and the constraints imposed by colleagues and employ

ers.

At the same time, software developers often work at the limits of their un

derstanding of the tools, such as languages or libraries, which they must use

and of their understanding of the customers' needs. Ethnomethodology pro

vide an analytical framework through which the contingent and transient na

ture of these understandings can be revealed. Ethnomethodology reveals to

the researcher how developers think about their understanding of the prob

lems which they face and how they communicate those understandings with

101

3.10 Summary

their colleagues.

Although software development is most often realised through texts, both

design documents and source code, the process is a social one in which ideas

are shared and activities coordinated. Although many software tools are used

to support them, understanding and coordination happen through developers

talking to each other. Software development is always a socially constructed

process in which the software which is designed and built is constrained by

the relationships between the developers and users. Because so much soft

ware is built on top of existing code, developers expend significant time and

effort in understanding that which already exists. But the meaning and struc

ture of a system are not solely embedded in the source code, they are found in

the design texts and diagrams. Understanding of the texts comes from devel

opers talk to each other but is rarely clear cut. Rather the meaning of code and

documentation is both negotiated within the project and dependent upon the

context of both the production and use of those documents.

The creation and use of understanding by teams of developers is, clearly, a

topic which is worthy of research. It builds on both ethnomethodological stud

ies of work and the reflexive interests of software engineers. The next Chapter

discusses the research methodology used to gather data and to analyse it in

this work.

102

Methodology

4.1 Introduction

The previous Chapters have argued that software development is a negoti

ated and contingent activity and that the work of software engineers is a so

cial process as well as a technical one. Developing an understanding of those

social processes has to be based on data from the engineers' workplaces. A

growing number of researchers in software engineering are using qualitative

approaches to such studies. Much of this qualitative research was shown to

have a tendency towards quantifying findings which could then be presented

as "improving" the quality of processes, the productivity of developers or any

of numerous aspects of development. Whilst quality or process improvements

are important aims, this research is a more fundamental attempt to understand

how developers' social practices reveal their understanding of problems and

solution and show how they coordinate their work within the Agile Methods

paradigm.

This Chapter is a discussion of the design and implementation of my field

work, the data which were gathered during the fieldwork and the analytical

techniques used in this research.

4.2 Principles which underpin the design of the study

4.2 Principles which underpin the design of the study

This Section outlines why the study was designed as it was. It looks at the

analytical goals of the study and identifies the data which are required for that

analysis. These principles are placed within the context of other qualitative

studies of software engineering.

This work is informed by an ethnomethodological epistemology. This leads

to two defining characteristics of the research design. Firstly, that the ways in

which developers understand their work will be found in their talk-in-interaction

as they work and, secondly, that talk will be found in the workplace in real

projects. Thus the relevant data for this study are the developer's talk and the

context within which they are talking, (Garfinkel; 1996, Sjoberg et al.; 2007).

Talk in the software development workplace reveals the developers' un

derstanding of the work they are each performing, their understanding of the

work of colleagues and others and their use of tools, programming languages

and design methods. Developers construct and share an understanding of

existing source code and applications which they are using in their own work

but which neither they nor their colleagues necessarily developed. All of these

"understandings" may be shared within a team through documentation or,

more likely, through talking about them. As the work is discussed, relation

ships between team members such as power hierarchies are embedded within

the talk and can be revealed through the micro-analysis of talk using conver

sation analytic techniques and concepts.

The context within which work is performed affects both the work and the

worker. A developer sitting in a cubicle maintaining code all day has a differ

ent work experience to someone who works as part of a team and pair pro-

104

4.2 Principles which underpin the design of the study

grams in an open-plan environment. Workplaces each have their own unique

culture. Even within a single organisation each team, office, production line

or project will be unique in some way. Revealing the culture of the workplace

through an analysis of the talk-in-interaction of employees reveals the context

for the production of understanding. This gives an ethnomethodological ori

entation to the research.

The research questions here are to ask how agile developers share their un

derstanding of their work and how they coordinate that work. Ethnomethod

ology provides a way of answering these questions through the accountable

talk of the developers through which they both coordinate and make their

knowledge indexical. By using techniques from conversation analysis, phe

nomena such as identity, face-management, politeness and the management

of relationships within teams can be revealed in the developers talk to each

other. These phenomena can be, in turn, indicative of coordination and shared

understanding. But such phenomena have to be placed within the workplace

and, specifically, within activities of work.

The study was designed and implemented so as to gather both recordings

of conversations and wider background information about the work of devel

opers and the activities taking place as the recordings were made. A number

of principles were used in designing the study.

1. Acquire samples of developers in conversation about their work as they

work using audio recordings of those conversations.

2. Use the rich descriptive power of ethnography to show the culture of

workplaces and to provide a context for the talk.

3. Study developers in their place of work as they undertake their usual

105

4.3 On doing ethnography

commercial work.

4. Integrate the rich data of ethnography with detailed conversation anal

ysis.

5. Gather data from a range of organisations which use agile practices.

4.3 On doing ethnography

Section 3.2 discussed why ethnography is at the heart of studies of cultures.

Ethnography has been used to study many different aspects of work in many

different working environments. This work is an ethnographic study of prac

tising developers. This Section is a discussion of the use of fieldwork to gather

data and of the writing of ethnographic accounts to reveal cultural practices.

4.3.1 Fieldwork

Fieldwork is the defining feature of anthropology. It was co-opted into other

disciplines, initially in the social sciences and later into design, engineering,

science and, latterly, software engineering, because of its appealing simplicity

and the detailed data it can provide. Moeran (2006) gives four identifying

characteristics of fieldwork:

• Intensive participant observation.

• The researcher must "be there", socially immersed.

• Where possible fieldwork should last for a long time.

• The research should develop an intimacy with the participants.

Pragmatic considerations of time and cost mitigate against these for many

researchers, (Lethbridge et al.; 2005), but the basic idea that the researcher is

106

4.3 On doing ethnography

with the subjects for as long as possible, and becomes as one with them is an

ideal to which fieldworkers aspire.

Participant observation requires that the researcher be present in the cul

ture, immersed in its rhythms and developing relationships with its members,

(Crang and Cook; 2007). Such observations are richer and more complex than

those which might be made by an external observer because they include both

the subjective, lived experience of the observer and their later, detached and

more objective analyses. Since the researcher and the researched cannot be

readily separated, Crang and Cook argue that participant observation leads

to an inter-subjective understanding.

Fieldwork is potentially open-ended within the range of phenomena and

number of willing informants the researcher finds. However few researchers

have the luxury of following large numbers of potential leads in the pursuit

of a comprehensive data set. Most fieldworkers have to limit themselves and

their analyses to a few cases. A case study is an "empirical method aimed at

investigating contemporary phenomena in their context", (Runeson and Host;

2009). Case studies focus on the dynamics within a single setting, (Eisenhardt;

1989), often using several data sets and data types which can be triangulated

to give increased validity to the findings.

Some researchers use data from a number of cases so that they can create

a broader picture of the domain which they are studying. In uncovering the

ways in which the live music of jazz is constructed by performers, (Faulkner

and Brecker; 2009) used evidence from a large number of jazz groups they

knew or in which they had played. Both Faulkner and Brecker were jazz m u

sicians as well as sociologists who were immersed from an early age in the

107

4.3 On doing ethnography

world of small, working jazz bands. An outsider who knew little of jazz or

of musicians would have needed to spend a lot of time with a few musicians

to understand how they construct songs and sets. Faulkner and Brecker were

able to use their experience as both musicians and sociologists to draw conclu

sions which were radically different to those an outsider might have reached.

The breadth of experience they brought to their writing meant that those con

clusions were richer then they might have drawn if they had looked at a single

group.

Conversely, a deep immersion in a single case can reveal more details of

the lived experience of work which might not be found when several cases

are studied. When Moeran (2006) studied a Japanese advertising agency he

immersed himself in the culture of the company over a long period of time. A

more superficial view over a number of agencies would have said less about

the culture of that industry in Japan.

Van Maanen (2011) writes about his early research into the culture of polic

ing. For him the initial problem was one of access. To work alongside patrol of

ficers he had to get access to the station and, despite having authorisation from

senior officers, this access was controlled by station house sergeants. One of

his most important early successes was in winning the trust of a sergeant who

let him go out on patrol. Once he was patrolling with the Police, Van Maanen

spent a long time becoming familiar with the work of a single station house,

regularly patrolling with the same officers. Here, again, understanding comes

from immersion.

Case studies can be, and sometimes are, criticised for being a limited basis

for generalisation, that theory cannot be built on a single case and that there is

108

4.3 On doing ethnography

tendency to select cases which verify the research objectives, (Flyvbjerg; 2006).

Theory, reliability and validity are all questioned by these objections, objec

tions which would invalidate the use of such studies in all but preliminary

work. Flyvbjerg demonstrates that such objections can be overcome with care

ful research design, a careful write-up and a nuanced interpretation of results.

Selecting cases requires care and attention. The cases which are chosen

will affect the data which are gathered and the analysis which arises from

those data. Research about social relationships is built from social relation

ships, (Crang and Cook; 2007). Studying a culture, obviously, requires that

the researcher gets access to that culture. In workplace ethnographies access

is not a simple matter, not least because finding a suitable "host" organisation

is often difficult. Yates (2012) suggests that finding a company which is will

ing to act as the subject of software engineering research can be done through

personal contact or the recommendations of companies or individuals who

have previously worked with the research organisation.

Whatever method is used to find hosts, they will typically have three ob

jections to, or difficulties with, the research agenda which must be addressed.

Companies worry about their intellectual property, time pressures on their

staff and specific worries about the research design. Each of the companies

which co-operated in this study had these worries but they were eased by in

cluding the staff in the research design and taking time to talk them through

the research process. In each company their intellectual property was pro

tected through the use of signed non-disclosure agreements, staff were told

that they only needed to co-operate when they had time and that they could

end interventions at any moment and all personal data was to be anonymised.

109

4.3 On doing ethnography

The research design, specifically the ways in which data were gathered and

used, was agreed with managers at each company and with the staff who

would be participating. Negotiating each point with them meant that the key

participants at each company became stakeholders in the research itself.

Having found a suitable and willing organisation the researcher must gain

access to the specific areas which are interesting to them. Whether interested

in the boardroom or the shop floor the researcher must negotiate organisa

tional and corporate hierarchies in which issues of trust and confidentiality

must be repeatedly addressed. Often access is controlled by "gatekeepers",

(Crang and Cook; 2007), who will represent the researcher and their research

more widely within the organisation. The gatekeeper is not necessarily the

initial contact but is someone who has the power and influence to support the

research agenda. The gatekeeper can impact implicitly upon the research. If

the researcher is invited in and supported by management there is always a

possibility that they will be seen as management's stooge or spy whereas if the

gatekeeper is one of the workers or a trade union official the researcher may

be mistrusted by the management, (Gill and Johnson; 2002).

The process of finding subjects for the studies which are presented in this

thesis is described in Section 4.4.1. The negotiation of access to those compa

nies is described in Section 4.6.

4.3.2 Field notes

Recording that which is seen, heard, felt, understood or mis-understood whilst

in the field must be done by taking notes. Those notes may be contempora

neous or written some time later, they may be raw or refined through editing

110

4.3 On doing ethnography

but they must be treated honestly because they are the raw data of the study

on which the analysis will be based.

The fieldworker cannot note everything which happens and must either

make selective notes or create a broadly impressionistic set of observations.

Crang and Cook (2007) write that noting participant observations is difficult

and that "a considerable amount of field noting gets devoted to 'self-reflections'".

In unfamiliar situations researchers can turn to the one thing which they are

most familiar, themselves, and make notes about it. If too much self-reflection

can be avoided, the researcher must find phenomena which are both interest

ing and which may help to answer the research questions and these may not

be phenomena which were identified a priori.

Section 5.5 includes an account of a Product Manager at Z* publicly be

rating a developer and demanding that he be available to talk to their client

later that day. This was noted because the behaviour was atypical of the way

in which Z* worked before they made their agile move, but also because key

informants had said that communication around their nteraction with clients

was difficult. Later, once the company was using Scrum, the same Product

Manager was cooperative and collegiate in a similar situation. Although the

fieldwork was not about client interaction, notes on these changes helped to

reveal cultural changes across the company in their organisation of work.

4.3.3 Writing ethnography

The creation of an account, especially one based on close observation in the

field, of a culture is not simple: it happens in the writing process and, at the

same time, determines the nature of that process, (Van Maanen; 2011).

I l l

4.3 On doing ethnography

When writing the ethnography, the fieldworker creates a representation of

the culture but the conversion from field notes to ethnography is not a straight

forward objective process. Van Maanen writes that the ethnography is medi

ated and transformed by the rhetorical and narrative approach which is taken

in the writing process. Accounts of cultures can be broadly categorised into

at least three forms:

• Realist tales are matter-of-fact descriptions of the culture.

• Confessional tales focus on the position of the fieldworker within the

host culture.

• Impressionist tales produce more dramatic personalised accounts which

mix both realist and confessional styles.

The differences between these broad classes can be subtle and may not

matter except to other ethnographers. The tale which is written is an interpre

tation of the culture, the style of writing provides a way of performing that

interpretation, (Van Maanen; 2011).

Regardless of the narrative approach the writing is an interpretation of the

culture from the theoretical position of the researcher. Before the ethnography

is written the field data must be prepared and a theory generated. Data can

be prepared in a variety of ways.

One popular approach is coding. During coding raw data, such as tran

scripts of conversations, are analysed, contextualised and classified. Concepts

are extracted from the processed data and made available for statistical analy

sis. Coding must be done carefully since the codes which are chosen influence

what the data reveals in later analysis, (Lethbridge et al.; 2005). The chosen

coding scheme must reflect the goals of the research project.

112

4.4 Implementing the study

Ethnographic field notes lend themselves to this type of coding but the

question of what is lost in the coding process has to be considered. By remov

ing text from its wider context some of the richness and variety of that text is

lost. On the other hand, coded field notes or interviews can be used in sta

tistical analyses alongside surveys and experimental data, (Crang and Cook;

2007). The numerical analysis of such data can be added to an ethnographic

account with the ethnography adding context and meaning which helps the

reader interpret the numerical data.

4.4 Implementing the study

The principles which were identified in Section 4.2 were operationalised as

the basis of the design of this study. The study would be based on a number

of cases which were selected so that the whole set would reveal a range of

phenomena.

Scrum is probably the most well known and widely used agile method.

Scrum teams were more likely to be available than, for example, teams using

DSDM or Crystal and approaches such as XP remain quite niche even within

the agile world. Consequently the main thrust of the study was to be within

Scrum teams whilst not being a study specifically of Scrum teams.

The structure of Scrum meant that some a priori assumptions could be

made about where and when phenomena would be found. The planning

meeting, retrospectives and daily stand-up are all meetings in which team

members coordinate their work. Stand-ups provide a space in which the de

velopers' work is discussed and sprint reviews are an opportunity to discuss

the code which the whole team has produced. The stand-up and review seemed

113

4.4 Implementing the study

to be situations in which the answers to this study's research questions might

be found.

Scrum isn't the only agile method which might be helpful. Although few

companies use the whole of XP, pair-programming is something which a num

ber of companies do. XP is interesting here because it is, perhaps uniquely, a

practice that is explicitly intended to support the sharing of understanding

about code.

The foundation of the study would be to find and examine companies in

which stand-up meetings, periodic reviews and pairing were practised. It was

not likely that a team using Scrum would also pair since Scrum and pairing

come from different approaches to agility. Therefore a number of different

cases would be required with the analysis synthesising meaning from across

the data sets.

At the outset of this study it was not clear if developers would talk with

more detail about aspects of programming such as source code, design or test

ing in formal meetings or in less structured settings. One might surmise that

less detail is given in formal meetings but this is not something which has

been shown empirically when looking at software engineers. Detail and pre

cision are likely to matter to programmers as they manipulate design and code

which are both infinitely malleable. Uncovering talk in different situations to

understand how the detail of code is made a matter for discussion meant that

a number of situations had to be examined.

Two types of data were to be gathered. Rich descriptions of working en

vironments and practices would come from field notes and unstructured in

terviews. Recordings of conversations between participants would be used to

114

4.4 Implementing the study

create detailed analyses of their understanding of their own work.

This Section will examine the design of the field work, how suitable cases

were found and how the results would be analysed.

4.4.1 Finding cases

Finding suitable companies which met the criteria I discussed earlier, was one

of the major early challenges in this study. The companies which I approached

had to be ones which were primarily involved in the development of software,

which were using agile practices and which were sufficiently welcoming so as

to allow me to observe their teams.

I was keen to understand how developers used talk about their work as

programmers to construct different agile practices. If the only data points

I gathered were from Scrum stand-up meetings my analysis would only be

about that type of meeting. That is a worthwhile aim in itself but that was not

my research agenda. I wanted to explore working practices across the agile

community and to understand how developers use talk to reveal and share

understanding and for coordination.

Therefore the cases had to be of agile companies and across the set of cases

I was looking for there needed to be a range of agile approaches in use. I

had a number of sources which I could use to find suitable companies. The

research centre in which I am a member, the CCRC, had and has numerous

industrial links. I could use personal contacts and was able to draw on more

distant contacts through social media. Finally I had a large pool of current and

former students who had, between them, a wide range of possible contacts.

I designed a small flyer which outlined the aims of the study and gave my

115

4.4 Implementing the study

contact details. I emailed the flyer to my contacts and to some of my former

students. The flyer gave the URL of a Website which had more details about

me, gave detailed aims of the study, listed the characteristics of appropriate

subjects and described how the research would be conducted and how the

findings would be disseminated. The flyer and pages from the Website are

included in Appendix B.

Before my advertising was ready the CCRC was approached by a local

company who wanted help in making the transition to Scrum. Z* had worked

with CCRC on a number of projects in the past and wanted the Centre's help

in evaluating the impact of Scrum on their processes and products. Although

their needs were rather different to my aim there was sufficient overlap to

mean that this could act as a pilot study. Senior staff at Z* wanted to make

a move to agile methods to improve communication within their teams. This

was a good opportunity for me to see some of the ways in which develop

ers, managers and possibly customers communicate about products and pro

cesses.

The flyer and Website produced a number of responses - all of them gen

erated from former students. The companies which responded all identified

themselves as using agile methods or practices and as being enthusiastic about

agile. I emailed and talked to a number of companies before having detailed

talks with the two which were most enthusiastic. I selected two companies

because, I anticipated that when the pilot study was factored in, three studies

would produce more data than I could reasonably analyse in the time which

I had available.

Z* had heard and read lots about the benefits which agile methods are of

116

4.4 Implementing the study

ten said to bring and felt that by making an agile move they would overcome

internal problems. A* and E* were companies which had been using agile

methods for significant lengths of time and which used them for all of their

development and deployment activities. They were keen evangelists for the

approach with both managers and developers who were active in local agile

groups. These set of companies with which I worked provided a contrast be

tween Z* who were making a transition into agile, and the others who were

enthusiastic proponents of the agile approach.

4.4.2 Designing and doing the field work

The largest quantity of data was the audio recordings of meetings and of de

velopers talking together. The meetings were chosen in collaboration with the

subjects because I preferred to record a meeting at which I was a welcome

presence than make a fuss to get in to a meeting at which I was unwelcome.

The samples of talk about code were gathered by sitting with teams as they

worked and asking if they minded if I recorded their conversation.

In both situations I recorded only if none of the participants objected. I

chose to record only where and when I was welcome because I had been in

vited into these offices as a guest and I had no wish to offend or upset anyone.

But also I owed a duty of care to the people I was observing. The ethical con

cerns raised by observing people at work, and my approach to dealing with

them, including getting explicit permissions, are outlined in Section 4.5.

I was aware that any observation can fall foul of the "Observer's Paradox",

(Shanmuganathan; 2005), in which the act of observing changes that which is

observed. When people know they are being watched or recorded they will

117

4.4 Implementing the study

change their behaviour so as to maintain face or status. If I had forced my

way into a meeting, the attendees would have acted differently because I was

there and because I was an unwelcome presence. In this case I intended to

be with teams over a period of days or weeks which was long enough to be

accepted and meant that for most of my field work the participants would

behave naturally. A* employed a number of staff whom I had taught when

they were at University who behaved very similarly at work to the way they'd

been as undergraduates some years before. Having seen them in action I was

confident in their behaviour being natural.

I was also aware, in designing this study, that my status as a fieldworker

had to be negotiated with the participants. Was I simply an observer or was

I in some way going to be a participant in the conversations? The develop

ers would know that I am a software engineer as well as a researcher. Part

of the process of negotiating access to the companies would be to talk about

their work, their processes and their clients so that I could be sure that they

were suitable. As part of such conversations my status would naturally be

come clear. I intended to be an observer where possible and to try to min

imise my participation in discussions about code. This was, in the end, easily

achieved in meetings because of their structure but a little harder to achieve

when watching people program.

My original research plan had called for video recordings. Biischer (2005)

outlines the utility of video as a tool for fieldwork. Video is a powerful tool be

cause, as Biischer shows, it allows for "[r]epeat viewing, 'dissection' through

slow motion and frame-by-frame analysis". Events which may pass the field

worker by unregarded may be revealed because they are part of a video record-

118

4.4 Implementing the study

ing. Where collections of videos are made across projects or across studies,

comparison can be made between times and situations in ways which are

much more difficult when using field notes. However, I decided to use just

audio because capturing this is far easier than making a video recording and

would be less disruptive of the environments in which I was working. (Biischer;

2005) did not have the worry of disrupting the work of her respondents be

cause they were engaged in a collaboration with her about their work as land

scape architects.

The process of making an audio recording can be very discrete and is al

most completely unobtrusive in many office settings. I had planned to use a

high-quality audio recorder with a built-in microphone, and started to do so,

but the sound quality was poor and the machine was quite large. Through

a mixture of experimentation and necessity I found that my phone produced

recordings of similar quality but with greater discretion.

Ethnographic data were drawn from contemporaneous field notes. De

scriptions of background, of the environment and of context were noted down

as they occurred to me with the vast majority of the field notes made as the

developers worked. My approach was to sit with them and watch them work,

making notes about their activities including conversations and their use of

tools, navigation of source code and the other practices of the working devel

oper. Occasionally I would write down my feelings and interpretations of the

events as I saw them, but when I did so I would annotate the notes so that

when reading back I could be clear about where observation ended and inter

pretation began.

I did not use structured interviews with people at the companies. From

119

4.4 Implementing the study

the beginning I wanted to avoid being constrained in the ways in which we

interacted whilst being free to move around gathering data as I saw fit at the

time. However I was able to talk to people at all levels throughout my vis

its and wanted to record these informal conversations. Although I preferred

to make notes whilst talking to people this was not always possible and in

those cases I made a point of writing my notes as soon as possible after the

conversations. Often, I found, conversations would take on the tenor of un

structured interviews since I intended to try to gather information about de

velopment practices wherever and whenever possible. I would let these con

versations flow but would try to guide the respondent along lines which were

suggested by my research agenda. In these conversations I was looking for

detail about the context, information on projects and working practices which

might be known to members but not immediately or easily uncovered by an

outsider. Important contextual information was revealed in some of these con

versations, particularly at Z*, which showed the tensions within the company

about the working practices which they were trying to change.

These types of conversation provided me with pointers towards phenom

ena which I could study in more detail. For example at Z* the details of ten

sions between the customer-focused Product Managers and the software de

velopers became a matter of interest because almost everyone I spoke to talked

about them without prompting. In analysing the field notes and recordings I

was, at times, guided through the data because aspects of these conversations

highlighted matters which were important to the participants.

I made multiple visits to each company over a number of weeks. I tried to

gather data which were representative of their work on projects even though I

120

4.4 Implementing the study

would not be able to be present in the company all of the time. In fact, given a

full-time work commitment I visited each company for only one day per week.

The visits typically started at around 10 a.m. by which time people had dealt

with emails and so on and were settling in to their days' work. I was usually

present until the middle of the afternoon at which point the developers were

generally engaged in coding rather than in talking. This schedule came from

my early visits to Z* and mirrored the pattern of work there. With small daily

alterations it worked well at E*, too. Working with two of the companies, Z*

and E*, required visits over a number of weeks whilst A* provided enough

data in a single visit. The number of visits and their scope was something

which I was prepared to adjust as the work went on and which I negotiated

with the companies.

The field work began with one or more preliminary visits to the company

to discuss the rationale for the research, how data would be gathered, what

my expectations of the participants were and to answer any questions which

they might have. During these sessions I built a rapport with the developers

and managers that I would be observing. At A* this was an easy task because

I taught two of the developers when they were undergraduates. At both Z*

and E* the process was a little more difficult. At both of these companies I

went and met staff some days before my fieldwork started. We talked about

programming and, especially, the tools and technologies which they used or

had used on previous projects.

Meeting the developers who would become the subjects at the start of the

visits provided an opportunity for us to get to know something about each

other. I was able to informally discover things about their processes and tech-

121

4.4 Implementing the study

nologies such as what they used, what they liked, what worked for them. In

some cases I found out where they bent the rules or tested the limits of meth

ods or technologies to make them work as required within a specific situation.

In these early conversations I naturally revealed things about my own knowl

edge and experience. The developers I met were interested in what I knew

about programming, what I might be able to ascertain about their work and

whether I could validate their approaches. This sharing of experience was

something I previously found when visiting companies to provide training or

consultation through the University.

These preliminary meetings were also a good chance to look at work spaces,

to see the layout of the offices and specifically the desks. Knowing how their

work was arranged physically gave me the scope to redesign any aspects of

my work that needed to change. For example, where the workstations were

too small for me to sit with them around their work station I thought about

how I would sit and observe and where the recorder would have to be placed.

4.4.3 Taking notes

Each of the case studies in this research uses ethnography. One presents purely

ethnographic data whilst for the other two ethnographies provide contextual

information which is used in applied conversation analysis. Whilst it is accu

rate to write that contemporaneous field notes were taken during each visit,

this does not convey the difficulty which taking those notes presented. The

physical act of note-taking was straightforward, unlike the situations described

in Crang and Cook (2007) where, at times, researchers found taking notes to

be culturally unacceptable. In this study the difficulty was in knowing what to

122

4.4 Implementing the study

note. A multi-level approach developed across the visits.

During early visits to each company I would make general notes about

their organisation, their products and working practices. Typically these would

come from conversations with developers and managers as I was introduced

to staff and shown around the office. Once I had been shown around I would

be left to my own devices and would begin by sitting quietly and observing

the way in which everyone worked. At this stage those general notes were

supplemented with detail about the working environment, atmosphere and

my feelings.

Based on what I saw and the initial introductions, I would develop a list

of key informants. These were either people whose role was related to the

organisation of work such as project managers, or people who were heavily

involved in the work of programming. I would talk to these informants, mak

ing notes but not taking audio recordings. Often these conversations would

lead to other informants or I would be told about meetings which I ought to

try to attend.

The final level of field notes were those which arose "naturally" during my

observations. When I saw or heard events which I felt related to my research

questions I would take notes about them, noting the time, participants and as

much detail as I could about the event.

After each visit I spent time reading through the notes, cross-referencing

and identifying points on which I wished to follow-up during later visits. It

was through this cross-referencing that I was able to construct the series of

events which are presented in Chapter 7. Without the detailed notes and cross-

references those interactions might have remained as separate items rather

123

4.4 Implementing the study

than being identified as parts of the same piece of work.

4 .4 .4 Transcribing the recordings

Many empirical software engineering studies use a mix of quantitative and

qualitative techniques. In these studies qualitative data is often prepared for

numerical analysis using a process of coding. During coding raw data, such as

transcripts of conversations, are analysed, contextualised and classified. Con

cepts are extracted from the processed data and made available for statistical

analysis, (Lethbridge et al.; 2005).

In designing this study I wanted to work with purely qualitative data. In

part this was to avoid the engineer's tendency to expect a "right" answer but it

was also because I wanted to use the expressive and descriptive power which

comes through the rich text of ethnography.

The initial study at Z* produced only field notes. The study at A* pro

duced a recording of a Skype call in audio WAV format. At E* I initially used a

dedicated audio recorder which produced files in a format called WMA. The

recorder was so bulky and cumbersome that after two days I switched to mak

ing recordings using my mobile phone which saved the files in a format called

AMR.

The process of transcribing the recordings from A* and E* was straightfor

ward. I used audio conversion software to convert each file into MP3 format.

MP3 is a "lossy" format which uses complex algorithms to compress the au

dio stream. The benefit of this format is that the files it produces are small

and can be moved around easily. However in the process of compressing the

audio some of the fidelity of the original recordings is lost, primarily in the

124

4.4 Implementing the study

lower and higher frequency ranges. My field recordings didn't contain data

in those ranges and the loss of fidelity was not a problem - had it been so I

would have been able to work from the much larger original files.

I used a software application called Audacity to perform the transcriptions.

Audacity is a sound recording and manipulation application which I used to

slow the recordings, to navigate through them and to repeat sections, some of

the files from E* had significant background noise. I was able to use Audac

ity's features to reduce the level of the background noise without impacting

negatively on the foreground talk.

The talk was to be transcribed using an annotation scheme which exposed

its structure and which is given in detail in Jefferson (2002) and, briefly in

Appendix A. This transcription scheme is rich enough to reveal the structure

of the talk: its sequential ordering and the ways in which this is managed by

participants. In particular, it is the "context-specific use of rules, procedures

and conventions" which are revealed, (Heap; 1997). Jefferson's transcription

scheme lets the analyst show the detail of the production of order and meaning

within a conversation without obscuring the detail of what is being said. The

transcription scheme used here is a subset of Jefferson's as used throughout

Ten Have (2007).

4.4.5 Answering the questions

The transcriptions and field notes were gathered so as to answer the research

questions. Reading and cross-referencing the notes pointed to recordings which

were transcribed. The notes showed events which were, in ethnomethod-

ological terms, indexical of relationships or working practices. Listening to

125

4.5 Ethical considerations

the recordings of those events revealed the details of the ways in which the

developers managed their identities and relationships. Reading the detailed

transcriptions showed how the developers managed their face, how humour

helped to bond teams and how their technical talk showed them to be com

munities of practice.

4.5 Ethical considerations

Fieldwork and its results are bound up with issues of knowledge and power

and can become highly political. The status of the fieldworker is always likely

to be contested. Section 4.3.1 briefly mentioned the possibility of the field

worker being seen as a management spy or a union stooge, for example. Whilst

the self-reflexive fieldworker will be aware that their position is not a neu

tral one they need also to be wary of over-compensating in a potentially futile

search for objectivity. An ethnography is going to take a position on matters

of power, hierarchies and relationships but in so doing the researcher must be

careful to avoid misrepresentation.

A sensitive approach to power relationships is to work "with" not "on" the

subjects, to try to work from different perspectives so as to get insights into

different views, to triangulate data and theories using multiple data sources,

(Crang and Cook; 2007). These goals can also be achieved by getting properly

informed consent from participants and by carefully sharing data with the

participants, (Yates; 2012).

This study had a number of potential ethical challenges. The primary con

cern was for the work not the participants. Individual developers could find

their relationships with colleagues or with their employers made more dif

126

4.5 Ethical considerations

ficult or, at worst, badly damaged if personal information was revealed or if

negative attitudes were attributed to them.

The companies which were studied were at risk of damage to their reputa

tion if they were shown to be somehow unprofessional or untrustworthy. By

opening their practices and source code to a researcher they faced the possi

bility of losing control of their intellectual property.

Each of these risks is significant and had to be considered in the design

of the study. A number of things were done to ameliorate the possible risks.

Before I tried to find companies which were willing to help I had to get the

approval of the design of the study from the Univerity's Ethics Committee. In

asking for approval I wrote:

A t all stages during analysis and publication data will be anonymised.

Raw data such as field notes or video will be safeguarded by keeping them

securely within the University.

Companies will be protected from commercially damaging revelations

because I will sign non-disclosure agreements with them in the same way

that I would for consultancy work. Management at each organisation

will be briefed on the details of the observations I intend to make, the data

analysis and the methods of dissemination of results. I will make clear

that all data will be anonymised.

Individual developers will be given the same information but with a

focus upon their personal anonymity at all stages. They will be asked to

sign a consent form before observations begin. Whilst the work requires

access to project teams during their daily work, some people may not wish

to be involved. When I first introduce the work to them every potential

127

4.6 The three cases

participant will be told that they can withdraw at any time. The right to

withdraw will be clearly stated on the consent forms.

In line with University guidelines participants were asked to give explicit

consent to my presence and were told that they had up to one week to with

draw from the study after the completion of fieldwork. The consent form is

included in Appendix C.

Approval was given for this study.

4.6 The three cases

Having discussed some of the ways in which qualitative researchers in soft

ware engineering and other domains gather and analyse data, the design of

this research study can now be described. The data, data gathering approach

and analytical method are chosen to answer specific questions. The research

problem here is to understand the social construction of the working practices

of software engineers. In so doing this research will interrogate the Agile Man

ifesto's commitment to favour "Individuals and interactions over processes

and tools", (Beck et al.; 2001), by focusing on the social interactions of agile

developers.

Fieldwork for this project was carried out at three points during the period

2008-10. Each intervention was at a different software house and looked at a

different aspect of the introduction or use of agile methods. Although the

companies and activities were different at each stage of the work, similar data

gathering techniques were used throughout. Data was gathered in three ways:

observations, unstructured interviews and audio recordings. The first two

128

4.6 The three cases

techniques were used in all three cases but in the first only observations and

interviews were used.

Software projects are often too long and too complex to be studied in de

tail. Few research projects, most certainly not this one, have the luxury of

time, space and access given to Rosenberg (2007) in his study of the Chandler

project. A more typical approach is to create targeted interventions which look

at key moments in the life of a project and to support those with a longer term,

but less intensive, ethnography. That is the approach used here. A small set

of agile interactions which foreground communication practices will be ex

amined. Specifically, the daily stand-up meeting of Scrum, end of Scrum ret

rospectives and XP-style pair-programming sessions. Each of these is a con

strained situation which, their proponents would claim, developers can and

do talk openly and in detail about their work.

The first case is a study of an organisation which is transitioning to agile

methods from a highly structured process. The second case is a study of a

Scrum team during their daily stand-up meeting. The third case follows two

programmers as they work in a pair. These three case studies give broad cov

erage across the range of agile experiences which a developer might have.

The agile move, the introduction of agile into a team, is always going to be

a disruptive process because it brings a change of culture to an organisation

alongside a change of working practice. The first case study has the potential

to reveal the pressures which can both drive and resist the introduction of agile

into a team. The other two cases are studies of established agile teams working

in organisations which are very supportive of the agile ideal. The second case

study looks at a single event in the life of a Scrum. It is an in-depth analysis of a

129

4.6 The three cases

stand-up meeting. This second case should provide opportunities to examine

how developers become accountable to the idea of Scrum once they commit to

using it. This accountability is something which might be expected at the first

organisation if their introduction of Scrum leads to similar cultural changes.

The third case study follows a pair of developers over a number of days as

they work to understand some legacy code, write unit tests for it and create

new code which uses it.

The three cases move from the broad detail of an organisation through an

examination of how a small team works and end by looking at the detail of

how individual developers make sense of their work as they write code. Each

case will help to answer different aspects of the research questions. The first

case, Z*, will show how the coordination of work changes as Scrum is intro

duced. The A* study will show the detail of the immediate, contingent, daily

coordination of work within a Scrum and how that coordination is linked to

shared understanding of design and code. The final case, E*, will be narrowly

interested in the sharing of understanding as code is written, looking at the

minute-by-minute development of meaning within a pair.

Together these cases will show that communication between developers

is an integral part of the process of working in a software development team.

Whilst the context for this communication is the use of agile methods the cases

may reveal practices which do not rely upon agility for their utility but which,

instead, agile methods must rely on for their success.

130

4.6 The three cases

4.6.1 Z*

In late 2007 the Communications and Computing Research Centre at SHU was

approached by a local software house who wanted advise on, and support to

change their approach to project management. CCRC was unable to help them

but colleagues and I met with their senior development staff for a brainstorm

ing session. That meeting proposed a number of ways in which we could work

together in other areas than project management. As a result they agreed to

permit some observations as part of my research.

This company is a small software house which builds tools and platforms

that are used in the production of DVDs and other digital data formats. At the

time I began working with them they were running a structured waterfall ap

proach to the Section 2.3. Their projects were often small pieces of work which

lasted between three and six weeks delivering custom templates for DVDs.

Most of the code was written using Google's GWT tool set and transformed

into JavaScript and dynamic HTML.

The custom nature of the code meant that there were lots of interactions be

tween developers, the sales team and their clients but the clients were usually

based in the USA which created a range of communication difficulties because

of differences in time zones. The short timescales which these projects faced

meant that, inevitably, time for testing and final quality auditing was always

compressed and the end period of projects was often fraught and stressful.

Combined together these problems caused constant disagreements within the

company.

The arguments made for the use of agile methods include process improve

ments which lead to better products as all parts of the team work together

131

4.6 The three cases

within a single iterative structure. Section 2.5 describes the rationale for the

idea of agility and some popular agile approaches. A number of books and

conference presentations had convinced some of the development managers

at Z* that switching to Scrum might help ease their problems and reduce in

ternal conflicts. They didn't have enough support from either the Board of

Directors or the developers to switch their entire process to Scrum but were to

be allowed to run a pilot project. My role was to be to study how they worked

both before and after the change.

In designing the study at Z* my key informant was one of the development

managers. John initiated their Scrum trial and was to be closely involved in

running it. My work, and my role as observer and evaluator, were delicate

because I was invited into the company by the management and could be per

ceived as "their man" by the other staff. At the outset of the work it was possi

ble that this attempt to reduce conflict could, in fact, cause it. John's role was

crucial here. Although he had a managerial role as a lead developer, he still

designed, wrote and tested code every day. Far from being detached from the

development staff, he was one of them and, in pushing for the use of Scrum

he was, several told me, expressing a widely-held desire. The only difficulty I

experienced in my time at Z* was to be with a project manager who was fairly

forceful in rejecting the idea of Agile methods.

Because the move to Scrum was politically sensitive with some staff at Z*,

John and I, working with other managers, decided that the process I used

would be quite lightweight. There was insufficient support for an intervention

which took developers away from their work and reduced productivity, for ex

ample through lengthy structured interviews. The company and I agreed that

132

4.6 The three cases

I could observe them, taking whatever notes I needed to, and talk to anyone

who was willing to talk to me but only whilst they carried on working.

The process at Z* became one which would look familiar to classic anthro

pologists. I spent time in the office observing each piece of the development

process. During these observations I found staff in areas from development,

testing, QA and sales who became my key informants and who would be the

subjects of unstructured interviews. The key informants were people who

were involved in the troubled projects and who I was told by managers would

be part of the Scrum project when it went live. These included developers,

testers and the Product Managers. Notably the Project Manager was not in

volved in the Scrum trial either as a participant or as an evaluator.

Some of my informants had supervisory or managerial roles but others

were regular developers of testers with no such responsibilities. The selection

of informants could have influenced the results of this study by introducing

unintentional bias. Managers may have had a different view of work to those

who were actually doing it, those who were promoting Scrum would have

given different information to that which was given by those were opposing

it. In this work I was given free rein to talk to everyone and anyone and was

able to select my own informants which meant I was able to be proactive in

searching for informants who played key roles in, or who held strong opinions

about, the changes.

The selection of informants arose from a process of unmotivated search

ing. I was not looking for specific phenomena and deliberately tried to avoid

having pre-conceptions about what I wanted to see or hear. Instead I watched

people at work, talked to a large number as they worked and chose to spend

133

4.6 The three cases

longer with those who gave me more time or more information. Although I

had been brought in to the company to evaluate thee use of Scrum I was not

there as an advocate of the approach - they brought in a consultant to fill that

role. In fact, at the time that I started working at Z* I would have categorised

my feelings about Scrum as being that it was insufficiently agile and that it

was overly structured. As I moved around the company I was able to gather

a wide range of views on their problems and on potential solutions. The key

informants became those whose views contributed to a rich picture of Z*.

More details about Z* and its products are given in Chapter 5.

4.6.2 A*.com

I found A*.com through a former student. I had asked a number of colleagues

and on email lists for companies who would be willing to let me observe their

processes without success. I decided to search more widely by creating a Web

site which would advertise my work and ask for participant organisations.

The Web page found its way to one of my former students who contacted me

to say that the company he worked for, A*.com, would "probably" give me

some access.

A*.com was another small software house. They specialised in the secure

online storage of documents such as insurance quotes and policies, bank de

tails, wills and so forth. When originally established they had tried to sell their

service direct to consumers but, at the time of my study, they were marketing

it to banks and insurance companies instead. A* were interesting because of

their software architecture. The code was split into two areas: back-end ser

vices and infrastructure; and Web clients. The infrastructure code turned out

134

4.6 The three cases

to be large and complex and in a state of change which was forcing some major

redesign and rewriting.

Whereas Z* were trying to become agile A*.com was a fully-fledged agile

shop. They used Scrum fully, engaging with all stages of the Scrum cycle.

Having to manage and modify a problem codebase is a textbook situation for

Scrum. It requires the kind of iterative thinking, implementing and testing

for which Scrum is designed and is probably best done with the support of

automated version control, a backlog and a test-driven process. A*.com used

all of these.

To gain access I emailed back and forth with my contact and his managers.

They were happy to have me go in provided that I didn't reveal anything which

was commercially sensitive. Commercial sensitivity applied in all three cases

but only Z* asked me to sign a confidentiality agreement: the other two com

panies were happy with a verbal agreement and a handshake. I discussed the

best approach with the developers. I wanted to attend one of the key Scrum

meetings but had only a limited window of availability. At the times I could

be there they were mid-Scrum and the only meeting they were having was the

daily stand-up. I decided to attend one of these.

The stand-up meetings at A*.com were slightly different to the classic model

as described by Schwaber (1995) and which I saw in action at Z*. Most of

A*.com's developers were based in Sheffield but the lead developer, who acted

as Scrum Master, lived and worked in Stevenage. The stand-up meetings took

place as Skype conference calls which meant that everyone would normally

attend even if they were not in the office. It also meant that I was able to make

an audio recording of the whole call using a piece of software called Skype Call

135

4.6 The three cases

Recorder.

I arrived at A*.com at about 08:30, some time before the morning call. I

talked to the team, it transpired that I taught two of them when they were

undergraduates, and was shown around the office. In this study I was more

interested in gathering information about their product and processes than

in richer ethnographic detail. I talked to the team about the way that they

worked, in particular about their use of Scrum and about the work which they

were undertaking.

The recording of the call went smoothly. I was silent during the call even

when questions and interventions suggested themselves to me. My purpose

was to record their talk during their normal interactions which would not have

been possible had I intervened.

The recording was transcribed using a conventional set of Conversation

Analysis annotations which are given in Jefferson (2002) and included here as

Appendix A. The annotated transcription was analysed first through repeated

reading to reveal potentially interesting features, then in a series of guided and

detailed close readings. The initial reading served to filter out sections of talk

to reduce the volume of data which would be examined in detail. As features

of the transcriptions were revealed they were shown to demonstrate aspects

of key ethnomethodological concepts including accountability, reflexivity and

indexicality. These ethnomethodolgical ideas revealed how the team were us

ing the stand-up to manage status, coordinate their work and build coherence

within the team.

More details about A*.com and its products are given in Chapter 6.

136

4.6 The three cases

4.6.3 E*

The third case was a company in Nottingham. Again, I found them through

my Web site and a former student who introduced me to the Managing Di

rector, Adam. My initial contact was a series of emails and phone calls with

Adam before I went down to Nottingham to meet him. By the time that we

met he already knew that I was interested in recording and observing devel

opers as they programmed and he was happy to provide me with the access I

needed.

Adam was clear that E* was an agile company. He was proud of this, telling

me that it was an important part of the vision for the way that the company

ran. When they recruited developers to E* they looked for a mix of technical

skills and agile experience. They had tried recruiting developers who were

technically adept but "not agile" but, according to Adam, this tended not to

work out because of cultural mismatches. Even developers who wanted to

manage their own work would struggle with the mix of approaches which E*

used.

Adam told me that, rather than follow a specific methodology such as

Scrum, E* preferred to cherry pick individual agile practices. They used Kan

ban boards, estimation, backlogs and test-driven development but the defin

ing characteristic of their development process was the extensive use of pair-

programming.

E* appeared to be a perfect company for my research. They were open

and friendly, access would be as unrestricted as it could be and they paired.

Compared to Scrum, a process which centres on pairing can be unstructured,

possibly even chaotic. Adam said that the freedom to pair was simply too un

137

4.6 The three cases

conventional for many experienced programmers and that he now preferred

to recruit those who were younger and less experienced.

It was clear right from my first visit to E* that I wanted to watch pair pro

gramming and that I would need to make audio recordings which I could use

for conversation analysis. I spent two or three days a week at E* over a number

of weeks watching how they worked.

The programmers decided if and how they were going to pair. Conven

tionally, if anything in pair programming could be said to be conventional,

developers pair in a formal way as driver and navigator and work together

for days. Often the two people who pair have different levels of experience

so that one is mentoring the other as they work. At E* none of this applied. I

saw that people could work on their own if they wished but that, often, most

of them preferred to pair. The would talk to each other to find a pair, some

times collaborating for a few minutes to work on a tricky problem, sometimes

spending all day together.

On each visit I would sit with whoever happened to be pairing and watch

them work. I made notes throughout and if they were doing something which

particularly interested me I would make an audio recording. My interest might

be piqued by the nature of the problem, by the way in which they were talk

ing or because their work was related to something which I had previously

recorded.

By the time I stopped visiting E* I had pages of notes and many hours of

recordings. I had far too much audio to transcribe or even to fully listen to.

I read the field notes looking for areas which I wanted to transcribe. Having

found suitable data, I created transcriptions with detailed conversation anal

138

4.7 Analysing the data

ysis annotations for later analysis.

More details about E* and its products are given in Chapter 7.

4.7 Analysing the data

The fieldwork produced two data sets which needed to be analysed both inde

pendently and together. Once each data set had been analysed, the two could

be joined together to present a rich picture of some of the activities of agile

software engineers.

The ethnographic data was, primarily, in the form of contemporaneous

field notes. There were some photographs and a small quantity of notes made

after the day's fieldwork was complete. These notes were to provide useful

context and background and a structure within which transcribed conversa

tions could be understood. The process of moving from field notes to writing

ethnography is, in the words of Crang and Cook (2007), "an informal process

of piecing things together, figuring things out". Working from the data in this

way is, Crang and Cook writes, "a creative, active, making process".

The analysis of data such as field notes should be a process of discovery

for any analyst. As a domain expert I was aware of the danger of missing

things which were "obvious" to me, yet which might be analytically impor

tant had I noticed them. Sharp et al. (2000) are also software engineers who

have used ethnography and discourse analysis and who encountered the same

problem. They presented data from one of their studies and their analysis to a

discourse analysis group who uncovered different phenomena and who cre

ated different interpretations to those of Sharp et al.. I was working in a multi

disciplinary team with supervisors who are social scientists and avowed out-

139

4.7 Analysing the data

siders to the world of software engineering. They were able to provide an out

sider perspective on the data and analysis and to point to areas which needed

more work to reveal the subtleties of the engineers7 practices.

From all of the data I wanted to find talk which formulated action, grounded

action in the participants reality or which explained or accounted for some as

pect of their development practice. I had many hours of recordings to analyse

and at the start of the process I didn7t know which interactions would be the

most analytically useful. I began working with the recordings by listening

to them all to find sections which interested me. My field notes were exam

ined to see if those interactions had interested me at the time. Those moments

which had both produced interesting recordings and detailed field notes were

selected for detailed analysis.

The detailed annotated transcriptions were analysed through a close read

ing which focused on analytically interesting moments. Those moments were

selected because they caught my interest in the field or because they related to

other moments which I had previously found to be interesting. In some cases

the interactions which were selected for analysis were taken from across cases

if there appeared, initially, to be similarity between them. Other interactions

were taken from within a single case study but separated by some days or in

volving different participants, again on the basis that they appeared to contain

similar phenomena.

The phenomena which were interesting were those which are brought to

the fore by ethnomethodology and which relate to the primary research ques

tions in this work. When developers share their understanding of their work

the things which they say are indexical of the participants7 understanding of

140

4.7 Analysing the data

their work. Interactions in stand-ups and other meetings show how develop

ers are accountable to the meeting and for their work. Analysis of the talk-in-

interaction within meetings can be used, for example, to reveal power struc

tures within the companies, interpersonal relationships, personal identity and

more. The social order of an organisation is constructed through its members'

talk, a directed analysis of that talk can be used to explain that social order.

Activities such as the coordination of work necessarily depend on the social

order of the team which is doing the work. This ethnomethodological per

spective was used to sample the transcriptions to find analytically interesting

passages which had not been highlighted during the fieldwork or in previous

sampling.

In some cases I saw the developers came back to similar work or ideas

over a number of days or weeks. Where the analytically interesting moments

were linked to other moments the set of linked items would be uncovered and

transcribed. The process of repeatedly winnowing the recordings yielded a

theoretical sample of the data, (Ten Have; 2007), in which an analysis could be

grounded, (Glaser and Strauss; 1967).

A comprehensive data treatment such as this gathers as much data as pos

sible, building a corpus of which just a fraction is used to generate a provi

sional analysis. The analysis is compared to other data within the corpus and

modified as necessary. Such a comprehensive treatment is well suited to the

discovery of phenomena within relatively structured situations such as the

development of software.

Using multiple data sets provides greater opportunities for theorising and

can provide validation through triangulation and supporting examples. When

141

4.8 A mixed methods approach

less data or fewer sources are available or analysed work can be criticised for

limited coverage or for a lack of rigour. I was able to integrate the conversation

analysis with wider ethnographic materials from the fieldwork. The ethnog

raphy was rich with organisational and cultural detail which provides details

of both the immediate context within which the talk is being produced and of

the wider organisation. The transcriptions were also richly detailed but with

the minutiae of the talk. The important piece of the analysis is the integration

of the two data sets.

4.8 A mixed methods approach

The methodological approach which is outlined here uses a variety of meth

ods which are taken from across ethnography, discourse analysis and conver-

dation analysis. Each of the approaches comes from its own epistemological

tradition and is designed to answer questions from within that tradition. Can

taking an eclectic approach which mixes qualitative methods be justified here?

Research in Critical Discourse Analysis, CDA, has established mixed meth

ods as an academically justifiable approach. Indeed, mixing methods is at the

heart of CDA because its critical focus requires detailed conversation analy

sis alongside "a theorization and description of both the social processes and

structures which give rise to the production of a text", (Wodak; 2001). Fair-

clough (2001b) expands the possibilities which mixed methods engender to

suggest that "co-engagements on particular aspects of the social process may

give rise to theory and method which shift the boundaries between different

theories and methods".

Mixed methods provide access to talk-in-interaction through conversation

142

4.8 A mixed methods approach

analysis and to the context of the production of that talk. Mason (2006) writes

that context is important in analysis because it

means associated surroundings and the concept of "association"

is crucial here. The analysis needs to be able to show how these

elements are connected to the issues and concerns of the study,

and hence in what way they are contextual rather than coinciden

tal. Mixed methods can help us to explore these relationships, and

being able to do that can significantly increase the power of our ex

planations.

Denscombe (2008) suggests that mixed methods "produce a more com

plete picture by combining information from complementary kinds of data

or sources" which, in turn, lets the analysis develop through the use of "con

trasting data". In the view of Esbjorn-Hargens (2006), mixed methods are "an

expansive and creative form of research, not a limiting form of research".

Quantitative research in the positivist tradition is concerned with validity,

reliability and generalization, (Tobin and Begley; 2004). Its findings must not

only true, they must be shown to be true and to be based on analysis of the data

which are presented. Such findings can then be generalized to other situations.

The rigour of the scientific method is sometimes rejected by researchers who

work in a qualitative way as part of a rejection of positivism. Without rigour,

research cannot demonstrate integrity and competence and could be seen as

little more than journalism.

A rejection of validity and reliability opens qualitative research to the charge

that it is not science. Some researchers have adopted the notion of "goodness

as a means of locating situatedness, trustworthiness and authenticity", (Tobin

143

4.9 Summary

and Begley; 2004). Mixed methods research allows for triangulation between

data sets and for more rigorous research because findings arise from more

than one source.

Although CDA's concerns, which Wodak (2001) identifies as power, his

tory and ideology, were not the concerns of this research, its mixed methods

approach to analyzing social relationships provided strong justification for us

ing a similar approach. The research questions which inform this study were

questions of "becoming" agile, of "doing" agile and of "being" agile. Moreira

(2013) describes the process of introducing agile into an organisation as be

ing a project in its own right, a project which leads to transformation across

the organisation. A team which uses agile techniques as working practices

without changing its organisational culture is "doing" agile. To truly "be" ag

ile, Moreira suggests, "organisational values and individual behaviors need to

change".

The case studies examined the transition to agile, the use of agile to co

ordinate work and the lived experience of programmers using the nominally

agile techniques of pair-programming and daily stand-up meetings. Through

the integration of data and analytical methods from different areas of social

science the realities of becoming, doing and being in agile projectscould be

revealed, producing richer results than would arise from the use of a single

technique.

4.9 Summary

The practical and professional activities of software engineers can be studied

in many different ways. A growing body of researchers is using the qualitative

144

4.9 Summary

approaches developed by social scientists to develop an empirical understand

ing of those activities. This approach presents a challenge to positivist, quali

tative approaches which are more typical of software engineering research.

This research used empirical methods to uncover what it is that software

engineers do by examining their sense-making about, and coordination of,

their work as they engage in it. Data would be gathered through field ob

servations and audio recordings which would then be integrated into rich de

scriptions of practice.

Three different case studies were selected for the research programme. The

largest company, Z*, was moving from a waterfall and project management

driven approach towards using Scrum. This company was studied before

and during the transition to reveal how patterns of work and communication

which were previously problematic could be transformed through Scrum.

The second case study was of a mature Scrum practice at A*.com. In this

case a daily stand-up meeting would be recorded and subjected to a detailed

conversation analysis to show both how the team members talk about work

and the work which their talk does for them.

In the final case study, a software house which is agile but not bound to

a particular method, is examined. This company, E*, uses pair programming

as part of a pick-and-mix selection of agile tools. One pair of developers is

followed over a number of days as they understand, test and modify some

legacy code.

Detailed discussion of each of the case studies follows across the next three

Chapters.

145

Z making the agile move
A

5.1 Introduction

Agile methods represent both a practical and a cultural challenge to conven

tional notions of how the work of software developers should be structured

and managed. Agile approaches can change the power dynamics within an

organisation because some of the control over daily work moves from project

managers to individual programmers or to small cohesive teams. Relation

ships with customers or end-users may change as they become more tightly

integrated into the development process and as their more pressing needs re

ceive attention ahead of longer-term but lower priority requirements.

Making the agile move is conceptually simple and culturally appealing for

many programming teams. For others, that same agile move, and everything

with which it is associated, is anathema. Even when teams move to agile they

seem to maintain a structured top-down wrapper around their agility. The

existing studies indicate that agile methods provide a smorgasbord of tools,

techniques and approaches from which they cherry pick those which appeal.

Both academic researchers and practitioners of agile methods remain inter

ested primarily in the practical detail of their implementation: which method,

5.1 Introduction

or methods, might a team choose, what changes need to be made to their pro

cesses and what benefits might they see. The authors of agile methods have

written books and papers explaining the rationale behind their approach and

the benefits it brings, alongside details of the practices and project structures

the method defines. For example, Schwaber (1995), Beck (2000), Sutherland

and Schwaber (2007) on Scrum and XP act as both tutorial and polemic. Au

thors such as Martin (2003) identify best-practices for teams who are moving

to agile methods. Others, including Cohn and Ford (2003), Benefield (2008)

and many more, review what happens in particular organisations after the

agile move.

These studies and tutorials tend to leave a gap in their discussions of ag

ile. They describe the types of situation, for example changing requirements,

which lead to the though that agile development might be a good idea. Some

of these authors also describe the team once it becomes agile. What is lacking

is an examination of the period during which the team changes from a tradi

tional approach such as waterfall to an agile approach. The changes which

agile methods bring are not just matters of engineering, they bring different

thinking about process, about produce and about the roles and requirements

of users within the project. These changes combined suggest that agile devel

opment might bring with it a different culture to that of other ways of organ

ising the work of software developers. These changes are themselves matters

which are worthy of study.

This Chapter follows a small software house as they introduce Scrum. It

will look at the company before they made their agile move and once they had

done so. The changes in working practices, communication patterns, relation

148

5.2 The company

ships and organisational culture which accompany the use of an agile method

will be revealed. The Chapter includes the views of key informants such as

senior developers, project managers, programmers and testers and looks at

key the Scrum practices of stand-ups and reviews.

5.2 The company

Z* is a small software house which make number of products but their main

one, at the time of the fieldwork, was DVD authoring software. This soft

ware was sold to film and television companies across the world although

their main market was in Hollywood.

Z* employed a relatively small staff. Three groups mattered during these

observations. Ten programmers wrote code for a variety of products, a similar

number of QA staff tested applications before release and three people, the

product managers, liaised between customers and developers. The roles and

relationships within the staff are described in Section 5.6. Towards the end of

the field work the company made a number of significant financial and staffing

changes which had a dramatic effect on their personnel and structure. These

changes were a significant factor in ending my engagement with Z* on this

work.

5.2.1 DVD authoring software

Major film studios and television companies are the largest producers of DVDs.

Each of them releases hundreds of titles every year ranging from individual

movies through to box-sets of television series. Successful titles can be re-

released with new material added or with new trailers pre-pended. When the

149

5.2 The company

material on the disc changes a re-release isn't a simple process, the disc has to

be redesigned and thoroughly tested so that, for example, the correct language

tracks are added.

A DVD is built from assets such as sound tracks, video, subtitles in several

languages, menu buttons and pieces of text. These are brought together in a

project which details how they are structured and how the viewer interacts

with them along a time-line. Creating a DVD, usually called authoring, is a

specialised process which Sennett (2008) would identify as a type of craftwork.

Few people can do this well - probably a few thousand world-wide - and

demand for their services is very high. The DVD market is a major revenue

earner for film studios but those earnings are not spread evenly throughout

the year. The majority of DVD sales occur in the weeks preceding Xmas. The

studios rush to have their Christmas range of titles available on time but may

not be able to produce the requisite source materials and assets until shortly

before the release date.

Z* realised that much of the authoring work can be mechanised and that

good tool-support might mean that authoring is de-skilled and becomes both

faster and cheaper. This de-skilling process has been a normal part of indus

trialisation, (Rolfe; 1986, Barley; 1988). By simplifying complex activities IT

solutions should increase efficiency which has been touted as one of the ma

jor benefits of IT, (Brynjolfsson; 1993). Increased efficiency is available in DVD

production if the process can become more like word processing and less like

design. For DVD publishers the seasonal sales peak at Xmas presents some

thing of a headache: they must get their titles authored early enough so that

disks can be pressed and distributed to stores but sufficiently late in the year to

150

5.2 The company

include summer blockbusters. The laborious manual creation of DVDs does

not lend itself to high volumes or tight deadlines. Consequently there is de

mand from studios, if not from DVD authors, for a tool which can simplify the

process.

Z*'s main product was a browser-based application built using the Google

Web Toolkit, (GWT). GWT applications are written in Java which is compiled

into a mixture of HTML controls and JavaScript. The HTML controls are dis

played as a Web page with the JavaScript interpreted by the browser. In theory

GWT applications have advantages of platform independence and portability

over other types of dynamic HTML. With the creation of JavaScript libraries

such as JQuery, Angular.js and Script.aculo.us the creation of interactive Web

applications based on AJAX/HTTP and HTML has been greatly simplified.

And developers who want to avoid writing JavaScript themselves can now

use intermediate languages such as Dart or Coffeescript which are compiled

into JavaScript.

Most of these JavaScript libraries and pre-processors have little or no tool

support. The great advantage of GWT for a developer is that they can code us

ing Eclipse as if they were writing Java. The familiar structure and the support

which Eclipse has for intellisense, inline syntax checking and its integration

with testing and debugging tools greatly reduces programmer effort. The re

duction in effort is insignificant for a single person working on a simple page

but a vital saving when a team is building complex applications.

151

5.3 Measuring success

5.3 Measuring success

At the start of the project we agreed that I would help the developers and

management assess the effect of introducing Scrum. The team at Z* wanted a

lightweight evaluation process rather than one which was based on the collec

tion of large volumes of data. They were happy to use their existing metrics

for code quality, productivity etc. and believed that they would be able to

compare the new agile team with existing teams without too much additional

overhead.

The work of programmers can be evaluated using metrics such as the amount

of code written per person per day or the number of check-ins to a source-code

control system. Ilieva et al. (2004) compared agile and traditional projects us

ing measures such as productivity, defect rates and even deviation from sched

ule. Scrum projects are often evaluated by counting the number of story points

which are completed in each iteration, (Deemer et al.; 2010), or through burn-

down charts, (Buglione and Abran; 2007). Individual metrics can be used to as

sess documentation, meetings, communication with customers, QA processes

or the creation of designs but there isn't a straightforward way to amalgamate

this range of measures to give a holistic view of a project.

There are many less quantitative approaches to evaluating work, (Cohn

and Ford; 2003, Coram and Bohner; 2005). Sometimes qualitative answers

arise from empirical work. Muller and Padberg (2004) investigated why it is

that programmers working in pairs seem to be more productive than those

who work on their own and arrived at the qualitative answer that it is due to

"feelgood".

The management at Z* weren't looking for a quantitative assessment of

152

5.4 Negotiating access

their changes - they were already gathering numerical data to help them un

derstand their development processes. Instead they wanted to use a light-

touch approach which would give qualitative results so that they could un

derstand if, and how, their organisational culture was altered when they made

the agile move. They wanted to look for phenomena such as "feelgood" and

job satisfaction.

A broadly ethnographic approach was chosen to reveal the social and power

structures at Z*; the ways in which people ordered their working lives; and

relationships within the company and with its clients. Changing working

practices will be reflected in changing interactions and patterns of talk. Eth-

nomethodology shows us that interactions and relationships are built and

maintained through situated actions and embodied in talk. They can be re

vealed through analysis which is informed by ideas from the discipline of

Conversation Analysis.

This approach is interesting because the focus is on evaluating the staff's

experience of agile rather than evaluating productivity gains or improvements

to the quality of the code. The management were, as will become clear, rea

sonably happy with the amount and quality of code being written. They were

introducing agile methods precisely because they wanted to effect a cultural

change.

5.4 Negotiating access

Before we could work together the team at Z* had to come to trust me. They

needed to know that the fieldwork and later analysis would be fair and accu

rate and that there commercial sensitivities would be respected.

153

5.4 Negotiating access

In December 2007 I went to a meeting in the boardroom at Z* with two

of their senior developers, Rob and John, alongside their Head of Human Re

sources, Hilary. I had previously met Rob and John when we were trying to

find some projects on which we could collaborate. We met only briefly that

time without establishing a meaningful relationship.

When Rob, John and I first met we spent some time talking about software

development, programming languages and project management. Although

our conversation was relevant to our proposed collaboration it wasn't neces

sary, it wasn't part of the collaboration. We were each ensuring that each of

us was "sound", that we knew what we were talking about. People meeting

each other or working together have an interest in the ways in which others

perceive or evaluate them. We use a range of impression management strate

gies to try to control those perceptions and evaluations, Leary and Kowalski

(1990). When we get a favourable response, or one which meets our expecta

tions, from others our impression management approach is reinforced, Gard

ner and Martinko (1988).

When we meet people through our work we are, naturally, interested that

they see us as somehow skilled or professional and consequently we work to

give that impression. They will usually be doing the same. When each party

creates the right impression they will be more likely to trust each other as

happened as Rob, John and I talked. We were able to begin to trust each other

once we discovered shared ideas about programming and about the use of

agile methods and I was able to present myself as an insider with legitimate

claims to understand their work. If we hadn't built that initial trust we might

still have worked together but with less confidence.

154

5.4 Negotiating access

During the meeting John and I did most of the talking. Hilary was mainly

silent in this meeting although she was friendly enough. She wanted to see

the "happiness" of the developers increase as she felt this would increase both

quality and productivity. The most valuable resource in an IT business is the

technical staff and treating developers better makes better developers, (De

Marco and Lister; 1999). Hilary and John had both read and been strongly

influenced by Peopleware. In particular, they felt that the environment within

which programmers work should be conducive to that work. Hilary talked

about making the structure of the office supportive of both individual and

team working. John was more interested in managing schedules and work

loads so that the programmers could produce their best work.

The team from Z* started by outlining the way they currently operated.

Developers were split into three groups. One built tools, applications and the

GWT-based templates which are used to author the DVDs. A second group

provided quality assurance, QA, in the form of testing and evaluation. The

third, much smaller group, provided support to customers. The relationship

with the customers was managed by three Product Managers in Sheffield and

a sales team in California.

Each developer worked concurrently on products for a number of differ

ent clients. Z*'s application was not a generic authoring tool. Because of the

complexity of the menu systems and content on DVDs the tool had to be cus

tomised for each client and for each application. Spending much of their time

customising the tool meant that the work was largely reactive. Studios would

require fixes or changes immediately. As a small supplier into a niche mar

ket Z* had to respond straight away. Planning work is always difficult in and

155

5.4 Negotiating access

environment such as this but at Z* it was felt that the problem was exacer

bated because developers were not structured as teams. John, in particular,

believed that working in properly formulated teams would give cohesiveness

and improve efficiency and performance.

In theory the customers were only to liaise with Z* through the Product

Managers but in reality they often talked directly to QA or to development.

The drawing on the left of Figure 5.1 shows some of these communication

pathways. These communications were described by John as too often ad-

hoc and undocumented which caused unnecessary duplication of tasks and

requirements.

During our discussions we concentrated on culture and working practices.

We spent very little time talking about productivity or quality. I was told re

peatedly that they had a problem with internal conflicts between departments

and disagreements within projects. John said that these were the "driver" for

the introduction of Scrum. In particular there were problems "between sales

and development" but during this introductory meeting no-one would say

exactly what the problems were - they were described only in the vaguest of

terms. The Z* team said that they wanted an me to discover the problems for

myself and to bring an outsider's perspective on why they were happening.

Sutherland and Schwaber (2007) write that some Scrum teams achieve a

state of "quality without a name". This phrase, borrowed from Alexander

(1979), describes that quality of a design, object or process which is sought

after but which cannot be named. In successful Scrums it "can only be spo

ken of as a set of core values - openness, focus, commitment, courage, and

respect", (Sutherland and Schwaber; 2007). Some of these are very similar to

156

5.5 The first day

the core values of Extreme Programming discussed in Section 2.5.1. By bring

ing a member of the sales team into a team of developers John hoped to break

down some of the barriers which had grown within the company.

I agreed a time to turn up to start observing, was given a security fob for

access to the offices and took a non-disclosure agreement to take away and

sign. I was to go in one morning each week throughout the initial couple

of Scrum iterations, more often if interesting things were happening. This

schedule was agreed because it fitted nicely with our respective workloads.

I was busy, Z* weren't sure exactly how the Scrum would fit into their other

work. The developers who worked in the Scrum would also be working on

other projects and because it was their first attempt they were likely to start off

relatively slowly. Being continually present at their office probably wouldn't

yield better data than I would get from well targeted visits.

5.5 The first day

On the first day I got to Z*'s office at 10, early enough for the day to still be

starting, Z* rim a flexi-time system of working hours, yet late enough that most

people had read emails, caught up on over-night developments and were set

tling down to the new day's work. John had asked that I spend a few minutes

with him and that we do that once he had checked his messages.

I spent the first forty minutes being shown around by John, introduced to

the building and its inhabitants. The layout of the building was interesting

and would become an important factor behind some of the problems which

the introduction of Scrum was meant to solve. When I was first invited in,

the Z* team felt that the structure of their working space was inhibiting what

157

5.5 The first day

they were able to do and that it promoted an unnecessary amount of internal

conflict. They had recently moved into this building from a larger one a couple

of hundred metres away. Team locations had been made concrete quite soon

after the move and people were reluctant to move their desks around without

good reason.

Z* occupied the upper four floors of a nine story 1980's tower block.

• Level six housed the reception desk, administrative functions and the

board room.

• Level seven was software development, quality assurance, technical sup

port and the technical author.

• Level eight was the product floor with the product managers, product

QA and product development. It also housed a room which contained

all imaginable DVD players from around the world which were used to

test disks before templates are sent to the studios.

• Level nine was the server room, a large meeting room which was said

to be used only for pep talks from the Managing Director, and a small

meeting room which became the focus of Scrum activities.

Most of my time was to be spent on level seven or in the smaller meeting

room which was to be used for daily stand-up meetings. The upper floors

of this building form a single doughnut shaped room which wraps around

a central core which, in turn, holds the lifts, stairs and an entrance vestibule.

Twenty five people work on level seven although it is large enough to hold half

as many again and still provide each of them with plenty of space. People work

in clusters of four desks regardless of their role. The desks are large enough

158

5.5 The first day

to accommodate a dual-monitor set-up as standard with space for note tak

ing, text books etc. The cliched partition-formed cubicles, which were railed

against in DeMarco and Lister (1999), are not used here which makes this large

room feel open, light and airy.

The other levels have even more empty space. When I talked to John about

this he said there "really isn't room to move everyone around". They won't be

co-locating the Scrum team. Partly this is because the members of the Scrum

will also be working on other projects

The first thing that struck me on entering level seven was just how little

noise there was. The space was large enough to swallow the whirr of PC cool

ing fans and the air-conditioning was not roaring away. One of the noticeable

features of the silence was that the phones never ring. I found out later that

internally people communicate using instant messaging and that communi

cation with customers in Hollywood usually happened over email or in con

ference calls at the end of the UK working day.

Most people sat in quiet concentration, wearing headphones to listen to

their own music. When I talked to individual developers it became clear that

the problems they were solving were relatively trivial when compared, for

example, to systems-level programming. The developers said that they had

neither the desire nor the need to write lots of code each day and, consequently,

they worked at a relaxed pace.

Quiet conversations bubbled up then fade away. They were usually about

work but sometimes about external matters such as, on this day, my presence,

pension schemes (an adviser was coming in) and lunch. The work conversa

tions were usually about internal processes: "Did you check it out of CVS?",

159

5.5 The first day

"Are you using the emulator?" rather than about design or algorithms.

Everything was inward-looking and focused on the tasks at hand. The

blinds were drawn even though there is a good view over the city from most

windows. There were no notice boards and only one bookshelf of manuals.

This lack of clutter might have been because they only recently moved into

this building and it hadn't yet been personalised but John told me that it was

not unusual for their offices.

The staff assumed different sorts of role at different times. I saw a conver

sation between two developers who were debugging some code. The conver

sation was about how the intricacies of how DVDs work and how this affected

their code. One of them was advising the other, but a few minutes later he

was asking for help from a colleague with some code of his own. They dis

cussed how the product handles faulty data, a situation they cannot resolve

at this point. As they bounced ideas off each other they began to formulate a

new direction for future work. Developers helped each other in episodic and

ad hoc conversations throughout the day.

The calm atmosphere was only broken when one of the product managers

burst in to the office. He carried an atmosphere of aggression and conflict

with him which had a marked effect on the room. He rushed up to one of the

developers demanding that he send some information to a customer. When

told that it had already been provided he was very forceful in saying that it

"needs" doing again. He then made a fuss about the developer being available

for an instant messenger chat with the customer at 5 o'clock. After a couple

of minutes he rushed off and the atmosphere quickly returned to calm. The

programmer appeared unaffected by the interruption, he returned to his work

160

5.6 The staff

almost as if it had never happened.

This incident was a classic example of the communication problems within

the company. Both men clearly thought that individually they had done what

was required. The developer had talked to the client, the product manager had

talked to the client and to the developer. Although each of them was talking

neither of them listened: there had been a small communication problem of

the sort which happens all of the time and which is usually easily corrected

with a phone call or an email. At Z* it blew up into an argument.

The product managers worked on a different floor to the developers. They

saw themselves as buffering requests from clients and as simplifying the in

formation flows into development. Section 5.6.4 is an examination of the role

of the project managers.

5.6 The staff

When I first met them, Z* was a reasonably successful company. They were

shipping products and had a small but growing customer base. The customers

were prepared to provide feedback into Z*'s development processes and to

work with them to improve their products. I had expected to find a certain

amount of chaos with product not shipped or shipped incomplete and unus

able. I thought Td see a Death March, (Yourdon; 2003), since these are said to be

very common in the multimedia world. In a death march requirements, usu

ally scheduling but sometimes functionality, cannot be met in the time avail

able. The staff working on the project know this but make futile attempts to

achieve the deadline. Often towards the deadline extra staff are brought on to

the project team but Brooks (1995) demonstrates that it rarely helps.

161

5.6 The staff

Instead of death marches at Z* I saw projects which ran up to the wire,

sometimes requiring extended deadlines, but which were being delivered with

out undue panic.

Often agile methods are introduced out of adversity whether that is fear

or failure, (Schwaber; 1995). Scrum is fast and cyclical which means that, of

all the agile methods, it is the one which is best suited to struggling projects.

When Scrum is used alongside techniques such as test-driven development

and supported with high-quality modern software management tools teams

can gain the velocity they previously lacked, (Sutherland et al.; 2006).

Z * didn't have failing projects, they were delivering product to their cus

tomers in a timely fashion but they did have communication problems. John's

answer was to reorganise the way that they worked through Scrum. Along

side this changes were made to the way in which they communicated with

their customers. Communication had followed complex patterns, in which

customers talked directly to a range of staff including individual developers.

This led to duplication of effort, mixed messages and confusion. A more for

mal process was being put in place in which customers spoke only to specific

representatives of Z* and they, in turn would communicate with the appro

priate engineers. Figure 5.1 shows the old pattern on the left, and the new

simpler structure on the right.

5.6.1 Project management

Software projects are different to other engineering endeavours because re

quirements change repeatedly during most projects and because software is

both complex and intangible, (Jurison; 1999). Project management is generally

162

5.6 The staff

Customer

Commercial
(US) .

Product
Managers

Customer
Support

^ Software
Development

Engineering

Customer

Commerce Support

Engineering

Figure 5.1: Old and new communication structures

seen as a key part of any software development process, (Software Engineer

ing Institute; 2010). The project manager's role is "the planning, organizing,

directing, and controlling of company resources for a relatively short-term ob

jective that has been established to complete specific goals and objectives",

(Jurison; 1999). Broadly, project managers use a variety of approaches to try

to ensure that the client receives the software they expect on time and to cost.

The project manager is there to understand and manage all of the factors which

impact upon the team and on their ability to "get the job done", (Jurison; 1999).

At Z* they had an experienced project manager, Dave, to oversee the oper

ational aspects of product development. These included coding, testing and

QA, and technical authoring. Dave saw his role as ensuring that resources,

primarily staff, were used effectively so that product could be delivered on

time.

When high priority, short term contracts arrived there was a sense of panic

because all of their developers were already allocated to other tasks. Kraut and

Streeter (1995) wrote that one of the major problems facing the software indus

try "is the problem of coordinating activities while developing large software

163

5.6 The staff

systems". Systems don't have to be large to be complex and they don't have

to be large to be difficult to manage. In a company like Z* co-ordination prob

lems can arise when managing large number of relatively simple projects with

limited technical resources.

Dave explained to me that people were given tasks to achieve and were

expected to get on and get them done, managing their own workload to do so.

Each task had an estimated duration, time to completion, associated with it

and, often, a deadline. People would put in the effort to get work done with

out being forced to do so, even working extra hours if necessary. The typical

developer spends around five and a half hours coding, testing and so on each

day with the remaining two hours taken up in meetings, emailing and talking

to colleagues. This amount of work is, in Dave's experience, "typical across

the industry". The difference at Z* was, he claimed, the amount of personal

responsibility developers take to manage their work. In fact, the split between

engineering and other activities may be even more typical than Dave thought.

Perlow (1999) found that the developers she studied spent around two-thirds

of their time on engineering, typically working alone, and the remainder on a

range of interactive activities including email, phone calls and meetings.

The workload in engineering was driven by business cases, without support

from the business products were not built. The creation of a business case was

a process of negotiation between the sales team, product managers and Dave.

Each project had an entry in a Wiki with the rationale, key tasks and business

case attached and viewable by all staff.

Dave's approach to project management was to focus on the resources.

Project management methodologies have large sections devoted to resource

164

5.6 The staff

management because if you don't know what resources you have available

you cannot know how to deploy them to fulfil tasks and projects.

All of the raw data about projects was held in either Microsoft Project or

in the bug tracker. These two applications didn't give a unified view of the

resources (primarily the people) so Dave had written some scripts which im

ported data from them into an Excel spreadsheet. Each task in a project, in

cluding bug fixes, was assigned to a "Tech. Lead" who assigned them to the

appropriate developer. A "Time To Complete" was estimated although it was

never clear who had the final decision on these estimates. The estimates were

fine-grained, sized in thirty minute blocks.

Using his spreadsheet Dave could see what everyone was supposed to be

doing throughout the day and, for some things, up to six months ahead. He

tracked holidays, sick leave and so on using the same systems because peaks

in those affected developers' availability and hence the amount of work that

could be handled. Dave showed me that annual leave peaked at Christmas

and in August and that there was a lot of illness in November. All of this in

formation was publicly available on a Wiki so that everyone could see their

colleagues' workloads. The types of "administrative coordination" done by

project managers affects the performance of a team, (Faraj and Sproull; 2000).

But often administration's benefits can arise without the support of complex

tools. "[Sjubjective assessments of effectiveness provided by knowledgeable

managers have a high level of convergence with other objective measures of

performance", (Faraj and Sproull; 2000). Dave's common-sense would have

told him that requests for leave peak at Christmas and during the school hol

idays, for example.

165

5.6 The staff

When I first met him Dave was involved in planning the workload of the

technical author. They were looking at Gantt charts in Microsoft Project and

trying to plan a workload over the next few months. This was to prove to be a

useful example of how projects were run at Z* - and one that some developers

were desperate to change. Although work came in bursts and new contracts

could arrive at any minute there was a desire within the management to know

what everyone was going to be doing for several weeks or months ahead. For

some of the managers, including Dave the Gantt charts held a canonical truth

which couldn't be questioned. However some of the developers said that Dave

over managed and had an obsession with his Gantt charts and that this didn't

really help anyone. Certainly, when Dave talked me through his work it was all

about the data and the software. I didn't notice any comments about people,

projects or products.

In tightly planned organisations the project manager can become a single

point of failure. Dave was sure that wasn't the case at Z* because there was

so much software support and because the data was so open. Others were

less confident and told me that they wanted to become less reliant on Dave's

Gantt charts and spreadsheets. Some of the developers, in particular John,

felt that too much reliance on data, data which could be "gamed" because

it was public, could restrict how people worked. Al-Zoabi (2008) writes that

"too much strictness kills creativity and initiative spirit in the project team".

However a lack of data can lead to a lack of control. Software engineering often

follows other engineering disciplines where projects still fail but "[cjurrent

thinking in the project management community is highlighting governance

issues and poor and inadequate risk management", (Lawrence and Scanlan;

166

5.6 The staff

2007).

Dave felt that in the move to Scrum he would be affected more than most

people. He was clearly concerned about the impact of Scrum, expressing his

view that there would be less data and, hence, less control of projects and,

especially, over risk.

The introduction of an agile method isn't always a neutral process. Some

groups in the organisation benefit whilst others may find their role or status

is threatened. Benefield (2008) saw one Scrum team which was so zealous in

rejecting external influence that the company management had to restructure

the project to regain some control. The managers didn't look at the success,

or failure, of that Scrum through traditional measures of quality or produc

tivity. They simply saw that control was moving away and acted to reassert

themselves.

At Z* significant power over the daily management of their own work

moved to the Scrum team and away from Dave. Perhaps unsurprisingly Dave's

were the loudest objections but despite them the change had sufficient back

ing from senior developers John and Rob, and from Hilary, on behalf of HR,

that the Board of Directors agreed to a trial.

5.6.2 The developer

On one visit I spent time with Ben, one of the programmers. He had worked

for Z* for three months at that time and talked me through the company's

existing approach to software development.

The programmers used some standard tools for source code management

and bug tracking but were free to use any tools they chose for coding. At this

167

5.6 The staff

time Ben was using Eclipse to write Java and WinglDE to write some Python.

He didn't like using WinglDE which made me wonder why he didn't install

some Eclipse plug-ins so that he could code both Java and Python in one appli

cation. IDEs often enhance a programmer's productivity and simplify coding

by, for example, supporting intellisense which suggests possible classes and

methods as you code, providing context-sensitive help and having integrated

debugging. A proficient programmer will find a set of tools in which they are

competent and will work to master their use. If Ben had used Eclipse for all

of his work he would have become proficient in it and become a more efficient

programmer, (Hoover and Oshineye; 2010).

Later in this session Ben would switch to a plain text editor called Notepad++

to write some XML even though Eclipse has excellent support for XML. Ulti

mately it may not matter that someone doesn't fully use their tools but a devel

oper who is competent in their programming environment will do less work

and can concentrate on the problem domain and on their code rather than on

the tool. Z*'s developers seemed to struggle to make the move from appren

tice to craftsman, (McBreen; 2001, Sennett; 2008, Hoover and Oshineye; 2010).

That moves requires support and motivation, Weinberg (1998), but increasing

ability leads eventually to the production of higher quality outputs, (Sennett;

2008).

Ben was writing a template for a client's DVD using GWT. He told me that

Z* had switched to GWT about six months before after using raw JavaScript for

a number of years. He had been with the company for just three months and

this was his first exposure to both GWT and to DVD authoring. Before work

ing here he had been a Web developer at a local ISP. Software engineers tend

168

5.6 The staff

to be highly mobile with careers which take them through a number of tech

nologies and through work on many different types of application, O'Riain

(2008). Moving from writing Web code at an ISP to crafting DVD templates is

a normal type of career move.

GWT itself is well documented, there are some good books and the forums

at Google are very helpful. But the templates written at Z*, the actual code on

which the developers work, contain no comments, have no supporting doc

umentation. There isn't even any design documentation: Ben said "I haven't

seen or heard of any" when asked about design. The code is so complex, and

the DVD authoring domain so esoteric, that John, the lead developer, told me

it takes new recruits at least three months to get up to speed even if they are

experienced programmers. When Ronkko (2007) write about searching for in-

dexicality they are defining the activity with which Z*'s developers engage.

To understand the design of the product they must understand the code but

that code is both complex and esoteric. Developing a facility with that code

requires that significant time and effort are invested. The staff accept this long

period of learning as a normal part of their culture. They don't see any prob

lems with the associated costs either financially or in wasted effort and lost

time.

Documentation provides a self-administered from of control. Program

mers "must have a common view of what the software they are constructing

should do, how it should be organized, and how it should fit with other soft

ware systems already in place or undergoing parallel development", (Kraut

and Streeter; 1995). This shared view comes either from formal design docu

ments or from comments written into the source code or, in theory, from both.

169

5.6 The staff

However documentation is often not kept up-to-date so that when the code or

design changes the documentation lags behind. Design documentation is not

just held in formal structure, but also in informal notes, in the minutes of meet

ings and so on. These informal documents are not typically indexed and can't

easily be used by someone who is unfamiliar with them. This forces people to

talk to each other about the context within which the documents were written

and about what they mean, (Hertzum and Pejtersen; 2000). Agile methods

introduce many additional informal documents such as index cards, post-it

notes or story cards. These are often used transiently, being placed on a Kan

ban board for a few days then removed and thrown away once "completed".

Chapter 7 follows two developers working as a pair as they rework existing

code. The Chapter will demonstrate that talking about a section of code can

reveal both the content of the code and the context of its production in ways

which may be richer than formal documentation could provide.

Many agile methods "eliminate unnecessary activity devoted to documen

tation" and instead rely "on oral communication [which] emphasises the im

portance of developers' individual memories", (Sharp and Robinson; 2004).

A traditionalist might baulk at this but Kraut and Streeter (1995) argue that

talking and the creation of strong interpersonal networks and lots of informal

communication correlate very positively with better project outcomes. How

ever, where there is minimal documentation there is also minimal long-term

knowledge. Because developers move between companies or between roles

within the company so frequently their specialist knowledge is easily lost. Rus

and Lindvall (2002) write that "[t]he major problem with intellectual capital is

that it has legs and walks home every day. At the same rate experience walks

170

5.6 The staff

out the door, inexperience walks in the door".

5.6.3 Quality auditing

The QA manager, Chris, had two roles: he managed the testers and he man

aged the support staff who work with customers. Because he started out as a

tester himself he felt that he had good understanding of what they needed to

get their jobs done. Less formally he saw his role as "insulating the [people

in QA] from problems". The QA role was one in which tasks were never im

mersive and there was always something else to be done. In fact, Chris said

"I work in Outlook" and showed me how he spends his time in the Calendar

application juggling "[l]ots of meetings".

Chris talked me through the process of implementing a template. The cus

tomer supplied Z* with a rough outline of their requirements including the

number of episodes; subtitle languages; trailers and other material which they

wanted to include; and an idea of the menu structure for the DVD. A formal

statement of requirements was written collaboratively by the sales team, prod

uct manager and customer. The requirements were formed into a template,

using GWT, by the developers. Testing then began. The tests were specified

early in the process and taken directly from the requirements document. QA

spent their time using the template, making sure that elements such as menus

or subtitles work correctly. Once the template met the specified requirements

it was shipped to the customer who added the content and built the DVD.

Chris said "instead of $10,000 they can do it themselves in half an hour". The

templates could be re-used so that a single template was suitable for an entire

box set, the only change across the disks being their unique content.

171

5.6 The staff

The QA testing at Z* was analogous to integration testing in conventional

software environments but here it could, in theory, begin earlier in the process.

It tended not to do so because development often took longer than expected. In

a typical eight week project the last two weeks were scheduled for QA but that

time was often eaten up by development. This led to rushed QA and meant

that there often wasn't enough time to work on properly fixing the problems

which QA threw up. When QA found a bug they wrote a description of it,

including how to reproduce it, in the bug tracking software, assigned it back

to a developer and gave it a priority. If the problem was found shortly before

release the QA manager had to negotiate with the developer and the product

manager to decide if, how and when the problem was going to be resolved.

Chris said that "QA want to ship quality product" but the product manager

gets the final say. The vast majority of staff will want to ship quality products

but QA is the only part of the company which explicitly "has that as its goal".

The product specification was written in plain English. I was told that

specifications were "often" vague or ambiguous although no one had hard

numbers on precisely what "often" meant here. From the testing department's

point of view the specification needed to be converted into a tightly worded

requirements document and a formal test plan. These were mainly written by

the Product Managers and agreed to by both development and testing.

The requirements specifications usually included a flow chart which shows

how the DVD could be navigated. Test cases were built on this with one state

ment or one part of the chart sometimes leading to a number of different tests.

The software testers managed their daily work using the bug tracking soft

ware. This software acted as a repository of test cases, scripts and planning

172

5.6 The staff

documents. If a tester needed to know more detail about a disk they found

it here. When I watched the testers working on products it was never clear

if they were driving the bug tracker or if it drove them. It was in control at

least some of the time: when a problem was signed off, signed out or signed

in the software emailed everyone whose name was attached to the problem.

This senior tester found the software useful because it gave him an easy way

of seeing exactly what he and his team had done.

The testing process was both intensive and time-consuming. The naviga

tion through every DVD template had to be tested in all possible combina

tions following a test plan which was written by the product managers and

customers. The single largest problem for the QA department was that their

work could only be fully carried out at the end of the development process.

A typical waterfall project lasted six to eight weeks but QA only started work

in the last two weeks. If they had problems with the specification or the test

script they could struggle to complete their work before the deadline. Since

their role was, in part, to find all of the bugs in the software they were often

referring templates back to the developers when there was little time to fix

and test the bugs. However the testers oriented strongly towards the goal of

raising quality so that only high quality products were shipped but rarely had

time to complete their work to their own satisfaction.

Lack of time to complete projects, and in particular insufficient time for

testing, is one of the problems which Scrum addresses. Through the integra

tion of testing and QA functions fully with the developers, software can be

tested as it is being developed, (Sutherland and Schwaber; 2007). This wasn't

one of the drivers for introducing Scrum at Z* but it might be a beneficial side-

173

5.6 The staff

effect of that move.

5.6.4 The product managers

Z* had three product managers: Sean, Justin and Julia. Justin was the person

who loudly berated a programmer on my first day with the company.

The product managers' role was to agree projects with customers, sales

and development. They all said to me that these agreements were based solely

on financial criteria and that the financial viability of each project was an im

portant factor for them in their decision making. The product managers saw

themselves as providing a buffer between development, sales and customers.

They acted as a buffer during both the initial negotiations and later in the prod

uct life cycle when customers wanted code to be modified or maintained.

All three product managers said their approach "ensured" that develop

ment only received "useful information" which they could "actually use".

When I spoke to the developers and the QA team they said that the specifi

cation documents they received were often vague and imprecise. This wasn't

a characterisation which the product managers recognised. They were confi

dent that their specifications reflected the needs of the customers in a format

which the developers could use.

The product managers said that they try to avoid a "them and us situa

tion" with the sales team. The communication between sales and customers

seemed to work well. The product managers felt that sales were "quite good"

at getting information from customers. But that information was then filtered

by the Product Managers before it got to either of the development or testing

departments.

174

5.6 The staff

Z*'s customers paid for the software on a per-use basis where each use was

the creation of a DVD ready for pressing. In the established DVD authoring

world, film and TV studios out-sourced work to three different companies.

These charged studios on a per-hour basis to author DVDs and were, obvi

ously, not interested in using Z*'s technology which simplified and sped up

the authoring process.

All of the product managers agreed that delays in development or testing

at Z* lead to difficulties in prioritising work. In particular, it was always dif

ficult to decide between fixing errors in existing products and creating new

products. Despite this, one of the product managers felt that their relation

ship with development was better than that with sales. He wouldn't elaborate

on this when pressed, instead going quiet as if he had said too much.

On one occasion I watched Sean negotiating with lead developer Steve

about using Scrum. They had a one-off project which the Board had agreed to

as it completed a contractual obligation. Steve wanted to run this as a Scrum

but said this would cost more than doing the work in their usual way. The ad

ditional cost came from factoring in QA from the start of the Scrum, paying for

a full-time Scrum Master and bringing in some outside expertise to get them

started. The expert was part of the start-up costs of learning about Scrum but

the cost of using them was to be loaded onto the first such project instead of

being spread across all iterations. There was a long discussion between the

two men. Both said that they "wanted" to try Scrum but were "held back by

Z*'s financial model".

The testers were particularly critical of the "vague" specification docu

ments they received from the Product Managers. This single factor was the

175

5.7 The first Scrum

source of a lot of the disagreements between the different departments. These

disagreements provided the context within which Scrum was going to be in

troduced yet senior staff were finding impediments to that introduction. "Want

ing" to introduce Scrum was clearly a weaker idea for them than fitting in to

the financial model.

5.7 The first Scrum

After my meeting with the product managers I met with my original sponsor,

John. He told me that Scrum was off the agenda for a while. Then, out of the

blue, I got a call from him saying that they were starting a Scrum and that they

had a consultant coming over from California to work with them for a week.

The cost of this consultant was the problem with which I had seen Sean and

Steve struggling. Clearly they had found a way of resolving the problem.

The consultant, Michael, had an interesting role which seemed to be to

bring confidence to everyone that they could succeed. He said two interesting

things: Yahoo! had used Scrum and a paper was presented at HICSS '08, Bene

field (2008), which showed they had succeed through getting widespread buy-

in; and that measuring success is "awkward" and no-one really has a metric for

it. The latter was an interesting point coming from someone who frequently

works with failing projects and who travels the world selling his knowledge.

Michael was going to help all of the members of the first Scrum to under

stand the the new working practices, project's structure and their new roles.

He was going to run a few Scrum meetings such as the first Planning Meeting

and some daily stand-ups and show the Scrum Master a few techniques which

were successful elsewhere.

176

5.7 The first Scrum

I attended the first Scrum Review meeting, which happens at the end of

each sprint, at the end of March. Nine people attended from all aspects of the

product: Julia the product manager, who acted in the role of Product Owner

or customer, three developers, a similar number from QA, a Scrum Master and

someone from product testing. The Scrum Master was the head of QA with

whom I had spent time earlier - someone who was heavily invested in getting

improved communication and higher quality so that his Department could

function more effectively. He was fully integrated into the team for Scrum but

wasn't involved in software development which allowed him to be a relatively

neutral voice in the meetings.

This first Scrum Review started by looking at the work which had been

achieved on the sprint. This contrasts with the stand-up meetings such as

the one in Chapter 6 which focus on immediate issues for the day. One of

the developers "drove" the software they'd written during the sprint whilst

the others suggested things which they wanted to look at. They had the bug

tracking application open and took other suggestions from its list of tasks.

When problems appeared they were discussed in a friendly way. The team

spent quite a lot of time discussing functionality with Julia asking questions

from the customer's perspective. The functionality being discussed was not

clearly defined in the specification document whose meaning could be open

to interpretation. In these discussions they reached consensus around those

interpretations and how the template matched them.

As the Review proceeded a number of bugs were identified in other appli

cations, particularly the system which compiles a template into a DVD struc

ture. This team had no control over those applications and could do nothing

177

5.7 The first Scrum

more than log the bugs. This was a problem because those bugs were delaying

the completion and release of the template. This is a common situation in soft

ware development because it is so reliant upon good tool support. Whether

tools are built in-house or bought in from external suppliers the whole pro

cess necessarily becomes reliant upon them. One of the arguments in favour

of Free Software is the users can fix the bugs in their tool chain rather than

relying upon a supplier to do so. This assumes that the user has the skills and

time to debug and patch someone else's code but commercial developers are

often fire-fighting their own releases. Clearly this problem is both critical and

difficult and is not one that has been solved effectively, yet.

Discussion of the template involved a discussion of low-level detail from

the ISO DVD specification. This sort of domain knowledge is key to both design

and implementation. A number of software development techniques have ap

peared recently which attempt to exploit domain knowledge to help develop

ers build better software. They acknowledge that ideas such as XP's on-site

customer or the work of the CSCW community were well-motivated but that

they didn't give developers the information they actually required. In the Z*

Scrum team some of the developers had expert knowledge of the intricacies of

the DVD specification - they had even had a representative on the DVD stan

dards committee. In this meeting they acted as tutors, making sure that the

rest of the team really understood relevant details.

After the product walkthrough the team began to review the user-stories.

These are natural language descriptions of the use of the product and they

have to match the workings of the software. During this discussion the Prod

uct Owner said that she "won't sign off anything which development hasn't

178

5.8 The Daily Scrum Meeting

signed off". She meant that if the developers weren't prepared to say their

code worked then she wouldn't make the claim and it wouldn't be released

to the customer. This seemed to me to be both co-operative (we're all in this

together) and aggressive (you'd better get it right) at the same time. The appli

cation bugs were identified as the most serious ones but I didn't note anyone

being tasked to get them prioritised with the applications team.

After a short break the meeting moved into a sprint retrospective. In turn

everyone listed those things which went well and those which went badly dur

ing the sprint. The Scrum Master wrote each point onto a separate Post-it note

and stuck them onto a whiteboard. Once the set of notes seemed to be com

plete the Scrum Master read them all out to the team. The team discussed the

results of the sprint. Everyone agreed that the product was more solid than

previous ones and that this process of review and retrospection had identified

a number of serious problems with the underlying template.

The team had realised that not being co-located was becoming a problem

for them. The Product QA team were on a different floor to testing and devel

opment and didn't feel that they understood how everyone else was working

and that they were not being given enough time to complete their work. These

are typical feelings on many projects but s Scrum retrospective gives a space

in which they can be aired in front of the whole team rather than festering and

becoming a source of resentment.

5.8 The Daily Scrum Meeting

By the time that I went back to Z* to observe a Daily Scrum Meeting-up they

were well into the swing of things. John, the developer who originally invited

179

5.8 The Daily Scrum Meeting

me in was acting as Scrum Master. As with the Scrum Review which I saw

earlier, a mix of people from across the company were present.

The discussion circled the table with the Scrum Master asking each per

son what they did during the previous day. As each person spoke John was

navigating the bug tracker to find all tasks assigned to them. The status of

each was examined and some rolled over to be completed during future days.

These discussions were given focus by the three questions:

• What did you do yesterday?

• What are you doing today?

• Are there any impediments to your work?

There was a real problem getting anyone to admit that anything was an

impediment. This might be a feature of an immature Scrum team. Chapter 6

follows an experienced team through a stand-up meeting. Impediments are

more freely shared there - and advice is offered during the stand-up. The de

tails of how these interactions are constructed in the mature team is examined

in detail in that Chapter.

As each person's work was discussed other people stepped in to pick up

tasks which they are better able to handle. Other tasks change status from

pending to completed. The atmosphere of the meeting was open and co-operative

and as workloads reduced new tasks were defined, or discovered, and as

signed. Justin, the product manager who was so confrontational when I first

arrived was especially good at finding, prioritising and sharing work - includ

ing taking new things on himself. I noticed, though, that this led to an uneven

spread of tasks so that the product manager ended the meeting with lots to

180

5.9 Discussion

do whilst some of the QA staff had far less work. This was remarked on and

everyone just accepted it. I noted at the time "presumably this fluxes over

time".

5.9 Discussion

Z* had concrete problems which needed to be addressed. Their communica

tion patterns were a mess: staff were talking to customers without control or

oversight and software was continually delivered at the last minute. Because

their processes had become chaotic they didn't have the time, space or capa

bility to take on new work. These are all common features of small software

houses but at Z* the management reflected and decided to do something to

improve their approach to work.

They always tried to be plan-driven. The project management liked to

know what the staff were doing, what projects were in-progress and what

new work was going to arrive from clients. The use of spreadsheets, backlogs

and thorough documentation of projects meant that they had the capability to

see a detailed view of all work that was in-progress now and for several weeks

ahead. None of this data helped them to run an efficient, low-cost process, in

stead they constantly made last minute changes and were always fire fighting

bugs.

The company took a prudent approach to introducing Scrum, initially im

plementing it for just one team. They brought in outside expertise in the form

of a Scrum Coach to show them how they could make method work on their

projects. As they learned to become Agile they followed the Scrum method

to the letter. Doing this meant that any problems which they encountered

181

5.9 Discussion

early in the process were likely to be caused by their understanding or by the

way in which they were using the techniques. Staff attended training courses,

starting with the senior developers, product managers and project manager

who would have leading roles in the implementation. Careful preparation

and training meant that the introduction of Scrum need not be haphazard al

though it still had the potential to bring unexpected problems or changes. The

Scrum Coach was in the office for the first week, attending planning meetings

and stand-ups. He was able to guide the team through the process, helping

them overcome the obstacles which inevitably arise from such a large change.

The biggest changes were not around process, rather they were in the per

sonal relationships between colleagues. Because of the structure of the Scrum

the product managers, developers and QA staff were integrated into a single

team. The product managers became proxies for the customers, all commu

nication between development and customer had to be routed through them.

The product managers also acted as product owners in the Scrums, attending

planning meetings, retrospectives and some daily stand-ups. This changed

the dynamic of the team so that no-one needed to feel that they were left out

of the loop. Both developers and product managers were able to understand

the pressures which they each faced.

Part of the promise of agile methods is that improved communication can

bring improved process and improved product. At Z* the staff began to com

municate more openly and more successfully once they started to use Scrum.

Improved communication resulted from increased communication centred around

Daily Scrum Meetings at which staff were able to see each others' problems

and the efforts which were made to solve them. They began to exhibit the

182

5.9 Discussion

features of a community of practice as a group of people bound together by

shared expertise in a joint enterprise. Cooperation around their work nur

tured and sustained the community so that the team's culture became one in

which cooperation was at the heart of their working practice.

The initial Scrum trial which is described here was so successful that even

before it completed Z* had rolled Scrum out to another project. In the months

after this initial effort they gradually switched all of their working practices to

Scrum. As their experience and confidence grew they were able to be more

flexible about how they use Scrum so that now they can pick and choose the

length of a sprint, the number of story points delivered in a sprint and even the

regime of meetings which a team has to follow. As they used Scrum they grad

ually learned about themselves and their customers and came to an approach

which means they are better able to respond to customers' needs however fast

those change.

This fieldwork revealed that Z* had two significant problems which agile

methods might address. First there was internal conflict between departments

caused by a lack of understanding of each others' needs and exacerbated by

poor specifications. Secondly the developers worked with little or no docu

mentation which meant that, at times, they struggled to understand the code

on which they were working.

The ethnographic data which was gathered during this fieldwork was im

mensely rich. It revealed detailed information about the company, their pro

cesses and relationships between the staff. The access to members of staff and

to their meetings meant that key steps in their development lifecycle could be

followed. The fieldwork at Z* was initiated as a study of their organisational

183

5.9 Discussion

changes and, consequently samples of talk were not gathered. The subsequent

field studies would include both ethnographic data from field notes and de

tailed samples of talk which would be analytically linked to show both the

developers' revealed understandings and the context within which they were

produced.

In Chapter 6 a daily meeting is examined in detail, revealing how talking

about both software requirements and implementation shares understanding

across a team. Chapter 7 follows two developers as they work with existing

code to understand and test it and to develop a replacement and shows how

talk can reveal more detail than might ever be formally documented.

184

A*, com

6.1 Introduction

Talk is at the heart of Agile Methods. Their power comes from increasing both

the quantity and the quality of communication within development teams,

and from that communication being talk. When developers discuss the code

which they are designing or writing they reveal their understanding, or mis

understanding, about both the problem on which they are working and their

solution to it. Detailed conversations are opportunities to share knowledge

with other team members or between teams. Talk about work at work can be

so useful that Scrum codifies it into a number of ceremonies.

The daily stand-up is the best known Scrum ceremony. In a stand-up meet

ing the team of developers, product owner and Scrum master meet for fifteen

minutes to talk about the work they have done, the work they are going to do

and any impediments to their progress.

This Chapter uses a mixed-methods approach, informed by discourse anal

ysis, to examine a daily stand-up at a small software house. The meeting takes

place with most of the developers in the same office but the Scrum Master

joining in via Skype. Transcriptions of the meeting, taken from audio record-

6.2 The company

mgs supplemented by contemporaneous field notes are used as the basis of

an analysis which reveals how developers talk to their colleagues about their

work.

6.2 The company

A*.com is a young company based in Sheffield and London. They are building

an innovative Web-based information and document manager using industry-

standard technologies, primarily based around the Java programming lan

guage and the Spring Web application framework. Development work in the

company is done using a broadly agile approach with a small team of techni

cally adept developers reacting rapidly to the needs of their customers.

At first sight A*.com looks like a typical modern startup. The company is

innovating, is supported by venture capital and employs a small team of tal

ented young programmers. In common with staff at many other startups the

developers are keen to use the latest approaches and ideas and the company

supports them. The developers are allowed to choose those technologies and

techniques which will work best for the team, management do not impose

processes upon them. Since the developers are all young and say that they

are interested in finding "best-practices" they ought to be working in the ideal

environment.

DeMarco and Lister (1999) describe some of the features of an ideal work

ing environment. Ranging from corporate structure through the composition

of the team to the physical setting within which developers work it is clear that

there are ways of structuring work which support the development of code

and ways of doing so which make it much harder to produce a high-quality

186

6.2 The company

product.

Organisations can create development environments which enable and sup

port programming but this often means that programmers need to manage

their own workloads. Glass (2006a) cites studies which show th a t"... produc

tivity was higher when developers set their own schedule" and "highest when

there was no schedule". When I talked to them about their approach to devel

opment the developers at A*, com said that they were energised by the ideas

behind agile development and chose to use Scrum to structure their work.

6.2.1 The product

The basic premise which underpins A*, com is that many people live hectic

lives in which they are constantly balancing the competing demands of work,

family and leisure. People are constantly connected to the Web and it is there,

using a series of complex Web applications, that they manage their lives. These

people buy car insurance on-line, choose and arrange holidays on-line, pay

their bills on-line and even communicate with each other using on-line social

networks. Shirkey (2008) suggests that for many people their on-line lives are

as important as their lives in the physical world.

A*.com is based around a single, simple idea. Life would be slightly, but

appreciably, easier if much of the complex data one requires to negotiate the

modern World were readily available in a single place. Better yet, mundane

tasks such as searching for car insurance quotes could be automated and added

to that store of personal or family data. And if the data store had some intel

ligence it could tell the user when they need to check car insurance quotes

because their renewal is due shortly.

187

6.2 The company

A*, com has evolved from that simple vision. Whilst it remains a product

that is aimed at families for home use it is not directly marketed. The A*.com

strategy is to sell their product to organisations such as insurance companies,

utilities or banks and to have them offer it to their own customers. This change

has had a profound effect on the daily work of the developers. Previously they

were building a single product which was a complex enough task, now they

were building an infrastructure which has to be tailored to meet the require

ments of each client.

Their Sales Director talks to potential customers to understand their needs,

he writes a specification which is given to one of the developers who then

builds and tests a prototype implementation. This prototype is then demon

strated to the potential customer. A*.com's theory is that showing a working

prototype is likely to have a more beneficial impact than showing static mock-

ups and will lead to increased customer satisfaction. Deemer et al. (2010)

describes how the repeated sprint structure of Scrum keeps a team focused

on delivering product to the customer: "[a] key idea in Scrum is inspect and

adapt. To see and learn what is going on and then evolve based on feedback,

in repeating cycles. The Sprint Review is an inspect and adapt activity for the

product". At the end of each sprint the team reviews their progress and how

much product they managed to deliver.

Because the company is being driven by customisation and sales, the de

velopment process has had to become more responsive. Each new request has

to be acted on, there being relatively little negotiation between Sales and De

velopment, typically within a short time frame. The prototypes form part of a

negotiation. Once customers see the application's functionality they begin to

188

6.2 The company

think of other things they would like to have it do. Deemer et al. (2010) shows

that customers' ideas lead to new requirements which have to be implemented

in the next version of the application.

6.2.2 Approaches to development

The continual pressure from new or prospective customer meant that devel

opment at A*.com was always iterative. As well as new functionality the de

velopers were constantly revisiting existing code to alter or improve it. When

this fieldwork was undertaken A*.com were nearing the completion of a ma

jor re-implementation of their back-end system in which they moved from a

custom infrastructure to an industry standard one. This change would, they

hoped, bring major benefits to them: the custom framework was no longer in

development, and its replacement is widely used and known to be both robust

and scalable.

The work of this small team had three major drivers. Implementing proto

types for prospective customers, adding or modifying code used by existing

customers and improving their infrastructure. That would be a lot of change

for an experienced team but most of the developers at A*.com were in their

mid-20s. The developers at A*.com wanted to do a good job for their cus

tomers and for the company. During preparatory sessions before the field

work they talked about using techniques which let them deliver better prod

ucts for their customers, comments which mirror some of the ideas of the

Software Craftsmanship movement. McBreen (2001) writes that "[cjustomers

want great software. Software craftsmen want to produce great software..."

and that this "fundamental alignment makes for a better relationship between

189

6.2 The company

customers and software craftsmen".

When changes are made to the code which the customer sees or which im

pacts upon them changes often also have to be made to the infrastructure of

the application. Infrastructure code is at the core of any complex application.

The software which users see and with which they interact is often created by

a fraction of the code in the application. The infrastructure includes security

code which performs authentication, authorisation and message encryption,

databases and message queues alongside those sections which implement fun

damental business processes. As the users7 requirements change or evolve the

infrastructure code which supports them has to evolve. This may mean that

existing code is modified or that new code has to be added. If a project were

rim along "fundamentalist" agile principles infrastructure code would only

be written when it was actually required. Many project teams, including the

one at A*.com, implement a significant proportion of their infrastructure at

the start of the project. This has to be done because even the simplest client

will require access to functions such as those which provide data storage, net

working and so on.

6.2.3 The staff and their working environment

The development team was small and cohesive. The lead developer, software

architect and project manager was Dan who lived in Stevenage and usually

worked from home. Dan wrote the original version of the software and still

owned much of the code base. When complex technical decisions were needed

the other developers included Dan in their discussions and would often de

ferred to him. The others claimed that Dan understood everything that was

190

6.2 The company

being done on the development side of the project.

Gary, Ben and Ed did most of the development work. They graduated

within a couple of years of each other, had worked in a number of compa

nies and were skilled software developers. Will, Ben's brother, was the team's

tester. It was his job to ensure that the software in each release met the cus

tomers' specifications for functionality and performance. The fifth team mem

ber was Sam. He was on a work placement year whilst at University and had

only been with the company for a few weeks at the time of this fieldwork. Sam

was helping Will with the testing.

The team was completed by Evan. He was the sales and marketing part

of the team and acted as product owner. Evan was not present during the field

work which is presented here.

The majority of the team worked together in an open-plan office in Sheffield.

The office was in a converted industrial unit which has been redesigned inter

nally to support occupancy by multiple SMEs. The A*.com office was a perfect

example of the classic space used by modern startups. They had a single large

room with a small separate kitchen in one corner. The walls were unrendered

red brick. Small late-Georgian sash windows let in limited natural light.

The developers worked at a group of desks by the windows where they

faced each other in pairs. The side of the office away from the windows had

a number of tables for meetings or discussions. Whiteboards and flipcharts

stood around the room covered in notes and doodles.

Most developers would probably consider this working environment near

ideal. The office was quiet and, even when people were talking, it was large

enough that noise need not be distracting. Smaller, quieter spaces tend to be

191

6.2 The company

more conducive to software development than do large rooms of cubicles be

cause programming requires so much focused concentration, (DeMarco and

Lister; 1999, Glass; 2006a) However with a small team there would be less

noise than in a large office. A*.com's room had character which makes it both

friendly and conducive to intellectual activity in contrast to the workplaces

visited by DeMarco and Lister in their consulting work which tended to be

"noisy, interruptive, unprivate and sterile".

6.2.4 Technologies

The A*.com product was a typical enterprise-type Web offering. They have a

Web front-end with the business logic implemented in a number of different

Java technologies and running on remote servers.

The A*.com technology stack was undergoing some important changes

which affected the teams' work. These changes were almost all in the in

frastructure of the code which runs on the server. The client code running

inside users' Web browsers had not been affected at this point. Because the

new infrastructure was significantly different to the previous one a high-level

overview of each is included here.

When writing Web applications in Java, developers use libraries of code

which simplify the creation of pages and which simplify communication path

ways between Web pages, code which implements business logic and the code

which manages data storage. In its original form the A*.com product was

built on top of the Tapestry library which is developed by the Apache project.

Tapestry provides functionality which helps developers build pages and route

messages within their Web applications. Using it developers are able to easily

192

6.2 The company

create dynamic Web applications which respond to the actions of users and

the data which they submit from HTML forms.

The A*.com application held its data in an Oracle database which was ac

cessed using an object-relational mapping layer, ORM. Early versions of the

A*.com product suite used an obscure custom ORM layer called Stash, which

was developed by one person for use in his own projects and was supplied to

a few of his clients. A*.com was one these clients. They liked Stash because us

ing it was relatively easy but mainly, they said, because they had direct access

to the developer.

Having access to the developer of Stash meant that they were able to get

features added to it which met their specific requirements. Using third-party

code for a fundamental part of the infrastructure of a project can be danger

ous. Whilst the technology may work well it was unlikely to have been tested

as thoroughly as one might need meaning that it may contain hidden bugs or

inefficient code or that it may not scale to the required size of workload. De

velopment on a product such as Stash can end suddenly and support from the

developer or user community can disappear nearly as quickly because people

lose interest or move on to other things. If a library does become obsolete the

code which uses it will have to be rewritten using a different technology. This

is called "technical debt" by Fowler (2009) because it is a cost which will have

to borne at some future date.

Using off-the-shelf implementations makes a lot more sense. A company

such as A*.com makes money from providing services to its customers. Those

customers don't want to have to pay to build or maintain the infrastructure

which underpins the applications that they are using. Economically, there

193

6.2 The company

fore, it makes little sense to either build one's own fundamental infrastructure

or to use one from a niche provider unless that infrastructure has long-term

benefits.

ORM is no longer the niche requirement it once was. It is an established ar

chitectural technique used in many applications and solid, robust implemen

tations are available for many languages and platforms. These often provide

lots more functionality than is required for a particular project but they have

many advantages over custom code. The off-the-shelf product will be thor

oughly tested and debugging, there will be lots of support both commercially

and on Web sites and the product will often perform very well. It is also far

easier to recruit new developers who know the product and can work effi

ciently with it from day one.

At the time of this fieldwork A*.com were moving their infrastructure from

Stash and Tapestry to a framework called Spring which is produced by Spring-

Source. The SpringSource Website claims that "Spring is the most popular ap

plication development framework for enterprise Java. Millions of developers

use Spring to create high performing, easily testable, reusable code without

any lock-in". Spring gives A*.com similar functionality to that which is pro

vided by Stash and Tapestry alongside a plethora of other capabilities.

Spring is large and complex. Learning to use it effectively and efficiently

takes significant time and effort. A complex product such as A*, corn's cannot

be easily transferred to use a new framework. Significant portions of the code

have to be rewritten to use the new framework and, of course, tested once

they are rewritten. Whilst the application is being reworked to use the new

framework the older version is still in use. Existing customers need to be sup

194

6.3 Working practices

ported and potential customers have to be shown demonstrations of a working

system. This means that a small development team has to work on what are

effectively two separate products. At A*.com, Ed and Dan are working on the

transition to Spring whilst the rest of the team work on the existing code.

6.3 Working practices

A*.com appeared to be typical of a small, modern software house. It appears

superficially to be like the workplaces described in Sharp and Robinson (2003

2004), Rosenberg (2007). Their working practices would be familiar to

other developers. They used a range of software tools, both proprietary and

Free Software, to support their development. In conversation with them be

fore this stand-up they said that they try to be customer-focused, to follow

best-practices and try to use "the best" available technologies.

For developers the daily stand-up is the heart of Scrum. The stand-up pro

vides a locus for co-ordination within the team without exposing it to exter

nal managerial influence, it "is a time for a self-organizing Team to share with

each other what is going on, to help them coordinate", (Deemer et al.; 2010).

It is the point at which each team member's work of coding and designing

is exposed publicly before their peers. The stand-up is a potentially difficult

event for a developer because they and their work are placed firmly in the fore

ground. Many work situations require detailed management of face and rela

tionships but a stand-up exposes these in a way in which few other situations

do. When these meetings prove to be useful to the team it is not necessarily be

cause of their structure or of their role within the project. Knorr-Cetina (1995)

described how, in scientific laboratories, collaboration comes from "pervasive

195

6.3 Working practices

co-operation" rather than from structure.

6.3.1 Being agile

The development team at A*.com used Agile practices whenever possible.

Specifically, they structured their work as Scrums, using test-driven develop

ment and continuous integration through a Hudson server. Lead developer

Dan acted as Scrum Master whilst sales director Evan was the Product Owner.

Although each developer had a specific technical role, Gary said before

the fieldwork that they "take tasks that need to be done from Dan or Evan and

allocate the best person for the job". The division of work depended upon

the availability of what Gary called "resources" by which he meant people.

To allocate developers to tasks the team needed to know what each of them

was currently working on, what they were scheduled to do next and how long

those tasks would take. Tasks were listed in an application called Mantis Bug

Tracker. Any member could add a task to the list.

Tasks were assigned to team members in a number of ways. Each team

member had special areas of responsibility and would automatically take tasks

which fitted in that area, for example Gary took most of the client-side JavaScript

development. When there were no tasks from the area one of the developers

covered he would be expected to choose something which he could handle and

which either "looked interesting" or had a high priority. Finally, Dan would

assign tasks which need to be completed. These assignments left some tasks

which were medium- or low-priority and which didn't sit in anyone's partic

ular area of interest and which, consequently, tended to languish in the bug

tracker.

196

6.3 Working practices

When a developer was allocated a task they made an estimate of how long

they would take to complete it. Workload management through estimation is

a part of many modern agile methods. When developers accurately estimate

the time each task will take their work can be better organised and they can

give meaningful schedules to customers. Estimation takes a certain degree of

professionalism, needs regular feedback and is a learned skill. As developers

spend more time estimating they ought to get better at doing it. Both McBreen

(2001) and Sennett (2008) are clear that practising a craft and its allied skills in

a considered manner will lead to an improvement in those skills. Estimating

is no different to coding in this respect. The more that one does it, the better

one will become at it, provided that one reflects upon previous estimations.

At A*.com Dan worried that their estimates were "off". Using Scrum would,

he hoped, formalise the work cycle and, over time, help them become better

estimators.

Buglione and Abran (2007) write that estimation in Scrums is done through

"experience/analogy" whilst Benediktsson and Dalcher (2003) suggest that

setting parameters within which to estimate can improve accuracy. The struc

ture provided by Scrum, especially the stand-up meetings, begins to establish

parameters because work is so heavily time-boxed and is considered on a daily

basis. Estimates are always contingent and dynamic. Steindl and Krogdahl

(2005) write that "[p]lans are only as as good as the estimates, that the plans

are based on, and estimates always come second to actuals".

At A*.com the team didn't want accuracy but they did want better and more

usable estimates. One problem which the team said they had identified when

estimating through bug tracking software was a tendency toward the short

197

6.3 Working practices

term or quick-fix. Where the development of a solution to for a problem or the

completion of a task would take a long time, for example three weeks, tended

to be left for later. The same thing happened to those tasks which were as

signed a medium priority in Mantis.

The move to Spring from Stash was intended to provide a partial solu

tion. Industry-standard libraries such as Spring tend to be used in standard

patterns. Most experienced developers who have used Spring in a commer

cial project will be able to work on A*.com's new code whereas they would

struggle to find developers who could be productive with the Stash library in

a reasonably short time frame.

The A*.com team hoped that adopting an agile approach, structuring their

work in iterations, using the Scrum methodology and using standard tech

nologies and approaches would help them to address many of their problems.

6.3.2 Skype

This small, distributed team communicated with each other using frequent

Skype calls. Even before they became adherents of agile methods they were

in constant communication. Voice over IP tools such as Skype can radically

change working practices. These tools bring much of the functionality which

was envisaged by the CSCW community into any office. Palmer and Fields

(1994) listed a number of features and technologies which were required to re

alise workable CSCW systems including support for distributed synchronous

working, using modern applications distributed teams can both communicate

and work concurrently on shared desktops.

The A*.com team made extensive use of Skype's instant messenger func

198

6.4 The stand-up

tionality. They would setup new chats each day and use them throughout the

day to exchange fragments of code, documentation or thoughts about either

code or design. Before introducing Scrum they tended, Gary said, to have

one-to-one calls "no more than two or three times a day". Unless they had

issues to fix or adding new functionality the team didn't feel that they needed

to constantly talk to each other. This changed if they were writing code or tests

which impacted on "other people's stuff".

Skype screen sharing was rarely used because they would share informa

tion via IM and they used a common code-base in a shared repository using an

Apache Hudson server. However it proved useful when testing applications

or when demonstrating interface ideas to Evan.

6.4 The stand-up

The stand-up which is analysed here started at 9:15. This meeting took place

over Skype. The researcher sat in the A*.com office listening to the meeting

and taking notes. The Skype call was recorded for detailed analysis.

The call was initiated by Gary. It was slightly delayed because of a problem

dialling the researcher due to the use of different versions of the Skype client.

Once that hurdle was surmounted everything worked well.

Scrum Master Dan chaired the meetings remotely. Scrum's daily stand-

ups are managed through a set of informal rules which create a rigid struc

ture. Deemer et al. (2010) describe the inner workings of an idealised stand-up

meeting. The meeting lasts less than 15 minutes and is attended by the whole

team. Deemer et al. (2010) says the key feature of a daily stand-up is that "each

member of the Team reports three (and only three) things to the other mem-

199

6.4 The stand-up

bers of the Team: (1) What they were able to get done since the last meeting;

(2) what they are planning to finish by the next meeting; and (3) any blocks or

impediments that are in their way... There is no discussion during the Daily

Scrum, only reporting answers to the three questions".

The stand-up's structure simplifies the Scrum Master's job. In this case the

meeting was especially smooth - all of the participants are used to participat

ing in this type of meeting and are very experienced users of conference calls.

The meeting worked just like a face-to-face stand-up: each person had a few

minutes to talk about what they did yesterday, what they're working on today

and what impediments they faced. Dan broke the "rules" of a Scrum stand-up

by asking questions and, at times, giving advice.

The stand-up is partially a technical forum, partially an exercise in project

management and partially a daily ritual in which the developers bond as a

team. Rising and Janoff (2000) write that daily meetings "serve a team-building

purpose and bring in even remote contributors, making them feel a part of the

group and making their work visible to the rest of the team". The daily stand-

up is performing two tasks which go beyond normal project management. It

is, they claim, building a team and at the same time it is foregrounding the

work of individual team members for comment by line-management and col

leagues.

The focus of the following analysis is on the Daily Scrum as a forum for

the discussion of technical matters but inevitably the participants interleave

talk about both work and personal matters. Talk is rarely just task-focused, it

almost always involves the management of identity and of relationships along

side other work. The varied ways in which they manage their interpersonal

200

6.5 Managing the meeting

relationships at the same time that they have to manage task talk are analysed

here.

6.5 Managing the meeting

Daily meetings are one way through which a group of developers using Scrum

can become a community of practice. Through the meetings a development

team can create a common language to describe what they are doing, a com

mon approach to talking about their work and a united focus. These will

be created naturally as they engage in the meeting's main reporting and co

ordination actions.

The benefits which agile methods offer acquire a different meaning for

each team, in each office, on each project because it is what Berger and Luck-

mann (1966) call a "socially constructed reality". Each team, with its own

interpretation and construction of agility, becomes a unique, ever-changing

community of practice.

6.5.1 Taking turns

The Daily Scrum Meeting's structure is designed to facilitate rapid progress

through the meeting and to ensure that all members of the team get a chance

to talk. This is a more complicated task in a conference call than it is in a face-

to-face meeting. The Scrum Master must ensure that all of the participants

get to speak, that everyone gets to talk as much as they need to and that team

members don't get distracted when not speaking. This Section shows how

Dan managed this call.

201

6.5 Managing the meeting

This meeting began with some humorous banter during the set-up phase.

When everything was ready Dan brought the humour to an end and began

the formal meeting. Table 6.1 shows this happening.

8 Gary Id ea lly he doesn’t want us to be a l l p ro fessio n a l
pretend lik e we’re a r ea l company he want us to you
know laugh

9 All laughter
10 Gary C all each other cocks l ik e we u su a lly do
11 All laughter
12 Dan la la la ok then (0 .7) errm did Evan ever show up (.)
13 [no]
14 Ed [doe]sn’t look l ik e i t (.) no
15 Gary [no]
16 Dan good work Kippers
17 r ig h t then l e t ’s errm go round the ta b le (.) l e t ’s

s ta r t with Gazf

Table 6.1: Starting the first turn

At the start of this excerpt, in the pre-business phase of the call, everyone

was laughing - we'll shortly see why. Dan had to compose himself and get

everyone else's attention. He did this by singing a few tuneless "las". The

start of the Scrum was signalled when Dan said "OK then". Dan was using this

structuring move to simultaneously steer them to task talk whilst maintaining

a level of informality within the meeting.

Dan knew who was in the call because he could see the list of participants

in the Skype application but he checked with everyone that Evan was not

there. His approach was not to ask for more information on Evan's where

abouts. Enquiring further about Evan would have placed Dan into a formal

managerial position which might be seen as inappropriate in a stand-up in

which he was acting as the Scrum Master. Instead he said "errm did Evan

ever show up?". Evan, sales manager and Scrum Product Owner, had said he

202

6.5 Managing the meeting

might be present but hadn't made it to the call. He was not the only missing

person: Ben, one of the developers was also absent.

Dan briefly paused after his question before answering himself. Gary and

Ed both responded although in slightly different terms. Ed's response was

less forceful. He knew, of course, that Evan was absent, but his "doesn't look

like it" modified the weight of his "no" so that its impact was greatly reduced

whilst distancing himself from information about Evan's absence.

Holmes (1984) demonstrated that people use at least two different strate

gies to modify the impact of their statements. Boosters are used to increase the

force of a statement, downtoners are used to reduce a statement's impact. These

strategies are often implemented using paralinguistic devices - pauses, changes

of pitch and the use of vocalised "non-words". Ed was using just such a down-

toner. Holmes writes that "[t]o reduce the force of an 'unwelcome' speech act

is to express positive feeling towards the hearer". The unwelcome aspect of

this speech act was Evan's absence from the call. Dan was asking, perhaps

rhetorically, for confirmation, that confirmation was not really welcome. In

addition Dan could see from the list of participants in Skype that Evan was

absent, by asking the question he made clear to the other participants, and to

the researcher, that Evan's absence had been noted.

Dan's remarks and the replies by both Gary and Ed form a conventional ad

jacency pair. At this point the team are following a conversational turn-taking

structure. Later the team's talk will change to be a series of monologues in

which they each talk about their work. Before the stand-up formally began

they were talking socially. Dan's question about Evan was a turn which, being

the first part of the adjacency pair, required a response. The question could not

203

6.5 Managing the meeting

easily be left unanswered because to do so would be to leave it hanging over

the rest of the meeting as something which had to be addressed. In fact it got

three responses: Gary, Ed and Dan himself all answered. Dan was answering

himself whilst Ed and Gary responded because the question was asked by the

more senior member and because he was asking it in his role as Scrum Master

which gives it some importance in the day's business.

Dan's evaluative move "good work Kippers" reflected his position as an

authority figure to the rest of the group. However, the words with which he

made this move were very informal. The use of such an informal tone by

Dan was typical of this call and of other conversations at A*.com. Informal

language such as the use of nicknames was seen throughout the call, and in

most of the interactions between team members. The Daily Scrum Meeting

is a formal ceremony but this team oriented to this formality by maintaining

a conversational approach and tone. Fairclough (2001a) describes formality

as being generally "a contributory factor in keeping access restricted, for it

makes demands on participants above and beyond those of most discourse,

and the ability to meet those demands is itself unevenly distributed". If the

A*.com team oriented to the meeting as a formal event their discourse would

be less free-flowing. Fairclough writes that "discourse in a formal situation is

subject to exceptional constraints on topic, on relevance". The format of the

Daily Scrum already imposes a restriction on the scope of the team's talk, us

ing formal language would restrict their relationships. In a meeting such as

this there is, Fairclough goes on to write, "an exceptional orientation to and

marking of position, status, and 'face'; power and social distance are overt and

consequently there is a strong tendency towards politeness".

204

6.5 Managing the meeting

Dan selected Gary to take the first turn. His lead into this selection was,

once more, informal. "Let's errm go round the table", on line 40, is conven

tional and inclusive of his colleagues. Starting with "let's" shows that Dan is

asking them to join him rather than telling them to do so.

Moving between speakers

Table 6.2 shows how Dan structured the Scrum to switch the focus from one

developer to the next. It includes the end of each turn and the start of the

subsequent one.

Each transition is directive but in an informal manner. The etiquette of

this point in the Scrum is interesting. This team is quite experienced in using

Scrum - they had been following the approach for a year at this point and Ed

had worked in other shops which exclusively used Scrum.

When Dan moved the meeting from one member to another he usually

placed a clear boundary marker rather than making a more complete closing

move, (Coulthard; 1975). At the end of Gary's discussion Dan said "Okey

dokey", he finished his own segment with "errm so that's me", line 91, and

Will's segment ended with Dan saying "OK cool", line 115.

Ed's segment of the meeting has been a discussion between himself and

Dan. By the end of Ed's segment they had reached a common view and the

meeting moved on when Ed signalled his agreement with Dan by saying "yep

sure". As Table 6.3 shows the point of agreement is reinforced as Ed mirrors

Dan's "with Gaz yeah".

Each turn within the Daily Scrum Meeting is either something akin to a

monologue in which the developer talks largely without interruption or a di-

205

6.5 Managing the meeting

Handing from Gary to Ed
34 Dan We can JIT i t
35 Gary We can do something e ls e ju st too la te I mean ju s t in

time yeah
36 Dan Yeah [laughs]
37 Gary [laughs]
38 Dan Okey dokey Ed
39 Ed OK yeah I was f id d lin g around sp r in g if ic a t in g a l l the

insurance s tu f f
40 Errm (1 .8) so yeah spent a lo t of time annotating

c la sse s and turning that th ing in to a contribution
(.) the err prim itive mapping s tu ff

Handing from Dan to Will
91 (1 .3) Errm (2 .0) > so th a t ’s me (.) l e t ’s see what<

W ill did (1 .1)
92 Will So err y e s ’day I started of help ing Sam with h is

waters err (.) d idn’t r e a lly take very long doing
that ’cause h e’s g e tt in g (0 .5) f a ir ly confident at
doing them him self [now]

Handing from Will to Sam
114 Will [I ’l l ju st check] i t ’s s t i l l working now
115 Dan (1 .2) >0K coo l< (.) Sam
116 Sam (1 .1) Errm (0 .4) yeyesterday I was working on one

water t e s t p retty much a l l day which was the (.)
errm complete car insurance quote one (0 .2) which
i s (.) slow ly g e t t in ’ there (0 .5) errm (0 .8) had
to make lo t s t of in te r e st in g d e f in it io n s and th ings
(1 .0)

Table 6.2: Moving between turns

84 Ed 0k yep sure laughs
85 Dan (2 .0) And then you’re going on to (0 .2) s tu f f with

Gaz yeah
86 Ed With Gaz yeah yeah
87 Dan (1 .6) >F ine< (0 .4) <0k> I ’l l add what I was doing

as a developer

Table 6.3: Moving from Ed to Dan

206

6.5 Managing the meeting

alogue between the developer and the Scrum Master. In this meeting the for

mer structure was seen when Will reported and the latter when Ed reported,

these turns are analysed in more detail in later Sections. There is an expecta

tion that each member will deliver a coherent report, the Scrum Master may

interrupt if, for example, more detail is required, but there should not be much

discussion - that is reserved until after the meeting-up.

The Daily Scrum has a set of normative "rules" determining the structure

and scope of talk within it. These rules are derived both from the gener

ally accepted structure as defined in training materials and literature which

is aimed at professionals, and from the culture of an individual team. Stubbe

et al. (2003) describe these normative rules as providing "a reference point

for participants to treat actions as unremarkable or deviant; participants jus

tify actions as following shared rules or as accountably violating such rules,

complain about other's violations, apologize for their own violations, etc". By

learning and applying the team's rules, members are able to participate fully

in the meeting.

6.5.2 Ending the meeting

The end of the call shows a special version of turn-taking. Because Daily

Scrum Meetings don't have space for discussion the Scrum Master has to end

the meeting, let the developers return to work and ensure that discussions are

going to take place for any impediments which came up during the meeting.

Table 6.4 shows the end of this meeting.

In his role as Scrum Master, Dan asked if "[is] there anything else any

one wants to add?" At this point everyone has had the opportunity to say all

207

6.5 Managing the meeting

177 Dan (1 .4) Is there anything e ls e anyone wants to add
(0 .5) other than Ben at magic

178 Sam (0 .3) There probably was severa l th ings that I meant
to say and I ’ve forgotten (.) oh who wants tea and
who wants c o ffe e f

179 Gary (0 .3) We’l l sort that out a fte r
180 Dan ???? of a scrum c a l l
181 Gary Unless you want to go and g ive Dan h is tea laugh ter
182 Dan (2 .4) Thank you dear 0k
183 Gary Job done
184 Dan Job done go go code team

Table 6.4: Ending the call

that they need to and the meeting ended. Sam was self-effacing and took a so

cially subordinate role when he offered to make drinks. In asking this question

Sam demonstrated limited understanding whilst Gary's response highlighted

Sam's status within the team. As a new member of staff, Sam had yet to learn

the cultural rules at A*. Throughout the call he made a number of other inter

ventions which were inappropriate in this setting.

The explicit end of the call came from an agreement between Dan and Gary

that Gary initiated. On line 183 Gary's "job done" was a suggestion that they

had completed the business of the meeting. This suggestion was taken up by

Dan who used it as a prompt to bring the meeting to an end. Throughout

this meeting the atmosphere had been casual and its close was no exception.

Dan was willing to be prompted by Gary without needing to react to it as a

challenge to his authority.

6.5.3 Authority

The Scrum Master is present as a peer of the rest of the team not as a manager.

One of the reasons that the daily Scrum is possible is that it is not a forum for

208

6.5 Managing the meeting

reporting to management. Rising and Janoff (2000) writes that daily stand-up

"meetings address the observation made by Brooks: How does a project get to be

a year late? One day at a time. When the team comes together for a short, daily

meeting, any slip is immediately obvious to everyone. The meetings involve

all team members, including those who telecommute".

Dan had to walk a fine line across his three roles. He was a team member,

he acted as Scrum Master and, primarily, was in charge of software develop

ment. Although managers are meant to be passive observers if they attend

a Daily Scrum Meeting, Dan's diverse roles meant that he could not merely

observe. He had to be an active player in the Scrum. This tripartite role which

Dan had may explain why there is more discussion than reporting in this meet

ing. The discussions came naturally from talk between colleagues about their

work, adjourning all of them until after the call would be unnatural. In par

ticular, Dan and Ed were working on the same pieces of the program. When

Ed described the problem he was having, Dan responded in detail although it

was "wrong" to do so in a stand-up which follows Sutherland and Schwaber

(2007) rules.

Dan balanced his two management functions adeptly most of the time. As

Scrum Master he controlled the meeting so that each of the others had time to

report their work to the group and to identify any impediments they faced. As

senior developer Dan used the meeting to engage with some of the technical

problems his colleagues had without demonstrating overt control over their

work.

When Dan talked to Gary they interacted as peers. Dan accepted Gary's

explanations almost without comment. For example, Gary was experiencing

209

6.5 Managing the meeting

31 Gary I mentioned i t Evan and he sa id w ell
work in the short term [we’re not]

i f i t ’s gonna

32 Dan [yeah] there i s that I suppose
33 Gary we haven’t got m illio n s nowf he says ju st get i t done

now and then obviously la te r on when we do get loads
more (1 .0) users and f i l e s we can we can try i t

34 Dan We can JIT i t

Table 6.5: Delaying the search for performance

performance problems with his code. His response to these problems, given in

table 6.5 was to out them on one side to be dealt with later when they had more

data on the system. Dan not only agrees, he suggests jokingly that they "JIT it",

meaning that they solve the problem just-in-time or when they need to. In a

more managerial frame Dan might have wanted Gary to work on performance

sooner rather than later.

107 Dan [I] can t e l l you i f he has I don’t think he did (0 .5)
108 Will I got the impression he d idn’t but he thought maybe

(.)
109 Dan Err pages (0 .2) sign up (0 .2) r e se t (0 .2) th e r e ’s no

a c tiv a tio n page in there
110 Will OK so I won’ I won’t even bover looking the

a c tiv a tio n page then
111 Dan (1 .0) No I th in k f ju st check that i t s t i l l works

because err (0 .2) th a t ’s the only page l e f t on public
th a t ’s tap estry driven (0 .4)

Table 6.6: Dan searches for a file

When it came to Ed, Dan was much more engaged with the discussion.

The talk shown in Table 6.8 showed Dan and Ed talking about the detail of

a problem they had each independently discovered. In talking to Ed, Dan

was able to make helpful suggestions because he had been working on the

same pieces of code himself. During Will's turn, shown in Table 6.6, Dan was

helpful, looking for a file on a server for him before advising him about how

210

6.5 Managing the meeting

to proceed.

146 Sam (0 .2) Blows out th ey ’re broken
147 Dan (1 .1) They’re brokenf
148 Sam <Yep> (1 .4) err u t i l i t i e s i s broken on l iv e at the

moment or was (0 .8) two days agof la s t time I looked
at i t

149 Dan Well i t ’s not going to f ix i t s e l f (0 .5) err are
mobile phones in or

150 Sam Oh I do need to yeah have a look for s tu f f l ik e that
but I need to do (0 .4) errm some autocom pl>ete<
s tu f f (1 .0) for the autocomplete f ie ld s (.) so that
i t can get the value out of i t (2 .0) which i s going
to be fun (.) because they don’t have a UID

151 Dan (3 .0) Fair enough I ’m suref you can work i t out (1 .4)
err

152 Sam I ’l l get W ill to help me work i t out

Table 6.7: Dan encouraging Sam

Table 6.7 contains the end of Sam's turn. On line 149 Dan passed quickly

over the broken "utilities", without asking why it was broken or how the prob

lem manifested itself. This contrasts with the earlier detailed discussion he

had with Ed but in that case Dan had worked on the same problem. Here he

is using a conventional stand-up pattern in which Sam gives an account of his

impediments and neither help nor advice is given at the time - doing so is left

for separate discussions after the meeting. Talking about impediments as Sam

is doing is integral to the success of Daily Scrum Meetings. If only successes

and working code are discussed then the meeting is left with just a reporting

function. By providing a space in which problems can safely be brought to the

fore, the meeting lets developers raise issues which can be discussed in detail

after the meeting. Here, if one of Sam's colleagues knew why "utilities" was

broken they could have talked about it once the Daily Scrum ended.

On line 150 Sam described more of his impediments. Here Dan demon

211

6.6 Accounting

strated that he had confidence in Sam, that he could "work it out". This phrase

is similar in tenor to his earlier response to Ed when he said "maybe have a

look at that". In both cases Dan was showing trust and confidence in the abil

ity of the team members to solve these problems.

6.6 Accounting

The Daily Scrum Meeting provides a very public forum for accounting: each

team member must report on their work, and implicitly be seen to be ac

countable for their progress. The stand-up has a non-evaluative ethos: no-

one should receive public criticism or praise although the Scrum Master may

praise or criticise privately after the meeting.

The process of accounting for one's work creates a significant threat to

one's professional face. The developers' standing and status within the team

comes in part from the ability which they are able to demonstrate. Usually

conversations are acts of cooperation in which participants work to preserve

each others' sense of face, (Goffman; 1959). Admitting to failings, for exam

ple a lack of skills or knowledge, in front of peers in the stand-up could be

embarrassing, (Goffman; 1956). The members in the meeting need to work

together to minimise that embarrassment whilst revealing difficulties which

may impact on the project. Scrum doesn't have a formal definition of impedi

ments which means the word can be used to cover anything each team member

wants it to. Some people will raise their personal limitations but most will talk

about technical problems or difficulties with the customer rather than using

this space to reveal their personal limitations to their colleagues.

Accounting for one's actions in front of peers is hard enough but doing so

212

6.6 Accounting

in front of one's managers would, for many people, be very difficult. One use

ful rule of Scrum is that the daily Scrum is not attended by management: it is

an event held by the development team for the development team. The hope

is that the team members will not feel that they are being monitored and that

these meetings will not fold into staff reviews, appraisals etc. If the meeting

is held purely between peers then, the naive assumption is, everyone should

be more open and forthcoming. At the start of the meeting there is a collec

tive intentionality, (Searle; 1990), oriented towards the meeting's business. As

each team member speaks they have individual intentions which may conflict

with the wider goals, for example not wishing to discuss a particular problem

they are having. The conversation between Scrum Master and team member

is initially a negotiation through which they can create a shared intentionality

which bounds the conversation. The account which a developer provides is

necessarily neither neutral nor complete but it will be accepted if the a priori

negotiated intention was accepted.

The most detailed technical talk in this call was a discussion between Ed

and Dan about a problem which they had each independently discovered. The

conversation is shown in table 6.8.

Ed introduces the problem on line 49 using terms which distance the prob

lem from him: "when you attempt to go into the service", "doesn't actually

exception", "hangs indefinitely". The choice of "you" rather than "I" in estab

lishing the problem creates the maximum distance between Ed and the phe

nomenon on which he is reporting. But Ed is following the Craftsmanship

pattern Expose your ignorance which is discussed in Section 3.7.3. The prob

lem must be revealed so that it can be solved and, through the medium of an

213

6.6 Accounting

49 Ed Errm so at the moment errm (1 .5) b it of a weird
one when you attempt to go in to the serv ices i t
doesn’t a c tu a lly ex exception (0 .9) but i t hangs
in d e f in ite ly t errm so I ’m try in g to figu re out
[what’s going on]

50 Dan [I was I] was g e ttin g th a t (0 .5)
51 Ed Right
52 Dan With some of the s tu f f I ’ve done errm (0 .4) when I

was try in g to reference a spring bean from tapestry]*
53 Ed Right
54 Dan But I hadn’t given the spring bean e x p l ic i t ly a namef
55 Ed Right (.) ok
56 Dan And i t was ju st hanging]*
57 Ed Right ok
58 Dan and I couldn’t work out why u n t il I gave i t a name

and i t worked
59 Ed OK
60 Dan So maybe have a look at that]*
61 Ed Right yeah I ’ l l g ive th a t a shot then Err I was

th inking i t was something to do with Hibern]*ate to
be honest ’cause th a t ’s the la s t th ing you see

62 Dan Yeah i t ’s opening a hibernate se ss io n m[ine wa]s
63 Ed [yeah]
64 Dan And then i t ju s t i t was obviously somewhere try in g to

get to a (0 .8) bean and f a i l in g but I don’t know why
i t hangs i t ’s a b it random]*

65 Ed OK so yeah figu rin g that one out r e a l ly errm
66 Dan I t ’l l be th a ’ i t ’l l be f ix ed in no time
67 Ed Laughs

Table 6.8: A problem shared

impediment Ed is able to do so.

In introducing the problem, Ed provided little information that only peo

ple intimately familiar with this piece of code could possibly understand what

he was talking about since little context or background are given. Dan was the

only other member of the team to have worked on this code and Ed's descrip

tion was sufficiently indexical that Dan understood both problem and context.

Throughout the talk shown in Table 6.8, they talked about Tapestry, Hiber

214

6.6 Accounting

nate and spring beans. These are specialised technologies which the rest of

the team didn't use and, hence, their colleagues were excluded from the dis

cussion.

Ed's approach to the problem was to minimise his description of its com

plexity and importance by saying that it was a "bit of a weird one". He made

clear that he had the skills to solve this problem: "so I'm trying to figure out

what's going on". Dan's intervention was supportive, when he said "I was get

ting that" he was calling on common experience of the problem and demon

strating that he might know how to fix it. The latter point was manifest in

Dan's "maybe have a look at that" on line 60. Here Dan, in his role as the se

nior developer, was giving a command to Ed but is mitigating it with "maybe".

One of the great benefits of a Daily Scrum is that it acts as a co-ordination

point. Here Ed and Dan saw the same phenomenon but had not discussed it

until this moment. Without the Daily Scrum they might not have discussed

the problem and Ed would have had to spend time working through to find

his own solution.

Dan claimed to have made more progress than Ed in solving the problem,

discovering that the spring bean has to be given a name. Dan appeared to have

found this almost by accident. He said that he "couldn't work out why until I

gave it a name and it worked" implying that whilst he hadn't actually found

the cause of the problem, he had found that naming the bean removes the

error. Both men were happy to have a working solution in this case. Because

Dan didn't interrogate his own solution during the meeting he also avoided

interrogating why Ed hadn't found a solution of his own. He down-played

his own experience and oriented to Ed's professional face needs. On line 66,

215

6.7 Humour

Dan moves to reassure Ed about the work. By saying "it'll be fixed in no time"

he was expressing confidence that the problem can be solved and, because Ed

was going to do the work, confidence in Ed's ability to complete the fix.

The reassurance was important because in their discussion Ed had been

reticent to engage with Dan's information. As Dan talked, Ed had given a

series of short responses: right, right, Oh OK, right OK, OK, right yeah, which

encouraged further explanation. Dan introduced the need to name the bean.

Ed's "Oh OK" showed that this was new information for him which bettered

his own suggestion that Hibernate as the possible cause of the problem. Dan's

clarification that "it was obviously somewhere trying to get a bean" suggests

that Ed was looking in the wrong place and ought to have known not to do so.

Throughout this exchange the two men were engaged in discussion which

placed them both in potentially face-threatening positions. Ed could not lose

face by admitting that he was unable to solve the "obvious" problem, Dan

could not lose it by admitting to a solution which he might not fully under

stand. Dan played down his own status by saying "but I don't know why it

hangs it's a bit random" and in so doing he saved Ed's positive face. Ed ac

cepted this, "OK so yeah", and moved the talk back to the usual reporting

activities of the Scrum when he said he would be "figuring that one out". Dan

was supportive of Ed at the end of this segment in a move which closes the

topic.

6.7 Humour

The use of humour is one important factor in the development of a workplace

culture and of bonding teams together. Holmes and Marra (2002) write that

216

6.7 Humour

humour can make a positive contribution within the workplace by:

• relieving tension,

• counteracting boredom and fatigue,

• energising a discussion,

• and provoking creative solutions and lateral thinking.

The Scrum at A*.com had a number of humorous interludes, often involv

ing either teasing or banter. Usually the response to humour was positive

but we present an example in which the humour was rejected by the group.

Generally in this group humour fostered a closeness which reinforced their

personal and professional bonds.

Holmes and Marra (2002) found similarly well-integrated teams in their

study of production-line workers: "[tjhis positive picture of a highly inte

grated and effective team is well supported by the analysis of different aspects

of humour in the team's meetings, which suggest that the factory is a lively

and verbally engaging place to work, and that a high premium is placed on

solidarity and the internal cohesion of the team is reflected both in the amount

of humour and the kind of humour evident in team meetings".

6.7.1 Successful humour

Before the meeting began all of the participants had to join the Skype call.

Whilst waiting for the final participant (the researcher) Dan and Gary were

amusing themselves. They moved their attention to the researcher as shown

in Table 6.9.

217

6.7 Humour

1 Dan . . .because you’re rubbish Gary
2 Gary oh h e ’s in h e ’s in
3 Dan hooray
4 Gary yay
5 Dan i s he a s i le n t partner
6 Gary he i s he i s h e ’s nothing laughs
7 Dan so we can say whatever we l ik e about Chris
8 Gary Id ea lly he doesn’t want us to be a l l p ro fess io n a l

pretend l ik e we’re a rea l company he want us to you
know laugh

9 All laughter
10 Gary C all each other cocks l ik e we u su a lly do
11 All laughter

Table 6.9: Before the meeting

This excerpt shows how light-hearted the team could be in the moments

before the meeting. At the start of the recording Dan told Gary that he was

"rubbish". This would usually require a response of some sort to preserve

Gary's face or to acknowledge that he accepts the intended humour. It didn't

get a response here, instead Gary was distracted as the researcher joined the

call. Gary and Dan mocked the status of the researcher within the call as a

"silent partner" and as "nothing" to general laughter. This levelling was part

of their team culture. By applying it to an outsider they showed acceptance of

that person within the group at this time.

The meeting began in a play frame, (Coates; 2007), as they transitioned into

the core business the play frame was not maintained although there was hu

mour throughout. The stand-up contained one exchange in which a joke was

made, shown in Table 6.10. Gary was explaining that he hadn't yet tested

the scaling of part of the system but that this would be done when necessary.

(Sugimori et al.; 1977) described the manufacturing process at Toyota in which

components arrived at the production line as they were needed thus negating

218

6.7 Humour

the need for a large on-site inventory. This process became known as "just-in-

time" manufacturing. Dan suggested to Gary that they "JIT" the scalability

tests, meaning that they do them only when needed or "just-in-time". The

just-in-time approach has become so common across so many industries, in

cluding software development, that the acronym JIT is often used in place of

the full name of the process.

Gary picked up on the idea of JIT and used it to make a joke about the way

in which they work when suggested that they do the tests "just too late". So

many software projects are delivered late or over budget that programmers

joke about doing things either at the last minute or after they were required

to. Authors such as Yourdon (2003) and Brooks (1995) have written extensively

about the difficulties of delivering software on time. However, Gary was doing

something else here, not only joking about software projects which overrun

but referring to earlier incidents at A*.com. His use of "else" made telling

reference to a history of late delivery which was one of the drivers behind the

team's switch to an agile approach.

31 Gary I mentioned i t Evan and he sa id w ell i f i t ’s gonna
work in the short term [we’re not]

32 Dan [yeah] there i s that I suppose
33 Gary we haven’t got m illio n s nowf he says ju s t get i t done

now and then obviously la te r on when we do get loads
more (1 .0) users and f i l e s we can we can try i t

34 Dan We can JIT i t
35 Gary We can do something e ls e ju st too la te I mean ju s t in

time yeah
36 Dan Yeah [laughs']
37 Gary [laughs]

Table 6.10: Just in time

Dan and Gary were using humour here to subvert the idea of the company

219

6.7 Humour

as efficient, effective and business-like. The fact that A*.com did not always

deliver on time was not presented here as "a bad thing" since by introducing

Scrum the team had done something positive to improve its processes.

Saying outright that the company has, or has had, a problem delivering on

time would usually be inappropriate. It is something which could be said at

a retrospective or at a planning meeting as part of the discussion about work

loads, allocations or product delivery which happen in those settings. Saying

it as part of the normal day to day conversation at work could be considered

impolite as it would reflect badly upon one's colleagues. Holmes (2007) writes

that humour can "provide a licence for saying things which would be unac

ceptable in a serious key". By couching the fact of late delivery in humorous

terms Gary was able to make a serious point to his colleagues whilst fostering

solidarity between them.

6.7.2 Unsuccessful humour

Humour is not always a successful conversational strategy. Here we look at

an attempt at humour which fails.

Sam was the youngest and newest member of the team. At the time this

fieldwork was undertaken he had been with the company for a few weeks and

may have still been finding his feet both technically and socially and has not

yet fully joined the community.

Figure 6.11 shows how Sam introduced his birthday celebration during

his Scrum turn. This was an inappropriate thing to say at this time. The con

vention within a Daily Scrum Meeting is that discussion is to be avoided and

the focus of the meeting is on current work. The A*.com Scrum actually con-

220

6.7 Humour

119 (0 .4) Errm (0 .3) I probably should mention now errm
I ’m not gonna be here on Monday (1 .8) ’cause I [boo I
t]h in k I booked

120 Dan [hoorah]
121 Ssm Yeah I booked i t o f f ages ago but then Ben d idn’t

make a note of i t
122 ?? Oh Ben
123 Ssm But he says i t ’ s f in e t
124 Dan (1 .7) 0k yeah th a t ’ s u se fu l to know
125 Sam Yeah ’cause I ’m gonna be hung over (0 .7) ’cause i t ’s

my birthday
126 Dan [0h | > e x c it in g <]
127 Sam [on Sunday] and you’re a l l coming
128 Gary No we’re not (.) honestly
129 General laughter
130 Sam Why i s the fu e l b i l l fu e l b i l l gonna be too high in

your car Gary
131 (2 .2)
132 Gary Whatf
133 Sam Eighty to the ga llon i t ’ l l do (1 .6)
134 Dan He only l iv e s down the road from you
135 Gary Yeah why would I drive
136 Dan Just r o l l
137 Sam I t ’s in Derbyshire i t ’s back home [in the

motherlands]
138 Dan [You’re g iv in g everyone] an awesome excuse not to go

i f i t ’s in Derbyshire
139 laughter
140 Will? (2 .3) Stay away
141 Dan Right what you doin ’ today (0 .2) before you err (0 .2)

jib b er jabbered about your birfday
142 Sam Err I ’m f in is h in ’ o ff th is (0 .4) t e s t

Table 6.11: Going to Derbyshire

221

6.7 Humour

tained discussion as well as reporting but these were centred around work,

Sam was introducing a personal topic into a work situation. Dan's "Oh excit

ing" response was a neutral way of moving the discussion away from Sam's

birthday.

Gary reply on line 128 was teasing: his "honestly" softened the comment

and converted it into a humorous aside. Sam came back with a rather sarcastic

comment of his own on line 130 in which he remarks about the quality of

Gary's car. In talking about Gary's car, Sam had either missed the humour

Gary was essaying or was refusing to play along.Sam was trying to extend this

play frame but his attempt was not taken up by the others who instead paused,

line 131, before Gary asked Sam to explain what he mean, line 132. Once Sam

explained himself, Dan was able to rescue him with a more conventionally

amusing comment by suggesting that Gary could "just roll" to Sam's house.

This brief moment shows us a number of things about the team. The ob

vious point is that Sam did not appear to be integrated into the the team. He

tried to make a joke which fell flat with the others who initially made no at

tempt to come to his aid. Sam was in danger of losing face here. He had made

a friendly approach by inviting everyone to celebrate his birthday with him.

Sam's response to Gary was pitched badly given that he was the new guy

whereas Gary was both popular and a senior member of the development

team. Fortunately for Sam, the structure of the stand-up meant that Dan was

able to return the conversation to Sam's work when he said "Right what you

do in' today before you jibber jabbered about your birfday". This move is both

managerial, asking about work, and couched in playful terms. Dan's choice

of words, "jibber jabbered" instead of a more formal phrase, reduced tension

222

6.7 Humour

and moved the meeting on without a formal assertion of authority (Duncan

and Feisal; 1989).

6.7.3 Banter

The use of humour within the team is examined in Section 6.7. Here we con

sider how the team managed transitions between talk which is not about the

task and talk which is oriented directly to the task-at-hand.

Some work situations may have little or no banter with a strong focus on

task-oriented talk. The stand-up meeting we are examining here has a lot of

informal interactions which need to be managed carefully by the whole group.

It is important that the meeting retains its focus because it is intended as a brief

co-ordination point during the working day and because they are unlikely to

want to have these meetings become too relaxed. On the other hand, stand-ups

have an important bonding function within the group and the team's humour

serves to strengthen bonds between members.

Plester and Sayers (2007) examined the ways in which IT workers at three

companies in New Zealand used humour. Most of the humour which they

encountered was described by the authors as "banter", and in the workers

terminology as "taking the piss". Banter requires some give-and-take from

those involved in it. There have to be two sides to the exchange with each

party both giving and receiving some of the humour.

Banter is part of the team's method of relationship management both in

this meeting and in their wider approach to their work. Their collective hu

mour bonds them as a team. (Duncan and Feisal; 1989).

When Ed began to discuss his work he used the word "interludes" which

223

6.7 Humour

was noticed by Dan and which led to some light-hearted teasing of Ed by the

others. Table 6.12 shows this moment.

41 Errm (2 .1) in the in ter lu d es I started to th ink about
th is serv ice for kind of err cloning the database
errm (1 .6) so w riting some notes and started a b it on
that

42 Dan Interludes
43 Ed Well [lik e]
44 Dan [you b]een watching a show or something
45 General laughter
46 Ed No no no the b it s where I gave i t back to you and you

were fa f f in g around with [i t]
47 Dan [laughs]
48 Gary Is that our word of the dayt
49 Ed Errm so at the moment errm (1 .5) b it of a weird

one when you attempt to go in to the serv ices i t
doesn’t a c tu a lly ex exception (0 .9) but i t hangs
in d e f in ite ly t errm so I ’m try in g to figu re out
[what’s going on]

50 Dan [I was I] was g e tt in g th a t (0 .5)
51 Ed Right

Table 6.12: A status challenge

When Dan pulled Ed up for "interludes", line 42, he began teasing him.

Gary aligned himself with Dan, line 48, by joining in the teasing. Ed does not

taken up the humour: at lines 43, 46 and 49 he tries to move them back to

task-oriented talk. Dan reverts to task talk on line 50 and the meeting resumes

its work focus.

Throughout this Dan was able to maintain his authority as Scrum Mas

ter whilst joking with the others. Dan's humour and the subsequent banter

within the group act to flatten the organisational hierarchy. Using hum our in

this way meant that Dan was able to both control the meeting and interact hu

morously with the rest of the team. This was a powerful move on Dan's part.

224

6.7 Humour

To successfully make the move Dan had to be confident of both his place in

the hierarchy and of the ways in which the others both responded to him and

understand his position.

Duncan and Feisal (1989) give four classes of employee who are "over

chosen" or "over-rejected" during humorous interludes at work: arrogant man

agers, benign bureaucrats, solid citizens and novices. Each of these classes is

specially placed when humour is used at work. Arrogant managers tend to sit

outside the humorous interactions; novices are the audience for jokes but due

to their lower status rarely the butt of those jokes; benign bureaucrats are able

to join in with joking but not to make jokes about those who are lower down

the organisational hierarchy; and solid citizens are given license to freely joke.

Dan was a solid citizen. He was able to initiate the humour and, in so doing,

to reinforce his position as a friendly manager. Duncan and Feisal (1989) con

clude that " when employees are targeted as butts by managers whom they

neither like (the arrogant executive) nor respect (the benign bureaucrat), they

take offense. But when a friend and respected peer jokes about them (the solid

citizen), the joke is considered to be a compliment". Dan was able to joke with,

and about, the rest of the team because he constructs himself as a friendly man

ager: "[tjrust, respect, and friendship determine a group member's position

in the pattern of joking behavior far more than official status does".

The way in which Dan teased Ed is interesting. Asking "you been watch

ing a show or something?" suggests that Ed would not normally use a word

such as "interludes". Dan's remarks are a gentle attack on Ed's knowledge.

Programmers are engaged in knowledge work: their status comes through

their intellectual abilities. Dan was attacking Ed in a vulnerable place by chal-

225

6.8 Discussion

lenging his intellect.

Ed response includes the mildly derogatory "faffing" which suggests that

Ed would have made more progress if it hadn't been for Dan and that he has to

challenge Dan's abilities as a programmer. Ed's use of the somewhat deroga

tory "faffing" showed that he was addressing Dan as his equal. Dan laughed

which serves to acknowledge and highlight the humour whilst side-stepping

the implicit challenge.

Ed had saved face through his response to Dan's face threat. Dan had been

able to maintain his authority. The team showed solidarity by joining in the

joking.

6.8 Discussion

The Daily Scrum Meeting meeting provides a structured forum within which

members can share information about their work. The meeting's simple struc

ture, the three points which each member has to address, and time-boxed

frame mean that discussion is limited. Information can be shared but where

there are real problems, for example impediments, detailed discussion has to

happen later. However adhering to this structure and to these constraints can

be difficult.

The Scrum Master is essential to the success of this event. The meeting

which was analysed in this Chapter is constantly in danger of heading off

towards one non-work topic or another. That isn't because the team are ill-

disciplined or inexperienced, it happens because the meeting has a conversa

tional tone and these topics arrive naturally out of the chatter and banter. Dan

uses a lot of skill to keep the other members moving forward. He almost never

226

6.8 Discussion

asserts his authority explicitly, instead a range of conversational gambits are

used to manage the Daily Scrum and his relationships with his colleagues.

This meeting isn't just a place in which information can be exchanged. That

can be done using email or IM. The Daily Scrum Meeting which is analysed

here shows why this is such an important and effective ceremony for Scrum

teams. Within the Daily Scrum, members are able to account for their work,

understand the work which their colleagues are doing, find points of common

interest, coordinate their work and bond as a team. Each of these helps them to

become a community of practice in which shared knowledge, experience and

a common approach to their task are embedded and important components of

their workplace culture. Through the Daily Scrum, team members develop a

shared understanding of what it means to work on this project at A*.com with

a set of practices, technologies and approaches which are familiar but which

combine into something unique to this workplace at this time.

Work often places people in situations in which they receive unsolicited

advice, advice which is face-threatening. Ting-Toomey (1994) shows that threats

to face are a normal part of social interactions, but the Daily Scrum Meeting

is unusual because it creates a formal space within which they happen. The

participants have to preserve their own and each others' status yet the techni

cal content of the discussion may require challenges, both direct and indirect,

to other members' status, knowledge or ability. Professionals such as software

programmers gain some of their sense of self, some of their self-worth from

the arcane and complex jobs which they perform. Any challenge to their com

petence is potentially a challenge to their sense of self. Even in a close-knit

team such as the one at A*.com members have to work hard to ensure that

227

6.8 Discussion

they work in a cooperative way.

The Scrum Master was accessing the call via Skype. this was not a problem

for him or for the rest of the team. He works from home over 150 miles from

the A*.com office. The team talk constantly on Skype or on an instant message

system. They are experienced with the distancing effect of these technologies

and clearly do not worry about them. Once the call had been established ev

eryone talked as if they were in the same room. Again, the structure of the

stand-up helps. Unlike normal conversation there are fewer opportunities to

talk over other people or to join in conversations. Stand-ups are really dia

logues between the Scrum Master and each member in turn. The other mem

bers simply listen when it is not their turn. In this call that structure only

breaks for moments of banter.

Dan, despite his seniority, was spoken to in much the same way as any

other team member, although Section 3.7.3 shows that he was sometimes de

ferred to for his technical knowledge. Dan demonstrated his skill during this

call in handling his roles as programmer, lead developer (and manager) and

Scrum Master. At different times he moved between each of these roles, occa

sionally even performing them at the same time. The others oriented appro

priately towards Dan as he changes role throughout the meeting.

One of the notable features of the Daily Scrum Meeting at A* was the vol

ume of humour throughout the meeting. Because this meeting is friendly and

conversational, humour is accepted throughout. This demonstrates an im

plicit aspect of this event: team bonding. The members' use of humour bonds

them together as friends. Although the work is taken seriously, as shown by

the detailed technical talk found throughout the transcripts, they do not take

228

6.8 Discussion

themselves too seriously. It may be that, for this team, their humour leavens

the face threats which arise in public accounting for their work. Thus, when

Sam makes humorous remarks, even though they fall flat, he is both moder

ating the social pressure on him as he gives his account and trying to orient

to community norms and become part of that community. As someone trying

to join the community he must serve an apprenticeship in which he learns its

norms and finds its boundaries.

Much of the learning of software engineers is not about workplace culture

but is about the meaning of the code with which they are working. Chapter 7

follows an experienced developer and a junior colleague as they pair program

over a number of days working to understand and re-use some legacy code.

229

E*: sense-making /

7.1 Introduction

This Chapter is an examination of the way in which two developers at a small

software house work together using the technique of pair programming.

Pair programming is one of the most visible of the many agile practices

and methods. The point of pairing is to improve understanding and, hence,

to increase the quality of code which is produced. A pair should be better able

to understand design documents, existing code and the code which they write

because all of those things become part of an on-going discussion. Beck (2000)

writes that "if people program solo they are more likely to make mistakes,

more likely to overdesign". In a pair this is less likely to happen because, Beck

argues, pairing is "a dialog(sic) between two people trying to simultaneously

program... and understand together how to program better".

Many researchers have studied both what happens when developers pair

and how effectively pairs work. The somewhat nebulous concept of effective

ness is typically operationalised in such studies through the measurement of

code quality, delivery time or the effort required, (Dybd et al.; 2007).

Results of these studies tend to be mixed, neither conforming nor reject

7.1 Introduction

ing the hypothesis that pairing makes teams more effective. Madeyski (2007)

found that when testing code, pairs were not significantly more effective at

fault-finding than were solo developers. In a meta-analysis of those studies

which compared pairs and solo programmers, Hannay et al. (2009) found pair

ing "is faster than solo programming when programming task complexity is

low and yields code solutions of higher quality when task complexity is high".

Studies do confirm that pairing benefits developers in their understand

ing of the task-at-hand. Pairing appears to work because at its core "it is com

munication, where understanding is developed, agreed and shared", (Sharp

and Robinson; 2004). Hannay et al. (2009) conclude that "apparent successes

of pair programming are not due to the particularities of pair programming

(such as the specific roles of driver and navigator), but rather to the shear

amount of verbalization that the pair programming situation necessitates".

Sharp and Robinson's idea that understanding is developed makes the process

appear somehow more structured or controlled than it really is. In fact the

pair construct their shared understanding by talking through both the prob

lem and a range of possible solutions. Hannay et al. identifies talk as being

the real driver behind any effectiveness benefits which pairing brings but does

not analyse the talk to uncover how it drives those benefits.

In these and other studies, collaboration is presented as foremost benefit

of pairing and that collaboration arises from communication within the pair.

Collaboration is not the same as managing, coaching or tutoring. In a collab

oration the two developers are working together, more-or-less as equals, to

achieve a single result. Working so closely together a pair of developers will,

ideally, share "a substantial amount of visual and mental context", Chong and

231

7.1 Introduction

Hurlbutt (2007). They look at the same source, develop the same tests, meth

ods etc. throughout the day and, naturally, come to a shared understanding

of their work.

Pair programming has interesting dynamics of authority, of sharing and

of desire. The metaphor which is often applied to a pair in the agile literature

is that of a driver and navigator, (Chong and Hurlbutt; 2007). The division

between driving and navigating implies that one of the pair is somehow di

recting the work of the other. Whilst the roles might be switched throughout

the day, the literature does not demonstrate clearly if, or how, the selection of

roles by individuals affects code quality or productivity. It is entirely possible

that any given pair is more productive when one or the other navigates, for

example. One study showed that the dynamic within a pair is far more fluid

than might be imagined, and that the dynamic of the pair "differed greatly

from the driver and navigator roles described in the academic and practitioner

literature", (Chong and Hurlbutt; 2007).

If pair programming is effective because it codifies "communication" as

a core practice then studying the communication practices of paired devel

opers ought to reveal how that happens. In many of the existing studies the

idea of communication is not interrogated, if the term is discussed rather than

simply used then a common-sense meaning is applied. What is interesting in

this Chapter is not merely that developers working together talk about their

work, and that this talk helps them complete their tasks. The real interest is

in how they formulate and structure talk so as to share their understanding.

The ethnomethods through which the developers are able to come to shared un

derstandings are the important matter at hand in uncovering how they work,

232

7.2 The company

(Heritage; 2001, Suchman et al.; 2002).

This Chapter examines what really happens when developers pair, looking

at how they communicate about design and about code. This Chapter exam

ines the interactions between two developers who often pair - they "know"

how to make pairing work. Their knowledge about the minute-by-minute op

eration of pairing within their own work is likely to be both tacit and contin

gent but it will be revealed through analysis of their ethnomethods. The two

programmers will be followed as they study the architecture of part of a large

system, develop new code and tests for both existing and new code.

Data for this Chapter were gathered over a number of days across two

weeks. The specific interactions which are transcribed and analysed here took

place over three days: consecutive days in one week and one day in the fol

lowing week.

7.2 The company

E* is a small company which develops mobile telephony applications. Their

software is used by businesses such as taxi firms or media companies to send

bulk SMS messages to their customers. The applications run on the phone

network and on the telecoms company's servers rather than on handsets. E*

make a suite of software applications to manage all stages of the messaging

process from authoring through the selection of recipients to billing, including

comprehensive auditing facilities. It is a matter of pride at E* that, in Managing

Director Adam's words "everything should work alongside everything else".

At the time this fieldwork was undertaken E* employed fewer than ten de

velopers with similar numbers of staff in operations and around a dozen in

233

7.2 The company

marketing and sales. The company had customers around the world which

meant that they had to make the process of deploying or upgrading software

as straightforward as possible both for themselves and for their customers.

They didn't have the capacity to spend hours supporting each customer when

an upgrade or new version went live. The response to this was to automate

processes where possible and to provide good tool support elsewhere. Addi

tionally a number of developments in the operationalisation of software such

as test-driven development, continual integration and build and automated

deployment are at the core of their processes.

Management and developers at E* described their software development

approach as "agile". Rather than defining and restricting their approach to

Scrum, XP or DSDM as some agile shops do, E* used a pick-and-mix approach

to tools and techniques, selecting those which fitted best with their working

practices and ethos. The practices they mainly used were story cards, esti

mation, pair programming, test-driven development and continual builds. At

the time of our visits they were experimenting with Behaviour-Driven Devel

opment (BDD), (Chelimsky and Astels; 2010), as a way of integrating aspects

of specification and unit testing1. The Managing Director, Adam, said that,

at times, the company struggled to recruit developers who were happy with

its working practices, developers who can pair do so whilst those who cannot

work in this way leave. Darren, one of the senior developers said a similar

thing: a number of people came and went because they couldn't cope with

the working practices.

Neither the senior staff, Alex and Darren, nor the other developers found

JBDD is an extension of unit-testing in which software is specified through the behaviour
it should exhibit.

234

7.2 The company

problems with the automation. Individual developers were keen to talk about

the tools and show how they helped simplify build and deployment and, in

particular, unit testing. One possible side-effect of the combination of BDD,

automation and tool support could have been that fewer staff were needed to

achieve the required levels of productivity but this was never mentioned as a

problem. The developers presented themselves as a united team which was

working towards the same objective of delivering products for customers.

When this fieldwork was undertaken E* developed their applications us

ing a number of Microsoft technologies. Their main programming language

was but the user interfaces to their products tended to be Web applica

tions. When asked about this, a number of team members stated that the agile

approaches they had tried worked well for Web development but that they

were more difficult to apply on infrastructure and systems-level code. Much

of the systems code was written before they began to use comprehensive test

ing. Adam told me that the backend code "tended to use" integration tests and

that they didn't have many unit tests or specifications for it. Unfortunately the

majority of code in their applications was just such infrastructure or systems

code and the developers had to work hard to apply agile techniques. They

said that they went through this struggle because the agile techniques they

used allow them to be responsive and dynamic in ways that were much more

difficult when using, for example, waterfall.

At all levels the company was very evangelical about the benefits of agility.

For example, staff were encouraged to be active in local user groups and to

blog about agile methods and the company still runs an active blog. The sales

team were encouraged to bring in business which required rapid change to

235

7.3 The development team

the codebase, the developers used any approach which worked and even the

operations staff used ideas from the burgeoning devops movement, (Humble

and Molesky; 2011, Loukides; 2012).

These activities could be ones which were imposed by Adam but when

asked, several of the developers were active in user groups before coming to

E* and others had moved there specifically because of its agile approach. Ex

perienced developers, especially those who were used to more structured or

traditional working patterns, find the environment difficult. Consequently E*

had tended to recruit only recent graduates it could train in its own approach.

7.3 The development team

All of the staff including management, developers, sales and operations, worked

in a single, large, open-plan office. It was a noisy environment - the sales

team's phones rang constantly, people had meetings in the corners and the

doors slammed each time that someone passed through and, by the water

cooler, a radio played indie rock. In many ways it was the opposite of the

working environment which DeMarco and Lister (1999) recommend for soft

ware development. On the field recordings the noise is a constant mid-level

background drone which, unsurprisingly, can become quite disruptive.

The small development team was split into three groups as shown in Fig

ure 7.1. Darren was the Head of Platform which meant that he was responsible

for infrastructure, networking and the development of REST APIs; Alex led

on billing and applications which were used by non-account customers or for

one-off jobs; Neil was in charge of applications which were used by account

customers and which were presented as Web pages which had consumed the

236

7.3 The development team

services built by Darren's team. The other developers were assigned as teams

under the three leads but tended to move around to wherever their skills are

needed or to where there was work to be done.

Although the structure seems complex for such a small team it was de

signed to allow for future expansion - the company were looking for more

developers whilst I was there.

Adam

I I I
Alex Neil Darren

H ead o f billing H ead o f applications H ead o f platform

I I 1
John Andy Gemma Scott Andy

Used directly by

customers
Web pages

Consume APIs

Infrastructure

Networking

Backend APIs

Figure 7.1: The developers' organisational structure at E*

The flexible working practices seemed to be mirrored in their ideas about

code. In the words of one E* developer, "code is malleable but design is brit

tle", approaches such TDD and the use of mocking frameworks let them use

the plasticity of code to deliver solutions to customers. Most working soft

ware developers have seen situations in which the design is somehow wrong

but there is a reluctance to change it. Instead the code changes and becomes

out-of-step with the design. At E* both developers and management acknowl

edged this problem and reacted to it by assuming that the code was always

treated as the provider of canonical truths. Later in this Chapter a series of

interactions between two developers will be examined. As they try to write

tests and implement code they will be seen to use existing code to guide them

237

7.3 The development team

instead of referring to design or specification documentation.

7.3.1 Workflow

The team was small and largely self-managing. The Managing Director, Adam,

wrote much of the company's original code himself. He continued to take a

keen interest in development but did far less hands-on work. His involvement

in the detail of the work tended to be at the design stage when customers'

requirements were being tightly specified.

The basic approach to development used structural devices from a number

of agile methods but would be broadly familiar to anyone who had worked in

an agile shop. The following description of their workflow is taken from field

notes including conversations with developers and managers.

Each month the team met with Adam to examine their priorities. At these

meetings they produced outline plans for the work which they would either

complete or begin during the following month. The monthly iterations were

short enough that they knew of any new work which was being negotiated so

that it could be included in the schedule. The team was rarely so loaded with

work that they had problems completing it on time.

Each week the three development leads met with Adam to discuss progress.

These meetings were used to refine the monthly schedule, to share possible

problems and to identify slack periods. They were able to be both re-active

and pro-active in ensuring that work gets done. Each lead was able to consult

the other two and Adam throughout the day on technical issues. Although he

mostly managed rather than develop, Adam still considered himself to be a

software developer and liked to engage with technical discussions. He would

238

7.3 The development team

often bring the lead developers into his conversations with the sales team so

that sales knew what was being developed and development knew what was

being sold.

The team was not only small, they all worked together on a pair of long

benches. They talked constantly amongst themselves and helped each other

throughout the day. During this fieldwork there didn't seem to be any time

at which people were left to struggle on their own. This co-operation was not

formalised in the way it might be in a Scrum. Daily meetings were, the de

velopers all said, unnecessary because there was constant talk between them.

The constant talk could have been off-putting but if people needed privacy

they would wear headphones. Field notes show that when people were in

terrupted those breaks tended to be brief, for example providing information

about some code, and they appeared to quickly re-immerse in their program

ming. There seemed to be few occasions when people seriously distracted

each other. It might be that these workers were used to that environment and

didn't let it distract them but equally it is possible that they were distracted

but didn't show it. The state of flow which DeMarco (2002) describes enables

the most creative work but requires that office are not open-plan and noisy,

(Weinberg; 1998, DeMarco and Lister; 1999).

One aspect of the talking was more structured: they liked to use pair-

programming when working on especially complicated problems. Very little

formal documentation was made available. The code was considered to be

self-documenting when read alongside the unit and integration tests. Such

tests are not descriptive and the structure of the code only tells you what it

does not why it does it. Much of the meta-knowledge about the code base was

239

7.3 The development team

held in the shared understanding of its developers. Collectively they had an

understanding of why it was structured as it was, how and why it was meant

to work and what its weaknesses might be. On its own the code lacked the

indexicality which developers might require in order to understand or modify

it, (Ronkko; 2007). When the developers paired they had to talk about the code

and so share their understanding.

XP teams often pair programmers for a day or a week at a time, (Beck;

2000). The E* team modified this practice so that the formation of pairs was

dynamic and ad hoc. Two might agree that they would work together for half a

day or more and would then behave as a normal pair with a driver and a nav

igator, (Arisholm et al.; 2007). This was not the usual process observed dur

ing this fieldwork. Instead people would ask a colleague to pair whilst they

worked through a problem, wrote a test or read some code. People would

move freely in and out of pairs, assuming that they were not otherwise en

gaged.

7.3.2 Coding

E* had a lot of code which could be classified in a variety of types. There were

stored procedures in the database, Web front ends, XML parsers, code to run

the network. There was security code and business logic. And there were tests,

many hundreds of unit tests and integration tests. As with many applications

this mass of code had grown since the first build of the application by Adam

some years before. The code was a mixture of well-engineered solutions, last

minute hacks and continual changes. Neither the architecture of the code nor

its specific detail were the result of a grand design. Much of it was the product

240

7.3 The development team

of gradual accretion as new requirements were specified and implemented or

as changes were made to improve functionality or efficiency.

Banker et al. (1998) estimate that over 70% of the "life-cycle" costs of an ap

plication occur as maintenance costs, those are the costs of adding or modify

ing functionality once the software has gone live. In traditional waterfall-style

projects there are often attempts to document both the original system and

changes made throughout its lifetime. A developer should be able to read the

documentation to understand the system before they make their own modifi

cations. In reality developers try to write as little documentation as they can

get away with. In defining the first waterfall process for the development of

software, Royce (1970) wrote "[a]t this point it is appropriate to raise the issue

of - 'how much documentation?' My own view is 'quite a lot;' certainly more

than most programmers, analysts, or program designers are willing to do if

left to their own devices. The first rule of managing software development is

ruthless enforcement of documentation requirements".

The authors of the Agile Manifesto recognised that developers do not like

to document their work and proposed "[wjorking software over comprehen

sive documentation", (Beck et al.; 2001). "Agile methodologies appeared as

a reaction to traditional ways of developing software and acknowledge the

need for an alternative to documentation driven, heavyweight software de

velopment processes", (Ilieva et al.; 2004). All of which begs the question how

do developers understand the systems on which they work when the docu

mentation is, at best, sparse or, at worst, inaccurate and out of date?

A range of tools and techniques have been developed in the last ten or

fifteen years to help developers handle source code which is either large or

241

7.3 The development team

complex. Modern applications are built using more than one programming

language and run across a mix of servers, network devices and different types

of client. Production systems are assembled from the work of programmers,

Web designers, database administrators and security experts. The production

version of the code is different to the development version but the two have to

somehow be synchronised.

At E* they used a number of tools to help them manage their code. Their

development environment was Visual Studio 2008. Using this IDE developers

can navigate large projects with relative ease and are able to move between

method calls and the definition of those methods with a couple of mouse

clicks. Visual Studio supports team working on massive projects yet the same

collaborative features help E*'s ten developers co-operate with speed and ease.

The team managed the build, test and deployment parts of the lifecycle using

a Hudson continuous integration server. The output from Hudson was dis

played on a wall mounted flat-screen television so that all of them could see

the current status of the development system. The television showed unit test

results, build status, and error rates from integration tests alongside charts

showing the load on the build server. The on-screen data acted as a near real

time dashboard for the build system. Dashboards can be useful but they have

to be used carefully. DeMarco et al. (2008) give a range of good, and bad, prac

tices in their Dashboard pattern. The E* build system dashboard presented just

enough information to the team that they were able to understand the state

of the system without being overwhelmed. Most importantly, the develop

ers were not committing changes to Hudson whilst colleagues were handling

bugs or other problems - adding new code at that time would lead to uncer

242

7.3 The development team

tainty and confusion about which changes were causing the problems. The

televisions were common around the office. They showed throughput on pro

duction systems, status reports for the operations team and sales data. The

status of many aspects of the company, not just of software development, was

available for everyone.

Being able to move around a code base in Visual Studio is important but the

code itself will not tell you about functionality, structure or meaning. Three

different testing techniques were being used to help with accuracy and under

standing. Integration tests were run throughout the day: each time a change

was committed to Hudson almost the whole system was tested. Each mod

ule of code was supported by a set of unit tests which defined the function

ality of the module as exposed through its interface. The team was trialling

Behaviour-Driven Development through a .Net plug-in called StoryQ. In BDD

developers write simple, structured stories which describe the behaviours ex

pected from some code. Testing whether the code behaves as expected is an

automated process which gives results in Visual Studio alongside the code

and the test.

All of the testing practices meant that the team could understand what

their code was doing and whether it was doing what they intended. However

they had to deal with code which had been developed over a number of years.

Some of the original infrastructure code from the first version of their product

was still in use. That code was written before unit testing became popular

and long before ideas such as BDD became practical propositions with tool

support. Older code like this, normally called legacy code, always presents a

developer with problems, (Ning et al.; 1994, Weide et al.; 1995, Huang et al.;

243

7.4 Gathering the data

1996). Firstly, of course, there are the problems of modifying or maintaining

this code. Secondly there is the problem of using that code in subsequent

functions. As one programs one must make calls into the legacy code but must

do so either without confidence about what it will return or optimistically

assuming that it works as intended and will produce a valid result.

The interactions which are analysed in this Chapter show two developers

working with existing code, struggling to understand it, test it and improve it.

7.4 Gathering the data

Observations at E* were made over a month during Summer 2010. Data was

gathered using field notes, photographs and large quantities of audio-recordings

of the developers as they worked. The company was extremely accommodat

ing. The Managing Director, Adam, told me that whatever data were needed

could be gathered provided the staff gave their permission. Fieldwork was

done by sitting with people as they programmed, talking to them about the

work, recording conversations and making notes.

Once on site it became clear that the most interesting phenomenon was

the pair programming. This led to a concentration on recording situations

in which programmers paired together. The data presented here is from just

three sessions in which the same two developers work together.

The pair is Darren, an experienced developer and Head of Platform who

has been at E* for a number of years and Andy, a recent graduate in his first

year at the company. Darren and Andy are an experienced pair who work to

gether often but not exclusively, each will work on his own or pair with another

developers depending on the particular need and the availability of a suitable

244

7.5 Working with existing code

colleague. In the examples which follow Darren and Andy are trying to un

derstand some legacy code, write some tests and add some new functionality

which uses legacy code.

7.5 Working with existing code

Transcriptions in this Section are extracts of a larger transcription which is

included as Appendix E.

In the interaction described in this Section, Darren and Andy are re-working

some code which was started and abandoned a few months previously. The

code synchronises contact lists between the server and a user's phone. Con

temporaneous field notes include briefings from the developers about their

work and about their specific work tasks. The work they are doing in these

transcriptions is framed by the knowledge of the earlier failure and must be

analysed through the previous abandonment.

Darren wrote, and abandoned, the code which will be modified in this

session. The two men are engaged in a number of more-or-less difficult tasks

here. They have to uncover as much meaning as possible from sections of code

which can be as brief as a single method call. The indexicality of the source

code is a point of negotiation within the pair. They will be seen to try to reach

a shared understanding of the functionality they need to use but the code is

insufficiently indexical. The context of the production of the original code,

implicit relationships between sections of it, and the possibly undocumented

role of the code in the wider system must all be understood before the source

reveals its meaning.

The differing statuses of the developers provides analytical interest. Dar

245

7.5 Working with existing code

ren is a senior developer, Andy is his junior although he is an experienced and

competent developer in his on own right. Within the pair they assume roles

as either driver or navigator as described in Section 2.7. These roles may not

have equal status since the driver may be more involved than the navigator in

the production of new work simply because they have control of the keyboard.

The work which Darren and Andy produce depends upon how they interact

- if it did not then there would probably be little benefit to pairing.

At the start of the session the two developers are discussing the data which

they need to store. Figure 7.1 is a transcription of this talk.

1 Darren This i s kind of the s ta r t of a process and over
time i t might evolve (1 .0) or i t might not

2 Andy ha ha
3 Darren tends to depend how th ings are used.
4 Darren Errm (1 .8)
5 Darren yes I think for the implementation sid e of i t the

f i r s t pass our implementation i s about ’cause what
we kinda d oin ’ i s a provider th a t ’s got i t s own
l i t t l e database here
(1 .5)

6 Darren th a ’ th a t ’s iso la te d from th at so i t can store
(.) contacts th e se ’11 be probably c r e a t in ’ i t ’s
probably a session -typ e tab le
(1 .3)

7 Darren a user-type ta b le (0 .8) ah (1 .4) and then the data
store
(1 .5)

Table 7.1: Starting the process

Darren immediately takes the lead role by starting the interaction and fram

ing it as "the start of the process" but he doesn't do this in a managerial way of

identifying tasks and responsibilities. The field notes show that Darren was

one of the original developers of this problem code but not with whom he

246

7.5 Working with existing code

worked.

Darren begins the session by outlining his view of what will happen as

they work on the code. By saying "kind of" and that the code "might evolve"

we see that the solution is, interaction ally at least, open to negotiation. Darren

flags that there is a set of possible solutions from which to choose through the

use of hedges such as "might", "tends" and "probably". He is doing managing

his accountability for the previous failure whilst preserving some status in his

dealings with Andy.

It would be difficult for Darren to present himself as all-knowing when

they are doing this work to repair a problem with which he was involved.

In this light Darren's "or it might not" looks like classic self-deprecation and

acts to preserve the face of everyone involved in the earlier work. Andy joins

in with some supportive laughter to indicate that he has taken up Darren's

self-deprecation and that he understands Darren's turn as humorous. On line

3 Darren continues by making clear that he doesn't expect the code to change

unless they need to make changes because of the way that they use it, but he

does so in a way which maintains the light-hearted tone which he has already

established.

Darren opened up the possibility of the code changing when he said, on

line 1 that it might "evolve", however, he is also making clear that only nec

essary changes are going to happen. In fact the conversation is re-oriented to

display Darren's expertise as he says that it "tends to depend how things are

used".

Once Darren has made his starting position clear he pauses briefly before

he starts to outline what they are going to do on line 5, moving them from dis

247

7.5 Working w ith existing code

cussion of the existing system by using task talk. He repeats the word "imple

m entation" as he stumbles for a starting point, taking control of the topic and

of w hat is going to happen w ith the code. As Darren formulates his thoughts

through line 6 and 7 he begins to tell Andy what they will do rather than dis

cussing possibilities w ith him

As he talks, Darren draws a diagram, which is shown in Figure 7.2, saying

"w hat we kinda doin' is a provider that's got its own little database here".

Once again he is constructing himself as the one who is expert, the one who

does the thinking and has the answers. But he mitigates this by using "we"

and "kinda".

This talk is about work-in-progress, about provisionality. This is part of the

sense-making structure during this task. The two developers are looking at the

code whilst talking about it and its design and deciding upon the immediate

future direction which their work will take.

Figure 7.2: The database structure

Using my field notes alongside their conversation I can understand that

they are going to develop a service, the provider, which will supply contact

details. The diagram is now the focus of Darren's talk, when he says "tha'

248

7.5 Working with existing code

that's isolated", he is starting to sketch a database structure. Darren is becom

ing more specific, pitching to Andy what they will do when he explains how

the code works on lines 5, 6 and 7.

Andy takes the conversation in a new direction which is followed in Figure

7.2.

Andy doesn't engage in a long discussion about database structures. The

database is simple and he may well assume that they both understand it and

don't need to waste time or effort on it. Even so, "what's the sense around

using echo?" is an abrupt change of topic to discuss a sketch which they made

earlier in the day and which is shown in Figure 7.3. The sketch started as

a drawing of the existing, failed, design. It was used to identify the major

components and their relationships and in a discussion about the functionality

of the system. Our field notes show that Darren uses the drawing as part of

pitching when he presents his ideas about the system. He will continue to use

this rough diagram over the next few coding sessions as the two men work

together to implement unit tests and, later, new functionality.

In asking about the "sense" of the design, Andy's move here challenges

that design. Their previous talk has avoided the analysis of problems but here

Andy asks for an explanation of a specific choice which was made in the design

of the existing code.

Darren pauses when discussing the database design, pauses which are due

to his sketching. On lines 9 through 13 the pauses are longer although he is

not distracted by any other activity.

Darren responds by saying that the functionality was "kind of" turned off

but notice that he hedges. We would expect the functionality to be either on

249

7.5 Working with existing code

8 Andy what’s the sense around using echo?
(1 .7)

9 Darren at the moment that fu n c t io n a lity ’s a l l kind of
been turned o ff ’ cause i t i t got to a cer ta in poin t
(1 .1) and i t wasn’t r e a lly
(2 .8)

10 Darren to [improve the user experience]
11 Andy [what was the point of th]a t?
12 Darren the (.) the p la ’ when we did i t to echo (.)

then that was (.) the database was here the
synchronisation was going and the contacts were
pushed up
(1 .6)

13 Darren in to th is database. THERE WAS various is su es (.)
and from a u s a b ility point of view i t wasn’t
(1 .0)

14 Andy Hmm mmm
(1)

15 Darren err >working that< w ell and a lso echo (0 .9) echo
was kind of err
(1 .7)

16 Darren Yeah (1 .0) i t had problems (0 .3) i t was kind of a
big

17 Andy laughs
18 Darren laughs
19 a b ig t e s t (.) but th is i s you know th is i s kinda

t r y in ’ a make i t e a s ie r . I think as w ell with that
echo sid e of i ’ when that (1 .1) echo was over here
(2)

20 Darren and i t was a lso handling the external con tacts so
i t would kinda get them from s a le s fo :r c :e so you
had to go through >the echo in ter fa ce to get your
contacts from sa lesforce< whereas we’re kind of
saying that (0 .8) you know (1 .5) keeping echo more
simple for we’re exposing i t through the E* API
so anyone who consumes th is API (.) has then got
access to

21 Darren you know (1 .5) keeping echo more simple for we’re
exposing i t through the E* API so anyone who
consumes th is API (.) has then got access to (1 .3)
contacts from d iffe r e n t t sources
(7 .1)

22 Darren but (0 .6) yeah so at the moment i t ’s not r e a l ly
v is ib le in echo.= =1 think you '[CAN?
(1 .3)

Table 7.2: JgJpng a turn

7.5 Working w ith existing code

-£>

— i Wko«̂ *- f I
/ H 5 * V \

Figure 7.3: The architecture of the system

or off, he doesn't commit to this but places it in a nebulous third state. There is

a false start in his explanation, "cause it got to a certain point", before he says

that the code wasn't improving the user experience.

Andy interjects during this explanation w ith "w hat was the point of that",

which seems to ask why the code was removed. This interruption comes at

a possible turn transition point following Darren's long delay and overrides

the explanation by ignoring it and referring back to his earlier topic. Andy

is referring back to the old system once again, pursuing a response and rais

ing questions of both functionality and of the quality of the design and the

decision making around it.

On line 16 Darren acknowledges that "echo" was problematic by moving

attention to the echo class in a light-hearted way and joking about its state.

251

7.5 Working with existing code

By describing it as problematic Darren lets Andy know that they won't be

re-using this code. This point is confirmed when he says "it was kind of a

big" then pauses. Andy takes up the humour by starting to laugh.

Twice during this interaction Andy asks simple questions which force Dar

ren to explain decisions which were made during the implementation of the

earlier code. In both cases Darren has to talk about code which failed in some

way but he presents the change as quite positive. On lines 9 and 13 he says

that code wasn't working sufficiently well but, notably, he doesn't say that the

code didn't work at all. Rather he is implying that changes were needed be

cause the ways in which the code worked could be improved. The desire to

improve the code is made clear on line 19 when Darren says "but this is you

know this is kinda tryin' a make it easier" and on line 21 with "keeping echo

more simple".

When programming simple code structures are often more effective than

complex ones because they are clear, more readily "debuggable" and more

maintainable. Andy's questions could act as challenges to Darren's authority

as the senior developer because they show that even a junior like Andy can

spot problems in the code. Throughout this exchange Andy's main contribu

tion is to ask questions or give brief acknowledgements. Darren does by far

the majority of the talking. This should not be surprising since they are talking

about code which Darren knows and which Andy is seeing for the first time.

Andy's questions are requests for clarification and for more detail. In his re

sponses Darren is able to present the design failures which were inherent in

the earlier code in a positive light.

252

7.6 Talking about testing

7.6 Talking about testing

Transcripts in this Section are selections from a longer conversation which is

shown in full in Appendix F.

The day after the interaction described in Section 7.5 Darren and Andy

paired again to implement some new functionality based on the work they

had started the previous day. One of the key agile practices in use at E* was

unit testing. In the session which is presented here the pair begin their coding

by writing a test which will be used to demonstrate that the code produces the

desired results.

A pair is, theoretically, divided into the roles of driver and navigator. De

velopers are not usually assigned permanently to a role, they switch between

driving and navigating depending on experience, personal desires, fatigue etc.

The two roles allow the developers time and space to think about what they

are doing without both of them focussing on the physical act of typing code

or tests. "The driver is typing at the keyboard and focusing on the details of

the production code or tests. The navigator observes the work of the driver,

reviews the code, proposes test cases, considers the strategic implications and

is looking for tactical and strategic defects or alternatives", (Madeyski; 2007).

The practical accomplishment of the driver-navigator duality happens in the

talk of the developers.

Testing is seen as an important part of the solution to writing high-quality

code. A range of studies demonstrate that good coverage of code with tests

can lead to better outcomes, (McBreen; 2001, Kobayashi et al.; 2006, Hanssen

et al.; 2009, Hoover and Oshineye; 2010). Of course tests are only useful if

they test key parts of the code in realistic ways. Testing peripheral code which

253

7.6 Talking about testing

is rarely called using data designed to pass the test might lead to the system

generating a success report but it would be a meaningless success.

Tests are created and executed in the programming editor with the results

displayed either in red when the code fails the test or green when it passes.

In test-driven styles of development a set of tests is written before the code.

As code is created, most tests are naturally failed at first but as the code is

developed and refined the number of failures reduce until the code passes all

of its tests. The test-editor within the IDE is an important actor in testing. It

provides a focus, through the red-green messages, for the developers' work.

For a pair such as Darren and Andy the editor and its messages are a focus for

discussion in the same way as their ad hoc diagrams.

There are no hard-and-fast rules for writing tests. No-one can codify how

or where they should be used to give the best possible coverage. Developers

tend to learn on-the-job, developing a personal set of heuristics which estab

lish a balance between coverage, the effort required to write the test, and the

benefits the test brings. When Madeyski writes of "strategic implications",

"tactical and strategic defects" and "alternatives" this is what he means. A

pair of developers have the time and space to think about what they will test

and why they will test it.

The two men begin by discussing what they will be testing. Table 7.3 shows

Darren beginning by nominating some functionality which he wants to test.

He starts hesitantly, suggesting one from "a couple of tests". Although test-

driven development aims for comprehensive coverage of the code by tests not

everything will be tested - pragmatically there have to be limits to the number

and complexity of tests which are written.

254

7.6 Talking about testing

1 Darren There’s probably th e r e ’s probably a couple of t e s t s
we could ??? here (.) one

2 Darren err from that premise of that (1 .0) t a the
user might not e x is t (1 .0) so one i s (1 .0) the
cred en tia ls are always going to be v a lid we we
kind of (1 .0) implement from the p ersp ective that
I don’t care who who the user i s (.) ' f i f the user
i s one I don’t recognise I ’ l l create a new one
otherwise I ’l l
(4 .0)

3 Andy So i f ??? do log in with in v a lid cred en tia ls to
s ta r t o ff wiv

4 Darren Well th a t ’s the th ing I ’m saying i t ’s never [going]
to=

5 Andy [Yeah]
6 Darren =be in v a lid i t w il l be t s ith e r °ne of one that

e x is t s or one that doesn’t so the scenario the two
scenarios as I see i t that
(2 .5)

7 Darren Log in with a (1 .0) for the f i r s t time as a user
and then the te s t=
(1 .5)

8 Darren =Is probably going to show something l ik e (.) ah
try to get hold to get hold of oth iso user from the
database the data says i t doesn’t e x is t therefore
creates a new user in the database and then creates
(1 .0) a sess io n and returns :that I ::d
(1 .5)

9 Darren And then the other scen a r io ’s gonna be where a user
osort ofo doesn’t e x is t (1 .0) i t ’s gonna c a l l on to
the database

10 Darren and i t ’s a c tu a lly ??? gets the user the user does
a l l of these

11 Andy Have you got your diagram

Table 7.3: Setting the scene

It is not clear that Darren knew in advance what he wanted to test when he

begins to explain his choice. His approach is to explain what the code is sup

posed to do which he does by listing constraints on the code: "user might not

exist", "credentials are always... valid", "don't care who the user is". These

255

7.6 Talking about testing

constraints describe part of the interface to the code without being a compre

hensive list and without the detail which would be found in good documen

tation. Andy's response is to ask about "invalid credentials". His question is a

prompt to Darren to provide more detail. Darren has to explain why this code

doesn't need to validate the user's credentials and, hence, why they don't need

to test them here.

As with the earlier extracts, Darren is doing the vast majority of the talking

here and might be said to be "thinking out loud". Andy's main contributions

are questions. They are orienting to roles which have nothing to do with either

their places on the organisational chart or the ad hoc roles of pairing. Darren

presents himself as the expert, he is knowledgeable about the existing code

and leads with ideas about where new code will go and about what needs to

be tested. Andy asks questions which require explanations and in explaining,

Darren has to justify his ideas. Andy is not orienting to the role of a pupil

who accepts what he is told, through the questions he demonstrates his own

expertise.

This interaction demonstrates how a pair can come to decisions in a dif

ferent way to two individuals. In the pair they are able to negotiate the "lim

ited indexicality", (Ronkko; 2007), of the code to expose the "strategic impli

cations" of the work they must perform, (Madeyski; 2007). Working individ

ually this exploration would be more difficult because an individual would

have had to use the code to reveal its own meaning even where such meaning

was unclear.

At the end of this section Andy asks to see the diagram which Darren drew

the day before. The diagram was a focus through which they could outline

256

7.6 Talking about testing

both the existing system and the proposed solution. Now it becomes a fo

cus for Andy's understanding of the system. Agile projects tend not to create

libraries of documentation such as specifications or drawings of the system.

Documentation is "always out of date and wrong", (McBreen; 2001), in part

because maintaining it is time-consuming and, hence, expensive. That isn't

just a problem of software development. Petroski (1996) describes the diffi

culties engineers at Boeing had in managing the drawings during the design

of the 747. Changes to one diagram would have knock-on effects on many

others, there were 75,000 engineering drawings for the whole plane which all

had to be consistent. When the plane went into production the diagrams were

still inconsistent and l,0001bs of shims had to be used to make components

interface correctly.

Engineering companies such as Boeing try to reduce errors in their doc

umentation, and in manufacturing, through the use of process management

approaches such as Total Quality Management. TQM helps reduce mistakes

through "a high level of cooperation and effort throughout the entire design

process", (Petroski; 1996). Efforts such as those of Software Engineering In

stitute (2010) are building similar process management methodologies for the

development of software but they all face a similar problem. Changes to doc

umentation "add no new value to the product", (Petroski; 1996), and the cost

of documenting cannot be easily recovered from customers.

The flexibility of pair programming enables cooperation and information

sharing without the overhead of formal documentation but developers still

need to document. Darren's diagram facilitated both an immediate conver

sation with Andy and later consideration but it was ad hoc, improvised and

257

7.6 Talking about testing

incomplete. As such the diagram was not afforded great value but it did have

great utility.

Discussions about ideas and actions allow more consideration than work

ing alone does. Although the pair will implement the tests which Darren

would have written had he been working alone he has had to explain them.

If he were proposing something which was either inappropriate or incorrect

one would reasonably expect that Andy would pick up on this or that Darren

himself would realise as he outlined his intentions.

18 Andy When do they a c tu a lly log in then (.) on the phone
19 Darren When the the pho when the phone (0 .5) so when you

se t up the ph[one]=
20 Andy [Yep]
21 Darren =on your phone you’l l have some SyncML se tt in g s

where you’l l d e ta il the name of the servfer (.)
the user name password [which]=

22 Andy [OK]

Table 7.4:

The field notes show that Andy spent some time looking at the diagram

whilst Darren, now driving, began to scaffold the test. Andy then asked for a

more detailed explanation of the user authentication process. Figure 7.4 shows

how they began this brief discussion which became quite technical as Darren

continued.

When Darren has explained the authentication process he asks Andy if he

"wants" him to write the test, Figure 7.5. Darren has already created a scaffold

framework for the test but now the detail needs to be completed. When Darren

asks Andy about his "want" his question is collegiate - he is soliciting Andy's

desires and deferring to him - but it is also managerial and controlling. The

question "do you want me to do that" on line 28 is used here as an effective way

258

7.6 Talking about testing

27 Darren So at that point i t then c a l ls on to the
(4 .0)

28 Darren do you want me to w rite the t e s t f
29 Andy No I ’m ju st th inking

(2 .0)
30 Andy So i f (2 .0) two d iffe r e n t mobile phones same user

name (.) what happens then
(3 .0)

31 Darren They’re attached to the same u :ser

Table 7.5:

of beginning work on the task whilst recognising Andy's face needs. Darren

is ready for them to begin but he is navigating and Andy is driving. Andy

has been sitting for four seconds without starting to write the test. If Darren

wanted to take over and and simply grabbed the keyboard, he would not be

acting aggressively or abnormally. Plonka et al. (2011) found that as many as

81% of role switches were enacted without verbal cues. Here, though, Darren

is prepared to wait for Andy to continue.

When Andy replies on line 29 he is both answering Darren and keeping

control of the coding task. He tells Darren both that he is going to write the test

and that he isn't going to do so yet. When Andy says that he is "just thinking"

he is demonstrating his competence as a programmer and as Darren's equal.

Andy's rejection of Darren's offer is glossed over. He is not asked to ac

count for it, perhaps because in the context of a pair programming session

with frequent switches such rejection is not going to be an especially account

able event.

The question at line 30 demonstrates that Andy is beginning to understand

some of the implications of the processes which Darren has described because

he is able to expand the authentication scenario into other areas. His ques

259

7.6 Talking about testing

tion is both reasonable and appropriate and Darren is able to show that it has

been thought about and the problem is already solved. This interaction is co

operative. Andy is asking questions which let Darren demonstrate his com

petence. Darren's answers are structured so as to help Andy to understand,

however, Andy always has more questions which often interrogate Darren's

assumptions.

For Andy especially, the structure, history, context and quality of the code

are always matters which can be interrogated. The code is never indexical

of them but, instead, the code provides a locus around which the pair can

work towards an understanding. Darren and Andy manage this interaction

cooperatively in a way which supports their search for indexicality.

37 Andy So at the moment we:re h ere’s no such th ing as
v a lid cred en tia ls then

38 Darren Yeah th a t ’s what I ’m saying i s that i s that the
only two two scenarios are [logged]=

39 Andy [logged]
40 Darren =in with no ere [d e n t]ia ls=
41 Andy [yeah]
42 Darren =0r known cred en tia ls i f i t ’s unknown i t goes

through a process of creatin g them (.) i f th ey ’re
known (.) i t doesn’t
(1 .0)

43 Andy Which one sh a ll we s ta r t with
44 (3 .0)
45 Darren I ju st say I don’t know [i t ’ s e ith er i t s]=
46 Andy [No no I don’t]
47 Darren =going to be the same ??? name (1 .0) do a name cos

i t s natural
48 Andy hnnn

Table 7.6:

In Figure 7.6 Andy finally gets confirmation about the authentication of

users through their credentials. He could have spent time reading through

260

7.6 Talking about testing

the code, chasing method calls through the various classes which are involved

and looking at the tests written for those methods. He hasn't had to do that

because he is in a pair with a colleague who understands what this code is

supposed to do.

Andy asks the important question at line 37. Credentials are an impor

tant piece of the security infrastructure of any system. Here the user might

have credentials or might not, and if they don't then some credentials will be

created for them. Some minutes before this interaction Darren had tried to

explain how the credentials work. On line 38 he is responding again: "that's

what I'm saying" tells Andy that he, Darren, has already said the same things

earlier. It is also an acknowledgement, by Darren, of Andy's understanding.

When Andy says "yeah" on line 41 he finally signals that he knows what is

happening.

At line 43 Andy moves them onto the next stage which is writing the details

of the test. He does this without formality, simply moving on to the next phase

of the task at hand. In many situations this would be an unusually brusque

move but it is more acceptable when in one which is task-oriented. This is

another moment which could have become an argument. On line 46 Andy

skillfully avoids the possibility of arguing by agreeing with Darren that he

also doesn't know where to begin.

By line 52 they are beginning to implement the test, Andy is at the key

board and begins to explain what he is going to do. It look as if he has taken

over the navigating from Darren whilst also typing, but, in reality, the bound

ary between driver and navigator is a fluid one. The keyboard may not pass

back and forth but the talk about understanding does. In Figure 7.7 both men

261

7.6 Talking about testing

52 Andy I ’m gonna make gonna make credent: : ia l s (.)
re tu r::n n u ll what’s i t return from

53 Darren I t returns th a t ’s the sess io n ID
(5 .0)

54 Andy So th is i s gonna return n u ll hnnn
55 Darren No I think we are gonna (.) we axe gonna
56 Andy Oh no (.) no we’re not i t ’s gonna return the

se ss io n ID

Table 7.7:

are engaged in understanding what they want the code to do. They need to

know what the method returns so that their test can validate the return value.

On line 52 Andy has clearly missed that the session ID will be returned but he

corrects himself by line 56.

They do not refer to the code in the editor as they talk about it. Each man

talks as if his colleague is reading the same thing at the same speed at the same

time. The code which they are looking at on screen is the focus for their talk

so that if they were reading different things they would have to question each

other to find out where the code was that they were discussing.

Throughout the exchange shown in Figure 7.7 Darren and Andy continu

ally interrupt, talk over each other and complete each other's statements. They

are familiar with each other's working styles and thought processes. This leads

to faster working once they understand what they are going to do. On lines

54,55 and 56 they Andy quickly understands Darren's intention. By using the

same language, in this case the word "gonna", they signal this mutual under

standing.

What might be seen as their easy familiarity means that points of potential

tension such as Andy's "what's the sense of using echo" in Figure 7.2 do not

become major disagreements.

262

7.7 Implementation or design?

7.7 Implementation or design?

Transcriptions in this Section are excerpts from a longer transcription which

is given in full in Appendix G.

Developers who are working with a test-driven approach write unit tests

then implement the functionality. The idea of unit tests is that they express

the functionality which is required of the code and include the range of results

which are possible when the code is provided with different values. The tests

are then used to exercise the code. Whilst the tests show what a piece of code

ought to do, they say nothing about how it might achieve those results.

In this Section2 Darren and Andy are implementing some new code for

which they have previously written test cases. Darren is driving whilst Andy

navigates.

As is usual with this pair Darren starts the process, shown in Figure 7.8.

He begins with a description of some server code which they have already

written. On line 3 Darren starts to outline his worries about the way in which

the authentication server was implemented. He stops and starts a number of

times throughout this line as he talks about different aspects of the manage

ment of authentication.

Throughout this passage the pair struggle with uncertainty about how the

code they are calling should be used. Until they understand the service which

they need to call they cannot understand what their new code should do or

how it should be implemented.

They aren't really talking about implementation. They are talking about

2This transcription is from a different day to the previous ones, hence the line numbering
is restarted.

263

7.7 Implementation or design?

1 Darren I t ’s ju s t a simple (.) Do you want me to save the
se ss io n and err o b lite r a te the database and put i t
there

2 Andy OK
(1 .5)

3 Darren So (.) so that we ohave a c tu a lly now implemented
(.) a l l of the au th en tication server so so omy
concern that th is did <???> was in fa c t that
add se ssio n was ju st l i t e r a l l y taking an ID from
the user ID but then la te r we’re making c a l ls to
the rep ository to get out some XML based on that
session^ (.) because th is d ec isio n making process
of a c tu a lly (.) the sync au th en tication ob ject i s
not r e lea s in g control i t ’ s i t ’s deciding I ’m going
to generate the IDs for the new users=

4 Andy Yep
5 Darren =And the new sessio n s i t should a lso generate a

brand new sess io n session=
6 Andy Yes
7 Darren = (.) so I ’m gonna (.) gonna go back to one of the

other t e s t s and change (1 .5) so I ’m actu a c tu a lly
expecting add sessio n
(5 .0)

8 Andy I think that the err s t i l l s t i l l th at d ec isio n
about having these IDs here
(2 .5)

9 Andy [So now th a t ’s doing so much s tu f f in ’t i t]
10 Darren [At th is stage i t ’s s t i l l i t ’s s t i l l] yeah bugging

me that

Table 7.8:

design, both the design of the service and of the calling code. Implementa

tion requires more detailed talk which refers to algorithms, data structures or

the use of specific methods within classes. In software implementations are

concrete expressions of ideas, designs are more abstract. A design can be im

plemented in many different ways. In this sense when Petroski writes about

the design of the Boeing 747 he is writing about something which is more like

the implementation of software code than it is like the design of that code.

264

7.7 Implementation or design?

A piece of code has many of the same properties as an engineering drawing

has for those who use it. Neither code nor drawing are necessarily fixed or

permanent, both are malleable and subject to change as either requirements

or understanding improve. When Darren talks about the session being used to

get XML from the repository or when Andy talks about code doing "so much

stuff" each of them is showing that they now have a different, perhaps more

detailed, understanding of their code than they had when it was originally

written.

Another layer of abstraction is introduced in Figure 7.9 where the architec

ture of the software becomes the matter of interest. Software developers use

abstraction as a technique for managing complexity when they think about

code, (Detienne; 1995, Low et al.; 1996, Hertzum and Pejtersen; 2000). Ab

stractions are simplified descriptions which foreground parts of the system

whilst hiding the details of others. One particularly useful, and commonly

used, abstraction is to divide the structure of a system into a series of layers.

Each layer wraps lower ones, hiding their detail and providing a hierarchical

structure to the code. Layering abstractions in this way is often referred to as

the architecture of the system.

Figure 7.9 shows the pair using three abstractions at the same time. Darren

introduces the system's architecture on line 14 as a way of solving the problem

with sessions and user IDs. When he says "that service layer that's responsible

for creating the user ID it's responsible for creating the session" he is talking

about architecture. The differences between architecture, design and imple

mentation can be subtle and may depend upon the system, the developers and

the culture within which they work. Broadly, though, implementation is the

265

7.7 Implementation or design?

14 Darren Where th is layer (.) a c tu a lly perhaps th is i s n ’t
ta lk in g to the rep ository i t ’s ta lk in g to a (4 .0)
serv ice layer and that serv ice layer i t ’s got
high le v e l th ings and that serv ice layer th a t ’s
resp on sib le (3 .0) for creatin g the user (1 .0) ID
i t ’s resp on sib le for creatin g the sessio n
(2 .5)

15 Andy You’re s t i l l going to have the same problem though
aren’t ya (3 .0) the same that same you know
(1 .0)

16 Darren You’l l s t i l l yeah you’l l s t i l l get the same problem
as when you go down to the [session]

17 Andy [You’re j]u s t going to you’re ju st going to copy
that method and put i t in to a (1 .0) server sid e one
(10.0)

18 Darren Yeah (.) you c I mean you could have an ID
generator
(6 .0)

19 Darren [Yeah]
20 Andy [OK]

(2 .0)
21 Andy Ssss l e t me have a quick think a second

(1 .5)
22 Darren I think i t i s going back again i t ’s that (.)

re lu ctan t to do something too c lever here i f th is
i s n ’t going in the code

23 Andy I ju st say do the sim plest th ing to s ta r t with
(1 .0) do what you sa id (5 .0) and then i t ’s ju st
going to be hmmm how’s i t going to kno::w that
(1 .0)

24 Darren I t ’s l i t e r a l l y going to create i t i s ac I mean i t
i s a c tu a lly going to create i t from scratch

Table 7.9:

detailed of classes and methods, design is how those classes work together

and architecture groups classes together into functionally coherent units.

Darren has moved the talk to the level of architecture because talking at

this level lets him abstract away the details of the problem. He is able to

say that there is a service layer which does what it does and all that Darren

266

7.7 Implementation or design?

and Andy need to worry about is the result their code gets when it interacts

with that service layer. Unfortunately whilst the abstraction removes detail,

it doesn't help them to understand or solve their problem. When Andy asks

"you're still going to have the same problem though" he makes clear to Darren

that he, Darren, has misunderstood and that he is now heading in the wrong

direction. Darren reacts positively by agreeing with Andy. The two men sit for

ten seconds. That is quite a long time when looked at in the context of their

normal working method. Generally this pair take long pauses when one of

them is actively coding. Here, though, both are inactive with the opportunity

to think about the problem.

Finally, on line 18, Darren offers a tentative "yeah (.) you c I mean you

could have an ID generator". The talk shown in Figure 7.9 is cooperative once

Andy has steered them onto his track. At lines 16,18 and from line 22 the two

men are aligning their ideas and showing that they are cooperating. They do

this to the point where line 24 from Darren follows so naturally from Andy on

line 23 that the two statements could have been made by a single person.

25 Andy So are you th inking
(10.0)

26 Andy So th a t ’s going to have to [be]
27 Darren [Well] (.) i t doesn’t know what the IP i s
28 Andy But how (.) you can’t do th at can you because

t h a t ’s not going to know
29 Darren no
30 Andy That’s why we’ve yeah laughs so we e ith er need to

(1 .0) th at shows th a t ’s doing too much dun’t i t
(6 .0)

31 Andy Can I have a look at that code again

Table 7.10:

As they continue to talk they work closer to understanding what they must

267

7.7 Implementation or design?

implement. In Figure 7.10 we see they continue to hesitate and to prevaricate.

Neither man is willing to make a firm statement of any sort. The nearest they

get to a resolution happens on Line 30 when Andy refers back to line 9, Figure

7.8, and says 'That shows that's doing too much dun't it". Despite Darren's

attempt to change the abstraction up to the architectural level Andy has not

changed his view of the code as fundamentally problematic, he tries to per

suade Darren by hedging then ending with the question "dun't it". This for

mulation lets Andy ask a difficult question whilst paying attention to Darren's

face needs. Andy's laughter on line 30 and his use of "we" show Darren that

they are working through the problem together.

Again there is a six second pause. Darren doesn't disagree with Andy but

he is not explicit in his agreement. On line 10 he had said "it's still bugging

me that" and on line 16 "still going to have the same problem". In the earlier

exchanges discussed in Sections 7.5 and 7.6 Darren was able to provide solu

tions to any challenges Andy made or to any potential problems that he found.

Here that hasn't been the case because they are actively working through code

together rather than reviewing and explaining previous efforts. The nearest

that Darren has come to responding as if his seniority is challenged is to say

that he is "reluctant to do something too clever".

At some point developers need to stop talking about architecture, design

or even the structure of code and begin to implement. Figure 7.11 shows this

move which is made by Andy on line 33. The move is not straightforward.

Before it can be made, the members have to reach a shared understanding, or

at least a mutual acceptance, that they are ready to write code.

When Andy makes the move from design to implementation he does so

268

7.7 Implementation or design?

33 Andy Or you could ju st huh w ell no ju st a sess io n
factory or summat th a t ’l l do that th a t ’l l get
away from that problem won’t i t (2 .0) u su a lly have
a sess io n factory >but< a l l you do i s g ive i t a
se ss io n id

34 Darren OK
35 Andy And the user ID and th a t ’l l return the sess io n XML

back and th at way we can make an e x p e c ta t io n]
36 Darren [Session] factory and the user factory yeah

(5 .0)
37 Darren Do you want d e liv ery rec e ip ts and s tu f f l ik e that

(.) ju s t send away where no one goes
(8 .0)

38 Andy I don’t know i f we need the user one
39 Darren P o te n tia lly because of th is b it as w ell we could

there we could i f we’re gonna do i t then we’re kind
of con sisten t

40 Andy Huh l e t ’s s ta r t with the sess io n one
41 Darren Yeah (1 .0)
42 Andy Watch i t huh oh yeah
43 Darren I ’l l s ta r t with the se ss io n one
44 Andy yeah
45 Darren And see how that goes (.) so I ’m going to put a

mock in

Table 7.11:

by suggesting, on line 33, that they use a "factory". Factory is a well-known

and widely used design pattern in which objects are created without the code

which will use them directly calling their constructors. A factory hides the

detail of the construction of the object from the code which requires the object

by accepting values to be assigned to properties of the instance and returning

a reference either to a concrete object or, more typically, to an instance of an

abstract base type.

Noticeably Andy doesn't say something straightforward like "let's use a

factory". Instead he introduces the merits of the idea, that it will "get away

from that problem" and that if they "give it a session ID" and the user ID it will

269

7.7 Implementation or design?

"return the session XML back". He is talking about design but doing so at the

level of the interface to the factory, not saying how it might be implemented.

That is enough information to convince Darren that it will work. Andy's ap

proach to getting agreement is to make a suggestion then justify it with more

detail.

Once Andy has identified the Factory pattern as the solution to the session

ID problem, it also becomes a possible solution to the user ID problem. Dar

ren proposes using two factories on line 36 and formulates this agreement by

repeating Andy's talk of session factory. His use of "yeah" at the end of that

line confirms his agreement with the use of this pattern. The turns which the

men take are collaborative, reflecting that their work here is a collaboration.

On line 38 Andy again questions Darren. He ignores the comment about

delivery receipts and returns them to the factory problem. Two long pauses

happen between Darren' agreement to the use of factories and Andy's ques

tion. Unlike previous occasions, this questioning is hedged by beginning with

"I don't know if" rather than a formulation such as "we don't need".

Darren takes this response as a request for some justification of his idea

that they use two factories which he then provides. Andy comes back at him

on line 40 without a direct agreement or disagreement, instead he grunts at

the start of his turn before saying "let's start with the session one" as they

begin to code. Andy doesn't say that he has accepted Darren's idea, he just

doesn't respond to it. Once again we see that within the pair disagreement is

an acceptable part of the negotiation which goes on.

This reply from Andy is a delaying move which implies that they will dis

cuss the user factory once they have implemented the one for sessions or rather

270

7.8 Discussion

once they "see how that goes", line 45.

Both of them use the "start with" formulation to proceed with the work

but in each case it suggests unfinished business, that something must follow

the start. The natural suggestion would be that once they have implemented

the session factory they will revisit the discussion about a user factory which

has not been fully resolved at this point. In fact what actually happens is that

they begin to code the session factory and become engrossed in the details of

it and that they never return to the user factory. Much later, once they have

started implementing the session factory, Darren will suggest that they "let the

session factory make the decision about ID" which Andy says "sounds better

as well".

7.8 Discussion

These data have nothing to say about the code which is produced from pair

programming. Others including Beck (2000), Muller and Padberg (2004), Chong

and Hurlbutt (2007) have written about the creation of code by and within

pairs. This fieldwork reveals what actually happens within a pair, showing

how both understanding and work are shared across time and across tasks.

This pair do not show a strong divide between driver and navigator. Their

relative experiences as programmers, and more especially as programmers at

E*, impacts on what they know about the code and on how they work. Initially

Darren takes the lead, talking Andy through the code or through decisions

abut its design. Andy most often acts as inquisitor or prompter, asking for or

listening to explanations. This pair differ from others which have been seen to

show that "dialogue between pairs was notable for the parity of contribution",

271

7.8 Discussion

(Chong and Hurlbutt; 2007). Once they move from Darren's explanations to

the writing of new code Andy changes his orientation so that by the end they

are collaborating with equal status.

Darren spends a large amount of time explaining what existing code is

meant to do. The transcripts show that he spends little time explaining how

the code works, concentrating instead on its interface and on the data struc

tures which are passed around. Much of the time these discussions are about

the system's architecture of the design of the software. Little time is spent

discussing the details of the implementation of any of the code. Architec

tural discussions are aided by the use of Visual Studio which permits rapid,

and lightweight, movement between code and tests and within large bodies

of source code.

The source is clearly not self-explanatory. Throughout these interactions,

which were recorded across a number of weeks, Andy, who is new to this

code, demonstrates that he is struggling with the indexicality of the code, a

typical programming problem which was identified by Ronkko (2007). The

code is an important actor in these discussions, they navigate through direc

tories and files to find relationships within this large codebase but the struc

ture of the code modules and the implementation of individual methods do

not reveal their meaning. This appears to be true throughout E*'s large cor

pus of source code files. In trying to understand what the code means the pair

constantly move "between the various levels of strategic thinking and imple

mentation detail", (Chong and Hurlbutt; 2007). These movements are only

possible because they are paired. Without Darren's existing knowledge Andy

would have to spend more time understanding, and without Andy's contin

272

7.8 Discussion

ual questionning Darren would be restricted to his memories of the meaning

of the code and would not acquire new understanding.

Chong and Hurlbutt (2007) found that "the less knowledgeable program

mer instead reported a tendency to become 'passive', disengaging from the

task so as not to impede his or her partner's ability to make timely forward

progress on the task". That certainly wasn't found in these data. Through

out the coding sessions which were observed at E* both members remained

engaged and involved. This was true across pairs regardless of the particu

lar developers in the pair. Feelgood seems to correlate with a willingness to

commit to a particular style of working as well to performance once paired as

shown by Muller and Padberg (2004).

Pair programming seems to encourage higher quality, and more detailed,

discussion of code than is found in, for example, code reviews. When re

viewing code, developers who are more familiar with each other or who are

reviewing especially complex code have been shown to spend less time dis

cussing "global issues", (Seaman and Basili; 1998). The same study showed

that developers who are more familiar with each other report fewer defects

during code reviews. When working as a pair talk has to move between sys

tem wide issues of architecture and structure, characterised by Seaman and

Basili as global, and highly localised discussion of in-code structures.

Because the members of the pair are equally responsible for the quality

of their code they have an incentive to find and fix defects and to write high

quality code where that is possible. When Darren and Andy realise that they

need to use factories to create session IDs they are talking about a structure

which will lead to better code.

273

7.8 Discussion

When it works well pair programming can be beneficial. Making it work

well requires an openness on the part of the participants. They must be will

ing to talk freely and be able to talk at different levels, often switching rapidly

between those levels. Throughout these excerpts the two men have to man

age their talk in such a way as to be able to work together effectively. As the

excerpts show they have to be able to interrogate the code, its history and its

future. When questioned or challenged they have to be willing to explain or

justify their ideas rather than being defensive of them. If they are not open

they will struggle to work together.

When working with existing code, Darren and Andy orient to it in a prag

matic way. Andy makes the history of the code, in particular the decisions

which underpin its design, accountable. His questions about the code could

be taken as questions of practice, of competence. That is not the perspective

which is taken by the pair. They legitimise these questions as they discuss the

code, making its design into a meaningful part of their discourse.

These interactions demonstrate that, at least for skilled pairs, talk about

code is actually more than that. It is talk about history, about design and it is

talk which requires skilled management.

274

Discussion and further work

8.1 Introduction

This research is an investigation into the ways in which software develop

ers' communication practices construct and frame their work as programmers.

Programming is a challenging activity because the problems it addresses are

often vague and because of the complex and plastic nature of software. As dis

cussed in Section 2.5, agile methods address some of the inherent difficulties

of software development by emphasising the importance of working code, of

teamwork and of cooperation with customers. The authors of the Agile Man

ifesto placed communication squarely at the heart of their vision of software

engineering because they believed that talking about work leads to shared and

improved understanding of that work. That may, in turn, lead to the produc

tion of better software.

By examining the ways in which programmers talk about programming

this research has revealed aspects of developers' sense-making activities and

shown how as they share their knowledge they must negotiate meanings and

relevance within code and design. The discipline of software engineering can

be seen to be as interested in the management of software development as

8.2 Research themes

it is in the activities which constitute development. Agile methods such as

Scrum are partly built from the conviction that developers are the best people

to manage their own work. This study has shown the communication practices

which are implemented in Scrum's cycle of meetings and how developers use

these to manage, coordinate and constitute their projects.

This Chapter has three parts: a discussion of the contribution to knowl

edge of this research; an evaluation of the methodological choices which were

made; and the identification of further work which builds on those findings

and which can further develop the key research themes.

8.2 Research themes

This research presents studies of interaction and communication within agile

teams which are analysed from the perspective of ethnomethodology. This

study explored the social organisation of the working practices of software

developers and showed that programming is a socially constructed, collabo

rative activity.

Software development was seen to be a form of heterogeneous engineer

ing, (Law; 1987) in which interactions between developers were as important

as the tools they use to develop software. When programming in teams, the

developers studied here were shown to share their understanding of code and

of libraries, frameworks, legacy code and tools through complex, nuanced

conversation. Whether asking questions about code or offering help and ad

vice, the developers negotiated matters of status, of challenges to authority

and of threats to their professional status.

The research also found that coordinating work is a fundamental aspect of

2 77

8.2 Research themes

the working practice of an agile team. Meetings such as daily stand-ups were

shown to facilitate collaborative working when each team member had to re

port on their progress and status to their colleagues. Once again this reporting

process was shown to be laden with potential threats to status which had to

be carefully managed by Scrum Masters and developers.

This research began from the idea that the work of programmers is a so

cial activity as well as a technical one. This idea is expressed most obviously in

the Agile Manifesto and in those ways of working which it inspires and which

are usually called Agile Methods. The Manifesto speaks to more flexible ways

of working, which encourage responsive project structures and frequent de

livery of working products, and to support them through collaboration and

interaction.

Flexible working and frequent delivery have been widely studied, both

in the context of agile projects and elsewhere. As discussed in Chapter 3,

the ideas of interaction and communication within software projects have re

ceived less attention and when they are studied it is usually within an objec-

tivist frame and seeks to find "better" ways of doing them. Neither the authors

of the Manifesto, those who implement Agile Methods nor those who try to

improve communication and interaction have built a strong theoretical posi

tion which explains what they mean by communication and its relationship

to the production of software.

The Agile Manifesto is important in providing a context for this research

because it places in the foreground the notion that improved communication

within teams and between developer and customer will lead to an improved

product. However, as discussed in Section 2.6, the meaning of communication

278

8.2 Research themes

and its precise role within agile software projects are matters which neither the

Manifesto nor academic software engineers fully address. Reducing commu

nication in software development to talk between the development team and

external stakeholders provides a somewhat limited and impoverished view.

The communication which happens between developers within teams enables

their work of designing, writing and testing code. Although this aspect of

the Manifesto may be under-theorised within software engineering, academic

work in sociology, psychology and in wider studies of work have, as Chapter

3 discussed, looked at the role of communication in structured situations such

as the workplace.

Ethnomethodology provides an epistemological position which explains

the place of communication in constructing social order. When the Mani

festo's specific principles of "interaction" and "collaboration" are viewed eth-

nomethodologically, a firm theoretical foundation of accountability and in-

dexicality is available to understand and interpret them.

The questions which this research addresses are, when measured against

the normal standards of software engineering, extremely radical. Where most

researchers looking at the use of agile methods ask questions about workflows,

interaction with customers or the use of tools and technologies, in this research

the central questions interrogate the fundamental concept of agility. At a fun

damental level these are questions about social interactions and the construc

tion, through those interactions, of specific orientations towards a local culture

of agility within teams.

Research into communication within software teams has often been re

search into ways of engineering "better" communication tools. More funda

279

8.3 Contribution to knowledge

m ental ideas about w hat communication is or the work which is done through

communication, as discussed in Section 3.7.2, tend not to be matters of con

cern in such research. In taking an overtly ethnomethodological position to

the study of program m ing, as this work does, those questions are now matters

which are not only interesting for themselves, they become questions which

can be used to reveal the working practices of developers.

8.3 Contribution to knowledge

This research contributes to the understanding of the working practices of soft

ware developers w ithin agile teams. The most im portant of the contributions

which are m ade here are those which demonstrate the practical work which

is performed by members of agile teams as they implement the ideas of agile

methods. The research contributes by:

• showing that developers negotiate the complexities of code not through

documentation but by talking to their colleagues,

• revealing how team members coordinate and manage their work collab-

oratively using daily stand-up meetings,

• showing "the agile move": the set of cultural and organisational changes

which accompany the successful introduction of an agile m ethod into

the work of a development team,

• addressing aspects of the disciplinary debate within academic software

engineering about the status and utility of those empirical approaches

and the discipline's dom inant objectivist stance.

280

8.3 Contribution to knowledge

8.3.1 Negotiating shared understanding

Programmers working in teams have constantly to share information with col

leagues and clients. As discussed in Chapter 2, conventional understanding is

that the information which is shared within a team about a project comes from

requirements documents or the formal documentation of the system. But, as

was seen in all three of the companies studied here, statements of require

ments are often incomplete or lacking in accuracy and formal documentation

is incomplete and out-of-date - if it exists at all.

Programmers spend much of their time working with code which is built

on existing code which they need to understand but they often cannot rely on

the code to reveal its meaning or on their own interpretations of that mean

ing as shown in Section 3.5. When (Ronkko; 2007) wrote that developers must

strive to find adequate indexicality within code, he was identifying the very

plasticity of code as something which can mitigate against understanding.

Code is a malleable solution to an, often ill-defined, problem which exists

within another domain. Consequently, programmers have to use the knowl

edge and experience of their colleagues and peers to make sense of the mate

rial which they are using.

The knowledge and experience within a team are mediated through the

code which is displayed in the editor, through the results of unit tests or, as

show in Section 7.5, though ad hoc notes and diagrams. When Darren drew

the diagram which is given in Figure 7.2 he was identifying architectural struc

tures which informed subsequent work. Darren and Andy were able to frame

their talk by using the diagram to give themselves focus in a way that was seen

elsewhere by Suchman and Trigg (1996). The diagram provided a "place" in

281

8.3 Contribution to knowledge

which the components within the system could be placed in context and re

lated to each other. In so doing the diagram became indexical of the existing

code and of the problems within it.

Typically the code which is written specifically for an application makes

only a fragment of the total code in the finished product. Developers are en

gaged in a process in which they need to understand the users' requirements,

create a design for their solution and understand pre-existing code which is in

some way the foundations of their own work. Their task is to discern enough

of the meaning of designs and code that they can use it correctly in their own

applications. In their search for adequate indexicality, Ronkko (2007), pro

grammers are not trying to understand code completely, they are trying to

understand code well enough that they can use it.

The meaning of code, its role within a project and its internal structure are

matters of interest and import to the developers who are going to use or mod

ify it. Classical approaches to software engineering use documentation as a

repository for the understanding which the team collectively has, Sommerville

(2004). Such documentation is rarely updated in lock-step with changes to

the software, Lethbridge et al. (2003). Agile teams increasingly replace doc

umentation with comprehensive testing, Germain and Robillard (2005), and

frequent meetings and code reviews, Seaman and Basili (1998), Deemer et al.

(2010).

The importance of team-working as a way of building and sharing under

standing was outlined in Section 3.4. (Cahour and Pemberton; 2001) showed

that product designers move through repeated propose-evaluate cycles as they

collaborate. These cycles mirror both the talk-in-interaction which is analysed

282

8.3 Contribution to knowledge

in Chapter 7 and, at a higher level, in the cyclical structure of Scrum.

To some extent the creation of tests from requirements fixes understand

ing of the external context at a point in time. Teams which use test-driven

development write tests based on some expression of the users' requirements,

Erdogmus et al. (2005), Hannay et al. (2009). The requirements may be ex

pressed as text documents, as they were at Z*, or as use-cases or user stories

but, regardless of form, they are converted into an executable form which can

be used by an automated test rig. As the team develop code they use the auto

mated tests to validate their progress: code which passes the tests is assumed

to be complete.

But testing and automation simply ensure that the code does what it is

asked to do. They do not establish its meaning. To understand what the code

does and why it has the structures and features it has, one must either read the

documentation or ask the developer and, as discussed, the documentation is

likely to be of limited help. Therefore, finding the meaning of, and in, the code

is going to be achieved most easily and most accurately by talking to those who

developed it or who already understand it in detail.

Software is a plastic artefact whose meaning, structure and context often

require negotiation within the team. However, sharing understanding with

colleagues is potentially socially awkward. People may not want to ask for

help since doing so reveals a weakness either in their skills or knowledge, but

sharing one's understanding is difficult if the act of sharing could constitute

a face threat for the recipient. If a colleague is asking for information rather

then help responding is straightforward since the participants are equals but

their relative status is changed when one person asks for help. In that case

283

8.3 Contribution to knowledge

the helper is, however briefly, of higher status. The professional status of the

person receiving help is necessarily threatened.

Agile projects use a variety of working practices to enable developers to

talk about their work to their colleagues. These include pair programming

in XP, Scrum's sequence of meetings before, within and after a sprint and the

restricted structure of the daily stand-up. Section 2.5 examines some of the

core practices of both Scrum and XP.

In Chapter 6 we saw how at A* the daily stand-up meeting moved away

from the template of three questions when Scrum Master Dan tackled a prob

lem that Ed was having. Section 6.6 is a detailed examination of their ex

change. because the problem was an impediment, Ed had to expose his own

ignorance, a pattern which was introduced in Section 3.7.3. Dan's solution

involved a change which he had made to some of his own code and which

had caused it to work correctly in a similar situation. However, because Ed

hadn't asked for help - he was highlighting one of his impediments - Dan's

response could be interpreted as carrying a face-threat for Ed. Whilst it is not

clear if Ed welcomed Dan's input, he certainly encouraged it through a series

of replies which were "right" and "OK". Ed ended the segment by saying that

he was going to "figure it out", implying that he would work on a solution

even though Dan had just given him a good starting point for one.

At E* the developers work in pairs. A series of interactions within one

pair were shown in chapter 7. The two programmers in this study, Darren

and Andy, constantly faced the possibility that they would question each oth

ers professionalism, skills or knowledge. Darren was more experienced and

wrote some code which the two men were using in their work but Andy did

284

8.3 Contribution to knowledge

not let his status as the junior partner prevent him asking questions which

directly challenged Darren's work. Having the junior partner in a pair chal

lenge the "authority" of the more senior developer is acceptable in Extreme

Programming to the point of being explicitly encouraged, Beck (2000).

In Table 7.2 Darren and Andy are shown talking through some code which

Andy didn't understand. Andy didn't question how the code worked, he ques

tioned its purpose in the program. Andy is the junior who is questionning the

work of his more experienced superior. This is a potential face-threat to Dar

ren to which he responds by working through a long explanation of the code

and the reasons why it exists in that place and in its particular form. In so

doing he is both explaining and justifying the earlier work.

Most people would find challenges from an inexperienced junior to be ei

ther unwelcome or to be implicit challenges to authority and seniority. Wein

berg (1999), Williams and Kessler (2000) write of the importance of "egoless"

programming in a collaborative situation. A good "pair" will subsume their

individual egos to the wider needs of the project, taking reduced ownership

of their own code so that they can share in the ownership of the whole project.

Researchers such as Bryant et al. (2008), Plonka et al. (2011) have shown that

pairing works when the pair are able to think at the same level of abstraction.

This was seen in the interactions of Darren and Andy who were each able to

talk meaningfully and competently about the code. Extrinsic factors such as

their position in the organisational hierarchy or their relative length of em

ployment at E* did not seem to affect how they talked about the work, rather

whilst paired they were peers.

This research highlights two situations in which reaching understanding is

285

8.3 Contribution to knowledge

made difficult because of the requirement to find indexicality in existing code.

In both cases the nature of the code requires that the programmers negotiate

meaning through talk and then use their shared understanding as the basis

for further work. At A*, Ed and Dan had a problem with a library which Dan

claimed to have fixed through experimentation. At the time of the stand-up

Ed had not worked through his own solution-finding process and was, conse

quently, unable to treat equally with Dan. In fact, the problem they had was

that a requirement of the library was neither obvious nor documented and

both men had mis-used it. Similarly, Darren and Andy were struggling with

understanding code on which Darren worked. Darren was able to explain how

it worked or why it is present in the program. These two were much closer to

their problem code than the team at A* who are using a third-party library

which allowed them to talk through a far more detailed understanding.

8.3.2 Coordinating work

The cycle of meetings which form the core of Scrum provide a framework for

project level coordination within the team. Work is identified, its relative com

plexity scored with story points and allocated to developers. Through daily

stand-up meetings the team is able to track how well they are keeping to sched

ule and when there are impediments these are identified quickly so that effort

can be put into over-coming them.

At Z* they had a problem with scheduling. Although the managers claimed

to know both their resource availability and utilisation most projects ran ei

ther late or very close to their deadline. Their development processes were

so chaotic that they had no spare capacity for new work but, like so many

286

8.3 Contribution to knowledge

medium-sized companies, there was always extra work which needed to be

done. The use of automated build systems, bug tracking software and both

unit and integration tests are widely identified as best-practice in the indus

try. Z* used all of these techniques and certainly saw benefits. The testers

and developers were happy that both bugs and requirements were available

for all projects through the bug-tracker. The product managers felt that they

were transmitting their needs to the developers by filing bug reports and that

in writing feature requests they were documenting new requirements ade

quately.

Once Z* moved to Scrum the staff could see that whilst the tools might

be useful they weren't helping to solve their fundamental issues. Staff at all

levels reported that communication problems were foregrounded at stand-up

meetings where developers, testers and product managers had to listen to each

other talking about their work. In the stand-up which is reported here the staff

were reluctant to identify impediments whereas talking to them before their

agile move, they were all willing to list endless problems which they felt hin

dered their work. They reported that this change came through a developing

understanding of the problems which each of them faced because those prob

lems were a matter for the daily stand-up meetings and could be talked about

as they arose.

The stand-up meeting is a public forum within which team members are

displaying their competence and professionalism and their productivity to

their colleagues. A key feature of the meeting is that each person reports

their progress towards the objectives which they set at the previous meeting.

Speaking about the impediments one faces or about a failure to complete a pre

287

8.3 Contribution to knowledge

viously agreed task is going to be face-threatening - especially if colleagues do

not find impediments to their own progress. The daily stand-up is run by a

group of peers, even the Scrum Master is not someone with significant line-

managerial responsibility. There would be a far greater threat to the devel

opers' status if managers were present and if they were to later use the if the

result of the meeting when managing staff. At Z* the presence of John, a senior

developer, was not a threat. He was not responsible for time-management of

staff although he did manage the development process.

When impediments are revealed in a stand-up they can become the col

lective problem of the group. One incident in a Scrum Retrospective at Z*

highlights the change. The team was discussing the work from the previous

sprint and identifying a number of problems with the functionality they had

been implementing. The product manager was asking questions from the cus

tomer's perspective and it became clear that the functionality had not been

defined properly in the specification document and was, therefore, open to a

number of different interpretations. I showed that rather than blaming each

other for the poor specification the team acted collectively to modify the spec

ification so that it could be used in the next Sprint. Everyone I spoke to agreed

that before they introduced Scrum, disagreements between the product man

agers, acting as proxies for the customers, and the developers commonly arose

from poor documentation, failed code or missed deadlines. Once they under

stood something about each others' problems they worked more collabora-

tively.

At A* the team was as engaged with problems of functionality and code

design in their stand-up as with coordinating their work. The stand-up was a

288

8.3 Contribution to knowledge

discussion of progress towards objectives which, for a number of team mem

bers, meant that it was a discussion of the impediments they were facing. Each

person knew where rapid progress was being made and where there were de

lays. This type of information becomes especially useful at the end of a Sprint

when reflecting upon its achievements towards its objectives. The stand-ups

provided useful, although undocumented, information about the difficulties

which individual developers had during the sprint so that workloads can be

adjusted accordingly for the next iteration.

Here the Lead Developer acted as both Scrum Master and line manager.

This meant that he was in a potentially compromised position in which he

had to balance his managerial role with his role as one of the developers. The

structure of the Scrum stand-up helped him because it allowed him to control

the meeting so that each of the others had sufficient time to report their work

to the group and to identify any impediments they faced. Team members did

not have to so struggle for a chance to speak. Instead of negotiating turns

amongst themselves, the turns were allocated by the Scrum Master.

Chapter 5 showed how the Scrum Master used his status as senior devel

oper to engage with some of the technical problems his colleagues had. In his

discussion with Ed about a problem which they had both seen, Dan spoke as

a developer. They talked about the problem as a problem of programming

rather than as a problem with Ed's workload or with external impediments.

Whilst this wouldn't happen in a Scrum which adhered strictly to the guide

lines, it was a modification with which the A* team were happy. In a strict

Scrum the need for such technical discussions is identified in the stand-up but

the discussions are conducted after the meeting.

289

8.3 Contribution to knowledge

At A* technical knowledge could be shared in the stand-up and, even when

there was a disagreement, Scrum Master Dan did not take overt control over

his colleagues. Whenever he told them what to do he couched his instructions

with politeness which minimised face-threats. Dan reacted calmly when pre

sented with problems. Sam had an issue with a broken test. Dan glossed over

the detail of the problem and instead told Sam to "work it out". This phrase

was similar to the one Dan used to Ed earlier in the meeting when he said that

Ed should "maybe have a look at that". In these formulations Dan was direct

ing the other staff but not telling them what to do, instead he was relying on

them to work out the details for themselves. Having the trust of senior staff

in this way means that people do not have to be afraid to, as one apprentice

ship pattern discussed in Section 3.7.3, has it, "expose your ignorance". When

face-threats are minimised there is less reputational damage in discussing dif

ficulties which one has with a piece of work.

Away from the ritual meetings of Scrum, programmers are constantly hav

ing to coordinate amongst themselves. At both Z* and E* automated build

systems were in use. Completed code was checked in to a version control

system before the entire development application was built so that a series

of integration test could be rim. Before check-in the programmers would ask

their colleagues if they were using the system and if they were when it would

be free. Developers at all three companies would regularly talk to each other

about their work either to solve problems or to uncover the work which was

happening elsewhere so that efforts could be coordinated.

290

8.3 Contribution to knowledge

8.3.3 The Agile Move

Two of the three companies which were studied here were long-term users of

agile methods and the research undertaken with them was typical in that it

examined how they worked within the broad framework of agility. The study

of Z* was different because it was a study of a team as they began to use Scrum.

The agile move is an interesting one for a development team since it brings

major changes in working practice with it. In the case of Z* pressure to become

agile came from developers who wanted to reduce some of the tension and

conflict in the company. Not only were conflicts reduced, such major cultural

changes came with the agile move that the use of Scrum spread throughout

the company to all project teams.

Before Z* made their agile move the Project Manager had been concerned

that he would lose control of the work they were doing. He was used to using

spreadsheets, Gantt charts and Microsoft Project to develop a holistic view of

the activities of all project-based staff. All of this documentation was subject

to constant change as customers constantly adjusted their requirements - in

effect it was always out of date. The Project Manager's "control" of resources

was something of an illusion, he actually spent his time tracking and auditing

resources rather than deciding how they could best be used.

Following the introduction of Scrum the product managers, developers

and QA staff were integrated into a single team. This had two effects. First

the team was largely able to manage its own resources and to make resourcing

decisions based upon the current situation. Secondly the relationship between

product managers and developers changed significantly as each group came

to share the difficulties of the other during their daily meetings.

291

8.3 Contribution to knowledge

At Z* the benefits of agile methods were real although not readily mea

surable. Improvements in communication were reported by many of the staff

but those weren't measured in increases in the amount of code produced or

reductions in the number of bugs. Intangible benefits were reported: staff

understood each other, there was an increase in cooperation and the product

managers, sales staff and developers worked more closely as a team.

The team from Z* which was followed here experienced some of the clas

sic benefits of agility. Whilst the developers were keen to experiment with

agility, they were cautious in their introduction of Scrum. Staff attended train

ing courses ahead of the agile move and they brought in an experienced Scrum

Coach to mentor them. Using a Coach meant that they were able to avoid po

tential misunderstandings in their implementation. The Coach guided them

through the process, in particular showing techniques for running the various

Scrum meetings which had been shown to be effective elsewhere.

The Scrum team at A* hadn't used coaching or training when they began.

They reported that both senior developer Dan and Ed had used Scrum in pre

vious jobs. Their understanding of the method was shared with their col

leagues. The team at E* used an ad hoc collection of agile practices picked up

from previous jobs or at user groups and conferences.

The Agile Move which Z* made was based on the prior experience of ag

ile methods of their coach. The use of agile methods at A* and E* was, in

both cases, simplified because they employed staff who had already worked in

that way. Running self-managed, iterative projects is complicated. The project

management is not necessarily more complex than in a traditional project, in

fact that might be easier, but the processes which are used in agile are diffi

292

8.3 Contribution to knowledge

cult ones. This research examines two of them: stand-up meetings and pair

programming. Despite agile's implicit commitment to egoless programming,

each approach puts developers into situations which are, potentially, socially

and professionally threatening and which require careful interactional man

agement. As this research has demonstrated, part of the skill of Scrum Masters

or "pairs" is to manage the threats whilst working cooperatively. The cultural

shift which agile brings can, as Z* found, change an organisation. Given major

opposition from some senior staff each of those pitfalls could have lead to the

cancellation of the Scrum pilot and a return to the tyranny of the Gantt chart.

The detailed sections of Conversation Analysis throughout this research

show that conversations in a knowledge-work setting are a delicate balancing

act. In daily stand-ups the developers constantly face threats to their status as

their approach to their work is exposed to the scrutiny of peers. Two things

ameliorate the face threats in these meetings. First the Scrum Master plays

an essential role in facilitating the stand-up, ensuring that the meeting rims

smoothly by sticking to its simple structure. The art of managing a stand-up

seems to be in keeping the meeting on track whilst not becoming authoritarian

or overly managerial. Both John, at Z*, and Dan, at A*, were able to move

from person to person and topic to topic smoothly and without dissent. At no

time in any of the stand-ups which were seen at either company was there a

disagreement about the management of the meeting. None of the participants

asked for extra time or expressed the need to say more or to return to earlier

points.

The stand-up at A* shows the second way in which threat is avoided in a

stand-up. The meeting was seen to have a social function in helping develop

293

8.3 Contribution to knowledge

ers bond as a team. At A* the team were mostly at ease with each other, they

were able to use humour throughout the meeting. Whilst taking their work

and their professional status seriously, frequent banter between team mem

bers served to lighten the mood of the meeting. In this respect the team at

A* was different to that at Z*. Stand-up meetings at Z* had far less off-topic

banter and little or no discussions beyond the work process. The Z* stand-ups

adhered very closely to the pattern of those from an idealised Scrum. These

stand-ups have many of the features of a Community of Practice. Although

the meetings are structured the talk-in-interaction does not have to be and so

stand-ups provide a space in which people can "share their experiences and

knowledge in free-flowing and creative ways", Wenger and Snyder (2000).

Pair programming is a fundamentally different way of working for pro

grammers compared to their normal solitary work. The purpose of pairing

is to share knowledge and to design collaboratively. Using detailed conversa

tion analysis revealed this is what happens case but that talk can be focused

through the study sections of code or the creation of notes and diagrams.

Chapter 7 showed how the diagram given in Figure 7.3 allowed Darren and

Andy to negotiate their understanding of the architecture of the system. The

diagrams, code and ad hoc notes which developers such as these use all facili

tate the negotiation of meaning. When there is such a focus for talk, it becomes

the embodiment of practical indexicality which can be applied to the problem

at hand to enable collaborative sense-making.

294

8.3 Contribution to knowledge

8.3.4 Qualitative software engineering research

Section 3.8 discussed the place of qualitative research studies in software en

gineering. The discipline has traditionally placed most value on quantitative

work based on experimentation or on engineering novel solutions. Both re

searchers and practitioners tend to an objectivist approach in which the point

of research is to find better ways to build better software. Whether they are

writing a compiler or evaluating the use of an agile method the vast major

ity of software engineering research is quantitative, researchers measure and

tally the impact of their ideas on developers. Too often, though, sample sizes

are small or the subjects are students who, whilst readily available and cheap,

are not representative of the wider community of programmers.

An alternative community of qualitative researchers is growing. These re

searchers are interested in human aspects of software engineering, in under

standing how developers actually behave. Many remain objectivist in outlook.

They want to help improve development practices but to do so from an under

standing of what really happens when people write code.

This research has shown that qualitative techniques are appropriate ap

proaches to gathering data about professional developers as they manage their

work and understand architecture, design and code. Studying developers

in their workplace as they perform their daily tasks revealed their situated

knowledge and understanding. When staff at Z* talked about problems of

project management, for example, they were talking about their specific and

unique problems on their projects. When Z* began to use Scrum the interest lay

not in how Scrum might, in the abstract case, change communication patters.

Rather, the interest was in the changes in communication which happened for

295

8.4 Further work

that group of people on that project at that time.

Software engineering research often searches for general problems or so

lutions which can be applied widely. Hence the question which people ask

about agile methods is more likely to be "how are they applied" than "what

problem might they address for this team". But the benefits, or otherwise, of

the adoption of any technique are contingent upon the context within which

it is used. The same is true of the negotiation of understanding.

At E* Darren and Andy spent a long time trying to understand existing

code. They didn't discuss the details of class structures or the signature of

individual methods, instead they talked through the meaning of the code for

their work in their project. Indexicality was seen to be located in the specific

detail of their work. The type of situated understanding towards which they

worked is different to more general ideas about the meaning of code.

The research presented here shows that qualitative empiricism lets the re

searcher reveal the located understanding and practices of practitioners. It

shows the culture of specific teams working together at one moment in time.

Whilst this research is, obviously, not the first to draw out the importance of

locally situated workplace culture it does reinforce the utility of fieldwork in

understanding how programmers actually work together.

8.4 Further work

This research has demonstrated that the ways in which developers construct

and understand their work can be revealed and analysed through ethnogra

phy, audio recordings and detailed conversation analysis. A number of other

aspects of programming could be profitably explored either by extending this

296

8.4 Further work

work or by building on the current findings. In this Section some of the pos

sibilities for further work will be introduced.

Two of the Agile Manifesto's four values place importance on communica

tion by favouring Individuals and Interactions and Customer Collaboration. The

other two values are Working Software and Responding to Change. The Man

ifesto's values are important in this work in its themes of examining under

standing and coordination. Agility is embodied in the relationship between cus

tomers and developers through which requirements are identified. As cus

tomers and developers understand more about each other the set of achiev

able requirements is refined and may even, by the end of a project, change

completely. Researchers have undertaken numerous projects in gathering re

quirements from, and with, users. Little work has been done to understand

how those requirements are interpreted by the people who are implementing

them in code. There is scope to use the techniques from this research to study

what requirements mean to programmers and how those meanings are made

manifest in tests and code which they write.

Each of the cases which were used in this study was of a small, motivated

team working for a small company. Larger organisations which have many

teams working together on projects have complex coordination needs. When

projects are distributed across teams the programmers within those teams

have them same need to share information as they would have in a small

team but with the added complexities which distance brings. Whilst there

have been research studies which examined how distributed teams coordi

nate their work, few studies have looked at how developers share their un

derstanding of the code which they write or use with colleagues who are in

297

8.4 Further work

different locations. In the study of A* in this project one team member was

working remotely but he checked in with the rest of the team throughout the

day and often attended face-to-face meetings and social events with them and

was fully integrated into the team. It would be interesting to see if similar

levels of integration are possible in more widely dispersed teams.

The analysis from E* included an examination of a pair of programmers

using an ad hoc diagram as a tool for understanding the architecture and use

of a piece of code. Diagrams are one of the most commonly used documen

tation techniques in software development. Programmers have to be able to

think about the detail of one part of a problem, or solution, whilst ignoring

the detail in the rest of the system. Software is simply so complex that it can

not be thought about without hiding details which are unnecessary at a given

moment. Diagrams appear to provide a tool through which complexity can

be described whilst the detail of that complexity remain hidden. There have

been some studies into the use of formalised notations such as UML but few

into the ways in which ad hoc diagrams help programmers manage complex

ity. Studies which build on the work undertaken at E* would generate new

understanding of how programmers manage complexity.

Whilst diagrams are important, programmers mostly locate their under

standing of problems and solutions in the code which they write. This re

search has shown the central importance of code in the working lives of pro

grammers. A common-sense understanding of programming would, of course,

identify code as the single most important artefact in the whole process of

writing software. The discussions in the daily stand-up meetings at Z* and

A* were meant to be discussions about the process of work but often became

298

8.5 Conclusions

discussions about the structure, meaning or complexity of the code. The con

versations at E* were all about matters of code. Given the importance of code

one might expect that software engineering would place it at the heart of dis

ciplinary interest. Whilst there has been much work on complexity and on

language design, much less work has been done to look at how programmers

understand their code. Expanding this research to specifically study how rep

resentations either as code or in diagrams enable shared understanding would

be important and useful work.

Finally, many developers have moved to test-driven or behaviour-driven

approaches to development. The conversion of user requirements into speci

fications for tests or behaviours and the use of those to define the interface of

code is another interesting area for study. Many research question arise from

the use of tests including what it means to a developer to program to a test,

how the tests are tested, how tests feed into software quality audits and other

approval processes and even what processes are used to test the tools which

run automated testing suites on which developers come to rely.

8.5 Conclusions

Software development is sometimes seen as a purely technical activity that

appeals to introverts. The central argument of the Agile Manifesto was its ob

servation that if software developers communicate with each other and with

their clients they will create better products in a more timely fashion. This

research asked three questions:

• how do software teams coordinate their work through their talk-in-interaction

299

8.5 Conclusions

about that work?

• how do software development teams which use agile methods create

and sustain an agile culture?

• how do software engineers talk about code so as to make sense of it?

The case studies were of three organisations which had different experi

ence with agile methods and which used different methods in their work. Be

tween them these studies not only helped to answer the research questions,

they also demonstrated that software development is a form of heterogeneous

engineering. It was shown that when writing software successful developers

use a variety of forms of social interaction alongside their technical knowledge

and practical competencies to achieve their goals.

Coordinating the work of teams of developers has always been challeng

ing. The discipline of software engineering grew from the idea of a software

crisis in the 1960s which was, itself, predicated on developers inability to de

liver software on time and under budget. Software engineers responded to the

crisis by codifying project methodologies that centralized the control of work

in the person of the project manager. Agile teams take the control of their work

upon themselves. The studies at A* and Z* showed this happening. At A* an

experienced Scrum team used their daily meetings to as a forum at which each

member informed the rest of the team about the work which they had done

and were planning to do. Although the A* team took a relaxed and informal

approach to their interactions, the stand-up was the point in each working day

at which they shared information about the progress of the project.

The Agile Manifesto is not only a call for changes in working practices, but

also for a change of culture within software development. Perhaps the Mani

300

8.5 Conclusions

festo resonates with so many developers because it places them at the centre

of the development of software. The study at Z* demonstrated the beneficial

power which such a cultural change can have. Informants at Z* described it as

an organisation in which conflict between different teams, especially between

those who were customer-facing and those who engineered the product, were

endemic. The introduction of Scrum at Z* had relatively limited impact on the

product life-cycle since they already ran to tight deadlines and iterative release

cycles. The major impact of Scrum was to improve communication between

all of those who were working on a project. In the initial Scrum project the

culture changed from one which was grounded in distrust and conflict to one

in which people cooperated, in part because they understood the difficulties

which their colleagues were having.

Agile methods such as Scrum can change organizational culture in terms of

the way in which work is managed but they have less impact upon the practical

work of software engineers as they design, write and test code. The program

mers at E* used pair-programming as a way in which they could work together

to produce their software. Pair programming creates a situation in which de

velopers must talk about the code they are writing. More than that, however,

they must share their understanding of both that code and the existing code

on which it is built. The production of code at E* was seen to arise from the

context of its production through the history of earlier decisions which had

created previous structures and functions. However, the historical context was

hidden, being neither embedded in the code nor available in design documen

tation. Context was revealed only when the programmers talked about what

the code did, why it did it and why it had the legacy structure it had.

301

8.5 Conclusions

In some ways software engineers are bricoleurs for whom successful work

is not simply a matter of technical ability but also of an appreciation of the

context of the production of that software. Producing working code which

meets the requirements of end-users is possible because software developers,

both individually and in teams, can communicate effectively. Agile methods

provide structures, spaces and working practices which foster cultures that

promote and value just such effective communication.

302

Bibliography

Noura Abbas, Andrew Gravell, and Gary Wills. Historical roots of agile
methods: where did agile thinking come from? In Agile Processes and
extreme programming in Software Engineering, pages 94-103, 2008. URL
h t t p : / / e p r in t s . so to n . a c .uk/266606/.

Theodore Abel. The operation called verstehen. American Journal of Sociology,
pages 211-218,1948.

A Abran, J.W. Moore, P Bourque, and R Dupuis, editors. Guide to the Software
Engineering Body of Knowledge. IEEE Computer Society, 2004 edition, 2004.
URL h t t p : //www.computer. o rg /po rta l/w eb /sw eb o k /h tm l/co n ten ts .

ACM. Computing Degrees and Careers, 2012. URL h t t p :
//co m p u tin g ca ree rs . acm. org/?page_id=12.

Zaidoun Al-Zoabi. Introducing discipline to xp: Applying prince2 on xp
projects. In Information and Communication Technologies: From Theory to Ap
plications, 2008. ICTTA 2008. 3rd International Conference on, pages 1-7. IEEE,
2008.

Christopher Alexander. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, 1978. ISBN 978-0195019193.

Christopher Alexander. The timeless way of building. Oxford University Press,
1979.

Bob Anderson. Work, Ethnography and System Design. In A Kent and J G
Williams, editors, The Encyclopedia of Microcomputers, pages 159-183. Marcel
Dekker, 1997.

Erik Arisholm, Hans Gallis, Tore DyM, and Dag I. K. Sjo berg. Evaluating Pair
Programming with Respect to System Complexity and Programmer Exper
tise. IEEE Transactions on Software Engineering, 33(2):65-86,2007.

304

http://eprints.soton.ac.uk/266606/
http://www.computer.org/portal/web/swebok/html/contents

Bibliography

Paul Atkinson. Ethnomethodology: A critical review. Annual Review of Sociol
ogy, 14:441^465,1988.

Rajiv D Banker, Gordon D Davis, and Sandra A Slaughter. Software devel
opment practices, software complexity and software maintenance perfor
mance: a field study. Management Science, 44(4):433^450,1998.

Francesca Bargiela-Chiappini. Face and politeness: new (insights) for old (con
cepts). Journal of Pragmatics, 35(10):1453-1469,2003.

Stephen R Barley. Technology, power, and the social organization of work: To
wards a pragmatic theory of skilling and deskilling. Research in the Sociology
of Organizations, 6:33-80,1988.

Chris Bates, Kathy Doherty, and Karen Grainger. "What's the Sense of Using
Echo?" Social Interaction in a Pair Programming Session. In RAISE 2011,
Preston, UK, 2011.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
first edition, 2000.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun
ningham, Martin Fowler, James Grenning, Jim Highsmith, Hunt Hunt,
Ron Jeffries, Jon Kern, Brian Marick, Robert C Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for Agile Software
Development, 2001. URL h t t p : / / www.agilemanif e s to . o rg /.

Andreas Becks, Tim Reichling, and Volker Wulf. Social capital and informa
tion technology, chapter Expertise finding: approaches to foster social capital,
pages 333-354. MIT Press Cambridge, MA, 2004.

Oddur Benediktsson and Darren Dalcher. Effort estimation in incremental
software development. IEEE Software Proceedings, 150(6):351-358,2003.

Gabrielle Benefield. Rolling out Agile in a Large Enterprise. In 41st Hawaii
International Conference on System Sciences, Hawaii, USA, January 2008. IEEE.

Peter Berger and Thomas Luckmann. The social construction of reality. Penguin
books, 1966.

Alan F. Blackwell, Kirsten N. Whitley, Judith Good, and Marian Petre. Cogni
tive factors in programming with diagrams. Artificial Intelligence Review, 15
(l-2):95-114,2001.

B. Boehm and R. Turner. Balancing agility and discipline: A guide for the perplexed.
Addison-Wesley, 2004.

305

http://www.agilemanif

Bibliography

Barry Boehm. A Spiral Model of Software Development and Enhancement.
IEEE Computer, 21(5):61-72,1988.

Barry Boehm and Richard Turner. Management challenges to implementing
agile processes in traditional development organisations. IEEE Software,
pages 30-39, September/October 2005.

R. J. Boland and R. V. Tenkasi. Perspective making and perspective taking in
communities of knowing. Organization science, 6(4):350-372,1995.

Eric Brechner. I.M. Wrights Hard Code. Microsoft Press, 2007.

Fred P. Brooks. The Mythical Man-Month anniversary ed. Addison-Wesley Long
man, 1995. ISBN 0201835959.

Antony Bryant. 'It's Engineering Jim.. .but not as we know it' Software Engi
neering - solution to the software crisis, or part of the problem ? In ICSE
2000, pages 77-86. ACM, 2000. ISBN 1581132069.

Sallyann Bryant, Pablo Romero, and Benedict du Boulay. Pair programming
and the mysterious role of the navigator. International Journal of Human-
Computer Studies, 66(7):519-529, 2008.

Erik Brynjolfsson. The productivity paradox of information technology. Com
munications of the ACM, 36(12):66-77,1993.

Luigi Buglione and Alain Abran. Improving Estimations in Agile Projects:
issues and avenues. In 4th Software Measurement European Forum, pages 1-31,
Rome, May 2007.

Monika Biischer. Social life under the microscope? Sociological Research Online,
10(1), 2005.

Graham Button. The ethnographic tradition and design. Design Studies, 21:
319-332,2000.

Beatrice Cahour and Lyn Pemberton. Keeping the Peace: A Model of Con
versational Positioning in Collaborative Design Dialogues. A I & Society, 15:
344-358,2001.

Jeff Carver, Carolyn Seaman, and Ross Jeffery. Using Qualitative Methods in
Software Engineering. Empirical Software Engineering, 2004.

David Chelimsky and David Astels. The RSpec book: behaviour-driven develop
ment with RSpec, Cucumber, and Friends. Pragmatic Bookshelf, 2010.

306

Bibliography

Sebastien Cherry and Robbillard P. N. Communication problems in global
software development: spotlight on a new field of investigation. In Third
International Workshop on Global Software Development, Edinburgh, UK, May
2004.

J. Chong. Social behaviors on XP and non-XP teams: a comparative study.
In Agile Development Conference (ADC'05), pages 39-48. IEEE Comput. Soc,
2005.

Jan Chong and Tom Hurlbutt. The Social Dynamics of Pair Programming. In
29th International Conference on Software Engineering. IEEE Computer Society,
2007.

CMMI Product Team. CMMI for Systems Engineering/Software Engineering,
Version 1.1, Continuous Representation (CMMI-SE/SW, VI.1, Continuous)
(CMU/SEI-2002-TR-001). 2001. URL h t t p : //www. s e i . emu. e d u / l ib ra ry /
a b s tr a c ts / re p o r ts /0 2 tr0 0 1 . cfm.

Jennifer Coates. Talk in a play frame: More on laughter and intimacy. Journal
of Pragmatics, 39(1):29 - 49, 2007. Focus-on Issue: Topics in Applied Prag
matics.

Alistair Cockburn and Jim Highsmith. Agile software development: the peo
ple factor. IEEE Computer, pages 131-133, November 2001.

Mike Cohn and Doris Ford. Introducing an Agile Process to an organisation.
Computer, pages 74-78, June 2003.

Melvin E Conway. How do committees invent? Datamation, April 1968.

Michael Coram and Shawn Bohner. The Impact of Agile Methods on Software
Project Management. In Proceedings of the 12th IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems. IEEE Computer
Society, 2005.

Malcolm Coulthard. Discourse Analysis in English- A Short Review of the
Literature. Language Teaching, 8(02):73-89, December 1975.

Mike Crang and Ian Cook. Doing Ethnographies. Sage Publications, 2007.

Nigel Cross. Creativity in Design: Analyzing and Modeling the Creative Leap.
Leonardo, 30(4):311-317,1997.

Nigel Cross and Anita Clayburn Cross. Observation of teamwork and social
processes in design. Design Studies, 16:143-170,1995.

307

Bibliography

K. Crowston and E.E. Kammerer. Coordination and collective mind in soft
ware requirements. IBM Systems Journal, 3(2):227-246,1998.

Cleidson R. B. de Souza and David F. Redmiles. An empirical study of software
developers' management of dependencies and changes. In Proceedings of
ICSE 2008, page 241. ACM Press, 2008.

Pete Deemer, Gabrielle Benefield, Craig Larman, and Bas Vodde.
The Scrum Primer. Technical report, The Scrum Foundation,
2010. URL h ttp ://a sse ts .sc rm n fo u n d a tio n .co m /d o w n lo ad s/1 /
scrum primer121.p d f71294640838.

Tom DeMarco. Slack. Broadway books, 2002.

Tom DeMarco and Timothy Lister. Peopleware: productive projects and teams.
Dorset House, 2nd edition, 1999.

Tom DeMarco, Peter Hruschka, Timothy Lister, Steve McMenamin, James
Robertson, and Suzanne Robertson. Adrenaline Junkies and Template Zombies.
Dorset House, first edition, 2008. ISBN 978-0-932633-67-5.

M. Denscombe. Communities of Practice: A Research Paradigm for the Mixed
Methods Approach. Journal of Mixed Methods Research, 2(3):270-283, July
2008.

M. D'Eredita and C. Barreto. How Does Tacit Knowledge Proliferate? An
Episode-Based Perspective. Organization Studies, 27(12):1821-1841, Decem
ber 2006.

Franchise Detienne. Design Strategies and Knowledge in Object-Oriented
Programming: Effects of Experience. Human-computer interaction, 10(2-3):
129-170,1995.

Jorge L. Diaz-Herrera. The "engineering" of software, a different kind of en
gineering. ACM SIGSOFT Software Engineering Notes, 34(5):1, October 2009.

Yvonne Dittrich and Kari Ronkko. Talking design. Technical Paper, 2002.

Peggy Doershuck. Incorporating Team Software Development And Quality
Assurance In Software Engineering Education. In Frontiers in Education,
2004. FIE 2004. 34th Annual, Savannah, Georgia, USA, October 2004. IEEE.

P. Dourish and G. Button. On "technomethodology": foundational relation
ships between ethnomethodology and system design. Human-computer in
teraction, 13(4), 1998.

308

http://assets.scrmnfoundation.com/downloads/1/

Bibliography

Jack Duncan and J. Philip Feisal. No laughing matter: Patterns of humor in
the workplace. Organizational Dynamics, 17(4):18-30, March 1989.

Emile Durkheim and Lewis A. Coser. The division of labor in society. Free Press,
1997.

Carol S. Dweck. Motivational processes affecting learning. American Psychol
ogist, 41(10):1040-1048,1986.

T. Dyb& and T. Dingsoyr. Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50(9-10):833-859,
August 2008.

Tore Dyb&, Erik Arisholm, Dag I K Sjoberg, Jo E Hannay, and Forrest Shull.
Are two heads better than one? On the Effectiveness of Pair Programming.
IEEE Software, 24(November/December):12-15,2007.

Penelope Eckert. Communities of Practice. In Encyclopedia of language and
linguistics., pages 1-4. Elsevier B.V., 2006.

Kathleen M. Eisenhardt. Building theories from case study research. Academy
of management review, 14(4):532-550,1989.

Amr Elssamadisy. InfoQ: Is the Agile Community Being Unreason
able?, March 2010. URL http ://w w w . in f oq. com /new s/2010/03/agile-
unreasonable.

Paul M Eonardi. The Mythos of Engineering Culture: a study of communicative
practices and interation. Master of arts, University of Colorado, 2003.

Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the Effective
ness of the Test-First Approach to Programming. Proceedings of the IEEE
Transactions on Software Engineering, 31(1), January 2005.

Sean Esbjorn-Hargens. Integral research: a multi-method approach to investi
gating phenomena. Constructivism in the Human Sciences, 11(1):79-107,2006.

Alberto Espinosa, Sandra Slaughter, James Herbsleb, Robert Kraut, Javier
Lerch, and Audris Mockus. Shared Mental Models, Familiarity, and Coordi
nation: a multi-method study of distributed software teams. In Proceedings
of 23rd International Conference on Information Systems, pages 425-433,2002.

Eric Evans. Domain-driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2003.

Norman Fairclough. Language and Power. Pearson Education, second edition,
2001a.

309

http://www

Bibliography

Norman Fairclough. Critical discourse analysis as a method in social scientific
research. In Ruth Wodak and Michael Meyer, editors, Methods of Critical
Discourse Analysis, pages 121-138. Sage Publications, 2001b.

Samer Faraj and Lee Sproull. Coordinating expertise in software development
teams. Management science, 46(12):1554-1568,2000.

Robert R Faulkner and Howard S Brecker. Do you know...? The Jazz Repertoire
in Action. The University of Chicago Press, 2009.

Karl Flinders. The world's biggest civilian IT project finally looks
to have failed but is the NHS IT failure a surprise?, 2011. URL
http://w w w .com puterw eekly. com /b lo g s/in s id e-o u tso u rc in g /2 0 1 1 /
0 9 / th e -w o r ld s -b ig g e s t - c iv i l ia n - i t - p r o je c t- f in a l ly - lo o k s - to -
h a v e - f a i le d -b u t- i t - is -n o - s u rp r is e .h tm l .

Samuel C Florman. The Existential Pleasures of Engineering. St. Martin's Press,
first edition, 1976.

Bent Flyvbjerg. Five misunderstandings about case-study research. Qualitative
inquiry, 12(2):219-245,2006.

Martin Fowler. Technical Debt, 2009. URL h ttp ://m a rtin fo w le r.c o m /
b lik i/T e c h n ic a lD e b t.html.

W. L. Gardner and M. J. Martinko. Impression Management in Organizations.
Journal of Management, 14(2):321-338, June 1988.

Harold Garfinkel. Ethnomethodology's program. Social Psychology Quarterly,
59(1):5-21,1996.

Robert P Gephart. The Textual Approach: risk and blame in sensemaking.
Academy of Management Journal, 36(6):1465-1514,1993.

Eric Germain and Pierre N. Robillard. Engineering-based processes and ag
ile methods for software development: a comparative study. The journal of
systems and software, 75:17-27,2005.

John Gill and Phil Johnson. Research methods for managers. Sage, 3rd edition,
2002.

Barney Glaser and Anselm Strauss. The Discovery O f Grounded Theory: Strate
gies For Qualitative Research. Aldine Transaction, 1967.

Robert L. Glass. What's Wrong with Software Reuse?, 2001. URL h t t p : / /
www. stickym inds. com /s. asp?F=S2731_C0L_2.

310

http://www.computerweekly.com/blogs/inside-outsourcing/2011/
http://martinfowler.com/
http://www.stickyminds.com/s.asp?F=S2731_C0L_2

Bibliography

Robert L. Glass. Software Creativity 2.0. d.* Books, 2nd edition, 2006a.

Robert L. Glass. The Standish Report : Does It Really Describe a Software
Crisis ? Communications of the ACM, 49(8):15-16,2006b.

Erving Goffman. Embarrassment and social organization. American Journal of
Sociology, 62(3):264-271, November 1956.

Erving Goffman. The presentation of self in everyday life. Doubleday, 1959.

Erving Goffman. Interaction Ritual: essays on face-to-face behaviour, chapter On
face-work: an analysis of ritual elements in social interaction. Anchro Books,
New York, 1964.

Charles Goodwin. Action and embodiment within situated human interac
tion. Journal of Pragmatics, 32:1489-1522,2000.

Anandavisam Gopal, Tridas Mukhopadhyay, and Mayuram Krishnan. The
Role of Software Processes and Communication in Offshore Software De
velopment. Communications of the ACM, 45(4):193-200, April 2002.

Rebecca E. Grinter, James D. Herbsleb, and Dewayne E. Perry. The Geography
of Coordination : Dealing with Distance in R & D Work. In Proceedings of
GROUP 99, pages 306-315,1999.

GWT. Google Web Toolkit. URL h t t p s : / / d ev e lo p ers . goog le . com/web-
t o o lk i t / .

Mark Handel and James D. Herbsleb. What is chat doing in the workplace? In
Proceedings of the 2002 ACM conference on Computer supported cooperative work,
pages 1-10. ACM, 2002.

Jo E. Hannay, Tore Dybd, Erik Arisholm, and Dag I.K. Sjoberg. The effective
ness of pair programming: A meta-analysis. Information and Software Tech
nology, 51(7):1110-1122, July 2009.

Jo E Hannay, Erik Arisholm, Harald Engvik, and Dag I K Sjoberg. Effects of
Personality on Pair Programming. IEEE Transactions on Software Engineering,
36(l):61-80,2010.

Geir K. Hanssen, Aiko Fallas Yamashita, Reidar Conradi, and Leon Moonen.
Maintenance and agile development: Challenges, opportunities and future
directions. In 2009 IEEE International Conference on Software Maintenance,
pages 487-490. IEEE, September 2009.

311

Bibliography

Richard Harper, Christian Bird, Thomas Zimmermann, and Brendan Murphy.
Dwelling in software: Aspects of the felt-life of engineers in large software
projects. In ECSCW 2013: Proceedings of the 13th European Conference on Com
puter Supported Cooperative Work, 21-25 September 2013, Paphos, Cyprus, pages
163-180. Springer, 2013.

Orit Hazzan, Tali Seger, and Gil Luria. How Did the Originators of the
Agile Manifesto Turn from Technology Leaders to Leaders of a Cul
tural Change?, February 2010. URL h t t p : //www. in f oq. c o m /a r t ic le s /
m a n ife s to -o r ig in a to r s .

James L. Heap. Conversation analysis m ethods in researching language and
education. In Encyclopedia of language and education, pages 217-225. Springer,
1997.

C Heath, H Knoblauch, and P Luff. Technology and social interaction: the
emergence of 'workplace studies'. The British Journal of Sociology, 51(2):
299-320, June 2000.

Christian Heath and Paul Luff. Technology in Action. Cambridge University
Press, 2000.

James D. Herbsleb and Audris Mockus. An Empirical Study of Speed and
Communication in Globally Distributed Software Development. IEEE
Transactions on Software Engineering, 29(6):481^494, June 2003.

James D. Herbsleb, David L. Atkins, David G. Boyer, Mark Handel, and
Thomas A. Finholt. Introducing instant messaging and chat in the work
place. In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 171-178. ACM, 2002.

John Heritage. Goffman, Garfinkel and conversation analysis. In M argaret
Weatherell, Stephanie Taylor, and Simeon Yates, editors, Discourse Theory
and Practice: a reader, pages 47-56. Sage Publications, first edition, 2001.

John Heritage. Conversation analysis and institutional talk. Handbook of lan
guage and social interaction, pages 103-147, 2005.

John Heritage. Conversation analysis as social theory. The new Blackwell com
panion to social theory, pages 300-320, 2008.

M orten Hertzum and Annelise Mark Pejtersen. The information-seeking prac
tices of engineers: searching for documents as well as for people. Information
Processing and Management, 36:761-778, 2000.

312

Bibliography

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS quarterly, 28(1):75-105,2004.

Janet Holmes. Modifying Illocutionary Force. Journal of Pragmatics, 8:345-365,
1984.

Janet Holmes. When small talk is a big deal: Sociolinguistic challenges in the
workplace. Second language needs analysis, pages 344-372,2005.

Janet Holmes. Making Humour Work: Creativity on the Job. Applied Linguis
tics, 28(4):518-537, December 2007.

Janet Holmes and Meredith Marra. Having a laugh at work: how humour
contributes to workplace culture. Journal of Pragmatics, 34:1683-1710,2002.

H. Holmstrom, B. Fitzgerald, P.J. Agerfalk, and E.O. Conchuir. Agile prac
tices reduce distance in global software development. Information Systems
Management, Summer:7-18,2006.

Dave H. Hoover and Adewale Oshineye. Apprenticeship Patterns. Guidance for
the aspiring software craftsman. O'Reilly and Associates, 2010.

Robert J. House. Scientific investigation in management. Management Interna
tional Review, 10(4/5):139-150,1970.

Hai Huang, WT Tsai, S. Bhattacharya, XP Chen, Y. Wang, and J. Sun. Business
rule extraction from legacy code. In Computer Software and Applications Con
ference, 1996. COMPSAC'96., Proceedings of 20th International, pages 162-167.
IEEE, 1996.

John Hughes, Jon O'Brien, Tom Rodden, Mark Rouncefield, and Ian Som-
merville. Presenting ethnography in the requirements process. In Require
ments Engineering, 1995., Proceedings of the Second IEEE International Sympo
sium on, pages 27-34. IEEE, 1995.

Jez Humble and Joanne Molesky. Why enterprises must adopt devops to en
able continuous delivery. Cutter IT Journal, 24(8):6,2011.

Ian Hutchby. Beyond Agnosticism?: Conversation Analysis and the Sociolog
ical Agenda. Research on Language & Social Interaction, 32(l):85-93,1999.

Dell Hymes. Toward ethnographies of communication. Language and literacy
in social practice: A reader, page 11,1994.

Sylvia Ilieva, Penko Ivanov, and Eliza Stefanova. Analyses of an agile method
ology implementation. In Proceedings of the 30th EUROMICRO Conference.
IEEE Computer Society, 2004.

313

Bibliography

Matthias Jarke, X. Tung Bui, and John M. Carroll. Scenario Management: An
Interdisciplinary Approach. Requirements Engineering, pages 1-31,1999.

Gail Jefferson. Is "no" an acknowledgement token? comparing american and
british uses of (+)/(-) tokens. Journal of Pragmatics, 34(10):1345-1383,2002.

James J. Jiang, Gary Klein, Hsin-Ginn Hwang, Jack Huang, and Shin-Yuan
Hung. An exploration of the relationship between software development
process maturity and project performance. Information & Management, 41
(3):279-288,2004.

Jaak Jurison. Software project management: the manager's view. Communica
tions of the AIS, 2(3):2,1999.

Henrik Kniberg. Scrum and XP from the Trenches. Technical report, Crisp,
2007.

Karin D Knorr-Cetina. How Superorganisms Change : Consensus Formation
and the Social Ontology of High- Energy Physics Experiments. Social Studies
of Science, 25(1):119-147,1995.

Osamu Kobayashi, Mitsuyoshi Kawabata, Makoto Sakai, and Eddy Parkinson.
Analysis of the interaction between practices for introducing xp effectively.
In Proceedings of the 28th international conference on Software engineering, pages
544-550. ACM, 2006.

Julia Kotlarsky and Ilan Oshri. Social ties, knowledge sharing and successful
collaboration in globally distributed system development projects. European
Journal of Information Systems, 14(l):37-48, March 2005.

Robert E. Kraut and Lynne A. Streeter. Co-ordination in software develop
ment. Communications of the ACM, 38(3):69-81, March 1995.

Robert E. Kraut, Carmen Egido, and Jolene Galegher. Patterns of Contact and
Communication Collaboration in Scientific Research Collaboration. In Pro
ceedings of the 1988 ACM conference on Computer-supported cooperative work.
IEEE, 1988.

Pikka-Maaria Laine and Eero Vaara. Struggling over subjectivity: A discursive
analysis of strategic development in an engineering group. Human Relations,
60(l):29-58, January 2007.

Craig Larman and Victor R. Basili. Iterative and incremental development: A
brief history. Computer, 36(6):47-56,2003.

314

Bibliography

Bruno Latour. Visualization and Cognition: thinking with eyes and hands.
Knowledge and Society, 6(1), 1986.

Bruno Latour. Science in action. Harvard University Press, 1987.

Jean Lave and Etienne Wenger. Situated Learning: legitimate peripheral par
ticipation. University of Cambridge, 1991. ISBN 0 521 42374 0. URL
h t t p : //b o o k s .goog le . co .uk/books?id=CAVI0rW3vYAC.

John Law. Technology and heterogeneous engineering: the case of Portugese
expansion. In Wiebe E Bijker, Thomas Hughes, and Trevor J Pinch, editors,
The Social Construction of Technological Systems, page 405. MIT Press, 1987.

Philip Lawrence and Jim Scanlan. Planning in the dark: why major engineer
ing projects fail to achieve key goals. Technology Analysis & Strategic Manage
ment, 19(4):509-525,2007.

Lucas Layman, Laurie Williams, Daniela Damian, and Hynek Bures. Essential
communication practices for Extreme Programming in a global software de
velopment team. Information and Software Technology, 48(9):781-794, March
2006. ISSN 09505849.

Maria Lazaro and Esperanza Marcos. Research in software engineering:
Paradigms and methods. In CAiSE Workshops (2), pages 517-522, 2005.

Mark R Leary and Robin M Kowalski. Impression M anagement: A Literature
Review and Two-Component Model. Psychological Bulletin, 107(I):34-47,
1990.

Timothy C. Lethbridge, Janice Singer, and Andrew Forward. How software
engineers use documentation. IEEE Software, November, 2003.

Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying soft
ware engineers: data collection techniques for software field studies. Em
pirical Software Engineering, 10:311-341,2005.

Claude Levi-Strauss. The Savage Mind. Weidenfeld and Nicholson, London,
1966.

Stephen Linstead. From postmodern anthropology to deconstructive ethnog
raphy. Human Relations, 46(1):97-120,1993.

Nick Llewellyn and Jon Hindmarsh. Organisation, interaction and practice: Stud
ies of ethnomethodology and conversation analysis. Cambridge University Press,
2010.

315

http://books.google.co.uk/books?id=CAVI0rW3vYAC

Bibliography

Peter Lloyd. Storytelling and the development of discourse in the engineering
design process. Design Studies, 21:357-373,2000.

Mike Loukides. What is DevOps? O'Reilly Media, 2012.

Janet Low, Jim Johnson, Pat Hall, Fiona Hovenden, Janet Rachel, Hugh Robin
son, and Steve Woolgar. Read this and change the way you feel about soft
ware engineering. Information and software technology, 38(2):77-87,1996.

Michael Lynch and Mark Peyrot. Introduction: A Reader's Guide to Eth-
nomethodology. Qualitative Sociology, 15(2):113-122,1992.

Lech Madeyski. On the effects of pair programming on thoroughness and
fault-finding effectiveness of unit tests. In Product-Focused Software Process
Improvement, pages 207-221. Springer, 2007.

Robert Cecil Martin. Agile software development: principles, patterns, and practices.
Prentice Hall PTR, 2003.

J. Mason. Mixing methods in a qualitatively driven way. Qualitative Research,
6(l):9-25, February 2006.

Pete McBreen. Software Craftsmanship: the new imperative. Addison Wesley,
September 2001. ISBN 0201733862.

Ian R. McChesney and Seamus Gallagher. Communication and co-ordination
practices in software engineering projects. Information and Software Technol
ogy, 46(7):473^89, June 2004.

Laurie McLeod, Stephen G. MacDonell, and Bill Doolin. Qualitative research
on software development: a longitudinal case study methodology. Empirical
Software Engineering, 16(4):430-459, January 2011.

Allen E. Milewski. Global and task effects in information-seeking among soft
ware engineers. Empirical Software Engineering, 12(3):311-326, January 2007.

Brian Moeran. Ethnography at work. Berg, 2006.

Harvey Molotch. Where stuff comes from. Routledge, 2003.

Gregory Moorhead, Christopher P. Neck, and Mindy S. West. The Tendency
toward Defective Decision Making within Self-Managing Teams: The Rele
vance of Groupthink for the 21st Century. Organisational behaviour and human
decision processes, 73(2/3):327-351, March 1998.

Mario E Moreira. Treating agile as a transformation project. In Being Agile,
pages 105-112. Springer, 2013.

316

Bibliography

Matthias M Muller and Frank Padberg. An empirical study about the feelgood
factor in pair programming. In Software Metrics, 2004. Proceedings. 10th In
ternational Symposium on, pages 151-158. IEEE Computer Society, 2004.

Kumiyo Nakakoji, Yasuhiro Yamamoto, and Yunwen Ye. Supporting Software
Development as Knowledge Community Evolution. In Proceedings of Sup
porting the Social Side of Large Scale Software Development, pages 31-35, Banff,
Canada, 2006. Microsoft Research.

Peter Naur and Brian Randell. Software Engineering: Report on a conference
sponsored by the NATO Science Committee. Scientific Affairs Division, NATO,
Garmisch, Germany, October 1968.

Jim Q. Ning, Andre Engberts, and W. Voytek Kozaczynski. Automated sup
port for legacy code understanding. Communications of the ACM, 37(5):50-57,
1994.

James Noble and Robert Biddle. Notes on postmodern programming. In Pro
ceedings of the Onward, Seattle, Washington, USA, 2002. ACM.

Sean O'Riain. Net-Working for a Living: Irish Software Developers in the Global
Workplace, pages 15-39. Blackwell Publishing Ltd, 2008.

Julian Orr. Ten Years of Talking About Machines. Organization Studies, 27(12):
1805-1820, December 2006.

Julian E. Orr. Talking about machines. Technology and work. Cornell University
Press, first edition, 1996.

James D Palmer and N Ann Fields. Computer-Supported Cooperative Work.
Computer, 27(5):15-17,1994.

David Lorge Parnas. Successful software engineering research. ACM SIGSOFT
Software Engineering Notes, 23(3):64-68, May 1998.

Leslie Perlow and John Weeks. Who's Helping Whom? Layers of Culture and
Workplace Behavior. Journal of organizational behavior, 23(4):345-361, June
2002.

Leslie A. Perlow. The time famine: Toward a sociology of work time. Admin
istrative Science Quarterly, 44(1):57-81,1999.

Henry Petroski. To Engineer is Human. Vintage Books, 1992.

Henry Petroski. Invention By Design. Harvard University Press, first edition,
1996.

317

Bibliography

M. Pikkarainen, O. Salo, R. Kuusela, and P. Abrahamsson. Strengths and
barriers behind the successful agile deployment—insights from the three
software intensive companies in Finland. Empirical Software Engineering, 17:
675-702, 2012.

Barbara Plester and Janet Sayers. "Taking the piss": Functions of banter in the
IT industry. Humor - International Journal of Humor Research, 20(2):157-187,
2007.

Laura Plonka, Judith Segal, Helen Sharp, and Janet van der Linden. Collab
oration in pair programming: driving and switching. In XP 2011 : 12th
International Conference on Agile Software Development, pages 43-59. Springer,
2011.

Jonathan Potter. Representing Reality. Sage Publications, 1996.

Steven R Rakitin. Manifesto elicits cynicism. IEEE Computer, page 5, December
2001.

Anne Warfield Rawls. Harold garfinkel, ethnomethodology and workplace
studies. Organization Studies, 29(5):701-732,2008.

Linda Rising and Norman S. Janoff. The scrum software development process
for small teams. IEEE Software, July/August:26-32, August 2000.

Hugh Robinson, Judith Segal, and Helen Sharp. Ethnographically-informed
empirical studies of software practice. Information and Software Technology,
49:540-551,2007.

Heather Rolfe. Skill, deskilling and new technology in the non-manual labour
process. New technology, work and Employment, l(l):37-49,1986.

Kari Ronkko. Interpretation, interaction and reality construction in software
engineering: An explanatory model. Information and Software Technology, 49:
682-693,2007.

Kari Ronkko, Olle Lindeberg, and Yvonne Dittrich. 'Bad Practice' or 'Bad
Methods' Are Software Engineering and Ethnographic Discourses Incom
patible? In International Symposium on Empirical Software Engineering. IEEE,
2002.

Scott Rosenberg. Dreaming in code. Crown Publishers, 2007.

Winston W. Royce. Managing the development of large software systems. In
Proceedings of IEEE WESCON. IEEE, 1970.

318

Bibliography

Per Runeson and Martin Host. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering, 14
(2):131-164,2009.

Ioana Rus and Mikael Lindvall. Knowledge Management in Software Engi
neering. IEEE Software, 2002(May/June):26-38, May 2002.

Steve Sawyer, Joel Farber, and Robert Spillers. Supporting The Social Pro
cesses of Software Development. Information Technology and People, 10(1):
46-62,1997.

Ulrike Schultze. A Confessional Account of an Ethnography about Knowledge
Work. MIS Quarterly, 24(1):3-41,2007.

Ken Schwaber. Scrum Development Process. In Rebecca Wirfs-Brock, edi
tor, Proceedings of the Tenth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 10-19. ACM, 1995.

Carolyn B. Seaman. Qualitative methods in empirical studies of software en
gineering. IEEE Transactions on Software Engineering, 25(4), August 1999.

Carolyn B. Seaman and Victor R. Basili. Communication and Organization:
An Empirical Study of Discussion in Inspection Meetings. IEEE Transactions
on Software Engineering, 24(7):559-572, July 1998.

John R. Searle. Collective Intentions and Actions. In Philip R Cohen, Jerry Mor
gan, and Martha Pollack, editors, Intentions in Communication. MIT Press,
1990.

Peter Seibel. Coders A t Work. Apress, 2009.

Richard Sennett. The Craftsman. Allen Lane, 2008.

Thilagavathi Shanmuganathan. Ethics and the Observer's Paradox. RELC
Journal, 36(l):73-84, April 2005.

Helen Sharp and Hugh Robinson. An ethnography of XP practice. In 15th
Workshop of the Psychology of Programming Interest Group, volume 44, pages
121-122, April 2003.

Helen Sharp and Hugh Robinson. An ethnographic study of XP practice. Em
pirical studies of software engineering, 9:353-375,2004.

Helen Sharp and Hugh Robinson. Collaboration in mature XP teams, Septem
ber 2006.

319

Bibliography

Helen Sharp, Hugh Robinson, and Mark Woodman. Using Ethnography and
Discourse Analysis to Study Software Engineering Practices. In Twenty-
second International conference on software engineering, pages 81-87, 2000.

Helen Sharp, Mark Woodman, and Fiona Hovenden. Tensions around the
adoption and evolution of software quality management systems: a dis
course analytic approach. International Journal of Human-Computer Studies,
61(61):219-236, August 2004.

Clay Shirkey. Here Comes Everybody. Allen Lane, first edition, 2008.

Jonathan Sillito and Eleanor Wynn. Social Dependencies and Contrasts in
Software Engineering Practice. In Proceedings of Supporting the Social Side
of Large Scale Software Development, pages 47-50, Banff, Canada, 2006.

Dag I. K. Sjoberg, Tore Dyb§l, and Magne Jorgensen. The Future of Empirical
Methods in Software Engineering Research The Future of Empirical Meth
ods in Software Engineering Research. In Future of Software Engineering 2007.
IEEE, 2007.

Victor Skowronski. Do Agile Methods marginalize Problem Solvers? Com
puter, October.118-120, 2004.

Kari Smolander. Four metaphors of architecture in software organizations:
finding out the meaning of architecture in practice. In Proceedings Inter
national Symposium on Empirical Software Engineering, pages 211-221. IEEE
Computer Society, 2002.

Software Engineering Institute. CMMI — Overview, 2010. URL h t t p : //www.
s e i . emu. edu/cmmi/.

Ian Sommerville. Software Engineering. Addison Wesley, seventh edition, 2004.
ISBN 0321210263.

Ian Sommerville, Tom Rodden, Pete Sawyer, Richard Bentley, and Michael
Twidale. Integrating ethnography into the requirements engineering pro
cess. In Requirements Engineering, 1993., Proceedings of IEEE International
Symposium on, pages 165-173. IEEE, 1993.

Christoph Steindl and Pal Krogdahl. Estimation in Agile Projects Software is
New Product Development. Technical report, IBM Global Services, 2005.

Katherine J Stewart and Sanjay Gosain. THE IMPACT OF IDEOLOGY ON EF
FECTIVENESS IN OPEN SOURCE SOFTWARE DEVELOPMENT TEAMS.
MIS Quarterly, 3224, April 2006.

320

Bibliography

Maria Stubbe, Chris Lane, Jo Hilder, Elaine Vine, Bernadette Vine, Meredith
Marra, Janet Holmes, Ann Weatherall, and J O Hilder. Multiple Discourse
Analyses of a Workplace Interaction. Discourse Studies, 5(3):351-388, August
2003.

Lucy Suchman. Plans and situated actions: the problems of human machine com
munication. Cambridge University Press, 1987.

Lucy Suchman. Located Accountabilities in Technology Production. Tech
nical report, Centre for Science Studies, Lancaster University, UK, Lan
caster, 2003. URL h ttp ://w w w .co m p .lan cs.ac .u k /so c io lo g y /p ap ers /
S uchm an-L ocated-A ccountab ilities.pdf.

Lucy Suchman, Randall Trigg, and Jeanette Blomberg. Working artefacts: eth-
nomethods of the prototype. The British Journal of Sociology, 53(2):163-179,
2002.

Lucy A Suchman and Randall H Trigg. Artificial Intelligence as Craftwork. In
Seth Chaiklin and Jean Lave, editors, Understanding practice Perspectives on
activity and context, page 400. University of Cambridge, 1996.

Y Sugimori, K Kusunoki, F Cho, and S Uchikawa. Toyota production system
and Kanban system Materialization of just-in-time and respect-for-human
system. Internation Journal of Production Research, 15(6):553-564,1977.

Jeff Sutherland and Ken Schwaber. The Scrum Papers: Nuts, Bolts, and
Origins of an Agile Process. Technical report, The Scrum Founda
tion, 2007. URL h t t p : / / a s s e t s . scrum foundation.com /dow nloads/2/
scrum papers.pdf71285932052.

Jeff Sutherland, Anton Viktorov, and Jack Blount. Distributed Scrum: Agile
Project Management with Outsourced Development Teams. In The Proceed
ings of Agile 2006,2006.

Stephanie Teasley, Lisa Covi, M. S. Krishnan, and Judith S. Olson. How Does
Radical Collocation Help a Team Succeed? In CSCW '00, pages 339-346,
Philadeplhia, USA, 2000. ACM.

Paul Ten Have. Doing conversation analysis. Sage, 2007.

Stella Ting-Toomey, editor. The Challenge ofFacework: cross-cultural and interper
sonal issues. State University of New York Press, Albany, New York, USA, 1
edition, 1994.

Gerard a Tobin and Cecily M Begley. Methodological rigour within a qualita
tive framework. Journal of advanced nursing, 48(4):388-96, November 2004.

321

http://www.comp.lancs.ac.uk/sociology/papers/
http://assets.scrumfoundation.com/downloads/2/

Bibliography

Franziska Tschan. Communication Enhances Small Group Performance if it
Conforms to Task Requirements: The Concept of Ideal Communication Cy
cles. Basic and Applied Social Psychology, 17(3):371-393,1995.

Dan Turk and Robert France. Limitations of agile software processes. In Pro
ceedings of the Third International Conference on Extreme Programming and Flex
ible Processes in Software Engineering, 2002.

Michael L. Tushman. Technical Communication in R & D Laboratories : The
Impact of Project Work. The Academy of Management Journal, 21(4):624-645,
1978.

Michael Twidale, Tom Rodden, and Ian Sommerville. The Designers Notepad:
Supporting and understanding cooperative design. In Proceedings of the third
conference on European Conference on Computer-Supported Cooperative Work,
pages 93-108, Milan, Italy, 1993. Kluwer Academic Press.

John Van Maanen. Tales of the field: On writing ethnography. University of
Chicago Press, 2011.

K. E. Weick and K. H. Roberts. Collective mind in organizations: Heedful
interrelating on flight decks. Administrative science quarterly, pages 357-381,
1993.

Bruce W. Weide, Wayne D. Heym, and Joseph E. Hollingsworth. Reverse en
gineering of legacy code exposed. In Proceedings of the 17th international con
ference on Software engineering, pages 327-331. ACM, 1995.

Gerald M. Weinberg. The Psychology of Computer Programming. Dorset House,
silver ann edition, 1998.

Gerald M. Weinberg. Egoless programming. IEEE Software, 16(1):118-120,
1999.

Etienne Wenger. Communities of practice: Learning as a social system. Sys
tems thinker, 9(5):2-3,1998.

Etienne Wenger. Communities of Practice: Learning, Meaning, and Identity. Cam
bridge University Press, 1999. ISBN 0 521 66363 6. URL h t tp : / /b o o k s .
g oog le . co .uk/books?id=heBZpgYUKdAC.

Etienne C. Wenger and William M. Snyder. Communities of practice: The
organizational frontier. Harvard business review, 78(1):139-146, 2000.

Elizabeth Whitworth and Robert Biddle. The Social Nature of Agile Teams. In
Agile 2007 (Agile 2007), pages 26-36. Ieee, August 2007.

322

http://books

Bibliography

Laurie A. Williams and Robert R. Kessler. All i really need to know about pair
programming i learned in kindergarten. Communications of the ACM, 43(5):
108-114,2000.

Ruth Wodak. What cda is about - a summary of its history, important concepts
and its developments. In Ruth Wodak and Michael Meyer, editors, Methods
of Critical Discourse Analysis, pages 1-13. Sage Publications, 2001.

Rebecca Yates. Conducting field studies in software engineering: an experi
ence report. In Proceedings ofPPIG 2012,2012.

Yunwen Ye, Yasuhiro Yamamoto, and Kouichi Kishida. Dynamic Community:
A New Conceptual Framework for Supporting Knowledge Collaboration in
Software Development. In Proceedings of the 11th Asia-Pacific Software Engi
neering Conference. IEEE Computer Society, 2004.

Ed Yourdon. Death March. Prentice Hall, second edition, 2003. ISBN
013143635X.

323

Symbols used in the
transcriptions

[The point at which overlapping speech begins.
] The point at which overlapping speech ends.

There is no break in speech. Pairs of equals signs indicate no break
between two lines.

(0 .0) A noticable pause within a segment of talk which can be measured
in seconds.

(.) A brief pause within a segment of talk.
: An elongation of a word or part of a word. Single colons indicate a

brief lengthening, pairs of colons indicate that the word is stretched
over a longer period.

{. . .} Non-vocalisations such as coughs, laughs etc.
> < Speech slows down.
< > Speech speeds up.
t Rising intonation.
0 Soft sounds.
1 Part of the word is not pronounced.

Advertising the research

This Appendix includes the flyer and Webpages through which the project
was advertised. The Website can be found at h t t p : //hom epages. sh u . a c .
uk/~cmscb/scrum.

DI
SC

OV
ER

IN
G

W
HA

T
RE

AL
LY

HA

PP
EN

S
IN

SI
DE

AN

AG

IL
E

TE
AM

AN

AG
IL

E
TE

AM

DI
SC

O
VE

R
IN

G

W
HA

T
RE

AL
LY

HA

PP
EN

S
IN

SI
DE

AN

AG

IL
E

TE
A

M

Y
HA

PP
EN

S
IN

SI
DE

AN

AG

IL
E

TE
AM

i l l) ! i f !]
! ! . » ! ! 1 1 1 i
U S l l H i l
1 1 i 1 ! : i f S
I t i l l
H i l a * ,

H i 111!
i i i i i Hi!

to
be

G
W

HA
T

RE
AL

LY

HA
PP

EN
S

IN
SI

DE

AN

AG
IL

E
TE

A
M

DI
SC

O
VE

R
IN

G

W
HA

T
RE

AL
LY

HA

PP
EN

S
IN

SI
DE

AN

AG

IL
E

TE
A

M

Are your projects agile?
Do you use scrum?

Could you help me with my research?

W hat is the research?
_m an academic researcher and experienced software developer
:amining the scrum methodology. I'm not interested in scrum as an
-proach to project management. I am interested in how developers use
■rum to change their approach to software development

Key questions
want to know what really happens during scrums. Does the method
lange the ways in which programmers work together? Are these changes
meficial?
hy does scrum appeal to so many programmers - and why does it appal

:hers.
er wonder why you have to battle to be agile in the face o f RUP or

"ince2?

B ecom e involved
you are involved in a scrum as Product Owner, Scrum Master or Team
ember I'd like to talk to you

your organisation uses scrum I'd like to come and watch you at work

Contact
Chris B ates
Senior Lecturer in Software
Engineering
Email: c.d .bates@ shu.ac.uk
Phone: 0114 274 8015
Skype: floydheel

7 ,

Chickens and pigs
A p ig a n d a ch ick en a re w alk in g
d o w n a road . The ch ick en lo o k s a t
th e p ig a n d s a y s , “H ey, w h y d o n ’t
w e o p e n a re s ta u ra n t? ” The p ig
lo o k s b a c k a t th e ch ick en a n d s a y s ,
“G o o d idea , w h a t d o y o u w a n t to
ca ll i t? ” The ch ick en th inks a b o u t it
a n d s a y s , “W h y d o n ’t w e ca ll it
‘H am a n d E g g s ’? ” “I d o n ’t think so , ”
s a y s th e pig, “I’d b e c o m m itted , b u t
y o u ’d o n ly b e in vo lved . ”

anemeia
‘ Hallam University

HARPENS YOUR THINKING

mailto:c.d.bates@shu.ac.uk

Consent form

This appendix is the consent form which was offered to participants in the
study.

Sheffield.
Hallam
University

P A R T IC IPA N T C O N SE N T FORM

TITLE OF RESEA R CH STUDY:

Please answer the following questions by ticking the response that applies
YES

1. I have details o f the study explained to me. I i

2. M y questions about the study have been answ ered to my satisfaction □
and I understand that I may ask further questions at any point.

3. I understand that 1 am free to w ithdraw from the study within one □
w eek o f the com pletion o f this fieldw ork, w ithout giving a reason
for my withdrawal or to decline to answ er any particular questions
in the study w ithout any consequences to my future treatm ent by the
researcher.

4. I agree to provide inform ation to the researchers under the I I
conditions o f confidentiality set out in the briefing.

5. 1 w ish to participate in the study under the conditions set out in the □
briefing.

6. I consent to the inform ation collected for the purposes o f this
research study, once anonym ised (so that I cannot be identified), to
be used for any other research purposes.

Participant’s S ign atu re:_____

D a te :_____________

Participant’s Nam e (Printed):

C ontact details:

R esearcher’s Nam e (P r in ted):_______________

R esearcher’s S ign atu re:_____________________

R esearcher's contact details:
(Name, address, contact num ber o f investigator)

Please keep your copy o f the consent form and the inform ation sheet together.

The daily stand-up at A

1 Dan . . .because you5re rubb ish Gary
2 Gary oh h e ’s in h e ’s in
3 Dan hooray
4 Gary yay
5 Dan i s he a s i l e n t p a r tn e r
6 Gary he i s he i s h e ’s no th ing laughs
7 Dan so we can say whatever we l ik e about C hris
8 Gary Id e a lly he doesn’t want us to be a l l

p ro fe s s io n a l p re tend l ik e we’re a r e a l company
he want us to you know laugh

9 All laughter
10 Gary C all each o th e r cocks l ik e we u su a lly do
11 All laughter
12 Dan la l a l a ok then (0 .7) errm d id Evan ever show

up (.)
13 [no]
14 Ed [doe]sn ’t look l ik e i t (.) no
15 Gary [no]
16 Dan good work Kippers
17 r ig h t then l e t ’s errm go round th e ta b le (.)

l e t ’s s t a r t w ith Gaz t

Appendix D Stand-up at A*

18 Gary yay (.) so e r r yeste rd ay I e r r was
implementing th e se rv ic e fo r query o b je c ts
and d id th a t so t h a t ’s f in is h e d now errm and
then I moved on to implementin th e q u erie s
on th e f i e ld ru le s and I ’ve done a l l of them
a p a rt from th e p a r t i a l date f i e ld ru le which I
was ju s t look in how to do now ’cause obviously
I ’m goin to need to b u ild up th e query fo r
th a t which i s going to be a b i t d i f f e r e n t to
ju s t a da te query (0 .5)

19 So I f ig u re s out how to do i t (.) Dan I th in k
I was ta lk in g to you yeste rd ay about th a t

20 Dan Ah ha
21 Gary So I can use th e to car char and ju s t pass in

a da te s n i f f s and a month so I ’m going to have
to w rite a c r i t e r i a a match c r i t e r i a o b jec t
fo r th a t an ’ th a t should work [background
p inging noise]

22 And so t h a t ’s what I ’m gonna be doin t h i s
morning and then th i s afte rnoon ju s t c a rry on
implementing

23 th e e r r [query o b j]e c t
24 Dan [did you] ever ge t i t to a b ig s o r t of d a ta

s e t of m illio n s or d id you give up
25 Gary Errm I got i t to two and a h a lf m illio n
26 Dan T hat’s f i l e s
27 Gary Yeah (0 .7) or maybe s l ig h t ly more than th a t

and then (1 .2)
28 Dan Or did you ever f ig u re out why i t was slow on

your computer
29 Gary No I d id n ’t
30 Dan (2 .0) hummm
31 Gary I mentioned i t Evan and he sa id w ell i f i t ’s

gonna work in th e sh o rt term [we’re not]
32 Dan [yeah] th e re i s th a t I suppose
33 Gary we haven’t got m illio n s nowj ̂ he says ju s t g e t

i t done now and then obviously l a t e r on when
we do ge t loads more (1 .0) u se rs and f i l e s we
can we can t r y i t

34 Dan We can JIT i t

338

Appendix D Stand-up at A*

35 Gary We can do something e lse ju s t too l a t e I mean
ju s t in tim e yeah

36 Dan Yeah [laughs]
37 Gary [laughs]
38 Dan Okey dokey Ed
39 Ed OK yeah I was f id d lin g around s p r in g if ic a t in g

a l l the insurance s tu f f
40 Errm (1 .8) so yeah spent a lo t of tim e

an n o ta tin g c la s se s and tu rn in g th a t th in g
in to a c o n tr ib u tio n (.) th e e r r p r im itiv e
mapping s tu f f

41 Errm (2 .1) in th e in te r lu d e s I s ta r te d to
th in k about t h i s se rv ic e fo r kind of e r r
c lon ing th e database errm (1 .6) so w ritin g
some no tes and s ta r te d a b i t on th a t

42 Dan In te r lu d e s
43 Ed Well [lik e]
44 Dan [you b]een watching a show or something
45 General laughter
46 Ed No no no th e b i t s where I gave i t back to you

and you were f a f f in g around w ith [i t]
47 Dan [laughs]
48 Gary Is th a t our word of th e dayt
49 Ed Errm so a t th e moment errm (1 .5) b i t of a

weird one when you attem pt to go in to th e
s e rv ic e s i t d o e sn 't a c tu a lly ex exception
(0 .9) but i t hangs in d e f in i te ly t errm so I'm
try in g to f ig u re out [w hat's going on]

50 Dan [I was I] was g e t t in g t h a t (0 .5)
51 Ed Right
52 Dan With some of th e s tu f f I 'v e done errm (0 .4)

when I was try in g to re fe re n c e a sp rin g bean
from ta p e s try ^

53 Ed Right
54 Dan But I h a d n 't given th e sp rin g bean e x p l ic i t ly

a namet
55 Ed Right (.) ok
56 Dan And i t was ju s t hanging^
57 Ed Right ok

339

Appendix D Stand-up at A*

58 Dan and I couldn’t work out why u n t i l I gave i t a
name and i t worked

59 Ed OK
60 Dan So maybe have a look a t th a t f
61 Ed Right yeah I ’l l g ive th a t a shot then E rr

I was th in k in g i t was something to do w ith
H ibern ta te to be honest ’cause t h a t ’s th e l a s t
th in g you see

62 Dan Yeah i t ’s opening a h ib e rn a te se ss io n m[ine
wa] s

63 Ed [yeah]
64 Dan And then i t j u s t i t was obviously somewhere

try in g to ge t to a (0 .8) bean and f a i l i n g but
I don’t know why i t hangs i t ’ s a b i t randomt

65 Ed OK so yeah f ig u r in g th a t one out r e a l ly errm
66 Dan I t ’ l l be t h a ’ i t ’l l be f ix e d in no tim e
67 Ed Laughs
68 Dan (1 .6) So what e lse you d o in ’
69 Ed Errm so w ell I mean however long th a t tak es

and yeah moving on [to]
70 Dan [Are] you c lo se ’cause you committed a bunch

of s tu f f l a s t nigh d id n ’t you
71 Ed (0 .2) Well I mean th a t was enough s tu f f (.)

th a t you know i t no longer exceptioned (0 .2)
w ell I thought i t was gonna work and then i t
j u s t ended up hanging l ik e t h i s so (1 .4)

72 Dan Grunts
73 Ed But th e I thought sod i t you know i t was fo r ty

f i l e s (.) I don’t wanna leave ’em han g in ’
around too long so (0 .2) checked i t a l l in
(1 .2) break s tu f f a b i t more laughs

74 Dan You know th e o r ig in a l bug you were f ix in g w ith
u t i l i t y f i l e s and s tu f f

75 Ed Yep
76 Dan That i s f ix e d i s n ’t i t
77 Ed Yeah yeah I saw Evan asked whether I don’t I

j u s t don’t th in k i t made i t on to demo ’cause
o th e r s tu f f got committed and

78 Dan [Yeah t h a t ’s]

340

Appendix D Stand-up at A*

79 Ed [I don’t] th in k i t was s ta b le to enough to put
another b u ild up on th e re so

80 Dan T h a t’s what I thought (1 .8)
81 Ok w ell I I I ju s t you need you to s o r t of

(0 .5) f in is h th a t so (0 .4) we can g e t your
f in g e r out of th e springy s tu f f and I can
s t a r t p u tt in g my f in g e r in to i t

82 Ed Laughs [Right]
83 Dan [I don’t] wanna s t a r t modifying ’em a l l i f

you’re s t i l l
84 Ed Ok yep sure laughs
85 Dan (2 .0) And then you’re going on to (0 .2) s tu f f

w ith Gaz yeah
86 Ed With Gaz yeah yeah
87 Dan (1 .6) > F ine< (0 .4) <0k> I ’l l add what I was

doing as a developer
88 I e r r (1 .8) got a f i l e > se ss io n < to work in

sp rin g th a t ta p e s try could see which was fo r
Ed (0 .3) and then I was g e t t in g th e changes
th a t I d id in S h e ff ie ld o ff my lap to p onto
my o th e r one which was g e t t in g th e s ty le s h e e t
s tu f f to work

89 and t h a t ’s when I cam across th e same issu e
(.) Ed had w ith th e e r r i t j u s t hanging (0 .3)
so I worked th a t one out

90 (1 .0) Errm and I (.) I s ta r te d doing th e
b i t s on th e log in pages to make i t ex ac tly
th e same as before (0 .4) so t h a t ’s what I ’ l l
f in i s h f i r s t t h i s morning u n t i l I can (0 .4)
g e t on w ith the r e s t of sp rin g

91 (1 .3) Errm (2 .0) >so t h a t ’s me (.) l e t ’s see
what < W ill d id (1 .1)

92 Will So e r r y e s ’day I s ta r te d of h e lp in g Sam w ith
h is w aters e r r (.) d id n ’t r e a l ly tak e very
long doing th a t ’cause h e ’s g e t t in g (0 .5)
f a i r l y confiden t a t doing them h im self [now]

93 Sam [Too r ig h t]

341

Appendix D Stand-up at A*

94 Will That ’s u se fu l (.) I can go and ge t on w ith my
own s tu f f now (0 .5) errm (2 .2) so yeah s ta r te d
looking a t my own (.) w ater t e s t s (.) e r r
f ix e d a couple of those (1 .1) e r r not sure
wever th e lock ing th in g w ith F ran k ie t (1 .0)
i s a c tu a lly (.) a problem w ith th e lock ing
i t s e l f or ju s t whether F ra n k ie 's being a b i t
weird a t th e moment (0 .2) because when I went
to look a t i t t h i s morning to see i f i t had
run a ' > a l l< (0 .5) i t was ju s t s o r t of th e re
was ju s t no th ing th e re what so ever (0 .4)
so I t r i e d running i t ' s scheduled ta sk again
and i t j u s t locked l ik e s t r a ig h t awayuparrow
(1 .0) so I'm sure wever i t ' s a lock ing issu e
or wever F ra n k ie 's ju s t a b i t (1 .1) [rubbish]

95 Dan [I t used] to work fo r a w hile
96 Ed? Well F ra n k ie 's been rubb ish
97 Will I t d id used to work yeahuparrow
98 Dan Did you guys have a look a t th a t lock ing issu e

then d id you t r y and tu rn i t o ff (0 .4)
99 Will [No we h a v e n] 't t r i e d to no (2 .2)

100 Dan [??? missed]
101 Will (1 .7) Errm so (0 .7) yeah today I ’m gonna be

looking a t (.) Ben committed a load of s tu f f
to do w ith th e sign-up page yeste rd ay (.) as
w ell as th e r e s e t account page (.) and I f in k
he mentioned in p assin g he might (.) or might
not have done th e a c t iv a t io n page (0 .3) so
I ' l l have a look a t th a t one as w ell

102 Dan He might or might not laughs
103 Will Yeah maybe or maybe not who knows
104 Dan T h a t's good
105 Sam ?? As committal as ever
106 Will ?? [yeah]
107 Dan [I] can t e l l you i f he has I d o n 't th in k he

d id (0 .5)
108 Will I got th e im pression he d id n 't but he thought

maybe (.)
109 Dan E rr pages (0 .2) sign up (0 .2) r e s e t (0 .2)

t h e r e 's no a c t iv a t io n page in th e re

342

Appendix D Stand-up at A*

110 Will Ok so I won’ I w on't even bover lo o k in g th e
a c t iv a t io n page then

111 Dan (1 .0) No I th in k t j u s t check th a t i t s t i l l
works because err (0 .2) t h a t ' s th e o n ly page
l e f t on p u b lic t h a t ' s ta p e s tr y d riven (0 .4)

112 Will Oh i s i t r e a l ly (.) OK (0 .5)
113 Dan [shou should be]
114 Will [I ' l l j u s t check] i t ' s s t i l l working now
115 Dan (1 .2) >0K c o o l< (.) Sam
116 Sam (1 .1) Errm (0 .4) y ey esterd a y I was working on

one w ater t e s t p r e t ty much a l l day which was
th e (.) errm com plete car in su ran ce quote one
(0 .2) which i s (.) s lo w ly g e t t in ' th e r e (0 .5)
errm (0 .8) had to make lotsj" o f in t e r e s t in g
d e f in i t io n s and th in g s (1 .0)

117 I'm s o r t o f g e t t in g t h i s programming th in g (.)
so r te d out now I th in k (0 .6)

118 Errm (0 .9) so I'm go in g to be f in i s h in g th a t
o f f today p r e t ty much

119 (0 .4) Errm (0 .3) I probably should m ention
now errm I'm not gonna be here on Monday (1 .8)
'cau se I [boo I t]h in k I booked

120 Dan [hoorah]
121 Ssm Yeah I booked i t o f f ages ago but th en Ben

d id n 't make a n ote o f i t
122 ?? Oh Ben
123 Ssm But he says i t ' s f i n e t
124 Dan (1 .7) 0k yeah t h a t ' s u s e fu l to know
125 Sam Yeah 'ca u se I'm gonna be hung over (0 .7)

'ca u se i t ' s my b irth d ay
126 Dan [Oht > e x c it in g <]
127 Sam [on Sunday] and y o u 're a l l coming
128 Gary No w e're not (.) h o n e s tly
129 General laughter
130 Sam Why i s th e f u e l b i l l f u e l b i l l gonna be to o

h igh in your car Gary
131 (2 .2)
132 Gary Whatt
133 Sam E ighty to th e g a llo n i t ' l l do (1 .6)
134 Dan He on ly l i v e s down th e road from you

343

Appendix D Stand-up at A*

135 Gary Yeah why would I d r iv e
136 Dan Ju st r o l l
137 Sam I t ’ s in D erbyshire i t ’ s back home [in th e

m otherlands]
138 Dan [You’re g iv in g everyone] an awesome excu se not

to go i f i t ’ s in D erbyshire
139 laughter
140 Will? (2 .3) S tay away
141 Dan R ight what you d o in ’ today (0 .2) b e fo re you

err (0 .2) j ib b e r jabbered about your b ir fd a y
142 Sam Err I ’m f i n i s h i n ’ o f f t h i s (0 .4) t e s t
143 Dan What you go in g to do < a f t e r > th a t one
144 Sam (0 .4) Err
145 Dan Are you g o in g to do l i k e u t i l i t i e s and a l l o f

th o se or have th ey a lrea d y g o t them
146 Sam (0 .2) Blows o u t th e y ’re broken
147 Dan (1 .1) They’re broken^
148 Sam <Yep> (1 .4) err u t i l i t i e s i s broken on l i v e

a t th e moment or was (0 .8) two days a g o f l a s t
tim e I looked a t i t

149 Dan W ell i t ’ s not g o in g to f i x i t s e l f (0 .5) err
are m obile phones in or

150 Sam Oh I do need to yeah have a look fo r s t u f f
l i k e th a t but I need to do (0 .4) errm
some au to co m p l> ete< s t u f f (1 .0) fo r th e
autocom plete f i e l d s (.) so th a t i t can g e t
th e v a lu e out o f i t (2 .0) which i s g o in g to be
fun (.) because th ey don’t have a UID

151 Dan (3 .0) F a ir enough I ’m surej" you can work i t
out (1 .4) err

152 Sam I ’ l l g e t W ill to h e lp me work i t out
153 Dan (1 .3) 0k no Evan s t i l l (.) >what a<

douchebag
154 Gary We should take a m inute to mock where Ben i s
155 Ed (1 .1) Oh yeah yeah
156 Sam Where i s he
157 Dan 0k l e t ’ s have an update from Ben who’ s not

here (.) h e ’s a t a Magic com p etitio n
158 Gary He’ s a t Magic The G athering
159 laughter

344

Appendix D Stand-up at A*

160 Dan And th e r e we go (.) errm
161 Sam With h is s p e c ia l t - s h i r t on (1 .2)
162 Gary He needs an in te r v e n t io n th a t boy
163 laughter
164 Dan Has he g o t a magic t - s h i r t
165 Gary Yeah h e ’ s g o t magic t - s h i r t th ey g o t team

t - s h i r t s
166 Dan Hasn’t W ill g o t one (0 .6)
167 Will Hey le a v e me out o f t h i s
168 laughter
169 Gary W il l ’ s j u s t s i t t i n g th ere doing h is work
170 Dan Have you g o t one though W ill t h a t ’ s th e

q u estio n
171 Will he d id g e t me one yeah
172 Dan yeah
173 Gary Are you gonna wear i t though (1 .0)
174 Will [Maybe]
175 Dan [I b et] h e ’ s w earing i t now (.) s e c r e t ly

(0 .2) hoping th e team ’ s gonna win
176 Sam (0 .3) He’s gonna wear i t to work tomorrow
177 Dan (1 .4) I s th ere anyth ing e l s e anyone wants to

add (0 .5) o th er than Ben a t magic
178 Sam (0 .3) There probably was s e v e r a l th in g s th a t

I meant to say and I ’ve fo r g o tte n (.) oh who
wants t e a and who wants coffeej"

179 Gary (0 .3) We’ l l s o r t th a t out a f t e r
180 Dan ???? o f a scrum c a l l
181 Gary U n less you want to go and g iv e Dan h is t e a

l a u g h t e r
182 Dan (2 .4) Thank you dear 0k
183 Gary Job done
184 Dan Job done go go code team

345

Working with existing code at r~
E* "

1 Darren T his i s k ind o f th e s t a r t o f a p ro cess and
over tim e i t might ev o lv e (1 .0) or i t might
not

2 Andy ha ha
3 Darren ten d s to depend how th in g s are used .
4 Darren Errm (1 .8)
5 Darren y es I th in k fo r th e im plem entation s id e o f i t

th e f i r s t p ass our im plem entation i s about
'cause what we kinda d oin ' i s a p rov id er
t h a t ' s go t i t s own l i t t l e database h ere
(1 .5)

6 Darren th a ' t h a t ' s i s o la t e d from th a t so i t can s to r e
(.) c o n ta c ts t h e s e '11 be probably c r e a t in '
i t ' s probably a s e s s io n -ty p e ta b le
(1 .3)

7 Darren a u se r -ty p e ta b le (0 .8) ah (1 .4) and th en th e
d ata s to r e
(1 .5)

8 Andy w h at's th e sen se around u s in g echo?
(1 .7)

9 Darren a t th e moment th a t f u n c t io n a l i t y ' s a l l k ind o f
been turned o f f ' cause i t i t go t to a c e r ta in
p o in t (1 .1) and i t w asn 't r e a l ly
(2 .8)

10 Darren to [improve th e u ser ex p er ien ce]
11 Andy [what was th e p o in t o f th]a t?

Appendix E Existing code at E*

12 Darren th e (.) th e p la ' when we d id i t to echo (.)
then th a t was (.) th e database was h ere th e
sy n ch ro n isa tio n was go in g and th e c o n ta c ts
were pushed up
(1 .6)

13 Darren in to t h i s d a tab ase . THERE WAS v a r io u s i s s u e s
(.) and from a u s a b i l i t y p o in t o f v iew i t
w asn1t
(1 .0)

14 Andy Hmm mmm
(1)

15 Darren err >w orking th a t< w e ll and a ls o echo (0 .9)
echo was kind o f err
(1 .7)

16 Darren Yeah (1 .0) i t had problem s (0 .3) i t was k ind
of a b ig

17 Andy laughs
18 Darren laughs
19 a b ig t e s t (.) but t h i s i s you know t h i s i s

kinda tr y in ' a make i t e a s ie r . I th in k as
w e ll w ith th a t echo s id e o f i ' when th a t (1 .1)
echo was over here
(2)

20 Darren and i t was a ls o h an d lin g th e e x te r n a l c o n ta c ts
so i t would k inda g e t them from s a le s f o : r c : e
so you had to go through > th e echo in t e r fa c e
to g e t your c o n ta c ts from s a le s f o r c e < whereas
w e're kind o f sa y in g th a t (0 .8) you know (1 .5)
k eep in g echo more sim ple fo r w e're ex p osin g i t
through th e esendex API so anyone who consumes
t h i s API (.) has then g o t a c c e ss to

21 Darren you know (1 .5) k eep in g echo more sim p le fo r
w e're exp osin g i t through th e esendex API so
anyone who consumes t h i s API (.) has then
g o t a c c e ss to (1 .3) c o n ta c ts from d if f e r e n t
tso u r c e s
(7 .1)

22 Darren but (0 .6) yeah so a t th e moment i t ' s not
r e a l ly v i s i b l e in ech o .= =1 th in k you t CAN?
(1 .3)

347

Appendix E Existing code at E*

23 Darren through th e A B t e s t fu n c t io n a l i t y probably
turn i t on fo r y o u r s e lf (.) and f in d s t u f f
out and sync your phone (0 .7) and you 've th en
g o t c o n ta c ts (.) < in t h i s d a tab ase>
(2 .0)

24 Darren hem
(1 .4)

25 Darren so sync d ata s o u :r : :c e
26 Andy in th eory we cou ld have (.) r e p lic a te C o n ta c ts

in th ere you cou ld have th e same c o n ta c ts in
th e r e as in th ere as in th ere
(2 .5)

27 Darren a t th e moment (.) yeah
(1 .7)

28 Darren but th a t s o r t o f f u n c t io n a l i t y ' s not r e a l ly
p u b lic ly a v a ila b le
(1 .8)

29 Darren fo r s y n c 'in g w ith < th e p h o n e > (0 .7) hem
(4 .0)

30 Darren and aga in i t i t was (.) when t h i s d id an
upda'e th a t k ind o f d e le te d th o se c o n ta c ts and
r e -c r e a te d them
(4 .2)

31 Darren And th a t was probably done b e fo re we d id th e
(.) s o r t o f co n ta c t groups so i t was l e s s o f
an is s u e th a ' (0 .6) we were < c r e a t in ‘ brand
new C co n ta c ts ev ery > tim e?>
(5 .8)

32 Darren errm
(2 .4)

33 Darren > so t h i s in te r fa c e here i s q u ite s im p le< (.)
t h i s (0 .7) p a sse s in a s e s s io n
(2 .0)

34 Darren > so once a u th e n t ic a t io n 's done th en ???
SyncML serv er when i t ' s d is c u s s in g w ith th e
s t a t e box i t ' s alw ays p a ss in g a t SESSION out
(0 .6) I th in k a s e s s io n j u s t has
(3 .5)

35 Darren I t ' s g o t a few th in g s in th e r e (.) i t ' s g o t a
few b i t s o f space

348

Appendix E Existing code at E*

(1 4 .0)
36 Darren Ahh?

(2 .5)
37 Darren Yeah, so th e se sh (.) th e s e s s io n o b je c t in

here t h i s i s remembering th e whole s o r t o f
sy n ch ro n isa tio n between th e phone and se r v e r
so when I i n i t i a t e one t h e r e ’ s s e v e r a l c a l l s
th a t are made
(0 .9)

38 Darren I ’ve g o t a hundred c o n ta c ts th e r e m ight be
(0 .5) you know TEN OR so r e q u e s ts g o in g
backwards and forw ards (0 .6) and t h i s
s e s s io n i s (0 .5) j u s t fo r th e l i f e o f th a t
sy n ch ro n isa tio n s e s s io n
(1 .6)

39 Darren And t h i s i s th e th in g t h a t ’ s h o ld in g s t a t e
b etw e:en

40 Darren (1 .4)E r r r m (l.0)
41 Darren R equests so our data s tr u c tu r e needs t e r (.)

s to r e t h i s in i t s database and i f t h i s was
w ith an XML s e r ia l i s a b le so th a t
(1 .3)

42 Darren You cou ld j u s t put i t as a b lob (0 .5)=
43 Andy yeah
44 Darren = in th e database or we cou ld break th e s e down

to f i e l d s (1 .0) i f we need i t
(4 .2)

45 Darren ?? add c o n ta c ts > t h e r e ’ s a s e s s io n < so un
under t h i s im plem entation th e r e we’d probably
j u s t g e t th e s e s s io n ID
(1 .1)

46 Darren And t h e r e ’ s a load o f vcards here (.) th e se
are th e new c o n ta c ts to add
(4 .5)

47 Darren Errr empty c o n ta c ts card
(22)

48 Darren Ah (.) see t h i s i s t h i s p art o f th e err
(1 .9)

49 S tu ff where we fo r c e i t in to t h i s slow synch
50 Andy yeah

349

Appendix E Existing code at E*

51 Darren So t h i s i s where we’re a c t u a l ly (1 .0) you know
c le a r in g out your c o n ta c ts s to r e so when a new
s e s s io n
(1 .2)

52 Darren I t ’ s i t ’ s k ind o f em ptied th a t (0 .8) we need
th e term co n ta ct s t o ir e was k ind o f l ik e an
e a r l i e r (.) grouping id ea th e co n ta ct s to r e
th e s e b ein g a l l th e (0 .2) a l l th e c o n ta c ts fo r
t h i s p a r t ic u la r t pho:ne
(1 .4)

53 Darren And i t ere I th in k i t d id th en c r e a te (.) a
co n ta c t s to r e -o r a group (0 .2) errm (0 .2) th a t
was somehow t a s s o c ia te d w ith th e phone?

54 (1 .0) errm (1 .1)
55 Darren Through th e syncML p r o to c o l i t a c t u < a l ly

sends up th e IMEI t > s0 we’ve g o t q u ite a
unique th in g (.) though th a t i s a c tu a lly to
th e sim card (0 .3) but some f a i r l y
(1 .0)

56 Darren Once we’ve (.) crea ted one o f th e s e groups
th a t d id a new sync aga in we cou ld a t l e a s t
put th e c o n ta c ts in to th e same same s o r t o f
< grouping>

57 Darren (1 .6) mechanism
(4 .0)

58 Darren And th ey co n ta c t s ta tu s
(3 .0)

59 Darren co n ta ct s ta tu s r e fe r e n c e code not sure what
th a t? one
(1 2 .5)

60 Darren errm
(20)

61 Darren Code re tu rn s
(1 7 .5)

62 Darren Ah:hh
(4 .6)

63 Darren Yeah? Of course
(3 .8)

350

Appendix E Existing code at E*

64 Darren With th e (2 .0) s o r t o f (.) mo2 p r o je c t
although we d id we d id sy n ch ro n isa tio n in
one way you cou ld co you cou ld e i th e r p u ’ a l l
your c o n ta c ts on th e phone or tak e a l l your
c o n ta c ts o f f th e phone (4 .0) so i t ’ s k ind o f
an a l l or noth ink

65 A ndy mmmm

66 Darren Thing (0 .5) so (.) so th a t th e (.) th e whole
prem ise between th e mo2 th in g s are (2 .0)
im portant i f you’ve g o t a new phone how do
you g e t your c o n ta c ts o f f th e phone so i t ’ s a
s e r v ic e to do th a t

67 Andy Yeah
68 Darren So h e r e ’ s your o ld phone (1 .0) sync th o se

up to th e mo2 s e r v ic e then th e new phone
sync them back down aga in as a way o f s o r t
of tr a n s fe r r in g th e c o n ta c ts

69 Darren (3 .0) coughs (1 .0)
70 Darren So what > t h i s < i s doing here i s i s th a t whe

when I send send A CONTACT to th e phone i t ’ s
a l l based on broken down in to commands so I ’m
sen d in g ’em th a t command (1 .0) th e phone then
(1 .0) w i l l respond w ith some kind o f STATUS
and i t ’ s u s u a lly l ik e a h ttp -ty p e (1 .0) s ta tu s
code so i t ’ s e i th e r added i t or i t ’ s f a i l e d
to add i t i t might f a i l to add i t because th e
err I don’t know th e c o n ta c t ’ s to o b ig or or
som ething because we’re g o in g from one phone
to an t o th er (1 .0) t h i s when i t i t g e t s a b i t
[com pli]

71 Andy [Yeah]
72 Darren cated so (2 .0) errm (2 .0)
73 Darren We alw ays d ea l in th e vcard s tr u c tu r e and

v ir tu a l phones (.) th e raw d ata i s i s th e
vcard s tr u c tu r e but th en > a < vcard > ca n <
(1 .0) on l i k e an iPhone have an image a > b ig <
image=

74 Andy Yeah

351

Appendix E Existing code at E*

75 Darren =of m yself and I m ight t r a n s fe r th a t to l i k e a
(.) sm a ller phone and i t might nor understand
what th e image i s or have a s i z e l im it a t io n
(2 .0)=

76 Andy Yeah
77 Darren =0n th a t k ind o f th in g so t h e r e ’ s a l l (.) a l l

s o r t s o f reason s why adding th e co n ta c t cou ld
f a i l > b u t< t h i s i s then updating th e s ta tu s
back in to th e d ata source and th a t p rovid ed a
view o f sa y in g l ik e
(1.0)

78 Darren > I 'v e uploaded< a load o f c o n ta c ts h e r e ’ s my
hundred c o n ta c ts I I ’ve th en downloaded to
th e phone h e r e ’ s th e s ta tu s have th ey a l l been
s u c c e s s fu l or have any o f them f a i l e d (.) we
cou ld then f in d oh a c tu a lly we sy n c ’d most
o f them but y er phone d id n ’t l i k e > th e s e <
p a r t ic u la r c o n ta c ts

79 Andy Yeah
80 Darren (4 .0) th a t kind o f th in g

(9 .0)
81 Darren I th in k

(4 .0)
82 Darren I f we j u s t s t a r t o f f say c r e a t in ’ a new

p rov id er ’ cause t h a t ’ s then q u ite (2 .0) q u ite
i s o la t e d as a s e t o f in t e r fa c e s (1 .0) we cou ld
alm ost do th a t

83 Darren (3 .0) errm (3 .0)
84 Darren w ithout a c tu a lly g e t t in g in v o lv e d in in th e t

b ig serv er th a t might be a (.) a good way to
s t a r t so (.) so we c r e a te a

85 Andy Yep
86 Darren Use a ??? p a tte r n th e r e where we’ve g o t a

p r o v id e r (1 .0)

352

Talking about testing at E

1 Darren T h ere' s probably t h e r e 1s probably a cou p le o f
t e s t s we cou ld here one

2 Darren err from th a t prem ise o f th a t (1 .0) a th e
u ser might not e x i s t (1 .0) so one i s (1 .0) th e
c r e d e n t ia ls are alw ays go in g to be v a l id we we
kind o f (1 .0) implement from th e p e r s p e c t iv e
th a t I d o n 't care who who th e u ser i s (.) i f
th e u ser i s one I d o n 't r e c o g n ise I ' l l c r e a te
a new one o th erw ise I ' l l
(4 .0)

3 Andy So i f ??? do lo g in w ith in v a lid c r e d e n t ia ls
to s t a r t o f f wiv

4 Darren W ell t h a t ' s th e th in g I'm sa y in g i t ' s never
[going] to=

5 Andy [Ye
6 Darren =be in v a lid i t w i l l be e i th e r one o f one th a t

e x i s t s or one th a t d o e sn 't so th e sc e n a r io th e
two sc e n a r io s as I se e i t th a t
(2 .5)

7 Darren Log in w ith a (1 .0) fo r th e f i r s t tim e as a
u ser and then th e t e s t =
(1 .5)

8 Darren = Is probably go in g to show som ething l i k e (.)
ah tr y to g e t ho ld to g e t h o ld o f t h i s u ser
from th e database th e data says i t d o e s n 't
e x i s t th e r e fo r e c r e a te s a new u ser in th e
database and then c r e a te s (1 .0) a s e s s io n and
re tu rn s :th a t I : : d

Appendix F Testing at E*

(1 .5)
9 Darren And then th e o th er s c e n a r io 1s gonna be where

a u ser so r t o f d o e sn 't e x i s t (1 .0) i t ' s gonna
c a l l on to th e database

10 Darren and i t ' s a c tu a l ly 0?? g e t s th e u ser th e u ser
does a l l o f th e se

11 Andy Have you g o t your diagram (.) are we what
(1 .0) w e're not even car in g

12 Darren We're not w e;re not t h i s b i t here w e're from
th e phone

13 Darren From th e p h one's p e r sp e c t iv e but th e way th a t
th e SyncML i s im plem :ent:ed=

14 Andy ???
15 Darren = th is t h i s d o e sn 't have any in te r n a l (.)

a u th o r isa t io n so i t i t d e le g a te s i t o f f to
th e p r o :v id e r to do (.) hmmm (.) but in t h i s
case here
(2 .0)

16 Darren As an in ter im th in g what I'm sa y in g i s th a t
th e th e
(3 .0)

17 Darren I t ' s a sim ple u ser model in th a t i f err IF YOU
lo g in and th ey d o n 't r e c o g n ise i t i t c r e a te s
th a t as a new us er
(2 .0)

18 Andy When do th ey a c tu a lly lo g in then (.) on th e
phone

19 Darren When th e th e pho when th e phone (0 .5) so when
you s e t up th e ph[one]=

20 Andy [Yep]
21 Darren =on your phone y o u ' l l have some SyncML

s e t t in g s where y o u ' l l d e t a i l th e name o f th e
s e r v e r (.) th e u ser name password [which] =

22 Andy [OK]
23 Darren =You're go in g to send to i t (.) so then

on th e phone when I (.) go to (.) my
sy n ch ro n isa tio n app and go sync (1 .0)

24 Andy Yep

354

Appendix F Testing at E*

25 Darren That f i r s t req u est in to < th a t s e r v e r >
> ACTUALLY th a t f i r s t req u est might not have<
th e u ser name password th e r e might be a (.)
handshake where i t goes so rry I need a u ser
name password and th e phone w i l l send a u ser
name password

26 Andy Yep
27 Darren So a t th a t p o in t i t then c a l l s on to th e

(4 .0)
28 Darren do you want me to w r ite th e t e s t
29 Andy No I'm j u s t th in k in g

(2 .0)
30 Andy So i f (1 .0) two d i f f e r e n t m obile phones same

u ser name (.) what happens then
(3 .0)

31 Darren T hey're a tta ch ed to th e same u :se r
(1 .5)

32 Darren What happens what happens th en so so in our
(.) in our system l i k e w ith th e echo p ro v id er
th a t i s f in e because th e > u se r name passw ord<
w e're u s in ' i t in Esendex
(0 .5)

33 Darren And you cou ld have up to f i v e phones so i t ' l l
sync w ith but when i t d id th e sync p art o f th e
d e v ic e in form ation from th a t pho:ne (.) sends
up th e IMEI code some k ind o f unique in d ic a to r
fo r th a t phone or w hatever v a r ia n t o f a sim
card
(1 .0)

34 Darren So then i t knows th a t THIS u ser i s t a lk in g
about THIS phone and th e se c o n ta c ts on t h i s
phone > so you cou ld th en < do a sync on your
oth er pho:nes

45 Darren So i t ' s not i t ' s not i t ' s not (1 .0) n e c e ssa r
(.) i t ' s th e same u ser but th a t u ser cou ld
have (.) m u lt ip le phones i t cou ld have
m u lt ip le groupings o f c o n ta c ts

36 Andy OK
(4 .0)

355

Appendix F Testing at E*

37 Andy So a t th e moment w e:re h e r e ' s no such th in g as
v a lid c r e d e n t ia ls then

38 Darren Yeah t h a t ' s what I'm sa y in g i s th a t i s th a t
th e on ly two two sc e n a r io s are [lo g g e d]=

39 A ndy [logged]
40 Darren = in w ith no ere [d e n t] ia ls =
41 A ndy [yeah]
42 Darren =0r known c r e d e n t ia ls i f i t ' s unknown i t goes

through a p ro cess o f c r e a t in g them (.) i f
th e y 'r e known (.) i t d o e sn 't
(1 .0)

43 Andy Which one s h a l l we s t a r t w ith
44 (3 .0)
45 Darren I j u s t say I d o n 't know [i t ' s e i th e r i t s] =
46 Andy [No no I d o n 't]
47 Darren =going to be th e same ??? name (1 .0) do a

name cos i t s n a tu ra l
48 Andy hnnn

(3 .5)
49 Andy T his keyboard i t would be (.) i t h u rts your

w r is t s
50 Darren Do you wanna put i t down
51 Andy Ha Do you th in k we should (1 .0) thank you

(2 .5)
52 Andy I'm gonna make gonna make c r e d e n t: : i a l s (.)

r e tu r : :n n u l l w h at's i t re tu rn from
53 Darren I t re tu rn s t h a t ' s th e s e s s io n ID

(5 .0)
54 Andy So t h i s i s gonna retu rn n u ll hnnn
55 Darren No I th in k we are gonna (.) we are gonna
56 Andy Oh no (.) no w e're not i t ' s gonna retu rn th e

s e s s io n ID
(8 .0

57 Andy I t ' s th e lo g in (1 .0) th a t worked (.)
r e tu r : :n s

58 Darren But I th in k i t ' s a ls o p r io r to th e s e s s io n
th a t i t ' s go in g to c r e a te c r e a te th e u ser (.)
in th e database
(2 0 .0)

59 Andy Put th e u ser

356

Appendix F Testing at E*

60 Darren In th e s e s s io n th e s e s s io n
61 Andy I t ' s a b ig i f
62 Darren Not to o bad I 'v e crea ted b ig g er
63 Andy Yes so w e're j u s t go in g to handle t h i s o f f to

somewhere e l s e (2 .0) th e f i r s t one th e same

357

Implementation or design at E

1 Darren I t ' s j u s t a sim ple (.) Do you want me to save
th e s e s s io n and err o b l i t e r a t e th e database
and put i t th ere

2 Andy OK
(1 .5)

3 Darren So (.) so th a t we [F0El?]have a c tu a lly now
implemented (.) a l l o f th e a u th e n tic a t io n
se r v e r so so [F0El?]my concern th a t t h i s
d id < ???> was in f a c t th a t add s e s s io n was
j u s t l i t e r a l l y ta k in g an ID from th e u ser
ID but then la t e r w e're making c a l l s to
th e r e p o s ito r y to g e t out some XML based on
th a t s e s s io n ? (.) because t h i s d e c is io n
making p ro cess o f a c tu a lly (.) th e sync
a u th e n tic a t io n o b je c t i s not r e le a s in g c o n tr o l
i t ' s i t ' s d e c id in g I'm go in g to g en era te th e
IDs fo r th e new u sers=

4 Andy Yep
5 Darren =And th e new s e s s io n s i t should a ls o g en era te

a brand new s e s s io n se s s io n =
6 Andy Yes
7 Darren = (.) so I'm gonna (.) gonna go back to one

o f th e o th er t e s t s and change (1 .5) so I'm
actu a c tu a l ly ex p e c tin g add s e s s io n
(5 .0)

8 Andy I th in k th a t th e err s t i l l s t i l l th a t d e c is io n
about having th e se IDs here
(2 .5)

Appendix G Implementation or design

9 Andy [So now t h a t ' s doing so much s t u f f i n ' t i t]
10 Darren [At t h i s s ta g e i t ' s s t i l l i t ' s s t i l l] yeah

bugging me th a t
11 Andy Ju st go back to th e code a m inute

(3 .0)
12 Darren We alm ost need a do we need a m ini s e r v ic e

th e r e (.) som ething between t h i s and th e err r
(3 .0)

13 Andy Tlmmm
(5 .0)

14 Darren Where t h i s la y e r (.) a c tu a lly perhaps t h i s
i s n ' t ta lk in g to th e r e p o s ito r y i t ' s ta lk in g
to a (4 .0) s e r v ic e la y e r and th a t s e r v ic e
la y e r i t ' s g o t h igh l e v e l th in g s and th a t
s e r v ic e la y e r t h a t ' s r e sp o n s ib le (3 .0) fo r
c r e a t in g th e u ser (1 .0) ID i t ' s r e s p o n s ib le
fo r c r e a t in g th e s e s s io n
(2 .5)

15 Andy You're s t i l l g o in g to have th e same problem
though a r e n 't ya (3 .0) th e same th a t same you
know
(1 .0)

16 Darren Y o u 'll s t i l l yeah y o u ' l l s t i l l g e t th e same
problem as when you go down to th e [s e s s io n]

17 Andy [You're j] u s t go in g to y o u 're j u s t go in g
to copy th a t method and put i t in to a (1 .0)
se r v e r s id e one
(1 0 .0)

18 Darren Yeah (.) you c I mean you cou ld have an ID
g en era tor
(6 .0)

19 Darren [Yeah]
20 Andy [OK]

(2 .0)
21 Andy S sss l e t me have a qu ick th in k a second

(1 .5)
22 Darren I th in k i t i s go in g back aga in i t ' s th a t (.)

r e lu c ta n t to do som ething to o c le v e r here i f
t h i s i s n ' t go in g in th e code

359

Appendix G Implementation or design

23 Andy I j u s t say do th e s im p le s t th in g to s t a r t w ith
(1 .0) do what you sa id (5 .0) d a rre n t y p in g
and then i t ' s j u s t go in g to be hmmm how's i t
g o in g to kno::w th a t commenting on d ' s code
(1 .0)

24 Darren I t ' s l i t e r a l l y go in g to c r e a te i t i s ac I mean
i t i s a c tu a l ly go in g to c r e a te i t from sc r a tc h

25 Andy So are you th in k in g
(1 0 .0)

26 A ndy So t h a t ' s g o in g to have to [be]
27 Darren [W ell] (.) i t d o e sn 't know what th e IP i s
28 Andy But how (.) you c a n 't do th a t can you because

t h a t ' s not go in g to know
29 Darren no
30 Andy T h a t's why w e've yeah lau g h s so we e i th e r

need to (1 .0) th a t shows t h a t ' s doing to o much
d u n 't i t
(6 .0)

31 A ndy Can I have a look a t th a t code again
(1 8 .0)

32 Darren Terminated th e s e r v ic e though
33 Andy Or you cou ld j u s t huh w e ll no j u s t a s e s s io n

fa c to r y or summat t h a t '11 do th a t t h a t '11 g e t
away from th a t problem w on't i t (2 .0) u s u a lly
have a s e s s io n fa c to r y > b u t< a l l you do i s
g iv e i t a s e s s io n id

34 Darren OK
35 Andy And th e u ser ID and t h a t '11 retu rn th e

s e s s io n XML back and th a t way we can make
an e x p e c t a t io n]

36 Darren [S essio n] fa c to r y and th e u ser fa c to r y yeah
(5 .0)

37 Darren Do you want d e liv e r y r e c e ip t s and s t u f f l ik e
th a t (.) j u s t send away where no one goes
(8 .0)

38 Andy I d o n 't know i f we need th e u ser one
39 Darren P o t e n t ia l ly because o f t h i s b i t as w e ll we

cou ld th ere we cou ld i f w e're gonna do i t th en
w e're kind o f c o n s is te n t

40 Andy Huh l e t ' s s t a r t w ith th e s e s s io n one

360

Appendix G Implementation or design

41 Darren Yeah (1 .0)
42 Andy Watch i t huh oh yeah
43 Darren I '11 s t a r t w ith th e s e s s io n one
44 Andy yeah
45 Darren And se e how th a t goes (.) so I'm g o in g to put

a mock in t y p in g
(1 2 .0)

46 Andy I t alw ays f e e l l ik e when y o u 're back a t err
(2 .5) l ik e two s :e r v e r pack s e r v ic e la y e r s
fo r : :

47 Darren T h a t's what I was sa y in g i t [does f e e l]
48 Andy [A u :th en tic a tio n] and th en fo r s e s s io n s but

th en (.) w e're now r e p la c in g them w ith th e
f a c t o r ie s

49 Darren I j u s t th in k t h i s might le a d to (0 .5)
50 Andy yeah
51 Darren A c tu a lly having to have

(1 0 .0)
52 Darren P u b lic s e s s io n fa c to r y som ething l i k e th a t

t a l k i n g as he codes
(3 5 .0)

53 Darren New card s e s s io n (3 .0) so th a t way I can
cr e a te (2 .0) c r e a te t h i s s e s s io n th en
(7 .0)

54 Darren Got th e s e s s io n fa c to r y s e t up
(2 0 .0)

55 Darren Let th e s e s s io n fa c to r y make th e d e c is io n
about th e ID
(2 .0)

56 Andy I th in k th a t sounds b e t t e r as w e ll yeah
(8 .0)

57 Darren [So th a t way]
58 Andy [Do i t again]
59 Darren Then (1 .0) th e f i r s t one i s th e s e s s io n ID

so th a t would g e t an e x p l i c i t (3 .0) so we g e t
th a t ID
(2 .5)

60 Darren [th ere]
61 Andy [L e t] 's do th e second one (.) th e u ser name
62 Darren Yeah

361

Appendix G Implementation or design

(3 .0)
63 Darren Then th a t one 1s th ir d
64 Andy Yep
65 Darren Is th a t th e r ig h t I I th in k u ser ID should be

b efo re s e s s io n ID
66 Andy S e ss io n ID and s e s s io n XML should be n ex t to

each o th er yeah
67 Darren Yeah (1 .0) i t ' s k ind o f d o in ' i t on b e h a lf o f

(1 .0)
68 Andy T h at' s gonna

(5 .0)
69 Andy Sounds good to me

Ends a t 7 '4 5

362

