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1.0 Abstract

Pesticides are widely used in agriculture to control weeds, pests and diseases. 

Successful control is dependent on the compound reaching the target site within 

the organism after spray or soil application. This is influenced by a range of 

physiological and environmental factors. One such factor is uptake into foliar 

tissue and roots and subsequent movement through the plant. Uptake and 

translocation (and metabolism) can affect the speed and persistence of action, 

crop selectivity and weed spectrum, thus understanding these issues is of great 

importance.

Conventional methods for determining uptake and movement of herbicides and 

pesticides include autoradiography, liquid scintillation and chromatographic 

techniques such as HPLC. Autoradiography using radiolabelled compounds 

provides the best indication of a compound’s movement within the plant system 

which is an established technique but relies on radiochemical synthesis. The cost 

and time taken means that only a relatively few agrochemicals can be studied in 

this way.

MALDI is a highly adaptable soft ionisation technique that was established in the 

late 1980's through the developmental research of Tanaka and Hillenkamp. The 

versatility of MALDI-MS has been extended in recent years with the advent of 

protein profiling and imaging directly from the surface of thin biological tissue 

sections. Research by Caprioli et al has resulted in the successful profiling and 

imaging of proteins from thin sections of healthy mouse brain and mouse brain 

containing tumor and the profiling of proteins from a neurotoxin induced rat model

6



of Parkinson's disease. Recently the imaging technique has been further 

developed by research groups to include the detection and imaging of small 

organic molecules on the surface of porcine epidermal tissue and the surface of 

rodent brain tissue. In preliminary studies undertaken to support the grant 

application for this project the detection and imaging of compounds on the surface 

of a plant leaf or inside a plant stem using MALDI-MS was demonstrated.

In this project the technique of imaging matrix assisted laser desorption ionisation 

mass spectrometry has been used to examine the uptake and distribution of a 

range of compounds of agrochemical interest into growing plants. The 

agrochemicals of interest are azoxystrobin, mesotrione, fluazifop-p butyl and 

nicosulfuron. Azoxystrobin is a broad spectrum fungicide which inhibits 

mitochondrial respiration in fungi; the compound is absorbed through the roots and 

translocated in the xylem. Mesotrione is a selective phloem mobile herbicide 

which inhibits HPPD, an enzyme involved in carotene synthesis and results in 

bleaching of the leaves. Fluazifop-p butyl is absorbed as its ester, which is quickly 

hydrolysised to its carboxylic acid (fluazifop acid) that is mobile in the xylem and 

the phloem. Fluazifop acid works as a fatty acid synthesis inhibitor, by inhibition of 

acetyl CoA carboxylase (ACCase). Nicosulfuron is both xylem- and phloem- 

mobile which inhibits branched chain amino acid synthesis by means of the 

acetolactate synthase (ALS) enzyme.

MALDI-MS images of mesotrione in tissue underlying the waxy cuticle layer 

following removal using a tape stripping method have been generated. MALDI-MS 

images have been generated from azoxystrobin following uptake via the roots in 

soya and sunflower plants. Nicosulfuron translocation following uptake via the



roots and foliar application has been determined in sunflowers and a phase I 

metabolite has been identified 48 hours following uptake via the roots and 24 

hours following foliar application using MALDI-MSI. Nicosulfuron and azoxystrobin 

translocation has been determined in the same plant following application of the 

compounds to the plant stem. The methods developed were used to determine 

the extent of translocation of four sulfonylurea herbicides 24 hours following foliar 

application. Additionally, a preliminary method was assessed to determine 

whether MALDI-MSI can be used to assess translocation of agrochemicals.
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Chapter One: Techniques for the Determination of 

Agrochemicals Distribution in Plants

9



1.1 Introduction

In order for effective weed management with herbicides and fungicides several 

factors need to be considered.

• Chemical application and placement 

© Chemical uptake

© Chemical translocation (movement within the plant)

© Chemical metabolism (breakdown within the plant)

© Chemical toxicity or activity

The techniques that are of interest are those that are used for the detection of 

chemical uptake and translocation within the plant. The uptake of chemicals is 

dependent on the chemical application methodology, which in turn is related to the 

physiochemical properties of the chemical because several barriers have to be 

overcome before translocation and metabolism can occur. The two major ways in 

which agrochemicals are applied are via spraying of leaf surfaces resulting in foliar 

absorption or uptake via the roots from soil application and subsequent 

translocation in the plant transport systems. Herbicides are classed into two 

groups selective and non-selective were selective herbicides are active against 

specific species and non-selective which kill all plant material1. The applications of 

these various herbicides depends on the desired outcome, a non selective 

herbicide can be applied to the soil in areas which require clearing such as foot 

paths or before planting crops. Foliar applied selective herbicides are useful in 

post emergence weed control because large areas can be sprayed quickly without 

detrimental effects to the crop. Another benefit of foliar applied selective
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herbicides is treatment of established perennial weeds because they are 

translocated around the plant preventing re-growth from roots or underground 

stems2.

Fig. 1 shows a horizontal cross sectional representation of a plant stem. Transport 

systems in plants are comprised of two networks, the xylem and the phloem. The 

xylem is made up of dead cells, which can transport water and certain nutrients 

due to the capillary effect. The phloem is composed of living cells which move 

amino acids and sugars in both directions, up and down the plant3.

Epidermis 
(dermal tissue)

Cortex 1 -I Ground
Pith J tissues

x y,em \V ascu la r 
Phloem | tissues

Vascular
cambium

Fig. 1 Horizontal cross sectional representation of a plant stem3.

The uptake, translocation and metabolism of agrochemicals can affect the speed 

and persistence of action, crop selectivity and weed spectrum4. For these reasons 

agrochemical companies require detection techniques to assess the uptake of 

compounds in the early stages of development.

Conventional methods for determining uptake and movement of herbicides and 

pesticides include autoradiography, liquid scintillation and chromatographic

11



techniques such as HPLC. Foliar uptake can be measured by removing the 

surface residue with solvent and quantifying it or extracting the compound from the 

leaf itself for analysis. This can be achieved by HPLC or scintillation counting 5. 

Translocation is usually determined by autoradiography using radiolabelled 

compounds. The same technique can be used to study root uptake by the use of 

a 14C labeled compound in the nutrient solution of plants grown in hydroponics5,6,7. 

These are established techniques but rely on radiochemical synthesis. HPLC can 

be used but it depends on the ease with which the compound can be analysed 

and is a destructive method. It would be of extreme benefit to researchers if an 

analytical technique could be employed in the early stages of agrochemical 

development that enabled the detection of the movement into leaves and roots 

and its subsequent translocation.

1.2 Methods for detecting translocation

1.2.1 Fluorescence microscopy

Confocal laser scanning microscopy (CLSM) employs an Ar/Kr laser, in order to 

excite fluorescent compounds in vivo so they can be visualised while migrating 

though sample tissue. The technique has recently been used for visualising 

stomatal infiltration of surfactant into leaves, the wax layer of apple, phenolic 

compounds in plant tissues, and fluorescent dyes in pepper fruit cuticle17. CLSM 

is able to determine the distribution of fluorescent compounds in relatively thick 

samples (2mm excised segment of petiole and epidermal cells were peeled off the 

mesophyll and lower epidermis tissue) to a very high degree of lateral and axial 

resolution8.
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In a study performed by Zhiqian and Gaskin8 two fluorescent compounds were 

used, Oregon Green 488 (2, 7-difluorofluorescein, Oregon Green here after, used 

as sodium salt) and Rhodamine B (A/-[9-(2-carboxyphenyl)-6-(diethylamino)-3H- 

xanthen-3-yldene]-A/-ethyl-ethanaminium chloride), to assess translocation 

pathways through plant tissue. Whilst the compounds have similar molecular 

masses and polarities to pesticides, such compounds are expected to diffuse into 

plant transport systems the same way as the comparable xenobiotic. The structure 

of these compounds can be seen in Fig. 2.

The results obtained demonstrated that the absorption of Oregon Green 

(hydrophilic) into bean leaves was a lengthy process, the uptake being only 4% 2 

hours after application and only 6.5% after 4 hours. Rhodamine B, a moderately 

lipophilic compound had a much faster absorption rate with the rate of absorption 

being, 10% after 2 hours and 15% after 4 hours after application.

N(C2H5)2 n +

COOHCOOH c r

Oregon Green 488 Rhodamine B

Fig. 2 Chemical structures of Oregon Green and Rhodamine B.
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Fig. 3 Distribution of (A) Oregon Green and (B) Rhodamine B within the cuticle of bean 

leaves 1 hour after application onto the leaf surface. Both images are cross sections. Bar = 

20pm .8

Fig. 4 Distribution of Oregon Green in bean leaves 2 hours after application: (A) Cross 

section of the treated area. (B) Horizontal section (10pm below the leaf surface.) (C) 

Horizontal section (40pm below the leaf of the leaf). (D) Horizontal section (40pm below the 

surface of an untreated leaf.) Bar = 20pm .8

Fig. 5 Distribution of Rhodamine B in bean leaves 2 hour after application: (A) 

cross section of the treated area. (B) Horizontal section (10pm below the surface.) (C)
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Horizontal section (40|jm below the surface). (D) Horizontal section (40|jm below the surface 

of an untreated leaf.) Bar = 20|jm.8

Fig. 4 (A-C) show the distribution of Oregon Green 2 hours after application in 

bean leaves. Fig. 4 A shows a cross section of the treated area, Fig. 4 B shows a 

horizontal section taken 10pm below the leaf surface and Fig. 4 C a section taken 

40pm below the leaf surface. Fig. 4 D is the equivalent section taken 40pm below 

the leaf surface from an untreated control. Fig. 4A shows Oregon Green with 

strong fluorescence in the epidermal cell wall but also in the cytoplasm of the 

epidermal cells (Fig. 4A upper arrows). This is evidence that this hydrophilic 

compound is able to diffuse through the plasma membrane as well as the cuticle. 

No fluorescence was observed in the vacuole of the epidermal cells but a 

considerable amount was observed in the mesophyll cells (4A lower arrow). The 

image shown in Fig. 4B of a horizontal-section 10pm below the leaf surface, 

confirmed the presence of Oregon Green in the cell walls and the cytoplasm of the 

epidermal cells but not in the vacuole. Fig. 4C, a section of the mesophyll tissue 

(40pm below the leaf surface), demonstrates that the dye was present in the cell 

walls and cytoplasm of the palisade cells 2 hours after application. The image 

shown in Fig. 4D is from a section through an untreated leaf as a control and 

shows no interference from endogenous compounds.

The image in Fig. 5A-C shows Rhodamine B 2 hours after application in a cross 

section sample (5A) of the treated area and horizontal sections taken at 10pm (5B) 

and 40pm (5C) below the treated leaf surface and a control section from an 

untreated leaf 40pm below the leaf surface (5D). The image in Fig. 5A shows 

Rhodamine B in the vacuole of the epidermal cells in a significant concentration.
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This suggests that moderately lipophilic compounds can diffuse readily across the 

tonoplast and the plasma membrane of the epidermal cells, unlike Oregon Green. 

The horizontal section (10pm below the surface of the leave) shown in Fig. 5B is 

evidence of the presence of Rhodamine B in the vacuole because strong 

fluorescence is observed here. Fig. 5C shows no evidence of Rhodamine B the 

fluorescence observed being that of chlorophyll autofluorescence. This is 

confirmed by a control untreated leaf (Fig. 5D) cut to the same depth.

A B

phloem

Fig. 6 Distribution of the fluorescent dyes in the petiole of bean leaves 2 hours after 

application (A) cross section of a leaf petiole after treatment by Oregon Green. (B) Cross 

section of a leaf petiole Rhodamine B. Bar = 100pm .8

Phloem translocation was assessed by sectioning the petiole region of treated 

leaves. In Fig. 6A strong fluorescence can be observed in the phloem and weak 

fluorescence in the xylem. The presence of Rhodamine B in the xylem may be 

due to lateral diffusion from the phloem. There is no evidence for the translocation 

of Rhodamine B in Fig. 6B the fluorescence observed is again due to the 

autofluorescence of chlorophyll.
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These data show that CFSM can yield informative results on the localisation of the 

chemicals inside the leaf tissues such as the diffusion pathways and also show the 

sub-cellular distribution after foliar application. The technique is limited however 

as the distribution of the agrochemicals within the whole plant system cannot be 

studied. Another major limitation is that actual agrochemical compounds cannot 

be excited by the laser since only compounds which exhibit fluorescence can be 

observed.

1.2.2 Autoradiography

Autoradiography is a method used to detect the abundance of radioisotopes in a 

sample. The technique originates from the work of Niepce de St. Victor in 1867 

who observed the blacking of silver chloride and silver halide emulsions by 

uranium nitrate and uranium tartrate9.

Autoradiography can be performed on samples, plants and whole animals. The 

process of obtaining results in conventional autoradiography involves exposing a 

photosensitive film to the sample for a period of time. The photosensitive layer is 

made up of silver halide grains emulsified within gelatin. The size of the grains 

defines the sensitivity and the resolution detected.

Autoradiography has been used to show the distribution of a number of 

agrochemicals in a range of plant species and is currently the established 

methodology used to visualize the distribution of pesticides within plant systems.

A study conducted by Bolsinger et a l10 used autoradiography to assess the uptake 

of pymetrozine, a highly selective insecticide against plant-sucking insects (such
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as aphids). The compound provokes a feeding stop and results in death by 

starvation. The compound achieves best results when ingested by the pest 

organisms, rather than direct topical contact. Effective distribution at the feeding 

sites creates the best efficiency10. Autoradiography provided results showing good 

mobility of the compound around the plants transport system, the pesticide can 

also be seen moving within the leaf.

*. *  s

Fig. 7 Autoradiographs of sugar beet leaves (a) 4 hours (b) three days and (c) six days after 

[14C] pymetrozine treatment of one leaf disc (arrow) per p lan t.10

Fig. 7 a-c shows autoradiography data of 14C labelled pymetrozine on sugar beet 

leaves 4 hours (a), 72 hours (b) and 144 (c) hours after application. The circle 

observed in the leaf is where the leaf was inoculated. The grey regions observed 

in the images represent the abundance of radioisotope 14C pymetrozine in that 

area. The data in Fig. 7 a, showing the compound 4 hours after application, show

18



that the compound has already started to move into the main veins and in Fig. 7 b 

and c it can be seen moving into the petiole and into the younger untreated leaves. 

The results also show an increased density of compound at the apical points (point 

at which growth occurs) in both treated leaves and untreated leaves.

This distribution pattern was also observed in tomato plants after stem application 

in the same study.

Fig. 8 Autoradiographs of a tomato plant 40 hours after application of [14C] pymetrozine to 

the internode indicated by the letter A (right side of plate c). Plates (a-d) were exposed for 2 

hours, imaging plate (e) was exposed to the part below the application site for 18 hours 

(aluminium foil present as shielding to prevent overexposure).10

Fig. 8 shows the translocation of 14C pymetrozine around a whole tomato plant 40 

hours after application at point A (right side of plate c). The radiolabelled

I

aluminium foil
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compound was applied at point A in the diagram and can be seen to relocate 

around the plant to untreated areas and again to the apical points and down 

towards the roots. These data gave evidence for transport in both the xylem and in 

the phloem due to the bidirectional movement of the compound.

Autoradiography can also be used to assess the efficiency of additives used to 

enhance the uptake, absorption and translocation of agrochemicals.

100

80

60

o. 40

20

□ i d
□ 7d

I.-. Iv y

Id
1

■

without Hasten GPC100 Amulsol LI700 
Additive

Fig. 9 Uptake % (y axis) into hop leaves of [ C] imidacloprid in combination with various

additives (x axis) after 2 time points, 1 day (grey), and 7 days (white). 11

The bar graph in Fig. 9 shows the results for the uptake of 14C radiolabelled 

imidacloprid with various additives 1 day and 7 days after application using liquid 

scintillation counting 11. With the addition of the additives the % uptake has been 

increased significantly.
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(a)
(a)

(b)

Fig. 10 (a) Translocation of 14C imidacloprid without additive, (b) Translocation of 14C 

imidacloprid with LI 7 0 0 .11

Fig. 10 (a) shows the distribution of 14C imidacloprid on the leaf without the 

addition of an additive. Fig.10 (b) shows the distribution of 14C imidacloprid on the 

leaf with the addition of an additive (LI 700).

Autoradiography is currently the best method for assessing translocation of 

agrochemicals as it has been shown to generate an excellent visual representation 

of the abundance of the radiolabelled compound distributed around the plant 

tissue at any desired time point. This tissue can be subject to further analysis to 

obtain quantification of the compound using scintillation counting.

Drawbacks to autoradiography are that the radiosynthesis of compounds is 

expensive and time consuming and thus is not very suitable for compounds in the 

early stages of development. Also the results do not give any differentiation 

between the distribution of metabolites and the parent compound since images
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generated show the distribution of all compounds that contain the radioisotope. In 

addition there is a wish in the agrochemical industry to move away from the safety 

issues involved in handling radiolabelled materials.

1.2.3 Secondary ion mass spectrometry (SIMS)

SIMS analyzes the secondary ions emitted when a sample is irradiated with a 

primary ion beam. Static SIMS uses a primary ion beam of very low current 

density (low-dose particle bombardment) which is an extremely sensitive 

technique for analysing the top few molecular layers of a sample with little damage 

to molecules 12.

SIMS has been used to examine the role of boron in plant physiology 13. The 

primary functions of boron are unclear although some hypothesises propose that it 

is linked to plant cell wall stabilisation by polysaccharide cross-linking, membrane 

integrity, phenol metabolism and others 13. Boron has no radioactive isotopes of 

practical use thus preventing the use of autoradiographic imaging. SIMS has 

already been used for boron mapping in animal tissues following ion mass neutron 

capture therapy for cancer14.

A study reported by Derue et a l 13 used SIMS analysis of flax seedlings (Linum 

usitatisimum) enriched with boron, to generate images of boron and calcium 

distribution at a cellular level. The seedlings were allowed to germinate before 

being placed in a hydroponics system. Control samples were prepared by adding 

H3BO3 to the growth solution 2 days before analysis. The samples were prepared 

using a vapour phase technique developed in-house, this ensured there was 

known boron relocation which was not too extensive. Once the samples were
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completely dehydrated they were mounted in resin and sliced using a diamond 

knife to a thickness of 2 pm. The samples were analysed using 0 2+ as the primary 

ion beam, images (256 x 256 pixels) were edited in grey scale. The high spatial- 

resolution images generated can be seen in Fig. 11 (A-F).

Root ,#B Hypocotyl 1#B

Hypocotyl n B

Hypocotyl 44Ca

Fig. 11 Images of the distribution of 10B+, 11B+(A-D) and 40Ca+ (E and F) in root (A, C and E) 

and hypocotyl (B, D and F) section of flax seedlings.13

Fig. 11 shows the distribution of 10B+, 11-B+ and 40Ca+ in the root (A, C and E) and 

the hypocotyl sections of the boron enriched control flax seedlings (B, D and F). 

The two boron isotopes are normalised to 12C+, the non-normalized image of 40Ca+ 

shows the details of the anatomical structure of the tissues. Fig. 11 A-F shows 

that the boron is mainly present in the cell-contours including the cell wall. Boron 

can also be seen in the resin surrounding the tissue. SIMS clearly has the



potential to analysis agrochemicals at a cellular level but not on a large scale. 

Other drawbacks are that the technique is very destructive and samples can only 

be analysed once due to the damage caused by the primary ion beam on the 

surface of the samples and the instrumentation is very expensive.

1.3 Current applications of MALDI imaging

1.3.1 Introduction

MALDI is a highly adaptable soft ionisation technique that was established in the 

late 1980's through the developmental research of Tanaka 15 and Hillenkamp 16. 

The versatility of MALDI-MS has been extended in recent years with the advent of 

protein profiling and imaging directly from the surface of thin biological tissue 

sections 17’18-19. Research by Caprioli et al 19 has resulted in the successful 

profiling and imaging of proteins from thin sections of healthy mouse brain and 

mouse brain containing tumor and the profiling of proteins from a neurotoxin 

induced rat model of Parkinson's disease8. Recently the imaging technique has 

been further developed by research groups to include the detection and imaging of 

small organic molecules on the surface of porcine epidermal tissue 20 and the 

surface of rodent brain tissue 21.

Matrix assisted laser desorption ionisation imaging (MALDI-MSI) was first 

developed by the Caprioli group in 1997 22 This technique has been used to 

image the distribution of a wide range of compounds, including proteins, lipids, 

pharmaceuticals, metabolites and other small molecules 23,24. The first

demonstration of the use of MALDI to directly study pharmaceutical compounds in 

animal tissue was performed by Troendle e ta P .  In this work the anti cancer drug
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paclitaxel was detected in a rat liver incubated in a solution containing paclitaxel 

and also in a dosed xenograft. They also detected the antiphycotic drug siperone 

from spiked sections of rat liver tissue. The results gave rise to the idea that 

MALDI-MSI could provide a powerful investigative tool for pharmaceutical 

research and development.

The Caprioli group in collaboration with Schering-Plough 21 reported the 

distribution of anti-tumour drug dosed mouse tumour tissue and rat brains. By 

using selected reaction monitoring, spectral interference from matrix and 

endogenous metabolites (which limits the sensitivity of MALDI-TOF MS for drug 

analysis) was avoided. Images were generated from the product ions showing the 

distribution of the anti tumour drugs in both tumour and brain tissue. Imaging 

MALDI-MSI has progressed to the stage when it offers a complementary 

technology to autoradiography for imaging the distribution of xenobiotic 

compounds. Additional functionality is obtained since separate images for the 

distribution of the parent compounds and its metabolites in whole body tissue 

sections may be generated26.

Time of flight (TOF) mass analysers are particularly well suited to MALDI due to 

the pulsed nature of laser desorption as well as their high mass range. TOF  

analysers separate ions while they pass though a field free drift region, as the ions 

are accelerated by the applied voltage at the focusing lens the molecules acquire 

varying velocities, smaller ions travel faster and strike the detector before larger 

ions 12 Currently MALDI imaging is limited by laser spot size and fluence. As the 

laser size decreases so does the sensitivity because the area of desorbed ions is
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decreased. The energy of the laser may be increased meaning more ions are 

desorbed but this can also lead to high degrees of fragmentation and a significant 

loss in sensitivity 27.

1.3.2 Lasers for SVIALDI-IV1SI

A study published by the mass spectrometry and instrument manufacturer Bruker 

compared nitrogen (N2) lasers with Nd:YAG assessing laser focus for improved 

MALDI performance 28. This study looks beyond the obvious difference in 

wavelength and measures the beam profile at the target surface. Using a Bruker 

Ultraflex II MALDI-TOF instrument with a modified laser setup, allowed N2, 

Nd:YAG (Gaussian) and Nd:YAG structured A or B to be used on the same 

instrument within seconds. The behaviour of the different lasers was assessed on 

the same sample.
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Fig. 12 Optical setup for modulation of the laser profile. A = attenuator, M = modulation,

L1 = lens, O = round aperture, L2 = Lens, T = sample target and L3 = lens 3. The elements in

28green are required only for measuring laser profiles.
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The optics for modulating the beam profile are shown in Fig. 12. The lasers beam 

first pass though the attenuator (A), this adjusts the laser fluence (laser power). 

This is followed by a modulator which shapes the beam profile using interference 

principles. Lens 1 (L1) focuses the modulated beam to an image plane and the 

outer interference structures are cut out using an aperture limiting the boundaries 

of the profile. Lens 2 (L2) focuses the laser onto the target and is used to alter the 

beam from Nd:YAG structured A, B and Gaussian. The beam profiles at the target 

surface were measured by using a CCD camera (seen in green, Fig. 12), the CCD 

camera produced bitmaps of a single laser shot which could be interpreted using 

their in house software.

Fig. 13 Typical profile of nitrogen laser a) view from top, b) 3D view from side, c) beam 

profile of eight consecutive laser shots .28

Fig. 14 Beam profile of a Nd:YAG (Gaussian) laser a) fully focused Nd;YAG (Gaussian) 

approximately 5pm b) defocused Nd;YAG (Gaussian) approximately 45 p m .28
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Fig. 15 Beam profiles of the two structured beams a) Nd:YAG (structured A) approximately 

60 pm b) Nd:YAG (structured B) approximately 45 pm .28

The images generated in Fig. 13 show the laser beam profile of the nitrogen laser 

where the different colours represent different energy, red being the highest 

energy and black zero energy. Fig. 13 a) shows the beam profile from above 

showing that the energy from the beam is dispersed across an area around 100 

pm. Fig. 13 b) shows a 3-D view from the side indicating laser fluence is more 

intense in the centre of the beam. Fig. 13 c) shows replicate shots of the same 

profile.

Fig. 14 shows the beam profiles of the Nd:YAG (Gaussian) (a. fully focused and b. 

defocused). The focused laser in Fig. 14 a) covers an area of approximately 5 

pm2, the defocused laser Fig. 14 b) covers an area of approximately 45 pm2.

Fig. 15 shows the beam profiles of the two structure beams a) is the profile for 

structure A which has a diameter around 60 pm2 and b) shows structure B has a 

diameter of approximately 45 pm2.
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Fig. 16 Direct comparison of all four beam profiles used in these experim ents.28

Fig. 16 shows a direct comparison of all four beam profiles assessed in this study. 

The conclusions drawn from these experiments are that using a structured beam 

profile instead of a Gaussain beam a frequency-tripled Nd:YAG laser shows that 

results are comparable and on occasion can be better than those obtained with a 

nitrogen laser. With the extended life expectance of the Nd:YAG this can make it 

a more suitable laser for imaging applications.

1.3.3 Stigmatic ion optics for high-resolution SVIALDI-iViSi.

A novel approach to MALDI imaging has been reported by the FOM Institute for 

Atomic and Molecular Physics in Amsterdam in conjunction with a number of other 

establishments27. The method of Stigmatic imaging mass spectrometry was 

devised by extensively modifying a Physical electronics TRIFT II triple focusing 

time of flight mass spectrometer equipped with a phosphor screen/CCD. The ions 

are still separated by the varying velocities acquired according to their mass. The 

difference is in the ion optics, the ions desorbed by a laser with a spot size spot of
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s=200nm and the ions retain their original spatial distribution during the time of flight 

separation. These ions are then detected by a position sensitive detector so that 

spatial resolution is independent of the laser spot size. The utilization of the 

stigmatic ion optics results in ion images with a spatial resolution of 4 pm. Whilst 

the spatial resolution achieved in this approach depends on the quality of the ion 

optics and the resolution of the detector (rather than the laser spot size large spot 

size), large spot sizes can be employed to give better' sensitivity and greatly 

increase image acquisition times.

Ron Heeren presented his work with the stigmatic mass microscope at the 17th 

International Mass Spectrometry Conference (IMSC) in August 2006 and 

published a paper in the International Journal of Mass Spectrometry27. The data 

presented demonstrate the potential of the instrument by analysing endogenous 

analytes in mouse, rat and human pituitary glands27. Analysis of mouse or rat 

pituitary glands with a conventional MALDI imaging instrument with a high degree 

of spatial resolution would be difficult due the small nature of the gland (102-103 

pm). The data reported show that the high resolution achievable with the stigmatic 

mass microscope allows localization of neuropeptide distribution within the 

different cell clusters within a single pituitary section.
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Fig. 17 Molecular image of human pituitary by MALDI-IMS (A) optical image of a H&E stained 

section. (B) Total ion count MALDI image in greyscale of section adjacent to the one in the 

optical image. Neuropeptide distribution overlaid on the greyscale total ion count image 

with (C) vasopressin in green (D) oxytocin in blue (E) a-MSH in red. (F) Overlay of 

vasopressin (green) and a-MSH (red), (b) scale bar = 1 m m .27

The data shown in Fig. 17 demonstrate the high resolution achievable with the 

stigmatic ion optic approach with a resolving power of 4 pm and very fast 

acquisition time. One of the drawbacks of this technique is poor mass resolution 

which will affect the image generated from ions when ions with a similar m/z are 

present in the tissue.

31



1.3.4 Desorption electrospray ionisation (DESI) imaging

Another recent development in instrument technology for imaging mass 

spectrometry uses two ionization techniques, electrospray ionization (ESI) and 

desorption ionization (Dl) combined to create desorption electrospray ionization or 

DESI. The method was developed by Graham Cooks group at Purdue University 

and a paper published in Science in 2004 29, DESI uses an electrosprayed solvent 

to examine condensed phase samples at atmospheric pressure and allows direct 

and rapid analysis of surfaces with very little or no sample preparation. A study 

performed by the group from Purdue University in Indianapolis assesses DESI’s 

resolution and application to identify lipids in a rat brain. They assessed the DESI 

image resolution using a printed image of (m* )30.
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Fig. 18 (A) digitally scanned optical image of the m* symbol written on glossy photographic 

paper. Arrows indicate the direction of each scan. (B) Positive ion DESI mass spectrum of 

the basic blue 7 dye from the paper. (C) Positive ion DESI mass spectrum of rhodamine 6G

dye from the paper. (D) Molecular ion image of the m* symbol recorded by DESI 30
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Fig. 19 (A) DESI image at m/z 810 from a 4|jm coronal section of a rat brain tissue. (B) DESI

30image at m/z 225 from the same tissue section.

Fig. 18 shows that the DESI image produced by the protonated masses of basic 

blue and rhodamine 6G overlaid generates an image of the m* which has clearly 

retained the original spatial distribution and is clearly visible.

Fig. 19 A and B are images generated from the rat brain section, showing that 

regions of the brain can be identified. Fig. 19 A is an image generated by a peak 

at m/z 810 corresponding to the deprotonated form of phosphatidyl serine (38:4). 

The signal is found to be most intense in the white matter region of the brain, 

specifically the corpus callosum. Fig. 19 B is an image generated from a peak at 

m/z 225 which is the deprotonated form of myristoleic acid (14:1) and shows the 

compound uniformly distributed across the tissue section.

The benefits of DESI as an imaging technique are that samples can be analysed 

at atmospheric pressure and its ability to ionise lipids and simple sample 

preparation with no need for a matrix. Limitations of DESI include poor sensitivity 

and spatial resolution, as the appropriate amount of liquid must be delivered to the
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surface with sufficient force to liberate analyte from the surface as charged 

droplets to obtain high signal. Redistribution of the analyte on the surface of the 

sample can occur resulting in misrepresentation of the analyte distribution. If the 

solvent and gas flow rates are reduced to prevent this redistribution the sensitivity 

of the technique is compromised31.

1.3.5 Whole body MALDI imaging

Stoeckli et al have reported the use of MALDI-MSI to map the distribution of 

compounds and their metabolites in whole body samples 26. This technology 

would be very beneficial to the drug development industry and contract research 

organisations because there is a lot of interest in the fate of drug metabolites. 

Companies are keen to see results in this area because it can speed up the path 

to clinical trials and hence production and profit. The method of whole body drug 

distribution is traditionally performed by autoradiography techniques. Although this 

method produces very accurate results, information on metabolites is limited and 

radiolabelled compounds in the early stages of development are expensive and 

can be time consuming to produce.

The research of Stoeckli e ta ! 26 has been focused on developing a robust method 

protocol for whole body imaging of rats and mice with results which are 

comparable to autoradiography. Although there are major advantages to 

autoradiography, i.e. standardised methods, high sensitivity and established 

methodology for quantification there are also limitations since the parent 

compound is indistinguishable from metabolites. MALDI imaging poses the
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advantage of acquiring massive amounts of data from the imaged tissue which not 

only include the distribution of the analyte compound but also endogenous 

metabolite data. This allows not only the compound and metabolite distribution 

but the potential to gain information on the organism’s response to drug treatment

i.e. pharmacological data.
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Fig. 20 MALDI MSI sample preparation process for whole-body tissue sections. 26

Fig. 20 shows the sample preparation stages required to produce sections for 

whole body imaging MALDI experiments. The process starts with dosing of the 

animal which is left for the desired time period before it is sacrificed. The samples 

were prepared by rapidly freezing the sacrificed animals by immersion into hexane 

in a dry ice bath (-75 QC) then immersing the shaved animal into a 2% semi liquid 

gel of sodium carboxymethylcellulose (CMC). The animal is then sectioned 

longitudinally on a cryostat capable of sectioning whole animals. This procedure 

was optimised since speed is a crucial factor in retaining tissue structure. The 

samples were then freeze dried after preparation to prevent degeneration of the
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tissue. The samples were then mounted onto the sample plates using double 

sided adhesive tape ensuring uniform mounting without air bubbles and 

contamination. Optical images were taken using a flat bed scanner to allow the 

optical image to be superimposed with the molecular images generated by MALDI 

imaging. Matrix solution was applied by airspray deposition. As the size of the 

sample is limited by the size of the target plate the images of whole body samples 

had to done in sections, software was then used to bring the imaged sections 

together.

WBA 5 min

10 mm

Fig. 21 Comparison of MSI with whole body autoradiography (WBA) sections after (0.5

26mg/kg) intratracheal administration of compound.

Fig. 21 shows the comparable whole body autoradiography (WBA) and mass 

spectrometry images 5 minutes and 1 hour following dosing. The MALDI-MS 

images show the compound is present in the same regions as observed with the 

autoradiography results although the technique is apparently not as sensitive as
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autoradiography because some of the regions in the 1 hour result are not seen in 

the mass spectrometry image. This could however be due to the radiolabel being 

present on metabolites of the compound since autoradiography is not able to 

distinguish between the distributions of the radiolabelled compound or a 

metabolite of the compound with the radiolabel present.

There are three problems which need to be overcome in order to use MALDI-MSI 

for quantification: substance specific ionization yield, tissue specific ion 

suppression and the dependence of detected signal on the amount/property of the 

deposition matrix. These factors result in quantifiable data being difficult to obtain 

because signal suppression is dependent on not only the compound but also the 

tissue. The paper by Stoeckli et al 26 suggests that calibration needs to be 

performed separately by spiking the compounds on each of the tissues or better 

still homogeneously spiking whole-body tissue sections and imaging the 

subsequent sections. The method described in this paper to assess the tissue 

specific suppression was to spray 4 mL of a compound solution 0.25 mg/mL over 

a control whole body rat section.

Fig. 22 shows the tissue specific suppression of signal, the areas of blue and dark 

grey indicate regions of high signal suppression and the lighter grey regions 

indicate regions with higher signal. Although this result is valuable it can only give 

an indication of tissue specific suppression. As the compound was applied to the 

surface it will still be present on the surface of the cells and not within the tissue 

structure as it would be in a dosed sample section. This will affect the availability 

of compound for co-crystallisation with the matrix and subsequent ionisation also
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the concentration present on the tissue will vary to that of a dosed sample section 

compared to a control produced using this method.
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Fig. 22 Tissue specific suppression of signal, measured intensity distribution of the

26
compound homogeneously deposited over the sample (detectable signal = blue colour).

Following this, the study tackles the problem of spatial resolution and as 

mentioned before the limitations of this type of instrument with regards to laser 

spot size and sample preparation. The laser spot size was assessed by forming 

an ablation pattern onto a coloured surface, which were interpreted as ellipsoid of 

dimensions being -80 pm x 50 pm. The critical process of matrix application 

causing lateral diffusion of analyte leading to loss of spatial resolution was 

assessed by one of the special features using BIOMAP [http://maldi-msi.org].
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Fig. 23 (a) M AID I-M S image and optical image across an intestinal lobe, (b) Compound

26distribution in defined area observed using MSI and intensity against distance line graph.
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Fig. 23 (a) shows the comparison of an optical image of an intestinal lobe 

compared to the MALDI-MS image of a rectangular section of the same intestinal 

lobe, where a high ion signal was observed. Fig. 23 (b) assesses the lateral 

diffusion of the ion of interest following matrix application with a line graph of 

intensity against distance.

Fig. 24 High resolution image (100x100pm) indicating minimal lateral diffusion of compound

26following matrix application.

Fig. 24 shows a high resolution (100x100 pm) MALDI-MS image overlaid with the 

optical image of the section of the sacrificed rat. This was further evidence that 

matrix application with airspray deposition caused minor lateral diffusion of the 

compound in these experiments with the maximum measured displacement being 

less than 500 pm.

One of MALDI imaging’s advantages over autoradiography is its ability to detect 

multiple analytes simultaneously. The paper includes results showing the 

excretion pathway of the compound.
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Fig. 25 whole body autoradiography (WBA) image 30 minutes after administration compared 

to MALDI-MS image of compound after 30 minutes, MALDI-MS image of metabolite after 30 

minutes and MALDI-MS image of metabolite 24 hours after administration.

Fig. 25 shows the whole body autoradiography (WBA) image 30 minutes after 

administration compared to the MALDI-MS images of the metabolite 30 minutes 

and 24 hours after the administration of the compound. First of all masses for the 

known metabolites from a liver metabolite study were assessed, although the 

results of the compound distribution were not comparable to the autoradiography 

results. After this MS images were generated for all the masses corresponding to 

the protonated, sodiated and potassiated known metabolites. Images were 

generated with a mass corresponding to the protonated glucuronide distributed 

within the intestine. Since glucuronidation is a common mechanism for excretion 

this result was deemed positive although it had to be confirmed by MS/MS.



This study shows clear evidence that MALDI-MSI can produce comparable results 

to autoradiography with the added bonus that metabolite distribution can be 

studied without the need for radiolabelled compounds. These results will further 

the interest in the technique by the pharmaceutical industry and contract research 

organisations because these results will be beneficial for drugs in the early stages 

of development and may shorten the time period before clinical trials and speed up 

the drug development to production process.

1.4 Mass spectrometry for the analysis of plant tissue

MALDI-MSI and profiling has been widely used in the study of plant material. 

Stahl et aP2 employed MALDI-MS and high performance anion-exchange 

chromatography (HPAEC) in 1997 to analyse 2 high molecular weight fructans 

from Dahlia variabilis L. and also carried out direct tissue analysis on the 

epidermal and paraenchymal tissue of onion bulbs (Allium cepa L.).
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Fig. 26 (A) Spectrum from onion parenchyma tissue. (B) Spectrum from onion epidermis 

tissue. (C) Spectrum from crystalline rim of DHB on edge of onion leaf base epidermal

tissue. 32
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Fig. 26 A shows spectra taken from onion parenchyma tissue, B. onion bulbs leaf 

base epidermal tissue and C spectrum of desorbed ions from the outermost 

crystalline rim of the matrix dihydroxybenzoic acid (DHB) from the leaf base 

epidermal tissue. The data show that fructans with a maximum degree of 

polymerization of 5 were observed in both tissue types (Fig. 26 A, B). 

Oligosaccharides were also observed in the spectrum obtained from the 

microcrystalline rim surrounding the tissue indicating that analyte molecules had 

leaked out during sample preparation (Fig. 26 C). A peak at m/z 666 was 

observed in the epidermal tissue (6B) but not the parenchyma tissue (6A) which 

following further investigation of a single epidermal cells vacuole was found to be a 

monopotassium adduct ion of a noncarbohydrate compound of mass 627.

The study found that various isomeric fructans and more than 50 compounds were 

detected from both techniques with m/z values ranging from <2000 up to 10000.

In 2004 Sluszny e ta l33 reported probing the biotic-abiotic boundary of plants using 

laser desorption/ionization mass spectrometry (LDI-MS), by using transition metals, 

metal powders and colloidal suspension to create ionized species via attachment 

of metal ions.

Fig. 27 shows the spectrum of the C12-C60 n-alkane standard mixture as silver 

adducts, the upper spectrum is an enlarge view of the m/z 350-900 region and the 

lower spectrum is an enlarged view of the C26 alkane. The data observed in Fig. 

27 indicate there is a large difference in the ionization efficiencies of the varying 

alkanes and that there is little sensitivity for alkanes smaller than C20.
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Fig. 27 LDI-MS spectrum of n-alkane standard mixture as silver adducts. The upper 

spectrum is an enlarge view of the m/z 350-900 region and the lower spectrum is an

33enlarged view of the C26 alkane.
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Fig. 28 Spectrum from direct analysis of Arabidopsis thaliana tissue. The upper spectrum

shows an enlarged view of the peaks for the107Ag adducts of esters and the lower spectrum

show an enlarged view of the peaks around m/z 529.4. 33

Fig. 28 shows LDI-TOF data from the analysis of Arabidopsis thaliana tissue. The 

upper spectrum shows an enlarged view of the peaks for the 107Ag adducts of 

esters and the lower spectrum show an enlarged view of the peaks around m/z
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529.4. Fig. 28 presents 4 major peaks one of which is m/z 529.4 which when 

enlarged (Fig. 28 lower spectrum) has a peak pattern similar to that observed in 

Fig. 27 lower spectrum.

The published data demonstrated that LDI-MS could be used to analyse cuticle 

waxes made up of long-chain non-polar hydrocarbons and that these could be 

identified by direct tissue analysis with nearly identical mass spectra being 

obtained by direct analysis and extraction.

Wu et a/34 profiled alkaloid distribution in four commonly used Chinese medicinal 

herbs by using direct tissue analysis MALDI-MS. The results demonstrated the 

feasibility of MALDI-MS to provide rapid and reliable plant component profiles by 

direct analysis of plant tissue. This reduced damage to the components observed 

using the traditional sample preparation methods. This work was also performed 

on Strychnos nux-vomica seeds profiling regions of the endosperm and epidermis 

without the need for complex sample preparation, clear differences were observed 

between the endosperm and epidermis regions with several additional alkaloids 

present in the epidermis region 35.

Robinson e t a l36 have generated MALDI-MS images of carbohydrates from wheat 

stems (Triticum aestivum). A range of hexose sugars present in wheat stems 

were identified using MALDI-MS and liquid chromatography electrospray ion trap 

mass spectrometry and presented images showed the distribution of these sugars 

within stem sections from both the longitudinal axis and the horizontal axis.
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Fig. 30 (a-d) MALDI-MS images of a longitudinal section of a wheat stem, (a) Image 

generated from m/z 228, (b) image generated from m/z 381, (c) image generated from m/z

36705 and (d) image generated from m/z 1353.

Fig. 30 (a-d) shows MALDI-MS images of a longitudinal section of wheat stem. 

Fig. 30 (a) was generated from m/z 228 the potassium adduct of a-cyano-4- 

hydroxycinnamic acid (a-CFICA), (b) was generated from m/z 381 the potassium 

adduct for hexose disaccharide, (c) was generated from m/z 705 the potassium
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adduct for hexose tetrasaccharide and (d) was generated from m/z 1353 the 

potassium adduct hexose octasaccharide.

Burrell et a l 37 generated images of a range of metabolites in wheat grains by 

looking in positive and negative ion mode using a-cyano-4-hydroxycinnamic acid 

and 9-aminoacridine respectively. The images show the distribution and variation 

in abundance of metabolites in specific regions of a wheat grain at a micromolar 

concentration.

(a) (b) (c)

Fig. 31 Optical and MALDI-MS images of a wheat grain section, (a) Optical image of wheat 

grain section, (b) Image generated from m/z 175.1195 and (c) Image generated from m/z 

381.0799. 37

Fig. 31 shows (a) optical image of the wheat grain, (b) the distribution of arginine 

at m/z 175.1195 with the darker regions indicating higher abundance and (c) the 

distribution of sucrose at m/z 381.0799. The images in Fig. 31 show that MALDI- 

MSI is able to distinguish the localization of the two compounds within the wheat 

grain which are quite different. The sample stage moved 100 pm in the x and y 

dimentions between laser acquisitions at each point on the sample which is equal
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to the pixel size in the image. The average size of a cell with in a wheat grain 

ranges from 10-150 pm 38.

In a previous study Mullen et a l39 have reported preliminary investigations into the 

determination of agrochemicals in soya plants by MALDI-MSI. The results show 

that mesotrione can be detected on the surface of a leaf by direct analysis of the 

freeze dried leaf and indirect blotting method. Azoxystrobin was also detected 

both on the surface of a leaf and with the plants transport system 39.

For direct and blotting analysis the compounds were pipetted directly onto the leaf 

surface. Root absorbance into the plant systems was performed using a 

hydroponics setup adding the compound to the nutrient solution.
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Fig. 32 MALDI-MS images generated from the direct analysis of mesotrione on the surface

of soya leaves at 0, 5, 48 and 72 hours after application. Images were generated from the

39abundance of the fragment ion at m/z 291.03.
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Fig. 32 shows MALDI-MS images generated from the direct analysis of mesotrione 

on the surface of freeze dried soya bean leaves 0, 5, 24, 48 and 72 hours 

following application.

Fig. 33 shows MALDI-MS images generated from the direct analysis of 

azoxystrobin on the surface of freeze dried soya bean leaves 0, 5, 24, 48 and 72 

hours following application. The images observed in Fig. 32 and 33 show that the 

spatial resolution of the compound distribution varies from image to image, this 

could be improved with method development. With further modifications a 

quantification method might be developed to assess the absorption rate from foliar 

application. Fig. 34 shows MALDI-MS images generated from the blot analysis of 

azoxystrobin on the surface of a cellulose membrane taken from the leaf surface 0, 

5, 24 and 72 hours following application.

The images generated using the blot analysis show improved and reproducible 

spatial resolution for the distribution of the compound.
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Fig. 33 Images generated from the direct analysis of azoxystrobin on the surface of soya

leaves at 0, 5, 48 and 72 hours after application. Images were generated from the

39abundance of the fragment ion at m/z 372.04.
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Fig. 34 Images generated from blot analysis of azoxystrobin on the surface of soya leaves at 

0, 5, 24 and 72 hours after initial application. Images were generated from the abundance of

39the fragment ion at m/z 372.04.
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Fig. 35 Image generated from the overlay of the azoxystrobin mass spectrometry image over

39a digital image of the sample. Image generated from the fragment ion at m/z 372.04.

The image in Fig. 35 was generated from the azoxystrobin hydroponics 

experiment with 2 horizontal stem section samples using oMALDI server 5.0 3-D 

display. These data indicate that the compound was localised to specific regions 

towards the centre of the stem in the lower stem section and in the outer edge in 

the upper stem section. The abundance is visualised as a 3-D plot using peaks 

and colour (black and white image does not demonstrate this) as a measure of a 

compound abundance.

This study provides evidence that MALDI-MSI has great potential as an analytical 

technique to detect and assess the foliar and root uptake of agrochemicals, to 

reveal their distribution though the plant once absorbed and translocated.
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1.5.1 Ion Formation Mechanisms in  UV-MALDI

Although the exact reaction methods associated with MALDI are not yet fully 

understood, there have been many proposed ionisation mechanisms40. There are 

many different theories regarding the reactions that occur in ion formation in the 

MALDI process. There is an increasing consensus amongst researches that a 

two-step model exits, first primary ionisation event being followed by extensive 

secondary reactions in the plume. These secondary reactions occur in the 

desorbed expanding plume material as matrix and analyte molecules interact41.

A number of mechanisms have been proposed for the primary ionisation event.

(i) Desorption of Preformed Ions

An important primary ion formation pathway is the desorption of preformed ions42. 

In this mechanism the ions observed in the MALDI spectrum, e.g. metal adducts 

are believed to be already present in the sample and are ejected in to the gas 

phase by the laser pulse.

(ii) Multiphoton Ionisation

Multiphoton ionisation is the formation of matrix radical cations by absorbing the 

energy from a number of laser photons, it can be represented by the following 

equation whereby a matrix cation radical is formed43.

n(hv)

M  ► M+' + e'
M = Matrix molecule 
M+' = Radical cation 
e = electron
h = Plank's constant (the proportionality constant between the photon energy (E) 

and the frequency of the corresponding radiation frequency)
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v = radiation frequency (electromagnetic wave)

(iii) The Cluster Model

Introduced by Karas et a f A, this model assumes that a large protonated analyte 

clusters are preformed in the chemical matrix45. The concept behind the cluster 

model is that post irradiation of the sample by the laser, the clusters are desorbed 

and in the gas phase neutral matrix molecules are desolvated and analyte ions are 

created.

(iv) Gas-phase Proton Transfer

Since reactions between matrix molecules do occur in the plume, the formation of 

reaction intermediates may be a fundamental requirement for the protonation of 

analytes46.

Protonated matrix formation 

M+’ + M ---------- ► MH++ (M - H)'

The radical formed in the above reaction can be converted into (M-H)" if it reacts 

with a free electron.

(M - H)‘ + e; ► ( M - H ) ‘

Reactions can also occur between the matrix and the analyte, very often these 

reactions produce protonated species. These are thought to occur after 

secondary proton transfer reactions have taken place in the plume.

MH+ + A ---------- ► M + AH+

The creation of ions by gas phase reactions has been reported as a feasible 

mechanism for ionisation by Wang e ta /17.

52



(v) Energy Pooling

This details the role of MALDI matrix excitation states and explains the energetic 

processes underpinning a 'diffusely excited solid'. The internal energy of two or 

more excited state matrix molecules pooling together (represented in the equation 

as M*M*) to form one matrix radical cation (M+') 41.

This approach is conceivable as clusters often form in MALDI plumes, the 

following equations detail the process.

2hv

M M  ► M *M * ► M + M+' + e

M*M* + A  ► MM + A+' + e

(vi) Excited-state Proton Transfer

This is a popular theory that involves one photon where a single excited matrix 

molecule (M*) can efficiently transfer a labile proton to the analyte/matrix molecule 

in the ground state41.

The following equations detail this theory:

M + hv ------------► M*

M* + A ------------> (M - H)' + AH+

M* + M-------- — > (M -  H)- + MH+
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(vii) Disproportionation Reactions

It is proposed that disproportionation reactions may hold the key to the fact that 

some matrices perform better in positive ion mode and others in negative ion 

mode 48-49.

The following equations detail this theory:
nhv

2 M  ► (M M )*----------- ► (M -  H)'+ MH+

(viii) Thermal Ionisation

Thermal ionisation is a very likely mechanism when particle suspension matrices 

have been utilised in the experiment. This is due to the fact that this particular 

type of matrix is composed on fine particles and do not possess a chromophore or 

have the ability to co-crystallise with the analyte. Thermal ionisation can occur in 

two ways, at the particle surface as expressed using the Saha-Langmuir equation 

50 or via a dispropotionation reaction that incorporates electron affinity of the matrix. 

It has also been inferred that laser induced damage on the crystalline surface, 

approximately 1 pm in thickness, causes desorption of ions to occur. When 

comparing a UV laser to an IR laser the IR laser penetrates much deeper into the 

sample 41,5°.
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1.5.2 Similar to Primary Ion Formation a Number of Mechanisms have 
been Proposed for Secondary Ion Formation

(i) Electron Transfer

A feasible reaction in the plume may involve electron transfer, this process is 

detailed in the following equation whereby reactions are thought to occur between 

the matrix radical cation and an analyte molecule.

IVT + A<  ► M + A+'

The electron transfer reactions have been supported by published literature when 

the compounds of interest have low ionisation potentials50.

(ii) Proton Transfer

Gas phase proton transfer reactions with neutral matrix and neutral analyte 

molecules when the primary ions are radical cations have been reported in the 

literature 51. The free energy change of matrix-analyte and analyte-analyte 

reactions in the plume can be selected in the mass spectrum.

A G = RT\n(K)

K = Calculated from the relative abundances of ions in the mass spectrum that are 

thought to be involved in charge transfer reactions in the plume 51.

(ii) Cationisation

Cationisation is the term given to the process where the analyte is primarily 

ionised by the forming of metal ion adducts. This has been shown to be a process 

commonly observed with carbohydrates and synthetic polymers 52-53' 54-55- 

Zhang etal. have investigated the role of the matrix in the cationisation process56.
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1.6 Suppression effects

Matrix ions including protonated, cationized matrix and radical cations can be 

completely suppressed by analytes at certain concentration ratios. This effect 

relates to the secondary reactions and depends on the analyte polarity i.e. basic 

analyte strongly deplete protonated matrix41.

Analyte suppression effects can occur in the presence of multiple analytes via 

secondary reactions as they undergo reactions with matrix ions and each other

M + + A ------------- ► m + A +

M + + B ------------- ► m + B +

A + + B --------------► A + B +

If B has a lower ionisation potential than A, B will react more efficiently with M + 

than A and A +will signal will decrease. Charge transfer between A + an B can also 

occur reducing A +signal

This can cause further issues in the analysis of mixtures, as is the case for direct 

tissue analysis. The individual proton accepting efficiencies of each analyte in the 

case of positive ion mode, will differ causing them to react differently with M +. 

This results in the analyte with the higher proton accepting efficiency being 

observed at high intensity and the analyte with the lower proton accepting 

efficiency being suppressed. As the number of M + matrix ions formed in the 

primary reactions are limited and is related to the laser fluence41.
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1.6 Conclusions

There are a number of methods currently available to assess the translocation of 

agrochemicals in plants each with their own benefits and limitations. Confocal 

microscopy and SIMS yield very informative results at a cellular level, although 

they are not suitable for visualisation of compounds throughout the whole plant 

system. DESI offers an attractive alternative because it can be performed by 

direct tissue analysis at atmospheric pressure although initial results obtained by 

Syngenta suggested its sensitivity towards agrochemicals is limited. 

Autoradiography certainly provides the most informative results for compound 

distribution within the plant systems but radiosynthesis is very expensive and can 

be time consuming for new compounds in the early stages of development.

MALDI has yielded excellent results from the analysis of endogenous compounds 

in plant tissue and MALDI-MSI is a proven technique in many areas with rapidly 

growing interest from mass spectrometry operators, research groups and 

instrument manufactures leading to new developments for applications and 

instrument design.

MALDI-MSI has great potential and with further method development should be 

able to yield much more information than autoradiography such as metabolite 

distribution and quantification. The aims of this research degree are to utilize the 

MALDI-MSI technique to show the extent of translocation of various agrochemicals 

following uptake via the roots and absorption following foliar application after 

varying time points. It is also proposed to utilize the ability of MALDI-MSI to obtain 

data for agrochemical metabolite distribution in the plant after translocation.
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Chapter Two: Detection of Agrochemicals on Leaf
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2.1 In troduction

The structure of a leaf is generally comprised of epidermis tissue which 

sandwiches both the palisade and spongy mesophyll between an upper and lower 

layer (Fig. 1). These tissues are highly specialized for light absorption2.

Cuticle

mesophyll

MesophylK

Upper epidermis 
(dermal tissue)

Palisade 
parenchyma 
(ground tissue)

Bundle sheath 
parenchyma

Xylem '] Vascular

P h lo e m /,issues

Lower epidermis 
(dermal tissue)

Guard cell

Stomate

Spongy 
(ground tissue) Lower epidermis 

Cuticle

Fig. 1 Cross sectional representation of leaf cell s tructure .1

The epidermis layer is typically transparent and the individual cells are often 

convex and hence can act as lenses so that more light reaches the chloroplasts 

present in the cells underlying this layer. Below the epidermis layer the palisade 

mesophyll cells are arranged like pillars that stand in parallel columns. Some 

leaves have several layers of columnar palisade cells although the high chlorophyll 

content of the first layer allows little transmission of light to the lower layers. Below 

this is the spongy mesophyll layer where the cells are arranged irregularly to form
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air spaces around the stomata where carbon dioxide can enter the plant. The 

stomata are pores in the lower epidermis which are regulated by specialist 

epidermal cells called guard cells which lead to the gas space in the spongy 

mesophyll layer2.

The outer epidermal layer is coated in epicuticular waxes forming the outermost 

boundary layer of the plant (cuticle). This layer consists mainly of two components, 

the biopolymer cutin and lipids which form a complex mixture of long chain 

aliphatic components, primary and secondary alcohols, aldehydes and ketones 

also cyclic components like triterpenes or flavonoids 3. The major function of this 

layer is to prevent water loss by acting as a barrier which in turn also prevents 

compounds absorbing into the leaf by creating a hydrophobic water-repellent 

surface. Both relative humidity and water stress affect the development of the 

cuticle causing it to thicken to combat water loss. Diffusion and translocation can 

be affected by a number of factors such as temperature, water stress and relative 

humidity. Relative humidity affects diffusion and translocation of foliar applied 

herbicides directly because a hydrated cuticle is easy to penetrate and the 

droplet’s drying time is reduced.

The efficacy of foliar-applied herbicides depends on the diffusion of the herbicide 

into the target plant and translocation around the plant. The diffusion and 

translocation of herbicides by both the leaves and roots increases with increasing 

temperature, within physiological limits. Lower temperatures increase the viscosity 

of water and decrease the permeability of the colloidal gels of cell walls 4. The
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optimum translocation temperature varies between species due to genetic 

differences.

The aims of this chapter are to show the detection of pesticides on the surface of 

leaves and to demonstrate their penetration of the waxy cuticle layer at the start of 

foliar diffusion. It is also proposed to observe translocation from leaf tissue into 

leaf veins towards the petiole following foliar application.

2.2 Methods

2.2.1 Conventional MALDI-MS analysis

Preparation of mesotrione for the analysis of conventional MALDI spots was 

carried out using a standard stock solution of mesotrione 1.7 mg/mL in acetone: 

0.1% Tween® (Sigma Aldrich, Dorset, UK), (v/v), (50:50).

Sample preparation for azoxystrobin was carried out using a standard stock 

solution of azoxystrobin 1.9 mg/mL in acetone: 0.1% Tween® (v/v), (50:50).

Matrix solution preparation

10 mg/mL solutions of the desired matrix were prepared in 10 mL volumetric flasks 

using acetone as a solvent. The solutions were sonicated for 5 minutes to ensure 

all organic acid had been dissolved.
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MALDI sample preparation

1 pL of the above solutions were combined with 1 pL of the appropriate matrix 

solution i.e sinapinic acid (Sigma Aldrich, Dorset, UK) for mesotrione and a-cyano- 

4-hydroxycinnamic acid (a-CHCA) (Sigma Aldrich, Dorset, UK) for azoxystrobin. 

Solutions were mixed and 1 pL was pipetted onto a well of a conventional 

stainless steel MALDI target.

Instrumentation

Spectra were obtained using an Applied Biosystems/MDS Sciex Q-star pulsar star 

pulsar I hybrid quadrupole time of flight mass spectrometer (Concord, Ontario, 

Canada) fitted with an orthogonal MALDI source and a nitrogen laser at a laser 

power of 20 pJ and a laser repetition rate of 20 Hz.

2.2.2 Indirect MALDI imaging analysis of azoxystrobin from leaf 
surface

Soya bean leaves were spotted with 2x 1 pL and 2x 2 pL of a 1.9 mg/mL solution 

of azoxystrobin 50:50 acetone:0.1% Tween® (Sigma Aldrich, Dorset, UK), one 

spot of each volume on each side of the midrib avoiding the main veins in the leaf. 

The solutions were then left to dry before removing the leaf at the petiole. This 

sample was then secured to a flat surface using double sided tape. A standard 

cellulose membrane (Whatman®, Kent, UK) (5cm diameter) was saturated in 

acetone. Excess solvent was removed and the membrane was air dried for 30 

seconds before placing it on the inoculated leaf surface area. The compound was 

then transferred to the membrane under defined pressure (moderately firm 

pressing with finger tips) for 30 seconds. Cellulose membranes were coated with
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approximately 20 mL of matrix, a-CHCA (10 mg/mL 0.1% TFA in acetone) using 

an Iwata gravity-fed pneumatic air spray gun (Iwata Media Inc., Portland, OR, 

USA). Matrix coated membranes were then mounted into a MALDI target using 

conductive tape.

The appropriate areas were then imaged using an Applied Biosystems/MDS Sciex 

Q-star pulsar I hybrid quadrupole time of flight mass spectrometer (Concord, 

Ontario, Canada) fitted with an orthogonal MALDI source and an Nd:YaG laser at 

a laser power of 3.2 p j and a laser repetition rate of 1000 Hz . Images were 

acquired with a spatial resolution of 200 pm x 200 pm.

2.2.3 Absorption of mesotrione using cell stripping and direct analysis 
of leaf (matrix sinapinic acid)

Soya bean leaves were spotted with 2x 5 pL of a 2.5 mg/mL solution of mesotrione 

50:50 acetone: 0.1% Tween®, one spot each side of the midrib avoiding the main 

veins in the leaf. The solutions were then left for the desired time period (6, 24, 48 

and 72 hours) before removing the leaf at the petiole. This sample was then 

secured to a flat surface and the top layer of cells was removed using a d-squame 

disc (CuDerm, Texas, USA), the sample was then placed between two microscope 

coverslips ensuring it remained flat. The sample was then freeze dried for 24 

hours before being attached to the MALDI target plate. The matrix (10 mg/mL 

sinapinic acid in acetone, -1 0  mL) (Sigma Aldrich, Dorset, UK) was applied using 

an Iwata gravity-fed pneumatic air spray gun (Iwata Media Inc., Portland, OR, USA) 

by passing the compressed air gun over the sample 15 times, ensuring the sample 

tissue did not get saturated and even coverage had been achieved.

73



The appropriate areas of the leaf were imaged using an Applied Biosystems 

Voyager-DE PRO MALDI time-of-flight mass spectrometer (Concord, Ontario, 

Canada) equipped with a N2 laser (337 nm wavelength) in negative ion mode with 

sample stage increments of 150 micron along the xand /  dimensions. 100 shots 

per pixel at a laser power of 2674 were used for the image acquisition experiment. 

Images were acquired using MMSIT software and processed using BIOMAP 

[http://maldi-msi.org]

2.2.4 Comparison of 9-aminoacridine and sinapinic acid and the effect 
of gold sputter coating.

Soya bean leaves were spotted with 2 pi of a 2.5 mg/mL mesotrione solution in 

50/50 acetone 0.1% Tween® (Sigma Aldrich, Dorset, UK). This was performed 

four times. The spots were left to dry before the leaf was removed from the plant. 

The leaf sample was then trimmed down using a surgical blade and the 

appropriate areas were sandwiched between 2 microscope cover slips and freeze 

dried for 24 hours. Two samples were sprayed with sinapinic acid (Sigma Aldrich, 

Dorset, UK), (10 mg/mL, 100% acetone, ~10 mL) and two samples were sprayed 

with 9-aminoacridine (Sigma Aldrich, Dorset, UK), (10mg/mL, 100% acetone, 

~10mL) using an Iwata gravity-fed pneumatic air spray gun (Iwata Media Inc., 

Portland, OR, USA) by passing the compressed air gun over the sample 15 times, 

ensuring the sample tissue did not get saturated and even coverage had been 

achieved. These 4 samples were then mounted onto a target plate. One of each 

of the 9- aminoacridine and the sinapinic acid coated samples was then sputter 

coated in gold =1 pm thickness (Emitech K950, Ashford, Kent, UK,).
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The appropriate areas of the leaf were imaged using an Applied Biosystems 

Voyager-DE PRO MALDI time-of-flight mass spectrometer (Concord, Ontario, 

Canada) equipped with a N2 laser (337 nm wavelength) in negative ion mode with 

sample stage increments of 150 micron along the xand  y  dimensions. 100 shots 

per pixel at a laser power of 2674 were used for the image acquisition experiment. 

Images were acquired using MMSIT software and processed using BIOMAP 

[http://maldi-msi.org],

2.2.5 Direct MALDI imaging analysis of mesotrione on plant tissue - 
examination of the absorption of mesotrione using cell stripping

Soya bean leaves were spotted with 5 pL of the 2.5 mg/mL solution of mesotrione 

avoiding the main veins in the leaf. The solutions were then left for the desired 

time period (0, 1 ,2  and 3 hours) before removing the leaf at the petiole. These 

samples were then secured to a flat surface and the top layer of cells was 

removed using d-squame strips (CuDerm, Texas, USA), the sample was then 

freeze dried for 24 hours. The sample was then freeze dried for 24 hours before 

being attached to the MALDI target plate. The matrix (10 mg/mL 9-aminoacridine 

(Sigma Aldrich, Dorset, UK) 100% acetone, -10  mL) was applied using an Iwata 

gravity-fed pneumatic air spray gun (Iwata Media Inc., Portland, OR, USA) by 

passing the compressed air gun over the sample 15 times, ensuring the sample 

tissue did not get saturated and even coverage had been achieved followed by a 

layer of gold sputter coating, ~1 pm thickness. (Emitech K950, Ashford, Kent, UK,). 

The appropriate areas of the leaf were imaged using an Applied Biosystems 

Voyager-DE PRO MALDI time-of-flight mass spectrometer (Concord, Ontario, 

Canada) equipped with a N2 laser (337 nm wavelength) in negative ion mode with
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sample stage increments of 150 micron along the x  and /  dimensions. 100 shots 

per pixel at a laser power of 2674 were used for the image acquisition experiment. 

Images were acquired using MMSIT software and processed using BIOMAP 

[http://maldi-msi.org].

2.2.6 Direct MALDI imaging analysis of mesotrione in leaf veins after 
foliar absorption

Control Image

A small section of leaf vein tissue was removed from the plant and the outer most 

tissue was removed (disrupted to expose the underlying tissue). This tissue was 

spiked with 1pL of a 2.5 mg/mL mesotrione in 50/50 acetone/0.1 % Tween®  

(Sigma Aldrich, Dorset, UK) solution pipetted onto it. The solution was left to dry 

and the sample was then freeze dried for 24 hours before being attached to the 

MALDI target plate. The matrix (10mg/mL 9-aminoacridine 100% acetone, 

~10mL), (Sigma Aldrich, Dorset, UK) was applied using an Iwata gravity-fed 

pneumatic air spray gun (Iwata Media Inc., Portland, OR, USA) by passing the 

compressed air gun over the sample 15 times, ensuring the sample tissue did not 

get saturated and even coverage had been achieved followed by a layer of gold 

sputter coating, =1 pm thickness. (Emitech K950, Ashford, Kent, UK,)

Sample tissue

A leaf was inoculated with mesotrione near to the apex (leaf tip) on the upper 

surface. The leaf was then left for a range of time points (5 hours and 20 hours) 

on the plant. After this time period had elapsed the leaf was removed from the 

plant and secured to a flat surface and the veins leading to the petiole were
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disrupted using a scalpel blade. The sample was then freeze dried for 24 hours 

before being attached to the MALDI target plate. The matrix (10mg/mL 9- 

aminoacridine 100% acetone, ~10mL), (Sigma Aldrich, Dorset, UK) was applied 

using an Iwata gravity-fed pneumatic air spray gun (Iwata Media Inc., Portland, OR, 

USA) by passing the compressed air gun over the sample 15 times, ensuring the 

sample tissue did not get saturated and even coverage had been achieved 

followed by a layer of gold sputter coating, *1 pm thickness (Emitech K950, 

Ashford, Kent, UK,).

The appropriate areas of the leaf were imaged using an Applied Biosystems 

Voyager-DE PRO MALDI time-of-flight mass spectrometer (Concord, Ontario, 

Canada) equipped with a N2 laser (A = 337nm) in negative ion mode with sample 

stage increments of 150 micron along the xand /  dimensions, 100 shots per pixel 

at a laser power of 2674 were used for the image acquisition experiment. Images 

were acquired using MMSIT software and processed using BIOMAP [http://maldi- 

msi.org]

2.2.7 Effect of laser fluence for the detection of mesotrione

A range of solutions of mesotrione in 50:50 acetone: 0.1% Tween® (Sigma Aldrich, 

Dorset, UK) were prepared from a stock solution of mesotrione (1.0 mg/mL) in 

acetone. The concentration range was 0.001, 0.01, 0.025, 0.05, 0.1 mg/mL. 10 

pL of these solutions were combined with 10 pL of the matrix solution 9- 

aminoacridine (Sigma Aldrich, Dorset, UK), (15 mg/mL). 1 pL of these 

analyte:matrix solutions were pipetted on to the spot target plate in duplicate. The 

first series of spots was run at 2603 laser power. The second series of spots were
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run at 2728 laser power using conventional MALDI-MS analysis with an Applied 

Biosystems Voyager-DE PRO MALDI time-of-flight mass spectrometer (Concord, 

Ontario, Canada) equipped with a UV-VQ Nd:YAG laser (A = 355n) (Elforlight, 

Daventry, UK) in negative ion mode. The intensities generated were entered into 

an Excel spread sheet and graphs were generated to compare the intensities of 

the matrix ion, fragment ion and deprotonated molecule to assess the effect of 

laser power on the ion intensity of the fragment ion and deprotonated molecule for 

mesotrione. Using the matrix as an internal standard, the analyte to matrix ratio 

was calculated to generate the calibration curve.

2.2.8 Assessment of suppression effects on the detection of 
mesotrione using plant extract

In this experiment 0.5 grams of plant tissue was macerated using a pestle and 

mortar with the addition of 1mL of 50:50 acetone: 0.1% Tween® (Sigma Aldrich, 

Dorset, UK). The MALDI sample solutions were prepared by combining 10 pL of 

the stock solutions with 10 pL of the macerated tissue solution and 20 pL of 9- 

aminoacridine (Sigma Aldrich, Dorset, UK), (15 mg/mL). These solutions were 

compared to control solutions which were prepared by replacing tissue extract with 

an equal volume of 50:50 acetone: 0.1% Tween® (Sigma Aldrich, Dorset, UK) 

solution as a blank. The spots were then run using conventional MALDI-MS 

analysis with an Applied Biosystems Voyager-DE PRO MALDI time-of-flight mass 

spectrometer (Concord, Ontario, Canada) equipped with a UV-VQ Nd:YAG laser 

(A = 355nm) (Elforlight, Daventry, UK) in negative ion mode at the 2728 laser 

power setting. This higher laser power (2728) was chosen over the lower laser 

power (2603) due to the advantageous effects observed in ionization of
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mesotrione using the higher laser power resulting in the total ion counts for the 

matrix and ions relating to mesotrione being much greater. The intensities 

generated were entered into an Excel spread sheet and graphs were generated to 

compare the intensities of the matrix ion, fragment ion and deprotonated molecule 

to assess the effect of the plant tissue on the ion intensity of mesotrione. Using 

the matrix as an internal standard, the analyte to matrix ratio was calculated to 

generate the calibration curve.
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2.3 Results

2.3.1 Mesotrione spot samples

The spectrum in Fig. 2 shows the mesotrione deprotonated molecule at m/z 

338.07 and a fragment ion at m/z 291.09.

Fig. 2 Negative MALDI-MS spectrum of mesotrione (1.7mg/mL) with sinapinic acid (10mg/mL 

in acetone) 50:50. Showing the [M+H]+ion at m/z 338.07 and a fragment ion at m/z 291.09 and 

their structures.

The intensity for the fragment ion is greater that that of the deprotonated molecule 

as the loss of the proton from mesotrione results in an unstable ion species and 

subsequent fragmentation. These ions were chosen to generate images of the 

distribution of mesotrione across tissue surfaces, owing to their intensity and 

structural significance for mesotrione.
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2.3.1.1 Azoxystrobin spot samples

The spectrum in Fig. 3 shows the azoxystrobin protonated molecule at m/z 404.07 

and a fragment ion at m/z 372.04.

AA
/  wS 'CHj‘CHj

404.0733

Fig. 3 Positive MALDI-MS spectrum of azoxystrobin (1.9mg/mL) with CHCA (10mg/mL in 

acetone) 50:50. Showing the [M+H]+ ion at 404.07 and a fragment ion 372.04 and their 

structures.

These ions were chosen to generate images to show the distribution of 

azoxystrobin across tissue and cellulose membrane surfaces.
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2.3.2.1 Indirect MALDI imaging analysis of azoxystrobin from leaf
surface. Initial azoxystrobin result from indirect imaging method

The image in Fig. 4 generated from the protonated molecule of a-CHCA from the 

cellulose membrane shows that a moderately homogeneous matrix coverage was 

achieved across the cellulose membrane using the gravity feed airgun. It can be 

seen that the matrix is evenly distributed across the membrane with high ion 

intensities shown throughout the sample surface. This ion was used to normalise 

the images in Fig. 5 and 6.

Fig. 5 shows the distribution of the fragment ion of azoxystrobin (m/z 372.09) 

across the cellulose membrane from 2x 1 pL of a 1.9mg/mL solution, (0.0019 pg on 

sample). The spatial integrity of the spot’s original location has been lost in this 

sample. This is possibly due to excessive solvent usage during blotting and/or 

saturation of the membrane during application of the matrix. This has resulted in 

azoxystrobin spreading from its original application point and the original spot 

distribution is unclear. However, the presence of the compound is clearly visible in 

treated areas. Areas with high abundance of azoxystrobin can easily be 

distinguished from areas of low abundance through the highly contrasting areas of 

the image.

Fig. 6 shows the distribution of the protonated molecule of azoxystrobin (m/z 

404.12) across the cellulose membrane following application of the compound to 

the surface of the cellulose membrane. Due to the original distribution of the 

original location of the compound being distorted the method described in 2.2.1 

was repeated. The compound spots were placed further apart on the leaf and 

more care was taken to ensure the membrane was not too ‘wet’ before being
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applied to the surface of the leaf and that the membrane did not become saturated 

during the matrix application.

Width (mm)

Fig. 4 MALDI-MSI of matrix coverage of protonated a-CHCA (m/z 190.05) used to normalize 

the fragment ion and protonated molecule images.

33.2-■
15.2 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.4

Width (mm)

Fig. 5 MALDI-MSI of azoxystrobin’s fragment ion at m/z 372.09 on cellulose membrane.

Fig. 6 MALDI-MSI of azoxystrobin’s protonated molecule at m/z 404.12.
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2.3.2.2 Results from revised indirect imaging method

The image in Fig. 7 is of the protonated molecule of a-CHCA. The image shows 

good coverage, the matrix is evenly distributed across the membrane and shows 

good intensity throughout. This ion was used to normalise the images in Fig. 8 

and 9.

The image in Fig. 8 is generated from the fragment ion of azoxystrobin at m/z

372.09 shows that the original spots distribution of the 1 pL lower left and lower 

right spots (0.0019 gg on sample). The 2 gl_ upper right and upper left spots 

(0.0038 pg on sample) has being retained and can clearly be distinguished from 

one another. The signal is present with good intensity (indicated by the scale of 

ion intensity on the right of the image).

Fig. 9 shows the distribution of the protonated molecule at m/z 404.12. Again the 

original distribution for both spot’s volumes location has been retained. The signal 

for the protonated molecule is present with good intensity (indicated by the 

intensity scale on the right of the image).
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Width (mm)

Fig. 7 MALDI-MSI of matrix coverage of the protonated molecule of a-CHCA (m/z 190.05) 

used to normalize the fragment ion and protonated molecule images.

Width (mm)

Fig. 8 Image of azoxystrobin fragment ion at m/z 372.09, normalized using the protonated 

molecule of a-CHCA.

Width (mm)

Fig. 9 Image of azoxystrobin protonated molecule at m/z 404.12 (2x 0.0017mg), normalized 

using the protonated molecule of a-CHCA.
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2.3.3 Absorption of mesotrione using cell stripping and direct analysis 
of leaf (matrix sinapinic acid)

Fig. 10 shows MALDI-MS images generated from a sample prepared 6 hours after 

application of mesotrione. Fig. 11 shows the MALDI-MS images generated from a 

24 hour sample. Fig. 12 shows MALDI-MSI generated from a 72 hour sample. 

The images in Fig. 10 generated from the fragment ion at m/z 291.03 (b.) and the 

deprotonated molecule at m/z 338.03.03 (c.) suggests that not enough mesotrione 

has translocated through the waxy cuticle layer after 6 hours to produce a MALDI 

signal using sinapinic acid as a matrix. This suggests that the MALDI-MSI method 

is not sensitive enough to detect mesotrione translocation through the waxy cuticle 

at this time point.

Fig. 11 shows that enough mesotrione is present in the cells underlying the waxy 

cuticle layer to produce a MALDI signal allowing images to be generated from the 

fragment ion mass (m/z 291.03, b.) and the deprotonated molecule (m/z 338.03, 

c.). These images were generated from reasonably intense peaks although it can 

be seen, that the intensity observed is not uniform in the area where the 

compound is present.

Fig. 12 b. shows a spot at the left hand side of the sample tissue which can be 

clearly distinguished with good spatial integrity; the intensity in the image 

generated by the fragment ion mass (m/z 291.03) shows the spot clearly. A 

sufficient amount of compound has penetrated though the waxy cuticle surface 

layer into the underlying tissue of the leaf 72 hours following application. The spot 

applied to the right area of the leaf was damaged during cell stripping this is why 

no compound is visible in this region.
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(a.) (b.) (c.)
Fig. 10 MALDI-MS images of 6 hour sample matrix coverage represented by the

deprotonated molecule of sinapinic acid (a m/z 223.06 red outline indicates leaf tissue and

spot location), a mesotrione fragment ion (b m/z 291.03) and the deprotonated molecule of

mesotione (c m/z 338.03).

(a.) (b.) (c.)
Fig. 11 MALDI-MS images of 24 hour sample matrix coverage represented by the

deprotonated molecule of sinapinic acid (a m/z 223.06 red outline indicates leaf tissue and

spot location), a mesotrione fragment ion (b m/z 291.03) and the deprotonated molecule of

mesotione (c m/z 338.03).
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(a.) (b.) (c.)

Fig. 12 MALDI-MS images of 72 hour sample matrix coverage represented by the 

deprotonated molecule of sinapinic acid (a m/z 223.06 red outline indicates leaf tissue and 

spot location), a mesotrione fragment ion (b m/z 291.03) and the deprotonated molecule of 

mesotrione (c m/z 338.03).

2.3.4 Comparison of 9-aminoacridine and sinapinic acid and the effect 
of gold sputter coating.

Fig. 13 shows MALDI-MS images generated from the direct tissue analysis of 

mesotrione using sinapinic acid as a matrix. Fig. 13 (a.), the image of the matrix 

coverage shows good intensity across the majority of the sample tissue surface. 

The image generated from the fragment ion at m/z 291.03 (Fig. 13 b.) shows the 

spot’s original location, with good intensity towards the centre although the spatial 

distribution around the edge of the spot is not clear. This could be due to the 

compound spreading during the matrix application step. The image produced from 

the m/z of the deprotonated molecule is not as clear, indicating reduced sensitivity 

compared to the fragment ion.

Fig. 14 (a) shows a MALDI-MS image generated from a sample with sinapinic acid 

as a matrix with the addition of a layer of gold sputtered onto the sample surface 

following matrix application. Fig. 14 shows that mass resolution was greatly
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improved with the addition of the gold sputter due to a reduction sample’s electric 

potential as a result of charging which occurs during analysis insulating samples 

such as tissues4. Since ions are constantly being drawn off the surface of the 

tissue sample an electric potential is generated on the sample, which affects the 

time of flight of ions causing peaks to broaden. This in turn has resulted 

background noise affecting the images produced, because the broader peaks 

begin to overlap with background noise causing blurring of images. The 

maintenance of the spatial distribution of the original spot applied to the leaf has 

been improved in the image generated by the fragment ion of m/z 291.03 (Fig. 14 

b.) although poor sensitivity is observed with the deprotonated molecule of m/z

338.03 (Fig.14 c.).

Fig. 15 shows MALDI-MSI generated using 9-aminoacridine (9-AA) as a matrix. 

Fig. 15 (a) shows the image of the distribution of the deprotonated [M-H]' ion of 9- 

AA (m/z 193). The 9-AA coverage is more homogenous and present at a greater 

intensity than sinapinic acid. 9-AA is a moderately strong base in contrast to 

traditional MALDI matrices which are acidic in nature, 9-AA’s ability to readily 

accept protons makes it a very effective matrix in negative ion mode6. One of the 

reasons for this is due to the application of the matrix using the gravity feed airgun 

being easier for the operator to achieve because the bright yellow colour makes an 

even coverage more apparent to the naked eye. Fig. 15 (b) the fragment ion (m/z

291.03) and (Fig. 15 c) the deprotonated molecule (m/z 338.03), are of much 

greater intensity because 9-AA improves the sensitivity for the detection of both 

the fragment ion and the deprotonated molecule of mesotrione. The spatial 

integrity of the original spot location also is retained.
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Fig. 16 shows MALDI-MSI generated from a sample with 9-AA as a matrix with the 

addition of a layer of sputtered gold. During transportation of the sample seen in 

Fig. 16 the coverage of the 9-AA became disrupted because an area of the matrix 

and the gold flaked away from the sample. This can be seen at the top middle 

section of the sample on the image generated by the deprotonated molecule of 9- 

aminoacridine (Fig. 16 a). This in turn affected the images produced for the 

fragment ion and deprotonated molecule of mesotrione (Fig. 16 b and Fig. 16 c) 

respectively. Again for both the images generated from the fragment ion mass 

and the deprotonated molecule the intensity has been greatly improved over that 

observed with sinapinic acid. The spatial integrity of the spot’s original location 

has also been improved and is the best observed from this comparison experiment, 

with the image spots appearing smoother and the edges of the spot more clearly 

defined with exception of the area where the matrix and gold flaked away. This is 

since mass resolution has been greatly improved by the addition of the gold 

sputter coating. As a result of the significant increase in peak resolution the 

effects of background noise have also been reduced and the sensitivity for the 

mesotrione fragment ion (Fig. 16 b. m/z 291.03) and deprotonated molecule 

(Fig.16 c. m/z 338.03) have also been improved.
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a.) (b.) (c.)

Fig. 13 MALDI-MSI of mesotrione, direct analysis images of sinapinic acid coverage (a m/z 

223.06 red outline indicates leaf tissue and spot location), a mesotrione fragment ion (b m/z 

291.03 red outline indicates leaf tissue and spot location) and the deprotonated molecule of 

mesotrione (c m/z 338.03).

1.51x10'

7.56x10|

(a.) (b.) (c.)

Fig. 14 MALDI-MSI of mesotrione, direct analysis images of sinapinic acid and gold sputter 

coating coverage (a m/z 223.06 red outline indicates leaf tissue and spot location), a 

mesotrione fragment ion (b m/z 291.03) and the deprotonated molecule of mesotrione (c m/z

338.03).

91



(a.) (b.) (c.)

Fig. 15 MALDI-MSI of mesotrione, direct analysis images of 9- aminoacridine coverage (a.

m/z 193.08 red outline indicates leaf tissue and spot location), a mesotrione fragment ion (b.

m/z 291.03) and the deprotonated molecule of mesotrione (c. m/z 338.03).

Area where matrix 
and gold flaked away

(a.) (b.) (c.)

Fig. 16 MALDI-MSI of mesotrione, direct analysis images of 9- aminoacridine and gold 

sputter coating coverage (a. m/z 193.08 red outline indicates leaf tissue and spot location), a 

mesotrione fragment ion (b. m/z 291.03) and the deprotonated molecule of mesotrione (c. 

m/z 338.03).
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2.3.5 Direct MALDI imaging analysis of mesotrione on plant tissue - 
examination of the absorption of mesotrione using cell stripping

Fig. 17 shows the MALDI-MS images generated as a control, 2x 2pL spots were 

pipetted onto the leaf surface and left just long enough to dry before the leaf was 

removed and prepared for tape cell stripping. Fig. 18 shows MALDI-MSI 

generated from a sample 1 hour following application of the compound. Fig. 19 

shows an optical microscope image of the cells removed by the tape strip. The 

area on the left of this image shows a greater density of cells because a number of 

layers had been removed. Fig. 20 shows the MALDI-MS images generated from a 

sample 2 hours following application.
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(a.) (b.) (c.)

Fig- 17 MALDI-MSI of 0 hour sample showing matrix coverage (a. m/z 193.08 red outline 

indicates leaf tissue and spot location), a mesotrione fragment ion (b. m/z 291.03) and 

mesotrione’s deprotonated molecule (c. m/z 338.03).

1.36x1 O'*

6.81x103

(a.) (b.) (c.)

Fig. 18 MALDI-MS11 hour sample showing matrix coverage (a. m/z 193.08 red outline 

indicates leaf tissue and spot location), a mesotrione fragment ion (b. m/z 291.03) and the 

deprotonated molecule of mesotrione (c. m/z 338.03).
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(a.) (b.) (c.)

Fig. 19 MALDI-MSI of 2 hour sample showing matrix coverage (a. m/z 193.08 red outline 

indicates leaf tissue and spot location), a mesotrione fragment ion (b. m/z 291.03) and the 

deprotonated molecule of mesotrione (c. m/z 338.03).

Area where 
no cells 
have been 
removed

Removed
cells

Fig. 20 Optical microscope image shows d-squame strip underside of the spot area 

removed from the leaf surface.

Fig. 17 shows that both the image from the mesotrione fragment ion (Fig. 17 b.) 

and the deprotonated molecule (Fig. 17 c.) show that the compound has
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penetrated through the waxy cuticle layer. This indicates that compound has been 

absorbed during the drying period whilst still in the solution phase.

Fig. 18 shows the fragment ion at m/z 291.03 (Fig. 18 b.) and the deprotonated 

molecule at m/z 338.03 (Fig. 18c.) yield high signal intensity and that good spatial 

integrity has been retained. Since the localisation of the spot shape is preserved 

the compound has moved into the tissue in the region where it was originally 

applied and has not diffused into surrounding tissue by a significant amount 1 hour 

after application.

In this instance the removal of several layers of cells with the d-squame strip was 

clear to the naked eye so further examination was undertaken using the optical 

microscope (Fig. 20).

Fig. 19 shows both the fragment ion at m/z 291.03 (Fig. 19 b.) and the 

deprotonated molecule at m/z 338.03 (Fig. 19 c.) are clearly visible at high 

intensity, indicated by the dark areas observed in the images. The spatial 

distribution of the compound suggests mesotrione has started to diffuse laterally 

into the surrounding leaf tissue as it is translocating towards the phloem.

Fig. 20 shows an optical microscope image of the cells removed by the tape strip. 

On the area on the right side, just the waxy cuticle layer has been removed. This 

corresponds with the MALDI-MS image observed with the fragment and 

deprotonated molecule (Fig. 18 (b.) and (c.) respectively). The fragment ion can 

be seen in areas where several layers of cells have been removed providing 

evidence that mesotrione has penetrated into the tissue below the surface cells
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into the underlying palisade mesophyll layer. Considerable care needs to be taken 

when performing the cell stripping method because the removal of several layers 

as opposed to just the surface layer could result in false negative results.

2.3.6 Direct MALDI imaging analysis of mesotrione in leaf veins after 
foliar absorption

Control result

Fig. 21 shows MALDI-MS images generated from a small section of leaf vein 

tissue with 1 pL of a 2.5 mg/mL mesotrione in 50/50 acetone/0.1% Tween® 

solution pipetted onto it.

(a.) (b.) (c.)

Fig. 21 MALDI-MSI of vein tissue disruption control experiment showing matrix coverage (a. 

m/z 193.08 red outline indicates plant tissue location), a mesotrione fragment ion (b. m/z

291.03) and the deprotonated molecule of mesotrione (c. m/z 338.03).

The solution was left to dry and the sample was freeze dried before matrix 

application. The images generated from both the fragment ion mass (Fig. 21 b.) 

and deprotonated molecule (Fig. 21 c.) were clearly visible in the top right region 

of the images although they were at a much lower intensity than results for the cell
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stripping experiment, indicating there is some suppression occurring from 

compounds present in the leaf vein tissue.

5 Hours following application

Fig. 22 shows MALDI-MS images generated from a leaf midrib vein leaf tissue 5 

hours after mesotrione was applied to the apex of the leaf.

2.47x104

1.24x10*

(a.) (b.) (c.)

Fig. 22 MALDI-MSI of vein tissue disruption experiment showing matrix coverage (a. m/z 

193.08 red outline indicates plant tissue location), a mesotrione fragment ion (b. m/z 291.03) 

and the deprotonated molecule of mesotrione (c. m/z 338.03). 5 hours following application 

of mesotrione to the leaf tip.

The signals arising from the fragment ion m/z at 291.03 (Fig. 22 b.) and the 

deprotonated molecule at m/z 338.03 (Fig. 22 c.) appear to be located on the 

conductive tape rather than in the plant veins tissue (top right of the image) 

despite the normalisation of this image. This could be due to solvent spreading 

during matrix application and a suppression effect from other substances within 

the plant system. The obtained sensitivity was low despite the use of 9-AA and a 

layer of sputtered gold. These two images, (Fig. 22 b.) and (Fig. 22 c.), suggest 

that solvent spreading has occurred during the matrix application step and
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mesotrione has not remained localised in the tissue. Due to the lack of signal 

present in the sample the method was repeated with the mesotrione dosed leaf 

being left on the plant for longer time periods allowing for more mesotrione to 

become translocated.

20 Hours following application

Fig. 23 shows MALDI-MS images generated from a sample which was left for a 

time period of 20 hours.

1.64x10'

(a.) (b.) (c.)

Fig. 23 MALDI-MSI of vein tissue disruption experiment showing matrix coverage (a. m/z 

193.08 red outline indicates plant tissue location), a mesotrione fragment ion (b. m/z 291.03) 

and the deprotonated molecule of mesotrione (c. m/z 338.03). 20 hours following application 

of mesotrione to the leaf tip

Both the fragment ion at m/z 291.03 (Fig. 23 b.) and deprotonated molecule at m/z

338.03 (Fig. 23 c.) are visible within the tissue. These images were again 

generated from peaks with low signal intensity. For this reason the method was 

repeated using a more concentrated solution (5.5 mg/mL mesotrione 50:50 

acetone :0.1% Tween®).
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20 Hours following application result with 5.5 mg/mL solution

Fig. 24 shows MALDI-MSI generated from a repeat of the previous method with 

the more concentrated mesotrione solution.

Sample leaf vein tissue

Sample leaf vein tissue

Region were mesotrione 
was applied

(a.) (b.) (c.)

Fig. 24 MALDI-MS image from a vein disruption experiment showing matrix coverage (a. m/z 

193.08), a mesotrione fragment ion (b. m/z 291.03) and the deprotonated molecule of 

mesotrione (c. m/z 338.03). 20 hours following application to the leaf tip. Optical image 

above to indicate sample orientation.

The images shown are taken from a sample which contains 2 pieces of leaf vein 

material. The top section corresponds to a region of non-inoculated leaf vein 

tissue taken from further down the vein of the leaf, away from the inoculation 

region. The bottom section corresponds to the vein tissue taken directly from the 

mesotrione inoculated leaf tip. Mesotrione can be seen clearly in both the image 

of the fragment ion m/z 291.03 (Fig. 24 b.) and the deprotonated molecule m/z

338.03 (Fig. 24 c.). It is distributed evenly throughout the majority of the tissue
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and is present in higher abundance in other areas indicated by the darker regions 

on the sample tissue.

Improved mesotrione data using image normalization

It has been proposed that normalisation can improve image quality for MALDI-MSI 

data7. This often leads to clearer visualisation of the compound of interest. During 

the image sample preparation process a number of variables are introduced which 

if ignored may result in a misleading representation of the sample. One of these 

variables, over which there is little control, is the homogeneity of matrix coverage 

using the airspray deposition method. In order to overcome this, tissue images 

may be normalised against the matrix coverage. The exclusion of this step during 

image processing may lead to areas which appear to have a low abundance of 

analyte as a result of poor matrix coverage. Similarly areas which appear to have 

a particularly high abundance of analyte may be a result of excess matrix 

coverage in that area.

Sample leaf vein tissue

Region were mesotrione 
was applied

(a.) (b.) (c.)

Fig. 25 MALDI-MS image from a vein disruption experiment showing matrix coverage (a. m/z 

194.08), the normalised image of a mesotrione fragment ion (b. m/z 291.03) and the
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deprotonated molecule of mesotrione (c. m/z 338.03). 20 hours following application to the 

leaf tip

Fig. 25 shows images which display the effects of matrix normalisation of the C13 

isotope of 9-AA (m/z 194.08) on the appearance of analyte abundance within 

samples. Since the intensity of the C13 isotope is still proportional to the presence 

of 9-AA coverage across the sample but with a lower signal the ratio produced is 

much larger than the ratio produced from the protonated ion of 9-aminoacridine 

(m/z 193.08). This gives a better dynamic range across the gamut of colours that 

indicate the ion intensity with which to identify the distribution of mesotrione above 

the background noise in the image. From the images of the deprotonated matrix 

ion at m/z 194.08 (Fig. 25 a.), it can be seen that the matrix ion intensity in the 

inoculated leaf tip appears to be higher than that of the non-inoculated leaf tip. 

When the distribution of mesotrione as both the fragment ion and the deprotonated 

molecule is generated without normalisation, it appears that there is a higher 

abundance of mesotrione in the vein taken from the leaf tip compared to the vein 

taken from further down the plant. This is as would be expected, however 

because the matrix intensity is also elevated in the leaf tip section, we cannot 

definitively say that the apparent elevated abundance in the leaf tip is not simply 

an effect of increased matrix abundance and therefore enhanced ionisation of 

mesotrione in this region. For this reason it is important to verify this result by 

taking into account the variation in matrix coverage. As can be seen in the 

normalised images, (Fig. 25 b.) and (Fig. 25 c.), this is not the case. Even after 

the variability of the matrix coverage is removed through normalisation, the 

abundance of mesotrione remains elevated in the leaf tip region compared to the 

section taken from further down the leaf. This form of processing, using C 13



isotopes of the matrix ions can also be seen to reduce background interference, 

leading to the generation of higher quality images as can be seen in images (Fig. 

25 b.) and (Fig. 25 c.).

2.3.7 Effect of laser fluence for the detection of mesotrione

In order to assess the effect of laser energy on the extent of mesotrione 

fragmentation a range of standard dilutions was used to generate spectra at two 

different laser powers. The ion counts recorded, shown in table 1, were used to 

create graphs of total ion count data against concentration (Fig. 26 and 28) and 

analyte to matrix ratios against concentration (Fig. 27 and 29).

Laser Power 2603 Cone. 291 338 Matrix
Ratio
291

Ratio
338

0.5 2106 1457.2 61666.7 0.03416 0.023607

5 11333.3 11266.7 59000 0.1918 0.192178

12.5 29000 31000 61666.7 0.47036 0.50246

25 22666.7 25333.3 54666.7 0.416126 0.4667
50 24333.3 13000 32666.7 0.6957 0.43809

Cone. 291 338 Matrix
Ratio
291

Ratio
338

Laser Power 2728 0.5 1301.7 1974.7 43000 0.03027 0.04584
5 11626.4 6547.7 42000 0.26126 0.133806

12.5 37000 14333.3 63666.7 0.58065 0.225353
25 30666.7 16964.5 42333.3 0.70775 0.3752
50 55000 42666.7 56000 0.97674 0.74127

Table 1 Ion intensities and ion ratios from analysis of varying concentrations 

of mesotrione at 2 laser powers.

The counts observed in table 1 show clear differences in the total number of ions 

produced and the extent of mesotrione fragmentation between the two laser
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powers because the number of ions generated is greatly varied. This becomes 

more apparent when the analyte/matrix ratio is plotted against mesotrione 

concentrations.

Laser Power 2603

■ 291

■ 338

■ Matrix

Fig. 26 Ion intensity against concentration of mesotrione for matrix (m/z 193.08), fragment 

ion (m/z 291.03) and deprotonated molecule (m/z 338.03) at 2603 laser power vs 

concentration of mesotrione.
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Fig. 27 Ion intensity against concentration of mesotrione for matrix (m/z 193.08), fragment 

ion (m/z 291.03) and deprotonated molecule (m/z 338.03) at 2728 laser power vs 

concentration of mesotrione.
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The graph in Fig. 26 is of the ion counts for the deprotonated molecule, fragment 

ion and deprotonated matrix ion plotted against mesotrione concentration in 

mg/mL at the lower laser power of 2603. At this power we can see that the 

intensity of the deprotonated molecule is roughly equal to that that of the fragment 

ion. This is as we would expect due to less fragmentation occurring at the lower 

laser energy. As the concentration of mesotrione increases the signal for the 

matrix ion (m/z 193.08) decreases, this is evidence of analyte/matrix suppression 

as the number of matrix primary ions is depleted with the increasesd concentration 

of analyte.

The graph in Fig. 27 is of the ion count for the deprotonated molecule, fragment 

ion and deprotonated matrix ion plotted against mesotrione concentration at the 

higher laser power of 2728. As the laser fluence is increased the number of 

primary ions present increases so the analyte/matrix suppression effect is no 

longer observed with increasing analyte concentration.
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Laser power 2603
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Fig. 28 Analyte to matrix intensity ratio against concentration for the deprotonated molecule 

(m/z 338.03) in green and fragment ion (m/z 291.03) in blue at 2603 laser power.
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Fig. 29 Analyte to matrix intensity ratio against concentration of mesotrione for the 

deprotonated molecule (m/z 338.03) in green and fragment ion (m/z 291.03) in blue at 2728 

laser power.
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The graph in Fig. 28 shows the analyte/matrix intensity ratio of the deprotonated 

molecule and the fragment ion plotted against the mesotrione concentration at the 

lower laser power of 2603. The abundance of the deprotonated molecule is 

slightly higher than that of the fragment ion at lower concentrations of mesotrione 

(up to 0.0125 mg/mL). At 0.05 mg/mL the abundance of the fragment ion is higher 

than that of the deprotonated molecule although there are large error bars at this 

concentration for both points. The data suggests that at higher concentrations 

there is a saturation effect since a linear line of best fit is not suitable. For this 

reason a line of best fit has been fitted using the Michaelis-Menten equation to 

account for the saturation observed. This effect relates to MALDI ionisation theory 

of primary ion formation as the low laser fluence results in limited number of 

primary matrix ions discussed in section 1.5.

The graph in Fig. 29 shows the analyte/matrix intensity ratio of the deprotonated 

molecule and the fragment ion plotted against the mesotrione concentration at the 

higher laser power of 2728. With the increase in laser power the degree of 

fragmentation of mesotrione increases as the number of counts observed for the 

fragment ion mass, which becomes greater than that observed for the 

deprotonated molecule. The increased level of fragmentation can be clearly seen 

with the higher abundance of the fragment ion mass at m/z 291.03. The line of 

best fit for the deprotonated molecule follows a linear response where as the line 

of best fit for the fragment ion suggesting a saturation effect is occurring. 

Therefore the data was subjected to the Michaelis Menten equation which takes in 

to account the saturation effect in order to generate the most suitable line of best 

fit for this data. This effect appears to be more complicated than saturation due
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suppression effects or limited number of primary ions due to laser fluence, 

because the deprotonated molecule still follows a linear curve. This effect maybe 

due to the fragment ion arising as a result of laser desorption ionisation and 

matrix-assisted laser desorption ionisation.

From the results shown here, it is apparent that the best sensitivity for analysis of 

mesotrione is obtained at higher laser energy through observation of the fragment 

ion. The ion intensities are overall much greater than at the lower laser energy 

because the higher laser fluence provides a higher concentration of matrix primary 

ions. It would also appear that during the ionisation of mesotrione the 

deprotonated ion becomes unstable and the internal energy causes the 

deprotonated molecule to fragment. Since the energy required to cause this 

fragmentation is relatively low, with regards to the laser power required to produce 

acceptable sensitivity this fragmentation is unavoidable.

During image analysis many molecules are simultaneously competing for 

ionization at each acquisition point across the sample. The complex nature of the 

sample composition may therefore lead to analyte/analyte suppression if the 

ionisation efficiency of an endogenous compound within the plant tissue is greater 

than that of the analyte of interest. For this reason concentration levels required to 

generate signal by conventional MALDI analysis can not necessarily be carried 

over to direct tissue image analysis. An experiment was carried out to assess how 

analyte suppression affects the detection for mesotrione (2.2.8). The solutions 

used in the study of the fragmentation of mesotrione, described above were
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employed but with the addition of a plant extract solution, to reflect the complexity 

of endogenous compounds present within sample tissue.

2.3.8 Assessment of suppression effects on the detection of 
mesotrione using plant extract

Table 2 shows the ion counts for the fragment ion at m/z 291.03, the deprotonated 

molecule at m/z 338.03 and the matrix at m/z 193.08 for the different 

concentrations with the addition of the blank solution and addition of a plant extract 

solution.

Mesotrione with 
the addition of a 
blank

Cone. 291 338 Matrix Ratio 291 Ratio 338

0.5 2788.23 1084.9 53333.3 0.053358 0.021325

5 9075.33 7812.4 . 51000 0.17656 0.14909

12.5 20666.7 17333.3 50333.33 0.17037 0.1555

25 34333.3 27000 46666.7 0.73058 0.5766

50 49666.7 35666.7 38666.7 1.30391 0.9445

Mesotrione with 
the addition of 
extract

Cone. 291 338 Matrix Ratio 291 Ratio 338

0.5 532.17 428.3 10433.3 0.051539 0.04283

5 1661.6 1116.4 11232.3 0.14744 0.0997166

12.5 3249.6 1701.9 10200 0.32034 0.16578

25 5476.7 2757.4 12000 0.4566 0.22959

50 6162.73 3806.4 10030 0.6144 0.3795

Table 2 Ion intensities and ion ratios from analysis of varying concentrations of mesotrione 

with the addition of a blank solution and a plant extract solution.
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The ion counts and matrix to analyte ratios were plotted against mesotrione 

concentration to produce a number of graphs demonstrating the effect of the 

endogenous compound present in the plant tissue on the ionisation of mesotrione.

Fig. 29 shows the ion counts of the deprotonated molecule, fragment ion and 

deprotonated matrix ion plotted against mesotrione concentration with the addition 

of a blank to the standards.

The graph in Fig. 30 is of the total ion counts of the deprotonated molecule, 

fragment ion and deprotonated matrix ion plotted against mesotrione concentration 

with the addition of the plant extract solution. The signals for the fragment ion, the 

deprotonated molecule and the matrix have been significantly reduced when 

compared to Fig. 29.

Total ion count with addition of blank

■ 70! 

Q338

■ Matrix

Fig. 29 Ion intensity against 

concentration of mesotrione for matrix 

(m/z 193.08), fragment ion (m/z 291.03) 

and deprotonated molecule (m/z 338.03) 

with the addition of the blank solution.
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Fig. 30 Ion intensity against concentration 

of mesotrione for matrix (m/z 193.08), 

fragment ion (m/z 291.03) and 

deprotonated molecule (m/z 338.03) with 

the addition of the extract solution.
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The reduced signal could be a result of the plant compounds affecting the crystal 

formation of the matrix and thus the co-crystallisation of the analyte with the 

matrix. As this would affect the signal for the matrix proportionally the analyte to 

matrix ratio would cancel out this effect.

The graph in Fig. 31 shows the analyte/matrix ratio of the fragment ion (m/z

291.03) plotted against the mesotrione standard concentration with the addition of 

a blank to the solution. The analyte/matrix ratio shows good linear response to the 

increase in concentration.

The graph in Fig. 32 shows the analyte/matrix ratio of the deprotonated molecule 

(m/z 338.03) plotted against the mesotrione standard concentration with the 

addition of a blank to the solution. The analyte/matrix ratio against concentration 

shows good linear response to the increase in concentration.
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Fig. 31 Analyte to matrix intensity ratio 

against concentration of mesotrione for the 

fragment ion (m/z 291.03) with the addition of 

the blank solution.
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Fig. 33 Analyte to matrix intensity ratio 

against concentration of mesotrione for the 

fragment ion (m/z 291.03) with the addition of 

the extract solution.
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Fig. 32 Analyte to matrix intensity ratio 

against concentration of mesotrione for 

the deprotonated molecule (m/z 338.03) 

with the addition of the blank solution.
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Fig. 34 Analyte to matrix intensity ratio 

against concentration of mesotrione for the 

deprotonated molecule (m/z 338.03) with the 

addition of the extract solution.

The graph in Fig. 33 shows the matrix/analyte ratio of the fragment ion (m/z

291.03) plotted against the mesotrione concentration with the addition of the plant 

extract solution. This shows that the signal for the fragment ion has been



significantly reduced compared to Fig. 31 indicating a suppression effect is being 

observed from endogenous materials within the plant system.

The graph in Fig. 34 shows the analyte/matrix ratio of the deprotonated molecule 

(m/z 338.03) plotted against the mesotrione concentration with the addition of the 

plant extract solution. This also shows that the signal has been significantly 

reduced compared to Fig. 32 and again is displaying indicating a suppression 

effect is being observed from endogenous materials within the plant system. Both 

graphs (Fig. 33 and 34) a displaying evidence of analyte-analyte suppression 

(discussed in section 1.6) because the line of best fit is no longer following a linear 

response as the concentration of mesotrione increases.
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Fig. 35 Total ion intensities for the 

fragment ion (m/z 291.03) with the 

addition of the extract (dark blue points) 

and the blank solution (light blue points).

Fig. 36 Total ion intensities for 

deprotonated molecule (m/z 338.03) with 

the addition of the extract (dark green 

points) and the blank solution (light 

green points).

The graph in Fig. 35 shows total ion counts for the mesotrione fragment ion from 

the results obtained with the addition of a blank compared to the addition of the 

extract solution. The graph in Fig. 36 shows total ion counts for the mesotrione
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deprotonated molecule from the results obtained with the addition of a blank 

compared to the addition of the extract solution. These graphs clearly show the 

extent of the effect the addition of endogenous materials has on the ionisation of 

mesotrione. This graph clearly shows the extent of the effect the addition of 

endogenous materials has on the ionisation of mesotrione.

2.4 Discussion

MALDI-MSI provided us with clear images for the location of mesotrione following 

application of the compound to the surface of soya bean leaves once the issues of 

sensitivity and mass resolution had been resolved. Sinapinic acid yields good 

sensitivity when used as a matrix for the analysis of mesotrione by conventional 

MALDI-MS. However, due to its large crystalline structure and the nature of plant 

tissue, a good even and homogenous distribution of sinapinic acid was difficult to 

achieve using air spray deposition. Therefore co-crystallisation between the 

matrix and mesotrione was limited, affecting the sensitivity of mesotrione with 

direct tissue analysis. By following the methodology described in a paper 

published using 9-aminoacridine as a matrix for negative ion mode MALDI-MS 5 

the sensitivity for direct tissue analysis of mesotrione was significantly improved 

both for the fragment ion mass and the deprotonated molecule mass. This 

allowed for the visualization of mesotrione penetrating the waxy cuticle layer in the 

time taken for a 5pL drop to dry, whilst sinapinic acid could not produce enough 

sensitivity 6 hours following application. This method generated much clearer 

images than those from direct analysis of mesotrione at 0, 5, 48 and 72 hours on 

the surface of soya reported by Mullen e t a /9.

114



Eliminating the charging effect observed with the Voyager DE-PRO MALDI-TOF- 

MS by using gold sputter coating played a crucial part in obtaining good quality 

images. It significantly improved the mass spectral peak resolution, which in turn 

improved sensitivity along with decreasing the effect of background noise 

interfering with the image generated.

The effect of the laser energy on the fragmentation of mesotrione was very clear; 

the higher the laser energy the greater the fragmentation. Analyte/matrix 

suppression was also observed because the line of best fit for the analyte against 

matrix ratio generated by the fragment ion (m/z 291.03) and the deprotonated 

molecule at the lower laser power was no longer linear with increasing 

concentration. This saturation effect relates to the MALDI ionisation theory 

discussed in section 1.5 and 1.6 as the number of primary matrix ions available 

generated by the laser fluence is limited preventing the formation of analyte ions 

through secondary reactions. The effect observed with increased laser fluence on 

mesotrione deprotonated molecule (m/z 338.03) resulted in a linear line of best fit 

as sufficient primary ions were present. The line of best fit for the fragment ion 

(m/z 291.03) was generated using the Michaelis Menten equation due to a 

saturation effect at high concentration. As the line of best fit for the deprotonated 

molecule was linear the effect observed with the deprotonated molecule maybe a 

arising from laser desorption ionisation and matrix-assisted laser desorption 

ionisation of mesotrione.
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Since the mesotrione experiments required direct tissue analysis, the variation in 

laser energies was limited because direct tissue analysis required more laser 

energy to ionise the analyte of interest. This is due to endogenous compounds 

also absorbing the energy of the laser and analyte-analyte suppression effects 

revisited below. A low laser power would not produce sufficient sensitivity for 

analysis of the deprotonated molecule. Using a higher laser power and images 

generated from the fragment ion mass (m/z 291.03) exhibited the best 

representation of the mesotrione distribution. The extent to which the laser power 

could be raised was limited because fragmentation of endogenous compound 

results in increased background noise interference, which had a significant 

detrimental effect on the images produced.

Following the results obtained from conventional MALDI analysis of mesotrione 

with the addition of a plant tissue extract solution. The visual effect the plant 

extract had on the matrix crystal formation was clearly visible to the human eye 

and, as would be expected, this affected the total ion counts obtained for both the 

analyte and the matrix, resulting in a significant reduction in the ion intensities 

observed. Calculating the analyte to matrix ratio should take this factor into 

account and it would be expected that a similar ratio between the results would be 

obtained with the addition of a blank solution as that obtained with the addition of 

the extract solution. The graphs generated (Fig. 29 compared to Fig. 30 and Fig. 

35 compared to Fig. 36) show that this was not the case and compounds present 

within the plant tissue reduce the sensitivity toward mesotrione. For these reasons, 

efficient determination of the distribution of mesotrione within the plant transport 

tissues of the leaf veins cannot be achieved at low concentrations whilst its
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presence within the tissue at high concentrations can be determined. Mesotrione 

cannot be observed in the plant’s transport system from direct tissue analysis due 

to analyte-analyte suppression effects (discussed in section 1.6) caused by 

endogenous compounds present within the plant tissue having higher 

deprotonation efficiency than mesotrione.

2.5 Conclusions

Initial experiments for the analysis of azoxystrobin using an indirect MALDI-MSI 

method by blotting the compound onto a cellulose membrane provided data with 

excellent sensitivity with spatial distribution of the compound’s location being 

preserved. The direct tissue MALDI-MSI method data show that detection of 

agrochemicals from the upper epidermis layer following removal of the cuticle was 

achievable with adequate sensitivity once a more suitable matrix was obtained and 

the problem of sample charging was prevented with gold sputter coating. 

Attempts to observe translocation of mesotrione in the midrib vein of a leaf 

following application to the leaf tip resulted in low signal for both the fragment ion 

(m/z 291.03) and the deprotonated molecule (m/z 338.03). This signal 

suppression was attributed to fragmentation of mesotrione reducing the sensitivity 

towards individual ions, analyte-matrix and analyte-analyte suppression effects 

preventing suitable sensitivity towards mesotrione in order to observe translocation 

within the plant transport systems following foliar application. For these reasons it 

was decided to introduce nicosulfuron and fluazifop-p butyl to translocation 

experiments and assess IR lasers as an alternative ionisation method.
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Chapter Three: Detection of Translocated Agrochemicals 

in Plant Stems
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3.1 Introduction

3.1.1 Translocation in the xylem and phloem

There are two transport systems in vascular plants, the xylem and phloem. The 

xylem is largely comprised of non living cells which have a specialized anatomy. 

This enables them to transport large quantities of water with great efficiency. The 

two types of tracheary elements in the xylem are tracheids and vessel elements. 

As these cell types mature, production of thick lignified cell walls and subsequent 

cell death results in the loss of the cytoplasm and all of its contents. This results in 

hollow tubes through which water can flow with relatively little resistance been left 

behind 1.

The phloem is the principal food conducting tissue of vascular tissue and is usually 

spatially associated with the xylem. The basic components of the phloem are the 

sieve tubes or sieve elements and companion cells. Sieve tubes are made of 

sieve cells joined end to end in the same way that xylem cells join to make xylem 

vessels. The sieve tubes are partially closed at intervals by crossed walled 

regions called sieve plates which contain many holes allowing the contents of the 

sieve tubes to pass through 2.

Each sieve element is associated with a companion cell (Fig. 1). The function of 

the companion cell is not clear but as the cell possesses a dense cytosol and 

numerous mitochondria it is assumed they play a metabolic role in maintaining 

phloem transport.
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in either direction

Fig. 1 Phloem structure 2.

Water is the most abundant substance in the phloem acting as a solvent for 

translocated solutes including carbohydrates, proteins, amino acids, hormones 

and some inorganic ions. Sucrose carbohydrates are the most concentrated and 

significant solutes in the phloem sap, reaching concentrations of 0.3 to 0.9 M 3. 

Results from analysis of the phloem sap indicate that sugars are translocated in 

the non-reducing form because reducing sugars such as glucose and fructose with 

exposed aldehyde or ketone groups are more reactive than non-reducing sugars 

such as sucrose 3. Nitrogen is found in the phloem mainly as amides, amino acids 

and, glutamine and asparagine and their respective amides. The concentrations
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of amino acids and organic acids reported varies widely even for the same species, 

however their concentrations are usually low compared to carbohydrate 

concentrations. Inorganic solutes which move within the phloem include 

potassium, magnesium, phosphate and chloride.

The mechanism of phloem translocation is best explained by the pressure-flow 

model which agrees with most of the structural and experimental data available. 

The pressure flow model was first put forward by E. Munch in 1926. The theory 

involves a mass flow or bulk flow of the phloem sieve tube contents been pushed 

along by pressure difference. The pressure difference is created by loading and 

unloading of the phloem sieve tubes 2. The minor veins in the leaf generally 

contain two to three times more sucrose than surrounding mesophyll tissue 

suggesting sucrose is actively pumped against its concentration gradient. This 

phloem loading requires metabolic energy because sucrose is moved against its 

concentration gradient, this movement is also selective because sucrose is loaded 

and glucose and fructose are not. Unloading of the phloem occurs actively in 

regions of metabolic activity or storage. Since the regions are usually the growing 

tips of the leaves or roots where the solutes are unloaded, this unloading reduces 

local pressure in the phloem so phloem sap flows in that direction explaining why 

the direction of the flow can change or flow can occur in two directions 

simultaneously. Since diffusion is far too slow to account for the velocities of the 

phloem movement the movement is due to pressure gradients created by phloem 

loading which leads to a low (negative) solute potential (^s) resulting in a steep 

drop in the water potential (^w) in response water enters the sieve elements and 

increases the turgor pressure (% ). As the contents of the phloem are unloaded in
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areas of storage or metabolic activity the lower sugar concentration results in a 

higher solute potential, because the water potential rises above that of the xylem, 

water leaves the phloem, reducing the turgor pressure in this region thus creating 

the pressure gradient3.

Xylem vessel elements Phloem sieve elements Companion cell
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and a lower 
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Sugar at the source, 
illustrated here by sucrose 
(red spheres) is actively 
loaded into the sieve 
element-companion cell 
complex.

At the sink, sugars are 
unloaded.

Fig. 2 Translocation in the phloem pressure-flow model, possible values for solute potential

(^ s), water potential (M^) and turgor pressure (4^) in the xylem and phloem.

If the sieve plates were not present (Fig. 1) in the sieve elements the pressure 

variation between the loading and unloading regions would quickly equilibrate (Fig. 

2). The presence of the sieve plates greatly increases the resistance along the 

translocation pathway allowing the pressure difference to occur.
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3.1.2 IR-LDI and IR-MALDI with water as a matrix

Following the introduction of MALDI-MS in the mid 1980's 4, the technique has 

almost exclusively been associated with pulsed UV-lasers and, after rapid 

methodological and instrumental development, UV-MALDI-MS has become a well 

established method for the analysis of a wide range of biomolecules, technical 

polymers5 and large nucleic acids 6. As an alternative to UV-MALDI, infra-red 

matrix-assisted laser desorption/ionisation (IR-MALDI) or infra-red laser desorption 

ionisation (IR-LDI) has been used in the study of small molecules, carbohydrates, 

flavonoids, nucleic acids and proteins 5‘12.

The desorption and ionisation process in IR-MALDI-MS is a result of the transfer of 

energy to a solid sample using IR wavelengths through vibrational energy 

absorption 7, either O-H or N-H stretch vibrations of the molecules are excited at 

wavelengths around 3 pm allowing for ice to be used as a matrix 8. Typically 

pulsed erbium solid-state lasers, Er:YAG (wavelength = 2.94 pm), or Er:YSGG 

(wavelength = 2.79 pm), with pulse durations between 50 and 100 ns, or 

wavelength tuneable optical parametric oscillator (OPO) laser systems with pulse 

durations of 5-10 ns can commonly used for IR-MALDI 9. The first results for IR- 

MALDI were reported in 1990 by Overberg et al. using an Er:YAG laser, emission 

wavelength of 2.94 pm and a pulse duration of 200 ns for the analysis of large 

biomolecules 10. IR-MALDI has been demonstrated to be advantageous whenever 

particularly large and/or labile compounds have been analysed which are not 

amenable to UV-MALDI because IR-MALDI is regarded as a softer ionisation 

technique resulting in a low degree of metastable ion fragmentation. Therefore
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intact proteins ions with molecular weights exceeding 500kDa have been observed

11

Results for the analysis of plant material with IR-MALDI previously reported have 

been concerned with the detection of endogenous metabolites. Dreisewerd e ta? 2 

reported various small molecules including carbohydrates, phospholipids, 

triglycerides and flavonoids from a range of sample material including, seeds, 

coconuts and strawberries. Atmospheric pressure IR-MALDI has also been used 

for plant metabolomics studies by Li et a l 13. Analysis of plant organs including 

flowers, ovaries, aggregate fruits, fruits, leaves, tubers, bulbs and seeds from 

various species yielded metabolomic profiles of amino acids, sugars, lipids, 

reactants and products of nucleotide, oligosaccharide and flavonoid biosynthesis. 

Since IR-MALDI and IR-LDI produce ions via different mechanisms to UV-MALDI 

the potential to observe ions relating to the agrochemical of interest which cannot 

be observed with UV-MALDI is a possibility. Sensitivity toward the protonated 

molecules may also be improved due to IR lasers providing a softer ionisation 

mechanism.

The aims of the work reported in this chapter are to obtain MALDI-MSI data to 

determine the distribution of agrochemicals in the plant's transport systems 

following uptake via the roots and following foliar absorption.

3.2 Methods

3.2.1 Uptake of azoxystrobin via the roots in soya bean plants

Soya bean plants were germinated and grown in potting compost (B&Q, Sheffield, 

UK) at room temperature on the laboratory bench until the first tri-foliate leaf was
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visible. Each plant was then removed from the soil and washed before being 

introduced to glass vials containing 1/2 strength Hogland's N°2 Basel salt solution 

(Sigma Aldrich, Dorset, UK). The solution was then spiked with azoxystrobin to 

give a concentration of 20 ppm, and the plants were left for 24 hours before a 

further addition of azoxystrobin was made to give a final concentration of 40 ppm. 

The plant was left for another 24 hours before being removed and prepared for 

cryostat (Leica, Milton Keynes, UK) sectioning along the longitudinal axes of the 

root bundle region of the plant and the stem above. Samples were arranged on a 

target plate and imaging analysis was performed using an Applied 

Biosystems/MDS Sciex Q-Star Pulsar I mass spectrometer (Concord, Ontario, 

Canada) fitted with an orthogonal MALDI source and an Nd:YaG laser (A = 355 nm) 

at a laser power of 3.2 pJ and a laser repetition rate of 1000 Hz. Images were 

acquired at 150 pm x 150 pm increments.

3.2.2 Method for encasing stem sections in ice

In order to obtain horizontal sections from the plant stem samples the sample had 

to be encased in a solid support so the sample could be passed over the 

stationary blade and a 30 pm section could be taken within the cryostat instrument, 

without the stem sample becoming dislodged or damaged during this process. To 

prevent any signal suppression deionised water was rapidly frozen around the 

sample via the following method.

The foliage and roots were removed from the plant samples and the stem was 

secured ensuring it was as straight as possible to the bench surface with masking
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tape. The stem length was measured and a desired section cut, approx 1-2 cm in 

length. The ends of the cut section were sealed using 10% cellulose acetate 

(Sigma Aldrich, Dorset, UK) in acetone solution.

The cut stem section was placed in trough made from parafilm, along with a small 

amount of deionised water (2-3 mL), ensuring the stem was submerged in a 

horizontal orientation. The sample in water was then placed into a polystyrene 

box filled with liquid nitrogen. (The sample was orientated to be upright in a 

floatation device (a weighing boat) to avoid losing the sample or the deionised 

water and to allow for slower freezing.) The sample once frozen was placed into a 

petri dish and labelled, then placed in a -80 QC freezer until required.

Desired stem sections (1-2 cm) were taken from regions along the plant stem and 

the freezing process was repeated.

Ice stem samples were trimmed to form a flat edge perpendicular to the orientation 

of the plant stem so that they could be secured to the cryostat (Leica, Milton 

Keynes, UK) stage successfully using Cryo-m-bed embedding compound (Bright 

Instrument Company Ltd, Cambridge, UK).

Once a suitable section was obtained it was attached to pre-frozen double sided 

carbon tape by lightly pressing the tape onto the tissue. The tape had to remain 

frozen to prevent the sample defrosting. Once all desired sections were obtained 

they were transferred to a pre-cooled freeze drier, again ensuring samples remain 

frozen during this step.
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Once samples had been freeze dried they were arranged on a target plate as 

desired before the appropriate matrix was applied using the gravity feed airgun 

(Iwata Media Inc., Portland, OR, USA).

Method for encasing stems in ice before 
sectioning

Specified sections of the stem were cut away from 
the stem and the end sealed with cellulose acetate. 
The stem was then suspended in water in a 
Fashioned piece of parafilm before being floated 
in a weighing boat on liquid nitrogen.

The ice encased stem can then be trimmed 
down to a manageable size and a flat edge 
perpendicular to the stem can be shaved off 
in order to attach the stem to the sample stage

The freeze dried sections can then be 
attached to a MALDI target and matrix 
applied using airspray.

The carbon tape was then attached glass sides 
and placed inside a pre-frozen glass jar before 

being freeze dried.

30pm section of the stem were taken and 
attached to pre-frozen double sided carbon tape

3.2.3 Uptake of azoxystrobin via the roots in sunflower plants

A sunflower plant was germinated and grown in potting compost (B&Q, Sheffield, 

UK) until it had reached a height of 140 mm. The plant was then removed from 

the soil and washed before being introduced into a conical flask containing 1/2 

strength Hogland's N°2 Basel salt solution (Sigma Aldrich, Dorset, UK). The 

solutions were then spiked with azoxystrobin to give a concentration of 20 ppm, 

and the plants were left for 24 hours (on lab bench) before a further addition of 

azoxystrobin was made to give a final concentration of 40 ppm. The plant was left
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for another 24 h before being removed and prepared for cryostat (Leica, Milton 

Keynes, UK) sectioning along the horizontal axes at 10, 50, 90 and 130 mm from 

the root bundle region, using the method for encasing stem sections as described 

in section 3.2.2. Control sections were taken from an undosed plant to be used as 

positive and negative controls. Positive controls were spiked with 1 pL of a 1 

mg/mL solution of azoxystrobin in acetonitrile. Samples were arranged on a target 

plate and the matrix (10 mg/mL a-CHCA 0.1% TFA) was applied using an Iwata 

gravity-fed pneumatic air spray gun (Iwata Media Inc., Portland, OR, USA) by 

passing the compressed air gun over the sample 15 times ensuring the sample 

tissue did not get saturated and even coverage had been achieved.

Analysis was performed using an Applied Biosystems/MDS Sciex Q-Star Pulsar I 

(Concord, Ontario, Canada) fitted with an orthogonal MALDI source and an 

Nd:YaG laser (A = 355 nm) at a laser power of 3.2 pJ and a laser repetition rate of 

1000 Hz . Images were acquired with a spatial resolution of 250 pm x 250 pm.

3.2.4 Uptake of nicosulfuron via the roots (hydroponics experiment)

A Sunflower plant was germinated and grown in multipurpose potting compost 

(B&Q, Sheffield, UK) until it had reached a height of 150 mm. The plant was then 

removed from the soil and washed before being introduced to a conical flask 

containing 1/2 strength Hogland's N°2 Basel salt solution (Sigma Aldrich, Dorset, 

UK). This solution was then spiked with nicosulfuron to give a concentration of 20 

ppm, and the plant was left for 24 hours (on lab bench) before a further addition of 

nicosulfuron was made to give a final concentration of 40 ppm. The plant was left
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for another 24 hours (on lab bench) before being removed and prepared for 

cryostat (Leica, Milton Keynes, UK) sectioning along the horizontal axes at 10 mm, 

30 mm, 50 mm and 140 mm from the root bundle region. Control sections were 

taken from an undosed plant to be used as positive and negative controls, positive 

controls were spiked with 1 pL of a 1 mg/mL solution of nicosulfuron in acetonitrile. 

Samples were arranged on a target plate and the matrix (10 mg/mL a-CHCA 1.0%  

TFA (Sigma Aldrich, Dorset, UK)) was applied using an Iwata gravity-fed 

pneumatic air spray gun (Iwata Media Inc., Portland, OR, USA) by passing the 

compressed air gun over the sample 15 times, ensuring the sample tissue did not 

get saturated and even coverage had been achieved. The appropriate areas were 

then imaged using an Applied Biosystems/MDS Sciex Q-star pulsar I mass 

spectrometer (Concord, Ontario, Canada) fitted with an orthogonal MALDI source 

and an Nd:YaG laser (A = 355 nm) at a laser power of 3.2 pJ and a laser repetition 

rate of 1000 Hz. Images were acquired with a spatial resolution of 200 pm x 200 

pm.

3.2.5 Absorption of nicosulfuron via foliar application

A sunflower plant was germinated and grown in potting compost (B&Q, Sheffield, 

UK) until it had reached a height of 135 mm for the 24 hour experiment and 200 

mm for the 48 hour experiment. 50x1 pL of a 1.25 mg/mL solution of nicosulfuron 

in 50:50 acetonitrile: 0.1% Tween® (Sigma Aldrich, Dorset, UK) was applied to the 

tissue either side of the midrib vein to a leaf 125 mm along the stem of the 24 hour 

experiment plant and 145 mm along the stem of the 48 hour experiment plant. 

The plants were then left for 24 and 48 hours at 21 °C with a relative humidity of
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55% (Sanyo, Versatile environmental test chamber, Hertfordshire, UK) before 

being removed and prepared for cryostat (Leica, Milton Keynes, UK) sectioning 

along the horizontal axes at varying distances from the root bundle region. Control 

sections were taken from an undosed plant to be used as positive and negative 

controls. Positive controls were spiked with 2 pL of a 2.5 mg/mL solution of 

nicosulfuron in acetonitrile. Samples were arranged on target plate and the matrix 

(25 mg/mL a-CHCA 0.1% TFA) was applied using an Iwata gravity-fed pneumatic 

air spray gun (Iwata Media Inc., Portland, OR, USA) by passing the compressed 

air gun over the sample 15 times, ensuring the sample tissue did not get saturated 

and even coverage had been achieved.

The appropriate areas were then imaged using an Applied Biosystems/MDS Sciex 

Q-star pulsar I mass spectrometer (Concord, Ontario, Canada) fitted with an 

orthogonal MALDI source and a nitrogen laser (A = 337 nm) at a laser power of 35 

pJ and a laser repetition rate of 20 Hz. Images were obtained with a spatial 

resolution of 200 pm x 200 pm.

Processing of MALDI-MSI data

All images were created using Applied Biosystems oMALDI Server 5.0 tissue 

imaging software. All images presented are normalised against a matrix fragment 

ion to reduce effects caused by matrix inhomogeneity. In all cases other than the 

24 hour foliar absorption experiment the ion chosen to act as the "internal 

standard" for normalisation was m/z 172.04. For the 24 hour foliar absorption 

experiment the signals generated from the cyclised pyridylsulfonamide at m/z 

185.00 were of very low intensity and dividing this intensity by the intensity of the
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ion at m/z 172.04 resulted in images of low numbers of counts that were difficult to 

manipulate. In this case the ion chosen for normalisation was m/z 147.06, the C13 

isotope of the a-C H C A  fragment ion peak at m/z 146.06. This increased the 

intensity of the pixels in the resulting image making presentation clearer.

3.2.6 Nicosulfuron and azoxystrobin uptake following stem application 
experiment

A sunflower plant was germinated and grown in multipurpose potting compost 

(B&Q, Sheffield, UK) the specimen used in this instance had reached a height of 

270 mm. 25 pL of a 5 mg/mL solution of nicosulfuron in acetonitrile was combined 

with 25 pL of a 5mg/mL solution of azoxystrobin in acetone. 50 pL of 0.1%  

Tween® (Sigma Aldrich, Dorset, UK) was then added, resulting in 100 pL of a 1.25 

mg/mL nicosulfuron/azoxystrobin in 25:25:50 acetonitrile:acetone:0.1% Tween®  

(Sigma Aldrich, Dorset, UK) solution. 50 pL of this solution was added into a well 

of parafilm fashioned around the plant stem (see Fig. 3).

The plant was then left for 24 hours at 21 °C with a relative humidity of 55% (Sanyo, 

Versatile environmental test chamber, Hertfordshire, UK) before being removed 

and prepared for cryostat (Leica, Milton Keynes, UK) sectioning along the 

horizontal axes at varying distances from the root bundle region. Control sections 

were taken from an undosed plant to be used as positive and negative controls. 

Positive controls were spiked with 2 pL of a 2.5 mg/mL solution of nicosulfuron in 

acetonitrile on the left side of the control section and with 2 pL of a 2.5 mg/mL 

solution of azoxystrobin in acetone on the right side of the control section. 

Sectioned samples were then mounted onto a MALDI target using conductive tape.
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Samples were arranged on the target plate and the matrix (25 mg/mL a-CHCA 

0.1% TFA) was applied using an Iwata gravity-fed pneumatic air spray gun (Iwata 

Media Inc., Portland, OR, USA) by passing the compressed air gun over the 

sample 15 times, ensuring the sample tissue did not get saturated and even 

coverage had been achieved.

The appropriate areas were then imaged using an Applied Biosystems/MDS Sciex 

Q-star pulsar I mass spectrometer (Concord, Ontario, Canada) fitted with an 

orthogonal MALDI source and a nitrogen laser (A = 337 nm) at a laser power of 28 

pJ and a laser repetition rate of 20 Hz. Images were obtained with a spatial 

resolution of 500 pm x 500 pm.

Fig. 3 Optical image of parafilm fashioned around the plant stem to contain the azoxystrobin 

nicosulfuron solution.
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3.2.7 Nicosulfuron and azoxystrobin uptake following stem application 
experiment, using Labcyte Portrait 630 matrix applicator

The top section (260 mm along the stem) of the sample tissue prepared as 

described in 3.2.6 was attached to a MALDI target plate using carbon tape, along 

with a negative control section taken from an undosed plant. The matrix was 

applied using a Labcyte portrait 630 automatic matrix spotter (Sunnyvale, 

California, USA) using a 25 mg/mL solution of a-CHCA (Sigma Aldrich, Dorset, UK) 

with 5 drops per point per pass and 15 passes. The appropriate areas were then 

imaged using an Applied Biosystems/MDS Sciex Q-star pulsar I mass 

spectrometer (Concord, Ontario, Canada) fitted with an orthogonal MALDI source 

and a nitrogen laser (A = 337 nm) at a laser power of 28 pJ and a laser repetition 

rate of 20 Hz. Images were obtained with a spatial resolution of 150 pm x 150 pm.

3.2.8 IR-LDI analysis of mesotrione and fluaziflop-p-butyl

A small rose bush was purchased from a shop near the University of Munster, 

Germany, both mesotrione and fluaziflop-p-butyl was applied to leaves on stems 

just below rose buds. 30 pL of a 5.4 mg/mL solution (50:50 acetone:0.1% 

Tween® (Sigma Aldrich, Dorset, UK)) of mesotrione solution and 30 pL of a 20 

mg/mL solution of fluaziflop-p butyl were applied to the leaves and spread across 

the surface using the pipette tip. The plant was then left for 24 hours before 

horizontal stem section samples were taken from the stem adjacent to the 

application point, 1 cm above that and from tissue just below the rose bud. 

Samples were then secured to a glass side using an adhesive pad, this slide was 

then secured to the target plate. IR-LDI-MS spectra were acquired using a 

prototype orthogonal TOF equipped with an Er:YAG infrared laser (Speser,
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Spectrum GmbH, Berlin, Germany) that operates at a wavelength of 2.94 pm. The 

pulse duration of this laser is « 100 ms. The data was displayed using the 

freeware software package "Moverz".

3.2.9 IR-MALDI Analysis of uptake of nicosulfuron following foliar 
application

A sunflower plant was germinated and grown in potting compost (B&Q, Sheffield, 

UK) (B&Q Sheffield, UK). The specimen used in this instance had reached a 

height of 60 cm. 40x1 pL of a 0.5 mg/mL solution of nicosulfuron in 50:50 

acetonitrile: 0.1% Tween® (Sigma Aldrich, Dorset, UK) was applied to the tissue 

either side of the midrib vein of a leaf 410 mm from the root tip. The plant was 

then left for 24 hours at room temperature before being removed and prepared for 

cryostat (Leica, Milton Keynes, UK) sectioning along the horizontal axes at 5mm, 

205 mm, 405 mm, and 585 mm from the root bundle region. Sectioned samples 

were then mounted on conductive tape and stored at -80 9C. Control sections 

were taken from an undosed plant to be used as positive and negative controls. 

Positive controls were spiked with 1 pL of a 1 mg/mL solution of nicosulfuron in 

acetonitrile, then refrozen before transportation. Sections were packed into a 

polystyrene container with dry ice to ensure they remained frozen and posted to 

the University of Munster. IR-LDI-MS spectra were acquired using a prototype 

orthogonal TOF equipped with an Er:YAG infrared laser (Speser, Spectrum GmbH, 

Berlin, Germany) that operates at a wavelength of 2.94 pm. The pulse duration of 

this laser is ~ 100 ms. The data were displayed using the freeware software 

package "Moverz".

136



3.2.10 IR-MALDI analysis of uptake of nicosulfuron via the roots 
(hydroponics experiment)

A sunflower plant was germinated and grown in multipurpose potting compost 

(B&Q, Sheffield, UK) until it had reached a height of 150 mm. The plants were 

then removed from the soil and washed before being introduced to a conical flask 

containing 1/2 strength Hogland's N°2 Basel salt solution (Sigma Aldrich, Dorset, 

UK). The solutions were then spiked with nicosulfuron to give a concentration of 

20 ppm, and the plants were left for 24 hours before a further addition of 

nicosulfuron was made to give a final concentration of 40 ppm. The plants were 

left for another 24 hours before being removed and prepared for cryostat (Leica, 

Milton Keynes, UK) sectioning along the horizontal axes at 10 mm, 30 mm, 50 mm 

and 140 mm from the root bundle region using the method for encasing stem 

sections (3.2.1). Control sections were taken from an undosed plant to be used as 

positive and negative controls. Positive controls were spiked with 1 pL of a 1 

mg/mL solution of nicosulfuron in acetonitrile then refrozen before transportation. 

Sections were packed into a polystyrene container with dry ice to ensure they 

remained frozen and posted to the University of Munster. IR-LDI-MS spectra were 

acquired using a prototype orthogonal TOF equipped with an Er:YAG infrared 

laser (Speser, Spectrum GmbH, Berlin, Germany) that operates at a wavelength of 

2.94 pm. The pulse duration of this laser is « 100 ms. The data were displayed 

using the freeware software package "Moverz".
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3.2.11 IR-MALDI analysis of uptake of azoxystrobin via the roots
(hydroponics experiment) for IR method

Sunflower plants were germinated and grown in potting compost (B&Q, Sheffield, 

UK). The specimen used in this instance had reached a height of 140 mm. The 

plant was then removed from the soil and washed before being introduced to 

conical flask containing 1/2 strength Hogland's N°2 Basel salt solution (Sigma 

Aldrich, Dorset, UK). The solutions were then spiked with azoxystrobin to give a 

concentration of 20 ppm, and the plants were left for 24 hours before a further 

addition of azoxystrobin was made to give a final concentration of 40 ppm. The 

plants were left for another 24 hours before being removed and prepared for 

cryostat (Leica, Milton Keynes, UK) sectioning along the horizontal axes at 50 mm 

and 130 mm from the root bundle region. Control sections were taken from an 

undosed plant to be used as positive and negative controls. Positive controls were 

spiked with 1 pL of a 1 mg/mL solution of azoxystrobin in acetonitrile. Sections 

were packed into a polystyrene container with dry ice to ensure they remained 

frozen and posted to the University of Munster. IR LDI MS spectra were acquired 

using a prototype orthogonal TOF equipped with an Er:YAG infrared laser (Speser, 

Spectrum GmbH, Berlin, Germany) that operates at a wavelength of 2.94 pm. The 

pulse duration of this laser is « 100 ms. The data were displayed using the 

freeware software package "Moverz".
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3.3 Results

3.3.1 Uptake of azoxystrobin via the roots in soya bean plants

Width (mm)

Fig. 4 MALDI-MS image of the distribution of the azoxystrobin's fragment ion at m/z 372.09 

in longitudinal cross sections of soya bean root bundle tissue.
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Fig. 5 MALDI-MS image of the distribution of the azoxystrobin sodium adduct of the 

molecular ion at m/z 426.11 in longitudinal cross section of soya bean root bundle tissue.

Fig. 4 shows the distribution of the azoxystrobin fragment ion at m/z 372.09 in 

longitudinal cross sections of soya bean root bundle tissue. Figure 4 shows that 

azoxystrobin is distributed evenly throughout the root bundle tissue in the two
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adjacent sections. The signal observed within the tissue is present with high 

intensity indicated by the intensity scale on the right of the image, although an 

element of background interference is present as the lower value of this scale has 

been increased to remove background noise in the image.

Fig. 5 shows the distribution of the azoxystrobin sodium adduct at m/z 426.11 in 

longitudinal cross sections of soya bean root bundle tissue. Figure 5 clearly 

shows the distribution of azoxystrobin present within the 2 adjacent longitudinal 

root bundle sections. The intensity of the analyte to matrix ratio for this ion is not 

as high as observed with the azoxystrobin fragment ion but less background 

interference is present at this m/z.
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Fig. 6 MALDI-MS image of the distribution of the azoxystrobin fragment ion at m/z 372.09 in 
longitudinal cross section of soya bean stem tissue above the root bundle.

10.7 12.0 13,0 14,0 15.0 16.0 17.0 18.0 19.0 20.4
Width (mm)

Fig. 7 MALDI-MS image of the distribution of the azoxystrobin sodium adduct of the 

molecular ion at m/z 426.11 in longitudinal cross section of soya bean stem tissue above 

root bundle.

Fig. 6 shows the distribution of the azoxystrobin fragment ion at m/z 372.09 in 

longitudinal cross section of soya bean stem tissue above the root bundle.

It shows the even distribution of azoxystrobin in 3 adjacent longitudinal sections of 

the stem tissue above the root bundle region. The ion is present in high
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abundance within the tissue samples indicated by the intensity scale on the right 

hand side of the image.

Fig. 7 shows the distribution of the azoxystrobin sodium adduct at m/z 426.11 in 

longitudinal cross section of soya bean stem tissue above the root bundle. It 

clearly shows the distribution of azoxystrobin in the 3 adjacent longitudinal 

sections of the stem tissue above the root bundle. The present of this ion in these 

sections is observed with a high signal indicated by the intensity scale on the right.

3.3.3 Uptake azoxystrobin via the roots in sunflowers plants

Fig. 8 (a) shows the distribution of the azoxystrobin fragment ion at m/z 372.09 in 

horizontal sections taken at varying distances from the root bundle. The 

compound is clearly visible in the positive control, confirming the ion originates 

from azoxystrobin. There is a low signal present in the negative control section 

taken from an undosed plant so slight interference from an endogenous compound 

is observed at this m/z. There is signal present in the sections 10, 50, 90 and 130 

mm away from the root tip in the sunflower plant horizontal sample sections with 

the highest abundance observed in the sample section 50mm from the root tip.

Fig. 9 (a) shows the distribution of the azoxystrobin protonated molecule at m/z 

404.12 in horizontal sections taken at varying distances from the root bundle. The 

compound is clearly visible in the positive control, confirming the ion originates 

from azoxystrobin. There is no signal present in the negative control section taken 

from an undosed plant so no interference from an endogenous compound is 

observed at this m/z. There is signal present in the section 10 mm away from the
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root tip in the sunflower plant horizontal sample sections despite the highest 

abundance of azoxystrobin being observed in the section 50mm from the root tip 

in Fig. 8. The signal for the protonated molecule shows a high abundance 

allowing for the distribution to be observed in this section. Slight signal can be 

seen in the sections 50, 90, and 130 mm away from the root tip at this m/z which 

can be attributed to background noise.
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Fig. 8 (a) MALDI-MS image of the distribution of the azoxystrobin fragment ion at m/z 372.09 

in horizontal sections taken at varying distances from the root bundle, (b) Optical image of 

horizontal sections taken at varying distances from the root bundle.
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Fig. 9 (a) MALDI-MS image of the distribution of the azoxystrobin protonated molecule at 

m/z 404.12 in horizontal sections taken at varying distances from the root bundle, (b) 

Optical image of horizontal sections taken at varying distances from the root bundle.
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Due to unsuccessful attempts to image the distribution of mesotrione and 

fluazifop-p-butyl following foliar application, experiments were performed using 

nicosulfuron with both the hydroponics method and the foliar application method 

(3.2.4 and 3.2.5).

3.3.4 Uptake of nicosulfuron via the roots (hydroponics experiment)

The positive ion MALDI mass spectrum of nicosulfuron (Fig.10) exhibits a number 

of ions which can potentially be used to generate images i.e. the [M+H]+ ion at m/z 

411.10, Na+ adduct at m/z 433.06 the K+ adduct at m/z 449.04 and fragment ions 

at m/z 182.06 and m/z 156.07.

— >

o = c

N—S-

CH,— O
Nicosulfuron = M

CH,—O

Fig. 10 Positive ion MALDI mass spectrum of nicosulfuron (I.Omg/mL) with CHCA (10mg/mL  

in acetone) 50:50. Showing the [M-fHJ-i- ion at m/z 411.10, N a* adduct at m/z 433.06, the K+ 

adduct at m/z 449.04 and fragment ions at m/z 182.06 and m/z 156.07.
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The fragment ion at m/z 156.08 is clearly observed not only in conventional MALDI 

samples but also in tissue samples, therefore it potentially allows the generation of 

clear MALDI-MS images for the distribution of nicosulfuron following either uptake 

via the roots or absorption following foliar application.

A previous study by Sabadie14 described the formation of breakdown products of 

nicosulfuron via alcoholysis and hydrolysis.

CH,

M— CH,t *
o=c

■fi—s-

Nicosulfuron

H-OH
Hydrolysis

R-OH
Alcoholysis

CH,

CH,— OCH,— O 0
II

H
CH,— 0

m/z 156.0768 m/z 230.0594

pH > 7

m/z 185.0015

Fig. 11 Alcoholysis and hydrolysis products of nicosulfuron and resulting protonated m/z

values14

This would potentially lead to a species of aminopyrimidal structure (Figure 11) of 

RMM 155 and is a possible source of the ion at m/z 156.08 in Fig. 10 and Fig. 11. 

In a previous study conducted by electrospray tandem mass spectrometry, Li et a l 

15 reported that the major product ion observed under CID for nicosulfuron was 

m/z 182.06. This may have been evidence that the ion observed at m/z 156.08 in
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the work reported here was arising as a result of hydrolysis of the urea bond rather 

than by "in source" fragmentation. To investigate if this was an ion being produced 

as a result of in source fragmentation or from a compound formed by alcoholysis 

by the matrix solution or hydrolysis by water or TFA, nicosulfuron was analyzed 

using just acetonitrile as a solvent. The nicosulfuron was dissolved in acetonitrile 

(2.5mg/mL) and a saturated solution of a-CHCA in acetonitrile was employed as 

the matrix.

The spectrum obtained (Fig. 12) shows the aminopyrimidine species as the base 

peak along with the [M+H]+, [M+Na]+ and [M+K]+ ions of nicosulfuron.

I
Nicosulfuron = M

CH,— 0

j

llI*
il
I
Ii
I

Fig. 12 Positive ion MALDI mass spectrum of nicosulfuron (2.5mg/mL in acetonitrile) with a- 

CHCA (saturated solution in acetonitrile) 50:50. Showing the [M+H]+ ion at m/z 411.08, Na+ 

adduct at m/z 433.06 the K+ adduct at m/z 449.03 and fragment ion m/z 156.07.
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Another potential source of the ion at m/z 156.08 in plants is histidine. This has the 

same molecular formula as 2-amino-4,6-dimethoxypyrimidine (C6H9N302) and is 

present as an endogenous metabolite as part of the histidine biosynthesis and 

methionine salvage pathway 13; here it is assumed that by dissolving the matrix 

compound in acetone co-crystallization of the matrix with histidine is minimized 

hence limiting ionisation of histidine, indicated by the low signal in the negative 

control in the images.

Whilst the use of SRM techniques adds specificity to MALDI-MSI experiments, for 

the work reported here it was found that because the [M+H]+ ion of nicosulfuron 

was of relatively low abundance the sensitivity obtainable was not adequate to 

allow SRM experiments to be performed. Experiments were therefore conducted 

in full scan mode and a very narrow mass window (0.013 Da) around the fragment 

ion of interest (m/z 156.08) was used to ensure a degree of specificity. The 

inclusion of positive and negative controls also highlighted potential interferences.

Alcoholysis and hydrolysis of nicosulfuron causes breakdown of the urea part of 

the molecule and in fact results in the production of 4 products; a pyridylsulfonyl- 

carbamate (the exact molecular mass of which depends on the alcohol), the 

aminopyrimidine (RMM 155.08), as previously discussed, a pyridylsulfonamide 

(RMM 229.06) and a cyclized pyridylsulfonamide (RMM 184 .00 )14.
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Fig. 13 Image of a sunflower plant stem following uptake via the roots after a 48 hour 

hydroponics experiment, (a) MALDI-MS Image of nicosulfuron fragment ion at m/z 156.08 

(image range m/z 156.068-156.081 and normalised against a-CHCA m/z 172.04 peak), (b) 

Optical image of horizontal sections taken at varying distances from the root bundle, (c) 

Optical image indicating region where horizontal sections were taken from in the 

hydroponics experiment.
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Fig. 14 Images of a sunflower plant stem following uptake via the roots after a 48 hour 

hydroponics experiment, (a) MALDI-MSI Image of nicosulfuron potassium adduct ion at m/z 

449.06 (image range m/z 449.042-449.076 and normalised against a-CHCA m/z 172.04 peak).
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Sample at
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(b) Optical image of horizontal sections taken at varying distances from the root bundle, (c)

Optical image indicating region where horizontal sections were taken from in the

hydroponics experiment.

Fig. 13 (a) shows the presence of 2-amino-456-dimethoxypyrimidine (m/z 156.08) 

in all of the sample sections and the positive control. Low signal from endogenous 

compounds can be seen in the negative control. These data show that 

nicosulfuron has translocated around all of the plant tissue following uptake via the 

roots after.48 hours. Confirmation of these findings is given in Fig. 14. This is 

generated from the potassium adduct at m/z 449.06 using the matrix peak at m/z

172.04 as an internal standard.

Fig. 14 (a) shows the distribution of nicosulfuron potassium adduct at m/z 449.06. 

The presence of nicosulfuron is clearly indicated in the positive control and 

samples taken 10, 30 and 50 mm from the root tip, with a weak signal being also 

observed in the sample taken at 140 mm.
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Fig. 15 (a) shows the distribution of the phase I cyclized pyridylsulfonamide 

metabolite at m/z 185.00 (Fig. 11).
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Fig. 15 Images of a sunflower plant stem following uptake via the roots after a 48 hour 

hydroponics experiment, (a) MALDI-MS Image of cyclised pyridylsulfonamide at m/z 185.00 

(image range m/z 185.001-185.009 and normalised against a-CHCA m/z 172.04 peak), (b) 

Optical image of horizontal sections taken at varying distances from the root bundle, (c) 

Optical image indicating region where horizontal sections were taken from in the 

hydroponics experiment.

This compound can be seen in the samples at 10, 30 and 50 mm and some signal 

can be seen clearly in the sample 140 mm from the root tip. The compound is not 

present in either the positive or the negative control indicating that there is no 

endogenous compound at this mass and production of this compound is a result of 

the hydrolysis reaction of nicosulfuron in the plant's transport system.
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3.3.5 Absorption of nicosulfuron following foliar application
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Fig. 16 Images of a sunflower plant stem following uptake via the leaves after a 24 hour 

foliar application experiment, (a) MALDI-MS Image of nicosulfuron fragment ion at m/z

156.08 (image range m/z 156.068-156.081 and normalised against a-CHCA m/z 172.04 peak), 

(b) Optical image of horizontal sections taken at varying distances from the root bundle, (c) 

Optical image indicating region where horizontal sections were taken from in the 24 hour 

foliar application experiment.
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Fig. 17 Images of a sunflower plant stem following uptake via the leaves after a 24 hour 

foliar application experiment, (a) MALDI-MS Image of cyclised pyridylsulfonamide at m/z 

185.00 (image range m/z 185.001-185.009 and normalised against a-CHCA m/z 147.06 C13 

fragment ion peak increasing the dynamic range for the intensity of the image.), (b) Optical
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image of horizontal sections taken at varying distances from the root bundle, (c) Optical

image indicating region where horizontal sections were taken from in the 24 hour foliar

application experiment.

Fig. 16 shows the aminopyrimidine compound 24 hours after nicosulfuron foliar 

application. These data indicate that nicosulfuron has been absorbed and 

translocated to stem tissue above and slightly below the application point at 125 

mm. The image generated from the peak at m/z 156.08 shows that the 

aminopyrimidine structure is present in the sample at 130 mm and the positive 

control with high intensity and also in the sample at 110 mm. Nicosulfuron can not 

be identified in any of the other stem sections at this m/z.

Fig. 17, the image generated from the ion at m/z 185.00, indicates that 

nicosulfuron has been hydrolysed and is present in the same area as the fragment 

ion at m/z 156.08 (see Fig. 16).

An image for the potassium adduct in these samples could not be generated. This 

could be due to the plant not having excess potassium present, which was 

provided by the nutrient solution in the hydroponics experiment.
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Fig. 18 Images of a sunflower plant stem following uptake via the leaves after a 48 hour 

foliar application experiment, (a) MALDI-MS Image of nicosulfuron fragment ion at m/z

156.08 (image range m/z 156.068-156.08 and normalised against a-CHCA m/z 172.04 peak).

(b) Optical image of horizontal sections taken at varying distances from the root bundle, (c) 

Optical image indicating region where horizontal sections were taken from in the 48 hour 

foliar application experiment.

The image generated from the peak at m/z 156.08 (Fig. 18) 48 hours following 

foliar application shows that the aminopyrimidine structure is present in the 

positive control and the samples at 155 mm and 195 mm. This indicates that 

nicosulfuron has translocated towards the growing tips of the plant. Signal is also 

observed in the sample 45 mm along the stem due to translocation towards the 

growing tips of the roots.
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3.3.6 Nicosulfuron and azoxystrobin uptake following stem application
experiment

Nicosulfuron is both xylem and phloem mobile so has the ability to travel both up 

and down the transport vessels towards the growing tips of the plant. Since 

azoxystrobin is only mobile within the xylem, azoxystrobin can only travel upwards 

in the transpiration stream of the xylem. If azoxystrobin was applied to a leaf it 

would be absorbed into the leaf tissue into the xylem and translocated to the tip of 

the leaf away from the petiole and plant stem. For this reason in order to assess 

translocation of both nicosulfuron and azoxystrobin within the same plant transport 

system a mixture of the compounds was applied to the stem by pipetting the 

solution into a well of parafilm fashioned around the plant stem 140 mm from the 

root tip. Sections were taken on, above and below this application point 24 hours 

following application to assess the translocation of the compounds.

The image in Fig. 19 (a) shows the presence of 2-amino-4, 6-dimethoxypyrimidine 

(m/z 156.08) in the sample section 260 mm along the plant stem and the positive 

control. Low signal from endogenous compounds can be seen in the negative 

control. These data show that nicosulfuron has translocated in either the xylem or 

the phloem towards the growing tips of the plant stem following absorption into the 

stem tissue 24 hours following application.
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Fig. 19 Images of a sunflower plant stem following uptake via the stem 24 hours after 

application of the azoxystrobin and nicosulfuron. (a) MALDI-MS Image of nicosulfuron 

fragment ion at m/z 156.08 (image range m/z 156.068-156.081 and normalised against a- 

CHCA m/z 172.04 peak), (b) Optical image of horizontal sections taken at varying distances 

from the root bundle, (c) Optical image indicating region where horizontal sections were 

taken from in the 24 hour foliar applied experiment.
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Fig. 20 Images of a sunflower plant stem following uptake via the stem 24 hours after 

application of the azoxystrobin and nicosulfuron. (a) MALDI-MS Image of azoxystrobin 

fragment ion at m/z 372.10 (image range m/z 372.080 to 372.120) and normalised against a- 

CHCA m/z 172.04 peak), (b) Optical image of horizontal sections taken at varying distances
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from the root bundle, (c) Optical image indicating region where horizontal sections were

taken from in the 24 hour foliar applied experiment.

The image in Fig. 20 (a) shows the presence of azoxystrobin's fragment ion (m/z

372.10) in the sample section 260 mm along the plant stem and the positive 

control. Low signal from endogenous compounds can be seen in the negative 

control. These data show that azoxystrobin has translocated in the xylem 

transpiration stream towards the growing tips of the plant stem following 

absorption into the stem tissue 24 hours following application.

Sample at 260m rn 

Sample at 215mm

Sample at 140mm

Sample at 105mm

Sample at 65mm

Sample at 15mm

Negative control

Positive control
35.4 -*0.0 45.0 SQ.O 55.0 60.0 65,0 70.0 7S.Q 79.6

Width (mm)

(a) (b) (c)

Fig. 21 Image of a sunflower plant stem following uptake via the stem 24 hours after 

application of the azoxystrobin and nicosulfuron. (a) MALDI-MS Image of azoxystrobin 

protonated molecule at m/z 404.12 (image range m/z 404.100 to 404.150) and normalised 

against a-CHCA m/z 190.05 peak), (b) Optical image of horizontal sections taken at varying 

distances from the root bundle, (c) Optical image indicating region where horizontal 

sections were taken from in the 24 hour foliar applied experiment.
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3.3.7 Nicosulfuron and azoxystrobin uptake following stem application 
experiment, using Labcyte Portrait 630 matrix applicator
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Fig. 22 Images of a sunflower plant stem following uptake via the stem 24 hours after 

application of the azoxystrobin and nicosulfuron. (a) MALDI-MS Image of nicosulfuron 

fragment ion at m/z 156.08 (image range m/z 156.068-156.081). (b) Optical image of 

horizontal sections taken 260mm along the stem in the 24 hour stem application experiment 

and a negative control section.
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Fig. 23 Images of a sunflower plant stem following uptake via the stem 24 hours after 

application of the azoxystrobin and nicosulfuron. (a) MALDI-MS Image of azoxystrobin 

fragment ion at m/z 372.10 (image range m/z 372.080 to 372.120). (b) Optical image of

260mm sample

ve control
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horizontal sections taken 260mm along the stem taken in the 24 hour stem application 

experiment and a negative control section.

Fig. 22 (a) shows the MALDI-MSI and the distribution of 2-amino-4, 6- 

dimethoxypyrimidine, nicosulfuron fragment ion at m/z 156.08 in the sample 

section 260 mm along the plant stem. Low signal from endogenous compounds 

can be seen in the negative control. The response for this ion and ions relating to 

azoxystrobin appears to have not been greatly improved by applying the matrix 

with the Labcyte automatic spotter compared to the sections prepared using 

airspray deposition. This is indicated by the intensity ratios observed on the right 

of the images in Fig. 19 and 22 (m/z 156.08), 20 and 23 (m/z 372.10), 21 and 24 

(m/z 404.12). Automatic spotters are reported to enhance sensitivity due to an 

increased amount of analyte being drawn out of the tissue and co-crystallization 

between the analyte and matrix being enhanced by the number of passes being 

increased and the instrument's ability to apply a volume which does not spread 

across the sample section 16. Since the effect of solvent spreading has been 

removed in this experiment the spatial distribution of the compound observed in 

this MALDI-MSI is accurate to the original distribution of the translocated 

compound That is, the MALDI-MSI shows the nicosulfuron is present in a greater 

concentration in the outside of the stem where the vascular bundles are located as 

indicated by the darker region.

The image in Fig. 23 (a) shows the presence of the azoxystrobin fragment ion (m/z

372.10) in the sample section 260 mm along the plant stem. Low signal from 

endogenous compounds can be seen in the negative control. These data show 

that azoxystrobin has translocated in the xylem transpiration stream towards the
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growing tips of the plant stem following absorption into the stem tissue 24 hours 

following application. Azoxystrobin appears to be present in the highest 

concentration in the centre of the section, indicated by the darker region.

Width (mm)
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Fig. 24 Images of a sunflower plant stem section following uptake via the stem 24 hours 

after application of the azoxystrobin and nicosulfuron. (a) MALDI-MSI Image of azoxystrobin 

fragment ion at m/z 404.12 (image range m/z 404.010 to 404.150). (b) Optical image of 

horizontal sections taken 260mm along the stem taken in the 24 hour stem application 

experiment and a negative control section.

The image in Fig. 24 (a) shows the presence of azoxystrobin's protonated 

molecule (m/z 404.12) in the sample section 260 mm along the plant stem. Slight 

interference from endogenous compounds can be seen in the negative control. 

These data show that azoxystrobin has translocated in the xylem transpiration 

stream towards the growing tips of the plant stem following absorption into the 

stem tissue 24 hours following application.
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3.3.8 IR-LDI from analysis of fluazifop-p-butyl

IR lasers provides an alternative ionisation method to UV lasers as water or ice 

present within the sample acts as the matrix, this removes the problem of matrix 

ions at low mass interfering with ions of interest.

Fig. 25 shows the positive IR-LDI mass spectrum of a fluazifop-b butyl horizontal 

control stem section from an undosed region, mass region m/z 0-500.
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Fig. 25 Positive IR-LDI mass spectrum of Fluazifop-p butyl on stem tissue control

The spectrum in Fig. 25 is from fluazifop-p butyl solution pipetted onto a control 

stem section. The spectrum does not show any peaks at either the protonated 

molecule mass or potential fragment masses. This is probably due to the poor
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ionisation observed with fluazifop-p butyl. As the fluazifop acid control was 

unavailable a true control spectrum could not be obtained.

Fig. 26 shows the positive IR-LDI mass spectrum of a fluazifop-b butyl horizontal 

stem section at the application point, mass region m/z 0-500.
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Fig. 26 Positive IR-LDI mass spectrum from fluazifop-p butyl application point indicating 

peak at m/z 328.06 (mass region m/z 0-500).

The peak at m/z 328.06 for protonated fluazifop acid can be distinguished from the 

baseline noise. This can be more clearly seen in Fig. 27 (peak located at the 

dashed line).
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Fig. 27 shows the positive IR-LDI mass spectrum of a fluazifop-b butyl horizontal

stem section from the application point.
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Fig. 27 Positive IR-LDI mass spectrum from fluazifop horizontal stem section at application 

point showing peak at m/z 328.1

The spectrum shows a clear peak at m/z 328.1, which is the protonated mass for 

fluazifop acid, in a section taken where fluazifop-p-butyl was applied. This

indicates that fluazifop-p-butyl has absorbed and converted to fluazifop acid.
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Fig. 28 shows the positive IR-LDI mass spectrum of a fluazifop-b butyl horizontal

stem section from the application point, mass region m/z 360-420.
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Fig. 28 Positive IR-LDI mass spectrum from fluazifop horizontal stem section at application 

point showing peak at m/z 384.1, (mass region m/z 360 to 420).

The spectrum shows the m/z region at 384.1 from the same sample section where 

fluazifop-p butyl was applied, (see Fig. 26 and 27). This shows that none of the 

fluazifop-p butyl has been identified in this sample. This would be expected as 

fluazifop-p butyl could not be identified in the control sample and following 

absorption fluazifop-p butyl is converted to fluazifop acid. No peak could be found 

for the potassium adduct of fluazifop acid at m/z 366 in this spectrum.

Following the observation of a peak in the spectra shown in Fig. 26 and 27 from 

the sample taken at the application point, a spectrum from a horizontal sample
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section taken 1 cm away from the application point was interpreted to see if 

fluazifop-p butly had translocated to this region.

Fig. 29 shows the positive IR-LDI mass spectrum of a fluazifop-b butyl horizontal 

stem section 1cm from the application point, mass region m/z 0-500.
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Fig. 29 Positive IR-LDI mass spectrum from fluazifop-p butyl 1 cm from the application point 

indicating peaks at m/z 328.04 and 366.00 (mass region m/z 0-500).

Two peaks relating to fluazifop-p butyl can be seen in the spectrum at m/z 328.04 

(protonated fluazifop acid) and m/z 366.00 (potassium adduct of fluazifop acid).
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Fig. 30 shows the positive IR-LDI mass spectrum of a fluazifop-p butyl horizontal

stem section 1 cm from the application point, mass region m/z 320-345.
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Fig. 30 Positive IR-LDI mass spectrum of fluazifop horizontal stem section 1cm from the 

application point showing peak at m/z 328.1, the molecular ion for fluazifop acid.

The peak for fluazifop acid positive molecular ion (m/z 328.1) is clearly visible 

above the background noise in this spectrum. This indicates that the fluazifop acid 

has been translocated to a region 1 cm away from the original application point.
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Fig. 31 shows the positive IR-LDI mass spectrum of a fluazifop-b butyl horizontal

stem section 1 cm from the application point, mass region m/z 345-375.
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Fig. 31 Positive IR-LDI mass spectrum of fluazifop horizontal stem section 1cm from the 

application point showing peak at m/z 366, potassium adduct for fluazifop acid.

The spectrum shows the positive potassium adduct of fluazifop acid (m/z 366.0), 

which is identifiable above the background noise.
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Fig. 32 shows the positive IR-LDI mass spectrum of a fluazifop-b butyl horizontal

stem section 2 cm from the application point, mass region m/z 315-345.
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Fig. 32 Positive IR-LDI mass spectrum of fluazifop-b butyl horizontal stem section 2cm from  

the application point showing peak at m/z 328.1.

The peak at m/z 328.1 is present with the same intensity as the background noise 

and does not give sufficient evidence to say fluazifop-b butyl is present in this 

sample. Further analysis of this sample could reveal a significant peak at m/z 

328.1 and 366.0 if the right area was targeted, however due to limited time only 

one spectrum was obtained for this sample.

The spectrum obtained for the sample taken from the base of the rose bud also 

did not reveal any peaks relating to ions of fluazifop-p-butyl or fluazifop acid.
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3.3.9 IR-MALDI analysis from nicosulfuron fo llo w in g  uptake via the
roots and foliar application

Fig. 33 shows positive IR-MALDI mass spectra from negative control samples at 

varying regions of the sample pith and vascular bundle (VB), with varying ion 

source gas pressures (1 mB or 4 mB).
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Fig. 33 Positive IR-MALDI mass spectra showing peak at m/z 156.06 on frozen and freeze 

dried (FD) negative control sections of a sunflower stem. Spectrum from (a) Frozen negative 

control, (b) Frozen negative control, (c) FD negative control from pith region, (d) FD negative 

control pith region, (e) FD negative control vascular bundle region, (f) FD negative control 

vascular bundle region.

Two of the spectra are from the frozen sample section and 4 spectra are from the 

dried section; these are overlaid to show a peak present at m/z 156.06. This peak 

corresponds to protonated histidine, which is involved in histidine biosynthesis and 

the methionine salvage pathway and present as an endogenous metabolite. Since 

histidine has the same molecular formula as nicosulfuron's fragment ion it is not 

possible to confirm that a peak present at this mass is due to the nicosulfuron or
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the endogenous histidine unless there is a significant variation in the intensities 

observed.

Fig. 34 shows positive IR-MALDI mass spectra from the frozen negative control, 

with nicosulfuron standard spot solution with 2% TFA, frozen positive and dried 

positive control sections overlaid.
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Fig. 34 Positive IR-MALDI mass spectra showing (a) frozen negative control, (b)

Nicosulfuron spot sample (2% TFA). (c) Nicosulfuron frozen positive control and (d) freeze 

dried nicosulfuron positive control.

A small peak can be seen at m/z 156 in the frozen positive control (a), but not in 

the dried section (d) and there is no significant increase in intensity between the 

positive (b) and the negative (a). There is a peak present at 155 (indicated on the 

spectra) in the frozen positive control (c) which could be due to an unprotonated 

[M+] aminopyrimidine fragment ion usually observed in its protonated form at m/z
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156. But as this structure contains a primary amine we would expect this to

become protonated.

Fig. 35 shows positive IR-MALDI mass spectra at m/z 156 region of the frozen 

negative, positive, 10 mm, 55 mm and 135 mm frozen hydroponics experiment 

sections in ascending order.
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Fig. 35 Positive IR-MALDI mass spectra showing a peak at m/z 156 on (a) frozen negative 

control, (b) frozen positive control, (c) Frozen section 10mm from root tip (d) Frozen section 

55mm from root tip (e) Frozen section 135mm from root tip frozen. From the nicosulfuron

hydroponics experiment.

There are no visible peaks present in any of the nicosulfuron hydroponics samples 

at m/z values relating to nicosulfuron. This could be due to the samples 

dehydrating in the ion source because they are under vacuum, causing a loss in 

sensitivity.
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Fig. 36 shows positive IR-MALDI mass spectra from the frozen positive, negative, 

root (5 mm), 205 mm, 405 mm and 585 mm sections in ascending order from the 

foliar applied experiment.
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Fig. 36 Positive IR-MALDI mass spectra showing a peak at m/z 156 region on (a) frozen 

positive control, (b) frozen negative control (c) Root tip section, (d) Frozen section 205mm  

from root tip, (e) frozen section 405mm from root tip, (f) frozen section 585mm from root tip 

from the nicosulfuron foliar experiment in ascending order.

There are no significant peaks present in the sample sections at m/z 156. There is 

possible evidence in (a), (c), (d), and (e) of the unprotonated [M+] aminopyrimidine 

fragment ion at m/z 155 although due to the primary amine present in this 

structure, which we would expect to become protonated and the lack of evidence 

present from the hydroponics samples, this peak can be disregarded.
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Fig. 37 shows positive IR-MALDI mass spectra acquired from the frozen negative 

control sections ascending to freeze dried samples, analyzing the pith region at 1 

mB and 4 mB ion source pressure followed by analysis of the vascular bundle (VB) 

regions at the two ion source pressures.
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Fig. 37 Positive IR-MALDI mass spectra showing two frozen negative control sections, mass 

region m/z 405-412 from a sunflower stem. Spectrum from (a) Frozen negative control, (b) 

Frozen negative control, (c) FD negative control from pith region, (d) FD negative control 

pith region, (e) FD negative control vascular bundle region, (f) FD negative control vascular 

bundle region.

A small peak can be seen at m/z 411.15 in the negative control sections which is 

most apparent in the frozen sample sections. As the nicosulfuron protonated 

molecule has a m/z of 411.1081 and there is an endogenous metabolite present at 

m/z 411.15 it may not be possible to distinguish between the metabolite and 

nicosulfuron unless there is a significant difference in intensity. This endogenous 

peak could be due to seasamolinol potassium adduct which has an exact m/z of
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411.0846 and is involved in lignan biosynthesis. This peak is more apparent in the 

frozen than in the dried sections.

Fig. 38 shows positive IR-MALDI mass spectra from frozen sections with the 

negative control, nicosulfuron positive control, root section at 5 mm, section at 50 

mm and section at 140 mm along the plant stem, in ascending order, from the 

nicosulfuron uptake via the roots method (3.2.4).
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Fig. 38 Positive IR-MALDI mass spectra showing (a) frozen negative control, (b) frozen 

positive control, (c) Frozen section 10mm from root tip (d) Frozen section 55mm from root 

tip (e) Frozen section 135mm from root tip frozen. From the nicosulfuron hydroponics 

experiment.

There is no significant peak present at m/z 411 or 449 (mass of nicosulfuron 

protonated molecule, exact mass m/z 411.10 and nicosulfuron’s potassium adduct, 

exact mass m/z 449.0646) in the nicosulfuron hydroponics sections compared to
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the frozen negative control section. There is an unidentified endogenous

metabolite present at m/z 449.13 indicated in the frozen negative section.

Fig. 39 shows positive IR-MALDI mass spectra from frozen sections from 

nicosulfuron positive control, negative control, root section 5 mm, 205 mm, 405 

mm and 585 mm along the plant stem, in ascending order, from the foliar applied 

nicosulfuron experiment (3.2.5).
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Fig. 39 Positive IR-SVIALDI mass spectra showing (a) frozen positive control, (b) frozen 

negative control (c) Root tip section, (d) Frozen section 205mm from root tip, (e) frozen 

section 405mm from root tip, (f) frozen section 585mm from root tip from the nicosulfuron 

foliar experiment in ascending order.

Again there is no significant peaks present at m/z 411 or 449 (mass of 

nicosulfuron protonated molecule, exact mass m/z 411.10 and nicosulfuron’s 

potassium adduct, exact mass m/z 449.06) in the nicosulfuron foliar sections
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compared to the frozen negative control section. There is an unidentified 

endogenous metabolite present at m/z 449.13 indicated in the frozen negative 

section.

3.3.10 IR-MALDI analysis f ro m  azoxystrobin uptake

Fig. 40 shows the positive ion IR-MALDI mass spectrum from a spot sample of 

azoxystrobin dosed with potassium acetate.
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Fig. 40 Positive IR-MALDI mass spectrum showing a peak at m/z 442.10 from azoxystrobin 

spot sample with potassium acetate.

The potassium adduct (m/z 442.10) is clearly visible.
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Fig. 41 shows a positive IR-MALDI mass spectrum of azoxystrobin with the 

addition of TFA (10 pL of a 1 % TFA to 10 pL of 1 mg/mL solution of azoxystrobin 

in acetone).
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Fig. 41 Positive IR-MALDI mass spectrum showing a peak at m/z 442.10 from azoxystrobin 

spot sample with 0.5% TFA.

The intensity of the potassium adduct is greatly enhanced compared to the 

spectrum in Fig.40.

Fig. 42 shows positive IR-MALDI mass spectra from the frozen sections with the 

addition of 1 pL of a 2% TFA solution from azoxystrobin acidified positive control 

spot sample (Fig. 41), frozen positive, negative control, sample 50 mm and sample 

130 mm along the plant stem from the uptake of azoxystrobin via the root 

experiment (3.2.3).
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Fig. 42 Positive IR-MALDI mass spectra showing azoxystrobin (a) positive spot control, (b) 

azoxystrobin frozen positive control section, (c) frozen negative control section (d) frozen 

sections 50 mm, and (e) 130 mm, from azoxystrobin hydroponics experiment.

The spectra above show a peak present in the control spot and the frozen 

azoxystrobin control section at m/z 442.10. The spectra from the sample sections 

did not show any peaks related to azoxystrobin. There is no endogenous peak 

present in the negative control at m/z 442.10. There are no peaks at m/z relating 

to azoxystrobin in the azoxystrobin sample sections.
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3.4 Discussion

In this chapter MALDI-MSI has been used to assess translocation of 

agrochemicals in plant stem tissue. Azoxystrobin distribution has been 

successfully imaged in two plant species soya bean and sunflowers, in both the 

root and stem tissue, using a number of m/z values. Nicosulfuron translocation 

has been determined in sunflowers following uptake via the roots after 48 hour 

time periods and absorption following foliar application after 24 and 48 hour time 

periods. A nicosulfuron phase 1 metabolite, formed as a result of hydrolysis within 

the plant system, has also been identified. Translocation of azoxystrobin and 

nicosulfuron within the same plant system, 24 hours following application to the 

plant stem, was also detected. These findings indicate that determination of the 

translocation of agrochemicals using MALDI-MSI is compound dependant as the 

distribution of mesotrione and fluazifop-p butyl following foliar application was 

unsuccessful using the same methods. It has also been found that there is 

potential for alternative ionisation methods with IR-LDI-MS as ions relating to 

fluazifop-p butyl from sample tissue were identified. Positive controls from 

azoxystrobin also yielded results, although the sensitivity was not high enough to 

acquire results from sample tissue. Once a suitably cooled sample stage, to 

ensure the sample tissue remains frozen within the ion source vacuum, has been 

developed, the sensitivity of the method may be able to detect azoxystrobin and 

nicosulfuron in sample tissue.

The urea bond present in nicosulfuron fragments to form an aminopyrimidine ion 

species which has a very high ionisation efficiency, giving very good sensitivity 

from spiked tissue control sections and sample tissue. Since other herbicides in
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the sulfonylurea group possess the same urea bond, this will be susceptible to 

hydrolysis in the same way as nicosulfuron 17. W e can assume therefore that they 

will fragment with a similar mechanism as nicosulfuron, to produce ion species 

with similar ionisation efficiencies as the aminopyrimidine species observed with 

nicosulfuron 14.

3.5 Conclusion

MALDI-MSI of the distribution of azoxystrobin in the root bundle tissue and stem 

tissue by direct analysis of sectioned tissue, following uptake via the roots, was 

successful. Using sunflower plants instead of soya bean allowed for sections from 

the whole plant stem to be obtained so data for the extent of translocation 

throughout the whole plant system was acquired. Applying these methods to try 

and observe translocation of mesotrione and fluazifop-p butyl following foliar 

application was unsuccessful, which was attributed to poor ionisation efficiencies 

of the compounds in relation to endogenous compounds present within the plant, 

analyte-analyte suppression. Repeating the methods with nicosulfuron, which is 

both phloem and xylem mobile, produced results from both uptake and 

translocation via the roots, translocation following foliar application and uptake of 

both nicosulfuron and azoxystrobin via the stem tissue. Following the results 

obtained with nicosulfuron the absorption following foliar application method for the 

24 hours time point was repeated with a 4 other sulfonylurea herbicides.
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Chapter Four: Detection of Sulfonylurea Herbicide 

Translocation



4.1 Introduction

For the final chapter, herbicides from the sulfonylurea group will be evaluated and 

limits of detection will be determined from spot sample analysis and from spiked 

tissue controls to decide if a quick preliminary method can be applied to determine 

whether MALDI-MSI can be used to assess translocation. The distribution of the 

herbicides following foliar absorption and translocation will be assessed 24 hours 

after application to sunflower species.

Sulfonylurea herbicides are a unique group of herbicides. Due to their low toxicity 

in mammals and unprecedented herbicidal activity, they have become very 

popular worldwide. They can be used to control a range of weeds and some 

grasses in a variety of crops and vegetables i.e. barley, wheat, oats, rice, soya 

beans, potatoes and more. Sulfonylurea herbicides are potent inhibitors of the 

enzyme acetolactate synthase (ALS) which is involved in branched chain amino 

acid biosynthesis in plants. ALS is a thiamine pyrophosphate (TPP)-dependent 

enzyme which catalyses in the condensation of pyruvate, a-aceto- a- 

hydroxybutyrate and carbon dioxide in isoleucine biosynthesis or the condensation 

of pyruvate molecules to form acetolactate and carbon dioxide in leucine and 

valine biosynthesis 1. ALS inhibitors are regarded as the most active group of 

herbicidal compounds found to date and display very high herbicidal activity in soil 

and following foliar application 2.
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Fig. 1 Mechanism of sulfonylurea fragmentation observed with MALDI-MS.

Fig. 1 shows the proton transfer which occurs at the urea bond of sulfonylurea 

herbicides during ionisation. Sulfonylurea herbicides have a general structure 

based on the Ri moiety being either an aliphatic, aromatic or heterocyclic group 

connected by the sulfonylurea bridge to the R2 moiety, which can either be a 

substituted triazine or pyrimidine system 2. As we have observed with nicosulfuron, 

the sulfonylurea bridge fragments to leave the R2 moiety with a positive charge, 

which can be detected with good sensitivity from tissue sections, allowing the 

distribution of the sulfonylurea herbicide to be imaged.

Fig. 2 Structures of sulfonylurea herbicides, a) chlorimuron-ethyl, b) chlorsulfuron, c) 

imazosulfuron and d) pyrazosulfuron-ethyl.



Fig. 2 shows the structures of the sulfonylurea herbicides examined in this chapter. 

Fig. 2a) shows the structure of chlorimuron-ethyl, Fig. 2b) shows the structure of 

chlorsulfuron, Fig. 2c) shows the structure of pyrazosulfuron and Fig. 2d) shows 

the structure of imazosulfuron. The R2 moiety resulting from fragmentation can be 

seen on the left side of the urea bond.

The aims of this chapter are to apply the methods developed from the analysis of 

azoxystrobin, mesotrione and nicosulfuron to a range of sulfonylurea herbicides 

and determine the extent of the translocation 24 hours following foliar application 

to sunflower plants. Also, to design a method to determine if MALDI-MSI can be 

applied to assess agrochemical translocation through a preliminary method such 

as limit of detection from conventional MALDI analysis and relate this to spiked 

control tissue sections.

4.2 Methods

4.2.1 Sulfonylurea herbicides analysis by conventional MALDI 
analysis

Conventional MALDI analysis was performed on solutions prepared from four 

sulfonylurea herbicides, (chlorimuron-ethly, chlorsulfuron, imazosulfuron and 

pyrazosulfuron-ethyl) using standard stock solutions of 1.0 mg/mL in acetonitrile.

1 pL of each of the above solutions were combined with 1 pL of a-CHCA (Sigma 

Aldrich, Dorset, UK) (10 mg/mL 1% TFA). Solutions were mixed and 1 pL was 

pipetted onto a well of a conventional stainless steel MALDI target. Positive 

MALDI-MS spectra were acquired at a laser power of 25 pJ.
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4.2.2 Limit of detection for sulfonylurea herbicides by conventional 
MALDI analysis

A range of solutions of each of the sulfonylurea herbicides was prepared from a 

stock solution of 1.0 mg/mL in acetonitrile. The concentration range was 0.001, 

0.01, 0.025, 0.05 and 0.1 mg/mL. 10 pL of these solutions were combined with 10 

pL of the matrix solution a-CHCA (Sigma Aldrich, Dorset, UK) (10 mg/mL 1.0% 

TFA). 1 pL of these analyte:matrix solutions were pipetted on to the spot target 

plate in triplicate. Spectra were then acquired using oMALDI server 5.1 automatic 

acquisition method with a random solid pattern of laser movement across the spot 

(fast pattern speed, dwell time 0.2 second, period duration time 0.333 minutes and 

accumulation time of 5.0 seconds). Positive MALDI-MS spectra were acquired in 

triplicate at a laser power of 25 pJ. The intensities of the substituted triazine or 

pyrimidine fragment ions and a-CHCA fragment ion at m/z 172.04 generated were 

used to calculate analyte to matrix ratios, which were averaged. The ratios were 

plotted against concentration with +/- error bars using Excel.

4.2.2 Limit of detection of sulfonylurea herbicides on control plant 
stem tissue sections

Five 30 micron control sections were taken from an undosed plant stem and 

attached to double sided carbon tape using the method described previously in 

chapter 3 (section 3.2.2.). The sections were then spiked with 2 pL of 0.625, 1.25, 

2.5 and 5.0 mg/mL solutions of the desired sulfonylurea herbicide, leaving the fifth 

section to act as a negative control. Samples were arranged on a target plate and 

the matrix (10 mg/mL a-CHCA (Sigma Aldrich, Dorset, UK) 0.1% TFA) was
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applied using an Iwata gravity-fed pneumatic air spray gun (Iwata Media Inc., 

Portland, OR, USA) by passing the compressed air gun over the sample 15 times, 

ensuring the sample tissue did not get saturated and even coverage had been 

achieved. The appropriate areas were then imaged using an Applied 

Biosystems/MDS Sciex Q-star pulsar I mass spectrometer (Concord, Ontario, 

Canada) fitted with an orthogonal MALDI source and a nitrogen laser, at a laser 

power of 25 pJ for chlorsulfuron and chlorimuron-ethyl and 35 pJ for imazosulfuron 

and pyrazosulfuron-ethyl with a laser repetition rate of 20 Hz. Images were 

obtained with a spatial resolution of 500 pm x 500 pm.

4.2.3 Absorption of sulfonylurea herbicides via foliar application

Sunflower plants were germinated and grown in potting compost (B&Q, Sheffield, 

UK). 50x1 pL of a 1.0 mg/mL solution of the desired sulfonylurea herbicide in 

50:50 acetonitrile: 0.1% Tween® (Sigma Aldrich, Dorset, UK) was applied to the 

tissue either side of the midrib vein of a leaf. The plants were then left for 24 

hours at 21 °C with a relative humidity of 55% (Sanyo, Versatile environmental test 

chamber, Hertfordshire, UK) before being removed and prepared for cryostat 

(Leica, Milton Keynes, UK) sectioning along the horizontal axes at varying 

distances from the root bundle region. Control sections were taken from an 

undosed plant to be used as positive and negative controls. Positive controls were 

spiked with 2 pL of a 1.0 mg/mL solution for chlorsulfuron and chlorimuron-ethyl 

and 2 pL of a 5.0 mg/mL solution for imazosulfuron and pyrazosulfuron-ethyl. 

Sections were coated in a-CHCA (Sigma Aldrich, Dorset, UK) (10 mg/mL 1.0%  

TFA) by passing the compressed air gun over the sample for 15 times, ensuring 

the sample tissue did not get saturated and even coverage had been achieved.

188



Sectioned samples were then mounted onto a MALDI target using conductive tape. 

The appropriate areas were then imaged using an Applied Biosystems/MDS Sciex 

Q-star pulsar I mass spectrometer (Concord, Ontario, Canada) fitted with an 

orthogonal MALDI source and a nitrogen laser, at a laser power of 25 pJ for 

chlorsulfuron and chlorimuron-ethyl and 35 pJ for imazosulfuron and 

pyrazosulfuron-ethyl, with a laser repetition rate of 20 Hz. Images were obtained 

with a spatial resolution of 500 pm x 500 pm.
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4 .3  R e s u lts

4.3.1 Positive ion MALDI-MS spectra and limit of detection of 
sulfonylurea herbicides

4.3.1.1 Chlorsulfuron positive MALDI-MS

Fig. 3 shows the positive ion MALDI mass spectrum of chlorsulfuron.

> = N

'N— S-■N— H

Chlorsulfuron

200)

Fig. 3 Positive ion MALDI mass spectrum of chlorsulfuron (1.0mg/mL) with a-CHCA 

(10mg/mL 1% TFA in acetone) 50:50. Showing the [M+H]+ ion at m/z 358.03 and aminotrizine 

fragment ions at m/z 167.06 and m/z 141.08.

The spectrum exhibits a number of ions which can potentially be used to generate 

images i.e. the [M+H]+ ion at m/z 358.03 and aminotrizine fragment ions at m/z 

167.06 and m/z 141.08. The fragment ion at m/z 141.08 is clearly observed in spot
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samples and is present as the most abundant ion relating to imazosulfuron. For 

this reason this ion's intensity will be used for the limit of detection experiment.

Chlorsulfuron

0.6

0.4

0.2

0.025

Concentration mg/mL

Fig. 4 Calibration curve for analyte to matrix ratio against chlorosulfuron concentration for 

the chlorsulfuron fragment ion (m/z 141.08). Matrix ion (m/z 172.04).

Fig. 4 shows the calibration graph from the chlorsulfuron fragment ion (m/z

141.08) against the a-CHCA matrix ion (m/z 172.04). The limit of detection 

calculated from this graph was 10.34 pg/mL using linear regression through the 

first three data points 3. Previously reported data for the limit of detection of 

chlorsulfuron using solid phase extraction followed by high performance liquid 

chromatography electrospray ionisation mass spectrometry is 1.5 pg/mL 4.
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4.3.1.2 Chlorimuron-ethyl positive MALDI-MS
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Fig. 5 Positive ion MALDI mass spectrum of chlorimuron-ethyl (1.0mg/mL) with a-CHCA 

(10mg/mL 1% TFA in acetone) 50:50. Showing the [M+H]+ ion at m/z 415.04, Na+adduct at 

m/z 437.03, the K+adduct at m/z 453.00 and fragment ions at m/z 186.01 and m/z 160.03.

Fig. 5 shows the positive ion MALDI mass spectrum of chlorimuron-ethyl. The 

spectrum exhibits a number of ions which can potentially be used to generate 

images i.e. the [M+H]+ ion at m/z 415.04, Na+ adduct at m/z 437.03 the K+ adduct 

at m/z 453.00 and fragment ions at m/z 186.01 and m/z 160.03. The fragment ion 

at m/z 160.03 is clearly observed in spot samples and is present as the most 

abundant ion relating to chlorimuron-ethyl. For this reason, this ion’s intensity will 

be used for the limit of detection experiment.
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Fig. 6 Calibration curve for analyte to matrix ratio against chlorimuron- ethyl concentration 

for the chlorimuron- ethyl fragment ion (m/z 160.03). Matrix ion (m/z 172.04).

Fig. 6 shows the calibration graph for the chlorimuron- ethyl fragment ion (m/z 

160.03) against the a-CHCA matrix ion (m/z 172.04). The limit of detection 

calculated from this graph was 0.52 pg/mL using linear regression through the first 

three data points 3. Previously reported data for the limit of detection of 

chlorimuron-ethyl using solid phase extraction followed by high performance liquid 

chromatography electrospray ionisation mass spectrometry is 2.5 pg/mL 4.
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4.3.1.3 Imazosulfuron positive IVIALDI-MS

CH,— O
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Fig. 7 Positive ion MALDI mass spectrum of imazosulfuron (1.0mg/mL) with a-CHCA 

(10mg/mL 1%TFA in acetone) 50:50. Showing the [M+H]+ion at m/z 413.04 and fragment 

ions at m/z 182.06 and m/z 156.07.

Fig. 7 shows the positive ion MALDI mass spectrum of imazosulfuron. It exhibits 

a number of ions which can potentially be used to generate images i.e. the [M+H]+ 

ion at m/z 413.04 and fragment ions at m/z 182.04 and m/z 156.07. The fragment 

ion at m/z 156.07 is clearly observed in spot samples and is present as the most 

abundant ion relating to imazosulfuron. For this reason, this ion's intensity will be 

used for the limit of detection experiment.
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Fig. 8 Calibration curve for analyte to matrix ratio against imazosulfuron concentration for 

the imazosulfuron fragment ion (m/z 156.08). Matrix ion (m/z 172.04).

Fig. 8 shows the calibration graph from the imazosulfuron fragment ion (m/z

156.08) against the a-CHCA matrix ion (m/z 172.04). The limit of detection 

calculated from this graph was 14.35 pg/mL using linear regression through the 

first three data points 3. No previously reported data for a limit of detection could 

be found for imazosulfuron.
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4.3.1.4 Pyrazosulfuron-ethyl positive MALDI-MS

CH;CH}— 0

Pyrazosulfuron-ethyl = M
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Fig. 9 Positive ion MALDI mass spectrum of pyrazosulfuron-ethyl (1.0mg/mL) with a-CHCA 

(10mg/mL 1% TFA in acetone) 50:50. Showing the [M+H]+ ion at m/z 415.10, the Na+ adduct 

at m/z 437.09, the K+adduct at m/z 453.06 and fragment ions at m/z 182.06 and m/z 156.07.

Fig. 9 shows the positive ion MALDI mass spectrum of pyrazosulfuron-ethyl. The 

spectrum exhibits a number of ions which can potentially be used to generate 

images i.e. the [M+H]+ ion at m/z 415.10, the Na+ adduct at m/z 437.09, the K+ 

adduct at m/z 453.06 and fragment ions at m/z 182.06 and m/z 156.07. The 

fragment ion at m/z 156.07 is clearly observed in spot samples and is present as 

the most abundant ion relating to pyrazosulfuron-ethyl. For this reason, this ion's 

intensity will be used in the limit of detection experiment.
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Fig. 10 Calibration curve for analyte to matrix ratio against pyrazosulfuron-ethyl 

concentration for the pyrazosulfuron-ethyl fragment ion (m/z 156.08). Matrix ion (m/z 

172.04).

Fig. 10 shows the calibration graph from pyrazosulfuron-ethyl fragment ion (m/z

156.08) against the a-CHCA matrix ion (m/z 172.04). The limit of detection 

calculated from this graph was 18.18 pg/mL using linear regression through the 

first three data points 3. Previously reported data for the limit of detection of 

pyrazosulfuron-ethyl using solid phase extraction followed by high performance 

liquid chromatography electrospray ionisation mass spectrometry is 3.0 pg/mL 4.
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4.3.2 MALDI-MS! o f  spiked control sections

4.3.2.1 MALDI-MS! of chlorimuron-ethyl spiked sections
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Fig. 11 MALDI-MS image of control cross section and spiked control sections. Image of 

chlorimuron-ethyl fragment ion at m/z 160.03 (image range m/z 160.004-160.051 and 

normalised against a-CHCA m/z 172.04 peak). Values are equivalent pg spiked onto tissue.

Fig. 11 shows the distribution of the chlorimuron-ethyl fragment ion at m/z 160.03 

in spiked control stem sections. The image shows the compound is clearly 

present on the 10 pg spiked section, around the outside edge of the tissue. Signal 

is present on the tissue sections spiked with 5.0 and 2.5 pg, around the outside 

edge of the section where the solution has soaked into the tissue. No signal has 

been observed in the sections spiked with 1.25 pg and a small area of 

contamination can be seen in the negative control.
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4.3.2.2 MALDI-MSI of chlorsulfuron spiked sections
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Fig. 12 MALDI-MS image of control cross section and spiked control sections. Image of 

chlorsulfuron fragment ion at m/z 141.08 (image range m/z 141.060-141.081 and normalised 

against a-CHCA m/z 172.04 peak). Values are equivalent pg spiked onto tissue.

Fig. 12 shows the distribution of the chlorsulfuron fragment ion at m/z 141.08 in 

spiked control stem sections. The image shows that the compound is clearly 

present on the 10 pg spiked section, across all of the tissue. Signal is present in 

the tissue sections spiked with 5.0, 2.5 and 1.25 pg around the outside edges of 

the sections where the solution has soaked into the tissue.

No satisfactory results were obtained for imazosulfuron or pyrazosulfuron using 

this method.
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4.3.3 MALDI-MSI of sulfonylurea herbicides 24 hour following foliar 
application

4.3.3.1 MALDI-MSI of chlorsulfuron
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Fig. 13 Cross sections of a stem of a sunflower plant following uptake of chlorsulfuron via 

the leaves after a 24 hour foliar application experiment, (a) MALDI-MS image of 

chlorsulfuron fragment ion at m/z 141.08 (image range m/z 141.060-141.081 and normalised 

against a-CHCA m/z 172.04 peak), (b) Optical image of horizontal sections, (c) Optical 

image indicating region where horizontal sections were taken from in the 24 hour foliar 

application experiment.
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Fig. 14 Cross sections of a stem of a sunflower plant fo llow ing  uptake of chlorsulfuron via 

the leaves after a 24 hour foliar application experiment, (a) MALDI-MS image of
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chlorsulfuron [M+H]+ ion at m/z 358.04 (image range m/z 357.995-358.051 and normalised 

against a-CHCA m/z 190.05 peak), (b) Optical image of horizontal sections, (c) Optical 

image indicating region where horizontal sections were taken from in the 24 hour foliar 

application experiment.

Fig. 13 (a) shows the MALDI-MS image of the distribution of the chlorsulfuron 

aminotrizine fragment ion at m/z 141.08, 24 hours after foliar application.

These data indicate that chlorsulfuron has been absorbed and translocated 

throughout all of the stem tissue sections from the application point at 205 mm. 

The image generated from the peak at m/z 141.08 shows that the aminotrizine 

fragment ion is present in the highest concentrations (indicated by the high signal) 

in the sections 315 mm and 5 mm along the plant stem i.e. the growing tip at the 

top of the plant. High signal is also observed in the positive control, confirming the 

ion originates from chlorsulfuron. Only slight interference is observed in the 

negative control, due to endogenous compounds present at m/z 141.08.

Fig. 14 (a) shows the MALDI-MS image of the distribution of the chlorsulfuron 

protonated molecule at m/z 358.04, 24 hours after foliar application. These data 

indicate that chlorsulfuron has been absorbed and translocated throughout all of 

the stem tissue sections from the application point at 205 mm, supporting the data 

seen in Fig. 13 of the chlorsulfuron fragment ion at m/z 141.08. The image 

generated from the peak at m/z 358.04 shows that the chlorsulfuron protonated 

molecule is present in the highest concentrations (indicated by the high signal) in 

the sections 315 mm and 5 mm along the plant stem i.e. the growing tip at the top 

of the plant. High signal is also observed in the positive control, confirming that 

the ion originates from chlorsulfuron. As no interference is observed in the
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negative control there are no endogenous compounds present at this m/z ratio. 

As this image was acquired at a lower laser power of 28 pJ compared to 35 pJ 

(used to acquire the images for pyrazosulfuron and imazosulfuron) not all of the 

chlorsulfuron has fragmented, although a higher signal was observed for the 

aminotrizine fragment ion at m/z 141.08 24 (Fig. 13) indicated by the scale on the 

right side of the MALDI-MS images.

4.3.3.2 MALDI-MSI of chlorimuron-ethyl

Fig. 15 (a) shows the MALDI-MS image of the distribution of the chlorimuron-ethyl 

aminopyrimidine fragment ion 24 hours after chlorimuron-ethyl foliar application.

These data indicate that chlorimuron-ethyl has been absorbed and translocated to 

stem tissue above the application point at 210 mm. The image generated from the 

peak at m/z 160.03 shows that the aminopyrimidine structure is present in the 

sample at 295 mm and 275 mm from the root tip and the positive control with high 

intensity. Chlorimuron-ethyl can not be identified in any other of the stem sections 

at this m/z.

Fig. 16 (a) shows the MALDI-MS image of the distribution of the chlorimuron-ethyl 

protonated molecule, 24 hours after foliar application. These data indicate that 

chlorimuron-ethyl has been absorbed and translocated to stem tissue above the 

application point at 210 mm. The image generated from the peak at m/z 415.05  

shows that the aminopyrimidine structure is present in the sample at 295 mm, 275 

mm and 5 mm from the root tip and the positive control with high intensity. 

Chlorimuron-ethyl can not be identified in any of the other of the stem sections at
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this m/z. As this image was acquired at a lower laser power of 28 pJ compared to 

35 pJ (used to acquire the images for pyrazosulfuron and imazosulfuron) not all of 

the chlorimuron-ethyl has fragmented, and a higher signal was observed for the 

chlorimuron protonated molecule at m/z 415.05 (Fig. 15) indicated by the scale on 

the right side of the MALDI-MS images. This higher signal observed with the 

chlorimuron-ethyl protonated molecule at m/z 415.05 has provided enough 

sensitivity to indicate the chlorimuron-ethyl has translocated towards the growing 

tips of the roots.
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Fig. 15 Cross sections of a stem of a sunflower plant following uptake of chlorimuron-ethyl 

via the leaves after a 24 hour foliar application experiment, (a) MALDI-MS image of 

chlorimuron-ethyl fragment ion at m/z 160.03 (image range m/z 160.004-160.051 and 

normalised against a-CHCA m/z 172.04 peak), (b) Optical image of horizontal sections, (c) 

Optical image indicating region where horizontal sections were taken from in the 24 hour 

foliar application experiment.
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Fig. 16 Cross sections of a stem of a sunflower plant following uptake of chlorimuron-ethyl 

via the leaves after a 24 hour foliar application experiment, (a) MALDI-MS image of 

chlorimuron-ethyl [M+H]+ ion at m/z 415.05 (image range m/z 415.021-415.082 and 

normalised against a-CHCA m/z 190.05 peak), (b) Optical image of horizontal sections, (c) 

Optical image indicating region where horizontal sections were taken from in the 24 hour 

foliar application experiment.
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4.3.3.3 MALDI-MSI of imazosulfuron

Fig. 17 (a) shows the MALDI-MS image of the distribution of the imazosulfuron 

aminopyrimidine compound at m/z 156.08, 24 hours after foliar application. These 

data indicate that imazosulfuron has been absorbed and translocated to stem 

tissue above the application point at 270 mm. The image generated from the peak 

at m/z 156.08 shows that the aminopyrimidine structure is present in the sample at 

405 mm, 385 mm and the positive control with high intensity and a low signal at 

275 mm. Imazosulfuron can not be identified in any of the other of the stem 

sections at this m/z.

Fig. 18 (a) shows the MALDI-MS image of the distribution of the imazosulfuron 

aminopyrimidine compound at m/z 182.06, 24 hours after foliar application. These 

data indicate that imazosulfuron has been absorbed and translocated to stem 

tissue above the application point at 270 mm. The image generated from the peak 

at m/z 182.06 shows that the aminopyrimidine structure is present in the sample at 

405 mm, 385 mm and the positive control with high intensity and a low signal at 

275 mm. This confirms the image generated from imazosulfuron aminopyrimidine 

compound at m/z 156.08, in Fig. 17. Imazosulfuron can not be identified in any 

other of the stem sections at this m/z. Although the signal for this ion is higher 

than the signal observed for imazosulfuron aminopyrimidine compound at m/z 

156.08 the interference from background noise is also more apparent due to the 

high laser power used in the acquisition of the image.
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Fig. 17 Cross sections of a stem of a sunflower plant following uptake of imazosulfuron via 

the leaves after a 24 hour foliar application experiment, (a) MALDI-MS image of 

imazosulfuron fragment ion at m/z 156.08 (image range m/z 156.033-156.090 and normalised 

against a-CHCA m/z 172.04 peak), (b) Optical image of horizontal sections, (c) Optical 

image indicating region where horizontal sections were taken from in the 24 hour foliar 

application experiment.
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Fig. 18 Cross sections of a stem of a sunflower plant following uptake of imazosulfuron via 

the leaves after a 24 hour foliar application experiment, (a) MALDI-MS image of 

imazosulfuron fragment ion at m/z 182.06 (image range m/z 182.032-182.096 and normalised 

against a-CHCA m/z 172.04 peak), (b) Optical image of horizontal sections, (c) Optical 

image indicating region where horizontal sections were taken from in the 24 hour foliar 

application experiment.
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Fig. 19 Cross sections of a stem of a sunflower plant following uptake of imazosulfuron via 

the leaves after a 24 hour foliar application experiment, (a) MALDI-MS image of 

imazosulfuron [M+H]+ ion at m/z 413.04 (image range m/z 413.016-413.062 and normalised 

against a-CHCA m/z 172.04 peak), (b) Optical image of horizontal sections, (c) Optical 

image indicating region where horizontal sections were taken from in the 24 hour foliar 

application experiment.

Fig. 19 (a) shows the MALDI-MS image of the distribution of the imazosulfuron 

protonated molecule, 24 hours after foliar application. These data indicate that 

imazosulfuron has been absorbed and translocated to stem tissue above the 

application point at 270 mm. The image generated from the peak at m/z 413.04 

shows that the aminopyrimidine structure is present in the sample at 405 mm and 

the positive control with high intensity with weak signal observed in the section at 

275 mm. Imazosulfuron can not be identified in any of the other of the stem 

sections at this m/z.
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4.3.S.4 MALDI-MSI of pyrazosulfuron

Fig. 20 (a) shows the MALDI-MS image of the distribution of the pyrazosulfuron 

aminopyrimidine compound at m/z 156.08, 24 hours after foliar application.

Sample at 400mm 

Sample at 385mm
Sample at 400mm

Sample at 385mm

Sample at 195mm
Sample at 195mm

Sample at 15mm

Negative control

Positive control

«S.O SO.O SS.O 60.0 6S.0 70.0
Width (wo)

(C)

Fig. 20 Cross sections of a stem of a sunflower plant following uptake of pyrazosulfuron via 

the leaves after a 24 hour foliar application experiment, (a) MALDI-MS image of 

pyrazosulfuron fragment ion at m/z 156.08 (image range m/z 156.033-156.096 and 

normalised against a-CHCA m/z 172.04 peak), (b) Optical image of horizontal sections, (c) 

Optical image indicating region where horizontal sections were taken from in the 24 hour 

foliar application experiment.

These data indicate that pyrazosulfuron has been absorbed and translocated to 

stem tissue above the application point at 230 mm. The image generated from the 

peak at m/z 156.08 shows that the aminopyrimidine structure is present in the 

sample at 400 mm and the positive control with high intensity. Pyrazosulfuron can 

not be identified in any of the other of the stem sections at this m/z.

4.4 Discussion

The positive MALDI-MS spectra exhibited a number of peaks relating to the 

compounds in all instances. The limit of detection spot sample results show that
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chlorimuron-ethyl has the lowest value at 0.523 pg/mL. Whilst the chlorsulfuron 

limit of detection was 10.34 pg/mL when observing the respective aminotrizine and 

aminopyrimidine fragment ions at m/z 141.08 2 and 160.03. These results did not 

correspond to the values observed for the limit of detection on spiked control 

section results, since a greater sensitivity was observed with chlorsulfuron.

The results from sulfonylurea herbicides, 24 hours following foliar application, 

show that in all cases it was possible to detect the R2 species (Fig.1 and 2) 

resulting from in source fragmentation of the sulfonylurea compound urea bond. It 

was found that a higher laser energy was required to cause the fragmentation of 

pyrazosulfuron-ethyl and imazosulfuron than chlorsulfuron and chlorimuron-ethyl. 

Data could be obtained from the protonated molecules of chlorsulfuron, 

chlorimuron-ethyl and imazosulfuron, in some cases indicating better sensitivity 

and identifying compounds in tissue sections where the R2 fragment ion had not 

been observed.

4.5 Conclusion

The limit of detection values from spot sample analysis of the sulfonylurea 

herbicides yielded varying results with the lowest value observed with chlorimuron- 

ethyl at 0.523 pg/mL. This did not concur with the findings from the spiked control 

sections method, where the best sensitivity was observed with chlorsulfuron where 

the distribution of the fragment ion was clearly observed with 1.25pg spiked onto 

the tissue. Images for the spiked imazosulfuron pyrazosulfuron-ethyl were 

unsuccessful due to background inference caused by the laser energy being too 

high during acquisition.
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The extent of translocation of the four sulfonylurea compounds, 24 hours following 

foliar application, was successfully obtained using MALDI-MSI. The extent of 

translocation varies with chlorsulfuron showing the greatest extent with movement 

towards both growing tips of the leaves and the roots. The pyrazosulfuron 

fragment ion was only observed in one sample section, at the growing tips of the 

leaves.
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5.1 Conclusions

MALDI-MSI has become an established technique for determining the distribution 

of xenobiotics and endogenous compounds in biological tissues. The data 

presented in this thesis show that MALDI-MSI can be used to determine the 

distribution of agrochemicals from plant leaf surfaces and within the plant transport 

systems following uptake via the roots (translocation in the roots) and absorption 

following foliar application (translocation in the phloem).

As conventional MALDI analysis can confirm the location of a xenobiotic within a 

tissue sample provided the laser is fired at the correct location. MALDI-MSI can 

provide data to show the localisation of the xenobiotic across the whole sample 

and show regions of high abundance compared to regions of lower abundance 

with the same sample of different samples within the same image.

The study was started by performing initial experiments for the analysis of 

azoxystrobin using an indirect MALDI-MSI method by blotting the compound onto 

a cellulose membrane. This led onto the direct tissue MALDI-MSI analysis of 

mesotrione from the upper epidermis layer following removal of the cuticle. These 

experiments were successful and further developed into a more sensitive method, 

with a higher degree of spatial resolution once a more suitable matrix was 

obtained and the problem of sample charging was prevented with gold sputter 

coating. Attempts to observe translocation of mesotrione following foliar uptake 

were hindered by signal suppression. Although the mesotrione was observed in 

tissue leading towards the petiole and stem of the plant, low signals for both the 

fragment ion (m/z 291.03) and the deprotonated molecule (m/z 338.03) were
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observed. This low signal was attributed to fragmentation of mesotrione because 

the deprotonated molecule is unstable, resulting in the formation of a fragment ion 

at m/z 291.03, along with the deprotonated molecule at m/z 338.03 observed in 

the mass spectrum (section 2.3.1). This fragmentation reduces the sensitivity 

towards the overall amount of mesotrione present within the sample tissue. The 

effect of laser energy was assessed in section 2.3.7. These data show that the 

higher laser energy (2728) yielded a much higher signal for the fragment ion at 

m/z 291.03. It is proposed that in the method to assess the translocation of 

mesotrione following foliar application (section 2.2.6) were experiments performed 

by direct tissue analysis, the laser energy required to produce adequate sensitivity 

was high, due to an endogenous compound absorbing the energy of the laser. 

This high laser energy also resulted in fragmentation. The laser energy could not 

be increased substantially to a value where all the mesotrione was fragmented 

due to background noise generated from compounds within the tissue having a 

detrimental effect on the images generated.

The effect of compounds present within the plant tissue on the ionisation efficiency 

of mesotrione was assessed in section 2.3.8. This clearly demonstrated the effect 

of the endogenous compounds suppressing mesotrione due to analyte/analyte 

suppression effects observed with a mixture of analytes.

The use of MALDI-MSI to determine the distribution of azoxystrobin in the root 

bundle tissue and stem tissue by direct analysis of sectioned tissue following 

uptake via the roots had been shown to be successful previously 1. In this work 

the extent of translocation along a whole plant stem was studied using sunflower
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plants since the sunflower species has a larger stem than soya bean and 

horizontal sections could be taken easily from the whole of the plant stem length. 

This process was made much quicker and simpler by incorporating an ice support, 

rapidly frozen around the stem section (section 3.2.2). Applying these methods in 

an attempt to observe translocation of mesotrione and fluazifop-p butyl following 

foliar application was unsuccessful. This was attributed to poor ionisation 

efficiencies of the compounds in comparison to endogenous compounds present 

within the plant.

Applying the methods developed here to a study of nicosulfuron (which is both 

phloem and xylem mobile), produced results from both uptake and translocation 

via the roots and translocation following foliar application at two time points (24 

and 48 hours). Images were generated from fragment ions, a metal adduct and a 

product of phase I metabolism (hydrolysis).

The uptake of two agrochemicals (nicosulfuron and azoxystrobin) within the same 

plant was observed by MALDI-MSI, following co-application to the plant stem via 

the stem tissue.

Data obtained from the University of Munster for the IR-LDI of fluazifop-p butyl 

were promising although further investigation into the technique is required.

The findings of Chapter 3 lead onto the work presented in the Chapter 4 where the 

methods developed were applied to herbicides from the sulfonylurea group. Limit 

of detection experiments were performed using spot sample analysis followed by
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spiked tissue controls to decide if a quick preliminary method can be applied to 

determine whether MALDI-MSI can be used to assess translocation.

The limit of detection values from spot sample analysis of the sulfonylurea 

herbicides yielded varying results, with the lowest value observed with 

chlorimuron- ethyl at 0.523 pg/mL. This did not agree with the findings from the 

spiked control sections method, where the best sensitivity was observed with 

chlorsulfuron with the distribution of the fragment ion being clearly observed with 

1.25 pg spiked onto the tissue. Images for the spiked imazosulfuron and 

pyrazosulfuron-ethyl sections were unsuccessful due to background inference 

caused by the laser energy being too high during acquisition.

The translocation of the four sulfonylurea compounds 24 hours following foliar 

application was successfully studied by MALDI-MSI. The extent of translocation 

varied, with chlorsulfuron exhibiting the greatest movement. Translocation 

towards both growing tips of the leaves and the roots was observed. The spiked 

control section experiment had shown the best sensitivity towards chlorsulfuron 

which gave the best MALDI response of all the compounds and hence the 

observed extent of translocation may relate to sufficient compound being present 

in the sections, allowing for images within the sample section to be generated.

Although many experiments carried out during this study were successful, MALDI- 

MSI clearly has limitations when applied to the detection of agrochemical 

translocation. These relate to the ionisation efficiencies of the analyte compared 

to the endogenous compounds within the plant. These endogenous compounds
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severely affected the method’s sensitivity towards mesotrione and fluazifop-p butyl. 

Another factor which has affected the sensitivity of the technique has been 

extensive fragmentation of the agrochemicals and metal adduct formation 

reducing the intensity of individual ions.

The problem of compound dependent suppression may be overcome by 

derivatisation which is commonly used with electrospray ionisation 2. Compounds 

such as tris(2,4,6-trimethoxyphenyl)phosphonium propylamine bromide (TMPP), 

S-pentafluorophenyl tris(2,4,6-trimethoxyphenyl)phosphonium acetate bromide 

(TMPP-AcPFP) and (4-hydrazino-4-oxobutyl) tris(2,4,6-trimethoxyphenyl) bromide 

(TMPP-PgG) have been successfully used to increase the mass of the analyte and 

move its position to an area of the mass spectrum with low noise and to assist the 

detection of non-ionisable compounds 2,s. These derivatizing agents require 

solution based reactions with conditions possibly unsuitable for MALDI-MSI as 

they may cause delocalisation of the analyte on the sample surface. A study 

performed by Mugo et a t  using 4-dimethylamino-6-(4-methoxy-1-naphthyl)-1,3,5- 

triazine-2-hydrazine (DMNTH) for the derivatisation of small carbonyl compounds 

with a rapid on plate and one pot reaction presents a reactive matrix which would 

be suitable for MALDI-MSI.

The method used to detect agrochemicals spiked onto control tissue gives a good 

indication as to whether MALDI-MSI can be used to detect its translocation and 

allows ions observed in MALDI-MS spectra to be identified in tissue. Since this 

method includes negative controls interferences from endogenous compounds at 

m/z values relating to the agrochemical can be assessed. A range of standard
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dilutions can be employed to give an indication of the compound dependent 

suppression effect. With the advent of automated spotting instruments5 known 

concentrations of compounds can be applied to defined regions of tissue creating 

an array of standards with addition of an internal standard or use of the matrix 

intensities as an internal standard. Recent development in laser technology with 

respect to MALDI-MSI has seen the utilisation of high repetition lasers up to 2 

KHz6 which decreases acquisition time and can cause complete ablation of all 

matrix and co-crystallised analyte present in the pixel area. These advances 

should lead to MALDI-MSI becoming a semi quantitative technique.

This results reported in this thesis demonstrate that MALDI-MSI is a feasible 

method to determine the translocation of agrochemicals in plants without the 

requirement of radiolabels.
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Appendix 2: Examination of the Distribution of 
Nicosulfuron in Sunflower Plants by MALDI-MSI
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Examination of the distribution of nicosulfuron in 
sunflower plants by matrix-assisted laser desorption/ 
ionisation mass spectrometry imaging

David M. G. Anderson1, Vikki A. Carolan1, Susan Crosland2, Kate R. Sharpies2 
and Malcolm R. Clench1*
1 Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK 
2Syngenta, Jealotts Hill International Research Station, Jealotts Hill, Bracknell RG42 6EY, UK

Received 19 December 2008; Revised 2 February 2009; Accepted 4 February 2009

Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) has been used 
to image the distribution of the pesticide nicosulfuron (2-[[(4,6-dimethoxypyrimidin-2-yl)aminocar- 
bonyl]aminosulfonyl]-N,N-dimethyl-3-pyridinecarboxamide) in plant tissue using direct tissue 
imaging following root and foliar uptake. Sunflower plants inoculated with nicosulfuron were 
horizontally sectioned at varying distances along the stem in order to asses the extent of translocation; 
uptake via the leaves following foliar application to the leaves and uptake via the roots from a 
hydroponics system were compared. An improved sample preparation methodology, encasing 
samples in ice, allowed sections from along the whole of the plant stem from the root bundle to 
the growing tip to be taken. Images of fragment ions and alkali metal adducts have been generated 
that show the distribution of the parent compound and a phase 1 metabolite in the plant. Positive and 
negative controls have been included in the images to confirm ion origin and prevent false-positive 
results which could originate from endogenous compounds present within the plant tissue.
Copyright ©  2009 John Wiley & Sons, Ltd.

Studying the uptake and translocation of agrochemicals in 
plants is important in developing new active ingredients for 
weed and pest management. Autoradiography is an 
established methodology for assessing the absorption and 
translocation of agrochemicals following both uptake via the 
roots and absorption following foliar application. It provides 
a very sensitive method with quantifiable results.1 A major 
limitation of this method, however, is that the synthesis of 
radiolabelled compounds is required. This is expensive and 
can be time consuming, and the results do not give any 
differentiation between the distribution of metabolites and 
the parent compound since images generated show the 
distribution of all compounds that contain the radio isotope. 
In addition there is a wish to move away from the safety 
issues involved in handling radiolabelled materials. The 
overall aim of this research project is to develop an analytical 
technique for the detection of the distribution and absorption 
rates of agrochemicals into plants without the use of 
radiolabelled compounds.

Matrix-assisted laser desorption/ionisation mass spec­
trometry imaging (MALDI-MSI) applications have been 
increasing rapidly in the last few years. MALDI-MSI was first 
developed by the Caprioli group in 1997.2 This technique has 
been used to image the distribution of a wide range of

Correspondence to: M. R. Clench, Biomedical Research Centre, 
Sheffield Hallam University, Howard Street, Sheffield SI 1W, 
UK.
E-mail: m.r.clench@shu.ac.uk
Contract/grant sponsor: BBSRC CASE Award from Syngenta.

compounds, including proteins, lipids, pharmaceuticals, 
metabolites and other small molecules.3,4 The first demon­
stration of the use of MALDI to directly study pharmaceu­
tical compounds in animal tissue was performed by Troendle 
et al.,5 where the anti-cancer drug paclitaxel was detected in a 
rat liver incubated in a solution containing paclitaxel and also 
in a dosed xenograft. They also detected the antipsychotic 
drug spiperone from spiked sections of rat liver tissue. These 
results suggested that MALDI-MSI could provide a powerful 
investigative tool for pharmaceutical research and develop­
ment.

The Caprioli group in collaboration with Schering-Plough6 
reported the distribution of an anti-tumour drug in dosed 
mouse tumour tissue and rat brains. By using selected 
reaction monitoring (SRM), spectral interference from matrix 
and endogenous metabolites which limits the sensitivity of 
MALDI time-of-flight (TOF) MS for drug analysis was 
avoided. Images were generated from the product ions 
showing the distribution of the anti-tumour drugs in both 
tumour and brain tissue. MALDI-MSI has now progressed to 
the stage when it offers a complementary technology to 
autoradiography for imaging the distribution of xenobiotic 
compounds. Additional functionality is obtained since 
separate images for the distribution of the parent compounds 
and its metabolites in whole body tissue sections may be 
generated.7

MALDI-MSI and profiling have been widely used in the 
study of plant material. In 1997 Stahl et a l.8 employed 
MALDI-MS and high-performance anion-exchange chroma-

Copyright ©  2009 John Wiley & Sons, Ltd.
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graphy (HPAEC) to analyse two high molecular weight 
ctans from D ahlia variabilis L. and also carried out direct 

sue analysis on the epidermal and paraenchymal tissue of 
nion bulbs (A llium  cepa L.). A lliu m  cepa L. contains various 
omeric fructans and more than 50 compounds were 
etected from both techniques with masses ranging from 
2000 to 10000.
In 2004 Sluszny and Yeung9 reported the probing of the 

iotic-abiotic boundary of plants using laser desorption/ 
nisation mass spectrometry (LDI-MS), by using transition 
etals, metal powders and colloidal suspensions to create 
nised species via attachment of metal ions. The published 
ata demonstrated that LDI-MS could be used to analyse 
uticle waxes made up of long-chain non-polar hydrocar- 
ons and that these could be identified by direct tissue 

alysis with nearly identical mass spectra being obtained by 
irect analysis and extraction.
Wu et a l.10 profiled the alkaloid distribution in four 

ommonly used Chinese medicinal herbs using direct tissue 
nalysis MALDI-MS. The results demonstrated the feasi- 
ility of using MALDI-MS to provide rapid and reliable plant 
omponent profiles by direct analysis of plant tissue. This 
duced the degradation of the compounds of interest caused 

y traditional sample preparation methods. They also used 
le technique to study Strychnos nux-vomica seeds, profiling 
gions of the endosperm and epidermis without the need for 

omplex sample preparation; clear differences were 
bserved between the endosperm and epidermis regions 
ith several additional alkaloids being found to be present in 
e epidermis region.11
Ng et a l } 2 have demonstrated the spatial profiling of 

hytochemicals and secondary metabolites by direct analysis 
f herbal plant tissue using MALDI-MS. The results clearly 
ifferentiate the relative abundance of metabolites in 
ifferent tissue regions including the cortex, phloem, xylem, 

i and pith.
Robinson et a l P  have generated images of carbohydrates 

om wheat stems. Hexose sugars present in wheat stems 
ere identified using MALDI-MS and liquid chromatog- 
phy/electrospray ion trap mass spectrometry and the 
ages showed the distribution of these sugars within stem 

ctions from both the longitudinal axis and the horizontal 
xis. Burrell et a l P  generated images of a range of 
etabolites in wheat grains in positive and negative ion 
ode using a-cyano-4-hydroxycinnamic acid (CHCA) and 

-aminoacridine as M ALDI matrices, respectively. The 
ages show the distribution and variation in abundance 

f metabolites in specific regions of a wheat grain at a 
icromolar concentration.
In a previous study we reported preliminary investi- 

ations into the determination of agrochemicals in soya 
lants by MALDI-MSI.15 Nicosulfuron is a member of the 
lfonylurea herbicides group which have been extensively 
ed in cereal-growing regions following their introduction 

the early 1980s. Sulfonylurea herbicides are potent 
hibitors of the enzyme acetolactate synthase (ALS) which 
involved in branched-chain amino acid biosynthesis in 

lants. It is a thiamine pyrophosphate (TPP)-dependent 
zyme which results in the condensation of pyruvate, a -  

eto-a-hydroxybutyrate and carbon dioxide in isoleucine

opyright ©  2009 John Wiley & Sons, Ltd.

biosynthesis or the condensation of pyruvate molecules to 
form acetolactate and carbon dioxide in leucine and valine 
biosynthesis. ALS inhibitors are regarded as the most active 
group of herbicidal compounds found to date and display 
very high herbicidal activity in soil and following foliar 
application.16

In the work reported here our aim was to further refine 
methods of sample preparation for the examination of the 
translocation of agrochemicals in plants and to apply these to 
a study of the distribution of sulfonylurea herbicides.

EXPERIMENTAL 

Uptake of nicosulfuron via the roots 
(hydroponics experiment)
Sunflower plants were germinated and grown in multi­
purpose potting compost until they had reached a height of 
145 mm. The plants were then removed from the soil and 
washed before being introduced into a conical flask 
containing 1 /2  strength Hoglands N°2 Basel salt solution. 
The solutions were spiked with nicosulfuron to give a 
concentration of 20 ppm, and the plants were left for 24 h 
before a further addition of nicosulfuron was made to give a 
final concentration of 40 ppm. The plants were then left for 
another 24 h before being removed and prepared for cryostat 
sectioning along the horizontal axes at 10 mm, 30 mm, 50 mm 
and 140 mm from the root bundle region. Control sections 
were taken from an undosed plant to be used as positive and 
negative controls; the positive controls were spiked with 1 pL 
of a 1 mg/m L solution of nicosulfuron in acetonitrile.

Absorption of nicosulfuron via foliar 
application
Sunflower plants were germinated and grown in potting 
compost until they had reached a height of 135 mm for the 
24 h experiment and 200 mm for the 48 h experiment. Fifty 
aliquots of 1 jxL of a 1.25 m g/m L solution of nicosulfuron in 
50:50 acetonitrile/0.1% Tween were applied to the tissue 
either side of the midrib vein of a leaf. The plants were then 
left for 24 and 48 h at 21°C with a relative humidity of 55% 
before being removed and prepared for cryostat sectioning 
along the horizontal axes at varying distances from the root 
bundle region. Control sections were taken from an undosed 
plant to be used as positive and negative controls; the 
positive controls were spiked with 2 pL of a 2.5 m g/m L  
solution of nicosulfuron in acetonitrile.

Section preparation for MALDI-MSI analysis
Sections were coated in CHCA (10 m g/m L 1.0% trifluor- 
oacetic acid (TFA) in acetone) by an air-spray technique. The 
compressed air gun (Iwata Media Inc., Portland, OR, USA) 
was passed over the sample 15 times ensuring that the 
sample tissue did not get saturated and that an even coverage 
was achieved. Sectioned samples were then mounted onto a 
MALDI target using conductive tape.

MALDI-MSI analysis
Appropriate areas of the plant sections were imaged using a 
'Q-star Pulsar I '  quadrupole time-of-flight mass spec­
trometer (Applied Biosys terns/MDS Sciex, Concord,

Rapid Commiln. Mass Spectrom. 2009; 23: 1321-1327
DOI: 10.1002/rcm



(a)

Study of nicosulfuron in sunflower plants by MALDI-MSI 1323

max1.1e4 counts 
433.0600

CHj

N— CHj
CH,— O 0=C

455.0370

CH,— O
Nicosulfuron b M

471.0153

411.0972
7000xw

156 0737 182.0558

212.0317

227.9340

m/z

(b)ieo2
1800

1700

1C00

1S00
1-100

1300

1200

1100

fflM O
ac? soo
ICT

700

eoo

too

400

300

200j

100

0

Max 1831.6 counts

379.09CS 

3S1.CS14

i L
tnlz

Figure 1. (a) Positive ion MALDI mass spectrum of nicosulfuron (1.0 mg/mL) obtained using CHCA (10 mg/mL in 
acetone/water 50:50) as matrix. The [M+H]+ ion at m/z 411.10, the Na+ adduct at m/z 433.06, the K+ adduct at 
m/z449.04 and fragment ions at m/z 182.06 and 156.07 are readily observable, (b) Positive ion MALDI mass spectrum 
of the CHCA matrix for comparison.
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ntario, Canada) fitted with an 'oMALDI 2' orthogonal 
ALDI source. For root uptake experiments an Nd:YAG 
ser was used at a power of 3.2 (jlJ and a repetition rate of 

000 Hz. For the foliar applied samples a nitrogen laser was 
mployed at a laser power of 35 jxJ and a laser repetition rate 
f 20 Hz. Mass spectra were acquired by scanning over the 
nge m /z 150 to 1000 for the root uptake experiments and 

t/z 150 to 500 for foliar application experiments. Images 
ere obtained with a spatial resolution of 200 |xm x 200 pm 
ith an acquisition time of 5 s per pixel.

rocessing of MALDI-MSI data
11 images were created using Applied Biosystems oMALDI 
rver 5.0 tissue imaging software. A ll images presented are 

ormalised against a matrix fragment ion to reduce effects 
aused by matrix inhomogeneity. In all cases other than the 
4 h foliar absorption experiment the ion chosen to act as the 

ternal standard' for normalisation was m /z 172.04. For 
re 24 h foliar absorption experiment the signals generated 
om the cyclised pyridylsufonamide ion at m /z 185.00 were 
f very low intensity and dividing this intensity by the 
tensity of the ion at m /z 172.04 resulted in images with a low 

umber of counts that were difficult to manipulate. In this 
ase, instead of the ions at m /z 172.04, the ion chosen for 
ormalisation was m /z 147.06, the 13C isotope of the CHCA 
agment ion at m /z 146. Use of this ion increased the intensity 
f the pixels in the resulting image making presentation 
asier.

ESULTS AND DISCUSSION

re positive ion M ALDI mass spectrum of nicosulfuron 
ig. 1(a)) exhibits a number of ions which can potentially be 

sed to generate images, i.e. the [M +H ]+ ion at m /z 411.10,

the Na,+ adduct at m /z 433.06, the K+ adduct at m /z 449.04 and 
fragment ions at m /z 182.06 and 156.08. The fragment ion at 
m /z  156.08 is clearly observed not only in spot samples, but 
also in tissue samples; therefore, it potentially allows the 
generation of clear MALDI-MS images for the distribution of 
nicosulfuron following either uptake via the roots or 
absorption following foliar application. A spectrum of the 
CHCA matrix (Fig. 1(b)) included for comparison shows how 
intense the ions arising from nicosulfuron are in comparison 
with the matrix ions.

A previous study by Sabadie17 described the formation of 
breakdown products of nicosulfuron via alcoholysis and 
hydrolysis. This would potentially lead to a species of 
aminopyrimidyl structure (Fig. 2) of RMM 155 and is a 
possible source of the ion at m /z 156.08 in Figs. 1(a) and 3. In a 
previous study conducted by electrospray ionization/ 
tandem mass spectrometry, Lily et a l } 8 reported that the 
major product ion observed under collision-induced dis­
sociation (CID) for nicosulfuron was m /z 182.06. This 
suggests that the ion observed at m /z 156.08 in the work 
reported here may arise as a result of hydrolysis of the urea 
bond rather than by 'in-source' fragmentation. To confirm 
that the ion at m /z 156.08 was being produced as a result of in­
source fragmentation and did not originate from a com­
pound formed by alcoholysis by the matrix solution or 
hydrolysis by water or TFA, nicosulfuron was analysed 
using just acetonitrile as a solvent. The nicosulfuron was 
dissolved in acetonitrile (2.5 mg/mL) and a saturated 
solution of CHCA in acetonitrile was employed as the 
matrix. The spectrum obtained (Fig. 3) shows the ion from 
the aminopyrimidine species as the base peak along with the 
[M +H ]+, [M +Na]+ and [M +K]+ ions of nicosulfuron. 
Another potential source of the ion at m /z 156.08 in plants 
is histidine. This has the same molecular formula as 2-amino- 
4,6-dimethoxypyrimidine ( Q H 9 N 3 O 2 )  and it is present as an

CH,

CH,— 0

N — CH,

N r  II 
\  y  n H W a—N N—S-

\  I I II
H H O

CH,— 0

Nicosulfuron

R-OH 
Alcoholysis

m/z 156.0768

H-OH
Hydrolysis

CH;

N—  CH;

0  =  CCH,— O 0
II >=N

H ,N — S-■NH.

CH,— 0CH,— O

m/z 230.0594

pH > 7

L >

m/z 185.0015

Figure 2. Alcoholysis and hydrolysis of nicosulfuron with resulting products. The m/z values given below are 
those for the protonated species used for detection.5
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experiment, (a) Image of nicosulfuron fragment ion at m/z 156.08 (image range m/z 156.068-156.081), normal­
ised against CHCA m/z 172.04 ion. (b) Image of cyclised pyridylsulfonamide at m/z 185.00 (image range 
m/z 185.001-185.009), normalised against CHCA m/z 172.04 peak, (c) Image of nicosulfuron potassium adduct 
ion at m/z 449.06 (image range m/z 449.042-449.076), normalised against CHCA m/z 172.04 ion. (d) Optical 
image indicating the orientation of the horizontal sections, (e) Optical image indicating region where horizontal 
sections were taken from hydroponics experiment. This figure is available in colour online at www.interscience. 
wiley.com/journal/rcm.
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Figure 5. Cross-sections of a stem of a sunflower plant following uptake via the leaves after a 24 h foliar 
application experiment, (a) Image of nicosulfuron fragment ion at m/z 156.08 (image range m/z 156.068- 
156.081), and normalised against CHCA m/z 172.04 ion. (b) Image of the dicyclised pyridylsulfonamide 
metabolite (m/z 185.00 (image range m/z 185.001-185.009) and normalised against CHCA m/z 147.06 
13C fragment ion increasing the dynamic range for the intensity of the image), (c) Optical image indicating the 
orientation of the horizontal sections, (d) Optical image indicating region where horizontal sections were 
taken from hydroponics experiment. This figure is available in colour online at www.interscience.wiley.com/ 
journal/rcm.

endogenous cellular metabolite as part of the histidine 
-iosynthesis and methionine salvage pathway;19 however, 
nterference from histidine was not an issue in these 
experiments as indicated by the low signal in the negative 
eontrol images.

Whilst the use of SRM techniques adds specificity to 
_ALDI-MSI experiments, for the work reported here it was 

ound that because the [M+H]+ ion of nicosulfuron was of 
-elatively low abundance the sensitivity obtainable was not 
dequate to allow SRM experiments to be performed, 

experiments were therefore conducted in full scan mode 
:nd a very narrow mass window (0.013 m/z units) around the 
xagment ioia of interest (m/z 156.08) was used to ensure a 
egree of specificity. The inclusion of positive and negative 

:ontrols also highlighted potential interferences.
Alcoholysis and hydrolysis of nicosulfuron causes break- 

own of the urea part of the molecule and in fact results in 
.he production of four products; a pyridylsulfonyl-carba- 
mate (the exact molecular mass of which depends on the 
..lcohol), the aminopyrimidine (RMM 155.08), as previously 
..iscussed, a pyridylsulfonamide (RMM 229.06) and a 
-yclised pyridylsulfonamide (RMM 184.00).17

Figure 4(a) shows the presence of the 2-amino-4,6- 
: imethoxypyrimidinyl fragment ion of nicosulfuron 
m/z 156.08) in all of the sample sections and the positive 
:ontrol. No interference from histidine can be seen in the 
negative control. These data show that after 48 h nicosul- 
uron has translocated around all the plant tissue following 
ptake via the roots. Confirmation of these findings is given 

n Fig. 4(b). This is generated from the potassium adduct at 
n/z  449.06 using the matrix ion at m/z 172.04 as an internal

lopyright ©  2009 John Wiley & Sons, Ltd.

standard. The presence of nicosulfuron is clearly indicated in 
the positive control and samples taken 10,30 and 50 mm from 
the root tip, with a weak signal being also observed in the 
sample taken at 140 mm. Figure 4(c) shows the distribution of 
the phase 1 cyclised pyridylsulfonamide metabolite obtained 
using the protonated molecule at m/z 185.00. This compound 
can be seen in the samples at 10, 30 and 50 mm clearly and 
some signal can be seen in the sample 140 mm from the root 
tip. The compound is not present in either the positive or the 
negative control, indicating that there is no endogenous 
compound at this mass and that production of this 
compound is a result of the hydrolysis of nicosulfuron in 
the plant transport system. Images generated from m/z 230.06 
(which corresponds to the [M +H ]1 ion for the pyridylsulfo­
namide) (data not shown) exhibited a response from all of the 
samples including the negative control indicating the 
presence of an interfering endogenous compound.

Figure 5(a) shows the distribution of the 2-amino-4,6- 
dimethoxypyrimidinyl fragment ion of nicosulfuron 
(m/z 156.08) in the stem sections of sunflower plants 24 h 
after foliar application of nicosulfuron. These data indicate 
that nicosulfuron has been absorbed and translocated to stem 
tissue above and slightly below the application point at 
110 mm. The image generated from the ion at m/z 156.08 
shows that nicosulfuron is present in the sample at 130 mm 
and in the positive control with high intensity and also in the 
sample at 110 mm. Nicosulfuron was not detected in any of 
the other stem sections. Figure 5(b) shows the distribution of 
the phase 1 cyclised pyridylsulfonamide metabolite obtained 
using the protonated molecule at m/z 185.00. As can be 
clearly seen the metabolite is present in the same areas as
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Figure 6. Cross-sections of a stem of a sunflower plant following uptake via the leaves after a 48 h foliar application 
experiment, (a) Image of nicosulfuron fragment ion at m/z 156.08 (image range m/z 156.068-156.08), and normalised 
against CHCA m/z 172.04 ion. (b) Optical image indicating region where horizontal sections were taken from 48 h foliar 
applied experiment. This figure is available in colour online at www.interscience.wiley.com/journal/rcm.

nicosulfuron. An image for the potassium adduct in these 
samples could not be generated.

The image generated from m/z 156.08 48 h after foliar 
application of nicosulfuron (Fig. 6) shows that nicosulfuron 
is present in the positive control and in the samples at 155 
and 195 mm. This indicates that nicosulfuron has translo­
cated towards the growing tips of the plant. A signal is also 
observed in the sample 45 mm along the stem due to 
translocation towards the growing tips of the roots.

CONCLUSIONS

MALDI-MSI has been used to show the distribution of 
nicosulfuron following uptake via the roots, and absorption 
and translocation of nicosulfuron following foliar application 
after a 24 and 48 h time period. A structurally significant 
fragment ion was used to generate the images. The 
distribution of a nicosulfuron phase 1 metabolite which 
arises as a result of hydrolysis in the plant was also studied. 
Both the fragment ion and the metabolite are formed by 
breaking the urea bond in this substituted pyrimidincsulfo- 
nylurea herbicide.17 Since this bond is common to all 
pyrimidinesulfonylurea herbicides it might be assumed that 
other herbicides from this group will behave in the same 
way. For the next stage of this project it is planned to repeat 
these experiments using other herbicides from the pyrimi­
dinesulfonylurea group in order to develop a general 
method for imaging the distribution of substituted pyrimi­
dinesulfonylurea herbicides in sunflowers using MALDI- 
MSI.

Copyright ©  2009 John Wiley & Sons, Ltd.
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