Sheffield
Hallam
University

Writing and animating Z specifications.

ANDREWS, Simon John.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19278/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19278/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

REFERENCE

Fines are charged at 50p per hour

ProQuest Number: 10694158

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10694158

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

WRITING AND ANIMATING Z
SPECIFICATIONS

Simon John Andrews

A thesis submitted in partial fulfilment of the
requirements of
Sheffield Hallam University
for the degree of Doctor of Philosophy

| November 1996

ABSTRACT

The work presented in this thesis is concerned with the issues involved in
writing and demonstrating formal specifications of information systems written in Z.
The use of Z in software development, to enhance productivity and improve software
quality, is not without its problems. Whilst the notation itself is highly developed, ways
of systematically using Z to create specifications are, by contrast, poorly documented.
Also, given that most commissioners of software are not skilled in reading Z, ways of
demonstrating the important features of a formal Z specification to a customer are
needed if the effective validation of the specification against user requirements is to
take place. In this thesis we present a systematic approach, known as OPERATOR, for
developing Z specifications and evaluate it against the issues identified for writing
formal specifications. We also look at various ways of demonstrating Z specifications.
We describe how Z specifications may be animated using Crystal, but go on to present
a prototype CASE tool, known as Zappa, that may be used to create and demonstrate
faithful animations of Z specifications. The thesis starts with a thorough review of
software engineering and of the development and rise of formal methods. The
development of the OPERATOR approach is then given along with a review of
animation, a description of the Crystal technique, and the development of the CASE
tool Zappa. An evaluation of the research against the stated aims is presented and
areas where future research is needed are pointed out. .

ACKNOWLEDGEMENTS

The author wishes to thank the following organisations and people:
Professor Allan Norcliffe
the author's Director of Studies

for his considerable support, advice, effort and ericouragement

Dr Glinn Rodgers
Ian Morrey and
Prof Jawed Siddigi
the author's second supervisors

for their support and advice

Sam Valentine
the author's external advisor

for his guidance and interest

The N. A. B.

for the initial funding of this project

Professors Allan Norcliffe, Peter McEwan and Ian Draffan_

for giving the author many teaching opportunities

Sheffield Hallam University,
formally Sheffield City Polytechnic,
and the friendly and helpful staff who work there,

for providing excellent facilities and a pleasant working environment

Dave Marriott
Benoit Dhers and
Alestair Jack

for their work with the author on Zappa's development

Dr Richard Gibson

for providing a Z font and conversation

Dr Mike Tomlinson

for his support and enthusiasm for formal methods in the MSc EIT course

Val Slynn
for help with Tables and Draw for Word for Windows

Carl Ryan—Edwards

for providing scanning facilities

Tony and Brenda

for their financial support and encouragement

and finally
Shan
for everything

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 The Research in Perspective : 1
1.‘2 The Aims of the Research 4
1.3 The Research Work Plan 5
14 Research Outcomes 6
1.5 Implementing the Research Work Plan 7
1.6 Overview of the Thesis 8
| CHAPTER 2: THE DEVELOPMENT OF SOFTWARE ENGINEERING
2.1 Early Days ' 10
2.2 The Beginning of Software Engineering 11
23 Methods of Software Engineering 18
24 Computer Aided Software Engineering 24
2.5 The 'Software Crisis' 27
REFERENCES IN CHAPTER 2 ‘ 32
CHAPTER 3: FORMAL METHODS
3.1 Benefits of Mathematics 34
3.2 Problems Associated with Taking the Mathematical Approach 41
33 The Z Notation 47
REFERENCES IN CHAPTER 3 54
CHAPTER 4: WRITING Z - THE OPERATOR METHOD
4.1 Introduction | 57
42 The OPERATOR Method - A Simple Example Sé
43 Another Simple Example 64

44 Using the Method with Students - 66

4.5 Enhancing the Method with a Graphical Front End 69

4.6 Addressing System Complexity 73
4.7 System Operations 78
4.8 Discussion _ : 81

REFERENCE IN CHAPTER 4 83

CHAPTER 5: ANIMATING Z SPECIFICATIONS |

5.1 Introduction 84
52 Computer Aided Z 84
53 Animation - Advantages and Limitations | v 87
5.4 Animation Techniques for Z 90

REFERENCES IN CHAPTER 5 97

CHAPTER 6: ANIMATING Z SPECIFICATION - CRYSTAL

6.1 ‘What Crystal has to Offer 99
6.2 Using Crystal for Animation 101
6.3 Use in the Classroom : _ 109
6.4 Advantages and Limitations ' : ' 109

REFERENCES IN CHAPTER 6 11

CHAPTER 7: ANIMATING Z SPECIFICATIONS - ZAPPA

7.1 Introduction - 112
7.2 What Kappa has to Offer | 113
7.3 An Overview of Zappa 114
7.4 Using Zappa - An Example - 117
7.5 | Behind the Scenes 128
7.6 Use of Zappa in the Classroom 130
7.7 Strengths and Weaknesses of Zappa 130

REFERENCES IN CHAPTER 7 133

CHAPTER 8: A CRITICAL REVIEW OF OPERATOR

8.1
8.2

8.3

Introduction
Evaluation of the Research: Issues Involved in Creating Z

Specifications

- Evaluation of the OPERATOR Approach

REFERENCES IN CHAPTER 8

CHAPTER 9: A CRITICAL REVIEW OF ZAPPA

9.1
9.2

93
94
9.5

Introduction

Evaluation of the Research: Issues involved in demonstrating Z
specifications

Evaluation of Zappa and the Crystal approach

Comparison of the Zappa approach with related work

The ster of Z required by Zappa

REFERENCES IN CHAPTER 9

CHAPTER 10: FUTURE WORK

10.1
10.2
10.3

Introduction

‘Areas for future research - Developing OPERATOR further

Areas for further research - Developing the Crystal approach and
Zappa further
REFERENCES IN CHAPTER 10

REFERENCES IN ALPHABETICAL ORDER

134
135

136
140

141
141

143
144
149
152

153

153

155

157

158

2.1
22
23
24
25
3.1

32

3.3

34
3.5
4.1
42
43
44
4.5
5.1
7.1
7.2
73
7.4

LIST OF FIGURES

The five strands of the development of software engineering

A problem of communication

A flow chart illustrating a software development life-cycle
Aspects of SSADM

Effectiveness of US federal software projects carried out in 1984
Comparison of software engineering cost over project stages
between traditional and formal methods

Interrelationship of stages of software development using formal
methods

Overview of software development incorporating formal
specification |

A Z schema

Use of tools compared with size of Z project

Graphical representation of the simple security system

Graphical representation of the banking system |

Graphical representation of the library system

Partitioned view of the library system

Diagram showing the BorrowCopy operation in the library system
Animation as part of a formal software engineering process
ANIMATOR screen buttons

Permanent ANIMATION screen buttons

Z data structures currently supported by Zappa

Zappa Z functions

12
16
19
22
31
40

46

46

48
50
71
72
72
74
79
90

116

116

119

121

LIST OF APPENDICES

Contained in a Separate Volume

APPENDIX A: Published Papers

Al
A2

A3
A4
AS

A CASE Tool for Demonstrating Z Specifications [And90]

An Expert System CASE Tool for Simulating Z Specifications
[And91]

A Lift System [And92]

Learning Contracts [And93a] }

A Systematic Approach to Writing Simple Z Specifications [And95]

APPENDIX B: Zappa - A Tutorial Guide

APPENDIX C: Zappa KAL Code (part)

CHAPTER 1: INTRODUCTION

Organic life, we are told, has developed gradually
from the protozoan to the philosopher, and this development,
we are assured, is indubitably an advance.
Unforiunately it is the philosopher, not the protozoan,
who gives us this assurance.

Bertrand Rusell, Mysticism and Logic.

1.1 The Research in Perspective.

The research presented in this thesis is the culmination of work started in 1988
as part of the NAB III Office Systems Project. The Office Systems Project involved
teams of researchers from the then departments of Mathematical Sciences,
Management Sciences, Applied Social Studies, Communi'c‘ations, and Computer
Studies at Sheffield City Polytechnic (now Sheffield Hallam University). The Project
was concerned with all aspects of developing new office environments together with
issues pertaining to the introduction of office automation. One of the components of
the research involved the mathematical specification of office systems, and it was out

of this that the work presented here grew.

The specific issue to be addressed in this component of the Project was how
could one create a formal specification of a typical office information system in an
interactive way with the client or user so that the essential features of the specification
could be demonstrated without necessarily having to il_nplement the system first. As
well as addressing this specific issue, the research, it was hoped, would also help to
ameliorate some of the problems associated with the use of mathematics as a

specification language in the software development process.

The uptake of the use of mathematics in softiware engineering (formal methods)
has been disappointingly slow, and the reasons for this are many. In 1989, when the
author registered for his PhD, the rationale for the research being proposed was given

as follows (quoting directly from the Research Degree Registration document);

"The recent introduction of formal methods into the software development
rocess, to enhance productivity and improve software quality, has brought
D p D q g

with it several problems.

. As well as the problems associated with changing working practices that
Jformal methods inevitably imply, there are also significant problems stemming
from the difficulties associated with the reading and writing of mathematics.

To create a formal, i.e. mathematical, specification of any computer-based
system, the software engineer must be able to build a mathematical model of
what the system has to do. He must therefore be able to write mathematics.
The éustomef, Jor his part, ideally needs to be able to read mathematics in
order to understand the specification of the system he has commissioned, so
that he can satisfy himself that the system being developed will behave as it
should. |

Within this particular context the following two points are relevant.

o Whilst the mathematical nbtation in which to write formal specifications is
- highly developed - Z and VDM are two industry standard languages, for
example - ways of systematically using these notations to create a
specification are, by contrast, very poorly documented. Methods, such as
they are, tend to be acquired by software engineers the hard way - in the
field, and are not readily passed on to others. There is thus a potential
bottleneck here stemming from the problems associated with writing

mathematics.

o Given that most customers or commissioners of software systems are not

skilled in reading mathematics, structured ways of demonstrating

important features of a formal specification must become part of the
specification process. Something midway between animation or
prototyping on the one hand, and an accompanying English commentary
on the other, is what is ideally needed if the vital exchange of ideas and
discussions is to take place effectively between software engineer and

customer.

Within the problem domain of office automation the research work being
proposed therefore aims to address each of these problem areas, and to
develop systematic and structured ways of building and demonstrating formal

specifications."

The rationale for the research is also captured succinctly by Sam Valentine (ex
Logica, now at the University of Brighton) in his letter of support for the research,

dated February 20th 1989, in his role as industrial advisor to the project:

"The quality of the specification of computer systems is an important factor in
the success or otherwise of the eventual implementation, yet methods for
capturing specifications are often unsystematic and notations for engineering

them are almost always informal.

Formal notations have been developed, but usage of them in the industrial
context has hitherto been slight. One factor hindering their adoption is the
lack of an agreed method for translating the pérceived needs and informal
specification into the formal language. Another is the lack of tool support for
those languages, of which animation would be pariicularly useful as away of
providing rapid feedback to clients of the implications of the formal

specification as it is developed."

The original aims for the research, set down in the registration document, were

actually given as follows:

e To investigate the issues involved in creating and demonstrating formal
specifications of office systems and office objects, and to develop systematic

ways of facilitating the creation of formal specifications.

These broad aims have not changed to any large extent. However, as the work
has progressed over the years there has been a focusing on the three specific aims

given below.

1.2 The Aims of the Research.

The aims of the research work contained in this thesis are as follows:

o To investigate the issues involved in creating and demonstrating formal

specifications of information systems.

e To develop a systematic approach to creating formal specifications of

such systems.
e To invéstigate ways of animating such specifications.

The focus has be;':ome sharper in that the formal specification language being
considered is Z (and not VDM or other languageé) and the approach to demonstrating
formal specifications has become, in the main, one of animation. Reference to
information systems, rather than office systems, has allowed the research to have wider

applicability.

1.3 The Research Work Plan.
The plan of research proposed has not been deviated from significantly as the

research has progressed.

The work was to commence with the acquisition of background knowledge and

skills needed to carry out the research. This was to include:
o Fluency in model-based specification languages, in particular the Z notation.

¢ Expertise in the use of suitable vehicles for animation such as Prolog, C,

Crystal and Kappa-PC. -

Whilst acquiring these skills a literature search was to be undertaken along with
visits to relevant worksﬁops, colloquia, cqnferences and courses, in order to obtain
information on current experiences and practices in the teaching and use of formal
methods. The aim was to concentrate on issues to do with the creation and
demonétration of formal specifications, rather than on issues of verification and .

refinement.

From the findings of these investigations, and using the research skills outlined
above, various approaches to creating and demonstrating Z specifications of
information systems were then to be examined. These were to be tested on a range of
examples such as features of security, library, and banking systems. The aim was to
involve individuals such as students and software engineering practitioners not familiar

with the research. In this way the first of the aims of the research would be achieved.

The building methods were to be evaluated from the point of view of how éasy
they were to understand and use, the ease of teaching them, and the quality of the

resulting Z specification. The building methods were also to be evaluated as to their

efficacy in communicating with the customer or user the essential features of the

resulting specification, and how effectively the approaches worked as validation tools.

To achieve the second of the research aims, promising techniques were then to
be developed further and refined to produce a systematic approach for creating Z
specifications of information systems. A systematic tool-based means of animating Z

specifications was to be developed, to achieve the final research aim.

1.4 Research Outcomes.
The research work presented here describes in detail the development of a
systematic diagram-based approach to creating Z specifications, known as

OPERATOR, and the development of a prototype CASE animator called Zappa.

OPERATOR enables a developer, or student, to construct Z specifications
from natural language system requirements by first creating diagrams of the system
state and system operations. These diagrams convert systematically into Z but, before
this is carried out, they may be used to communicate essential features of the system to
a would be client or user. When developer and client are satisfied that system
requirements are being captured, the diagrams can then be used in conjunction with the

original requirements document to produce the formal specification.

Zappa enables the developer to take a Z specification and, provided the
specification is in a form suitable for animation by the tool (specifications produced via
OPERATOR usually are), to then systematically engineer a working model of the
system that is consistent with and mirrors the specification (a form of executable Z
specification). This animation can be used to demonstrate the Z specification to the

client or user.

1.5 Implementing the Research Work Plan.

As we have said, there has been little deviation from the original research work
plan. However, it is important to note that the underlying ideés and associated research -
behind the development of OPERATOR and Zappa evolved very much in parallel with
one another, and in many ways quite separately. There is the temptation to assume,
perhaps, that the technique of systematically creating Z specifications would be
developed and perfected before thought was given to how specifications could be

animated. This was not how the research evolved.

The starting point of the work was a collection of Z specifications (of security
systems, banks, libraries, vending machines, stock and production control systems,
Email systems, etc.) produced by the author and others. Systematic ways of arriving at
these, and various ways of developing working Z models were looked ét in parallel. If
anything, the major research effort initially focused on the problems of animation until
the author had acquired substantial experience of teaching Z, at all levels, allowing the
author to appreciate fully the problems faced by students, and experienced
programmers alike, when using the Z notation to develop formal system specifications. .
Only when it had been decided to devélop an animation tool (Zappa), using the expert
system shell Kappa-PC, was the problem of creating Z specifications in a systematic
way seriously considered. By this time the author had considerable experience of
writing and teaching Z and, drawing also on the experience of his supervisors, was able

to feed this into his research.

It should be noted at this stage that the teaching duties of the author involved
teaching Z (including réﬁnement, implementation, basic proof and animation) to a
range of students from HND level, through deg%, to Masters level. The teaching in
the Masters course was extremely valuable because the students ranged from graduates
relatively fresh from their degree courses, to programmers, software engineers and

other technical practitioners with considerable working experience in the software,

computing and information technology-based industﬁes, as well as those from IT or
programming departments within a variety of other commercial organisations.
Research ideas, as they fed into (and indeed, back from) the teaclﬁng, particularly at

Masters level, could therefore be evaluated by students and practitioners alike.

During the period of the research, the author has also supervised numerous fitst
and Masters degree projects and overseen many learning contracts directly involving
aspects of the research contained in this thesis. This experience has been invaluable and
the opportunity to have been involved with students in the classroom is gratefully

acknowledged.

1.6 Overview of the Thesis.

The research work in this thesis is concerned heavily with the process of
software engineering and the use of formal methods within that process. Consequently
it has been necessary to review, in rather more depth than is usual in theses on
computer Science, the history of software engineering and the development and rise of
formal methods. Chapter 2, therefore, is devoted in its entirety to the history of
software engineering and the need for formal methods. Chapter 3 looks in detail at the
issues of using formal methods in software development together with the issues
surrounding the acquisition of formal methods skills and knowlédge. In particular,
problems associated with learning and using the Z specification language are aired and
the clear need for a step by step épproach to creating Z specifications is demonstrated

along with the need for animation and rapid prototyping tools.

In Chapter 4 the development of the OPERATOR method is considered. The
rationale for the approach is first argued and set down, and then the development of
the method is traced. We look at how the method has eﬁrolved from its origins as a
systematic but abstract method developed some 2 years ago, to the fuller method it is

today with its graphical front end and its structuring mechanisms for handling system

complexity. The results of using the approach in the classroom are included in the

chapter.

In Chapter 5 we investigate the status of computer-based tools that support the
use of Z and thus point to the need for the provision of animétion tools. We consider
the issues surrounding the animation of formal specifications and review some of the
pioneering work done in this area and highlight fundamental differences in approach.

We also look specifically at how working Z models may be created using Prolog.

Chapter 6 is a technical chapter, describing the next phase of the animation
research where the opportunities afforded by using an expért system shell for
aﬁimating Z specifications are considered. Much time and effort was invested in
developing a systematic way of animating Z specifications in Crystal - an expért system
shell produced by Intelligent Environments Ltd. of Richrﬁond. This research is
" presented, as well as classroom experience of the approach. Finally we give the reasons

for turning to thé more sophisticated knowledge-based expert system shell, Kappa PC.

Chapter 7 is another technical chapter where the development of the CASE
animator, Zappa, is described and the advantages of Kappa PC over Crystal are
explained. The fundamental differences between the two approaches are discussed.
The development of Zappa is likely to be ongoing and what is presented here is
therefore a description of a prototype. The ratioﬁale for developing the tool in the way
chosen is given and the use of the tool to animate example specifications is evaluated.

Work in developing the tool with students is included.

In Chapters 8 and 9 we critically review the outcomes of the research in the

light of the aims of the research, and make our conclusions.

Chapter 10 is the final chapter and suggests areas for future research and -

development.

10

CHAPTER 2 : THE DEVELOPMENT OF SOFTWARE
ENGINEERING

spatchcock n., & v. t. 1. n. fowl killed and then
plucked, dressed, split open, and cooked immediately.
O.ED."

2.1 Early Days

If we take the term software engineering to mean simply the production, by
whatever means, of computer software, or even just written code, then, arguably, the
world's first software engineer was Ada Augusta, the Countess»of Lovelace, an able
mathematician, whé in the 1830s coded sets of instructions for Charles Babbage's
'Analytical Engine. Of course, the term software engineer was not in use at the time - it
wés adopted by NATO in the 1960s to descn'be the process of writing computer
programs - and Augusta's sets of instructions were not actually implemented since the
Analytical Engine remained conceptual. Nevertheless, the Analytical Engine is now
widely recognised as the first computer as we understand the term today. It had
memory, input, output, control and arithmetic units, and the operator of the machine
could place instructions in the Engine to undertake and reproduce lengthy

mathematical procedures.

It was not until the Second World War, however, that computers, utilising the
vacuum tube technology of the day, were first employed for practical purposes: in the
_ United Kingdom for decryption and in the Unite;d States of America for gunnery table

computation.

As hardware technology progressed from the vacuum tube, through transistors
and integrated circuitry, to today's Very Large Scale Integration (whereby hundreds of
thousands of transistors are etched onto one small silicon chip), so the methods and
languages used to instruct or program computers de§eloped. Initially programs were

no more than long lists of binary digits. The difficulty which programmers had writing

such code led to the development of interpreters and compilers of decimal code,
mnemonic assembly languages and eventually higher level languages such as
FORTRAN, COBOL, BASIC, C and so-called Fourth Generation Languages. The
emphasis was on developing programming languages that were more natural, more
easily comprehended by humans, and which could be translated automatically into the
low level uhderstood by computers. This development was facilitated by hardware |
technologists striving for ever faster computational speed, ever smaller scale and

increasingly sophisticated computer architecture.

2.2 The Beginning of Software Engineéring

It was during the period circa 1959 - 67 that career structures began to emerge
for programmers, designers and systems analysts as the power and possible
applications of computers started to be realised, and, by the early Seventies, once the
minicomputer had been invented, that applications moved away from scientific and
specialised areas towafds more general and widespread aspects of society and industry.
The computer began to be trusted in areas where human safety was a consideration.
Today every person in the developed world is dependent, to a lesser or greater extent,
on software sysiems. From gas bills to traffic signalling, from medical treatment to the

operation of nuclear power stations, computers have a significant role to play.

Burnham [Bur83] puts it thus:
"The computer is the welfare agency, the police, the tax collection office, the
insurance company, the bank, the telephone network, the security force and

the credit rating firm quietly cataloguing all our works and days."
If we take hardware technology and programming languages to be two strands

of software engineering development, the latter dependent, to some extent, on the

former, then the expansion of the domain of computer application is the third.

12

As the complexity and size of computer software increased, so did the need for
quality and reliability. Consequently, tv;ro further strands of development can be
identified. One strand being methods and practices in software engineering, the other,
the dissemination to practitioners and students of the ever widening knowledge base.

The five strands now outlined are represented in Fig. 2.1.

hardware

T e T S e L Tt el

languages

applications

33383882 AR RERRES

Fig. 2.1: The five strands of the development of software engineering.

In the early Seventies, efforts were made to introduce sound engineering-like
practices in the ;)roduction of software. TQp Down Step-Wise VReﬁnement and the use
of pseudo code, as an intermediate step between informél system requirements and

| program code, were expounded (for an example of this approach see Wirth [Wir82]).
The first sense of formality emerged in the form of flow charts; still useful today and
used later in this chapter to illustrate the software development life cycle. The move
was to be away from software production as an art form, practised by sofiware

crafiers, towards a more scientific, engineering-based, discipline: software engineering

as a science in its own right. N

In 1972, Bauer [Bau72] defined software engineering as :

13

"The establishment and use of sound engineering principles in order to obtain,

economically, software that is reliable and works on real machines."

The definition centres on the need for the use of sound engineering principles
and it would be wise for us to attempt to identify some of these principles. We believe

(see also Buxton and Mérco[Bux87]) that they should include:

e Good project m'anagement - decision making and administration.

e A well defined project structure - a procedure to follow, a modular
approach.

e A common language or languages - standard notations, diagrammatic
representations and documentation in general.

e Tried and tested methods and techniques - a wealth of experience and
knowledge from which to draw. ‘

e Scientific foundations - facts, rules a_nd models.

e The use.of engineering tools

Soﬂware-engineering is, then, a very yQung discipline. It would be a lot to
e){pect itto cofnpare well with mature, highly developed, fields of engineering such as
civil engineering, bridge building, aircraft construction, car manufacturing and the like,
all of them solidly founded in the sciences of physics and chemistry, and all of them

heavily dependent on the use of mathematics.

Indeed, in 1975, Tony Hoare [Hoa75] observed that:
"The attempt to build a discipline of ‘software engineering' on such shoddy
foundations must surely be doomed, like trying 1o base chemical engineering

on phlogiston theory, or astronomy on the assumptions of a flat earth."

14

and asked:
"How many of them [software engineers] are ignorant of, or prefer to ignore
the known techniques used by others, and embark on some spatchcocked

implementation of their own defective inventions."

This sentiment had been expressed two years earlier by a clearly exasperated - |

high-ranking United States Air Force decision maker [USA73]:

"You software guys are too much like the weavers in the story about the
emperor and his new clothe.;. When I go out to check on a software
development, the answers I get sound like ‘we're fantastically busy weaving
this magic cloth. Just wait and it'll look terrific’. But there are too many
people I know who hdve come out wearing a bunch of expensive rags or

nothing at alll"

(It may be interesting that Tony Hoare wrote a lecture paper in 1981 [Hoa81]
describing his involvement, in the Sixties, with the less than successful Elliot 503 Mark
II operating sysfem and equally less than useful ALGOL 68 programming language,

and entitled it: "The Emperor’'s Old Clothes", ending it with his own version of the age

old. tale!)

Another colourful analogy came from Fred Brooke, in 1982 [Bro82]:

"No scene from prehistory is quite so vivid as that of the mortal struggles of
great beasts in the tar pits ... Large-System programming has over the last
decade become such a tar pit, and many great beasts have thrashed violently
in it. Large and srﬁall, massive or wiry, team after teaﬁz have become
entangled in the tar. No one thing seems to cause the difficulty - any

particular paw can be pulled away. But the accumulation of simultaneous and

15

interacting factors brings slower and slower motion. Everyone seems to be

surprised by the stickiness of the problem."”

This was notwithstanding the fact that a softiware development life cycle had,
by this time, been well, if variously, described. Division of labour was now common
practice within software 'houses - we have already mentioned the appearance of distinct
professions - and good communication between software developers was important,
see Fig. 2.2. Sofiware engineering was now described by several phases, tybically;
requirements analysis, system specification, design, implementation, testing and
maintenance. There are numerous texts on this subject, Sommerfield [Som92] for

example, so we give only a resume:

Requirements analysis (or systems analysis) is the process by which the
detailed requirements of a system are formulated. The exact nature of this process
depends on whether we are designing a system for our own needs or a client's, and
whether we are replacing or enhancing an existing system, or are creating an entirely
new system. Communication between client and analyst is at a premium at this initial

stage.

System specification is the process by which the requirements of the system
are translated intb a precise specification: A specification document - the software
blueprint - should be unambiguous and free from the clutter of design and
implementation details. It should make absolutely clear what has to be done but

without the constraint of explicitly describing how it should be done: abstraction is the

16

As installed at the user’s siie "What the user wanted

Fig 2.2: A Problem of Communication.
Source: Essential Mathematics for Software Enginers, Peter Peregrinus, 1987.

key here. Ideally, the specification document should also provide an effective means of

communicating the intentions of the software engineer to the client and the systems

17

designer. At this stage the customer should be able to validate the specification with
respect to his or her own intentions. A valid specification can be achieved by an

iterative process of modification, if needs be.

Design: once the functionality of the system has been agreed upon, the systems
designer must specify how it can be achieved. Suitable data structures and algorithms
are designed. Consideration of performance and eﬂicieﬁcy now comes into play.
Decisions regarding hardware and target programming language requirements may be
firmed up at this stage. The designer should have a clear and unambiguous system
specification document to work from, and should be able to communicate effectively
with the originator of the document in order to achieve a correct design that is close to

being code.

Implementation is the process by which the data structures and algorithms in
the design are coded in the target progrémminé language and installed on the chosen
hardware. The emphasis is on correctness of the code with respect to the design, and,
hence, to the original system specification. Ideally, a well-defined step-by-step method
of translation should be employed, which guarantees the preservation of constraints
and conditions laid down in the specification. The more automatic and formal the
process, the greater the confidence will be in the.correctness of the impiemented

program.

Testing involves veriﬁcation.of the correctness of the implemented program

. with respect to the system specification document. Testing is also requi;ed to discover
and eliminate syntactical errors that may have occurred during coding; Without formal
methods of proof or an unusually high level of confidence in the correctness of the
program, and especially when dealing with large and complex systems, testing can be
very time consuming and, hence, very expensive. This can be true no matter how

carefully test data are chosen. It should be noted that testing can only demonstrate that

18

the program is correct with respect to the system specification: if the specification is
invalid with respect to the actual requirements then the resulting program is unlikely to

implement these requirements.

Maintenance of a system begins on the day that the systerh first becomes
operational and is usually required, on and off, throughbut the lifetime of the system.
Maintenance may mean modification of the system due to a change in requirements, in
which case a clear and unambiguous specification can be of great benefit. Maintenance
can also mean the occasional and regular "spring cléan" of system data, especially of
long lasting data. Human error during data transcription will always be a problem, so
stored data should occasionally be verified with respect to original source documents.
Unfortunately, maintenance is also, all too often, a euphemism for an ongoing process

of debugging.

2.3 Methods of Software Engineering
Fig. 2.3 is a representation of the software development life cycle as outlined in

the previous section. -

Having a well defined software development life cycle introduced two sound
engineering principles; it gave a project structure and a framework for good project

management.

As concepts, these stages are clear as to what should be done but not clear as
to how it should be done. Methods were needed, so came the advent of Structured
Methods which fleshed out the individual stages with procedural details, explicit inputs
and outputs to and from stages and ways of checking consistency between and
correctness of the products of stages. A key element in all such "semi-formal" methods
was the use of various diagrammatic and tabular notations and, consequently, the

employment of standard and universal languages to describe system procedures, data

19

structures, functionality, etc. In short, the adoption of the third of our sound

engineering principles, that of common language.

Reqirements’
Analysis

REQS.
DOC.

System
Specification

Revise
Specification
System DESIGN
Design DOC.
CODE Implementation
YES
Maintenance
NO
Modify
Code

Fig. 2.3: A flow chart illustrating a software development

life<cycle.

20

An early example (early to mid Eighties) was Jackson Structured Programming
(JSP) [Jac85]. This method bases program design on the characteristics of the data to
be processed by the system. A well defined diagrammatic notation is used to represent
hierarchical data structures, illustrating, progressively, more detail through a process of
data refinement. A preliminary version of the program structure is then produced by
identifying processes acting on the data structure. Once activities and conditional
elements have been detailed within processes a detailed program design is derived that
‘can be converted dfrectly into programming language statements.’ [Bur87] The same
semi-formal diagrammatic notation is used throughout and the diagrammatic output
from one stage is the input to the next stage, in which it is either enhanced, modified or
refined in some wéy. However, JSP is not a complete met‘hod, in that it does not
embody all of the software life cycle; it does not concern itself with requirements'
analysis or the formétion‘ of a specification document (a specification document
constitutes the start point of the method), and many of the stages in JSP rely on
manual examination of thé speci_ﬁbation. There can be no formal guarantee of the

validity of the resulting program.

In the mid Eighties, the United Kingdom government's Central Computer and
Telecommunications Agency decided they needed a method of software development

with the following features:

o A self checking mechanism
o Tried and tested methods
« Facility for tailoring

« 'Teachability'

21

One Structured Method came to the fore: the Structured Systems Analysis and
Design Method (SSADM) [Dow92, Ham93]. SSADM became the United Kingdom
government's standard method for carrying out the systems analysis and design stages
of information system projects and is now a recognised international industry standard.
Indeed, in many application areas; in particular in safety critical system development, it
is a legal requirement to use SSADM. The Ministry of Defence in the United
Kingdom, for example, must use SSADM for all of its software development projects.
Its popularity and widespread use has meant that it has undergone frequent revision
and enhancement, its fourth incarnation,' SSADM version IV, was released in July

1990.

SSADM takes the structure for software development and project management
forward. The software development life cycle is defined by five core stages or
modules, roughly corresponding to the stages outlined previously, but now each
module has within it one or more stages. Each stage is further broken down into szeps
and these, in turn, into fasks within each step. It is made explicit, at each level, as to
when something is to be done. Each task, step, stage and module gives rise to
products; usually in the form of well defined documents. Particular products form the
material required to accomplish the. next task, step, stage or module. SSADM ’afso
supplies a raft of fechniques to be applied within tasks in order to obtain the
appropriate product. SSADM, then, describes what should be done (products), when
things should be done (1modules, stages, steps and tasks) and how things should be

done (techniques). These aspects are represented in Figure 2.4.

22

Modules
|
I I 1 1
Stages
V "When"_ | 1 : i 1
Steps
1
1 I i 1
Tasks
1
L I 1 | 1
_ | 1 o]
1
"How" — Techniques
B
"What" — Products

Fig. 2.4: Aspects of SSADM.
Source: Downs, Ciare and Coe, 'Structured Systems Analysis and Design
Method: Application and Context'.

It is not our purpose to describe the large number of SSADM fasks and steps,
here (there are over 30 steps and around 150 fasks in the latest version), but a list of
the modules will at least allow comparison with the sofiware development life cycle

described earlier.

23

The five modules of SSADM are:

1. Feasibility Study

2. Requirements Analysis

3. Requirements Specification
4. Logical Systém Specification
5. Physical Design-

It is notable that there are clear levels of abstraction and the process is one of
refinement from the most abstract model, given by the Requirements Specification
module, which is a ‘detailed and testable’ specification of what is required, to a non-
procedural, logical design (given by the Logical System Speciﬂcation module) which is
independent of any implementation strategy, and finally to a physical design which
introduces information about the target hardware, software and the organisational
setting in which the system will operate. The basic software life cycle, however,

remains the same.

The progiucts of the various fasks are classified as either structural model
diagrams, supporting text or reference text. The structural model diagrams form the
core of the system description. They take the form of tried and tested semi-formal -
diagrammatic notations such as Data Flow Diagrams, Entity Relationship Diagrams,
structure charts to model entity life histories, graphical models of entity attribute
relationships, matrices to cross reference such things as entities and data stores, and
process outline diagrams. Many structural model diagrams are inter-related and many
begin as a logical model to be refined to a physical model. Much of the formaf and
content of the supporting and reference text is standardised using a variety of

proformas.

24

As an industry standard SSADM enjoys excellent textual, tool and service
support. The 1990 SSADM Directory of Services [CCT90] listed 139 organisations
supplying consultancy, 28 accredited training agencies, 30 suppliers of Computer
Aided Software Engineering (CASE) tools and 35 suppliers of fourth-generation
languages who have published interface guides for SSADM compatibility. SSADM is

widely taught in further and higher education establishments.

By 1992 SSADM was being used on billions of pounds worth of software
development in the United Kingdom alone [DOW92].

However, whilst SSADM is designed to be flexible and can be "part used",
 smaller organisations may find the extra effort involved in using such methods
unattractive. The time and costs involved in a radical change in working practice, such
 as staff training, tools and services, may be disincentives. The quantity of
documentation that resﬁl_ts can be difficult to manage and, combined with the large
number of procedures involved, there might appear to be a need for a significant

increase in project administration.

To some extent these problems have been addressed by the development of

more affordable tools, often PC-based.

2.4 Computer Aided Software Enginering

In general, CASE is an attempt to speed up, help manage and simplify many
procedures within software development, particularly in the use of structured methods.
Any form of automation is usually perceived as a "good thing". Fairburn [Fai90] puts it

thus:

“It is the rule rather than the exception-that automating processes improves

the quality, consistency and reliability of products over any but the most

25

meticulously and expensively hand-crafted products. It would be surprising if

this were not true also in the field of software production."

In any case, the ever increasing size and complexity of software engineering
projects makes it obvious that some degree of automation in production would be

desirable if not, for the largest of systems, essential:

"How do you write the specification for a new project that has to meet 2,000
main performance requirements and 6,000 detailed requirements without any
of them conflicting with each other or overlapping? How do you weed out
ambiguity and over-engineering? How do you keep track of changes in the

specification and the decisions behind each one?"

asks John Dunn in a recent edition of the Production Engineer [Dun94]. He is
referring to the Civil Aviation Authority's 350 million pound national en-route traffic
control centre, being built at Swanwick, Southampton, a highly safety critical system,
heavily dependent on large and complex software systems. The answer, apparently,
was to use a co;nputer program called Requirements and Traceability Management
(RTM), developed by GEC-Marconi in the mid to late Eighties to aid in the
development of complex military systems. A sort of automatic project manager cum-
validation aid, RTM is a text-based database program in which information from
specification documents is "captured, tagged and sorted". It attempts to identify
everything the product is required to do and present its findings in a way the client can
understand and validate the specification. In the case of the national en-route air traffic

control centre, 15,000 initial requirements were reduced to 2,000.

CASE tools appear to fall into three loose and overlapping categories; those
that are designed to handle a particular procedure in a software engineering method,

those that are designed to oversee a complete project from beginning to end (or at

26

least a significant portion of a project) and those that are targeted at a particular

programming language or type of project.

- In terms of automation in structured methods (in particular SSADM and
derivatives), Parkinson [Par91] describes tools as being single techm’que, single phase
or multiple phase. According to Parkinson the evolution of CASE began in 1978-1983
with first generation tools such as simple 'diagrammers' and project management aids.
Second generation tools (1984-1986) included multi-diagrammers that were able to
‘work with two or more types of diagram and .sometimes form links between them,
software dictionaries to.store, collate and manage things like variable and procedure
details, and simple ‘rapid prototypers'. The third generation of tools (1986-1990) had
added intelligence in diagram management, generation and manipulation, and included
the first code generating systems (beginning to realise the software engineer's dream
(or nightmare) of programs that write programs). In Parkinson's fourth generation of
CASE tools (1991-1993) the industry saw the rise of dedicated support for structured
methods and so-called Integrated Project Support Environments (IPSEs) "developed
ﬁom the need to manage complex, large scale sofiware projects, usually in
telecommunications, aerospace and defence industries (RTM, although in use well

before 1991, is a good example).

IPSEs are tools that fall into our second loose category; tools that attempt to
address quality control and management by automating aspects of requirements'

capture, design, construction and testing stages of a software development life cycle.

A useful 'mini-catalogue' of commercially available CASE tools can be found in
Fisher [Fis88]: Teamwork from Cadre Technologies, Excelerator from Index
Technology and PowerTools from Iconix Software Engineering are three examples
given of tools that support structured methods, integrating tasks that involve such

things as Data Flow Diagrams, structure charts, Entity Relationship Diagrams and data

27

dicﬁonaries. Also included are tools that would fall into our third loose category such
as BRACKETS from Optima which generates COBOL procedures and data structures,
and TAGS/IORL from Teledyne BrownvEngineering, designed to aid in the production
of ADA programs. (A more complete and wide ranging collection of software
engineering tools and methods éan be found in the STARTS Guide: Standard
Descriptions {STA87], which lists most tools and methods currently in use or under

development.)

2.5 The 'Software Crisis'

Software engineering, then, has evolved rapidly in the last twenty or so years
(and we have not had the space here to include innovations in software metrics and
quality assurance methods , the development of Object Oriented Programming and
Design, and a host of other developments). All but one of our six principles of sound
engineering practice would appear to have been addressed; project management,
project structure, common languages, methods and techniques, and engineering tools.
Indeed, Bauer's 1972 definition of software engineering now seems to. lack detail,
given the current software ehgineeﬁng environment, and Buxton and Marco [Bux87]

have proposed an up-to-date version:

"The establishment and use of sound engineering principles and gobd
management practicé, and the evolution of applicable tools and methods and
their use as appropriate, in order to obtain - within known and'adequate
resource provisions - software that is of high quality in an explicitly defined

sense."

(It is possibly less than encouraging that the above quote came from a text

entitled The Craft of Software Engineering.)

28

Notwithstanding all of the above it is still widely argued that the industry is in a
state of (almost perpetual) difficulty; the ‘software crisis'. Potter, Sinclair and Till

[Pot91] put it thus: -

"The accumulated public perception of computer systems is that they are
inherently faulty. Errors are casually referred to as 'bugs’, whereas the
equivalent term in other engineering disciplines is 'faulty component'. This
has led to a rather sloppy situation, where low standards are generally

accepted as normal."

A recent BBC Radio 4, File on Four, programme [BBC93] was devoted to the

‘software crisis' and contained some startling (and worrying) evidence:

On an August weekend in 1993, at the Stockholm Air Show, a Swedish Air
Force Saab Grippon Fighter jet was going through its paces. The aircrat;c was in a 3000
foot climb and banking when the pilot lifted the nose a further four or five degrees. It
stalled and crashed. Luckily, the pilot was able té eject and there were no casualties.
The reason fhe aircraft crashed was that the software on board that was supposed to
make fatal manoeuvres impossible was not complete. According to Saab, the pilot had
éttempted something that was "highly unlikely". It was found that Saab's test routine

for the Grippon had been "undemanding".

The Royal Air Force have also suffered from shortcomings in its own software:
in April 1992 a Harrier Jump Jet, on loan to the Royal Navy (and therefore operating
outside of its normal envifonment) was on a practice run when it dropped a bomb on
its own carﬁer, the Ark Royal. The target had been a dummy, towed some 800 meters
behind the ship. The target acquisition system on board the Harrier had been unable to

process incoming data fast enough resulting in the bomb tracking the aft flight deck of

29

the ship. The bomb impacted on the deck and penetrated several levels injuring several

sailors. The pilot of the Harrier was mortified. He had been “let down by his software".

On October 20th, 1992, the London Ambulance Service switched on their new
command and control cotﬁputer system. Two days later it had to be switched off after
delays in ambulance arrival times of up to ten hours had been reported. The
Department of Health commissioned a report into the failure which found that “just
about everything that could go wrong had gone wrong. The software was not

complete, had not been fully tested and still had dangerous mistakes in it."
Speaking on the same File on Four programme CLiff Jones pointed out:

"Taking a program of 10,000 lines of code ... there are more paths through

that program than there have been seconds in the existence of the universe."

In 1993 British Nuclear Electric was installing a software system for the
primary protection of its Sizewell B nuclear power station. It has 100,000 lines of

code. They canniot say how safe it is.

In September 1991 there was a narrow escape at British Nuclear Fuels'
reprocessing plant at Sellafield, where highly radioactive waste is solidified into glass
at the vitrification plant. A crane hoists containers containing the waste into a cell
where the process takes place. Two doors are sup.posed}to prevent human access
whenever containers are in the cell; Protection software, designed to prevent both
doors being open at the same time, was deliberately modified by technicians, pressed
for time, to circumvent the safety measure at a time when no danger was present. They
forgot to undo their ‘hacking' and later a container was hoisted into the cell with both

doors open. In was found that a second level of software protection, that would have

30

prevented the incident, was faulty. The fault was a plus sign missing from one line of

code.

Martin Thomas, again speaking on the File on Four progrémme, thinks more

professionalism in software engineering is needed:

"I characterise the industry really as a craft industry that ought to be an
engineering industry. We are a very young industry; we've only been
developing software in industry for 30 or 40 years, at the outside, and yet we

are tackling very large scale engineering problems."

It is not only in‘safety critical areas that good software is important.
Information systems of all kinds play a crucial role in the running of governments,
economies and innumerable aspects of our daily lives. Surely it is at least desirable for
there to be a degree of conﬁdence in all the software systems that we use. We may be
mildly amused by stories of computers erroneously sending individuals million pound
electricity bills, but it would be less amusing if the recipient was a person with a heart
condition who suffered an attack as a consequence, or if millions of individuals were

sent erroneous bills.

Bell, Morfey and Pugh [Bel92] cite "one of the few pieces 6f hard evidence
available" of the 'software crisis', that of a study of a 1984 United States Federal
software projects that found that less than two percent of software was used as

delivered, out of a budget of 6.2 million dollars (see Figure 2.5).

31

Abandoned

or reworked
Used after
change
Used as Delivered but
delivered not used
Paid for but
not delivered

Fig. 2.5: Effectiveness of US Federal software projects carried out in 1984
Source: Bell, Morrrey and Pugh, ‘Software Engineering: A Programming Approach’,1992.

So it appears that something is missing from the "craft" of software
engineering; a solid and scientific foundation from which to build. As File on Four put
it:

“The compdter industry has progressed so fast that it is taking on tasks for

which it still lacks the basic analytical tools. It's like trying to build bridges

without having first invented the set square."

Traditional engineering disciplines draw heavily on mathematics. Perhaps the

use of mathematics in software development is what is missing.-

32

REFERENCES IN CHAPTER 2
Bur83. Burﬁham, D., The Rise of the Computer State, Redwood Burn, 1983.
Wir82. Wirth, N., Program Development by Stepwise Refinement, Comms. of the
Association of Computing Machinery, 1971, reproduced in Writings of the
Revolution: Selected Readings on Software Engineering, Yourdon, E., (Ed.),
Yourdon Press, N.Y., 1982.
Bau72. Bauer, F.L., Software Engineering, Amsterdam: North Holland, 1972.

Bux87. Buxton, J. and Marco, A., The Craft of Software Engineering, Addison-
Wesley, 1987.

Hoa75. Hoare, T., quote in lecture notes of Norcliffe, A., Sheffield Hallam University,
quote dated1975.

USAT73. High-ranking USAF decision maker, quote in lecture notes of Norcliffe, A.,
Sheffield Hallam University, quote dated 1973.

Hoa81. Hoare, C.A.R., The Emperors Old Clothes, Comms. of the Association of
Computing Machinery, reproduced in Writings of the Revolution: Selected Readings
on Software Engineering, Yourdon, E., (Ed.), 1982, Yourdon Press, N.Y., 1981.
Bro82. Brooks, F., The Mythical Man Month, Addison-Wesley,1982.

Som92. Sommerfield, 1., Software Engineering, 4th Edition, Addison-Wesley, 1992.
Jac85. Jackson, M., A., Principles of Program Design, Academic Press, 1985.
Bur87. Burgess, R., S., Structured Program Design using JSP, Hutchinson, 1987.

Dow92. Downs, E., Clare, P. and Coe, L., Structured Systems Analysis and Design
Method: Application and Context, 2nd Ed., Prentice Hall, 1992.

‘Ham93. Hammer, M.J., SSADM Version 4: Project Manager's Handbook, McGraw-
Hill, 1993.

CCT90. Central Computer and Telecommunications Agency, SSADM Directory of
Services, London: CCTA/BCS, 1990.

Fai90. Fairburn, D., The Opportunity of the Decade, paper in CASE on Trial, Edited
by Spurr and Layzell, John Wiley and Sons Ltd., 1990.

Dun94. Dunn, J., Give them what they asked for, lead article in The Production
Engineer, March 24th, 1994.

Par91. Parkinson, J., Making CASE Work, NCC Blackwell Ltd., 1991.

- 33

Fis88. Fisher, A.S., CASE: Using Software Development Tools, John Wiley and Sons,
1988.

STA87. The STARTS Guide (Standard Descriptions), 2nd Edition, Volume 2, NCC
Publications, 1987. ‘

Pot91. Potter, B., Sinclair, J. and Till, D., An Introduction to Formal Specification
and Z, Prentice Hall International (UK) Ltd., 1991.

BBC93. BBC Radio 4, File on Four on Software Engineering, Oct. 19th, 1993.

Bel92. Bell, D., Morrey, 1. and Pugh, J., Software Engineering: A Programming
Approach, 2nd Edition, Prentice Hall International (UK) Ltd., 1992.

34

CHAPTER 3: FORMAL METHODS

The writing will be spare and lean,
the concepts hard, the philosophy old
and yet new born.

John Steinbeck on East of Eden.

3.1 Benefits of Mathematics

It may not be immediately apparent how mathematics can play a major role in
software engineering. Just because mathematics is an essential modelling and design
tool in more traditional engineering disciplines, why should it be equally essential in
software engineering? However, mathematics does have certain properties that would

make it well suited to the specification of software:

e Precision: mathematics is a more restricted language than, say, natural
language, and therefore allows fewer opportunities for ambiguity. A

mathematical statement is less likely to be misinterpreted.

e Brevity: a large amount of information can be conveyed concisely in a

mathematical language. Brevity can often be an aid to understanding.

o Expressiveness: mathematics is a powerful language in which to express

complex ideas.

o Facility for reasoning: mathematical statements can be formally investigated.
Mathematics opens the way for calculations to be performed for predictive
purposes. Ideas expressed in mathematical terms lend themselves to the formal,

mathematical process of proof.

In addition to the above, mathematical descriptions can be very abstract. This

can be of greét benefit during the early stages of system development allowing the

software engineer to concentrate on the functional aspects of the system without the
cluttgr of implementation details. In other words, the engineer can concentrate on what
the system is to do without worrying about Aow this is going to be achieved. Valentine
[Val87] cites this as a clear advantage over the use of algorithmic languages for system
specification. An abstract mathematical specification says less than a definite algorithm
and should therefore be easier to write. He points out that aspects of a specification
which, at an early stage, need not concern the software engineer can, initially, be left
out of a mathematical spgciﬁcation. Such things could include interface designs,
hardware details and the target language for coding. These details and such things as

performance requirements can be added later in the software development process.

Wordsworth [Wor92] illustrates this idea of abstraction with two versions of a

simple set of system requirements:

"I need a system that will accept certain information as input and produce

certain other information as output according to a certain rule."

Comparéd with:
"I need a system that will accept a text file marked up with certain special
signs, and produce formatted pages on a laser printer, the correspondence

between the input and the output being given by the following rule..."

The first set of requirements may be so abstract as to be practically useless as a
starting point for specification (at least without some idea of the rule to be used) and
the second set could be made more specific, or concrete, by stating the type of text file
(ASCII or WordPerfect, for example), by describing the special signs or by giving
details of the formatting required. From this one can begin to formulate a notion of
refinement of a very abstract specification through specifications that are consecutively

more and more concrete until a final, complete and concrete design is achieved - as a

36

painter may begin with sketches, then an outline drawing, before adding washes, detail,

solid colours and final touches.

A mathematical description may be declarative rather than procedural, in terms
of its being a logical statement that can be shown to be either true or false. Hoare
[Hoa86] sees this offering a further advantage over program code when checking

correctness. If a mathematical proof of a specification can be given then it should be

easier to spot a flaw:

"“This is because a proof checker only needs to check the validity of each line
of proof, comparing it only with one or two previous lines. For a program, the
checker has to check each line in the context of every other line of code in the

program - a task which is quite impossible for large programs.”

A specification is the key software engineering document; all subsequent
processes and stages of system development are dependent on or involve referring to
such a document. Ince [Inc88] notes this and suggests a set of important properties

that a speciﬁcafion should posses. He proposes that a specification should:

e be unambiguous, since a wrong interpretation only detected in the final stages
of development could be costly to resolve and even disastrous if only

discovered afier implementation;

o be free of design and implementation directives, allowing an unfettered
-approach to problem solving and leaving as much choice as possible in terms of

algorithm design;

37

o enable the developer to reason about the properties of the system it describes,
which lies at the heart of the anélysis process that gives rise to a valid

specification;

e be free of extraneous detail, thus containing no more information than is

required for the person who is to process the document;

e be partitioned into smaller parts or modules which are, as far as is possible,
independent of each other, allowing consideration and modification of one part

with minimal consideration of or effect on others;

o be understandable by the customer of the software system so as to improve the

chances of achieving a valid system.

So far in our discussion it would appear that a mathematical specification could
possess all but the last two of these properties: partitioning and 'understandability'.
However, there is no reason why a mathematical specification cannot be modular, so
we are left with the problem of 'understéndability‘. Clearly, it would be unfair to expect

all software system customers to be mathematically literate.

Mathematical methods (or formal methods as they are now known, thus
making them clearly distinct from Structured Methods, that may be thought of as semi-
formal methods, and from informal methods, such as the use of pseudo code and Top
Down, Stepwise Refinement) may have other benefits or "spin-offs" as Norcliffe
describes them [Nor91], to system designers, programmers and industry in general.
Given an unambiguous formal specification, designers should know exactly what to do.
The process of coding can become more formalised and mechanical, with each piece of
code then able to be checked systematically to see that it meets its specification, thus

building an inherent correctness into the resulting program. Theoretically, verifying

38

that a program fulfils a formal specification could be done by machines using program
provers. In fact, mathematics, with its formality, rigour and logical nature, should lend
itself readily to investigation and manipulation by computer based tools (we investigate
CASE for formal methods in a later section in this chapter). The process of
mathematical specification itself, a form of mathematical modelling, strongly
encourages deep thinking about the system being specified which inevitably results in
better communication between software engineer and client, and consequently a
clearer and faster validation process. A course entitled Essential Mathematics for
Software Engineers [Sla87] has been produced by a consortium of Sheffield City
Polytechnic, The Hatfield Polytechnic, Loughborough University of Technology and -
ICL Soﬂware Engineering. It justifies the word essential by stressing that good
communication is a prerequisite for eﬁ’e’cﬁve software development and that good

communication is far more likely if a precise language such as mathematics is used:

"... we must have a language which allows, and encourages, precise and
logical thought and e@ression. We must have a language which discourages,
and prevents, vague and fuzzy thinking and expression. The language of
,English'}zas déveloped over the centuries to allow man to express vague and
Juzzy thoughts, such as poetry and politics. The language of mathematics has
been developed over an equally long time to fulfil exactly the needs which we

require for thinking about programs."

At Sheffield Hallam University, amongst students on the MSc Engiheering
Information Technolgy, MSc Computer Studies and BSc Computing Mathematics
courses, the author has certaiply found, during three years of teaching formal methods,
that formal specification encourages deep thinking about the system to be specified. As
lecturers we are often quizzed about real or imagined intentions within our system

requirements documents. Any ambiguities are soon rooted out.

39

Mathematical specification should also improve communication between
software eng‘ineen'ngvteam members involved in various stages of a project if a single,
precise language is understood by all. Maintenance of formally specified systems
should also become easier with a precise specification document to refer to. If the
whole point of formal methods is the production of better software then less

maintenance should be required.

Formal methods clearly put more emphasis on the early stages of software
development; the production of an initial, ébstract mathematical specification is key to
the whole process. The extra investment in effort towards getting things right early on
should mean that significantly less time and effort will be required during later stages,
where currently vast resources are used in employing programmers to check and re-
check, test and re-test and rewrite and maintain large and complex programs. It is an
adage that we must all be familiar with: that preparation is the key to the successful
completion of a task. Figure 3.1 illustrates this principle by graphically cdmparing the
resources used at different stages of software development using current methods and
formal methods. Ifthe area under each graph represents the total resoﬁrces used then it

is clear that formal methods should be more productive [Sla87].

Many academics are clearly enthusiastic about formal methods. Martin Thomas

of the BCS (at the time this comment was made) is certainly in favour [BBC93]:

"I would like a requirement that safety critical software should be fully
analysable from its specification right through to its implementation as a
computer program, and what I mean by fully analysable is that you should be

able to reason fonhally, using mathematical logic, about the way in which it is

40

Cost

traditional
] [
develop ! install ' maintain
Cost
formal methods
] |
develop ! install ' maintain

Figure 3.1: Comparison of sofiware engineering cost over project stages
" between traditional and formal methods.

Source: Essential Mathematics for Software Engineers, Edited by Gill Slater,
Peter Peregrinus Ltd. on behalf of the IEE.

possible for that software to behave and the ways it is not possible to behave.
So yod should be able to say, 'this engine controller cannot lead the enginé to
overspeed under these circumstances'. And if called upon to do so you should
be able to create a mathematical proof that that is correct. Other engineers
use mathematically based methods for carrying out their designs and
analysing them. We have such methods, some organisations are using them. It
seems to me that we need to accelerate the pace of take-up of these methods in

industry by actually legislating for it in some way; building it into standards."

41

If formal methods can enhance productivity and quality then we would concur
with the above view but suggest that such improvements need not be restricted to

safety critical areas.

Bev Littlewoods could be described as an enthusiast with reservations
[BBCO3]:

"Mathematics is an idealisation - we don't actually think that way. Computers

tend to do things for people, unfortunately ... They [Formal Methods] are not

the answer, but they are an answer. Certainly they are going to be a

contribution to building safer systems."

The UK Technology Foresight Programme on IT and Electronics hopes that
formal methods will be taken up by the software engineering fraternity. In its latest

Delphi Questionnaire [For94] it asks:

"When will it be that ... 25% of professional programmers use formal

techniques for the design, generation or validation of software?"

3.2 Problems Associated with Taking the Mathematical Approach

The greatest task to be undertaken for there to be widespread adoption of
formal methods will be in developing the mix of training needed for professional
software engineers to acquire the necessary skills profile and to manage the major
changes in working practice that will ensue. There would be more peoplé involved in
specification and probably less people concerned with writing and testing software
code. Because formality lends itself to automation, redundancies within the industry
are impliéd, as software engineering "catches up with" vtraditional engineering. The
current software engineering work force is largely not mathematically trained and the

resources required to retrain such a large and diverse body would be considerable.

42

Mathematics is perceived, perhaps with some justification, to be difficult and
experienced programmers may be sceptical as to its relevance. The resistance to such a
radical changé in approach has been and will be great. Maibaum and Sadler [Mai28]

are well aware of this problem:

"Regarding the practice of formal methods in industry. There is a natural
conservatism in all organisations against the use of new techniques and
methods. Jobs depend on performance and tried, if not proved, methods are
more dependable than new wonder cures. Old ways of working are familiar
and dependable, if not so effective. The job will be done, even if it is
troublesome and may exceed the budget...It takes courage on the part of a
company manager or individual to take up the cudgels of formal methods and

risk all.”

Djikstra [Dji], however, is uncompromising;

"We have already heard all the objections, which are so traditional they could
have been predicted: ‘old programs’ are good enough, 'new programs’ are no
better and are t0o difficult to design in realistic situations, correctness of
programs is much less important than correctness of specifications, the ‘real
world' does not care about proofs, etc. Typically, these objections come from

peaople that don't master the techniques they object t0."

Nevertheless, senior management in the software engineering industry need to
be convinced that formal methods do indeed lead to greater quality and productivity.
In the end this will only come about if commercial software, at least equivalent in
quality to software produced using current methods, can be shown to be produced at
lower cost, either in time or in resources. Academic institutions can play a leading role

in developing and using formal methods and appropriate tools , in training future

43

software engineers and in creating opportunities to collaborate with interested parties

in industry. Upon them is the responsibility of dissemination.

Norris, Newsman and James [Nor87] agree:

"... the current situation may be changed by a more mathematical basis to the
teaching of computer science or by good support tools. In any casé, it will be
a while before the status quo changes significantly, and the type of tools
required to solve some of the practical problems of formal methods will be a
quantum leap from the average compiler... A likely next step in the evolution
of formal methods would be the application of artificial intelligence

techniques to prototype such tools."

Tool support for formal methods is certainly another area of concern, in that
they are needed but are currently thin on the ground, at least in commercially available

forms. Plat, Katwijk and Toetenel [P1a92] echo this:

"... formal methods need automatic support (tools). Error-free specifications
(necessa—rjy for reasoning) can be constructed, fa;ter when using syntax-
directed editors and type-checkers, and non-trivial proofs tend to be too
complicated to be carried out depending on human intelligence
alone...Nevertheless, the current availabili& of tools is low, and those tools

that are on the market offer a limited form of support."”

Gibbins [Gib88] also sees CASE tools playing a vital role:

"It may be that the future applications of formal methods lie both in the
development of software tools - syntax-checkers, proof-checkers and theorem
provers - which énables control of the forma(SOﬁwqre' developmént process;

and in an associated prototyping methodology which enables one to test

Jormal specifications."

44

Another problem involves communication difficulties. We have suggested that
a formal approach necessitates a deep understanding of a system by the software
engineer and that this can only help towards more effective discussion with the
software client but discussion is not enough in itself. A client wants to see something
concrete and something that he or she can compr_ehend, and wants to see such things
early in the system development process. Michael Jackson [Jac87] seés mathematics

imposing difficulties in this area:

"Significant parts bf what software developers produce must be discussed,
explained, negotiated and eventually agreed with users and customers. These
activities must be carried out in the 'domain language’, the language that
users and customers rely on when they speak of the real world in which they
operate. There is therefore an important requirement for translation and
interpretation between the formal language and the ‘domain language'. It
would be foolish and arrogant to castigate our users and customers for their
refusal or inability to learn our formal languages, partly because we simply
have no/r.‘ight to impose such an obligation on them, and partly because

formal languages are unsuited to human communication."

Diagrammatic documentation, such as that produced by structured methods, is

much more likely to elucidate the developer's ideas than pages of mathematical text.

Techniques of rapid prototyping have evolved to allow clients to interact with systems

at an early stage. If we accept that using formal methods means more time and effort

will be spent on system specification, and that it is highly desirable to obtain a valid

specification before progressing, then it seems essential that some method be available

to convey the meaning of formal descriptions to those not familiar with the notations

used.

45

Possibly the most worrying limitation of formal methods (at least to those
currently engaged in commercial software production) is the lack of actual methods. A
mathematical notation is a powerful modelling tool but on its own cannot be described
as a method. McDermid [Der87] feels that in the area of formal methods "there is too
much emphasis on the notation and too little on the methodological aspects of their

use." Michael Jackson [Jac87] is characteristically blunt:

"Formal methods tend not to be methods; most formalists are simply not
interested in method except in a very attenuated form... Today's formalisms
tend to be isolated from one another, research cbncentrating on improving
each formalism in its isolation; we need to build many bridges between
different formalisms, converting our existing archipelago into the solid

ground on which software developers should be able to stand."

It is at least now well understood that-formal methods embraces formal
specification with stages of refinement and verified design through proof (the idea that
programs produced using mathematics can be formally reasoned with, with réspect to
their formal spe;:iﬁcations, from Jones [Jon90], for example). Guides to usage such as
Fig. 3.2 [Nor87] and various texts such as [Ear86, Hay87, Kin89, Lit92] have
suggested strategies and environments for spéciﬁcation, refinement and program
design but it is less clear how one reaches a formal specification from informal

requirements.

Ian Sommerville [Som92], whilst not purporting to give a detailed
methodology, does suggest an overall strategy which incorporates formal specification
(sée Fig. 3.3). Formal techniques could be incorporated into éxisting regimes of
software development where stages of development are seen as being inter-related and
iterative processes. Although Sommerville believes that formal specification techniques

are now sufficiently mature for them to be used in the specification of sequential

46

systems he warns that “we need even better tools, techniques and methods and

perhaps most importantly, better education and training".

IDEA CAPTURE ENHANCEMENT

ANALYSIS

SPECIFICATIO

REFINEMENT

DESIGN

Figure 3.2: Interrelationship of Stages of Software Development using Format Methods.
Source: Norris, Newman and James, A Step-by-Step Guide to Using Formal Methods,
British Telecommunications Engineering, Vol. 5, Jan. 1987.

Requirements Formal
specification specification
Requirements High-level
definition design
System Architectural

modelling design

Figure 3.3: Overview of software development incorporating formal specification.
Source: Sommerville, Software Engineering, 4th ed., Addison-Wesley, 1992,

There may be scope for incorporating mathematics into structured methods or

integrating formal specification and structured methods. Semmens and Allen [Sem91]

47

and Randell [Ran91] have shown that formal data structures written using the Z
notation can be partly derived from data flow diagrams, whilst Stepney [Ste90] has
worked on specifying entity relationship diagrams in Z. Polack [Pol91, Pol92] has
drawn oh this work to propose a draft technique for formalising products produced by
SSADM. She sees an opportunity to introduce formal specification to existing

Structured Methods users:

"The use of formal notations in the context of structured analysis is seen as
valuable in the introduction of formal notations to industrial users. The

_ systems analysis provides diagram§ and dictionary definitions about which the
Z notation can be structured. This simplifies the production of Z and improves

the precision of the system specification."

3.3 The Z Notation
The position of formal methods was certainly strengthened by the development
of particular notations designed specifically for use in software engineering. These

notations can be divided into three broad categories.

Process algebra, such as CSP [Hoa85] which describes the system as a group
of sequential processes. Processes communicate with one another and only certain

sequences are permissible.

Algebraic techniques, such as OBJ [Gog88] which model system behaviour

divorced from the system state. A particularly abstract approach.

State based techniques including VDM [Jon90] and Z [Spi92, Spi88, Dil90,
Wor92]. Both are based on discrete mathematics using typed set theory (sets contain

objects of the same type) and Boolean predicate logic. They endeavour to describe a

48

system as a set of possible states with invariants constraining the set of states and
.prevconditions to possible changes between one valid state and another. The Z notation
includes a schema calculus, a schema being a collection of constrained name-value
pairs within a schema-box (see Fig 3.4). Schemas give a modular feel to a specification
and the calculus provides ways of creating connections and procedures via
conjunction, disjunction, piping and composition, as well as a means of constructing
larger units by including one schema within another. There are conventions, exhibited
through the use of certain 'decorations’, to give notions of 'before and after' and ‘input

and output'.

The reader should note that the Z notation refered to here and throughout this
thesis is the notation descriﬁed by Spivey, who's Z: A Reference Manual [Spi92] can

be refered to for a glossary of Z symbols and names, and a syntax of Z.

____ SchematTitie

Signature
(schema inclusions

and variable declarations)

Predicate Section
(preconditions and post conditions)

Fig. 3.4: A Z Schema.

It may be that with a selection of notations to choose from some are found to
be more or less appropriate for different categories of system, or that different

notations are used to specify different aspects of a single system.

Formal specification using the Z notation has already been used in diverse

applications: for example, Morgan and Suffrin [Mor84] have reported on the

49

specification of a UNIX filestore, Spivey [Spi90] has discussed the specification of a
kernel for a real time system, Delisle and Garlan [Del90] have shown how an
oscilloscope may be formally specified, AT&T Bell Laboratories [Zav91] have
investigated the specification of telephone exchanges, Woodcock ef al. [Wo0094] have
- specified Defence Standard 00-56 (the British standard for the development of safety
critical systems), we have given a generic spebiﬁcation for lift systems [And92] (this
and our other published papers referenced in this text are included in a volume of
appendices) and, in probably the most well known industrial application of formal
sp.eciﬁcation, IBM have produced, in several volumes, a detailed specification of a

Customer Information and Control System.

As a point of interest, IBM have called their formal software engineering
Cleanroom Software Engineering, by analogy with semiconductor fabrication where
defects are avoided by manufacturing in an ultra clean environment, based on the

notion that defects in software should be prevented rather than discovered [Mill87].

A survey of Z users [Bar91], carried out as part of the ZIP project which is
concerned with the enhancement of the use of the Z notation, provides interesting
feedback from academic and commercial practitioners, the majority of a positive
nature. It éontains statistical information, on over 50 projects, concerning size and type
of project, length of specifications, iterations undertaken and ratio of mathematical -
notation to natural language in specifications. The data concerning the use of computer
tools was of particular interest to us, and indicated that tool use was common and, in |

general, the larger the project the larger the use of tools (see Fig. 3.5).
The Alvey Programme, a UK Government venture to stimulate British IT

research, also noted and promoted interest in the Z notation and, in its 1987 annual

report [Alv87] also mentioned method integration and tool support:

50

Size of Projects (pages)
E<10 ’
B>9 -49
E50-99
E1100 - 199
E>200

201

18}
16
14
12

number of
projects

S N b O ®

Number of Projects Number using Tools

Fig. 3.5: Use of tools compared with size of Z project.
Source: Barden et al., Report of a Survey into the use of Z, Logica, 1991.

“[Formal methods] continues to be oﬁe of the most successful parts of the
software engineering programme... The most-used methods appear to be VDM
(seen as a mature method at the beginning of the prog}'amme) ; Z, probably
now a mature method with the publication of the 'Z handbook'; and LOT oS
Jor prot—ocols. The rapid uptake of these methods by industry and the
associated dramatic rise in the number of industrialists trained in these
methods is creating feedback which is shaping the direction of future
research...the emphasis is towards developing the ‘method' aspect of these
techniques and, in particular, linking them to existing design methods already
widely used in industry and commerce, e.g. SSADM, JSD, etc. However, more -
advanced applications in the next few years will require fundamental
advances in more powerful loéics and tools to support them and theérem-

proving techniques."

It is encouraging to note that "formal specification, leading to ‘animation' and
ging g

verification" was cited amongst critical areas of technical development in the Alvey

51

Programme's original strategy (we discuss animation and describe our techniques for

animation in subsequent chapters).

There is no lack of academic and industrial courses offering schooling in the Z
notation. In 1991 there were no less than 36 academic institutions offering

undergraduate and/or graduate courses, and 18 offering industrial short courses

[Nico1].

At Sheffield Hallam we can claim to have as much experience as most in the
teaching of Formal Methods; the Z notation has been a part of undergraduate and
post-graduate coufses at the institution since 1988. Of particular interest, from the
point of view of studying the use of Z, has been the author's experience of post-
graduate students on the MSc Information Engineering Technology course. These
students have had, perhaps, the best opportunity to follow software development from
the conception of system requirements through to implementation. Having completed a
unit studying the Z notatioh and its use they have then been able to enhance and put

their new skills fully to the test by embarking on a leanﬁﬁg contract [And93a].

In essence, a learning contract is a negotiated case study or mini-project. -
Student individuals or groups are encouraged to suggest systems that they may be
interested in developing - part time students are often working in a technical capacity
and are usually keen to apply Formal Methods to their areas of expertise. The contract
is then divided into a schedule of development stages; the first being the production of
* a'system requirements document, the second the production of an abstract Z
specification. Further stages are negotiated and may include one or more stages of
refinement, the construction of proofs of consistency within the specification,

animation and implementation in a target language such as C.

52

The experience from the student's and lecturer's point of view has almost
always been a positive one and many interesting and practical systems have been
developed including an Automated Teller Machine simulation, an electronic
components thermal evaluation system, an intelligent multi-storey car parking system,
a UNIX style process scheduler, a motorist's route planner, GEORGIS - a rail failure
database system for British Rail, a warehouse stock control system and a registration

system for an electronic mailbox system for practitioners in the medical professions.

It has been apparent that producing the initial, abstract, specification has
invariably been an arduous task, but, once achieved, students have found the later
stages of development (in particular, implementation) far more straightforward that

expected.

The difficulty found by students in writing Z (especially when only given
natural languagé system requirements) has been particularly apparent on undergraduate
courses. Notwithstanding patchy knowledge of software engineering in general, a
degree of ﬁepidation when it comes to learning mathematics and a common confusion
between p’rografnnﬁng and specification, students have shown difficulties in thinking in
the abstract and then transforming such notions into correct mathematical
interpretations; This has been observed from experience in the classroom, marking

assignment and examination scripts, and in formal student feedback.

Consideration of such issues in the writing of Z specifications has led us to
believe that a simple to use, step by step, method for producing specifications from
natural language system requirements, would be of great benefit in enabling students

and practitioners to master the mathematical skills required for formal specification.

53

REFERENCES IN CHAPTER 3

Val87. Valentine, S., Why Z?, Systems International (Software Spe01ﬁcat10n) March,
1987.

Wor92. Wordsworth, J. B., Software Development with Z: A Practical Approach to
Formal Methods in Software Engineering, Addison-Wesley, 1992.

Hoa86. Hoare, T., Maths adds safety to computer programs, New Scientist, 18th
Sept., 1986.

Inc88. Ince, D., Z and system sﬁeciﬁcation, Journal of Information and Software
Technology, Vol. 30, No. 3, April, 1988.

Nor91. Norcliffe, A. and Slater, G., Mathematics of Software Construction, Ellis
Horwood Ltd., 1991.

Sla87. Slater, S. (Ed.), Essential Mathematics for Software Ehgineers, Peter
Peregrinus Ltd., 1987.

BBC93. BBC Radio 4, File on Four on Software Engineering, Oct. 19th, 1993.

For94. Information and Technology Foresight Panel, The Delphi Questionaire (Phase
1), UK Technology Foresight Programme, Office of Science and Technology, Aug.
1994

Mai87. Maibaum, T. and Sadler, M., Formal Methods A Commentary, Journal of
Information Technolgy, Vol. 2, No. 2 June 1987.

Dji81. Djikstra, E. W., Forewood to Gries, D., The Science of Programming,
Springer-Verlag, 1981.

Nor87. Norris, M. T., Newsman, P. J. and James P., 4 Step-by-Step Guide to Using
Formal Methods, British Telecommunications Enginering, Vol. 5, Jan. 1987.

Pla92. Plat, N., van Katwijk, J. and Toetenel H., Application and Benefits of Formal
Methods in Software Development, Software Engineering Journal, Sept. 1992.

Gib88. Gibbins, P. F., What are Formal Methods, Journal of Information and Software
Technology, Vol. 30, No. 3, April 1988.

Jac87. Jackson, M., Power and Limitations of Formal Methods for Software
Fabrication, Journal of Information Technology, Vol. 2, No. 2, June 1987.

Der87. McDermid, J., The Role of Formal Methods in Software Development, Joumal
of Information Technology, Vol. 2, No. 3, Sept. 1987.

54

Jon90. Jones, C. B., Systematic Software Development using VDM, 2nd Edition,
Prentice Hall International, 1990.

Ear86. Earl, A. N., Whittington, R.P., Hitchcock, P. and Hall, A., Specifying a
semantic model for use in an integrated project support environment, in Software
Engineering Environments (Sommerville, I, Ed.), Peter Peregrinus Ltd., 1986.

Hay87. Hajes, L, (ed.), Specification Case Studies, Prentice Hall International, 1987.

Kin89. King, S., Z and the Refinement Calculus, Procs. of VDM90 Symposium, Sept. -
1989. -

Lit92. Litteck, H. J. and Wallis, P. J. L., Refinement methods and refinement calculi,
Software Engineering Journal, Vol. 7, No. 3, May 1992.

Som92. Sommerfield, 1., Software Engiizeering, 4th Edition, Addison-Wesley, 1992.

Spi92. Spivey, J. M., The Z Notation: A Reference Manual, 2nd Edition, Prentice Hall
International, 1992.

Hoa85. Hoare, C. A. R., Communicating Sequential Processes, Prentice Hall, 1985.
Gog88. Goguen, J. A. and Winkler, T., Introducing OBJ 3, SRI International, 1988.
Spi88. Spivey, J. M., Understanding Z: A Specification language and its formal
semantics, Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press, 1990. .

Dil90. Diller, A., Z: An Introduction to Formal Methods, John Wiley and Sons,1990.

Sem91. Semmens, L. and Allen, P., Using Yourdon and Z: an approach to formal
specification, Proceedings of the fith annual Z User Meeting, Dec. 1990.

Ran91. Randell, G., Data Flow Diagrams and Z, Proceedings of the fith annual Z User
Meeting, Dec. 1990.

Ste90. Stepney, S., Specifying entity relationship diagrams in Z, ORCA/Logical,
1990. '

Pol91. Polack, F., Whiston, M. and Hitchcock, P., Structured Analysis - A Draft
Method for writing Z Specifications, Proceedings of the sixth annual Z User Meeting,
Dec. 1991.

Pol92. Polack, F., Integrating formal notations and systems analysis: using entityv
relationship diagrams, Software Engineering Journal, Sept. 1992.

Mor84. Morgan, C. and Sufrin, B., Specification of the UNIX filing system, IEEE
Trans. Software Engineering, Vol. 10, No. 2, 1984.

55

Spi90. Spivey, J. M., Specifying a real-time kernel, IEEE Software, Vol. 7, No. 5,
1990.

Del90. Delisle, N. and Garlan, D., 4 formal specification of an oscilloscope, IEEE
Software, Vol. 7, No. 5, 1990. '

Zav91. Zave, P. and Jackson, M., Techniques for Partial Specification and
Specification of Switching Systems, Proceedings of the sixth annual Z User Meeting,
Dec. 1991.

Wo0094. Woodcock, J. C. P., Gardiner, P. H. B. and Hulance, J. R., The Formal
Specification in Z of Defence Standard 00-56, Formal Systems (Europe) Ltd, 1994.

And92. Andrews, S. J., 4 Lift System, a case Study in A Z Readers Course, Shefield
Hallam University Pavic Publications in Assn. with the D.T.L,, 1992. '

Mil87. Mills, H. D., Dyer, M. and Linger, R., Cleanroom Software Engineering, TEEE
Software, Vol. 4, No. 5, 1987.

Bar91. Barden, R., Stepney, S. and Cooper, D., Report of a Survey into the use of Z,
ZIP document , Logica Ltd., Dec. 1991.

Alv87. Alvey Programme Annual Report, Alvey Directorate, IEE Publishing, 1987.

Nic91. Nicholls, J.E., A Survey of Z Courses in the UK, in Proceedings of the 71990 Z
User Workshop, Springer-Verlag, 1991.

And93a. Andrews, S., J., Learning Contracts, a case study in Innovations in
Mathematics Teaching, Staff and Educational Development Association Publications,
1993. T ’

And93b. Andrews, S., Edwards, P., Faulkner, B., Hodgkin, L., Norcliffe, A., Smith,
F., and Steere, P., Student Feedback as an Element in Assuring Course Quality,
Proceedings of the 1993 Undergraduate Mathematics Teaching Conference, Shell
Centre for Mathematical Education, 1993.

56

CHAPTER 4: WRITING Z - THE OPERATOR METHOD

Life is too short to learn German.
Richard Parson, British classicist (1759 - 1808).

4.1 Introdﬁction.

Although most university computing courses now include a study of the Z
notation, the teaching of Z, as we noted at the end of the previous chapter, is still not
without its problems. Students not only find difficulties coming to grips with the
notation and the underpinning mathemétics, but experience enormous problems when
they first come to use the notation to construct a systeni specification from given
requirements. Students find it extremely hard coping with abstraction aﬁd identifying
the particular van'ables that make up the state schema. Once through this abstraction
bottleneck, and having produced the state schema, students find it much easier to build
the associated operation and error schemas, and go on to complete the specification.
They may not immediately specify the operations correctly, but they at least seem more
comfortable with this part of the process - probably because it is more mechanical and
there is less need of abstraction.

If students in academia experience these problems it is more than likely that

software engineers in industry, when being trained in the use of formal methods, will
experience similar problems. Not only does this impede the technology transfer
process, but it makes it difficult to identify exéctly what the technology is that is being
transferred, other than abstraction and the ébility to create mathematical models. Such
abilities are learnt SlOWlsl and come only gradually with experience. The problems of
replacing experienced staff when they move on, when a transferable technology or
systematic method is unavailable, mitigates against the adoption of formal methods by

industry.

The lack of a systematic method for developing Z specifications also means
that tool support for the process is problematic. The type and syntax checkers
currently available do not really assist the trainee software engineer to construct Z

specifications, although they are of tremendous help to the experienced Z user.

In the previous chapter we mentioned the idea of integrating formal and
structured methods and indicated some of the exploratory work that has been done in
this area. This may well become an accepted approach and is certainly palatable to the
software engineering industry. Once well defined, such methods will no doubt enter the
mathematics curricula of computing courses and would be suitable for students already
fémiliar with the systems analysis in methods such as SSADM and Yourdon.
Nevertheless formal specification, and the mathematical notations thereof, form
valuable disciplines for study in their own right, and we feel that a simple approach to
enable students to progresé from natural language requirements to a mathematical

representation is what is needed.

The issue with the methods integration work of Semmens and Allen [Sem91],
Randell [Ran91] and Polack et al. [Pol93] is that something verging on a ﬁ,ﬂI blown |
structured approach has to be carried out first. Admittedly there is tool support for
this, such as SELECT and ASCENT, but a detailed knowledge of the structured
approach being adopted is required, and carrying out a full scale structured approach,
- whilst beneficial, can be time consuming. Further, if the end product of these
endeavours is a formal specification written in Z, then it has to be accepted that the Z
produced by converting, for example, Yourdon diagrams, will not be as abstract or as
simple as it might otherwise have been. Examples in Semmens and Allen [Sem91] bear
this out, although the Z has been produced in a systematic fashion. Arguably, the -
ability to reason in abstract terms with the resulting Z has then been reduéeci by the

complexity of the Z. Also the ability to animate the resulting Z is made harder.

58

What is needed is a simple approach which enables the specifier to progress
from the user requirements to the Z in a systematic but direct way. The OPERATOR
method described in this chapter [And95] was developed with this goal in mind.
| Although as a method it draws on the well-proven ideas of structured methods, it does
not require a full scale structured analysis to be carried out first and is essentially free

standing.

4.2 The OPERATOR method - a simple example.
To see how the OPERATOR method works we use it to produce the state
schema needed in the specification of a simple security system. Assume the system we

are to specify has the following user requirements.

"The system is to monitor the whereabouts of staff in an organisation.
The organisation is located in its own building and, as staff check
themselves in and out of the building, the system notes whether they are
in or out as appropriate. The system can be queried at any time to see
who is in or out, and must cope with staff joining and leaving the

organisation."

The word OPERATOR is an acronym with the letters standing for Objects, Properties,
Entities, Relationships, Assemble, Trim, Other and Repeat. Step 1 of the method
therefore begins by identifying the objects that make up the system. In our example
obvious candidates for objects are the staff who work in the building. Whilst it is not
imperative that all objects be identified at this stage - indeed, the later identification of
objects is an integral part of the method - it is worth noting that there are no other
obvious objects making up the system that need concern us. It is worth noting, too,
that we need not be overly strict about what constitutes an object other than that

objects should be nouns and have some concrete existence [Sul93].

59

Step 2 of the method requires us to identify the properties of these objects. At
’ this stage it is important to note that we are looking oﬁly for simple has/have
properties. Other relationships are established during step 4 of the method. From the
requirements of our system it is clear that staff have whereabouts, and it is this
property that the system must monitor. Staff in the organisation have no other
properties of significance and thus we can proceed to step 3 and identify the entities

making up the system.

The entities of the OPERATOR method are the nouns identified in steps 1 and
2. The entities are thus the staff and their whereabouts. As part of this third bstep we
must also describe the entities in terms of the Z notation. Basic types are therefore
needed and we parachute in the type set STAFF_ID and introduce the enumerated type
IN_OUT containing the elements in and out. The system entities staff and whereabouts

are thus declared as follows:

staff . PSTAFF_ID
whereabouts : PIN_OUT

As system entities staff and whereabouts are sets of STAFF_ID and IN_OUT
values respectively, thus explaining the use of the powerset symbol inlthe declarations.
The variables staff and whereabouts are possible state variables; additional state
variables are identified via step 4 of the method, where relationships between system |

entities are established.

~ Relationships between entities are identified in a systematic way using the
concept of the entity/entity matrix shown below. At this stage the aim is to identify
binary relations only. More complicated relationships are introduced via the data

invariant of the state schema once all state variables have been identified.

60

staff whereabouts

staff - location _of

whereabouts | located -

In each cell of the matrix are put names of relevant binary relations between the
pairs of entities involved. The assumption is that the entity in the row of the matrix is
the domain of the relation, and the entity in the column is the range. Where system
entities are not sets but single elements, they should be regarded as singleton sets if
binary relations involving them are needed. In practice this seldom happens. Thus,
location_of is a binary relation between staff and their whereabouts and, since at any
time staff have unique locations, then the binary relation is actually a partial function

with the following declaration:

location_of : STAFF_ID v IN_OUT

The binary relation focated is not a function as several staff may be in or out of

the building at any one time. Its declaration is this:

_ocated : IN_OUT <> STAFF_ID

We should note that the remaining cells of the matrix are empty because no

relevant relations exist between the entities concerned.

Step 5 of the method is to assemble the list of candidate state variables. This
list contains the system entities together with the binary relations identified. The

assembled list of variables and their declarations is thus as follows:

staff . P STAFF_ID

whereabouts : PIN_OUT
location_of 1 STAFF_ID-» IN_OUT
located : IN_OUT« STAFF_ID

61

It is more than likely that this list is longer than it .need be and, so, in step 6 of
the method we trim it down. The trimming is achieved systematically by getting rid of
redundant information. We can usefully note that staff is the same as dom location_of.
Thus, if we wish we need not include staff in the state schema provided we include the
partial function location_of. Similarly, we need not include the set whereabouts because
this is the same as ran location_of. Finally, we need not include /ocated because this is

just the inverse of location_of.

In theory, then, all the information we might need is contained within the
location_of function. However, it may be sensible to include sfaff in the abstract
specification even though the information is redundant, so that a direct record of the
users of the building is ready to hand for specification purposes. The lgvel of
redundant information is really a matter of taste. Clearly it should not be great, but at
the same time it is important to ensure that specifications are readable and easily

understood [Gra91,Spi92]. The trimmed list of state variables is thus:

staff : P STAFF_ID
location_of ~ : STAFF_ID+s IN_OUT

The remaining 2 steps of the method require us to check whether there are
other objects of note, and to repéat the process with them included. Fortunately there
are no other objeds and therefore no need to repeat the process. Repeating the
process is in principle not difficult. Care should be taken to check for additional

relationships between new and existing entities during the repeat step 4.
The culmination of the OPERATOR method is thus the listing of state variables

given above. The state variables and the properties which they possess can now be set

down in the system state schema:

62

System

staff : P STAFF_ID
location_of : STAFF_ID +» IN_OUT

staff = dom location_of

The OPERATOR method will not determine the data invariant. However,
having identified the state variables, the data invariant can be determined from

knowledge about the system and the Z constructs used to model the system variables.

From here on, the rest of the system specification can be established. This will
include specifying state changing bperations such as checking in and checking out of
the buildihg by staff, adding new staff members and removing staff from the system
when, for examl;le, they leave the organisation. Querying operations, which do not
change the state, can simiiarly be speciﬁed, and might include such operations as

querying the system to see who is in or out of the building.

Such state changing and queryiﬁg operations will not be specified here to save
time. There is ndthing complicated about their specification and given the system state
'schema they are easily produced. We shall, however, revisit the specification of system
operations after the OPERATOR method has been enhanced by the inclusion of a

diagramming notation and the means of addressing system complexity.

63

4.3 Another simple example.
To demonstrate the applicability of the OPERATOR method we consider,
albeit briefly this time, another example - that of a simple banking system. The

' requirements of the system, we assume, are the following.

"The balances and ovefdfaft limits of accounts at a bank are to be -
monitored by the system. Account holders can make deposits and withdrawals
and, if they have sufficient funds, can change their overdraft limits. As well as
Jfurnishing information on balances and overdraft limits, the system should

cope with opening and closing accounts."
Application of the OPERATOR method, with brief annotations, is as follows.
Objects: accounts, holders

Properties: ~ accounts have balances

accounts have od_limits

Entities: holders : P HOLDER_ID
accounts : P ACC_NO
balances : PZ
od_limits : PZ

Here we should note that the basic type, Z, representing the integers, is being

used to model the balances and overdraft limits (in pence) of individual accounts.

Other types used have their obvious meanings.

64

Relationships:

Assemble:

holders accounts balances od_limits
holders - account_of - -
accounts holder_of - balance_of od_limit_of
balances - - - -
od_limits - - - -
hoiders PHOLDER_ID
accounts PACC_NO
balanc?s Pz
od_limits Pz
account_of HOLDER_ID +» ACC_NO
holder_of ACC_NO <> HOLDER_ID
balance_of ACC_NO 4 Z
od_limit_of ACC_NO+Z

Note that the concept of joint accounts is being modelled by declaring holder_of

to-be a binary relation and not a partial function. By declaring account_ oftobea

partial function, the assumpﬁon is that holders can only hold one account.

Trim:

In trimming the list we have noted that accounts is dom balance_of, that

holders
account_of
balance_of
od_limit_of

PPHOLDER_ID

HOLDER_ID +» ACC_NO

ACC_NO 4> 7
ACC_NO +Z

balances is ran balance_of, that od_limits is ran od_limit_of, and that holder_of is the

inverse of the function account_of.

Other:

Repeat:

This step is unnecessary.

There are no other objects of note.

65

The state schema, with its appropriate data invariant, is as follows:

Bank

holders : PHOLDER_ID

account_of : HOLDER_ID + ACC_NO
balance_of : ACC_NO-»Z
od_limit_of : ACC_NO +»Z

holders = dom account_of

ran account_of = dom balance_of
dom balance_of = dom od_limit_of
Vx : dom balance_of e

(balance_of (x) = od_limit_of (x)

A od_limit_of (x) < 0)

Note that the data invariant is reflecting the operating assumptions of a normal
bank - namely that all accounts have balances and overdraft limits, tﬁat overdraft limits
should nbt be exceeded, and that overdrafis represent negative amount of cash. Once
again, to complete the specification, operationé that change the state of the system, and

those which only query the state, would now be specified.

4.4 Using the Method with Students.

| The OPERATOR method as it has been described was the prbtotype of the
method which now exists. The prototype was enhanced and extended following testing
of the method with students. Here we now describe our experience of using the

OPERATOR method in the classroom.

The method was first tested on second year Computing Mathematics degree

students at Sheffield Hallam University. Students had already been exposed to discrete

66

mathematics and the Z notation, and were familiar with reading Z specifications. They
had, for example, studied the video-based A4 Z Readers Course produced at Sheffield
[C0092] and knew how specifications were structured. They had not, however, had
any experience of writing specifications and the OPERATOR method was the first

systematic approach they had used to develop Z specifications.

Working in small groups students had to specify a simple library system. An

extract from the given user requirements document is as follows:

"In order to monitor who the users of the library are, which copies of
books they have on loan, and which copies are available for borrowing,
a simple computer-based system is to be developed. Any copy.of a book
that has been borrowed will have a return date stamped inside'it and
this will be noted by the system. The system must also log the
acquisition of new copies of books and note their removal, and should

enable new users to join the library and existing users to leave."”

The marks for the complete (non-robust) specification were 50, of which 10
were available for use of the OPERATOR method to determine the list of state
variables and their declarations. The average mark for use of the OPERATOR method
was 7.41 with a standard deviation of 1.57. The marks ranged from 4 to 9 and there
were 17 groups of students. Most succeeded i in using the method well and produced a

vanety of consistent specifications. Most lists of state variables were vanatlons on the

following:

67

users : PUSER_ID

copies : PCOPY_ID

books : PBOOK

borrower_of : COPY_ID+ USER_ID
book_of : COPY_ID+ BOOK
status _of : COPY_ID + STATUS
duedate_of : COPY_ID +» DATE

Several groups had been harsher with their trimming than others and had
removed copies and books. Others had introduced the concept of library cards and
additional information about books such as their titles and authors. A common
omission was the statué_of function which indicates whether a book is available for
borrowing or not. Since its inclusion in the specification is not essential, the omission

was not penalised.

In summary, students found the method easy to understand and simple to use.
The method had been demonstrated using the examples considered in Sections 2 and 3,
- and students were able to apply the ideas readily to develop the simple library system. |
Many of the specifications turned out similar as a result of applying the method, .
although there had been minimal copying of ideas i)y groups. Whether this high level
of reproducibility 'is a good feature of the method is debatable. The approach certainly
steers the specifier towards the use of functions and relations when perhaps simpler
structures might have been used. The security system, for exafnple, is easily developed
in terms of just sets [Nor91, Co092]. Students commented that they found the method
enabled them to construct specifications in a systématic way. In general they found
this helpful and were able to have sensible discussions about the system based around

the approach being adopted.

Although the comments of the students were positive in the main, the method
does have its limitations. The approach, though systematic, is still very abstract. It is

interesting to note that some students were drawing informal diagrams to help them

68

apply the method. Given that the success of structured methods such as SSADM,
Jackson, and Yourdon seem to hinge on the use of accompanying diagrams, the author
and his director of studies deemed it necessary that the OPERATOR method should
also have a diagramming notation. Not only would this help the specifier with the
process of abstraction, but the diagrams would be of potential help in communication
with the would be client or user about the essential features of the system to be built.

In the next section we therefore show how the met_hod was enhanced.

As well as being abstract, the approach as outlined so far does not really
address system complexity. In discussions, the students commented that they felt the
method could soon become unwofkable if the number of entities became large.
Drawing up a large entity/entity matrix would be difficult, for example, and ensuring
that the data invariant of a large state schema was correct would also not be easy. In
Section 6 we therefore show how the OPERATOR method, and its diagramming
notation, can be extended to address system complexity and to embrace structural

considerations such as partitioning a system into several subsystems.

4.5 Enhancing;the method with a graphical front end.

Thé graphical notation described in this section has been developed to
accorﬁpény the method and to facilitate the O, P and E stages. Its use is therefore
designed to help identify the objects and entities that make up the system being

specified. The notation is as follows:

. The system at the top level is represented by an appropriate descriptor written

inside a rectangular box as shown:

System

69

The convention is that the first letter of the descriptor is an upper case letter. If
we were developing a banking system we may well expect to see Bank written inside

the box instead of System.

. Objects and other system entities, related by the has/have property, are also

represented by names written inside rectangular boxes:

staff

The convention with system entities (objects are also entities) is that their

names are written in lower case throughout.

. Each of the boxes representing an entity has the set, to which the entity

belongs, written alongside in Z, e.g.:

P STAFF_ID-

The convention here is that types and other sets used are written in upper case letters

throughout, and are not contained inside boxes.

. The hierarchical relationships between the above are represented by arrows of

appropriate kinds:-

—» links the system at the top level to the objects out of which the system

is comprised.

—> links objects to entities, and entities to their associated entities as

appropriate. The arrow characterises the has/have property.

70

-—=—> links entities (including those identified as objects) to the types and

sets in Z to which they belong.

To show how the notation works, let us draw the diagrams that represent the
security, banking and library systems considered earlier. Fig. 4.1 shows the simple

security system.

PSTAFF_ID | whereabouts |

N
N

R\
PIN_OUT

Fig. 4.1 - Graphical representation of the simple
security system

The diagram tells us that the system state at the highest level is called System.
The objects in the system are staff who have whereabouts. The system entities are
therefore staff and whereabouts, and these are possible state variables. The variable
staff is a member of the constructed type set PSTAFF_ID, and whereabouts belongs to

the constructed type set PIN_OUT.

Fig.4.2 shows the banking system and Fig. 4.3 represents one interpretation of
the simple library system. If we take Fig. 4.3, for example, this is telling us that the
library is comprised of users and copies, which are being regarded as the objects of the

system. The sets users and copies are sets of USER_ID and COPY_ID values

71

respectively. Properties of copies are that they have associated books, locations and
dates stamped in them. The sets books, locations and dates are sets of BOOK, STATUS

and DATE values respectively.

x

holders accounts
—>
- .

¥

-

X P -
L7 L N
PHOLER.D PACC_NO

N

~N

L A

\
\
\
AY

L4 4

Fig. 4.2: Graphical representation of the banking
system

x "

users | copies |

PUSER_ID PCOPY_ID | books | | locations | | dates
: : i
] 1 i

V% v v

PBOOK PSTATUS - PDATE

Fig. 4.3: Graphical representation of the library system

Hopefully, the diagrams speak for themselves. ItA should be noted that different
diagrams may well lead to the same Z specification. In Fig. 4.2, for example, it is
assumed that holders and accounts are both objects. There is nothing wrong With a
diagram that regards just holders as objgc_:ts and accounts as associated entities - in the
sense that account holders have bank accounts. Since holders, accbunts, balances ~and

od_limits emerge as the system entities either way round, the odds are that the resulting

72

Z specifications of the state will be the same. The prime purpose of the diagramming
notation is to assist the specifier to identify system entities, and this we feel it does.
The strength of the notation is that it is graphical and hierarchical, and readily enables a
- picture of the system state to be created showing explicitly the entities that are part of

it.

| 4.6 Addressing System Complexity.

Utﬂess a method can be used to develop a large system, and therefore cope
with complexity, it is really no method at all. In this section we show how the method
and the associated graphical notation has been extended to cope with the specification
of complex systems. The ideas in this section are relatively new and have not been
tested out with students for their ease of use. The graphical notation presented in the
previous section has, however, been taught to students. For the simple systems
considered, the notation proved to be quite adequate and was apparently easy to teach

and easily learnt.

The extended notation described here has been used to develop structured
systems (for exémple a vending machine and a realistic library system coping with
loans and reservations) with considerable success and we are confident that in its
extended form the OPERATOR method will stand up well in future trials with

students.

Complexity is addressed by partitioning a system into appropriate subsystems
and applying the OPERATOR method to each subsystem in a 'divide and conquer’
fashion. To do this the diagramming notation requires a new kind of rectangular box
and a new kind of arrow. The new kind of box is one containing a subsystem name.
Thus, in the case of the simple library system we considered in section 4, if it were felt
that a partitioning of the system into three subsystems, namely Users, Copies and

Loans, was needed, then a typical subsystem box would be the following:

73

Users

The new arrow that is needed is the following one:

l

which links a system to its subsystems.

To see how the ideas can be applied, let us revisit the library and think of it not

" as a monolithic system, with no real structure, but comprising the three subsystems
proposed above. This view of the library is illustrated diagrammatically in Fig. 4.4,

where the extended subsystem notation is used.

Copies
7 v b/ | \A
[_users]

e e P AN
Vi Vi |) | A\
PUSER_ID pcopy Ip [books | [Tlocations | PUSER ID PCOPY_ID
P | |
i | |
Voo v
PBOOK PSTATUS PDATE

Fig. 4.4: Partitioned view of the library system

The OPERATOR method can now be used to develop substate schemas to
specify the states of the Users, Copies and Loans subsystems. The state schema,

Library, is then the schema which includes these three substate schemas. Application of

74

the OPERATOR method, as described earlier, leads to the following Users, Copies and
Loans substate schemas. Their derivation is straightforward and they are presented
without explanation. In the Loans subsystem note that new variables borrowers and

beopies (borrowed copies) have been introduced.

Users

users . PUSER_ID

Copies

copies : P COPY_ID

books : PBOOK

book_of : COPY_ID -+ BOOK
status_of : COPY_ID -+ STATUS

~ copies = dom book_of
dom book_of = dom status_of
books = ran book_of

Loans

borrowers : P USER_ID

bcopies : PCOPY_ID

borrower_of : COPY_ID +» USER_ID
duedate_of : COPY_ID -+ DATE

borrowers = ran borrower._of
bcopies = dom borrower_of

dom borrower_of = dom duedate_of

75

These three schemas can now be included into one Library schema to create the
state schema for the library system. The data invariant serves to relate all the variables
involved defining, in particular, the status of copies of books that have been borrowed,

and those which should be available for borrowing:

Library

Users
Copies

Loans

borrowers c users

bcopies < copies

Ve : bcopies e status_of(c) = borrowed

Ve : copiese ¢ ¢ beopies = status_of(c) = available

By contrast, and for comparison, the state schema of the monolithic
unpartiiioned library system, again developed using the OPERATOR method, is as

follows:

76

Library

users : PUSER_ID

copies : PCOPY_ID

books : PBOOK |

borrower_of : COPY_ID + USER_ID
book_of : COPY_ID +» BOOK
status_of : COPY_ID+ STATUS
duedate_of : COPY_ID + DATE

ran borrower_of < users

dom borrower_of < copies

dom book_of = copies:

ran book_of = books

dom book_of = dom status_of

dom duedate_of = dom borrower_of

Ve : dom duedate_of e status_of(c) = borrowed

Ve : dom book_of e ¢ ¢ dom duedate_of = status_of(c) = available

The 'divide and conquer' approach can now be seen to be working. Partitioning
of the system hé—s meant that the diagrams for Users, Copies and Loans are each fairly
simple. Indeed these diagrams could have been drawn separately instead of on one
diagram as in Fig. 4.4. The overall partitioned view of the library éouid well have been
simply the Library box together with the Users, Copies and Loans boxes. Accompanying

this would then have been the three subsystem diagrams.
Similarly, partitioning has meant that application of the OPERATOR method to

each subsystem now becomes simpler than its application to the monolithic

unstructured system. The resulting substate schemas bear this out.

77

Clearly, were the library system more complicated than the simple one
considered here, application of the original OPERATOR method would begin to
become unworkable as entity/entity matrices grew in size and the number of binary
relations expanded also (as the square of the number of entities). Keeping check on
such large monolithic systems would be difficult when it came to trimming and then

establishing the total system data invariant.

4,7 Systém Operations.

So far the whole emphasis of OPERATOR has been on the systematic
construction of the system state schema. As we pointed out in the beginning it is
usually this initial part of a Z specification which is hardest to write. Having obtained
the system state schema, operations that change or query the state can usually be

specified without too much difficulty.

The specification of system operations is, however, a very important (and time
consuming) part of any specification and where diagrams can be used to help then they

should be employed.

A very simple diagramming notation, akin to data flow diagrams in structured
methods, can in fact be used to complete the OPERATOR diagramming notation. With
reference to the library system of section 4, an operation diagram representing the

BorrowCopy operation can be drawn as shown in Fig. 4.5.

78

USER_ID Users

BorrowCopy

Loans
COPY_ID —

Copies

Fig. 4.5: Diagram showing the BorrowCopy operation in the library system.

The notation used is deliberately similar to that used to represent data flow
diagrams. The operation name is put inside a circle as shown, as in Yourdon, for
“example. Inputsv and outputs are drawn inside rectangular boxes. These are similar to
the terminators of data flow diagrams in Yourdon. Thé sets from which inputs and
outputs are drawn are indicated as shown. The dotted arrow is égain used to indicate
that data modeﬁing is being used. The direction of the dotted arrow will signify
whether an input or an output is being modelled. An output arrow would go into the

output box and the output itself would have a shriek mark decoration - as in Z.

The system substates that are affected or needed by the operation are
represented in the same way that data stores are in Yourdon. The solid arrows are also
signiﬁcant. Thus we see that the Users substate will not be changed by the operation.
Its contents are only read. The'Copies substate is both read and written to as the status
‘of the.borrowed copy will be changed to borrowed. The Loans substate is not read, but

is written to.

79

In the same way that the system entity diagram can be transformed into Z using
the R, A, T, O, R part of the method, so too can the operation diagram be turned into
Z, once the state schema has been produced. The diagram will enable the specifier to
write down immediately what the signature of the operation schema is. The signature -

of the BorrowCopy operation is thus the following:

BorrowConv

ALibrary

ZUsers

ACopies

Aloans

users? : USER_ID
copy? : COPY_ID
date? : DATE

ALibrary is needed because we wish to bring into scope all the before and after
states of the library and their collective properties. EUsers is included to alert us to the |
fagt that the state variables in the Users subsystem are not being changed. ACopies and
ALoans are, strictly speaking, not needed because the appropriate before and after
states of the Copies and Loans subsystems are already in scope. Their inclusion alerts
us explicitly to the fact that these subsystems are changed by the operation. The inputs,

users?, copy? and date? are those indicated on the operation diagram.

As with the production of the state schema previously, the use of the diagram
does not help with the predicate part of the operation schema. This, however, can be
written and systematically produced with reference to preconditions and

postconditions.

80

4.8 Discussion.

In this chapter we have traced the development of the OPERATOR method
from its initial abstract but systematic approach to developing the system state schema
to the fuller form it now takes with its diagramming ﬁont end and its system
partitioning mechanism. Of note is the fact that the approach does éomprise a method
for going systematicaly from the system entities, identifiable graphically, to the system
state schéma in a way that addresses complexity in large systems. Of note also is the
way in which the OPERATOR approach addresses the strengths and weaknesses of

mathematics as a specification language.

Initially the diagramming notation allows the specifier to work interactively
with the client to capture the essential features of the system state, including any key
structural issues. Boxes and arrows are intuitively simple to work with and model well
the hierarchical pr_operties of the system. Data modelling (via the dotted arrows) does
not have to involve the client and nothing is lost by not including the data modelling at
this stage. Operations can also be represented as operation diagrams and drawn up
with the client with direct reference to only the system entity diagrams. Again, data
rﬁodelling via the dotted arrows‘ does not have to feature on the diagrams at this stage.
The diagrams thus sérve to help the specifier through the abstraction bottleneck
[Nor93] and at the same time facilitate effective communication at a crucial time with

the system user or client.

Once the specifier and client are happy that the system requirements are being
captured, the specifier can go away and via OPERATOR systematically produce the
state schema, and the operation schemas as indicated above, bringing to bear all the
power and formality of the mathematically based Z notation. Any revisions as a result
of applying OPERATOR can be illustrated graphically and discussed with the client.

All that remains now is to animate the Z specification that has been developed to

81

enable the client to see, this time, the system in action. Animation is the subject of the

next three chapters. Further discussion of OPERATOR is given in chapter 8.

82

REFERENCES IN CHAPTER 4

Sem91. Semmens, L. and Allen, P., Using Yourdon and Z: an approach to formal
specification, Proceedings of the Flﬂ:h Annual Z User Meetmg, Nicholls, J.E., Ed.,
~ Springer-Verlag, London, 1991. :

Ran91. Randell, G., Data Flow Dlagrams and Z, Proceedings of the fith annual Z User
Meeting, Nicholls, J.E., Ed., Springer-Verlag, London, 1991.

Pol93. Polack, F., Whiston, M., and Mander, K., The SAZ Project: Integrating
SSADM and Z, in FME '93 - Industrial Strength Formal Methods, Lecture Notes in
Computer Science, Woodcock, J.C.P and Larson, P.G., Eds., Springer-Verlag,
London, 1993.

Sul93. Sully, P., Modelling the World with Objects, 2nd edmon, Prentice-Hall
Intemat10na1 1993.

Gra9l. Gravell, A., M., What is a good formal specification?, in procéedings of the
Fifth Annual Z User Meeting, Nicholls, J.E., Ed., Springer-Verlag, London, 1991.

Spi92. Spivey, J. M., The Z Notation: A Reference Manual, 2nd Edition, Prentice Hall
International, 1992. '

C0092. Cooper, D., Mardell, J., Meehan, A., Norcliffe, A. and Valentine, S., 4 Z
Readers Course, Shefield Hallam University Pavic Publications in Assn. with the
D.TI, 1992. :

Nor91. Norcliffe, A. and Slater, G., Mathematics of Software Construction, Ellis
Horwood Ltd., 1991.

Nor93. Norcliffe, A., Computer Aided Modelling, in Proceedings of the Eighteenth

Undergraduate Mathematics Teaching Conference, Yardley, P. (Ed.), Shell Centre
Publications, 1993.

83

CHAPTER 5: ANIMATING Z SPECIFICATIONS

MORIARTY. How are you at mathematics?
HARRY SECOMBE. I speak it like a native.
Spike Milligan, The Goon Show.

5.1 Introduction

The previous chapter was devoted to the issues concerning writing Z
specifications but now we turn to those involved in animating them. Here we review
some of the tool support that is currently being offered for Z and identify the need for
tools that enable Z speéiﬁcations to be demonstrated in a way that 2 typical software
system client or user might understand. We diséuss the advantages and limitations of
animation and look specifically at how Z specifications might be animated using

Prolog.

5.2 Computer aided Z.

The importance of tool support for contemporary software engineering has
been discﬁssed in previous chapters. Formal specification is an area ripe for
exploitation in the development of computer based aids. Dedicated document or word
processing systems for the mathematical notations and specification constructs are
needed. The logical nature of the mathematics used urges the development of tools to
automate the laborious process of proof required to formally verify specifications and
to show that they are internally consistent. Tools to check grammar and syntax, the
correctness of specifications, would be of immense benefit. Rapid prototyping-of
specifications, executing or animating specifications, must have a role to play. As

Sommerville [Som92] puts it

"Formal specifications may be automatically processed. Software tools can be
built to assist with their development, understanding and debugging.
Depending on the formal speciﬁéation language used, it may be possible to

animate a formal specification to provide a prototype system."

There are other considerations that are dependent on the specification language
used. The Z notation, for example, requirés that each variable, each item of data, has a
strictly specified type and that types cannot be mixed. Z specifications are structured,
modularised, using schemas in which only specified variables are in scope. Tools to
check for type miss-matches and for variables referred, to but out of scope, will be of

great help to the specifier.

It comes with little surprise, therefore, that there has been and still is a great
deal of activity and interest within this area of tool support for the popular Z notation,
although most developments are still prototypical, very few being commercial, industry

standard products. These are early days.

Most of the tools that are now available take the form of dedicated word
processing systems with intelligent features like checking for correct syntax, gfammar,
variable type and variable scope, thus providing a means of producing printed and
'proof read' specification documents. These tools allow.speciﬁers towork in a word
processing style rather than on paper, and offer various means of indexing elements of
a specification, expanding séhemas’to show hidden or included informatibn, and for
manipulating specifications. Clearly, to be able to show such intelligence as described
above, sﬁch Z processors must be able to parse the notation or require some form of

translation from the notation into a form able to be understood by the tool.

Probably the first example of a Z processor was the FORSITE Evaluation
System [FOR87] which allows users to enter, edit, print and check the syntax and
corréctness of specifications written in Z. The emphasis of the system.is on allowing
the specifier to work on a specification in a printable form rather than using
transformatioﬁs and keywords, thus requiring a multiple font editor, upon which the

system is heavily dependent. fUZZ [Spi88a] is a package offering similar facilities to

85

FORSITE - it allows printing of Z specifications and checks them for compliance with
the Z scope and type rulés - but takes a different approach in that the specification is
not input or presented on screen in printable form. A specification has to be translated
into a form to be processed by the LaTeX text formatting program [Lam86]. Natural
language text can be entered as read but fUZZ defines ASCI keywords, preﬁked by

“\", to express Z constructs and symbols.

Formaliser [For90] is another‘ tool of the same genre. Produced by Logica it
builds on the pioneering tools described above by combining the input of printable
form Z and parsing and printing of the f{UZZ/LaTeX packagé. As well as providing
facilities for editing and viewing, type and scope checking, it also allows interactive
queries of attributes at points throughout a specification, such as displaying all the
variables that can be referred to within a particular expression or showing the type of
an expression. In addition, specification documents are held within a library allowing
- new documents to be created, existing documents to be copied, renamed, removed,
and opened for editing. More than one document can be opened at one time and can be
linked together allowing large specifications to be partitioned into convenient sections
which can be edited and checked separately. We have a prototype Formaliser at

Sheffield Hallam which has been used by staff and students producing excellent results.

A tool that is showing commercial success is CADIZ, prodqced by York
Software Engineering at the University of York [Jor91]. Offering similar facilities to
those described above, it operates within the UNIX environment rather than being PC
based. It has sophisticated diagnostics of errors in Z syntax and a user-friendly
specification browser including on-screen expansion of shcema calculus expressions.
York Software Engineering are developing the tool to include aspects of verification,

or specification proof, taking the tool far beyond the basic word processor level.

86

The Genesis Z Tool [Ash92] is another that, whilst also offering extensive
checking and document handling facilities, moves into the realm of mathematical
verification, allowing users to prove the validity of assertions made in their

specifications via its 'extensible tactical proof system'.

Nevertheless, the tools described above are concerned only with the production
of printable Z specifications that have been automatically checked for errors in Z
syntax and grammar. They do not purport to demonstrate system behaviour. Tools that
automate mathematical proof, such as CADiZ, the Genesis Z Tool and dedicated Z
proof tools such as zedB [Nei91], are invaluable for showing that, for example, a
system state can exist, or that a correct precondition for a change of state has been
specified, or that a system operation does not violate the specified constraints on the
system state. They cannot, however, prove semantic properties of a specification. They

cannot execute a specification to show what the system actually does.

5.3 Animation - advantages and liniitations.

Producing system prototypes has been a significant feature of software
engineering for some time now, and so-called rapid prototyping, where a client is
presented with a working model of a software system in the fastest possible time, is a
popular practice. Whilst the value of a prototype is well understood in traditional
engineering disciplines it is useful to put it in software engineering terms - take Blum's

definition [Blu92], for example:

"A prototype software is a partially complete ﬁmctiohal model of a target
system. Its purpose is to provide a better understanding of the target system's

requirements."

- Prototypes are cheaper than implementations; they need only model a system

and are not encumbered with expensive peripherals. They give the opportunity to ‘test

87

before you buy' and provide a medium for communication between provider and

consumer. Kenmore Braithwaite [Bra90] makes several important points:

"The major assumption underlying the introduction of prototyping is that
software development is an interactive design process. Effective design is
achieved only as a result of “feedback between designer and user... The
prototype is designed with the expectation of change... Prototyping tools play
an important part in automating the early life-cycle phases. They are used to
determine system requirements and answer questions about the behaviour of
the emerging system...One demonstration is better than two volumes of

specifications."

Animation, ih essence, is rapid prototyping applied to formal specification.
Ani;flation refers to the production of a working model of a formal specification that
retains, as far as is possible, the characteristics of mathematical rigour and abstraction.
An animation of a formal specification demonstrates the esseﬁtial features and

behaviour of a system whilst remaining faithful to and consistent with the mathematical

model.

Typically, and until some sort of parsing of formal specifications to produce
computer generated animations is achieved, the production of an animation will require
some form of translation from the mathematical notation to an executable language

without any need, or indeed scope, for subjective understanding. As Dick et al [Dic90]

put it:

"Having invested in a formal specification, it is highly desirable that the
process of interpretation should have a formal basis. Thus, in order that we
can say that an animation is a formal specification, the transformations must

remain faithful to the structure and semantics of the formal notation used"

88

An animation, then, may be thought of as an executable formal specification,
although, by its nature, must be less abstract than a mathematical model can be. If we
ignore the usefulness of a user interface we must still consider concrete items of data,
for example. Hayes and Jones [Hay89] point out other limitations of the animation

approach:

"Many formal constructs are not easily transformed into code, especially non-
deterministic expressions and some deterministic expressions when quantifiers

(v, 3 are used."

Another consequence of using animation to demonstrate formal specifications
is that the developer is likely to be restricted to a subset of a formal notation. After all,
mathematics, free from computatiohal constriction, is boundless in its power of
expression. Hayes and Jones believe that such restrictions are undesirable, and they
clearly are, but they are also unavoidable. So why throw the baby out with the bath

water?
Referring to Braithwaite again:

"Executable specification langudges are the most sophisticated prototyping
tools. They change system development into an interactive process where the
system is specified and the specifications are executed to determine if the
system is complete and correct. Then, based on the experience of using the
prototype, the specifications are réfined and then re-executed. This interactive
process continues until the system is able to perform in a manner that meets

all the user requirements."”

89

In summary, then, (and see Fig. 5.1) animation enables the software developer
to
« validate a formal specification by demonstrating it to a client or user

o reason with a specification with respect to system behaviour

In certain cases, an animation may even be suitable as an implementation.

METHODS INTEGRATION
OR
WRITING METHODS SUCH AS
OPERATOR

validation
consistancy ‘
.pm \ '
ABSTRACT FORMAL SPECIFICATlOHANIMATED SPEClFICATIC@

verification

refinement
proof

(CONCRETE SPECIFICATION (DESIGND

verification) implementation
proof

CODE

Fig. 5.1: Animation as part of a formal software engineering process.

5.4 Animation Techniques for Z.
The basic process of animation is of translating the mathematical specification

into an executable form whilst preserving its structure and the grammar and semantics

90

of the mathematical language. For example, if the mathematical specification describes

the union of two sets then the animation should describe the union of two sets.

In the case of animating Z this usually involves implementing or simulating set
theory, functions, relations, sequences etc., as well as retaining as far as possible
schemas and the schema calculus (for error handling, for example), the constraints on
the system state (data invariants) and the strict data typing of Z. For the purpose of
validation with a client or user it is also desirable to have a user-friendly interface to
the animation and, possibly, other means of demonstration. All the techniques of

animation we have seen have used Spivey [Spi92] as a standard text for Z.

Animation is often a process of straightforward translation into a target
language using a set of pre-defined rules of translation and , possibly, a library of pre-
programmed Z operations. In its most sophisticated form, animation might be carried
out in a systematic way using an 'intelligent' animation tool, or animator. One
interesting altemative approach has been suggested by Sam Valentine [Val92] who has
produced an executable subset of Z, Z—. o

There are many programming languages and environments that are suitable
targets for the purpose of animating Z and especially popular ére the so-called fourth
generation languages that support logicai expressions. Success has been had, for
example, Diller, using Miranda [Dil90], a functional programming language, by
Morrey et al. [Mor90], using Lisp, a predicate based list processing language, and
Love, using SQL forms [Lov93].

Perhaps the greatest interest has been shown in using Prolog as a medium for

animating Z. The achievements of Dick, Cozens and Krause (based on pioneering

work by Ron Knott at the University of Surrey) are worth particular note with their

91

development of a Z-to-Prolog translator, animator and transformation system

[Dick90]. Also see [Kno91].

This widespread interest in Prolog gave us an obvious starting point for

looking at the issues of animation.

- There is good correlation between Z and Prolog, both are based on predicate
logic and are declarative in nature. There are few procedural considerations in Prolog
aﬁd Prolog predicates and clauses have many similarities with schemas in Z. The
domains section of some versions of Prolog, such as Turbo Prolog [Pro86] allow the
construction of named types, while databases are ideal for simulating sets and most

versions support lists (sequences in Z).

'Tal'ce, for example, the simple security system specification, given in 4 Z
Readers Course [Co092]. Members of staff in an organisation are represented by three'
sets of unique identification codes. The members of staff in the organisation's building
are represented by in, those out of the building by out, and the overall staff membership

by users. The state schema is:

___ State

in, out, users : P STAFF_ID

innout=9

inu out = users

In Turbo Prblog the parachuted type and the state variables (along with an

additional variable to be used later for input) are created thus:

92

domains
staff_id = symbol
database
in(staff id)
out (staff id)
users (staff_ id)
input(staff id)

The operation to check a member of staff into the building is specified as:

____ Checkin

AState
staff? : STAFF_ID

staff? e out
in"=inv { staff? }
out' = out \ { staff?}

users'= users

When the precondition, staff? e out, is violated the Checkin operation will fail. A

robust Checkin operation, RCheckin, can be be specified as follows:

RCheckin = (Chéckln A Success) v CheckinError where -
CheckinError = Staffln v NotUser

The success and error schemas being:

Success

result! : REPORT

result! = ok

93

____ Staffin

SState
staff? : STAFF_ID
result! : REPORT

staff? e in
result! = staff_in

NotUser

SState
staff? : STAFF_ID
result! : REPORT

staff? ¢ users
resulf! = not_known

In Turbo Prolog we use the commands assert and retract to add and
remove elements to and from sets, and readln for input. The individual predicates
provide the schema calculus while the clauses by which each predicate is defined

represent the Z text:

rcheckIn :- checkIn, success.
rcheckIn :- checkInError.
checkInError :- staffln.
checkInError :- notUser.

checkIn :- write("enter name"), nl,
readln(X), assert(input(X)), out(X),
assert(in(X)), retract(out(X)),
retract (input (X)).

success :- write("ok"), nl,

staffIn :- input(X), in(X), write("staff in"), nl,
retract (input (X)) .

noutUser :-— input (X), not(users(X)),

write("not known"), nl,
retract (input(X)). .

94

Turbo Prolog databases are used in a similar fashion to represent Z functions:

function' = function ® { x?+» new?} in Z, for example, becomes

retract (function(X, _)),
assert (function (X, New)). in Turbo Prolog.

Sequences are well catered for in Prolog using lists:

sequence : seq TYPE
x:TYPE

x = head(sequence)

in Z, can be modelled in Turbo Prolog, using the list constructor, *, by:

domains
X = symbol

_sequence = x*

predicates)
head of sequence (%, sequence)

clauses
head of sequence(X, [Head | Tail]) :-
X = Head.

So, clearly, Prolog has many features that make it an excelient vehicle for
animating Z, although the version of Prolog used here, Turbo Prolog, is a limited
version of the full standard Prolog and we do not present the more sophisticated
approach of [Kno91], for example. However, Prolog does have drawbacks in that it
can be inefficient -‘in our experience some lengthy animations have beeﬁ ponderously
slow. It is also clear that a deal of effort would be required to produce an animator that
had the desired user-friendly interface to make it practical for demonstration to a client

or user. These drawbacks, and the fact that we felt it more useful to investigate more

95

novel approaches to animation, indicated to us that we might look towards some
existing environment or shell that could provide tool-based support and pre-existing
interface facilities. One possibility that presented itself to us was the expert system

shell, Crystal.

96

REFERENCES IN CHAPTER 5
Som92. Sommerfield, 1., Software Engineering, 4th Edition, Addison-Wesley, 1992.

FORS87. FORSITE Evaluation System, User's Guide, Alvey FORSITE Project, Sept.
1987.

Spi88a. Spivey, J., M., The fUZZ Manual,] M.Spivey Computmg Science
Consultancy, Oxford, 1988

Lam86. Lamport, L., LaTeX: A Document Preparatzon System, Addison-Wesley,
1986.

For90. Formaliser User Guide (Z Specification Release), Version 6.0, Logica
Cambridge Ltd., Nov., 1990.

Jor91. Jordan, D., McDermid, J., A. and Toyn, 1., CADiZ - Computer Aided Design in
Z, proceedings of the Fifth Annual Z User Meetmg, Oxford 1990, Springer-Verlag,
1991.

Ash92. Ashoo, K., The Genesis Z Tool - An Overview, FACS Facts, The Newsletter of
the BCS Formal Aspects of Computing Science SIG, May, 1992.

Nei91. Neilson, D. and Prasad, D., zedB: A proof tool for Z built on B, proceedings of
the Sixth Annual Z User Meeting, University of York, 1991.

Blu92. Blum, B., 1, Rapid Prototyping of Information Management Systems, ACM-
SIGSOFT Software Engineering Notes, Vol. 7, No. 5, Dec., 1992.

Bra90. Bralthwaxte K., S., Applications Development Usmg CASE Tools, Academic
Press Incorporated, 1990

Dic90. Dick, A., Krause, P. and Cozens, J., Computer aided transformation of Z into
Prolog, in Z User Workshop, J.E Nicholls, editor, Workshops in Computing, Springer-
Verlag., 1990.

" Hay89. Hayes, L., J. and Jones, C., B., Specifications are not (Necessarily)
Executable, Software Engineering Journal, Nov., 1989,

Spi92. Spivey, J. M., The Z Notation: A Reference Manual, 2nd Edition, Prentice Hall
International, 1992.

Val91. Valentine, S., Z—, an Executable Subset of Z, in Z User Workshop, York 1991,
Nicholls, J.E., Ed., Springer-Verlag, 1992.

Diloo. Diller, A., Z: An introduction to Formal Methods, John Wiley, 1990.

Mor90. Morrey, L., Siddiqi, J., and Shaw, Rapid Prototyping of Formal Specifications,
Sheffield Hallam University, to be published, 1990.

97

Lov93. Love, M., Animating Z specifications in SOQL*Forms3.0, in Z User Workshop,
London 1992, Bowen, J.P. and Nicholls, J.E., Eds., Workshops in Computing,
Springer-Verlag, 1993.

Kno91. Knott, R., D., Making Discrete Mathematics Executable on a Computer, in
The Mathematical Revolution Inspired by Computing, Johnson, J.H. and Loomes, M.J
(Eds.), The Institute of Mathematics and its Applications Conference Series, New
Series No. 30, Clarendon Press, Oxford, 1991.

Pro86. Turbo Prolog, the Natural Language of Artificial Intellzgence Borland
International Inc., 1986.

Co0092. Cooper, D., Mardell, J., Meehan, A., Norcliffe, A. and Valentine, S., 4 Z

Readers Course, Sheffield Hallam University Pavic Publications in Assn. with the
D.T.I, 1992.

98

CHAPTER 6: ANIMATING Z SPECIFICATIONS - CRYSTAL

Mathcmatics may be defined as the subject
in which we never know what we are talking about,
nor whether what we are talking about is true.
Bertrand Russell, Mysticism and Logic.

6.1 What Crystal has to offer _
Crystal is reasonably well known in artificial intelligence circles and is sold as

an expert system shell by Intelligent Environments Ltd. in Richmond, London [Cry87].

It is a rule-based programming language offering excellent input, output and
menu creation facilities, as well as all the standard features expected of any expert
system shell, such as forward and backward chaining, and reporting on the success or

failure of rules via its Rule Trace system.

A typical rule in Crystal might well be the following (here written at the highest

level before any low-level coding constructs are considered):

Rule works

IF A is true
AND NOT B is true
OR C is true

By refining the subrules, for example, A is true is a subrule, by eventually

involving the low-level constructs of Crystal, the rule is thereby implemented.

The specific advantages that this environment offered as a means of animating

Z were perceived to be as follows, see also [And90, And91]:

e The rule-based nature of Crystal means that lines of Z, in the predicate of a

schema, transform almost one-for-one into rules in Crystal.

The expandable way in which rules are built up in Crystal mirrors very closely the
use of the schema calculus in Z. The developer, using the tool, can faithfully
transform a Z specification starting at the schema level and finishing at the line-by-

line predicate level.

The user interface builder that comes with Crystal, including facilites for creating
menus and display forms, andAinput and output fields, enables the developer to
concentrate his efforts on transforming Z instead of worrying about how to create
a user friendly interface. This is an added bonus given the fact that implementation

issues are positively avoided in formal specifications.

The animation that results can be viewed by the client at different levels. This is
possible because of the folded nature of the rule-based programming in Crystal. At
the highest level a system might be viewed as a menu having several options such
as |

quit

initialise state

save state

load state

print state

test data invariants

operation 1
operation 2

operation n

Any operation chosen by the client can be systematically unfolded to discover the
rules that make it work, thus promoting the vital interaction between client,
developer and system that is necessary for requirements validation. In Crystal this
is feasible because at the highest level the rules are written in English. Only at the
lowest level does English give way to code. What the client sees, therefore, is a

faithful English translation of the developer's Z.

100

6.2 Using Crystal for animation

To illustrate these points a short example is now considered. The following is
part of the Z specification of a very simple security system that might be in operation in
a building to monitor the whereabouts of staff users. The system is taken directly from
A Z Readers Course [C0092], and is identical to the example used in the previous
chapter. As before, the system state consists of three subsets, in, out, and users, of type

PSTAFF_ID, and is represented by the following state schema:

____ State

in, out, users : I* STAFF_ID

inNnout=9g

in v out = users

Amongst other things, and again as before, the system checks people in to the
building. For completeness, we show again how the robust Checkin operation is arrived

at starting with the Checkin operation schema:

____ Checkin

AState .
staff? . STAFF_ID

staff? e out
in'= in v { staff? }
out'= out \ { staff?}

users'= users

101

When the precondition, staff? e out, is violated the Checkin operation will fail. A

robust Checkin operation, RCheckin, can be be specified as follows:

RCheckin= (Checkln A Success) v CheckinError where
CheckinError & Staffin v NotUser

The success and error schemas being:

Success

result! : REPORT

result! = ok

Staffin

=State
staff? . STAFF_ID
result! : REPORT

staff? ein

result! = staff_in

102

___ Notuser

=Stafe
staff? : STAFF_ID
result! : REPORT

staff? ¢ users

result! = not_known

At the highest level the Crystal coding for this Z could be the following:

IF
AND
OR

IF
OR

RCheckIn works
CheckIn works
Success is indicated
CheckInError works

CheckInError works
StaffIn applies
NotUser applies

At the next level down these rules might be expanded as follows:

IF

AND
AND
AND
AND

IF
IF

AND
AND

IF
AND
AND

CheckIn works

staff_id is entered into the system

the staff_ id currently belongs to the set out
the staff id is then removed from the set out
the staff id is then added to the set in

the set users is unchanged

Success is indicated
the result "ok" is output

StaffIn applies

staff_id is entered into the system

the staff id currently belongs to the set in
the result "staff in" is output

NotUser applies
staff id is entered into the system

‘the staff id does not currently belong to the set users

the result "not known" is output

Obviously, the developer has to expand each of these individual rules further -

until they are capable of being executed. But, in principle, this is a fairly

103

straightforward task given the available Crystal commands, and the fact that sets,
functions, relations, sequences, power sets, bags, etc. can all be represented

conveniently as arrays in Crystal.

Before looking at the advantages of this approach to animation it will be useful

to look at another more involved example, where we include some lower level coding.

The example we consider is one of a library system. Note that this is not the

same system as that described in Chapter 4, although the requirements are very similar:
"A library has members of staff and borrowers of books. Staff can also borrow
books. The library records the borrowers of copies of books and keeps a

database of book details. There is a limit to the numbér of books any one

person can borrow."
The library state schema we arrive at is:

_ LibState

staff : 1> PERSON

borrowers : P PERSON -

books_in : 1* COPYID

checked_out : COPYID +» PERSON
book_db : COPYID -+ BOOK

max_books : N

staff n borrowers = &

books_in n dom checked_out =

books_inw dom cheoked_out =dom book_db

ran checked_out c staff\ borrowers

Vp : ran checked_out # checked_out > { p } < max_books

104

In Crystal the state variables staff, borrowers and books_in are represented by

one-dimensional arrays. The variables check_out, and book_db are represented by two-

dimensional arrays.

Arrays are created in Crystai before coding commences. Single

element variables such as max_books are created within the Crystal code when they are

first assigned their values. All variables are global within Crystal within a given

application.

Data variant testing is provided by the Crystal rule Test-1ib-data shown

below:

Test-lib-data

IF Assign
AND
AND
AND
AND
AND
AND
AND

m :=0
No-staff-is-ordinary-borrower-and-vice-versa
Assign m := 0 '
No-copy-can-be-in-the-lib-and-checked-out
Assign m := 0

All-lib-copies—have-book-info
Copies—are-checked-out-to-staff-or-borrowers
No-borrower-can-have-more-than-maxbooks-out

Note that each fine in the state schema predicate has become a line of English

text, each being another Crystal rule. The quantity m is simply an array counter,

assigned the value zero before array searches are carried out.

Each of the lines of English text, i.e. each Crystal rule now has to be expanded.

For example, the No-staff-is-ordinary-borrower-and-vice-versa becomes:

No-staff-is-ordinary-borrower—and-vice-versa
IF Test staff$[m] = “empty”

OR Assign
AND
AND
AND
AND
AND

id$:= staff$[m]

Assign n := 0
Search-for-id-in-borrowers
Test tf = 0

Assignm :=m + 1

Restart Rule

105

The search for id in_borrowers rule is finally expanded in terms of

Crystal code as follows:

Search—for-id-in-borrowers
IF Test borrowers$[n] = id$
AND Assign tf := 1

OR Test borrowers$[n] = "empty"
AND Assign tf := 0

OR Assign n :=n + 1
AND Restart Rule

The above describes an array search whereby if a match is found a test flag, t£,
is set to 1, causing the rule No-staff-is-ordinary-borrower-and-vice~versa to

fail.

The.rules No-copy-can-be-in-the-lib-and-checked-out, All-1lib-

copies-have-book-info, etc. can be similarly expanded and implemented.

The library system operation of checking out a book to a borrower can be

Vspeciﬁed using schema calculus as follows:

RCheckOutBook = CheckOutBook v
‘ NotBomrower v
BookNotin v
TooManyBooks

where the CheckOutBook operation is the following schema:

106

___ CheckOutBook

ALibState

borrower? : PERSON
copy? : COPYID -
report! : REPORT

bormrower? e borrowers U staff

copy? e books_in

checked_out > { borrowér?} < max_books
checked_out' = checked_out w { copy? — borrower? }
books_fn' = books_in \ { copy?}

report! = "book checked out"

staff' = staff

borrowers' = borrowers

book_db'= book_db

max_books'= max_books

And NotBorrower, BookNotin and TooManyBooks are the associated error
schemas, not given here for simplicity. The Crystal animation begins with the following

RCheck-out-book rule;

RCheck-out-book
IF Check-out-book
OR Not-borrower
OR Book-not-in
OR Too—-many-books

Here, each subrule represents a schema and is systematically expanded. check-

out-book, for example, becomes:

107

Check-out-book

IF Get-borower-id
AND Get-copy-id .
AND Borrower-—-id-is-in-staff-or-borrowers
AND Copy-is-in-library
AND Borrower-doesnt-have-too-many-books-out
AND Put-borrower-and-copy-in—-checkedout
AND Delete-copy-id-from-booksin
AND Display Form : .

| BOOK CHECKED OUT |

Note the use of a Crystal Display Form to provide output.

Get-borrower-id is simply another Display Form, this time with an input
field:

Get-borrower-id
IF Display Form

Enter The Following:
The borrower id < id$ >

The expansion of Put-borrower-and-copy-in-checkedout demonstrates the
animation of a postcondition:
Put-borrower-and-copy-in-checkedout

IF Assign n := 0
AND Find-end-of-checkedout

AND Assign checkedout$[n,0] := cid$
AND Assign checkedout$([n,1l] := id$
‘Find-end-of-checked-out
IF Test checkedout$[n,o] = "empty"

OR Assign.n :=n + 1
~AND Restart Rule

In this way, using the approaches described above, the other predicates of
CheckOutBook, the error schemas associated with it, and, eventually, the entire system

specification for the library could be animated.

108

6.3 Use in the classroom

The use of Crystal to animate Z has been used in the teaching of formal
methods on the MSc Engineering Information Technology course at Sheffield Hallam
University. The author has used the approaches outlined above for three years in the
teaching of animation and in tutorial work on animation. Animation, using Crystél,y has
been chosen by groups of students as part if their learning contracts (as discussed in
Chapter 3). This has resulted in successful animations of several systems - a notable
one being the intelligent multi-storey car parking system. Animation of Z specifications

using Crystal has also been the subject of MSc projects, supervised by the author.

6.4 Advantages and limitations
Some of the advantages of using Crystal to animate Z specifications have been

listed previously in 6.1, but it is worth expanding on these:

o We observe that the Crystal is very faithful to the Z. The simulation that is
produced when the Crystal code is executed is indeed an animation of the

specification and not an implementation that is far removed from Z.

o Since the Crystal mirrors the structure of the Z closely it is a relatively easy task for
the developer to begin the process of developing the executable code. The
developer takes the specification schema by schema, line 'by line, to arrive at the

animation.

e There is a high degree of reusability of Crystal rules. Rules representing error
schemas can be referenced again, in the same way as is common in error handling

in Z. In addition, rules representing individual lines of Z are also reusable.

o The high level coding, being written in English, is clearly capable of being

understood by a client even though he may know little or no Z. The English

109

translation of the Z in Crystal does not introduce potentially harmful ambiguities
and via this translation the client can thus interact with the specification and

contribute meaningfully to the process of requirements validation.

o The three-way communication between customer, developer, and system, so vital

for validation plirposes, is thus possible via this approach.

The Crystal approach does have its limitations. A majbr disadvantage of

Crystal is that although at a high level it faithfully represents the Z notation, at the

| lowest level the Crystal code can be somewhat lengthy. For example, the Cryétal
transformétioh of the function override operation could require upwards of 50 lines of
coding. This problem is compounded by the fact that there is no parameter passing in
Crystal, all variables being globél; it is not possible to write a single routine for
function override, for example, and pass the appropriate parameters vto it. The code
must be repeated each time it is required with the new variable names inserted in the

rules.

Another disadvantage is that, in developing an animation, it is not possible to

incorporate the strict data typing feature of the Z notation.

These ‘limitations, of lengthy code, lack of parameter passing, and the inability
‘to incorporate type checking were sufficient to persuade the author that Crystal did not
readily possess the features needed to implement Spivey's Mathematical Tool-kit for Z
[Spi92]. Intelligent Environments assured us that interfac';es to Crystal written in C
could be produced to surmount the parameter passing problem - and therefore to
implement a library of Z operations. However, in the end, it was decided to turn to the
more sophisticated Windows-based environment, Kappa PC, which offered excellent
interface facilities as well as parameter passing and therefore the possibility of

implementing the Mathematical Tool-kit of Z.

110

REFERENCES IN CHAPTER 6

Cry87. Crystal: The Expert System Builder, Users Guide, Intelligent Environments
Ltd., Richmond, London, 1987.

And90. Andrews, S., J. and Norcliffe, A., 4 CASE Tool for Demonstrating Z
Specifications, IEE Colloquium Digest No. 1990/058, April, 1990.

And91. Andrews, S., J. and Norcliffe, A., An Expert System CASE Tool for Simulating
Z Specifications, Polymodel 13 Conference Proceedings, 1991.

C0092. Cooper, D., Mardell, J., Meehan, A., Norcliffe, A. and Valentine, S., 4 Z
Readers Course, Sheffield Hallam University Pavic Publications in Assn. with the
D.T.I, 1992.

Spi92. Spivey, J. M., The Z Notation: A Reference Manual, 2nd Edition, Prentlce Hall
International, 1992.

111

CHAPTER 7: ANIMATING Z SPECIFICATIONS - ZAPPA

Just like a penguin in bondage, boing!
Lyric by Frank Zappa, Artiste (deceased).

7.1 Introduction.

In chapter 6 we described an approach to animation using the expert system
shell Crystal. One of .the disadvantages of Crystal as an animation medium was that it
was not possible to build a library of functions to represent the Mathematical Tool-kit
of Z - the Tool-kit as given by Spivey [Spi92] - due to the lack of parameter passing in
Crystal. Whilst not being a necessity, such a library is desirable if serious animation
work is to be carried out, since such a library would considerabiy reduce the amount of

code required to animate a Z specification.

One particular advantage of Crystal, however, was that a user-friendly interface
was easy to create. A user-friendly interface to an animation was deemed to be an

important feature, and its ease of creation is obviously of concern to the developer.

Ideally, we wished to combine a library of Z operations with an excellent user
interface, and}we felt that this might be taken further by providing the developer with
an interface for the purpose of building an animation in a systematic fashion. In
addition, if the Mathematical Tool-kit of Z were to be implemented then, ideally, type
and syntax checking would have to be provided. Given that the construction of
animation tools had been identified as a key issue in the demonstration of Z

specifications, the idea of building an-animator CASE tool began to take shape.

What was needed was an environment that provided excellent interfacing
facilities, perhaps Windows-based, with a logic-based programming language whereby

Z's Mathematical Tool-kit might be implemented.

At the time this need was identified, the Kappa-PC environment [Kap90] had
just been acquired by Shefﬁeld Hallam University (for the Schools of EIT, Engineeriﬁg
and Computer Management Sciences). Upon inspection and the advice of experienced
users it was decided to investigate the possibility of constructing an animator using

- Kappa-PC.

In this chapter we therefore describe the features of Kappa-PC that we felt to
be important for the creation of an animator and give an overview of the prototype
tool, Zappa, that was eventually created. We then describe the use of the tool with the
aid of a sifnple example before looking in detail at how the implementation of Z data
structures (and, consequently, the Z Tool-kit library) was achieved. We go on to‘
explain how Zappa was used by students and conclude by making an evaluation of the

tool.

7.2 What Kappa has to offer.
Kappa-PC is a knowledge-based systems builder, for the mouse driven
Windows environment, produced by InteliCorp Inc. It has several features that

indicated that it might be a suitable vehicle for the development of an animation tool:

o It supports its own logic-based programming language supporting parameter
passing, KAL (Kappa Applications Language), that offered the possibility of

creating a Z operation library.

o Itis an object oriented environment in which objects are easily created, given
~ properties, manipulated and examined. Z structures such as schemas and state

variables might be conveniently viewed as objects.

¢ Multiple session windows allow systems to be subdivided using separate interfaces.

Thus it would be possible to have separate session windows for an animator and an

113

animation. In fact, in Kappa-PC it is possible to create one application that can

then be used to create another.

« Buttons can be created within session windows to help provide a user friendly

interface.

 There are sophisticated Windows-based interface features such as pop-up menus
for single and multiple selection, for selecting a basic type from a list of basic types,
for example, and there are various other forms of input and output that might

facilitate the animation-of operation schemas or investigations of the system state.
 There is also a range of editing facilities and an error tracing mechanism.

| 7.3 An Overview of Zappa.

The first thing to note is that Zappa can only animate specifications which
conform to the conventions of procedural systems as given by Spivey [Spi92]. The
specifications also have to be deterministic with all schema output variables,
preconditions and postconditions given explicit definitions. After-state variables and
output variables must appear on the left hand side of predicates that define their values.

The Z written so far in this thesis has been writen in this way.

Zappa uses two Kappa-PC session windows. The first is the ANIMATOR
screen which the developer uses to construct animations. The second is the
ANIMATION screen, in which the interface to the animation is progressively formed.
It is the intention of the tool that a would be client or user would use the
ANIMATION screen to investigate essential features of the system that has been
animated. The ANIMATION screen corresponds well with a typical animation menu

screen created using Crystal for animation.

114

Kappa-PC's Object Browser gives, in essence, a third screen - showing an
overview of the animated specification, displaying the names of schemas and the

variables associated with them.

A fundamental difference between Zappa and the Crystal approach, however, is
the idea of an animator. By pressing the various buttons of the ANIMATOR screen the
developer accesses the features of the tool that aid in the creation of an animation. For
example, there are buttons that access features for parachutiﬁg basic types into an
animation and for creating state variables and schemas. Buttons are also provided for
switching between the three screens. A complete list of ANIMATOR screen buttons is
given in Fig. 7.1. A list of buttons that are always present in the ANIMATION screen

(whether a specification animation is loaded or not) is given in Fig. 7.2.
Other key features of the tool include:

e A systematic and robust approach - the system will not allow the developer to
create an operation schema until the state schema has been created, for
example.

o The use of templates for the animation of schema predicates.

o Syntax and type checking.

o The ability to save and load animations.

115

OVERVIEW

KTOOLS

Load Spec

QUIT

Create State Schema Box
Make Free Type*
Create State Variable
Create Initial State
Create Output Variable
Create Operation Schema
Delete State

Del State Var

Delete Init

Delete Output

Delete Op

Delete ROp

ANIMATION

NEW

Save Spec

Show Variable

Parachute Type

Make Schema Type*

Create
Create
Create
Create
Delete
Delete
Delete
Delete

Delete

Data Invariant

Input Variable
Local/Dummy Variable
Robust Op Schema
Type |

DI

Input

Local

Error

*Not yet implemented.

Fig. 7.1 ANIMATOR screen buttons.

overview
animator

ktools

show variable

Fig. 7.2:

Permanent ANIMATION screen buttons

116

7.4 Using Zappa - an example.
To see the tool in action and to demonstrate many of its features we shall take

the example of animating ‘the banking system given in A Z Readers Course [C0092].

The specification models accounts with overdraft facilities and is essentially the
one used in chapter 4. We shall consider the animation of the state schema, an initial
state (that of a bank with no accounts) and one robust operation, the operation to open

an account.

The state schema Account, is given below:

[ACC_NOJ

____ Account

balance : ACC_NO +» Z
od_limit : ACC_NO + Z

dom balance = dom od_limit ‘
V x : dom balance e balance x > od_limif x
Vv x : dom od_limit e od_limit x < 0

The first task is to 4parachute the basic type ACC_NO into the animation. This is
achieved by pressing the Parachute Type button on the ANIMATOR screen. The
user is then prompted to enter the name of the type. Typing errors are corrected using
the usual Backspace and arrow keys. Once entered, Zappa will tell the user that the

type has been parachuted into the animation.

117

At this stage the user could check that ACC_NO had been parachuted into the
animation by looking at the OVERVIEW. ACC_NO would be connected to the word
ParaTypes in the OVERVIEW screen.

Next, the state schema, Account, is created. In Zappa, state schemas are created
in three stages; the schema box, the state variables and the data invariant. The schema
box is created by clicking on Create state Schema Box and entering the state
schema name. 'fhe state variables are then created individually via the Create State
Variable button. balance is entered as the first state variable and a pop-up menu
appears, listing possible Z data structures such as tuple, function, sequence, etc. In this

case the function option is selected.

Another pop-up menu is then used to select the form of the function from fhe
list of forms suppoﬁed by Zappa (a list of Z data structures currently supported by
Zappa is given in figure 7.3). In this case A » B is selected. A third menu aﬁpears, this
time listing parachuted types along with Z, N and N, , prompting the user to select the
type for A. In this case ACC_NO is selected. A fourth menu prompts for the type for B,
in this case Z. Zzippa will thén tell the user that balance has been created, givi_ng its

declaration. The function od_limit is created similarly.

Again, the OVERVIEW screen could be consulted to show that balance and

" od_limit are associated with the state schema Account.
Note that when a function is created by the user, Zappa creates an algorithm to

animate the function, giving it the property of functionality. This allows the function to

be used in the form f(x) in animated predicates to provide output from the function.

118

A FA
AxB F (AxB)
AxBxC F (AxBxC)
Ax(BxC) F (Ax(BxC))
(AxB)xC F ((AxB)xC)
seq B A+ B
seq (BxC) A + (BxC)

(AxB) » C

Figure 7.3: Z data structures currently supported by Zappa.

The next stage is to create the data invariant using a Zappa template. The
Create Data Invariant button is clicked on and Zappa instructs the user how to
proceed. A small window called KTOOLS appears (this is part of Kappa-PC). The
user clicks on Function in the KTOOLS window, drags the arrow pointer down the
pop-up menu that appéars, to highlight £dit, and releases the mouse button. An Edit
Function menu appears (again, part of Kappa-PC) and the user clicks on DIcheck
(standing for Da;a Invariant Check). A template (of KAL code) for the data invariant

is displayed for the user to edit:

{

If NULL .

Then zmessage("data invariant ok")
Else zmessage("data invariant error");

zend () ;

}i:

~ The user must now translate the data invariant of the state schema, Account,
from Z to Zappa's Mathematical Tool-kit equivalent, and enter it where the NULL is in
the template. The user clicks on the template, just after the NULL to position the

flashing text editor cursor, and erases NULL using the backspace key.

119

The first predicate of the data invariant of Account is

dom balance = dom od_fimit

In Zappa all Z toolkit functions begin with the letter Z and, as far as is possible
conform to a direct or natural language translation of the Z notation. For example, dom

in Z translates simply to zdom in Zappa.

In-fi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>