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ABSTRACT

Metallophthalocyanines (MPcs) are classified as an important class of conjugated 
materials and they possess several advantages attributed to their unique chemical 
structure. Carbon nanotubes (CNT), on the other hand, are known to enhance the 
properties of nano-composites in the conjugated molecules, due to their one 
dimensional electronic skeleton, high surface area and high aspect ratio. In this thesis, 
work has been carried out on the investigation of different substituted metal- 
phthalocyanines with the aim of developing novel hybrid film structures which 
incorporates these phthalocyanines and single-walled carbon nanotubes (SWCNT) 
for chemical detection applications.

Octa-substituted copper phthalocyanines (CuPcRg) have been characterised using 
UV-visible absorption spectroscopy. Obtained spectra have yielded an evidence of a 
thermally induced molecular reorganization in the films. Influence of the nature of 
substituents in the phthalocyanine molecule on the thin films conductivity was also 
investigated. Octa-substituted lead (II) phthalocyanines (PbPcRs) have also been 
characterized using UV-visible spectroscopy. Sandwich structures of ITO/PbPcRs/In 
were prepared to investigate the electronic conduction in PbPcRg. The variation in 
the J(V) behavior of the films as a result of heat treatment is expected to be caused 
by changes in the alignment inside the columnar stacking of the molecules of the 
films.

Thin films of non-covalently hybridised SWCNT and tetra-substituted copper 
phthalocyanine (Q 1PCR4) molecules have been produced. FTIR, DC conductivity, 
SEM and AFM results have revealed the n-n interaction between SWCNTs and 
CuPcR4  molecules and shown that films obtained from the acid-treated 
SWCNTs/CuPcR4  hybrids demonstrated more homogenous surface. Thin films of 
pristine Q 1PCR4  and CuPcRVSWCNT were prepared by spin coating onto gold- 
coated glass slides and applied as active layers for the detection of benzo[a]pyrene, 
pentachlorophenol (PCP), 2-chlorophenol, diuron and simazine in water as well as 
amines vapours in ambient air utilizing total internal reflection spectroscopic 
ellipsometry (TIRE) as an optical detection method.

Different concentrations of pesticides in water ranging from 1 to 25 pg/L have been 
examined. It was revealed that the shifts in A(A) spectra of CuPcRVSWCNT films 
were evidently larger than those produced by the pristine CuPcR4 films, indicating 
largely improved films’ sensitivity of the hybrid films.

Adsorption of amines onto films' surfaces has been realised by monitoring changes 
in the phase shift (A(A)) of TIRE. Methylamine has shown higher sensitivity and 
lower response time among the studied amines. For all amines vapours, the 
sensitivity of SWCNT/CuPcR4  hybrid films was higher than the sensitivity of 
pristine CuPcR4  films.

Further work has been carried out on hybrids of SWCNT with zinc phthalocyanines 
(ZnPc). Thin films of pristine SWCNT and SWCNT/ZnPc hybrids were prepared by 
drop casting onto interdigitated electrodes and applied as active layers to detect 
ammonia vapor by measuring electrical resistance changes. Influence of pyrene 
substituent in the phthalocyanine ring on the hybrid formation and their sensor 
response has also been verified.

IV



ACKNOWLEDGEMENT

Without the guidance and knowledge of my director of studies, supervisors and 

colleagues this work would not have been possible. I would therefore like to thank 

them individually.

Firstly, I am grateful to my director of studies Dr. Aseel Hassan for providing 

excellent support and expert knowledge throughout the work. I greatly enjoyed the 

learning process and worthwhile research studies under him. Secondly, thanks to my 

second supervisor Dr Alexei Nabok for the kind support and ideas that made this 

work meaningful.

My sincere gratitude belongs to Dr Tamara Basova for many words of advice during 

my study.

Thanks to PhD colleagues and friends for making life interesting during many hours 

underground in the laboratory. Thanks are also due to all MERI staff and technicians 

who were always of assistance.

Sincere thanks to my parents and family in Iraq who encouraged and supported me 

throughout the work.

I would also like to thank my financial sponsor, the Higher Committee for Education 

Development in Iraq (HCED) for the support during my PhD

Finally, special thanks to my wife, Ola, and my children, Ishaq, Ryaheen and 

Mohammed for their loving support, patience and understanding throughout the 

course of my studies. Your sacrifices allowed me to pursue this effort.

V



LIST OF ABBREVIATION

CNT Carbon nanotube

SW CNT Single-walled carbon nanotube

M W CNT M ulti-walled carbon nanotube

PCNT Pristine carbon nanotube

ATCNT Acid-treated carbon nanotube

Pc Phthalocyanine

M Pc Metal phthalocyanine

M PcR Substituted metal phthalocyanine

CuPc Copper phthalocyanine

PbPc Lead phthalocyanine

ZnPc Zinc phthalocyanine

CuPcRg Octa-substituted copper phthalocyanine

CuPcR4 Tetra- substituted copper phthalocyanine

PbPcRg Octa- substituted lead phthalocyanine

PbPcRt Tetra- substituted lead phthalocyanine

3a 2,3,9,10,16,17,23,24-O ctakis(octyloxy)phthalocyaninato copper (II)

3b 2,3,9,10,16,17,23,24-O ctakis(hexadecyloxy)phthalocyaninato copper (II)

3 c 2 ,3 ,9 ,10,16,17,23,24-O ctakis-[2-(2-(2-

methoxyethoxy)ethoxy)ethoxy]phthalocyaninato copper (II)

4a 2,3,9,10,16,17,23,24-O ctakis(octylthio)phthalocyaninato copper (II)

4b 2,3,9,10,16,17,23,24-O ctakis(hexadecylthio)phthalocyaninato copper (II)

4c 2,3 ,9 ,10,16,17,23,24-O ctakis-[2-(2-(2-

m ethoxyethoxy)ethoxy)ethylthio]phthalocyaninato copper (II)

3g 2,3,9,10,16,17,23,24-O ctakis(octyloxy)phtalocyaninato lead (II)

3h 2,3,9,10,16,17,23,24-O ctakis(hexadecyloxy)phtalocyaninato lead (II)

4g  2,3,9,10,16,17,23,24-O ctakis(octylthio)phtalocyaninato lead (II)

4h 2,3,9,10,16,17,23,24-O ctakis(n-hexadecylthio)phtalocyaninato lead (II)

Pc 1 1 (4),8( 11), 15(18),22(25)-Tetrakis-[2-(2-(2-m ethoxyethoxy)ethoxy)ethoxy]

phtalocyaninato Copper (II)

Pc2 2(3),9( 10), 16( 17),23(24)-T  etrakis-[2-(2-(2-m ethoxyethoxy)ethoxy)ethoxy]

phthalocyaninato Copper (II)

Pc3 l(4),8(ll),15(18),22(25)-T etrakis-[2-(2-(2-m ethoxyethoxy)ethoxy)ethylthio]

phthalocyaninato Copper (II)

Pc4 2(3),9( 10), 16( 17),23 (24)-T  etrakis-[2-(2-(2-m ethoxyethoxy)ethoxy)ethylthio]

phthalocyaninato Copper (II)

VI



Pc5 2(3),9( 10), 16(17),23(24)-Tetrakis(hexadecylthio) phthalocyaninato Copper (II)

Pc6 2 ,3 ,9 ,10 ,16,17-H exakis(4,7,10-trioxaundecan-1 -sulfanyl)-23(24)-( 1 -

pyrenylmethoxy) phthalocyaninato zinc (II) [Asymetrical]

Pc7 2,3,9 ,10,16,17-H exakis(4,7,10-trioxaundecan-l-sulfanyl)-23(24)-(l-

pyrenylmethoxy) phthalocyaninato zinc (II) [Symetrical]

LC Liquid crystalline

TIRE Total internal reflection ellipsometry

SPR Surface Plasmon resonance

HOMO Higher occupied molecular orbital

LUMO Lower unoccupied molecular orbital

FTIR Fourier transform infrared

AFM  Atom ic force microscopy

SEM Scanning electron microscopy

TEM Transmission electron microscopy

DCM  Dichloromethane

DMF Dimethylformamide

PCP Pentachlorophenol

2CP 2-Chlorophenol

ITO Indium-doped tin oxide

Ra Main roughness

RMS Standard deviation

Rmax Maximum height

DL Detection limit

5  Sensitivity

VII



LIST OF PUBLICATION

Journal Publications

[1] H. Banimuslem, A. Hassan, T. Basova, A.A. Esenpinar, S. Tuncel, M. Durmu§, 

A.G. Giirek, V. Ahsen, Dye-modified carbon nanotubes for the optical detection of 

amines vapours, Sensors Actuators B: Chemical. 207 (2015) 224-234.

[2] H. Banimuslem, A. Hassan, T. Basova, M. Durmus, S. Tuncel, A.A. Esenpinar, 

A.G. Giirek, V. Ahsen, Copper Phthalocyanine Functionalized Single-Walled 

Carbon Nanotubes: Thin Films for Optical Detection, Journal o f  Nanoscience and 

Nanotechnology. 15 (2015) 2157-2167.

[3] H. Banimuslem, A. Hassan, T. Basova, A.D. Giilmez, S. Tuncel, M. Durmus, 

A.G. Giirek, V. Ahsen, Copper phthalocyanine/single walled carbon nanotubes 

hybrid thin films for pentachlorophenol detection, Sensors and Actuators, B: 

Chemical. 190 (2014) 990-998.

[4] S. Tuncel, E.N. Kaya, M. Durmu§, T. Basova, A.G. Giirek, V. Ahsen, H. 

Banimuslem, A. Hassan, Distribution of single-walled carbon nanotubes in pyrene 

containing liquid crystalline asymmetric zinc phthalocyanine matrix, Dalton 

Transactions. 43 (2014) 4689-4699.

[5] E. Kaya, S. Tuncel, T. Basova, H. Banimuslem, A. Hassan, A. Gurek, V. Ahsen, 

Effect of pyrene substitution on the formation and sensor properties of 

phthalocyanine-single walled carbon nanotube hybrid, Sensors and Actuators, B: 

Chemical. 199(2014)277-283.

[6 ] T. Basova, A. Berezin, V. Nadolinny, H. Peisert, T. Chasse, H. Banimuslem, A. 

Hassan, Formation of ordered films of axially bridged aluminum phthalocyanine 

[(tBu) 4PcAl] 20  via magnetic field-induced reaction, Journal o f Chemical Physics. 

139(2013) 204710.

[7] T.V. Basova, M. £amur, A.A. Esenpinar, S. Tuncel, A. Hassan, A. Alexeyev, H. 

Banimuslem, M. Durmu§, A.G. Giirek, V. Ahsen, Effect of substituents on the 

orientation of octasubstituted copper (II) phthalocyanine thin films, Synthetic Metal. 

162 (2012) 735-742.

VIII



[8 ] S. Tuncel, H.A.J. Banimuslem, M. Durmu§, A.G. Giirek, V. Ahsen, T.V. Basova, 

A.K. Hassan, Liquid crystalline octasubstituted lead(ii) phthalocyanines: Effects of 

alkoxy and alkylthio substituents on film alignment and electrical properties, New 

Journal o f Chemistry. 36 (2012) 1665-1672.

Conferences

[1] H. Banimuslem, A. Hassan, T. Basova, Electrical and structural properties of 

copper-phthalocyanine functionalized single-walled carbon nano tubes. 14th 

International Conference on Organized Molecular Films (ICOMF14) - LB 14, Paris, 

France; 06/2012.

[2] H. Banimuslem, A. Hassan, T. Basova, Morphology and electrical properties of 

lead- and copper-phthalocyanines. UKSemiconductors 2012, The University of 

Sheffield, Sheffield, UK; 07/2012

[3] H. Banimuslem, A. Hassan, T. Basova, Tetra-substituted copper phthalocyanine 

(CuPcR4)/single-walled carbon nanotube hybrid structures: thin films’ properties and 

potential applications. Third International Conference on Multifunctional, Hybrid 

and Nanomaterials (Hybrid 2013), Sorrento, Italy; 03/2013.

[4] H. Banimuslem, A. Hassan, T. Basova, Copper phthalocyanine functionalised 

single-walled carbon nanotubes: Thin films deposition and sensing properties. Key 

Engineering Materials. 605 (2014) 461-464. 3rd International Conference on 

Materials and Applications for Sensors and Transducers, Prague, Czech Republic; 

09/2013.

[5] H. Banimuslem, A. Hassan, T. Basova, Optical Detection of Herbicides in Water 

using Dye-Modified Single Walled Carbon Nanotubes. Proceedings of the 8 th 

international conference on sensing technology, Sep. 2-4, 2014, Liverpool, UK

[6 ] H. Banimuslem, A. Hassan, T. Basova, The smart integration of carbon nanotube 

with phthalocyanines for chemical detection. Fourth International Conference on 

Multifunctional, Hybrid and Nanomaterials (Hybrid 2015), Sitges, Barcelona, Spain; 

03/2015

IX



CONTENTS

DECLARATION II

DEDICATION III

ABSTRACT IV

ACKNOWLEDGEMENT V

LIST OF ABBREVIATION VI

LIST OF PUBLICATION VIII

CONTENTS X

LIST OF FIGURES XV

LIST OF TABLES XXV

Chapter 1 Introduction 1

1.1 Background 1

1.2 Aim and objectives 3

Reference list 5

Chapter 2 Literature review 8

Chapter overview 8

2.1 Carbon nanotubes (CNT) 9

2.1.1 CNT s' structure 10

2.1.2 Production of CNTs 11

2.1.3 Modification of CNTs 13

2.2 Phthalocyanines (Pcs) 16

2.2.1 History 16

2.2.2 Emerging material 17

2.2.3 Electrical properties of Pcs 19

2.2.4 Optical properties of Pcs 22

2.3 Carbon nanotube-Phthalocyanine conjugated hybrid 24

2.3.1 Enhancement of electrical properties 25

2.3.2 Sensor applications 26

X



2.4 Total internal reflection ellipsometry (TIRE)

2.5 Theory of ellipsometry 

Reference list

29

31

36

Chapter 3 Experimental Details 47

Chapter overview 47

3.1 Experimental techniques 48

3.1.1 Total internal reflection ellipsometry (TIRE) 48

3.1.1.1 Theoretical background 48

3.1.1.2 TIRE experimental set-up 50

3.1.1.3 Experimental data fitting 52

3.1.2 UV-Visible absorption spectroscopy 53

3.1.2.1 Theoretical background 53

3.1.2.2 Instrumentation 56

3.1.3 Fourier transform infrared (FTIR) 5 6

3.1.4 Raman spectroscopy 58

3.1.5 Atomic force microscopy (AFM) 59

3.1.5.1 Theoretical background 59

3.1.5.2 Distance between sample surface and tip 59

3.1.5.3 Instrumentation 61

3.1.6 Scanning electron microscopy (SEM) 64

3.1.6 .1 Theoretical background 64

3.1.6.2 Instrumentation 64

3.1.6.3 Secondary and backscattered electron 64

3.1.7 Semiconductor characterisation (I-V characteristics) 6 6

3.1.7.1 Structure of studied devices 67

3.1.7.2 Instrumentation 67

3.2 Materials 69

3.3 Samples preparation 69

3.3.1 Spin coating 69

3.3.2 Thermal evaporation 72

3.3.3 Substrates 73

Reference list 74

XI



Chapter 4 Octa-substituted copper and lead phthalocyanines: Electrical, 76

structural and optical studies

Chapter overview 76

4.1 Octa-substituted copper phthalocyanines (CuPcR8 ) 77

4.1.1 Films preparation 78

4.1.2 UV-Visible absorption spectra 79

4.1.3 Current-voltage (I-V) characteristics 80

4.2 Octa-substituted lead phthalocyanines (PbPcR8 ) 82

4.2.1 UV-Visible absorption spectra 83

4.2.2 Films preparation and characterisation 84

4.2.3 Electrical and optical properties 85

Summary 91

Reference list 92

Chapter 5 Modification of single-walled carbon nanotubes using optical 94

detection method

Chapter overview 94

5.1 Experimental details 95

5.1.1 Preparation of SWCNT-CuPcR4  hybrids 95

5.2 Characterisation of SWCNT-CuPcR4  hybrids 96

5.2.1 Fourier transform infrared spectra (FTIR) 97

5.2.2 Raman spectra 98

5.2.3 UV-Visible absorption spectra 100

5.2.4 Morphology 102

5.2.4.1 Atomic force microscopy (AFM) 102

5.2.4.2 Scanning electron microscopy (SEM) 110

5.2.5 Electrical conductivity 114

5.3 Total internal reflection ellipsometry (TIRE) 116

Summary 121

Reference list 122

XII



Chapter 6 Total internal reflection ellipsometry (TIRE) for the detection in 125 

water and ambient air

chapter overview 125

6 . 1  detection of pesticides in water 126

6.1.1 Introduction 126

6.1.2 Materials and sample preparation 127

6.1.3 Spectral shift 128

6.1.4 Experimental data fitting 131

6 .1.5 Determination of films' sensitivity and detection limit 135

6.2 Detection of amine vapours in ambient air 140

6.2.1 Introduction 140

6.2.2 Materials and sample preparation 140

6.2.3 Spectral shift 141

6.2.4 Experimental data fitting 150

6.2.5 Sensitivity and response time 150

6.2.6 Detection limit 155

Summary 159

Reference list 160

Chapter 7 Distribution of single-walled carbon nanotubes in pyrene 163

containing liquid crystalline zinc phthalocyanine matrix:

Formation and sensor properties

Chapter overview 163

7.1 Introduction 164

7.2 Experimental 165

7.2.1 Preparation of SWCNT-zinc phthalocyanine hybrid 165

7.2.2 Sensor properties study 165

7.3 Characterisation of SWCNT-ZnPc (Pc6  and Pc7) complexes 166

7.3.1 Raman spectra 166

7.3.2 Optical absorption and fluorescence emission spectra 168

7.3.3 X-ray diffraction 171

7.3.4 Polarizing optical microscopy 175

7.3.5 Microscopy characterisation 177

XIII



7.4 Study of electrical and sensor properties of SWCNT-ZnPc hybrid 179

7.4.1 Lateral conductivity 179

7.4.2 Ammonia vapour detection 181

Summary 183

Reference list 184

Chapter 8  Conclusions and Future work 186

8.1 Conclusion 186

8.2 Future work 188

Appendices 189

XIV



List of Figures

Figure 2.1: (a) Conceptual diagram of SWCNT and MWCNT, (b) TEM image 10 

of SWCNTs

Figure 2.2: Classification of carbon nanotubes according to the chiral vector 11

Figure 2.3: Overview scheme of the functionalization of CNTs 13

Figure 2.4: A sketch of CNTs pre-treated by different methods; (a) acid 14

treatment can effectively purify CNTs, open their caps and generate the 

functional groups, (b) heat treatment can purify and integrate the CNTs.

Figure 2.5: The molecular structure of (a) metal-free phthalocyanine and (b) 17

metalophthalocyanine

Figure 2.6: The orientation of Phthalocyanine molecule; (a) the coordinate 20

axes of phthalocyanine molecule (x', y', z'; red colour) with respect to the 

substrate surface coordinate system (x, y, z; black colour), (b) and (c) 

schematic diagrams of the orientation of phthalocyanine molecule as top layer, 

and confined between two electrodes, respectively, after heat treatment

Figure 2.7: Structure and substitution patterns in metallophthalocyanine; 23

nonperipheral (left), peripheral (middle) and hexadeca substitution (right)

Figure 2.8: The changes in polarization of light reflected from the surface 32

Figure 2.9: Optical model for an ambient -  thin film -  substrate structure 34

Figure 2.10: The schematic of rotating analyzer spectroscopic ellipsometry 35

Figure 3.1: TIRE single spectroscopic spectra 49

Figure 3.2: (a) J.A.Woollam M2000 Ellipsometer (b) A home-made TIRE cell 51 

(c) an image showing zoomed-in TIRE cell attached to the prism on 

ellipsometer stage.

Figure 3.3: A schematic diagram illustrating the total internal reflection 51

XV



ellipsometry experimental set-up. .

Figure 3.4: A flow chart summarising TIRE experimental procedure 54

Figure 3.5: Possible electronic transitions in organic materials 55

Figure 3.6: Instrumentations in UV-Vis. Spectrophotometer 56

Figure 3.7: Interferometer: IR, infrared radiation source; B, beam splitter; F, 57

fixed mirror; M, moving mirror

Figure 3.8: Simplified energy diagram 58

Figure 3.9: Van der Waals force against distance 60

Figure 3.10: (a) NanoScope Ilia Multimode 8  SPM system components and 61

(b) a zoomed in SPM and (c) vibration reduction tripod

Figure 3.11: NanoScope Ilia beam deflection detection system 62

Figure 3.12: (a) SEM system and (b) Schematic illustration of the operation of 65

SEM

Figure 3.13: Interaction between electrons beam and sample producing (a) 65

secondary electrons and (b) backscattered electrons

Figure 3.14: A piece of resistive material with electrical contacts on the ends 6 6

Figure 3.15: Schematic illustration of devices structure used in this study, (a) 6 8

sandwich structure and (b) interdigitated electrodes

Figure 3.16: Keithley 4200 semiconductor characterisation system 6 8

Figure 3.17: Schematic figure of spin-coating indicating the dominant process 71

at the beginning of spin-coating (spin-off) and later after the equilibrium liquid 

film thickness is reached

Figure 4.1: Synthesis of octa-substituted copper (II) phthalocyanines. 78

Reagents and conditions: (i) RBr (1-bromooctane, 1-bromohexadecane or

XVI



triethylene glycol 2-bromoethyl methyl ether), potassium carbonate, DMF, 

room temperature, 3 days; (//) RSH (1-octanethiol, 1-hexadecanethiol or 2-[2- 

(2-methoxyethoxy)ethoxy] ethanethiol), potassium carbonate, DMF, room 

temperature, 3 days; (iii) Q 1CI2 (anhydrous), DBU (l,8-diazabicyclo[5.4.0] 

undec-7-ene), hexanol, reflux, 24 h

Figure 4.2: The electronic absorption spectra of 3a, 3b, 3c, 4a, 4b and 4c 79

solution in chloroform (dotted lines); as-deposited films on glass (dashed 

lines); films after heating (solid lines)

Figure 4.3: Synthesis of octa-substituted lead (II) phthalocyanines. Reagents 82 

and conditions: (i) RBr(l-bromooctane, 1-bromohexadecane or triethylene 

glycol 2-bromoethyl methyl ether), potassium carbonate, DMF, room 

temperature, 3 days; (ii) RSH (1-octanethiol, 1-hexadecanethiol or 2-[2-(2- 

methoxyethoxy)ethoxy]ethanethiol), potassium carbonate, DMF, room 

temperature, 3 days; (iii) PbO (anhydrous), 210°C, solvent-free, 5 hours

Figure 4.4: Electronic absorption spectra of 3g-4g (1) and 3h-4h (2) in 84

tetrahydrofuran (THF) (C=lxlO ' 5 M)

Figure 4.5: The non-plannar structur of PbPc 84

Figure 4.6: Variation of refractive index and extinction coefficient of 4g film 8 6  

deposited at 2 0 0 0  r.p.m. with incident photon wavelength

Figure 4.7: J(V) characteristics of thin films of 4g deposited between ITO and 8 8  

In electrodes. The inset shows the same data of the forward bias characteristics 

plotted on a log-log scale

Figure 4.8: Switching characteristics of 4g films deposited between ITO and 90 

In electrodes. The inset shows the same data produced on a log-linear scale for 

clarity

Figure 4.9: Polarizing optical microscopy images with cross polarizers of the 91 

3g (a), 3h (b), 4g (c), 4h (d) films deposited between ITO and metal electrode. 

Schematic illustrations of the macroscopic alignments are also given

XVII



Figure 5.1: Synthesis route of Q 1PCR4  derivatives 95

Figure 5.2: (a) pristine SWCNT, (b) Pc3, (c) PCNT-Pc3, and (d) ATCNT-Pc3 96

Figure 5.3: FTIR spectra of (a) pure Pc3, (b) PCNT-Pc3 and (c) ATCNT-Pc3 97

Figure 5.4: Raman spectra of pristine SWCNT (a), PCNT-Pc3 (b), acid-treated 99

SWCNT (c) and ATCNT-Pc3 (d)

Figure 5.5: UV-Vis absorption spectra of Pc3 (solid line), SWCNT (dashed 101

line), PCNT-Pc3 (dashed-dotted line) and ATCNT-Pc3 (dotted line) solutions 

in DMF

Figure 5.6: UV-Vis absorption spectra of (a) Pci, (b) Pc2, (c) Pc4 and (d) Pc5 102 

and their hybrids with ATCNT in DMF

Figure 5.7: AFM image of Pc3; top and 3D view. Roughness analysis shown 103 

at the bottom

Figure 5.8: AFM image of PCNT-Pc3; top and 3D view. Roughness analysis 104 

shown at the bottom

Figure 5.9: AFM image of ATCNT-Pc3; top and 3D view. Roughness 104

analysis shown at the bottom

Figure 5.10: AFM image of Pci; top and 3D view. Roughness analysis shown 106 

at the bottom

Figure 5.11: AFM image of ATCNT-Pcl; top and 3D view. Roughness 106

analysis shown at the bottom

Figure 5.12: AFM image of Pc2; top and 3D view. Roughness analysis shown 107 

at the bottom

Figure 5.13: AFM image of ATCNT-Pc2; top and 3D view. Roughness 107

analysis shown at the bottom

XVIII



Figure 5.14: AFM image of Pc4; top and 3D view. Roughness analysis shown 108 

at the bottom

Figure 5.15: AFM image of ATCNT-Pc4; top and 3D view. Roughness 108

analysis shown at the bottom

Figure 5.16: AFM image of Pc5; top and 3D view. Roughness analysis shown 109 

at the bottom

Figure 5.17: AFM image of ATCNT-Pc5; top and 3D view. Roughness 109

analysis shown at the bottom

Figure 5.18: AFM image of ATCNT-Pc5 in higher resolution; top and 3D 110

view. Roughness analysis shown at the bottom

Figure 5.19: SEM images of pristine SWCNT; (a,b) in powder form and (c,d) 111

in thin film form deposited on silicon substrate from solution of DMF

Figure 5.20: SEM images of PCNT-Pc3 in thin film form deposited on silicon 112

substrate from solution of DMF; (a) and (b): the intrinsic quality of SWCNT 

after mixing with phthalocyanine, (c) image: the aggregation of phthalocyanine 

attached the SWCNT bundle

Figure 5.21: SEM images of acid treated SWCNT (ATCNT) in thin film form 113 

deposited on silicon substrate from solution of DMF

Figure 5.22: SEM images of ATCNT-Pc3 in thin film form deposited on 113

silicon substrate from solution of DMF; (a) and (b): smooth films obtained for 

optical detection, (c) image shows phthalocyanine molecules nicely covered 

the individual tubes

Figure 5.23: SEM images of (a) ATCNT-Pcl, (b) ATCNT-Pc2, (c) ATCNT- 114

Pc4 and (d) ATCNT-Pc5 in thin film form deposited on silicon substrate from 

solution of DMF

Figure 5 .24:1(V) curves of (a) Pc3 and (b) ATCNT-Pc3. The linear fitting 115

XIX



parameters are shown above corresponding characteristics

Figure 5.25: Typical TIRE spectra of Au/Cr layer in water 117

Figure 5.26: and A(X) TIRE spectra of Pc3 film in water (dashed line); 119

after injection of benzo[a]pyrene saturated solution (dotted line). ATCNT-Pc3 

film in water (solid line); after injection of benzo[a]pyrene saturated solution 

(dashed-dotted line). An enlarged section of A(A) spectra are shown at the 

bottom of the figure

Figure 5.27: Refractive index (n) and extinction coefficient (k) of Pc3 film (a 120

and b) and ATCNT-Pc3 film (c and d) in pure water (solid line) and 

benzo[a]pyrene solution (dashed line)

Figure 6.1: The chemical structure of the investigated analytes 128

Figure 6.2: Typical TIRE spectra of Cr/Au film 129

Figure 6.3: T'(T) and A(A,) TIRE spectra of (a) Pc5 coated Cr/Au and (b) 130

ATCNT-Pc5 hybrid films in water and after exposure to contaminated water

Figure 6.4: T'(X) and A(A) TIRE spectra of (a) Pc5 coated Cr/Au and (b) 133

ATCNT-Pc5 hybrid films in water (1); after injection of PCP solution of lpg/1

(2); 2pg/l (3); 5pg/l (4) for 5 minutes; after flushing with water (5) and after 

injecting with PCP solution 5pg/l for 30 minutes (6 ); after flushing with water

(7). An enlarged section of A(A) spectra are shown at the bottom of the figure

Figure 6.5: Refractive index (n) and extinction coefficient (k) of Pc5 film (a 134

and b) and ATCNT-Pc5 film (c and d) in pure water (solid line) and PCP 

solution of 1 0  pg/1  (dashed line).

Figure 6 .6 : Sensitivity of Pc5 and ATCNT-Pc5 active layers estimated from 135 

equation 6.1 for PCP, 2PC, diuron and simazine

Figure 6.7: The dynamic spectra of base line of gold substrate at X =730 nm. 136

The fifth order polynomial fit has been extracted for the phase shift spectrum 

only and the equation has been presented

XX



Figure 6 . 8  Changes in the phase shift depending on the concentrations of PCP. 138

The inset represents the linear fitting for the first three points of each curve

Figure 6.9 Changes in the phase shift depending on the concentrations of 2CP. 138

The inset represents the linear fitting for the first three points of each curve

Figure 6.10 Changes in the phase shift depending on the concentrations of 139

Diuron. The inset represents the linear fitting for the first three points of each 

curve

Figure 6.11 Changes in the phase shift depending on the concentrations of 139

Simazine. The inset represents the linear fitting for the first three points of each 

curve

Figure 6.12: Chemical structure of the amines used in this work 141

Figure 6.13: Typical TIRE spectra of Cr/Au film in air 143

Figure 6.14: and A(7) TIRE spectra of (a) P ci and (b) ATCNT-Pcl 144

coated Cr/Au in fresh air (1,4,7 and 10); after injection of 20 and 200 ppm of 

methylamine (2,3 respectively), dimethylamine (5,6), trimethylamine (8,9). An 

enlarged section of A(7) spectra are shown above

Figure 6.15: ¥(7) and A(7) TIRE spectra of (a) Pc2 and (b) ATCNT-Pc2 145

coated Cr/Au in fresh air (1,4,7 and 10); after injection of 20 and 200 ppm of 

methylamine (2,3 respectively), dimethylamine (5,6), trimethylamine (8,9). An 

enlarged section of A(7) spectra are shown above

Figure 6.16: ¥(7) and A(7) TIRE spectra of (a) Pc3 and (b) ATCNT-Pc3 146

coated Cr/Au in fresh air (1,4,7 and 10); after injection of 20 and 200 ppm of 

methylamine (2,3 respectively), dimethylamine (5,6), trimethylamine (8,9). An 

enlarged section of A(7) spectra are shown above

Figure 6.17: ¥(7) and A(7) TIRE spectra of (a) Pc4 and (b) ATCNT-Pc4 147

coated Cr/Au in fresh air (1,4,7 and 10); after injection of 20 and 200 ppm of 

methylamine (2,3 respectively), dimethylamine (5,6), trimethylamine (8,9). An

XXI



enlarged section of A(7) spectra are shown above

Figure 6.18: Phase shift changes (8 A) in A(7) spectra of studied Cu(II) 149

phthalocyanines derivatives and their hybrids with acid treated SWCNT layers 

on treatment with amines vapours in the concentration range 4-200 ppm

Figure 6.19: The variation in refractive index and extinction coefficient of (a 152

and c) Pci and (b and d) ATCNT-Pcl layers as exposed to air (solid lines), 

methylamine (dotted lines), dimethylamine (dashed-dotted lines) and 

trimethylamine (dashed lines) in the concentration of 40 ppm

Figure 6.20: The variation in refractive index and extinction coefficient of (a 152 

and c) Pc2 and (b and d) ATCNT-Pc2 layers as exposed to air (solid lines), 

methylamine (dotted lines), dimethylamine (dashed-dotted lines) and 

trimethylamine (dashed lines) in the concentration of 40 ppm

Figure 6.21: The variation in refractive index and extinction coefficient of (a 153

and c) Pc3 and (b and d) ATCNT-Pc3 layers as exposed to air (solid lines), 

methylamine (dotted lines), dimethylamine (dashed-dotted lines) and 

trimethylamine (dashed lines) in the concentration of 40 ppm

Figure 6.22: The variation in refractive index and extinction coefficient of (a 153

and c) Pc4 and (b and d) ATCNT-Pc4 layers as exposed to air (solid lines), 

methylamine (dotted lines), dimethylamine (dashed-dotted lines) and 

trimethylamine (dashed lines) in the concentration of 40 ppm

Figure 6.23: Sensitivity of phthalocyanines and their hybrids with SWCNTs 154

active layers estimated from eq. 6 . 1  for methylamine, dimethylamine and 

trimethylamine

Figure 6.24: The rise and decay curves of the SA(X) during the detection of 40 155

ppm methylamine vapour by Pc2 and Pc2-CNT films

Figure 6.25: The dynamic spectra of base line of gold-air substrate at 7 =730 156

nm. The fifth order polynomial fit has been extracted for the phase shift 

spectrum only and the equation has been presented

XXII



Figure 6.26: Changes in the phase shift changes of Pci and ATCNT-Pcl 157

spectra versus analytes concentrations for the first few linear points, plotted 

from Table 6 . 6

Figure 6.27: Changes in the phase shift changes of Pc2 and ATCNT-Pc2 157

spectra versus analytes concentrations for the first few linear points, plotted 

from Table 6 . 6

Figure 6.28: Changes in the phase shift changes of Pc3 and ATCNT-Pc3 158

spectra versus analytes concentrations for the first few linear points, plotted 

from Table 6 . 6

Figure 6.29: Changes in the phase shift changes of Pc4 and ATCNT-Pc4 158

spectra versus analytes concentrations for the first few linear points, plotted 

from Table 6 . 6

Figure 7.1: Asymmetrical (Pc6 ) and symmetrical (Pc7) zinc phthalocyanine 165

derivatives

Figure 7.2: Raman spectra of pristine SWCNT, hybrids SWCNT-Pc6  and 167

SWCNT-Pc7 in the range 90-3200 cm' 1 (I), in the range of radial breathing 

modes 90-450 cm' 1 (II), in the range of phthalocyanine vibrations 400-1300 

cm' 1 (IH)

Figure 7.3: UV-vis optical absorption spectra of Pc6  and Pc7 in DMF 169

Figure 7.4: Fluorescence emission spectra of Pc6  (7em=719) and Pc7 169

(7em=721) in DMF (C = lx l0 ' 5 M). Excitation wavelength=650 nm

Figure 7.5: Fluorescence emission changes of Pc6  observed during the 170

titration of SWCNT (0-350|ul) in DMF (C = lx l0 ' 5 M). Excitation 

wavelength=650 nm

Figure 7.6: Fluorescence emission changes of Pc7 observed during the 170

titration of SWCNT (0-350pl) in DMF (C =lxl0 ' 5 M). Excitation 

wavelength=650 nm

XXIII



Figure 7.7: XRD patterns of Pc6  and its hybrid at room temperature 173

Figure 7.8: XRD patterns of Pc7 and its hybrid at room temperature 174

Figure 7.9: POM measurements for compound Pc6 . (a) Homeotropic 175

alignment in the Colh mesophase, 200°C (b) Planar alignment in the Colh 

mesophase, 200°C (c) Homeotropic alignment in the Coir mesophase, 25°C (d)

Planar alignment in the Coir mesophase, 25°C. Magnification: 40X. Heating- 

cooling rate: 20°C.min' 1

Figure 7.10: Polarizing optical microscopy images of the films of pure Pc6  (a) 176

and its composite (b); pure Pc7 (d) and its composite (e), obtained under 

crossed polarized light

Figure 7.11: SEM images of thin films of SWCNT-Pc6 ; (a) surface view 178

inside the film, (b) edge (at edge of the film) view and SWCNT-Pc7; (c) 

surface view

Figure 7.12: TEM images of SWCNT-Pc6  hybrid (a) and SWCNT-Pc7 hybrid 179 

(b)

Figure 7 .13:1(V) curves of Pc6  and its hybrid with SWCNTs. The linear 180

fitting parameters are shown as inset

Figure 7 .14:1(V) curves of Pc7 and its hybrid with SWCNTs. The linear 180

fitting parameters are shown as inset

Figure 7.15: The response curve of pristine SWCNT, SWCNT-Pc6  and 182

SWCNT-Pc7 films to ammonia vapour at concentrations of 5-80 ppm

Figure 7.16: Response of pristine SWCNT, SWCNT-Pc6  and SWCNT-Pc7 183

films versus NH3 concentration

XXIV



List of Tables

Table 2.1: A summary of production techniques of SWCNTs 12

Table 3.1: TESP-SS probe characteristics 63

Table 3.2: SCANASYST-air probe characteristics 63

Table 3.3: List of materials and their supplier 70

Table 4.1: CuPcR8  derivatives used in this chapter 77

Table 4.2: Film thickness and calculated conductivity of CuPcRg films 81

Table 4.3: PbPcR8  used in this chapter 83

Table 4.4: Thicknesses, refractive indices and extinction coefficients (at 8 6

A.=633 nm) obtained from ellipsometry data fitting and DC conductivity for 

PbPcR8 films deposited at 2 0 0 0  r.p.m

Table 5.1. Roughness parameters of all CuPcR* and their hybrids with 105

SWCNT

Table 5.2: Experimental data fitting; film thickness (d), refractive index (n) 119

and extinction coefficient (k) at 633nm wavelength

Table 6.1: Changes in the phase shift spectra (8 A) of ATCNT-Pc5 hybrid and 132

pristine Pc5 films on exposure to PCP, 2CP, diuron and simazine in the 

concentration range 1-25 pg/L

Table 6.2: Parameters of four-layer model in TIRE spectra fitting 132

Table 6.3: Changes in the optical parameters of Pc5 and ATCNT-Pc5 films 134

caused by adsorption of PCP, 2-CP, diuron and simazine from its solution 

with concentration of 10 pg/1 at A,=633nm

Table 6.4: The detection limits for studied sensors calculated according to 137

equations 6.2 and 6.3

XXV



Table 6.5: Amines concentrations as calculated using equation (6.4) 142

Table 6 .6 : The changes in the phase shifts A(^) of phthalocyanines and their 148

composites with carbon nanotubes active layers upon exposure to 

methylamine, dimethylamine and trimethylamine gases in different 

concentrations

Table 6.7: Changes in the optical parameters and films’ thicknesses of 151

CuPcR4  and SWCNT/CuPcR4  films at >-=633 nm caused by adsorption of 

amines (40 ppm)

Table 6 .8 : The detection limits for amines sensors calculated according to 159

equations 6.2 and 6.3

Table 7.1: X-Ray diffraction data for compounds Pc6  and Pc7 and their 172

composites at room temperature

XXVI



I n t r o d u c t i o n !

Chapter 1 

Introduction

1.1 Background

In order to satisfy the demands for the fast growing development of nanotechnology, 

it is essential to improve the variety of materials possessing electrical, optical, or 

mechanical properties. Amongst these, hybrid materials are rapidly finding their way 

in these new technologies, due to the efficient interaction between two or more 

components [1"3l  In recent decades, research relating to the interaction between 

carbon nanotubes (CNTs) and conjugated organic molecules, especially 

metallophthalocyanine (MPc) complexes, has been attracting increasing interest as a 

new topic of fundamental research with various potential applications ranging from 

sensing [4'8], which is the main theme of this thesis to photovoltaic [9_11] applications. 

Combining the remarkable electrical, thermal and mechanical properties of CNTs 

with the optoelectronic properties of MPcs is a promising path to realizing composite 

materials which are expected to be more efficient in improving the relative responses 

compared to the individual CNTs or MPc species [12'14].

In the sensor area, a range of materials has been employed to construct transducers, 

such as variety types of transition metal oxides [15̂ , conducting polymers [16] and 

organic complexes like phthalocyanines [17‘20l  Phthalocyanines (Pcs) in general and 

their metallo-derivatives (MPcs) in particular, hold a great promise for the 

development of many non-linear optical devices because of their activity as basis for 

optical limiting [21], fast response time, unique electronic adsorption properties and 

extensively delocalised tt-tt electron skeleton. Another advantage of MPcs is their 

process-ability in thin films structure, which means the possibility to deposit these 

compounds utilizing different methods, such as spin-coating, drop-casting, thermal 

evaporation and Langmuir-Blodgett techniques [22-L Application of substituted-MPcs 

as active membranes in surface plasmon resonance (SPR) and total internal reflection 

ellipsometry (TIRE) sensors has been demonstrated in the literature [6,23].
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Metal Phthalocyanines (MPcs) are 7r-electron conjugated macrocyclic compounds, 

exhibiting outstanding performance in the field of chemical and bio sensors [20,24], 

liquid crystals [25'28-1, field effect transistors [29,30], electrochromic devices [31], and 

memory applications [32,33]. The structure of MPcs strongly affects their properties, 

such as specific surface area, electron transfer properties and thermal stability, 

therefore affecting their performance in device applications [34]. The major 

advantages of MPcs over other organic analogous are [35,36]: (i) their tuneable 

structure with high flexibility in having large variety of substitution on the periphery 

of the molecule's rim, as well as their ability to coordinate almost every metallic 

element in the centre of their macrocycle; (ii) an exceptional thermal and chemical 

stability compared with most of molecular materials; (iii) an excellent process-ability, 

resulting in the construction of a large variety of thin films by different deposition 

methods. Although the MPc-based devices have been studied for long time, there 

are still some specific restrictions which need to be overcome; these include, (i) the 

improvement of the reproducibility of the organic thin film devices due to the 

difficult control of the crystallite orientation of the polycrystalline film of MPc, (ii) 

the improvement of the selectivity and sensitivity of the MPc thin film sensors, (iii) 

more homogenous films are required for the manufacturing of semiconducting 

devices to avoid pin-holes and thus short circuit problems, (iv) the improvement of 

charge carrier mobility of the organic thin film diodes and transistors, which is 

determined by several key factors such as the type, orientation and structure of the 

MPcs, as well as the film thickness and the nature of interface between the organic 

film and the electrodes, (v) miniature, portable, robust, energy saving and low cost 

devices need to be fabricated, in order to satisfy the rapid development of nano­

devices together with several other kinds of particular applications .

CNTs, on the other hand, demonstrating a high aspect ratio, are 7i-conjugated 

nanoscale materials. This kind of carbon family possess a unique combination of 

mechanical, thermal and electrical properties [37'39-1, making this type of carbon 

structure a highly attractive material for applications as a reinforcing filler in 

polymers [40], heat management components [41], and nanoelectronic devices [42l  

Carbon nanotubes (CNTs) have been found to be extremely sensitive to their local 

chemical environment. This chemical sensitivity, due to their extraordinary one- 

dimentional carbon nanostructure, has made them ideal building blocks for chemical
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detection [43]. Since Kong and co-researchers have demonstrated the potential of 

single walled carbon nanotubes (SWCNTs) in NO2 and NH3 gas detection [44], CNTs 

have been considered as promising candidates as sensing materials that can detect 

toxic gases such as NO2 , NH3, O2 , H2, CO2 , and CO [45A*\ The high sensitivity of 

CNTs towards chemical vapours can be assigned to the excellent electrical properties, 

small size, extremely high surface to volume ratio and large gas adsorption capacity. 

However, the poor solubility and dispersity of CNTs in conventional solvents has 

restricted their use as active layers processed by simple methods like spin coating. 

Acid-treatment as well as other modification methods can be employed to overcome 

the disadvantage of poor dispersity of CNTs [1,49'52]. The other downside is that CNTs 

are optically inert and almost unsuitable to use as active layers utilising optical 

detection techniques such as surface plasmon resonance (SPR) and total internal 

reflection spectroscopic ellipsometry (TIRE). Further surface modification of CNTs 

through hybridising with MPcs enhances their optical performance as well as their 

gas sensing activity arising from the mutual n-n interaction between CNTs and MPc 

resulting in enhanced detection effectiveness compared to the individual CNTs or 

MPcs species t6,53].

1.2 Aim and objectives

The principle aim of this research is the characterization of novel substituted metal- 

phthalocyanines (MPcs) and development of new methods to produce hybrids 

combining these MPcs and single-wall carbon nanotubes (SWCNTs) and to study the 

optical, structural, and electron transport properties and to place more emphasis on 

their sensing applications using TIRE method.

In order to satisfy the above stated aim the proposed research will have to achieve 

the following objectives:

• To study thin films of MPc molecules with different substituents on the 

periphery of the molecule ring. The research is mainly focused to look into 

films of tetra- and octa-substitued MPcs with different alkyl chain lengths.

• To develop a simple method for the hybridisation of MPcs, mainly having 

copper as the central atom, with SWCNT.
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• To produce thin films of . the new hybrid structures and to examine the 

formation of bonds between the MPc molecules and the CNT molecules as 

well as the films' morphology using Fourier Transform Infra-red (FTIR), 

Scanning Electron Microscopy (SEM), UV-visible spectroscopy and Atomic 

Force Microscopy (AFM) techniques.

• To apply several other methods of hybridisation in order to compare the 

quality of composite films formed between the MPcs and CNT molecules.

• Perform electrical measurements in order to investigate the electron transport 

properties of MPcs films and their new hybrids through the evaluation of 

their I(V) characteristics.

• To examine the use of the new hybrid films in chemical sensor applications 

using spectroscopic ellipsometry in total internal reflection ellipsometry 

(TIRE) as the optical transduction method. Various environmental pollutants, 

both in ambient air and in water, are examined; these include volatile organic 

compounds (VOCs), amines in air and different pesticides as water pollutants. 

The effect of SWCNTs on the sensing properties of MPcs/SWCNT hybrid 

films are investigated and compared to pristine MPc films.
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Chapter 2

Literature Review

Chapter overview

This chapter provides an extensive analysis of the literature as related to the 

proposed work and gives an overview of the contents of the remaining chapters of 

this thesis. The features of carbon nanotubes and why this material has gained 

significant interest from researchers are also discussed. Furthermore, a general 

discussion of phthalocyanines and their applications are also introduced. Finally, the 

smart integration between phthalocyanines and carbon nanotubes has been reviewed 

with particular emphasis on their sensing application.
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2.1 Carbon Nanotubes (CNTs)

A sheet of paper may be rolled up with its edges connected to make a tube. Carrying 

out this experiment hypothetically with a graphene layer results in a carbon tube. 

Such structures actually exist; they are entirely made up from carbon atoms and 

accommodate a cylindrical cavity. When different diameters are provided, several of 

these tubes may fit one into another to make a multi-walled carbon tubes. The 

diameter of both single- and multi-walled species measures on the nanometer scale, 

therefore the name carbon nanotubes (CNTs)[1].

The first discovery of multi-walled carbon nanotubes (MWCNTs) ^  and single­

walled carbon nanotubes (SWCNTs) was made by Iijama in 1991 and 1993 

respectively (Figure 2.1a). The diameters are approximately l-2nm for SWCNTs and 

2-100nm for MWCNTs, which consist of more than one concentrically rolled layer 

of graphene, and their length are roughly between 1-1 Opm. Therefore, the aspect 

ratio (ratio of length to diameter) becomes 1000 or more [4‘6]. Based on the unique 

structure of the parent material (graphene), carbon nanotubes are suggested to have 

novel properties that make them potentially beneficial in many applications. These 

include high performance nanocomposites which are conductive and of natural high 

strength [7], nanosized semiconductor devices [8], nano-probes [9], energy conversion 

devices *10̂ , sensors [11,12], field emission displays [13], radiation sources tl4] and drug 

delivery systems [15,16k however these applications still remain in the “possible” 

stage. Lack of availability of bulk quantities of high quality and low cost, as well as 

processing difficulties are the main obstacles in expanding the technological 

applications of carbon nanotubes.

As a member of the fullerene structural family, the carbon atoms in carbon nanotubes 

are s/?2-bonded. Due to the extended electron system, the surface electrons are highly 

polarizable, and so are subject to large attractive inter-tubular van der Waals forces 

[17]. In addition, carbon nanotubes are smooth-sided compounds with attractive 

interactions of 0.5 eV per nanometer of tube-to-tube contact. These extreme cohesive 

forces could account for the bundled structure of SWCNTs. The size of bundles has 

been shown to be judged by distortions of van der Waals bonds between nanotubes 

in the surrounding area of a catalytic particle and the degree of nanotube bending in 

the bundle The typical bundle size of as-produced SWNTs varies between
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nanometers to microns. Figure 2.1b shows a Transmission Electron Microscopy 

(TEM) image of a nanotube bundles [19].

Figure 2.1: (a) Conceptual diagram of SWCNT and MWCNT, (b) TEM

image of SWCNTs [19]

Although the chemical reactivity of carbon nanotubes, compared with graphene, is 

enhanced as a result of the surface curvature, carbon nanotubes tend to aggregate 

together when exposed to most solvents, aqueous or organic due to their hydrophobic 

nature [20]. Therefore, the studies and applications of CNTs are hindered by 

processing and manipulation difficulties owing to their insolubility or poor 

dispersion in common solvents and polymeric matrices [21].

2.1.1 CNTs’ structure

The structure of CNTs depends on the different angles and curvatures in which the 

graphene sheet could be rolled into a tube and is determined by a single vector. This 

vector is called chiral vector, which discriminate CNTs into three forms; zigzag, 

armchair and chiral (Figure 2.2). The electronic properties of CNTs vary according 

to their structure. Armchair nanotubes are metallic, while zigzag and chiral are either 

metallic or semiconducting nanotubes. SWCNTs, in general, can be a mixture of 

metallic and semiconducting tubes, depending sensitively on the structure, however, 

MWCNTs are considered to be metallic material[1,22].

a b

SWCNT MWCNT
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Zigzag A rm c h a ir  C h ira l

Figure 2.2: Classification of carbon nanotubes according to the chiral vector [23]

2.1.2 Production of CNTs

Major progress has been seen in recent years in the field of carbon nanotubes 

production since their excellent properties and potential applications were identified 

(see table 2.1 for review). In general, SWCNTs always grow from carbon plasma in 

the presence of directing agents which are usually transition metal nanoparticals such 

as Co, Fe, Ni, V, etc [24,25]. The most important differences between the available 

methods could be summarised as:

• the method of plasma generation,

• the technique of introducing the catalyst metal,

• CNTs yield,

• the quality of CNTs, and

• commercialization and up-scaling possibilities.

11



L i t e r a t u r e  R e v i e w

Table 2.1: A summary of production techniques of SWCNTs [25]

Short nam e T echnology o f  preparation  

[reference]

T ypical m ean

diam eter

(nm )

product description

Laser ablation 

(PLV)

Ablation from graphite doped 

with (Fe, Co, N i, . . . )  catalyst [26\
1.4 (1-1.8) High quality, good diameter 

control, bundled tubes, 

commercial.

DC arc 

discharge

First reported production. 

M odified Kratschmer reactor [2].

1.5 (0 .9-3.1) Lesser quality, carbonaceous 

impurities abundant, bundled.

Gas phase 

decomposition

Decom position in an oxygen-free 

environment. Typical: HiPco® 

(high pressure CO decoposition)
[27]

1 (0.9-1.3) Easy purification, good  

quality, commercial.

CCVD Catalytic chemical vapour 

deposition. Supported metal 

catalysts are used [28].

1.5 (1.3-2) Cheapest, up-scalable, 

commercial, most feasible 

from the application point o f  

view.

Flame

pyrolysis

Carbon source +  metallocene 

catalyst. Conventional low  

pressure pyrolysis reactor t29l

2-3 Low yield, bad quality, still 

under development, plant 

technology available, large 

commercialization potential.

Solar furnace Solar rays focused on a metal 

doped graphite target. Growth 

dynamics similar to PLV [30].

1.4 Good quality, little 

amorphous carbon, spreading 

is limited.

Zeolite grown CNTs grow by thermal 

decomposition o f  template 

molecules within zealite channels 

[31].

0.45 Monodisperse diameter 

distribution, oriented tubes, 

CNTs metastable outside the 

channels.
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2.1.3 Modification of CNTs

In addition to its promising properties, CNTs, as produced, possess a variety of 

diameters, length distribution, and structure within the same sample [22]. The most 

important property that severely disadvantages the applications of CNTs is their 

insolubility in any solvent and polymeric matrices due to strong van der Waals 

interaction that tightly hold them together, forming bundles [32]. CNTs can undergo 

chemical functionalization to enhance their solubility, broaden their properties and to 

produce novel hybrid materials potentially suitable for applications. The main 

approaches for functionalization of CNTs can be classified into two major groups 

(Figure 2.3); (1) the covalent attachment of chemical molecule [33'35], through the 

reaction on the conjugated structure of CNTs, and (2) the non-covalent molecular 

adsorption or wrapping of variety functional groups onto the nanotube [36'381.

Functionalization o f CNTs

Covalent Functionalization
• Disruption o f  graphitic skeleton
• Loss o f  electronic properties
•  Stable bond formation

Non-Covalent Functionalization
• Structure and electronic network 

remain unaffected

Cycloaddition 
Radical addition

Oxidation
Esterification
Amidation

Van der W aals interaction 
W rapping o f  polynuclear m olecules 
Endohedral filling 
Decoration with nanoparticles

Figure 2.3: Overview scheme of the functionalization of CNTs

Before being grafted with polymeric, bio, or any other functional molecules, CNTs 

need to be pre-treated to open the end caps, eliminate the residual metal catalysts, 

generate functional groups at the defects, shorten the nanotubes and provide de­

bundling and exfoliation effect to the CNTs aggregates [39], as shown in Figure 2.4.
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Figure 2.4: A sketch of CNTs pre-treated by different methods; (a) acid treatment 

can effectively purify CNTs, open their caps and generate the functional groups, (b) 

heat treatment can purify and integrate the CNTs.

Among the different surface treatment methods, acid oxidation is perhaps the most 

commonly studied. Acids, such as nitric or sulphuric, or any other oxidizing agent is 

used for this purpose. The oxygenated functional groups can be held to the side-wall 

of CNT after the oxidation process [40'42], meanwhile, the residual amorphous carbon 

and catalysts can be also removed. Bower and co-workers [43] were the first research 

group who found that the NHO3 can be inserted into the CNTs bundles, resulting in 

bundle exfoliation. Following this work, similar procedure has been explored later on 

including the work presented in the current thesis,[44,45].

Keeping the building skeleton of CNTs during the acid treatment develops a serious 

problem because covalent sidewall functionalization creates sp3 carbon sites on 

CNTs, which disrupt the electronic structure, and leads to loss of the novel 

characteristics of CNTs, such as their high conductivity and extraordinary 

mechanical properties [22]. With increasing functionalization degree, the nanotubes 

can finally change into insulating material. Therefore, to reduce damaging effect of 

acid treatment, low concentration of oxidizing agents are used [46]. In addition to the 

non-damaging effect, the low concentration treatment allows further n-n interaction 

between CNTs and several other molecules such as phthalocyanines as reported
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recently [47,48l  The further functionalization of carbon nanotubes could be classified 

into two types according to the modifiers: organic (organic functional groups, small 

organic molecules, polymers, DNA, protein, etc.) and inorganic (metal nanoparticals, 

metal oxides, etc.) [32l

Oxygen containing groups can be generated on the sidewall of CNTs not only by 

chemical modification such as acids treatment[49], 0 2 -plasma-oxidization method has 

also been reported to achieve sidewall oxygenated group attachments [50]. It is known 

that the amount and type of oxygen containing groups depends on the treatment 

method. In the case of nitric acid treatment, formation of acid groups such as 

carboxyl, phenol and lactol have been reported 151,52]. Nevertheless, carbonyl and 

lactone are observed in oxygen plasma functionalization method [50̂ . Among these 

oxygen-containing groups, carboxyl group (COOH) is very attractive, since it can be 

readily used for further covalent or non-covalent functionalization Non-covalent 

functionalization, compared with covalent functionalization, does not lead to 

substantial changes in the chemical, structural, electronic and mechanical properties 

of CNTs [53] as shown in Figure 2.3. Therefore, CNTs functionalized with organic 

molecules via non-covalent interactions is quite appealing and has important 

consequences for their electrochemical activities. The realization of non-covalent 

functionalization is mainly ascribed to the adsorption ability of organic modifiers on 

the carbon nanotube surface or through n-n conjugation between aromatic molecules 

and CNTs. In addition to oxygen containing groups, as organic functional groups, 

nitrogen containing groups such as amines [54,55], hydrocarbons such as a lky l [56-1 and 

sulfur containing groups [57] have been used to modify CNTs.

Polymers, which can disrupt the van der Waals interactions between the walls of 

CNTs, have gained increasing attention due to their quite efficient dispersity [58l  

Owing to their native electron trans-mediation, good environmental stability and 

specific organic groups [59], tremendous efforts have been made over the past few 

decades to prepare polymer-CNTs composites. These polymers include polypyrrole 

[60], poly(methylene blue) [61], poly(neutral red) [62], poly(acrylic acid) [63,64J and 

poly(3-methylthiophene)[65].

Among organic materials modified CNTs, DNA [66] and enzymes [67J have received 

great attention due to their high selectivity and sensitivity to analytical reagents.
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Similar to organic modification, inorganic nanomaterial functionalized CNTs have 

also received great attention. Generally, two types of inorganic nanomaterials have 

been employed to modify CNTs, one is noble metal nanoparticles, including Au [68\  

Ag [69\  and Pt and the other is metal oxide nanostructures such as ZnO [71], CuO 

[72] and SnC>2 [73]. In addition, many different compounds have also been proposed to 

modify CNTs surfaces to enhance their performance. However, owing to the effect 

of size and dispersion of noble metal particles and poor electrical conductivity of 

metal oxides, the sensing activity of CNTs has been inhibited. In order to decrease 

their particle size and improve electron transport especially in the modified electrode 

surfaces in electrochemical sensors, CNTs as a good carrier and conducting 

pathways have been widely employed [74].

2.2 Phthalocyanines (Pcs)

2.2.1 History

Phthalocyanines (Pcs) represent without doubt the most important chromophoric 

system developed during the 20th century. Historically, the most important event was 

probably their accidental discovery around 1928 by a dye manufacturing company in 

Scotland. The first synthesis of phthalocyanine was reported in 1907 [75J when Braun 

and Tchemiac engaged in a study of the chemistry of o-cyanobenzamide. When this 

compound was heated, a trace amount of a blue substance was obtained which 

undoubtedly was metal-free phthalocyanine. The structure of this metal-free, 

unsubstituted phthalocyanine was determined only about a quarter of a century later 

by the comprehensive studies of Dent and Linstead [76] and the X-ray diffraction 

analyses of Robertson [77] while examining both metal-free phthalocyanines (Figure 

2.5a) and metallophthalocyanines (Figure 2.5b). In 1927, de Diesbach and co­

workers [78] reported that when 1 ,2 -dibromobenzene was treated with copper(I) 

cyanide in boiling quinoline for eight hour, a blue product was obtained. This was 

almost certainly the first preparation of copper phthalocyanine (CuPc). The 

molecular formula was determined from elemental analysis and the compound was 

remarkably stable against alkali, concentrated acids and heat, but they were unable to 

suggest the structure. In 1928, in the manufacture of phthalimide by Scottish Dyes 

(later to become part of ICI) from the reaction of phthalic anhydride with ammonia
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in a reactor, the formation of a blue impurity was observed in certain production 

batches. This contaminant was isolated as a dark-blue, insoluble crystalline substance. 

Ultimately, the compound proved to be iron phthalocyanine (FePc), the source of the 

iron being the wall of the reactor. An independent synthesis involving passing 

ammonia gas through molten phthalic anhydride in the presence of iron filings 

confirmed the findings.

NH

HN

Figure 2.5: The molecular structure of (a) metal-free phthalocyanine and (b)

metalophthalocyanine

2.2.2 Emerging material

Following this discovery, the colour manufacturing industry was quick to recognize 

the unique properties of the compound and to exploit their commercial potential. 

Phthalocyanine have emerged as one of the most extensively studied classes of 

compounds, because of their intense, bright colours, their high stability and their 

unique molecular structure [79,80l

Phthalocyanines are two-dimensional 18 Ti-electron aromatic porphyrin synthetic 

analogues, consisting of four isoindole subunits linked together through nitrogen 

atoms. Phthalocyanines and their metallo derivatives (MPcs) have recently attracted 

an increasing interest not only for the preparation of dyes and pigments but also as 

building blocks for the construction of new molecular materials for electronics and 

optoelectronics. These arise from their electronic delocalization, which makes them 

valuable in different fields of science and technology [81l  The chemical flexibility of
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this class of compounds allows the preparation of a large variety of related structures 

and, consequently, the tailoring of the physical, electronic, and optical properties, as 

well as the improvement of processability. Therefore, peripheral substitution of 

phthalocyanines with bulky groups or hydrocarbon chains enhances their solubility 

and permits the deposition onto substrate, using spin-coating or LB deposition 

techniques [82-*.

The possibility of incorporating a broad range of metal atoms into the Pc cavity 

offers additional features to optimize the physical responses. On the other hand, their 

thermal and environmental stability are important characteristics that make them 

promising candidates to be incorporated into devices. To achieve this goal, an 

important point must be addressed which is the control of the supramolecular 

arrangement of these macrocycles in the solid state [83]. Liquid crystalline (LC) 

discotic mesophase materials can self-organise their molecules from organic solution 

into columnar stacks and develop potential solution processed molecular electronic 

materials. The columnar aggregates of discotic phthalocyanine molecules with 

effective overlap of 7r-orbitals along the stacking direction and low reformation 

energy [84] provide efficient anisotropic electronic transport networks along the 

molecular columns in the liquid crystalline mesophases with hole mobilities in the 

order of 10' 1 cm2/Vs [85J. Disk-like molecules, comprising a flat rigid aromatic core 

and flexible peripheral substituents, self-organize into one-dimensional 

supramolecular columns providing efficient anisotropic electronic transport channels 

[86]. Such self assembled columns in organic discotic molecules can adopt two types 

of characteristic orientations on surfaces: (i) homogeneous alignment, where the 

edge-on orientation of molecules and the columns parallel to the substrate surface is 

observed and (ii) homeotropic alignment, where the molecules are aligned face-on to 

the substrate and the columnar axes perpendicularly arranged with respect to the 

substrate surface [87l  Usually, homeotropic alignment can be generated by thermal

annealing, that is slow cooling of the isotropic melt confined between two substrates
[88] ̂

In the last few decades, phthalocyanines have been extensively studied as targets for 

optical switching and limiting devices [89], organic field effect transistors [90], sensors 

t91*93], emitting devices [94], molecular solar cells t95\  data storage media [96],
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photosensitizers [97] and electronic nose for cancer detectiont98]. There are significant 

number of studies that were concerned with insoluble unsubstituted-phthalocyanines 

and their application employing their unique ability to evaporate without 

decomposition [99]. However, peripherally substituted soluble metallophthalocyanines 

facilitate films fabrication and their investigation using wet-deposition techniques.

2.2.3 Electrical properties of Pcs

Studies on organic semiconducting thin films have become increasingly significant 

for electronic applications. These materials are chemically and thermally quite stable 

and therefore, efforts have been made to utilize thin films of these materials as 

molecular modules in a number of electronic and optoelectronic devices [100l  Among 

these organic materials are the metal free phthalocyanines (T^Pcs) and metal 

substituted phthalocyanines (MPcs) such as FePc, MgPc, PbPc, ZnPc, CuPc, and 

CoPc. These materials are generally p-type semiconductors and can be simply 

deposited resulting in pure and homogeneous thin films t101-1 either by vacuum 

sublimation or any other wet techniques in the case of peripherally substituted 

derivatives. The wide ranges of the conductivity of phthalocyanines, which result 

from their versatile chemical and physical systems, encourage researchers to achieve 

the best property required. During the last three decades, the semiconducting 

properties of phthalocyanines have been investigated in details, t89-95’96’100’102*104̂  The 

conductivity phenomenon in phthalocyanine compounds can be due to either the 

intrinsic properties of a specific phthalocyanine or generally to the group of 

molecules at supramolecular level with an extended orbital overlapping along the 

conducting pathway.

Phthalocyanines could be self-assembled in columns at a supramolecular level 

leading to increased conductivity character. The co-facial stacking of phthalocyanine 

molecules enables electron delocalization within the axis of the column through n-n 

orbital overlap. Metallophthalocyanines mainly crystalise in an inclined stacked 

insulating arrangements called a and (3 modifications that do not allow an appropriate 

overlap of 7r-orbitals and hence no formation of a conduction band. Among the 

different methods used for organizing metallophthalocyanines with semiconducting 

properties are chemical methods such as oxidative doping or the so-called "shish-
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kebab” approach as well as physical ones like the preparation of discotic liquid 

crystals and organized films by thermal treatment [82]. Basova and co-workers [88] 

have reported that the orientation of liquid crystalline nickel phthalocyanine 

molecules does not only depend on thermal treatment but it depends also on the 

interface between the film and the top contact (Figure 2.6). While thermal treatment 

of the film maintained between bottom and top electrodes induces homeotropic 

alignment, it strongly modifies the orientation of the columns from homeotropic to 

planar (homogeneous) when the top electrode is air.

In addition, substitutions of long alkyl, alkoxy and alkylthio substituents on the 

aromatic ring lead to the enhancement of liquid-crystalline behaviour in which the 

aromatic rings assembled into columnar stacks [105].

(a)

Figure 2.6: The orientation of Phthalocyanine molecule; (a) the coordinate axes of 

phthalocyanine molecule (x', y1, z'; red colour) with respect to the substrate surface 

coordinate system (x, y, z; black colour), (b) and (c) schematic diagrams of the 

orientation of phthalocyanine molecule as top layer, and confined between two 

electrodes, respectively, after heat treatment[88]

Columnar liquid crystals, which are high ordered materials, are good candidates as 

organic semiconductors for electronic devices due to their potential to possess high 

mobility of charge carriers as well as the anisotropic property of conduction along 

the columns [106’107i. Therefore, the alignment of discotic liquid crystalline materials 

becomes a crucial point for high conductivity in different semiconducting 

applications.
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It has been concluded from the literatures [87,103,108] that the intercolumnar packing 

dimensions of the polycyclic aromatic hydrocarbons are strongly dependent on the 

aromatic core size, the side chain length and the number of side chains. The effect of 

different substituents on the orientation and hence on the conductivity of the films of 

octasubstituted copper (II) phthalocyanines with alkylthio-, alkyloxy-, 

(trioxyethylene)thio- and (trioxyethylene)oxy-substituents in peripheral positions has 

been extensively studied by our research group [103]. It has been found that the lateral 

conductivity decreases slightly with the increase of alkyl chain length and the 

presence of sulphur in the alkylthio group resulting in higher conductivity in 

comparison with those containing alkyloxy groups in the substituent. Many other 

studies have previously reported that alkylthio-substituted phthalocyanines display 

higher conductivities than their alkyloxy-substituted phthalocyanines in their 

mesophase [86].

For unsubstituted phthalocyanines, the electrical switching effect has been reported 

for films of lead phthalocyanine (PbPc) in monoclinic phase. Switching effect was 

observed only in films consisting of a mixture of monoclinic grains and amorphous 

phase but not in films having triclinic phase structure [109]. In this connection, there 

have been some works that were devoted to structural studies of evaporated PbPc 

films [109’110]. However, the nature of switching effect has not been clearly 

understood yet. Some works have also explored the potential of some octasubstituted 

lead phthalocyanines as an active material for memory devices [111]. The electrical 

switching effect or the electrical bistable phenomenon of the metal-insulator-metal 

devices with organic layer as the insulator was first reported in 1968 [112]. Due to the 

promise of a new generation memory devices, interest has rapidly increased in the 

organic bistable devices (OBD). The main advantages of OBD are low power and 

low cost, their qualities of simple device structure, and simple production process 

[96l  The basic principle of an organic switching device is to demonstrate bistable 

behaviour showing two different conductivity states at the same applied voltage. 

When the voltage exceeds a particular value, the OBD unexpectedly switched from a 

low conduction state to a high conduction state with conductivity change of some 

orders of magnitude [113]. To explain this phenomenon, several mechanisms have 

been suggested such as formation of charge transfer complexes, charge trapping 

defect states in the band gap [114], formation of conducting filaments, and change of
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molecular orientation [115]. In a previous work, which has been published by our 

research group t102-1, switching behaviour has been observed in octa-substituted lead 

phthalocyanine film spin-coated between two metal electrodes. In this study, the 

switching disappeared after heat treatment. The switching effect in the freshly 

deposited films was ascribed to the presence of potential barriers, which result from 

polycrystalline structure of phthalocyanine before heat-treatment. Bistable behaviour 

has been reported for other substituted lead-phthalocyanine in earlier work lin »1163 

and for insoluble copper-phthalocyanine using thermal deposition [96].

2.2.4 Optical properties of Pcs

Pcs complexes, with extended two dimensional 7r-electron delocalisation system, 

have been extensively reported regarding their nonlinear optical properties (NLOP). 

The tailor ability and architectural flexibility of Pcs molecules, results in the 

possibility of the variation of the chemical structure and therefore the modification of 

NLOP. Moreover the small absorption losses and thermal stability make Pcs 

promising candidate for nonlinear optical applications [81l

As detailed in the above section, the wide conjugative aromatic system of Pcs creates 

intense bands in the absorption spectra. The very well resolved and strongest 

absorption band in a variety number of Pcs is known as Q-band. The high 

absorptivity of Q-band is the source of purity and depth of the colour of Pcs 

pigments [117]. This band usually lies in the visible wavelength region at 650-670nm 

for free base phthalocyanine [118]. The incorporation of metal ions inside the central 

cavity of Pcs results in thermodynamically stable in delocalised ions and therefore, 

higher symmetry is achieved. Thus, the absorption spectra of such complexes show 

only one absorption peak for the corresponding Q-band. At this point, it is essential 

to mention that this fact is only valid in the case of symmetrically substituted Pcs; 

otherwise, the breaking of the symmetry gives rise to split of the Q-band[82].

There are several factors that influence the absorption spectra of Pcs leading to a 

shift of Q-band within the range of ca. lOOnm between 620 and 720nm as a function 

of the metal size, coordination and oxidation state ^  ^  comparison to the

free base phthalocyanine, the species with closed shell metal, for example; lithium(I), 

zinc(II) or magnesium(II) exhibit maximum wavelength value around 670nm. The

22



L i t e r a t u r e  R e v i e w  |

species with open shell metal ions that interact strongly with phthalocyanine ring 

such as cobalt(II), ruthenium(II) or iron(II) have Q-band shifted to the blue with 

absorption at around 630 to 650nm [121]. Moreover, a bigger shift through metal 

incorporation has been reported for vanadyl and lead(II) to reach the values up to 

700nm. Recently, deep red manganese phthalocyanine has been reported with Q- 

band peaks at strongly shifted values of 808 and 828nm[122].

Another factor, which is substitutions, can possibly modify the molecular structure 

allow for considerable control over the physical, electronic and optical properties. 

Functionalities can in general be divided into electron-withdrawing and electron- 

releasing species. The former group is represented by chemical units such as 

carboxyl, sulfonyl or flour groups, while the latter compromises functions like 

amino, alkyle or alkoxy groups [82].

In principle, there are three types of substitutions according to the position of 

substituents; peripheral functionalisation (p- or meta-position), nonperipheral in the 

a-position (ortho-position) and hexadeca substitution, which compromise both 

peripheral and nonperipheral (Figure 2.7) [82]. Functionalisation at nonperipheral 

parts of Pcs results in more significant impact in the absorption spectra in 

comparison to p-substituted (peripheral) Pcs [123*125].

Figure 2.7: Structure and substitution patterns in metallophthalocyanine;

nonperipheral (left), peripheral (middle) and hexadeca substitution (right) [82]
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2.3 Carbon nanotube-Phthalocyanine conjugated hybrid

The formation of supramolecular architectures in which organic material present a 

high degree of order, which spans from the nano-scopic to macro-scopic level across 

multiple length scales, is highly required and represents a key issue within the fast 

developing fields of nanoscience and nanotechnology [126]. In this context, the use of 

self-assembly appears as an attractive and efficient approach for the construction of 

such ordered structure as it can allow preparation of complex, and multi-functional 

systems in a capable and controlled manner through the utilization of non-covalent 

interactions. Among the organic compounds, 7t-conjugated systems are the perfect 

candidates for the production of such supramolecular structures due to their excellent 

self-organization ability [127l

Several studies have been reported on the MPcs-CNTs hybrid thin films utilized as 

optoelectronic devices 1128'132] electro-catalytical devices [133>1341 and sensing devices 

[135-137] jt keen 0bservec[ that MPc-CNT complexes retain the excellent catalytic 

properties of phthalocyanines without losing any of the electronic properties of the 

carbon nanotubes [138l

The non-covalent fimctionalization is particularly attractive since the electronic 

structure of the nanotubes remains essentially unaffected and therefore enhances the 

electro-catalytic properties of phthalocyanine. However, the thermo-gravimetric 

analysis [33] suggests that the SWCNTs-ZnPc-covalently-linked hybrid shows more 

chemical stability than SWCNTs-ZnPc-adsorbed hybrid since the ratios of ZnPc 

functional group to carbon atoms were 1:1430 and 1:482 for covalent complex and 

adsorbed complex respectively. In addition, Mugadza and Nyokong [133] reported that 

the non-covalently linked SWCNT-CoPc shows lower sensitivity and selectivity to 

2-mercaptoethanol (2-ME) than the covalently linked hybrid.

It is essential to highlight the criteria of the association nature between CNTs and Pcs 

and the conditions that make covalent or adsorption (tc-7t interaction) bonds occur 

between these compounds or just a composite of the two. This actually depends not 

only on the modification procedure of CNTs but also on the central atom of MPc, 

substitution groups, chain length and the site of substituents. For instance, although it 

tends to covalently bond with dicyclohexylcarbodiimide (DCC)-treated substituted- 

zinc (II) phthalocyanine (ZnPc), amine functionalized SWCNTs non-covalently
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adsorbs untreated-ZnPc t33]. Furthermore, it depends on the type of CNTs whether 

single or multi-walled, the large diameter to length ratio of multi-walled CNTs may 

adjust the electronic structure which may be significantly different from that of 

single-walled CNTs [139].

2.3.1 Enhancement of electrical properties

The extraordinary electronic properties of CNTs in general and SWCNTs in 

particular suggest many possible applications and bridge those of the bulk and 

molecules [140’14115 since they readily accept electrons which can then be transported 

under nearly ideal conditions along the axis [142]. In addition, the orientation 

possibilities of nanotubes enable the conductivity control of carbon nanotubes doped 

liquid crystal composite hybrids and therefore offer wide range of nano-electronic 

applications i143>144l. The DC-conductivity of thin films of SWCNTs- 

tetrakis(alkylthio)-substituted lutetium(III)bisphthalocyanines prepared by jet- 

spraying chloroform suspension is found to be higher than that of only 

phthalocyanine films in both cases of as coated films and ordered (annealed to liquid 

crystalline temperature) films 1̂45l  However, larger increase in conductivity was 

observed in the ordered films indicating the orientation of SWCNTs in liquid 

crystalline phase of the phthalocyanine. In contrast, it is important here to reveal that 

carbon nanotubes tend to make bundles and aggregations in chloroform Brito 

and co-workers [146] have ascribed the increase in the hybrid materials conductivity to 

the impurities, when they studied the structural and electrical properties of layer-by- 

layer thin films of MWCNT/NiPc and MWCNT/chitosan+NiPc. The increase in the 

impurities concentration leads to the formation of localized states (traps) where the 

charge carriers can move by the hopping mechanism [147l  Self-assembled monolayer 

nano-composite films of SWCNT-FePc and FePc have been formed onto gold 

electrodes [148-1 to study the electron transfer dynamics using electrochemical 

impedance spectroscopy and cyclic voltammetry. The high electrical conductivity of 

SWCNT, coupled with enhanced electron density of the nano-composite confirmed 

by TEM images, may have facilitated better electron transport in the SWCNT-FePc 

film, resulting in lowest charge transfer resistance [148]. In the field of photovoltaic 

application the photocurrent of poly(3-hexylthiophene)-NaPc/MWCNTs film is
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found to be much larger than that of poly(3-hexylthiophene)-NaPc in all the visible 

and near-infrared wavelength regions [149]. Similar behaviour has been observed in 

the work of Yang et al 11501 where the photosensitivity in CuPc-MWCNTs hybrid 

material was 1.6 and 1.46 larger than that of pristine CuPc material and just blended 

CuPc/MWCNTs material. The 7i-stacking between the phthalocyanine molecules and 

carbon nanotubes can reduce the activation energies for charge transfer and therefore 

high charge mobility is expected from these hybrids that are interesting as a photo­

active layer in photovoltaic devices [149]. To study the interface between carbon 

nanotubes and metal phthalocyanines, very thin film of copper phthalocyanine has 

been grown by thermal evaporation onto supported MWCNTs layer, previously 

deposited by chemical vapour deposition onto silicon substrate [129]. The presence of 

organic nanocrystals decorating the nanotubes was confirmed using several 

microscopic techniques and XRD data have shown the presence of both a and p 

crystalline phases of CuPc . A shift of the highest occupied molecular level towards 

the Fermi level was observed for very thin films, together with a small shift of the 

nitrogen and copper core level peak position and the interaction between the organic 

molecules and nanotubes is found to be quite weak, determining very small effects 

on the photoemission spectra[1291.

2.3.2 Senor applications

Phthalocyanine complexes have been recognised to exhibit substantial changes in 

optical, electrical and magnetic properties on interaction with wide range of reducing 

and oxidizing agents [151‘1571. These characteristics can be employed for a several 

kinds of chemical detection applications. The crystalline structure of phthalocyanines 

is such that they can easily accommodate dopant molecules in channels adjacent to 

the phthalocyanine stacks. When dopant molecule such as NO2 is adsorbed onto 

phthalocyanine surface, charge transfer interaction takes place, which results in very 

large increase in surface conduction t93l  The process is somehow similar to the 

doping of intrinsic silicon to produce p-type semiconductor. In addition, 

phthalocyanine thin films conductivity has been shown to be sensitive to low 

concentrations of various gases [158]. Both the sensitivity and the reversibility of the 

Pc-based detectors are, in most cases, acceptable [1591. Much work has been carried
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out in order to understand the influence of the morphology, the temperature, the 

central metal and the peripheral substituents on the sensing ability of the 

phthalocyanine thin films.

The most promising candidates as far as applications are concerned are based on 

double-decker phthalocyanines [160]. Efforts are being made to transform the present 

laboratory devices into real-world sensors especially with the development of 

phthalocyanine-based electronic noses [160-1. Many groups of researchers have been 

engaged in the synthesis of novel phthalocyanines for sensing applications to detect 

different types of agents such as halogens [157], phenols [91], different types of 

herbicides, and pesticides and organic vapours l92’159-161̂

Recent reports have shown that CNTs-MPcs hybrids exhibited enhanced responses in 

comparison to the use of CNTs or MPcs alone. Work carried out on these hybrids 

included the detection of important molecules such as benzo[a]pyrine [38], amines [48-*, 

pesticides [44], asulam [162], hydrolysis products of V-type nerve agents [163], 

mercaptoethanol and nitric oxide [164], and epinephrine [165].

To date the research effort in hybrid carbon nanotube-conjugatd molecule systems 

has largely focused on the use of single-walled carbon nanotubes l33>134>148’166>167i# a  

major complication with SWCNTs is that they are a mixture of metallic and 

semiconducting tubes, complicating the interpretation of experimental data. 

Conversely, as a result of their larger diameter and more complex multilayered 

structure, multi-walled carbon nanotubes (MWCNTs) are invariably metallic, 

offering far more predictable functionality. Notably, both types of carbon nanotubes 

exhibit poor solubility in common solvents unless chemically fimctionalized or 

stabilized by a physical interaction with a soluble molecule tl30l

SWCNTs-CoPc derivative hybrid thin film chemiresistor sensor has been 

synthesized by using dip-dropping method and confirmed employing infrared 

spectroscopy, Raman spectroscopy, UV-Vis spectroscopy and X-ray photoelectron 

spectroscopy [I67]. The results revealed that CoPc derivatives have been successfully 

anchored on the surfaces of carbon nanotubes through 71-71 stretching and the 

resistance variation of the hybrid film was investigated by introducing different 

concentrations of organic solvent vapors. The hybrid sensors have shown higher 

sensitivity and selectivity for Dimethyl methylphosphonate (DMMP) compared with
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other vapors and with bare SWCNTs based sensors, showing a sudden and 

significant increase in resistance. The source of the resistance responses of the hybrid 

sensors might be attributed to the large SWCNT-CoPc derivative conjugated 71 

structure [167l  As the vapor molecules being chemisorbed onto the surface of MPc 

derivatives in the hybrids, surface charge transfer interactions happen [168-*, followed 

by charge moving between MPcs and SWCNTs. Since SWCNTs-MPcs could form a 

brilliant charge transfer composite [33,132], the charge can well-travel from MPc 

derivatives to SWCNTs causing a very large and fast variation in the electrical 

properties and therefore the resistance. In the work of Wang and co-workers [167] the 

resistance has increased because DMMP is a strong electron donor. In contrast, the 

resistance of CuPc-MWCNT hybrid film has shown a completely different behavior 

from others prepared from CoPc-MWCNTs and VPc-MWCNTs when they are 

exposed to hydrogen peroxide (H2O2) vapor [137J. While the resistance of CoPc- 

MWCNTs and VPc-MWCNTs sensors exhibit an obvious increase when exposed to 

H2O2 and other vapors, only CuPc-MWCNTs film show a significant decrease in 

resistance over wide range of concentrations. However, CuPc-MWCNTs device 

behave similar to other phthalocyanines-MWCNTs hybrids when exposed to vapors 

except H2O2 . The electrical conductivity of thin films of the composites made from 

MPc and CNTs can be modulated by interactions with different gases. Such effects 

can be interpreted within the framework of the band theory if we consider the 

adsorbed gases to produce appropriate donor or accepter level within the band gap of 

the organic materials at the film surface. Thin films of pure MPc are p-type 

semiconductors. Upon exposure to oxidizing agents (electron acceptors) like NO2 

SO2 l̂69\  and halogens [157] show an increase in electrical conductivity by generating 

extra charge carriers (holes), while reducing agents (electron donors) like NH3 [I70], 

CH3OH [171̂ , CO2 [20], and DMMP t155’167̂ trap charge carriers and decrease electrical 

conductivity.

It is important to mention that CNTs-MPc derivative hybrids are not only used in 

toxic chemical detection, MWCNTs-CoPc composite is found to be very sensitive 

and selective to ascorbic acid (AA) which is one of the most important vitamins that 

exist widely in fruits and vegetables [172]. Rapid increase in current was observed 

corresponding to presence of AA on the surface of the hybrid electrodes. 

Nonetheless, no significant increase in the catalytic current was obtained when the
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concentration of the AA solution was less than 5pM. Shah and co-workers [135] on 

the other hand have prepared humidity sensors by blending poly-N- 

epoxypropylcarbazol (PEPC) together with nickel phthalocyanine NiPc and CNTs in 

benzol and the mixture was drop-casted on different types of electrodes initially 

evaporated on glass substrates. In a self-made humidity chamber the capacitance 

increased with increasing humidity for all synthesized electrodes and this increase 

can be ascribed to the absorption of water by the composite molecules. The dielectric 

constant of the material is changed with absorption of water vapor, leading to the 

formation of charge transfer complexes and doping of the nanocomposite by H2O 

and thus results in capacitance increase [135].

Several research efforts have employed the unique sensing properties of the CNTs-

MPcs conjugated system in the detection of a diverse range of environmental

pollutants such as amitrol herbicide [173], duiron herbicide [55], glyphosate (GLY)

herbicide [174], organophosphours pesticide [175-1, asulam pesticide [176], phenolic

compounds after benzene oxidation [177], and determination of epinephrine in urine 
[178]_

2.4 Total Internal Reflection Ellipsometry (TIRE)

Several methods used to determine chemical compounds imply measuring the 

variation of physical properties of an active layer induced by the adsorption o f a 

chemical molecule on its surface. This active layer becomes the transducer that 

transforms the interaction with the environment in an optical or electrical signal. 

Among these methods are; high performance liquid chromatography [179"181-1, 

electrochemical [182'185], electrical based sensors t47] and optical detection methods [92l  

Sensors and measurement tools based on optical phenomena have always been of 

special interest, mostly because they usually do not require any physical or electrical 

contact with the materials under investigation and therefore they are not destructive. 

Some techniques, such as surface plasmon resonance (SPR) [159] and UV-visible 

absorption spectroscopy [186] are quite well recognised, and widely used. However, 

others like total internal reflection ellipsometry (TIRE), where ellipsometry can be 

used in total internal reflection mode and in combination with the surface plasmon 

resonance phenomenon[187-1, are still underexploited in the sensor area.
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The main task for all electrical, mechanical and optical sensors is to detect low 

concentration chemical and biological analytes under extremely dilute conditions. 

SPR sensors are the most commonly used optical sensors due to their unique ability 

for real-time monitoring. However, their sensitivities are unsatisfactory to detect 

trace amounts of small molecular weight molecules such as cancer biomarkers, 

hormones, antibiotics, insecticides, which are respectively important for early-stage 

disease diagnosis, explosive materials, food quality control, environmental 

monitoring, and homeland security protection. With the fast development of 

nanotechnology in the past few years, nanomaterials-enhanced surface plasmon 

resonance sensors have been developed and used as effective tools to detect 

molecules in a much diluted solutions [188].

Ellipsometry is an analytical tool which is well established for thin films and surface 

characterisation. This method relies on two parameters, the light intensity ratio (\j/) 

and phase shift (A) of p and s components of the polarized light. Regarding organic 

materials, ellipsometry were extensively utilized to study polymer thin films [189,190], 

self-organised layers I191*192̂  LB films [193] and liquid crystal t194’195]. The majority of 

these applications however focuses on the surface properties. Ellipsometry is well 

known in thin films industry for in-situ monitoring of film deposition to control layer 

thickness, growth rate and layer quality. However, the method of ellipsometry in 

general is recognised as an optical measurement tool but not as a sensor.

Due to the high sensitivity to the thickness increment, in the range of 0.01 nm, this 

technique has been recently adapted for the measurement of molecular layer 

adsorbed on solid surfaces, which naturally leads to sensor applications t161>196].

Further advances of spectroscopic ellipsometry for sensing application have been 

achieved in its total internal reflection mode. The idea of using ellipsometry in 

internal reflection mode was first realised experimentally by W estphal[197] where the 

prism was used to couple the light beam into a thin metal film thus combining the 

ellipsometic principle of detection with the phenomenon of SPR. The increased 

sensitivity has been achieved and the method was originally called as surface 

plasmon enhanced ellipsometry. The method was further explored and theoritically 

explained by Arwin [199] and got the current name of total internal reflection 

ellipsometry (TIRE). Later on, Nabok and co-workers 1̂96̂ developed detailed
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modelling that showed 10 fold gain of the sensitivity by using of A spectra instead of 

\|/ and traditional SPR measurements.

There has been a number of research studies where TIRE can be used for monitoring 

of thin layers on surfaces [199-*. Examples are given in the literature [200] of some 

probable applications of TIRE, where it has been established that TIRE is used for 

the monitoring of corrosion. TIRE technique has also been exploited in the 

biomolecules detection [201\  however, it still seems to be not fully recognised in the 

chemical vapour detection. A detailed theoretical background of TIRE technique is 

found in Chapter 3. The main advantage of TIRE technique over standard 

ellipsometry is the possibility of performing measurements in opaque media. The 

ability of spectroscopic measurements of two ellipsometric parameters (W and A) 

constitutes the main advantage over the conventional Kretschman SPR, where only 

one parameter (reflection intensity) can be measured. In addition to the above- 

mentioned advantages of optical detection methods, particularly TIRE technique, 

based on CNTs active layer, there is another advantage of incorporating CNTs into 

the TIRE technique. The problem in the well-known electrochemical and electrical 

methods based CNTs sensors caused by the differences in Fermi level positions in 

metallic-CNTs and semiconducting-CNTs [202] can be avoided in TIRE method 

because it depends on the variation of the optical parameters before and after 

exposure to contaminated media. This optical response is related to the modifier only 

and CNTs work as adsorbent material in the system because CNTs are optically inert 

whether metallic or semiconducting tubes.

2.5 Theory of Ellipsometry

Ellipsometry is a non-destructive optical method used to determine the optical 

properties of materials. The idea of Ellipsometry lies in measurements of changes of 

polarized light upon its reflection from a sample. As light reflects from a sample 

surface the state of polarized light changes from linear to elliptical, as in Figure 2.8.
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Figure 2.8: The changes in polarization of light reflected from the surface

Ellipsometry technique does not measure directly the optical properties of the 

material but the angles of (y/) and (A). Psi (y/) and delta (A) are defined as the ratio (p) 

of complex reflection coefficients rp and rs for electric vectors, p  (parallel) and 5 

(normal) to the plane of incidence [198].

r.
k explk )

k l exp(/<5s )
= tan exp (/A) (2.1)

In eq. 2.1, ^represents the amplitude ratio of p  and s components of polarized light 

while A is the phase difference betweenp  and s components.
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In the case of reflection / transmission at the interface between two media with 

respective indices N 0 and N x , the reflection and transmission coefficients are 

described by Fresnel’s formula[203];

r =  ̂E  ^Or

V E o i  j

_ ni cos 6i -  nt cos 6t 
ni cos 0. + nt cos 0t

r =p
^ E  ^Or

\  *o, j

_ nt cos 0t -  ni cos 6t 
ni cos 6t + nt cos 0t (2.3)

t, =
( E '0t 2n. cos 6:

—  1 1  f —
( E  'I ^01 2ni cos 0.

J o ,  y n. cos 6; + n. cos 0f ps 1 1 1  1 J o  I J n , cos 0t + n, cos 0,p i  l i  l

Substitution of rp and rs in equation (2.2), their values from (2.3) and Snell’s Law, 

N 0 sin 0O = N x sin 0X, yields;

N x = N 0 tan#c 1 -  / ^  'ism2 0n~t TV
(l + p )

(2.5)

For the three layer systems, consisting of a substrate, films and ambient (Figure 2.9), 

the total reflectance can be calculated as

R — r01 + t01t10r12e 13 + t01t 10r10r12 e ** +... (2 .6)

Where roi, ri2 , toi and tio are Fresnel reflection and transmission coefficients at the 

0/1, 1/0 and 1/2 interfaces respectively and p is the phase thickness o f the film;

P = 2ir[ i  W o sG , = 2nf — W  - N o2sin20o)>2
J J

(2.7)
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Figure 2.9: Optical model for an ambient -  thin film -  substrate structure

The summation of equation 6 for the p and s reflectance components is given by;

R„ - r 0 1 p +  r ! 2 pe  

1 +  r 0 1 pr i 2 pe

- i2p

—i2p
and R  = r 0 1 s + r i2 s e

- i2 p

1 + r r e i2f31 ^  01 s i  2 s
(2 .8)

The main ellipsometric equation depends on a number of parameters of the system 

through Fresnel’s formula;

tan^e'A = p(N0 N x,N 2,dXiOQiX) (2.9)

Solving the main ellipsometric equation is quite a difficult task. Two approaches are 

typically used, namely, forward and reverse ellipsometry problems. In forward 

ellipsometry problems, the values of y/ and A can be found from known parameters 

N 0,N l,N 2,d l,90,A, and by solving Fresnel equations analytically, which is a rather 

straightforward procedure. Solving the reverse ellipsometric problem, i.e. finding the 

parameters of the reflective system such as refractive index (N{) and thickness (dx) 

of the film, can be obtained from the experimental values of ^ exp and Aexp and is

much more complex. It can be tackled using some of the least square techniques 

which involve solving a forward problem (Fresnel equation) several times and
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finding the theoretical values (y/the and Athe) and subsequent minimizations of the 

error function. The approach is based on finding the mean square error (MSE) 

between the experimental values of ^/(expand A“ p and theoretical (modelled) ones

i//™°d and A™od as given, for example, in [204];

MSE = 1 X l/m o d  _  u y
i________  i

CTeXpu 'V,i

exp \2
+

/ , \  2 ' m̂od  ^CXP

CT
exp
A,/

1
2 N - M

(2 .10)

A smaller MSE implies a better fit. MSE is weighted by the error bars of each 

measurement, so noisy data are weighted less. There are several types of 

ellipsometry instrumentation developed within the last 4 - 5  decades ranging from 

simple fixed angle, single wavelength units to modem spectroscopic ellipsometric 

instruments. Spectroscopic ellipsometers can be split into two major categories: 

instruments that use rotating optical elements (analyzer or compensator) and 

instruments that use a photoelastic modulator. For example, the J. A. Woollam 

M2000 spectroscopic ellipsometric instrument exploits the principle of a rotating 

compensator, which consists of a wide spectral range of light source (350 -  1000 

nm), polarizer, rotating compensator, analyzer and a photodetector, as shown in 

Figure 2.10.

Light source
Detector

Polarizer
Rotating Analyzer

0
Rotating Analyzer

Compensator

X  J ' *

Sam ple surface

Figure 2.10: The schematic of rotating analyzer spectroscopic ellipsometry
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Chapter 3 

Experimental Details

Chapter overview

In this chapter experimental procedures and measurement techniques used 

throughout this study are described in sufficient details. First experimental methods 

used in this study are described with further emphasis placed on Total Internal 

Reflection Ellipsometry (TIRE) as the optical detection method employed in the 

study of interaction between several chemical analytes and MPc/SWCNTs hybrid 

films. Materials under investigation, mainly novel substituted metal phthalocyanines 

(MPcs) and commercially purchased single-walled carbon nanotubes (SWCNTs) and 

the methods applied to produce thin films for application in optical detection are 

fully described.
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3.1 Experimental techniques .

In this study significant work was carried out using TIRE as the main method to 

study the interaction of a range of chemical pollutants with the sensing 

MPc/SWCNTs hybrid layers prepared in this work. UV-Visible spectroscopy, 

Fourier Transform Infrared (FTIR) and Raman Spectroscopy have been used for 

films’ optical characterisation. Morphology measurements have been carried out 

using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). 

DC electrical measurements on films were performed using Semiconductor 

Characterisation System (Keithly 4200). These methods are described in sections 

3.1.1-3.1.7.

3.1.1 Total Internal Reflection Ellipsometry (TIRE)

3.1.1.1 Theoretical background

A comprehensive theoretical background on ellipsometry in general is presented in 

chapter 2. TIRE employs a prism coupler technique which combines the advantages 

of spectroscopic ellipsometry and the experimental convenience of surface plasmon 

resonsnace (SPR ) based on Kretschmann’s configuration [1]. The angle of incidence 

between the incident polarised light beam and the prism is selected such that it is 

close to the angle of total internal reflection, which is determined by the nature of 

media used. This angle determines the use of the appropriate prism, and it can be 

calculated by the following relation [1];

1 emN 22

_tf.il s m+ N 22_

where N l and N 2 are the complex refractive indices of glass and dielectric film 

respectively, s m is the real part of dielectric constant of metal film.

In contrast to the conventional sensing analytical tool of SPR based upon monitoring 

the intensity of reflected p-polarised light, the TIRE method detects two 

ellipsometric parameters \j/ and A which are related, respectively, to the amplitude
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ratio and the phase shift of the p and s components of polarised light. Basically, the 

more light interacts with the sample, the more accurate the measurements.

The spectra of two ellipsometric parameters \\i and A, representing, respectively, the 

amplitude ratio ?g(i|/) = Ap / As and phase shift A = cpp — cps between the p and s 

components of polarised light, were recorded with the M2000V instrument in the 

350-1000nm spectral range using the rotating analyzer principle. The typical V|/ and 

A spectra from a single spectroscopic measurement are shown in Figure 3.1. The \j/ 

spectrum resembles typical SPR spectra with the maximum intensity corresponding 

to the conditions of total internal reflection while the minimum is due to surface 

plasmon resonance. At the same time, the A spectrum experiences a sharp drop from 

270° to 90° near the plasmon resonance. From the spectra given in Figure 3.1 it is 

quite obvious that A spectrum is more sensitive than \j/ spectrum to small variations 

in films’ optical constants and/or their thickness caused by molecular binding. The 

comparison of \j/ and A spectra for TIRE in different media shows that TIRE is about 

10 times more sensitive towards changes in both, thickness d and refractive index, 

n of thin films as compared to conventional ellipsometry [2].

Figure 3.1: TIRE single spectroscopic spectra
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Optical parameters of the reflection system, i.e. thicknesses, refractive indices and 

extinction coefficients of the substrate and adsorbed layers, can be obtained by 

solving the reverse ellipsometric problem numerically:

tg  0/;) exp 0  A) = Rp/ Rs (3.2)

where Rp and Rs are Fresnel reflection coefficients for the p and s components of 

polarised light related to the parameters of reflection system, particularly the 

thickness (d) and refractive index (n) of the adsorbed layers, via Fresnel equations [3l

3.1.1.2 TIRE experimental set-up

The TIRE experiment setup used in the current study is based on the commercial 

M2000 J. A. Woollam Spectroscopic Ellipsometry operating in 350-1000 nm 

spectral range and exploiting the rotating compensator principle (Figure 3.2 (a)).

In order to use the instrument as a sensor operating in liquid or gaseous media, a 

special 200jil volume TIRE cell, constructed from polytetrafluoroethylene (PTFE) 

material, was used. A silicon O-ring was used to seal the gold-coated glass slide 

against the cell, as shown in Figure 3.2 (b). The cell contains inlet and outlet tubes to 

allow injection of different gases or liquids into the cell in order to perform different 

chemical interactions with hybrid films.

Another key element of TIRE is the glass prism, which couples the light beam into a 

thin gold film. Figure 3.2 (c) shows the TIRE cell with a 68° prism attached to the J. 

A. Woollam sample stage. The choice of the 68° prism was made to provide the 

condition of total internal reflection on a glass-water interface. For gas detection 

experiments a 45° prism has been used instead. A gold (Au)-coated glass slide was 

brought into optical contact with the prism via index matching liquid to exclude the 

presence of an air gap.

Other elements of the TIR set-up are explained in a schematic diagram of TIRE 

presented in Figure 3.3. The set-up comprises a white light source (1), 

monochromator (2), polarizer (3), analyzer (4) and a photodetector array (5). 

Elements 6-9 were fixed on the ellipsometer sample stage using vacuum suction [2,4].
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Figure 3.2: (a) J.A.Woollam M2000 Ellipsometer (b) A home-made TIRE cell (c) an 

image showing zoomed-in TIRE cell attached to the prism on ellipsometer stage.
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Figure 3.3: A schematic diagram illustrating the total internal reflection ellipsometry

experimental set-up.
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3.1.1.3 Experimental data fitting.

In order to determine the films’ thickness as well as its optical constants, data fitting 

is performed on the measured \(/ and A spectra by solving Fresnel equations many 

times for different values of n and d  and subsequently minimizing the error function 

of the experimental and theoretical (calculated) values of \j/ and A using one of least- 

square techniques. Commercial WVASE32® software is provided by J.A. Woollam 

Co., Inc. for this task.

Data processing requires building an optical model, which corresponds to the sample 

under investigation. Dielectric functions of some layers (namely; BK7 glass, gold, 

water or gas) are known and can be selected from the WVASE software library [5]. 

Parameters of unknown layers (i.e. thickness and dispersion of n and k) can be found 

by fitting the experimental data to the model layer which can be selected from the 

WVASE library. The most common model for adsorbed molecular layers is Cauchy.

Figure 3.4 shows the TIRE measurement protocol, which typically starts with a 

single spectroscopic scan of the sample of a bare gold film in water or fresh air to 

obtain the effective thickness and dispersion curves for optical parameters n(X) and 

k(A) of the chromium-gold layer (a thin chromium adhesion layer, typically 3-5nm, is 

first deposited on the glass slide to minimise gold film delamination). A three-layer 

model consisting of ambient (BK7 glass), gold, and fluid (water or gas) was used, 

where the parameters for glass and fluid are fixed but the thickness and optical 

constants of the metal layer are varied. The dispersion spectra of n(X) and k(X) as 

well as the thickness of evaporated gold layer were taken as initial guess values. The 

effective parameters for the Cr/Au layer obtained by fitting for that particular sample 

were then used as fixed parameters for further fitting of data obtained on the same 

sample.

Ellipsometry data fitting requires a great deal of experience and the outcomes depend 

on the selection of a physically adequate model as well as the choice of initial 

parameter fitting routine, i.e. the use of ‘normal fit’, or ‘point by point fit’ option, 

limiting the range of variable parameters, and removing ‘anomalous’ data points, and 

so. In order to achieve reliable results, the fitting procedure needs to be repeated 

several times (preferably from different initial conditions) until consistent values of
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thickness (d), refractive index (n) and extinction coefficient (k) are achieved. In some

(i) the measurements of (W, A) spectra are inaccurate.

(ii) inappropriate functions selected in data analysis

(iii) the optical model applied for data analysis is not suitable, and

(iv) depolarization effect from the sample

3.1.2 UV-Visible Absorption Spectroscopy

3.1.2.1 Theoretical background

UV-Vis absorption spectroscopy is the measurement of light absorption by a sample 

in the ultraviolet-visible spectral region of the electromagnetic spectrum. This 

absorption or attenuation can occur when light passes through a translucent liquid 

sample, or when light is reflected from a sample surface. The difference in the 

incident light and the transmitted light is used to determine the actual absorbance. 

When an atom or molecule absorbs energy, electrons are promoted from their ground 

state to an excited state. Molecules can only absorb radiant energy in definite units, 

or quanta, which correspond to the energy difference between the ground and excited 

states. The energy, E, carried by any one quantum is proportional to its frequency of 

oscillation, that is:

where 3  is the frequency, X is the related wavelength and h is Plank's constant 

(6.626xl0‘34 m2.kg/s).

In addition to electronic excitation, the atoms within a molecule can rotate and 

vibrate with respect to each other. These vibrations and rotations also have discrete 

energy levels, which can be considered as being packed on top of each electronic 

level.

cases a good fit cannot be achieved due to the following reasons [6]:

(3.3)
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Figure 3.4: A flow chart summarising TIRE experimental procedure
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Absorption of ultraviolet and visible radiation in organic molecules is restricted to 

certain functional groups (chromophores) that contain valence electrons of low 

excitation energy. The spectrum of a molecule containing these chromophores is 

complex as the superposition of atomic rotational and vibrational transitions on the 

electronic transitions gives a combination of overlapping lines. This appears as a 

continuous absorption band [7].

The UV-Visible spectral region is divided into three sub-domains termed near UV 

(185-400 nm), visible (400-700 nm) and near infrared (700-1100 nm). Most 

commercial spectrophotometers cover the spectral range between 185 to 900 nm. 

The principle of absorption is the interaction of ions or molecules of the sample with 

the photons of an incident beam produced by a source. When a molecule interacts 

with a photon, this photon is absorbed and one or more of the molecule’s outer 

electrons will capture its energy. Consequently, total electronic energy increases and 

promotion of an electron from a higher occupied molecular orbital (HOMO) to a 

lower unoccupied molecular orbital (LUMO) takes place. The electronic transitions 

of organic compounds represent the majority of studies made in the UV-Vis. The 

observed transitions involve electrons engaged in o, n  or non-bonding n electron 

orbitals which might happen according to transitions explained in Figure 3.5.

W)s-<DGPJ

n ► 0 *

A

n -4» n*l•
7t

r _

-► 71*

7 1 - -► a* ii

o - ► 0 *

a - > 71*

a*, Anti-bonding

n*, Anti-bonding

n, Non-bonding 

7t, Bonding

a, Bonding

Figure 3.5: Possible electronic transitions in organic materials
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3.1.2.2 Instrumentation

UV-Visible absorption spectra have been recorded on Varian 50 scan UV-Visible 

spectrophotometer. A spectrophotometer is designed around three fundamental parts: 

the source, the monochromater, which constitute the optical section and the detection 

system (Figure 3.6). These components are typically integrated in a unique 

framework to make spectrometers [8,9l

All the samples have been measured in the form of solution. First, the cuvette has 

been washed and filled with solvent to measure the baseline. The cuvette then was 

filled with the sample solution to record the spectra.

Source

A
Detector

Figure 3.6: Instrumentations in UV-Vis. Spectrophotometer

3.1.3 Fourier Transform Infrared (FTIR)

When molecules are irradiated with IR, the IR with the same wavelength resulting 

from the frequency of the vibration or other modes of the molecular bonds will be 

absorbed, and an absorption peak will appear at this wavelength or wave number. If 

we consider that the characteristic bonds of molecules are wavelength absorber, each 

absorber can absorb a characteristic wavelength to show an absorbance peak at the 

corresponding wavelength when an IR wave passes through the sample. Therefore, 

IR spectroscopy can be used to

1. Identify a known component present in an unknown sample.

2. Study the formation of new chemical bonds or substitutions.

3. Perform quantitative analysis for a component of interest.
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A nexus FTIR spectrometer operating in the range of 400-4000 cm'1 has been used in 

this study. In a classic dispersive IR spectrometer, an IR spectrum is measured by 

scanning the sample with a continuous wavelength range of IR. The setup of Fourier 

transform infrared (FTIR) spectrometer does not record the spectral intensity directly 

as a function of wavelength, but an interferogram (interfered waves) is taken instead. 

In an interferometer, a beam of light is split into two beams, beam 1 and 2 in Figure 

3.7 by a beam splitter [10l

Fixed m irro r

M oving

B eam  sp l i t te r

S am p le

Figure 3.7: Interferometer: IR, infrared radiation source; B, beam splitter; F, fixed

mirror; M, moving mirror

The beam splitter is designed to transmit half of the radiation and reflect the other 

half. Beam 1 travels a distance of 2FB, while beam 2 travels a distance of 2MB. Due 

to the movement of the moving mirror, the distance FB is different from the distance 

MB. This difference is called the optical path difference. Phase shift will occur 

depending on the optical path difference resulting in an interference pattern, or 

interferogram. The interference pattern varies with the displacement of the moving 

mirror resulting in constructive and destructive interface. This makes FTIR more 

powerful and faster than the conventional IR spectrometer because more energy will
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reach the sample than that possible with a dispersive spectrometer. As a result, the 

signal to noise ratio can be increased [11].

3.1.4 Raman Spectroscopy

Raman spectrum is the shift in wavelength of the inelastically scattered radiation that 

provides the chemical and structural information. Raman shifted photons can be of 

either higher or lower energy, depending upon the vibrational state of the molecule 

under study. A simplified energy diagram that illustrates these concepts is shown in 

Figure 3.8.

Stokes radiation occurs at lower energy (longer wavelength) than the Rayleigh 

radiation, and anti-Stokes radiation has greater energy. The energy increase or 

decrease is related to the vibrational energy levels in the ground electronic state of 

the molecule, and as such, the observed Raman shift of the Stokes and anti-Stokes 

features are a direct measure of the vibrational energies of the molecule [12].

Raman spectra were recorded with a Triplemate, SPEX spectrometer equipped with 

CCD detector in back-scattering geometry. The 488 nm, 40 mW line of an Ar-laser 

was used for the spectral excitation.

VIRTUAL STATE

STOKES RAYLEIGH
ANTI STOKES

^A /IB R A TIO N A L  
*71 LEVEL

■ 7

GROUND ELECTRONIC STATE

Figure 3.8: Simplified energy diagram
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3.1.5 Atomic Force Microscopy .(AFM)

3.1.5.1 Theoretical background

The atomic force microscope (AFM) was invented in 1986 by Binning et a l [13]. AFM, 

like all other scanning probe microscopes, utilizes a sharp probe moving over the 

surface of a sample in a raster scan. In the case of AFM, the probe is a tip on the end 

of a cantilever, which bends in response to the force between the tip and the sample. 

Unlike traditional microscopes, scanned-probe systems do not use lenses, so the size 

of the probe determines the resolution limit. In AFM the cantilever is treated as a 

Hookean spring, and hence a simple relationship may be assumed between the 

deflection of the lever, x, and the force F  acting on the tip t14̂ :

F = - k x  (3.4)

The constant of proportionality k is the spring constant, which, is strongly dependent 

on the physical dimensions of the cantilever (width-w, length-/, thickness-/) and the 

elasticity of material[5].

3.1.5.2 Distance between sample surface and tip

Three different primary imaging modes are possible according to the distance (d) 

between sample surface and the tip, contact mode (d < 0.5 nm), non-contact mode 

(0.5 nm < d  < 10), and tapping mode (d ~ 0.5-2 nm), as shown in Figure 3.9, which 

illustrates the relation between force and distance.

In contact mode, the tip scans the sample surface by being pushed against the surface. 

Contact mode is suitable for hard surfaces where the tip cannot damage the surface 

[15l  In non-contact mode, the separation of the tip from sample surface is large, that 

the interaction between tip and sample surface is small and mostly in the range of the 

damped forces in ambient conditions. Therefore, non-contact mode is appropriate for 

measurement mostly under vacuum, and even sub-molecular resolution could be 

achieved [16].
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In tapping mode, the cantilever oscillates and the tip taps the surface slightly during 

scanning. Thus the surface is less damaged than in the case of contact mode while 

the lateral forces are eliminated. The feedback loop maintains a constant oscillation 

amplitude by maintaining a constant tip-sample intraction during scan [17]. Tapping 

mode tends to be more applicable to general imaging in air, particularly for soft 

surfaces, as the resolution is similar to or even better than contact mode, while the 

forces applied to the sample are lower. In fact, the only disadvantage of tapping 

mode is that the scan speed is slightly slower than in contact mode and the AFM 

operation is a bit more coplex, but these disadvantages are outweighed by the 

advantages.

Repulsive
Force

Distance
(tip-to-sam ple separation)

Attractive
Force

Contact

Non-Contact

Intermittent
Contact

Figure 3.9: Van der Waals force against distance [18]

In this work tapping mode has been used for measuring the topography of thin films 

surfaces, which allows a higher resolution and does not destroy the organic layers.
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3.1.5.3 Instrumntations

The AFM instrument used in this study is NanoScope Ilia Multimode 8 AFM 

(Figure 3.10a); the microscope itself rests on an anti-vibration platform (Figure 

3.10b and c), which can be spring suspended on a tripod to reduce further noise. The 

NanoScope Ilia Multimode 8 instrument gives the opportunity to take images of the 

sample surface with nano-meter resolution and to determine their characteristics, 

such as; sample features’ height and distribution.

(a)

P ro b e
H older

Stage
Controls

Scanner 
C'EV" shown)

Retaining
Springs

S c a n n e r  
S u p p o r t R ing

Stabilizing 
S c re w  J“

M otor D rive  
C oupling

Figure 3.10: (a) NanoScope Ilia Multimode 8 SPM system components and (b) a 

zoomed in SPM and (c) vibration reduction tripod
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The software provided with this system (NanoScope Analysis 1.50) can analyse the 

section, roughness, particle size, etc. and create pseudo 3D images of the sample 

surface.

Changes in the tip-sample interaction are monitored using an optical cantilever 

detection system (Figure 3.11), where a laser beam is reflected back from the 

cantilever and collected by a position sensitive detector consisting of two closely 

spaced photodiodes connected to a differential amplifier. Angular displacement of 

the cantilever results in one photodiode collecting more light than the other 

photodiode, producing an output signal (the difference between the photodiode 

signals is normalised by their sum), which is proportional to the deflection of the 

cantilever. The accuracy of the detection of cantilever deflections is less than lA 

(thermal noise limited). The long beam path (several centimetres) amplifies changes 

in the beam angle [1 .

Probes used are Antimony (n) doped silicon (TESP-SS) and silicon nitride 

(SCANASYST-AIR); these probes are primarily used for tapping mode applications. 

The tip and cantilever are an integrated assembly of single crystal silicon, produced 

by etching technique. The characteristics of TESP-SS and SCANASYST-AIR probes 

are summarised in tables 3.1 and 3.2.

Laser Y-axis
Adjust

Photodiode 
Adjust N

Laser X-axis Adjust

Kev:
1. Laser
2. Mirror
3. Cantilever
4. Tilt Mirror
5. Photodetector

Head Y-axis 
S tage AdjustHead X-axis 

S tage Adjust

Figure 3.11: NanoScope Ilia  beam deflection detection system [18]
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Table 3.1: TESP-SS probe characteristics [19].

Material 0.01-0.025 Qcm Antimony (n) i

doped Si. :

Resonant frequency, 230-410 |

kHz

Spring constant, N/m 20-80

Length, iurn 125

Tip geometry Super Sharp (ss)

Cantilever geometry Rectangular

Table 3.2: SCANASYST-air probe characteristics [19].

Material Silicon Nitride

Resonant frequency, 45-95 

kHz

Spring constant, N/m 0.2-0.8

Length, jnm 115

Tip geometry Rotated (symmetric)

Cantilever geometry Triangular
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3.1.6 Scanning Electron Microscopy (SEM)

3.1.6.1 Theoretical background

The SEM was invented soon after the transmission electron microscope (TEM) but 

took longer to be developed into a practical tool for scientific research. Today, SEM 

is used in many fields, such as medical and materials research, semiconductor 

industry, and forensic-science labs. It is not completely clear who first proposed the 

principle of scanning the surface of a specimen with a finely focused beam of 

electrons to produce an image of the surface. The first published description 

appeared in 1935 in a paper by Knoll [20l  In 1942 Zworykin and co-workers [21̂ first 

described a true SEM with a resolution of 50 nm and magnification of 8000x.

3.1.6.2 Instrumentations

FEI-nova nanosem 200 SEM (Figure 3.12a) is used in this research. The scheme of 

SEM operation is illustrated in Figure 3.12b, which consists of electron gun as 

electron source, two condenser lenses, scanning coils, which facilitates the deflection 

of electron beam in x  and y  directions, objective lens, and detectors for backscattered 

and secondary electrons. SEM operates inside vacuum chamber with high-energy 

electron source (2~25kV). Condenser lenses focus the electron beam into a nano­

meter size. The reflected electron from the sample, backscattered or secondary 

electrons, are collected by the detector to provide an image of the sample. In many 

cases, the backscattered electrons reflected from the sample are used in analytical 

SEM due to the relation of intensity and atomic number of materials [22].

3.1.6.3 Secondary and backscattered electron

Two imaging modes are available in SEM; Secondary Electron Imaging (SEI) or 

Backscattered Electron Imaging (BEI). In the former, low energy secondary 

electrons (typically <50  eV) emitted from the interaction between the incident beam 

of high energy electrons with the atoms of the sample via inelastic collisions are 

detected and used to build an image of the surface topography of the sample. Due to 

the relatively low energies of these secondary electrons, only those from the surface 

(a very thin layer of tens of nanometres) are able to emerge from the sample. In the
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case of BEI, the image is derived from scattered or reflected electrons from elastic 

collisions of the high energy electron beam with the nuclei of the atoms at high 

angles approaching 180° (Figure 3.13).

(a) (b)

Electron gun 

Electron beam

First condenser 
lens

Second 
condenser lens

Deflection coils 

Objective lens

Backscattered 
electron detector

Sample 
Secondary 

electron detector
Vacuum pump

Figure 3.12: (a) SEM system and (b) Schematic illustration of the operation of SEM

•  Backscattered 
^  Electron

Electron
ibeam
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electrons-

Electron
beam

Electrons ElectronsNucleus
ba

Figure 3.13: Interaction between electrons beam and sample producing (a) 

secondary electrons and (b) backscattered electrons
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The yield of backscattered electrons is a function of atomic number. Heavier 

elements, i.e. those with higher atomic number, reflect a greater proportion of 

electrons and so appear brighter, and lighter elements with a low atomic number 

reflect a lower proportion of electrons and appear darker. The contrast indicates the 

average atomic number of the elements present within the microstructure and is 

indicative of the varying elemental compositions [21’23].

3.1.7 Semiconductor Characterisation (I-V Characteristics)

According to Ohm's low the current I  (in amperes) in a sample is proportional 

directly to the potential difference V (in volts) across two points on this sample [24]:

where R is the sample resistance measured in ohms.

Consider that the current passes through a peace of material with length / (m) and a

(3.5)

cross section area A (m2)  as in Figure 3.14. The electrical resistivity p can be defined

as:

P = R Ah (3.6)

Conductivity <j(S/m) is the inverse of the resistivity; o=l/p.

Therefore, we can write Ohm's low in the following expression:

J = oE (3.7)

where J  is the current density (I/A) (in ampere/cm2) and E  is the magnitude of the 

electric field (V/l) (in volt/m).

Figure 3.14: A piece of resistive 

material with electrical contacts on the

ends
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3.1.7.1 Structure of studied devices

Two types of device configurations were studied in the current work; sandwich film 

structure and planar structure using intedigitated electrodes. For sandwich structures 

(Figure 3.15a), Indium Tin Oxide (ITO) coated glass substrates were used. ITO 

substrates were washed in chloroform for 15 minutes using ultrasonic path, rinsed 

with water and then left to dry in a desiccator. Active layers have been deposited 

from diluted solutions onto the ITO substrates using spin-coating method. Top 

electrodes were evaporated through shadow mask under vacuum with pressure of 

about 2x1 O'5 mbar using vacuum thermal deposition. The rate of film deposition was 

controlled by a film thickness monitor at the rate 0.1 nm.s'1, and the obtained 

thickness was 40 nm. In such kind of devices, to calculate conductivity from I-V 

curves, the cross section area (A) will be the device active area as determined by the 

overlap area between the active layer and the top electrode and / is the film thickness 

which can be determined utilizing spectroscopic ellipsometry.

In the planar structure (Figure 3.15b), the interdigitated electrode geometry is used to 

determine the conductivity based on equations 3.5 and 3.6:

a = LlRHWn (3-8)

where H is the film thickness, L is the gap between fingers, W is the overlap distance 

between the electrodes and n is the number of fingers (n=10-15).

3.1.7.2 Instrumentations

The Model 4200 Kiethely Semiconductor Characterisation System (4200-SCS) 

(Figure 3.16) has been used for the DC electrical characterisation of MPc thin films 

utilising the two types of device configurations. The system is specified to work at 

the IpA-lA current range with the maximum voltage of 21-210 V, and 200mV-200V 

voltage range with the maximum current of 10.5-105mA. This system can 

automatically perform IV and CV measurements of semiconductor devices and test 

structures, using up to eight Source-Measure Units (SMUs). A variety of supported 

external components enhance the capabilities of this machine.
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I
A1 electrode

Film

W (2 -10mm)

L (20-100 nm)

Figure 3.15: Schematic illustration of devices structure used in this study, (a) 

sandwich structure and (b) interdigitated electrodes

Figure 3.16: Keithley 4200 semiconductor characterisation system

A ctive laver
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Top
electrode
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3.2 Materials

In this work, novel substituted metal phthalocyanines (MPcR) were used to prepare 

thin films from their solutions and also investigated as hybrid components to enhance 

the solubility and thus the optical activity of single walled carbon nanotubes 

(SWCNTs). The MPc/SWCNTs composite films prepared thereafter have been used 

as optical active layers for chemical detection applications using TIRE method. All 

investigated MPcs were synthesised and chemically characterised by our co­

researcher in Gebze Technical University, Turkey. A brief description of chemical 

synthesis will be explained where important in later chapters. SWCNT and other 

materials used in this work were obtained from commercial suppliers and presented 

in table 3.3.

3.3 Samples preparation

3.3.1 Spin coating

Spin coating is a fast and easy method to generate thin and homogeneous organic 

films out of solutions. Spin coating is a procedure used to apply uniform thin films to 

flat substrates. In short, an excess amount of a solution is placed on the substrate, 

which is then rotated at high speed in order to spread the fluid by centrifugal force. 

This method was first described by Emslie et al. (1958) t25] and Meyerhofer et al. 

(1978)[26].

In the early stages of spin coating the rate of thinning by centrifugal forces is much 

larger than by evaporation. After spin-off, the thinning of the film is just due to 

evaporation and occurs constantly. The transition point between the spin-off and 

evaporation is the point where the rate of thinning due to centrifugal forces is the 

same as that due to evaporation. Figure 3.17 represents the stages of spin coating. 

Film thickness at the transition is defined as ho. The time after reaching the transition 

point is called drying time tj, when, saturation, nucleation and growth take place. The 

liquid film becomes supersaturated due to evaporation of the solvent (Figure 3.17c). 

After complete evaporation, a solid film is formed on the substrate (figure 3.17d).
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Table 3.3: List of materials and their supplier.

M aterial A bbreviation Purity

(% )

D ensity,

g/cm 3

Supplier

R aw  m aterials

1. Single-walled  

carbon nanotube

Solvents

SWCNT 77 1.7-1.9 Sigma Aldrich d, 0 .7 -1 .lnm  

L, 300-2300nm

2. Chloroform 99.9 1.492 Sigma Aldrich

3. Dichloromethane DCM 99.8 1.235 Sigma Aldrich

4. Dimethylformamide

A cids

DMF 99.8 0.944 Sigma Aldrich

5. Nitric acid h n o 3 70 1.413 Fisher Scientific

6. Sulfuric acid 

A nalyts

h 2s o 4 99.999 1.840 Fisher Scientific

7. Benzo[a]pyrene 96 1.24 Fluka Powder

8. Pentachlorophenol PCP 97 1.978 Sigma Aldrich Powder

9. Simazine Fluka Powder

10. Atrazine Fluka Powder

11. 2-chlorophenol 2CP 99 1.241 Sigma Aldrich Powder

12. Isoproturon Fluka Powder

13. Diuron 98 Sigma Aldrich Powder
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14. Methylamine - 0.897 Sigma Aldrich 40% in H20

15. Dimethylamine - 0.89 Sigma Aldrich 40% in H20

16. Trimethylamine - 0.88 Sigma Aldrich 45% in H20
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o ' o'"o” o " ' o r% , I I I I 2  material Area
o o o  o Spin- o o 0 S oo - j p i n  y  o o  o o o _________  ' * s | o 0 cd, cg’ o°o  q o °

t
C O p  o o o  j pm-  V o o o o o  qg eg 6° o  Q o y

4 of f  L
c : Concentration^  I I

— ►to: Spin speed►w: Spin speed

Figure 3.17: Schematic figure of spin-coating indicating the dominant process at the 

beginning of spin-coating (spin-off) and later after the equilibrium liquid film 

thickness is reached

The film thinning for an ideal Newtonian liquid is described by Meyerhofer as [26]: 

dh
—  = —2kh -  E (3.9)
d t K J

where h is the film thickness; E  evaporation rate and k spin-off coefficient, which is 

defined as:

o r
k = T3v

(3.10)

where co is the spinning speed; v is the kinetic viscosity of the liquid. Karpitschka 

and co-workers solved the equation analytically, for the case of constant evaporation 

rate. The amount of material deposited at the end of the spinning process is [27-1:

(E'] 3 ( E } 3
-- ~ C n

---- C0
\ k 0 \3i> J (3.11)
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According to equation 3.11, the amount of deposited material can be controlled by 

the initial concentration, evaporation rate and speed of spinning.

In the present work a photo resist spinner model 4000 (Electronic Micro Systems 

Ltd.) has been used to spin cast thin films of MPc and its hybrids with SWCNTs. A 

drop of the materials solution is deposited using adjustable micro-syringe (Eppendorf 

10-100 jul) onto a rotating substrate.

3.3.2 Thermal evaporation

Vacuum deposition via thermal evaporation includes two simple processes; 

evaporation and condensation. It brings to mind the familiar process by which liquid 

water appears on the lid of a boiling pan but, the situation and heat source are quite 

different.

Evaporation process occurs in vacuum, where gases other than the source material 

are almost completely removed before the evaporation begins. Therefore, particles 

can travel straight to the deposition target avoiding collision with the background 

vapor. Hot objects inside the evaporation chamber, such as heating filaments, creates 

an unwanted vapors that limit the quality of the vacuum. Generally, other unwanted 

gases collide with the evaporated material may react with them. For example, if 

aluminium is deposited in the presence of oxygen, it will form aluminium oxide. 

They also reduce the amount of vapor that reaches the substrate, which makes the 

thickness difficult to control[28].

Edwards E306A Thermal Evaporator has been used to evaporate a metal film onto a 

substrate. The metal source to be evaporated, typically gold and aluminium, is placed 

in a suitable filament or crucible, in which a large current is passed. The metal melts, 

and evaporates onto the target substrate above the source, producing a film. The 

thickness of the metal film is monitored in-situ using a quartz crystal thickness 

monitor (Model Edward FTM5) Even though the turret can accommodate up to four 

different materials, and changed via manual rotation, the most common practice was 

to evaporate single material during one pump-down cycle.

The major components of the Edwards E306A Thermal Evaporator are :

72



E x p e r i m e n t a l  d e t a i l s  |

• A diffusion pump supported.by a rotary pumping system.

• Chamber.

• An electrical system, which incorporates the Edwards E306A Thermal 

Evaporator Controller.

3.3.3 Substrates

All substrates have been washed thoroughly using chloroform for 15 minutes in 

ultrasonic bath, followed by thorough rinsing with deionized water and then left to 

dry in a desiccator

For chemical detection research gold-coated glass slides were used for light coupling 

using TIRE method as described in section 3.1.1. The samples were prepared by the 

evaporation of 3-5 nm of chromium onto pre-cleaned microscopic glass slides 

followed by the evaporation of 25-30 nm of gold layer using thermal evaporator. 

Thin films of MPc as well as MPc/SWCNT hybrids were deposited from diluted 

solution on the gold-coated substrate by spin-coating technique.

Silicon substrates of lx lcm2 in area were used for morphology studies. First, the 

substrate was cut using diamond cutter, washed with chloroform in ultrasonic bath 

for 15 minutes, rinsed with deionised water and left to dry in a desiccator. Thin films 

were deposited from diluted solutions onto the silicon substrates by spin-coating 

method. Thin layer ~ 1 nm in thickness of gold was deposited on top of the organic 

film as well as its hybrids with SWCNTs to allow more interaction of electrons with 

the film surface in the case of SEM study.

Indium-doped tin oxide (ITO)-coated glass substrates are used as conductive bottom 

electrodes in electrical measurements in the case of sandwich device structure.
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Chapter 4

Octa-Substituted Copper and Lead Phthalocyanines: Electrical, 

structural and optical studies

Chapter overview

This chapter studies the effect of different substituents on the characteristics of thin 

films of octasubstituted copper (II) phthalocyanines (CuPcRg) and lead 

phthalocyanines (PbPcRg). The first part of this chapter focuses on the effect of 

alkylthio-, alkyloxy-, (trioxyethylene)thio- and (trioxyethylene)oxy- substituents in 

peripheral positions on the properties of CuPcRg while the second part studies the 

properties of novel octasubstituted lead(II) phthalocyanines with octylthio, octyloxy 

and hexadecyloxy groups. The investigation of thin films of these complexes by UV- 

visible absorption spectroscopy is reported using Varian 50 scan UV-Visible 

spectrophotometer. The current-voltage characteristics and electrical switching 

behaviour of PbPcRs in sandwich structure of ITO/PbPcRg/In are also studied using 

Keithley 4200 semiconductors characterization system.
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4.1 Octa-substituted copper phthalocyanines (CuPcRg)

Synthesis procedures of all copper phthalocyanine derivatives have been carried out 

by co-researchers and is summarised in Figure 4.1 and Table 4.1. Further details on 

the synthesis of these phthalocyanines are found in the literature [1]. All other 

reagents used in this chapter were purchased from commercial supplier.

Table 4.1: CuPcRg derivatives used in this chapter

Sym bol C om pound

2,3 ,9 ,10,16,17,23,24-

Form ula Initial 

decom position  

tem p. °C

M ain  

decom position  

tem p. °C

3a Octakis(octyloxy)phthalocyanin  

ato copper (II)

2,3 ,9 ,10,16,17,23,24-

C96H 144CuN 80 8 300 420

3b Octakis(hexadecyloxy)phthaloc 

yaninato copper (II)

2,3,9,10,16,17,23,24-O ctakis-

Ci6()H272CuN80 8 300 424

3c
[2-(2-(2-

m ethoxyethoxy)ethoxy)ethoxy] 

phthalocyaninato copper (II)

2 ,3 ,9 ,10,16,17,23,24-

C88H 128CuN 80 32 300 406

4a Octakis(octylthio)phthalocyanin 

ato copper (II)

2 ,3 ,9 ,10,16,17,23,24-

C96Hi44CuN8S8 330 378

4b Octakis(hexadecylthio)phthaloc 

yaninato copper (II)

2,3 ,9 ,10,16,17,23,24-O ctakis-

Ci6()H272CuN8S8 330 384

4c
[2-(2-(2-

methoxyethoxy)ethoxy)ethylthi 

ojphthalocyaninato copper (II)

C 88H i28CuN 80 24S 8 285 337
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4.1.1 Film preparation

Small volume (3-4pL) of solutions of CuPcRg derivatives in chloroform (lOmg/ml) 

was dispensed via microsyringe on to an ultrasonically cleaned substrate held onto 

photoresist spinner. The speed of substrate rotation was 2000rpm. Spinning was 

continued for 30s during which time the solvent had evaporated to generate a film of 

phthalocyanine derivatives. The films were then heated to a temperature 10-20°C 

above the isotropic transition temperature or to the maximal possible temperature 

lower than temperature of decomposition (Table 4.1) and slowly cooled down to 

room temperature at the rate of 10°C min'1 for comparison with as deposited layers. 

Glass slides, silicon wafers and interdigitated electrodes have been used as substrates 

to perform UV-Vis absorption, ellipsometry and IV measurements respectively.

Figure 4.1: Synthesis of octa-substituted copper (II) phthalocyanines. Reagents and 
conditions: (i) RBr (1-bromooctane, 1-bromohexadecane or triethylene glycol 2-bromoethyl 
methyl ether), potassium carbonate, DMF, room temperature, 3 days; (ii) RSH (1- 
octanethiol, 1-hexadecanethiol or 2-[2-(2-methoxyethoxy)ethoxy]ethanethiol), potassium 
carbonate, DMF, room temperature, 3 days; (///) CuCl2 (anhydrous), DBU (1,8- 
diazabicyclo[5.4.0] undec-7-ene), hexanol, reflux, 24 h.
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4.1.2 UV-visible absorption spectra

UV-visible absorption spectra were recorded on Varian 50 scan UV-Visible 

spectrophotometer. It was shown earlier that the spin-coating method provides a 

simple and convenient procedure for preparing ordered films of the phthalocyanines 

which can be heated to form thin liquid-crystalline films [2,3]. The electronic 

absorption spectra of the films of CuPcRg before and after heating are presented in 

Figure 4.2.
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Figure 4.2: The electronic absorption spectra of 3a, 3b, 3c, 4a, 4b and 4c solution in 

chloroform (dotted lines); as-deposited films on glass (dashed lines); films after 

heating (solid lines)
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The Q-band structure is more complex than that observed in the solution phase where 

non-aggregated phthalocyanines give rise to a single main band assigned to the 

doubly degenerate transition aiu-eg. In the optical spectra of CuPcRg films the main 

absorption bands are broadened through exciton coupling effects which also lead to 

shifts in the band positions. These are dependent upon molecular packing 

Splitting of Q-band in the spectra of the films of 3a, 3b, 3c and 4a before heating 

indicate the herring-bone arrangement of phthalocyanine molecules which is typical 

for many crystalline phthalocyanines Films give rise to both a red- and a blue- 

shifted band consistent with exciton splitting arising from the presence of 

translationally non-equivalent molecules in the 'unit cell', as in a herringbone 

arrangement of molecules within adjacent columns. After heating the spectra of films 

3a and 3b change, however the Q-band splitting does not disappear confirming the 

persistence of herring-bone arrangement.

The spectra of the films of 3c and 4a after heating are blue shifted relative to the 

spectra of the monomers. From these spectral changes it can be deduced that on 

passing from crystal to mesophase, changes into parallel (face-to-face) dimer 

stacking are observed. This type of re-organization is analogous to that undergone by 

the octaalkyl analogues upon transition from the crystal phase to the hexagonal 

discotic mesophase [6]. The Q-bands in the spectra of 4b and 4c films are blue-shifted 

both before and after thermal treatment.

4.1.3 Current-Voltage (I-V) Characteristics

DC conductivity measurements were carried out using Keithley 4200 semiconductors 

characterisation system. The current-voltage (I-V) characteristics of CuPcRg films 

were measured in the direction parallel to the films plane using interdigitated 

electrode structures. Film thicknesses were determined using a Woolam 

M  — 2000V™ rotating analyser spectroscopic ellipsometer in the spectral range of 

350-1000 nm and were used in the calculation of conductivities of CuPcRs 

complexes; the results are summarized in Table 4.2. The lateral conductivity tends to 

decrease slightly with the increase of chain length (films 3a and 3b; 4a and 4b). A 

similar behaviour was observed by Nakahara and co-workers for in-plane 

conductivity as a result of increasing chain length in phthalocyanine molecules
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The observed decrease in conductivity with increasing length of the alkyl chain was 

related to an increase in the hopping distance between localised sites [8,9l  The 

conductivity of alkylthio-substituted phthalocyanines (4a-4c) is higher than that of 

alkyloxy-substituted derivatives (3a-3c). The Q-bands of alkylthio-substituted 

phthalocyanines are red-shifted, compared with the Q-bands of alkyl- and/or 

alkyloxy-substituted phthalocyanines. The red-shift means that the energy gap 

between the HOMO and LUMO narrows on changing from alkyl or alkyloxy groups 

to alkylthio groups tl0l  This was found to result in an increased electroconductivity, 

as was previously reported by van de Craats and his co-workers for alkylthio- 

substituted phthalocyanines, both for the metal free and copper complexes [9].

Furthermore, it was suggested that the larger size of the sulphur atom which is 

bridging the Pc macrocycle to the alkyl chain is the cause for hindering the structural 

disorder in the molecular stacks during the melting of the hydrocarbon chain when 

transition from crystalline to hexagonal mesophase (Dh) takes place [11l  This was 

found to enhance the electron mobility of charge carriers between stacks by one 

order of magnitude and thus leading to higher conductivity as compared to the 

alkyloxy-substituted derivatives.

Table 4.2: Film thickness and calculated conductivity of CuPcRg films 

Compound 3a 3b 3c 4a 4b 4c

Thickness,
198 150 139 120 116 156

nm

a//, Q’1 m '1 5.1x1 O'9 2.6xl0‘9 4.2xl0 '8 6.7xl0‘s 5.0xl0's 2.0xl0‘7
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4.2 Octa-substituted lead phthalocyanines (PbPcRs)

Synthesis procedures of lead phthalocyanine derivatives used in this section have 

been carried out by co-researchers and is summarised in Figure and Table 4.3. 

Further details on the synthesis of these phthalocyanines are found in the literature 

[12l  All other reagents used in this section were purchased from commercial supplier.

Figure 4.3: Synthesis of octa-substituted lead (II) phthalocyanines. Reagents and 

conditions: (i) RBr(l-bromooctane, 1-bromohexadecane or triethylene glycol 2-bromoethyl 

methyl ether), potassium carbonate, DMF, room temperature, 3 days; (ii) RSH (1- 

octanethiol, 1-hexadecanethiol or 2-[2-(2-methoxyethoxy)ethoxy]ethanethiol), potassium 

carbonate, DMF, room temperature, 3 days; (iii) PbO (anhydrous), 210°C, solvent-free, 5 

hours
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Table 4.3: PbPcRg used in this chapter

Sym bol C om pound Form ula

3g 2,3,9,10,16,17,23,24-O ctakis(octyloxy)phtalocyaninato lead (II) C96H144N80 8Pb

3h 2,3,9,10,16,17,23,24-O ctakis(hexadecyloxy)phtalocyaninato lead (II) C i60H272N 8O8Pb

4g 2,3,9,10,16,17,23,24-O ctakis(octylthio)phtalocyaninato iead (H) C96Hi44N8PbS1

4h 2,3 ,9 ,10,16,17,23,24-Octakis(n-hexadecylthio)phtalocyaninato lead (II) C i60H272N 8PbS!

4.2.1 UV-Vis. Absorption spectra

The electronic absorption spectra of compounds 3g, 3h, 4g and 4h in THF (lxlO '5 

M) are presented in Figure 4.4. In common with other Pc derivatives, PbPc 

complexes have two intensive bands in the UV-vis spectra: the Soret band (B-band) 

and the Q-band. The Q-band absorption has been assigned to a n-n  * transition from 

the highest occupied molecular orbital (HOMO) of aiu symmetry to the lowest 

unoccupied molecular orbital (LUMO) of eg symmetry. In THF, the Q bands maxima 

were observed at 707 nm for 3g, 708 nm for 3h, 739 nm for 4g and 740 nm for 4h.

The red-shift ca. 30 nm in the spectra of alkylthio-substituted derivatives (4g, 4h) 

compared to alkyloxy-substituted derivatives (3g, 3h) can be ascribed to the greater 

electron donating nature of SR groups in comparison with OR groups; this is due to 

the higher electron donating ability of sulphur atom compared to that of oxygen atom. 

The increase of electron density in the phthalocyanine ring results in the narrowing 

of the HOMO-LUMO gap [13l  Furthermore, the presence of Pb ion leads to 

additional shift to longer wavelengths in comparison with planar Pc analogues. For 

instance, the Q bands of Pb(II) phthalocyanine complexes (3g-h and 4g-h) were red- 

shifted by ~ 30 nm compared to Cu(II) counterparts in Chloroform The observed 

red spectral shift is due to the non-planar structure of Pb(II) phthalocyanine 

complexes (Figure 4.5).
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Figure 4.4: Electronic absorption spectra of 3g-4g (1) and 3h-4h (2) in 

tetrahydrofuran (THF) (C =lxl0‘5 M)

Figure 4.5: The non-plannar structur of 
PbPc

4.2.2 Films preparation and characterisation.

Thin films of PbPcRg were prepared in sandwich forms using spin coating. Solutions 

in dichloromethane in the concentration 10 mg/mL were spun at 2000 rpm onto ITO 

coated slides and were left to dry for a few hours. Two sandwich structures 

(ITO/PbPc/In, Al/PbPc/Al) were prepared to investigate the current density-voltage 

(J(V)) characteristics of thin films of these molecules. Indium and aluminum as 

electrodes were evaporated under vacuum with pressure of about 2x10‘5 mbar using 

vacuum thermal deposition. The rate of film deposition was controlled by a film 

thickness monitor at the rate 0.1 nm.s'1, and the obtained thickness was 40 nm.

Thickness of the spin coated PbPcRg films was measured by spectroscopic 

ellipsometry. The measurements were performed on films deposited on silicon 

substrates using a Woolam M-2000V™ rotating analyser spectroscopic ellipsometer

Le3d# ^  *

84



O c t a - S u b s t i t u t e d  C o p p e r  a n d  L e a d  P h t h a l o c y a n i n e s  | 

in the spectral range of 350-1000 nm.

The J(V) characteristics of the devices produced in this work were investigated 

before and after heat treatment at 70°C using semiconductor characterisation system 

(Keithly 4200). The measurements were performed by applying a cyclic bias regime 

in the range ±2V (starting from -2V up to +2V and then back to -2V). All electrical 

measurements were performed in air and at room temperature.

4.2.3 Electrical and optical properties

Spectroscopic ellipsometry measurements were carried out for the characterization of 

thickness, refractive index (« ) and extinction coefficient (k) of the PbPcRs films. 

Using Levenberg-Marquardt multivariate regression algorithm, the measured 

ellipsometric data were fitted to the model for organic films.

The variation of refractive index and extinction coefficient of 4g film deposited at 

2000 r.p.m. with incident photon wavelength are shown in Figure 4.6 as an example. 

The thicknesses, refractive indices and extinction coefficients (at A,=633 nm) 

obtained from ellipsometry data fitting for the other lead phthalocyanines are listed 

in Table 4.4.

The current-voltage characteristics of thin films of 4g are presented in Figure 4.7. As 

shown in the inset to Figure 4.7, the conduction was found to be ohmic at low 

voltages due to thermal generation of charge carriers, but exhibits power-law 

dependence at higher voltages (V>0.5V). The room temperature conductivities are 

summarized in Table 4.4. The conductivity was determined from the linear (Ohmic) 

region of the measured I(V) curves, i.e., in the voltage range 0-0.5V. The obtained 

results demonstrate an increase in electronic conduction after heat treatment. Increase 

of conductivity is found to be larger for 4g and 4h films compared to 3g and 3h.
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Figure 4.6: Variation of refractive index and extinction coefficient of 4g film 

deposited at 2000 r.p.m. with incident photon wavelength

Table 4.4: Thicknesses, refractive indices and extinction coefficients (at L=633 nm) 

obtained from ellipsometry data fitting and DC conductivity for PbPcRs films 

deposited at 2000 r.p.m

DC conductivity (o) f l 'W 1

n k Thickness, nm Before heating After heating

3g 1.50 0.15 38.4 1.7-10'10 5.5-10'8

3h 1.44 0.08 40.12 1.9-10'10 4.1-10'9

4g 1.55 0.12 46.66 2.5-10'10 7.8-10'7

4h 1.51 0.09 47.73 3.3-1010 2.3-10'7
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The J(V) characteristics are shown, to be mainly dependant on the type of electrodes 

used. In the case of the A1 bottom and top electrodes, all junctions have shown open- 

circuit, probably due to a naturally grown insulating AI2O3 layer formed onto the 

surface of bottom A1 electrode[14]. Evaporation of gold electrodes has always led to 

short circuit in all of our produced samples. AFM micrographs have revealed rough 

surface morphology of evaporated gold filmtl5l  This confirms aggregation of Au 

atoms leading to formation of large grains on both, the organic film and on the glass 

substrate. Furthermore, due to the high melting point of Au it appears to cause 

damage to the PbPcRg which is in liquid crystalline form at about room temperature. 

The ITO/PbPc/In structures on the other hand have exhibited interesting J(V) 

behavior. Figure 4.7 shows the J(V) curves of 4g before and after heat treatment as 

an example. Both curves demonstrate asymmetric characteristics over the two bias 

polarities, however, after heat treatment; the studied structure demonstrates clear 

rectification characteristics, typical of diode behavior. Similar characteristics were 

observed for the other PbPc analogues studied here.

The dissimilar behavior before and after heat-treatment can be explained by the 

effect of thermal annealing on the films, which is expected to result in changing the 

alignment inside the columnar stacking of the molecules in the films. PbPcR.8 

derivatives exhibit a hexagonal columnar structure over a wide temperature range. It 

was shown in previous works [3,6] that the ordered films of liquid crystalline metal 

phthalocyanines can be obtained upon slow cooling from isotropic melt or by heating 

at the temperature of liquid crystalline phase for some time. Moreover, it has been 

shown earlier that the heat treatment of films of LC nickel phthalocyanines deposited 

between two electrodes is found to result in hexagonal homeotropic alignment of 

molecules in the films [15].
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Figure 4.7: J(V) characteristics of thin films of 4g deposited between ITO and In 

electrodes. The inset shows the same data of the forward bias characteristics plotted 

on a log-log scale

The obvious increase of the conductivity for heat-treated 4g and 4h films can be 

ascribed to the increasing n-n interaction in the columnar homeotropic alignment as 

opposed to the disordered structure of as deposited films [16l  Sulphur atoms in 4g and 

4h positively affect the electrical conductivity in comparison with oxygen in the 

substituent chains of 3g and 3h (see Table 4.4). As the sulphur is larger than oxygen, 

the rotational and translational movements of the molecules are hindered within the 

cores of the columns. Consequently, the structural disorder will be reduced in the 

stacked alkylthio molecules leading to rapid charge transport[11]. The lowest value of 

conductivity for 3h films may also be explained by the formation of crystalline phase 

at room temperature. According to the published literature [5], the molecules in the 

crystal are arranged in tilted stacks, which are widely spaced, with the contacts 

between the aromatic cores bigger than in mesogenic phase.

Among all studies PbPcRg analogues only 4g and 4h have exhibited switching 

behavior, as shown in Figure 4.8. The films of these compounds have shown
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switching loop of memory cell, which can be utilised in applications as memory or 

logic elements This effect however was found to degrade after a few cycles of 

I(V) tests, and has completely disappeared after the samples were subjected to heat 

treatment. On the first measured I(V) loop, the on state current was found to be larger 

than the off state by nearly three orders of magnitude giving a high ON/OFF ratio 

(see inset to Figure 4.8). The possible explanation of this molecular switching effect 

is that the freshly deposited PbPc film is composed of clusters of different structures 

within the column stacks before heating. The variation in the film substructure may 

result in the occurrence of potential barriers, which have to be surmounted by the 

charge carriers, and thus gives rise to the highly conducting ON state. Furthermore, 

in the ON state, the external electric field is possibly able to turn some of the stacks 

into equal orientations resulting in equal lead ion separation which would enhance 

the highly conductive channels [I8-1. Several other metal phthalocyanines, both 

substituted [10,20] and unsubstituted [21] have demonstrated electrical switching which 

was explained by the existence of potential barriers that control charge transport and 

thus switching between the ON and OFF states. Thin films of unsubstituted PbPc of 

the monoclinic structure have shown switching behaviour which was explained by an 

electric field-induced order-disorder transition mechanism in the stacking direction 

[22l  In a printed memory device which utilises a water soluble CuPc derivative and a 

conductive polymer layers sandwiched between two metal electrodes, switching 

from the OFF state to the ON state was ascribed to increased crystallinity of the 

CuPc film [23]. This change in crystallinity was confirmed by SEM study, and was 

found to be responsible for the conductivity after switching. Mukheijee and co­

workers [20] have attributed the bistable effect in ITO/PbPc/Al devices to a 

combination of the presence of a hole-injection barrier at the ITO/PbPc interface and 

space charge limited hole transport across the undepleted region of the PbPc film to 

the counter electrode. Thermally deposited thin films of unsubstituted copper 

phthalocyanine (CuPc) have exhibited bistable effects with an increased ON/OFF 

ratio when film deposition rate was increased [21]. It was argued that the conductive 

switching behaviour of the CuPc bistable devices involve bulk trap-controlled space 

charge limited mechanism and that the carrier transport could be ascribed to a field- 

induced arrangement of structural defects [21].
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Figure 4.8: Switching characteristics of 4g films deposited between ITO and In 

electrodes. The inset shows the same data produced on a log-linear scale for clarity

In the current study the disappearance of the switching effect in heat-treated samples 

can be further supported by the POM images (Figure 4.9) which clearly reveal film 

transformation to hexagonal homeotropic phase which results in the disappearance of 

the potential barriers between clusters within the stacks that were thought to be 

present in the freshly prepared samples. The 4g and 4h films deposited between ITO 

and metal electrodes do not exhibit any birefringence over a large area when 

observed between cross-polarizers during POM measurements. The lack of 

birefringence is characteristic of the hexagonal homeotropic phase, which has a face- 

on arrangement of discs, as illustrated schematically in Figure below. In other words, 

the molecules rotate in the direction of face-on to the substrate plane after thermal 

treatment.
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Figure 4.9: Polarizing optical microscopy images with cross polarizers of the 3g (a), 

3h (b), 4g (c), 4h (d) films deposited between ITO and metal electrode. Schematic 

illustrations of the macroscopic alignments are also given

Summary

In this chapter, thin films of CuPcRg and PbPcRg have been prepared. The films were 

then studied using UV-Vis absorption spectroscopy, ellipsometry and semiconductor 

characterisation system. The splitting of Q-band in the UV-Vis spectra of CuPcRg in 

both cases; solution and film, comfirming the hearing-bone arrangment. The higher 

conductivity values were found for the films of phthalocyanines with the molecules 

oriented perpendicular to the substrate surface. The lateral conductivity tends to 

dicrease slightely with the increasing of chain length, and the higher conductivity in 

the alkylithio-derivatives is thought to be caused by the reduced structural disorder 

during phase transition which is caused by the presence of sulphur atoms.Films of 

PbPcRg exhibited an increase in the electronic conduction after heat treatment. A 

typical switching effect was also observed with high ON/OFF ratio, making this kind 

of material as promising candidates for memory applications.
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Chapter 5

Modification of Single-Walled Carbon Nanotubes Using Optical

Detection Method

Chapter overview

This chapter is dedicated to compare between two types of hybrid materials 

depending on the method followed for SWCNT modification. Tetra-substituted 

copper phthalocyanine (CuPcRg having different non-peripheral substitutions were 

prepared by co-researchers from Gebze Technical University, Turkey, and have been 

used in this part of the study. These are labelled according to the type of substituents 

as Pci and Pc2 for R=0(C7His0 3 ), Pc3 and Pc4 for R=S(CvHi5 0 3 ), and Pc5 for 

R=S(Ci6H33), as shown in Figure 5.1. Full details of synthesis and characterisation of 

CuPcR4  is published in the literature FTIR and Raman spectroscopy have been 

utilized to address the nature of interaction between SWCNT and CuPcRg The UV- 

Visible spectra and morphology of the prepared hybrids are also discussed. DC- 

conductivity measurements were carried out to monitor the effect of acid treatment 

on the separation of metallic and semiconducting nanotubes. Finally, the suitability 

of hybrid films’ structures for the optical detection method using total internal 

reflection ellipsometry (TIRE) technique has been examined.
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Figure 5.1: Synthesis route of Q 1PCR4  derivatives

5.1 Experimental details

5.1.1 Preparation of SWCNT-CuPcR4 Hybrids

Pristine SWCNT-CuPcRj hybrid (PCNT-Pc): The purpose of this part of the 

work is to further emphasise the effect of acid treatment on improving the binding 

between SWCNT and Q 1PCR 4  molecules and thus enhancing the solubility o f the 

hybrid in conventional organic solvents. 5 mg of Pc3 has been dissolved in 1 ml 

DMF and sonicated for 15 minutes. At the same time lmg of pristine (untreated) 

SWCNT was suspended in 3 ml DMF and sonicated for 40 minutes. After sonication, 

the suspension was stirred and the Pc3 solution was added drop wise to the CNTs 

suspension during stirring. The stirring was continued for another 5 hours before the 

mixture was centrifuged, washed with DMF several times, centrifuged again and
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Acid-treated SWCNT-CuPcICj hybrid (ATCNT-Pc): 25 mg SWCNT was stirred 

under 70 °C in concentrated 3:1 HNO3 and H^SC^for 2 hours. The mixture was then 

centrifuged, washed several times with water, centrifuged again and dried. 2  mg of 

the resultant powder was mixed with 5 mg of Pc3 in 5 ml DMF and sonicated for 4 

hours. The suspension was centrifuged, washed with DMF, centrifuged again and 

dried.

Figure 5.2 shows the solutions of Pc3 and the suspensions of SWCNT, PCNT-Pc3 

and ATCNT-Pc3 in DMF. It can be visibly appreciated that ATCNT-Pc3 exhibited 

better solubility than PCNT-Pc3 and for both hybrids the brownish colour indicates 

that 7 i - 7 i  interaction took place between the two materials [3,4].

a b e d

Figure 5.2: (a) pristine SWCNT, (b) Pc3, (c) PCNT-Pc3, and (d) ATCNT-Pc3 

5.2 Characterisation of SWCNT-CuPcR* Hybrids

Pristine and acid treated SWCNT were used for the preparation of their hybrids with 

CuPcR4 derivatives. Pristine SWCNT were oxidized by means of a mixture of 

sulfuric and nitric acid. This procedure introduces carboxylic acid functionalities and 

defects at the ends of the nanotubes as well as some carboxylic acid units at the 

sidewalls [5'7l
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5.2.1 Foureir Transform Infrared Spectra (FTIR)

FTIR analysis was carried out in order to determine the interaction between CuPcR* 

and SWCNT. Figure 5.3 shows FTIR spectra of pure Pc3, PCNT-Pc3 and ATCNT- 

Pc3. The bands at 2858 and 2921 cm' 1 assigned to the C-H stretches of substitution 

groups in Pc3 are present in all spectra. Another feature that should be given 

attention is the peaks at 1490, 1384, 1251 and 1078 cm'1, which are characteristics of 

phthalocyanine macrocycles [8], and are present in all three spectra. All these 

observations suggest that the substituted copper phthalocyanine has successfully 

anchored onto SWCNT walls by means of noncovalent binding.

The spectra of the hybrids contain some bands which correspond to CuPcR4 

molecule vibrations. The largest shift in the peak position associated with the C=C 

stretching mode from 1635 cm' 1 in the spectrum of pure Pc3 to 1653 cm' 1 is 

observed in the hybrids spectra. These shifts as well as different ratio of intensities 

may result from the electron delocalization due to the tz- tz interactions between 

SWCNT and CuPcR4 molecules [3,9]. The spectrum of ATCNT-Pc3 shows a band at 

around 1730 assigned to v(C=0) vibration of carboxylic group, which results from 

the acidification of carbon nanotubes in ATCNT-Pc3 [10,11].
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Figure 5.3: FTIR spectra of (a) pure Pc3, (b) PCNT-Pc3 and (c) ATCNT-Pc3
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5.2.2 Raman spectra

The non-covalent attachment can also be confirmed by Raman spectroscopy. Raman 

spectra for pristine SWCNT, acid treated SWCNT and both hybrids are shown in 

Figure 5.4. The radial breathing modes (RBM), disorder D mode and 

tangential/graphite mode (G-band) are monitored as indicators of functionalisation 

with Pc3 l̂2\  The spectra were normalized to the tangential G band at -1580cm '1. 

Both spectra of pristine SWCNT before (Figure 5.4a) and after (Figure 5.4b)

hybridization contained the following characteristic peaks: the D band located at
1 0 about 1340 cm' (disorder mode), which is due to the breathing modes of sp atoms

[13'15] and the G band centred at 1590 cm'1 (tangential mode), due to bond stretching

of all pairs of sp2 atoms [16].

Comparing Figure 5.4a with Figure 5.4b, little variation of the ratio of the D band to 

the G band ( I d / I g )  can be observed, which suggests that CuPcR* derivatives are 

associated with the surface of SWCNT through non-covalent modification. 

Moreover, the multiple peaks observed in the radial breathing mode (RBM) of 

SWCNT (158-304 cm'1) could be ascribed to a distribution of diameters in the 

SWCNT samples [17,18]. They correspond to nanotube diameters in the range from 0.7 

to 1.4 nm.

The Raman spectra of PCNT-Pc3 revealed significant shift on the peak positions 

located in the range 158-225 cm'1. For example, the RBMs at 202, 227 and 258 cm '1 

of SWCNT have a shift to 207, 230 and 262 cm'1 after adsorption of Pc3. It was 

shown ^  that the radial breathing modes of the Raman spectrum are sensitive to the 

adsorption coating of the nanotubes with polynuclear aromatic hydrocarbon 

molecules. The n-n stacking interaction between SWCNT and phthalocyanine 

aromatic rings induced a higher frequency shift of RBM and gave a kind of "mode 

hardening" effect[20].

In the Raman spectrum of the acid-treated SWCNT, the radial breathing modes have 

disappeared when compared to the spectrum of pristine SWCNT (Figure 5.4c). The 

decay of these modes is consistent with the disruption of the oscillator strength that 

gives rise to these modes. Similar results were reported by Fantini and co-workers [21̂ 

where spectral shifts, broadening, and reduction in RBM intensity were attributed to 

displacement of the Fermi level due to the added functional group on the CNT side-
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wall. As shown in Figure 5.5c, the carboxylated SWCNTs showed the characteristic 

peaks with a disorder-induced D-band at 1348 cm' 1 and a tangential stretch G-band at 

1588 cm'1.

The D/G peak intensity ratio increases from 0.04 for pristine SWCNT to 0.30 for 

acid treated SWCNT which indicates the formation of covalent bonds at the surface
2 3of the carbon nanotube through conversion of sp -hybridized carbon atoms to sp -

hybridized carbons on the nanotube surface.

VI =0.47

I/I =0.30

I/I =0.07
L/l =0.04

200 400 600 800 1000 1200 1400 1600

R a m a n  sh ift, c m '1

Figure 5.4: Raman spectra of pristine SWCNT (a), PCNT-Pc3 (b), acid-treated 

SWCNT (c) and ATCNT-Pc3 (d)

The relative decrease in the tangential mode (G-band) is consistent with the loss of 

electronic resonance as a result of the covalent attachment of the substituent. Further 

increase in the relative intensity of the D band vs. G band (Id/Ig= 0.47) was also 

observed in the spectrum of acid treated SWCNT hybrids with Pc3 (Figure 5.4d). 

Raman spectra of the other functionalized SWCNT materials display similar 

modifications but to different degrees [22,23].
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The Raman spectra of the hybrids with acid treated SWCNT are significantly 

affected by the interaction with Pc3, whereas those with pristine SWCNT do not 

vary so much upon the addition of the Pc3 binder. The I d / I g  ratios of the hybrids 

with pristine SWCNT increase only slightly with the addition of the phthalocyanine, 

whereas those with acid treated SWCNT increase significantly.

It might be that, in the bundled network structure of the hybrids with pristine 

SWCNT, the tc-tc interactions between nanotubes and Pc3 are the dominant influence 

on the Raman spectrum.

However, in the case of the hybrids with acid treated SWCNT, not only n-n 

interaction but also van der Waals interaction of -COOH groups with the nitrogen 

atoms of phthalocyanine ring [24] and alkyl substituents of phthalocyanine ring ^  are 

the factors affecting the Raman spectra.

5.2.3 UV-Visible absorption spectra

Figure 5.5 shows the UV-visible absorption spectra of solutions of SWCNT, Pc3, 

PCNT-Pc3 and ATCNT-Pc3 in DMF. Figure 5.6 shows the spectra of the other 

phthalocyanines (Pci, Pc2, Pc4 and Pc5) and their hybrids with ATCNT in DMF. 

All the CuPcR* compounds used in this work exhibit typical electronic absorption 

spectra. The spectra are characterised with two strong absorption regions, one in the 

wavelength range of 650-720 nm (Q-band) arising from the electron transitions from 

highest occupied molecular orbital (HOMO) aiu to the lowest unoccupied molecular 

orbital (LUMO) eg and another in the range of 300-450 nm (B-band) which is 

attributed to the electron transitions from the (HOMO) a2U to the (LUMO) eg [2’25]. 

Furthermore, absorption within the Q-band is split into two absorption peaks, one 

with much higher intensity than the other. This can be ascribed to dominant 

monomer absorption with the lower intensity shoulder being ascribed to molecular 

aggregation in chloroform solution. The absorption spectrum of SWCNT is 

featureless as reported elsewhere [7,26,27].
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Figure 5.5: UV-Vis absorption spectra of Pc3 (solid line), SWCNT (dashed line), 

PCNT-Pc3 (dashed-dotted line) and ATCNT-Pc3 (dotted line) solutions in DMF

In the absorption spectra of PCNT-Pc3 and ATCNT-Pc3, the maxima of the Q-bands 

are shifted to the red by AX = 5.29 nm and AX = 14.77 nm respectively. The maxima 

of the Q-bands in the absorption spectra of ATCNT-Pcl, ATCNT-Pc2, ATCNT-Pc4 

and ATCNT-Pc5 hybrids shown in Figure 5.6a,b,c and d are broadened and red- 

shifted by 16.42, 10.59, 17.48 and 20 nm in comparison with Pci, Pc2, Pc4 and Pc5 

spectra, respectively.

It can also be seen that the Q-band splitting has either disappeared or became weaker 

in the absorption spectra of the hybrids, which indicates dominant monomer 

absorption. These changes are suggested to take place due to the strong n-n 

interaction between carbon nanotubes and phthalocyanine molecules, where 

phthalocyanines are usually considered as electron donors, while carbon nanotubes 

as acceptors[28].

This interaction has been frequently ascribed to the reduced aggregation in the 

MPc/CNT composites [29,3°J.
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Figure 5.6: UV-Vis absorption spectra of (a) Pci, (b) Pc2, (c) Pc4 and (d) Pc5 and

their hybrids with ATCNT in DMF

5.2.4 Morphology

5.2.4.1 Atomic force microscopy (AFM)

Figures 5.7-5.18 show AFM images of Q 1PCR4  and SWCNT/CuPcR4  films spun 

onto silicon substrates with the roughness analysis presented at the bottom of the 

Figures and 3D images at the right.

AFM measurements in tapping mode have been performed on all samples in this 

study. Figure 5.7 shows typical fibre features of CuPcR4  (Pc3) film, which is
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different from the topology of its hybrids. Phthalocyanine and almost all organic 

dyes tend to make very dense aggregations in the solid state.

These aggregates are represented as a coplanar association of rings developing from 

monomer to dimer and higher order complexes and are driven by n-n interaction and 

van der Waals forces [31l

It can clearly be seen that surface of PCNT-Pc3 film (Figure 5.8) is less 

homogeneous than that of ATCNT-Pc3 (Figure 5.9) with significant decrease in 

main roughness of the latter; this is because ATCNT-Pc3 exhibited improved 

solubility in organic solvents, resulting in smoother and more homogeneous films. 

This is because the de-bundling effect of the acid treatment, which results in better 

dispersion of the complex in organic solvents.

Height 400.0 nm

Figure 5.7: AFM image of Pc3; top and 3D view. Roughness analysis shown at the
bottom
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Height 400.0 nm

um

Figure 5.8: AFM image of PCNT-Pc3; top and 3D view. Roughness analysis shown
at the bottom

Height 400.0 nm

um

Figure 5.9: AFM image o f ATCNT-Pc3; top and 3D view. Roughness analysis
shown at the bottom
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Films of other C11PCR4  (Pci, Pc2, Pc4 and Pc5) demonstrate fibrous-like porous 

morphology in a similar manner as Pc3 and presented in Figures 5.10,12,14 and 16. 

Figures 5.11, 5.13, 5.15 and 5.17, represent the AFM images of ATCNT-Pcl, 

ATCNT-Pc2, ATCNT-Pc4 and ATCNT-Pc5, which show that the phthalocyanine 

molecules are attached to the surface of carbon nanotubes confirming the formation 

of networks of CuPcR4  and SWCNT. Similar morphology was observed for poly(3- 

hexylthiophene) (P3HT)/multi-walled carbon nanotube (MWCNT) films [32] and 

MWCNTs and SWCNTs with lead tetra-iso-pentyloxyphthalocyanine (PbPc)[33].

The main roughness (Ra), standard deviation (RMS) and maximum height (Rmax) for 

all phthalocyanines measured in this study and their hybrids with SWCNT are 

summarised in Table 5.1. Figure 5.18 represents an enlarged AFM image of 

ATCNT-Pc5 deposited on silicon, showing individual and shortened nanotubes with 

approximate length of 250 nm surrounded by phthalocyanine molecules.

Table 5.1. Roughness parameters of all Q 1PCR4  and their hybrids with SWCNT

Ra, nm RMS, nm Rmax? nm

Pci 1.954 3.172 9.658

ATCNT-Pcl 4.921 8.751 19.102

Pc2 1.450 2.197 7.695

ATCNT-Pc2 3.312 6.935 17.613

Pc3 1.733 3.501 8.461

PCNT-Pc3 8.213 15.575 37.570

ATCNT-Pc3 5.811 9.550 20.275

Pc4 1.630 2.153 6.876

ATCNT-Pc4 4.153 7.877 18.252

Pc5 0.837 1.204 4.168

ATCNT-Pc5 4.727 6.812 16.906
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Height 400.0  nm

Figure 5.10: AFM image of Pci; top and 3D view. Roughness analysis shown at the
bottom

Height 400.0 nm

gm

F igure  5.11: AFM  image o f A T C N T -Pcl; top and 3D view. Roughness analysis
shown at the bottom
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Height 400.0  nm

Figure 5.12: AFM image of Pc2; top and 3D view. Roughness analysis shown at the
bottom

70.0 nm

-70.0 nm

Height 400.0 nm

um

Figure 5.13: AFM  image o f ATCNT-Pc2; top and 3D view. Roughness analysis shown

at the bottom
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Height 400.0 nm

Figure 5.14: AFM image of Pc4; top and 3D view. Roughness analysis shown at the
bottom

Height 400.0  nm

Figure 5.15: AFM image o f ATCNT-Pc4; top and 3D view. Roughness analysis shown
at the bottom

108



M o d i f i c a t i o n  o f  S i n g l e - W a l l e d  C a r b o n  N a n o t u b e s

Height 500.0 nm

Figure 5.16: AFM image of Pc5; top and 3D view. Roughness analysis shown at the
bottom

Height 400.0  nm

Figure 5.17: AFM  image o f ATCNT-Pc5; top and 3D view. Roughness analysis shown
at the bottom
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5.0 nm 

-5.0 nm

Figure 5.18: AFM image of ATCNT-Pc5 in higher resolution; top and 3D view. 

Roughness analysis shown at the bottom

5.2.4.2 Scanning electron microscopy (SEM)

Pristine CNTs typically tend to bundle together (Figure 5.19) and to aggregate due to 

van der Waals attraction between individual tubes [34] as well as the high length to 

diameter ratio; this makes them hard to disperse in common organic solvents [7]. 

Figure 5.19 shows the SEM images of pristine SWCNT; (a and b) as powder, (c and 

d) as thin films drop-casted on silicon substrate from its DMF solution.

The intrinsic quality of SWCNTs structure is still preserved after mixing with 

phthalocyanines without acid treatment. This can obviously be seen in Figure 5.20a 

and b, which represent the image of PCNT-Pc3 thin film. Figure 5.20c shows the 

random distribution of phthalocyanine molecules aggregations onto carbon nanotube 

bundles in a high magnification image of PCNT-Pc3.
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spot WD mag HV det Lens Mode mode 
2 5 5 0 mm 60 000 x  5 00 kV TLD j Immersion SE

spot WD mag HV det Lens Mode mode 
3 0 5 4 mm 160 000 x 5 Q0kV TLD Immersion SE

HV det Lens Mode 
: 00 kV TLD , Immersion

Figure 5.19: SEM images of pristine SWCNT; (a,b) in powder form and (c,d) in thin 

film form deposited on silicon substrate from solution of DMF.

Acid treatment of the nanotubes induces the de-bundling effect (Figure 5.21) 

disrupting the van der Waals interactions [2,35] and leading to the formation of carbon 

nanotubes network with much improved solubility in organic solvents.

This chemical modification has been performed to achieve enhanced interaction 

between SWCNT and CuPcR4 molecules leading to the formation of a composite 

with much improved solubility in common organic solvents and hence smoother 

films were obtained to perform optical investigation.
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(a)
spot WD HV det Lens Mode mode maa 
3 0 6 2 mm 5 00 kV ETD Field-Free SE 80 0CQ (b)

Figure 5.20: SEM images of PCNT-Pc3 in thin film form deposited on silicon 

substrate from solution of DMF; (a) and (b): the intrinsic quality of SWCNT after 

mixing with phthalocyanine, (c) image: the aggregation of phthalocyanine attached 

the SWCNT bundle.

Figures 5.22a,b and c show SEM images of ATCNT-Pc3 hybrid deposited as thin 

films from DMF solution onto silicon substrate. Similar results have been reported 

by Wang et al [35], where SWCNT was acidified and modified by mixing with lead 

phthalocyanine and Elouarzaki et al [36], where multi-walled carbon nanotubes have 

been modified using cobalt phthalocyanine.
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(a) (b)

Figure 5.21: SEM images of acid treated SWCNT (ATCNT) in thin film form 

deposited on silicon substrate from solution of DMF

(a)

(c)

spot mode WD 
3 0 SE 4 6 mr (b)

Figure 5.22: SEM images of ATCNT- 

Pc3 in thin film form deposited on 

silicon substrate from solution of DMF;

(a) and (b): smooth films obtained for 

optical detection, (c) image shows 

phthalocyanine molecules nicely 

covered the individual tubes

spot WD mag HV de*! Lens Mode mode 
2 5 5 4 mm 60 000 x 5 CC kv TLD Im m e-scn SEI

; r -  •• 
. •• .

spot WD mag HV det Lens Mode mode 
2 5 5 3 mm 180 000 x 5 00KV TLD tmmers;on SE

spot WD mag HV det Leris Mode mode 
2 5 5 0 mm 425 856 x 5 X  KV m.r-eryor SE
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ATCNT-Pcl, ATCNT-Pc2, ATCNT-Pc4 and ATCNT-Pc5 have revealed similar 

SEM morphology features as ATCNT-Pc3 and are presented in Figure 5.23.

Figure 5.23: SEM images of (a) ATCNT-Pcl, (b) ATCNT-Pc2, (c) ATCNT-Pc4 

and (d) ATCNT-Pc5 in thin film form deposited on silicon substrate from solution of 

DMF

5.2.5 Electrical conductivity

Thin films of PCNT-Pc3 and ATCNT-Pc3 as well as Pc3 were deposited onto 

interdigitated electrods by drop-casting from their solutions in DMF (0.5 mg/ml). 

The I-V characteristics of the films were performed using Keithley 4200
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semiconductor characterisation system in the voltage range ±2V. The conductivity (a) 

was calculated using the following relation:

L
G  = (5 .1 )

RHWn

This equation is the same as equation (3.18), where L, W, H  and n are as defined in 

section 3.1.7. R is the film's resistance, which is derived from the liner fitting of the 

I-V characteristics of the films, as shown in Figure 5.24. Values of conductivity 

obtained are 1.67xl0‘4 for Pc3 film and 7.54xl0_1 for ATCNT-Pc3 film, which 

shows an increase by more than three orders of magnitude in the case of ATCNT- 

Pc3 film in comparison with the pure CuPcR4 film. On the other hand thin film of 

PCNT-Pc3 has shown short circuit, and therefore it was not possible to determine the 

conductivity for these composites.
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Equation y = a + b*x Equation y = a + b"x
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B Slope 1.77509E-7 3 23096E-10 j C Slope 4.94263E-4 2.1226E-6

(a)

1.0x10' -

5 . 0 x 1 0 -

5.0x10 -

V, v o l t

-1.0x10 -

- 2 - 1 0 1 2  

V, v o l t

Figure 5 .24:1(V) curves of (a) Pc3 and (b) ATCNT-Pc3. The linear fitting 

parameters are shown above corresponding characteristics.
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The large increase in conductivity , of the hybrid films can be ascribed to the large 

SWCNT/CuPc conjugated tc-tt system [37,38l  Consequently, charge can favourably 

transfer from CuPc molecules to SWCNTs resulting in a large increase in 

conductivity. On the other hand, PCNT-Pc3 exhibited very high conductivity 

(samples demonstrated short circuit in our measuring system) in almost all prepared 

samples. Pristine CNTs are typically composed of metallic and semiconducting 

nanotubes and their separation has been a serious obstacle in many applications and 

research [39,40l  Yang and co-workers [41̂ have reported that the acid treatment of 

SWCNT separates the semiconducting from the metallic phases. It has been shown 

that the majority of metallic CNTs with smaller diameters (typically <1.1 nm) will 

be etched way as a result of acid treatment, whereas those with larger diameters are 

significantly reduced leaving the semiconducting nanotubes intact[41-*.

5.3 Total Internal Reflection Ellipsometry (TIRE)

Using total internal reflection spectroscopic ellipsometry (TIRE), thin films of the 

new hybrids have been examined as an optical sensing membrane for the detection of 

benzo[a]pyrene in water to demonstrate the sensing properties of these hybrids. 

Polycyclic aromatic hydrocarbons (PAH), in general, are a class of fused-ring 

aromatic compounds which are found in air, natural waters, soil and in marine 

environments. PAH mainly arise in incomplete combustion from both anthropogenic 

and natural activities such as power production, petroleum refining or by automobile 

emissions and forest fires. Many PHA are concern for both human and environment 

health due to their acute toxicity, mutagenicity, or carcinogenicity. It is well known 

that certain metabolites of benzo[a]pyrene, e.g., epoxides and diol epoxides, bind 

with DNA to form stable adducts and are responsible for the mutagenic activity. 

Thus it is desirable to develop suitable technique for the detection of benzo[a]pyrene 

and all its related hazardous PHA compounds [42].

Figure 5.25 shows typical TIRE spectra of Cr/Au films used in the present work. The 

spectrum of demonstrating the amplitude ratio of Ap/As, resembles very much 

the conventional surface plasmon resonance (SPR) curve, while the spectrum of A(X) 

is associated with the phase shift between the p- and s-components of polarized light. 

The phase shift changes sharply from 270° down to -90° near the plasmon resonance.

116



M o d i f i c a t i o n  o f  S i n g l e - W a l l e d  C a r b o n  N a n o t u b e s |

According to Arwin’s modelling [43], the position of the sharp drop in A(k) spectrum 

is about 10 times more sensitive to analytes adsorption than W(X) spectrum.

To examine the compatibility of the hybrids prepared in this work with TIRE 

technique, small volumes of solutions of Pc3, PCNT-Pc3 and ATCNT-Pc3 in DMF 

were drop-casted onto gold-coated glass substrates by using microcyrenge. 

Thereafter, the samples were exposed to deionized water and saturated solution of 

benzo[a]pyrene in water (6.2 pg/1) to demonstrate the changes of ellipsometry 

spectra and thus films’ optical parameters induced by the adsorption of 

benzo[a]pyrene onto the films surfaces. It is worthwhile mentioning that the films of 

PCNT-Pc3 were shown to be rough and inhomogeneous and therefore unsuitable for 

optical investigation, as it has not given well-resolved spectra when measured by 

spectroscopic ellipsometry.
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Figure 5.25: Typical TIRE spectra of Au/Cr layer in water

On the other hand, thin films prepared from ATCNT-Pc3 exhibited much smoother 

surfaces and have therefore shown significant enhancement in the adsorption 

properties as active optical sensing layers. Figure 5.26 shows the spectra of W(X) and 

A(X) of Pc3 and ATCNT-Pc3 thin films before and after exposure to benzo[a]pyrene.
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The initial response time of the studied layers was a fraction of minute but the 

spectra were measured 10 minutes after injection of contaminated water in order to 

achieve equilibrium.

During exposure to contaminated water, it was difficult to detect shifts in W(A) 

because of the shape of the curve, however, significantly larger shifts have been 

observed in A (A) spectra. These are typical features of TIRE method as reported 

earlier [44‘46-1 . The spectra of A (A) were further enlarged and shown at the bottom of 

Figure 5.26 to provide better assessment of the effect of benzo[a]pyrene exposures. It 

can clearly be seen that the adsorption of benzo[a]pyrene on ATCNT-Pc3 film has 

resulted in larger shift (9.55 nm) than that shown by pure phthalocyanine (4.6 nm) 

under exposure to saturated benzo[a]pyrene solution in water. Carbon nanotubes in 

general are characterised with uniform surface with delocalised n-electrons of high 

density, which enhances their adsorption properties, especially for analytes with 

aromatic molecules [47l

It is necessary to mention that the aim of the present chapter is to investigate the 

suitability of functionalized CNTs as sensing active layers, which are compatible 

with optical techniques such as TIRE. Therefore the work does not examine effects 

of different concentrations of this analyte as well as different range of other related 

analytes. This is the subject of the next chapter. The parameters of organic films 

before and after exposure to benzo[a]pyrene solution in water were determined by 

fitting the experimental W and A spectra to the theoretical organic model by fixing 

Cr/Au layer parameters. Table 5.2 summarises the thickness of all layers found from 

theoretical data fitting as well as the values of refractive index and extinction 

coefficients given at X=633 nm. The data in Table 5.2 shows an increase in film 

thickness as well as in optical parameters n and k  for both films. The increase in 

films’ thickness in the case of ATCNT-Pc3 was more significant which is probably 

due to the predominant surface interaction of the analyte with SWCNT/CuPcIU films. 

Further to the data summarised in Table 5.2 the variation in refractive index and 

extinction coefficient as a function of X for both films in pure water and 

benzo[a]pyrene solution media are shown in Figure 5.27.
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Figure 5.26: T̂ A,) and A(A) TIRE spectra of Pc3 film in water (dashed line); after 

injection of benzo[a]pyrene saturated solution (dotted line). ATCNT-Pc3 film in 

water (solid line); after injection of benzo[a]pyrene saturated solution (dashed-dotted 

line). An enlarged section of A(A) spectra are shown at the bottom of the figure

Table 5.2: Experimental data fitting; film thickness (d), refractive index («) and 

extinction coefficient (k) at 633nm wavelength.

Before exposure After exposure

d, nm k n d, nm n k

Pc3 97.86 1.532 0.373 98.1 1.542 0.377

ATCNT-Pc3 147.73 1.334 0.133 149.49 1.359 0.135
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Figure 5.27: Refractive index (n) and extinction coefficient (k) of Pc3 film (a and b) 

and ATCNT-Pc3 film (c and d) in pure water (solid line) and benzo[a]pyrene 

solution (dashed line)
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Summary

Hybrid structures of single-walled carbon nanotubes and CuPcR4  have been prepared. 

FTIR and Raman spectra have shown that non-covalent binding between CuPcR4  and 

SWCNTs has been significantly enhanced as a result of acid treatment of CNTs. 

Using SEM and AFM measurements morphology of the films is found to be highly 

dependent on the solubility of the hybrid which is determined by the method used to 

produce the hybrid structure. Thin films of acid-treated SWCNT/Q1PCR4  hybrid 

exhibited much higher conductivity than CuPcR4 and improved films’ homogeneity 

has enabled the use of such hybrids as optically active sensing layers for the 

detection of pollutants in water. The response of acid-treated SWCNT/CuPcR4  

hybrid films to the presence of benzo[a]pyrene in water was shown to be two times 

larger than that demonstrated by Q 1PCR4  films.
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Chapter 6

Total Internal Reflection Ellipsometry (TIRE) for the Detection in

Water and Ambient Air

Chapter overview

This chapter focuses towards studying the interaction between SWCNT- 

phthalocyanine thin films and some hazardous chemicals using TIRE method. TIRE 

has been applied to detect very small amount of contaminants both in water and in 

ambient air. Therefore, this chapter is divided into two parts; the first part will 

discuss the use of TIRE to detect some pesticides (pentachlorophenol, 2- 

chlorophenol, simazine and diuron) in water solution while the second part will be 

focused on the use of TIRE for amines (methylamine, dimethylamine and 

trimethylamine) vapour detection.
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6.1 Detection of pesticides in water

6.1.1 Introduction

The worldwide use of pesticides and herbicides for agricultural issues is classified as 

a global environmental pollution problem. Pesticide used in agriculture can easily 

take way to surface or ground waters, possibly causing adverse ecotoxicological 

effects on aquatic life and changing drinking water quality [1]. Chlorophenols (Cps), 

in general, are a group of organochlorides of phenol that contains one or more 

covalently bonded chlorine atoms, which can be devided into five groups that; mono- 

chlorophenols (MCPs), dichlorophenols (DCPs), trichlorophenols (TCPs),

tetrachlorophenols (TeCPs) and pentachlorophenols (PCPs). The physical properties 

of CPs vary in principle depending on the number of chlorine atoms and their 

position relative to OH group, which complicates their simultaneous determination [2].

CPs are chemical with high toxicity including estogenic, mutagenic and carcinogenic 

effects. Additionally, they have very high acute toxicity, interfering with oxidative 

phosphorylation and inhibiting adenosine triphosphate synthesis within body cells 

PCP is the most toxic representative of the chlorophenols. It can accumulate in living 

organisms and result in negative effects, including carcinogenicity. PCP has attracted 

great attention worldwide because of its common application in agriculture, industry, 

and commercial product synthesis. It has been widely detected in soils, sediments, 

water, plants and human breast milk due to its low biodegradability and chemical 

stability PCP concentrations in various surface waters from different countries 

ranging from trace levels to 10,500 pgL' 1 have been reported by the World Health 

Organization [5l  Furthermore, it has been listed as priority pollutant by U.S. 

environmental protection agency [6]. Although PCP has been banned since 1984, it is 

still found in the environment[5].

Monitoring of pesticides and herbicides in comparatively low concentrations, 

especially in drinking and natural waters is a complicated and expensive task. The 

European Union has limited the maximum allowable concentration for a single 

pesticide to 0.1 pg/L and their presence in different foods and drinks is limited by 

legislation.
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Different analytical procedures based on liquid chromatography-mass spectrometry 

(LC-MS) [7'9-1, LC-tandem mass spectrometry (LC-MS/MS) [10], high performance 

liquid chromatography (HPLC) [11], gas chromatography-mass spectrometry (GC- 

MS) [12] and surface plasmon resonance [13] have been reported to provide efficient 

determination of these pesticides, according to the present legislation. However these 

methods, although highly sensitive and specific, are quite laborious, time-consuming, 

and expensive. There is therefore continuous demand for highly sensitive, cost- 

effective, rapid and portable detection methods which at the same time can meet 

international legislation allowed levels of the toxic compounds. Ellipsometry can be 

used in total internal reflection (TIRE) mode and in combination with the surface 

plasmon resonance phenomenon for sensing aspects 1̂3‘15l  There has been extensive 

work in applying TIRE as a technique for the detection of biomolecules [16,17]. It was 

established that TIRE is a more suitable technique than surface plasmon resonance 

(SPR) method for the registration of low molecular weight toxins such as simazine, 

atrazine and T2 mycotoxin [18-*. TIRE technique has attracted substantial attention 

because of its fast response, simple instrumentation, being non-destructive method 

and its ability of performing measurements in non-transparent media [19].

6.1.2 Materials and sample preparation

Thin films of Pc5 and ATCNT-Pc5, which were fully discussed in chapter 5, are 

used in this work as active layers to detect pentachlorophenol (PCP), 2-chlorophenol 

(2CP), simazine and diuron (Figure 6.1) solution in water in low concentrations 

ranging from 1 to 25pg/l. The choice of hybrids of Pc5 with SWCNTs is random and 

they are considered as model sample representing the whole class of compounds 

studied in this thesis. The preparation of thin films for TIRE study has been 

discussed in chapter 3.
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Figure 6.1: The chemical structure of the investigated analytes [20]

6.1.3 Spectral shift

The adsorption of pentachlorophenol (PCP), 2-chlorophenol (2CP), simazine and 

diuron onto the surface of Pc5 and ATCNT-Pc5 thin films in water solutions has 

been studied using TIRE method. Pc5 and ATCNT-Pc5 hybrid films were spun onto 

gold-coated glass substrates as described in chapter 3. Figure 6.2 shows the typical 

TIRE spectra of Cr/Au films used in the present work. The spectrum of W(X), 

demonstrating the amplitude ratio of Ap/As, resembles very much the conventional 

surface plasmon resonance (SPR) curve, while the spectrum of A(X) is associated 

with the phase shift between the p- and s-components of polarized light. The latter 

changes sharply from 270° down to -90° near the plasmon resonance. According to 

Arwin’s modelling [15], the position of the sharp drop in A(X) spectrum is about 10 

times more sensitive to analytes adsorption than W(l) spectrum. Further details about 

TIRE spectra can be found in chapter 3.
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Figure 6.2: Typical TIRE spectra of Cr/Au film

Figure 6.3 represents the spectra of W(X) and A(X) of Pc5 and ATCNT-Pc5 hybrid 

thin films before and after exposure to PCP, 2PC, diuron and simazine in two 

concentrations (2 and 15 pg/1). The initial response time of the sensors was fraction 

of a minute but the spectra were measured 10 minutes after injection of contaminated 

water or pure water to achieve the equilibrium response or recovery, respectively. 

During exposure to contaminated water, it was difficult to detect shifts in W(l) 

because of the shape of the curve, however, significantly larger shifts have been 

observed in A(X) spectra. These are typical features of TIRE method as reported 

earlier d 8, 19,21-23]^ The spectra of A(X) were further enlarged and shown above in 

Figure 6.3a and Figure 6.3b to provide better assessment. It can clearly be seen that 

the adsorption of analytes on the hybrid film has resulted in larger shifts than on pure 

CuPcR4 . Carbon nano tubes in general are characterised with uniform surface with 

delocalised Ti-electrons of high density, which enhances their adsorption properties, 

especially for analytes with oxygen-containing aromatic molecules [23,24]. Complete 

recovery of A (A) spectra are observed after flushing the cell with deionised water in 

the case of PCP and 2PC interaction as previously established for films of metal 

phthalocyanines with other types of substituents [25].
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Figure 6.3: T'iX) and A(X) TIRE spectra of (a) Pc5 coated Cr/Au and (b) ATCNT- 

Pc5 hybrid films in water and after exposure to contaminated water
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However, when exposed to simazine and diuron-contaminated water, films did not 

show complete recovery after flushing with water. The larger shift was observed for 

PCP exposure among all other analytes examined in this work. Therefore, PCP has 

been further studied to establish the recovery with longer exposure time. Figure 6.4 

shows the spectra of W(X) and A(k) of Pc5 and ATCNT-Pc5 hybrid thin films before 

and after exposure to PCP in the concentrations of 1,2 and 5 pg/1. The higher 

adsorption of PCP than other pesticides can be ascribed to the n-n interactions 

between the n electrons of the aromatic ring of PCP and the n electron system of the 

aromatic rings of the SWCNTs [26l  Complete recovery of A(X) spectra are observed 

after flushing the cell with deionised water. However, when exposure to 5 pg/1 PCP- 

contaminated water continued for 30 minutes, Pc5 exhibited further shift but did not 

show complete recovery after flushing with water; in contrast to ATCNT-Pc5 layer 

which remained stable with time under repeated exposures to 5 pg/1 PCP- 

contaminated water and exhibited complete reversibility. It is expected that the 

presence of SWCNT in the composite film inhibits the diffusion of PCP molecules 

inside the film and most interaction takes place on the surface of the film. Table 6.1 

represents the dependence of phase shift change (8A) on analytes concentration in the 

range 1-25 pg/1 in water for Pc5 and ATCNT-Pc5 layers.

6.1.4 Experimental data fitting

Theoretical fitting to experimental W and A spectra was carried out by applying a 4- 

layer model consisting of water solution, organic layer, Au layer and BK7 glass. The 

optical parameters (refractive index n and extinction coefficient k) and film thickness 

d, of all layers are summarised in Table 6.2.

The parameters of the organic films after exposure to PCP, 2-CP, diuron and 

simazine solutions in water were determined by fitting experimental W and A spectra 

to the theoretical organic model by fixing Cr/Au layer parameters. Table 6.2 and 

Table 6.3 summarise the thickness of all layers found from theoretical data fitting as 

well as the values of refractive index and extinction coefficients given at A,=633nm. 

The data in Table 6.3 show an increase in film thickness as well as optical 

parameters (n and k) for both films. The increase in films’ thickness in the case of 

ATCNT-Pc5 composite was more significant which is probably due to the
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predominant surface interaction of the analyte with ATCNT-Pc5 films. Further to the 

data summarised in Table 6.3 the variation in refractive index and extinction 

coefficient as a function of X for both films in pure water and PCP solution media 

(concentration of 10 pg/1) are shown in Figure 6.5.

Table 6.1: Changes in the phase shift spectra (6A) of ATCNT-Pc5 hybrid and 
pristine Pc5 films on exposure to PCP, 2PC, diuron and simazine in the 
concentration range 1-25 pg/L

Cone. 8A(L), nm

Pc5 ATCNT-Pc5

PCP 2PC Diur. Sima. PCP 2PC Diur. Sima.

1 3.2 1.93 0 0 6.27 4.11 1.31 0

2 4.77 3.21 1.61 1.5 11.12 6.32 3.16 1.56

5 7.9 5.98 3.87 3.22 16.22 12.47 7.17 4.31

10 11.2 9.87 6.63 5.69 19.5 15.1 9.13 7.73

15 14.2 12.64 9.51 7.92 22.21 17.37 11 9.46

20 16.1 14.06 10.14 8.66 24.84 18.84 13.14 10.14

25 17.8 16.14 11.54 10.12 26 20.1 14.23 10.73

Table 6.2: Parameters of four-layer model in TIRE spectra fitting

Layer n k d, nm

BK7 1.51 0 106

Cr/Au 0.36 2.86 27.43

Active layer See Table 6.3

Aqueous solution 1.34 0 -
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Pc5 hybrid films in water (1); after injection of PCP solution of lpg/1 (2); 2pg/l (3); 
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of A(X) spectra are shown above the figure

133



T I R E  f o r  t h e  d e t e c t i o n  i n  W a t e r  a n d  a m b i e n t  A i r

Table 6.3: Changes in the optical parameters of Pc5 and ATCNT-Pc5 films caused 

by adsorption of PCP, 2-CP, diuron and simazine from its solution with 

concentration of 10 pg/1 at A,=633nm

Pc5 ATCNT-Pc5

n k d,nm n k d,nm

Initial film 1.56 0.32 37.4 1.41 0.28 54.9

PCP 1.59 0.31 38.1 1.47 0.29 56.5
a
E 2PC 1.59 0.32 37.9 1.45 0.30 55.8
-a
©aX
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Diuron
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Figure 6.5: Refractive index (n) and extinction coefficient (k) of Pc5 film (a and b) 

and ATCNT-Pc5 film (c and d) in pure water (solid line) and PCP solution of 10 pg/1 

(dashed line)

134



T I R E  f o r  t h e  d e t e c t i o n  i n  W a t e r  a n d  a m b i e n t  A i r  |

6.1.5 Determination of films’ sensitivity and detection limit

In order to evaluate the response of the two types of layers, the average sensitivity 

has been calculated based on changes in A spectra shifts (Table 6.1) using the 

following equation [23]:

771

1 1 8 A
s  = ~,---- /  TT- (6.1)A oTnZj Ct  ̂ }

i = l

where 8A is the change in the A spectra under analyte concentration (Ci), m  is the 

number of different concentrations used in the study, and Ao is the initial phase shift 

(before exposure).

The average sensitivities were presented in Figure 6.6. All films exhibited higher 

sensitivity for PCP compared to the other analytes where the highest sensitivity for 

PCP was found to be 0.00396/(pg/L) in the case of ATCNT-Pc5 active layer. The 

lower sensitivity for simazine is suggested to be demonstrated because simazine is 

not oxygen containing.

5.0x10 -

4.0x10 -

ct 3.0x10 -

cn
2.0x10"

1.0x10'-

0.0

PCP
2PC
Diuron
Simazine

CuPcR /SWCNT
4

CuPcR
4

Figure 6.6: Sensitivity of Pc5 and ATCNT-Pc5 active layers estimated from 

equation 6.1 for PCP, 2PC, diuron and simazine
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The lowest detectable concentration was calculated using the variation in the relative 

shift change in the baseline using the root-mean-square deviation (rmsd)[27].

A fifth order polynomial fit has been applied to the dynamic base line (Figure 6.7) 

over 305 point at the wavelength of 730nm, where A(A,) spectrum has shown a sharp 

drop in the gold layer. This gives not only the curve-fitting equation but also the 

statistical parameters of the polynomial fit.

3 3 .6 5

1 4 6 .9

5thorder polynomial fit of A3 3 .6 0

146.1

3 3 .4 5
■o

1 4 6 .5
d -  3 3 .4 05-

1 4 6 .43 3 .3 5

1 4 6 .33 3 .3 0

y = 1 4 6 .4 7 + 0 .0 4 5 x -0 .0 1 4 x 2+ 0 .0 0 2 2 x 3-1 .4 E -4 x 4+ 3 .2 E -6 x 5
3 3 .2 5 1 4 6 .2

■2 8 100 2 4 6 12 14 16 18

Time, minutes

Figure 6.7: The dynamic spectra of base line of gold substrate at X =730 nm. The 

fifth order polynomial fit has been extracted for the phase shift spectrum only and the 

equation has been presented

The root mean square noise can be calculated according to the following equation;

where

vx2 =  I(y< - y ) 2; yi is the measured data point and y  is the corresponding value 

calculated from the curve-fitting equation (Figure 6.7). A is the number of data points 

used in the curve fitting. The average noise level was found to be 0.162.
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Figure 6.8 to 6.11 show the changes in the phase shift versus analytes concentrations 

in the range of 1-25 pg/L, plotted from Table 6.1. According to the signal-to-noise

ratio definition, when the signal-to-noise ratio equals 3, the signal is considered to be

a true signal [28l  Therefore, the detection limit can be extrapolated from the linear 

calibration curve, presented in the insets to Figures 6.8 to 6.11, when the signal 

equals 3 times the noise.

DL (— )  =  3 rmSnoise (6.3)V L J slope v y

Using the above equation, and the slopes from Figures 6.8 to 6.11, the detection 

limits is calculated and summarised in table 6.4.

Table 6.4: The detection limits for studied sensors calculated according to equations

6.2 and 6.3.

DL, pg/L

PCP 2CP Diuron Simazine

Pc5 0.2791 0.3812 0.646 0.832

ATCNT-Pc5 0.133 0.171 0.335 0.62
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Figure 6.8 Changes in the phase shift depending on the concentrations of PCP. The 

inset represents the linear fitting for the first three points of each curve
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Figure 6.9 Changes in the phase shift depending on the concentrations of 2CP. The 

inset represents the linear fitting for the first three points of each curve
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Figure 6.10 Changes in the phase shift depending on the concentrations of Diuron. 

The inset represents the linear fitting for the first three points of each curve
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Figure 6.11 Changes in the phase shift depending on the concentrations of Simazine. 

The inset represents the linear fitting for the first three points of each curve
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6.2 Detection of amine vapours in ambient air

6.2.1 Introduction

Over the past few years, there has been an increasing demand of simple and effective 

method to detect toxic odours that are produced by organic volatile compounds due 

to their damaging effects on biological system and environment in general [14,29'31-1. 

Among these hazardous gases, amines complexes are commonly used in agriculture, 

pharmaceutical, dye manufacturing and food processing industries [32l  In addition, 

amines and their derivatives are considered as indicators of spoilage in food because 

they play a vital role in the degradation pathways of amino acids in living organisms 

[33l  In the case of fish and seafood, biogenic amines include methylamine, 

dimethylamine and trimethylamine, among others. The concentration of these 

decomposition products rises with time, so the determination of the freshness in fish 

and seafood is reliable with the quantification of these vapours [34].

Detection strategies based on gas chromatography or high performance liquid 

chromatography have proved to give good results but are complex to implement and 

require a lot of processing time [35-1. Sensor based on electrochemical or optical 

devices have been researched over the last decades with good outcome i36‘41]. These 

techniques are non-destructive and relatively straightforward, as well as having the 

added advantage of being less expensive than the separation procedures.

6.2.2 Materials and sample preparation

Thin films of pristine P c i,2,3,4 and ATCNT-Pcl,2,3,4 hybrids, which were 

discussed in chapter 5, were used in this work as active layers to detect methylamine, 

dimethylamine and trimethylamine (Figure 6.12) vapours in ambient air in low 

concentrations ranging from 4 to 200ppm. The sample preparation for TIRE study 

has been explained in Chapter 3. Methylamine, dimethylamine and trimethylamine 

solutions in water (40%) were purchased from Sigma-Aldrich (see Chapter 3) and 

ambient air was used as the diluent gas. Small amounts of amine solutions were 

transferred into 2L glass bottle using micro syringe and were left to vaporize. The 

vapour concentration was calculated according to the following gas law:
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22ApTVs
c = ----- — — X lO 3 (6.4)

273MV K J

Where c is the concentration in ppm, p the density of the liquid sample in g/mL, T 

the temperature of container in Kelvin, Vs the volume of the liquid sample in pL, M  

the molecular weight of sample in grams, and V is the container volume in litre. The 

diluted gas has been further diluted in a 50 mL syringe to obtain amines 

concentrations of 4, 8, 20, 40, 80 and 200 ppm, which were injected into the gas cell 

that was fixed on the TIRE experiment set up. Table 6.5 the concentration 

calculations according to eq. 6.4. The films were degased by injecting fresh air into 

the gas cell following each gas exposure.

H\  V h 3c v. ,xCH3 Qh3I
NN—C—H N

lY  i!i H  H 3( T  ' C H 3
w  t  , . Dimethylamine Trimethylamine
Methylamine (CH3)2NH x M

c h 3n h 2

Figure 6.12: Chemical structure of the amines used in this w ork[20̂

6.2.3 Spectral shift

The adsorption of amines vapours onto the surface of CuPcILj and SWCNT/Q1PCR4  

hybrids has been studied using TIRE method. Phthalocyanines and their hybrids 

were spun onto gold-coated glass substrates as described in Chapter 5. Figure 6.13 

shows typical TIRE spectra of Cr/Au films in air used in the present work; this was 

fully discussed in section 6.1.3.
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Table 6.5: Amines concentrations as calculated using equation (6.4)

Vs P V T M

(pL) (g/mL) (L) (K) (g)
1 0.89 2 291 31.7

0.89

0.89

0.89

0.83

291 31.7

291 42.08

Calculated Further dilution

concentration by 50cc syringe

C l (ppm)

335.1808

670.3616

505.0015

291 45.08 942.7889

291 59.11 335.2706

The original 

solutions are 

40% conc. in 

water

0.88 291 59.11 710.9353

C2=Cl*X/50 X C=C2*40%.

(ppm) (ppm)

10.05542344 1.5 4

20.11084688 3 8

50.2771172 7.5 20

100.5542344 15 40

201.1084688 30 80

502.771172 37.5 200

10.10002925 1 4

20.2000585 2 8

50.50014624 5 20

101.0002925 10 40

202.000585 20 80

499.6781107 26.5 200

10.0581185 1.5 4

20.116237 3 8

50.29059251 7.5 20

100.581185 15 40

201.16237 30 80

504.7640514 35.5 200

Figure 6.14, 6.15, 6.16 and 6.17 present the spectra of W(k) and A(k) of P c i, Pc2, 

Pc3 and Pc4 and their hybrids with the acid treated SWCNT thin films respectively 

before and after exposure to amines vapours; the shifts are summarised in Table 6.6. 

The concentrations of amines were varied from 4 to 200 ppm in air. The spectra were 

measured 10 minutes after injection of contaminated or fresh air to achieve the 

equilibrium response or recovery, respectively.

During exposure to contaminated air, it was difficult to detect shifts in W(k) because 

of the shape of the curve, however, significantly larger shifts have been observed in 

A(k) spectra. These are typical features of TIRE method as reported earlier t18’19’2d 

The spectra of A(k) were further enlarged and shown at the top of Figures 6.14, 6.15, 

6.16 and 6.17 to provide better assessment of the effect of amines exposures.
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It can clearly be seen that the adsorption of amines on hybrid films has resulted in 

larger shifts and these shifts have been summarised in Table 6.6.

300

6 0 - 250

5 5 - 200
5 0 -

150
00 4 5 -

100
Q .

COc<
3 5 -

3 0 -

-502 5 -

-10020-

500 600 700 800 900 1000300 400

X ,  nm
Figure 6.13: Typical TIRE spectra of Cr/Au film in air

Carbon nanotubes in general are characterised with uniform surface with delocalised 

7r-electrons of high density, which enhances their adsorption properties. When hybrid 

films are exposed to amine vapours, larger numbers of molecules are adsorbed onto 

the surface resulting in larger changes in the optical properties of the films and hence 

larger shifts in A(k) compared to pristine phthalocyanine films.

Complete recovery in the time range of 100-400s of A(X) spectra was observed after 

flushing the cell with fresh air as previously established for films of metal 

phthalocyanines with other types of substituents [21l  Figure 6.18 shows the 

dependence of phase shift change on amines concentrations in the range of 4-200 

ppm for phthalocyanine layers and their hybrids with SWCNTs.
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Figure 6.14: ^(X) and A(A.) spectra o f (a) P c i and (b) A TC N T-Pcl coated Cr/Au in
air (1,4,7 and 10); after injection o f 20 and 200 ppm o f  m ethylam ine (2,3),
dimethylamine (5,6), trimethylamine (8,9). Enlarged section o f A(A,) shown above
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Figure 6.15: '{'(A.) and A(X) spectra o f (a) Pc2 and (b) ATCNT-Pc2 coated Cr/Au in
air (1,4,7 and 10); after injection o f 20 and 200 ppm  o f methylam ine (2,3),
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Figure 6.16: 'F(^) and A(A,) spectra o f (a) Pc3 and (b) ATCNT-Pc3 coated Cr/Au in
(1,4,7 and 10); after injection o f  20 and 200 ppm o f methylam ine (2,3),
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Figure 6.17: ^(X) and A(X) spectra o f (a) Pc4 and (b) ATCNT-Pc4 coated Cr/Au in
air (1,4,7 and 10); after injection o f 20 and 200 ppm o f  methylam ine (2,3),
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Table 6.6: The changes in the phase shifts A(k) of phthalocyanines and their 

composites with carbon nanotubes active layers upon exposure to methylamine, 

dimethylamine and trimethylamine gases in different concentrations

5A(X), nm

Cone.

,ppm
Oa.

A
T

C
N

T
-P

cl

tj
P-H

A
TC

N
T-

Pc
2

u
Ph

A
TC

N
T-

Pc
3

rfo
Ph

A
TC

N
T-

Pc
4

4 - 1.64 - 1.25 - 1.79 - 1.43

e
a

A

8

20

40

1.31

3.24

6.9

4.19

9.08

15.81

1.9

4.09 

7.51

3.51

8.03

15.16

3.05

6.02

3.2

7.14

13.63

1.25

3.67

6.87

3.1

7.98

13.91
o
s 80 10 20.01 12.12 20.9 9.35 20.02 9.53 23.55

200 11.19 22.57 15.97 25.39 11.11 27.22 11.32 28.58

o
S3

4

8 ; 3.29 ; 1.91 ; 2.01 ; 2
a

.S3
o

20
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1.78

3.69

6.35

10.59

3.05

5.95
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8.21

1.59

3.32

4.74

9.9

2.25

3.95

4.79

9.31
a

• p nQ 80 6.78 15.03 9.34 13.32 6.01 15.5 7.45 16.61

200 8.02 17.72 11.04 17.34 7.95 20.76 9.5 20.75

V
4

8 ; 2.21 ; ; ; 1.98 ; 1.68
a
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1.54
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Earlier studies have shown that water molecules are weakly physisorbed onto carbon 

nanotube surface i42'44̂ . Larger response to humidity has been reported in boron- and 

nitrogen-doped carbon nanotubes [45], which indicate strong interaction between 

water molecules and doped-CNTs, however, the recovery time of sensor based on 

these materials was achieved in about 2.5 h. In this work the baseline was measured 

using ambient air and therefore the humidity interaction resulting from the diluted 

gas can be negligible.
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Figure 6.18: Phase shift changes (8A) in A(X) spectra of studied Cu(II) 

phthalocyanines derivatives and their hybrids with acid treated SWCNT layers on 

treatment with amines vapours in the concentration range 4-200 ppm
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6.2.4 Experimental data fitting

Theoretical fitting to experimental W and A spectra was carried out by applying a 4- 

layer model consisting of air, organic layer, Au layer and BK7 glass. The parameters 

of organic films after exposure to amines vapours were determined by fitting 

experimental W and A spectra to the theoretical organic model by fixing Cr/Au layer 

parameters. Table 6.7 summarises the thickness of all layers found from theoretical 

data fitting as well as the values of refractive index and extinction coefficients given 

at A,=633 nm. Further to the data summarised in Table 6.7 the variation in refractive 

index and extinction coefficient as a function of X for P c i,2,3,4 and ATCNT- 

Pcl,2,3,4 films in pure air and after exposure to amines vapours at the concentration 

of 40 ppm are shown in Figures 6.19, 6.20, 6.21 and 6.22.

6.2.5 Sensitivity and Response time

In order to evaluate the response of the two types of layers the average sensitivity has 

been calculated based on changes in A spectra shifts (Table 6.6) using equation 6.1. 

The average sensitivities were presented in Figure 6.23. All films exhibited higher 

sensitivity for methylamine than dimethylamine and trimethylamine, where the 

highest sensitivity for methylamine was found to be 0.000325 /ppm in the case of 

ATCNT-Pc2 active layer. The lower sensitivity for secondary and tertiary amines 

can be explained by the steric hindrance that their molecular shapes provide which 

allows smaller number of these molecules to interact with films' surfaces as 

compared to methylamine [46l  Furthermore, the higher vapour temperature of 

dimethylamine and trimethylamine (7-9° C) in comparison to methylamine (-7°C) 

reduces the number density of these amines at room temperature. Therefore, the 

interaction probability with the film surface is reduced. It was recently found that 

changes in the intensity of the Q-band in the UV-visible spectra of thin films of 

metalloporphyrin were ~ 0.85 and 0.5 (a.u.) after exposure to low concentrations of 

dimethylamine and trimethylamine respectively [47-1. This is found consistent with our 

observations where dimethylamine showed better interaction with the active layer 

than trimethylamine.
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Figure 6.19: The variation in refractive index and extinction coefficient o f (a and c) 

P ci and (b and d) ATCNT-Pcl layers as exposed to air (solid lines), methylamine 

(dotted lines), dimethylamine (dashed-dotted lines) and trimethylamine (dashed 

lines) in the concentration of 40 ppm
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Figure 6.20: The variation in refractive index and extinction coefficient o f (a and c) 

Pc2 and (b and d) ATCNT-Pc2 layers as exposed to air (solid lines), methylamine 

(dotted lines), dimethylamine (dashed-dotted lines) and trimethylamine (dashed 

lines) in the concentration of 40 ppm
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Figure 6.21: The variation in refractive index and extinction coefficient of (a and c) 

Pc3 and (b and d) ATCNT-Pc3 layers as exposed to air (solid lines), methylamine 

(dotted lines), dimethylamine (dashed-dotted lines) and trimethylamine (dashed 

lines) in the concentration of 40 ppm
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Figure 6.22: The variation in refractive index and extinction coefficient of (a and c) 

Pc4 and (b and d) ATCNT-Pc4 layers as exposed to air (solid lines), methylamine 

(dotted lines), dimethylamine (dashed-dotted lines) and trimethylamine (dashed 

lines) in the concentration of 40 ppm
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Figure 6.23: Sensitivity of phthalocyanines and their hybrids with SWCNTs active 

layers estimated from eq. 6.1 for methylamine, dimethylamine and trimethylamine

Pc2 and Pc4 show higher sensitivity to analytes than Pci and Pc3. The non­

peripheral tetra substitution in Pci and Pc3 makes them less sensitive to the 

examined analytes due to their lower overall affinity [48].

To calculate the response time, Pc2 and ATCNT-Pc2 films were selected and 

exposed to methylamine, dimethylamine and trimethylamine at concentration of 40 

ppm. For methylamine, the response time tgo, which is defined as the time it takes to 

reach 80% of the steady state shift, was measured to be 158 s in Pc2 film and 66 s in 

ATCNT-Pc2 film. This is much lower than the response time of 440 s and 270 s 

found by Liu et a l [46] using zinc phthalocyanine film and Saini et a l [32] using copper 

phthalocyanine film, respectively. The response time for dimethylamine was found 

to be 230 s and 101s detected by Pc2 and ATCNT-Pc2 films respectively, while for 

trimethylamine, response times were found to be 267 s and 136 s. The recovery time 

t*8o, which is defined as the time required to reach 80% of the base line were 

measured to be 393, 350 and 387 s for methylamine, dimethylamine and 

trimethylamine respectively as detected by Pc2, whereas ATCNT-Pc2 hybrid film 

exhibited recovery times of 150, 191 and 138 s respectively.
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Figure 6.24 shows the response and recovery times of Pc2 and its SWCNTs hybrid 

films on exposures to methylamine at concentration of 40 ppm.
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Figure 6.24: The rise and decay curves of the 6A(\) during the detection of 40 ppm 

methylamine vapour by Pc2 and Pc2-ATCNT films

6.2.6 Detection limit

The lowest detectable concentration was calculated according to section 6.1.6 above 

in this chapter. Using gold-air interface experiment, a fifth order polynomial fit has 

been applied on the dynamic base line (Figure 6.25) over 305 point at the wave 

length 570nm, where A(A,) spectrum has shown a sharp drop in the gold layer. This 

gives not only the curve-fitting equation but also the statistical parameters of the 

polynomial fit.

The root mean square noise can be calculated according to eq. 6.2, where, yi is the 

measured data point and y  is the corresponding value calculated from the curve- 

fitting equation (Figure 6.25). N  is the number of data points used in the curve fitting. 

The average noise level was found to be 0.117.
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Figure 6.25: The dynamic spectra of base line of gold-air substrate at X =570 nm. 

The fifth order polynomial fit has been extracted for the phase shift spectrum only 

and the equation has been presented

Figure 6.26 to 6.29 show the changes in the phase shift versus analytes 

concentrations for the first few linear points, plotted from Table 6.6.

According to eq. 6.3 with the replacement of units to ppm, the detection limits can be 

extrapolated from the linear calibration curves, presented in Figures 6.26 to 6.29. 

When the signal equals 3 times the noise, the detection limits have been calculated 

and presented in Table 6.8.

Several detection techniques for amines' vapours were reported in the literatures. 

When aqua(chloro)(5,10,15,20-tetraphenylporphyrinato)chromium(III) used as 

optical active layer based on UV-visible absorption technique, a detection limit of 10 

ppm was reported [47J under dynamic conditions, while a limit of 24 ppm has been 

realized by using fiber-optic fluorescence sensor employing 2-naphtol bonded to 

polyethylene oxide [49].

Polynomial fit of A

y=126.14-0.131x+0.059x2-0.0108x3+8E-4x4-2E-5x5
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Figure 6.26: Changes in the phase shift of Pci and ATCNT-Pcl spectra versus 

analytes concentrations for the first few linear points, plotted from Table 6.6
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Figure 6.27: Changes in the phase shift of Pc2 and ATCNT-Pc2 spectra versus 

analytes concentrations for the first few linear points, plotted from Table 6.6
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Figure 6.28: Changes in the phase shift of Pc3 and ATCNT-Pc3 spectra versus 

analytes concentrations for the first few linear points, plotted from Table 6.6
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Figure 6.29: Changes in the phase shift of Pc4 and ATCNT-Pc4 spectra versus 

analytes concentrations for the first few linear points, plotted from Table 6.6
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Table 6 .8 : The detection limits for. amines sensors calculated according to equations 

6.2 and 6.3

DL(ppm)

Methylamine Dimethylamine Trimethylam

Pci 2.925 3.857143 5.238806

ATCNT-Pcl 1.671429 2.19375 2.064706

Pc2 2.507143 2.925 4.3875

ATCNT-Pc2 1.487288 2.294118 2.34

Pc3 2.925 4.3875 5.014286

ATCNT-Pc3 1.526087 1.95 2.34

Pc4 3.190909 3.51 5.014286

ATCNT-Pc4 1.253571 1.755 2.507143

Summary

Thin films of single-walled carbon nanotubes (SWCNT) hybridized with 

tetrasubstituted copper phthalocyanine (CuPcR^ have been used as optical active 

layers to detect pentachlorophenol (PCP), 2-chlorophenol (2CP), diuron and 

simazine in water and methylamine, dimethylamine and trimethylamine in air using 

Total Internal Reflection Ellipsometry (TIRE) technique.

The produced films exhibited higher sensitivity for pentachlorophenol than other 

pesticides used in in the case of water ambient and higher sensitivity towards 

methylamine than dimethylamine and trimethylamine vapours. Hybrid films, in 

general, exhibited higher sensitivity and lower detection limit than pristine 

phthalocyanine films towards all the investigated analytes.
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Chapter 7

Distribution of Single-Walled Carbon Nanotubes in Pyrene 

Containing Liquid Crystalline Zinc Phthalocyanine Matrix: 

Formation and Sensor Properties

Chapter overview

Composites of single walled carbon nanotubes (SWCNT) with a discotic zinc 

phthalocyanines and the distribution of SWCNT in the ordered matrix of hexagonal 

columnar mesophase of these derivatives is studied using Raman spectroscopy, UV- 

Vis. Absorption and Fluorescence microscopy, X-ray diffraction, Scanning electron 

microscopy and Transmission electron microscopy. Conductometric gas sensor 

devices have been synthesized based on the prepared composite. The fabricated 

devices have then been examined to detect ammonia gas in the concentration range 1 

to 2 0 0 ppm.
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7.1 Introduction

This chapter is devoted to study the distribution of SWCNT in liquid crystalline 

asymmetrically (Pc6 ) and symmetrically (Pc7) substituted zinc phthalocyanine 

(ZnPc) bearing one pyrene and six polyoxy groups as side chains (Figure 7.1). Full 

details of the synthesis and chemical characterisation of 2,3,9,10,16,17-Hexakis 

(4,7,1O-trioxaundecan-1 -sulfanyl)-23(24)-(l-pyrenylmethoxy) phthalocyaninato zinc 

(asymmetic Pc6  and symmetric Pc7) are found in the published work of Tuncel et al. 

and Kaya et al. [1,2l  The effects of nanotubes on the crystalline phase behaviour of 

this phthalocyanine derivative and on the structural and functional properties of the 

SWCNT-phthalocyanine composite thin films are investigated. The polyoxy groups 

are chosen to exhibit the liquid crystalline properties of this material. The pyrene 

group is also chosen to enhance the interaction of phthalocyanine with the SWCNT. 

The pyrenyl group is known to interact strongly with SWCNT via ^-stacking 

interactions [3'5]. This has been used, for example, in the production of SWCNT- 

nanoparticle hybrids, the grafting of proteins and other biomolecules to SWCNT 

and to immobilize light harvesting groups on the SWCNT, as well as in the design of 

new photoelectric devices 5̂\  To demonstrate the potential applications of the 

SWCNT-ZnPc hybrids towards gas sensing, a conductometric gas sensor device 

based on the hybrid material has been fabricated. A comparative analysis of sensor 

response of pristine SWCNT and SWCNT-ZnPc hybrid films to ammonia vapour (1- 

200 ppm) was carried out to demonstrate the synergetic effect between SWCNTs and 

ZnPc derivatives. Influence of pyrene group on the phthalocyanine ring on the 

hybrids formation and their sensor response is discussed. As ammonia is a low 

boiling point compound and volatile, it is very important to develop sensitive sensors 

to detect the gaseous NH3 molecules. Chemical sensing application of SWCNTs for 

the detection of NO2 and NH3 gases was first reported by Kong et al Other studies 

have revealed that semiconducting SWCNTs could detect small concentrations of 

NH3 and NO2 with high sensitivity at room temperature
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Figure 7.1: Asymmetrical (Pc6 ) and symmetrical (Pc7) zinc phthalocyanine

derivatives

7.2 Experimental

7.2.1 Preparation of SWCNT-zinc phthalocyanine hybrids

5 mg of zinc phthalocyanines (Pc6  or Pc7) have been dissolved in 1 mL DMF and 

sonicated for 15 minutes. At the same time 1.0 mg SWCNTs was suspended in 3 mL 

DMF and sonicated for 30 minutes. After sonication the suspension was stirred and 

the solution of Pc6  or Pc7 was added drop wise to the SWCNTs suspension during 

stirring to obtain the hybrids SWCNT-Pc6  and SWCNT-Pc7, respectively. Addition 

of zinc phthalocyanine solution was stopped when the green phthalocyanine solution 

ceased to become colorless due to phthalocyanine adsorption to the SWCNT. The 

stirring was continued for another 1 hour before the mixture was centrifuged. The 

obtained solid washed with DMF several times, centrifuged again and finally dried in 

vacuum.

7.2.2 Sensor properties study

The sensing performance was studied at the relative humidity of 50%RH against 

low-concentration of NH3 (1-200 ppm) diluted in air. Pure commercial NH3 gas was 

used as the NH3 source. Air was used as the diluent gas, and NH3 was diluted by a 

syringe static volumetric method. Diluted NH3 was injected into the container by a
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microsyringe. In order to degas the. test chamber, heating was immediately applied at 

80 °C after turning off the NH3 gas.

Thin films of hybrids SWCNT-Pc6  and SWCNT-Pc7 were deposited by drop- 

casting their solutions in DMF (0.5 mg/mL) onto interdigitated electrodes, which 

were used to examine the hybrid films’ DC electrical conductivity. The electrical 

resistance of the sensors was measured with Keithley 236 by applying a constant dc 

voltage (3 V). The response and recovery times of the films were defined as the times 

needed to reach 80% of the final or baseline resistance, respectively.

7.3 Characterisation of SWCNT-ZnPc (Pc6  and Pc7) complexes

7.3.1 Raman spectra

The non-covalent attachment of phthalocyanine molecules to SWCNT can be 

confirmed by Raman spectroscopy. Raman spectra for pristine SWCNT and both 

hybrids (SWCNT-Pc6  and SWCNT-Pc7) are shown in Figure 7.2. The radial 

breathing modes (RBM), disorder (D) mode and tangential/graphite mode (G-band) 

are monitored as indicators of functionalisation with phthalocyanines [8l  The spectra 

were normalized to the tangential G band at -1590 cm'1. Both spectra of pristine 

SWCNT before and after hybridization contained the following characteristic peaks: 

the D band located at about 1340 cm' 1 (disorder mode), which is due to breathing 

modes of sp2 atoms [9'11] and the G band centred at 1590 cm ' 1 (tangential mode), due 

to bond stretching of all pairs of sp2 atoms [12l

In Figure 7.2 (region III), which is an enlarged part of the spectrum from 400 to 1350 

cm'1, we can see that the characteristic vibrations of phthalocyanine macrocycle [1] 

have been affected noticeably by interaction with SWCNT. Comparing SWCNT and 

hybrid spectra, only little variation of the ratio of the D band to the G band ( I d / I g )  

can be observed, which suggests that ZnPc derivatives are associated with the 

surface of SWCNT through a non-co valent modification. Moreover, the multiple 

peaks observed in the radial breathing mode (RBM) of SWCNT in the range 158-304 

cm' 1 (Figure 7.2 (region II)) could be ascribed to a distribution of diameters in the 

SWCNT samples [13,14l  They correspond to nanotube diameters in the range from 0.7 

to 1.4 nm. The Raman spectra of the noncovalently functionalized SWCNT-Pc6  and
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SWCNT-Pc7 revealed significant shift on the peak positions located in the range 

158-225 cm'1. For example, the RBMs at 158, 179, 200, 225 cm '1 of SWCNT have 

shifted to 165, 187, 205, 229 cm '1 and to 166, 189, 207, 232 cm'1 after the adsorption 

of Pc7 and Pc6, respectively. It was shown that the radial breathing modes of the 

Raman spectrum are sensitive to the adsorption coating of the nanotubes with 

polynuclear aromatic hydrocarbon molecules [15].
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Figure 7.2: Raman spectra of pristine SWCNT, hybrids SWCNT-Pc6 and SWCNT- 

Pc7 in the range 90-3200 cm '1 (I), in the range of radial breathing modes 90-450 cm '1 

(II), in the range of phthalocyanine vibrations 400-1300 cm'1 (III)
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The n-71 stacking interaction between SWCNT and phthalocyanine aromatic rings 

induced a higher frequency shift of RBM and gave a kind of mode “hardening 

effect” [16l  In particular, the higher frequency shift indicates that SWCNT becomes 

stiffer after coating with aromatic ring. Adsorption of Pc6 containing an additional 

pyrene group is shown to induce a more remarkable shift in comparison with Pc7 

because of the better ZnPc molecule-SWCNT interaction.

7.3.2 Optical absorption and fluorescence emission spectra

The optical absorption and fluorescence emission spectra of the zinc phthalocyanines 

(Pc6 and Pc7) solutions in DMF are shown in Figure 7.3 and 7.4 respectively. The 

absorption spectrum of Pc7 in DMF consists of a Soret band at 372 nm and Q-band 

at 704 nm. Introduction of one pyrene moiety leads to a small shift of the Soret band 

to 371 nm and Q-band to 698 nm. The fluorescence emission peaks (excitation 

wavelength is 650 nm) were observed at 719 nm for Pc6 and 721 nm for Pc7 in 

DMF. Because of the pyrene substitution, Pc6 showed higher emission intensity than 

Pc7 as it can be seen in Figure 7.4.

The formation of the SWCNT-ZnPc hybrids can also be confirmed by the 

fluorescence measurements. The addition of sonicated SWCNT solution to a solution 

containing either Pc6 or Pc7 in DMF quenched the emission of both macrocycles as 

shown in Figures 7.5 and 7.6 respectively. However, the fluorescence intensity of 

Pc6 was found to be more quenched than Pc7 suggesting that pyrene substituted 

ZnPc (Pc6) has interacted with SWCNT more efficiently than Pc7.
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Figure 7.3: UV-vis optical absorption spectra of Pc6 and Pc7 in DMF
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Figure 7.4: Fluorescence emission spectra of Pc6 (Zem=719) and Pc7 (A,em=721) in 

DMF (C^lxlO -5 M). Excitation wavelength=650 nm
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Figure 7.5: Fluorescence emission changes of Pc6 observed during the titration of 

SWCNT (0-350|_il) in DMF (C=Txl0~5 M). Excitation wavelength=650 nm
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Figure 7.6: Fluorescence emission changes of Pc7 observed during the titration of 

SWCNT (0-350fil) in DMF (C =lxl0° M). Excitation wavelength=650 nm
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7.3.3 X-Ray diffraction

The identification of mesophases was carried out by X-ray diffraction (XRD) 

measurements at room temperature. Dichloromethane solution of Pc6 and Pc7 were 

dropped onto glass slides and left the solvent to evaporate at room temperature. The 

powder diffraction patterns of Pc6 and Pc7 contain typical reflections of a columnar 

mesophase of substituted Pcs (Figures 7.7 and 7.8, and Table 7.1). In the low angle 

region (20 = 4°-6°), the phthalocyanine derivatives produce a sharp peak with either 

a shoulder or a small additional peak. In the literature, it has been observed that, in 

the case of the rectangular columnar phase, the (10) peak of the Colr mesophase 

splits in the (11) and (20) reflections of the Colr phase [17l

Additionally, it is known that the lattice constants a and b can be calculated from the 

following equation:

Based on this information, possible indexation of the Colr mesophase can be 

proposed as in Table 7.1. These results suggest a two-dimensional rectangular lattice 

with disc-like molecules stacked in columns in the rectangular arrangement. Both 

XRD patterns of Pc6 and Pc7 show a Colr phase with p2gg symmetry.

The X-ray diffraction patterns of hybrids at room temperature shows similar features 

to those of compounds Pc6 and Pc7 confirming the rectangular columnar mesophase 

of the composites as shown in Figures 7.7 and 7.8. The columnar mesophase 

structure is not destroyed by the inclusion of SWCNTs, however the shift of the 

corresponding XRD peaks is observed. The XRD patterns of the compound Pc6 at 

20 °C display the most intensive diffraction peak at 20 = 4.52° corresponding to 

intercolumnar distance of 19.53 A (Figure 7.7). This peak shifts to 4.56° (d = 19.36 

A) in the XRD pattern of SWCNT-Pc6. This points out that the inclusion of carbon 

nanotubes into the columnar matrix leads to a decrease of the intercolumnar distance.

In the case of compound Pc7 the corresponding diffraction peak at 20 = 4.22° (d = 

20.9 A) shifts to 20 = 4.54° (d = 19.45 A) upon addition of SWCNT, however 

addition of more amount of SWCNT leads back to an increase of the intercolumnar 

distance to 20.44 A which can be associated with the formation of inhomogeneous

(7.1)
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material as was revealed by Polarised Optical Microscopy (see section 7.3.4).

The XRD patterns of SWCNT-Pc6 hybrid also show the Colr phase with p2gg 

symmetry, however it is obvious that the number of diffraction peaks increases after 

the addition of SWCNT to compound Pc6. This appears to be explained by the 

formation of domains with different orientations. As opposed to the Colr phase with 

p2gg symmetry in the case of pristine Pc7, the XRD patterns of SWCNT-Pc7 show a 

Colr phase with C2mm symmetry (hk: h+k=2n, hO: h=2n, Ok: k=2n for C2mm; hk: 

no conditions, hO: h=2n, Ok: k=2n forp2gg).

Table 7.1: X-Ray diffraction data for compounds Pc6 and Pc7 and their composites 

at room temperature

C om pound Phase O bserved C alculated Lattice M iller indices
spacings (A) spacings (A) param eters(A ) (h k )

P c6  C o l r 21.2744 21.2744 a= 39.07 ( 1  1 )
19.5346 19.5346 b= 24.80 ( 2  0 )
11.5901 11.8231 ( 1  2 )
9.8400 9.7675 (4 0)
7.1438 7.4531 (5 1)

SW CNT-Pc6  C o l r 21.5296 21.5296 a= 38.73 ( 1  1 )
19.3624 19.3624 b= 25.90 ( 2  0 )
12.2971 12.2721 ( 1  2 )
11.0661 10.7583 ( 2  2 )
9.8821 9.6824 (4 0)
7.2490 7.1722 (3 3)
5.5144 5.5329 (7 0)
5.3312 5.4105 (7 1)

Pc7 C o l r 23.8566 23.8566 a= 41.84 0  1 )
20.9197 20.9197 b= 29.04 ( 2  0 )
13.4669 13.7052 ( 1  2 )
12.0379 11.9203 ( 2  2 )
10.3243 10.4600 (4 0)
6.0294 5.9772 (7 0)

SW CNT-Pc7 C o l r 22.2990 22.2990 a= 38.90 ( 1  1 )
19.4491 19.4491 b= 27.21 ( 2  0 )
10.9620 11.1553 ( 2  2 )
9.8643 9.7250 (4 0)
7.2392 7.4369 (3 3)
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Figure 7.7: XRD patterns of Pc6 and its hybrid at room temperature
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Figure 7.8: XRD patterns of Pc7 and its hybrid at room temperature
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7.3.4 Polarizing optical microscopy

Compound Pc6 is isotropic liquid at about 230°C accompanying decomposition. 

When this sample was cooled from isotropic melt, typical hexagonal texture was 

formed at about 200 °C. This hexagonal texture remained constant until 130 °C 

during cooling. A fingerprint texture of rectangular phase was observed below 

130 °C as can be seen in Figure 7.9 confirming the transition from hexagonal phase 

to rectangular phase. Similar transitions were observed in the literature [17].

feotropicHomeotropic

Figure 7.9: POM measurements for compound Pc6. (a) Homeotropic alignment in 

the Colh mesophase, 200°C (b) Planar alignment in the Colh mesophase, 200°C (c) 

Homeotropic alignment in the Coir mesophase, 25°C (d) Planar alignment in the 

Coir mesophase, 25°C. Magnification: 40X. Heating-cooling rate: 20°C.min'1.

All SWCNT-ZnPc composites containing 1 and 2 wt.% were found to be liquid 

crystalline in nature. Similar to the pure ZnPcs, they show textures of columnar 

mesophases at room temperature (Figure 7.10). Figures 7.10a and 7.10d show typical 

mosaic textures of pure phthalocyanine derivatives. To the SWCNT composites 

(Figures 7.10 b,e), the texture is obviously different, especially in the case of
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SWCNT-Pc6 (Figures 7.10 b), from that of the pure materials. Inclusion of carbon 

nanotubes into the columnar matrix leads to an increase of the domains size, 

especially in the case of the composite SWCNT-Pc6. We can suggest that SWCNTs 

dispersed in LC matrix can act as seeds for oriented domain growth.

In the case of the composite SWCNT-Pc6 the fan-shaped texture is still persistent 

whereas the star-like layered structure is clearly seen. It is necessary to mention that 

when we tried to insert more SWCNTs in the columnar liquid crystal we observe 

small black aggregates of CNTs under the polarizing microscope, which meant that 

the CNTs are not homogeneously dispersed in the liquid crystal matrix of the 

composites for such high CNT additive. In the case of the composite SWCNT-Pc7 

the formation of inhomogeneous films containing small amount of black aggregates 

of CNTs starts to observe already at lower percentage of SWCNTs.

Figure 7.10: Polarizing optical microscopy images of the films of pure Pc6 (a) and 

its composite (b); pure Pc7 (d) and its composite (e), obtained under crossed 

polarized light
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7.3.5 Microscopy characterisation

SEM images of thin films of the composites SWCNT-Pc6 and SWCNT-Pc7 are 

given in Figures 7.11 (a,b and c). The films consist of thicker nanotubes of 10-30 nm 

in diameter. These nanotubes appear to consist of bundles of SWCNTs wrapped by 

layers of LC phthalocyanine molecules. It can be suggested that the core part of 

phthalocyanine LC molecules anchors around the SWCNT walls, meanwhile the tail 

part repels sideway to enhance the ic-n stacking by maximizing the 

hexagon-hexagon interactions between the two hybrid components. Similar scheme 

of interaction between porphyrin derivative ZnP(alkyl) 4  and the surface of 

semiconducting SWCNTs were visualized by performing DFT calculations [18-*.

In the case of SWCNT-Pc6, these thicker nanotubes have a tendency to lie stretched 

mainly in one direction in the LC matrix (Figure 7.11a), while in the SWCNT-Pc7 

they are more tangled and disordered (Figure 6.1 lc). The edge view of the SWCNT- 

Pc6 film (Figure 7.11b) shows that the films of SWCNT-Pc6 have layered structure 

with the layers align parallel to each other with the phthalocyanine molecules 

perpendicular to the layers according to the data of polarized Raman spectroscopy [1]. 

The more ordered structure of the SWCNT-Pc6 films appears to be connected with 

the presence of the pyrene groups in compound Pc6 which are known to interact 

strongly with SWCNTs via 7r-stacking interactions [3'5,19l  Meanwhile, discotic LCs 

derived from triphenylene have been reported to orient CNTs [20,21l  However, owing 

to their rather low miscibility with pristine CNTs, the use of triphenylene covalently 

modified CNTs was essential.

Inspecting the TEM images of pristine SWCNTs shows the presence of large 

aggregates of nanotubes. Figure 7.12 (a) and (b) show the TEM images of SWCNT- 

Pc6 and SWCNT-Pc7 hybrids, respectively. From these figures, we can observe the 

coverage of phthalocyanines on the sidewall of SWCNT. Furthermore the SWCNT- 

ZnPc nanohybrid appears to be made of bundles composed of tubes with specific 

rugged surface and a layer of thickness of about 1.5-2 nm immobilized onto the 

sidewall of SWCNT.
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Figure 7.11: SEM images of thin films of SWCNT-Pc6; (a) surface view inside the 

film, (b) edge (at edge of the film) view and SWCNT-Pc7; (c) surface view

The intermolecular alkyl-Tt and 7r-7i interactions and relative orientation of similar 

porphyrin derivative ZnP(alkyl)4 on the surface of the semiconducting SWCNT were 

visualized by performing DFT calculations [18]. The results show that the aromatic 

macrocycle interacts with the surface of the nanotubes and that the alkyl chains also 

surround the nanotubes to some extent.
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(a)

Figure 7.12: TEM images of SWCNT-Pc6 hybrid (a) and SWCNT-Pc7 hybrid (b)

7.4 Study of electrical and sensor properties of SWCNT-ZnPc hybrids

7.4.1 Lateral conductivity

The I(V) dependencies for the films deposited onto interdigitated electrodes were 

performed using Keithley 236 semiconductor characterisation system in the voltage 

range 0-10V. From equation 3.7, the conductivity (a) can be defined as:

a ~ RHWn

where L, W, H  and n are as defined in section 3.1.7, R is the film's resistance as 

derived from the I-V curves (Figures 7.13 and 7.14), which has been calculated from 

the liner fitting parameters that are shown as insets to Figures 7.13 and 7.14.

The calculated conductivities are 8.2xl0‘6, 1.9xl0'2, 4.4xl0'6 and 4.6xl0'3 for Pc6, 

SWCNT-Pc6, Pc7 and SWCNT-Pc7 respectively. The lateral conductivity tends to 

increase with the presence of SWCNTs. For example, the conductivity of SWCNT- 

Pc6 composite films is about 4 orders of magnitude higher than that of pure Pc6 

films. It is necessary to mention that the presence of SWCNTs leads to the formation 

of non-homogeneous composite films containing small particles of aggregated 

nanotubes. The larger electrical conductivity of the nanocomposites arises due to the 

highly delocalized n electron density of phthalocyanine molecules bonded to 

SWCNTs, which provides a facile path for electronic conduction. Increase of

r V. '.vSriA \  ■ i
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conductivity in the region of 2-4 orders of magnitude in dependence on the 

orientations of the LC columns and SWCNTs has been observed in the case of 

discotic ionic liquid crystals of triphenylene derivatives bearing six imidazolium ion 

pendants [22].

1.0x10' Linear Regression for SWCNT-Pc6:

7.0x10'

6.0x10'

5.0x10'

*j- 4.0x10'

3.0x10'

■ S W C N T -P c 6  
•  P c 62.0x10'

1.0x1 O'5 -

0.0

-1.0x10'5
0 2 4 6 8 10

Voltage, V

Figure 7 .13:1(V) curves of Pc6 and its hybrid with SWCNTs. The linear fitting

parameters are shown as inset

4.0x10’5 -

3.0x1 O'5 - Linear Regression for Pc7:

■ S W C N T -P c 7  
•  P c 71.0x1 O'5 -

t :0.0

40 2 6 8 10

Voltage, V

Figure 7 .14:1(V) curves of Pc7 and its hybrid with SWCNTs. The linear fitting

parameters are shown as inset

180



D i s t r i b u t i o n  o f  S W C N T  i n Z n P c  M a t r i x |

7.4.2 Ammonia vapour detection

Figure 7.15 shows the normalized sensor response R (R = (Rc -  R0)/R0\ where Rc is 

the steady state resistance of the sensor at certain concentration of ammonia and R0 is 

the baseline resistance of the sensor) of the films of pristine SWCNT and SWCNT 

hybrids with Pc6  and Pc7 on exposure to ammonia of the concentrations 5, 20, 40, 

60 and 80 ppm. In order to degas, heating was immediately applied at 80 °C after 

turning off the NH3 gas. The temperature was chosen following published results in 

the literature, which demonstrated that the sensor resistance of SWCNT films did not 

return to baseline value for a long time after NH3 was replaced by fresh air at room 

temperature [23,24].

The resistance of the sensor increased following 3 min exposure to NH3; this is the 

result of adsorption of electron donating NH3 molecules on pristine SWCNTs 

causing charge transfer between the SWCNTs and the analyte molecules. This result 

shows that pristine SWCNTs exhibit p-type conductivity. Similar results were 

observed for films of both studied hybrids.

The proposed mechanism of sensor response of the modified carbon nanotubes to 

ammonia and other reducing analytes has already been discussed in the literature 

[25,26] Theoretical studies indicate a weak interaction between pristine SWCNTs and 

NH3, with little charge transfer [27,28]. It is also known that surface charge transfer 

interaction occurs upon adsorption of strong electron donor molecules like ammonia 

[29] onto the surface of phthalocyanine derivative in hybrids leading to electron 

transfer from NH3 to the phthalocyanine molecule; the formed charge transfer 

complexes trap holes leading to the observed increase in the resistance. Since 

SWCNTs/MPc conjugates can form an excellent charge transfer complexes b0,30̂  the 

charge can favourably travel from MPc to SWCNTs rapidly, resulting in a large and 

fast variation in the films’ resistance. The combination of the useful properties of 

SWCNTs (namely, high conductivity and extremely high surface area), and the 

properties of MPc derivatives (specifically, appropriate binding sites for ammonia 

resulting in charge transfer complexes) provides ground for synergic effect between 

SWCNTs and ZnPc derivatives as active layers for sensor applications.

Both hybrids, SWCNT-Pc6  and SWCNT-Pc7, exhibited an enhanced response to 

NH3 compared to that of pristine SWCNT film, with the largest response observed in
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the case of SWCNT-Pc6 hybrid. The response of pristine SWCNT and 

SWCNT/ZnPc hybrid films towards different NH3 concentrations is depicted in 

Figure 7.16. The results show that the SWCNT/ZnPc hybrids response is much 

higher than that of pristine SWCNTs sensor. The SWCNT-Pc6 sensor can detect 

about 1 ppm of NH3 gas, which indicates relativity higher sensitivity compared to 

that demonstrated by pristine SWCNTs. Meanwhile, the SWCNTs sensor can detect 

10 ppm of NH3.

Response linearity for all three films towards ammonia was observed for 

concentrations in range up to 100 ppm with a trend to saturate at concentrations 

higher than 100 ppm. The response value of SWCNT-Pc6 film is higher than the 

SWCNT-Pc7 hybrid films. This result can be explained by the presence of larger 

number of active sites (ZnPc and pyrene molecules) in SWCNT-Pc6 hybrid since the 

derivative Pc6 was shown to interact with SWCNTs more efficiently than Pc7.

SWCNT-Pc7
SWCNT-Pc6
SWCNT

8 0  p p m

6 0  p p m

c d
4 0  p p mo

Dr
c d

o

2 0  p p m
NH3 off

0 . 2 -
5  p p m

0.0
40 100 12020 60 80 1400

t, min.

Figure 7.15: The response curve of pristine SWCNT, SWCNT-Pc6 and SWCNT- 

Pc7 films to ammonia vapour at concentrations of 5-80 ppm
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Figure 7.16: Response of pristine SWCNT, SWCNT-Pc6 and SWCNT-Pc7 films

versus NH3 concentration

Summary

Hybrid structures of single-walled carbon nanotubes with symmetrically 

octasubstituted ZnPc bearing eight polyoxy groups and asymmetrically substituted 

ZnPc bearing one pyrene and six polyoxy groups as side chains have been prepared 

and characterized by spectral methods and microscopy. Pyrene containing ZnPc has 

interacted with SWCNT more efficiently than zinc phthalocyanine without pyrene 

substituent. It has also been shown that the response of the hybrid films with pyrene 

containing ZnPc to the ammonia vapour is two times larger than that demonstrated 

by hybrid films with ZnPc without pyrene substituents.
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Chapter 8 

Conclusion and Future work

8.1 Conclusion

In this work, copper phthalocyanine (CuPc) and lead phthalocyanine (PbPc) thin 

films have been characterized and studied for possible device applications. Hybrid 

structures of single walled carbon nanotubes (SWCNT) and CuPc and zinc 

phthalocyanine (ZnPc) were prepared as thin films and examined as a sensing 

element to detect different kinds of pollutants using optical and electrical detection 

techniques.

Octa-substituted copper(II) phthalocyanines (CuPcRg), containing alkylthio-, 

alkyloxy-, (trioxyethylene)thio- and (trioxyethylene)oxy- substituents in peripheral 

positions have been investigated. It was shown that the type of substituent in the 

phthalocyanine molecule has a significant effect on the films’ orientation and on its 

electrical properties. Higher surface conductivity values were found for films of 

phthalocyanines with the molecules oriented perpendicular to the substrate surface. 

The lateral conductivity tends to decrease slightly with the increase of chain length, 

and the higher conductivity in the alkylthio- derivatives is thought to be caused by 

the reduced structural disorder during phase transition which is caused by the 

presence of sulphur atoms in the chains.

Furthermore, Octa-substituted alkylthio- and alkoxy- lead (II) phthalocyanines 

(PbPcRg) have also been invetigated and examined for electrical switching 

applications. Thin films prepared from these compounds have exhibited an increase 

in electronic conduction after heat treatment. Typical switching effect was also 

observed with high ON/OF ratios making them promising candidates for memory 

applications.

Hybrid structures of SWCNT and tetra-substituted copper phthalocyanine (CuPcRg 

have been prepared. FTIR and Raman spectra have shown that non-covalent binding 

between CuPcR* and SWCNTs has been significantly enhanced as a result o f acid 

treatment of SWCNT. Using SEM and AFM measurements morphology of the films
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was found to be highly dependent on the solubility of the hybrid which is determined 

by the method used to produce the hybrid structure. The acid-treatment of SWCNT is 

found to result in the separation of bundled carbon nanotubes, leading to enhanced n- 

n interaction formation in the SWCNT/Q1PCR4  system. Thin films of acid-treated 

SWCNT/CuPcR4  hybrid exhibited much higher conductivity than CuPcR.4  and 

improved films’ homogeneity has enabled the use of such hybrids as optically active 

sensing layers for the detection of pollutants in water utilizing Total Internal 

Reflection Ellipsometry technique (TIRE). The response of acid-treated 

SWCNT/Q1PCR4 hybrid films to the presence of benzo[a]pyrene in water was shown 

to be two times larger than that demonstrated by CuPcR4 films.

Thin films of SWCT/CuPcR* with different substitutions have been prepared. The 

morphology and optical properties of the hybrid films were studied and the 

interaction between the two materials was ascribed to the n-n interaction as well as 

van der Waals forces. The prepared films were applied as an optical active layer to 

detect some pesticides in water in comparatively low concentrations, including 

pentachlorophenol, 2-chlorophenol, diuron and simazine using TIRE technique. 

Concentrations as low as 133 ng/L have been detected by spin coated active layers of 

SWCNT/CuPcRj hybrids with an average sensitivity of 0.00396/(p,g/L). The 

produced films exhibited higher sensitivity for pentachlorophenol than other analytes 

used in this work. Hybrid films, in general, exhibited higher sensitivity and lower 

detection limit than pristine phthalocyanine films towards all the investigated 

pesticides.

In the case of gas sensing, concentrations as low as 3.6 ppm of methylamine have 

been detected by spun active layers of SWCNT/Q1PCR4  hybrids with an average 

sensitivity o f 0.000325/ppm. The produced films exhibited higher sensitivity for 

methylamine than dimethylamine and trimethylamine due to the steric hindrance of 

secondary and tertiary amines which reduces the probability of being adsorbed by the 

sensor. Hybrid films, in general, show higher sensitivity, lower detection limit and 

shorter response time than bare phthalocyanine films towards all the investigated 

amines' vapours. The higher 7r-electron density in the carbon nanotubes is expected 

to result in larger number of adsorbed molecules onto the hybrid films' surfaces.
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Hybrid structures of single-walled carbon nanotubes with symmetrically 

octasubstituted ZnPc bearing eight polyoxy groups and asymmetrically substituted 

ZnPc bearing one pyrene and six polyoxy groups as side chains have been prepared 

and characterized by spectral methods and microscopy. It was shown by the methods 

of Raman spectroscopy and fluorescence spectroscopy that pyrene containing ZnPc 

has interacted with SWCNT more efficiently than zinc phthalocyanine without 

pyrene substituent. To demonstrate the potential applications of the SWCNT/ZnPc 

hybrids towards gas sensing, a conductometric gas sensor device based on the hybrid 

materials has been fabricated. The comparative analysis of sensor response of 

pristine SWCNT and films of the SWCNT/ZnPc hybrids to ammonia vapour (1-200 

ppm) was carried out to demonstrate the synergetic effect between SWCNTs and 

ZnPc derivatives. It has also been shown that the response of the hybrid films with 

pyrene containing ZnPc to the ammonia vapour is two times larger than that 

demonstrated by hybrid films with ZnPc without pyrene substituents.

8.2 Future work

The current investigation has focused on examining the copper derivatives of the 

substituted Pcs as chemical detection element. For future work however, all other 

metal Pcs studied here will need to be examined for similar application.

Some pesticides and amines have been investigated in this work. Further 

investigation will need to consider more analytes including CL2 , NO2 and CO.

A comparative study can be performed to evaluate SWCNT/MPc hybrid layers' 

sensitivities towards all studied analytes using electrical-based sensing method and 

TIRE. Therefore, the design of a new cell for TIRE technique can be carried out to 

include two planar electrodes to measure the optical and electrical changes in the 

film caused by adsorption of analyte molecules at the same time.

This project has focused on the analysis of the studied layers sensitivity; however, 

less emphasis was placed on the selectivity of the films as a result of exposure to a 

broader range of pollutants. This could certainly be one essential objective of future 

studies of these hybrids.
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er the past few years, there has been an increasing demand 
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1 role in the degradation pathways of amino acids in living 
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time, therefore, the determination of freshness in fish and seafood 
is reliable with the quantification of these vapours [7],

Several methods used to determine chemical compounds imply 
measuring the variation of physical properties of an active layer 
induced by the adsorption of gas molecule on its surface. This active 
layer becomes the transducer that transforms the interaction with 
the environment in an optical or electrical signal. Among these 
methods are; high performance liquid chromatography [8 - 1 0 ], 
electrochemical sensors [11-14], electrical-based sensors [15] 
and optical detection methods [16], Sensors and measurement 
tools based on optical phenomena have always been of special 
interest, mostly because they usually do not require any physical 
or electrical contact with the materials under investigation and 
therefore they are not destructive. Some techniques, such as 
surface plasmon resonance (SPR) [17] and UV-visible absorption 
spectroscopy [18] are quite well recognised, and widely used. 
However, some methods like total internal reflection ellipsometry 
(TIRE), where ellipsometry can be used in total internal reflection 
mode and in combination with the surface plasmon resonance 
phenomenon [ 19] are still underexploited in the sensor area. There 
have been a number of research studies where TIRE can be used for 
monitoring of thin layers on surfaces [20]. Studies in the literature

ix .doi.org /10 .1016 /j.snb .2014.10.046 
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e explored some possible applications of TIRE, which included 
se for the monitoring of corrosion [2 1  ] as well as its exploita- 
in biomolecules detection [22]. However, it still seems to be 
totally explored in the field of chemical vapour detection. A 

ailed theoretical background of TIRE technique is found in the 
rature [23].

range of sensitive materials has been employed to construct 
sensors; these include several types of transition metal oxides 
], conducting polymers [25] as well as organic complexes like 
halocyanines [7,17,26,27]. Phthalocyanines (Pcs) in general and 
ir metallo-derivatives (MPcs) in particular, hold a great promise 
the development of many non-linear optical devices because of 
ir activity as basis for optical limiting [28], fast response time, 
que electronic absorption properties and the extensively delo- 
sed i t - i t  electron skeleton.
Carbon nanotubes (CNTs), on the other hand, have been found 
e extremely sensitive to their local chemical environment. This 
mical sensitivity, due to their extraordinary one-dimensional 
bon nanostructure, has made them ideal building blocks for 
mical detection [29]. CNTs have been demonstrated as promis- 
candidates for the detection of toxic gases such as NO2 , NH3 , 
H2 , CO2 , and CO [30-33]. However, the poor solubility and dis- 
sity of CNTs in conventional solvents has restricted their use as 
ive layers processed by simple methods like spin coating. Acid- 
tment as well as other modifications has been shown to assist 
vercoming the disadvantage of poor dispersity of CNTs [34-36]. 
other downside is that CNTs are optically inert and almost 

unsuitable to use as optically active layers utilising techniques 
h as SPR and TIRE. Further surface modification of CNTs through 
ridisation with MPcs enhances their optical performance

as well as gas sensing activity. This arises from the mutual i t  interac­
tion between CNTs and MPc resulting in more detection efficiency 
compared to the individual CNTs or MPcs species [37].

In this work, we report the use of single-walled carbon 
nanotubes (SWCNT) hybridized with tetra-substituted copper 
phthalocyanines Q 1PCR4  (Fig. 1) as an optical active layer to detect 
methylamine, dimethylamine and trimethylamine in air using 
TIRE technique. The morphology and optical properties of the 
SWCNT/CUPCR4 hybrid films are also discussed.

2. Experimental

2.1. Materials

3-nitrophthalonitrile [38], 4-nitrophthalonitrile [39], 3-(4,7,10- 
trioxaundecane-l-oxanonyl)phthalonitrile [40], 3-(4,7,10-trioxau 
ndecane-1 -sulfanyl)phthalonitrile [41 ], 4-(4,7,l O-trioxaundecane- 
1 -oxanonyl)phthalonitrile [42], 4-(4,7,10-trioxaundecane-1 -sulfa 
nyl)phthalonitrile [43] were synthesized and purified according 
to procedures described in the literatures. Dimethylformamide 
(DMF), n-hexanol, n-hexane, CH2CI2 and tetrahydrofuran (THF) 
were dried as described by Perrin and Armarego [44] before use. 
Q 1CI2 , l,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and triethylene 
glycol monomethyl ether were purchased from Fluka. K2 CO3 and 
neutral AI2 O3 were purchased from Merck.

SWCNTs were commercially purchased from Sigma-Aldrich. 
Methylamine, dimethylamine and trimethylamine solutions in 
water (40%) were also obtained from Sigma-Aldrich. Air was used 
as the diluent gas. Small amounts of amine solutions have been 
transferred into 2 L glass bottle using micro syringe and were left

NC.

NC

NO,
NCv^^N O , 

NC/J O *

NC,

NC'

R= Pel

NC,

NCX T

N—Cu—N,

Pc2

R= S' Pc3 Pc4

Fig. 1. S ynthesis o f C11PCR4 derivatives, i: C orrespond ing  ROH or RSH, anhydrous K2 CO3 , anhyd rous  DMF; ii: anhyd rous  CuCh, anh y d ro u s  n -hexano l, DBU.
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orize. The vapour concentration was calculated according to 
lowing gas law [18]:

c is the concentration in ppm, p  the density of the liquid sam- 
/mL, T the temperature of container in Kelvin, Vs the volume 
liquid sample in p.L, M the molecular weight of sample in 
, and V is the container volume in litre. The diluted gas has 
urther diluted in a 50 mL syringe to obtain amines concen- 
s of 4, 8 , 20 ,40, 80 and 200 ppm, which were injected into 

s cell, fixed on the experiment set up. Table 1 shows detailed 
tion of the gas concentrations of all examined amines. The 
ere degased by injecting fresh air into the gas cell.

easurements

pectra were recorded between 4000 and 650 cm - 1  using a 
Elmer Spectrum 100 FT-IR spectrometer with an attenuated 

eflection (ATR) accessory, featuring a zinc selenide (ZnSe) 
. Optical spectra in the UV-visible region were recorded 
himadzu UV-Vis-2101 spectrophotometer using 1 cm path 
cuvette at room temperature. Matrix-assisted laser desorp- 
nization time-of-flight mass spectrometry (MALDI-TOF-MS) 
rements were performed on a Bruker Daltonics micrOTOF by 
,3-dihydroxybenzoic acid as matrix. The surface morphol- 

the films was investigated by SEM and AFM using FEI-nova 
m 200 and Nanoscope Ilia multimode atomic force micro- 
respectively.
experimental set-up for TIRE measurements was built on 
V (J.A. Woollam Co., Inc.) spectroscopic ellipsometer, oper- 
the 350-1000 nm wavelength range. Details of TIRE method 

e experimental set-up are found in previous publications 
] The choice of the prism was dictated by conditions of total 

1 reflection of light on the glass/air interface; the prism used 
case is a 45° BK7 glass prism with an index of refraction 
5. The cell has a volume of 2 mL and contains inlet and out- 

es to allow injection of different gases or fluids into the cell 
r to perform different chemical interactions, 
spectra of the two ellipsometric parameters & and A , rep- 
ng, respectively, the amplitude ratio tg{'P)=AplAs and phase 
= <Pp-<Ps between p- and s-components of polarised light, 

ecorded with the M2000V instrument in the 350-1000 nm 
1 range using the rotating analyzer principle. Optical param- 

f the reflection system, i.e. thicknesses, refractive indices and 
‘on coefficients of the substrate and adsorbed layers, can be 
d by solving the reverse ellipsometric problem numerically:

xp(izl) =  Rp/ks (2 )

Rp and Rs are Fresnel reflection coefficients for p- and 
onents of polarized light related to the parameters of reflec- 

stem, particularly the thickness (d) and refractive index (n) 
dsorbed layers, via Fresnel equations [47]. The fitting is per- 
by solving Fresnel equations many times for different values 

d d and subsequently minimizing the error function of the 
ental and theoretical (calculated) values of & and A  using 

east-square techniques. Commercial WVASE32® software is 
d byJ.A. Woollam Co., Inc. for this task. The samples for TIRE 
ere prepared by the evaporation of 3 -5  nm of chromium on 
opic glass slides followed by the evaporation of 25-30  nm 
layer.

thesis ofCuPcR4  derivatives

CR4 derivatives (Pel, Pc2, Pc3 and Pc4) were obtained by 
lotetramerization of corresponding phthalonitriles in the

presence of anhydrous Q 1CI2 and DBU in anhydrous n-hexanol 
(Fig. 1). The compounds are soluble in CH2 CI2 , chloroform, THF, 
ethanol and methanol and are characterized by MALDI-TOF mass 
spectroscopy, FT-IR and UV-Vis spectroscopy.

1(4),8(11),15(18),22(25)-Tetrakis-[2-(2-(2-methoxyethoxy) 
ethoxy)ethoxy] phtalocyaninato Copper (II) (Pci)

A mixture of 3-(4,7,10-trioxaundecane-l-oxanonyl)phthalo- 
nitrile(0.5 g, 1.7 mmol), anhydrous Q 1CI2 (0 .1 1  g, 0 .8 6  mmol), anhy­
drous n-hexanol (2 mL) and DBU (0.07 mL, 0.45 mmol) was heated 
and stirred at 170 °C for 24 h in a round-bottomed flask under argon 
atmosphere. The resulting green suspension was cooled and the 
product was extracted with n-hexane. The oily green product was 
purified by column chromatography on neutral AI2 O3 using CH2 CI2 

as eluent. Yield: 0.235g (47%). Anal, calcd. for C6 0H7 2 N8 O16CU: C, 
58.84; H.5.92; N, 9.15%, found: C, 58.96; H, 5.73; N, 9.56%. IR (ATR) 
Vmax (cm-1 ): 3036 (aromatic CH), 2872 (aliphatic CH), 1648,1592, 
1452,1340,1272,1236,1072. UV-Vis (THF) Amax (log e) (nm): 699 
(4.98), 358 (4.14). MALDI-TOF-MS m/z: Calcd. for C6oH72 N8 0 , 6 Cu:
1224.82, Found 1224.42 [M]+.

2(3),9(10),16(17),23(24)-Tetrakis-[2-(2-(2-methoxyethoxy) 
ethoxy)ethoxy] phthalocyaninato Copper (II) (Pc2)

Pc2 was prepared according to the modified synthetic route 
previously reported by Erdem et al. [42]. This compound was syn­
thesized by the same procedure used for the synthesis of Pci 
starting with 4-(4,7,10-trioxaundecane-l-oxanonyl)phthalonitrile 
(0.5 g, 1.7 mmol), anhydrous Q 1CI2 (0 .1 1  g, 0 .8 6  mmol), anhydrous 
n-hexanol (2 mL) and DBU (0.07 mL, 0.45 mmol) in this study. Yield: 
0.380g (76%). Anal, calcd. for C6oH7 2N8 Oi6 Cu: C, 58.84; H.5.92; N, 
9.15%, found: C, 59.01; H, 5.51; N, 9.42%. IR(ATR) i w  (cm-1 ): 3069 
(aromatic CH), 2867 (aliphatic CH), 1607 ,1510 ,1483 ,1406 ,1343 , 
1273,1242,1196,1091,1060. UV-Vis (THF) Amax (loge) (nm): 682 
(4.93), 340 (4.68). MALDI-TOF-MS m/z: Calcd. for C6oH72 N8 0 16Cu:
1224.82, Found 1225.29 [M]+.

1(4),8(11),15(18),22(25)-Tetrakis-[2-(2-(2-methoxyethoxy) 
ethoxy)ethylthio] phthalocyaninato Copper (II) (Pc3) [48]

Pc3 was prepared by the same procedure used for the 
synthesis of Pel starting with 3-(4,7,10-trioxaundecane-l- 
sulfanyl)phthalonitriIe (0.5 g, 1.6 mmol), anhydrous CuCl2 (0.11 g, 
0.81 mmol), anhydrous n-hexanol (2mL) and DBU (0.07 mL, 
0.45 mmol). Yield: 0.370 g (74%). Anal, calcd. for C6oH72 N8 Oi2 S4 Cu: 
C, 55.90; H.5.63; N, 8.69%, found: C, 56.14; H, 5.23; N, 8 .8 8 %. IR 
(ATR) vmax (cm-1 ): 3060 (aromatic CH), 2912 (aliphatic CH), 
1636, 1568, 1464, 1312, 1084, 1024. UV-Vis (THF) Amax (log 
s )  (nm): 712 (4.93), 339 (4.64). MALDI-TOF-MS m/z: Calcd. for 
C6oH7 2N8Oi2S4Cu: 1289.09, Found 1288.75 [M]+.

2(3),9(10),16(17),23(24)-Tetrakis-[2-(2-(2-methoxyethoxy) 
ethoxy)ethylthio] phthalocyaninato Copper (II) (Pc4)

Pc4 was prepared by the same procedure used for the 
synthesis of Pel starting with 4-(4,7,10-trioxaundecane-l- 
sulfanyl)phthalonitri!e (0.5 g, 1 .6  mmol), anhydrous CuCl2 (0.11 g, 
0.81 mmol), anhydrous n-hexanol (2mL) and DBU (0.07 mL, 
0.45 mmol). Yield: 0.365 g (73%). Anal, calcd. for C60H72 N8 O12S4 Cu: 
C, 55.90; H.5.63; N, 8.69%, found: C, 56.05; H, 5.32; N, 8.99%. IR 
(ATR) vmax (cm-1 ): 3067 (aromatic CH), 2871-2864 (aliphatic CH), 
1602, 1505, 1450, 1391, 1308, 1084, 1195, 1097, 1085. UV-Vis 
(THF) Amax (log e) (nm): 682 (4.91), 341 (4.59). MALDI-TOF-MS 
m/z: Calcd. for C6qH7 2N8Oi2S4Cu: 1289.08, Found 1289.41 [M]+.

SWCNTs were first acidified and cut into short and uncapped 
nanotubes according to a multi-step procedure developed by Smal­
ley and co-workers [49]. This was carried out by stirring the 
nanotubes under 70 °C in a mixture of concentrated HNO3 and 
H2 S04 (3:1, v:v) for 2 h. The mixture was centrifuged, washed thor­
oughly in deionised water and dried at 70 °C for 12 hours.

2.4. Preparation o f SWCNTs-CuPcR4  hybrids
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l e i
:nes concen tra tions as calculated using  Eq. ( 1). Decimal fractions of th e  final gas concen tra tion  values a re  rounded  to  the  nea re st one.

V5 (|xL) P (g/mL) V (L) T(K) M (g)

C alculated concen tration  

Cl (ppm )

F urther d ilu tion  by 50 cc syringe 

C2 = C1 x X /5 0 (p p m ) X

The original so lu tions are  
40% conc. in w a te r

C=C2 x 40%, (ppm )

methylamine 1 0.89 2 291 31.7 335.1808 10.05542344 1.5 4
20.11084688 3 8
50.2771172 7.5 20

100.5542344 15 40
201.1084688 30 80

2 0.89 2 291 31.7 670.3616 502.771172 37.5 200
im ethy lam ine 2 0.89 2 291 42.08 505.0015 10.10002925 1 4

20.2000585 2 8
50.50014624 5 20

101.0002925 10 40
202.000585 20 80

4 0.89 2 291 45.08 942.7889 499.6781107 26.5 200
“ m ethy lam ine 2 0.83 2 291 59.11 335.2706 10.0581185 1.5 4

20.116237 3 8
50.29059251 7.5 20

100.581185 15 40
201.16237 30 80

4 0.88 2 291 59.11 710.9353 504.7640514 35.5 200

The acidified SWCNTs (0.5 mg) were added to a solution of 
, Pc2, Pc3 or Pc4 (1.5 mg/mL) in chloroform and ultrasonicated 
15min to get suspensions of Pcl-CNT, Pc2-CNT, Pc3-CNT and 

—CNT. Thin films were produced by spin-casting the obtained 
utions onto gold-coated slides and onto silicon substrates using 
hotoresist spinner (Microsystem model 4000) at 2000 rpm. Simi- 
-y, thin films were produced from a solution of all pristine CuPcRq 
“ pounds in chloroform (2 mg/mL) for comparison.

Results and discussion

. Characterization ofSWCNT/CuPcR4 hybrid films  

. 1. UV-Vis absorption spectra
Fig. 2 shows the UV-visible absorption spectra of solutions of 
CNTs, CuPc (Pel, Pc2, Pc3 and Pc4) and SWCNT/CuPc (P d -  

T. Pc2-CNT, Pc3-CNT and Pc4-CNT) hybrids in chloroform. All 
Q 1PCR4  compounds used in this work exhibit typical electronic 
orption spectra. The spectra are characterised with two strong 
orption regions, one in the wavelength range o f650-720 nm (Q-
d) arising from the electron transitions from highest occupied 

.lecular orbital (HOMO) aiu to the lowest unoccupied molec- 
:r orbital (LUMO) eg and another in the range of 300-450 nm 
band) which is attributed to the electron transitions from the 
MO) a2u to the (LUMO) eg [50]. Furthermore, absorption within 
Q-band is split into two absorption peaks, one with much 

:her intensity than the other. This can be ascribed to domi- 
_t monomer absorption with the lower intensity shoulder being 
:ribed to molecular aggregation in chloroform solution. The 
■orption spectrum of SWCNT is featureless as reported elsewhere 
]
The maxima of the Q-bands in the absorption spectra of P cl- 
, Pc2-CNT, Pc3-CNT and Pc4-CNT hybrids are broadened and 

-shifted by ^12.45, 10.59, 16.42 and 17.48 nm in comparison 
:h Pel, Pc2, Pc3 and Pc4 spectra, respectively. It can also be seen 
:t the Q-band splitting has either disappeared or became weaker 
the absorption spectra of hybrid, which indicates a dominant 
:nomer absorption. These changes are suggested to take place 

to the strong tt-tt interaction between carbon nanotubes and 
rhalocyanine molecules, where phthalocyanines are usually con- 
ered as electron donors, while carbon nanotubes as acceptors 
!]. This interaction has been frequently ascribed to the reduced 
—egation in the MPc/CNT composites [53 ,54].

3.1.2. Morphology
Fig. 3 shows SEM images of pristine SWCNTs, acid-treated SWC­

NTs, Pcl-CNT, Pc2-CNT, Pc3-CNT and Pc4-CNT hybrids deposited 
as thin film from chloroform solution onto silicon substrate. Pristine 
CNTs typically tend to bundle together (Fig. 3a) and to aggregate
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Fig. 2. Optical abso rp tion  spectra  o f pristine SWCNT (d ash ed  lines), P e l,  Pc2, Pc3 
and Pc4 (solid lines) and Pcl-CNT, Pc2-CNT, Pc3-CNT and  Pc4-CNT hybrids (d o tted  
lines) in chloroform .
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Fig. 3. SEM im ages of (a) pristine SWCNT, (b) acidified SWCNT, (c) Pcl-CNT, (d) Pc2-CNT, (e) Pc3-CNT and (f) Pc4-CNT hybrids.

van der Waals attraction between individual tubes [55] 
.11 as the high length to diameter ratio; this makes them 
to disperse in common organic solvents. Chemical mod- 
~n has been performed to achieve enhanced interaction 
:en SWCNTs and CuPcR4 molecules leading to the forma- 
f  a composite with much improved solubility in chloroform, 
“tained solution is conveniently used for thin film deposi- 
sing spin-coating technique. Fig. 3b shows that the intrinsic 

of SWCNTs structure is still preserved after the acid treat- 
However, after mixing with phthalocyanines (Fig. 3c-f), the 

"Site dispersion was significantly improved to form a uni­
suspended solution in chloroform; hence smoother films 

“btained to perform optical investigation, using TIRE experi-

Fig. 4a and b shows AFM images of Pc2 and Pc2-CNT, as 
an example, spun onto silicon substrates with the roughness 
analysis presented at the bottom of the images. All other phthalo­
cyanines and their hybrids with SWCNT exhibited the same 
surface morphology. The films of CuPcR4 demonstrate fibrous- 
like porous morphology. Hybrids on the other hand show that 
phthalocyanine molecules are attached to the surface of car­
bon nanotubes confirming the formation of networks of CuPcR4 

and SWCNT. Similar morphology was observed for poly(3- 
hexylthiophene) (P3HT)/multi-walled carbon nanotube (MWCNT) 
films [56] and 2(3),9(10),16(17),23(24)-tetrakis(hexadecylthio) 
phthalocyaninato copper (II)/single-walled carbon nanotube 
(SWCNT) films [57], The main roughness (Ra). standard deviation 
(RMS) and maximum height (Rmax) are summarised in T ab le  2.
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Fig. 4 . AFM im ages of (a) Pc2, (b) Pc2-CNT in th in  film form  deposited  on silicon. Roughness analyses are show n  below .

. Total internal reflection ellipsometry (TIRE)

.1. Spectral shifts
The adsorption of amines vapours onto the surface of CuPcR4 

SWCNT/CUPCR4 hybrids has been studied using TIRE method, 
rhalocyanines and their hybrids were spun onto gold-coated 
ss substrates as described in the experimental section. Fig. 5 
~ws typical TIRE spectra of Cr/Au films in air used in the present 
;rk.
The spectrum of ^(X ),  demonstrating the amplitude ratio of 
As, resembles very much the conventional surface plasmon res- 
nnce (SPR) curve, while the spectrum of A (X )  is associated with 

phase shift between p- and s-components of polarized light, 
latter changes sharply from 270 down to -90 near the plas- 

:n resonance. According to Arwin’s modelling [23] the position 
:he sharp drop in A (X )  spectrum is about 10 times more sensi- 

to analytes adsorption than V ( k )  spectrum. Fig. 6 presents the 
ctra of ^ (X )  and A (X )  of Pc2 and its hybrid with SWCNT thin 

-S respectively before and after exposure to amines vapours as 
example. The responses of the other three samples are given 
Table 3. The concentrations of amines were varied from 4 to 

ppm in air. The spectra were measured lOmin after injection 
■ontaminated and fresh air to achieve the equilibrium response 
-ecovery, respectively.
During exposure to contaminated air, it was difficult to detect 
fts in V (X ) because of the shape of the curve, however,

ile 2

;ghness analysis o f CuPcR4 and  SWCNT/CuPcR4 films.

lm Ra. nm RMS, nm R max. nm

1 1.954 3.172 9.658
1-CNT 4.921 8.751 19.102

1.450 2.197 7.695
-2-CNT 3.312 6.935 17.613

1.733 3.501 8.461
-CNT 5.811 9.550 20.275

4 1.630 2.153 6.876
4-CNT 4.153 7.877 18.252

significantly larger shifts have been observed in A ( X ) spectra. These 
are typical features of TIRE method as reported earlier [16,17,46]. 
The spectra of A (X )  were further enlarged and shown at the top of 
Fig. 6 to provide better assessment of the effect of amines expo­
sures. It can clearly be seen that the adsorption of amines on 
hybrid films has resulted in larger shifts and these shifts have 
been summarised in Table 3. The concentrations of amines has 
been further diluted below 4 ppm and the minimum detection 
limits of methylamine, dimethylamine and trimethylamine were 
found to be 3.6, 4.4 and 6.4 ppm respectively in the case Pc2-CNT 
hybrid films, while bare phthalocyanine (Pc2) shows minimum 
limits of 8 , 9.6 and 13.2 ppm for methylamine, dimethylamine and 
trimethylamine, respectively. Similar trend was observed for all 
four prepared phthalocyanines and their hybrids.

Carbon nanotubes in general are characterised with uniform 
surface with delocalised TT-electrons of high density, which 
enhances their adsorption properties. When hybrid films are 
exposed to amine vapours, larger numbers of molecules are

300
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4 5 -
- 1 0 0
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--5 02 5 -
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Fig. 5. Typical TIRE spectra  of Cr/Au film in air.
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:nges in th e  phase shifts A ( \ )  o f ph tha locyan ines and th e ir  com posites w ith  carbon nano tubes active layers upon exposure  to m ethy lam ine , d im ethy lam ine  and 
;ylam ine gases in d ifferen t concen trations.

Cone., ppm  5A(A.), nm

Pci Pcl-CNT Pc2 Pc2-CNT Pc3 Pc3-CNT Pc4 Pc4-CNT
lam ine 4 -  1.64 -  1.25 -  1.79 -  1.43

8 1.31 4.19 1.9 3.51 -  3.2 1.25 3.1
20 3.24 9.08 4.09 8.03 3.05 7.14 3.67 7.98
40 6.9 15.81 7.51 15.16 6.02 13.63 6.87 13.91
80 10 20.01 12.12 20.9 9.35 20.02 9.53 23.55

200 11.19 22.57 15.97 25.39 11.11 27.22 11.32 28.58
th y lam in e  4

8 -  3.29 -  1.91 -  2.01 -  2
20 1.78 6.35 3.05 4.97 1.59 4.74 2.25 4.79
40  3.69 10.59 5.95 8.21 3.32 9.9 3.95 9.31
80 6.78 15.03 9.34 13.32 6.01 15.5 7.45 16.61

200 8.02 17.72 11.04 17.34 7.95 20.76 9.5 20.75
ithy lam ine  4

8 -  2.21 -  -  -  1.98 -  1.68
20 1.54 4.68 1.59 3.19 1.57 3.06 2.05 3.19
40 2.89 8.58 3.82 6.38 3.12 6.8 3.42 6.95
80 5.1 14.64 6.11 11.12 5.4 12.76 5.9 11.83

200 6.4 17.43 7.97 15.77 6.3 17.7 7.82 17.56

ned onto the surface resulting in larger changes in the 
I properties of the films and hence larger shifts in A (X )  

_red to bare phthalocyanines films. Several detection tech- 
5  for amines’ vapours were reported in the literatures. When

*
Ql

aqua(chloro)(5,10,15,20-tetraphenylporphyrinato)chromium(III) 
used as optical active layer based on UV-visible absorption tech­
nique, a detection limit of 10 ppm has been reported [58] under 
dynamic conditions, while a limit of 24 ppm has been realized by 
using fiber-optic fluorescence sensor employing 2 -naphtol bonded 
to polyethylene oxide [59]

Complete recovery of A (X )  spectra was observed after flushing 
the cell with fresh air as previously established for films of metal 
phthalocyanines with other types of substituents [17]. Fig. 7 shows 
the dependence of phase shift change on amines concentrations in 
the range o f4-200 ppm for phthalocyanine layers and their hybrids 
with SWCNT.

Earlier studies have shown that water molecules are weakly 
physisorbed onto carbon nanotube surface [60-62]. Larger 
response to humidity has been reported in boron- and nitrogen- 
doped carbon nanotubes [63], which indicate strong interaction 
between water molecules and doped-CNTs, however, the recovery 
time of sensor based on these materials was achieved in about 2.5 h. 
In this work the baseline has been measured using ambient air and 
therefore the humidity interaction resulting from the diluted gas 
can be negligible.

X, nm

'l'(X) and  A ( \ )  TIRE spectra  of (a) Pc2 and (b) Pc2-CNT coated  Cr/Au in fresh 
7 and 10); a fter in jection  of 20 and  200 ppm  of m ethy lam ine  (2,3 respec- 
d im ethy lam ine  (5,6), trim ethy lam ine  (8,9). An en larged  section  o f A ( \ )  
a re show n  above.

3.2.2. Experimental data f i t t ing
Theoretical fitting to experimental &  and A  spectra was carried 

out by applying a 4-layer model consisting of air, organic layer, Au 
layer and BK7 glass. The parameters of organic films after exposure 
to amines vapours were determined by fitting experimental W and 
A  spectra to the theoretical organic model by fixing Cr/Au layer 
parameters. Table 4 summarises the thickness of all layers found 
from theoretical data fitting as well as the values of refractive index 
and extinction coefficients given at X = 633 nm. Further to the data 
summarised in Table 4 the variation in refractive index and extinc­
tion coefficient as a function of X for Pc2 and Pc2-CNT films in pure 
air and after exposure to amines vapours at the concentration of 
40 ppm are shown as an example in Fig. 8.

3.2.3. Sensi tivity and response t ime
In order to evaluate the response of the two types of layers 

the average sensitivity has been calculated based on changes in 
A  spectra shifts (Table 3) using the following equation:

_ L ± V  —
~~ A 0 m C, 

i=l
(3 )

1,4,7,10 Pure air 
2 20ppm methylamine/air
3—  200ppm methylamine/air
5 20ppm dimethylamine/air
6 200ppm dimethylamine/air 8 20ppm trimethylamine/air
9  200ppm trimethylamine/air

i------ '------ 1------ '------ 1------ '------ 1------ '------ 1------ '-------
500 600 700 BOO 900 1000

X, nm

9  200ppm trimethylamine/air

1,4,7,10 pure air
2 20ppm methylamine/air 3----- 200ppm methylamine/air
5 20ppm dimethylamine/air
6 200ppm dimethylamine/air
8------ 20ppm trimethylamine/air
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Pc3-CNT
—• —m ethylam ine
^ • —dim ethylam ine
—■—trim ethylam ine

Pc3
 m ethylam ine
- ^ —dim ethylam ine 
—cH rim e th y lam in e

80 120 

concentration, ppm

concentration, ppm

Pc4-CNT
—• —m ethylam ine
^ •^ -d im e th y lam in e
—■—trim ethylam ine

Pc4
 m ethylam ine
—&—dim ethylam ine 
—□—trim ethylam ine

80 120 160 

concentration, ppm

7. Phase sh ift changes (8A ) in A ( \ )  spectra  o f Cu(II) ph tha locyan ines and  th e ir  hybrids w ith  SWCNT layers on tre a tm en ts  w ith  am ines vapou rs in th e  con cen tra tio n  
4 -200  ppm .

rre <5A  is the change in the A  spectra under analyte concen- 
ion (Cj), m  is the number of different concentrations used in 
study, and A 0 is the initial change in the phase shift spec- 
before exposure to amines vapours). The average sensitivities 

-e presented in Fig. 9. All films exhibited higher sensitivity for 
ihylamine than dimethylamine and trimethylamine, where the 
est sensitivity for methylamine was found to be 0.000325/ppm  

he case of Pc2-CNT active layer. The lower sensitivity for sec­
tary and tertiary amines can be explained by the steric hindrance 

their molecular shapes provide which allows smaller num- 
of these molecules to interact with films’ surfaces as compared

to methylamine [18]. Furthermore, the higher vapour temperature 
of dimethylamine and trimethylamine (7 -9  • C) in comparison to 
methylamine (-7 °  C) reduces the number density of these amines 
at room temperature. Therefore, the interaction probability with  
the film surface is reduced. It was recently found that changes in 
the intensity of the Q.-band in the UV-visible spectra of thin films 
of metalloporphyrin were ~0.85 and 0.5 (a.u.) after exposure to 
low concentrations of dimethylamine and trimethylamine respec­
tively [58]. This is found consistent with our observations where 
dimethylamine showed better interaction with the active layer 
than trimethylamine.

tses in th e  optical param ete rs  and  film s’ th icknesses o f CuPcILt and SWCNT/CuPcR4 films a t A. = 633 nm  caused by adso rp tion  o f am ines (40  ppm ). 

A fter exposu re  to  40 ppm

Initial film M ethy lam ine D im ethylam ine T rim ethy lam ine

n k d.nm n k d.nm n k d.nm n k d.nm

1.633 0.192 40.6 1.639 0.198 40.9 1.638 0.198 40.7 1.636 0 .194 40.8
-CNT 1.394 0.124 69.4 1.40 0.127 69.8 1.41 0.126 70.1 1.398 0 .124 70

1.573 0.270 32.2 1.590 0.273 32.6 1.576 0.276 32.3 1.581 0.268 32.2
-CNT 1.367 0.151 51 1.369 0.158 52.1 1.369 0.156 51.7 1.375 0.155 51.7

1.580 0.254 36.3 1.591 0.265 37 1.583 0.257 37 1.586 0.253 36.4
-CNT 1.402 0.271 63.7 1.425 0.295 64.3 1.415 0.285 64.5 1.419 0.278 63.9

1.522 0.369 33.1 1.530 0.373 33.4 1.524 0.372 33.6 1.526 0.370 33.4
CNT 1.396 0.126 55.3 1.4 0.128 55.9 1.407 0.126 55.8 1.397 0.127 55.5

Pc2-CNT 
—• —m ethylam ine 
—• —dim ethylam ine 
—■—trim ethylam ine

Pc2
 m ethylam ine
—A—dim ethylam ine 
—c>—trim ethylam ine
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 Air, M ethylamine, Dimethylamine, Trimethylamine

1.70

0.24

1.65

0.16
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0.08

1.55
0.00c

0.12
1.50

1.44 0.09

1.38
0.06

400 500 700 800 1000400600 900 500 600 700 800 900 1000

X, nm

:::e variation  in refractive index and ex tinc tion  coefficient o f (a and c) Pc2 and  (b and  d) Pc2-CNT layers as exposed  to  a ir (solid lines), m e th y lam in e  (d o tted  lines), 
lam ine (d ashed -do tted  lines) and  trim ethy lam ine  (d ashed  lines) in the  concen tra tion  of 40  ppm .

and Pc4 show higher sensitivity to analytes than Pci and 
e non-peripheral tetra substitution in P el and Pc3 makes 

-.ess sensitive to the examined analytes due to their lower 
I affinity [64],
calculate the response time, Pc2 and Pc2-CNT films 
elected and exposed to methylamine, dimethylamine and 
hylamine at concentration of 40 ppm. For methylamine, 
:ponse time tgo, which is defined as the time it takes to 
80% of the steady state shift, was measured to be 158 
_2 film and 6 6  s in Pc2-CNT film. This is much lower 
he response time of 440 s and 270 s found by Liu and 
] using zinc phthalocyanine film and Saini et al. [5] using 
• phthalocyanine film, respectively. The response time for 
-ylamine was found to be 230 s and 101 s detected by 
d Pc2-CNT films respectively, while for trimethylamine, 

:se times were found to be 267 s and 136 s. The recov- 
ne t*so. which is defined as the time required to reach 

the base line were measured to be 393, 350 and 387 
-ethylamine, dimethylamine and trimethylamine respec- 
_s detected by Pc2, whereas Pc2-CNT hybrid film exhibited

1 6 -

Flushing pure air (at 2 8 0 s)

80%; —  P c 2
-  -  P c 2 -C N T

Ec
<<o

2 - 20%

t* +280

t* +280

0 200 400 1000600 800

T im e, s

Fig. 10. The rise and  decay curves o f th e  S A [ \)  d u ring  th e  d e tec tio n  of 40 p pm  
m ethy lam ine  v apou r by Pc2 and  Pc2-CNT films.

P e l Pc1-CNT Pc2 Pc2-CNT Pc3 Pc3-CNT Pc4 Pc4-CNT

rnsitivity of Cu(II) phthalocyan ines and th e ir  hybrids w ith  SWCNT active 
■mated from  Eq. (3) for m ethy lam ine, d im ethy lam ine  and trim ethy lam ine .

recovery times of 150, 191 and 138 s respectively. Fig. 10 shows 
the response and recovery times of Pc2 and its hybrid films on 
exposures to methylamine at concentration of 40 ppm as an exam­
ple.

4. Conclusion

Concentrations as low as 3.6 ppm for methylamine have 
been detected by spun active layers of SWCNT/tetra-substituted 
copper phthalocyanine hybrids with an average sensitivity of
0.000325/ppm. The produced films exhibited higher sensitivity for 
methylamine than dimethylamine and trimethylamine due to the 
steric hindrance of secondary and tertiary amines which reduces 
the probability of being adsorbed by the sensor. Hybrid films, in 
general, show higher sensitivity, lower detection limit and shorter 
response time than bare phthalocyanine films towards all the 
investigated amines’ vapours. The higher Tr-electron density in car­
bon nanotubes is expected to result in larger number of adsorbed 
molecules onto the hybrid films’ surfaces.

7 _ m ethylam ine
I Iriimfithylaminfj
L72T3trirnethylamine
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Copper Phthalocyanine Functionalized Single-Walled 
Carbon Nanotubes: Thin Films for Optical Detection
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Thin  film s of non-cova len tly  hybrid ised  s ing le -w alled  carbon nanotubes (SW CNT) and te tra- 
substitu ted  copper ph tha locyan ine  (C uP cR 4) m olecu les have been produced from  the ir so lu tions 
in d im ethy lfo rm am ide  (D M F). FTIR  spectra  revealed the -t t - t t  in teraction betw een S W C N Ts and 
C uP cR 4 m olecu les. DC conduc tiv ity  o f film s of ac id -trea ted  S W C N T/C uP cR 4 hybrid has increased 
by m ore than th ree  o rders  of m agn itude  in com parison  w ith conductiv ity  of C uP cR 4 film s. S canning 
e lectron m icroscopy (SEM ) and a tom ic  force m icroscopy (AFM ) m easurem ents have show n tha t 
film s ob ta ined  from  the  ac id -trea ted  S W C N Ts/C uP cR 4 hybrids dem onstra ted  m ore hom ogenous 
surface w hich is ascribed  to the  h igh ly  im proved so lub ility  of the  hybrid  pow der in DMF. Using to ta l 
in terna l re flection  e llip som etry  spec troscopy (TIRE), th in film s of the  new hybrid  have been exam ­
ined as an optica l sens ing  m em brane fo r the  detection of benzo[a ]pyrene  in w ate r to  dem onstra te  
the sensing  p roperties  of the  hybrid.

Keywords: Hybrid M ateria ls, S ing le -W alled  Carbon Nanotubes, Metal P h tha locyan ine, Thin 
F ilms, Spectral E llipsom etry, O ptica l Detection, M icroscopy.

1. INTRODUCTION
"ince their discovery by Iijima in 1991,1 carbon nanotubes 
CNTs) have attracted significant interest by researchers 

_round the globe due to their unique electronic, metal­
lic and structural properties.2-4 In particular single-walled 
:arbon nanotubes (SWNT), having their special quasi- 
one-dimensional electronic structures and extremely high 
urface area, provide excellent grounds for unique sens- 

:ng systems.5-8 CNTs, both, single-walled (SWCNTs) and 
nulti-walled (MWCNTs) are very important and interest­
ing class of materials which have been mainly produced 
~y chemical vapour deposition (CVD)9 and were subjected 
jo thorough investigation over the last two decades due 
X) their potential use in commercial applications.10 The 

odification of CNT network surface by subjecting them 
o  different chemical treatment and through hybridiza- 
:ion with various organic materials has enabled their use 
in applications such as photovoltaic application11-14 and

“Author to whom correspondence should be addressed.

chemical detection.1516 Their inclusion in composites as 
well as in hybrid materials has enabled the development 
of new functional materials with significantly improved 
mechanical, optical and electronic properties. Among these 
hybrids, the smart integration of carbon nanotubes (CNT) 
with metallophthalocyanine (MPc) complexes has gained 
increasing attention over the past few years. This is cur­
rently receiving thorough investigation by several research 
groups around the world in order to enhance the opto­
electronic, electro-catalytic and sensing properties of MPc 
films.17-24 The evidence so far has shown that these hybrids 
are expected to be more efficient in improving the rel­
ative response of hybrid films compared to the individ­
ual CNT or MPc species.25-27 The main problem with 
using CNTs in device fabrication is their insolubility in 
conventional solvents, which makes them difficult to pro­
cess as thin films. For instance, thin films incorporating 
CNTs are optically inert and are dominated by rough sur­
faces and therefore are not suitable for chemical detection 
applications using optical transduction methods such as 
SPR and TIRE.28-29
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Phthalocyanines (Pcs), on the other hand, are two- 
dimentional 18 77-electron aromatic analogues, having four 
isoindole subunits connected together through nitrogen 
atoms.30,31 Due to their excellent thermal and chemical 
stability, as well as the high flexibility in having large 
variety of substitution on the periphery of the molecule’s 
rim, phthalocyanines and their metallo derivatives (MPcs) 
have attracted strong interest and have been used in a 
wide range of applications. These include chemical and 
bio sensors,29-32 liquid crystals,24,33,34 photovoltaic cells,35 
field effect transistors,36,37 electrochromic devices,38 and 
memory applications.39 The opportunity of incorporating 
about 70 different metal atoms into Pc cavity offers addi­
tional features to enhance the physical responses.40 Fur­
thermore, Pcs are very simple to process in producing 
homogeneous thin films, mainly using wet technology 
such as spin coating.41’44 Application of different phthalo­
cyanine films as active layers in surface plasmon resonance 
(SPR)45 and total internal reflection ellipsometry (TIRE)46 
techniques have been widely reported in the literatures.

It is expected that functionalization of SWCNTs with 
metallophthalocyanine derivatives may overcome the prob­
lem of poor optical properties o f SWCNTs as well as 
improving the reversibility and reproducibility of phthalo­
cyanine active layers. The development of CNT/MPc 
hybrids by noncovalent functionalization is proving to be 
a promising approach to feasibly incorporating carbon 
nanotubes into different devices without compromising the 
electronic structure of the nanotubes.47

In this work hybrid thin films have been prepared by 
combining SWCNT and tetra-substituted copper phthalo­
cyanine C u P c R 4 with R =  S(CH2CH20 ) 3CH3 (Fig. 1) 

molecules. The interaction between the two materi­
als was investigated by using different characterisation 
methods including SEM, AFM, UV-visible, FTIR and 
Raman spectroscopy. The phthalocyanines with long alkyl- 
X(CH2)f!CH3 or polyoxyalkyl -X (C H 2)„CH3 (X =  S, O) 
substituents are widely used as chemically sensitive coat­
ing materials, and are particularly suitable for detecting

various organic compounds by both optical and electri­
cal techniques.45,48-51 The main aim of current study is 
to examine the compatibility of thin films produced from 
SWCNT/MPc hybrids with optical detection techniques, 
using TIRE method for the detection of analytes dissolved 
in water.

2. EXPERIMENTAL DETAILS
2.1. M aterials
3-nitrophthalonitrile52 and 3-(4,7,10-trioxaundecane-l- 
sulfanyl)phthalonitrile53 were synthesized and purified 
according to procedures described in the literature. 
Dimethylformamide (DMF), hexanol, w-hexane and di- 
chloromethane (DCM) were dried as described by 
Perrin and Armarego54 before use. CuCl2, 1,8-diaza- 
bicyclo[5.4.0]undec-7-ene (DBU) and polyethylene glycol 
monomethyl ether were purchased from Fluka and K2C 0 3 
was obtained from Merck. Column chromatography 
was performed on neutral A120 3. SWCNT (0.7-1.4 nm 
in diameter) used in this work was purchased from 
Sigma-Aldrich.

2.2. Preparation o f C opper P hthalocyanine
1(4), 8(11), 15(18),22(25)-Tetrakis-[2-(2-(2-methoxyetoxy) 
ethoxy)ethylthio]phthalocyaninato copper (II) (Fig. 1) 
was synthesized as following: A mixture of 3-(4,7,10- 
trioxaundecane-l-sulfanyl)phthalonitrile (0.5 g, 1.6 mmol), 
anhydrous CuCl2 (0.11 g, 0.81 mmol), dry hexanol (2 ml) 
and 0.07 ml (0.45 mmol) l,8-diazabicyclo-[5.4.0]-undec- 
7-ene (DBU) was stirred and heated at 170 °C for 24 h 
under argon in a round-bottomed flask. The resulting green 
suspension was cooled and the product was extracted 
with n-hexane. The waxy green product was purified by 
column chromatography (neutral A120 3, CH2C12). The 
compound is soluble in CH2C12, CHC13, tetrahydrofuran 
(THF), ethanol and methanol. Yield: 0.370 g (74%), IR 
(ATR) vmax (cm-1): 3060 (aromatic CH), 2912 (aliphatic
CH), 1636, 1568, 1464, 1312, 1084, 1024. UV-Vis (THF)

Hexanol/DBU

Figure 1. Synthesis route of 1(4),8(11), 15(18),22(25)-tetrakis-[2-(2-(2-metoxyetoxy)etoxy)ethylthio]phthalocyaninato copper(II).

2 J. Nanosci. Nanotechnol. 14, 1 -1 1 , 2014
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- max (log e) (nm): 712 (4.93), 339 (4.64). MALDI-TOF- 
S m/z: Calcd. for C60H72N 8O 12S4Cu: 1289.09, Found 

288.75 [M]+. Thermal stability of the CuPcR4 complex 
_.as been investigated by TGA. Decomposition starts at 

tout 250 °C and the main decomposition temperature is 
66 °C.

2 .3 . Preparation o f SW C N T -C uPcR , H ybrids
2.3.1. 1-Pristine SWCNT-CuPcR4 Hybrid  (Hybrid  1) 
T ie  purpose of this part of the work is to further clarify the 
effect of acid treatment on improving the binding between 
“WCNT and CuPcR4 molecules and thus enhancing the 
olubility of the hybrid in conventional organic solvents

r,uch as DMF. 5 mg of CuPcR4 has been dissolved in 1 ml 
MF and sonicated for 15 min. At the same time lm g 
f pristine (untreated) SWCNTs was suspended in 3 ml 
MF and sonicated for 40 min. After sonication, the sus­

pension was stirred and the CuPcR4 solution was added 
crop wise to the CNTs suspension during stirring. The stir­
ring was continued for another 5 h before the mixture was 
-entrifuged, washed with DMF several times, centrifuged 
i-gain and finally dried.

2.3.2. 2-Acid-Treated SWCNT-CuPcRA 
Hybrid (Hybrid 2)

25 mg SWCNTs was stirred under 70 °C in concentrated 
*:1 H N 0 3 and H2S 0 4 for 2 h. The mixture was then 
^entrifuged, washed several times with water, centrifuged 
again and dried. 2 mg of the resultant powder was mixed 
with 5 mg of CuPcR4 in 5 ml DMF and sonicated for 

h. The suspension was centrifuged, washed with DMF, 
^entrifuged again and dried. Figure 2 shows the solution 
of CuPcR4 and the suspensions of SWCNT, SWCNT- 

uPcR4 hybrid (hybrid 1) and acid-treated SWCNT- 
T iP cR 4 hybrid (hybrid 2) in DMF. It can be visibly 
appreciated that hybrid 2 exhibited better solubility than 
~ybrid 1 and for both hybrids the brownish colour indi­
cates that 7r—7r interaction took place between the two 
materials.20- 55

a b e d

Figure 2. (a) pristine SWCNTs, (b) CuPcR,, (c) hybrid 1, and 
d) hybrid 2 in DMF.

J. Nanosci. Nanotechnol. 14, 1-11, 2014

2.4. Thin Film  D eposition
Silicon substrates were used to deposit thin films to carry 
out AFM, SEM and ellipsometry measurements. Conduc­
tivity measurements on the other hand were performed 
on films deposited onto interdigitated electrodes with the 
dimensions L, W and n of 20 yam, 2 mm and 10 respec­
tively, where L is the gap between electrodes, W  is the 
overlapping distance and n is the number of electrodes. 
For TIRE experiment, gold-coated glass substrate has been 
prepared by sequentially evaporating 3-5 nm of chromium 
onto the microscopic slides followed by the evaporation 
of 25-30 nm of gold layer under vacuum of about 3 x 
10-5 mbar. All substrates were washed thoroughly with 
deionized water and chloroform using ultrasonic bath and 
finally blown dry using nitrogen gun before use. Thin 
films of SWCNT-CuPcR4 hybrids as well as CuPcR4 were 
produced by drop-casting solutions of these materials in 
DMF using a microsyringe and left to dry in a desiccator 
for 24 h.

2.5. C haracterisation
Thermogravimetric analysis (TGA) of CuPcR4 was car­
ried out on a Mettler Toledo Stare Thermal Analysis Sys­
tem at a rate of 10 °C -m in-1 in a nitrogen flow (50 ml- 
min-1). Fourier transform infrared (FTIR) spectra have 
been recorded using Nexus FTIR for powders over the 
range of 400-4000 cm-1. Raman spectra were recorded 
with a Triplemate, SPEX spectrometer equipped with 
CCD detector in back-scattering geometry. The 488 nm, 
40 mW line of an Ar-laser was used for the spectral 
excitation. UV-Vis absorption spectra were recorded on 
Varian 50 scan UV-Visible spectrophotometer. Scanning 
electron microscopy (SEM) images were obtained using 
FEI-nova nanosem 200, while atomic force microscope 
(AFM) images were obtained using Nanoscope 111a mul­
timode atomic force microscope. The experimental set­
up for TIRE measurements was built on M2000V (J.A. 
Woollam Co., Inc.) spectroscopic ellipsometer, operating 
in the wavelength range 370-1000 nm. Full details of 
TIRE method and the experimental set-up are found in pre­
vious publications.56-''7 The measured ellipsometric data 
were fitted to the model for organic films. DC-conductivity 
measurements were carried out using Keithley 4200 semi­
conductors characterization system.

3. RESULTS AND DISCUSSION
3.1. C haracterisation o f SW C N T -C uPcR 4 H ybrids
Pristine and acid treated SWCNT were used for hybrids 
preparation. Pristine SWCNTs were oxidized by means 
of a mixture of sulfuric and nitric acid. This procedure 
introduces carboxylic acid functionalities and defects at 
the ends of the nanotubes as well as some carboxylic acid 
units at the sidewalls.58-60

FTIR analysis was carried out in order to determine the 
interaction between CuPcR4 and SWCNTs. Figure 3 shows

3
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Figure 3. FTIR spectra of (a) pure CuPcR4, (b) hybrid 1 and 
(c) hybrid 2.

FTIR spectra of pure CuPcR4, SWCNT-CuPcR4 (hybrid 1) 
and acid treated SWCNT-CuPcR4 (hybrid 2). The bands 
at 2858 and 2921 cm -1 assigned to the C —H stretches of 
substitution groups in CuPcR4 are present in all spectra. 
Another feature that should be given attention is the peaks 
at 1490, 1384, 1251 and 1078 cm -1, which are characteris­
tics of phthalocyanine macrocycles,27 and are present in all 
three spectra. All these observations suggest that the sub­
stituted copper phthalocyanine has successfully anchored 
onto SWCNT walls by means of noncovalent binding. The 
spectra of the hybrids contain some bands which corre­
spond to CuPcR4 molecule vibrations. The largest shift 
in the peak position associated with the C = C  stretching 
mode from 1635 cm -1 in the spectrum of pure CuPcR4to 
1653 cm -1 is observed in the hybrids spectra. These shifts 
as well as different ratio of intensities may result from 
the electron delocalization due to the 7 7 - 7 7  interactions 
between SWCNTs and CuPcR4 molecules.20-61 The spec­
trum of hybrid 2 shows a band at around 1730 assigned 
to f ( C = 0 )  vibration of carboxylic group, which results 
from the acidification of carbon nanotubes in hybrid 2 .16-62

The non-covalent attachment can be also confirmed by 
Raman spectroscopy. Raman spectra for pristine SWCNT, 
acid treated SWCNT and both hybrids are shown in 
Figure 4. The radial breathing modes (RBM), disorder 
D  mode and tangential/graphite mode (G-band) are mon­
itored as indicators o f functionalisation with CuPcR4.63 
The spectra were normalized to the tangential G band 
at ~  1580 cm -1 . Both spectra of pristine SWCNT before 
(Fig. 4(a)) and after (Fig. 4(b)) hybridization contained the 
following characteristic peaks: the D  band located at about 
1340 cm -1 (disorder mode), which is due to breathing 
modes of sp2 atoms in rings64-66 and the G  band centered 
at 1590 cm -1 (tangential mode), due to bond stretching of 
all pairs of sp2 atoms in both rings and chains.67

Comparing Figure 4(a) with Figure 4(b), little varia­
tion of the ratio of the D  band to the G band ( /o /^c )

4
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Figure 4. Raman spectra of pristine SWCNT (a), hybrid 1 (b), acid- 
treated SWCNT (c) and hybrid 2 (d).

can be observed, which suggested that CuPcR4 deriva­
tives associated with the surface of SW CNT through 
non-covalent modification. Moreover, the multiple peaks 
observed in the radial breathing mode (RBM) of SWCNT 
(158-304 cm -1) could be ascribed to a distribution 
of diameters in the SWCNT samples.68-69 They cor­
respond to nanotube diameters in the range from 0.7 
to 1.4 nm.

The Raman spectra of the noncovalently functionalized 
SWCNT-CuPcR4 revealed significant shift on the peak 
positions located in the range 158-225 cm -1 . For example, 
the RBMs at 202, 227 and 258 cm -1 of SWCNT have a 
shift to 207, 230 and 262 cm -1 after o f CuPcR4 adsorp­
tion. It was shown70 that the radial breathing modes of the 
Raman spectrum are sensitive to the adsorption coating 
of the nanotubes with polynuclear aromatic hydrocarbon 
molecules. The 7 7 - 7 7  stacking interaction between SWNTs 
and phthalocyanine aromatic rings induced a higher fre­
quency shift of RBM and give a kind of mode “hardening 
effect.”71

In the Raman spectrum of the acid-treated SWCNTs, the 
radial breathing modes have disappeared when compared 
to the spectrum of pristine SWCNTs (Fig. 4(c)). The decay 
of these modes is consistent with the disruption of the 
oscillator strength that gives rise to these modes. Similar 
results were reported by Fantini et al.,72 where spectral 
shifts, broadening, and reduction in RBM intensity were 
attributed to displacement of the Fermi level due to the 
added functional group on the CNT side-wall.

As shown in Figure 4(c), the carboxylated SWCNT 
showed the characteristic peaks with a disorder-induced 
D-band at 1348 cm -1 and a tangential stretch G-band 
at 1588 cm -1 . The D /G  peak intensity ratio increases 
from 0.04 for pristine SWCNT to 0.30 for acid treated 
SWCNT which indicates the formation o f covalent bonds 
at the surface of the carbon nanotube through conversion 
of sp2-hybridized carbon atoms to sp3-hybridized carbons

J. Nanosci. Nanotechnol. 14, 1 -1 1, 2014
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.on the nanotube surface. The relative decrease in the tan­
gential mode (G-band) is consistent with the loss of elec­
tronic resonance as a result of the covalent attachment of 
:the substituent. Further increase in the relative intensity 
=of the D  band versus G  band ( /D/ / G =  0.47) was also 
observed in the spectrum of acid treated SWCNT hybrids 
■with CuPcR4 (Fig. 4(d)). Raman spectra o f the other func- 
itionalized SWCNT materials display similar modifications 
■but to different degrees.73 74

The Raman spectra of the hybrids with acid treated 
:SWCNT are significantly affected by the interaction with 
iCuPcR4, whereas those with pristine SWCNT do not vary 
■so much upon the addition of the CuPcR4 binder. The 
-ID/ I G ratios of the hybrids with pristine SWCNT increase 
=only slightly with the addition of the phthalocyanine, 
whereas those with acid treated SWCNT increase signifi- 
.cantly. It might be that, in the bundled network structure 
of the hybrids with pristine SWCNT, the tt- tt interactions 
'between nanotubes and CuPcR4 are the dominant influ­
ence on the Raman spectrum. However, in the case of the 
ihybrids with acid treated SWCNT, not only tt- tt interac­
tion  but also van der Waals interaction of -C O O H  groups 
with the nitrogen atoms of phthalocyanine ring73 and alkyl 
substituents o f phthalocyanine ring62 are the factors affect­
ing  the Raman spectra.

The interaction between the CuPcR4 and the SWCNTs 
.can also be inferred from the analysis of optical absorption 
spectra. UV-Vis absorption spectra of solutions of pure 
'CuPcR4, pristine SWCNT, hybrid 1 and hybrid 2 in DMF 
.are shown in Figure 5. The spectrum of SWCNT is fea­
tureless as it was frequently reported in the literature.23 76 
'On the other hand, the CuPcR4 exhibited typical elec­
tronic absorption spectra with two characteristic regions of 
:peaks: the Q-band in the wavelength range 600-750 nm 
and the Soret (B) band in the wavelength range of 300- 
450 nm. The g-band, which results from HOM O-LUM O

705

w
716c3

710

c
o
Q.O<T>
■Q<

300 400 500 600 700 800
W a v e le n g th , nm

[F igure 5. UV-Vis absorption spectra of (a) SWCNTs, (b) CuPcR4, 
(c) hybrid 1 and (d) hybrid 2 in DMF.
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transitions, is split into two peaks: one at 705 nm is asso­
ciated with the monomer absorption and the second at 
6 3 1 nm is resulting from aggregates absorption.29 77 The 
aggregates absorption can be attributed to absorption by 
dimers or even higher aggregation.78 In the absorption 
spectra of hybrid 1 and hybrid 2, the peak maxima of 
the Q-bands shifted to the red by AA =  5 nm and AA =  
11 nm, respectively. As a consequence of the electronic 
interactions with SWCNTs, Pc is usually regarded as the 
electron donor, while CNTs as electron acceptor.22 The 
absorption band in the spectra of hybrid 2 is broadened; 
this change might account for the strong t t - t t  interaction 
between SWCNTs and CuPcR4 derivative, which signif­
icantly reduces the aggregation of the hybrid and hence 
changes the absorption.27

3.2. Investigation o f  SW CN T-CuPcR4 Film s
3.2.1. M orphology
Figures 6(a)-(d) shows the SEM images of pristine 
SWCNT, acid-treated SWCNT, hybrid 1 and hybrid 
2, respectively. Pristine CNTs typically tend to bundle 
together (Figs. 6(a) and (c)) and to aggregate due to van 
der Waals attraction between individual tubes79 as well as 
the high length to diameter ratio; this makes them hard to 
disperse in common organic solvents. Acid treatment of 
the nanotubes provides the de-bundling effect (Figs. 6(b) 
and (d)) disrupting the van der Waals interactions and lead­
ing to the formation of a composite with much improved 
solubility in DMF and hence smoother films were obtained 
to perform optical investigation.

AFM measurements in tapping mode have been per­
formed on all samples in this study. Figure 7(a) shows typ­
ical fibre features of CuPcR4 film, which is different from 
the topology of its hybrids. Phthalocyanine and almost all 
organic dyes tend to make very dense aggregations in the 
solid state. These aggregates are represented as a coplanar 
association of rings developing from monomer to dimer 
and higher order complexes and are driven by t t - t t  inter­
action and van der Waals forces.22 It can clearly be seen 
that surface of hybrid 1 film (image b) is less homoge­
neous than that of hybrid 2 (images c) with significant 
decrease in main roughness of the latter; this is because 
hybrid 2 exhibited improved solubility in DMF, resulting 
in more homogeneous films. Roughness analysis of AFM 
images is summarized in Table I.

3.2.2. E lectrical Conductivity
The films of hybrid 1 and hybrid 2 as well as CuPcR4 were 
deposited onto interdigitated electrods by drop-casting 
from their solutions in DMF (0.5 mg/ml). The I - V  charac­
teristics of the films were performed using Keithley 4200 
semiconductor characterisation system in the voltage range 
0-5 V. The conductivity (rr) was calculated using the fol­
lowing relation:

a  =  L / R t W n  (1)
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where L, W  and n are as defined in section 2.4, R is 
the film’s resistance as derived for the I - V  curves (not 
given) and t  is the film’s thickness. Values of conduc­
tivity obtained for all films studied are summarised in 
Table I. From this table it can be seen that the conduc­
tivity increases by three orders of magnitude in the case 
of hybrid 2 film in comparison with the pure CuPcR, 
films. The large increase in conductivity of the hybrid 
films can be ascribed to the large SWCNT/CuPc conju­
gated 7T-7r system.80-81 Consequently, charge can favor­
ably transfer from CuPc molecules to SWCNTs resulting 
in a large increase in conductivity. On the other hand, 
hybrid 1 exhibited very high conductivity (samples demon­
strated short circuit in our measuring system) in almost 
all prepared samples. Pristine CNTs are typically com­
posed of metallic and semiconducting nanotubes and their 
separation has been a serious obstacle in many applica­
tions and research.12-82 Yang et al.83 have reported that 
the acid treatment of SWCNT separates the semiconduct­
ing from the metallic phases. It has been shown that the 
majority of metallic CNTs with smaller diameters (typi­
cally < 1 .1  nm) will be etched way as a result of acid 
treatment, whereas those with larger diameters are sig­
nificantly reduced leaving the semiconducting nanotubes 
intact.83

3.3. Total Internal R eflection E llipsom etry (T IR E )
Using total internal reflection ellipsometry spectroscopy 
(TIRE), thin films of the new hybrid have been exam­
ined as an optical sensing membrane for the detection of 
benzo[a]pyrene in water to demonstrate the sensing prop­
erties of the hybrid. It is known that benzo[a]pyrene is a 
product derived from incomplete combustion of organic 
material and is considered responsible for chemically- 
induced cancer in humans.84

The spectra of two ellipsometric parameters 'VP and A, 
representing, respectively, the amplitude ratio t g ^ )  =  
A p/ A s and phase shift A =  $  — (f)s between p -  and 
5-components of polarised light reflected form a sur­
face, were recorded with the M2000V instrument in the 
350-1000 nm spectral range using the rotating analyzer 
principle. Optical parameters of the reflection system, i.e., 
thicknesses, refractive indices and extinction coefficients 
of the substrate and adsorbed layers, can be obtained by 
solving the reverse ellipsometric problem numerically:

r*(¥)«p(/A) =  *„/*, (2)

where Rp and Rs are Fresnel reflection coefficients for p -  
and 5-components of polarized light related to the param­
eters of reflection system, particularly the thickness (d ),
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3 1.00 2.00

F ig u re  7. Atomic force microscopy images of (a) CuPcR4, (b) hybrid 
1 and (c) hybrid 2 films. Roughness analysis are shown below.

refractive index (n) and extinction coefficient (k ) of the 
adsorbed layers, via Fresnel equations.85 The fitting is per­
formed by solving Fresnel equations many times for dif­
ferent values of n, k and d  and subsequently minimizing

Table I. DC-conductivity, roughness analysis and experimental data fit­
ting (films’ thicknesses, refractive indexes and extinction coefficient), the 
optical properties is at 632.22 nm wavelength.

C uPcR4 Hybrid 1 Hybrid 2

Electrical conductivity
<r, n  1 m 1 1.67 x  10-4 S/C 7.54 x 10“ '

Roughness parameters
Ra, nm 1.733 8.213 5.811
RMS, nm 3.501 15.575 9.550
/?max, nm 8.461 37.570 20.275

Before exposure
d, nm 97.86 - 147.73
N 1.532 - 1.334
K 0.373 - 0.133

Ellipsometry fitting parameters
d, nm 98.1 - 149.49

After exposure
N 1.542 - 1.359
K 0.377 - 0.135

the error function of the experimental and theoretical (cal­
culated) values of 'P  and A using one of least-square tech­
niques. Commercial WVASE32® software is provided by 
J.A. Woollam Co., Inc. for this task. Figure 8 shows the 
typical TIRE spectra of Cr/Au films used in the present 
work. The spectrum of 'P(A), demonstrating the ampli­
tude ratio of A r /A s, resembles very much the conventional 
surface plasmon resonance (SPR) curve, while the spec­
trum of A(A) is associated with the phase shift between 
p - and s-components of polarized light. The latter changes 
sharply from 270° down to —90° near the plasmon reso­
nance. According to Arwin’s modelling,86 the position of 
the sharp drop in A(A) spectrum is about 10 times more 
sensitive to analytes adsorption than 'P(A) spectrum.

To examine the compatibility o f the hybrids prepared 
in this work with TIRE technique, small volumes of solu­
tions of C uP cR 4, hybris 1 and hybrid 2 in DM F were 
drop-casted onto the gold-coated glass substrates by using 
microcyrenge. Thereafter, the samples were exposed to

300
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-  100
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X, nm

Figure 8. Typical TIRE spectra of Cr/Au film.
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deionized water and saturated solution of benzo[a]pyrene 
in water (6.2 /xg/1) to demonstrate the changes of ellip­
sometry spectra and thus films’ optical parameters induced 
by the adsorption of benzo[a]pyrene onto the films sur­
faces. It is worthwhile mentioning that the films of hybrid 
1 were shown to be rough and inhomogeneous and there­
fore unsuitable for optical investigation, as it has not 
given well-resolved spectra when measured by spectro­
scopic ellipsometry. On the other hand, thin films prepared 
from hybrid 2 exhibited much smoother surfaces and has 
therefore shown significant enhancement in the adsorption 
properties as active optical sensing layer. Figure 9 shows 
the spectra of ■'P(A) and A (A) of CuPcR4 and hybrid 2 thin 
films before and after exposure to benzo[a]pyrene. The ini­
tial response time of the studied layers was a fraction of 
minute but the spectra were measured 5 min after injec­
tion of contaminated water in order to achieve equilibrium. 
During exposure to contaminated water, it was difficult to 
detect shifts in 'P(A) because of the shape of the curve, 
however, significantly larger shifts have been observed in 
A (A) spectra. These are typical features of TIRE method 
as reported earlier.29 46,57 The spectra of A(A) were fur­
ther enlarged and shown at the bottom of Figure 9 to 
provide better assessment of the effect of benzo[a]pyrene 
exposures. It can clearly be seen that the adsorption of 
benzo[a]pyrene on hybrid 2 film has resulted in larger shift 
(9.55 nm) than that shown by pure CuPcR4 (4.6 nm) under 
exposure to saturated benzo[a]pyrene solution in water.

Carbon nanotubes in general are characterised with uni­
form surface with delocalised 7r-electrons of high den­
sity, which enhances their adsorption properties, especially 
for analytes with aromatic molecules.87 It is necessary to 
emphasise that the aim of the present work is to investigate 
the suitability of functionalized CNTs as sensing active 
layers which are compatible with optical techniques such 
as TIRE. Therefore the work does not examine effects of 
different concentrations of this analyte as well as differ­
ent range of other related analytes. This is the subject of 
continuing study and the results will be published in a 
separate article. The parameters o f organic films before 
and after exposure to benzo[a]pyrene solution in water 
were determined by fitting experimental 'P  and A spec­
tra to the theoretical organic model by fixing Cr/Au layer 
parameters. Table I summarises the thickness of all lay­
ers found from theoretical data fitting as well as the val­
ues of refractive index and extinction coefficients given at 
A =  632 nm. The data in Table I shows an increase in 
film thickness as well as optical parameters (n and k ) for 
both films. The increase in films’ thickness in the case 
of hybrid 2 was more significant which is probably due 
to the predominant surface interaction o f the analyte with 
SWCNT/CuPcR4 films. Further to the data summarised 
in Table I the variation in refractive index and extinc­
tion coefficient as a function of A for both films in pure 
water and benzo[a]pyrene solution media are shown in 
Figure 10.

hybrid layer (in pure water) no n  ‘f S ? -
CuPcR4 layer (in pure water) 

hybrid layer (contaminated water, saturated solution) 
CuPcR4 layer (contaminated water, saturated solution)

300

250

200 9.5 nm

4.6 nm \

100

785 790 795 800780
X ,  nm

Figure 9. ^ (A ) and A(A) TIRE spectra of CuPcR4 film in water (dashed line); after injection of benzo[a]pyrene saturated solution (dotted line).
Hybrid 2 films in water (solid line); after injection of benzo[a]pyrene saturated solution (dashed-dotted line). An enlarged section of A(A) spectra are 
shown at the bottom of the figure.
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F ig u re  10. R efrac tive  index  (n ) and  ex tin c tio n  co effic ien t (k) o f  C uP cF  
b en z o [a ]p y ren e  so lu tio n  (d ash ed  line).

4. CONCLUSION
Hybrid structures of single-walled carbon nanotubes and 
CuPcR4 have been prepared. FTIR and Raman spectra 
have shown that non-covalent binding between CuPcR4 
and SWCNTs has been significantly enhanced as a result 
of acid treatment of CNTs. Using SEM and AFM mea­
surements morphology of the films is found to be highly 
dependent on the solubility of the hybrid which is deter­
mined by the method used to produce the hybrid structure. 
The acid-treatment of CNTs is found to result in the sep­
aration of bundled carbon nanotubes, leading to enhanced 
t t - t t  interaction formation in the SWCNT/CuPcR4 sys­
tem. Thin films of acid-treated SWCNT/CuPcR4 hybrid 
exhibited much higher conductivity than CuPcR4 and 
improved films’ homogeneity has enabled the use of 
such hybrids as optically active sensing layers for the 
detection of pollutants in water. The response of acid- 
treated SWCNT/CuPcR4 hybrid films to the presence of 
benzo[a]pyrene in water was shown to be two times larger 
than that demonstrated by CuPcR4 films. This work is in 
continuation in order to further examine the interaction of 
thin films of such hybrids with different analytes, both in 
water and in ambient air, as well as examining a range of 
different pollutants’ concentrations.
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Tetra-substitu ted  copper phthalocyanine (CuPcR4 , R = -S(CH 2 )isCH3 ) has been prepared  and charac­
terised by UV-Vis, FT-IR and m ass-spectrom etry. Hybrid m aterials w ere produced by m ixing CuPcR4 

w ith  acidified single-w alled carbon nanotubes (SWCNTs) and characterised by UV-Vis absorption spec­
troscopy, scanning electron m icroscopy and atom ic force microscopy. Thin films of pristine CuPcR4 and 
SWCNT/CuPcR4 w ere prepared by spin coating onto gold-coated glass slides and applied as active layers 
to detect pentachlorophenol (PCP) in w ater utilizing total internal reflection ellipsom etry (TIRE) tech ­
nique. Different concentrations of PCP in w ater ranging from 0.5 to 10 jxg/l have been exam ined in the 
curren t work. It is revealed th a t the phase shift (A(A)) spectra of SWCNT/CuPcR4 films w ere tw o tim es 
larger than  the shifts produced by the pristine CuPcR4 films w ith  clear recovery in the A(A) spectra after 
flushing the cell w ith  w ater. The adsorption of PCP on both types of films is discussed and film s’ sensitivity  
w as determ ined using the change in films’ refractive index.
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ntroduction

he worldwide use of pesticides and herbicides for agricultural 
oses is classified as a global environmental pollution problem, 

ricides used in agriculture can easily take way to surface or 
_nd waters, possibly causing adverse ecotoxicological effects on 
ztic life and changing drinking water quality [ 1 ]. Chlorophenols 
resent a major group of pollutants of environmental concern, 
to their wide spreading and toxic properties, some chlorinated 
ols, such as pentachlorophenol (PCP), 2-chlorophenol, 2,4- 

.lorophenol, and 2,4,6-trichlorophenol (2,4,6-TCP) have been 
zidered as priority pollutants. PCP is the most toxic represen- 
e of the chlorophenols and an important organic chemical for 

ironmental studies because of its common application in agri- 
_re, industry and commercial product synthesis [2], It is highly 
c and persistent in water and soil. Concentrations of PCP ran- 
from trace levels to 10,500 jxg/1 in various surface waters from 

:rent countries have been reported by the World Health Orga- 
tion [3]. Furthermore, it can accumulate in living organisms

o rrespond ing  au thor. Tel.: +7 383 3302814; fax: +7 383 3309489. 
-mail addresses: b a s o v a @ n i i c .n s c . r u , t b a s o v a @ m a i l .r u  (T. Basova).

and result in negative effects, including carcinogenicity and acute 
toxicity.

Different analytical procedures based on liquid 
chromatography-mass spectrometry (LC-MS) [4-6], LC-tandem 
mass spectrometry (LC-MS/MS) [7], high performance liquid 
chromatography (HPLC) [8], and gas chromatography-mass spec­
trometry (GC-MS) [9] have been reported to provide efficient 
determination of these pesticides, according to the present leg­
islation. However these methods, although highly sensitive and 
specific, are quite laborious, time-consuming, and expensive, and 
not suitable for on-site applications. There is therefore continuous 
demand for highly sensitive, cost-effective, rapid and portable 
detection methods which at the same time can meet international 
legislation allowed levels of PCP and other toxic compounds.

Ellipsometry can be used in total internal reflection (TIRE) 
mode and in combination with the surface plasmon resonance 
phenomenon for sensing aspects [10-12], There has been exten­
sive work in applying TIRE as a technique for the detection of 
biomolecules [ 13,14], It was established that TIRE is a more suitable 
technique than SPR method for the registration of low molecu­
lar weight toxins such as simazine, atrazine and T2 mycotoxin
[15]. TIRE technique has attracted substantial attention because of 
its fast response, simple instrumentation, being non-destructive

-4005/$  -  see fron t m a tte r©  2013 Elsevier B.V. All rights reserved.
//dx .do i.o rg /10.1016 /j.snb .2013.09.059
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Fig. 1. Synthesis o f 2(3),9(10).16(17).23(24)-tetrak is(hexadecy lth io ) ph tha locyan inato  copper(II) (CuPcR^).

ethod and its ability of performing measurements in non- 
ansparent media [16].

Many research studies have shown the ability of carbon nano- 
bes (CNTs) to adsorb different pollutants [17-22]. This ability is 
e to the strong interaction between the CNTs surface and the pol- 

tants caused by the unique structure of CNTs resulting from the 
localised TT-electrons on the hexagonal arrays of carbon atoms 
graphene sheets or CNTs surface. However, almost all sensor 
plications using CNTs as active layer are either electrical or elec- 

ochemical based sensors and because CNTs are optically inert they 
e not incorporated in optical based sensors such as surface plas- 
on resonance or total internal reflection ellipsometry techniques, 
n the other hand, phthalocyanines (Pcs), especially, their readily 
luble peripherally substituted derivatives, possess a wide range 
chemical and physical properties that make them interesting 

uilding blocks for a number of applications and new materials 
3-26]. Among these properties are the presence of highly con- 
gated Ti-electron systems and high absorptivity in the near-IR 
gion. Pcs have been extensively used as active layers to detect 
rge variety number of pollutants using TIRE and SPR techniques 
7-30].
This work reports for the first time the use of single-walled car- 

on nanotubes (SWCNT) hybridised with tetrasubstituted copper 
hthalocyanine Q 1PCR4  (Fig. 1) as an optical active layer to detect 
entachlorophenol in water using TIRE technique. The morphology 

d optical properties of the SWCNT/CUPCR4 hybrid films are also 
iscussed.

. Experimental

1. Materials

4-(n-Hexadecylthio) phthalonitrile (Pn) was synthesised 
cording to reported procedure [31 ]. SWCNTs were commercially 

urchased from Sigma-Aldrich. Pentachlorophenol (PCP) were 
btained from Sigma-Aldrich with 98% purity and its solution in 
eionised water in the concentration range 0.5-10 |xg/l was used 

this study. After detection, deionised water was injected into the 
11 to remove adsorbed PCP molecules from film surface. All other 
agents and solvents of reagent grade quality were obtained from 
mmercial suppliers and were dried as described in Perrin and 
marego [32].

. Measurements

The IR spectra were recorded between 4000 and 650 cm -1  using 
Perkin Elmer Spectrum 100 FT-IR spectrometer with an atten- 
ated total reflection (ATR) accessory, featuring a zinc selenide 
nSe) crystal. Optical spectra in the UV-visible region were 
corded with Shimadzu UV-Vis-2101 spectrophotometer using

1 cm path length cuvette at room temperature. Matrix-assisted 
laser desorption/ionisation time-of-flight mass spectrometry 
(MALDI-TOF-MS) measurements were performed on a Bruker 
Daltonics micrOTOF by using 2,3-dihydroxybenzoic acid as matrix. 
The surface morphology of the films was investigated by SEM and 
AFM using FEI-nova nanosem 200 and Nanoscope Ilia multimode 
atomic force microscope, respectively.

The experimental set-up for TIRE measurements was built 
on M2000V (J.A. Woollam Co., Inc.) spectroscopic ellipsometer, 
operating in the 350-1000 nm wavelength range, as shown in the 
schematic diagram presented in Fig. 2. The set-up comprises a 
white light source (1), monochromator (2), polariser (3), analyser
(4) and a photodetector array (5). Additional elements, which 
allow performing TIRE measurements, are a BK7 glass prism (6 ) 
with a gold-coated glass slide (7) brought into optical contact via 
index matching fluid, and the reaction cell (8 ) sealed to the top of 
the Au-coated slide through a rubber O-ring (9). The choice of the 
prism was dictated by conditions of total internal reflection of light 
on the glass/water interface; the prism used in this case is 6 8 ° BK7 
glass prism with an index of refraction n = 1.515. Further details of 
TIRE method and the experimental set-up are found in previous 
publications [15,33]. The cell has a volume of 2 ml and contains 
inlet and outlet tubes to allow injection of different gases or fluids 
into the cell in order to perform different chemical interactions. 
Elements 6 -9  were fixed on the ellipsometer sample stage using 
vacuum suction.

The spectra of the two ellipsometric parameters and A , rep­
resenting, respectively, the amplitude ratio tg(^) = Ap/As and phase 
shift A=<pp-tps between p- and s-components of polarised light, 
were recorded with the M2000V instrument in the 350-1000 nm 
spectral range using the rotating analyzer principle. Optical param­
eters of the reflection system, i.e. thicknesses, refractive indices and 
extinction coefficients of the substrate and adsorbed layers, can be 
obtained by solving the reverse ellipsometric problem numerically:

tg(V0exp(iZ\) = 5b. (i)
Ks

where Rp and Rs are Fresnel reflection coefficients for p- and 
s-components of polarised light related to the parameters of reflec­
tion system, particularly the thickness (d) and refractive index (n) 
of the adsorbed layers, via Fresnel equations [34]. The fitting is per­
formed by solving Fresnel equations many times for different values 
of n and d and subsequently minimizing the error function of the 
experimental and theoretical (calculated) values of and A  using 
one of least-square techniques. Commercial WVASE32® software is 
provided by J.A. Woollam Co., Inc. for this task. The samples for TIRE 
study were prepared by the evaporation of 3 -5  nm of chromium on 
microscopic glass slides followed by the evaporation of 2 5 -30  nm 
of gold layer.
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Fig. 2. Total in ternal reflection  e llip som etry  expe rim en ta l se t-up .

Synthesis o f CuPcfof

-(n-H exadecylthio) phthalonitrile (Pn) (0.50 g, 1.30 m m ol) and 
d PbO (0.145 g, 0.65 m m ol) w ere stirred at 210 °C for 5 h under 
n atm osphere in solvent-free conditions as w e described in 
previous paper [25]. The reaction mixture w as then dissolved  
:l/d ichlorom ethane:acetic acid mixture to rem ove lead m etal 

the cavity and obtain m etal-free derivative (H2 PCR4 ) o f PbPcR4

1). This acidic mixture w as extracted w ith  water and organic 
e w as dried over anhydrous sodium  sulfate. It is known from  
literature that PbPcs can easily lose their central m etal ion 
especially in acidic media and transform into the correspond- 

m etal-free analogues. The formation o f m etal-free derivative 
confirmed by the formation o f splitted Q. band in the UV-Vis 
trum of this complex. H2 PCR4  (0 . 2 0  g, 0.18 m m ol) w as refluxed 

er argon atm osphere w ith anhydrous CuCh (34 mg, 0.25 m m ol) 
ried n-hexanol ( 2  m l) for 2  h and the reaction mixture w as 
red into ethanol. The precipitates w ere filtered and w ashed  

ethanol. The crude product w as purified over silica gel colum n  
sing 100:l/d ichlorom ethane:hexane as eluent. Yield: 260 mg, 
(from H2 PCR4  to CuPcRZ IR [(ATR) vmax (c m -1)]: 3066  (Car-H), 
7 -2 8 5 0  (C-H), 1602 (C=C), 1 5 0 8 ,1 4 6 6 ,1 3 8 9 ,1 3 4 1 ,1 3 1 3 ,1 2 6 1 ,  
3, 1102, 1086 (C-S-C), 1070, 1038. UV-Vis (THF): Amax (nm)
e ) 349 (5.06), 622 (4.79), 689 (5.45). MALD1-TOF-MS m/z: Calcd. 
CgeHj^CuNsSie: 1602.06, found 1602.50 [M]+ (100), 1637.69
Cl]+.

Preparation ofSWCNTs-CuPc&f hybrid

/CNTs w ere first acidified and cut into short and uncapped 
otubes according to a m ulti-step procedure developed by 
lley and co-workers [36]. This w as carried out by refluxing 
nanotubes in 2.6 M HNO3  for 48 h follow ed by stir- 
in a mixture o f concentrated H2 SO4  and HNO3  (3:1, 
at 40  °C for 12h. The m ixture w as centrifuged and 

hed thoroughly in deionised w ater and dried at 70 °C for

e acidified SWCNTs (0.5 m g) w ere added to a solution of 
CR4  (1.5 m g/m l) in chloroform and ultrasonicated for 15 min. 

films w ere produced by spin-casting the obtained solution

onto gold-coated slides and onto silicon substrates using a pho­
toresist spinner (M icrosystem m odel 4000) at 2000  rpm. Similarly, 
thin film s w ere produced from a solution o f pristine CUPCR4  in 
chloroform ( 2  m g/m l) for comparison.

3. Results and discussion

3.1. Characterisation o f SWCNT/CuPcH) hybrid film s

3.1.1. UV-Vis absorption spectra
Fig. 3 show s the UV-visible absorption spectra o f solutions 

of SWCNTs, CUPCR4  and SWCNT/CUPCR4  hybrid in DMF. CUPCR4  

exhibits typical electronic absorption spectrum  w ith  tw o strong  
absorption regions, one in the w avelength range 6 4 0 -6 9 5  nm  
(Q-band) arising from the electron transitions from the highest 
occupied m olecular orbital (HOMO) alu to the low est unoccupied  
m olecular orbital (LUMO) eg and one in the range 3 0 0 -4 5 0  nm

—  CNT in DMF
—  CuPcR4 in DMF
— CNT/CuPcR, in DMF

.£(0
co
Q.Otn
.a<

300 400 500 600 800 900700

X, nm

Fig. 3. O ptical ab so rp tion  spectra  o f p ristine  SWCNT (d o tted  line), C11PCR4 (so lid  
line) and  SWCNT/C11PCR4 hybrid  (dashed  line) in DMF.
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s o l e  1

_ u g h n e ss  analysis ofCuPcR4 and  SWCNT/CuPcR4 films.

EFilm Ra (nm ) RM S(nm ) R max (nm )

CuPcR4 0.837 1.204 4.186
=SWCNT/CuPcR4 2.727 3.812 11.906

--b a n d ) which is attributed to the electron transitions from the 
OMO) a2 u to the (LUMO) eg [23]. Furthermore, absorption within

- e Q-band is split into tw o absorption peaks, one w ith  much  
zigher intensity than the other at A = 695 and 640 nm, respectively. 
± is  can be ascribed to dom inant m onom er absorption w ith the 
~tter being ascribed to molecular aggregation in DMF solution. The 
^.-sorption spectrum of SWCNT is featureless as reported elsew here  
3 7 ] and is attributed to the poor exfoliating ability of DMF.

The m axim um  of the Q-band in the absorption spectrum of the 
'CNT/CUPCR4  hybrid is broadened and red-shifted by ~ 2 1  nm in 

mparison w ith Q 1PCR4  spectrum. It can also be seen that the Q- 
;and splitting has disappeared in the hybrid absorption spectrum, 
"hich indicates dom inant m onom er absorption. These changes are 

ggested to take place due to the strong tt- tt interaction betw een  
_rbon nanotubes and phthalocyanine m olecules, where phthalo- 
“ anines are usually considered as electron donors, w hile carbon 
=anotubes as acceptors [38]. This interaction has been frequently 
Escribed to the reduced aggregation in the MPc/CNT com posites 
39,40].

.1.2. Morphology 
Fig. 4 show s SEM im ages of pristine SWCNTs, acid-treated  

WCNTs and SWCNT/CUPCR4  hybrid deposited as thin film from 
loroform solution onto silicon substrate. Pristine CNTs typically 

~nd to bundle together (Fig. 4a) and to aggregate due to Van 
er Waals attraction betw een individual tubes [41 ] as well as the 

:igh length to diam eter ratio; this makes them  hard to disperse 
com m on organic solvents. Chemical m odification has been per- 

~rmed to achieve enhanced interaction betw een SWCNTs and 
UPCR4  m olecules leading to the formation of a com posite w ith  
uch improved solubility in chloroform. The obtained solution is 

:onveniently used for thin film deposition using spin-coating tech­
nique. Fig. 4b show s that the intrinsic quality of SWCNTs structure is 
till preserved after the acid treatment. However, after m ixing with  
hthalocyanine (Fig. 4c), the com posite dispersion was significantly 

—proved to form a uniformly suspended solution in chloroform; 
:ence sm oother films w ere obtained to perform optical investiga- 
ion, using TIRE experim ents.

Fig. 5a and b show s AFM im ages of CUPCR4  and SWCNT/CUPCR4  

(lms spun onto silicon substrates w ith the roughness analy- 
is presented at the bottom  of the figures. The films of CUPCR4  

Fig. 5a) dem onstrate fibrous-like porous morphology. Fig. 5b on
- e other hand show s that phthalocyanine m olecules are attached

the surface of carbon nanotubes confirming the formation of 
mtworks of CuPcR4  and SWCNT. Similar morphology was observed  
7 r poly(3-hexylthiophene) (P3HT)/multi-walled carbon nanotube 
~~WCNT) films [42] and MWCNTs and SWCNTs w ith lead tetra- 
o-pentyloxyphthalocyanine (PbPc) [22], The main roughness (Ra). 

tandard deviation (RMS) and m aximum height (Rmax) are sum m - 
rised in Table 1. The inset to Fig. 5b represents an enlarged AFM 
...age of SWCNT/CuPcR4  deposited on silicon, show ing individ- 
al and shortened nanotubes w ith approximate length of 250 nm 
urrounded by phthalocyanine m olecules.

I spot m ode WD j rnag HV det Lens Mode 
| S 0 SE 4.4 mm ; 200 000 x 2 00 kV TLO Immersion

Fig. 4. SEM im ages of (a) p ristine  SWCNT, (b) acidified SWCNT and  (c) 
SWCNT/CuPcR4 hybrid in th in  film form.

.2. Total internal reflection ellipsometry (TIRE) were spun onto gold-coated glass substrates as described in Section
2. Fig. 6 show s the typical TIRE spectra of Cr/Au films used in the 

The adsorption of PCP onto the surface of CuPcR4  and present work. The spectrum of '/'(A), dem onstrating the am plitude
CNT/CuPcR4  thin films in water solutions has been stud- ratio of Ap/As, resem bles very much the conventional surface

:d using TIRE m ethod. CuPcR î and SWCNT/CuPcR^i hybrid films plasmon resonance (SPR) curve, w hile the spectrum  of A (k )  is
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-ciated w ith the phase shift betw een p-  and s-com ponents 
olarised light. The latter changes sharply from 270 dow n to 

=° near the plasmon resonance. According to Arwin’s m odelling  
, the position of the sharp drop in A(A) spectrum  is about 10 

- s  more sensitive to analytes adsorption than ^(A) spectrum. 
7 represents the spectra of <^(A) and A(A.) of CuPcR4  and 

~NT/CuPcR4  hybrid thin films before and after exposure to PCP. 
concentration of PCP was varied from 0.5 to 10 p.g/1 in deionised  

Eer. The initial response tim e of the sensors w as fraction of a 
-ute but the spectra were measured 5 min after injection of
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Fig. 6. Typical TIRE spectra  o f Cr/Au film.

contam inated water or pure water to achieve the equilibrium  
response or recovery, respectively. Furthermore, longer exposure  
tim e has been exam ined to establish the recovery of the sensors.

During exposure to contam inated water, it w as difficult to 
detect shifts in ^(X ) because o f the shape of the curve, however, 
significantly larger shifts have been observed in A(A.) spectra. 
These are typical features o f TIRE m ethod as reported earlier 
[15,16,28]. The spectra of A(A) were further enlarged and show n  
at the bottom  of Fig. 7 to provide better assessm ent of the effect of 
PCP exposures. It can clearly be seen that the adsorption of PCP on 
hybrid film has resulted in larger shifts (6.41, 10.98 and 14.19 nm) 
than pure CUPCR4  (3.05, 4.67 and 7.82 nm) under PCP exposures 
of concentrations 1, 2 and 5 |JLg/l in water, respectively. Carbon 
nanotubes in general are characterised w ith  uniform surface 
w ith delocalised TT-electrons o f high density, w hich enhances 
their adsorption properties, especially for analytes w ith  oxygen- 
containing aromatic m olecules such as PCP [43]. The adsorption  
of PCP can also be ascribed to the tt- tt interactions betw een  the 
tt electrons o f the aromatic ring of PCP and the tt electron system  
of the aromatic rings of the SWCNTs [44]. Complete recovery of 
A(A.) spectra are observed after flushing the cell w ith  deionised  
water as previously established for films of m etal phthalocyanines 
w ith other types of substituents [27]. However, w h en  exposure 
to 5 jxg/1 PCP-contaminated water continued for 30 min, CUPCR4  

exhibited further shift but did not show  com plete recovery after 
flushing w ith water; in contrast to SWCNT/CuPcR4  layer w hich  
remained stable w ith tim e under repeated exposures to 5 p,g/l 
PCP-contaminated water and exhibited com plete reversibility. It 
is expected that the presence o f SWCNT in the com posite film  
inhibits the diffusion of PCP m olecules inside the film and m ost 
interaction takes place on the surface o f the film.

Theoretical fitting to experim ental and A spectra w as carried 
out by applying a four-layer m odel consisting o f w ater solution,
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rrganic layer, Au layer and BK7 glass. The optical parameters (film  
hickness d, refractive index n and extinction coefficient k ) of all 
-yers are sum m arised in Table 2.

ab le  2

a ram e te rs  of four-layer m odel in TIRE fitting.

Layer n

BK7
Cr/Au
Active layer 
A queous so lu tion

1.51
0.36
See Table 3 
1.34

0
2.86

d (nm )

A m bient
27.43

The parameters of the organic films after exposure to PCP 
solutions in water w ere determ ined by fitting experim ental V  
and A spectra to the theoretical organic m odel by fixing Cr/Au 
layer parameters. Table 3 sum m arises the thickness o f all layers 
found from theoretical data fitting for m ultiple sam ples as w ell 
as the values of refractive index and extinction coefficients given  
at A = 632 nm. It is worthy to m ention that no apparent difference  
w as found betw een optical parameters and thickness o f the ini­
tial films deposited on Si and on Au-coated glass substrates. The 
data in Table 3 show  an increase in film thickness as w ell as opti­
cal parameters (n and k ) for both films; the only exception  w as in k  

value which exhibited a small decrease in the case o f CUPCR4  film as 
a result of PCP adsorption. The decrease in k  value may be a result of
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ned line).

3
=ges in th e  optical pa ram ete rs  o f CuPcR4 and SWCNT/CuPcR4 films caused  by adso rp tion  o f PCP from  its so lu tion  w ith  concen tra tion  of 10 p.g/1.

CuPciti SWCNT/CuPcR4

n (632 nm ) fc(632 nm ) d (nm ) n (632 nm ) k  (632 nm ) d (nm )

..ial film 1.56 ± 0 .01 0.32 ± 0.01 37.4 ± 0 .3 1.41 ± 0 .0 2 0.28 ± 0 . 0 2 54.2 ± 0 .9
zosed  film 1.59 ± 0 .01 0.31 ± 0.01 38.1 ± 0 .6 1.47 ± 0 .0 2 0.29 ± 0 .0 2 57.5 ± 0 .7

ge of film structure due to chem ical reaction on the surface of 
..alocyanine film and perhaps film sw elling due to penetration  
ZP m olecules into this film. The investigated CuPcR4  exhibits 

:id crystalline properties and the film structure of LC phthalo- 
~ine films is very sensitive to different types of interactions, 
"as discussed in a previous publication [45], The increase in 
:S’ thickness in the case of SWCNT/CuPcR4  com posite w as more 
:ificant which is probably due to the predom inant surface inter- 
on of the analyte w ith SWCNT/CuPcR4  films. Further to the data 
imarised in Table 3 the variation in refractive index and extinc- 

coefficient as a function of X for both films in pure water and 
solution media (concentration of 10 (xg/l) are show n in Fig. 8. 
urther studies are under way in order to provide a full compar- 
ofSWCNT/MPc hybrid films response to unsubstituted phenol 

its chlorosubstituted derivatives. In an earlier publication it was 
onstrated that exposure of ZnPcRg films to low  concentrations 

enzene and toluene in water has not resulted in any significant 
onse. As for other halosubstituted phenol derivatives, it has 
show n that layers ofZnPcRg dem onstrate a good response to 

Jorophenol, 4-brom ophenol and 4-iodophenol using QCM and 
-FTIR difference spectroscopy [46],
:ig. 9 show s the dependence of the phase shift change (<5A) on 
concentration in the range 0.5—10 jJig/1 in water for CuPcR4
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Fig. 9. Phase sh ift changes (5A ) in A(A.) spectra  of SWCNT/CuPcR4 hybrid  and  
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nd SWCNT/C11PCR4  layers. Reproducibility o f the sensors’ response  
as been exam ined for the tw o types o f layers, and experim en- 
1 errors in the spectral shifts are potted in Fig. 9. The m inim um  

etection lim it o f PCP w as 0.8 jxg/1 for Q 1PCR4  layer, w hich is sim - 
ar to that determ ined in our previous publication w here films 
f octatosylam ido substituted zinc phthalocyanine w ere used as 
ctive layers for PCP detection using TIRE technique [ 11 ]. In the case 
f SWCNT/CUPCR4  layers the m inim um  detection lim it o f PCP w as 
und to be 0.5 |xg/l. This is a higher concentration than that deter- 
ined in the literature w here different analytical m ethods based on  

quid chrom atography-m ass spectrom etry [47] and liquid chro- 
atography with electrochem ical detection [48] w ere used, in 
hich the detection lim it can reach som e nanograms per litre. How- 

ver the obtained detection lim it in our work is low er than that 
btained by traditional spectrophotom etric techniques [49]. Fur- 
ermore, resolution o f the ellipsom eter used in this work is very  
w  (~0 .06n m ), how ever the detection lim it depends not only on  

llipsom eter resolution, but also on the reproducibility o f  the m ea- 
ured signal obtained from several sam ples. Fig. 9 represents the 
hift in A(A) taking into account m easurem ent errors from m ulti- 
le sam ples. No reproducible shift in A(A) w as observed for PCP 
oncentrations below  0.5 |xg/l, w hile reproducibility in the m ea- 
ured A(A) started to occur at 0.5 fxg/1 concentration in the case o f 
he hybrid films. In the case o f the pure CuPcR4 films reproducibility 

the m easured A(X)  started to occur at 0.8 |xg/l concentration.
In order to evaluate the response o f the tw o types o f  layers the 

verage sensitivity has been calculated based on changes in film s’ 
efractive indices using the follow ing equation:

here Sn is the change in the film refractive index under ana- 
te concentration C„ m is the number o f different concentrations 

sed in the study, and no is the initial film refractive index (before 
xposure to PCP). Similar principle for evaluation o f the aver- 
ge sensitivity w as used in Ref. [50] w here nickel phthalocyanine 
erivatives w ere studied as sensitive materials for the detection  
f organic solvent vapours using quartz crystal and capacitance 
ransducers.

Changes in extinction coefficients o f the films as w ell as 
hanges in their thickness as a result o f interaction w ith  PCP 
ere not as consistent as those deduced for film s’ index of 

efraction. The average sensitivities w ere estim ated as 2.18 x 10 - 3  

nd 1.52 x 10~ 2  RIU/(jxg/1) for Q 1PCR4  and CUPCR4 /SWCNT lay- 
rs, respectively. The m ethod o f layer preparation as w ell as the 
btained layer structure are known to influence the layer sensitiv- 

ty to the detected analytes [51 ]. The observed larger sensitivity in 
he case o f hybrid films was thought to be determ ined by the larger 
umber o f adsorption sites m ade available to the analyte m olecules 
n the film surface due the large surface to volum e area compared 

0  pure CUPCR4  film.

. Conclusion

Thin films o f single-w alled carbon nanotubes (SWCNT) 
ybridised w ith tetrasubstituted copper phthalocyanine (CUPCR4 ) 
ave been used as optical active layers to detect pentachlorophenol 
PCP) in w ater using Total Internal Reflection Ellipsometry (TIRE) 
echnique. The m orphology and optical properties o f the hybrid 
lms w ere studied and the interaction betw een  the tw o materials 
as ascribed to tt- tt interaction as w ell as van der W aals forces, 
e interaction of PCP solution in w ater at concentrations betw een  

.5 -1 0 fig /l  w ith  SWCNT/Q1PCR4  hybrid films as w ell as w ith  
ristine CuPcR4  w as studied. Changes in the phase shift (A(A)) 
pectra o f SWCNT/Q1PCR4  films w ere found to be tw o tim es larger

than those dem onstrated by the pristine Q 1PCR4  film s w ith  clear 
recovery after flushing the cell w ith  w ater even for the highest 
exam ined PCP concentration. Films’ sensitivities o f 2.18 x  10 - 3  and 
1.52 x  10" 2  RIU/(|xg/l) w ere found for CUPCR4  and SWCNT/CUPCR4  

layers, respectively, as w ere estim ated using changes in film ’s 
index o f refraction values. The SWCNT/CUPCR4  hybrid films have 
dem onstrated detection lim it o f about 0.5 jxg/I, w hereas CUPCR4  

exhibited higher concentration detection lim it o f 0.8p,g/l. The 
principle aim o f the present work w as to dem onstrate for the first 
tim e the use o f SWCNT/CUPCR4  hybrid film s as optical active layers 
to detect toxic analytes in water using optical m ethod. Sensor 
selectivity w as not addressed in the current work and it will be the 
subject o f future investigation.
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A n o v e l p y r e n e  c o n ta in in g  a s y m m e tr ic  Zn(n) p h th a lo c y a n in e  (AB3 ty p e )  w a s  s y n th e s iz e d  a n d  c h a r a c te r iz e d  

b y  v a r io u s  s p e c t r o s c o p ic  t e c h n iq u e s  a s  w e ll  a s  e le m e n ta l  an a ly sis . A s y m m e tr ic  p o ly o x y e th y le n e  s u b s t i­

tu te d  Zn(n) p h th a lo c y a n in e  (B 4 ty p e )  d er iva tive  w a s  a ls o  p rep a red  in o r d e r  t o  c o m p a r e  th e  p r o p e r t ie s  an d  

d e te r m in e  th e  e f f e c t  o f  t h e  p y r e n e  g r o u p  o n  th e  p h th a lo c y a n in e  m o le c u le .  C o m p o s it e s  o f  s y n th e s iz e d  

zinc(n) p h t h a lo c y a n in e - s in g le  w a ll c a r b o n  n a n o t u b e s  (Z n P c -S W C N T s) c o n ta in in g  1 an d  2  wt%  c a r b o n  

n a n o tu b e s  w e r e  p rep a re d  b y  m ix in g  t h e s e  t w o  c o m p o n e n t s  in d ic h lo r o m e th a n e  f o l lo w e d  b y  r e m o v a l o f  

t h e  s o lv e n t  an d  d ry in g  u n d e r  v a c u u m . T h e  liquid  cr y sta llin e  p r o p e r tie s  o f  t h e  p u r e  c o m p o u n d s  a n d  th e ir  

c o m p o s i t e s  w e r e  in v e s t ig a te d  in c o m p a r is o n  w ith  s y m m e tr ic  p o ly o x y e th y le n e  s u b s t itu te d  Zn(n) p h t h a lo ­

c y a n in e  (B 4 ty p e )  b y  u s in g  p o la r iz e d  o p t ic a l m ic r o s c o p y , d iffer en tia l s c a n n in g  c a lo r im e tr y  a n d  X -ray  d iffr­

a c t io n  a n a ly s is . T h e  d is tr ib u tio n  o f  t h e  S W C N T s in th e  o r d e r e d  m atrix  o f  t h e  c o lu m n a r  m e s o p h a s e  o f  

t h e s e  d er iv a tiv es  w a s  s tu d ie d  b y  t h e  m e th o d  o f  p o la r iz e d  R am an  s p e c t r o s c o p y  a n d  s c a n n in g  e le c t r o n  

m ic r o s c o p y  (SEM). It w a s  s h o w n  th a t th e  n a tu re  o f  th e  m e s o p h a s e s  w a s  n o t  a lte r e d  in t h e s e  c o m p o s i t e s .  

T h e  l(v) d e p e n d e n c ie s  fo r  t h e  film s d e p o s i t e d  o n t o  in ter d ig ita ted  e l e c t r o d e s  w e r e  m e a s u r e d  an d  it w a s  

s h o w n  th a t th e  lateral c o n d u c t iv ity  t e n d s  t o  in c r e a s e  w ith  in c r e a s in g  S W C N T  c o n c e n t r a t io n .

introduction
order to satisfy the dem ands o f  the rapid growth in nano- 

^chnology, it is necessary to develop different types o f func- 
onal m aterials p ossessin g  ou tstand ing electrical, optical, or 
echanical properties. A m ong these, com posite  m aterials play 
central role in these new tech nolog ies, due to their synergetic  

lom bination o f two or m ore com p o n en ts . 1 A thriving area of 
H evant research has focused on the sm art integration o f  
arbon nanotubes (CNTs) w ith phthalocyanine (Pc) com plexes 

r enhan cin g  optoelectron ic , 2  electro-catalytic3 and sen sin g 4  

roperties. The results have show n that these hybrids can be 
ore efficient in im proving the relative responses com pared to
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Electronic supplem entary inform ation (ESI) available: The mass, FT-IR and 
—NMR spectra of compound 3, DSC spectra of compounds 3, 4 and their com- 
osites, polarizing optical microscope images of 3/SWCNT composites and I(v) 
..aracteristics of pure 3 and 4 and their composite films. See DOI: 10.1039/ 

dt52736k

the individual CNT or Pc species. In these  hybrids, CNTs are 
functionalized  w ith m etallophthalocyanine derivatives either  
via  covalent5 - 7  or non-covalent5 ,8 ,9  interactions. T hese hybrids 
are currently receiving thorough investigation  by several 
research groups in  order to enhan ce the optoelectron ic, 
electro-catalytic and sen sin g  properties o f MPc film s . 3 " 1 0  The 
evidence so  far has show n that th ese  hybrids can be m ore 
efficient in  im proving the relative response o f  hybrid film s  
com pared to the individual CNT or MPc sp ec ies . 5 " 1 0

Another type o f  functional m aterials is com posite  m aterials 
w hich can be obtained by the d ispersion  o f  sm all am ounts  
(0 .1 - 1 0  wt%) o f carbon nanotubes in a phthalocyan ine matrix. 
In th is com bination , liquid crystalline (LC) m aterials have 
attracted increasing attention for their form ation o f  com p o­
sites w ith CNTs, 1 1 " 1 4  as LC m aterials have the potentia l to 
orient CNTs for anisotropic electrical condu ction . On one  
hand, the flexible orientational order o f LC m aterials provides 
a facile approach to efficiently align CNTs. On the other hand, 
CNTs could induce distinctive changes in the physical pro­
perties o f  the LC matrix, lead ing to enhan ced  perform ances o f  
the LC m aterials. Som e exam ples o f  the a lign m en t o f  nan o­
tubes in nem atic LC m aterials are given in  the literature . 1 3  

Patrick and Lynch16 reported a variety o f m eth od s for the post­
synthesis organization o f single- and m ulti-w alled carbon  
nanotubes (SWCNTs and MWCNTs) u s in g  therm otropic

is journal is © The Royal Society of Chemistry 2014 Dalton Trans., 2014, 43, 4689-4699 I 4689
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m atic LC m edia  in  the presence o f  an external a lign m en t 
rce (m agnetic or electric field , substrate grooves, etc). Lager- 
11 and co-workers1 7 ’1 8  u tilized  the lyotropic nem atic LC 
ases w ith  rod-shaped and disk-shaped m icelles to induce  

e a lign m en t o f  SWCNTs. The functionalization o f  
TCNT-COCl w ith a d iscotic  m oiety, notably hydroxy-termi- 
ted triphenylene, and their a lign m en t in  the supram olecular  
der o f  a colum nar m esop h ase  were investigated by Kumar 
d Bisoyi . 1 9  O ctadecylam ine functionalized  sing le  w alled  
rbon nanotubes in  triphenylene and rufigallol-based room  
m perature m onom eric  and polym eric d iscotic  liquid  crystals 
ere investigated by the sam e group . 2 0  D iscotic ion ic  liquid  

stals o f  triphenylene derivatives bearing six im idazolium  
n pendants were reported to serve as excellent d ispersants  
r pristine SWCNTs. 21

Liquid crystalline (LC) phthalocyan ines self-organize from  
m m on  solvents in to  colum nar aggregates and becom e o f  
terest as potential so lu tion  processed  m aterials for appli- 
tion in  m olecular e lectron ics . 2 2 - 2 6  The colum nar stacks o f  

iscotic Pc m olecu les w ith  efficient overlap o f  7t-orbitals a long  
e stacking direction and low  reorganization energy2 7  provide 

" icient anisotropic electronic transport chann els a long the  
olecular co lu m ns in  the liquid  crystalline m esop h ases w ith  

ole m obilities in  the order o f  10 - 1  cm 2  V s - 1 . 2 8

W hile the hybrids o f  SWCNTs w ith  m etal phthalocyanines 
ave been  studied in  deta il , 5 - 1 0 ’2 9  the experim ental data on  the  
istribution and align m en t o f  CNTs in  the matrix o f  liquid  
rystalline phthalocyanines are rather scarce.

The m ain  target o f  th is work w as to investigate the dis- 
ersion o f  single-w alled carbon nan otub es in  novel liquid  crys- 
lline asym m etrically substitu ted  Pc bearing one pyrene and  

ix polyoxy groups as side chains. The effect o f  nan otub es on  
e phase behavior o f  th is zinc phthalocyanine derivative and  

n the structural and functional properties o f  the SWCNT- 
hthalocyanine com posite  th in  film s was investigated. The 
olyoxy groups were ch osen  to exhibit the liquid  crystalline 
roperties o f  the target m aterials. The pyrene group was also  
h o sen  to enhance the interaction o f  phthalocyanines w ith the  
NTs. The pyrenyl group is known to interact strongly w ith  

rCNTs via  jr-stacking interactions . 3 0 - 3 2  This has been  used , 
or exam ple, in  the production o f  SW CNT-nanoparticle 
ybrids , 3 0  the grafting o f  proteins and other b io logical m ole- 
ules to SWCNTs3 0  and to im m obilize  light harvesting groups 
n the SWCNTs, as well as in  the design  o f  new  photoelectric  
evtces.

The com posites o f  sym m etrically substitu ted  zinc phthalo- 
anine bearing e igh t polyoxy groups as side chains are also  

tudied for a com parison.

xperimental
aterials

-Nitrophthalonitrile 3 3  4,5-dichlorophthalonitrile ,3 4  4-(l-pyrenyl- 
ethoxy)phthalonitrile ( l ) 3 5  and 4,5-bis(4,7,10-trioxaundecan- 

-su lfanyl)phthalonitrile (2 ) 3 6  were synthesized  and purified

according to reported procedures. All reaction solvents were 
dried and purified as described by Perrin and Arm arego . 3 7  All 
other reagents were obtained from  com m ercial suppliers. 
The SWCNTs were purchased from  Sigm a-Aldrich and  used  
w ithout further purification or chem ical treatm ent.

E quipm ent

FT-IR spectra were recorded betw een 4000 and 650 cm - 1  u s in g  
a Perkin Elm er Spectrum  100 FT-IR spectrom eter w ith  an atte­
nuated total reflection (ATR) accessory featuring a z in c sele- 
nide (ZnSe) crystal. M atrix-assisted laser desorption /ion ization  
tim e-of-flight m ass spectrom etry (MALDI-TOF-MS) m easure­
m ents were perform ed on  a Bruker D alton ics micrOTOF 
(Bremen, Germany) u sin g  2,5-dihydroxybenzoic acid as a 
matrix. 3H NMR spectra were recorded in  DM SO-d6 so lu tion s  
o n  a Varian 500 MHz spectrom eter. Optical spectra in  the UV- 
visib le region were recorded w ith Varian 50 scan, Shim adzu  
UV-Vis-3101 and Shim adzu UV-Vis-2101 spectrom eters u s in g  a 
1  cm  path length cuvette at room  tem perature.

The phase transition behaviors o f  the Pcs were observed by 
m eans o f  a polarizing optical m icroscope (POM) (Leitz W etzlar 
O rthoplan-pol.) equipped w ith a h ot stage (Linkam  TMS 93) 
and a tem perature controller (Linkam  LNP). Therm ogravi- 
m etric analysis (TGA) was carried out on  a M ettler T oledo  
Stare Therm al Analysis System  at a rate o f  10 °C m in - 1  in  a 
nitrogen flow  (50 mL m in -1). Transition tem peratures were 
determ ined at a scan rate o f  10 °C m in - 1  u s in g  a M ettler  
Toledo Star Therm al Analysis System/DSC 822. The differential 
scann in g  calorim eter (DSC) system  w as calibrated w ith  3 m g  
ind iu m  sam ples under a nitrogen atm osphere. X-ray diffrac­
tion  m easurem ents (XRD) (Cu-Ka-radiation) were perform ed  
u sin g  a Bruker Advanced D 8  diffractom eter.

Ram an spectra were recorded w ith  a T riplem ate, SPEX 
spectrom eter equipped w ith  CCD detector in  back-scattering  
geom etry. The 488 nm , 40 m W  line o f  an  Ar-laser was u sed  for  
the spectral excitation.

Scanning electron m icroscopy (SEM) im ages were obtained  
u sin g  a FEI-nova nan osem  2 0 0 .

Spectroscopic ellipsom etry was used  to  d eterm ine the th ick­
n ess o f  the film s u sin g  a W oolam  M -2000  V ™  rotating analy­
ser spectroscopic e llipsom eter in  the spectral range o f  
400-800  nm . DC-conductivity m easurem ents were carried out  
u sin g  a Keithley 4200 sem iconductor characterization system .

Synthesis

2,3,9,10,16,17-Hexalds(4,7,10-trioxaundecan-l-sulfanyl)-23(24)- 
(1-pyrenylmethoxy) phthalocyaninato zinc(n) (3). 4-(l-Pyrenyl- 
m ethoxy)phthalonitriIe (1 ) ( 1 0 0  m g, 0.28 m m ol), 4 ,5-b is(4 ,7 ,10- 
trioxaundecan-l-sulfanyl)phthalonitrile  (2) (405.7  m g,
0.84 m m ol), l,8-d iazabicyclo[5.4.0] un dec-7-ene (DBU) 
(0.08 mL, 0.56 m m ol) and  Zn(OAc) 2 ( 1 0 2  m g, 0 .56 m m o l) were 
refluxed in  dry n-pentanol (5 mL) for 24 h un d er  an argon  
atm osphere. T hen, the reaction mixture w as co o led  to  room  
temperature and poured in to  n-hexane. T he green so lid  
product was precipitated and collected  by filtration. T he so lid

9 0  | D alton Trans., 2 0 1 4 ,4 3 ,4 6 8 9 -4 6 9 9 This journa l is ©  T he  Royal Socie ty  o f  C hem istry  2014
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 s d issolved in d ich lorom ethane and filtered in order to
rm ove any inorganic im purities then concentrated. Firstly, 
_ B 2  type phthalocyanine was elim inated  over a silica gel 
^ lu m n  usin g  a 50 :1  d ich lorom ethan e-ethan ol mixture, then  
—'m m etrical AB3 type phthalocyanine 3 was obtained u sin g  a 

: 1  d ich lorom ethan e-ethan ol mixture and finally sym m etric 
-4 type phthalocyanine 4 was obtained u sin g  a 1 0 :1  dichloro- 

eth an e-eth an o l mixture as the eluent.
C om pound 3: FT-IR [(ATR) i w / c n T 1]: 3190-3040  (Ar-CH), 

- 6 0 - 2 8 5 5  (CH), 1602 (A r-C =N ), 1459 ( C = C ) ,  1358 (C-N), 
60 (C-O-C), 1084 (-OCH 3 ). UV-Vis (DMF): 2max nm  (log e) 
1 (4.35), 624 (3.63), 373 (3.98), 344 (3.95). XH-NMR 

- 0 0  MHz, DMSO-d6) 5 ppm: 8 .97-7 .64  (br, m, 18H, Ar-H), 
-9 0  (bs, 2H, OCH2), 4 .00 -3 .94  (m, 12H, OCH2), 3 .75 -3 .68  (m, 
22H, OCH2), 3 .68 -3 .60  (m, 24H, SCH2, OCH2), 3 .57 -3 .47  (m, 
I2H, OCH2), 3 .40-3 .34  (m, 12H, OCH2), 3.15 (s, 18H, OCH3). 
Ilem ental analysis: calcd (%) for C9 1 H 1 1 0 N 8 O1 9 S6 Zn: C 58.21, 

5.90, N 5.97; found: C 58.56, H 6.01, N 5.71. MS (MALDI- 
F), m lz  (%): Calcd 1877.69, found 1878.30 [M + H]+. 
Preparation o f  phthalocyanine-SW CNT com posite  m aterials. 
ZnPc/SWCNT dispersion was prepared by adding a sm all 

:m ount (1-2 wt%) o f the SWCNTs to the zinc phthalocyanine  
lution in dichlorom ethane and subjected to sonication  

curing 1 -2  hours to enhance the nanotube solubility. Then the  
J m s  o f com posites o f 3-SW CNT and 4-SW CNT were deposited  

spin coating or drop-casting o f the d ispersion in dichloro- 
ethane onto the glass slides for further investigation.

Paper

Results and discussion
Synthesis and characterization

The synthesis o f the phthalonitrile derivatives (1 and 2, 
Schem e 1) has been  previously reported . 3 3 ’3 6  The synthesis  
o f  unsym m etrical phthalocyanines is com plicated  com pared  
to sym m etrically substitu ted  Pcs as they often  require 
extensive purification m eth ods to obtain  the desired pro­
ducts. Schem e 1 show s the chem ical structure and the syn­
thetic route o f com pound 3. The statistical condensation  
m ethod o f two phthalonitriles 1  and 2  was em ployed in  
th is work.

The reaction for the form ation o f  3 w as perform ed by a stat­
istical m ethod u sin g  a 1 : 3  ratio o f  phthalonitrile  1 (A ): 
phthalonitrile 2 (B). As a result, the AB3 (3), A2B2 and B4 (4) 
isom ers were obtained in different am oun ts during the syn­
thesis o f  com pound 3. The three m ain  phthalocyanine isom ers  
(A2B2, AB3 and B4), d isplaying different polarities, were 
readily separated on  silica-gel co lu m n chrom atography. Firstly 
the e lu tion  o f the A2B2 derivative (eluent: d ich lorom eth an e-  
ethanol 50/1) follow ed by the desired AB3 phthalocyanine 3 
(eluent: d ich lorom ethan e-ethan ol 25/1), and finally sym m etric  
B4 phthalocyanine 4 (eluent: d ich lorom eth an e-eth an o l 10/1) 
were obtained as pure sam ples after purification by colum n  
chrom atography. The synthesis and characterization o f  the B4 
type Zn(n) phthalocyanine derivative (4) w as a lso  previously  
reported by u s . 3 8

s
r

/  *5 * \
, 0  g g  o./  J \  1y  j r  v-o S:

f°
? (4)

J\

1 eq 

0)
3 eq 

(2)

trace amount

trace amount

.cheme 1 Synthesis of target zinc(n) phthalocyanine compounds. Reagents: (i) K2C 03, DMF. (ii) Zn(OAc)2, n-pentanol, DBU.
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i ig .  1  U V -vis o p tica l a b so r p tio n  sp e c tra  o f  3  an d  4 in DMF (1 x  1CT5 M).

The characterization o f  com plex 3 was achieved u sin g  
_iatrix-assisted laser desorption/ionization-tim e o f flight 
■MALDI-TOF) (F ig.Sl, ESIf), FT-IR (Fig. S2, ESIf), and proton  
“ uclear m agnetic resonance (1 H-NMR) (Fig. S3, ESIf) spectro­
scopies and elem ental analysis.

The optical absorption spectra o f the so lu tion s o f com ­
oun ds 3 and 4 in DMF are show n in Fig. 1. The absorption  

rpectrum  of ZnPc 4 in DMF con sists o f  a Soret band at 372 nm  
znd a Q-band at 704 nm . The introduction o f  one pyrene 

oiety leads to a sm all sh ift in the Soret band to 371 nm  and  
:he Q-band to 698 nm .

Liquid ctystalline properties o f  zinc phthalocyanines. 
according to the therm ogravim etric analysis (TGA) results, it 

as observed that com poun ds 3 and 4 both start to decom pose  
-bove 200 °C. In order to avoid decom position , DSC m easure­
m ents were perform ed in the temperature range o f  

25-200  °C. The differential scann in g  calorim eter (DSC) 
m easurem ents o f  com poun d 3 did not show  any significant 

eak corresponding to any phase transition (Fig. S4, ESIf). 
his may be the result o f  interrupting the heating cycle before 

reaching the clearing point. However, in the polarized  
optical m icroscope (POM) m easurem ents it was observed that 
'om pound 3 becam e an isotropic liquid at about 230 °C 
accom panying decom position . W hen we cooled  th is sam ple  
rrom isotropic m elt, a typical hexagonal texture was form ed at 
_bout 200 °C. This hexagonal texture rem ained constant until 

30 °C during cooling. A fingerprint texture o f  the rectangular 
hase was observed below  130 °C as can seen  in Fig. 2 con- 

rirming the transition from  hexagonal phase to rectangular 
hase. Sim ilar transitions have been observed in the  

literature . 3 9

In the DSC m easurem ents, com poun d 4 show s a transition  
Eit about 100 °C for all the heating cycles and at 80 °C for all 

oolin g  cycles (Fig. S5, ESIf). However, if  the sam ple was pre- 
ared by evaporating a dichlorom ethane solution  o f com ­
ound 4 on one glass slide, a m osaic texture typical for planar 

J ig n m e n t was obtained at room  temperature w ithout anneal­
ing. In the POM m easurem ents it was observed that com pound  

becam e an isotropic liquid at about 236 °C accom panying  
ecom position .

Fig. 2  POM m e a su r e m e n ts  for  c o m p o u n d  3. (a) H o m e o tr o p ic  a lig n ­
m e n t in th e  C o lh m e s o p h a s e , 2 0 0  °C. (b) P lanar a lig n m e n t  in th e  C o lh 
m e s o p h a s e , 2 0 0  °C. (c) H o m e o tr o p ic  a lig n m e n t in th e  C o lr m e s o p h a s e ,  
25  °C. (d) Planar a lig n m e n t in th e  C olr m e s o p h a s e , 2 5  °C. M agn ification :  
4 0 x .  H e a t in g -c o o lin g  rate: 2 0  °C m in-1 .

The identification of m esoph ases was carried out by X-ray 
diffraction (XRD) m easurem ents at room  tem perature. D ichloro­
m ethane solutions o f 3  and 4 were dropped on g lass slides  
and left for the solvent to evaporate at room  tem perature. The 
powder diffraction patterns o f 3  and 4 conta in  typical reflec­
tions o f a colum nar m esoph ase o f substitu ted  Pcs (Fig. 3 and  
4 ,  Table l) .  In the low angle region ( 2 6 = 4°-6°), the phthalo- 
cyanine derivatives produce a sharp peak w ith  either a 
shoulder or a sm all additional peak. In the literature, it is 
observed that, in the case o f the rectangular colum nar phase, 
the (10) peak o f the Colh m esoph ase sp lits in  the (11) and  (20) 
reflections o f  the Colr ph ase . 3 9  Additionally, it is know n that 
the lattice constants a and b can be calculated from  the  
equation: H d2hk\ = h2/a 2 + k2lb 2. Based on th is inform ation , 
possib le  indexation o f the Colr m esop h ase  can be proposed as 
in Table 1. These results suggest a tw o-d im ension al rectangu­
lar lattice w ith disc-like m olecu les stacked in  co lu m n s in a rec­
tangular arrangem ent. Both XRD patterns o f  3  and 4 show  a 
Colr phase w ith P lg g  symmetry.

ZnPc-SWCNT com posites. Binary m ixtures o f  SWCNTs w ith  
phthalocyanine were prepared by m ixing the two com p on en ts  
in dichlorom ethane follow ed by removal o f  so lvent and drying  
under vacuum . Four com posites o f ZnPc-SW CNT (com p oun ds  
3  and 4) conta in ing  1 and 2 wt% carbon nan otu b es were pre­
pared and analyzed by polarizing optical m icroscopy. All 
ZnPc-SWCNT com posites conta in ing  1 and 2 wt% were found  
to be liquid crystalline in nature. Sim ilar to the pure ZnPcs, 
they show  textures o f colum nar m esop h ases at room  tem pera­
ture (Fig. 5). Fig. 5a and 5d show  the typical m osa ic  textures o f  
pure phthalocyanine derivatives. For the SWCNT com p osites  
(Fig. 5b, c, e, f), the texture is obviously different, especia lly  in

-1-92 | Dalton Trans., 2014, 43, 4689-4699 This journal is © The Royal Society of Chemistry 2014
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=he case o f  3-SW C N T (Fig. 5b, c), to that o f the pure m aterials, 
in c lu sion  o f carbon nanotubes into  the colum nar matrix 
ceads to an increase in the dom ain  size, especially  in the case  

f  the com posite  3-SW CNT. We can suggest that SWCNTs d is­
persed in the LC matrix can act as seeds for oriented dom ain  
rrowth as was observed in  the case o f  nem atic liquid  
-ly sta ls . 4 0 - 4 2

In the case o f  com posite  3 -S W C N T -l%  the fan-shaped  
texture is still persistent whereas a star-like layered structure is 

learly seen  for com posite  3-SW CNT-2% . It is necessary to 
ii en tion  that w hen we tried to insert m ore than 2  wt% 
"WCNTs in the colum nar liquid crystal we observed sm all 

lack aggregates o f  CNTs under the polarizing m icroscope, 
—hich m eant that the CNTs were not hom ogeneously  dis- 

ersed in the liquid crystal matrix o f  the com posites w ith such  
high CNT additive concentration. In the case o f com posite  
SW CNT the form ation o f  in h om ogen eou s film s conta in ing

a sm all am ount o f  black aggregates o f CNTs starts to be  
observed even at 2 wt% SWCNTs.

In add ition to m icroscopic analysis, we also  exam ined  the  
effect o f  SWCNTs on the phthalocyanine phase transitions  
u sin g  differential scann in g  calorimetry. No add ition al phase  
transition peaks from  the phthalocyanines w ith ou t SWCNTs 
characteristic o f a phase separated system were detected in  
the calorimetric studies. However, it is necessary to m ention  
that w hen we annealed the 3-SW CNT com posites betw een  
two glass slides, we also observed by POM the sam e rectangular- 
hexagonal phase transitions as was observed for pure 3 (Fig. S6 , 
ESIf). If we compare the transitions, we can conclude that the  
transition temperature from rectangular to hexagonal m eso­
phase increases with the addition of SWCNTs (Table 2).

The X-ray diffraction patterns o f the co m p o sites at room  
temperature show  sim ilar features to th ose  o f  co m p o u n d s 3 
and 4 confirm ing the rectangular colum nar m eso p h a se  o f  the

20, deg 20, deg 20, deg

of compound 3 and its composites at room temperature.

is journal is © The Royal Society of Chemistry 2014 Dalton Trans., 2014, 43, 4689-4699 | 4693
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om posites as show n in Fig. 3 and 4. The colum nar m eso­
p h a se  structure is not destroyed by the inclu sion  o f the 
TWCNTs, however a sh ift o f the corresponding XRD peaks is 
observed. The XRD patterns o f  com pound 3 at 20 °C display 
-he m ost intensive diffraction peak at 26 = 4 .52° corresponding  
to  an intercolum nar distance o f 19.53 A (Fig. 3). This peak  
ishifts to 4 .56° (d  = 19.36 A) in  the XRD pattern o f  the com po­
s ite  3-SW CNT conta in ing  1 wt% SWCNTs and to 4.66° (d  -  
18 .95  A) in that o f  the com posite  3-SW CNT conta in ing  2 wt% 
SWCNTs. This ind icates that the inc lu sion  o f carbon nan o­
tubes into  the colum nar matrix leads to a decrease in the inter­
colum nar distance. In the case o f  com poun d 4 the  
corresponding diffraction peak at 26 -  4.22° (d -  20.91 A) shifts 
to 26 = 4.54° (d  = 19.45 A) upon addition o f  1 wt% o f SWCNT, 
however the addition  o f  m ore am ount o f SWCNT (2 wt%) leads 
back to an increase in the intercolum nar distance to 20.44 A 
w hich can be associated w ith the form ation o f an inhom o- 
geneous m aterial as was already revealed by POM.

The XRD patterns o f the 3-SW CNT com posites also show  
the Colr phase w ith P2gg symmetry, however it is obvious that

■4694 | Dalton Trans., 2014, 43, 4689-4699

the num ber o f  diffraction peaks increases after the add ition  o f  
SWCNTs to com pound 3. This appears to be explained by the  
form ation o f dom ains w ith different orientations. As opp osed  
to the Colr phase w ith P2gg sym m etry in  the case o f  4, the XRD 
patterns o f 4-SW CNT-l%  and 4-SWCNT-2% show  a Colr phase  
w ith C2 mm  sym m etry (hk: h + k = 2n, hO: h = 2n, Ok: k - 2 n  for 
C2 mm; hk: no cond itions, hO: h = 2n, Ok: k = 2n for P2gg).

Thin film s o f  the com posites 3-SW CNT and 4-SW CNT were 
deposited  by drop-casting o f  their so lu tion s in  d ich loro­
m ethane onto  interdigitated electrodes to exam ine the con d u c­
tivity as well as m olecu le  orientations in  the film s.

The orientation o f  the phthalocyanine m olecu les in  the  
film s o f  the pure ZnPc derivatives and their co m p o sites  were 
studied by the m ethod  o f  polarized Ram an spectroscopy. The 
principles o f  Polarized Ram an spectroscopy for investigation  
o f m olecular film  orientation are described in detail in earlier  
p u blications . 4 3 - 4 8  This m ethod  is based on  the m easurem ent 
o f  the ratio o f in ten sities o f  the bands for each sym m etry type 
o f  vibrations in the Raman spectra m easured in the parallel 
(7ji) and cross (7y) polarizations o f incident and scattering ligh t

This journal is © The Royal Society of Chemistry 2014
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im pound Phase Observed spacings (A) Calculated spacings (A) Lattice param eters (A) M iller indices (h  k)

Colr 2 1 .2 7 4 4 2 1 .2 7 4 4 a  = 3 9 .0 7 ( 1  1 )
1 9 .5 3 4 6 1 9 .5 3 4 6 b  = 2 4 .8 0 ( 2  0 )
1 1 .5 9 0 1 1 1 .8 2 3 1 ( 1  2 )

9 .8 4 0 0 9 .7 6 7 5 (4 0)
7 .1 4 3 8 7 .4 5 3 1 (5 1)

— S W C N T -1 %  Colr 2 1 .5 2 9 6 2 1 .5 2 9 6 a  = 3 8 .7 3 ( 1  1 )
1 9 .3 6 2 4 1 9 .3 6 2 4 b  = 2 5 .9 0 ( 2  0 )
1 2 .2 9 7 1 1 2 .2 7 2 1 ( 1  2 )
1 1 .0 6 6 1 1 0 .7 5 8 3 ( 2  2 )

9 .8 8 2 1 9 .6 8 2 4 (4 0)
7 .2 4 9 0 7 .1 7 2 2 (3 3)
5 .5 1 4 4 5 .5 3 2 9 (7 0)
5 .3 3 1 2 5 .4 1 0 5 (7 1)

— S W C N T -2 %  Colr 2 1 .1 1 9 4 2 1 .1 1 9 4 a  =  3 7 .9 0 ( 1  1 )
1 8 .9 5 0 4 1 8 .9 5 0 4 b  =  2 5 .4 3 ( 2  0 )
1 2 .0 0 7 9 1 2 .0 5 7 6 ( 1  2 )
1 0 .8 0 0 4 1 0 .5 6 0 4 ( 2  2 )

9 .6 5 0 8 9 .4 7 5 0 (4 0)
7 .1 4 3 5 7 .0 4 0 3 (3 3)
5 .4 5 4 2 5 .4 1 4 3 (7 0)
5 .2 9 9 3 5 .2 9 5 7 (7  1)

Colr 2 3 .8 5 6 6 2 3 .8 5 6 6 a = 4 1 .8 4 ( 1  1 )
2 0 .9 1 9 7 2 0 .9 1 9 7 b = 2 9 .0 4 ( 2  0 )
1 3 .4 6 6 9 1 3 .7 0 5 2 ( 1  2 )
1 2 .0 3 7 9 1 1 .9 2 0 3 ( 2  2 )
1 0 .3 2 4 3 1 0 .4 6 0 0 (4 0)

6 .0 2 9 4 5 .9 7 7 2 (7 0)
— S W C N T -1 %  Colr 2 2 .2 9 9 0 2 2 .2 9 9 0 a = 3 8 .9 0 ( 1  1 )

1 9 .4 4 9 1 1 9 .4 4 9 1 b  = 2 7 .2 1 ( 2  0 )
1 0 .9 6 2 0 1 1 .1 5 5 3 ( 2  2 )

9 .8 6 4 3 9 .7 2 5 0 (4 0)
7 .2 3 9 2 7 .4 3 6 9 (3 3)

-S W C N T -2 %  Colr 2 3 .6 6 8 9 2 3 .6 6 8 9 a = 4 0 .8 8 ( 1  1 )
2 0 .4 4 0 2 2 0 .4 4 0 2 b  = 2 9 .0 3 ( 2  0 )
1 1 .3 2 5 1 1 1 .3 2 5 1 ( 2  2 )
1 0 .2 2 5 8 1 0 .2 2 5 8 (4 0)

7 .4 1 9 1 7 .4 1 9 1 (0 4)

Fig. 5  Polarizing o p tica l m ic r o sc o p y  im a g e s  o f  th e  film s o f  p ure 3  (a) and  its c o m p o s ite s  co n ta in in g  1 wt% (b), 2  wt% (c) SW CNTs; p ure 4  (d) an d  its 
c o m p o s it e s  c o n ta in in g  1 wt% (e), an d  2 wt% ( f ) SW CNTs, o b ta in e d  u n d er c r o ss e d  p o larized  light.

and allows estim ation o f the angle o f m olecu le  inclination m odes are Raman active.46,4' The detailed  analysis o f  the
relative to the substrate surface. A phthalocyanine m olecu le is Raman tensors for the D4h sym m etry group and the determ i-
characterized by D4h group sym m etry where Alg, Blg, B2s, Es nation o f the m olecular orientation are described  in ref. 43.

This journal is © The Royal Society of Chemistry 2014 Dalton Trans., 2014, 43, 4689-4699 I 4695
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able 2 Transitions from rectangular phase to hexagonal phase 
bserved during heating and cooling under POM for compound 3 and 
; composites

ompound Transition temperatures (°C)

-SWCNT-1%

-SWCNT-2%

1 3 5
Colr ^  Colh

1 3 0

1 7 3
Colr ^  Colh

1 6 7

1 8 0
Colr ^  Colh

ate: 20 °C min 1, CoIr: columnar rectangular phase, Colh: hexagonal 
olumnar phase.
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Fig. 6 Polarized Raman spectra of 3 and 3-SWCNT-2% films in parallel 
(ii) and cross (ij) polarizations of incident and scattered light. The Raman 
bands labelled with an asterisk correspond to the SWCNTs.

The Ram an spectra o f  the film s o f  the pure 3 and  4 deriva­
tives and their com posites deposited  on  g lass substrates in  
parallel (ii) and cross (ij) polarizations are show n in  Fig. 6  and  
7, respectively. The in ten sities o f  the strongest lin es w ith  
known sym m etry types are m easured. It has already been  
show n that there are no  intensive ban ds belon g in g  to organic  
substituents in  the range from  300 to 1650 cm - 1  in  Ram an  
spectra o f  substitu ted  phthalocyanines due to the resonance  
character o f  the Ram an spectra excited by the lasers o f  the  
visib le region .4 4

Thus, all bands in  the Ram an spectrum  belon g  to the  
bend ing  and stretching vibrations o f  the phthalocyanine  
m acrocycle. The determ ination  o f  the sym m etry types o f  all 
observed m od es was m ade on the basis o f  the polarized  
spectra o f  ZnPc so lu tion s in  CHCl3  and by analogy w ith the  
Ram an spectra o f  the m etallophthalocyan ines w ith sim ilar  
su b stitu en ts . 4 9  The sym m etry types o f  the m ost intensive  
bands used  for the determ ination  o f  film  orientation are in d i­
cated in  Fig. 6  and 7. The average values o f  I-Jl^ ratios for each  
sym m etry type o f  vibration are listed  in  Table 3.

1146 1508

15591081 1382
749 15941289857

w
czyn
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£
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1000 1200 

Raman shift, cm"1
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Fig. 7 Polarized Raman spectra of 4 and 4-SWCNT-2% films in parallel 
(ii) and cross (ij) polarizations of incident and scattered light. The Raman 
bands labelled with an asterisk correspond to SWCNT.

Table 3 Measured I,,/!,} ratios for Aig, Blg and B2g modes in the Raman 
spectra of the ZnPc and their composite films and calculated angles of 
the ZnPc molecule inclination relative to the substrate surface

7ji//jj ratios for Alg, Blg 
and B2 g modes

Film Blg B2g

3 3.7 3.6 1.4
3 -SW CNT-2 % 3.9 3.2 1.4
4 4.0 2.9 1.3
4-SWCNT-2% 4.1 1.3 1.3

Angle (°) 
a
85
82
76
Disordered film

The angles o f  inclination  o f  the m o lecu les relative to the  
substrate surface (a) in  the film  o f  pure 3 and  4 derivatives 
were calculated to be 85° and 76°, respectively. The in c lu sion  
o f  carbon nanotubes in to  the colum nar m atrix o f  3-SW CNT  
d o esn ’t lead to b ig  changes in  the inc lination  angle o f  the  
ZnPc m olecu les relative to  the substrate surface. On th e  con­
trary, the film  o f  4-SW CNT is disordered because the ratio o f  
in ten sities o f  the corresponding vibrations in  the (ii) and (ij) 
spectra were c lose  to  that in  the spectra o f  so lu tion .

SEM im ages o f  the film s o f  the co m p osites 3-SW CNT co n ­
ta in ing  1 wt% and 2 wt%, and 4-SW CNT con ta in in g  2 wt% o f  
SWCNTs are given in  Fig. 8 (a,b) and 8 (c), respectively. The  
film s con sist o f  thicker nanotubes o f  1 0 -3 0  nm  in  d iam eter. 
T hese nanotubes appear to con sist o f  bu n d les o f  SWCNTs 
wrapped by layers o f  LC phthalocyanine m olecu les . W e suggest  
that the core part o f  the phthalocyanine LC m olecu les anchors  
around the SWCNT walls, m eanw hile  the tail part repels s id e ­
ways to enhan ce the n-n  stacking by m axim izing  the h exa g o n -  
hexagon interactions betw een the two sp ecies . A sim ilar  
schem e o f  interaction betw een the porphyrin derivative ZnP 
(alkyl) 4 and the surface o f  the sem ico n d u ctin g  SWCNTs was 
visualized by perform ing DFT calculations in  ref. 50.
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ig. 8 SEM images of the films of the composites 3-SWCNT {a - surface view, b - edge view) containing 2 wt% of SWCNTs and 4-SWCNT (c) con- 
aining 2 wt% of SWCNTs.

able 4 Calculated conductivity of pure 3 and 4 derivatives and their 
omposites 3-SWCNT and 4-SWCNT containing 1 and 2 wt% of 
WCNTs

ilm Conductivity (Q 1 m *)

8.2 x 10~6
-SWCNT-1% 1.9 x 10~2
-SWCNT-2% 3.6 x 10“2

4.4 x 10-6
-SWCNT-1% 4.6 x 10-3
-SWCNT-2% 8.6 x 1(T3

In the case o f  3-SWCNT-2% these thicker nanotubes have a 
tendency to lie stretched m ainly in one direction in the LC 
matrix (Fig. 8 (a)), w hile in  4-SWCNT-2% they are more tangled  
and disordered (Fig. 8 (c)). The edge view o f  the 3-SWCNT-2%  
film  (Fig. 8 (b)) shows that the film s o f  3-SWCNT-2% have a 
layered structure w ith the layers aligning parallel to each other 
and with the phthalocyanine m olecules perpendicular to the 
layers according to the data o f  polarized Raman spectroscopy. 
The m ore ordered structure o f  the 3-SWCNT film s appears to be 
connected to the presence o f  the pyrene groups in  com pound 3 
w hich  are known to interact strongly w ith SWCNTs via  jc-stack- 
in g  interactions . 2 9 "3 2  M eanw hile, d iscotic  LC m aterials derived  
from  triphenylene have been  reported to orient CNTs . 1 9 ,2 0  

However, ow ing to their rather low  m iscib ility  w ith pristine  
CNTs, the use o f  CNTs covalently m odified  w ith  triphenylene  
was essentia l.

T he I(v) d epend en cies for the film s deposited  onto  interdi- 
gitated electrodes are given in  Fig. S7 (ESI|). The calculated  
conductivities are sum m arized in  Table 4. The lateral condu c­
tivity tends to increase w ith  increasing SWCNT concentration. 
For exam ple, the conductivity o f  the 3-SWCNT-2% com posite  
film s is about 4 orders o f  m agnitude h igher than that o f  the 
pure film s. It is necessary to m ention  that an  increase in  
SWCNT concentration above 2% leads to the form ation o f  
n on -hom ogeneous com posite  film s conta in ing  sm all particles 
o f  aggregated nanotubes. The larger electrical conductivity o f  
the nan ocom p osites arises due to the high ly delocalized  Jt elec­
tron density o f  phthalocyanine m olecu les bon ded  to SWCNTs 
w h ich  provide a facile path for electronic conduction . An 
increase in  conductivity in  the region o f  2 -4  orders o f

m agnitude in  dependence on the orientations o f  the LC 
co lu m ns and SWCNTs has been  observed in  the case o f  d isco ­
tic ion ic  liquid  crystals o f  triphenylene derivatives bearing six 
im idazolium  ion  pend an ts . 21

Conclusions
In th is study, the investigation o f  the d isp ersion  o f  single-wall 
carbon nan otub es in  liquid  crystalline asym m etric Zn(n) 
phthalocyanine bearing one pyrene and six  polyoxy u n its (AB3 
type) and sym m etric Zn(n) phthalocyan ine bearing eigh t 
polyoxy u n its (B4 type) was carried out. T he phthalocyanine  
derivatives were synthesized  by u sin g  a statistical m eth od  w ith  
two different substitu ted phthalon itriles (A and  B). B oth pure 
com poun ds and their com posites w ith  SWCNTs show ed liquid  
crystalline properties w ith rectangular colum nar stacking at 
room  tem perature. POM, Ram an spectra and conductivity  
investigations indicate intercalation o f  th e  SWCNTs in to  the  
matrix o f  d iscotic  liquid  crystalline z in c ph thalocyan ines. The 
disp ersion  o f  SWCNTs in  the liquid  crystalline phthalocyan ine  
m atrix provide a route for syn thesizing  novel m aterials w ith  
interesting properties usefu l for app lications in  m any devices  
su ch  as photoconductors, ligh t em itting  d iod es, solar cells, 
sensors, optical data storage, th in  film  transistors and  so  on. 
The nature o f  the m esoph ases is n o t altered in  th ese  com p o­
sites. On the other hand, the film s o f  co m p o sites  exhibit 
enhan ced  electrical conductivity o f  about four orders o f  m ag­
nitude com pared to the corresponding pure ph thalocyan ines.

T he inc lu sion  o f  carbon nan otub es in to  the colum nar  
matrix leads to an increase in  the d o m ain s size, especially  in  
the case o f  com posite  3-SWCNT. The film s o f  3-SW CNT have 
a layered structure w ith  the layers a lign in g  parallel to  each  
other and w ith  the phthalocyanine m olecu les  perpendicular to 
the layers according to the data o f  polarized Ram an  
spectroscopy.
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The hybrids of single walled carbon nanotubes (SWCNTs) w ith  sym m etrically  octasubstitu ted  zinc 
phthalocyanine (2) bearing eight polyoxyethylene groups and asym m etrically  substitu ted  zinc ph thalo ­
cyanine (1) bearing one pyrene and six polyoxyethylene groups as side chains have been prepared  and 
characterized by Raman and fluorescence em ission spectroscopies, scanning electron and transm ission 
electron (SEM and TEM) microscopies, and therm ogravim etric analysis. The pyrene group w as chosen 
to enhance the  interaction of phthalocyanine m olecules w ith SWCNTs. Thin films of pristine SWCNTs 
and SWCNT/ZnPc hybrids w ere prepared by drop casting onto in terd ig itated  electrodes and em ployed 
as active layers to detect am m onia vapour (1 -200  ppm ) by m easuring electrical resistance changes. A 
com parative analysis of sensors’ response of pristine SWCNTs and SWCNT/ZnPc hybrid films to am m onia 
vapour w as carried ou t to dem onstrate  the synergic effect betw een SWCNTs and ZnPc derivatives. Influ­
ence of pyrene substituen t in the phthalocyanine ring on the hybrid form ation and their sensor response 
has also been discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hybrid and com posite materials play more important role in 
nanoelectronics due to the synergic effects on the electrical, opti­
cal, or mechanical properties of tw o or more com ponents [1-3]. 
The use of carbon nanotubes (CNTs) and their hybrids in sensing  
has been extensively studied in recent years and progress in CNT- 
based sensor developm ent for gas detection has been the subject of 
several reviews [4 -6]. The use of nanostructured materials for gas 
sensing has been of great interest due to their unique and interest­
ing properties including high surface-to-volum e ratio and sensitive  
electronic structures [7 -10]. Upon exposure to gas m olecules, the 
electrical resistance of single-w alled carbon nanotubes (SWCNTs) 
changes and the threshold voltage is shifted due to charge trans­
fer betw een the sem iconducting SWCNT and electron-w ithdrawing  
and electron-donating m olecules.

* C orresponding au thor. T e l: +90 262 6053019; fax: +90 262 6053005. 
E-mail address: durm us@ gyte.edu.tr (M. Durmu§).

h ttp ://dx .do i.o rg /10 .1016 /j.snb .2014.03.101 
0925-4005 /©  2014  Elsevier B.V. All rights reserved.

It is well known that defect sites on SWCNTs play an im por­
tant role in the electrical response for the binding o f chem ical 
vapor m olecules [11]. It w as found that the chem ical sensitiv­
ity of SWCNTs could be significantly increased by controllably 
introducing a low  density of defects along the sidew alls o f the 
tubes [11,12]. The other w ay to increase sensitivity o f SWCNTs is 
achieved through introduction of som e functional groups [13] or 
by producing hybrids w ith different com pounds [14,15].

As ammonia is a low  boiling point com pound and volatile, it is 
very important to develop sensitive devices to detect the gaseous 
NH3 m olecules. Chemical sensing application o f SWCNTs for NO2  

and NH3  gases w as first reported by Kong et al. [16]. Other stud­
ies have revealed that sem iconducting SWCNTs could detect small 
concentrations of NH3  and NO2  w ith high sensitivity at room tem ­
perature [17].

On the other hand, metal phthalocyanine derivatives possess 
high sensitivity, fast response, ease o f processability, as w ell as a 
scope of operation at room temperature; they have therefore been  
studied extensively as thin films for chem ical detection [18]. Jiang 
et al. have described the process o f interaction betw een  copper 
tetra-4-(2,4-di-tert-am ylphenoxy)phthalocyanine (tapCuPc) and

http://www.elsevier.com/locate/snb
mailto:durmus@gyte.edu.tr
http://dx.doi.org/10.1016/j.snb.2014.03.101
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ig. 1. Asymmetrical (1) and symmetrical (2) zinc phthalocyanine derivatives.

I3  [ 19]. Two different types o f am phiphilic phthalocyanines have 
en compared for their sensing properties to NH3  [20]. Sensor 
sponse o f spin-casted film s o f copper, lead and nickel 1,8,15,22- 
tra-iso-pentyloxyphthalocyanine (Cu, Pb and NiPc(iso-PeO)4 ) to 
imonia vapour w as studied by W ang et al. [21 ].
The com bined excellent properties o f carbon nanotubes and 
thalocyanines w ere dem onstrated for the developm ent o f sen- 

tive NH3 sensors based on CNT/phthalocyanine hybrids [22,23]. 
e evidence so far has show n that these hybrids are expected to 
more efficient in im proving the relative response o f hybrid films 

mpared to the pristine CNT or phthalocyanine species. There are 
0  different routes for hybridising m etal phthalocyanines and 

rbon nanotubes; in the first type CNT are functionalized w ith  
etallophthalocyanine derivatives through formation o f covalent 
nding [24 -26] w hile in the second type the hybrid can be 

rmed through non-covalent interaction betw een the tw o m ate- 
als [27-29].

In this work, hybrids o f SWCNTs w ith sym m etrically octa- 
bstituted ZnPc bearing eight polyoxyethylene groups (2) and 
ym m etrically substituted ZnPc bearing one pyrene and six poly- 
yethylene groups (1) as substituents (Fig. 1) w ere prepared and 
aracterized. The pyrene group w as chosen to enhance the inter- 
tion o f the phthalocyanine m olecules w ith  the CNTs. This class 

f organic m olecules is known to interact strongly w ith  SWCNTs 
ia TT-stacking interactions [30-33]. To dem onstrate the potential 
pplications o f the SWCNT/ZnPc hybrids in gas sensing, a conduc- 
metric gas sensor device based on these hybrid materials has 

een fabricated. A comparative analysis o f sensor response o f pris- 
ne SWCNTs and SWCNT/ZnPc hybrid films to am m onia vapour 
- 2 0 0  ppm) w as carried out to dem onstrate the synergic effect 

etw een  SWCNTs and ZnPc derivatives. Influence of pyrene group 
s substituent in the phthalocyanine ring on the hybrids formation 
nd their sensor response is discussed.

. Experimental

.1. Materials

Synthesis and characterization o f zinc(II) phthalocyanine 
erivatives 1 and 2 (Fig. 1) have already been described in an earlier 
ublication [34]. SWCNTs w ere purchased from Sigma-Aldrich and 
sed w ithout further purification and chem ical treatment.

.2. Equipment

Optical spectra in the UV-visible region w ere recorded w ith  
himadzu UV -vis-3101 and 2101 spectrom eters using 1 cm path 
ngth cuvette at room temperature. Fluorescence em ission spectra 
ere recorded on a Varian Eclipse spectrofluorom eter. Thermo- 
avimetric analysis (TGA) w as carried out on a Mettler Toledo

STARe Thermal Analysis System at a rate o f 10 °C m in - 1  in nitrogen  
flow  o f 50 mL m in-1 .

Raman spectra w ere recorded w ith a Triplemate, SPEX spec­
trometer equipped w ith CCD detector in back-scattering geom etry. 
The spectral excitation w as achieved using 488 nm line Ar laser 
w ith  the pow er o f 40 mW.

Scanning electron m icroscopy (SEM) im ages w ere obtained 
using FEI-nova nanosem  200. Transmission electron m icroscopic 
(TEM) im ages were obtained using JEM-2010 instrum ent at an 
accelerating voltage o f 200 kV. A thin film sam ple w as prepared by 
dispensing a droplet o f the hybrids dispersed in dichlorom ethane 
on a 2 0 0  m esh copper grid covered w ith  a “holey” carbon film and 
allow ing the solvent to evaporate.

Spectroscopic ellipsom etry m easurem ents w ere carried out to 
determ ine the thickness o f the films using a W oolam  M -2000V™  
rotating analyser spectroscopic ellipsom eter in the spectral range 
of 4 0 0 -8 0 0  nm. DC-conductivity m easurem ents w ere carried out 
using Keithley 236 sem iconductors characterization system .

2.3. Preparation o f SWCNT-phthalocyanine hybrids

5 m g o f zinc phthalocyanines (1 or 2) have been dissolved in 1 mL 
DMF and sonicated for 15 min. At the sam e tim e 1.0 mg SWCNTs 
w as suspended in 3 mL DMF and sonicated for 30  min. After sonica- 
tion the suspension w as stirred and the solution o f phthalocyanines 
1 or 2 w as added drop w ise  to the SWCNTs suspension during stir­
ring to obtain the hybrids SWCNT/1 and SWCNT/2, respectively. 
Addition o f zinc phthalocyanine solution w as stopped w h en  the  
green phthalocyanine solution becam e colorless due to phthalo­
cyanine adsorption onto the SWCNT. The stirring w as continued  
for another 1 h before the mixture w as centrifuged. The obtained  
solid w as w ashed w ith DMF several tim es, centrifuged again and 
finally dried in vacuum.

2.4. Sensor properties study

The sensing performance w as studied at the relative hum idity of 
50% RH under exposures to low -concentration o f NH3 in the range 
1 -2 0 0  ppm. Pure com mercial NH3 gas (“Dioksid”, Russia) w as used  
as the NH3 source. Air w as used as the diluent gas, and NH3 w as 
diluted by a syringe static volum etric m ethod. Diluted NH3 w as 
injected into the container using a microsyringe. The test cham ber  
w as degassed by turning a heating e lem ent on at 80 °C im m ediately  
after the removal o f NH3 gas.

Thin films o f hybrids SWCNT/1 and SWCNT/2 w ere deposited  
by drop-casting their solutions in DMF (0.5 mg/mL) onto interdig- 
itated electrodes w hich w ere used as substrates for the electrical 
characterization o f the films. The electrical resistance o f the sen ­
sors w as m easured using a Keithley 236 electrom eter by applying  
a constant DC voltage of 3 V. The response and recovery tim es of the  
films w ere defined as the tim es needed to reach 90% o f  the steady  
state resistance.

3. Result and discussion

3.1. Characterization o f SWCNT/phthalocyanine hybrids

3.1.1. Raman spectra
The non-covalent attachm ent o f phthalocyanine m olecules to 

SWCNTs can be confirmed by Raman spectroscopy. Raman spectra  
for pristine SWCNTs and both hybrids are show n in Fig. 2. The radial 
breathing m odes (RBM), disorder (D) m ode and tangential/graphite  
m ode (G-band) are m onitored as indicators o f functionalization  
w ith  phthalocyanine m olecules [35]. The spectra w ere norm alized  
to the tangential G band at ~ 1 5 9 0 c m -1 . Both spectra o f pristine 
SWCNTs before and after hybridization contained the follow ing
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characteristic peaks: the D band located at about 1340 cm - 1  (dis­
order mode), which is due to breathing m odes of sp 2  atom s in the 
rings [2,36,37] and the G band centered at 15 9 0 cm -1 (tangential 
mode), due to bond stretching of all pairs of sp 2  atom s in both rings 
and chains [38].

In Fig. 2 (region III), which is an enlarged part of the spectrum  
from 400 to 1350 cm -1 , w e can see  that the characteristic vibrations 
of phthalocyanine macrocycle [ 34] have been affected noticeably by 
interaction w ith SWCNTs. Comparing SWCNTs and hybrid spectra, 
only little variation of the ratio of the D band to the G band ( / d / / g )  

can be observed, w hich suggests that ZnPc derivatives are attached 
to the surface of SWCNTs through a non-covalent modification. 
Moreover, the m ultiple peaks observed in the radial breathing 
m ode (RBM) of SWCNTs in the range 1 5 8 -3 0 4  cm - 1  (Fig. 2 (region
II)) could be ascribed to a distribution o f diam eters in the SWCNT 
sam ples [39,40]. They correspond to nanotube diam eters in the 
range from 0.7 to 1.4nm . The Raman spectra of the non-covalently  
functionalized SWCNT/1 and SWCNT/2 revealed significant shift in 
the peak positions located in the range 1 5 8 -2 2 5  cm -1 . For exam ­
ple, the RBMs at 158, 179, 200, 225 cm - 1  o f SWCNTs have shifted 
to 165, 187, 205, 229 cm - 1  and to 166, 189, 207, 232 cm - 1  after 
the adsorption of ZnPc 2 and ZnPc 1, respectively. It was shown  
that the radial breathing m odes of the Raman spectrum are sensi­
tive to the adsorption coating of the nanotubes w ith polynuclear 
aromatic hydrocarbon m olecules [41]. The t t —t t  stacking interac­
tion betw een SWCNTs and phthalocyanine aromatic rings induced 
a higher frequency shift of RBM and gave rise to a kind of mode 
“hardening effect” [42]. In particular, the higher frequency shift 
indicates that SWCNTs becom e stiffer after coating w ith the aro­
matic rings. Adsorption of 1 containing an additional pyrene group 
is show n to induce a more remarkable shift in comparison w ith 2  

due to the enhanced ZnPc molecule-SWCNT interaction.

3.1.2. Optical absorption and fluorescence emission spectra
The optical absorption and fluorescence em ission  spectra of 

the zinc phthalocyanines 1 and 2 solutions in DM F are show n in 
Fig. 3. The absorption spectrum of ZnPc 2 in DM F consists of a 
Soret band at 372 nm and a Q-band at 704 nm. Introduction of one 
pyrene m oiety leads to a small shift of the Soret band to 371 nm  
and Q-band to 698 nm. The fluorescence em ission peaks were  
observed at 719 nm for 1 and 721 nm for 2 in DMF. Because o f the 
pyrene substitution, 1  show ed higher em ission intensity than 2  as 
show n in Fig. 3b. The formation of the SWCNT/ZnPc hybrids can 
also be confirmed by the fluorescence m easurem ents. The addition  
of sonicated SWCNT solution to a solution containing either 1 or 
2 in DMF quenched the em ission o f both m acrocycles as show n in 
Figs. 4 and 5, respectively. However, the fluorescence intensity of 
1  w as found to be more quenched than 2  suggesting that pyrene

1000

800

3
nj 600
£
c
w 400c

200

o
650

—5UUL
100|iL

- 1 5 0 v » L

—20U|iL
250hL
3 0 0 u l

3 5 0 | i L

750
W a v ele n g th  (nm )

Fig. 4 . Fluorescence em ission  changes of 1 observed  du rin g  th e  titra tio n  of SWCNT 
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bstituted Pc 1 has interacted w ith SWCNT more efficiently 
an 2 .

1 . 3 .  T h e r m o g r a v i m e t r i c  a n a l y s i s
A loss of w eight of about 5.79% for pristine SWCNTs can be 

^served (Fig. 6). It is also revealed that the thermogram of 1 
ig. 6 a) presents a loss of w eight of 51.2% and the thermogram  
2 (Fig. 6 b) presents a loss o f w eight o f 56.3%. W hen SWCNT- 

.Pc hybrids are heated to 9 0 0 ’C in an inert atm osphere, 22.2% 
ass loss for 1 and 14.7% mass loss for 2 were observed in the TGA 
iperiment.

Considering the w eight loss of the pristine SWCNTs, the cor- 
cted w eight loss due to ZnPc on nanotubes w as then estim ated  
be 16.3% for 1 and 8 .8% for 2. Concerning the am ount of ZnPc 

olecules anchored on the surface of the nanotubes, a real ratio 
31.8% (16.3% /51.2% ) for 1 and 15.6% (8.8%/56.3%) for 2 have 

—en calculated, taking into account the w eight loss of both ZnPcs 
d SWCNTs. As a result, the number of functional groups in

the hybrid was therefore estim ated as one ZnPc derivative (1) 
per 3 3 6  [(68.2% x 1877 .69)/(31 .8%  x 12)] carbon atom s and one  
ZnPc derivative (2) per 9 0 4  [(84.4% x  2 003 .93 )/(15 .6%  x 12)] carbon 
atoms. This result also confirms that 1 has interacted to SWCNTs 
alm ost 2.7  tim es more efficiently than 2.

3 . 1 . 4 .  M i c r o s c o p y  c h a r a c t e r i z a t i o n
Indirect evidence for SWCNT/ZnPc interactions can be reached 

from transm ission electron m icroscopy (TEM) and scanning e lec­
tron m icroscopy (SEM). Both techniques assist in the visualization  
of SWCNT [35]. Inspection of the TEM im ages of pristine SWCNT 
show s the presence of large aggregates o f nanotubes. Fig. 7 show s  
SEM im ages of pristine SWCNT (a), SWCNT/1 hybrid (b) and 
SWCNT/2 hybrid (c) as powders. Compared w ith the pristine SWC­
NTs (Fig. 7(a)), the SEM im ages of SWCNT/2 hybrid sh ow  an 
appreciable decrease in stacking as seen in Fig. 7(c), but som e  
increases in thickness w ere also observed, confirming the forma­
tion of nanohybrids, probably due to the interm olecular a lkyl-ir  
and t t - tt  interactions betw een the ZnPc m olecules and SWCNTs. 
After treatm ent w ith 1, nanoparticles o f phthalocyanine w ith  a 
diam eter from several to tens of nanom eters are clearly resolved  
on SWCNT walls. Fig. 7(b) obviously show s the bundles of nano­
tubes in hybrid and the clusters of phthalocyanine attached on the 
surfaces of CNTs.

Fig. 8 show s the TEM images of SWCNT/1 (a) and SWCNT/2 
(b) hybrids. From these figures, w e  can observe the coverage 
of phthalocyanines on the sidewall of SWCNTs. Furthermore the 
SWCNT/ZnPc nanohybrid appears to be m ade of bundles com posed  
of tubes w ith specific rugged surface and a layer o f about 1 .5 -2  nm  
in thickness im m obilized onto the sidewall o f SWCNTs. Energy- 
dispersive X-ray (EDX) spectroscopy study proves the presence of 
zinc in the area of the grafted objects.
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2 /S W C N T  hybrid

60-

40-

20-

200 400 600 800

100 S W C N T

1/S W C N T  hybrid

80-
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T, °C T, °C

Fig. 6. (a) TGA of pristine SWCNT, 1 and  SWCNT/1 hybrid; (b) TGA of pristine  SWCNT, 2 and  SWCNT/2 hybrid.

Fig. 7. SEM im ages of pristine  SWCNT (a), SWCNT/1 hybrid (b) and  SWCNT/2 hybrid (c).
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Using DFT calculations applied to a closely similar m olecules 
the intermolecular alkyl-TT and t t - i t  interactions and relative ori­
entation of porphyrin derivative ZnP(alkyl) 4  on the surface of 
sem iconducting SWCNTs were visualized [43]. The results show  
that the aromatic macrocycle interacts w ith the surface o f the nano­
tubes and that the alkyl chains also surround the nanotubes to som e  
extent.

3.2. Study of electrical and sensor properties o f SWCNT/ZnPc 
hybrids

Fig. 9 show s the normalized sensor response R(R = (Rc -  R0 )/f?o I 
where Rc is the steady state resistance of the sensor at certain 
concentration of ammonia and R0 is the baseline resistance of the 
sensor) of the films of pristine SWCNTs and SWCNT hybrids w ith  
ZnPc 1 and 2 on exposure to ammonia of the concentrations 5, 20, 
4 0 ,6 0  and 80 ppm. In order to degas the sample, heating was im m e­
diately applied at 80 °C after turning the NH3 gas off. A temperature 
higher than room temperature was chosen follow ing published  
results in the literature, which dem onstrated that the sensor resis­
tance of SWCNT films did not return to baseline value for a long time 
after NH3 w as replaced by fresh air at room temperature [44-46].

 SW C N T /2
 SW CN T/1
 SW C N T

1 ,4 - 80 ppm

1,2 -

60 ppm

40 ppm
20 ppm

NH3 off

0 ,4 -

0 ,2 -
5 ppm

0 ,0
100 120 1400 20 40 60 80

t, min.

Fig. 9. The response curve of p ristine  SWCNT, SWCNT/1 and SWCNT/2 films to 
am m onia vapo r a t concen tra tions  o f 5 -8 0  ppm .

The resistance of the sensor increased follow ing 3 min exposure  
to NH3 ; this is the result of adsorption of electron donating NH3 

m olecules on pristine SWCNTs causing charge transfer betw een  the 
SWCNTs and the analyte m olecules. This result show s that the pris­
tine SWCNT exhibits p-type behavior. Similar results were observed  
for films of both studied hybrids.

The proposed m echanism  o f sensor response of the m odified  
carbon nanotubes to ammonia and other reducing analytes has 
already been discussed in the literature [23,27]. The theoretical 
studies indicate a weak interaction betw een  pristine SWCNTs and 
NH3 , w ith little charge transfer [47,48]. It is also known that sur­
face charge transfer interaction occurs upon adsorption o f strong 
electron donor m olecules like am m onia [21] onto the surface of 
phthalocyanine derivative in hybrids leading to electron transfer 
from NH3 to the phthalocyanine m olecule; the formed charge- 
transfer com plexes trap holes leading to the observed increase in 
the resistance. Since SWCNT/MPc conjugates can form an excellent 
charge transfer com plexes [36,49], the charge can favorably travel 
from MPc derivatives to SWCNTs rapidly, resulting in a large and 
fast variation in the film s’ resistance. The com bination o f the useful 
properties of SWCNTs (namely, high conductivity and extrem ely  
high surface area), and the properties o f MPc derivatives (specif­
ically, appropriate binding sites for am m onia resulting in charge 
transfer com plexes) provides grounds for synergic effect betw een  
SWCNTs and ZnPc derivatives as active layers for sensor applica­
tions.

Both hybrids SWCNT/1 and SWCNT/2 exhibited an enhanced  
response to NH3 compared to that of pristine SWCNT film, w ith  
the largest response observed in the case of SWCNT/1 hybrid. The 
response of pristine SWCNT and SWCNT/ZnPc hybrid films towards 
different NH3 concentrations is depicted in Fig. 10. The results show  
that the response values for SWCNT/ZnPc hybrids are m uch higher 
than that of pristine SWCNT sensor. The SWCNT/1 sensor can detect 
about 1 ppm of NH3  gas, which indicates relativity higher sensitiv­
ity compared to that dem onstrated by pristine SWCNT. M eanwhile, 
the SWCNT sensor can detect 10 ppm of NH3 . Response linearity for 
all three films towards ammonia was observed for concentrations 
in range up to 1 0 0  ppm w ith a trend to saturate at concentrations 
higher than 100 ppm. The response value of SWCNT/1 film is 
higher than the SWCNT/2 hybrid films. This result can be explained  
by the presence of larger number of active sites (ZnPc w ith  
pyrene substituents) in SWCNT/1 hybrid since derivative 1 w as 
shown to interact w ith SWCNTs alm ost 2.7 tim es more efficiently  
than 2 .
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C onclusions

Hybrid structures of single-w alled carbon nanotubes w ith sym - 
-etr ica lly  octasubstituted ZnPc bearing eight polyoxy groups 

d asym m etrically substituted ZnPc bearing one pyrene and six 
lyoxy groups as side chains have been prepared and character­

e d  by spectral m ethods and microscopy. It w as show n by the
-  ethods of Raman spectroscopy, fluorescence spectroscopy and
-  ermogravimetry that pyrene containing ZnPc has interacted w ith  

/CNTs more efficiently than zinc phthalocyanine w ithout pyrene 
bstituent. The am ount of pyrene-containing ZnPc anchored on

- e  surface of nanotubes was alm ost 2.7 tim es more than ZnPc w ith- 
_jt pyrene substituent. To dem onstrate the potential applications 

the SWCNT/ZnPc hybrids towards gas sensing, a conductom etric  
_ s  sensor device based on the hybrid materials has been fab- 
-cated. The comparative analysis of sensor response of pristine 

/CNTs and films of the SWCNT/ZnPc hybrids to ammonia vapour 
- 2 0 0  ppm) was carried out to dem onstrate the synergic effect 

between SWCNTs and ZnPc derivatives. It has also been show n that 
ne response of the hybrid films w ith pyrene containing ZnPc to 
ne ammonia vapour is tw o tim es larger than that dem onstrated  
y  hybrid films w ith ZnPc w ithout pyrene substituents.
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Abstract. Thin films of non-covalently hybridised single-walled carbon nanotubes (SWCNT) and 
tetra-substituted copper phthalocyanine (CuPcR4) molecules have been produced. The 7c-7i 
interaction between SWCNTs and CuPcR4  molecules has been revealed by using different 
characterisation techniques. Scanning electron microscopy (SEM) measurements have shown that 
films obtained from the acid-treated SWCNTs/CuPcR4  hybrids demonstrated more homogenous 
surface. Using total internal reflection ellipsometry spectroscopy (TIRE), thin films of the new 
hybrid have been examined as an optical sensing membrane for the detection of benzo[a]pyrene in 
water to demonstrate the sensing properties of the hybrid.

Introduction

Since their discovery by Iijima in 1991 [1], carbon nanotubes (CNTs) have attracted significant 
interest by researchers around the globe due to their unique electronic, metallic and structural 
properties [2]. The modification of CNT network surface by subjecting them to different chemical 
treatment and through hybridization with various organic materials has enabled their use in 
applications such as photovoltaic application [3] and chemical detection [4]. Among these hybrids, 
the smart integration of carbon nanotubes (CNT) with metallophthalocyanine (MPc) complexes has 
gained increasing attention over the past few years. The evidence so far has shown that these 
hybrids are expected to be more efficient in improving the relative response of hybrid films 
compared to the individual CNT or MPc species [5-7]. On the other hand, the Application of 
different phthalocyanine films as active layers in surface plasmon resonance (SPR) and total 
internal reflection ellipsometry (TIRE) techniques have been widely reported in the literatures [8,9]. 
In this work hybrid thin films have been prepared from SWCNT functionalised with tetra- 
substituted copper phthalocyanine CuPcR4  with R= S(CH2CH20)3CH3 molecules. The interaction 
between the two materials was investigated by using different characterisation methods. The aim of 
current study is to examine the compatibility of thin films produced from SWCNT/MPc hybrids 
with optical detection techniques, using TIRE method.

Experimental

1(4), 8(11), 15(18), 22(25)- Tetrakis- [2-(2-(2-methoxyetoxy) ethoxy) ethylthio]
phthalocyaninato copper (II) was synthesized and the preparation and characterization will be 
published in a separate work. All other materials used in this work were purchased from 
commercial suppliers. 5 mg of CuPcIL* has been dissolved in 1 ml DMF and sonicated for 15
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minutes. At the same time lmg of SWCNTs was suspended in 3 ml DMF and sonicated for 40 
minutes. After sonication, the suspension was stirred and the CuPcR.4 solution was added drop wise 
to the CNTs suspension during stirring. The stirring was continued for another 5 hours before the 
mixture was centrifuged, washed with DMF several times, centrifuged again and finally dried 
resulting in hybrid 1. Similar procedure has been followed to prepare hybrid 2 but SWCNTs was 
acid treated before use according to the literature [10]. Gold-coated glass substrate has been 
prepared by sequentially evaporating 3-5 nm of chromium onto microscopic slides followed by the 
evaporation of 25-30 nm of gold layer under vacuum of about3x1 CT3 m bar. Other slides used for 
hybrid films deposition in this work are rigorously cleaned glass slides for spectroscopic 
measurements.

Results and discussion

UV-Vis absorption spectra of SWCNT (Fig. la) are featureless as it was frequently reported in 
the literature [11], whereas, CuPcR.4 exhibited typical electronic absorption spectra with two 
characteristic regions of peaks: the Q-band in the wavelength range 600-750 nm and the Soret (B) 
band in the wavelength range of 300-450 nm. The peak maxima of the Q-bands shifted to the red in 
the absorption spectra of hybrid 1 and hybrid 2  suggesting strong n-n interactions between 
SWCNTs and CuPcR* derivative [7]. Raman spectra normalized to the tangential G band at -1580 
cm' 1 for pristine SWCNT, acid treated SWCNT and both hybrids are shown in Fig. 2. Comparing 
curve (a) with curve (b) in Fig. 2, little variation of the ratio of the D band [12] at -1340 cm' 1 to the 
G band ( I d /I g )  can be observed, which suggests that CuPcR4 molecules are attached to the surface 
of SWCNT through non-covalent bond. The D/G peak intensity ratio increases from 0.04 for 
pristine SWCNT to 0.30 for acid treated SWCNT (Fig. 2c) which indicates the formation of 
covalent bonds at the surface of the carbon nanotube through conversion of sp2-hybridized carbon 
atoms to sp3-hybridized carbons on the nanotube surface. Further increase Id/Ig to 0.47 was also 
observed in the spectrum of acid treated SWCNT hybrids with CuPcR4 (Fig. 2d).
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Fig. 1. UV-Vis absorption spectra of (a) 
SWCNTs, (b) CuPcR4, (c) hybrid 1 and (d)
hybrid 2 in DMF

Fig. 2. Raman spectra of pristine SWCNT (a), 
hybrid 1 (b), acid-treated SWCNT (c) and 
hvbrid 2  (d).

The Raman spectra of the noncovalently functionalized SWCNT-CuPcR4 also revealed 
significant shift on the radial breathing modes (RBM) [13] located in the range 158-225 cm '1. The 
7l-7l stacking interaction between SWCNT and phthalocyanine rings induced a higher frequency 
shift of RBM and give a kind of mode “hardening effect” [14]. In the Raman spectrum of the acid- 
treated SWCNTs, the RBMs have disappeared when compared to the spectrum of pristine SWCNTs 
(Fig. 2c). Fig. 3a, b, c and d shows SEM images of pristine SWCNT, acid-treated SWCNT, hybrid 
1 and hybrid 2, respectively. Pristine CNTs typically tend to bundle together (Fig. 3a and c) and to 
aggregate due to van der Waals attraction between individual tubes [15]; this makes them hard to 
disperse in common organic solvents. Acid treatment of the nanotubes provides the de-bundling



effect (Fig. 3b and d) disrupting the van der Waals interactions and leading to the formation of a 
composite with much improved solubility in organic solvents and hence smoother films were 
obtained.

Fig. 3. SEM images for (a) pristine, (b) acid-treated SWCNT, (c) hybrid land (d) hybrid 2 
thin film deposited on silicon substrates.

Using total internal reflection ellipsometry spectroscopy (TIRE), thin films of the new hybrid 
have been examined as an optical sensing membrane for the detection of benzo[a]pyrene in water. It 
is known that benzo[a]pyrene is a product derived from incomplete combustion of organic material 
and is considered responsible for chemically-induced cancer in humans [16]. Full details of TIRE 
method, experimental set-up and typical TIRE spectra of Cr/Au films are reported in previous 
publications [9,17]. To examine the compatibility of the hybrids prepared in this work with TIRE 
technique, small volumes of solutions of CuPcR4 , hybrid 1 and hybrid 2 in DMF were drop-casted 
onto the gold-coated glass substrates by using microsyringe. Thereafter, the samples were exposed 
to deionized water and saturated solution of benzo[a]pyrene in water (6.2 jug/1) to demonstrate the 
changes of ellipsometry spectra and thus films’ optical parameters induced by the adsorption of 
benzo[a]pyrene onto the films surfaces. It is worthwhile mentioning here that the films of hybrid 1 
were shown to be rough and inhomogeneous and therefore unsuitable for optical investigation, as it 
has not given well-resolved spectra when measured by spectroscopic ellipsometry. On the other 
hand, thin films prepared from hybrid 2 exhibited much smoother surfaces and has therefore shown 
significant enhancement in the adsorption properties as active optical sensing layer. Fig. 4 shows 
the spectra of ^(A,) and A (A) of CuPcR4 and hybrid 2 thin films before and after exposure to 
benzo[a]pyrene.
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Fig. 4. 'P(A) and A(A) TIRE spectra of CuPcR4 film in water (dashed line); after injection of
benzo[a]pyrene saturated solution (dotted line). Hybrid 2 films in water (solid line); after 
injection of benzo[a]pyrene saturated solution (dashed-dotted line). An enlarged section of A(A) 
spectra are shown at the right of the figure to provide better assessment.

The adsorption of benzo[a]pyrene on hybrid 2 film has resulted in larger shift (9.55 nm) than that 
shown by pure CuPcR4  (4.6 nm) under exposure to saturated benzo[a]pyrene solution in water. 
Carbon nanotubes in general are characterised with uniform surface with delocalised 71-electrons of 
high density, which enhances their adsorption properties, especially for analytes with aromatic 
molecules [18]. Table 1 summarises the thickness, refractive index and extinction coefficients given



at X=632 nm of all layers found from theoretical data fitting. The changes in optical parameters in 
the case of hybrid 2 were more significant which is probably due to the predominant surface 
interaction of the analyte with SWCNT/CuPcR4  films.

Table 1. Experimental data fitting (films' thicknesses, refractive indexes and extinction
coefficients)

Before exposure_________________________ After exposure___________
d, nm n___________ k_________________ d, nm n______k_________

CuPcRt 97.86 1.532________ 0.373______________ 98.1 1.542 0.377
Hybrid 2 147.73 1.334________ 0.133______________ 149.49 1.359 0.135

Conclusion

The acid-treatment of CNTs is found to result in the separation of bundled carbon nanotubes, 
leading to enhanced n-n interaction in the SWCNT/CuPcR4 system. The improved films’ 
homogeneity has enabled the use of such hybrids as optically active sensing layers for the detection 
of pollutants in water. The response of acid-treated SWCNT/CuPcR4  hybrid films to the presence of 
benzo[a]pyrene in water was shown to be two times larger than that demonstrated by CuPcR4  films.
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The /x-(oxo)bis[tetra-terf-butylphthalocyaninato] aluminum(III) [(tB uJP cA IJO  films with the crys­
tallites oriented preferably in one direction were obtained via chemical transformation of tetra-tert- 
butylsubstituted chloroaluminum(III) phthalocyanine (tBuJPcA lC l film upon its annealing in mag­
netic field. A comparative analysis of the influence of post-deposition annealing process without 
and under applied magnetic field of 1 T, on the orientation and morphology of (tB uJPcA lC l and 
[(tBu)4PcAl]20  films, has been carried out by the methods of UV-vis, Infrared and Raman spec­
troscopies, XRD as well as atomic force microscopy. The formation of [(tB uJP cA IJO  films with 
elongated crystallites having preferential orientation was observed upon heating of the films in mag­
netic field while annealing without magnetic field under the same conditions does not demonstrate 
any effect on the structure and morphology of these films. The reasons of the sensitivity of this re­
action to the presence of such magnetic field is discussed and studied by electronic paramagnetic 
resonance spectroscopy. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/L4832875]

I. INTRODUCTION

Thin films of metal phthalocyanines, especially those 
having gallium, aluminum, and indium central metal atoms, 
possess remarkable optoelectronic characteristics which 
makes them and their various derivatives of interest as active 
layers in optoelectronic device applications.1-4 Among those 
derivatives are the peripherally unsubstituted gallium and alu­
minum phthalocyanines with axial chloro, fluoro, or hydroxyl 
ligands (PcMX, X =  Cl, F, OH) that were investigated for 
their optical third-order nonlinearity.'' Optical limiting ma­
terials usually rely on their nonlinear optical response. As 
an example of those materials are the /x-oxo-bridged dimers 
[(PcM)20 ] , where M =  Ga or Al have been shown to exhibit 
good photoreceptor properties .6

Substituted metal phthalocyanine molecules have long 
been shown to be suitable for deposition as thin films us­
ing simple solution processed methods such as spin coating 
and Langmuir-B lodge tt techniques due to their largely im­
proved solubility in common solvents. For instance, tetra- 
tert-butyl substituted phthalocyaninates were shown to ex­
hibit very good optical limiting properties making them use­
ful in practical device applications;7,8 this was shown to be 
partly due to the large nonolinear absorption coefficient of 
these materials. Furthermore, it was demonstrated that photo­
physical and photochemical properties of substituted phthalo­
cyanine complexes are very useful for photodynamic ther­
apy (PDT) applications.9,10 The non-peripherally substituted

^A uthor to whom correspondence should be addressed. Electronic mail: 
basova@niic.nsc.ru

Al(III), Ga(III), and In(III) phthalocyanines showed higher 
singlet oxygen quantum yields in comparison to peripherally 
substituted analogues which was explained by red-shift in the 
Q-band of the UV-Vis absorption spectra in DM SO.y

Ordered phthalocyanine thin films are o f crucial impor­
tance in real device application, especially in photovoltaic 
and chemical detection applications. The study of the phys­
ical properties of these films including their morphology and 
molecular structure and long-range order, is necessitated by 
the requirement to establish a relationship between these 
properties and the films’ performance in such devices. The 
photoelectrochemical efficiency of ordered films o f aluminum 
tetraphenylporphyrin produced by thermal vacuum deposition 
was shown to be higher than that exhibited by polycrystalline 
films. 11 The photocurrent quantum yield of uniform AlPcCl 
thin film with epitaxial orientation was 25 times as high as 
that of the rugged and cracked polycrystalline film .12 This en­
hancement in the photocurrent has been ascribed to the molec­
ular orientation, in which the planar molecules stay perpen­
dicular to the substrate surface.

Molecules possessing dipole moment are expected to of­
fer a route to controlling the growth of the molecules in thin 
films in the presence of an external field. Several studies were 
carried out to investigate the effects of externally applied 
electric or magnetic field on film growth of different metal 
phthalocyanines. 13-18 The growth of vacuum evaporated cop­
per phthalocyanine films in the presence o f magnetic field of 
6  mT has resulted in a new stacking behavior and thus differ­
ent orientation relative to the substrate surface . 15 It was also 
shown that the presence of electric and magnetic fields influ­
ences the molecular orientation, the polymorphism, and the
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surface morphology of the films o f TiOPc, 19 AlClPc20, and 
VOPc.21

The hydrolysis of AlClPc upon immersion in KC1 wa­
ter solutions at different pH was shown to lead to the for­
mation o f hydroxyaluminum phthalocyanine Al(OH)Pc and 
then to the formation of /x-(oxo)bis[phthalocyaninato] alu- 
minum(III), (PcAl)20 .2,22,23 In a recent publication we have 
demonstrated the transformation of AlClPc to (PcAl)20  by 
applying magnetic field of 1 T during post-deposition of the 
vacuum sublimed PcAlPc thin films.24 This transformation 
of AlClPc to (PcA1)20  on the substrate surface upon anneal­
ing under ambient conditions was monitored by UV/vis, IR, 
Raman, X-ray photoelectron spectroscopy (XPS), as well as 
atomic force microscopy (AFM). We have observed two inter­
esting effects upon heating the AlClPc films in such magnetic 
field; firstly, the temperature of the chemical transformation 
of AlClPc to (A1Pc)20  was seen to decrease from 300 °C to 
200 °C, and secondly, (A1Pc)20  films with elongated crystal­
lites and with preferential orientation were formed. The rea­
son behind the effect o f magnetic fields on the growth and 
structure of aluminum phthalocyanine films remains unclear 
and, therefore, further studies are required in order to fully 
explain it.

This study is a continuation o f the work published 
earlier.24 In this work, we are aiming to demonstrate an­
other example of formation o f ordered films of axially 
bridged tetra-ferf-butylsubstituted aluminum phthalocyanine 
[(tBu)4PcAl]20  via magnetic field-induced reactions. This is 
especially important for the phthalocyanines with sterically 
demanding substituents such as tetra-/e/7-butyl which usually 
form films with low degree o f ordering because of reduced 
intermolecular interaction 25 Furthermore, we are aiming to 
investigate the reasons o f the sensitivity of this reaction to 
the presence of such magnetic field by electronic paramag­
netic resonance spectroscopy. Besides, the method of polar­
ized Raman spectroscopy is used to estimate the orientation 
of the molecules relative to the substrate surface in the films 
annealed with and without magnetic field.

II. EXPERIMENTAL DETAILS

(tBu)4PcAlCl was prepared via reaction o f 4-tert- 
butylphthalonitrile (Sigma-Aldrich) and anhydrous alu- 
minum(III) chloride in quinoline media at the temperature of 
about 230 °C . 15 The synthesized phthalocyanine was purified 
by vacuum gradient sublimation at a residual pressure of 1 0 - 4  

Torr at the temperature of 360 °C. [(tBu)4PcAl]20  was pre­
pared following a similar method described for [PcA1]20  in 
Ref. 26. First, (t-Bu)4PcAl(OH) was precipitated from its so­
lution in sulphuric acid with ammonia water solution and then 
filtered and washed with water. (t-Bu)4PcAl(OH) was sub­
limed in vacuum o f 10- 4  Torr at the temperature o f 450 °C 
and [(tBu)4PcAl]20  was obtained as a result.

Thin films of (tBu)4PcAlCl and [(tBu)4PcAl]20  were 
prepared via organic molecular beam deposition (OMBD) 
under high vacuum of 1 x  1 0 ~ 7 mbar at the evaporation 
rate of 10 A/min and substrate temperature of 25 °C. Film 
thickness was controlled using a quartz crystal microbal­
ance; the obtained films have a nominal thickness of about

50-60 nm. Quartz slides, polished Si wafers, and KBr sub­
strates were used as substrates. The annealing o f thin films of 
(tBu)4PcAlCl was performed under ambient conditions with 
and without applied magnetic field o f 1 T using the same heat­
ing plate with precise temperature controller. For films an­
nealed under applied magnetic field, the heating plate was put 
between permanent magnets as shown in Ref. 24.

Raman spectra of all samples were recorded with a SPEX 
Triplemate spectrometer equipped with CCD spectrometric 
detector and microscope attachment for backscattering exper­
imental geometry. The 488 nm (40 mW) line o f an argon ion 
laser was used for spectral excitation. The laser beam with the 
diameter o f ~ 1  jum was focused onto the sample via a micro­
scope objective with 1 0 0 -fold magnification (numerical aper­
ture NA =  0.9). The spectral resolution was about 2 cm-1 .

Infrared spectra of powders in KBr pellets and o f the de­
posited films on KBr substrates were recorded using a Vertex 
80 FTIR spectrometer.

AFM measurements were performed under ambient con­
ditions in tapping mode using a Nanoscope Ilia (Digital In­
struments; now Veeco Instruments, Plainview, U.S.A.) scan­
ning probe microscope. The oscillation frequency was around 
300 kHz and the scan rate was about 1 Hz. The tip radius 
was typically in the range 4 -7  nm. UV-vis spectra o f thin 
films deposited on quartz substrates were recorded with a 
UV-VIS-NIR scanning spectrophotometer (UV-VIS-3101PC 
«Shimadzu») in the range of 400-1000 nm. X-Ray diffraction 
measurements were performed using an automatic diffrac­
tometer DRON-3M (R =  192 mm, CuK^-irradiation, Ni- 
filter, scintillation detector with amplitude discrimination, 
Soller slits with aperture of 2.5° on primary and reflected 
beams) in the region of 29 from 5° to 60° with the scanning 
step of 0.03°. All measurements were carried out under ambi­
ent conditions.

EPR experiments were performed by a modified Varian 
EPR spectrometer E-109 in X-band o f frequency at room tem­
perature. Spin trap in experiment for the study o f short living 
radicals was C-phenyl-terf-butyl nitron (PBN).

III. RESULTS AND DISCUSSION

A. Film characterisation by spectral 
methods and XRD

UV-vis absorption spectra o f as-deposited (tBu)4PcAlCl 
film and the films underwent gradual annealing with tempera­
ture step of 10 °C are shown in Figure 1. It can be seen that the 
UV-vis absorption spectrum of the as-deposited (tBu)4PcAlCl 
film (Figure 1) on a glass slide consists o f a wide charac­
teristic absorption band with two maxima at 655 and 703 
nm. The XRD pattern of the as-deposited (tBu)4PcAlCl film 
is shown in Figure 2(a). According to XRD data the as- 
deposited (tBu)4PcAlCl film is amorphous or consists o f the 
nanoislands which are insufficient to yield sharp diffraction 
features and a large number of defects. A similar broad spec­
trum was also observed for the amorphous films o f unsubsti­
tuted AlClPc.27

As-deposited (tBu)4PcAlCl films were annealed with 
and without magnetic field in air under ambient conditions.
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FIG. 1. UV-vis spectra of aluminum phthalocyanine thin films during an­
nealing in the temperature range 20°C-210 C without (a) and under (b) mag­
netic field (1 T). The inset in Fig. (b) shows the spectra of (tBu)4PcAlCl film 
after annealing under ambient conditions at 210°C (I), (tBuUPcAlCl film af­
ter annealing under magnetic field of 1 T at 160°C (II), and [(tB u^PcA fhO  
film deposited by OMBD (III).
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FIG. 2. X-ray diffraction patterns of aluminum phthalocyanine thin films on 
glass: (tBu)4 PcAlCl as-deposited film (a); (tBu^PcAlCl film after annealing 
under ambient conditions at 210 °C (b); (tBu)4PcAlCl film after annealing 
under magnetic field of 1 T at 160 °C (c); [(tBu^PcA fhO  film deposited by 
OMBD (d).

No changes were observed in the UV-vis spectra of the 
(tBu)4PcAlCl films heated without magnetic field up to tem­
peratures below 150 °C (Figure 1 (a)). When the (tBu)4PcAlCl 
films were heated to temperatures above 150°C in air, 
the intensity of the band at 703 nm started to decrease, 
while the shoulder at 655 nm is shifted to 647 nm without 
changing its intensity (Figure 1(a)). The spectra of the an­
nealed (tBu)4PcAlCl films agree well with the spectrum of a 
[(tBu)4PcAl]20  film deposited at similar conditions by ther­
mal evaporation of [(tBu)4PcAl]20  powder (see the inset of 
Fig. 1 (b)). The first changes in the spectra o f the (tBu)4PcAlCl 
films heated under applied magnetic field become noticeable 
at annealing temperatures above 110 °C. The heating to tem­
peratures larger than 160 °C or annealing at 160 °C for longer 
time does not lead to any additional spectral changes. This can 
be interpreted by complete transformation of (tBu)4PcAlCl to 
[(tBu)4PcAl] 2 0  taking place at 160 °C which is 50 °C lower 
than that in the case of (tBu)4PcAlCl films heated without 
magnetic field.

We may suggest that as in the case of unsubstituted 
AlClPc24 annealing of (tBu)4PcAlCl film under ambient con­
ditions both in magnetic field and without magnetic field 
leads to chemical transformation of (tBu)4PcAlCl to the 
corresponding 71-oxo-dimer [(tBu)4PcAl]20 .  The tempera­
ture of this chemical transformation decreases from 210 °C 
to 160 °C, when magnetic field was applied during post­
deposition annealing.

The XRD patterns of (tBu)4PcAlCl films after anneal­
ing both with and without magnetic field are presented in 
Figures 2(b) and 2(c), respectively. The XRD patterns of 
[(tBu)4PcAl]20  film deposited by OMBD with the subse­
quent annealing at 210 °C are also given for comparison 
(Figure 2(d)). The annealing of (tBu)4PcAlCl films with mag­
netic field leads to notable changes in the XRD pattern. The 
new peaks at 26 =  5.45° (d =  16.2 A) and 28 — 9.26° (d 
=  9.5 A) appeared after film annealing without magnetic field 
(Figure 1(b)), while the XRD pattern of the film heated un­
der applied magnetic field (Figure 2(b)) has exhibited one in­
tensive peak at 26 — 5.54° corresponding to a lattice spac­
ing of 15.9 A. The crystal structures of (tBu)4PcAlCl and 
[(tBu)4PcAl] 20  were not resolved, however, the peak posi­
tion at 20 =  5.54° agrees with the position of the diffraction 
peaks in films of other tetra-terr-butyl metal phthalocyanines, 
i.e., 20 =  5.51° (d =  16.04 A) in the case of CuPc(tBu ) 4 

films deposited on glass and gold substrates .28 The presence 
of only one XRD peak suggests that the film annealed in the 
presence of magnetic field is characterized by preferential or­
dering. It is necessary to point out that the XRD pattern of 
the [(tBu)4PcAl]20  film deposited by OMBD (Figure 2(d)) 
is similar to that of the (tBu)4PcAlCl film heated without ap­
plied magnetic field (Figure 2(d)) and contains two peaks at 
20 = 5.42° and 20 =  9.25°.

For further understanding, the vibrational spectra (IR 
and Raman) of as-deposited and annealed (tBu)4PcAlCl 
films were measured. The IR spectrum of as-deposited 
(tBu)4PcAlCl film is presented in Fig. 3(a). The positions 
and relative intensities o f the main vibrations correspond­
ing to phthalocyanine macrocycle and terr-butyl substituents 
are in good agreement with those published for (tBu)4PcZn
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FIG. 3. IR spectra of aluminum phthalocyanine thin films on KBr substrates: 
(tBu)4PcAlCl as-deposited film (a); (tBu)4PcAlCl film after annealing under 
ambient conditions at 210 °C (b), (tBu)4 PcAlCl film after annealing under 
magnetic field (1 T) at 160 C (c).

in Ref. 29. Introduction of four tert-butyl substituents in the 
(tBu)4PcAlCl molecule leads to a change of the intensity and 
position of some bands and to the appearance of some new 
bands in comparison with unsubstituted PcAlCl.20 Undoubt­
edly, the appearance of new bands at 670-690 and 1258 c irT 1 

in the spectrum of (tBu)4PcAlCl in comparison with that of 
PcAlCl is associated with bending vibrations of peripheral 

-tert-butyl groups. The annealing of (tBu)4PcAlCl films leads 
■to remarkable changes in the IR spectra. The IR-spectra of the 
zfilms after annealing (Figures 3(b) and 3(c)) contain a com­
para tively  intensive band at 1050 cm -1  which can be assigned 
zto the asymmetrical stretching of the A l-O  bond24 which was 
m ot observed in the spectrum of the as deposited film. At the 
i_ame time band at 459 cm -1  corresponding to stretching vi­
b ra tio n  of A l-C l completely disappears after the annealing of 
zihe films. The two bands located at 760 and 894 cm -1  corre­
spond ing  to the vibrations of inner phthalocyanine macrocy- 
=_le in the IR spectrum of as-deposited film shift to 753 and 

90 cm -1 , respectively, after heating (Figures 3(b) and 3(c)).
Raman spectra of (tBu)4PcAlCl and [(tBu)4PcAl]20  ap­

p e a r  to be very similar to each other at first glance, how- 
—ver, some changes are also visible in the Raman spec- 

a upon transformation of (tBu)4PcAlCl to [(tBu)4PcAl]20  
^igure 4). The assignment of the vibration bands in the 

—3ectra has been reached by analogy with unsubstituted alu- 
_iin ium  phthalocyanines.20,23 The experimentally found vi- 
■  rations with considerable contribution of v(Al-Cl) are lo- 
izated at 258, 465, and 537 cm -1 . They exhibit very low in- 

nsity compared to other vibrations because of small changes 
i the polarizability and, therefore, they might be partly over- 
pped by vibrations of the Pc ring system. In Figures 4(b) 

=;id 4(c) these bands of A l-C l have nearly vanished in the 
—>ectra corresponding to the films after the reaction and new 

odes close to the wavenumbers of A l-C l are assigned to 
1-O-Al vibrations. The central atom specific mode for Al- 
lPc is found at 1542 cm -1 . The main contribution to this 
bration is given by displacements of the Ca -N^-Ca bridge 
tnds of the phthalocyanine macrocycle. The shift of 5 cm -1

Raman shift, cm'1

FIG. 4. Raman spectra of aluminum phthalocyanine thin films on glass sub­
strates: (tBu)4PcAlCl as-deposited film (a); (tBu)4PcAlCl film after anneal­
ing under ambient conditions at 210 : C (b); (tBu)4PcAlCl film after annealing 
under magnetic field of 1 T at 160°C (c).

to lower wavenumbers indicates a change in the central atom 
surrounding.

To get deeper insight into the structural transformations 
of the aluminum phthalocyanine films, we also studied their 
morphology using AFM technique. Figure 5 shows the mor­
phology of the as-deposited (tBu)4PcAlCl (Figure 5(a)) films 
and the [(tBu)4PcAl]20  films formed after heating of the as- 
deposited (tBu)4PcAlCl with and without magnetic field at 
180°C and 220 °C, respectively. It is seen from Figure 5(a) 
that the as-deposited films consist of very small grains with 
RMS film roughness of 0.74 nm. Remarkable changes in 
morphology are observed after film annealing; the film an­
nealed at 220 °C without magnetic field consists of larger dis­
ordered domains (Figure 5(b)). Note that the RMS rough­
ness of the samples increased to 4.11 nm. The AFM im­
age of the thin film heated at 160 °C under magnetic field 
(Figure 5(c)) revealed elongated well-formed crystallites 
(r.m.s. roughness is 6 .0 2  nm) which mostly tend to be ori­
ented in one direction and lying parallel to each other. It is 
necessary to mention that the long axes of the crystallites are

FIG. 5. AFM images (2 /rm x 2 /tm) of aluminum phthalocyanine thin films 
on glass substrates: as-deposited (tBu)4PcAlCl film (a); [(tBu)4PcAl]20 films 
obtained by annealing of (tBu)4PcAlCl under ambient conditions at 210 C
(b) and of (tBu)4PcAlCl after annealing under magnetic field of 1 T at 160 °C
(c); [(tBu)4PcA lkO  film deposited by OMBD (d). The orientation of the 
magnetic field lines (H ) is shown in each image.
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FIG. 6. Polarized Raman spectra of [(tBu)4PcAl]20  films obtained by an­
nealing of (tBu)4 PcAlCl film under ambient conditions at 210 °C (a) and by 
annealing (tBu)4PcAlCl film after annealing under magnetic field of 1 T at 
160 °C (b). The inset shows the Euler coordinates employed: <p corresponds 
to the rotation around the substrate Z-axis, 6 -  to the rotation around the 
molecular X'-axis (the tilt angle between Z and Z'), and \p -  to the rotation 
around the molecular Z'-axis.

oriented perpendicular to the field lines of the applied mag­
netic field. For the sake of comparison it is important to point 
out that the [(tBu)4PcAl]20  film obtained by physical vapour 
deposition of [(tBu)4 PcAl]20  powder is characterized by dis­
ordered randomly shaped smaller crystallites.

Non-polarized spectra of films of (tBu)4PcAlCl before 
and after heating provide qualitative evidence of their chemi­
cal transformation to [(tBu)4PcAl]20 , as shown in Figures 1, 
3, and 4. This technique however, does not give quantita­

tive understanding to the films’ orientation. This issue is fur­
ther clarified here using polarization dependent Raman spec­
troscopy and to present a comparison between the orientation 
of [(tBu)4PcAl]20  films obtained by annealing (tBu)4PcAlCl 
both without and under applied magnetic field.

B. Investigation of the films orientation by polarized 
Raman spectroscopy

Polarized Raman spectroscopy was used to investi­
gate the orientation of the studied aluminum phthalo- 
cyanine molecules relative to the substrate surface. This 
method is based on the analysis o f the depolarization ratio 
p = I(z(xy)z)H{,z(xx)z)  of the modes of the correspond­
ing symmetry type in the Raman spectra registered in parallel 
and perpendicular polarizations of the incident and scattered 
light. It allows the determination of a preferential angle of the 
molecules inclination (0) relative to the substrate surface (cf. 
the inset of Figure 6 ). The details o f this technique have al­
ready been described in Refs. 30-33.

Figure 6  shows the polarized Raman spectra of the 
[(tBu)4PcAl]20  films obtained by annealing of (tBu)4PcAlCl 
films without (a) and under (b) magnetic field, recorded in 
the parallel (z (x x ) z ) and cross (z (x y ) z ) polarizations of in­
cident and scattered light. The annealing temperature was 
210 °C (a) and 160°C (b), i.e., above the reaction temperature 
in both cases. The symmetry types of some Raman modes 
are indicated in Figure 6 . They were determined on the basis 
of comparison with the Raman spectra o f the unsubstituted 
(PcA1)20  derivative.2. The depolarization ratios of the se­
lected A[g, B2g, and E bands in the spectra of [(tBu)4PcAl] 20  

films and the corresponding Euler angles 6 are given in 
Table I. The [(tBu)4PcAl]20  films annealed without mag­
netic field were disordered because the depolarization ratio p 
=  Ijj/Iij were similar to that of solutions. Analysis o f the depo­
larization ratio in the Raman spectra o f [(tBu)4PcAl]20  film

TABLE I. Experimental depolarization ratios p  =  7,,7/y for the A ig, E, and B2g modes obtained from polarization 
dependent Raman spectra of the [(tBu)4PcAl]20  films obtained by annealing without and under applied magnetic 
field of 1 T as well as by OMBD.

Symmetry
irrep

Raman shift 
(cm-1 )

Depolarization ratio Poj/u)

Film annealed 
without magnetic field

Film annealed with 
magnetic field

Film deposited 
by OMBD

A ig 690 0.25 0.33 0.23
833 0.25 0.32 0.22

1332 0.30 0.29 0.29
1403 0.26 0.33 0.25
1540 0.31 5 0.31

Mean 0.29 0.32 0.26
E 753 0.70 1.0 0.68

1031 0.75 1.0 0.78
1208 0.79 1.0 0.80
1614 0.70 1.1 0.74

Mean 0.74 1.0 0.75
B2g 1130 0.75 1.0 0.77

1590 0.75 1.0 0.74
Mean 0.75 1.0 0.76
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deposited by OMBD with the subsequent annealing at 210 °C 
did not reveal any preferential orientation of the molecules 
relative to the substrate surface. Films annealed in the pres­
ence of magnetic field lead to a visible difference in the depo­
larization ratio p and thus to a difference in the film crys­
tallites orientation. The angle of inclination relative to the 
substrate surface in the films annealed in the presence of the 
magnetic field was equal to 85 ±  5° suggesting a nearly per­
pendicular orientation of the phthalocyanine macrocycles to 
the substrate surface. Therefore, it may be clearly seen that the 
external magnetic field applied during post-deposition anneal­
ing has a pronounced influence on the molecular orientation 
in the aluminum phthalocyanine thin films.

Similar to the case of unsubstituted PcAlCl24 two ef­
fects were observed during post-deposition annealing of 
(tBu)4PcAlCl films in magnetic field of IT; these are: (i) the 
temperature of the chemical transformation of (tBu)4PcAlCl 
to [(tBu)4PcAl] 2 0  decreases from 210 °C to 160 °C and 
(ii) the [(tBu)4PcAl] 2 0  films with preferentially oriented 
elongated crystallites and phthalocyanine macrocycles were 
formed.

C. Investigation of the transformation of (tBu)4PcAICI 
to [(tBu)4PcAI]20  by EPR spectroscopy

In order to explain the sensitivity of the investigated 
films to the application of magnetic field during heat treat­
ment a possible mechanism of the reaction of transformation 
of (tBu)4PcAlCl to [(tBu)4PcAl]20  was studied by electron 
paramagnetic resonance spectroscopy using the method of 
spin traps.34,3"' As a spin trap we used PBN with the melting 
point of 78 °C. The samples were prepared in the following 
way: (tBu)4PcAlCl powder was mixed with PBN in a ratio 
~ 1 :1. Then the mixture was kept at 78 °C for a period of 30 
min at different conditions: (i) in vacuum of 10- 4  Torr and (ii) 
at atmospheric pressure. Further, the mixtures were cooled 
down to room temperature and dissolved in acetone. After­
wards, the solution was purged with helium gas for oxygen 
removal and EPR spectra were recorded.

The first sample heated in vacuum did not show any EPR 
signal. The second mixture heated at atmospheric pressure 
with the presence of water vapour exhibited a characteristic 
EPR spectrum (Figure 7). This signal is related to the adducts 
of short-lived OH radicals with the PBN spin trap. The ob­
tained experimental value is in good agreement with that of 
the constant of hyperfine interaction for adduct of PBN with 
OH radicals. Similar results were also obtained for unsubsti­
tuted PcAlCl. Therefore, we can conclude that the reaction of 
(tBu)4PcAlCl and PcAlCl with water with the formation of 
the corresponding /z-oxodimers proceeds according to a radi­
cal mechanism involving the metal phthalocyanine AlPc * and 
O H - radicals.

On the basis of the data obtained the process of dimeriza- 
tion in the films can be described as a sequence of the follow­
ing reactions. We suggest that upon heating water molecules 
penetrate between phthalocyanine layers. H 2O molecules in­
teract with (tBu)4PcAlCl molecules producing HC1, MPc+ , 
HO- . As the electron transfer in the solid state is faster 
than the OH-  diffusion, the electron is transferred from HO-

to MPc+ and radicals O H ’ and M P c’ are formed. Further, 
OH radical substitutes chlorine giving (tBu)4PcA10H. Then, 
(tBu)4PcA10H reacts with (tBu)4PcAlCl liberating HC1 and 
producing the ^i-oxo-dimer (tBu)4PcA10AlPc(tBu)4.

In this manner the results of the EPR investigations shed 
some light on the role of magnetic field. Due to the radi­
cal state of the phthalocyanine molecule it gains magnetic 
moment capable of interaction with external magnetic field. 
This may explain the significant decrease of the transforma­
tion temperature upon annealing in magnetic field. It is well 
known that chemical reactions that involve radical intermedi­
ates can be influenced by magnetic fields, which act to alter 
their rate, yield, or product distribution .36-38

Systematic investigations of the chemical transformation 
of (tBu)4PcAlCl to [(tBu)4PcAl]20  on the substrate surface 
using complementary methods such as optical spectroscopies, 
X-ray diffraction, and electron spin resonance allowed us to 
conclude that the presence of a magnetic field parallel to the 
substrate surface during annealing of the film improves sub­
stantially the azimuthal order of crystalline domains with the 
phthalocyanine molecules oriented perpendicular to the sub­
strate surface and are turned so that their dipole moments op­
pose the magnetic field direction (Figure 8 ).

FIG. 8. Scheme of orientation of the crystallites and the phthalocyanine 
molecules in the films relative to the magnetic field direction.

3300 ’ ’ 3310 3320 " ' 3330 ' ' 3340 ' ' 3350 ' 3360 ' 3370

FIG. 7. EPR spectra of the adducts of OH radicals with PBN: experimental 
(a); calculated (b).

J . C h e m . P h y s .  1 3 9 ,  2 0 4 7 1 0  ( 2 0 1 3 )
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IV. CONCLUSIONS

In this work, the influence of post-deposition anneal­
ing without and under applied magnetic field on the chemi­
cal transformation of (tBu^PcAlCl to [(tBu^PcAl^O on the 
substrate surface was studied using complementary methods 
such as optical spectroscopies, X-ray diffraction, and atomic 
force microscopy. Combination of these methods with polar­
ized Raman spectroscopy technique allowed to conclude that 
the presence of a magnetic field parallel to the substrate sur­
face during annealing of the film improves the azimuthal or­
der of crystalline domains with the phthalocyanine molecules 
oriented perpendicular to the substrate surface and are turned 
so that their dipole moments oppose the magnetic field direc­
tion. Study by electron paramagnetic resonance spectroscopy 
using the method of spin traps has shown that the reaction of 
transformation of (tBu^PcAlCl to [(tBu^PcAl^O proceeds 
according to radical mechanism with formation of the metal 
phthalocyanine A lPc- and OH- radicals. Due to the radical 
state of the phthalocyanine it gains magnetic moment capable 
of interaction with external magnetic field.
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A R T I C L E  I N F O  A B S T R A C T

O ctasubstituted copper(II) phthalocyanines containing alkylthio-, alkyloxy-, (trioxyethylene)th io- and 
(trioxyethylene)oxy- substituents in peripheral positions have been synthesized and characterized using 
UV-vis, IR, and mass spectroscopies. The m esogenic properties of the  copper(II) phthalocyanines have 
been studied by differential scanning calorim etry, polarizing optical m icroscopy, and X-ray diffraction. 
The effect of the nature of substituents in the phthalocyanine ring on the liquid crystalline properties 
and the orientation of the m olecules in th in  films have also been investigated using a range of spectral 
m ethods as well as by X-ray diffraction analysis. Visible absorption spectroscopy yielded an evidence of 
a therm ally  induced m olecular reorganization in the films. Polarized Raman spectroscopy w as used to 
study the preferential orientation of m olecules relative to the substra te  surface. Influence of the  nature 
of substituents in the phthalocyanine molecule in the thin films conductivity  w as also investigated.
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1. Introduction

Phthalocyanine (Pc) and its derivatives constitute one of the 
m ost studied classes of organic functional materials in nonlin­
ear optics [1,2], liquid-crystalline electronic charge carriers [3,4], 
exciton-transport materials [5], optical data storage [6 ], photody­
namic cancer therapy [7], solar cells [8 ], catalysis [9] and as the 
active layers of gas sensors [ 1 0 ],

Substitutions of long alkyl, alkyloxy and alkylthio substituents 
into the aromatic ring leads to the enhancem ent of the solubility  
and liquid-crystalline behavior in which the aromatic rings assem ­
ble into columnar stacks [11-13]. Columnar liquid crystals such as 
discotic liquid crystals w ith high order materials are good candi­
dates as organic sem iconductors for electronic devices due to their 
potential to possess high m obility of charge carriers as well as the 
anisotropic property of conduction along the colum ns [14-17].

The alignm ent of discotic liquid crystals becom es a crucial point 
for high conductivity in different electronic devices. There are 
two typical alignm ents of discotic liquid crystals; hom eotropic 
and hom ogeneous (planar) ones. In the former the discs lie on 
a plate horizontally, and in the latter the discs stand on a plate

* C orresponding  au thor.
E-mail address: basova@ niic.nsc.ru (T.V. Basova).

0379-6779/$  -  see front m a tte r  © 2012 Elsevier B.V. All rights reserved, 
doi: 10.1016 /j.syn thm et.2012.02.006

perpendicularly. Generally, liquid crystals are so flexible that they  
can be spread uniformly on a plate and betw een  tw o plates. 
Homeotropic alignm ent can be generated by thermal anneal­
ing, that is, upon slow  cooling of the isotropic m elt confined  
betw een tw o substrates. Homeotropic alignm ent has been reported  
for som e hexabenzocoronene (HBC) [10], phthalocyanine [11,12] 
and triphenylene m esogens [13-15]. It has been concluded that 
the intercolumnar packing dim ensions o f the polycyclic aromatic  
hydrocarbons are strongly dependent on the aromatic core size, the  
side chain length, and the number of side chains [18]. Low isotropic  
m elt viscosity associated w ith the presence o f oxygen atom s in the 
flexible side chains have been postulated as key param eters for the  
hom eotropic alignm ent o f phthalocyanine m esogens [19-24], 

Although m any different side-chain-m odified Pcs and other d is­
cotic m olecules have been synthesized, the thin film properties 
for only lim ited number of phthalocyanines w ere reported. The 
exploitation of the desirable optical and electrical or electrochem i­
cal properties o f phthalocyanines relies on the precise control over 
the molecular packing and ordering in the solid phase. Many Pc 
derivatives w ith flexible side-chains make excellent candidates for 
Langmuir-Blodgett (LB) film fabrication as w ell as film s produced  
by spin coating, and self-assem bly [19],

In this article, the effect o f different substituents on the 
orientation of the film of octasubstituted copper(II) phthalo­
cyanines w ith alkylthio-, alkyloxy-, (trioxyethylene)th io- and

http://www.elsevier.com/locate/synmet
mailto:basova@niic.nsc.ru
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ig. 1. Synthesis o f oc ta -su b stitu ted  copper(II) ph thalocyan ines. Reagents and  conditions: (i) RBr, K2CO3 . DMF, rt, 3 days: (ii) RSH, K2CO3 , DMF, rt, 3 days: (Hi) C11CI2 
nhydrous), DBU, n-hexano l, reflux, 24  h.

rioxyethylene)oxy-substituents in peripheral positions (Fig. 1) is 
udied by the method of X-ray phase analysis, polarized Raman 
ectroscopy and polarized optical microscopy (POM). The effect 

f nature of substituents in phthalocyanine ring on the liquid crys- 
lline properties and the orientation of the molecules in thin films 

ave been investigated using a range of spectral methods as well as 
r X-ray diffraction (XRD) analysis. Polarized Raman spectroscopy 
as used to study the preferential orientation of molecules relative 
the substrate surface.

Experimental part

1. Materials

All used reagents were purchased from commercial suppliers. 
iPcRg derivatives (Fig. 1) were synthesized and characterized 
cording to the literature procedures [25-28]. 4,5-Dihydroxy- 
ithalonitrile [29], 4,5-dichlorophthalonitrile [30], 4,5-bis(octyl- 
io)phthalonitrile (2a) [31], 4,5-bis(hexadecylthio)phthalonitrile
b) [32], and 4,5-bis(l-tia-4,7,10-trioxaundecanyl)phthalonitrile
c) [33] were synthesized according to reported procedure. 
>-Bis(octyloxy)phthalonitrile (la) [34], 4,5-bis(hexadecyloxy)- 
ithalonitrile (lb) [34] and 4,5-bis(l,4,7,10-tetraoxaundeca- 
l)phthalonitrile (lc) [35] were synthesized according to the mod- 
?d reported procedure by using 4,5-dihydroxyphthalonitrile as 
ecursor which has previously been described by Torres and co­
ckers [29]. Hexanol, n-hexane, THF, DMF and dichloromethane 
CM) were dried as described by Perrin and Armarego [36] before 
e.

2.2. Equipment

The IR spectra were recorded on a Shimadzu Fourier Trans­
form FTIR-8300 using KBr pellets. The mass spectra were acquired 
on a Bruker Daltonics (Bremen, Germany) MicroTOF mass spec­
trometer using 2,5-dihydroxybenzoic acid as matrix. Absorption 
spectra of sample solutions in the UV-vis region were recorded 
with a Shimadzu 2001 UV spectrophotometer using 1 cm path- 
length cuvettes at room temperature. Electronic absorption spectra 
of films deposited on glass and KBr substrates were recorded 
with a UV-vis-NIR scanning spectrophotometer (Shimadzu, UV- 
V1S-3101PC) in the range from 400 to 900 nm. Thermogravimetric 
analyses were carried out on a Mettler Toledo Star6 Thermal 
Analysis System at a rate of 10°Cmin_1 in a nitrogen flow 
(50mLmin_1). Transition temperatures were determined using 
a Mettler Toledo Star Thermal Analysis System/DSC 822 differ­
ential scanning calorimeter (DSC) system at the scan rate of 
10°Cmin_1. DSC was calibrated with 3-4  mg indium samples 
under nitrogen atmosphere. Optical textures were observed with 
the POM Biomed MMR-3. X-ray diffraction measurements were 
performed using automatic diffractometer DRON-3M (R = 192 mm, 
CuKa-irradiation, Ni-filter, scintillation detector with amplitude 
discrimination, Soller slits with aperture of 2.5° on primary and 
reflected beams) in the region of 26 from 5° to 60’ with the scanning 
step of 0.03°. All measurements were carried out under ambient 
conditions.

2.3. Film preparation and characterization

Small volume (3-4 (xL) of solutions of the CuPcRg derivatives 
in chloroform (lOmg/mL) was dispensed via a glass pipette onto
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Table 1
Initial decom position  and  m ain  decom position  te m p era tu re s  o f CuPcRs com plexes.

C om pound Initial decom position  
te m p e ra tu re  (°C)

M ain decom position  
te m p e ra tu re  (°C)

3a 300 420
3b 300 424
3c 300 406
4a 330 378
4b 330 384
4c 285 337

an ultrasonically cleaned substrate held onto photoresist spinner 
(Microsystem model 4000). The speed of substrate rotation was 
2000 rpm. Spinning was continued for 30 s during which time the 
solvent had evaporated to generate a film of the phthalocyanine 
derivative. The films were then heated to a temperature 10-20°C 
above the isotropic transition temperature or to the maximal 
possible temperature lower than temperature of decomposition 
(Table 1) and then slowly cooled down to room temperature at 
the rate of 1 0 °Cmin_1 for comparison with as-deposited layers. 
Glass slides, gold-coated slides and KBr plates were used as sub­
strates. For conductivity measurements interdigitated electrodes 
were used as substrates.

The thickness of the films deposited on one substrate was mea­
sured by ellipsometry. Spectroscopic ellipsometric measurements 
were performed on films deposited on silicon substrates using a 
Woolam M-2000V™ rotating analyzer spectroscopic ellipsometer 
in the spectral range of400-800 nm. Raman spectra were recorded 
with a Triplemate, SPEX spectrometer equipped with CCD detector 
in back-scattering geometry. The 488 nm, 20 mW line of an Ar-laser 
was used for the spectral excitation.

2.4. Synthesis

2.4.1. 2,3,9,10,16,17,23,24-Octakis(octyloxy)phthalocyaninato 
copper(II) (3a)

4,5-Bis(octyloxy)phthalonitrile (la) (0.50 g, 1.30 mmol), anhy­
drous CuCl2 (0.088 g, 0.65 mmol), anhydrous n-hexanol (3 mL) and 
DBU (0.10 mL, 0.65 mmol) were stirred at reflux temperature dur­
ing 24 h under argon atmosphere. The reaction mixture was then 
cooled and poured into acetone. The resulting precipitates were 
filtered and washed with ethanol. The green product was purified 
by column chromatography on silica gel using dichloromethane 
as eluent [25]. Yield: 0.090g (17%). IR [(KBr) umax/cm- 1 ]: 3079 
(Ar-CH), 2920-2851 (CH2), 1607 (C=N), 1505 (Ar-C=C), 1458, 
1418,1384 (deformation C-H), 1276, 1202 (C-O-C), 1101, 1069, 
853. UV-vis (THF): Amaxnm (loge): 343 (4.54), 608 (4.23), 673 
(5.01). MALDI-TOF-MS m/z: Calcd. for C9GHi44CuN80 8: 1601.77, 
Found 1601.76 [M]+.

2.4.2.
2,3,9,10,16,17,23,24-Octakis(hexadecyloxy)phthalocyaninato 
copper(Il) (3b)

3b was prepared by the same procedure as described for 3a 
by starting with 4,5-bis(hexadecyloxy)phthalonitrile (lb) (0.50 g, 
0.82 mmol), anhydrous CuCl2 (0.055 g, 0.41 mmol), anhydrous n- 
hexanol (3 mL) and DBU (0.07 mL, 0.45 mmol). The green product 
was purified by column chromatography on silica gel using hex- 
ane:dichloromethane (1:10) as eluent [25]. Yield: 0.1 lOg (21%). 
IR [(KBr) Umax/cm"1]: 3065 (Ar-CH), 2918-2850 (CH2), 1608 
(C=N), 1505 (Ar—C=C), 1463,1386 (deformation C-H), 1272,1203 
(C-O-C), 1073,875. UV-vis (THF): Amax nm (loge): 343 (4.67), 606 
(4.28), 673 (5.02). MALDI-TOF-MS m/z: Calcd. for C160H272CuN8O8: 
2499.55, Found 2499.15 [M]+.

2.4.3. 2,3,9,10,16,17,23,24-Octakis-[2-(2-(2- 
methoxyethoxy)ethoxy)ethoxy]phthalocyaninato copper(II)
(3c)

3c was prepared by the same procedure as described for 3a 
by starting with 4,5-bis(l,4,7,10-tetraoxaundecanyl)phthalonitrile 
(lc) (0.50g, 1.00mmol), anhydrous CuCl2 (0.07g, 0.50 mmol), 
anhydrous n-hexanol (3 mL) and DBU (0.07 mL, 0.45 mmol). The 
oily green product was purified by column chromatography on 
neutral A12C>3 using dichloromethane as eluent [26]. Yield: 0.325 g 
(60%). IR [(KBr) Umax/cm-1]: 3080 (Ar-CH), 2920-2872 (CH2), 
1608 (C=N), 1508 (Ar—C=C), 1460,1412,1352 (deformation C-H), 
1280, 1200 (C-O-C), 1096, 1064. UV-vis (THF): Amaxnrn (loge): 
343 (4.64), 610 (4.49), 673 (4.93). MALDI-TOF-MS m/z: Calcd. for 
C88Hi28CuN80 32: 1873.58, Found 1873.18 [M]+.

2.4.4. 2,3,9,10,16,17,23,24-Octakis(octylthio)phthalocyaninato 
copper(II) (4a)

4a was prepared and purified by the same procedure as 
described for 3a by starting with 4,5-bis(octylthio)phthalonitrile 
(2a) (0.50g, 1.20mmol), anhydrous CuCl2 (0.081 g, 0.60mmol), 
anhydrous n-hexanol (3mL) and DBU (0.09 mL, 0.60 mmol) 
[27]. Yield: 0.300g (58%). IR [(KBr) Umax/cm-1]: 3068 (Ar-CH), 
2952-2850 (CH2), 1595 (C=N), 1504 (Ar-C=C), 1468, 1408, 1376 
(deformation C-H), 1088 (C-S-C), 956. UV-vis (THF): Xmaxnrn 
(loge): 326 (4.63), 634 (4.39), 704 (5.03). MALDI-TOF-MS m/z: 
Calcd. for C96Hi44CuN8S8: 1730.33, Found 1730.84 [M]+.

2.4.5.
2,3,9,10,16,17,23,24-Octakis(hexadecylthio )phthalocyaninato 
copper(ll) (4b)

4b was prepared by the same procedure as described for 3a 
by starting with 4,5-bis(hexadecylthio)phthalonitrile (2b) (0.50 g, 
0.78 mmol), anhydrous CuCl2 (0.053 g, 0.39 mmol), anhydrous n- 
hexanol (3mL) and DBU (0.06 mL, 0.40 mmol). The green product 
was purified by column chromatography on silica gel using hex- 
ane:dichloromethane (1:10) as eluent [28]. Yield: 0.120g (23%). 
IR [(KBr) Umax/cm-1]: 3044 (Ar-CH), 2917-2849 (CH2), 1595 
(C=N), 1504 (Ar—C=C), 1468,1412,1377 (deformation C-H), 1088 
(C-S-C), 956. UV-vis (THF): Amaxnrn (loge): 326 (4.65), 634 
(4.41), 704 (5.04). MALDI-TOF-MS m/z: Calcd. for C16oH272CuN8S8:
2628.06, Found 2627.94 [M]+.

2.4.6. 2,3,9,10,16,17,23,24-Octakis-[2-(2-(2- 
methoxyethoxy)ethoxy)ethylthio]phthalocyaninato copper(ll)
(4c)

4c was prepared by the same procedure as described for 3a by 
starting with 4,5-bis(l-tia-4,7,10-trioxaundecanyl)phthaIonitrile 
(2c) (0.70 g, 1.40 mmol), anhydrous CuCl2 (0.09 g, 0.70 mmol), 
anhydrous n-hexanol (3mL) and DBU (0.1 mL, 0.70 mmol). The 
oily green product was purified by column chromatography on 
neutral AI2O3 using dichloromethane as eluent. Yield: 0.364 g 
(52%). IR [(KBr) Umax/cm-1]: 3067 (Ar-CH), 2915-2871 (CH2), 
1602 (C=N), 1505 (Ar—C=C), 1450,1391 (deformation C-H), 1308, 
1195, 1085 (C-S-C), 1033. UV-vis (THF): Amaxnm (loge): 324
(4.59), 634 (4.59), 704 (4.93). MALDI-TOF-MS m/z: Calcd. for 
C88Hi28CuN8 0 24S8: 2002.10, Found 2001.95 [M ]\

3. Results and discussion

3.1. Synthesis and characterization

The synthetic route of CuPcR8 complexes is 
shown in Fig. 1. 4,5-Bis(octyloxy)phthalonitrile (la),
4,5-bis(hexadecyloxy)phthalonitrile (lb) and 4,5-bis(l,4,7,10- 
tetraoxaundecanyl)phthalonitriIe (lc) were synthesized via 
nucleophilic substitution of 4,5-dihydroxyphthalonitrile with
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Table 2
T em peratu res  o f phase  tran sitio n s  o f CuPcRs com plexes.

C o m p o u n d T e m p e r a t u r e  o f  p h a s e  t r a n s i t i o n  (°C )

3a
100(123l25l) 300(300t25l)J

C  C o Ih — ► d e c

3b

45
50 117(931251) 270(300^251)

C 1 «=iC2 C o lh  — * d e c .

3c

41 102 250 
50(621261) 290(260[26I)

C  ^  C ol/, — > d e c .

4a

10
77(771281) 300(3501281,

C  <=! C olh  — * d e c -

4b

-15
-3 4  43(261281) 274(2631281)

C 5=tC 2 ^  C o lh  ^  IL

4c

-18  31 270 
(2851251)

C ^ C o l h <=* IL
285

C: crystal; Colh: co lum nar hexagonal; dec.: decom position ; IL; iso trop ic liquid.

corresponding alkyl bromides in the presence of K2CO3 
in anhydrous DMF. 4,5-Bis(octylthio)phthalonitrile (2a), 

,5-bis(hexadecylthio)phthalonitrile (2b) and 4,5-bis(l-tia- 
,7,10-trioxaundecanyl)phthalonitrile (2c) were synthesized via 
udeophilic substitution of 4,5-dichlorophthalonitrile with cor- 
esponding alkyl thiols in the presence of K2CO3 in anhydrous 
MF. The synthesis of Cu(II) phthalocyanine complexes (3a-c and 
i-c )  were attempted by treatment of corresponding substituted 
hthalonitriles with anhydrous CUCI2 in the presence of DBU as 
ase in freshly distilled n-hexanol. All synthesized complexes 
ere identified by MALD1-TOF mass spectroscopy using 2,5- 
ihydroxybenzoic acid as matrix (Supporting Information), FT-IR 
nd UV-vis spectroscopy.

.2. Mesogenic properties of the CuPcRs complexes

CuPcRs derivatives were chosen for this research because they 
xhibit a hexagonal columnar (Colh) structure over a wide tempera- 
ure range. The thermal stability of the CuPcRs complexes has been 
vestigated by thermal gravimetric analysis (TGA). Initial decom- 
osition and main decomposition temperatures of Pcs are given in 
able 1. It is obvious that alkyloxy substituted derivatives are more 
table than alkylthio substituted Pc at high temperatures. The tem- 
eratures of phase transitions of CuPcRs complexes are presented 

Table 2. Investigation of liquid crystalline properties of some 
uPcRs has already been described in the literature [25,26,28]. The 
irresponding phase transition temperatures reported in the liter- 
ure are given in parentheses in Table 2. The phase transitions of 
ime compounds were measured only during heating cycle in pre- 
ous papers [25,26,28]. The clearing and melting points for liquid 
ystalline compounds measured during heating stage can differ 
om those measured during cooling stage. The phase transition 
mperatures measured during cooling stage are more important 
r the preparation of ordered films, therefore they were also mea- 
ired during cooling stage for CuPcRs derivatives in this work 
able 2 ).
It was reported in the corresponding literature that 3c shows 

phase transition at 62 °C, before its melting at 260 °C, which is 
companied by decomposition. It was also reported that, a crys- 
lline state has been observed at room temperature [26]. However, 
is compound was heated to melting point and cooled down to 
om temperature and six Bragg reflections were observed at 25 °C 
Dm XRD in this study (see Supporting Information). Additionally, a 
juid crystal-crystal transition was observed at 10°C in DSC mea- 
rements during the cooling confirming that 3c is liquid crystal 
iove 10°C (see Supporting Information).

3.3. Films characterization

It was shown earlier that the spin-coating method provides a 
simple and convenient procedure for formulating ordered films 
of the phthalocyanines which can be heated to form thin liquid- 
crystalline films [37-39]. The electronic absorption spectra of the 
films of CuPcRs before and after heating are presented in Fig. 2. 
The Q-band structure is more complex than that observed in the 
solution phase where non-aggregated phthalocyanines give rise to 
a single main band assigned to the doubly degenerate transition 
aiu-e g. In the optical spectra of CuPcRs films the main absorp­
tion bands are broadened through exciton coupling effects which 
also lead to shifts in the band positions. These are dependent upon 
molecular packing [40].

Splitting of Q-band in the spectra of the films of 3a, 3b, 3c 
and 4a before heating indicate the herring-bone arrangement of 
phthalocyanine molecules which is typical for many crystalline 
phthalocyanines [41]. Films give rise to both a red- and a blue- 
shifted band consistent with exciton splitting arising from the 
presence of translationally non-equivalent molecules in the ‘unit 
cell’, as in a herringbone arrangement of molecules within adja­
cent columns. After heating the spectra of films 3a and 3b change, 
however the Q-band splitting does not disappear confirming the 
persistence of herring-bone arrangement.

The spectra of the films of 3c and 4a after heating are blue 
shifted relative to the spectra of the monomers. From these spec­
tral changes it can be deduced that on passing from crystal to 
mesophase, changes into parallel (face-to-face) dimer stacking are 
observed. This type of re-organization is analogous to that under­
gone by the octaalkyl analogues upon transition from the crystal 
phase to the hexagonal discotic mesophase [42-44].

The Q-bands in the spectra of 4b and 4c films are blue-shifted 
both before and after thermal treatment. The 3c, 4a, 4b and 4c 
derivatives are liquid crystalline at room temperature (Table 2).

The X-ray diffraction data obtained for the films before and after 
thermal treatment are presented in Fig. 3. The X-ray patterns of 3a 
film before thermal treatment (Fig. 3) contain two peaks related to 
the layer spacings of 23.9 A and 2 0 .6  A, while only one peak related 
to the spacing of 24.5 A is observed after thermal treatment. The as- 
deposited films of 3b, 3c and 4c were amorphous while the films 
after thermal treatment reveal the reflections from layer spacings 
of 30.9, 24.6 and 22.1 A in the X-ray pattern, respectively. There­
fore the main tendency to form more ordered films after thermal 
treatments is observed for all investigated films.

The polarized optical microscope images of the 3c, 4a, 4b and 4c 
films deposited on glass slide were obtained in parallel and crossed 
polarizers (Fig. 4). The typical birefringent texture between crossed 
polarizers is the signature of planar alignment with the random dis­
tribution of columnar axes orientation. Between parallel polarizers, 
digitated star-like structures were observed, which are typical of 
Colh phases [45]. The polarized optical microscope images of the 
3a and 3b, crystalline films do not exhibit any specific texture.

The Raman spectroscopy was used to study the pref­
erential orientation of molecules relative to the substrate 
surface. The principles of polarized Raman spectroscopy for inves­
tigation of the molecular film orientation were described in details 
in earlier publications [43,44]. This method allows estimating the 
angles of molecule inclination relative to the substrate surface. In 
terms of the phthalocyanine molecule, the designation of its molec­
ular axes is presented in Fig. 5, where the molecular z-axis coincides 
with the main axis of rotation (C4). Rotating the CuPcRs molecule 
around x- and y-axis with the angle a  and p, respectively, the 
resulting molecular orientation exhibits an inclination angle of the 
molecule plane with respect to the substrate plane (Fig. 5). By aver­
aging the Raman tensor components obtained by rotation around 
x, y  and z axes, the dependence of the /„•//(/ ratio for each symmetry
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Fig. 2. Electronic absorp tion  spectra  o f 3a, 3b, 3c, 4a, 4b  and  4c  so lu tions in ch loroform  (black lines); as-deposited  films on glass (b lue lines); films a fte r  hea tin g  (red  lines). 
(For in te rp re ta tio n  of th e  references to  color in th is figure legend, th e  read e r is referred  to  th e  w eb  version  of th e  article.)
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Fig. 3. X -ray diffraction data  for th e  films of 3a, 3b, 3c, 4a, 4b  and 4c  as-deposited  films on glass slides (dashed  lines) a t room  te m p era tu re ; film s a fte r  th e rm al tre a tm e n t 
(solid lines).
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Fig. 4 . O ptical te x tu re  o f the  films of 3c, 4a, 4 b  and 4c  a t  room  tem p era tu re  a fte r the rm al trea tm en t. M agnification 4 0 x .

rpe of vibrations on the angle a  and ft (i.e. molecular orientation) 
iay be deduced. Thereby, regarding the rotation around the z-axis, 
n averaging in the range from 0 to zr/2 has to be carried out. The 
xpressions for /„• or I,j have the follow ing overall form:

2 r 12
i i  =  - j  f i ( a , P , Y ) d Y  (1)

2  f n/2ij = - J  ffa,fi,y)dy (2)

where f u ( a ,  ft, y )  and f y ( a ,  ft, y)  denote the Raman tensor com ­
ponents (ii) and ( ij) of a specific Raman m ode obtained by their 
rotation around x, y  and z axes on a,  ft and y,  respectively. Know­
ing the experim ental ratios of intensities /,,//,j- for Alg, Big and B2g 
m odes and using Eqs. (1) and (2), the a  and ft angles m ay be derived.

The sym m etry types of the m ost intensive bands used for the 
determ ination of film orientation are indicated in Fig. 6 . The bands 
assignm ent was carried out on the basis of com parison w ith similar 
phthalocyanine m olecules [46].

The polarized Raman spectra o f 3a and 4b films deposited on 
glass substrates are show n in Fig. 7 (for 3a and 4b) as exam ples.

4b
&
</)c
(1)
c

400 1600800 1000 1200 1400600

Raman shift, cm'1
;. 5. D esignation o f m olecular axes o f CuPcRs m olecule and  schem e of its sug- 
!sted o rien ta tion  w ith  respect to  th e  su b stra te  surface. Fig. 6 . Ram an spectra  of 3a, 3b, 3c, 4a, 4 b  and  4c  derivatives.
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Fig. 7. Polarized Ram an sp ec tra  o f 3a and  4b films a fte r  h ea ting  in parallel (ii) and  
cross ((/') po larizations o f inc iden t and  sca tte red  light.

The average values of /„•//(,• ratios for each symmetry type of vibra­
tions in the polarized spectra of the films of all CuPcRs derivatives 
are listed in Table 3. The a  angle is 42-45° for the films of 3a and 3b 
derivatives deposited on the surface of glass slides. The molecules in 
the film have the same inclination angles but they are azimuthally 
disordered. As was shown above these compounds are crystalline at 
room temperature. Similar angle (~48°) between molecular plane 
and normal to the substrate was estimated by Wang and co-author 
[47] in the films of CuPcRs (R= -OCgHiy). A herringbone arrange­
ment of molecules within adjacent columns is observed for both 
unsubstituted and substituted phthalocyanines [47-50]. Interest­
ingly, this type of arrangement is also observed for the horizontally 
lifted LB films of the peripherally substituted octaalkyl phthalocya­
nines [51,52],

The inclination angle a  of molecules in the films of the other 
four derivatives (3c, 4a, 4b, 4c) deposited on the surface of glass 
slides was calculated to be 85-90°. According to DSC data, these 
phthalocyanines are liquid crystalline at room temperature.

The formation of the films of 3c, 4a, 4b, 4c derivatives with 
planar alignment is due to the ability of discotic mesogens to self- 
assemble in columnar superstructures. It is known that discotic 
molecules can adopt two characteristic orientations (planar and 
homeotropic) of columnar superstructures on surfaces, which are 
required for electronic devices with different geometries [14]. In 
the films with planar (homogeneous) alignment the edge-on ori­
entation of the discotic molecules and columns parallel to the 
substrate surface is observed [53,54]. These results are in a good 
agreement with the data of polarized microscopy exhibiting typi­
cal birefringent texture between crossed polarizers which is typical 
for planar alignment with the random distribution of columnar 
axes orientation. It has been shown that planar alignment can be 
obtained for the films of different discotic mesogens deposited

Table 3
M easured  /«/% ratios for A ig, Big a n d  B2g m odes in th e  Ram an sp ec tra  o f th e  annealed  
CuPcRs films and  ca lcula ted  angles o f  m olecule inclination.

C om pound la/hj ra tios fo rA ig, B |g and  B2g m odes 

Aig Big B2g

Angle (°) 

a P

3a 11 1 3 2.8 42 45
3b 10 1.5 2.9 45 45
3c 3.4 3.4 1.2 90 5
4a 3.5 3.4 1.2 90 5
4b 3.7 3.6 1.4 85 8
4c 3.6 3.5 1 3 85 6

Table 4
Film th ickness and  ca lcula ted  conductiv ity  o f CuPcRs films.

Com pound Thickness (nm ) 07/ (£2_1 m - ’ )

3a 198 5.1 x lO - 9
3b 150 2.6 x lO - 8
3c 139 4.2 x 1 0 - 8
4a 1 20 6.7 x lO " 8
4b 116 5.0 x lO *8
4c 156 2.0 x lO " 7

on the surface of slides with an air interface [55]. The planar 
alignment with a random distribution of the columnar direc­
tor in the plane parallel to the air interface has been observed 
for films of two tetra-substituted nickel phthalocyanines (NiPcR4 , 
R— OCH(CH2OC12H25)2 and R=-SCH(CH2(OCH2CH2 )2OC2H5)2) 
deposited on KBr, Si and quartz surfaces [39].

For spin-coated films of octasubstituted phthalocyanines there 
is a contest between tt-tt attractive interaction and steric 
effect which results in different types of molecular arrange­
ments depending on the electronic influence of side chains on 
the phthalocyanines core [41 ]. For 3a and 3b, alkoxysubstituted 
phthalocyanines containing the smaller size of the oxygen atom 
which is bridging the Pc macrocycle to the alkyl chain, there is a 
steric obstruction to the side-chains resting in the same plane as the 
aromatic ring in comparison with alkylthiosubstituted phthalocya­
nines. This leads to a higher phase transition temperature of 3a and 
3b to the mesophase and formation of crystalline phases at room 
temperature with a herringbone arrangement which is believed to 
maximize the attractive interactions between Pc cores (H-bonding 
and tt- tt interaction) [41,56].

The current-voltage (/-V) characteristics of CuPcRs films were 
measured in the direction parallel to the films plane using inter- 
digitated electrode structures. Film thicknesses were determined 
by spectroscopic ellipsometry and were used in the calculation of 
conductivities of CuPcRs complexes; the results are summarized 
in Table 4. The lateral conductivity tends to decrease slightly with 
the increase of chain length (films 3a and 3b; 4a and 4b). A similar 
behavior was observed by Nakahara and co-workers for in-plane 
conductivity as a result of increasing chain length in phthalocya­
nine molecules [57]. The observed decrease in conductivity with 
increasing length of the alkyl chain was related to an increase in 
the hopping distance between localized sites [58]. The conductiv­
ity of alkylthio-substituted (4a-4c) phthalocyanines is higher than 
that of alkyloxy-substituted derivatives (3a-3c). The Q.-bands of 
alkylthio-substituted phthalocyanines are red-shifted, compared 
with the Q.-bands of alkyl- and/or alkyloxy-substituted phthalocya­
nines. The red-shift means that the energy gap between the HOMO 
and LUMO narrows on changing from alkyl or alkyloxy groups to 
alkylthio groups [28]. This was found to result in an increased elec­
troconductivity, as was previously reported by van de Craats and 
his co-workers for alkylthio-substituted phthalocyanines, both for 
the metal free and copper complexes [59]. Furthermore, it was sug­
gested that the larger size of the sulphur atom which is bridging 
the Pc macrocycle to the alkyl chain is the cause for hindering the 
structural disorder in the molecular stacks during the melting of 
the hydrocarbon chain when transition from crystalline to hexago­
nal mesophase (Dh) takes place [60]. This was found to enhance the 
electron mobility of charge carriers between stacks by one order of 
magnitude and thus leading to higher conductivity as compared to 
the alkyloxy-substituted derivatives.

4. Conclusions

In this work, the synthesis of octa-substituted cop- 
per(II) phthalocyanines containing alkylthio-, alkyloxy-, 
(trioxyethylene)thio- and (trioxyethylene)oxy-substituents in
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peripheral positions has been described. The CuPcs were charac­
terized using UV-vis and FT-IR spectroscopies, as well as mass, 
spectrometry. The phase transition temperatures of the com­
plexes have been determined by the POM and DSC experimental 
techniques. The formation of the columnar-hexagonal (Colh) 
mesophase over a wide temperature range has been confirmed 
using a range of methods. The temperature of phase transitions 
depends on the type of substituents.

Thermally induced molecular reorganization within spun CuPc 
films was studied by visible absorption spectroscopy and XRD. 
The polarized Raman spectroscopy was used to study the prefer­
ential orientation of molecules relative to the substrate surface. 
It was shown that the type of substituent in the phthalocyanine 
molecule has a significant effect on the films’ orientation and 
electrical properties. The inclination angles a  of molecules in the 
films of CuPcRg (3a and 3b) with alkyloxy-substituents (—OCgHn 
and —OC16H33) were about 45°. These compounds are crystalline 
at room temperature. The inclination angles in the films of the 
other four derivatives (3c, 4a, 4b, 4c) deposited on the surface of 
glass slides were found to be 85-90°. According to obtained DSC 
data, these phthalocyanines are liquid crystalline at room temper­
ature. The higher conductivity values were found for the films of 
phthalocyanines with the molecules oriented perpendicular to the 
substrate surface. The lateral conductivity tends to decrease slightly 
with the increasing of chain length, and the higher conductivity in 
the alkylthio-derivatives is thought to be caused by the reduced 
structural disorder during phase transition which is caused by the 
presence of sulphur atoms.
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Octasubstituted lead(n) phthalocyanines containing alkylthio- and alkoxy- groups in peripheral 
positions have been synthesized and characterized using 'H and l3C N M R , UV-Vis, IR and mass 
spectroscopies as well as elemental analysis. The mesogenic properties o f  the octasubstituted  
lead(n) phthalocyanines have been investigated by differential scanning calorimetry, polarizing 
optical microscopy, and X-ray diffraction. The sandwich structures ITO/PbPc/In were prepared to 
investigate the J (V )  characteristics o f  thin films o f  these molecules. The dissimilar behavior o f  the 
films before and after heat-treatment is expected to result in changing the alignment inside the 
columnar stacking o f  the m olecules in the films.

Introduction

With the advent o f  nanotechnology and the availability o f  new 
materials, the fabrication o f  electronic device, especially field 
effect transistors, photovoltaic cells and light emitting diodes 
(LEDs) has gained new m om entum  in recent years. D iscotic  
liquid crystalline materials have attracted recent attention in 
these fields due to their molecular alignment. These promising 
materials may form efficient n- n  columnar stacks that produce 
high charge-carrier m obilities, the magnitude o f  which is 
fundamentally determined by the degree o f  order and n-n  
molecular orbital overlap within the columnar stacks . 1

Phthalocyanines (Pcs) are attractive materials since their 
physical and chemical properties can be improved both by the 
substituents in the periphery and by the central metal ion in the 
cavity. Pcs bearing long alkyl, alkoxy and alkylthio substituents are 
known to exhibit discotic columnar liquid crystalline behavior . 2
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One o f  the main advantages o f  mesomorphic phthalocyanines 
over many other discotic macrocycles is their strong absorption 
in the visible and N IR  regions,3-:> which makes them good  
candidates for optoelectronic applications . 6

Lead is o f  particular interest am ong the metal ions which 
form complexes with Pcs since its diameter (2.4 A) is larger 
than the phthalocyanine cavity (1.6 A). The Pb atom  deviates 
by 0.37-0 .40  A from the plane o f  the phthalocyanine ring. This 
non-planar geometry results in a strong electrical dipole moment 
oriented normally to the plane o f the molecule as well as low 
transition temperatures among the other metallated phthalocyanine 
derivatives. 7 - 1 3

For unsubstituted phthalocyanines, the electrical switching 
effect was found for films o f PbPc in the monoclinic phase . 14  

The switching effect was observed only in films consisting o f a 
mixture o f monoclinic grains and the amorphous phase but not in 
films having a triclinic phase structure. In connection with this, 
there have been some works that were devoted to structural 
studies o f evaporated PbPc films. 1 x 1 6  However, the nature o f  the 
switching effect has yet not been clearly understood. Some works 
have also explored the potential o f  some octasubstituted lead 
phthalocyanines as an active material for memory devices . 11 ' 17

Films o f  substituted lead phthalocyanines have not been 
as thoroughly investigated as those o f  unsubstituted PbPc. 
Nonperipheral 1,4,8,11,15,18,22,25-octakis(hexylsulfanyl) phthalo­
cyanines have been synthesized and characterised by X-ray crystal­
lography in the work o f Cook and co-workers.Is Furthermore, 
nonperipheral tetraalkoxy substituted , 16 tetra- and octadiethoxy- 
malonyl substituted , 2 0  tetrakis(cumylphenoxy) 21 tetranitro- and 
tetraaminosubstituted22  lead phthalocyanines were synthesised 
and characterized. The first mesomorphic lead phthalocyanines
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were reported in 1987.810 Simon et al. showed that alkoxy- 
methyl substituted phthalocyaninato lead(n) complexes 
(PbPcR8, with R -  -C H 2OC„H2„+ , (n = 8 , 12, 18)) form 
a hexagonal columnar mesophase, which is stable at room 
temperature when n = 8  and 12,8 and since then Ford et al. 
pointed out that octa-(2 -ethylhexyloxy) lead phthalocyanines 
exist in mesophases from —100 to + 200 °C.9 These derivatives 
were alkoxy9 2 >_24 and alkoxy methyl8 octasubstituted mesogens 
with side chains substituted at the 2,3-positions on the benzene 
ring but mesomorphic alkylthio-substituted lead Pc compounds 
have not been synthesized except those discussed in our recently 
published work. 13 Furthermore, a comparative analysis of the 
mesogenic and spectral properties of tetrakis PbPc derivatives 
has been performed in terms of different heteroatoms and the 
effect of substituent position.25

We report here on the mesogenic properties of novel lead(n) 
Pcs octasubstituted with octylthio, octyloxy and hexadecyloxy 
groups (PbPcRg). The hexadecylthio substituted lead(n) phthalo­
cyanine derivative was synthesized according to our earlier 
work. 13 The preparation of thin films of these phthalocyanines 
and their investigation by the methods of spectral ellipsometry 
and polarized microscopy are reported. The current-voltage 
characteristics and electrical switching behavior in sandwich 
structures of ITO/PbPcR8/In are also studied.

Results and discussion

Synthesis and characterization

The synthetic route of octasubstituted lead(n) phthalocyanine 
complexes (PbPcR8) is shown in Fig. 1. 4,5-bis(octyloxy) 
phthalonitrile (la) and 4,5-bis(hexadecyloxy)phthalonitrile 
(lb) were synthesized via nucleophilic substitution of 4,5- 
dihydroxyphthalonitrile with corresponding octyl or hexade- 
cylbromide groups in the presence of K 2CC>3 in dried DMF.
4,5-bis(octylthio)phthalonitrile (2a) and 4,5-bis(hexadecylthio)- 
phthalonitrile (2b) were synthesized via nucleophilic substitution 
of 4,5-dichlorophthalonitrile with corresponding octylthiol or

RO OR

Fig. 1 The synthesis o f octa-substituted lead(u) phthalocyanines. 
Reagents and conditions: (i) RBr, K.2CO 3, D M F, rt, 3 days; (ii) 
RSH, K 2CO 3 , D M F, rt, 3 days; (iii) PbO (dried), 210 °C, solvent-free, 
5 h.

hexadecylthiol groups in the presence of K2C0.3 in dried DMF. 
The synthesis of Pb(ti) phthalocyanine complexes (3a, b and 4a, b) 
was carried out by melting of the corresponding substituted 
phthalonitriles in the presence of dried PbO.

All synthesized complexes were fully identified by elemental 
analysis, FT-IR, UV-Vis, ‘H-NMR, 13C-NMR and MALDI- 
TOF mass spectroscopy, and the analyses were consistent with 
the predicted structures. In the IR spectra, the absence of the 
characteristic C=N  stretches at ~2300 cm-1  for phthalonitriles 
(la, b and 2a, b) are indicative of metallophthalocyanine 
formation. Pb(n) phthalocyanine complexes (3a, b and 4a, b) 
showed characteristic vibrations for aromatic CH stretching 
at ca. 3050-3080 cm-1  and aliphatic CH stretching at ca. 
2844-2956 c m '1.

The Pb(n) complexes were found to be pure by 'H-NM R 
spectra with all the substituents and ring protons observed in 
their respective regions. The resonances belonging to ring 
protons were observed as singlets at 8.73 ppm for 3a, 
8.79 ppm for 3b, 8.87 ppm for 4a and 8.99 ppm for 4b 
integrating 8 aromatic protons for each complex. While 
SCH2 signals were observed at 3.27 ppm for 4a and 3.37 ppm 
for 4b as triplets, OCH2 protons were shifted downfield due to the 
greater electronegativity of the oxygen atom and observed 
between 4.33—4.43 ppm for 3a and 4.41—4.54 ppm for 3b as two 
sets of quartet of doublets (dq) in a 1 : 1 ratio instead of one triplet 
(Fig. 2). This indicates the non-equivalent nature of protons 
(Ha, Hb) on OCH2 groups, similar to that observed for the rare 
earth sandwich phthalocyanines as reported in the literature.26" 
It is known that the lead ion is unable to completely enter 
the central cavity of the phthalocyanine ring due to its large 
ionic size, resulting in the out-of-plane structure of Pb(n) 
phthalocyanine bearing C4 symmetry, 19 as well as Pb(n) 
porphyrins.266 It has also been reported that X-ray diffraction 
analysis of Pb(n) phthalocyanines has revealed the unusual aza 
coordination of phthalocyanine in a pseudo-double decker 
supramolecular structure. 18,19'27 Molecular interactions in solution 
can lead to dimerization similar to pseudo-doubledecker structures, 
which can result in the differentiation of the hydrogen atoms 
depending on whether they are displaced out of the inter- 
phthalocyanine space or in the interphthalocyanine space. 
However, the SCH2 protons are equivalent in SR substituted 
compounds (4a and 4b) in contrast to OR substituted compounds 
(3a and 3b) and the two sets of quartet of doublets could not be 
observed in 'H-NMR spectra of SR derivatives (4a, 4b) (Fig. 2). It 
can be suggested that the sulphur atom, being larger compared to 
the oxygen atom, can limit the molecular interactions in solution, 
which prevents dimerization.

Moreover, the resonances belonging to methyl protons were 
observed as triplets at 0.85 ppm for 3a, 0.80 ppm for 3b, 
0.90 ppm for 4a and 0.89 ppm for 4b, integrating 24 protons for 
each complex. Furthermore, the l3C-NMR spectra of Pb(n) 
complexes (3a, b and 4a, b) showed all carbon shifts of Pc ring 
and aliphatic chains, confirming the predicted structures.

The electronic absorption spectra of 3a, b and 4a, b in THF 
( 1 x 10-5  M) are presented in Fig. 3. In common with other Pc 
derivatives, PbPc complexes have two intensive bands in the 
UV-vis spectra: the Soret band (B-band) and the Q-band. The 
Q-band absorption has been assigned to a 7t-7t* transition from 
the highest occupied molecular orbital (HOMO) of a !u symmetry

1 6 6 6  | N e w  J. C h em ., 2 0 1 2 , 3 6 ,  1 6 6 5 - 1 6 7 2  This journal is © The Royal Society o f Chemistry and th e  Centre National de  la Recherche Scientifique 2012
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Fig. 2 'H -N M R  spectra o f 3a (A) and 4a (B).
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Fig. 3 Electronic absorption spectra o f 3a, 4a (1) and 3b, 4b (2) in 
tetrahydrofuran (TH F) (C =  1 x 10-5 M).

to the lowest unoccupied molecular orbital (LUM O ) o f  eg 
symmetry. In THF, the Q bands were observed at 707 mn for 3a. 
708 nm for 3b, 739 nm for 4a and 740 nm for 4b. The red-shift ca. 
30 nm in the spectra o f  SR-substituted derivatives (4a. 4b) 
compared to OR-substituted derivatives (3a, 3b) can be 
ascribed to the greater electron donating nature o f  SR groups 
in comparison with OR groups; this is due to the higher 
electron donating ability o f  sulphur atoms compared to that 
o f  oxygen atoms. The increase o f  electron density in the 
phthalocyanine ring results in the narrowing o f  the highest 
occupied molecular orbital (H O M O H ow est unoccupied orbital 
(LUM O ) gap . 2 8  Furthermore, the presence o f Pb ions leads to 
an additional shift to longer wavelengths in comparison with 
planar Pc analogues. For instance, the Q bands o f  Pb(n) 
phthalocyanine complexes (3a, b and 4a, b) were red-shifted 
by ~ 3 0  nm compared to their C u ( i i )  counterparts in T H F . 20

The observed red spectral shift is due to the non-planar structure 
of Pb(ii) phthalocyanine complexes. M ALDI-TOF-MS spectra o f 
the compounds were obtained without using any matrix and the 
protonated molecular ion peaks were observed at 1746.46, 2644.37, 
1874.05 and 2772.70 for complexes 3a, b, 4a, b, respectively. The 
Pb(n) phthalocyanine complexes were converted to metal-free 
counteiparts using a matrix such as 2,3-dihydroxybenzoic acid 
(DHB) in M ALDI-TOF-MS studies.

Mesogenic properties of the PbPcR8 complexes

The thermal stability o f  the PbPcR 8 com plexes has been 
investigated by TG A. Decom position starts at 300 °C for each 
complex. The main decom position temperatures are 410 °C for 
3a, 409 °C for 3b, 388 °C for 4a and 393 °C for 4b. It is obvious 
that alkoxy substituted lead(n) Pcs (3a and 3b) are more 
thermally stable than alkylthio lead(n) Pcs (4a and 4b). However, 
there is not any significant change in the main decomposition 
temperatures depending on the chain length. The phase transition 
temperatures o f PbPcR8 complexes were determined by differential 
scanning calorimetry (DSC). DSC measurements were performed 
on the virgin materials with a scanning rate o f  10 °C min-1 . Phase 
transition temperatures o f  the PbPc com plexes upon second  
heating and cooling runs are summarized in Table 1. The 
clearing temperatures o f  studied PbPcs com plexes decreased 
with increasing chain length. The clearing temperatures o f  the 
octakis(alkylthio)-substituted PbPcs (4a, 4b) were lower in 
comparison with those o f  their oxygen analogues (3a, 3b). 
Pb(n) sterically destabilizes the co-facial colum nar structure 
and drastically reduces both the crystal-to-m esophase and 
m esophase-to-isotropic transition temperatures. 3 0  Clearing 
points o f  Pb(n) phthalocyanine com pounds were observed at 
lower temperatures compared to metal-free and other planar 
m etallophthalocyanine counterparts, such as Cu(n), Zn(n), 
and Ni(n) com plexes . 2 9 '3 1 '3 2 - 3 4  M oreover, clearing points 
could not be observed for metal-free and Cu(ii), Zn(n), N i(n) 
m etallophthalocyanine bearing octyl chain as they undergo 
decom position before reaching their clearing temperature.

The textures o f  the PbPcR 8 derivatives were obtained by 
heating o f  a sample o f  the PbPcR 8 derivatives to the isotropic  
temperature and then cooling from isotropic melt; characteristic 
features o f  the columnar phase are revealed, as shown in Fig. 4.

Table 1 Phase transition tem peratures, °C (corresponding enthalpy 
changes in parentheses, kJ mol-1) for lead(n) Pc com pounds (3a. 3b, 4a 
and 4b) determined by DSC. Heating and cooling rates: 10 °C m in-1 , 
Phase nomenclature: Cr and Cr': crystal phases, Colh: discotic hexagonal 
columnar mesophase. I: isotropic phase"

Com pound Phase transition tem peratures, °C

3a C r Col,, I
3b 35 .0 ( 18.7 7 ) 4 8 .5 (34 .4 7 ) 190**

C r C r' C olh I
2 3 .5 (8 .67 ) 38 .2 (4 2 .71 ) 185**

4a 6 .7 ( 1.95 ) 24 0 .0 ( 1.4 4 )
Cr =?=* Colh 1

- 3 .2 (5 .92 ) 22 2 .9 (2 .4 2 )

4b13 31 .2 ( 108.33) 2 04 .5 (7 .4 3 )

Cr Col,, I
22 .8 ( 104.97 ) 184.7 (3 .6 5 )

" *Only observed under the optical polarizing m icroscope with accom ­
panying decomposition, 
microscope.

**Only observed under the optical polarizing
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The identification o f  mesophases was carried out by X-ray 
diffraction (XRD) measurements. All X R D  data are summarized 
in Table 2. The powder diffraction patterns o f 3a. 3b and 4a 
contain typical reflections o f a columnar mesophase o f substituted 
Pcs." These features were also observed for 4b and were reported 
in an earlier publication.1. In the low angle region, the phthalo­
cyanine derivatives produce sharp peaks with the ratio o f 1 : y / 3 : 
y / 4 : y j l .  These results suggest a two-dimensional hexagonal lattice 
with disc-like molecules stacked in columns in the hexagonal 
arrangement.

The fact that the alkylthio derivatives have smaller lattice 
constants can be connected with the sulphur-sulphur interactions 
arising from the high polarizability o f  the sulphur atoms. 
Consequently, the structural disorder in the columnar structure 
will be reduced in the stacked alkylthio molecules, leading to a 
decrease in the intermolecular distance. Although, the S- • S 
interaction is a weak attractive force in gases and solutions, it 
plays an important role in the packing o f  molecules in crystals. 
Some examples o f  S- • S interactions, which are one o f  the 
major forces that influence the structures o f organic conductors, 
are described in the literature . 3 5 - 3 8

Film investigation

Spectroscopic ellipsometry measurements were carried out for 
the characterization o f  thickness, refractive index («) and 
extinction coefficient (k) o f  the PbPcR 8 films. Using the 
Levenberg-M arquardt multivariate regression algorithm, the 
measured ellipsometric data were fitted to the m odel for 
organic films. A detailed description o f  the principles o f  
ellipsometry can be found in ref. 39. The resulting variation o f  
refractive index and extinction coefficient o f  4a film deposited at 
2000 rpm with incident photon wavelength are shown in Fig. 5 as 
an example. The thicknesses, refractive indices and extinction 
coefficients (at 7. =  633 nm) obtained from ellipsometry fitting 
procedures for the other lead phthalocyanines are listed in Table 3.

The current-voltage characteristics o f  thin films o f  4a are 
presented in Fig. 6 . As shown in the inset to Fig. 6 , the 
conduction was found to be ohmic at low voltages due to 
thermal generation o f  charge carriers, but exhibits power-law  
dependence at higher voltages ( V  >  0.5 V). The room  
temperature conductivities are summarized in Table 3. The 
conductivity was determined from the linear (Ohmic) region o f  
the measured 7(F) curves, i.e., in the voltage range 0-0 .5  V. 
The obtained results demonstrate an increase in electronic 
conduction after heat treatment. Increase o f  conductivity is 
found to be larger for 4a and 4b films compared to 3a and 3b.

The J(V)  characteristics are shown to be mainly dependant 
on the type o f  electrodes used. In the case o f  Al bottom and

i ii hi

Fig. 4 Optical textures o f PbPcRg complexes for 3a (I) at room 
tem perature, 3b (II) at 100 °C and 4a (III) at room  temperature; 
m agnification 40 x.

Table 2 X-Ray diffraction data  for lead(n) Pc com pounds (3a, 3b, 
4a and 4b)

Observed Theoretical Lattice Miller
Com pound spacings (A) spacings (A) constant (A) Ratio indices

3a 23.77 23.77 27.4 1 (100)
14.02 13.72 V3 (110)
12.20 11.88 V4 (200)
9.26 8.98 V7

1
(210)

3b 30.46 30.46 35.2 (100)
18.23 17.59 V3 (110)
15.60 15.23 V4 (200)
12.09 11.51 V7 (210)

4a 20.63 20.63 23.8 1 (100)
11.84 11.91 V3 (110)
10.57 10.31 V4 (200)

4b13
7.78 7.80 V7 (210)
25.97 25.97 30.02 1 (100)
15.01 14.99 V3 (110)
12.97 12.98 V4 (200)
9.85 9.81 V7 (210)

k

Fig. 5 V ariation o f refractive index and extinction coefficient o f 4a 
film deposited at 2000 rpm. with incident photon wavelength.

Table 3 Thicknesses, refractive indices and extinction coefficients 
(at 7. =  633 nm) obtained in accordance with ellipsometry fitting 
procedures and DC conductivity for PbPcRs films deposited at 2000 rpm

D C conductivity (<x)/Q 'm  1

Comp. n k Thickness/nm Before heating A fter heating

3a 1.50 0.15 38.4 1.7 x 10-10 5.5 x 10-8
3b 1.44 0.08 40.12 1.9 x 10"10 4.1 x 10-9
4a 1.55 0.12 46.66 2.5 x 10-10 7.8 x 10-7
4b 1.51 0.09 47.73 3.3 x 10-10 2.3 x 10-7

Fig. 6 7(F) characteristics o f thin films o f  4a deposited between ITO 
and In electrodes. The inset shows the same data  o f  the forw ard bias 
characteristics plotted on a log-log scale.

top electrodes, all junctions have shown open-circuit, probably 
due to a naturally grown insulating AFCF? layer formed onto
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the surface o f  the bottom  Al electrode.40 Evaporation o f  gold 
electrodes has always led to short circuit in all o f  our produced 
samples. A F M  micrographs have revealed the bumpy surface 
m orphology o f  the evaporated gold film. 0 This confirms the 
aggregation o f  Au atom s, leading to the formation o f  large 
grains on both the organic film and the glass substrate. 
Furthermore, due to the high melting point o f  Au it appears 
to cause damage to the PbPcR8, which is in liquid crystalline 
form at about room temperature.

The ITO /PbPc/In structures, on the other hand, have 
exhibited interesting J{V)  behavior. Fig. 6 shows the J{V)  curves 
o f  4a before and after heat treatment as an example. Both 
curves demonstrate asymmetric characteristics over the two bias 
polarities, however, after heat treatment, the studied structure 
demonstrates clear rectification characteristics, typical o f  diode 
behavior. Similar characteristics were observed for the other 
PbPc analogues studied here. The dissimilar behavior before 
and after heat-treatment can be explained by the effect o f  
thermal treatment on the films, which is expected to result in 
changing the alignment inside the columnar stacking o f the 
molecules in the films. PbPcR8 derivatives exhibit a hexagonal 
columnar structure over a wide temperature range. It was 
shown in previous works41'42 that the ordered films o f  liquid 
crystalline metal phthalocyanines can be obtained upon slow  
cooling from isotropic melt or by heating at the temperature o f  
liquid crystalline phase for some time. Moreover, it has been 
shown earlier that the heat treatment o f  films o f  LC nickel 
phthalocyanines deposited between two electrodes is found to 
result in hexagonal hom eotropic alignment o f  molecules in the 
films.43 The conduction mechanism at higher voltages ( V  >  
0.5 V) is not discussed here because this is a subject o f  separate 
work. Charge transport properties o f  similar phthalocyanine 
discotic liquid crystals were studied earlier in the works o f  
Geerts and co-authors.44-45

POM has been used to check the alignment o f  the PbPcR8 
films. Electrical measurements and POM investigations were 
carried out at room temperature (25 °C). The POM images 
recorded between crossed polarizers for the films o f  PbPcR8 
deposited between ITO and metal electrodes after heat-treatment 
are presented in Fig. 7. At this temperature, 3a and 4a are in the 
mesophase, but 3b is in the crystalline phase. The temperature o f  
transition to crystalline phase for 4b (22.8 °C, Table 1) is close 
to room temperature, however, according to POM  and X-ray 
phase investigations crystallization was not observed under 
this experimental conditions. The 4a and 4b films deposited 
between ITO and metal electrodes do not exhibit any birefringence 
over a large area when observed between cross-polarizers during 
POM measurements (Fig. 7(c, d)). The lack o f birefringence is 
characteristic o f  the hexagonal homeotropic phase, which has a 
face-on arrangement o f discs, as illustrated schematically in 
Fig. 7(c, d).46'47 In other words, the molecules rotate in the 
direction o f face-on to the substrate plane after thermal treatment. 
The films o f  4b (Fig. 7(d)) deposited between ITO and indium  
electrodes looks more hom ogeneous than those o f 4a 
(Fig. 7(c)) in which polydom ains are evident. The occurrence 
o f  hom eotropic alignment is thus related to the presence o f  the 
upper electrode, which induces a confinement o f  the liquid 
crystal film and plays the same role as a top substrate in the 
case o f  the films confined between two substrates.46'48'49

Fig. 7 Polarizing optical microscopy images with cross polarizers o f 
the 3a (a), 3b (b), 4a (c), 4b (d) films deposited between ITO and metal 
electrode. Schematic illustrations o f  the m acroscopic alignm ents are 
also given. The sample is placed perpendicular to the incident light 
beam. The scale bar indicates 50 pm.

At the same time the films o f PbPcR8 with alkoxysubstituents 
(3a and 3b) do not show homeotropic alignment between ITO 
and In at room temperature (Fig. 7(a, b)). Such behavior o f  
alkoxy substituted phthalocyanines may be connected with their 
higher viscosity at room temperature and higher temperature o f  
phase transition to LC phase in the case o f  3b.

The obvious increase o f  the conductivity for heat-treated 4a 
and 4b films can be ascribed to the increasing o f  n - n  inter­
action in the columnar hom eotropic alignment as opposed to 
the disordered structure o f  as deposited films.'’0 Sulphur atom s 
in 4a and 4b positively affect the electrical conductivity in 
comparison with oxygen in the substituent chains o f  3a and 3b 
(see Table 3). As the sulphur is larger than oxygen, the 
rotational and translational m ovements o f  the m olecules are 
hindered within the cores o f  the columns. Consequently, the 
structural disorder will be reduced in the stacked alkylthio 
molecules, leading to rapid charge transport.61 The lowest 
value o f  conductivity for 3b films may also be explained by the 
formation o f crystalline phase at room temperature. According to 
previous publications,52 53 the molecules in the crystal are arranged 
in tilted stacks, which are widely spaced, with the contacts between 
the aromatic cores bigger than in the mesogenic phase.

A m ong all studies only PbPcR8 analogues 4a and 4b have 
exhibited switching behavior (Fig. 8).

The films o f  these com pounds have been shown as switching 
loops o f  memory cells, which can be utilised in applications as 
memory or logic elem ents.64 This effect, however, was found 
to degrade after a few cycles o f  I(V) tests, and has com pletely  
disappeared after the samples were subjected to heat treatment. 
On the first measured / ( V) loop, the on state current was found 
to be larger than the off state by nearly three orders o f  magnitude 
giving a high O N /O FF ratio (see inset to Fig. 8). The possible 
explanation o f  this molecular switching effect is that the freshly 
deposited PbPc film is composed o f clusters o f  different structures 
within the column stacks before heating. The variation in the film 
substructure may result in the occurrence o f  potential barriers, 
which have to be surmounted by the charge carriers, thus giving 
rise to the highly conducting O N  state. Furthermore, in the 
O N state, the external electric field is possibly able to turn some o f  
the stacks into equal orientations, resulting in equal lead ion 
separation, which would enhance the highly conductive channels.55 
Several other metal phthalocyanines, both substituted111 "6 and 
unsubstituted67'68 have demonstrated electrical switching, which 
was explained by the existence o f  potential barriers that
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Fig. 8 Switching characteristics of 4a films deposited between ITO 
and In electrodes. The inset shows the same data produced on a log- 
linear scale for clarity.

control charge transport and thus switching between the ON 
and OFF states. Thin films of unsubstituted PbPc of the 
monoclinic structure have shown switching behaviour, which 
was explained by an electric field-induced order-disorder 
transition mechanism in the stacking direction.57 In a printed 
memory device which utilises a water soluble CuPc derivative 
and conductive polymer layers sandwiched between two metal 
electrodes, switching from the OFF state to the ON state was 
ascribed to increased crystallinity of the CuPc film.56 This 
change in crystallinity was confirmed by SEM study, and was 
found to be responsible for the conductivity after switching. 
Mukheijee and co-workers17 have attributed the bistable effect 
in ITO/PbPc/Al devices to a combination of the presence of a 
hole-injection barrier at the ITO/PbPc interface and space 
charge limited hole transport across the undepleted region of 
the PbPc film to the counter electrode. Thermally deposited 
thin films of unsubstituted copper phthalocyanine (CuPc) have 
exhibited bistable effects with an increased ON/OFF ratio 
when the film deposition rate was increased.58 It was argued 
that the conductive switching behaviour of the CuPc bistable 
devices involves a bulk trap-controlled space charge limited 
mechanism and that the carrier transport could be ascribed to 
a field-induced arrangement of structural defects.58

In the current study the disappearance of the switching 
effect in heat-treated samples can be further supported by 
the POM images, which clearly reveal film transformation to a 
hexagonal homeotropic phase, which results in the disappearance 
of the potential barriers between clusters within the stacks that 
were thought to be present in the freshly prepared samples. In the 
present study our initial investigation of electrical switching in 
sandwich devices involving the new LC crystalline PbPcRg mole­
cules has shown some encouraging results, which will certainly 
require extensive and dedicated research in this subject in order to 
establish the occurrence of this interesting phenomenon and to 
further elucidate the bistable effect mechanism itself.

Conclusions
In this work, the synthesis of new mesomorphic octasubstituted 
alkylthio- and alkoxy- Pb(n) phthalocyanines has been described. 
The Pb(n) phthalocyanines were characterized using different 
spectroscopic techniques (*11 and 13C-NMR, UV-Vis, FT-IR, 
and mass spectroscopies) and elemental analysis. The alkoxy- 
substituted lead Pcs exhibited higher stability due to thermal 
variation than the alkylthio-substituted lead Pcs, and clearing

points of all prepared Pb(n)Pc complexes were found to be 
lower in comparison with metal-free phthalocyanine and other 
planar metallophthalocyanines. The XRD analysis indicates the 
formation of the columnar-hexagonal (Colh) mesophase, which 
is further established by the lack of birefringence in POM 
measurement. The films of the synthesized compounds exhibited 
an increase in electronic conduction after heat treatment. A 
typical switching effect was also observed in 4a and 4b films with 
high ON/OFF ratios, making them promising candidates for 
memory applications.

Experimental
Materials

4,5-dihydroxyphthalonitrile,59 4,5-dichlorophthalonitrile,60 4,5- 
bis(octylthio)phthalonitrile (2a)61 and 4,5-bis(hexadecylthio) 
phthalonitrile (2b)62 were synthesized according to reported 
procedure. 4,5-bis(octyloxy)phthalonitrile (la)31 and 4,5-bis(hexa- 
decyloxy)phthalonitrile (lb)31 were synthesized according to the 
modified reported procedure by using 4,5-dihydroxyphthalonitrile 
as a precursor, which has previously been described by Torres and 
co-workers.59 All other reagents and solvents of reagent-grade 
quality were obtained from commercial suppliers and were dried 
as described in Perrin and Armarego.63

Instrumentation

The IR spectra were recorded between 4000 and 650 cm-1  
using a Perkin Elmer Spectrum 100 FT-IR spectrometer with 
an attenuated total reflection (ATR) accessory, featuring a 
zinc selenide (ZnSe) crystal. Optical spectra in the UV-visible 
region were recorded with Shimadzu UV-Vis-3101 and 2101 
spectrometers using 1 cm pathlength cuvette at room tempera­
ture. Matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry (MALDI-TOF-MS) measurements were 
performed on a Bruker Daltonics micrOTOF (Bremen, Germany). 
fH and 13C NMR spectra were recorded in CDCI3 solutions on a 
Varian 500 MHz spectrometer. The phase transition behaviors of 
Pcs were observed by means of a polarizing optical microscope 
(POM) (Leitz Wetzler Orthoplan-pol.) equipped with a hot stage 
(Linkam TMS 93) and a temperature controller (Linkam LNP). 
Thermogravimetric analysis (TGA) was carried out on a 
Mettler Toledo Star6 Thermal Analysis System at a rate of 
10 °C min-1  in a nitrogen flow (50 mL min-1). Transition 
temperatures were determined at a scan rate of 10 °C min-1  using a 
Mettler Toledo Star Thermal Analysis System/DSC 822. The 
differential scanning calorimeter (DSC) system was calibrated with 
3 mg indium samples under a nitrogen atmosphere. X-ray 
diffraction measurements (XRD) (Cu-Ka-radiation) were 
performed using a Bruker Advanced D 8 diffractometer.

Synthesis

2,3,9,10,16,17,23,24-Octakis(octyloxy)phtalocyaninato 
lead(n) (3a). 4,5-bis(octyloxy)phthalonitrile (la) (0.50 g, 
1.30 mmol) and dried PbO (0.145 g, 0.65 mmol) were stirred 
at 210 °C for 5 h under an argon atmosphere in solvent-free 
conditions. The reaction mixture was then dissolved in 
dichloromethane and filtered to eliminate inorganic impurities. 
The solvent was evaporated and the crude product was purified
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through a Bio Beads column (Bio Rad Laboratories) using 
dichloromethane as an eluent. The green product was further 
purified by preparative thin layer chromatography on silica gel 
using dichloromethane/rz-hexane, 20:1 (v/v). Yield: 0.150 g 
(26%). IR [(ATR) I'max/cm-1]: 3077 (Ar C-H), 2952-2855 
(aliphatic C-H), 1603 (C = C ), 1495, 1450, 1370, 1262, 1188, 
1075, 1041, 871, 741. UV-Vis (THF): / max nm (log e) 359
(4.59), 399 (4.92), 638 (4.55), 707 (5.31). ‘H NMR (500 MHz, 
CDC13): S =  0.85 (t, 24H, CH3), 1.22-1.39 (m, 64H, CH2), 
1.48-1.54 (m, 16H, CH2), 1.84-1.95 (m, 16H, CH2), 4.33^1.43 
(dq, 16H, OCH2), 8.73 (s, 8H, CHar). 13C NMR (125 MHz, 
CDCI3): 8 =  14.17 (CH3), 22.75 (CH2), 26.24 (CH2), 29.38 
(CH2), 29.48 (CH2), 29.53 (CH2), 31.92 (CH2), 69.74 (OCH2), 
105.80 (CarH), 131.72 (Car), 152.02 (Car-0 ) ,  153.51 (Car 
C = N ). Calc, for C96Hi44N 80 8Pb: %C 66.06, %H 8.32, %N 
6.42; Found: %C 66.43, %H 8.87, %N 6.04. MS (MALDI- 
TOF), m /z (%): Calcd. for C96H 144N 80 8Pb: 1745.45, found 
1746.46 [M + H]+ (100).

2.3.9.10.16.17.23.24-Octakis(hexadecyloxy)phtalocyaninato 
lead(n) (3b). 3b was prepared by the same procedure as 
described for 3a by starting with 4,5-bis(hexadecyloxy)- 
phthalonitrile (lb) (0.50 g, 0.82 mmol) and dried PbO (0.092 g, 
0.41 mmol). The green product was purified by preparative thin 
layer chromatography on silica gel using dichloromethane/ 
r/-hexane, 10:1 (v/v). Yield: 0.100 g (18%). IR [(ATR) i/max 
cm-1]: 3077 (Ar C-H), 2918-2844 (aliphatic C-H), 1603 (C=C), 
1495, 1455, 1376, 1274, 1200, 1086, 1041, 865, 752, 712. UV-Vis 
(THF): 2max nm (log e) 359 (4.52), 399 (4.77), 638 (4.36), 708 
(5.14). *H NMR (500 MHz, CDC13): 6 =  0.80 (t, 24H, CH3), 
1.12-1.38 (m, 176H, CH2), 1.39-1.46 (m, 16H, CH2), 1.55-1.65 
(m, 16H, CH2), 1.95-2.04 (m, 16H, CH2), 4.41^1.54 (dq, 16H, 
OCH2), 8.79 (s, 8H, CHar). 13C NMR (125 MHz, CDC13): 6 = 
13.10 (CH3), 21.68 (CH2), 25.29 (CH2), 28.37-28.77 (CH2), 30.93 
(CH2), 68.92 (OCH2), 104.75 (CarH), 130.72 (Car), 151.11 
(Car-0 ), 152.48 (Car C =N ). Calc, for C160H272N 8O8Pb: %C 
72.71, %H 10.37, %N 4.24; Found: %C 73.08, %H 10.79, %N 
4.11. MALDI-TOF-MS m/z: Calcd. for C160H272N8O8Pb: 
2643.17, found 2644.37 [M + H]+ (100).

2.3.9.10.16.17.23.24-Octakis(octylthio)phtalocyaninato 
lead(n) (4a). 4a was prepared and purified by the same 
procedure as described for 3a by starting with 4,5- 
bis(octylthio)phthalonitrile (2a) (0.50 g, 1.20 mmol) and dried 
PbO (0.134 g, 0.60 mmol). Yield: 0.200 g (36%). IR [(ATR) 
i/max cm-1]: 3050 (Ar C-H), 2956-2852 (aliphatic C-H), 1592 
(C=C), 1460, 1364,1312, 1080, 1064. UV-Vis (THF): / max nm 
(log e) 384 (4.73), 418 (4.86), 663 (4.52), 739 (5.26). !H NMR 
(500 MHz, CDCI3): 8 =  0.90 (t, 24H, CH3), 1.26-1.45 (m, 64H, 
CH2), 1.54-1.68 (m, 16H, CH2), 1.79-1.95 (m, 16H, CH2), 3.27 
(t, 16H, SCH2), 8.87 (s, 8H, CHar). 13C NMR (125 MHz, CDCI3): 
8 =  14.15 (CH3), 22.74 (CH2), 28.77 (CH2), 29.32 (CH2), 29.40 
(CH2), 29.45 (CH2), 31.95 (CH2), 33.96 (SCH2), 121.01 (CarH), 
135.00 (Car), 140.09 (Car-S), 153.57 (Car C=N). Calc, for 
QeH^NgPbSg: %C 61.53, %H 7.75, %N 5.98; Found: %C 
61.98, %H 7.56, %N 5.48. MALDI-TOF-MS m/z: Calcd. for 
C96HI44N8PbS8: 1873.98, found 1874.05 [M]+ (100).

2.3.9.10.16.17.23.24-Octakis(/i-hexadecylthio)phtalocyaninato 
lead(n) (4b). 4b was prepared by the same procedure as

described in our previous work13 by starting with 4,5-bis(hexa- 
decylthio)phthaIonitrile (2b) (0.369 g, 0.576 mmol) and dried PbO 
(0.064 g, 0.288 mmol) Yield: 0.075 g (19%). IR [(ATR) zvInax cm-1]: 
3055 (Ar C-H), 2955-2849 (aliphatic C-H), 1591 (0=C ), 1467, 
1404,1363,1310,1059. UV-Vis (THF): / 1IUX nm (log e) 384 (4.60), 
419 (4.78), 663 (4.47), 740 (5.23). 1H-NMR (500 MHz, CDC13): 
8 =  0.89 (t, 24H, CH3), 1.22-1.51 (m, 192H, CH2), 1.59-1.74 
(m, 16H, CH2), 1.84-2.00 (m, 16H, CH2), 3.37 (t, 16H, SCH2), 8.99 
(s, 8H, CHar). 13C-NMR (125 MHz, CDC13): 8 =  14.36 (CH3), 
22.94 (CH2), 29.05 (CH2), 29.63 (CH2), 29.67 (CH2), 29.78 (CH2), 
29.94-30.07 (CH2), 32.17 (SCH2CH2), 34.24 (SCH2), 121.34 
(CarH), 135.30(Car), 140.44 (Car-S), 153.84 (Q r C =N ). Calc, for 
Ci6oH272N 8PbS8: %C 69.33, %H 9.89, %N 4.04; Found: %C 
69.76, %H 9.46, %N 3.97. MALDI-TOF-MS m/z: Calcd. for 
Ci6oH272N 8PbS8: 2771.71, found 2772.70 [M + H]+ (100).

Film preparation and characterization

Thin films of PbPcR8 were prepared in sandwich forms using 
spin coating. Solutions in dichloromethane in the concentration 
10 mg mL-1  were spun at 2000 rpm onto ITO coated slides and 
were left to dry for a few hours. Two sandwich structures 
(ITO/PbPc/In, Al/PbPc/Al) were prepared to investigate the current 
density-voltage (J(V)) characteristics of thin films of these mole­
cules. Indium and aluminum as electrodes were evaporated under 
vacuum pressure of about 2 x 10-5  mbar using vacuum thermal 
deposition. The rate of film deposition was controlled by a film 
thickness monitor at the rate 0.1 nm s-1, and the obtained thickness 
was 40 nm.

Thickness of the spin coated PbPcR8 films was measured by 
spectroscopic ellipsometry. The measurements were performed on 
films deposited on silicon substrates using a Woolam M-2000 V™  
rotating analyser spectroscopic ellipsometer in the spectral range 
of 400-800 nm. Optical textures were observed with the polarizing 
microscope Leitz Wetzler Orthoplan-pol equipped with the hot 
stage Linkam TMS 93 and temperature-controller Linkam LNP.

The J(V) characteristics of the devices produced in this work 
were investigated before and after heat treatment at 70 °C 
using semiconductor characterisation system (Keithly 4200). 
The measurements were performed by applying a cyclic bias 
regime in the range ±2 V (starting from —2 V up to + 2  V 
and then back to —2 V). All electrical measurements were 
performed in air and at room temperature.
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