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ABSTRACT
MODELLING OF PULSATILITY IN NEUROENDOCRINE SYSTEMS

BY D B BARRASS

A thesis submitted in partial fulfilment of the 
requirements for the award of PhD.

The work described in this thesis concerns the 
mathematical description of the characteristic oscillatory 
electrical behaviour of certain neurosecretory cells found in 
the hypothalanjus of the mammalian brain. This study 
concentrates on those cells which secrete the hormone 
oxytocin. A model first described by Hodgkin and Huxley is 
used as a starting point for the derivation of a description 
comprising a system of coupled non-linear partial 
differential equations. The equations have been based 
wherever possible on experimental data relevant to the system 
being studied. Where this has not been possible, alternative 
models based on data from other, related systems have been 
used.

The thesis starts with a discussion of the physiology of 
the system under study and presents some background material. 
The second chapter discusses the process of mathematical 
modelling of neurones and presents some of the relevant work 
in the area. The model due to Hodgkin and Huxley is 
significant and is discussed in detail. The research 
methodology is then outlined. Experimental procedures for 
recording the electrical behaviour of nerve cells and methods 
of recording selected ionic currents are the subject of 
chapter three. Chapter four presents a discussion of 
oscillatory behaviour in nerve cells at a general level and 
outlines the features necessary for a nerve cell to exhibit 
oscillation. The next three chapters discuss the 
characteristics of the different ionic currents involved and 
describe the author's derivation of models of these currents. 
Chapter Five presents the author's model of the sodium 
current, Chapter Six, the potassium currents and Chapter 
Seven, the calcium current. The experimental work undertaken 
and the results obtained are then presented and discussed.

During the course of this study a number of computer 
programs were written and tested by the author. The program 
listings appear in the appendix.

The thesis is significant and contributes to the body of 
knowledge in that no other mathematical model of the unique 
bursting behaviour of oxytocin-secreting cells exists as far 
as the author is aware.
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INTRODUCTION

The work described in this report concerns the 
derivation of a mathematical model to describe the electrical 
activity characteristsic of certain nerve cells in a specific 
part of the mammalian brain. The nerve cells that are the 
subject of this study are found in the hypothalamus and are 
neurosecretory. This means that they are nerve cells that 
have evolved for the production of hormones. The two types of 
cell of interest to this study secrete either oxytocin or 
vasopressin. These hormones control the contraction of smooth 
muscle and blood osmolarity respectively. A model that 
describes the unusual electrical behaviour of the oxytocin- 
secreting cells is being sought. Electrical activity in the 
cell body is transmitted along the nerve axons to trigger the 
release of hormone into the blood supply. When the electrical 
activity of these nerve cells is recorded in lactating rats, 
unusual patterns are noted. Prior to ejection of milk from 
the mammary gland, a very high frequency burst of action 
potentials is recorded. The cells that show this behaviour 
normally fire action potentials only sporadically.

Dehydration causes the vasopressin-secreting cells to 
produce action potentials in a pattern that comprises a burst 
of oscillation followed by a period of silence followed by 
another burst.

Probably the best known mathematical model of the 
electrical behaviour of nerve cells is the one derived by 
Hodgkin and Huxley. Their model successfully described the 
generation and propagation of a nerve impulse in the giant



axon of the squid. Although this model was first published in 
1952, it is still widely acknowledged to be a good starting 
point on which to base models of more complicated electrical 
activity. This model is discussed in Chapter Two of this 
thesis. The model-building procedure used by Hodgkin and 
Huxley has been used in this project in order to formulate a 
mathematical description of the bursting behaviour observed 
in oxytocin-secreting cells.

Building on the current body of knowledge about the 
mechanisms responsible for generating electrical impulses in 
nerve cells and using experimental results obtained from the 
specific cell types under consideration, a mathematical 
representation of the electrical behaviour has been 
postulated. This involved a literature survey to establish 
the current state of modelling neural electrical activity and 
to become familiar with the techniques involved. Once this 
step had been completed, a strategy for building a model of 
the cell was formulated. This entailed obtaining experimental 
data from the collaborating establishment and the literature 
for the ionic currents known to be present in the cell, 
writing sets of equations to describe these currents 
individually and performing computer simulations of the 
resulting systems of equations. Several computer programs 
were written and tested by the author. Besides the modelling 
programs which involved numerical integration of the 
differential equations derived, a curve-fitting program was 
written and used to derive the model parameters from the 
available experimental data.

This thesis explains the background to the study,



discusses the process of building mathematical models, 
discusses important work in this field and describes the 
derivation of the model in detail. The results generated by 
the model are presented, discussed and compared with 
practice.



CHAPTER ONE

PROJECT BACKGROUND

Neurosecretion , the process of releasing hormones into 
the systemic circulation by neurones, is an important regu­
latory mechanism in all animals. Vasopressin (Arginine 
Vasopressin) (AVP) and oxytocin (OXT) are two such neurose­
cretory hormones. These hormones are produced in the supraoptic 
and paraventricular nuclei (SON & PVN) of the mammalian 
hypothalamus (see Figure 1.1). Oxytocin-secreting and 
vasopressin-secreting neurones are found in both nuclei 
(Poulain & Wakerley 1982; Lincoln & Wakerley 1974; Renaud, 
Bourque, Day, Ferguson & Randle 1985).

Paraven tr i cu1 an Nuc1eus

Supraoptic
Nucleus

Optic Chiasma

Neurohypophysi s 
(posterior lobe)Infundibular - 

stalk
(neural stalk)

Figure 1.1
Diagram showing the location of the Paraventricular and Supraoptic Nuclei.
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CELL PROPERTIES

The cell bodies are spherical or ovoid in shape with diameters 
from 10pm to 40pm (Renaud, Bourque, Day, Ferguson Sc Randle 
1985; Andrew & Dudek 1984; Legendre, Cooke Sc Vincent 1982; 
Erickson, Ronnekleiv Sc Kelly 1990; Mason 1983; Cobbett, 
Legendre Sc Mason 1989). Each cell has a few short, thick 
dendrites and one long, thin axon (Mason 1983; Leng Sc Dyball 
1983; Mason, Cobbett, Inenaga Sc Legendre 1988).
Cell resting membrane potentials are in the region of -60mV 
(-45mV to -80mv) (Bourque Sc Renaud 1985; Bourque, Randle Sc 

Renaud 1986; Abe Sc Ogata 1982; Poulain Sc Wakerley 1982; 
Legendre, Cooke Sc Vincent 1982; Cobbett Sc Mason 1987; Mason 
1983; Mason, Cobbett, Inenaga Sc Legendre 1988). Cell input 
resistances range from 50M Ohm to 1G Ohm (Trifaro Sc Poisner 
1985; Erickson, Ronnekleiv Sc Kelly 1990; Bourque Sc Renaud 1985; 
Renaud 1987; Abe Sc Ogata 1982; Andrew Sc Dudek 1984; Legendre, 
Cooke Sc Vincent 1982; Cobbett Sc Mason 1987; Mason 1983). Cell 
time constants range from 9 to 15 ms (Erickson, Ronnekleiv Sc 

Kelly 1990; Renaud 1987; Bourque, Randle Sc Renaud 1986; Mason
1983). From the cell input resistance and time constant the 
whole cell capacitance may be calculated from the equation

r = RC ............................... (1.1)
where R is the input resistance, C is the cell capacitance 

and r is the time constant. Using the values above a range of 
45pF to 300pF is obtained. These values may be compared with 
values calculated from the standard value of membrane
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capacitance of lpF/sq. cm assuming spherical geometry and cell 
diameters as given above. This calculation yields capacitance 
values between 3 and 50 pF. Calculations of this kind can be a 
little misleading since some cell types have extensive 
infoldings which dramatically increases the cell surface area. 
A low value is to be expected from calculations involving the 
cell geometry which involve only the calculation of the surface 
area of a sphere since such a calculation does not include any 
dendritic or axonic processes.

Action potential amplitudes are in the range 40 to 106 mV 
(Dudek, Hatton & MacVicar 1980; Bourque, Randle Sc Renaud 1986; 
Poulain Sc Wakerley 1982; Andrew & Dudek 1984; Mason 1983; 
Mason, Cobbett, Inenaga & Legendre 1988). Spike durations range 
from 1 to 5 ms. (Bourque & Renaud 1985; Andrew Sc Dudek 1984; 
Legendre, Cooke & Vincent 1982; Hatton, Ho Sc Mason 1983; 
Cobbett & Mason 1987; Mason 1983; Mason Sc Leng 1984).

The axons from the neurones in the paraventricular and 
supraoptic nuclei collect together to form the infundibular 
stalk (neural stalk) and then branch out to form the neuro­
hypophysis (posterior lobe).

The neurohypophysis is a richly vascularized region that 
provides an exception to the normal separation of the brain and 
the blood (the blood-brain barrier). For this reason, the 
neurohypophysis is known as a neurohaemal organ. (Maddrell Sc 

Nordmann 1979).
Oxytocin and vasopressin are synthesized in the cell 

bodies (somata) of magnocellular neurosecretory cells (MNC's)
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and packed into neurosecretory granules along with peptides 
known as neurophysins that bind to them (Maddrell Sc Nordmann 
1979; Smythies, Beaton, Bradley Sc Morin 1976). These 
neurosecretory granules are moved by the process of axonal 
transport to the neurohypophysis where they may be released by 
the usual mechanism of exocytosis. (This is where vesicles 
packed with hormone fuse with the membrane and in doing so, the 
contents become exposed to the exterior.) The process of 
exocytosis is triggered by action potentials at the axon end 
terminals and it is the unusual pattern of action potentials 
that this study is concerned with.

Vasopressin, otherwise known as the antidiuretic hormone 
(ADH) is, as its name suggests, involved with maintaining the 
water balance in the body by promoting water reabsorption in 
the kidney. This process is known as osmoregulation and there 
is evidence that the vasopressin-secreting cells themselves act 
as osmoreceptors. (Mason 1980; Leng, Mason & Dyer 1982; Dyball 
& Leng 1984; Abe Sc Ogata 1981)

Oxytocin acts on smooth muscle cells and causes con­
traction of uterine muscles (myometrium) during parturition. It 
also acts on the myoepithelial cells in mammary glands causing 
contraction and therefore milk ejection (Renaud 1987; Lincoln 
Sc Wakerley 1974; Poulain Sc Wakerley 1982).

Both types of MNC show very characteristic electrical 
behaviour. During periods of hypovolemic or osmotic stimuli 
(ie. reduction in the volume of blood or dehydration), 
vasopressin-secreting neurones fire action potentials in a
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phasic burst (see Figure 1.2). Phasic firing does not start 
immediately after the application of the stimulus but follows 
a period of continuous firing (Brimble & Dyball 1977; Maddrell 
& Nordmann 1979). Phasic firing displays a very characteristic 
pattern consisting of periods of action potential discharge 
lasting about 7 - 30s at frequencies of between 4 - 1 2  spikes 
per second followed by silent periods of 15 - 40s (Leng 1981; 
Leng & Bicknell 1984; Brimble & Dyball 1977; Dutton & Dyball 
1979). This pattern of firing has been shown to be optimal for 
the release of hormone (Dutton & Dyball 1979; Leng & Bicknell 
1984; Renaud, Bourque, Day, Ferguson & Randle 1985; Ingram, 
Bicknell, Brown & Leng 1982; Dyball, Barnes & Shaw 1985).

50 mV

Figure 1.2
Recording of phasic firing. Reproduced courtesy Dr. G. Leng

Oxytocin-secreting neurones may be distinguished from 
vasopressin-secreting cells on the basis of their electrical 
behaviour as well as their response to osmotic stimuli since 
they very rarely display phasic activity (Brimble & Dyball 
1977). However, they do fire spontaneous action potentials at
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a low background rate until stimulated to fire an intense burst 
(Lincoln & Wakerley 1974; Poulain & Wakerley 1982; Leng & 
Dyball 1983). This short, intense burst of action potentials 
causes the release of a bolus of oxytocin that then acts on the 
myoepithelial cells of the mammary gland producing an ejection 
of milk. The milk ejection reflex occurs only during lactation 
and the characteristic burst of action potentials is not 
observed in males or in virgin females. It is essential that 
the release of oxytocin occurs as a bolus since it has been 
shown that the same amount of hormone injected over a longer 
period of time does not cause contraction of the myoepithelial 
cells (Leng 1981 , Leng & Bicknell 1984). A typical burst of 
action potentials that precedes a milk ejection consists of a 
rapid acceleration in firing rate up to a maximum of around 80 
spikes/second (Leng & Bicknell 1984 , Cobbett, Legendre & Mason 
1989). A recording from a neurone in the SON displaying such a 
burst is shown in Figure 1.3. The general pattern of activity 
is a slow irregular or continuous background firing (slow; less 
than 3 spikes/second-Bicknell 1988; Poulain & Wakerly 1982; 
fast continuous; more than 3 spikes/second-Bicknell 1988; 
Poulain & Wakerly 1982) which is interrupted every few ( 4 to 
8 - Robinson & Dyer 1988) minutes by a short (l-2s) burst of 
high frequency discharge (50-80 spikes/s Renaud, Bourque, Day, 
Ferguson & Randle 1985). There may be up to 100 spikes in a 
single burst (Richard, Moos & Freund-Mercier 1988).
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Figure 1.3
Recording of a milk ejection burst. Reproduced courtesy Dr. G. Leng

In order to release the maximum amount of hormone in a 
brief burst, the oxytocin-secreting cells in the SON fire 
synchronously (Poulain & Wakerley 1982). It is of interest to 
discover how this synchronization is effected. There are 
several possibilities:-

1. The oxytocin-secreting cells in the SON and PVN 
are all driven by a common synaptic input.
2. Positive feedback is provided by mutual synaptic 
coupling from oxytocin-containing synapses.
3. Coupling between cells is provided by interneurones.
4. Electrotonic coupling between cells.
5. Electric field effects cause depolarization of 
surrounding neurones.
6. Changes in the potassium concentration in the 
extracellular space cause depolarization of the cell 
population.
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Various pieces of evidence are available to support some 
of these hypotheses. Dye coupling between cells suggests the 
existence of electrotonic coupling between cells (Bourque, 
Randle & Renaud 1985; Dyball & Leng 1986; Cooke fic Stuenkel 
1985; Taylor & Dudek 1982; Dudek, Andrew, MacVicar, Snow & 
Taylor 1983 ) .  The electric field and changes in potassium 
concentration hypotheses need to explain why vasopressin cells 
are not so affected since both the SON and PVN contain a fairly 
heterogenous mixture of oxytocin and vasopressin-secreting 
cells (Dyball & Leng 1986). Electric field effects are 
discussed by Taylor & Dudek (Taylor & Dudek 1 9 8 4  a fit b). A 
model is proposed by Sperelakis & Mann (Sperelakis & Mann 
1977). Changes in concentration of extracellular potassium ions 
have been investigated (Leng, Shibuki & Way 1987; Leng, Shibuki 
& Way 1988). Dyball and Leng discuss some of these 
possibilities and offer evidence that there is no local 
positive feedback mechanism linking oxytocin-secreting cells 
during reflex milk ejection since, in their experiments, 
stimulation of the neural stalk failed to trigger bursts 
(Dyball & Leng 1986). In the same paper they suggest that local 
release of oxytocin may influence reflex milk ejection in the 
SON. The actions of oxytocin and vasopressin as neuromodulators 
are also dicussed by these authors in an earlier paper (Leng & 
Dyball 1983) and also by Richard, Moos & Freund-Mercier (Leng 
1988).

During lactation there appears to be a retraction of the 
glial cells that ‘separate neurons and a closer connection
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between cells that may facilitate ephaptic communication (ie. 
direct cell-to-cell communication) (Poulain & Wakerley 1982; 
Theodosis, Poulain & Vincent 1981; Dyball & Leng 1986; Leng 
1988).

Evidence for the interneurone hypothesis is also given in 
the above-mentioned paper (Dyball & Leng 1986). The evidence is 
that supraoptic neurons have projections that extend into areas 
immediately outside the SON and that neurons in these areas 
have projections that reach into the SON. In another paper 
(Leng & Dyball 1983) the subject of communication between cells 
in the supraoptic nucleus is discussed and several of the ideas 
mentioned above are analyzed. In the 1983 paper they note the 
existence of 'stellate1 cells that may act as interneurones.

The details of the bursting behaviour of oxytocin- 
secreting cells during the milk ejection reflex raises some 
interesting questions which should be addressed by a model that 
seeks to elucidate the mechanisms behind these oscillations. 
Besides the question of synchronization of the population of 
oxytocin-secreting cells there is the question as to the origin 
of the burst. Here there are two possibilities, (1) the burst 
is caused by the cells being driven by an external input or 
(2), an endogenous mechanism. In either case a model should 
explain how the cells are able to sustain the high rate of 
firing that has been observed. Suckling is the stimulus that 
initiates the burst, so a neural pathway from touch receptors 
in the nipple to synapses on the oxytocin-secreting cells must 
exist. However the question is whether the burst is driven by
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a patterned afferent synaptic input or whether the input merely 
triggers an endogenous burst. Leng and Bicknell state that the 
burst duration is between 2 and 4 seconds and the maximum 
firing rate is between 40 and 80 spikes/second (Leng & Bicknell 
1984; Dyball & Leng 1986; Lincoln & Wakerley 1974). Such a high 
frequency of firing is not usually observed in such cells 
although high frequency firing is observed in other systems, 
for example the squid giant axon.

If the interspike interval histograms obtained from 
recordings of oxytocin-secreting cells are examined it can be 
seen that the modal interspike interval is 47.1 +/- 3.1 ms for 
action potentials occurring between milk ejection bursts. This 
is similar to the situation in male rats. Less than 1.4% of the 
interspike intervals are less than 20ms in duration. However, 
during a milk ejection burst 40% of the interspike intervals 
are between 8 and 20 ms (Dyball & Leng 1986).

A feature of action potentials generated by oxytocin- 
secreting neurones is a calcium component to the inward current 
(Mason, Cobbett, Inenaga & Legendre 1988; Renaud 1987; Mason & 
Leng 1984). In the action potentials recorded from squid giant 
axons the inward current that causes depolarization of the 
membrane and the upstroke of the spike is carried by sodium 
ions only (Hodgkin & Huxley 1952 d). The calcium current 
produces a 'shoulder' on the action potential and is 
responsible for a depolarizing after potential (Mason & Leng 
1984; Cobbett & Mason 1987; Renaud 1987; Renaud, Bourque, Day, 
Ferguson & Randle 1985). Calcium also appears to be implicated
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in the activity-dependent increase of spike duration during a 
burst (spike broadening). Spike durations of 1.74 +/- 0.03ms 
are observed during relatively quiet periods (less than 0.5 
spikes/s), but during periods of more rapid firing (greater 
than 10 spikes/s) this increases to 2.68 +/- 0.05ms (Bourque 
& Renaud 1985; Renaud 1987; Mason Sc Leng 1984). These features 
should also be explained by a model.

The aim of this project is therefore to construct a 
mathematical model that goes some way to answering some of the 
questions that are raised by considerations of the unusual 
repetitive firing behaviour of oxytocin-secreting neurones.
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CHAPTER TWO
THE HODGKIN - HUXLEY AND RELATED CELL MODELS

A mathematical model of a system or process should 
fulfil several criteria in order to be useful. The behaviour 
of the model should closely match the observed behaviour of 
the system. It should be capable of predicting the behaviour 
of the system in unusual or abnormal situations or 
circumstances that are difficult to create experimentally and 
of generating predictions that are unexpected. It should 
provide insight into, and understanding of, the workings of 
the system.

Leng (Leng 1988) defines two types of approach to 
modelling; the mechanistic approach which seeks to elucidate 
mechanisms responsible for the observed behaviour and the 
analytical approach which seeks understanding in terms of a 
purely mathematical model. Of these he favours the analytical 
approach as being the more fundamental. The models discussed 
here are generally mechanistic in nature but with several 
notable exceptions.

The model proposed by Hodgkin and Huxley to describe the 
generation and propagation of nerve impulses in the squid 
giant axon fulfils the above criteria and represents a 
milestone in biophysical modelling as evidenced by its very 
widespread use (Hodgkin & Huxley 1952d). Although further 
work has cast doubt over details of the model, the approach 
they used remains valuable and many current models are based 
on their model (see Hille 1984; Meves 1984; Plant Sc Kim 1976 
Smith 1978; Hencek Sc Zachar 1977; Ramon, Anderson, Joyner Sc 
Moore 1976; Sherman, Rinzel Sc Keizer 1988; Sanchez Sc Stefani
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1983).
The basic premise of the model is that the action 

potential is caused by inorganic ions (sodium and potassium) 
crossing the nerve membrane through separate ion-specific 
channels. This hypothesis, although not originally propounded 
by Hodgkin & Huxley, has been validated by the discovery of 
ionic channels and the isolation and purification of membrane 
proteins that form them (see Page 26). The step that Hodgkin 
and Huxley made was to electrically record separate currents 
and fit mathematical curves to those currents. They pursued 
this line of work and went on to propose a kinetic model of 
the currents using coupled non-linear differential equations 
based on chemical rate equations. Since a substantial amount 
of subsequent work has been based on Hodgkin and Huxley's 
work, the model they proposed (the Hodgkin-Huxley model, H-H 
model) will be discussed in some detail (see Noble 1962; 
Frankenhaeuser & Huxley 1964; Smith 1978).

By making changes to the bathing solutions in which the 
squid giant axon was maintained, Hodgkin and Huxley were able 
to separate and record, using the voltage clamp method (for 
a space-clamped axon), the individual ionic currents that 
made up the action potential response of an electrically 
stimulated axon. (The terms voltage-clamp and space-clamp are 
explained in Chapter 3). The data from the conductance curves 
were manipulated mathematically to yield rate “constants" 
that are functions of voltage. By fitting mathematical 
functions to these curves Hodgkin and Huxley were able to 
reconstruct action potentials by numerically integrating 
(using a hand calculator) the resulting system of equations.
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The results they obtained fitted well with the experimental 
results and predicted several phenomena that have been 
subsequently confirmed (see Meves 1984).

THE HODGKIN-HUXLEY MODEL

C« ^  = Ii + I » ....................................... (2.1)

Ij = gNa m3h(V-VNa) + gKn4(V-VK) + gL(V-Vt) .............. (2.2)

dm _
m. = ain(V)(l-m) - J3m( V ) m .............................(2.3)

= ah(V) (1-h) - Bh( V ) h ..........................   (2.4)

dn _ 
eft = an(V) (1-n) - J3n( V ) n .............................(2.5)

Where Ij is the total ionic current given by Equation 
(2.2) , Im is the membrane current. For calculating a
membrane potential the capacity current is equated to the 
ionic current (Ij = Ic). The functions aj(V) and i3j (V) are

„ r\7\ = 0.1 (25-V) /- %
' [exp{0.1(25-V)} - 1 ] .........................( ’

8„(V) = 4 exp{-V/18}  (2.7)
ah(V) =0.07 exp{-V/20} ........................... (2.8)

1
6h(V) “ [exp'{0~ 1T30-V)} h- 1] ....................... (2'9)
_ ,,,, = O.Ol(lO-V) ,, ln,
n( 5 Lexp(.0.1(ru-V))"- 1 7 ...................... (2.10)

8„(V) = 0.125 exp{-V/80} ........................  (2.11)

  <2‘12>
joo = Gtj -Cj .......................................  (2.13)
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j = m,h,n
This model has an equivalent electrical circuit repre 

sentation that is shown below.

EQUIVALENT CIRCUIT

Outside

Inside Figure 2.1
Circuit diagram representation of the H-H model

The above equations and circuit diagram embody current 
physiological conventions for the direction of current flow 
and polarity of membrane voltage. The convention is that 
membrane voltage is measured with the external bathing 
solution as the zero volt reference, with the interior of the 
membrane having a negative resting potential. Positive 
current flow is taken to be outward. Depolarization of the 
membrane is regarded as a shift in the positive direction 
(FitzHugh 1969; Plant & Kim 1976). The equations as
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originally formulated by Hodgkin and Huxley reverse this 
convention such that inward current is positive and the 
functions for aj(V) and Bj(V) were written with the signs of 
voltage V being positive. The circuit diagram clarifies the 
origin of the capacity current. Since the neural membrane is 
a lipid bilayer surrounded on both sides by conducting fluids 
it possesses the property of electrical capacitance. A change 
of voltage across the capacitance is caused by a current flow 
in or out of the capacitor. The non-linear time- and voltage- 
dependent conductances are due to the properties of ion- 
selective channels in the membrane. Although they did not 
propose any detailed mechanism for the behaviour of what we 
now know as ionic channels they suggested a model in which 
flow of current across the membrane was controlled by charged 
components in the membrane. Movement of these "gating 
charges" gives rise to gating currents which have 
subsequently been recorded (see page 32). Detailed 
consideration of the gating currents has shown that the H-H 
model is incorrect in detail but this possibility was 
acknowledged by the authors who admitted that the functions 
used were a reasonable empirical fit to their data but were 
not intended to have any physiological significance. Another 
aspect of the model that we need to be aware of is that the 
equations were normalized, such that the membrane resting 
potential was taken to be zero Volts and voltage changes were 
measured as displacements from resting potential. The H-H 
equations have been rewritten by other workers to take 
account of the resting potential being around -62mV (Meves
1984).
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TABLE 2.1
UNITS AND MODEL PARAMETERS USED BY HODGKIN AND HUXLEY

Cm (membrane capacitance) lpF/cm2
gNa = 120mS/cm2 gK = 36mS/cm2
gL = 0.3mS/cm2 vNa = 115mV
VK = -12mV VL = 10.613mV
I pA/cm2
t ms
■Cj ms

Conductance changes are represented by "activation" and 
"inactivation" variables m,h and n that describe what 
fraction of the maximum available conductance (gx where X 
represents Na+ or K+) is carrying current at any particular 
instant. The activation variables m and n and inactivation 
variable h vary between 0 and 1. As shown above, the changes 
in activation and inactivation variables are governed by 
first order linear differential equations. The activation and 
inactivation variables are necessary to describe the rise and 
subsequent fall of sodium conductance with maintained 
stimulation whereas only one activation variable, n, is 
needed to describe changes in potassium conductance. Here 
again, Hodgkin and Huxley acknowledge a simplification in 
that the potassium conductance, for example, is described by 
a variable that follows a first order differential equation, 
but in order to adequately describe the sigmoidal shape of 
the rise in potassium conductance, the variable is raised to 
the fourth power. This simplifies the mathematics
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considerably since higher order differential equations are 
more difficult to solve, but has implications for the type of 
model that the equations describe. Implicit in these 
equations is the fact that the activation and inactivation 
variables are independent. A class of models known as 
"coupled models" have been explored subsequently by various 
workers and these show a better fit to the experimental data 
(see later and also Chapter 5). Graphs showing steady-state 
activation and inactivation as a function of membrane voltage 
are shown in Figures 2.2 to 2.4. Also shown are the 
activation and inactivation time constants as a function of 
voltage in Figures 2.5 and 2.6. The alpha and beta functions 
are shown in Figures 2.7, 2.8 and 2.9.

H H  mod e l  s te a d y  s t a t e  s o d i u m  a c t i v a t i o n
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Figure 2.2
Graph showing the variation of steady-state sodium activation with
voltage.
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Figure 2.3
Graph showing the variation of steady-state sodium inactivation with 
voltage.
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Figure 2.4
Graph showing the variation of steady-state potassium activation with
voltage.
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Figure 2.5
Graph showing the sodium activation and inactivation time constants as 
a function of voltage.
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Figure 2.6
Graph showing the potassium activation time constant as a function of
voltage.
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Figure 2.7
Graph showing sodium activation rate "constants" as functions of voltage.
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Figure 2.8
Graph showing sodium inactivation rate "constants" as functions of 
voltage.
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Figure 2.9
Graph showing potassium activation rate "constants" as functions of 
voltage.

Hodgkin and Huxley reconstructed two types of action 
potential: the membrane potential mentioned above , and the 
propagated action potential. The total membrane current is 
composed of a contribution due to ionic fluxes through the 
membrane and the capacity current as described above. When 
the ionic current is set equal to the capacity current a 
membrane potential results. If the membrane current is 
allowed to propagate along the axon, exciting subsequent 
patches of membrane, then the result is a propagated action 
potential which is calculated using cable theory. This study 
is primarily concerned with membrane potentials.

The activation and inactivation variables that have been 
mentioned previously merit further explanation. The recorded 
potassium conductance shows a marked delay and inflection 
following a depolarizing stimulus. In order to describe this
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mathematically, Hodgkin and Huxley multiplied the value of 
conductance by a dimensionless first order variable n, raised 
to the fourth power. This variable was given the name 
"activation". The rate of change of potassium activation is 
a time and voltage-dependent process and may be derived by 
assuming that a charged entity governs the opening and 
closing of a "gate" in the potassium-selective channel such 
that in one particular conformation the gate is closed and in 
another conformation, the gate is open, allowing potassium 
ions to flow through the channel. The particle moves between 
these two conformations according to a first-order 
differential equation. The Boltzmann distribution is a 
probability distribution that describes the probability of a 
finding a given number of particles in a particular energy 
state. The concepts involved may be used here since movement 
of a charged particle through an electric field involves a 
change of energy level. If the probability of n particles 
being in the open conformation is given by n, then 1-n gives 
the probability of the gate being in the closed state (since 
the sum of all probabilities should equal unity).



The rate of change of state is given by the differential 
equation (2.5). Solving this differential equation yields an 
exponential expression with time constant

=  1 7 * ^ 7    (2-15)

and steady-state value of activation given by

ann® = ,   (2.16)(an 8n)

To fit the sigmoidal rise in potassium current, the 
activation variable is raised to the fourth power as men­
tioned before.

9K = §K n4 .......................................  (2.17)

This is interpreted as meaning that, for the gate to be 
open four such "gating particles" must simultaneously be in 
the open configuration.

Thus, the solution of Equation (2.5) is

n# = n# - (nw - n0) exp{-c/rn} ..................... (2.18)

where nQ is the initial state of the activation vari­
able.

The sodium activation and inactivation follow the same 
derivation. The activation is deduced to be controlled by 
three particles and the inactivation by one. For a sodium
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channel to be open, all three activation and the inactivation 
particles have to be in the correct configuration.

Hodgkin and Huxley’s model yields good results for the 
velocity of the propagated action potential and its shape. It 
also demonstrates a threshold for excitation and latency 
between action potentials. The all-or-nothing response to 
stimulation is another feature that the model successfully 
reproduces. Given a maintained suprathreshold stimulus, the 
H-H model fires an infinite train of action potentials 
(Cooley & Dodge 1966; Cole,Antosiewicz & Rabinowitz 1955), 
which is not observed experimentally. In this respect, the 
model lacks an adaptation variable (FitzHugh 1969) (see 
discussion of FitzHugh's model Page 37). Bathing the squid 
axon in a medium containing a low concentration of calcium or 
magnesium does produce repetitive firing (Huxley 1959; Meves 
1984). The model also predicts a strength-duration curve that 
is a reasonable fit to experimental results (Cooley & Dodge 
1966).

Ionic channels have been mentioned previously and it is 
appropriate at this point to discuss their nature.

25



IONIC CHANNELS

Bernstein (Bernstein 1902) first proposed the theory 
that there are channels or pores in nerve membrane , but it 
has only been fairly recently that the existence of such 
channels has been confirmed. It is now possible to record the 
current through a single ionic channel (see single-channel 
recording in Chapter 3). It is also possible to extract, 
purify and reconstitute ionic channels experimentally (Hille 
1984; Latorre, Alvarez, Cecchi & Vergara 1985; Ehrenstein, 
Lecar & Nossal 1970). Ionic channels are formed by large 
transmembrane proteins which may be inserted into 
artificially-created lipid bilayers to form pores with the 
same characteristics as are observed naturally. Alamethicin 
and gramicidin A are two such pore-forming molecules that 
have been studied (Hille 1984; Neher & Stevens 1977).

A major piece of evidence that transport of ions across 
the nerve membrane is due to flow through ion-specific 
channels is that the observed rate of ionic flux is too high 
to be explained by a carrier model whereby ions bind to a 
membrane protein which then undergoes a conformational change 
of one sort or another to move the ion from one side of the 
membrane to the other (Hille 1984). However, calculations of 
ionic fluxes on the basis that transport across the membrane 
is by flow of ions through a water-filled pore do yield 
results that are consistent with the observed rates. ( more 
than 10̂  ions/s Hille 1984). This is not to say that 
carriers do not exist, merely that the currents which are 
observed to be responsible for generating the action poten­
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tial are not due to that method of transport. Pore diameters 
are assumed to be such that ions have to shed some of their 
water of hydration in order to fit through the channel. The 
gramicidin A pore has a diameter of 4 A (Hille 1984) which is 
in accordance with these calculations.

Single channel recording as described in Chapter 3 also 
provides evidence for the existence of ionic channels. In 
fact the existence of ionic channels is now regarded as 
beyond all reasonable doubt (Hille 1984). Single ionic 
channels are either open or closed (though there is evidence 
for the existence of so-called conductance substates) and the 
current recorded from them appears as rectangular pulses. The 
channels open and close stochastically with the mean open 
time and shut time being functions of membrane potential. 
This gives rise to interesting questions about single 
channel currents and macroscopic currents which are smooth 
functions of time and voltage. Because the macroscopic 
currents are smooth it is apparent that what is being 
observed is the overall behaviour of a very large number of 
channels and the contribution of an individual channel is 
very small compared with the total current. As an indication 
of the scale of these currents, Hodgkin and Huxley recorded 
currents with magnitudes of hundreds of microamperes per 
square centimetre, whereas single channel currents are of the 
order of a few picoamperes to a few nanoamperes. Comparison 
of macroscopic currents and single channel currents also 
allow the estimation of the channel density in a membrane. 
Because of the large numbers of channels carrying such small 
currents, which is a feature of nerve membranes, some of the
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ideas from statistical mechanics may be applied. 
Specifically, the Boltzmann equation, mentioned earlier, 
which relates the number of particles in two different energy 
states to the energy difference between the states, often 
appears in descriptions of channels.

As stated previously, the aim of this study is to 
provide a satisfactory explanation of the unique bursting 
behaviour of the oxytocin-secreting neurone and to achieve 
this a model is being sought. The model is a model of the 
macroscopic currents. As various authors report, much work is 
being done on elucidating the properties of the ionic 
channels that underlie action potentials. Modelling the 
electrical behaviour of nerve membrane at this molecular 
level using fundamental physical and chemical properties of 
ions in solution, the lipid bilayer and the pore-forming 
membrane proteins, is considered to be too complex at this 
stage and will not be attempted. Work towards this end is in 
progress, see for example Gillespie (1976a,b). It is however 
acknowledged that one aim of research in this area is to be 
able to provide a satisfactory explanation of all the 
observed features of ionic conduction through nerve membranes 
using such a fundamental model.

Hille (1984) gives a detailed background of the theory 
behind ion transport in pores and reviews research in the 
area. Other related articles not explicitly referenced in the 
text, but which contain much useful background are Latorre & 
Alvarez 1981; Latorre, Alvarez, Cecchi & Vergara 1985; Lauger 
1984; Neher & Stevens 1977. The precise conformational 
changes that the membrane proteins undergo have not yet been
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fully elucidated and this is an area of active research. 
Hille (1984) discusses various proposed structures and models 
and the reader is referred to this volume for further detail.

MECHANISTIC IMPLICATIONS OF THE H-H MODEL 
The Hodgkin-Huxley model carries with it implications about 
the mechanisms involved in controlling the flow of ions 
through channels. The activation and inactivation variables 
invoked by Hodgkin and Huxley are merely convenient empirical 
descriptions of the number of ionic channels open at any 
instant. The observed macroscopic current flow is the sum of 
ion flow through open channels. The opening and closing of 
ionic channels is governed by processes known as gating. The 
observed macroscopic currents are a manifestation of the 
underlying opening and closing behaviour of ionic channels on 
a microscopic level. French and Horn (1983) show how adding 
together the responses of many individual channels reproduces 
the observed sodium current. Using the sodium current as an 
example, the implications that the H-H model has for the 
underlying gating of the sodium channel, will be briefly 
investigated.

The variations in sodium current with time and voltage
qare reasonably well fitted using the nrh description. This 

model supposes that the conductance state of the channels is 
governed by three "activating" particles and one "inac­
tivating" particle. Chemical rate kinetics are then used to 
describe the movement of these particles, giving the linear, 
first order differential equations as derived above, (see 
Equations 2.3,2.4 & 2.5). Hodgkin and Huxley assumed that the
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processes of activation and inactivation were independent. In 
fact, detailed studies have since shown that there is some 
interaction between the processes of activation and 
inactivation. (French & Horn 1983; Bezanilla & Armstrong 1977 
(I); Armstrong 1981) However, activation and inactivation are 
separate processes since treatment of nerve membrane using 
pronase has been shown to remove inactivation of the sodium 
current without affecting activation (Hille 1976; Bezanilla 
& Armstrong 1977(1); Armstrong 1981; French & Horn 1983).

A useful discussion of the H-H model of sodium conduc­
tance variation is provided by French & Horn (French & Horn
1983) alongside a coupled model. A cyclic kinetic scheme for 
describing sodium conductance, having three coupled states is 
discussed by Jakobsson (Jakobsson 1976). The reader is 
referred to these, and the other references cited, for 
further details of the various kinetic schemes that have been 
proposed. Tests for these models may be provided by the 
predictions of mean channel open times that are measurable 
experimentally using single channel recording methods.

The model proposed by this study is concerned with the 
macroscopic behaviour of the ionic currents present in the 
oxytocin-secreting cell membrane and so the underlying 
kinetic behaviour of channel gating will not be discussed 
further.
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STATE DIAGRAMS

Ionic channels are normally considered to have just two 
conductance states, open and closed. In going from the open 
conformation to the closed conformation and vice versa, the 
channel will pass through several different conformations 
each with a different energy state. Consideration of these 
states and transitions between them in pictorial form leads 
to a state diagram. A state diagram for the sodium current of 
the H-H model may be derived by considering their hypo­
thetical gating particles. Activation is governed by three m 
particles giving rise to the m̂  description. Inactivation is 
governed by a single gating particle h. There are thus two 
inactivation states, "inactivated" and "non-inactivated". 
There are four activation states, "activated", one "active" 
particle, two "active" particles and "non-activated". This 
gives a total of eight conformational states for the channel. 
Such a verbal description is very clumsy and French and Horn 
(French & Horn 1983) give a diagrammatic description of these 
states that conveys the information much more efficiently and 
elegantly. Such a state diagram is shown in Fig. 2.10. State 
diagrams are widely used in attempting to prove or disprove 
various kinetic schemes. The H-H scheme as given above does 
not give predictions of gating current that are seen in 
practice.

31



jr f (3

313,

■9-

<xit|3h

— ►

m

Figure 2.10
State diagram for H-H sodium channel.
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GATING CURRENTS 
Hodgkin and Huxley predicted the existence of gating 

currents as a consequence of their model of the squid axon in 
1952. Stated simply, gating current is simply the element of 
membrane current that arises from the movement of the gating 
"particles" or charges in the membrane. However, due to the 
small size of the current, it was not until 1973 that the 
sodium gating current was first observed by Armstrong and 
Bezanilla, using special pulse protocols and signal averaging 
techniques (Armstrong & Bezanilla 1973). Gating currents 
arise due to asymmetrical charge movement within the membrane 
and are a necessary consequence of the voltage sensitivity of 
the ionic channels. It appears that the opening and closing 
of the channels are controlled by molecules having an overall 
charge, giving them a polar nature and hence, a dipole 
moment. It is this property that endows the gate with its 
voltage sensitivity. Since the gating current is an 
asymmetrical charge movement it may be distinguished from the
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linear capacitive component of the membrane current by using 
equal and opposite stimulating pulses. A more complicated 
"P/4" procedure is favoured by Armstrong and Bezanilla 
(Armstrong & Bezanilla 1977) for separating gating current 
from capacitive current. Details of the experimental 
protocols are to be found in Armstrong & Bezanilla 1974. As 
this study is concerned with descriptions of the macroscopic 
currents only, no further discussion will be given. Gating 
currents are very small as stated above and so can be safely 
neglected when modelling the macroscopic currents. It should 
be noted, however that the study of gating currents provides 
evidence to support or refute the various proposed channel 
gating mechanisms. As far as the author is aware there has 
been no published work on gating currents in oxytocin- 
secreting cells to date. A model that included gating 
currents could not be tested by currently available means 
since although it is possible to reject models that produce 
incorrect results, it is not possible to distinguish between 
two models yielding similar results. Useful discussions of 
gating currents are to be found in Bezanilla & Armstrong 
1974; Adams & Gage 1975; Armstrong 1975; Horn 1984; Meves 
1984; Ulbricht 1977; Lundstrom & Stenberg 1977.
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OTHER MODELS

Hodgkin and Huxley's model of the squid giant axon is 
essentially empirical in that mathematical equations were 
chosen to fit the experimental data without specific refer­
ence to any underlying physical model. The criterion for 
fitting was that the chosen equations should provide a close 
fit to the data over the range of interest. Another modelling 
approach is to work from fundamental principles and build up 
a model from a theoretical framework. As mentioned above, 
this approach will not be used here since this would involve 
a very complicated and cumbersome model that would probably 
not be useful in providing insights into the physical 
processes involved. (See Gillespie 1976a; Gillespie 1976b; 
Goulden 1976 Attwell & Jack 1978 for discussions of various 
theoretical approaches.) A further possiblity for building up 
a mathematical model is from knowledge of the behaviour of 
systems of differential equations. This approach is taken by 
Hindmarsh and Rose (Hindmarsh & Rose 1982; Hindmarsh & Rose 
1984). The first of these two papers describes a model that 
reproduces continual firing. The second paper extends the 
model to show the generation of bursts of action potentials 
using a third differential equation. The observed behaviour 
of the oxytocin secreting cell is oscillatory with the addi­
tional complication that the spike train does not repeat 
indefinitely but rather appears to be gated on and off. In 
this respect the model of Hindmarsh and Rose, using three 
coupled first order differential equations, adequately 
represents the observed activity. This model was investigated
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by the author but initial results were not encouraging. A 
slightly different, but allied approach is taken by Zeeman 
(Zeeman 1972) who uses the catastrophe theory of Rene Thom to 
derive a model for the heartbeat and nerve impulse. Leng 
(Leng 1988) also explains the use of catastrophe theory in 
modelling biological systems. FitzHugh (FitzHugh 1969) also 
provides a good example of this approach to modelling and the 
models of Hindmarsh and Rose are based on a generalization of 
equations derived by FitzHugh. However, there is a drawback 
here since most models of this type are reduced order, 
simplified models. Such models do not show the details of 
observed behaviour due to the simplifications involved. There 
are several aspects of the bursting behaviour that are of 
interest, such as the shoulder on the repolarizing phase of 
the action potential waveform, spike broadening and the 
changes in firing rate during the burst that may not be 
reproduced by such a simplified model. The advantage in using 
reduced order models is that techniques such as the phase 
plane are applicable and this enhances the understanding of 
the system behaviour. Rinzel uses this approach and 
introduces the idea of a model that exhibits bistable 
behaviour and that movement between the two types of activity 
is driven by an additional model variable (Rinzel "Bistable 
behavior of bursting cells" pre-publication communication). 
This approach may be used since there are fast and slow 
variables in the model with widely differing time constants. 
This enables variables to be treated as parameters for the 
purposes of analysis.

FitzHugh (FitzHugh 1969) discusses several models and
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provides a useful classification of the types of model 
variable that are used in describing membrane behaviour. 
These variables are ; 1) Membrane potential, 2) Excitation 
variables (m in H-H model), 3) Recovery variables (h,n in H-H 
model) and 4) Adaptation variables. The subject of this study 
is the bursting behaviour of the oxytocin-secreting neurone 
which requires all four of these types of variable. A single 
action potential or an infinite train of impulses may be 
simulated using a computer model based on the H-H model which 
does not contain any adaptation variables. (See Colding- 
J<J>rgensen (1976) for discussion of adaptation.) Refinements 
to the H-H model to include the phenomenon of adaptation 
usually invoke the concentration of calcium ions at the 
inside of the membrane acting on calcium-gated potassium 
channels to provide feedback and burst termination. (Smith 
1978; Rinzel ; Maddrell & Nordmann 1979; Gorman & Thomas 
1978). This mechanism is explored in the present study since 
calcium channels and calcium-gated potassium channels are 
known to exist in the oxytocin-secreting cell (Bourque, 
Randle & Renaud 1985; Cobbett, Legendre & Mason 1989; Mason 
& Leng 1985; Bourque & Renaud 1985). Inclusion of calcium 
channels and calcium-gated potassium channels further 
complicate the H-H model but are necessary since these 
channels are known to exist and play an important role in 
governing the electrical properties of the oxytocin-secreting 
cell.

The generalised set of equations given by FitzHugh are 
reproduced here.
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FITZHUGH'S MODEL

dV = 1 
eft C (2.19)

/ • • • ,Wp) j=l (2.20)

These equations represent a set of coupled first order 
differential equations where V is the membrane potential and 
Wj/...7Wp are state variables. The Hodgkin-Huxley model 
belongs to this general class as do other models that 
represent the membrane by its capacitance in parallel with 
variables controlling the flow of current through the 
membrane. The electrical equivalent circuit described by 
these equations follows the form given in Fig. 2 . 1  above.

There is a class of models introduced by FitzHugh based 
on extensions to the Van der Pol oscillator equation. They 
are the Bonhoeffer-van der Pol (BVP) models. The van der Pol 
equation is a well-known equation used to model non-linear 
relaxation oscillators.

A further approach to modelling involves the construc­
tion of an analogous system. Analogue computers use elec­
tronic circuits to solve sets of differential equations. 
Rather than use a general purpose analogue computer a common 
approach is to construct a Neuromime (MacGregor Sc Lewis 1977; 
Patton 1980): an electronic circuit designed to mimic the 
electrical behaviour of nerve cells. As with other approaches 
to modelling, only certain aspects of the system are 
simulated and other features are neglected in order to 
produce a simplified model. An example of an early neuromime 
is due to Nagumo, Arimoto Sc Yoshizawa (Nagumo, Arimoto Sc
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Yoshizawa 1962). Here, tunnel diodes were used as the active 
elements in an active transmission line used to simulate 
various properties of an axon. The model was based on 
FitzHugh's BVP model after acknowledging the complexities of 
the H-H equations. The equations used were

NAGUMOfS MODEL

= *{j + i + f (e)}   (2.21)

^  = -£{ -Ri - V }   (2.22)

McKean (McKean 1970) discusses the mathematics of the 
model. That such an approach is still relevant is evidenced 
by the recent implementation of a FitzHugh-Nagumo neurone 
model using integrated circuit fabrication techniques 
(Linares-Barranco, Sanchez-Sinencio, Rodriguez-Vazquez & 
Huertas 1991). This approach has not been used in this study 
and the use of analogue computing and neuromimes will not be 
discussed further.

Derivation of the BVP cubic equations is given in 
FitzHugh (FitzHugh 1969) and will not be reproduced here. The 
actual equations are of interest and are given here.
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CUBIC BVP MODEL

dV = v _ V3 - W + I (2.23)

£?? = cj> (V + a - bW) (2.24)

where a,b and <J) are positive constants.

Since these equations are derived from a second order 
differential equation, the phase plane method of analysis of 
second order systems may be used. This technique is graphical 
and is useful for identifying the qualitative behaviour of 
the system in terms of stability, identification of limit 
cycles and other oscillatory phenomena. The original H-H 
model is of too high order to be amenable to this technique. 
FitzHugh (FitzHugh 1969) uses the phase plane to demonstrate 
the behaviour of the cubic BVP model and shows various 
possible trajectories. The model shows either single impulse 
responses or an infinite train of impulses in response to 
various stimuli, indicative of the absence of the adaptation 
variable from this model.
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MODELS BASED ON THE H-H MODEL

Rinzel ("Bistable behaviour of bursting cells" pre­
publication communication) discusses the behaviour of a model 
based on the H-H model, the Chay-Keizer model, of the 
pancreatic B cell. He analyzes the model to reveal a negative 
resistance region in the model's I-V characteristic, 
essential for maintaining repetitive activity (Wilson & 
Wachtel 1974), and an underlying bistability. The slow 
variable is the intracellular free calcium concentration 
which drives the model between two stable states. The upper 
state is characterised by continuous firing and the lower 
state by silence. In this model the calcium concentration is 
controlled by influx of calcium through channels whose 
conductance is an instantaneous function of the membrane 
voltage. This simplification means that the conductance 
follows changes in voltage without the delays inherent in the 
activation and inactivation variables normally used to 
characterise channel kinetics. Also included in the model is 
a variable representing the external concentration of 
potassium ions, which is treated as an unchanging parameter. 
The model equations are reproduced here.
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RINZEL'S MODEL

C l ™  = -ICa(Ca)-[gKn4+gK̂ a{Ca/(l+Ca)}](V-VK) - gi(V-VL) (2.25)

= r„[n„(V) - n]/rn(V) ......................... (2.26)

= f [-aICa(V) - kCaCa]   (2.27)

ICaCV) = gCam^(V)h„ (V-VCa) .........................  (2.28)

Numerical integration of the model equations results in 
characteristic bursting behaviour and a representative 
voltage-time graph is shown in his paper. The model equations 
and parameter values are given in the appendix and allow 
reconstruction of the model.

A related model is that due to Sherman, Rinzel & Keizer 
(Sherman, Rinzel & Keizer 1988). This model describes 
bursting in pancreatic beta cells. The model equations are 
reproduced here.

As part of this study, the model of the 8-cell as given 
by Rinzel et al. was translated into a FORTRAN-77 and 
subsequently an ACSL program. The model demonstrated 
characteristic bursting behaviour. The results are not 
included here for reasons of space.
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MODEL DUE TO SHERMAN, RINZEL AND KEIZER

dm _ -
111 "Ht
dn 
■at
dCa

= -gKn(V-VK)-gCama(V)h(V)(V-VCa)-gK̂ a(Cai)(V-VK) 

= ^ [ rio, (V ) -n/rn (V ) ] .........................

-  = f ( _a Ĉa “ ^Ca^ai) ..........................~at

gK-ea(Cai) = gK-ea Ca;
Lkd + Ca-j

hn(V)

n0(V)

^n(V)

l+expLCVm-Vj/SJ
1

l+exp[ (V-Vh)/Sh] 
1

1+expL (Vn-V)/Sn"] 
C

exp[(V-V)]/a] + exp[-(V-V)/b]

a ■ZV5ITF

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

TABLE 2.2 
MODEL PARAMETERS

Cell
cell*

vna
c
Yh
9 K Vv
?K-Ca
kCa

radius r = 6pm 
= 1150pm3 

4mV 
= -15mV

65mV 
60mV 

= -lOmV 
= 2500pS 
= -75mV

1.7
= 30000pS 
= 0.03ms

F
Sm =m

=V
?h = 
?Ca =
I
Ca

= 5310fF
96.487 C/Mol 
14mV 
5. 6mV 
20mV 

= -75mV
lOmV 

1400pS 
HOmV 
lOOpM 

0.001
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Another example of a bursting model based on the H-H 
model is given by Smith (Smith 1978). Here, the bursting 
behaviour of the mollusc Tritonia diomedia is modelled using 
eight ionic currents as well as a variable representing the 
intracellular free calcium concentration. The characteristics 
of the currents were obtained from voltage clamp experiments 
and fitted by empirical curves in much the same way as 
Hodgkin and Huxley did for the squid giant axon. Numerical 
integration of the resulting system of coupled differential 
equations, including solving the partial differential 
equation used to represent diffusion of calcium within the 
cell, yielded bursting which showed good agreement with 
experimentally observed behaviour.

Noble (Noble 1962; 1966) also derives a model based upon 
the H-H model. In this case, the system under study is the 
heart and the model describes action and pacemaker potentials 
in Purkinje fibres. The latter paper is a review paper which 
discusses the H-H model and its applicability to other 
electrically excitable tissues.

A further model of interest is that due to Plant & Kim 
(Plant & Kim 1976). The bursting pacemaker neurone known as 
R15 in Aplysia was modelled using a modification of the H-H 
equations to include a cyclical variation in the potassium 
conductance. A later paper by one of the authors (Plant 1978) 
refines the model to include the effects of calcium ions. The 
earlier paper concludes that the model successfully 
represents many of the features of the bursting neurone. 
Phase portraits are included for a reduced order system in 
order to derive parameter values that ensure limit cycle behaviour.
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MODEL DUE TO PLANT AND KIM

= J; [ (giXjY! + gT)(Vj-v) + (gKXj + gjXjYj + gpXp)(vK-v) + 
....................................................  i

S  = xiTV7CSl(V) - Xl] .........................  1

S  = riJv7CZl(V) ' Yl] .........................  1

S-raivj^ - * 3 ................ 1

S  =^V7CSp(V) “Xp] .............................  '
TABLE 2.2 

Model Parameters and functions

gj = 4.0mS gK = 0.3mS gL = 0.003mS 
Vj = 30mV VK = -75mV VL = -40mV

C = ljiF 
sl(V) - + fim)
Zl (v ) = ah/(ah + Bh)
SK(V) = an/(an + B„)

TXI = ^ 2 . 5 / ( a m + B jj)

ryI = 12.5/(ah + Bh)
TXK = 12.5/(an + ]3n)

am(V) = (0.1[-26-1.2V])/{exp([26-V]/10)-l} 
Bm(V) = 4exp([51-1.2V]/18) 

ah(V) = (0.07{exp(-51-1.21V)}/20) 
i3h(v ) = l/{exp([21-1.3V]/10) + 1} 

an(V) = (0.01[-21-1.21V])/{exp([-21-1.21V]/10) -i; 
fin(V) = 0.125exp([-31-V]/80)

*ep + êxt̂
[2.29)
[2.30)

[2.31)

[2.32)

[2.33)
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Mathematical models usually start off as fairly minimal 
structures that are subsequently refined to include more 
detail. Many small effects are often ignored in the early 
stages and later included when the basic model has been 
discovered to be fundamentally sound. In this respect, the 
model derived later ignores several aspects of the actual 
behaviour of nerve membranes. One such aspect is the voltage 
dependence of the electrical capacitance of the membrane 
(Adrian & Aimers 1976; Takashima & Yantorno). Although the 
effects of changing membrane capacitance are not included in 
the proposed model, a brief investigation of changing 
capacitance was performed by the author and the results are 
shown in Chapter 8. This yielded the expected result that, 
for a given membrane current, a smaller membrane capacitance 
would charge and discharge more rapidly than a larger value 
capacitance. This also shows up in the amplitude of the 
resulting action potential. Since the effect is fairly small 
and the estimates of the total capacitance of the cell can 
vary significantly it was felt that such voltage dependence 
is a second order effect and as such is not essential in 
determining the overall behaviour of the system. For these 
reasons it was decided that the omission of the effect from 
the model was justified.

From this brief review it can be seen that the H-H model 
is a very useful starting point for modelling the electrical 
behaviour of nerve cells and that calcium appears to play a 
vital role in controlling bursting activity. This area of 
research has yielded much important work but time and space 
limitations preclude a detailed discussion of more than a few
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papers. However, in the course of background reading many 
more research papers and articles have been studied and a 
list of those not cited already, is now given.

Fleisher, Studer & Moschytz 1984; Fleisher 1984. These 
two papers propose a mathematical model for a propagated 
action potential referred to as a synthetic Gaussian model.

George & Johnson 1961 discuss the H-H model with para­
meters adjusted so as to represent the experimental condi­
tions of potassium-rich bathing solution in one case, and the 
presence of the potassium channel blocker TEA (Tetra- 
ethylammonium ions) in the other.

Real axons often have many branches and the effects of 
axon branching are examined in a paper by Joyner, Wester- 
field, Moore & Stockbridge 1978.

Another mathematical model of the action potential is 
proposed by Strandberg (Strandberg 1976). The author aims to 
create a model based on theoretical considerations rather 
than follow the empirical approach of Hodgkin and Huxley.

Action potentials in smooth muscles are modelled using 
a modification of the H-H model by Ramon, Anderson, Joyner & 
Moore in their 1976 paper.

Electrical stimulation of myelinated nerve by a partic­
ular electrode configuration is considered by McNeal (McNeal 
1976).

The H-H and the FitzHugh-Nagumo model are considered by 
Rinzel in "Models in Neurobiology" published by Plenum 1981. 
Hastings (Hastings 1975) also briefly considers the H-H model 
and gives a detailed mathematical analysis of a simplified 
model based on FitzHugh's and Nagumo's work.
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CHAPTER THREE
EXPERIMENTAL METHODS

Hodgkin and Huxley derived their model of the action 
potential in squid giant axon by arranging the experimental 
conditions such that they could record the individual 
contributions of the major ions to the overall ionic 
current. They then proceeded to describe the sodium and 
potassium currents using mathematical equations. The 
resulting system of equations (the Hodgkin-Huxley model) is 
a mathematical description of the electrical behaviour of the 
axon. The final step in model building is validation of the 
model. In the case of the H-H model this involves numerical 
integration of the system of differential equations and 
comparison of the results with the experimentally recorded 
action potentials. This approach to model building (ie. the 
derivation of equations from experimental data and solution 
of those equations) contrasts with the approach where a model 
is derived from considerations of the fundamental physical 
principles that govern the system being studied. In control 
engineering terminology, a process of system identification 
is undertaken. It is therefore useful to look at the methods 
by which the data are obtained and analyzed. This chapter 
describes some of the experimental methods used in obtaining 
the data and briefly mentions some methods of analyzing the 
data.

The model being sought is a mathematical description of 
all the macroscopic membrane currents known to be present in 
the oxytocin-secreting cell. Such currents are modelled by
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their amplitude, duration and gating properties. Mathe­
matical reconstructions of the time courses of the various 
currents are therefore required. It is known that the 
macroscopic currents arise from the current contributions of 
individual ionic channels, so knowledge of the kinetic and 
gating behaviour of single channels may enable a model of the 
macroscopic currents to be constructed. Individual ionic 
channels are characterised by their open and shut times and 
by their conductance.

One of the major steps forward in the study of 
nerves was the creation of an experimental method for 
recording the electrical signals produced by nerve cells 
under varying experimental conditions. George Marmont 
(Marmont 1949) describes a method whereby an axon may be held 
in position and measurements of the various currents made 
using an electronic "voltage clamp". Curtis and Cole (1942) 
and Hodgkin and Huxley (1945) had previously managed to 
insert electrodes into the giant axon of the squid and make 
electrical measurements on it. The so-called voltage clamp 
procedure is still used today to make electrical measurements 
on cells, usually using specially prepared glass 
microelectrodes. The purpose of the voltage clamp is to 
maintain a fixed voltage across the nerve membrane using 
feedback amplifiers so that measurements of the various 
currents flowing through the membrane may be made. Using 
pharmacological or other methods, currents due to various 
ions may be prevented from flowing, thus allowing the 
separation of currents and the characterisation of each 
current in turn. In this way, a mathematical model of the
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electrical behaviour of the nerve membrane may be built up. 
A block diagram of such a voltage clamp arrangement is shown 
in Figure 3.1. In Chapter 2 the term 11 space-cl amp" was used. 
This is a reference to the use of electrodes large enough to 
maintain the section of membrane under study at the same 
voltage. If the voltage clamp applies only to a small part of 
the membrane then local circuit currents will flow, 
disturbing the recording.

Typical Voltage -  Clamp Arrangement
■Q V-cIamp

Vol
Voltage feedback

}-oCurrent command

Figure 3.1
Circuit diagram of voltage-clamp arrangement.

A major step forward in the techniques of making elec­
trical recordings from various cell preparations was the so 
called patch clamp method described by Sakmann, Neher et al 
(Hamill, Marty, Neher, Sakmann Sc Neher 1981; Sakmann Sc Neher
1984). The essence of the method revolves around applying
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gentle suction to a specially prepared glass micropipette in 
contact with the cleaned surface of the cell being studied. 
(Enzymes are usually employed to ensure that the membrane 
surface is clean.) The suction causes an Q shaped patch of 
membrane to enter the pipette and form a tight seal to the 
walls. The seal has the desirable properties of good 
mechanical stability and extremely high resistance. This 
latter feature gives rise to the name gigaohm seal since the 
measured resistance can be of the order of 100 gigaohms. The 
tight seal also isolates the attached patch of membrane 
chemically so that the solution in the pipette may be 
different to the normal bathing solution. One method of 
determining whether a gigaseal has been formed, since the 
seal forms in an all or nothing manner, is to observe the 
dramatic reduction in electrical noise that occurs on seal 
formation. This reduction in noise gives this method a 
significant advantage over conventional recording techniques 
and allows the resolution of picoampere currents. Thus, the 
current flowing through a single ionic channel may be 
observed. This mode of current recording is known as single 
channel recording. There are other configurations of the 
pipette and membrane patch that are worth discussing briefly. 
These are: i) Cell attached recording ii) Whole cell
recording iii) outside-out patch and iv) inside-out patch.

Cell attached recording simply refers to recording the 
membrane currents from a small patch under conditions of a 
gigaohm seal.

Once the seal has been established, further suction 
causes the patch of membrane inside the pipette to rupture
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allowing exchange of cell and pipette contents. Because the 
seal has a high resistance it is possible to voltage clamp an 
entire cell provided that it is relatively small (10pm dia.). 
This configuration is known as whole cell recording.

Due to the mechanical stability of the seal it is 
possible to pull the membrane patch completely free of the 
rest of the cell. This gives rise to the possibility of
creating an inside-out or an outside-out patch of membrane. 
If after rupturing the membrane by suction, the pipette is 
pulled away from the cell, the attached patch of membrane and 
some of the remaining surrounding membrane may reseal,
forming a hemisphere. The outer surface of the membrane is 
still in contact with the external bathing solution, meaning 
that the patch has its outer surface on the outside, hence 
the name. If the pipette is pulled away from the cell without 
previously rupturing the membrane then it is possible to 
yield a patch of membrane whose external surface formed the 
internal surface of the cell. This is achieved either by
using a bathing solution having a low concentration of
calcium ions or by air exposure of the vesicle that forms by 
pulling the patch in normal solution.

These techniques are fully explained in a book edited by 
Sakmann and Neher entitled "Single Channel Recording" (see 
bibliography) and also mentioned in a review paper by the 
same two authors (Sakmann & Neher 1984). It is worthwhile to 
note that these two workers have recently been awarded the 
Nobel prize for their work on developing the technique. 
Diagrams of these recording methods are shown in Fig. 3.2.
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whole cell recording outside-out patch

10JJ

cell attached inside-out patch

Figure 3.2
Diagram showing the various cell patch recording techniques.

FLUCTUATION (NOISE) ANALYSIS 
The macroscopic current observed during depolarizations 

of excitable tissue is made up from contributions of ion flux 
through individual channels. This means that due to the 
stochastic nature of channel openings any steady current will 
have a certain amount of fluctuation or electrical noise 
associated with it. Provided that the instrumentation used to 
monitor the current contributes a negligible amount of noise 
itself, analysis of the frequency spectrum and the 
statistical properties of the noise can yield information on 
fundamental channel properties such as single channel 
conductance and mean open lifetime (Neher Sc Stevens 1977).

A simple ionic channel with two conductance states (open 
and closed) yields a spectral density function which is a 
simple Lorenzian curve (Kolb 1984, Hille 1984). This result 
is based on a model where the transitions between the two
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states are random events. In some real ionic channels the 
analysis is further complicated by the existence of 
conductance substates (Sachs Ch.17 Sakmann & Neher 1983). 
This means that the results obtained contain a sum of 
exponentials.

There are two type of fluctuation analysis used, sta­
tionary fluctuations and non-stationary fluctuations. 
Stationary fluctuations refer to the fact that current 
records are measured after the transients due to experi­
mentally induced perturbations have died away. Non-stationary 
fluctuations are recorded during transients. Both methods 
involve perturbing a membrane away from its equilibrium state 
by applying a voltage step or an agonist. Current records are 
then taken. Signal processing is performed by computer so the 
records need to be digitized arid stored. With stationary 
fluctuatibns the transients are allowed to die away and 
current recordings of the random fluctuations around the new 
equilibrium point are measured at high gain. The mean current 
is extracted from the current recording and is used in the 
analysis. The variance of the current is then measured and by 
using the probability of channel opening, the single channel 
current may be estimated. By performing a Fourier transform 
of the data, the mean open lifetime may also be estimated. 
Non-stationary fluctuation analysis involves recording the 
current during the transient part of the response and 
repeating the experiment many times. From the collection of 
current records obtained, the ensemble average is calculated 
and subtracted from each of the individual current records. 
The variance is then calculated on a point by point basis
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using all the current records (Sigworth 1980).
The important point to note is that the kinetic data 

obtained from fluctuation analysis is the same as that 
obtained from macroscopic observations.

For the purposes of this project, it is the modelling of 
the behaviour of the macroscopic currents that is important.
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NUMERICAL SOLUTION OF THE MODEL EQUATIONS 
The models described in this thesis are generally in the 

form of systems of coupled non-linear differential equations. 
Part of the modelling process therefore involves the solution 
of these equations. Analytical solution is not possible due 
to the non-linearity and complexity of the equations so 
numerical methods are used. During the initial phase of the 
project/ computer programs were written using the language 
FORTRAN 77 and run on an IBM mainframe computer. These 
programs implemented an algorithm for the solution of 
differential equations known as the Runge-Kutta method (or 
more specifically, a fourth order Runge-Kutta method). Other 
methods, notably that due to Bulirsch and Stoer, were also 
investigated. However, it was decided that the fourth order 
Runge-Kutta method yielded sufficiently accurate results and 
would remain the preferred method of solution. A problem that 
was discovered when using a variable step length algorithm 
was that the step length would oscillate due to the 
oscillatory nature of the solution. The algorithm spent much 
of its time adjusting the integration step length. This 
problem has also been noted by Plant and Kim (Plant & Kim 
1976) who decided that a fixed step size Runge-Kutta routine 
was adequate for solving a very similar problem. The Runge- 
Kutta method is a very popular algorithm for solving 
differential equations but is not well suited to "stiff 
systems". Stiff systems are those systems having responses 
containing components of the total response with widely 
varying timescales. Another way of explaining this is to say 
that the system eigenvalues may take on widely differing
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values. Although the bursting behaviour does show periodic 
activity on the scale of seconds and milliseconds this has 
not proved to be a major problem in solving the equations.

In order to produce results in a more accessible form 
than a series of numbers, several programs were also written 
to convert the output of the numerical integration routine 
into graphical format and to provide "hardcopy" of the 
results. After pursuing this route for some time it was 
suggested that the modelling package ACSL (Advanced 
Continuous Simulation Language) might be more suitable, since 
all the necessary interactive graphics and program management 
are provided. This has proved to be the case and ACSL has 
been an extremely useful and powerful tool for investigating 
the behaviour of various proposed models. One very useful 
feature of ACSL is the ability to very simply change the 
numerical integration routine used. This is especially useful 
when dealing with stiff systems, since one of the available 
algorithms is one due to Gear which has proved useful in 
solving stiff sets of equations (Gerald & Wheatley 1989). 
However, this option has not been used and the normal fourth 
order Runge-Kutta method remains the preferred algorithm.

One problem with numerical integration is the amount of 
data produced, in order to preserve the accuracy and stabi­
lity of the integration, small time steps are often needed. 
Such small steps are not required for the presentation of the 
results graphically. The wdy in which ACSL deals with this 
dilemma is to only store the data points at selected 
intervals that are larger than the actual integration time 
steps. These larger intervals are known as communication
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intervals and may be specified by the user.

DIMENSIONS AND SCALING 
Hodgkin and Huxley (Hodgkin & Huxley 1952d) rescaled 

their equations and data to give the membrane resting 
potential a value of zero. All voltages are measured as 
displacements from this value: The Nernst potentials for the 
active ions are adjusted to take account of this fact. For 
instance, instead of using the sodium equilibrium potential 
Ejja to calculate the sodium current, the difference between 
ENa and the resting potential Er is used.

V = E - E r ....................................... (3.1)

vHa = %a " Er ..................................... (3-2)
Establishing the resting potential as the baseline

voltage has the effect of shifting all functions of voltage
along the voltage axis by an amount equal to the resting
potential. Graphs showing this are given here in Figures 3.3
and 3.4. The amplitude of simulated action potentials is
simply the maximum value observed. In comparing the results
of Hodgkin and Huxley with other work and in reproducing
their work, this must be taken into consideration.
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Figure 3.3
Graph showing the effect of applying a constant offset voltage to the H-H 
activation variable time constant.
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Figure 3.4
Graph showing the effect of applying a constant voltage offset to the H-H 
model sodium activation variable.



Scaling of variables and model parameters is also an 
important point to be considered when running simulations. 
Hodgkin and Huxley measured voltages using the millivolt as 
the base unit. The unit of time they used was the millise- 
cond, currents were measured as pA/cm and conductances were 
measured in units of mS/cm . Much work in this project has 
been performed using standard SI units. Care must be taken in 
translating between the two systems of units in order to 
maintain compatibility. There are several implicit 
dimensioned constants in the Hodgkin-Huxley model equations, 
for example in equation 23 (Hodgkin & Huxley 1952d) the rate 
"constant" is given as

ah = 0.07exp(V/20)...........   . (3.3)
The constant "20" has units of mV to ensure the exponent 

is dimensionless and since the overall expression must have 
units of ms"*, the constant "0.07" has units of ms"*.

As part of the study, the H-H equations were converted 
to SI units and the functions shifted along the voltage axis 
by an amount equal to the resting potential. The model that 
resulted was called HODGHABS to indicate that the voltages 
were expressed in terms of absolute voltage (ie referred to 
the bathing solution being the zero volt reference) rather 
than referred to a resting potential of zero.
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PHASE PLANE ANALYSIS
It has been noted in Chapter 2 that the H-H model is 

complex and requires significant computing power to be able 
to solve the equations and that reduced order models are 
popular for studying repetitive activity. The phase plane 
technique has been mentioned in this context so some eluci­
dation of the method is appropriate.

Strictly speaking the phase plane applies only to second 
order systems and contains trajectories of a state variable 
plotted against its time derivative. As such it is a 
graphical technique and therefore gives a readily under­
standable interpretation of the behaviour of the system. Its 
usefulness is such that the technique has been extended and 
the term phase portrait is more loosely used to describe 
plots of one system variable against another (see for 
example, FitzHugh 1969). Shown here in Figures 3.5 and 3.6 
are the results of the simulation of a simple second order 
non-linear oscillator. The equation is the van der Pol 
equation mentioned in Chapter 2 and the outputs are the two 
state variables. The two Figures show the state variables 
plotted as functions of time. The second Figure shows the 
phase portrait of the system.

The logical extension of the phase plane to higher 
dimensions results in trajectories in phase space. The 
variables that are plotted are the state variables and their 
derivatives. A phase portrait for a third order system cannot 
easily be represented on a two dimensional page and the 
simple graphical appeal of the technique is lost. However 
higher order systems can be analyzed using computers.
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Figure 3.5
Graph showing the variation with time of the two state variables in a 
simple van der Pol oscillator.
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Figure 3.6
Graph showing the same state variables shown in Figure 3.5, plotted here 
in the form of a phase portrait.
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CURVE FITTING
It is a common situation in scientific work that a curve 

of one form or another be fitted to a set of experimental 
results and various parameters obtained. Hodgkin and Huxley 
obtained their model parameters by fitting empirically 
derived curves to their data. Various methods are now 
available that automate the process of finding the "best fit" 
of a given curve to a set of data. What is also usually 
provided is a measure of the "goodness of fit." The Least 
Squares method is a way of finding the minimum distance 
between a set of data points and a curve. If the least 
squares is adopted as a measure of the closeness of a point 
to a line then the problem of fitting a curve to a set of 
data points is one of constrained optimization or more 
precisely, of minimization where the objective function to be 
minimized is the sum of the squares. The parameters of the 
curve are adjusted to find the minimum. In the simple case of 
fitting a straight line through a set of data, the 
calculations are straightforward. In this case the procedure 
is commonly known as linear regression. What is needed for 
this project is a means of finding the parameters of a 
function that give the best fit to a given set of data 
points. The functions that are to be fitted to the data in 
this instance are non-linear and there are several variables 
(the function parameters) involved which presents additional 
complications. The problem of minimization is a multivariable 
minimization. This may be expressed mathematically as 
follows:-
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(3.1)

Where ê  is given by

ei = yi “ f (xj;a) (3.2)

S is the sum of the squared errors over all N data points, 
a is the vector of parameters. At the minimum of the 
objective function the partial derivatives of S with respect 
to the fitting parameters should be zero.

for all of the parameters. S is the objective function to be 
minimized. Writing this out explicitly for one of the 
parameters gives

Generalising to all parameters this may be written in matrix 
notation as :-

where Ja f(x;a) is the Jacobian matrix whose (i,j) element

(3.4)

|| = -2[Ja f(x;a)]T (y-f (X;a)) = 0 (3.5)
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dfiis   . There are several methods of minimizing such aoaj

function, the method of steepest descent being the preferred 
one in this case. However, if we write the function to be

minimized as f(x) then we can approximate the function at

a point using a Taylor series expansion. 

f(*)=f(P) + + l £ 35g _ x ixj + ...  (3-6)

which may be approximated by a matrix equation in quadratic 
form

f(x )~c - Jx +  (3.7)

Where J is the Jacobian and H is the Hessian matrix. This 
system of equations may be solved to find the minimum as 
follows

amin = ak + H4[-J(ak)]  (3.8)

where â  is the current estimate of the parameters.
No package to perform this task was available therefore 

a suitable algorithm was chosen and implemented using FORTRAN 
77 on a desktop computer. The actual program written differs 
slightly from the preceding explanation in that rather than 
using a straightforward least squares estimate of the
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"goodness of fit" , the program uses a "Chi-squared" 
estimate. The algorithm chosen was one due to Levenberg and 
Marquardt (Levenberg 1944, Marquardt 1963). This method was 
taken from the text on numerical methods by Press, 
Flannery,Teukolsky and Vetterling. (Press, Flannery, Teukols- 
ky and Vetterling 1986). (See also Fidler and Nightingale 
(1978) Chapter 7, Norton (1986) and Scales (1985).) The 
method uses two methods of finding the minimum. Initially, 
the method of steepest descent is used, but as the minimum is 
approached the normal equations are solved by Gauss-Jordan 
elimination. (The second partial derivatives are not actually 
used since they are computationally expensive to evaluate and 
tend to have a destabilising effect on the algorithm.) The 
second method relies on the matrix equations being in 
quadratic form close to the minimum. The contribution due to 
Levenberg and Marquardt was to find a method of switching 
between these two methods. They used a factor A, to determine 
the method of obtaining the next iterated estimate. The 
program starts off with a small value for lambda and adjusts 
it as the iteration towards the minimum proceeds. With a 
large value for lambda, the method steps towards the minimum 
in a steepest descent manner and does this until it gets 
close to the minimum whereupon lambda is decreased.

The model equation to be fitted to the data is written 
into the program as a subroutine. The program also uses a set 
of function derivatives in the form of a matrix. The elements 
of this matrix are also returned by the subroutine that 
calculates the function values. In the case of the functions 
used, it was relatively straightforward to find analytical
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derivatives of the fitting function with respect to each of 
the parameters. If this was not the case, it is also possible 
to use numerical techniques to estimate these derivatives. To 
start the algorithm off, a set of initial parameter estimates 
are also given. The program returns the best fit parameters 
and an estimate of the likeliehood that they are the "true" 
parameters given the data set. Since the measurement 
uncertainties are not entered but assumed to be equal, this 
estimate is not particularly meaningful. As a final check on 
the fit of the given equation to the data set, a graph may be 
drawn, showing the individual data points and the estimated 
best fit curve passing through them. In this way, expressions 
for the rate "constants" used in the overall mathematical 
model may be derived. Colquhoun and Sigworth give a good 
description of the process of fitting a model to a data set 
in "Single Channel Recording" edited by Sakmann and Neher 
(Sakmann & Neher 1983).

The program was used in finding the parameters for the 
rate functions for the potassium currents and a typical curve 
is shown in Figure 6.1 on page 124. The fitting functions 
chosen to fit the data were of the same form as those used by 
Hodgkin and Huxley. A listing of the program is given in the 
Appendix on page A47. To run the program, the subroutines are 
compiled separately and then linked to form a program with 
the name of the main routine. This name is simply typed in at 
the DOS command line, which causes the program to be loaded 
and run. When the iteration process has stopped, the 
parameters displayed on the monitor screen are those which 
give the best fit. Since only a few curves were to be fitted
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to data points it was not thought that the additional 
programming effort involved in making the program more 
general and prompting the user to enter the initial parameter 
values was worthwhile.
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CHAPTER FOUR 
REPETITIVE ACTIVITY IN NEURONES

Oscillation is an important phenomenon in many biologi­
cal systems, the mammalian heart, for example, is a very 
important biological oscillator (Noble 1979). It has already 
been noted (Chapter 1, Page 5) that the secretion of the 
hormones oxytocin and vasopressin is enhanced by patterns of 
action potential discharge characterised by periods of 
activity interspersed with periods of electrical silence. 
This type of behaviour is not unique to these particular 
cells and bursting behaviour has been observed in other 
systems , for example, the bursting neurone R15 in Aplysia 
(Smith 1978) and pancreatic 8-cells (Rinzel 1988; Matthews & 
O'Connor 1979). One important question that arises from the 
study of such systems is whether the oscillations occur due 
to intrinsic mechanisms or are the result of an external 
input. An endogenous mechanism is responsible for bursting in 
the R15 cell (Adams 1985; Adams & Benson 1985; Gorman & 
Herman 1982; Pinsker 1977), and it appears that in the 
oxytocin-secreting cell the milk ejection burst is the result 
of the properties of the cell membrane and the internal and 
external environment rather than a synaptic input. The 
evidence for an endogenous mechanism in R15 comes from the 
lack of periodic synaptic input and from experiments 
involving isolating cells from the ganglion and recording the 
bursting behaviour that still occurs (Adams & Benson 1985). 
It also appears that bursting in oxytocin-secreting neurones 
is due to an endogenous mechanism although Richard,Moos &
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Freund-Mercier advance an argument for the importance of 
afferent input in controlling a burst (Richard, Moos & 
Freund-Mercier 1988). One piece of evidence for this is that 
suckling is a constant stimulus which makes it likely that 
the synaptic input to the cells is constant during suckling 
whereas bursting is periodic (Leng 1988). If this is indeed 
the case then it would be reasonable to assume that the 
synaptic input serves only as a trigger. It is significant 
that bursting in oxytocin-secreting cells has not been 
recorded in vitro (Leng 1988; Richard,Moos & Freund-Mercier 
1988). The very long time period between bursts is an unusual 
feature of oxytocin-secreting neurones and would seem to 
argue against an endogenous mechanism since the underlying 
"slow wave" would have an extremely long time constant 
(Richard,Moos & Freund-Mercier 1988).

It has been noted that oxytocin itself increases the 
excitability of oxytocin-secreting cells and it may be that 
the presence of oxytocin in the extracellular space acts as 
a neuromodulator (Richard,Moos & Freund-Mercier 1988).

Once it has been established that synaptic input is not 
responsible for the bursting behaviour of neurones and that 
the mechanism is to be found in the cell itself, the question 
of what the mechanism is, arises. One possibility is 
oscillations due to metabolic processes as these are well 
known, eg. glycolytic oscillations, (Carnevale & Wachtel 
1980; Mironov 1983). The Belousov-Zhabotinskii reaction is a 
well known example of a chemical oscillator (Rinzel & Troy 
1983). In order to produce bursting behaviour the metabolic 
oscillations would have to modulate the membrane voltage
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either through ion pumps or through the ionic conductances 
(Adams & Benson 1985; Mironov 1983). Such a mechanism has 
been ruled out for the R15 cell since no underlying 
oscillations of membrane current are observed when a bursting 
neurone is voltage-clamped (Carnevale & Wachtel 1980). 
However, a link between calcium conductance and the level of 
intracellular cyclic AMP in molluscan neurones has been noted 
by Mironov and others (Mironov 1983; Gillette 1988).

MATHEMATICAL MODELS FOR OSCILLATION AND BURSTING

One of the aims of this project is to devise a model for 
the stereotyped bursting behaviour in oxytocin-secreting 
cells. A good place to start this process is to investigate 
models proposed for other similar systems. It has been found 
(Cole, Antosiewicz & Rabinwitz 1955; Connor 1985; Cooley & 
Dodge 1966; Guttman & Barnhill 1970; Hassard 1978; Noble 
1966) that the Hodgkin-Huxley model can sustain a train of 
action potentials when given a sufficient stimulus. The 
frequency of firing is dependent upon temperature and the 
magnitude of the stimulus (Guttman & Barnhill 1970; Noble 
1966). The Hodgkin-Huxley model is rather complicated and it 
is common practice to use simpler models to study bursting 
behaviour (FitzHugh 1969; Jack, Noble & Tsien 1985).

One such model is that proposed by Hindmarsh and Rose 
(Hindmarsh & Rose 1984) which is an extension of their 
previous, simpler model of the nerve impulse which shows 
repetitive firing (Hindmarsh & Rose 1982). The models dis­
cussed in these two papers are of an analytic nature since
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they are based upon the behaviour of coupled differential 
equations rather than derived from consideration of a 
physical or biological system (see Chapter 2). The models 
were however inspired by a biological system and use data 
taken from voltage clamp experiments on pond snails. As with 
most models of this type there are nonlinearities present in 
the equations which make analysis difficult and numerical 
integration is required to solve the equations. As part of 
this investigation, the model by Hindmarsh and Rose 
(Hindmarsh & Rose 1982) was simulated using the ACSL 
language. The simulation did not reproduce the behaviour 
shown in the paper and closer examination of the equations 
given and the data revealed some discrepancies. For this 
reason it was decided not to pursue this particular line of 
work any further.

Another class of mathematical model is also used as a 
simpler basis for the investigation of bursting behaviour. 
This is the Bonhoeffer van der Pol system of equations as 
mentioned in Chapter 2.

THE IMPORTANCE OF NEGATIVE RESISTANCE

One feature of oscillation in electrical systems is the 
presence of a region of negative resistance in the overall 
current-voltage characteristic of the system. Negative 
resistance is not an essential precondition for oscillation 
since a simple circuit comprising an inductor and capacitor 
will oscillate if given a suitable input. However, the 
oscillations will die away with an exponential envelope
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unless the energy dissipated by the inevitable resistance is 
replenished. In constructing electronic oscillators an active 
device is used for this purpose. As mentioned in Chapter 2, 
Nagumo's model (Nagumo, Arimoto & Yoshizawa 1962) uses a 
tunnel diode. This is a two-terminal active device that 
possesses a region of negative slope resistance in its 
current-voltage characteristic. The device is not capable of 
supplying energy, it requires a bias voltage to establish an 
operating point in the negative resistance region and it is 
the power supply that provides the energy. The negative 
resistance of the diode cancels some of the dissipative 
resistance in the circuit and ensures that the energy is 
supplied in phase so as to maintain the oscillation. In the 
context of neurones showing repetitive and/or bursting 
behaviour a region of negative conductance in the overall 
current-voltage relation is required for maintaining a train 
of action potentials. This requirement is met in the case of 
the proposed model as can be seen in Fig. 4.1 which shows the 
I-V characteristic plotted during an action potential. 
Bourque (Bourque 1987) and Renaud (Renaud 1987) note that the 
depolarizing after potential recorded in magnocellular 
neurosecretory cells in the supraoptic nucleus gives these 
cells a region of negative resistance. Wilson and Wachtel 
(Wilson & Wachtel 1974) and Carnevale and Wachtel (Carnevale 
& Wachtel 1980) emphasize this requirement for the mollusc 
Aplysia californica and demonstrate that cooling, which stops 
bursting behaviour, abolishes the negative resistance region. 
The existence of negative resistance in artificial lipid mem­
branes treated with excitability-inducing material was
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demonstrated by Ehrenstein, Lecar and Nossal (Ehrenstein, 
Lecar & Nossal 1970).

^  OXYT MODEL ER 1QCL VSTIM=6Q

- 2.00. 00 o. ooV •itr-z 2. 00 6. OO
Figure 4.1

Current-voltage characteristic of oxytocin cell model. The total membrane 
current is plotted against membrane voltage.
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OSCILLATION IN THE H-H MODEL 
MATHEMATICAL ANALYSIS 

As part of the investigation into the H-H model, an 
attempt was made to write down a state-space description of 
the equations. A mathematical analysis of a system of 
equations can be useful in revealing the general features of 
system behaviour without resorting to numerical integration 
of the full set of equations. The Hodgkin-Huxley equations 
given by equations 2.1 to 2.5 may be rewritten in a form more 
amenable to a state-space description as follows:-

v = -i[gNa m3h(V-VKa) + gKn4(V-VK)+gt(V-Vt)] ..........(4.1)'~m

m = am-(ain+BIIl)m .................................... (4.2)

h = ah-(ah+/3h)h .................................... (4.3)

h = an-(an+13n)n .................................... (4.4)

The voltage-dependence of the rate functions has been 
omitted for clarity. The state variables chosen are V,m,n and 
h as shown here.

The usual form of a state-space description of a 
multivariable system is as follows :-

x = Ax ............................................. (4.5)

for a system with no external inputs. The vector x is a 
vector containing the state variables and the matrix A is
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known as the system matrix.
Attempting to write a state-space description in this 

format using the state variables as shown gives rise to a 
difficulty in that the H-H equations as shown here do not fit 
neatly into the standard format for a state-space 
description. This is due to the high order nonlinearities and 
mutual coupling present in the equations. This means that 
there are a number of ways of writing a state-space 
description, one of which is shown below:-

V Vn = A nm m
h h

where the A matrix is:-

all a12 a13 a14
0 a22 0 0
0 0 a33 0
0 0 0 a44

(4.7)
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With elements

all = - l ( 9 N a  m3h+gK n4+g[,)  ( 4 . 8 )'-m

a12 = §K VK n 3 ................................................................................................. ( 4 . 9 )

a13 = §Na v Na m2]tl ..............................................................................  ( 4 . 1 0 )

aw = 0   ( 4 . 1 1 )

a22 = " ( an+i3n)   ( 4 . 1 2 )

a33 — ” ( ani+Biii) • • • * • • * ............................   • • * * • ( 4 . 1 3 )

a44 = " («h +Bh)   ( 4 . 1 4 )

With an additional vector of constants given in equation 
4.15.

f o

ah

As stated previously (Chapter 2 pl3), the Hodgkin-Huxley 
model is a set of non-linear differential equations. There is
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no single standard method of analysis for non-linear systems. 
However, a number of techniques are available. Some of these 
are: linearisation of the system around an operating point; 
describing function analysis; Lyapunov methods; pertubation 
theory; and bifurcation analysis. Most of these techniques 
are concerned with analysis of the stability of the system 
and testing for the existence of limit cycles. They generally 
give qualitative information about the solutions of the 
differential equations rather than detailed quantitative 
results.

The state-space description shown above in equations 4.6 
to 4.15 were written down at an early stage in the project 
but this analysis was not taken further when it was realised 
that the equations did not fit the standard format and that 
there was no unique way of writing such a description. Patton 
(Patton 1980) however, takes this analysis a stage further by 
performing a linearisation of the state-space description 
around the resting potential. The derivation of the 
linearised model is quite lengthy and will not be reproduced 
here. The linearised H-H system is expressed in a specific 
matrix format known as mammillary compartmental form as shown 
below. Troy (Troy 1975) also derives a linearised H-H model 
in this form.



with elements :-

“ 1 = . + 9k • + 91 . ]
V-*m

(4.17)

3
a 2 = 3<3 U  m«o h» ( v » '  v Na ) ( 4 . 1 8 )

a 3 = 4 ^K n l ( v » " VK ) ( 4 . 1 9 )

a 4 = N̂a ma» " v Na )   ( 4 . 2 0 )

J3l = drh\
V̂/oo ( 4 . 2 1 )

^2 ( am + ) ( 4 . 2 2 )

Yl
8n\
~&vL

( 4 . 2 3 )

y3 = -(an + Bn ) ( 4 . 2 4 )

£1 dh 
V̂jco

( 4 . 2 5 )
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£4 = “(ah + Bh ) (4.26)

The fact that the linearised system matrix is in this form 
has relevance to the analysis of system stability (see Patton 
1980). As with all linearisation exercises, the approximation 
is only valid for small pertubations around the operating 
point. In the case of the Hodgkin-Huxley model, the threshold 
for stimulus is such that it represents a significant 
pertubation.

As stated previously in relation to Guttman and 
Barnhill's work, a constant suprathreshold current stimulus 
causes repetitive firing. Troy (Troy 1975) uses bifurcation 
theory with the applied current as the bifurcation parameter 
to show that as the current passes through a critical value 
a bifurcation of periodic solutions occurs. Patton (1980) 
also discusses bifurcation analysis and the describing 
function method. The describing function method is an 
involved procedure for the H-H equations and yields 
inconclusive results.

The aim of this project is to create a mathematical 
model of the characteristic patterns of electrical activity 
exhibited by the oxytocin-secreting cell. The approach taken 
in this project was to study the literature on similar 
systems to gain familiarity with previous work and to decide 
upon a suitable strategy for building a model for this 
system.

The characteristic behaviour of interest in the system 
under study is the unique bursting activity. This entails 
repetitive firing that is initiated and terminated at regular
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intervals. Part of the process of building up a model for 
this behaviour is to determine how repetitive firing may be 
induced in nerve cells. There are several ways of modifying 
the Hodgkin-Huxley equations so that they become oscillatory 
or autorhythmic. Patton (Patton 1980) discusses several of 
these. The first way is to add an additional conductance in 
parallel with the normal sodium conductance (Patton 1980; 
Kamaluddin and Power 1974; Noble 1962). The second method 
mentioned is to increase the power of the potassium 
activation from four to six. Cole and Moore (Cole and Moore 
1960) state that a sixth power relation describes the 
potassium current data more accurately than the Hodgkin- 
Huxley fourth order relationship.

As stated in the introduction, there are several 
characteristic features of the system that a successful model 
should reproduce. These are the 'shoulder * on the 
repolarising phase of the action potential, the acceleration 
and deceleration of firing during a burst, the frequency of 
firing and the generation of the burst itself. Mathematical 
analyses such as those described above are useful in 
predicting the stability of the system and defining the 
conditions for oscillation, but not in describing the details 
of the characteristic patterns of electrical discharge. 
FitzHugh's work shows what state variables are needed to 
describe the on-off bursting behaviour of the cell and the 
work done by Rinzel and co-workers; Plant and Kim and Smith 
give good models on which to base this work. Rather than 
spend time on intricate analyses, ideas taken from Rinzel's 
model of the pancreatic 13-cell and the models for the cell
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R15 were used. A brief summary of the main features follows. 
The model developed by Rinzel exhibits bistability. One state 
is characterised by electrical silence and the other by 
continuous firing. The cell is driven between these two 
states by an underlying slow oscillation of the intracellular 
calcium concentration. The patterns of firing are similar to 
those exhibited by the oxytocin-secreting cell. The main 
components of Rinzel1s model are a potassium current, a 
calcium current, a calcium-gated potassium current and a 
model for the intracellular calcium concentration. Feedback 
from the slow calcium dynamics to the faster dynamics of the 
membrane voltage is provided by the calcium-gated potassium 
current.

Maintaining the Hodgkin-Huxley model in a state of 
depolarization leads to a constant train of action potentials 
as can be seen in Figures 4.2 to 4.5. The scale of the time 
axis of the graphs is such that the numbers given represent 
milliseconds. Likewise the voltages are expressed in 
millivolts and the leakage current IL is given in microamps, 
per square centimetre. The results shown here confirm the 
results of Cooley and Dodge (Cooley & Dodge 1966) and Guttman 
and Barnhill's work (Guttman & Barnhill 1970). The model used 
is Hodgkin and Huxley's translated into a program using the 
ACSL simulation language. Figures 4.2 and 4.3 show the effect 
of a lOmV sustained depolarization. Figure 4.3 is the same as 
4.2 but simulated over a longer time period. Figure 4.4 shows 
the simulated leakage current during firing and Figure 4.5 is 
the same as Figure 4.3 but with a different vertical scale.
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Result of simulation of H-H model with a maintained depolarization.

HHUNSCALED - OSCILLATION WITH lOMILLIVQL T SUSTAINED STIMULUS
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Simulation result as Figure 4.2 over a longer time period.
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Graph of leakage current against time during a simulated train of 
impulses.
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Figure 4.5
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As Figure 4.3 but displayed on a different vertical scale.
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It was then reasoned that if the input stimulus voltage 
could be raised above the threshold for firing and then 
returned to resting potential then this might simulate a 
burst of action potentials. It was therefore decided to 
stimulate the H-H model equations with an input forcing 
function designed to simulate a change in calcium 
concentration. It is known that treatment of the squid axon 
with low calcium concentration bathing solutions increases 
the excitability of the membrane and can lead to oscillations 
(Noble 1966; Guttman & Barnhill 1970). The effect of the 
reduction in calcium concentration is an apparent shift in 
membrane potential (Huxley 1959). The form of the forcing 
function was chosen purely on the grounds of its shape, the 
function used having a fairly steep rise to a peak followed 
by a long exponential tail (see Fig. 4.6). This change in 
calcium concentration was translated into a change in the 
membrane potential according to an equation derived by Huxley 
(Huxley 1959).

VSHIFT = 9.3 ln([Ca]/44)..................... (4.1)
Where [Ca] is in mM

The resulting burst of action potentials is shown in 
Figure 4.8. There are several features to note. One is the 
acceleration of firing rate at the beginning of the burst. 
This is observed in recordings from bursting neurones. The 
variation in spike amplitude is also noted in recordings from 
real neurones (see Fig. 1.3, also Leng 1988). The first spike
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of the burst has a lower amplitude than the succeeding spike, 
a feature that is also often present in experimental 
recordings. What is not apparent in the simulated trace is 
the existence of a plateau potential. R15 neurones show a 
pronounced depolarizing plateau on which the action potential 
spikes are superimposed. Recordings from supraoptic neurones 
show a slight dip in the baseline voltage during the period 
of maximum firing frequency (see Fig. 1.3). From the above 
experiment it appears possible to model bursting behaviour by 
driving the H-H model equations by a slow oscillation in 
calcium concentration. However such a model would be 
incomplete for the reasons stated above and a more 
sophisticated model should be sought. Such a simple model 
also fails to take account of various ionic currents known to 
be present in oxytocin-secreting cells. Connor & Stevens used 
a modified H-H model to simulate bursting in R15 neurones 
(Connor & Stevens 1971) by incorporating a transient 
potassium current that they had previously identified and 
modelled. A transient potassium current has also been 
recorded in the oxytocin-secreting neurone (Cobbett, Legendre 
& Mason 1989). This current is also incorporated into a model 
of bursting in R15 neurones by Smith (Smith 1978). Calcium 
currents have also been recorded in oxytocin-secreting cells 
and such cells produce reduced amplitude action potentials 
even in the absence of sodium currents. Calcium-dependent 
potassium currents have also been recorded (but not fully 
characterised) in supraoptic neurones (Cobbett, Legendre & 
Mason 1989). Smith's model (Smith 1978) incoporates such a 
current. Any complete model of the electrical behaviour of

85



the oxytocin-secreting neurone should incorporate 
mathematical descriptions of all the currents that have been 
observed. If such a model fails to demonstrate bursting 
behaviour and the model is known to be accurate then it may 
be assumed that there is another mechanism present 
responsible for driving the bursting activity.

Figure 4.6 shows the assumed change in calcium 
concentration. Figure 4.7 shows how this appears as the 
apparent shift in voltage. Figure 4.8 shows the resulting 
train of action potentials. Figure 4.9 shows the combination 
of membrane voltage and the apparent membrane voltage shift. 
Figures 4.10, 4.11 and 4.12 show the variation in the sodium 
activation, inactivation and potassium activation variables 
respectively during a the burst of action potentials. Unless 
stated otherwise membrane voltages are expressed in 
millivolts and time in milliseconds.
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Figure 4.6
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Graph of the postulated variation in calcium concentration (mM).
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Graph showing the variation in calcium concentration translated into an 
equivalent shift in membrane voltage.

87



b u r s t  ing in m o d i f i e d  H H  m o d e l

Mwamww1Aw 1/vi ̂

80 TFigure 4.8
40 120 200160

Burst of action potentials resulting from the postulated change in 
apparent membrane potential.
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Figure 4.9

This Figure shows the result of adding the apparent shift in membrane 
potential to the calculated membrane potential.
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8  ACTIVATION VARIABLE DURING BURST
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Figure 4.10
Graph showing the variation in sodium activation variable during the 
burst.

8  INACTIVATION DURING BURST
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Figure 4.11
Graph showing the variation in the sodium inactivation variable during 
the burst.
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S  POTASSIUM ACTIVATION DURING BURST
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Figure 4.12
Graph showing the variation in the potassium activation variable during 
the burst.

The changes in the sodium activation and inactivation 
variables are interesting as is the graph showing the 
variation in potassium activation. Sodium activation shows a 
large excursion over virtually the full range of allowed 
values. Sodium inactivation and potassium activation show 
much smaller excursions during the burst. The sodium 
inactivation for example starts off at a value of 0.6 and 
rapidly falls to near zero. The maximum value of inactivation 
then slowly increases during the burst. The end of the burst 
shows the inactivation gradually returning to its pre burst 
value. Potassium activation shows virtually the inverse 
behaviour, with the value starting off near 0.3 and then 
rising. The maximum value during the burst does not appear to 
exceed about 0.75. It would therefore seem as though that the 
potassium current is never fully activated. The minimum value



of the potassium activation variable rises in a way that 
follows the general shape of the apparent membrane voltage 
shift in Figure 4.7. The variable then returns back to its 
resting value.

The above H-H model, with the inclusion of a term that 
models changes in calcium concentration, faithfully repro­
duces some of the observed behaviour of squid axons bathed in 
low calcium solutions in that at low (around lOpM) calcium 
concentrations, the model shows spontaneous activity. Changes 
in intracellular calcium concentration have also been 
measured using photosensitive calcium-binding compounds such 
as aequorin and arsenazo III (Gorman & Thomas 1978,1980; 
Hille 1984). The changes measured by Gormann and Thomas show 
a similar shape to the forcing function used here. Smith's 
1978 model of bursting pacemaker neurones in the mollusc 
Tritonia diomedia incorporates changes in intracellular 
calcium concentration (Smith 1978). Several studies have 
shown that calcium plays an important part in regulating the 
electrical behaviour of certain cell types (Plant & Kim 1978 
;Gorman & Thomas 1980; Barish & Thompson 1983; Igusa & 
Miyazaki 1983; Barrett & Barrett 1976; Frankenhaeuser & 
Hodgkin 1957; Huxley 1959; Brink 1954; Bourque 1985).
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BURSTING IN THE NEURONE R15
As mentioned earlier, much work on bursting activity has 

centred on the neurone labelled R15 by Frazier, Kandel, 
Kupferman, Waziri & Coggeshall in the mollusc Aplysia (Gorman 
& Thomas 1980). Plant & Kim's model has been mentioned 
previously (Page 44 Chapter 2). The behaviour of this model 
will now be examined in more detail.

The model comprises eight ionic currents, three voltage 
sources and the membrane capacitance. The standard value of 
capacitance for lipid membranes (lpF/cnr) is used. The 
membrane is modelled as a lpF capacitor in parallel with the 
ionic conductances. One of the currents is the externally 
applied current controlled by the experimenter and is denoted 
IeX£. The transient potassium current described by Connor 
and Stevens (Connor & Stevens 1971) is included along with a 
third potassium conductance having a long activation time 
constant. Also included in the model is a current due to the 
electrogenic sodium pump denoted Iep. Another non-inactivating 
inward current modelled by a straightforward conductance gT 
is included to take account of additional experimental 
results. No mention is made of calcium or calcium-dependent 
potassium currents. The later paper (Plant & Kim 1978) 
identifies the slow potassium conductance with the calcium- 
dependent potassium current while acknowledging the 
differences that exist between the postulated current and the 
experimentally measured current. The other slow inward 
current gT is insensitive to the presence of tetrodotoxin 
(TTX) in the bathing solution which implies that the current 
is either not carried by sodium ions (since normal sodium
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channels are blocked by TTX see Page 95 ) or that there is a 
TTX-insensitive sodium selective channel present. If the 
first explanation is correct then it may be that the current 
is due to calcium.

Plant & Kim describe the use of so-called S and Z 
functions to describe steady-state activation and inactiva­
tion. These functions are themselves functions of a(V) and 
13(V) f the rate "constants" used by Hodgkin and Huxley. 
Unlike Hodgkin and Huxley the S and Z functions are given 
explicitly.

The model derived by Plant and Kim was translated into 
a FORTRAN program and the equations numerically integrated 
using a fourth-order Runge-Kutta method on an IBM 370/168 
computer. The results show a reasonable match to the observed 
behaviour of the cell R15 under varying experimental 
conditions. The model demonstrates either beating (continuous 
firing) behaviour and bursting behaviour depending upon the 
value of the external current Iex|-. A slow wave is also 
observed. Some details of the waveforms produced by the model 
show slight differences from the experimental traces. The 
underlying plateau potential (see Fig.5a & Fig.6 Plant & Kim 
1976) is not reproduced by the model. Acceleration of firing 
rate at the beginning of the burst is present in the model. 
The bursting behaviour demonstrated by the model shows a very 
strong resemblance to recording taken by Carnevale and 
Wachtel (Carnevale & Wachtel 1980). The model of Plant and 
Kim can therefore be regarded as successfully describing 
bursting in the neurone R15.
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BURSTING IN PANCREATIC BETA CELLS 
Sherman, Rinzel and Keizer note (Sherman, Rinzel & 

Keizer 1988) that the behaviour of pancreatic B-cells in 
isolation is different from the behaviour in clusters. The 
authors propose that channel sharing is necessary and 
responsible for producing the bursting activity. The channel 
in question is the K-Ca channel and sharing is accomplished 
by tight coupling between cells. The model for this system is 
given in Chapter 2.

SUMMARY
The models of cells showing bursting activity described 

in this chapter share several common features. By considering 
these features it is possible to deduce which characteristics 
are necessary to enable a cell to exhibit bursting behaviour. 
One feature is that the overall current-voltage relation for 
an active neurone should have a region of negative resistance 
(conductance). A calcium-dependent potassium channel appears 
to be required to provide a link between the internal calcium 
concentration and the membrane voltage. These features will 
therefore be included in the model of the oxytocin-secreting 
cell. The calcium-dependent calcium current has been recorded 
in these cells (Bourque & Renaud 1985; Cobbett, Legendre & 
Mason 1989) and is discussed in more detail in Chapter 6. 
Also essential is a basic spike generating mechanism.
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CHAPTER FIVE 
SODIUM CURRENT

Due to the polarity of the sodium reversal potential, 
sodium current is an inward and hence depolarizing current. 
It is the sodium current that is primarily responsible for 
the steep upstroke or rising phase of the action potential in 
most cells. A valuable pharmacological tool that is useful in 
separating the various ionic currents that are present in 
nerve membranes is the neurotoxin tetrodotoxin (TTX), a 
poison derived from puffer fish (Agnew 1984; Catterall, Gonoi 
& Costa 1985; Hille 1984). This molecule binds very 
selectively to the outside of the sodium channel where it 
blocks the flow of sodium current.

Sodium channels have the property of activation and 
inactivation as described by Hodgkin and Huxley (Hodgkin & 
Huxley 1952d). Activation refers to the fact that under the 
influence of a depolarizing stimulus, sodium channels open to 
allow sodium ions to enter the cell. However, associated with 
this process is a second process that acts to close the 
channel in response to a depolarization of the membrane. This 
process is known as inactivation. It is the combined action 
of these two processes that produce the characteristic sodium 
current trace seen under voltage clamp conditions. Two such 
recordings taken from cells in the rat supraoptic nucleus are 
reproduced here (Cobbett & Mason, personal communication) in 
Figs. 5.1 and 5.2. The two processes are taken to be entirely 
independent in the model of the squid giant axon described by 
Hodgkin and Huxley. This means that the activation and 
inactivation processes do not interact. The description of
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the sodium current in that model is given by Equations 5.1, 
5.2 and 5.3. An action potential occurs due to the difference 
in time constant of the two processes. (This is not strictly 
true since repolarization occurs due to potassium currents, 
but inactivation reduces the amount of charge that would 
otherwise have to be removed and hence increases the 
efficiency of the process.) The inactivation time constant 
is at least twice the magnitude of the activation time 
constant rm at all potentials according to Hodgkin and 
Huxley’s results (Hodgkin & Huxley 1952d). This is 
illustrated in Figure 5.3 (drawn using Hodgkin and Huxley's 
conventions). Activation is a more rapid process, so that the 
channels open in response to a depolarizing stimulus and 
allow a pulse of sodium ions into the cell before the 
slightly slower process of inactivation causes the channel to 
close. Activation has a characteristic sigmoidal time course 
and a noticeable delay. In the H-H model, activation is given 
the symbol m and inactivation the symbol h. The product of 
the two terms determines the fraction of the maximum 
available sodium conductance active at any given voltage.

INa = 9Na m3h(V-VNa) (5.1)

m = [ma-(m0)-m0)exp( -t/rm) ] (5.2)

h = [h05-(h(B-ho)exp(-t/rh)] (5.3)
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Figure 5.1

Experimental recordings of sodium current in supraoptic neurones courtesy 
P. Cobbett.
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Figure 5.2
Recordings of sodium current from supraoptic neurones, courtesy P 
Cobbett.
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Figure 5.3
Graph showing the voltage dependence of sodium current activation and 
inactivation time constants in the H-H model.

Typical activation and inactivation curves are shown in 
Figure 5.4. They are shown in the form of the steady-state 
values m̂  and ĥ  versus voltage. These curves were drawn using 
data from the H-H model. Note that these curves were obtained 
using the original data without correction for membrane 
resting potential or modern sign conventions for voltage and 
current (as is Fig. 5.3). To compensate for these factors and 
to generate curves that reflect modern conventions, the 
curves should be mirrored about the zero volt axis and the 
entire curve shifted along the voltage axis by an amount 
equal to the resting potential of the squid axon (-62mV). The 
curves as shown here are as drawn by Hodgkin and Huxley. 
Hille (Hille 1984 p.47) shows similar curves drawn according 
to present conventions.
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Figure 5.4
Graph showing the voltage dependence of the steady-state activation and 
inactivation variables in the H-H model.

Analysis of the sodium current by voltage clamp methods 
is complicated by the existence of the two processes and a 
more complicated experimental procedure is necessary to 
separate them. The time constants involved are of the same 
order which creates more difficulties. The problem is that a 
step depolarization triggers both processes, making it 
difficult to identify the contribution of each process to the 
total current. In the instance of the potassium current IK 
(see Chapter 6) there is no inactivation, so a depolarizing 
step triggers the activation process and gives rise to a 
current that rises to a maximum and remains there. With the 
two processes of activation and inactivation it is not 
certain that the activation process has gone to completion 
before the inactivation process starts to reduce the current.
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In other words, the time courses of the two processes overlap 
(French & Horn 1983). Similarly, following a step 
depolarization it is not possible to ascertain when and at 
what voltage the inactivation process started. To overcome 
these problems a more sophisticated pulse protocol is used. 
By using a double pulse method it is possible to ensure that 
the steady state values of activation and inactivation have 
been reached before making a test depolarization. The double 
pulse protocol involves the use of a conditioning pulse 
followed by a test pulse. The test pulse usually has a fixed 
amplitude. The conditioning pulse may be a fixed amplitude 
pulse of variable duration or a variable amplitude pulse of 
fixed duration. This method allows the time course of the 
recovery from inactivation to be examined (Adams & Gage 
1979). Cobbett et al. (Cobbett, Ingram & Mason 1987) give 
more detail of this technique.

Analysis of sodium current is further complicated in 
some cells by the existence of more than one inactivation 
process. Belluzzi and Sacchi (Belluzzi & Sacchi 1986), 
amongst others note the presence of a slow component in the 
inactivation process (see Hille 1984 for further references). 
However, since the time constants associated with slow 
inactivation are long compared with the duration of the 
action potential, this additional complication will be 
ignored in the following model of sodium current in oxytocin- 
secreting cells.

Hodgkin and Huxley's derivation of their model for 
sodium current has not been given in previous chapters and so 
will be covered briefly here. Starting with their assumptions
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regarding the shape of the sodium conductance curve and the 
differential equations governing the gating particles, 
equations 5.2 and 5.3 (Page 96) were obtained. The initial 
and steady-state values of activation and inactivation are 
given the symbols mQ, m̂ , hQ and hw. Derivation of 5.2 and 5.3 
is straightforward and involves finding the general and 
particular solutions to equations 2.3 and 2.4 in Chapter 2. 
The rate "constants" are related to the steady-state values 
of activation and inactivation by the following equations.

aHl(V) . yl \
m"( } (a„(V) + B.{V))  ( ‘ }

ah( V)
h“(V) = (ah(V) + Bh(VJ) • • • •  ................... (5-5)

The activation and inactivation time constants are 
related to the rate constants in a similar manner.

Ti(v) = (a„(V) + yvj) ....................... (5-6)

1
Th ' (ah(V) * Bh(V)) .................  (5-7)

101



Rearranging 5.4 and 5.5 and substituting in for a and 13 
from 5.6 and 5.7 yields the following expressions for the 
rate "constants" as a function of voltage.

mco(V)
am .....................................

1 ~ ma(V)
6ffl(v) = - W  ................................... (5-9)

ah(V) = ho( V)
W T

Bh(V) = 1 - h.(V)
rhC V)

(5.10)

(5.11)

By stepping the membrane voltage to various levels from 
a holding potential and recording the resultant sodium 
current, Hodgkin and Huxley were able to measure the sodium 
conductance as a function of time. Then by neglecting mQ and 
h0 (the justification for which is given in their 1952d 
paper) a simplified version of equations 5.2 and 5.3 (5.12) 
was fitted to the conductance curves for each of the voltage 
steps.
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/ 39Na = ̂ Nat1 ~ exp(-t/-cm) ]J exp(-t/Th) (5.12)

where

(5.13)

Equations 5.8, 5.9, 5.10 and 5.11 were then used to plot 
curves of am, /3m, and as a function of voltage having 
obtained g'Na as the cube root of 5.13 and Tm indirectly from 
5.10. Equations were fitted to the curves obtained to give 
functions relating the rate "constants" to the membrane 
voltage. These functions were then used in Equations 2.3 and 
2.4 during simulation trials.

Referring back to the state diagrams in Chapter 2, it is 
noted that the original Hodgkin-Huxley model does not require 
that activation and inactivation occur in a set sequence. 
However there are alternative models to the simple one 
proposed by Hodgkin and Huxley, known as coupled models in 
which the two aspects of channel behaviour are not 
independent (Jakobsson 1976). There is experimental evidence 
that the activation and inactivation processes are 
independent and occur at different sites in the sodium 
selective channel (Armstrong 1981).

The observation that inactivation is removed by pronase, 
iodate ions and N-bromoacetamide and other agents (French & 
Horn 1983; Hille 1984), while leaving the activation process 
intact suggests very strongly that the two processes are 
separate. However, activation and inactivation are almost
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certainly not independent since it appears that activation 
must take place before the inactivation process can operate. 
One pictorial representation of the interaction between 
activation and inactivation in the sodium channel is of an 
activation "gate" and an inactivation particle. The 
inactivation particle is on the intracellular surface of the 
channel and can only enter the channel to block ion flow when 
the activation gate is open. Such a picture is to be found in 
Armstrong & Bezanilla 1977 and Armstrong 1981.

Creating detailed mathematical models and computer 
simulations allows various schemes to be discarded as 
explanations of the behaviour of ionic currents, but is not 
usually sufficient to determine which of a set of models is 
the "correct" one. This is because manipulation of model 
parameters may, in different models, give an equally good fit 
to the experimental data.
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MODEL DUE TO BELLUZZI AND SACCHI
Belluzzi and Sacchi (Belluzzi & Sacchi 1986) derived a 

model of the sodium current in the rat sympathetic neurone 
based on Hodgkin and Huxley's model. In their 1986 paper they 
do not derive the a(V) and 13(V) functions but fit equations 
to the m̂  , htt and rm curves. The following equations 
summarise their model.

rm 0.06013+ 42 # 98exp(0.0891bV)+0.9Z30exp(-0.03351V) (5*15)

rh = (-0.00455V+0.2591)+

INa = 9Namc!t1 " exp(-t/rm) ] (V - VNa) (5.14)

1

50.85 (5.16)2+exp['(^9.46-V)/7.91]+exp[(V+40.94)/1.556]

1 + expL(-36.0 - V)/7.2J (5.17)

1 (5.18)1 + exp[(V + 53.21977^-517]

1 (5.19)I + exp [ (V + 62 .424 )76’. 469 J
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Voltages are expressed in millivolts, time constants in 
milliseconds and conductance in microSiemens.

In this model Belluzzi and Sacchi have used an "S" 
function to describe the steady-state value of the slow 
inactivation that they observed.

S t e a d y - s t a t e  A c t i v a t i o n  and I n a c t i v a t i o n1
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Figure 5.5
Graph showing the voltage dependence of the steady-state activation and 
inactivation variables in Belluzzi and Sacchi's sodium current model.
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Figure 5.6
Graph showing the 'S' function used by Belluzzi and Sacchi in their 
description of the sodium current in rat sympathetic neurones.

MODEL DUE TO SMITH 
Smith's model (Smith 1978) of the molluscan bursting 

neurone includes a sodium current model which is reproduced 
here for purposes of comparison with the other models.

The current may be described using an activation 
variable raised to the third power multiplied by an 
activation variable as shown in Equation 5.20.

9Na = §Na ra3h .....................................   (5.20)
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The steady-state activation and inactivation curves are 
described by Equations 5.21 and 5.22.

m3(V,<o) = f   ._r --1 . . , ..I8'1   (5.21)v 7 ' 1expL(V+30.1)/-7J+1J

h(V'"J  ̂expL(V+10.5)/4.5J +l}   (5.22)

The activation and inactivation time constants are 
described by Equations 5.23 and 5.24.

T»(V) = 1+ expL (V+lbj/b.VbJ + °~5   (5’23)

Th(V) It- expKV+^J/S.VbJ + 4 ~5   (5-24)

The differential equation used to describe the changes 
in activation and inactivation variables during action
potentials are given by 5.25 and 5.26.

Ti(V) dmOVt) + m(v,t) = m(V,»)   (5.25)

Th(V) dhOVt) + h (v,t) = h(V,») .................. (5.26)

The curves described by these equations are shown in 
Figures 5.7 to 5.9.
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Figure 5.7
Graph showing the voltage dependence of activation time constant in 
Smith's sodium current model.
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Figure 5.8
Graph showing the voltage dependence of the inactivation time constant 
in Smith's sodium current model.
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Figure 5.9
Graph showing the voltage dependence of the steady-state activation and 
inactivation variables in Smith's sodium current model.

MODEL OF SODIUM CURRENT IN OXYTOCIN-SECRETING NEURONE

Using data obtained by Cobbett (personal communication) 
the following model has been derived to describe the sodium 
current in the oxytocin-secreting neurone. Voltage-dependent 
rate equations were fitted to the activation and inactivation 
time constant curves using methods described in chapter 3. 
There was insufficient information (no ma(V) curve) to fix 
the am(V) curve prior to fitting to the ^(V) curve so there 
is considerable freedom in choosing the parameters of the affl 
curve. Once that curve has been fixed, the ^m(V) is
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constrained to fit the curve formed by subtracting the am(V) 
from the ^(V) curve according to equation 5.6. The equations 
5.21 to 5.24 were found to fit the data using a Least Squares 
criterion and manually adjusting the parameters using the 
computer keyboard. The computer program recalculated the sum 
of the squared deviations after each trial and replotted the 
graph. This process was fairly tedious and time-consuming. 
This approach was used because of the large leeway available 
for choosing the initial curve. It was felt that a fully 
automatic data-fitting routine was not justified at this 
stage. The smooth curves fitted to the data points are shown 
in Figures 5.10 and 5.11. The data points were included in 
the original graph but were deleted by the process of 
importing the graphic into the wordprocessing package.
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Figure 5.10
Graph showing the smooth curve fitted to the activation time constant 
data.
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Figure 5.11
Graph showing the smooth curve fitted to the inactivation time constant 
data.

Cobbett found that the sodium current in oxytocin- 
secreting neurones may be described by the original Hodgkin 
and Huxley equation as given in equation 5.20.

IHa = gNa m3h(V - E„a) .............................  (5.20)

The range and number of data points available for curve 
fitting are restricted so the following functions may not be 
the "best" description of the experimentally observed 
current.
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a“(V) [0.02exp*( -100V) +'!']..................... (5.21)

BufV) = 5exp(-V/0.015) . . . ....................  (5.22)

ah(V) = 45exp(-V/0.02)   (5.23)

B»(v) ■ [0.OOexp(-92.5V)   (5‘24)

dm _= am(l - m) - 13mm .............................  (6.25)

= ab(l - h) - 6hh .............................  (5.26)

TABLE 5.1 
SODIUM CURRENT MODEL PARAMETERS

gNa = 51.6nS Maximum whole cell sodium conductance 
ENa = 43.6mV Nernst potential for sodium
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VOLTAGE CLAMP SIMULATION RESULTS 
Using the above equations (5.20 to 5.26) and the parameters 
given in the table, numerical simulations were performed. The 
initial conditions were established for a chosen holding 
potential and a series of step depolarizations given. The 
numerical integration routine then proceeded to calculate the 
behaviour of the model for the chosen time period. Graphical 
results were obtained and are shown in Figures 5.12 and 5.13. 
It can be seen from the Figure that the model adequately 
represents the behaviour of the sodium current under voltage 
clamp conditions. The figures may be compared with figures 
5.1 and 5.2. Careful inspection of 5.1, 5.2, 5.12 and 5.13 
reveals that the simulated current is slightly smaller in 
magnitude and slightly faster than the recorded current. It 
was felt that the model yielded results that were 
sufficiently close to the actual current that the model could 
be used. Slight adjustment of the maximum conductance and a 
slight increase in the time constants would give a more 
accurate representation should this prove necessary. The 
model as it stands is within the limits of experimental 
variation. The program used to obtain these results was named 
"INAOXY.CSL" and was written using the ACSL simulation 
language. The sodium current model was then incorporated in 
later simulations.
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Figure 5.12

Simulation of voltage clamp experiment. Holding voltage -80mV as Figs. 
5.1 and 5.2

INAOXY Kl“30,K2=-20,K3=30, K4=30 VSTIM 10 TO lOO MILLIVOLTS______________
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Figure 5.13
0.60 o.eo

Results of simulation of voltage-clamp experiment using the model derived 
for the sodium current.
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For comparison, simulations of sodium current using the 
modified Hodgkin-Huxley model is shown in Fig. 5.14

0  HH INA VOLTAGE CLAMP SIMULATION VHOLD -5- «=> OM ILL I VOLTS

t O ~ l ----------
• 0 . 0 0 0.40 2.000.80 1.20 1.60

Figure 5.14
Results of simulating a voltage-clamp experiment using the H-H sodium 
current model.
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CHAPTER SIX 
POTASSIUM CURRENTS 

Potassium currents are outward currents and therefore 
have the effect of repolarizing or hyperpolarizing the nerve 
membrane. The cell resting potential is largely governed by 
the permeability of the membrane to potassium ions (Hilie
1984). Hodgkin and Huxley in their work on the squid giant 
axon described only one potassium current. Subsequent work in 
other preparations has shown the existence of a number of 
different potassium currents that are similar only in the 
fact that potassium is the major current carrier. These are; 
transient potassium currents that activate and then 
inactivate in response to depolarizing stimuli in much the 
same way as the sodium current does; currents that are 
controlled by calcium ions on the intracellular membrane 
surface; M currents that are controlled by chemical 
messengers. In describing the electrical behaviour of the 
oxytocin-secreting neurone it will be necessary to model 
three types of potassium current.
These are; the delayed rectifier current which is given the 
symbol IK , a transient potassium current Ifl and a calcium- 
dependent potassium current (̂Ca)* These currents were 
recorded from cultured supraoptic neurones taken from the 
rat. The K+ currents were recorded during voltage clamp 
experiments and were identified on the basis of their 
kinetics, calcium-dependence and response to various channel 
blocking agents. All these currents have been recorded by 
Cobbett et al. (Cobbett, Legendre & Mason 1989) and the 
models in this Chapter have been based on their results. For
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the details of the experimental procedure see Cobbett, 
Legendre & Mason (1989). The nomenclature used to describe 
the currents is fairly standard although different workers 
use different symbols, for instance the calcium-gated 
potassium current is sometimes denoted by Iq whereas here the 
symbol Iĵ ca) ^s use(  ̂ln line with Hille (1984). Each type of 
current will be described in more detail under the
appropriate subheadings.

The modelling approach that has been used in this
project is the same as used by Hodgkin and Huxley and other 
workers. A mathematical model is found for each of the 
observed currents taken in isolation and these sets of
equations are then put together to form a system of equations 
that are then solved using computer numerical methods. This 
chapter describes the fitting of mathematical models to the 
available data relevant to the three potassium currents
recorded by Cobbett et al. Simulation of each of the currents 
separately (where possible) is also described as a check on 
the validity of the models.
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MODELLING THE DELAYED RECTIFIER CURRENT IR
The delayed rectifier current IK exhibits behaviour 

similar to the potassium current recorded in the squid giant 
axon by Hodgkin and Huxley (1952d). It is known as the 
delayed rectifier since there is a marked delay between the 
onset of a depolarizing stimulus and the appearance of the 
current. The description rectifier is applied since the 
channel appears to pass current more easily in the outward 
direction in much the same way as a semiconductor diode. The 
channel conductance measured when the current is flowing in 
the reverse direction (ie. inward) is lower than when passing 
in the usual direction. The reversal of current is achieved 
simply by reversal of the potential difference applied to the 
membrane so as to create a voltage gradient favourable for 
potassium ions to flow into the cell.

Before describing the derivation of the model for IK 
recorded in the oxytocin-secreting cell, it may be useful to 
describe other models for similar currents that have been 
recorded from other cell types.
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MODEL DUE TO SMITH 
In his 1978 Doctoral Thesis (Smith 1978) Smith describes 

a model derived from data recorded from molluscan neurones. 
The model of the delayed potassium current is reproduced 
here.

gK = §k mjj(V,t) •  .............................. (6.1)

dmi?(V/t) * --  + mk(V,t) = mk(V,») ................ (6.2)

T|I*(V) = l+exp((V+18)/4.5) + 15........................ (6'3)

2 f 1
“ |i+exp((V-V0)/,-14)J.... .......................( }

Where VQ is -27.6mV, EK = -52mV, 4>k = 2.3
This current shows a marked outward rectification.



DELAYED POTASSIUM CURRENT IN OXYTOCIN CELL

The threshold for activation of IK was observed to be 
about -40mV which is approximately 20mV above the normal 
resting potential of the cell. The time course of activation 
is sigmoidal and the maximum current was maintained during 
voltage steps of less than 300ms duration.

The voltage-clamp recordings were whole-cell re­
cordings and the mean maximum conductance for the channel 
population recorded at a potential of +30mV was found to be 
4.9nS.

The conductance was found to be voltage-dependent as 
was the time constant for activation of the conductance. At 
a potential of -30mV the activation time constant was 4.5ms 
and declined exponentially with voltage to a value of 1.8ms 
at +50mV. This means that not only does the conductance 
become greater at greater depolarizations but it also 
activates more rapidly.

The standard potassium channel blocking agents, 
tetraethylammonium ions (TEA) and 4-aminopyridine (4-AP), 
reduced the observed current. This is a way of identifying 
the type of channel since these blocking agents appear to be 
fairly channel specific. TEA is known to be a specific 
potassium channel blocker. The channel kinetics were unal­
tered.

In order to record IK in isolation a holding potential 
of -60mV was used in conjunction with a calcium free bathing 
medium.

The delayed rectifier is described using a set of
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equations similar to those used by Hodgkin and Huxley 
(1952d).

IK = gK n3 (V-VK ) ..................................... (6.5)

Where ĝ  is the maximum observed conductance 
V is the membrane voltage

is the reversal potential for the potassium 
current

n is the activation variable.

Hodgkin and Huxley used an exponent of 4 for the 
activation variable to describe the change in conductance 
whereas Cobbett et al (1989) found that a better fit to the 
experimental data was obtained by using an exponent of 3.

VK , the reversal potential for the potassium current 
was found to be -83mV from experiments on the tail currents 
recorded when the clamp voltage was stepped to voltages more 
negative than the holding potential. At these large negative 
voltages the direction of the current reverses. Changes in 
potassium ion concentration in the external bathing medium 
provoked shifts in the reversal potential in accordance with 
the changes predicted by the Nernst equation.

To complete the mathematical model of the delayed 
rectifier current the voltage dependence of the activation 
parameter n needs to be found. Two equations relating the 
rate of change of activation to the membrane potential are 
needed. Following the procedure expounded by Hodgkin and 
Huxley these two equations may be written
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On(V)
an(V)+flnlVT (6.6)

Tn an +8r (6.7)

The variable na is the value that the activation 
variable n attains after a long duration pulse. So for a set 
of current recordings a graph of values of gKa> versus voltage 
may be constructed. By using the relationship

gK = §K H3 ............................................. (6.8)

values of n̂  at particular voltages may be found.

nm = gn • 
~giT

(6.9)

By recording values of time constant at various voltages and 
by using equations 2 and 3 the rate variables an and Bn may 
be derived. The results of a curve-fitting procedure that 
yields the rate variables is shown in Figure 6.1. (See Page 
62 Chapter 3 for description of fitting routine.) Additional 
equations used to derive the expressions used are as given 
below.
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Figure 6.1

Graph showing alpha and beta data points and smooth curve fitted to them.

otn(V)
n.(V) (6.10)

*n(V) = 1 ~ n.(V)
tn"(V)— (6.11)

These functions and the differential equation for n as 
described in Hodgkin and Huxley's (1952d) model are used to 
describe the behaviour of the delayed rectifier potassium 
current. In order to check that the equations do indeed give 
results that match up with the experimental results a trial 
simulation of a voltage-clamp experiment was performed and
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the graphical output from the simulations are shown in 
Figures 6.2. to 6.4. The simulations perform numerical inte­
gration of the differential equations used to model the
potassium current for various given initial conditions 
(equivalent to stepping the clamp voltage) and presents the 
results in the form of a sequence of superimposed current 
traces.

The functions that were obtained by fitting curves 
to the data points as given are as shown below.

_ _ 600.0 , g- n 9 >
" [exp(-60V) + 1] ............................... (6.1^)

Bn = 30.0exp(-V/0.02)   (6.13)

The computer simulation of the voltage-clamp ex­
periments yield current versus time traces that may be 
described by the equation :-

IK(t) = _ (nK-n0)exp[-(an + !3n)t]}3 (V-VK) . . . (6.14)
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8 POTASSIUM CURRENT SIMULATION
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Figure 6.2

Result of simulation of voltage-clamp using potassium current model.

V O L T A G E — C L AMP S I M U L A T I O N  OF D E L A Y E D  REC- T I F I E R  C U R R E N T ________________ ____
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Figure 6.3

Results of voltage-clamp simulation on a shorter time scale,
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POTASSIUM ACTIVATION FOR DELAYED RECTIF­IER
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Figure 6.4

Graph showing the potassium activation variable during a voltage-clamp 
simulation.

Inspection of the results shown in Figure 6.2 show a 
good fit with the experimental data published by Cobbett et 
al. (1989) in terms of the maximum amplitude and the time
course. As a result of the closeness of fit it may be assumed 
that the equations used do describe the time and voltage 
behaviour of the observed delayed rectifier current and those 
equations may be used with confidence in a model of the 
electrical behaviour of the cell as a whole. It should be 
noted that the currents in the graphs have units of amperes 
and time is given in seconds.

The program used to simulate this current is to be found 
in the Appendix as PROGRAM IKOXY.
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MODELLING THE TRANSIENT POTASSIUM CURRENT Ifl
Transient potassium currents have been observed in a 

large number of cells ( Hille B. (1984); Smith S. J. (1978); 
Connor & Stevens 1971; Bevan & Raff 1985; Cobbett, Legendre 
& Mason 1989; Thompson 1977; Cooper & Shrier 1985; Belluzzi, 
Sacchi & Wanke 1985; Champagnat, Jacquin & Richter 1986.) and 
are thought to increase the interspike intervals of 
repetitively firing neurones by cancelling out some of the 
applied stimulus current immediately following the hyperpo­
larization of the cell after an action potential. Transient 
potassium currents are described using an activation and an 
inactivation parameter in a similar manner to sodium cur­
rents .

Under the experimental conditions described by Cobbett 
et al. (1989) which were voltage-clamp experiments on 
dissociated cell cultures of supraoptic neurones from 
neonatal rats, bathed in sodium and calcium free media, the 
current trace following a voltage step from -lOOmV to OmV is 
qualitatively different from a current trace elicited by a 
voltage step from -60mV to OmV.

By finding the difference current between the two traces 
the transient potassium current Ifl may be recorded. The 
current trace obtained by subtraction of the current recorded 
from a holding potential of -60mV from the current recorded 
from a holding potential of -lOOmV is not a true record of 
the transient potassium current due to contamination from IK 
but this has been ignored in the analysis. Pharmacological 
methods of separating the two currents are not completely 
successful either. This is due to the fact that the delayed
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rectifier current and the transient current are both carried 
by potassium ions. It appears that the transient current 
flows through a different type of ionic channel and does not 
represent a different gating mechanism for IK or other 
potassium channels. Blocking agents that prevent current flow 
through delayed rectifier channels also block the so-called 
A channels. At present then, imperfect separation of the
delayed rectifier and transient potassium current is a 
restriction on the modelling of the two currents but is an 
experimental reality. Experimental results were obtained as 
stated above from sodium - and calcium - free external 
bathing solutions so it may be assumed that there is no 
contamination from other sources.

The maximum whole-cell conductance was found to be 5.9 
nS ± 1.6 nS (mean ± s.e.m.). The large size of the maximum 
conductance compared with the maximum conductance of the IK 
channels suggests that the transient potassium current is 
significant in determining the overall behaviour of the
oxytocin-secreting neurone. Since the current is carried by 
potassium ions it is an outward current and therefore has the 
effect of hyperpolarizing or repolarizing the cell membrane.

A series of voltage-clamp experiments on the cell 
yielded a family of current records that showed the behaviour 
of the transient potassium current. The current appears to 
activate with sigmoidal rise and inactivates following a 
simple exponential fall. The authors of the paper (Cobbett et 
al. (1989)) suggest that the kinetic behaviour of the current 
may be described according to an equation proposed by Connor
and Stevens. (Connor J. A. and Stevens C. F. 1971).
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IA = gj a" b(V-VK) (6.15)

The exponent n was found to be 4 by plotting :-

In K - (K exp{ -t/rBj)
(6.16)

against t for different values of n. K in the above 
equation is a scaling factor.

The situation is complicated by the fact that the single 
exponential used to describe the decaying phase of the 
current does not apply for potentials of +20mV and above. 
(See Cobbett et al 1989) This should not pose a serious 
problem since the normal action potential does not exceed 
this value. ( Membrane resting potential = -60mV and normal 
spike amplitude s70mV .)

The complete transient outward current may thus be 
described by the equation :-

Ifl(t) = K[1 - exp(-t/rA)]4 exp(-t/rB) ............... (6.17)

Activation (rfl) and inactivation (rB) time constants are 
found to be voltage-dependent so it may be assumed that the 
use of voltage-dependent rate "constants" is appropriate.
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H  aA(V) + BA(V) (6.18)

(6.19)

Plots of rA and rB versus voltage are given in Cobbett 
et al. (1989) but no data is given on the steady-state values 
of the activation (affl) and inactivation (b^) parameters as a 
function of voltage. This means that Equations (6.6) and 
(6.7) may not be used to find the functions for aA(V) , BA(V), 
aB(V) and BB(V). The functions for the a's and B's are 
constrained such that they satisfy equations (6.14) and 
(6.15) but apart from that there is a choice as to the exact 
form and numerical values that constitute the functions. This 
means that there is no unique description of the rate 
functions given the available data.

The activation and inactivation time constants have 
different ranges of values. The activation process is faster 
than the inactivation process with a range from 2.1 ms to 0.5 
ms over the voltage range -40mV to +40mV. This range does not 
include the normal resting potential of the membrane which 
limits the accuracy of the modelling equations. This may be 
important since the A current activates with a threshold 
close to the resting potential of -60mV. In the absence of 
this data the curves used to fit the data available are 
merely extrapolated to cover the full voltage range of
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normally firing cells.
With all this in mind the following functions have been 

found to fit the available data.

n = 2200 rfiA [exp(2200(0.00008 - 0.025V)) + 1]  1 }

Ba = 80exp(-V/0.03)   (6.21)

aB = 26exp(-V/0.076)   (6.22)

70
Bb = [exp(70(0.0017-0.85v)) + 1 ] ..........   (6.23)

Computer simulation of voltage-clamp experiments was 
again used to ensure that the simulated transient potassium 
current matched the experimentally recorded current closely. 
The results of a typical simulation are shown in Figure 6.5.

The ACSL listing for the program that simulates the 
transient potassium current is to be found in the Appendix 
and is called IKTRAN.
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Q  TRANSIENT POTASSIUM CURRENT VOLTAGE CLAMP °  SIMULATION__________________________________
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Results of simulation of voltage-clamp using the model derived for the 
transient potassium current.

MODELLING THE CALCIUM - DEPENDENT POTASSIUM CURRENT IR_Ca

The third type of potassium - selective channel is 
gated not by membrane voltage but rather by changes in the 
concentration of calcium ions on the inner surface of the 
membrane. Calcium-dependent potassium current has been 
recorded in a number of different cells and is thought to 
play a significant role in bursting behaviour. ( Hille 1984; 
Smith 1978; Meech 1978; Rinzel (pre publication 
communication); Cobbett, Legendre & Mason 1989; Belluzzi, 
Sacchi & Wanke 1985; Cobbett, Ingram & Mason 1987; Thompson 
1977; Barrett, Magleby & Pallotta 1982; Pallotta 1985; 
Magleby & Pallotta 1983a; Magleby & Pallotta 1983b; Gorman & 
Thomas 1980; Hirst, Johnson & van Helden 1985; Maruyama,
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Petersen, Flanagan & Pearson 1983; Adams, Constanti, Brown & 
Clark 1982; Schwarz & Passow 1983; Petersen & Maruyama 1984; 
Brown & Griffith 1983; Tanaka & Kuba 1987; Latorre, Coronado 
& Vergara 1984; Thomas 1984; Meech 1978; Quandt 1988; Bourque 
1988; Brown & Higashida 1988; Cook & Haylett 1985; Marty & 
Neher 1985; Plant & Kim 1978).

The channel is not always insensitive to the membrane 
voltage however. Deriving a model for this current, usually 
denoted Î ca) ' *-he oxytocin-secreting cell is not
straightforward since there is insufficient experimental data 
published by Cobbett et al. (1989) to follow the procedures 
that have been described so far. However, by making suitable 
assumptions and by using data published by other authors ( 
Plant & Kim 1978; Bourque 1988; Sherman, Rinzel & Keizer 1988 
), a model may be derived. The validity of the model may be 
checked by running simulations as with the other models and 
comparing the results with published data. If a good match 
with experimental results is not immediately forthcoming, 
then assuming the basic assumptions and the general model are 
sound then the model parameters may be "tuned" to produce 
results that more closely match the published data.

Smith (Smith 1978) describes a model for the calcium- 
gated potassium current in a molluscan neurone and this model 
is reproduced here.
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MODEL DUE TO SMITH

RT l~exp(VF/RT)
(6.24)

This equation relates the change in calcium-gated 
potassium current to changes in the channel permeability P̂ . 
Simulated changes in calcium concentration closely follow 
changes in the current, which indicates that the channel is 
gated directly by calcium concentration at the inner surface 
of the membrane. The changes in Iq are converted to 
corresponding changes in conductance by dividing by the 
potassium equilibrium potential. The data necessary to use 
this approach were not available so the calcium-gated 
potassium current has not been modelled for the oxytocin- 
secreting cell.

Plant and Kim (Plant & Kim 1978) model changes in 
calcium concentration and the effects of those changes on the 
calcium-gated potassium channel using the following 
equations.

MODEL DUE TO PLANT AND KIM

kjn xT(VCa V) kout c (6.25)

9P (Kp + c)
gpc (6.26)
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MODEL USED BY SHERMAN, RINZEL AND KEIZER

The above model described by Plant and Kim was used in 
the model of the pancreatic B cell derived by Sherman, Rinzel 
and Keizer (Sherman, Rinzel & Keizer 1988). Their equations 
are reproduced here.

This model shows how the calcium-gated potassium 
conductance depends upon the concentration of intracellular 
free calcium. It also shows how the calcium current is 
responsible for the increase in intracellular free calcium. 
This model was used in the oxytocin cell model.

This chapter has described the various potassium 
currents known to be present in the oxytocin-secreting cell. 
Using data provided by Cobbett and co-workers, mathematical 
models of the delayed rectifier and transient potassium 
currents have been derived. A curve-fitting program written 
by the author was used to find the parameters of the fitting 
functions. The resulting model equations were then simulated 
on a computer in isolation before being included in the 
overall model for the cell. The simulation programs written 
in the ACSL modelling language are included in the Appendix.

(6.27)

dCaj = £(-aICa - kCaCai) (6.28)

SUMMARY
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CHAPTER SEVEN

CALCIUM CURRENTS
Calcium plays a very important role in cell processes 

and controls the exocytosis of neurosecretory granules at the 
axon end-terminals (Hille 1984; Maddrell & Nordmann 1979). 
Calcium ions are also important for controlling the gating of 
certain potassium-selective ionic channels as described 
earlier. Muscle contraction and regulation of various 
internal cell processes also involve calcium ions (Barish & 
Thompson 1983; Brink 1954; Carafoli & Penniston; Fox, Nowycky 
& Tsien 1987a; Gorman & Thomas 1980; Igusa & Miyazaki 1983; 
Matteson & Armstrong 1986). Calcium is also involved in the 
processes following egg fertilization (Igusa, Miyazaki & 
Yamashita 1983). In this respect calcium plays an important 
role as a second messenger in the cell. In fact it appears 
that calcium is one of the most biologically important 
inorganic ions.

In most cells calcium ions also contribute to the total 
ionic current in an excitable membrane during depolarization. 
Hodgkin and Huxley's original model of electrical 
excitability in squid giant axon did not include current due 
to calcium ions and the squid axon is a fairly simple system 
in this respect, since calcium currents have been found in 
most types of cell (Hille 1984). Extensions and modifications 
to the simple Hodgkin-Huxley model have included the effect 
of extracellular calcium concentration on the excitability of 
the membrane (Huxley 1959). Most of the calcium ions within 
a cell are not free to move around but are held in a bound
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form by calcium chelating molecules such as calmodulin. The 
mitochondria in the cell are also responsible for some of the 
uptake of calcium (Meech 1974). The concentration of free 
intracellular calcium is estimated to be between lOnM and 
lOOnM (Gorman Sc Thomas 1978; Llinas, Steinberg Sc Walton 
1981). In contrast, the extracellular medium contains a 
significant concentration of free calcium. This creates a 
Nernst potential ECa that is larger than the sodium Nernst 
potential and of the same polarity. Taking figures of lOnM 
for the intracellular free calcium concentration and lOmM as 
the extracellular calcium concentration, Hille (Hille 1984 
Ch.4) calculates the calcium Nernst potential as +175 mV. In 
fact, calcium current reversal potentials of this size are 
not recorded due to the size of the current being 
unresolvable before this voltage is reached (Adams Sc Gage 
1979; Sanchez Sc Stefani 1983). This makes the measurement of 
the calcium equilibrium potential or reversal potential 
difficult if not impossible using present techniques (Sanchez 
& Stefani 1983; Kay & Wong 1987). Estimation of the reversal 
potential by extrapolation of the conductance curve is 
unreliable due to the way the curve becomes asymptotic to the 
axis and by the rectifying properties of the calcium channel 
(Akaike, Lee & Brown 1978; Kay Sc Wong 1983; Llinas, Steinberg 
Sc Walton 1981). Estimates and measurements of calcium 
potentials taken from various authors are:- +150mV (Sanchez 
& Stefani 1983 although they measured an apparent reversal 
potential of only +40mV) , +85mV by extrapolation (Hencek Sc 
Zachar 1977), +40mV to +150mv by extrapolation (Hirst,
Johnson Sc van Helden 1985), +139mV (Gorman Sc Thomas 1980),
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+50mV (Standen 1974), +103.7mV (Atwater, Dawson Eddlestone & 
Rojas 1981), +115mV by extrapolation (Llinas, Steinberg &
Walton 1981), +168mV (Akaike, Lee & Brown 1978), +64mV (Adams 
& Gage 1979) and +130mV (Smith 1978). Internal buffering of 
calcium ions coupled with active extrusion of calcium from 
the cell maintains this low internal concentration (Barish & 
Thompson 1983). The efflux of calcium from the cell is linked 
with sodium influx (Glitsch, Reuter & Scholz 1970; Meech 
1974; Hille 1984). This process is complicated by dependence 
upon sodium and calcium concentrations and will not be 
discussed further.
The study of calcium currents is complicated by the diversity 
of effects that calcium ions have both inside and outside the 
cell. For instance, not only does an increase in 
intracellular free calcium ion concentration activate a 
potassium current (*K(Ca))' ^ut also serves to inactivate 
calcium channels (Hille 1984; Bourque, Brown & Renaud 1986). 
This makes recording and analyzing calcium currents more 
difficult than other currents. In addition to this, calcium 
currents often occur in highly infolded cell membranes which 
makes the establishment of a good voltage clamp difficult 
(Hille 1984; Sanchez & Stefani 1983). Even when a good 
voltage clamp has been established, recording is difficult 
due to the small size of calcium currents and the possibility 
of contamination with other currents. There is also evidence 
that the distribution of calcium ions around the cell 
membrane is not uniform and that the dendrites are sites of 
a concentration of calcium channels (Mason & Leng 1984). One 
of the objectives when recording membrane currents is to
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achieve a spatially uniform clamp voltage. The presence of 
large numbers of calcium channels in the dendrites makes this 
much more difficult (Kay & Wong 1987).

Another complication is the diversity of calcium chan­
nels that have been recorded. Calcium channels may be slow or 
fast, inactivating or non-inactivating. A slow and a fast 
current were recorded in chick dorsal root ganglion neurones 
by Fedulova, Kostyuk and Veselovsky (Fedulova, Kostyuk & 
Veselovsky 1985). The fast current inactivated rapidly and 
monoexponentially while the slow current inactivated only 
slowly with two time constants of inactivation. A single 
fairly rapidly activating and inactivating current is 
described by Hencek and Zachar (Hencek & Zachar 1977). A slow 
calcium current in frog motoneurones is reported by Barrett 
and Barrett (Barrett & Barrett 1976). A slowly activating and 
inactivating current in frog twitch muscle fibres was 
recorded by Sanchez and Stefani (Sanchez & Stefani 1983). 
Belluzzi, Sacchi and Wanke (Belluzzi, Sacchi & Wanke 1985) 
recorded a calcium current that activated rapidly and 
inactivated with two voltage-independent time constants, one 
fast and one slow. A slowly activating and inactivating 
calcium current was recorded in an Aplysia neurone by Adams 
and Gage (Adams & Gage 1979). Brown and Griffith (Brown & 
Griffith 1983) recorded a slowly activating, persistent 
calcium current in hippocampal neurones of the guinea-pig. A 
calcium component to the action potential spike in rat 
supraoptic neurones was reported by Bourque and Renaud 
(Bourque & Renaud 1985). Geduldig and Junge (Geduldig & Junge 
1968) reported a calcium action potential similar to the
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normal action potential in Aplysia giant neurone. The sodium 
component was either blocked by the addition of tetrodotoxin 
or by recording in sodium free solution. A rapidly activating 
and inactivating calcium current was recorded in Helix 
neurone by Akaike, Lee and Brown (Akaike, Lee & Brown 1978). 
Three distinct calcium channels were reported in chick 
sensory neurones by Fox, Nowycky and Tsien (Fox, Nowycky & 
Tsien 1987 a,b). One current activated rapidly and showed 
little inactivation, another activated and inactivated 
rapidly and the third activated rapidly but decayed slowly. 
In terms of.single channel properties, the channels could be 
distinguished on the basis of single channel conductance, 
mean open time distribution and voltage dependence. These 
three channel types were given the designations T, L and N* 
Two currents were recorded in rat sensory neurones by Bossu, 
Feltz and Thomann (Bossu, Feltz & Thomann 1985), one 
persistent and a second which displayed inactivation. 
Matteson and Armstrong (Matteson & Armstrong 1986) describe 
two calcium currents in clonal pituitary cells, one which 
displays inactivation and the other which does not. Two 
currents, both of which inactivate but one more slowly than 
the other, were reported by Cobbett, Ingram and Mason 
(Cobbett, Ingram & Mason 1987). Standen (Standen 1975) 
describes a fairly rapidly activating and inactivating 
calcium current in snail neurones. Kramer and Zucker (Kramer 
& Zucker 1985a,b) note the presence of a calcium-inactivated 
calcium current in Aplysia neurones. A calcium current with 
two phases of inactivation, fast and slow, is described by 
Hirst, Johnson and van Helden (Hirst, Johnson & van Helden
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1985). The squid giant synapse displays a calcium current 
with slow activation and little fast inactivation (Llinas, 
Steinberg Sc Walton 1981).

Calcium channels are blocked by transition ion metal 
ions such as manganese, nickel, cobalt and cadmium (Hille 
1984). Organic channel blockers specific to calcium also 
include verapamil, nifedipine, methoxyverapamil (D-600) and 
D890 (Walden Sc Speckman 1987; Hille 1984). The dihydropyri­
dine derivative BAY K 8644 acts as an agonist in low con­
centrations but in higher concentrations reduces calcium 
current (Walden Sc Speckmann 1987). A useful agent in the 
study of calcium currents is the barium ion. This substitutes 
well for calcium in carrying current through calcium channels 
and gives rise to faster, larger and more prolonged currents 
(Bourque, Brown Sc Renaud 1986). Barium, however does not 
substitute well for calcium in the inactivation of calcium 
channels or in activation of the I^g) channel, which are 
apparently more specific to calcium (Bourque,Brown Sc Renaud
1986). This is an advantage since the current being recorded 
will not be contaminated by the potassium current and the 
current being carried through the calcium channels will be 
larger and therefore easier to resolve due to the lack of 
inactivation.

Calcium channels appear to have the property of inward 
rectification ie. calcium ions flow in through the channels 
but not out, even when the driving voltage is increased 
beyond the calcium reversal voltage (Kay Sc Wong 1 9 87; Tsien 
1983).

The influx, diffusion and accumulation of free calcium
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in the cytoplasm is treated by Smith (Smith 1978) and Gorman 
and Thomas (Gorman & Thomas 1980) who derive partial 
differential equations to describe the process. Gorman and 
Thomas give an expression for calculating the calcium 
concentration at any time and any radial distance by assuming 
spherical geometry and a constant rate of calcium influx. 
Smith's model was modified slightly to take account of 
additional calcium binding sites by Barish and Thompson 
(Barish & Thompson 1983). These diffusion models are based 
upon a spherical cell having radial symmetry. The effects of 
calcium accumulation and diffusion have not been addressed in 
this study due to the additional complexity of introducing 
computer code to solve partial differential equations into 
ACSL models. The integration routines in ACSL are only able 
to integrate with respect to one variable. The diffusion 
problem requires stepping forward in three spatial dimensions 
and time. This is beyond the capability of ACSL as it stands. 
However, it is possible to call FORTRAN subroutines from 
within an ACSL program. It is therefore possible to write 
code to solve the diffusion equation (using a Crank-Nicholson 
or other appropriate algorithm) and call the routine at every 
time step or communication interval, but it would not be a 
trivial task to implement such a scheme. According to Hille 
(Hille 1984), diffusion of calcium throughout a 300pm 
diameter cell takes longer than 300ms. This is long compared 
to the time taken for calcium influx to occur during an 
action potential. Because of the finite time taken for 
calcium ions to diffuse throughout the cytoplasm, the 
internal free calcium concentration will not be uniform
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during periods of influx. The calcium concentration just 
inside the cell membrane will be higher than in the bulk 
cytoplasm. In fact, the concentration of free calcium close 
to the inner membrane surface is estimated to be 
approximately 15.5pM according to Glitsch, Reuter & Scholz 
(Glitsch, Reuter & Scholz 1970), (c.f. 10-100 nM in the bulk 
cytoplasm). The modulating effect that calcium ions have on 
various membrane components such as calcium channels 
themselves and calcium-gated potassium channels will be 
determined by the concentration just inside the membrane 
(Meech 1974). This makes any attempt at relating bulk calcium 
concentration measurements such as those obtained using 
aequorin or arsenazo III to gating of these channels, 
difficult (Gorman & Thomas 1980).

Calcium ions are also observed to have a stabilizing 
effect upon the membrane potential (Brink 1954; Franken- 
haeuser & Hodgkin 1957; Huxley 1959). Frankenhaeuser and 
Hodgkin (Frankenhaeuser & Hodgkin 1957) note that the voltage 
dependence of sodium and potassium activation and 
inactivation functions is shifted along the axis in a 
depolarizing direction as extracellular calcium concentration 
is decreased. Their results are summarised and given a 
mathematical expression by Huxley (Huxley 1959), reproduced 
here as equation 7.1. The same effect is noted in Helix 
neurones by Standen (Standen 1975).
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Av = k Ln([Ca]/[Ca]n) (7.1)

Where Av is the change in membrane voltage and
[Ca]n is the normal extracellular calcium concentration
and Ln denotes the natural logarithm.
The role of calcium ions in bursting behaviour is 

discussed by several authors and some of the essential points 
will be discussed here. As noted previously, calcium-gated 
potassium currents are observed in cells that display 
bursting behaviour and appear to be responsible for the post­
burst hyperpolarization. No system displaying bursting 
behaviour without this channel has come to the author’s 
attention. (Calcium-gated potassium currents are also re­
sponsible for the hyperpolarizing response of hamster eggs to 
calcium injection, Igusa & Miyazaki 1983.) Evidence for this 
comes from replacement of calcium by barium which removes the 
hyperpolarizing after-potential (Bourque, Brown & Renaud
1986). It seems, then, that as calcium accumulates during a 
burst of action potentials due to voltage-dependent opening 
of calcium channels, more and more calcium-gated potassium 
channels open. This leads to an increase in the outward 
currents which eventually overcome the membrane 
depolarization and cause the burst to terminate. These 
potassium currents decrease during the inter-burst interval 
as calcium is removed and eventually the membrane depolarizes 
sufficiently for another burst to start.
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MODELLING CALCIUM CURRENTS 
As noted above, calcium currents are difficult to record and 
difficult to analyse for various reasons. However, various 
workers have attempted to characterize and describe them. 
Hodgkin and Huxley's formalism is still a popular way of 
doing this, although consideration of the details of the 
current show that a Hodgkin-Huxley model is not adequate in 
certain instances (Brown, Tsuda & Wilson 1983). There is a 
certain amount of doubt as to whether calcium currents 
display inactivation in the same way that sodium currents do 
or if the inactivation observed is soley due to the effects 
of the increased concentration of calcium ions themselves. 
Calcium activation has been described by an "m" variable 
raised to the first power (Akaike, Lee & Brown 1978), second 
power (Byerly, Chase & Stimers 1984; Brown, Tsuda & Wilson 
1983; Fedulova, Kostyuk & Veselovsky 1983; Kay & Wong 1987), 
the third power (Sanchez & Stefani 1983), the fourth power 
(Belluzzi, Sacchi & Wanke 1985) or to the sixth power 
(Llinas, Steinberg & Walton 1981; Hencek & Zachar 1977). An 
exponent of 1 or 2 was needed to describe calcium activation 
at different potentials in experiments performed by Adams and 
Gage (Adams & Gage 1979) and the results of Llinas, Steinberg 
& Walton do not distinguish well between the fifth and sixth 
powers.

Close examination of the inactivation of calcium current 
shows that it has two separate phases (Hirst, Johnson & van 
Helden 1985; Cobbett, Ingram & Mason 1987)

In the absence of detailed data on the calcium currents 
in the oxytocin-secreting neurone it was necessary to
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incorporate a model from a different source. The model 
derived by Hencek and Zachar (Hencek & Zachar 1977) is 
complete in terms of giving all the equations and model 
parameters necessary to reproduce their results, and as such, 
the equations they used were coded into an ACSL program and 
used in simulations. The curves derived for the activation 
and inactivation rate constants are shown plotted against 
voltage in Figures 7.1 and 7.2. The variation of the steady 
state activation and inactivation with voltage are shown in 
Figure 7.3. Activation and inactivation time constants as a 
function of voltage are shown in Figure 7.4.

A c t i v a t i o n  r a t e  c o n s t a n t s  f r o m  H e n c e k  a n d  Z ac h a r
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0 . 2
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0  . 1
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0
- 100 -80 -60 -40 -20 0 20

M e m b r a n e  v o l t a g e  (mV)

Figure 7.1
Graph showing the voltage dependence of the activation rate constants 
from Hencek and Zachar's calcium current model.
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I n a c t i v a t i o n  r a t e  c o n s t a n t s  f r o m  H e n c e k  a n d  Z ac h a r
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Figure 7.2
Graph showing the voltage dependence of the inactivation rate constants 
derived by Hencek and Zachar.
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Figure 7.3
Graph showing the voltage dependence of the steady-state activation and 
inactivation in Hencek and Zachar's model.
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Figure 7.4
Graph showing the variation with voltage of the calcium activation and 
inactivation time constants. Hencek and Zachar's model.
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MODEL DUE TO HENCEK AND ZACHAR

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

am = 0.0051ms"1 13m = 0 . 024ms"1
Vm = 52 . 45mV £a,m = iO-SmV
£fi,m = 20. 7mV
fijj = 0.0097ms"1 Bjj = 0.117ms"1
Vh = -42.2mV £a,h = 13.4mV
£B,h = 8*54mV
ĝ a = 15.0mScm^ V*Ca = 84 . 9mV
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ICa = §Ca m6h( V - VCa )

. affl(V-Vm)in ( ) —[l-exp[-(V-Va)/cM ]]

Ba(V) = Ba exp[-(V-Va)/eBfB]

ah(v ) = ah exp[-(V-Vh)/eQ/h]

iBj,Bh(V) = ---------- !---------[l+exp[-(V-Vh)/eB,h]]

TABLE 7.1 
MODEL PARAMETERS



V !£a as given here is the reversal potential for the 
calcium current obtained by extrapolation of the conductance 
graph. This value may differ significantly from the Nernst or 
equilibrium potential as determined by considering the 
relative concentrations of calcium ions inside and outside 
the cell. Measurement of Ê a is difficult as outlined earlier 
in this chapter. Because of this, the value may need some 
adjustment to obtain the amplitude of peak current that is 
experimentally observed.

The results of the simulation of calcium current using 
the above model with the parameters in Table 7.1 are given in 
Figures 7.5 to 7.8. Time is measured in milliseconds and 
current in mA/cm^. The actual ACSL model appears in the 
appendix as HENZAK. The results are for voltage-clamp simu­
lations and as can be seen from Figure 7.5 there is a clear 
discrepancy between the simulated current and the current 
recorded experimentally by Hencek and Zachar. The simulated 
current shows no inactivation. The model derived by Hencek 
and Zachar was examined carefully and the equations given for 
the a and B functions do appear to fit the data as shown in 
their paper. The activation and inactivation variables as 
plotted against voltage in Figure 7.3 also appear reasonable 
and were derived from the model equations shown above. The 
simulated holding potential was -80mV as this is given as the 
membrane resting potential of the cell. Depolarizing stimuli 
of 20mV to lOOmV were used to simulate the experimental 
conditions. Comparison of the activation (Fig. 7.6) and 
inactivation (Fig. 7.8) show that inactivation occurs faster 
than activation. The activation and inactivation time
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constants as a function of voltage in Figure 7.4 show that 
over the voltage range of interest, the inactivation time 
constant is larger than the activation time constant apart 
from a small region at the most polarized end of the graph 
where the reverse is true. This should be the situation, 
since Table 1 (Hencek & Zachar 1977) clearly shows the 
inactivation time constant to be larger than at all voltages. 
Close inspection of Figure 7.4 here and Table 1 in Hencek and 
Zachar’s paper shows that time constants read from the graph 
in Figure 7.4 do not match well with the values shown in 
their Table 1. This model, as it stands does not therefore 
accurately represent the calcium current described by Hencek 
and Zachar and cannot be used without modification. The 
simulation of Iq3 was performed independently using data from 
Hencek and Zachar. The ACSL simulation confirmed Author's 
results (W A Barraclough personal communication 1991).

Calcium current voltage clamp simulation

<Ec_>

CM

lOG 200 TFigure 7.5
300 500

Results of simulation of voltage-clamp experiment using the model due to 
Hencek and Zachar.
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* A c t i v a t i o n  d u r i n g  v o l t a g e  c l o m p
S0 mV

COO'

CMO'

300 500

Figure 7.6
Graph showing the variation of the calcium activation variable during 
voltage-clamp simulations.

R c t i v a t i o n  r a i s e d  t o  s i x t h  p o w e r

CMO'
CO

CO

O'

200 TFigure 7.7
loo 300 500

Graph showing the calcium activation variable raised to the sixth power 
simulated using Hencek and Zachar’s model.
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Inactivation during voltaq» cl

BE9 » 5QQ200 T
Figure 7.8

Calcium inactivation variable simulated using Hencek and Zachar's model.
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MODEL DUE TO KAY AND WONG 
As with Hencek and Zachar!s model, the Hodgkin-Huxley 

approach is used. The current they observed did not 
inactivate, so they used the simpler model shown in Equation 
7.7.

ICa = gCa(V)ni2(V,t) ................................... (7.7)

The rate functions are given by Equations 7.8 and 7.9.

a|n(V) = [1 + exp(-0.'072TV-5)")'J..................... (7'8)

( 0 . 0 2 ( V + 8 . 6 9 ) )  , 7  Q 1

ll J [exp((V+8.69V5'."36)-l] ...................( '

Note that in the original paper (Kay & Wong 1987) there 
is an error in the equation for affl in that the slope factor 
0.072 is incorrectly given as 0.0072 (Equation (6) Page 614 
Kay & Wong 1987). The rate functions and activation variable 
m plotted against voltage are reproduced here as Figures 7.9 
and 7.10. The time constant of activation as a function of 
voltage is reproduced in Figure 7.11. The conductance g(V) is 
given as a function of voltage, reproduced here as Equation 
7.10.

g(V) = PVexp[2FV/RT] .........................  (7.10)1 - expf-2FV/RTJ 1

where P is a constant which depends upon the extracell­
ular calcium concentration.
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R a t e  f u n c t i o n s  f r o m  K a y  and W o n g
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Figure 7.9
showing the rate functions from Kay and Wong's calcium current
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Figure 7.10
Graph showing the variation in steady-state calcium activation derived 
using data from Kay and Wong.
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Figure 7.11
Graph showing the variation with voltage of the calcium activation time 
constant from Kay and Wong's model.
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MODEL DUE TO SANCHEZ AND STEFANI 

ICa = A(l-exp(-t/rm))3(ha-(hn-h0)exp(-t/-ch)) . . . .  (7.11)

hm = [l+expL(E-Ehl/2)/khTJ (7.12)

ah = ahexp( (Eh-E)/Vflfh)) (7.13)

Bh = JJ 13h
[1 + exp[ (Eh-E)/VfifhJ J (7.14)

Clm am(E Em)
1 - expl(Er E)/V5 T (7.15)

iBffl = Bm exp[(Ea-E)/Vflfi] ...........................  (7.16)

The alpha and beta rate functions as a function of 
voltage are shown in Figures 7.12 and 7.13. The steady-state 
activation and inactivation curves are given as a function of 
voltage in Figure 7.14 and activation and inactivation time 
constants as a function of voltage in Figures 7.15 and 7.16 
respectively.

158



TABLE 7.2 
MODEL PARAMETERS

E hi = -33mV kh = 6. 3mV
djj = 0.08s"* J3h = 1.4s"1 E h = -25.5mV

va,h = 19*7mV VB,h = 6-lmV
am = 1. 74mVs_1 Bm = 0.12s"1 E m = -43.OmV
VM  = 19 . 2mV Vfi/I = 23. lmV

There appears to be a mistake in either the equations 
given by Sanchez and Stefani or the graph of rffl against 
voltage as given in Figure 8 of their 1983 paper. The 
equations as given do not reproduce the curve as shown. 
Figure 7.15 here was produced using Equations 7.15 and 7.16 
but with the parameter values from Table 7.2 adjusted by a 
factor of ten each to give a graph having the same scale as 
that shown in Figure 8 in the 1983 paper. Due to this 
uncertainty in the parameter values this model was not 
investigated further.
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R a t e  f u n c t i o n s  f r o m  S a n c h e z  and S te f a n i
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Figure 7.12
Graph showing the variation with voltage of the alpha and beta rate 
functions in Sanchez and Stefani's calcium current model.
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Figure 7.13
Graph showing the voltage-dependence of the calcium inactivation rate 
functions in Sanchez and Stefani's model.
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Figure 7.14
Graph showing the variation with voltage of the steady-state calcium 
activation and inactivation variables.
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Figure 7.15
Graph showing the voltage-dependence of the steady-state activation time 
constant in Sanchez and Stefani's model.
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Figure 7.16
Graph showing the voltage-dependence of the calcium inactivation time 
constant in Sanchez and Stefani's model.

SUMMARY
One of the important features of the oxytocin-secreting 

cell is the presence of calcium currents. This Chapter has 
reviewed work by various researchers on calcium currents in 
related systems. Unfortunately no data is available for 
building a mathematical model of the calcium current in 
oxytocin-secreting cells. To overcome this difficulty, a 
model taken from a paper by Hencek and Zachar has been used. 
The ACSL program written by the author to simulate their 
model is included in the Appendix.
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CHAPTER EIGHT 
RESULTS

The preceding chapters have described the derivation of 
a mathematical model to describe the stereotyped bursting 
behaviour observed in oxytocin-secreting neurones. This 
chapter will discuss the experimental results obtained from 
computer simulations of the model. As a first step in the 
modelling process, the Hodgkin-Huxley model was simulated on 
an IBM personal computer (PC) using the FORTRAN-77 
programming language. These simulations demonstrated the 
validity of this approach but highlighted several practical 
problems. The first of these was simply the speed of 
computation. Although simulation of a single action potential 
was achieved, fairly rapidly, the simulation of a train of 
action potentials took about 30 minutes for a 20ms burst. 
Since the observed milk ejection burst is of the order of 
seconds with a similar period of silence it was quickly 
realised that the computation of a complete burst would 
require an excessive amount of computer time. Dramatic 
improvements in personal computer technology have now largely 
alleviated this problem. Another associated problem was the 
amount of data accumulated during a simulation run. Small 
time steps are required to maintain accuracy and stability of 
the numerical integration routine which leads to a large 
volume of accumulated data which exceeded the storage 
capacity of the floppy discs then available. Again, 
improvements have since vastly increased the storage capacity 
of the magnetic media. In order to overcome the storage 
problem it was decided to simply store only those values of
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output variables which differed from the previous output by 
a given tolerance, while maintaining the intermediate values 
actually required for calculation of the next time step. This 
is a valid approach since the eventual output from the 
program is in the form of graphs which require less accuracy 
to represent the variables than is required to maintain the 
accuracy and stability of the numerical integration routine. 
A similar approach is used by the ACSL software referred to 
in Chapter 3. The results are saved at equal intervals of 
time, the interval being called the communication interval. 
However, the third problem was instrumental in deciding to 
move away from the PC-based approach onto a mainframe. This 
was simply the lack of suitable graph plotting software and 
hardware for the PC. Program listings for some of the 
programs developed on the IBM PC appear in the appendix.

Trial simulations of the H-H equations on the IBM 4313 
mainframe computer were encouraging and showed a close 
agreement with published results. At this stage it was 
decided that the computer program was generating valid data 
and that the development of the model for the oxytocin 
secreting cell could proceed with confidence.

Simulation of a single action potential using the 
oxytocin model and H-H equations is shown here in Figures 8.1 
and 8.2. Voltage and time are given in volts and seconds in 
Figure 8.1 and in millivolts and milliseconds in Figure 8.2. 
These graphs were generated using the ACSL software to solve 
the model equations.
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Action potential simulation using of oxytocin cell model equations scaled 
in standard SI units.
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Figure 8.2

Simulation of action potential using H-H model equations.
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The literature search revealed that repetitive firing 
could be induced by lowering the concentration of calcium in 
the bathing solution. As described on Page 84, a change in 
external calcium concentration may be modelled as a shift of 
the model alpha and beta functions along the voltage axis in 
a depolarizing direction. This feature was then included in 
the model. It was assumed that a double exponential "forcing 
function" could be used to simulate changes in the calcium 
concentration. This was then tried as an experiment and the 
results are shown in Chapter 4. Hille and Tse (Hille & Tse 
1992) discuss oscillations in certain pituitary cells due to 
oscillatory release of internal calcium triggered by 
hormones. It seems that the assumption of an endogenous 
oscillation in internal calcium concentration is very 
reasonable.

Blocking the passage of sodium ions does not prevent the 
oxytocin-secreting cell from generating an action potential. 
A calcium component of the total membrane current is 
responsible for generating a spike under conditions of sodium 
channel block (Bourque & Renaud 1985). To take account of 
this, the H-H model equations were extended to include a 
calcium channel (using data from Hencek & Zachar). As 
mentioned in Chapter 7, data on calcium currents in the 
oxytocin-secreting cell was not available, so the Hencek and 
Zachar model was used instead. As the results in Chapter 7 
demonstrate, the model did not yield satisfactory results. 
Part of the characteristics of action potentials recorded 
from oxytocin-secreting cells is the 'shoulder' on the 
repolarizing phase. This is due to calcium current (Mason &
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Leng 1984). This feature does not, therefore appear in the 
model described here for the reason that the Hencek Zachar 
model is not appropriate. In order to model the electrical 
behaviour of the oxytocin-secreting cell fully it will be 
necessary to perform experiments to obtain the data pertinent 
to the calcium current.

A suite of computer programs were written which allowed 
the user to simulate a variety of models and obtain graphical 
output of different model variables on a graphics terminal 
and a Calcomp drum plotter. At this stage a problem with the 
computer system became evident. It was thought useful to have 
the ability to run simulations on an interactive basis. This 
entails running a simulation on the computer, viewing the 
graphical output and sending the resulting plot off to the 
remote plotter if required, while still remaining within the 
program environment. Such an approach allows the user to run 
a series of simulations with differing model parameters and 
compare the results. Hardcopy output was not immediately 
available due to the fact that the plotter was at a remote 
location and plot files were stored until the plotter 
operator decided to run the plotter. The problem arose due to 
the limited allowable interaction of the program with the 
mainframe operating system causing unexpected and unwanted 
results. Help on resolving this problem was not forthcoming 
so work with the IBM mainframe was abandoned and the Apollo 
computer network was used in preference, since the ACSL 
software package was available which eliminated the above 
mentioned problems.

Problems involving computer numerical solution of
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mathematical models are not uncommon in science and 
engineering and several computer packages are available that 
perform this task. One such package is the Advanced 
Continuous Simulation Language (ACSL), described in Chapter 
3. This is available on the Polytechnic's Apollo computer 
network. ACSL is a trademark of Mitchell Gauthier Associates.

Basically, ACSL is a translation program produced by 
Mitchell Gauthier Associates that converts programs written 
in a specialised modelling language into equivalent FORTRAN 
source code and then compiles and links the resulting code 
with various support programs such as numerical integration 
routines and graphics routines to produce an executable file. 
This software provides all the facilities required to run a 
series of simulations on an interactive basis and obtain 
hardcopy of graphical output on a plotter.

In view of all the benefits provided it was decided to 
learn to use the package. This proved to be a relatively 
straightforward task. The added advantage of this approach is 
that the model can be defined in relatively few lines of code 
and thus greatly enhances the speed with which models may be 
tested. This is a significant gain since each new model 
written in FORTRAN on the mainframe requires a substantial 
amount of source code to be typed into a computer terminal. 
Again, a first step was to use the well tried and tested H-H 
model to obtain results that could be compared with published 
results. This was done with satisfactory results as can be 
seen from Figure 8.2.
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MODEL OF OXYTOCIN-SECRETING NEURONE 
Once it had been established that the ACSL simulations 

were producing valid results, data on membrane and channel 
properties taken from oxytocin-secreting cells was needed in 
order to build up the model. Cell capacitance was derived 
using data on the cell size and morphology and using the 
value of lpF/cm^ for the capacitance of the cell membrane. 
Sodium and potassium current data were taken from published 
results as described in preceding chapters. At this point a 
major problem with the project was encountered. This was 
simply the lack of appropriate data for all the channels 
known to be present in the membrane. Experimental results 
were not forthcoming so an alternative method was sought. At 
this stage it may be useful to summarise what data was 
available and to highlight the deficiencies in the model. 
Cell capacitance was available. Model equations describing 
the sodium current, the delayed rectifier potassium current 
and the transient potassium current had been derived and used 
in simulations. Data for the calcium-dependent potassium 
current was incomplete and there was no data on the calcium 
channel. The membrane resting potential was known.
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TABLE 8.1
CURRENTS PRESENT IN OXYTOCIN CELL

Sodium Current INa 
Potassium Delayed rectifier IK 
Transient Potassium current IA 
Calcium-gated Potassium current 1%^ 
Calcium current Iq3 
Leakage current IL

TABLE 8.2 
SUMMARY OF OXYTOCIN CELL PROPERTIES

Cell size : 25 jim diameter 
Membrane resting potential : -60mV 
Input resistance : 50M to 1G Ohm 

Time constant : 9 to 15 ms 
Cell capacitance : 45 to 300pF 

Action potential amplitude : 70mV 
Action potential duration : 2ms 
Maximum firing frequency : 80Hz 
gNa = 51.6nS ENa = 43.6mV
gk = 4.9nS Ê  =-83.0mV
gA = 5.9nS Ef-a =85.0mV

Table 8.2 summarises the model parameters used. The 
values given are those quoted in previous chapters. Eq9 is 
taken from Hencek and Zachar (Hencek and Zachar 1977).



The electrical circuit diagram showing the known conductances 
is shown in Figure 8.3.

Outside

K(Ca)

Inside
Figure 8.3

Circuit diagram of oxytocin-secreting cell membrane showing the various 
conductances present.

The model equations shown here do not include the 
equations for Hencek and Zachar's calcium current model.

Results of the simulations are shown in Figures 8.4 to 
8.25. It was decided to use SI units in the models. Voltages 
are therefore expressed in Volts, Currents in Amperes and 
time in seconds. The appropriate scaling factors appear on 
the graphs.
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The model devised for the electrical behaviour of the 
oxytocin-secreting cell is given in equations 8.1 to 8.18.

OXYTOCIN CELL MODEL

= §Na m3h( v  " ENa) .......................................................................... ( 8 ‘ 1

^  = am(l - m) - i3mm ............................... (8.2

= ah(l - h) - J3hh ............................... (8.3

6400
L0.02exp(-100V) + 1JaB(V) = , A ■ •» , ■ ......................... (8.4

8jh(V) = 5exp(-V/0.015)  (8.5
ajj(V) = 45exp(-V/0.02)  (8.6

Bh(V) = [0.08exp( -92.5V) + 1]  (8‘7

XK = gK n3 (V-VK ) ..................................... (8.8

£[£ = an( 1 - n) - 8n n .................................(8.9

600.0 
[exp(-60V) + 1Jan = r_.._y ^ ; TV x .............................  (8.10

13n = 30. 0exp(-V/0. 02)   (8.11

IA = gA a4 b(V-VK) ................................  (8.12

= <xa(l - a) - Ba a ............................  (8.13

= ab(l - b) - Bb b ............................  (8.14

2200
A Lexp(2200(0.00008 - 0.025V)) + 1]  A5>
= 80exp( -V/0.03)   (8.16

ag = 26exp(-V/0. 076)................................ (8.17
70

Bb = Lexp(70(0.0017-0.85V)) + 1 ] .................. (8.18
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Figures 8.4 to 8.6 show results of simulations under 
different conditions. For example, the stimulus voltage that 
produced the results shown in Figure 8.4 is 20mV whereas 
Figure 8.6 shows the results when no stimulus is given. In 
Figure 8.5, the model is rerun with an increased stimulus 
voltage. Figure 8.7 shows the result of removing the leakage 
current component. As mentioned in Chapter 4, a region of 
negative resistance is required in order to sustain 
continuous firing and Figure 8.8 demonstrates that the 
oxytocin model as described here does possess such a region. 
The total membrane current is shown plotted against membrane 
voltage. The effects of a reduction in calcium concentration 
are modelled as an apparent voltage shift in the alpha and 
beta rate functions. Figure 8.9 shows the result of running 
a simulation where a constant offset voltage has been added 
to the membrane voltage. These initial results showed that 
the model was capable of demonstrating an action potential 
given a suitable stimulus. However, close examination of the 
sodium current traces revealed a problem. The sodium current 
was not returning to zero as it should under free-run 
conditions. The sodium currents recorded under voltage-clamp 
conditions both experimentally and simulated, show that the 
sodium current does not always return to zero. Figures 5.1, 
5.2, 5.12, 5.13 and 5.14 demonstrate this. The simulation 
results show this to a greater extent. The voltage trace 
should also return to the resting potential but does not as 
close examination of the results show. The current-voltage 
characteristic in Figure 8.8 is particularly useful in 
highlighting this phenomenon. The leakage current is not
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present in the model that generated that particular graph but 
it does illustrate the point. Observation of the fact that 
both the membrane voltage and the sodium current do not 
return to the appropriate values prompted the experiment 
shown in Figure 8.10. Here, only the graph of sodium current 
was plotted. The membrane resting potential in the model was 
varied and a comparison made between the two resulting 
traces. Curve A, resulted from the higher resting potential 
and shows that at that voltage, the sodium current is active 
from the beginning of the simulation. Lowering the membrane 
resting potential to -70mV generated curve B which shows a 
more normal trace. The sodium current is initially inactive 
but the stimulus causes it to activate and then inactivate as 
is usual for this current. The conclusion to be drawn from 
this experiment is that this current is very sensitive to 
changes in membrane resting potential. This point will be 
discussed later.
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Simulation results from oxytocin cell model showing voltage, sodium, 
potassium, transient potassium and leakage currents.
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Simulation of oxytocin-secreting cell from a holding potential of -40mV.
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Simulation of oxytocin cell with the leakage conductance removed from the 
model.
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Figure 8.8

Current-voltage characteristic for oxytocin cell model. Total membrane 
current in amperes plotted against membrane voltage in volts.
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This figure shows the effect of adding a constant offset of lOmV to the 
calculated membrane voltage
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Simulation results showing the difference in sodium current due to a 
difference in the resting potential.

The model used to generate these results does not 
include a calcium-gated potassium current, the data for this 
channel being unavailable. It is known that such a channel is 
present in the membrane and contributes significantly to the 
total membrane current (Cobbett et al 1989). It was therefore 
decided to include this channel in the model by using data 
from other sources. An additional repolarizing current should 
have the effect of bringing the membrane voltage back to the 
resting potential at which point all the currents should be 
inactive. Rinzel's model (see Page 41) includes a 
mathematical description of the calcium-gated potassium 
current observed in pancreatic beta cells so it was decided 
to use this model. Apart from a change of units, the model
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was used unaltered. Figures 8.11 to 8.20 show the results 
obtained from this extended model. Figure 8.11 shows the 
membrane voltage, sodium current and potassium delayed 
rectifier current. The potassium current is a repolarizing 
current and should have the effect of bringing the membrane 
voltage back to its resting value. At the end of a 10ms 
simulation the potassium current has not stopped increasing 
in amplitude. This is clearly not in line with experimentally 
observed behaviour. Figure 8.12 shows the voltage time graph 
for a simulated action potential and clearly shows that the 
voltage does not return to its resting value. Individual 
currents were then inspected under various conditions to 
attempt to isolate the cause of this behaviour. At this point 
the complexity of the model becomes evident. There are so 
many interacting variables that it is extremely difficult to 
determine what the effects of changing one parameter has on 
the overall system behaviour. At first it was thought that 
the sodium current model was causing these problems since it 
was not returning to its inactivated state as it should. 
However, it could be that this behaviour is a symptom of the 
membrane voltage not returning to the resting potential 
rather than a cause. Figure 8.13 shows the sodium current 
during a simulation run. It can be seen that the current is 
already active at the start of the simulation. This implies 
that the sodium current is sufficiently activated at the 
chosen resting potential that a stimulating voltage causes an 
immediate flow of current. According to Hodgkin and Huxley's 
model, the inactivation variable has a value of around 0.6 at 
resting potential (Fig. 10 P. 518 Hodgkin & Huxley 1952d).
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The sodium activation variable has a very low value at 
resting potential which is what prevents the current from 
flowing under the influence of the transmembrane potential. 
The idea that the sodium current is already active at the 
resting potential is bourne out by the result shown in Figure 
8.14 which shows the resulting voltage and sodium current 
during a simulated depolarisation from a more negative 
resting potential. Close examination of Figures 8.13 and 8.14 
reveals some other unusual behaviour of the sodium current. 
At about 2ms on the timescale, the sodium current has almost 
returned to zero. However, it then increases in amplitude 
again before appearing to reach a non-zero steady-state. It 
is not known what is responsible for this behaviour since 
during voltage-clamp simulations, the current decays even 
with a maintained depolarisation. Depolarisation of the 
membrane has a twofold effect on the sodium channel. It 
triggers the activation process which causes the channel to 
open but at the same time triggers the inactivation process 
which causes the channel to close. What appears to be 
happening in the sodium current model is that the activation 
and inactivation processes are not going to completion. It 
appears that both processes are remaining in a state of 
partial activation, causing the some of the channels to 
remain open. It appears, therefore that the sodium current 
model as described here needs some refinement in order for it 
to more accurately represent the actual behaviour of sodium 
current in the oxytocin-secreting cell.

Figure 8.15 shows the potassium current following a 
depolarisation. It is noticeable here that the current does
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not return to zero as anticipated. Since the channel is 
volotage-gated, this may again be a consequence of the 
membrane voltage not returning to the resting potential. The 
transient potassium current in Figure 8.16 also shows this 
behaviour. Since it is governed by an activation and 
inactivation variable like the sodium current, the graph 
shows a similar behaviour to the sodium current but with 
opposite polarity. The voltage clamp simulation of this 
current shown in Figure 6.5, Page 133 shows the current 
declining to zero but with a fairly long time constant. It 
appears that this current also is not returning to its 
resting state following the action potential.

The calcium current shows a rising phase followed by a 
falling phase that also does not return to the zero resting 
state. Referring back to the project introduction it was 
noted that the calcium current is thought to be responsible 
for the 'shoulder1 on the experimentally observed action 
potential. This is not the case here since the current starts 
to decrease before the membrane potential. Another way of 
stating this point is that the calcium current spike is too 
fast. This could probably be corrected by adjustement of the 
activation and inactivation time constants in the calcium 
current model. Another important point to note here is that 
the calcium current starts off from a relatively large 
negative value (around -200pA) and decreases before 
increasing again. The current should be an inward (negative) 
depolarizing current due to the polarity of the driving 
voltage (see Figure 8.3). It was expected that the current 
would start off from zero before increasing to a large
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negative value and then returning to zero.
Figure 8.18 shows the behaviour of the calcium-gated 

potassium current taken from Rinzel's model. It can be seen 
that the current is still increasing at the end of the 10ms 
simulation. This behaviour is tied in with the behaviour of 
the calcium concentration shown in Figure 8.19 which also 
shows a steady increase throughout the period of simulation.
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Figure 8.11
Graph showing the membrane voltage, sodium current and potassium current 
during a simulation.
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Simulated action potential resulting from the complete model including 
calcium and calcium-gated potassium currents.
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Sodium current from simulation of complete model.
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Figure 8.14
Simulated membrane voltage and sodium current resulting from the complete 
model.
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Graph showing the delayed rectifier potassium current resulting from the 
simulation of the complete model.
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Figure 8.16

Graph showing the transient potassium current resulting from the 
simulation of the completed model.
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Figure 8.17

Graph showing the calcium current resulting from simulation of the 
completed model.
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Graph showing the calcium-gated potassium current in the completed model 
during a simulated action potential.
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Figure 8.19
Graph showing the variation in calcium concentration during a simulated 
action potential.
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It is evident from these results that the model does not 
describe the electrical behaviour of the oxytocin-secreting 
cell. Particularly lacking was the inability of the model to 
demonstrate continuous firing. The observation that the 
currents involved do not return to their resting values is 
also of concern. As mentioned previously it is a complex 
model with many interactions that are difficult to decouple 
or disentangle. In view of this, it was decided to build up 
the complete model from simpler blocks and test each part 
before adding it to the model structure. As a minimal model, 
the sodium, potassium and leakage currents were chosen. It 
was anticipated that such a model would then be successively 
refined by the addition of other channel models until the 
required results were obtained.

The results of the simplified model are shown here in 
Figures 8.20 to 8.24.
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Figure 8.20
Action potential generated by simulation of the reduced model.
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Graphs showing the variation in sodium activation and inactivation 
variables during a simulated action potential.
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Graph showing the potassium current during a simulated action potential 
in the reduced model.
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Variation of potassium activation in reduced model.
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Action potential generated by reduced model.

Figure 8.20 shows the simulated action potential 
resulting from this simplified model. Even with these three 
currents present, the action potential is not returning back 
to the resting potential. Figure 8.21 shows the activation 
and inactivation variables responsible for controlling the 
sodium current. The inactivation starts from a higher value 
than the Hodgkin-Huxley model. The value is nearer 0.9 than 
0.6. The activation variable m also starts out from a higher 
value than expected. During the course of the simulation, the 
inactivation variable decreases to near zero but the 
activation variable quickly reaches a value near 1 and 
remains there. This is not the behaviour normally seen during 
an action potential simulation. The modified Hodgkin-Huxley 
model described in Chapter 4 clearly shows the activation and 
inactivation variables returning to near their starting
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values after an action potential.
The potassium current in Figure 8.22 also shows an 

incomplete return to the resting state. The steady-state 
potassium activation n shown in Figure 8.23 starts out from 
near zero as expected but does not return to zero.

Changing the resting potential to a lower value and 
giving an increased stimulus results in the action potential 
shown in Figure 8.24. The membrane voltage does still not 
return to zero under these conditions. However, the sharpness 
of the spike has increased and the undershoot of the steady- 
state value is more pronounced.

Because Hodgkin and Huxley's sodium current does 
describe the sodium current quite well, it was decided to 
replace the existing sodium model with Hodgkin and Huxley's 
by using appropriate scaling factors. In translating the 
model across so that it becomes relevant to the oxytocin 
cell, several factors need to be taken into consideration.The 
first of these is the fact that Hodgkin and Huxley translated 
all the functions along the voltage axis so that the resting 
potential became zero. This means that all the functions have 
to be rescaled by an amount proportional to the resting 
potential of the squid giant axon. This has been discussed on 
page 57 and shown in Figures 3.3 and 3.4. The next point to 
be considered is the units used in their model. This has been 
discussed on page 59. To determine the effects of altering 
the units, two programs were written in the ACSL language. 
These were called HHUNSCALED and HODGHABS respectively to 
denote the original H-H model and the model scaled by 
appropriate factors to produce a model whose variables were
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expressed in standard SI units. Since this is a fairly 
routine exercise and yielded the expected results, this piece 
of work has been omitted from this discussion. Another point 
to consider is adjusting the maximal conductance to give a 
current whose amplitude is the same as that observed in the 
oxytocin cell. The final point to be considered is the change 
in temperature between the two systems. This is a general 
point and must be considered when using data from other 
systems. This point will now be discussed.
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EFFECT OF VARYING TEMPERATURE 
Hodgkin and Huxley's work involved making measurements 

on the squid giant axon at differing temperatures. Some 
readings were taken at room temperature and others at 
temperatures similar to those actually encountered in the 
natural environment. The equations derived were corrected for 
temperature by using a Qjq of 3 and multiplying the rate 
functions (a's and J3's) by the appropriate factor. The same 
approach has been used in this project. Many of the 
experimental results used were derived at room temperature 
and are therefore not appropriate to describe the behaviour 
at 37°C. Various workers have derived Qjq factors of similar 
magnitude to that found by Hodgkin and Huxley. In the absence 
of specific data for temperature correction factors, Hodgkin 
and Huxley's value has been used. Several experiments were 
performed to determine the effect of temperature on the 
various models that have been derived during the development 
of this project. Figures 8.25 to 8.28 show the effect of 
temperature on simulated action potentials. The first and 
most obvious point to note is that action potentials are more 
brief at elevated temperatures and firing rate in a 
continuously firing system is increased. This is to be 
expected since the rate constants are multiplied by a 
positive number greater than unity at temperatures higher 
than those appropriate to the actual experimental conditions. 
What is less obvious is that the action potential amplitude 
is reduced at higher temperature. Noble (Noble 1966) gives an 
explanation of why this should occur. His discussion of this 
phenomenon will not be reproduced in detail here. However, it
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will be useful to note that the reasoning is based upon the 
difference in the effects of temperature upon the rate of 
depolarization and rate of repolarization of the membrane. 
The effect of temperature increase on the potassium and 
sodium current is shown in Figures 8.29 to 8.32.

EFFECT OF TEMPERATURE ON REPETITIVE FIRI NG______________________

U  | 1 1 -■ 0.00 8. OO 

Figure 8.25
4.00 20.0

The effect of increasing the temperature on a repetitively firing neurone 
model are shown here. The slower, larger amplitude trace results from the 
lower temperature.
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EFFECT OF TEMPERATURE INCREASE ON ACTION P O T E N T I A L _____________

2. DO 4.00

Figure 8.26
6.001 0.00 8.00 10.0

This figure shows the effect of increasing the temperature in the H-H 
model. The larger, slower action potential was calculated at the lower 
temperature.

B: 3 7  P E G  CCURVE A: 2 Q D E G  C

>  i

2. □□T *10“3Figure 8.27
1.00 3.00 -GO

Action potential simulation from oxytocin cell model shown on an expanded 
time scale.

195



QXYTM0OEL CURVE A 20-0 DEG CELCIUS CURVEB 37.0 DEGREES_________________________

• 0.00 0.40T *10-2 Figure 8.28
0.20 0.60 0.80

Simulation showing the effect of temperature change on action potential 
in oxytocin cell model.

8. CURVE fU 20 DEG C B= 37 DEG C

CO"

CM'

0.40 0.60T *10-2 Figure 8.29
1.000.80.oo 1.20

Graph showing the effect of temperature change on the potassium delayed 
rectifier current. The slower current is at the lower temperature.
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Figure 8.30

8.00

Plot showing the effect of temperature on the sodium current in the 
oxytocin cell model. The larger, slower trace corresponds to the lower 
temperature.
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o
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Figure 8.31

0.80 1.00

This figure shows the effect of temperature on the transient potassium 
current. The smaller, faster trace results from the higher temperature.
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Figure 8.32

This figure shows the effect of temperature on the sodium current on an 
expanded time scale.
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EFFECT OF VARYING MEMBRANE CAPACITANCE

Adrian and Aimers (Adrian & Aimers 1976), and Takashima 
and Yantorno have investigated the variation of membrane 
capacitance in nerve membrane. In Hodgkin and Huxley's squid 
giant axon model, the membrane capacitance appears as a fixed 
model parameter, having a value of lpF/cm^. This figure is 
generally accepted as representing the capacitance of the 
lipid bilayer that comprises nerve membranes. The above- 
mentioned workers have found the membrane capacitance to be 
voltage-dependent and that capacitance increases with 
depolarization.

Several trial simulations of the basic Hodgkin-Huxley 
model were performed, varying the membrane capacitance 
between runs. The results are shown in Fig. 8.35. The cell 
capacitance was derived by considering the cells to be smooth 
spheres. The surface area was calculated to be approximately 
2 x 10“̂ jim̂  using the formula A -4nr^. The above figure for 
the specific capacitance of lipid bilayers was then used to 
calculate the total capacitance of the cell. Consideration of 
the simulation results show that the effects are as expected 
from the physics of the situation. Given a fixed current 
flow, a smaller capacitance will charge up faster and to a 
higher voltage (in a given time interval) than a larger 
capacitance. Current is simply the flow of electrical charge 
and a higher current implies a higher rate of flow of charge. 
The fundamental relationship between voltage, charge and 
capacitance is given in equation 8.19.

Q = CV ...............................  (8.19)
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Differentiating with respect to time gives 

1 = ci ^    (8.20)

This equation confirms that a high rate of change of 
voltage is associated with a high current. Since the effects 
described by Adrian et. al. are fairly small it was decided 
that capacitance variation with membrane voltage would not 
dramatically affect the membrane dynamics. For this reason, 
such effects are not considered further.

OXYTMODEL CAPACITANCE VARIATION
5 pF 
7.3pF

<*»'

0.60 0.80 1.00

Figure 8.33
Figure showing the effects of changing the capacitance of the oxytocin 
cell model.
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EFFECT OF CHANGING PARAMETERS 
One of the important features of a model is its 

robustness in the face of changes in the parameter values. In 
this instance it would be useful to determine how widely the 
behaviour of the model varied, given changes in the model 
parameters. The model parameters under consideration are the 
constants used in the alpha and beta rate functions, 
temperature and membrane capacitance having already been 
discussed. In order to achieve this aim, the constants in 
various ACSL models were changed to variables that the user 
could change at will. In equations 8.4 and 8.7 there are 
three constants in each equation. In equations 8.5 and 8.6 
there are only two. These constants were given variable names 
and initial values. Rerunning voltage-clamp simulations with 
widely varying parameter values showed that the behaviour of 
the equations varied relatively little. A series of graphs 
showing this are reproduced here in Figs. 8.34 to 8.50.
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Figure 8.34
This shows the effects of varying the parameter alpha-ml on the sodium 
current.

ft: 8M2=Q. 02. B: ftM2=Q. 04. C= RM2=°Q. Q1
CD

600.20 1.000.80T *10-2 
Figure 8.35

The effect of varying parameter alpha-m2 on the sodium current is shown 
here.
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Figure 8.36

2.00O. 40 1.20 1.60

This figure shows the effect of varying the parameter alpha-m2 on the
steady-state sodium activation.

8 _  ft- AM3— 100. CL B: AM3=50. O. C= fiM3=200. OO V  --------       I r

<r:(

2.00T  *10-3Figure 8.37
. oo 1.00 3.00 .OO 5.00

This shows the effect of varying the parameter alpha-m3 on the sodium
current.
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Figure 8.38

The effect of changing parameter alpha-m3 on the steady-state sodium 
activation variable is shown here.

B= BM1— 1Q. O. C: BH1=1. O

• 0.00 2.00T ♦nr’3Figure 8.39
5.003.001.00

This figure shows the effect of varying the parameter beta-ml on the
sodium current.
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Figure 8.40

1.200.00 2.001.60

The effect of changing the parameter beta-ml on the steady-state
activation is shown here.

8 _  Pi'- d  B: ftHl=9Q. CL C= f=>Hl=2Q. O

<3C.

2.00T *tO“3
Figure 8.41

5.00* 0.00 1.00 3.00

This figure shows the effect of varying the parameter alpha-hl on the
sodium current.
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The effect of changing the parameter alpha-hl on the steady-state sodium
inactivation is shown here.

8 _  fiz ftH2~Q. 02, B= ftH2=Q. 04^ C: ftH2=Q. Ol

5.002.00T »icr“3Figure 8.43
1 . 0 0 3. oo

This figure shows the effect of varying the parameter alpha-h2, on the
sodium current.
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Figure 8.44
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This figure shows the effect of changing parameter alpha-h2, on the
sodium current activation variable.

8  BH1”225CL B: BHl^ O O O ^  C= BHl” lQOQ

<n,

2.00T *ior»
Figure 8.45

.oo 3.00 S.OO

This figure shows the effect of changing parameter beta-hl, on the sodium
current.
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Figure 8.46
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This figure shows the effect of varying parameter beta-hl, on the sodium 
current activation variable.

[ BHZ^O. 08, B: BHZ^O. 16^ C= BH2°Q. 0-4

1 0.00 5.00.OO 2.00 3.00
Figure 8.47

This figure shows the effect of varying parameter beta-h2, on the sodium 
current.
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Figure 8.48
This figure shows the effect of changing parameter beta-h2, on the sodium
current activation variable.

8  ̂  fls BH3=32. 5^ B= BH3=2QO, C ; BH3*=4Q
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o ~--
0.00 2.00T *iorS

Figure 8.49
3.00 .OO

This figure shows the effect of changing parameter beta-h3 on the steady- 
state sodium inactivation variable.
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Figure 8.50
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This figure shows the effect of changing parameter beta-h3, on the sodium 
current.

As can be seen from these figures, the effects of 
considerable changes in the parameters has a relatively small 
effect upon the behaviour of the steady-state activation and 
inactivation variables and on the sodium current itself. A 
similar study of the effects of parameter variations on the 
potassium currents was also performed, but the results are 
not shown here for reasons of space. These results are as 
expected for this system. The overall system behaviour is 
governed by the interactions between the currents and a 
fairly wide variability is encountered in the system 
parameters such as maximum conductance and slope factors in 
the rate equations.

After allowing for the differences in temperature,
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maximum conductance and change of units, the Hodgkin-Huxley 
model for sodium current in squid giant axon was incorporated 
into a model with the delayed rectifier current from the 
oxytocin model. The mixed model thus created was used in 
several trial simulations. The results were not encouraging 
and are not included here. At that stage in the project, time 
was limited which precluded further experimentation.

SUMMARY

This chapter describes work done by the author in 
building up a mathematical model of the electrical behaviour 
of the oxytocin-secreting cell. The ACSL programs written by 
the author are included in the Appendix. The models of the 
various ionic currents derived in previous chapters were 
amalgamated to form the model of the entire cell, using 
parameters such as capacitance, resting potential and 
temperature from published work.

Many simulations were performed using the APOLLO network 
and some of the results are shown here.
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CHAPTER NINE

DISCUSSION AND CONCLUSIONS

Bursting behaviour in cells involves several membrane 
currents with fairly complex interactions.

As can be seen from the preceding chapters, all of the 
necessary components for producing bursting activity are 
present in the oxytocin-secreting cell. These are; an action 
potential generating mechanism; a feedback mechanism between 
the membrane potential and the intracellular calcium 
concentration and a region of negative resistance in the 
current/voltage characteristic.

However, the results of the simulations are 
disappointing in that the model as it stands does not show 
the patterns of firing that are observed experimentally. This 
may be due to the lack of relevant channel data on which to 
base the model. Specifically, the data on the calcium-gated 
potassium channel in a form suitable for detailed 
mathematical description is unavailable, as is the data for 
the calcium channel. Data on the leakage current is also 
unavailable but this presents less of a problem since the 
form of the model of leakage current is known and 
manipulation of the parameters is straightforward. In 
modelling studies on similar systems, workers have built 
models with known channel models and adjusted the leakage 
current parameters such that the total current at the resting 
potential is zero. This approach is the one used here. The 
three currents that have been modelled are the sodium
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current, the delayed rectifier and the transient potassium 
current. In the absence of data on these channels alternative 
models from other similar systems have been used. This 
strategy of using data relevant to other related systems is 
used by workers in this field and has resulted in several 
successful studies. In this instance however, doubt has been 
cast on the validity of the alternative models used.

Specifically, the results of simulation of the calcium 
current using the model due to Hencek and Zachar do not agree 
with their findings. It is also not known whether the 
calcium-gated potassium current model used is appropriate to 
this system. The changes in calcium concentration are 
modelled using Rinzel1s equations, it is not known whether 
this is appropriate for the system under study. Another 
strategy that was used in this study to overcome the lack of 
relevant data was to assume the form of the model and to 
adjust the model parameters until the required results were 
obtained. The problem with this approach is the complexity of 
the system under study. There are many parameters involved 
and there are many interactions between the currents. This 
makes the process very laborious and time-consuming. As 
discussed previously, the most common techniques for analysis 
of system behaviour are inappropriate for such a complex 
system.

The modelling methodology is appropriate and similar 
studies on other similar systems have proved successful. 
Chapter 2 discusses several of these.

Due to the complexity of the system, the parameter 
tuning approach did not yield a successful model in the time
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available. However, in developing the model described here, 
a thorough understanding of the system and the modelling 
process has been achieved.

The strategy that was adopted in pursuing a model of the 
system once it had been realised that the initial attempts 
were not producing the expected results was to build up the 
model from simpler blocks. The paper by Bourque and Renaud is 
useful in this endeavour since it gives details of the 
effects of various channel blocking agents on the recorded 
response of supraoptic neurones (Bourque & Renaud 1985). The 
experiments they performed effectively demonstrated the 
effects of isolating various components of the total ionic 
current in the membrane. Adding the potassium channel blocker 
TEA to the bathing solution resulted in an action potential 
with a much longer duration than the control. Addition of 
manganese ions (calcium channel blocker) reduced the
amplitude of the response and abolished the hyperpolarizing 
part of the response observed in the control. Addition of the 
sodium channel blocker TTX reveals a fairly complicated 
response. Upon application of the stimulus, the voltage 
increases fairly slowly and reaches a plateau after a few 
milliseconds. The voltage continues to rise at a slow rate
and then "turns the corner" and generates a spike with
slightly reduced amplitude and with a rapid repolarization
phase. After repolarizing, the voltage rises again at a 
relatively slow rate up to a cusp and then decays in an 
exponential manner. Addition of TTX and manganese ions 
produces a response that rises to a plateau and remains at 
the depolarized level until the stimulus voltage is removed,

214



whereupon it decays exponentially. A model in which the 
calcium current has been ommitted should show a response 
similar to the trace obtained by Bourque and Renaud after 
addition of manganese ions. Similarly, a model without the 
delayed rectifier current should give a response similar to 
the results obtained by Bourque and Renaud upon application 
of TEA. By using the results obtained by Bourque and Renaud 
it should be possible to build up a model by adding various
currents to the model one at a time and checking the
intermediate simulation results against the experimental
recordings. Their results show that a simplified model 
containing fewer channels than are known to be present can 
still fire an action potential when stimulated.

The most serious defect of the model for the oxytocin 
secreting cell as it stands is the fact that the model 
appears to have a stable state at a depolarized potential 
which does not allow the various ionic channels to return to 
their resting states. Put another way, it appears that there 
is a stable node or attractor that pulls the voltage 
trajectory towards it. The membrane resting potential should 
be the only stable resting state of the cell. At equilibrium, 
the voltage is stabilised by a balance of ionic currents. In 
the resting state most of the channels are closed and 
therefore nonconducting. The model appears to stabilise at 
the depolarised potential due to a balance between inward and 
outward currents. If inward and outward currents are equal, 
the net ionic current is zero and hence the membrane
capacitance will neither charge nor discharge and the voltage 
will remain constant. The membrane voltage in the model is
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determined by the charge on the membrane capacitor (see 
Figure 8.3 , Page 171). The rate of change of voltage is 
determined by the current flowing into the capacitor. If the 
"capacity current" is zero then the rate of change of voltage 
is also zero. Because the voltage does not change at the 
equilibrium point, the voltage-gated channels will not change 
their conductances and the channels will remain in that 
condition. One experiment that was tried to overcome this 
problem was to artificially increase the maximum potassium 
conductance parameter. This should have the effect of 
increasing magnitude of the repolarising potassium current 
and so force the membrane potential back to its resting 
value. However, even increasing the maximum conductance to an 
unreasonably large value did not produce the required effect. 
The location of the depolarised stable state did move towards 
the resting potential but the complete repolarisation of the 
membrane did not occur. It would be useful to perform a 
detailed analysis of the resting state of the membrane by 
running a simulation with no stimulus voltage. By plotting 
out the behaviour of all the ionic currents, any unusual 
behaviour would be highlighted. With no stimulus voltage, all 
the currents should remain at their resting levels.

In conclusion the model as described here is incomplete 
due to the lack of relevant data on the system and although 
these deficiencies have been compensated for by the inclusion 
of models from related systems, the composite model failed to 
demonstrate the required behaviour. To complete the model it 
will be necessary to collect the relevant channel data and 
include the resulting sub-models into the model.
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Alternatively, by re-examining the models for calcium and 
calcium-gated potassium channels and adjusting the model 
parameters, it may be possible to produce the desired 
behaviour.

SUGGESTIONS FOR FURTHER WORK

As stated previously the approach used here for building 
up a model of the electrical behaviour of the cell has been 
used successfully by a number of workers. For example 
Rinzel1s model of bursting behaviour in pancreatic beta 
cells. This is a good model upon which to base further work.

The calcium current used in the model was taken from 
Hencek and Zachar's 1977 paper since no data was available 
for the oxytocin-secreting cell. Numerical integration of 
their equations does not reproduce their published results 
and the use of the equations casts doubt on the validity of 
the model. It would therefore be useful to obtain a calcium 
current model from another source and to use this in the 
oxytocin cell model. The equations used to represent the 
sodium current appear to yield acceptable results when used 
in voltage-clamp simulations. However, in the total cell 
model there appears to be the anomaly of the sodium current 
not returning to zero as described earlier. This needs 
further investigation before it can be stated categorically 
that the sodium current model is correct and the anomalous 
behaviour of the whole model is due to other causes.

It would be useful to undertake a detailed mathematical 
analysis of the model to ascertain the basis for the
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existence of the stable depolarized state as seen in figure 
8.12.

The model due to Hindmarsh and Rose (1984) exhibits 
bursting using three coupled nonlinear differential 
equations. This is the minimum number needed to describe 
bursting behaviour according to FitzHugh. Such a minimal 
mathematical model provides a useful basis for analysis of 
bursting behaviour. A more detailed investigation of their 
proposed model would be useful in gaining a deeper 
understanding of the parts that the various variables play in 
determining the overall behaviour. The model was simulated 
using ACSL but the program did not reproduce the stated 
results with the parameters given. Given the limited time 
available this line of research was abandoned since it did 
not appear to be one of the more promising approaches. One of 
the reasons for this is that the model is of reduced order 
compared to the H-H model with an additional adaptation 
variable. Clearly, a model using only three equations would 
not be able to reproduce the full range of behaviour being 
sought.
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PROGRAM HHMOD
This program solves the Hodgkin-Huxley equations using 

variables and parameters in units of millivolts, 
milliseconds, millisiemens per square centimetre and current 
in microamperes per square centimetre. The model includes a 
term that simulates the apparent shift in membrane potential 
due to changing calcium concentration using the model derived 
by Huxley.

When the program is run (on an IBM compatible PC), the 
user is prompted for the simulation time. This is the period 
over which simulation is required. The simulated temperature 
is then entered from the keyboard at the second prompt. The 
third prompt is for the calcium concentration. Entering a 
number lower than 44mM causes the program to generate an 
apparent membrane depolarization. The stimulus voltage is 
then entered at the fourth prompt. Once all four values have 
been entered the initial values for the numerical integration 
routine are calculated. No default values are set so the user 
needs to be aware of the range of acceptable values. The 
program uses a fixed time step for the numerical integration 
routine which is not available for the user to alter.

The results of the simulation is in the form of a two 
dimensional array containing corresponding values of voltage 
and time. At the end of the simulation run the user is 
prompted for a filename. The data in the array will then be 
written to a disk in drive a: along with a file header which 
includes some information pertinent to the simulation such as 
temperature, date and stimulus voltage.
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Q kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
C ** THIS PROGRAM IMPLEMENTS A MATHEMATICAL MODEL TO ** 
C ** SIMULATE THE BEHAVIOUR OF A NEURONE. **
C ** IT SOLVES THE EQUATIONS DERIVED BY HODGKIN AND ** 
C ** HUXLEY BY USING A NUMERICAL INTEGRATION TECHNIQUE **
Q kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
c

PROGRAM HHMOD
C

DOUBLE PRECISION TIME,TEMP,CACONC,VSTIM,YARRAY(4)
DOUBLE PRECISION CONSTS(5),ALPHA(3),BETA(3),DYARRY(4) 
DOUBLE PRECISION DATFIL(10000,2),TSTEP 
INTEGER ARYCNT,ERRNUM
kkkkk GET DATA IN FROM THE KEYBOARD •k'k'k'k'k

WRITE (*,*)’ENTER THE TIME DURATION IN MILLISECONDS 
READ *,TIME
WRITE (*,*)'ENTER THE TEMPERATURE IN DEGREES CELCIUS 
READ *,TEMP
WRITE (*,*)'ENTER THE CALCIUM CONCENTRATION MILLIMOLES 
READ *,CACONC
WRITE (*,*)1 ENTER THE INITIAL STIMULUS IN MILLIVOLTS :f 
READ *,VSTIM
ARYCNT = 0 
TSTEP = 0.005
kkkkk PUT VALUES IN CONSTANTS ARRAY kkkkk

CONSTS(1) = TEMP 
CONSTS(2) = 0.
CONSTS(3) = CACONC 
CONSTS(4) = TIME 
CONSTS(5) = VSTIM
kkkkk CALL THE INITIALIZATION PROCEDURE kkkkk

CALL INIT(CONSTS,ALPHA,BETA,YARRAY,DYARRY)
YARRAY(1) = VSTIM
kkkkk CALL RUNGE-KUTTA DRIVER ROUTINE kkkkk

CALLDRIVER(YARRAY,TIME,TSTEP,DATFIL,ARYCNT,CONSTS,ERRNUM)
IF(ERRNUM.EQ.3)THEN 
GOTO 30 
END IF
kkkkk CALL THE OUTPUT ROUTINE kkkkk 

CALL OUTPUT(DATFIL,ARYCNT,CONSTS)

30 CONTINUE 
STOP 
END
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g * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C ** INITIALIZATION PROCEDURE: THIS SUBROUTINE SETS UP THE ** 
C ** INITIAL VALUES OF THE VARIABLES. **
g * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

SUBROUTINE INIT(CONSTS,ALPHA,BETA,YARRAY,DYARRY)
C

DOUBLE PRECISION CACONC,TEMP,ALPHA(3),BETA(3)
DOUBLE PRECISION QTEN,V,M,N,H
DOUBLE PRECISION YARRAY(4),DYARRY(4),CONSTS(5)
INTEGER I

C
Q ***** GET VALUES OUT OF THE CONSTANTS ARRAY *****
C

TEMP = CONSTS(1)
CACONC = CONSTS(3)

C
Q ***** CALCULATE THE RESTING POTENTIAL *****
C

V = V + 9.3 * DLOG((44./CACONC))
C
Q ***** CALCULATE THE ALPHA'S AND BETA 1s *****
c
ALPHA(1) = 0.01*(10.-V)/(DEXP(0.1*(10.-V))-1.)
ALPHA(2) = 0.1*(25.-V)/(DEXP(0.1*(25.-V))-1.)
ALPHA(3) = 0.07*DEXP(-V/20.)

C
BETA(1) = 0.125*DEXP(-V/80.)
BETA(2) = 4.*DEXP(-V/18.)
BETA(3) = 1./(DEXP(0.1*(30.-V))+1.)

C
Q ***** APPLY TEMPERATURE COMPENSATION IF NEEDED *****
C

QTEN = 1.
IF(TEMP.NE.6.3)THEN

C
QTEN = 3.**((TEMP-6.3)/10.)

C
CONSTS(2) = QTEN

C
DO 20 1=1,3

ALPHA(I) = ALPHA(I)*QTEN 
BETA(I) = BETA(I)*QTEN 

20 CONTINUE
C

END IF
C
C
Q ***** NOW CALCULATE INITIAL VALUES FOR INTEGRATION ***** 
C

N = ALPHA(1)/(ALPHA(1)+BETA(1))
M = ALPHA(2)/(ALPHA(2)+BETA(2))
H = ALPHA(3)/(ALPHA(3)+BETA(3))

C
C
C
C
C
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Q ***** PUT THESE VALUES INTO YARRAY *****
C

YARRAY(1) = V 
YARRAY(2) = N 
YARRAY(3) = M 
YARRAY(4) = H 

C ***** INITIALIZE THE ARRAY OF DERIVATIVES *****
C

DO 30 1=1,4
DYARRY(I) =0.

30 CONTINUE 
C
C ALPHAN = ALPHA(1)
C ALPHAM = ALPHA(2)
C ALPHAH = ALPHA(3)
C BETAN = BETA(l)
C BETAM = BETA(2)
C BETAH = BETA(3)
C

RETURN
END

C
C
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C ** THIS SUBROUTINE INVOKES THE RUNGE-KUTTA ROUTINE ** 
C ** TO CALCULATE THE SIZE OF THE TIME STEP NEEDED FOR ** 
C ** THE REQUIRED ACCURACY AND THEN RUNS THE ROUTINE **
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

SUBROUTINE DRIVER(YARRAY,TEND,TSTEP,DATFIL,ARYCNT,CONSTS, 
& ERRNUM)

C
DOUBLE PRECISION TSTEP,TEND,ERRTOL,YARRAY(4),YSAVE(4) 
DOUBLE PRECISION YINTER(4),YTEST(4),MAXERR,TNEW 
DOUBLE PRECISION CONSTS(5),DATFIL(10000,2),ERROR(4) 
INTEGER I,J,NHALF,STEPNO,ARYCNT,ERRNUM

C
TNEW =0.
ARYCNT = 1 
ERRTOL = 0.00001

C
d ***** INTEGRATE ONE STEP TWICE NORMAL LENGTH *****
C
7 CONTINUE
TSTEP = TSTEP * 2 
STEPNO = 1 
NHALF =-1

C
CALL RUNKUT(TNEW,YARRAY,TSTEP,YSAVE,CONSTS)

C
C
Q ***** HALVE THE TIME STEP AND INTEGRATE AGAIN *****
C
12 CONTINUE
TSTEP = TSTEP/2.
STEPNO = STEPNO * 2 
NHALF = NHALF + 1

C

A4



Q ***** CHECK NUMBER OF INTERVAL HALVINGS *****
C

IF(NHALF.GT.10)THEN
WRITE( *, * )'TOO MANY HALVINGS NEEDED PROGRAM ENDS' 
ERRNUM = 3 
GOTO 53 

END IF
C
C ***** INTEGRATE TWICE AS MANY STEPS AS BEFORE *****
Q ***** IN ORDER TO END UP AT THE SAME PLACE *****
C

DO 23 1=1,4
YINTER(I) = YARRAY(I)

23 CONTINUE 
C

DO 30 1=1,STEPNO
CALL RUNKUT(TNEW,YINTER,TSTEP,YTEST,CONSTS)
TNEW = TNEW + TSTEP 
DO 29 J=1,4

YINTER(J) = YTEST(J)
29 CONTINUE
30 CONTINUE 
C
Q ***** NEW VALUES OF YARRAY ARE RETURNED BY RUNKUT ***** 
C

DO 33 1=1,4
YARRAY(I) = YTEST(I)

33 CONTINUE 
C
Q ***** FIND THE DIFFERENCE *****
C

DO 36 1=1,4
ERROR(I) = DABS(YTEST(I) - YSAVE(I))

36 CONTINUE 
C
Q ***** FIND MAXIMUM ERROR *****
C
MAXERR = ERROR(1)
DO 42 1=2,4

IF(ERROR(I).GT.MAXERR)THEN 
MAXERR = ERROR(I)

END IF 
42 CONTINUE 
C
Q ***** CHECK ACCURACY AGAINST ERRTOL *****
C

IF(MAXERRR.GT.ERRTOL)THEN 
GOTO 12

ELSE
C
Q ***** WRITE OUT RESULTS TO DATA ARRAY *****
C

DATFIL(ARYCNT,1) = YTEST(1)
DATFIL(ARYCNT,2) = TNEW 
ARYCNT = ARYCNT + 1

END IF
C
C
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c ***** CHECK FOR END POINT *****
C

IF(TNEW.LT.TEND)THEN 
GOTO 7 

END IF
C

ARYCNT = ARYCNT - 1
C
C
53 CONTINUE 
RETURN 
END

C
C
Q ****************************************************
C ** NUMERICAL INTEGRATION SUBROUTINE **
C ** THIS SUBROUTINE PERFORMS A FOURTH - ORDER **
C ** RUNGE - KUTTA NUMERICAL INTEGRATION OF THE **
C ** FUNCTION FUNCTN AND OUTPUTS A 2-D ARRAY **
Q ****************************************************
c

SUBROUTINE RUNKUT(TOLD,YOLD,TSTEP,YNEW,CQNSTS)
C

DOUBLE PRECISION K(4,4),TOLD,TSTEP,YOLD( 4),YNEW(4) 
DOUBLE PRECISION YTEMP(4 ) ,TTEMP,KTEMP(4 ),CONSTS(5) 
INTEGER I,J

C
Q ***** CALCULATE K1 *****
C

CALL FUNCTN(TOLD,YOLD,KTEMP,CONSTS)
DO 5 J=l,4

K(J,1) = KTEMP(J)
5 CONTINUE 
DO 10 1=1,4

K(I,1) = K(I,1)*TSTEP 
10 CONTINUE 
C
DO 15 1=1,4

YTEMP(I) = YOLD(I) + (K(I,l)/2)
15 CONTINUE
TTEMP = TOLD + TSTEP/2

CC ***** CALCULATE K2 *****
C

CAL L FUNCTN(TTEMP,YTEMP,KTEMP,CONSTS)
DO 18 J=l,4

K( J,2) = KTEMP(J)
18 CONTINUE

DO 20 1=1,4 
K( 1,2) = K(1,2)*TSTEP 

20 CONTINUE 
C

DO 25 1=1,4
YTEMP(I) = YOLD(I) + (K(I,2)/2)

25 CONTINUE
C
C
Q ***** CALCULATE K3 *****
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CALL FUNCTN(TTEMP,YTEMP,KTEMP,CONSTS)
DO 28 J=1,4

K(J,3) = KTEMP(J)
28 CONTINUE 
DO 30 1=1,4

K(I,3) = K(I,3)*TSTEP 
30 CONTINUE 
C

DO 35 1=1,4
YTEMP(I) = YOLD(I) + K(I,3)

35 CONTINUE 
C

TTEMP = TOLD + TSTEP
C(3 ***** CALCULATE K4 *****
C

CALL FUNCTN(TTEMP,YTEMP,KTEMP,CONSTS)
DO 38 J=1,4

K(J,4) = KTEMP(J)
38 CONTINUE 
DO 40 1=1,4

K(I,4) = K(I,4)*TSTEP 
40 CONTINUE 
C
Q ***** CALCULATE YNEW *****
C

DO 45 1=1,4
YNEW(I)=YOLD(I)+(K(I,l)+2.*K(I,2)+2.*K(I,3)+K(I,4))/6 

45 CONTINUE 
RETURN 
END

C
C
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c ** **
c ** FUNCTN SUBROUTINE : THIS SUBROUTINE CALCULATES THE **
c ** VALUES OF THE VARIABLES THAT ARE REQUIRED BY THE **
c ** NUMERICAL INTEGRATION ROUTINE. IT TAKES IN VARIOUS **
c ** CONSTANTS AND RETURNS WITH THE CURRENT VALUES OF **
c ** VDOT,NDOT, MDOT AND HDOT (DYARRY) **
c ** **
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

SUBROUTINE FUNCTN(TIME,YARRAY,DYARRY,CONSTS)
C

DOUBLE PRECISION V ,VDOT,N,NDOT,M ,MDOT,H,HDOT 
DOUBLE PRECISION ALPHA(3),BETA(3),MEMCAP,GNAMAX,GLMAX 
DOUBLE PRECISION VL,VK,VNA,GK,GNA,GKMAX,QTEN,TIME 
DOUBLE PRECISION CACONC,YARRAY(4),DYARRY(4),CONSTS(5) 
INTEGER I

C
V = YARRAY(1)
N = YARRAY(2)
M = YARRAY(3)
H = YARRAY(4)

C
C
c
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VNA = 115.
VK = -12.
VL = 10.58921

C
C

MEMCAP = 1.
GNAMAX = 120.
GKMAX = 36.
GLMAX = 0.3

C
QTEN = CONSTS(2)
CACONC = CONSTS(3)

C
V = V+9.3 * DLOG((44./CACONC))

CQ ***** ERROR TRAP FOR V = 10 mV *****
C

IF(V.GT.9.999.AND.V.LT.10.001)THEN 
ALPHA(1) =0.1 

ELSE
ALPHA(1) = 0.01*(10.-V)/(DEXP(0.1*(10.-V))-1.)

END IF
CQ ***** ERROR TRAP FOR V = 25mV *****
C

IF(V.GT.24.999.AND.V.LT.25.001)THEN 
ALPHA(2) =1.0 

ELSE
ALPHA(2) = 0.1*(25.-V)/(DEXP(0.1*(25.-V))-1.)

END IF
C

BETA(l) = 0.125*DEXP(-V/80.)
BETA(2) = 4.*DEXP(-V/18.)
ALPHA(3) = 0.07*DEXP(-V/20.)
BETA(3) = 1./(DEXP(0.1*(30.-V))+1.)

CC ***** TEMPERATURE COMPENSATION *****
C

DO 30 1=1,3
ALPHA(I) = ALPHA(I)*QTEN 
BETA(I) = BETA(I)*QTEN 

30 CONTINUE 
C
C ***** CALCULATE THE CONDUCTANCES *****
C

GK = GKMAX*(N**4)
GNA = GNAMAX*(M**3)*H

CQ ***** CALCULATE THE DERIVATIVES *****
C

V = V - 9.3 * DLOG((44./CACONC))
C

VDOT = (-1./MEMCAP)*(GK*(V-VK)+GNA*(V-VNA)+GLMAX*(V-VL))
C

NDOT = ALPHA(1)*(1-N)-BETA(1)*N 
MDOT = ALPHA(2)*(1-M)-BETA(2)*M 
HDOT = ALPHA(3)*(1-H)-BETA(3)*H
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***** PLACE THESE VALUES IN AN ARRAY FOR CONVENIENCE *****
DYARRY(1) = VDOT 
DYARRY(2) = NDOT 
DYARRY(3) = MDOT 
DYARRY(4) = HDOT
RETURN 
END
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
** OUTPUT SUBROUTINE : THIS SUBROUTINE WRITES THE **
** CALCULATED VALUES OF THE VOLTAGE AND TIME TO A **
** DATA FILE CREATED ON A FLOPPY DISC. **
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE OUTPUT(DATFIL,ARYCNT,CONSTS)
DOUBLE PRECISION DATFIL(10000,2),CONSTS(5)
INTEGER ARYCNT,ERROR 
CHARACTER FILNAM*6,FILE*12,DATE*8
DATA FILE,DATE/'A:FILNAM.DAT1,1DD:MM:YY'/
***** GET THE FILE NAME AND DATE FROM USER *****

WRITE(*,*)1 ENTER THE FILE NAME (6 CHARS) : 1
READ(*,100) FILNAM
WRITE(*,*)'ENTER THE DATE (DD:MM:YY) : '
READ(*,400) DATE
FILE(3:8) = FILNAM
***** OPEN THE FILE ON DRIVE A: *****

OPEN(UNIT=4,FILE=FILE,STATUS= 1 NEW 1,IOSTAT=ERROR,
& ERR=50)

PAUSE 'INSERT DATA DISC THEN PRESS ENTER’
***** NOW WRITE THE ARRAY TO DISC *****

WRITE(4,100) FILNAM 
WRITE(4,200) DATE 
WRITE(4,600)'ARRAY SIZE1 
WRITE(4,500) ARYCNT 
WRITE(4,200)'DURATION'
WRITE(4,700) CONSTS(4)
WRITE(4,600)'TEMPERATURE'
WRITE(4,700) CONSTS(1)
WRITE(4,100)'CACONC'
WRITE(4,700) CONSTS(3)
WRITE(4,200)'STIMULUS'
WRITE(4,700) CONSTS(5)
DO 20 1=1,ARYCNT
WRITE(4,300) DATFIL(I,1),DATFIL(I,2)

20 CONTINUE
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c
Q ***** ERROR HANDLING ROUTINE *****
C
50 IF(ERROR.EQ.2009)THEN

WRITE(*,*)1 INCORRECT STATUS ARGUMENT'
ELSE IF(ERROR.EQ.2011)THEN

WRITE(*,*)'RECORD LENGTH SPECIFIER TOO LARGE' 
ELSE IF(ERROR.EQ.2013)THEN

WRITE(*,*)'FILENAME HAS BEEN USED BEFORE'
ELSE IF(ERROR.EQ.2014)THEN

WRITE(*,*)'FILENAME NOT SPECIFIED’
END IF

C
Q ***** FORMAT STATEMENTS *****
C
100 FORMAT(A6)
200 FORMAT(A8)
300 FORMAT(D14.6,5X,D14.6)
400 FORMAT(A8)
500 FORMAT(15)
600 FORMAT(All)
700 FORMAT(DIO.5)
C
Q ***** CLOSE FILE *****
C

CLOSE(UNIT=4)
C

RETURN
END
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0 * * * * * * * * * * * * * * * *  * * * * * * *  * * * * * *  * * * * * * *  * *  * * * * * * * * * * * * * * * * *
C ** THIS PROGRAM IMPLEMENTS A MATHEMATICAL MODEL TO **
C ** SIMULATE THE BEHAVIOUR OF A NEURONE. **
C ** IT SOLVES THE EQUATIONS DERIVED BY HODGKIN AND **
C ** HUXLEY BY USING A NUMERICAL INTEGRATION TECHNIQUE **
C ** THIS PROGRAM HAS BEEN MODIFIED TO COPE WITH MORE **
C ** OUTPUT VARIABLES TO ENABLE THE USER TO LOOK AT THE**
C ** BEHAVIOUR OF M,N,H,I & V AGAINST TIME. **0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
c

PROGRAM HHMDNEW
DOUBLE PRECISION TIME,TEMP,CACONC,VSTIM,YARRAY( 4 ) ,TSTEP 
DOUBLE PRECISION CONSTS(5),ALPHA(3),BETA(3),DYARRY(4)
REAL DATFIL(10000,6)
INTEGER ARYCNT,ERRNUM
***** GET DATA IN FROM THE KEYBOARD *:k'k'k'k

WRITE (*,*)'ENTER THE TIME DURATION IN MILLISECONDS 
READ *,TIME
WRITE (*,*)'ENTER THE TEMPERATURE IN DEGREES CELCIUS :' 
READ *,TEMP
WRITE (*, *) 'ENTER THE CALCIUM CONCENTRATION IN MILLIMOLES : ' 
READ *,CACONC
WRITE (*,*)'ENTER THE INITIAL STIMULUS IN MILLIVOLTS :' 
READ *,VSTIM
ARYCNT = 0 
TSTEP = 0.005
***** PUT VALUES IN CONSTANTS ARRAY *****

CONSTS(1) = TEMP 
CONSTS(2) = 0.
CONSTS(3) = CACONC 
CONSTS(4) = TIME 
CONSTS(5) = VSTIM
***** CALL THE INITIALIZATION PROCEDURE *****

CALL INIT(CONSTS,ALPHA,BETA,YARRAY,DYARRY)
YARRAY(1) = VSTIM
***** CALL RUNGE-KUTTA DRIVER ROUTINE *****

CALLDRIVER(YARRAY,TIME,TSTEP,DATFIL,ARYCNT,CONSTS,ERRNUM)
IF(ERRNUM.EQ.3)THEN 
GOTO 30 
END IF
***** CALL THE OUTPUT ROUTINE *****

CALL OUTPUT(DATFIL,ARYCNT,CONSTS)
30 CONTINUE 

STOP 
END
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g**********************************************************
C ** INITIALIZATION PROCEDURE: THIS SUBROUTINE SETS UP THE ** 
C ** INITIAL VALUES OF THE VARIABLES. **g**********************************************************
C

SUBROUTINE INIT(CONSTS,ALPHA,BETA,YARRAY,DYARRY)
C

DOUBLE PRECISION CACONC,TEMP,ALPHA(3),BETA(3)
DOUBLE PRECISION QTEN,V,M,N,H
DOUBLE PRECISION YARRAY(4),DYARRY(4),CONSTS(5)
INTEGER I

C0 ***** GET VALUES OUT OF THE CONSTANTS ARRAY *****
C

TEMP = CONSTS(1)
CACONC = CONSTS(3)

Cg ***** CALCULATE THE RESTING POTENTIAL *****
C

V = V + 9.3 * DLOG((44./CACONC))
C
0 ***** CALCULATE THE ALPHA'S AND BETA'S *****
C

ALPHA(1) = 0.01*(10.-V)/(DEXP(0.1*(10.-V))-l.)
ALPHA(2) = 0.1*(25.-V)/(DEXP(0.1*(25.-V))-1.)
ALPHA(3) = 0.07*DEXP(-V/20.)

C
BETA(l) = 0.125*DEXP(-V/80.)
BETA(2) = 4.*DEXP(-V/18.)
BETA(3) = 1./(DEXP(0.1*(30.-V))+1.)

C
0 ***** APPLY TEMPERATURE COMPENSATION IF NEEDED *****
C

QTEN = 1.
IF(TEMP.NE.6.3)THEN

C
QTEN = 3.**((TEMP-6.3)/10.)

C
CONSTS(2) = QTEN

C
DO 20 1=1,3

ALPHA(I) = ALPHA(I)*QTEN 
BETA(I) = BETA(I)*QTEN 

20 CONTINUE 
C

END IF
C
0 ***** NOW CALCULATE INITIAL VALUES FOR INTEGRATION *****
C

N = ALPHA(1)/(ALPHA(1)+BETA(1))
M = ALPHA(2)/(ALPHA(2)+BETA(2))
H = ALPHA(3)/(ALPHA(3)+BETA(3))

C
0 ***** PUT THESE VALUES INTO YARRAY *****
C
C
c 
c

A12



^o
no

 
no

n 
n 

o 
o
o
o
o
n
o
o
n
 

n 
ow
 

on

YARRAY(1) = V 
YARRAY(2) = N 
YARRAY(3) = M 
YARRAY(4) = H 
***** INITIALIZE THE ARRAY OF DERIVATIVES *****

DO 30 1=1,4
DYARRY(I) =0. 

0 CONTINUE
ALPHAN
ALPHAM
ALPHAH
BETAN
BETAM
BETAH

ALPHA(1) 
ALPHA(2) 
ALPHA(3) 
BETA(1) 
BETA(2) 
BETA(3)

RETURN
END

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
** THIS SUBROUTINE INVOKES THE RUNGE-KUTTA ROUTINE ** 
** TO CALCULATE THE SIZE OF THE TIME STEP NEEDED FOR ** 
** THE REQUIRED ACCURACY AND THEN RUNS THE ROUTINE **
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE DRIVER(YARRAY,TEND,TSTEP,DATFIL,ARYCNT,CONSTS, 
& ERRNUM,MEMCUR)

DOUBLE PRECISION TSTEP,TEND,ERRTOL,YARRAY(4),YSAVE(4) 
DOUBLE PRECISION YINTER(4),YTEST(4),MAXERR,TSTART,MEMCUR 
DOUBLE PRECISION CONSTS(5),ERROR(4)
REAL DATFIL(10000,6)
INTEGER I,J,NHALF,STEPNO,ARYCNT,ERRNUM
TSTART = 0.
ARYCNT = 1 
ERRTOL = 0.00001
***** LOAD THE OUTPUT ARRAY WITH INITIAL VALUES *****

DATFIL(1,1) 
DATFIL(1,2) 
DATFIL(1,3) 
DATFIL(1,4) 
DATFIL(1,5) 
DATFIL(1,6)

SNGL(TSTART) 
SNGL(YARRAY(1)) 
SNGL(YARRAY(2)) 
SNGL(YARRAY(3)) 
SNGL(YARRAY(4)) 
SNGL(MEMCUR)

***** INTEGRATE ONE STEP TWICE NORMAL LENGTH *****
CONTINUE 

TSTEP = TSTEP * 2 
STEPNO = 1 
NHALF =-1
CALL RUNKUT(TNEW,YARRAY,TSTEP,YSAVE,CONSTS)
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Q ***** HALVE THE TIME STEP AND INTEGRATE AGAIN *****
C
12 CONTINUE
TSTEP = TSTEP/2.
STEPNO = STEPNO * 2 
NHALF = NHALF + 1

C
Q ***** CHECK NUMBER OF INTERVAL HALVINGS *****
C

IF(NHALF.GT.10)THEN
WRITE(*,*)1 TOO MANY HALVINGS NEEDED PROGRAM ENDS' 
ERRNUM = 3 
GOTO 53 

END IF
C
Q ***** INTEGRATE TWICE AS MANY STEPS AS BEFORE *****
Q ***** IN ORDER TO END UP AT THE SAME PLACE *****
C

DO 23 1=1,4
YINTER(I) = YARRAY(I)

23 CONTINUE 
C

DO 30 1=1,STEPNO
CALL RUNKUT(TNEW,YINTER,TSTEP,YTEST,CONSTS)
TNEW = TNEW + TSTEP 
DO 29 J=l,4

YINTER(J) = YTEST(J)
29 CONTINUE
30 CONTINUE 
C
C ***** NEW VALUES OF YARRAY ARE RETURNED BY RUNKUT ***** 
C

DO 33 1=1,4
YARRAY(I) = YTEST(I)

33 CONTINUE 
C
Q ***** FIND THE DIFFERENCE *****
C

DO 36 1=1,4
ERROR(I) = DABS(YTEST(I) - YSAVE(I))

36 CONTINUE 
C
Q ***** FIND MAXIMUM ERROR *****
C

MAXERR = ERROR(1)
DO 42 1=2,4

IF(ERROR(I).GT.MAXERR)THEN 
MAXERR = ERROR(I)

END IF 
42 CONTINUE 
C
0 ***** CHECK ACCURACY AGAINST ERRTOL *****
C

IF(MAXERRR.GT.ERRTOL)THEN 
GOTO 12

ELSE
C
C
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Q ***** WRITE OUT RESULTS TO DATA ARRAY *****
C

DATFIL(ARYCNT+1,1) = SNGL(TNEW)
DATFIL(ARYCNT+1,2) = SNGL(YTEST(1))
DATFIL(ARYCNT+1,3) = SNGL(M)
DATFIL(ARYCNT+1,4) = SNGL(H)
DATFIL(ARYCNT+1,5) = SNGL(N)
DATFIL(ARYCNT+1,6) = SNGL(MEMCUR)
ARYCNT = ARYCNT + 1

END IF
C0 ***** CHECK FOR END POINT *****
C

IF(TNEW. LT.TEND)THEN 
GOTO 7 

END IF
C

ARYCNT = ARYCNT - 1
C
53 CONTINUE 

RETURN 
END

C
C0 ****************************************************
C ** NUMERICAL INTEGRATION SUBROUTINE **
C ** THIS SUBROUTINE PERFORMS A FOURTH - ORDER **
C ** RUNGE - KUTTA NUMERICAL INTEGRATION OF THE **
C ** FUNCTION FUNCTN AND OUTPUTS A 2-D ARRAY **0 **************************************************** 
c

SUBROUTINE RUNKUT(TOLD,YOLD,TSTEP,YNEW,CONSTS)
C

DOUBLE PRECISION TOLD,TSTEP,YOLD(4),YNEW(4),HLFSTP,SIXSTP 
DOUBLE PRECISION YTEMP(4),TTEMP,DYT(4),DYM(4),CONSTS(5) 
INTEGER I

C
C

HLFSTP = TSTEP * 0.5 
SIXSTP = TSTEP/6.
TTEMP = TOLD + HLFSTP

C
DO 10 1=1,4

YTEMP(I) = YOLD(I) + HLFSTP * YOLD(I)
10 CONTINUE 
C

CALL FUNCTN(TTEMP,YTEMP,DYT,CONSTS)
C

DO 14 1=1,4
YTEMP(I) = YOLD(I) + HLFSTP * DYT(I)

14 CONTINUE 
C

CALL FUNCTN(TTEMP,YTEMP,DYM,CONSTS)
C

DO 19 1=1,4
YTEMP(I) = YOLD(I) + TSTEP * DYM(I)
DYM(I) = DYT(I) + DYM(I)

19 CONTINUE
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c
CALL FUNCTN(TOLD+TSTEP,YTEMP,DYT,CONSTS)
DO 23 1=1,4
YNEW(I)=YOLD(I)+SIXSTP*(YOLD(I)+DYT(I)+2.*DYM(I))

23 CONTINUE 
C

RETURN
END

C
C
Q ******************************************************** 
Q ** **
C ** FUNCTN SUBROUTINE : THIS SUBROUTINE CALCULATES THE ** 
C ** VALUES OF THE VARIABLES THAT ARE REQUIRED BY THE ** 
C ** NUMERICAL INTEGRATION ROUTINE. IT TAKES IN VARIOUS ** 
C ** CONSTANTS AND RETURNS WITH THE CURRENT VALUES OF ** 
C ** VDOT,NDOT,MDOT AND HDOT (DYARRY) **
Q ** **
Q ********************************************************
c

SUBROUTINE FUNCTN(TIME,YARRAY,DYARRY,CONSTS)
C

DOUBLE PRECISION V,VDOT,N,NDOT,M,MDOT,H,HDOT,MEMCUR 
DOUBLE PRECISION ALPHA(3),BETA(3),MEMCAP,GNAMAX,GLMAX 
DOUBLE PRECISION VL,VK,VNA,GK,GNA,GKMAX,QTEN,TIME 
DOUBLE PRECISION CACONC,YARRAY(4),DYARRY(4),CONSTS(5) 
INTEGER I

C
V = YARRAY(1)
N = YARRAY(2)
M = YARRAY(3)
H = YARRAY(4)

C
VNA = 115.
VK = -12.
VL = 10.58921

C
C

MEMCAP = 1.
GNAMAX = 120.
GKMAX = 36.
GLMAX = 0.3

C
QTEN = CONSTS(2)
CACONC = CONSTS(3)

C
V = V+9.3 * DLOG((44./CACONC))

C
Q ***** ERROR TRAP FOR V = 10 mV *****
C

IF(V.GT.9.999.AND.V.LT.10.001)THEN 
ALPHA(1) =0.1 

ELSE
ALPHA(1) = 0.01*(10.-V)/(DEXP(0.1*(10.-V))-1.)

END IF
C
C
C
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o ***** ERROR TRAP FOR V = 25mV *****
C

IF(V.GT.24.999.AND.V.LT.25.001)THEN 
ALPHA(2) =1.0 

ELSE
ALPHA(2) = 0.1*(25.-V)/(DEXP(0.1*(25.-V))-l.)

END IF
C

BETA(1) = 0.125*DEXP(-V/80.)
BETA(2) = 4.*DEXP(-V/18.)
ALPHA(3) = 0.07*DEXP(-V/20.)
BETA(3) = 1./(DEXP(0.1*(30.-V))+1.)

C
Q ***** TEMPERATURE COMPENSATION *****
C

DO 30 1=1,3
ALPHA(I) = ALPHA(I)*QTEN 
BETA(I) = BETA(I)*QTEN

30 CONTINUE 
C
Q ***** CALCULATE THE CONDUCTANCES *****
C

GK = GKMAX*(N**4)
GNA = GNAMAX*(M**3)*H

C
Q ***** CALCULATE THE DERIVATIVES *****
C
V = V - 9.3 * DLOG((44./CACONC))

C
MEMCUR = (GK*(V-VK)+GNA*(V-VNA)+GLMAX*(V-VL))
VDOT = (-1./MEMCAP)*MEMCUR

C
NDOT = ALPHA(1)*(1-N)-BETA(1)*N

C
MDOT = ALPHA(2)*(1-M)-BETA(2)*M

C
HDOT = ALPHA(3)*(1-H)-BETA(3)*H

C
Q ***** PLACE THESE VALUES IN AN ARRAY FOR CONVENIENCE ***** 
C

DYARRY(1) = VDOT
DYARRY(2) = NDOT
DYARRY(3) = MDOT
DYARRY(4) = HDOT
RETURN
END

Cc 
c 
c 
c 
c 
c 
c 
c c 
c
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Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C ** OUTPUT SUBROUTINE : THIS SUBROUTINE WRITES THE ** 
C ** CALCULATED VALUES OF THE VOLTAGE AND TIME TO A ** 
C ** DATA FILE CREATED ON A FLOPPY DISC. **
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

SUBROUTINE OUTPUT(DATFIL,ARYCNT,CONSTS)
C

DOUBLE PRECISION CONSTS(5)
REAL DATFIL(10000,6)
INTEGER ARYCNT,ERROR
CHARACTER FILNAM*6,FILE*12,DATE*8

C
DATA FILE,DATE/'A:FILNAM.DAT','DD:MM:YY1/

C
Q ***** GET THE FILE NAME AND DATE FROM USER *****
c

WRITE(*,*)’ENTER THE FILE NAME (6 CHARS) : '
READ(*,100) FILNAM

C
WRITE(*,*)'ENTER THE DATE (DD:MM:YY) : '
READ(*,400) DATE

C
FILE(3:8) = FILNAM

C
Q ***** OPEN THE FILE ON DRIVE A: *****
c

OPEN(UNIT=4,FILE=FILE,STATUS= 1 NEW1,IOSTAT=ERROR,
& ERR=50)

C
PAUSE 'INSERT DATA DISC THEN PRESS ENTER'

C
Q ***** NOW WRITE THE ARRAY TO DISC *****
C

WRITE(4,100) FILNAM 
WRITE(4,200) DATE 
WRITE(4,600)'ARRAY SIZE'
WRITE(4,500) ARYCNT 
WRITE(4,200)'DURATION'
WRITE(4,700) CONSTS(4)
WRITE(4,600)'TEMPERATURE'
WRITE(4,700) CONSTS(1)
WRITE(4,100)'CACONC'
WRITE(4,700) CONSTS(3)
WRITE(4,200)’STIMULUS'
WRITE(4,700) CONSTS(5)
DO 20 1=1,ARYCNT
WRITE(4,300) DATFIL(1,1),DATFIL(I,2),DATFIL(I,3),

& DATFIL(1,4),DATFIL(1,5),DATFIL(1,6)
20 CONTINUE
C
C
C
C
C
C
C
C
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c
c ***** ERROR HANDLING ROUTINE *****
C
50 IF(ERROR.EQ.2 0 0 9)THEN

WRITE(*,*)'INCORRECT STATUS ARGUMENT 1 
ELSE IF(ERROR.EQ.2011)THEN

WRITE(*,*)1 RECORD LENGTH SPECIFIER TOO LARGE1 
ELSE IF(ERROR.EQ.2013)THEN

WRITE(*,*)'FILENAME HAS BEEN USED BEFORE'
ELSE IF(ERROR.EQ.2014)THEN

WRITE(*,*)'FILENAME NOT SPECIFIED'
END IF

CQ ***** FORMAT STATEMENTS *****
C
100 FORMAT(A6)
200 FORMAT(A8)
300 FORMAT(F10.5/X/F10.5/X /F10.5/X /F10.5,X/F10.5/X /F10.5) 400 FORMAT(A8)
500 FORMAT(15)
600 FORMAT(All)
700 FORMAT(DIO.5)
CC! ***** CLOSE FILE *****
C

CLOSE(UNIT=4)
C

RETURN
END
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0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C ** THIS PROGRAM IMPLEMENTS A MATHEMATICAL MODEL TO ** 
C ** SIMULATE THE BEHAVIOUR OF A NEURONE. **
C ** IT SOLVES THE EQUATIONS DERIVED BY HODGKIN AND ** 
C ** HUXLEY BY USING A NUMERICAL INTEGRATION TECHNIQUE **
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

PROGRAM OXYMOD
C

DOUBLE PRECISION TIME,TEMP,VSTIM,YARRAY(4),TSTEP 
DOUBLE PRECISION CONSTS(4),ALPHA(3),BETA(3),DYARRY(4)
REAL DATFIL(10000,2)
INTEGER ARYCNT,ERRNUM 
CHARACTER RERUN*3

C
10 CONTINUE 
ERRNUM = 0
***** GET DATA IN FROM THE KEYBOARD *****

WRITE (*,*)'ENTER THE TIME DURATION IN MILLISECONDS 
READ *,TIME
WRITE (*,*)'ENTER THE TEMPERATURE IN DEGREES CELCIUS :' 
READ *,TEMP
WRITE (*,*)'ENTER THE INITIAL STIMULUS IN MILLIVOLTS :' 
READ *,VSTIM
ARYCNT = 0 
TSTEP = 0.005
***** PUT VALUES IN CONSTANTS ARRAY *****

CONSTS(1) = TEMP 
CONSTS(2) = 0.
CONSTS(3) = TIME 
CONSTS(4) = VSTIM
***** CALL THE INITIALIZATION PROCEDURE *****

CALL INIT(CONSTS,ALPHA,BETA,YARRAY,DYARRY)
YARRAY(1) = VSTIM
***** CALL RUNGE-KUTTA DRIVER ROUTINE *****

CALLDRIVER(YARRAY,TIME,TSTEP,DATFIL,ARYCNT,CONSTS,ERRNUM)
IF(ERRNUM.EQ.3)THEN 
GOTO 20 
END IF
***** CALL THE OUTPUT ROUTINE *****

CALL OUTPUT(DATFIL,ARYCNT,CONSTS)
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0 ***** ASK USER IF THEY WANT ANOTHER RUN *****
C
20 CONTINUE
WRITE(*,*)'DO YOU WANT ANOTHER RUN (Y/N) ? : '
READ *,RERUN

C
IF(RERUN.EQ.'Y')THEN 

GOTO 10 
END IF

C
30 CONTINUE 

STOP 
END

C
C0 ********************************************************* 
C ** INITIALIZATION PROCEDURE: THIS SUBROUTINE SETS UP ** 
C ** THE INITIAL VALUES OF THE VARIABLES. **
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c

SUBROUTINE INIT(CONSTS,ALPHA,BETA,YARRAY,DYARRY)
C

DOUBLE PRECISION TEMP,ALPHA(3),BETA(3)
DOUBLE PRECISION QTEN,V,M,N,H
DOUBLE PRECISION YARRAY(4),DYARRY(4),CONSTS(4)
INTEGER I

C
0 ***** GET VALUES OUT OF THE CONSTANTS ARRAY *****
C

TEMP = CONSTS(1)
V =0.0

C
0 ***** CALCULATE THE ALPHA'S AND BETA'S *****
C

ALPHA(1) = 0.01*(10.-V)/(DEXP(0.1*(10.-V))-1.)
ALPHA(2) = 0.1*(25.-V)/(DEXP(0.1*(25.-V))-1.)
ALPHA(3) = 0.07*DEXP(-V/20.)

C
BETA(l) = 0.125*DEXP(-V/80.)
BETA(2) = 4.*DEXP(-V/18.)
BETA(3) = 1./(DEXP(0.1*(30.-V))+1.)

C
0 ***** APPLY TEMPERATURE COMPENSATION IF NEEDED *****
C

QTEN = 1.
IF(TEMP.NE.6.3)THEN

C
QTEN = 3.**((TEMP-6.3)/10.)

C
CONSTS(2) = QTEN

C
DO 20 1=1,3

ALPHA(I) = ALPHA(I)*QTEN 
BETA(I) = BETA(I)*QTEN 

20 CONTINUE 
C

END IF
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***** NOW CALCULATE INITIAL VALUES FOR INTEGRATION *****
N = ALPHA(1)/(ALPHA(1)+BETA(1))
M = ALPHA(2)/(ALPHA(2)+BETA(2) )
H = ALPHA(3)/(ALPHA(3)+BETA(3))
***** PUT THESE VALUES INTO YARRAY *****

YARRAY(1) = V 
YARRAY(2) = N 
YARRAY(3) = M 
YARRAY(4) = H
***** INITIALIZE THE ARRAY OF DERIVATIVES *****

DO 30 1=1,4
DYARRY(I) =0.

0 CONTINUE
ALPHAN = ALPHA(1)
ALPHAM = ALPHA(2)
ALPHAH = ALPHA(3)
BETAN '= BETA(l)
BETAM = BETA(2)
BETAH = BETA(3)
RETURN 
END

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
** THIS SUBROUTINE INVOKES THE RUNGE-KUTTA ROUTINE ** 
** TO CALCULATE THE SIZE OF THE TIME STEP NEEDED FOR ** 
** THE REQUIRED ACCURACY AND THEN RUNS THE ROUTINfi ** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE DRIVER(YARRAY,TEND,TSTEP,DATFIL,ARYCNT,CONSTS, 
& ERRNUM)

DOUBLE PRECISION TSTEP,TEND,ERRTOL,YARRAY(4),YSAVE(4)
DOUBLE PRECISION YINTER(4),YTEST(4),MAXERR,TNEW
DOUBLE PRECISION CONSTS(4),ERROR(4)
REAL DATFIL(10000,2)
INTEGER I,J,NHALF,STEPNO,ARYCNT,ERRNUM
TNEW = 0.
ARYCNT = 2
ERRTOL = 0.00001
***** LOAD THE OUTPUT ARRAYS WITH THE INITIAL VALUES *****
DATFIL(1,1) = SNGL(YARRAY(1))
DATFIL(1,2) = SNGL(TNEW)
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0 ***** INTEGRATE ONE STEP TWICE NORMAL LENGTH *****
c
7 CONTINUE

TSTEP = TSTEP * 2 
STEPNO = 1 
NHALF = -1

C
CALL RUNKUT(TNEW,YARRAY,TSTEP,YSAVE,CONSTS)

C
C
0 ***** HALVE THE TIME STEP AND INTEGRATE AGAIN *****
C
12 CONTINUE
TSTEP = TSTEP/2.
STEPNO = STEPNO * 2 
NHALF = NHALF + 1

C0 ***** CHECK NUMBER OF INTERVAL HALVINGS *****
C

IF(NHALF.GT.10)THEN
WRITE(*,*)1 TOO MANY HALVINGS NEEDED PROGRAM ENDS' 
ERRNUM = 3 
GOTO 53 

END IF
C
0 ***** INTEGRATE TWICE AS MANY STEPS AS BEFORE *****
0 ***** IN ORDER TO END UP AT THE SAME PLACE *****
C

DO 23 1=1,4
YINTER(I) = YARRAY(I)

23 CONTINUE 
C
DO 30 1=1,STEPNO

CALL RUNKUT(TNEW,YINTER,TSTEP,YTEST,CONSTS)
TNEW = TNEW + TSTEP 
DO 29 J=1,4

YINTER(J) = YTEST(J)
29 CONTINUE
30 CONTINUE 
C
0 ***** NEW VALUES OF YARRAY ARE RETURNED BY RUNKUT *****
C

DO 33 1=1,4
YARRAY(I) = YTEST(I)

33 CONTINUE 
C
0 ***** FIND THE DIFFERENCE *****
C

DO 36 1=1,4
ERROR(I) = DABS(YTEST(I) - YSAVE(I))

36 CONTINUE
C
C
C
C
C
C
C
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0 ***** FIND MAXIMUM ERROR *****
C

MAXERR = ERROR(1)
DO 42 1=2,4

IF(ERROR(I).GT.MAXERR)THEN 
MAXERR = ERROR(I)

END IF 
42 CONTINUE 
C0 ***** CHECK ACCURACY AGAINST ERRTOL *****
C

IF(MAXERRR.GT.ERRTOL)THEN 
GOTO 12

ELSE
C0 ***** WRITE OUT RESULTS TO DATA ARRAY *****
C

DATFIL(ARYCNT,1) = SNGL(YTEST(1))
DATFIL(ARYCNT,2) = SNGL(TNEW)
ARYCNT = ARYCNT + 1

END IF
C0 ***** CHECK FOR END POINT *****
C

IF(TNEW.LT.TEND)THEN 
GOTO 7 

END IF
C
53 CONTINUE 
C

ARYCNT = ARYCNT - 1
C

RETURN
END

C
C0 **************************************************** 
C ** NUMERICAL INTEGRATION SUBROUTINE **
C ** THIS SUBROUTINE PERFORMS A FOURTH - ORDER **
C ** RUNGE - KUTTA NUMERICAL INTEGRATION OF THE **
C ** FUNCTION FUNCTN AND OUTPUTS A 2-D ARRAY **0 **************************************************** 
C

SUBROUTINE RUNKUT(TOLD,YOLD,TSTEP,YNEW,CONSTS)
C

DOUBLE PRECISION K(4,4),TOLD,TSTEP,YOLD(4),YNEW(4) 
DOUBLE PRECISION YTEMP(4),TTEMP,KTEMP(4),CONSTS(4) 
INTEGER I,J

C0 ***** CALCULATE K1 *****
C

CALL FUNCTN(TOLD,YOLD,KTEMP,CONSTS)
DO 5 J=1,4

K(J,1) = KTEMP(J)
5 CONTINUE 

DO 10 1=1,4
K( 1,1) = K(I,1)*TSTEP 

10 CONTINUE
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c 
c

DO 15 1=1,4
YTEMP(I) = YOLD(I) + (K(I,l)/2)

15 CONTINUE
TTEMP = TOLD + TSTEP/2

C0 ***** CALCULATE K2 *****
C

CALL FUNCTN(TTEMP,YTEMP,KTEMP,CONSTS)
DO 18 J=1,4

K(J,2) = KTEMP(J)
18 CONTINUE 
DO 20 1=1,4

K( 1,2 ) = K(1,2)*TSTEP 
20 CONTINUE 
C

DO 25 1=1,4
YTEMP(I) = YOLD(I) + (K(I,2)/2)

25 CONTINUE 
C0 ***** CALCULATE K3 *****
C

CALL FUNCTN(TTEMP,YTEMP,KTEMP,CONSTS)
DO 28 J=1,4

K(J,3) = KTEMP(J)
28 CONTINUE 

DO 30 1=1,4
K( 1,3) = K(1,3)*TSTEP 

30 CONTINUE 
C

DO 35 1=1,4
YTEMP(I) = YOLD(I) + K(I,3)

35 CONTINUE 
C

TTEMP = TOLD + TSTEP
C0 ***** CALCULATE K4 *****
C

CALL FUNCTN(TTEMP,YTEMP,KTEMP,CONSTS)
DO 38 J=1,4

K( J,4) = KTEMP(J)
38 CONTINUE 

DO 40 1=1,4
K(I,4) = K(I,4)*TSTEP 

40 CONTINUE 
C0 ***** CALCULATE YNEW *****
C

DO 45 1=1,4
YNEW(I)=YOLD(I)+(K(I,l)+2.*K(I,2)+2.*K(I,3)+K(I,4))/6 45 CONTINUE 
RETURN 
END

C
C
C
C
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0 kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 
Q kk kk
C ** FUNCTN SUBROUTINE : THIS SUBROUTINE CALCULATES THE ** 
C ** VALUES OF THE VARIABLES THAT ARE REQUIRED BY THE ** 
C ** NUMERICAL INTEGRATION ROUTINE. IT TAKES IN VARIOUS ** 
C ** CONSTANTS AND RETURNS WITH THE CURRENT VALUES OF ** 
C ** VDOT,NDOT,MDOT AND HDOT (DYARRY) **
Q kk kk
Q kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
c

SUBROUTINE FUNCTN(TIME,YARRAY,DYARRY,CONSTS)
C

DOUBLE PRECISION V,VDOT,N,NDOT,M,MDOT,H,HDOT 
DOUBLE PRECISION ALPHA(3),BETA(3),MEMCAP,GNAMAX,GLMAX 
DOUBLE PRECISION VL,VK,VNA,GK,GNA,GKMAX,QTEN,TIME 
DOUBLE PRECISION CACONC,YARRAY(4),DYARRY(4 ) ,CONSTS(4) 
DOUBLE PRECISION TAU1,TAU2,VSHIFT 
INTEGER I

C
V = YARRAY(1)
N = YARRAY(2)
M = YARRAY(3)
H = YARRAY(4)

C
VNA = 115.
VK = -12.
VL = 10.58921

MEMCAP = 1.
GNAMAX = 120.
GKMAX = 36.
GLMAX = 0.3
QTEN = CONSTS(2)
kkkkk CALCULATE THE CALCIUM CONCENTRATION FUNCTION kkkkk 
kkkkk AND THE RESULTANT CHANGE IN VOLTAGE kkkkk

TAU1 = 0.01098 * TIME 
TAU2 =-0.02197 * TIME
CACONC = 44.- 202.65*(DSINH(TAU1)*DEXP(TAU2))
VSHIFT = 9.3 * DLOG((44./CACONC))
V = V + VSHIFT
kkkkk ERROR TRAP FOR V = 10 mV kkkkk

IF(V.GT.9.999.AND.V.LT.10.001)THEN 
ALPHA(1) =0.1 

ELSE
ALPHA(1) = (0.01*(10.-V))/(DEXP(0.1*(10.-V))-1.)END IF
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Q ***** ERROR TRAP FOR V = 25mV *****
c

IF(V.GT.24.999.AND.V.LT.25.001)THEN 
ALPHA(2) = 1.0 

ELSE
ALPHA(2) = (0.1*(25.-V))/(EXP(0.1*(25.-V))-1.)

END IF
C

BETA(1) = 0.125*DEXP(-V/80.)
BETA(2) = 4.*DEXP(-V/18.)
ALPHA(3) = 0.07*DEXP(-V/20.)
BETA(3) = 1./(DEXP(0.1*(30.-V))+1.)

C
Q ***** TEMPERATURE COMPENSATION *****
C

DO 30 1-1,3
ALPHA(I) = ALPHA(I)*QTEN 
BETA(I) = BETA(I)*QTEN 

30 CONTINUE 
C
Q ***** CALCULATE THE CONDUCTANCES *****
C

GK = GKMAX*(N**4)
GNA = GNAMAX*(M**3)*H

C
Q ***** CALCULATE THE DERIVATIVES *****
C

V = V - VSHIFT
C

VDOT = (-1./MEMCAP)*(GK*(V-VK)+GNA*(V-VNA)+GLMAX*(V-VL))
C

NDOT = ALPHA(1)*(1-N)-BETA(1)*NC
MDOT = ALPHA(2)*(1-M)-BETA(2)*M

C
HDOT = ALPHA(3)*(1-H)-BETA(3)*H

C
C ***** PLACE THESE VALUES IN AN ARRAY FOR CONVENIENCE ***** 
C

DYARRY(1) = VDOT 
DYARRY(2) = NDOT 
DYARRY(3) = MDOT 
DYARRY(4) = HDOT

C
RETURN
END

C
C
C
C
C
C
C
C
c 
c 
c 
c
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Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c ** OUTPUT SUBROUTINE : THIS SUBROUTINE WRITES THE ** 
C ** CALCULATED VALUES OF THE VOLTAGE AND TIME TO A ** 
C ** DATA FILE CREATED ON A FLOPPY DISC. **
Q *******************************************************
c

SUBROUTINE OUTPUT(DATFIL,ARYCNT,CONSTS)
C

DOUBLE PRECISION CONSTS(4)
REAL DATFIL(10000,2)
INTEGER ARYCNT,ERROR
CHARACTER FILNAM*6,FILE*12,DATE*8

C
DATA FILE,DATE/'AiFILNAM.DAT',1DD:MM:YY1/

C
Q ***** GET THE FILE NAME AND DATE FROM USER *****
C

WRITE(*,*)'ENTER THE FILE NAME (6 CHARS) : '
READ(*,100) FILNAM

C
WRITE(*,*)'ENTER THE DATE (DD:MM:YY) : '
READ(*,400) DATE

C
FILE(3:8) = FILNAM

C
Q ***** OPEN THE FILE ON DRIVE A: *****
C

OPEN(UNIT=4,FILE=FILE,STATUS='NEW 1,1OSTAT=ERROR,
& ERR=50)

C
PAUSE 'INSERT DATA DISC THEN PRESS ENTER'

C
C ***** NOW WRITE THE ARRAY TO DISC *****
C

WRITE(4,100) FILNAM 
WRITE(4,200) DATE 
WRITE(4,600)'ARRAY SIZE'
WRITE(4,500) ARYCNT 
WRITE(4,200)'DURATION'
WRITE(4,700) CONSTS(3)
WRITE(4,600)'TEMPERATURE'
WRITE(4,700) CONSTS(1)
WRITE(4,200)'STIMULUS'
WRITE(4,700) CONSTS(4)
DO 20 1=1,ARYCNT
WRITE(4,300) DATFIL(I,1),DATFIL(I,2)

20 CONTINUE 
C
C ***** ERROR HANDLING ROUTINE *****
C
50 IF(ERROR.EQ.2009)THEN

WRITE(*,*)'INCORRECT STATUS ARGUMENT'
ELSE IF(ERROR.EQ.2011)THEN

WRITE(*,*)'RECORD LENGTH SPECIFIER TOO LARGE'
ELSE IF(ERROR.EQ.2013)THEN

WRITE(*,*)'FILENAME HAS BEEN USED BEFORE'
ELSE IF(ERROR.EQ.2014)THEN

WRITE(*,*)'FILENAME NOT SPECIFIED'
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END IF
CC ***** FORMAT STATEMENTS *****
C
100 FORMAT(A6)
200 FORMAT(A8)
300 FORMAT(F10.6, 5X,F10.6)
400 FORMAT(A8)
500 FORMAT(15)
600 FORMAT(All)
700 FORMAT(DIO.5)
CC ***** CLOSE FILE *****
C

CLOSE(UNIT=4)
C

RETURN
END
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INAOXY
This program simulates the sodium current recorded from 

the oxytocin-secreting cell. It is based upon data obtained 
by Cobbett (personal communication). The simulation is of a 
voltage-claitip experiment whereby a step input voltage is 
applied to the model equations and the resulting current is 
calculated.

It is an ACSL-based model and is run by simply invoking 
the file name from within the ACSL environment. As is normal 
with ACSL models, the prepare list must be set up before 
running the program. There is a set of default values for all 
the main model parameters so these do not need setting up in 
order to produce results. In an ACSL program all the main 
variables may be set to desired values which allows a series 
of simulations to be performed using different starting 
conditions and model parameters.

Using the plotting commands and selection of variables 
using the prepare list, any variable may be plotted as a 
function of time or any variable may be plotted as a function 
of any other variable.
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PROGRAM INAOXY
INITIAL
$»» Set UP THE INITIAL CONDITIONS
REAL M , MDOT , H , HDOT , ALPHAM , BETAM , VDRIV
REAL V , ALPHAH , BETAH , VSTIM , INA , MIC , HIC
REAL K1 , K2 , K3 , K4
CONSTANT VNA = 43.6E-3 , GNABAR = 19.8E-9 , TSTP = 10.0E-3
CONSTANT VSTIM = 20.0E-3 , VHOLD = -80.0E-3 , K1 = 0.0
CONSTANT K2 = 0.0 , K 3 =  0.0 , K4 = 0.0 , TEMP =20.0
QTEN = 3.0**((TEMP - 20.0)/10.0)
ALPHAM = 6400.0/(0.02*(EXP(-100.0*(VHOLD+K1))) + 1.0)*QTEN
BETAM = 5.0*EXP(-(VHOLD+K2)/0.015)*QTEN
ALPHAH = 45.0*EXP(-(VHOLD+K3)/0.02)*QTEN
BETAH = 2250.0/(0.08*EXP(-92.5*(VHOLD+K4))) + 1.0)*QTEN
MIC = ALPHAM/(ALPHAM + BETAM)
HIC = ALPHAH/(ALPHAH + BETAH)
VDRIV = (VHOLD + VSTIM) - VNA
V = VHOLD + VSTIM
ALPHAM = 6400.0/(0.02*(EXP(-100.0*(V+K1))) + 1.0)*QTEN
BETAM = 5.0*EXP(-(V+K2)/Q.015)*QTEN
ALPHAH = 45.0*EXP(-(V+K3)/0.02)*QTEN
BETAH = 2250 . 0/(0 . 08*EXP(*-92 . 5*(V+K4)) ) + 1.0)*QTEN
END $"OF INITIAL SECTION"
DYNAMIC
IALG = 5
NSTEPS NSTP = 1 
MAXTERVAL MAXT = 1.0E-4 
MINTERVAL MINT = 1.0E-6 
CINTERVAL CINT = 5.0E-5
DERIVATIVE
MDOT = ALPHAM - (ALPHAM + BETAM) * M
HDOT = ALPHAH - (ALPHAH + BETAH) * H
M = INTEG(MDOT , MIC)
H = INTEG(HDOT , HIC)
END $"OF DERIVATIVE SECTION"
INA = GNABAR*(M**3)*H*VDRIV
TERMT(T .GE. TSTP)
END $"OF DYNAMIC SECTION"
END $"OF PROGRAM"
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IKOXY
This program simulates the delayed rectifier potassium 

current recorded in the oxytocin-secreting cell. It is based 
upon data obtained by Cobbett et al. As with the sodium 
current, the program performs a simulation of a voltage-clemp 
experiment which allows the user to compare the calculated 
results with the experimentally recorded results. The model 
parameters are easily changed which allows the user to 
experiment with different values of the conditions (stimulus 
voltage, temperature).
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PROGRAM IKOXY 
INITIAL

"----  SET UP THE INITIAL CONDITIONS
REAL N, NDOT , ALPHAN , BETAN 
REAL VSTIM , IK , VDRIV , V , QTEN
CONSTANT VK = -83.0E-3 ,GKBAR = 4.09E-9 ,TSTP = 10.0E-3 
CONSTANT VSTIM = 20.0E-3 , VHOLD = -40.0E-3 
CONSTANT TEMP = 20.0
QTEN = 3.0**((TEMP - 20.0)/10)
ALPHAN = 600.0 /(EXP(600.0*(0.0-0.l*VHOLD)) +1.0)*QTEN 
BEtAN = 30.0(EXP(-VHOLD/O.02)) * QTEN 
NIC = ALPHAN/(ALPHAN + BETAN)
V = VHOLD + VSTIM 
VDRIV = V - VK
ALPHAN = 600.0/(EXP(600.0*(0.0-0.1*V)) +1.0)*QTEN 
BETAN = 30.0*(EXP(-V/0.02))*QTEN

END $"OF INITIAL SECTION"
DYNAMIC

IALG = 5 
NSTEPS NSTP = 1  
MAXTERVAL MAXT = 1.0E-4 
MINTERVAL MINT = 1.0E-6 
CINTERVAL CINT = 5.0fe-4 

DERIVATIVE
NDOT = ALPHAN - (ALPHAN + BETAN)
N = INTEG(NDOT , NIC)

END $"OF DERIVATIVE SECTION"
IK = GKBAR*(N**3)*VDRIV 
TERMT(T ;GE. TSTP)

END $"OF DYNAMIC SECTION"
END $"OF PROGRAM"
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IKTRAN
This program performs a simulation of a voltage-clamp 

experiment involving the transient potassium current recorded 
by Cobbett et al.
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PROGRAM IKTRAN
INITIAL

" SET UP THE INITIAL CONDITIONS "
REAL M, MDOT, H, HDOT, ALPHAM, BETAM
REAL ALPHAH, BETAH, VSTIM, IA, MIC, HIC, VDRIV
CONSTANT VK = -80.0E-3, GABAR = 5.9E-9, TSTP = 10.0E-3 
CONSTANT VSTIM = 20.0E-3, VHOLD = -100.0E-3
ALPHAM = 2200/(EXP(2200*(8.0E-5-0.025*VHOLD)) + 1.0) 
BETAM = 80*EXP(-VHOLD/O.03)
ALPHAH = 26*EXP(-VHOLD/O.076)
BETAH = 70/(EXP(70*(17.0E-3-0.85*VHOLD)) + 1.0)
MIC = ALPHAM/(ALPHAM + BETAM)
HIC = ALPHAH/(ALPHAH + BETAH)
VDRIV = VSTIM - VK
ALPHAM = 2200/(EXP(2200*(8.0E-5-0.025*VSTIM)) + 1.0) 
BETAM = 80*EXP(-VSTIM/0.03)
ALPHAH = 26*EXP(-VSTIM/0.076)
BETAH = 70/(EXP(70*(17.0E-3-0.85*VSTIM)) + 1.0)

END $"OF INITIAL SECTION"
DYNAMIC

IALG
NSTEPS NSTP 
MAXTERVAL MAXT 
MINTERVAL MINT 
CINTERVAL CINT

DERIVATIVE
MDOT = ALPHAM - (ALPHAM + BETAM) * M
HDOT = ALPHAH - (ALPHAH + BETAH) * H
M = INTEG(MDOT , MIC)
H = INTEG(HDOT , HIC)

END $"OF DERIVATIVE SECTION"
IA = GABAR*(M**4)*H*VDRIV
TERMT(T .GE. TSTP)

END $"OF DYNAMIC SECTION"
END $"OF PROGRAM"

= 5 
= 1
= 1.0E-4 
= 1.0E-6 
= 5.0E-4
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HENZAK
This program uses the equations for calcium current in 

crayfish as provided by Hencek and Zachar. The variable names 
are generally self-explanatory, Hencek and Zachar's notation 
has been used. The only variable name that warrants 
explanation is X and this was used as a matter of convenience 
only. The original equation was too long to fit comfortably 
on one line and so has been split up. X therefore is an 
intermediate variable. The units used are millivolts and 
milliseconds as used by Hencek and Zachar.
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PROGRAM HENZAK 
INTITIIAL

"-----  SET UP THE INITIAL CONDITIONS ----
REAL M, MDOT, H, HDOT, ALPHAM, BETAM, VDRIV, V 
REAL ALPHAH, BETAH, VSTIM, ICA, MIC, HIC
CONSTANT VCA=85.0, GCABAR=15.0, TSTP=10.0 
CONSTANT VSTIM=20.0, VHOLD=-80.0 
CONSTANT TEMP=20.0
QTEN = 3.0**((TEMP - 20.0)/10.0)
X = 1.0 - EXP(-(VHOLD+52.45)/10.5)
ALPHAM = (0.0051*(VHOLD+52.45)/X) * QTEN
BETAM = 0.024*EXP(-(VHOLD+52.45)/20.7) * QTEN
ALPHAH = 0.0097*EXP(-(VHOLD+42.2)/13.4) * QTEN
BETAH = 0.117/(EXP(-(VHOLD+42.2)/8.5) * QTEN
MIC = ALPHAM/(ALPHAM + BETAM)
HIC = ALPHAH/(ALPHAH + BETAH)
VDRIV = (VHOLD + VSTIM) - VCA
V = VHOLD + VSTIM
X = 1.0 - EXP(-(V+52.45)/10.5)
ALPHAM = (0.0051*(V+52.45)/X) * QTEN
BETAM = 0.024*EXP(-(V+52.45)/20.7) * QTEN
ALPHAH = 0.0097*EXP(-(V+42.2)/13.4) * QTEN
BETAH = 0.117/(EXP(-(V+42.2)/8.5) * QTEN
END $"OF INITIAL SECTION"
DYNAMIC
DERIVATIVE

M6 = M**6
ICA = GCABAR*M6*H*VDRIV
MDOT = ALPHAM - (ALPHAM + BETAM) * M 
HDOT = ALPHAH - (ALPHAH + BETAH) * H
M = INTEG(MDOT , MIC)
H = INTEG(HDOT , HIC)

END $"OF DERIVATIVE SECTION" 
TERMT(T .GE. TSTP)

END $"OF DYNAMIC SECTION"
END $"OF PROGRAM"
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OXYMODEL
This is the initial model of the oxytocin-secreting cell 

coded using ACSL. It includes the calcium current model 
provided by Hencek and Zachar1s equations and the change in 
calcium concentration as used by Rinzel et al. The calcium- 
dependent potassium current model is also based on the 
equations used by Rinzel et al. Sodium current, potassium 
current and transient potassium current models are based upon 
data provided by the work of Cobbett et al.
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PROGRAM OXYMODEL
REAL M , MDOT , H , HDOT , ALPHAM , BETAM , V , VDOT 
REAL ALPHAH , BETAH , VSTIM , INA , MIC , HIC , PIC 
REAL QIC , N , NDOT , ALPHAN , BETAN , ALPHAP , BETAP 
REAL IA , IK , P , PDOT , Q , QDOT , ALPHAQ , BETAQ 
REAL IT , IL , QTEN , CACONC , CADOT , ICA , FDOT 
REAL D , DDOT , ALPHAD , BETAD , ALPHAF , BETAF
CONSTANT VNA = 43.6E-3 , GNABAR = 19.8E-9 , TSTP = 10.0E-3
CONSTANT VK = -83.0E-3 , GKBAR = 4.09E-9 , GABAR = 5.9E-9
CONSTANT CM = 7.3E-12 , GLBAR = 2.19E-9 , VL = 10.0E-3
CONSTANT ER = -75.0E-3 , VSTIM = 20.0E-3 , VSHIFT =0.0
CONSTANT GKCABAR = 30.0E-9 , TEMP = 20.0 , KD = 100.0E-6
CONSTANT GCABAR = 109.5E-9 , KCA = 30.0 , ALPHA = 1.95E3
CONSTANT MULF = 0.001 , KCA = 30.0 , VCA = 85.0E-3
CONSTANT CAIC = 1.0E-6
INITIAL "----  SET UP INITIAL CONDITIONS ---- "
QTEN = 3.0**((TEMP - 20.0)/10.0)
ALPHAM = (6400.0/(0.02*(EXP(-100.0*ER)) + 1.0))*QTEN
BETAM = (5.0*EXP((-ER/0.015))*QTEN
ALPHAH = (45.0*EXP(-ER/0.02))*QTEN
BETAH = (2250.0/(0.08*EXP(-92.5*ER))+1.0))*QTEN
ALPHAN = (600.0/(EXP*(0.0-0.1*ER))+1.0))*QTEN
BETAN = (30.0*(EXP(-ER/0.02)))*QTEN
ALPHAP = (2200.0/(EXP(2200.0*(8.0E-5-0.025*ER))+1.0))*QTEN 
BETAP = (80.0*EXP(-ER/0.03))*QTEN 
ALPHAQ = (26.0*EXP(-ER/0.076))*QTEN
BETAQ = (70.0/(EXP(70.0*(17.OE-3 - 0.85*ER))+1.0)*QTEN
ALPHAD=(5.l*ER-0.053)/(l.0-EXP(-((ER+0.053)/0.0105))))*QTEN
BETAD = (24.4*EXP(-((ER+0.053)/0.0207)))*QTEN
ALPHAF = (9.7*EXP(-((ER+0.0422)/0.0134)))*QTEN
BETAF = (117.0/(1.0+EXP(-((ER+0.0422)/0.00854)))))*QTEN
MIC = ALPHAM/(ALPHAM+BETAM)
HIC = ALPHAH/(ALPHAH+BETAH)
NIC = ALPHAN/(ALPHAN+BETAN)
PIC = ALPHAP/(ALPHAP+BETAP)
QIC = ALPHAQ/(ALPHAQ+BETAQ)
DIC = ALPHAD/(ALPHAD+BETAD)
FIC = ALPHAF/(ALPHAF+BETAF)
VIC = ER +VSTIM
END $"OF INITIAL SECTION"
DYNAMIC
IALG = 5 
NSTEPS NSTP = 1 
MAXTERVAL MAXT = 1.0E-4 
MINTERVAL MINT = 1.0E-7 
CINTERVAL CINT = 5.0E-5
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DERIVATIVE
PROCEDURAL

INA = GNABAR*(M**3)*H*(V-VNA)
IA = GABAR*(P**4)*Q*(V-VK)
IK = GKBAR*(N**3)*(V-VK)
IL = GLBAR*(V-VL)
ICA = GCABAR*(D**6)*F*(V-VCA)
IKCA = GKCABR*(CACONC/(CACONC+KD))*(V-VK)
IT = INA + IA + IK + IK + IL + ICA + IKCA
MDOT = ALPHAM - (ALPHAM + BETAM) * M
HDOT = ALPHAH - (ALPHAH + BETAH) * H
NDOT = ALPHAN - (ALPHAN + BETAN) * N
PDOT = ALPHAP - (ALPHAP + BETAP) * P
QDOT = ALPHAQ - (ALPHAQ + BETAQ) * Q
DDOT = ALPHAD - (ALPHAD + BETAD) * D
FDOT = ALPHAF - (ALPHAF + BETAF) * F
CADOT = MULF * (-ALPHA*ICA - KCA * CACONC)
VDOT = -1/CM * IT
M = INTEG(MDOT , MIC)
H = INTEG(HDOT , HIC)
N = INTEG(NDOT , NIC)
P = INTEG(PDOT , PIC)
Q = INTEG(QDOT , QIC)
D = INTEG(DDOT , DIC)
F = INTEG(FDOT , FIC)
CACONC = INTEG(CADOT , CAIC)
V = INTEG(VDOT , VIC)
V = V + VSHIFT
ALPHAM = (6400.0/(0.02*(EXP(-100.0*V)) + 1.0))*QTEN
BETAM = (5.0*EXP((-V/0.015))*QTEN
ALPHAH = (45.0*EXP(-V/0.02))*QTEN
BETAH = (2250.0/(0.08*EXP(-92.5*V))+1.0))*QTEN
ALPHAN = (600.0/(EXP*(0.0-0.1*V))+1.0))*QTEN
BETAN = (30.0*(EXP(-ER/0.02)))*QTEN
ALPHAP = (2200.0/(EXP(2200.0*(8.0E-5-0.025*V))+1.0))*QTEN 
BETAP = (80.0*EXP(-V/0.03))*QTEN 
ALPHAQ = (26.0*EXP(-V/0.076))*QTEN
BETAQ = (70.0/(EXP(70.0*(17.OE-3 - 0.85*V))+1.0)*QTEN
ALPHAD = (5.l*V-0.053)/(1.0-EXP(-((V+0.053)/0.0105))))*QTEN
BETAD = (24.4*EXP(-((V+0.053)/0.0207)))*QTEN
ALPHAF = (9.7*EXP(-((V+0.0422)/0.0134)))*QTEN
BETAF = (117.0/(1.0+EXP(-((V+0.0422)/0.00854)))))*QTEN
V = V - VSHIFT
END $"OF PROCEDURAL BLOCK"
END $"OF DERIVATIVE SECTION"
TERMT(T .GT. TSTP)
END $"OF DYNAMIC SECTION"
END $"OF PROGRAM"
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PROGRAM BASICMODEL
REAL M , MDOT , H , HDOT , ALPHAM , BETAM
REAL ALPHAH , BETAH , VSTIM , INA , MIC , HIC
REAL N , NDOT , ALPHAN , BETAN , IK , IL , IT , QTEN
CONSTANT VNA = 43.6E-3 , GNABAR = 19.8E-9 , TSTP = 10.0E-3 
CONSTANT KV = -83.0E-3 , GKBAR = 4.09E-9 , TEMP =20.0 
CONSTANT CM = 7.3E-12 , GLBAR = 2.19E-9 , VL = 10.59E-3 
CONSTANT ER = -75.0E-3 , VSTIM = 20.0E-3 , VSHIFT =0.0
INITIAL " SET UP THE INITIAL CONDITIONS "
QTEN = 3.0**((TEMP - 20.0)/10.0)
ALPHAM = (6400.0/(0.02*EXP(-100.0*ER))+1.0)*QTEN
BETAM = (5.0*EXP(-ER/0.015))*QTEN
ALPHAH = (45.0*EXP(-ER/0.02))*QTEN
BETAH = (22500.0/(0.08*(EXP(-92.5*ER)) + 1.0)*QTEN
ALPHAN = (600.0/(EXP(600.0*(Q.0-0.1*ER))+l.0)*QTEN
BETAN = (30.0*EXP(-ER/0.02)))*QTEN
MIC = ALPHAM/(ALPHAM+BETAM)
HIC = ALPHAH/(ALPHAH+BETAH)
NIC = ALPHAN/(ALPHAN+BETAN)
VIC = ER + VSTIM
END $"OF INITIAL SECTION"
DYNAMIC

IALG = 5 
NSTEPS NSTP = 1 
MAXTERVAL MAXT = 1.0E-4 
MINTERVAL MINT = 1.0E-7 
CINTERVAL CINT = 5.0E-5

DERIVATIVE
PROCEDURAL

INA = GNABAR*(M**3)*H*(V-VNA)
IK = GKBAR*(N**3)*(V-VK)
IL = GLBAR*(V-VL)
IT = INA + IK + IL
MDOT = ALPHAM - (ALPHAM+BETAM)*M 
HDOT = ALPHAH - (ALPHAH+BETAH)*H 
NDOT = ALPHAN - (ALPHAN+BETAN)*N 
VDOT = -1/CM * IT

INTEG(MDOT , MIC)
INTEG(HDOT , HIC)
INTEG(NDOT , NIC)
INTEG(VDOT , VIC)
V + VSHIFT
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ALPHAM = (6400.0/(0.02*EXP(-100.0*ER))+1.0)*QTEN
BETAM = (5.0*EXP(-ER/0.015))*QTEN
ALPHAH = (45.0*EXP(-ER/0.02))*QTEN
BETAH = (22500.0/(0.08*(EXP(-92.5*ER)) + 1.0)*QTEN
ALPHAN = (600.0/(EXP(600.0*(0.0-0.1*ER))+1.0)*QTEN
BETAN = (30.0*EXP(-ER/0.02)))*QTEN
V = V - VSHIFT
END $"OF PROCEDURAL BLOCK"
END $"OF DERIVATIVE SECTION"

TERMT(T .GT. TSTP)
END $"OF DYNAMIC SECTION"
END $"OF PROGRAM"

A42



RINZEL
This program was written in order to duplicate and 

verify the model of the pancreatic beta cell as derived by 
Rinzel et al. The equations are taken from the papers cited 
in the main body of this thesis. The model as written 
initially did not reproduce Rinzel's results but after tuning 
the model parameters, the desired bursting behaviour was 
observed. The model variables are generally self-explanatory 
and Rinzel's notation has been adhered to generally.
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PROGRAM RINZEL
REAL T , ALPHAM , ALPHAN , ALPHAH , BETAM , BETAN , BETAH 
REAL NDOT , CADOT , VDOT , V , CACONC , N , M , H
CONSTANT RECIPC = -1.0E-6 , VCA = 100.0E-3 , VK = -75.0E-3 
CONSTANT VL = -40.0E-3 , GCABAR = 1.79934E-3 
CONSTANT GKBAR = 1.69765E-3
CONSTANT GKCABR = 0.0104998E-3 , GLBAR = 0.00698514E-3 
CONSTANT LAMBDA = 0.3 , KCA = 0.00513 , F = 0.0058 
CONSTANT ALPHA = 0.0259102 , VREST = -60.0E-3 , CIC = 0.4E-6 
CONSTANT TSTP = 20.0E-3
INITIAL

"SET UP THE INITIAL CONDITIONS"
V = VREST
VSTIM = 20.0E-3
ALPHAN = 0.01*(-V-20.0)/(EXP(0.1*9-V-20.0)) - 1.0) 
ALPHAM = 0.1*(-V-25.0)/(EXP(0.1*(-V-25.0)) - 1.0) 
ALPHAH = 0.07 * EXP((-V-50.0)/20.0)
BETAN = 0.125 * EXP((-V-30.0)/80.0)
BETAM = 4.0 * EXP((-V-50.0)/18.0)
BETAH = 1.0/(EXP((-V-30.0)/80.0) + 1.0)
NIC = ALPHAN/(ALPHAN + BETAN)
VIC = VREST + VSTIM

END
DYNAMIC

IALG
NSTEPS NSTP 
MAXTERVAL MAXT 
MINTERVAL MINT 
CINTERVAL CINT

DERIVATIVE
M = ALPHAM/(ALPHAM + BETAM)
H = ALPHAH/(ALPHAH + BETAH)
NDOT = LAMBDA * (ALPHAN - (ALPHAN + BETAN) * N) 
CADOT = F * (ALPHA * ICA - KCA * CACONC)
VDOT = RECIPC * (ICA + IK + IKCA + IL)
CACONC = INTEG(CACONC , CIC)
V = INTEG(VDOT , VIC)
N = INTEG(NDOT , NIC)
ICA = GCABAR * ((M**3) * H) * (V - VCA)
IK = GKBAR * (N**4) * (V - VK)
IKCA = GKCABR * (CACONC/(CACONC +1)) * (V - VK)
IL = GLBAR * (V - VL)

= 5 
= 1
= 1.0E-4 
= 1.0E-6 
= 5.0E-5
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ALPHAN = 0.01*(-V-20.0)/(EXP(0.1*(-V-20.0)) - 1.0) 
BETAN = 0.125 * EXP((-V-30.0)/80.0)
ALPHAM = 0.1*(-V-25.0)/(EXP(0.1*(-V-25.0)) - 1.0) 
BETAM = 4.0 * EXP((-V-50.0)/18.0)
ALPHAH = 0.07 * EXP((-V-50.0)/20.0)
BETAH = 1.0/(EXP(0.1*(-V-20.0)) + 1.0)

END $"OF DERIVATIVE SECTION"
TERMT(T .GE. TSTP)

END $"OF DYNAMIC SECTION"
END $"OF PROGRAM"
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PROGRAM BETACELL
" This program is based upon a model described in a paper by 
" Arthur Sherman , John Rinzel and Joel Keizer entitled :
" EMERGENCE OF ORGANIZED BURSTING IN CLUSTERS OF PANCREATIC 
" BETA CELLS BY CHANNEL SHARING "
REAL V , VDOT , CACONC , CADOT , N , NDOT , M , H , TAUN 
REAL GKCA , IK , ICA , IKCA , NSS
CONSTANT VIC = -65.0E-3 , CAIC = 0.6E-6 
CONSTANT LAMDA = 1.7 , KCA = 30.0 , F = 0.001 
CONSTANT ALPHA = 4506.2 , GKCAMX = 30.0E-9 , KD = 100.0E-6 
CONSTANT INVCAP = -1.88E11 , VK = -75.OE-3 , VCA = 110.0E- 
CONSTANT TSTP = 20.0 , GKMAX = 2.5E-9 , GCAMAX = 1.4E-9
INITIAL
NIC = 1.0/(1.0 + EXP((-15.OE-3 - VIC)/5.6E-3)) 
V = VIC
END $"OF INITIAL SECTION" 
DYNAMIC
ALGORITHM IALG = 4 
NSTEPS NSTP = 1 
CINTERVAL CINT = 1.0E-5 
MINTERVAL MINT = 1.0E-7 
MAXTERVAL MAXT = 1.0E-4
DERIVATIVE
V = INTEG(VDOT , VIC)
N = INTEG(NDOT , NIC)
CACONC = INTEG(CADOT , CAIC)
M = 1.0/(1.0 + EXP((4.OE-3 - V)/14.0E-3))
H = 1.0/(1.0 + EXP((V + 10.OE-3)/10.OE-3))
NSS = 1.0/(1.0 + EXP((-15.OE-3 - V)/5.6E-3))
TAUN = 60.OE-3/(EXP((V + 75.OE-3)/65.OE-3 ) + ... 
EXP(-(V + 75.OE-3)/20.OE-3))
GKCA = GKMAX * ( CACONC/(CACONC + KD))
IK = GKMAX * N * (V -VK)
ICA = GCAMAX * M * H * (V - VCA)
IKCA = GKCA * (V - VK)
NDOT = LAMDA * ((NSS - N )/TAUN)
CADOT = F * (ALPHA * ICA - KCA * CACONC)
VDOT = INCAP * (IK + ICA + IKCA)
END $"OF DERIVATIVE"
TERMT(T .GE. TSTP) 
END $"OF DYNAMIC" 
END $"OF PROGRAM"



Levenberg-Marquardt Curve Fitting Program
This program is based on the programs given in 

"Numerical Recipes" (Press, Flannery, Teukolsky and 
Vetterling 1986).

The function to which the data is to be fitted is 
defined in the subroutine FUNCS. A different subroutine has 
to be written for each new function. The name must be as 
given.

The data points are written into the main program LEVDRV 
in a DATA statement. This approach was taken since there was 
not a great number of points to be fitted. An alternative 
where the number of data points is large, is to read the data 
in from a disk file or from the keyboard. It was thought the 
extra programming effort required to incorporate this feature 
would not give any significant improvement in the use of the 
program.

To use the program, the fitting function has to be 
defined in the appropriate subroutine and the data points 
inserted into the DATA statement. The suite of programs are 
then recompiled and linked as necessary. Putting the data 
points, the vector of initial values for the parameters and 
the function into the program makes execution of the program 
simple. The executable file is simply run, and the updated 
parameters are displayed on the monitor at the end of each 
iteration. Once a minimum has been found, execution ceases 
and the final list of parameters on screen are those that 
have been found to give the best fit. Also displayed are the 
uncertainties but these are meaningless since the sigma 
values are all set to one in the program. This means that all 
the data points are given equal weight during the fitting 
process.
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Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * LEVENBERG-MARQUARDT PROGRAM TO FIND *
C * THE PARAMETERS THAT GIVE THE BEST FIT*
C * OF A GIVEN FUNCTION TO A SET OF DATA *
C * POINTS. *
C * THE PROGRAM CONSISTS OF THIS MAIN *
C * PROGRAM AND THE SUBROUTINES MRQMIN *
C * MRQCOF, COVSRT,FUNCS AND GAUSSJ. *
£  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
c
PROGRAM LEVDRV

C
EXTERNAL FUNCS

C
PARAMETER(NPT = 7,MA = 3)

C
DIMENSION X(NPT),Y(NPT),SIG(NPT),A(MA),LISTA(MA),

& COVAR(MA,MA),ALPHA(MA,MA),GUES(MA)
C

DATA Y/116.,186.,236.,331.,447.,544.,625./
DATA GUES/615.,1.,59./
DATA X/-0.02,-0.01,0.0,0.01,0.02,0.03,0.05/

C
Q ***** SET SIGMA VALUES TO 1.0 *****
C

DO 10 1=1,NPT
SIG(I) = 1.0

10 CONTINUE
C

MFIT = MA
C

DO 20 1=1,MFIT
LISTA(I) = I

20 CONTINUE
C

ALAMDA = -1 
DO 30 1=1,MA

A(I) = GUES(I)
30 CONTINUE
C

CALL MRQMIN(X,Y,SIG,NPT,A,MA,LISTA,MFIT,COVAR,
& ALPHA,MA,CHISQ,FUNCS,ALAMDA)
C

K=1
ITST=0

40 WRITE(*,'(/1X,A,I2,T18,A,F10.4,T43,A,E9.2)1)
& 'ITERATION #',K,'CHI-SQUARED:',CHISQ,'ALAMDA',ALAMDA

WRITE(*,'(1X,T5,A,T13,A,T21,A)’)'A(l)','A(2)','A(3)' 
WRITE(*,'(IX,3F8.4)') (A(I),I=1,3)
K=K+1

C
OCHISQ=CHISQ

C
CALL MRQMIN(X,Y,SIG,NPT,A,MA,LISTA,MFIT,COVAR,ALPHA,

& MA,CHISQ,FUNCS,ALAMDA)
C

IF (CHISQ.GT.OCHISQ) THEN 
ITST=0
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C6 
U

ELSE IF (ABS(OCHISQ-CHISQ).LT.0.1) THEN 
ITST=ITST+1

END IF
IF (ITST.LT.2) THEN 

GOTO 40
ENDIF
ALAMDA=0.0

C
CALL MRQMIN(X,Y,SIG,NPT,A,MA,LISTA,MFIT,COVAR,ALPHA, 

MA,CHISQ,FUNCS,ALAMDA)
WRITE(*,*) 'UNCERTAINTIES:'
WRITE(*,'(IX,3F8.4/)') (SQRT(COVAR(I,I)),1=1,3)
END
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Q •k 'k it id c 'k 'k 'k 'fc k 'k 'k 'k 'k 'k ic k 'k 'k ^ k 'k 'k 'k 'k 'k 'k 'k 'k ic k ^ t 'k ^ 'k 'k 'k 'k 'k 'k 'k 'k 'k 'k 'k -k 'k 'k 'k ^ c 'k 'k ic 'k

C * This subroutine MRQMIN does the actual work of *
C * minimizing the least squares fit of the function *
C * to the data points. *
Q  'k -k 'k -k -k -k X 'k jc k 'k 'k -k ic 'k J c k 'k jc jc 'k J c jc 'k fc -k -k -k 'k 'k -k jc k 'k 'k jc jc -k 'k 'k 'k 'k -k -k jc k 'k -k ic J c k lc 'k

SUBROUTINE MRQMIN(X,Y,SIG,NDATA,A,MA,LISTA,MFIT,
& COVAR,ALPHA,NCA,CHISQ,FUNCS,ALAMDA)

PARAMETER (MMAX=20)
DIMENSIOK(NDATA),Y(NDATA),SIG(NDATA),A(MA),LISTA(MA), 

& COVAR(NCA,NCA),ALPHA(NCA,NCA),ATRY(MMAX),
& BETA(MMAX),DA(MMAX)
C

IF(ALAMDA.LT.0.)THEN 
KK=MFIT+1 
DO 12 J=1,MA 

IHIT=0
DO 11 K=1,MFIT

IF(LISTA(K).EQ.J)IHIT=IHIT+1
11 CONTINUE

IF (IHIT.EQ.O) THEN 
LISTA(KK)=J 
KK=KK+1 

ELSE IF (IHIT.GT.l) THEN
PAUSE 'Improper permutation in LISTA'

ENDIF
12 CONTINUE

IF (KK.NE.(MA+1)) PAUSE 'Improper permutation in 
& LISTA'

ALAMDA=0.001
CALL MRQCOF(X,Y,SIG,NDATA,A,MA,LISTA/MFIT,ALPHA,

& BETA,NCA,CHISQ,FUNCS)
C

OCHISQ=CHISQ 
DO 13 J=1,MA 

ATRY(J)=A (J)
13 CONTINUE 

ENDIF
DO 15 J=1,MFIT 

DO 14 K=1,MFIT
COVAR(J,K)=ALPHA(J,K)

14 CONTINUE
COVAR(J,J)=ALPHA(J,J)*(1.+ALAMDA)
DA(J)=BETA(J)

15 CONTINUE
CALL GAUSSJ(COVAR,MFIT,NCA,DA,1,1)
IF(ALAMDA.EQ.0.)THEN

CAL L COVSRT(COVAR,NCA,MA,LISTA,MFIT)
RETURN

ENDIF
DO 16 J=1,MFIT

ATRY(LISTA(J))=A(LISTA(J))+DA(J)
16 CONTINUE

CALL MRQCOF(X,Y,SIG,NDATA,ATRY,MA,LISTA,MFIT,
& COVAR,DA,NCA,CHISQ,FUNCS)

IF(CHISQ.LT.OCHISQ)THEN 
ALAMDA=0.1*ALAMDA 
OCHISQ=CHISQ

A50



DO 18 J=1,MFIT 
DO 17 K=1,MFIT

ALPHA(J,K)=COVAR(J,K)
17 CONTINUE 

BETA(J)=DA(J)
A(LISTA(J))=ATRY(LISTA(J))

18 CONTINUE 
ELSE

ALAMDA=10.*ALAMDA 
CHISQ=OCHISQ 

ENDIF 
RETURN 
END
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Q •k 'k 'k ^ c 'k 'k 'k 'ffk 'k 'k 'k 'k 'k 'k 'k ic ^ c k 'k id tit ic ic -k ii'k ^ t 'k 'k 'k 'k 'k 'k ic k ic 'k 'k 'k ic it 'k ifk ’k -k 'k 'k 'k 'k

C * This subroutine MRQCOF calculates the elements *
C * the alpha matrix (Hessian) and the beta vector *
C * that are used in the fitting process. *
Q  ‘k ‘k 'k -k -k ‘k j c k ‘kJck-k -k-k -k 'k lk 'k J c k ,$ck,kJf"k"k$:'k'k‘k 1 t 'k ,*:"k$:'k-k-k‘k1ck 'k"k 'k -k1 tf:'k 'k 'k 'k ik

SUBROUTINE MRQCOF(X,Y,SIG,NDATA,A,MA,LISTA,MFIT,ALPHA, 
& BETA,NALP,CHISQ,FUNCS)
C

PARAMETER (MMAX=20)
DIMENSION X(NDATA),Y(NDATA),SIG(NDATA),

& ALPHA(NALP,NALP),BETA(MA),DYDA(MMAX),
& LISTA(MFIT),A(MA)
C

DO 12 J=l,MFlT 
DO 11 K=1,J 

ALPHA(J,K)=0.
11 CONTINUE 

BETA(J)=0.
12 CONTINUE 

CHISQ=0.
DO 15 1=1,NDATA

CALL FUNCS(X(I),A,YMOD,DYDA,MA) 
SIG2I=1./(SIG(I)*SIG(I))
DY=Y (I)-YMOD 
DO 14 J=1,MFIT

WT=DYDA(LISTA(J))*SIG2I 
DO 13 K=1,J

ALPHA(J,K)=ALPHA(J,K)+WT*DYDA(LISTA(K ))
13 CONTINUE

BETA(J)=BETA(J)+DY*WT
14 CONTINUE 

CHISQ=CHISQ+DY*DY*SIG2I
15 CONTINUE

DO 17 J=2,MFIT 
DO 16 K=1,J-l

ALPHA(K,J)=ALPHA(J,K )
16 CONTINUE
17 CONTINUE 

RETURN 
END
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Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C * This subroutine is not really necessary, all * 
C * it does is to rearrange the elements in the * 
C * covariance matrix COVAR. *
Q  • k 'k 'k 'k 'k 'k 'k 'k 'k 'k X 'k 'k 'k 'k 'k 'k 'k 'k 'k tk 'k 'k 'k 'fc k i irk 'k J c 'k 'k 'k 'k 'k 'k -k 'k 'k 'k 'fc fc k jc lc k 'k 'k

SUBROUTINE COVSRT(COVAR,NCVM,MA,LISTA,MFIT) 
DIMENSION COVAR(NCVM,NCVM),LISTA(MFIT)
DO 12 J=1,MA-1 

DO 11 I=J+1,MA 
COVAR(I,J)= 0.

11 CONTINUE
12 CONTINUE

DO 14 I=1,MFIT-1 
DO 13 J=I+1,MFIT

IF(LISTA(J).GT.LISTA(I)) THEN
COVAR(LISTA(J),LISTA(I))=COVAR(I,J) 

ELSE
COVAR(LISTA(I),LISTA(J))=COVAR(I,J) 

ENDIF
13 CONTINUE
14 CONTINUE

SWAP=COVAR(1,1)
DO 15 J = 1,MA

COVAR(1,J)=COVAR(J,J)
COVAR(J,J)= 0.

15 CONTINUE
COVAR(LISTA(1),LISTA(1))=SWAP 
DO 16 J=2,MFIT

COVAR(LISTA(J),LISTA(J))=COVAR(l,J)
16 CONTINUE

DO 18 J=2,MA 
DO 17 1=1,J-l

COVAR(I,J)=COVAR(J,I)
17 CONTINUE
18 CONTINUE 

RETURN 
END
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C * This subroutine is a GAUSS-JORDAN elimination *
C * routine that is used to solve the matrix *
C * equations that arise from the fitting process.*
C Ic k 'k 'fc k 'k J c 'k 'k 'k 'k 'k 'k 'k 'ffk lc k 'k 'k 'fc 'k 'k 'k 'k 'k 'k 'k 'k ic 'k 'k 'k 'k -k -k 'k 'k 'k 'k jt jc k 'k jc k 'k J c k

SUBROUTINE GAUSSJ(A,N,NP,B,M,MP)
PARAMETER (NMAX=50)

DIMENSION A (NP,NP),B(NP,NP),IPIV(NMAX),ROWINDX(NMAX), 
& COLINDX(NMAX)

DO 11 J = 1,N 
IPIV(J)=0 

11 CONTINUE
DO 22 1 = 1, N 

BIG=0.
DO 13 J=1 ,N

IF(IPIV(J).NE.1)THEN 
DO 12 K=1,N

IF (IPIV(K).EQ.0) THEN
IF (ABS(A(J,K)).GE.BIG)THEN 
BIG=ABS(A(J,K))
IROW=J 
ICOL=K 

ENDIF
ELSE IF (IPIV(K).GT.l) THEN 

PAUSE 'Singular matrix'
ENDIF 

CONTINUE 
ENDIF 

CONTINUE
IPIV(ICOL)=IPIV(ICOL)+1 
IF (IROW.NE.ICOL) THEN 
DO 14 L = 1,N 

DUM=A(IROW, L )
A(IROW,L)=A(ICOL,L)
A (ICOL, L)=DUM 

CONTINUE 
DO 15 L=1,M 

DUM=B(IROW,L)
B(IROW,L)=B(ICOL,L)
B(ICOL, L)=DUM 

CONTINUE 
ENDIF
ROWINDX(I)=IROW 
COLINDX(I)=ICOL 

IF (A(ICOL,ICOL).EQ.0.) PAUSE 'Singular matrix.' 
PIVINV=1./A(ICOL,ICOL)
A(ICOL,ICOL)=1.
DO 16 L=1,N

A(ICOL,L)=A(ICOL,L)*PIVINV
16 CONTINUE

DO 17 L=1,M
B(ICOL,L)=B(ICOL,L)*PIVINV

17 CONTINUE
DO 21 LL=1,N

IF(LL.NE.ICOL)THEN 
DUM=A(LL,ICOL)
A(LL,ICOL)=0.

12
13

14

15
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DO 18 L=1,N
A( LL,L)=A(LL,L) - A(ICOL/L)*DUM

18 CONTINUE
DO 19 L=1,M

B(LL, L )=B(LL, L )-B(ICOL, L )*DUM
19 CONTINUE 

ENDIF
21 CONTINUE
22 CONTINUE

DO 24 L=N,1,-1
IF(ROWINDX(L).NE.COLINDX(L))THEN 
DO 23 K=1,N

DUM=A(K,ROWINDX(L)) 
A(K,ROWINDX(L))=A(K,COLINDX(L)) 
A(K,COLINDX(L))=DUM

23 CONTINUE 
ENDIF

24 CONTINUE 
RETURN 
END
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C * This subroutine is where the function to be *
C * fitted to the data is defined. *0 jc jc je jd c fc k -k -k 'k -k 'k 'k -k 'k -k -k 'k -k 'k 'k J c 'k -k 'k 'k -k -k 'k jc k 'k -fc k 'k jc k -k fd tjt 'k jfk lt 'k 'k

SUBROUTINE FUNCS(X, A , Y ,DYDA,NA)
C

DIMENSION A(NA),DYDA(NA)
C

Y=0.
ARG = EXP(-A(3)*X)
Y = A(1)/(A(2)*ARG + 1.)
DYDA(1) = 1.0/(A(2)*ARG + 1.)
DYDA(2) = (-A(1)*ARG)/(A (2)*ARG +1.)**2 
DYDA(3) = (A (1)*A (2)*A(3)*ARG)/(A (2)*ARG + 1 
RETURN 
END

. )**2
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