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ABSTRACT

The main aim o f this work is to develop an optical method for the detection o f  
microcystin-LR, one o f the most dangerous toxins released by cyanobacteria. 
Photosynthetic cyanobacteria (also known as blue-green algae) exist in any type o f  
water (including drinking water) and possess a serious threat to humans and animals, 
and generally to the environment. Microcystin-LR (MC-LR) is perhaps the most toxic 
from a large family o f cyanotoxins; it is known to cause liver damage and also acts as a 
carcinogen. The World Health Organization has set the limit o f lpg/1 for MC-LR in 
drinking water. However existing detection methods, such as ELISA, cannot provide 
such high sensitivity. The relatively low molecular weight o f MC-LR (995.2 m/mol) 
makes it difficult to detect using conventional QCM and SPR based analytical methods. 
Therefore, the development o f highly sensitive, reliable, and (at the same time) 
inexpensive and easy-to-use methods o f detection o f microcystin is o f very high 
importance today. The method o f Total Internal Reflection Ellipsometry (TIRE) is 
particularly attractive for the above task considering its high sensitivity and particular 
suitability for detection o f low molecular weight analytes. In this work MC-LR was 
detected in direct immunoassay with MC10E7 monoclonal antibodies raised against 
MC-LR in mouse, using TIRE as a detection method. Also the TIRE method was used 
to study the protein- protein interaction (the protein chaperon with its receptors in the 
chloroplast) and to detect other types o f toxins such as Aflatoxin B1.
At first, the TIRE immunoassay was calibrated using aqueous solutions with known 
concentration o f MC-LR. The study o f binding kinetics o f MC-LR to MC10E7 yielded 
the association constant close to 108 1/mol which is typical for highly specific immune 
reactions. The detection limit for MC-LR between O.lng/ml and lng/ml was achieved 
using the TIRE detection. Then, the concentration o f the MC-LR toxin produced 
naturally by algae microcystis aeruginosa was evaluated using calibration data obtained 
for solutions spiked with known concentrations o f  MC-LR. The role o f  environmental 
factors (temperature, pH, nutrition contents, and salinity) on the efficiency o f production 
o f MC-LR by microcystis aeruginosa was studied. Purification o f solutions 
contaminated with MC-LR (both commercial and naturally produced) was achieved 
using MnCC>3 microparticles coated with polyelecrolytes and functionalised with 
MC10E7 antibodies as an absorbent for MC-LR. Also, the concentration o f MC-LR in 
solutions was reduced as a result o f  direct electrolysis.
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CHAPTER 1

INTRODUCTION

1.1 Problem outline

The presence o f Cyanobacteria (blue-green algae) in surface water is o f increasing 

concern in Iraq as well as in other parts o f the world. Cyanobacteria under the 

microscope come into view as small, unicellular organisms, some o f  which form 

colonies and thus reach sizes visible to the naked eye as tiny green particles. These 

organisms are usually finely dispersed throughout the water and may cause considerable 

turbidity if they reach high densities. Human activities (e.g., extensive agriculture, 

inadequate sewage treatment, runoff from roads) have led to excessive fertilization 

(eutrophication) o f many water bodies. This has led to the excessive propagation o f 

algae and Cyanobacteria into fresh water and thus has had a considerable impact upon 

recreational water quality. In hot climates, Cyanobacterial dominance is most 

pronounced during the summer months, which coincides with the period when the 

demand for recreational water is highest. Even though many species o f freshwater algae 

reproduce quite intensively in eutrophic waters, they do not accumulate to form dense 

surface blooms o f extremely high cell density, as do some cyanobacteria which 

naturally produce harmful compounds, called cyanotoxins, due to cell lysis during 

Cyanobacterial blooms. These toxins may cause mass mortality o f wild and domestic 

animals, farmed fish and shellfish, as well as human illnesses such as nervous system 

injury or liver damage, and in extreme cases, death [1].

Microcystins are the most frequently occurring class o f cyanotoxins, o f  which 

microcystin-LR is known to be one o f the most toxic cyanotoxins in water resources [2]. 

When in contact with skin or consumed, microcystin-LR can lead to skin irritation or 

liver injure and may initiate liver tumour-promoting activity [3]. Due to these adverse 

health effects, the World Health Organization (WHO) has established a provisional 

guideline o f 1 part per billion ppb (1 pg/L) for microcystin-LR in drinking water [4].
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1.2 Detection of microcystin

The contamination o f water resources with microcystin-LR produced by some algae 

species has prompted the development o f detection methods for recognition and 

quantification o f toxins. The most widespread analytical method for the determination 

o f microcystin-LR in drinking or raw water is high-performance liquid chromatography 

(HPLC); it is precise but requires expensive equipment, complex procedures, and a long 

period o f analysis.

The other methods are liquid chromatography combined with mass spectrometry 

(LC/MC), thin-layer chromatography (TLC), and capillary electrophoresis (CE) [5]. 

Although the sensitivity o f chromatographic techniques is very high (typically in the 

range from lpg/L  to lpg/L), these methods require time-consuming sample preparation 

procedures that usually need pre-concentration o f samples prior to LC analysis. A major 

problem in quantitative analysis o f MCs is the lack o f standards [6]. Enzyme-linked 

immunosorbant assay (ELISA) method has been widely employed to m onitor 

microcystin-LR at levels below lpg/L  [7]. Protein phosphatase inhibition assays (PPIA) 

[8] may yield false positives if the enzyme is inhibited by other compounds present in 

the sample. Recently, a commercial flow dipstick method (Microcystin ImmunoStrip) 

was introduced which is based on colloidal gold particles functionalized with specific 

antibodies [9]. Surface plasmon resonance (SPR) has become a widely used analytical 

technique which has led to the development o f an SPR based immunosensor for the 

determination o f MC-LR [10]. Furthermore, the Quartz crystal microbalance (QCM) 

method was developed in combination with Au nanoparticle amplified sandwiched 

immunoassay lowering the detection limit for (MC-LR) to 0.1 lpg/L [11]. Another 

detection method using color-changeable polydiacetylene vesicle achieved the lpg/L  

detection level [12]. Some studies have focused on developing and improving 

antibodies against (MC-LR), e.g. monoclonal and polyclonal antibodies [13]. Recently 

developed method o f total internal reflection ellipsometry (TIRE), which records 

simultaneously two parameters A and 'P related to the amplitudes and phases o f p- and 

s-components o f polarised light, has been particularly suitable for detection o f  low 

molecular weight molecules [14], and it could be utilized for detection o f MC-LR. 

Another interesting technology o f polyelectrolyte microcapsules [15], functionalized 

with specific antibodies, could be used for detection o f microcystin-LR as well as for 

purification o f substances contaminated with microcystin-LR, also these technique was 

used for purification o f substances contaminated with micotoxin.
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1.3 Mycotoxins detection and purification of contaminated substances

Mycotoxins contaminate the diet o f a large proportion o f the w orld 's population, 

especially in low income and developing countries. In 1985 the World Health 

Organization (WHO) estimated that approximately 25% o f the w orld 's grain was 

contaminated with mycotoxins.

M ycotoxins are toxic chemical compounds found in certain fungi that can grow on 

crops in the field, after harvest, or during storage. Since they are produced by fungi, 

mycotoxins are associated with mouldy crops. Nowadays there are hundreds o f 

mycotoxins o f different chemical structures and different modes o f action, but only five 

o f them are regularly found in staple foods and animal foodstuffs such as grains and 

seeds. These mycotoxins are aflatoxins, zearalenone, ochratoxins, fumonisins and 

deozynivalenol/nivalenol.

Most mycotoxins are hydrophobic molecules o f low molecular weight and thus are not 

soluble in water but in organic solvents such as methanol, chloroform, acetone, or 

acetonitryl. All mycotoxins are dangerous to human and animal health in connection 

with high hepato- and nephro-toxicity, and have carcinogenic, genotoxic, cytotoxic, and 

mutagenic actions [16, 17].

Aflatoxin, a common and naturally widespread mycotoxin that is produced by 

Aspergillus fungi species, most notably A. flavus and A. paraciticus, contaminates a 

variety o f staple food. The favorable host plants for aflatoxin are grain cultures and 

cereals (maize, rice, wheat, etc.), spices (chili and black pepper, coriander, ginger), high 

oil content nuts (almond, pistachio, walnut, coconut, Brazil nut) as well as coffee and 

cocoa beans, and fruit products [18-20]. It can colonize and contaminate grains before 

harvest or during storage. The toxin can also be found in milk and milk products o f 

animals that are fed with contaminated food [21-23]. Within the aflatoxin group, the 

most dangerous toxin is aflatoxin Bl (LD50 = 6.5-16.5 mg/kg). The toxicity o f  AF-B1 

is ten times that o f potassium cyanide, 68 times that o f arsenic and 416 times that o f 

melanin [24].

In addition to a wide range o f analytical methods for detection o f mycotoxins [25-27], 

the method o f TIRE was successfully adapted for detection o f  these low molecular 

weight analytes [28, 29]. In this work, however, the main focus was not on the detection
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mycotoxins but on purification o f substances contaminated with mycotoxins. The 

technology o f microparticles functionalized with antibodies to aflatoxin Bl was further 

exploited in this work. The TIRE method along with UV-vis absorption spectroscopy 

was used here as an analytical tool for evaluation o f aflatoxin Bl concentration in liquid 

samples before and after such treatment.

1.4 Protein-protein interaction

An additional task in this project was the further development o f the TIRE method 

through its application to studying protein-protein interaction. Some o f the types o f 

biological interactions are well studied, namely immune reactions (i.e. binding o f 

antigen to specific antibodies), enzyme reactions (decomposition o f small molecules 

catalyzed by enzymes), hybridization o f single DNA strands due to hydrogen bonding, 

etc. However, the interaction o f  proteins in general is not well-studied and not fully 

understood. Very often, we associate molecular binding which does not have a feasible 

explanation with so-called non-specific binding.

In this project, we attempted to study in more detail the interaction between chaperones 

and their specific receptors. Chaperone proteins play an important role in cells 

protecting proteins from high temperatures and other cellular stresses, stabilizing 

protein structure and preventing them from aggregation and degradation. It was recently 

suggested that molecular chaperones, such as heat shock proteins Hsp70 and Hsp81, can 

form complexes with freshly translated proteins and thus prevent their aggregation [30]. 

Furthermore, the recent finding o f chaperone receptors in plants [31, 32] indicates more 

specific involvement o f molecular chaperones in protein targeting. The study o f the 

mechanisms o f protein targeting may have a substantial impact in a num ber o f 

applications, including the origin o f neurological diseases. It was shown recently in our 

research group that the novel receptor OEP61, extracted from leaves is capable o f 

specific binding o f Hsp70 while not binding to Hsp81 [33]. In this work, the interaction 

o f chaperones with different receptors (including OEP61) electrostatically immobilized 

on the surface was accessed with the TIRE measurements. Apart from confirming the 

binding properties o f OEP61, this work showed clear separation o f  specific and no- 

specific binding, in terms o f both the sensor response (i.e. thickness increment) and the 

affinity o f  binding.
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1.5 Aims and objectives

The main aim o f this research was to develop an effective technology for the detection 

o f toxins released by algae, particularly microcystin, using optical biosensing 

techniques. Another important problem to be addressed is the purification o f  waters 

contaminated with algae was achieved.

The research project focuses on the development o f optical bio-sensing methods for 

detection o f microcystin in both purified form and naturally produced by algae. The 

optical methods o f spectroscopic ellipsometry in total internal reflection configuration 

(TIRE) [34-35], UV-visible absorption, and luminescent spectroscopy were utilized for 

the detection o f microcystin-LR. The immune sensing principles were exploited in this 

study in conjunction with the TIRE transducing technique. The antibodies specific to 

microcystin-LR were immobilized on solid surfaces (Au, Si, glass) using the technique 

o f electrostatic deposition via intermediate layers o f polyelectrolytes (PAH or PSS) and 

Protein A (or G) [36]. Polyelectrolyte microparticles [37] made o f PAH/PSS 

consecutive layers and modified with antibodies specific to M C-LR were used for 

detection o f MC-LR, as well as for the purification o f water contaminated with MC-LR. 

To achieve the project aims, the following objectives were identified:

• To develop further the methods o f polyelectrolyte microparticles and TIRE through 

a series o f experiments on detection o f aflatoxin Bl and purification o f substances 

contaminated with aflatoxin, as well as in the study o f interaction o f chaperon 

proteins with their specific receptors.

• To adapt the TIRE method for detection o f  microcystin (MC-LR) involving the 

immobilization o f M C10E7antibodies specific to MC-LR on the surface o f  gold 

alongside a series o f TIRE spectral measurements. The TIRE immune sensing part 

o f the project will begin with the use o f commercially available M C-LR and will be 

followed by the detection o f MC-LR produced by algae (see the next task).

• To grow different algae species and to extract microcystin from the algae culture. 

To study the role o f external factors, i.e. pH, temperature, light, nutrients, 

stimulating the production o f microcystin.
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• To prepare polyelectrolyte microcapsules from CaCC>3 or MgCC>3 core particles by 

consecutive coating with layers o f  PAH and PSS and functionalise them with 

antibodies specific to MC-LR.

•  To study the structure and morphology o f polyelectrolyte thin films and capsules 

modified with active bio-molecules (antibodies) using complementary physical 

methods o f  optical microscopy, IFM, SEM, AFM, TEM, FT-IR and Raman 

spectroscopy.

•  To develop a methodology o f  purification o f  substances containing MC-LR (in both 

purified and natural forms) using functionalized microparticles (see the task above) 

in conjunction with optical methods o f TIRE and UV-visible absorption and 

fluorescence spectroscopy.
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CHAPTER 2

BACKGROUND OF ALGAE AND TOXINS 
PRODUCED BY ALGAE

2.1 Algae

Algae are an enormous group o f various organisms from different phylogenetic groups, 

representing many taxonomic divisions generally, and algae can be referred to as plants; 

they are usually photosynthetic and aquatic organisms, though without true roots, stems, 

leaves, and vascular tissue and have simple reproductive structures. They are distributed 

worldwide in the sea, freshwater, and wastewater. Most are microscopic, but some are 

extremely large, e.g. some marine seaweeds can exceed 50 m in length. Micro-algae 

include a huge group o f photosynthetic, heterotrophic organisms which have a potential 

for excellent cultivation as energy crops. They can be cultivated under difficult agro- 

climatic conditions and are able to produce a wide range o f commercially interesting by 

products, such as fats, oils, sugars and functional bioactive compounds. In addition, 

some aquatic species release toxins in water. The algae have chlorophyll and can 

produce their own food through the process o f  photosynthesis [38]. Recently they have 

been classified in the kingdom o f protista, which include a variety o f unicellular and 

some simple multinuclear and multicellular eukaryotic organisms that have cells with a 

membrane-bound nucleus. Almost all the algae are eukaryotes and conduct 

photosynthesis within membrane-bound structures called chloroplasts, which contain 

DNA. The exact nature o f the chloroplasts is different among the different lines o f algae.

There are known many groups o f algae:

(a) Charophyta, (green algae), or Chlorophyta and the Streptophyta. There are about 

4,300 species o f mostly marine organisms, both unicellular and multicellular. The latter 

include the sea lettuce, while the other group within the Viridiplantae are the mainly 

freshwater or terrestrial Streptophyta (or Charophyta), which contain several groups o f 

green algae plus the stonewort's and land plants. (The names have been used differently, 

e.g. Streptophyta to mean the group which excludes the land plants, Charophyta for the
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stonewort alone or the stonewort's plus the land plants.) Streptophyte algae are either 

unicellular or form multicellular filaments, branched or unbranched. The genus 

Spirogyra is a filamentous streptophyte alga familiar to many, as it is often used in 

teaching and is one o f the organisms responsible for the algal "scum" which pond- 

owners so dislike. Generally Chlorophyta is a division o f the kingdom o f protista 

consisting o f the photosynthetic organism normally known as green algae. This diverse 

species can be unicellular, multi-cellular, coenocytes (having more than one nucleus in a 

cell), or colonial. Chlorophyta are mainly aquatic or marine, a few types are terrestrial, 

occurring on moist soil, on the trunks o f trees, on moist rocks and in snow banks. 

Various species are highly specialized [39].

(b) Diatoms (brown algae) are unicellular organisms o f the kingdom Protista, 

characterized by a silica shell o f  often intricate and beautiful sculpturing. Most diatoms 

exist singly, although some join to form colonies. They are usually yellowish or 

brownish, and are found in fresh- and saltwater, in moist soil, and on the moist surface 

o f plants. Fresh-water and marine diatoms appear in greatest abundance early in the year 

as part o f the phenomenon known as the spring bloom, which occurs as a result o f  the 

availability o f both light and (winter-regenerated) nutrients. They reproduce asexually 

by cell division. When aquatic diatoms die they drop to the bottom, and the shells, not 

being subject to decay, collect in the swamp and eventually form the material known as 

diatomaceous earth. Diatoms can occur in a more compact form as a soft, chalky, 

lightweight rock, called diatomite. Diatomite is used as an insulating material against 

both heat and sound, in making dynamite and other explosives, and for filters, abrasives, 

and similar products. Diatoms have deposited most o f the earth’s limestone, and much 

petroleum is o f diatom origin. The surface ooze o f a pond, channel, or loch will almost 

always yield some diatoms.

(c) Euglenophyta is a small phylum o f the kingdom protista, consisting o f  mainly 

unicellular aquatic algae. Some euglenoids have chloroplasts with photosynthetic 

pigments; others are heterotrophic and can swallow or ingest their food. Propagation 

occurs by longitudinal cell division. They mainly live in freshwater environments. 

Euglena is the most featured genus, ordinary in ponds and pools, particularly when the 

water has been polluted by overflows from fields or lawns on which fertilizers have 

been used. There are about 1000 species o f euglenoids.
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(d) Rhodophyta (red algae), a phylum o f the kingdom Protista consisting o f the 

photosynthetic organisms usually known as red algae. Members o f the division have a 

characteristic clear red or purplish colour imparted by accessory pigments called 

phycobilins. The red algae are multicellular and are characterized by a great deal o f 

branching, but without differentiation into complex tissues. Most o f the world's 

seaweeds belong to this group. Although red algae are found in all oceans, they are most 

common in warm-temperate and tropical climates, where they may occur at greater 

depths than any other photosynthetic organisms. Most o f the coralline algae, which 

secrete calcium carbonate and play a major role in building reefs, belong here. Red 

algae are a traditional part o f oriental cuisine. There are 4000 known marine species o f 

red algae; a few species occur in freshwater [40].

(e) Cyanobacteria, or blue-green algae, are a phylum o f prokaryotic aquatic bacteria that 

obtain their energy through photosynthesis. They are often referred to as blue-green 

algae, even though it is now known that they are not related to any o f the other algal 

groups, which are all eukaryotes. Cyanobacteria may be single-celled or colonial. 

Depending upon the species and environmental conditions, colonies may form 

filaments, sheets or even hollow balls. Some filamentous colonies show the ability to 

differentiate into three different cell types. Despite their name, different species can be 

red, brown, or yellow; blooms (dense masses on the surface o f a body o f water) o f a red 

species are said to have given the Red Sea its name. There are two main sorts o f 

pigmentation. Most cyanobacteria contain chlorophyll a, together with various proteins 

called phycobilins, which give the cells a typical blue-green to grayish-brown colour. A 

few genera, however, lack phycobilins and have chlorophyll b as well as a, giving them 

a bright green colour.

(f) Dinoflagellata is a large group o f flagellate protistis. Some species are heterotrophic, 

but many are photosynthetic organisms containing chlorophyll. Various other pigments 

may mask the green o f these chlorophylls. Other species are endosymbionts o f  marine 

animals and protozoa, and play an important part in the biology o f coral reefs. Other 

dinoflagellates are colourless predators on other protozoa, and a few forms are parasitic. 

Reproduction for most dinoflagellates is asexual, through simple division o f  cells 

following mitosis. The din flagellates are important constituents o f  plankton, and as 

such are primary food sources in warmer oceans. Many forms are phosphorescent, being
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largely responsible for the phosphorescence visible at night in tropical seas. There are 

approximately 2000 species o f Dinoflagellates.

(g) Chrysophyta is a large group o f eukaryote algae, commonly called golden algae, 

found mostly in freshwater. Originally they were taken to include all such forms, except 

the diatoms and multicellular brown algae, but they have since been divided into several 

different groups based on pigmentation and cell structure. In many chrysophytes the cell 

walls are composed o f  cellulose with large quantities o f silica. Formerly classified as 

plants, they contain the photosynthetic pigments chlorophyll a and c. Under some 

circumstances they will reproduce sexually, but the usual form o f reproduction is cell 

division.

(h) Phaeophyta is a phylum o f the kingdom Protista consisting o f those organisms 

commonly called brown algae. Many o f the world's familiar seaweeds are members o f 

phaeophyta. Like the chrysophytes brown algae derive their colour from the presence, in 

the cell chloroplasts, o f  several brownish carotenoid pigments, such as fucoxathin. With 

only a few exceptions, brown algae are marine, growing in the colder oceans o f the 

world, many in the tidal zone, where they are subjected to great stress from wave 

action.Others grow in deep water. There are approximately 1500 species o f Phaeophyta.

The scientists believe that the evolution o f plants has resulted in increasing levels o f 

complexity, from the earliest algal mats, through bryophytes, lycopods and ferns, to the 

complex gymnosperms and angiosperms o f today. The groups which appeared earlier 

continue to thrive, especially in the environments in which they evolved. Evidence 

suggests that an algal scum formed on the land 3,500 billion years ago.

2.2 Cyanobacteria

Cyanobacteria are organisms traditionally included among the algae, but they have a 

prokaryotic cell structure. Cyanobacteria, also known as blue-green algae, blue-green 

bacteria or Cyanophyta, are very prehistoric organisms that are not really algae. They 

photosynthesize like algae, but they are actually bacteria. Scientists refer to them as 

“cyanobacteria” to acknowledge that they are bacteria. “Cyan” means “blue”, which 

refers to the fact that these organisms often appear blue-green in colour phylum o f 

bacteria that obtain their energy through photosynthesis. The name cyanobacteria come 

from the colour o f the bacteria. Planktonic cyanobacteria are a natural com ponent in 

most surface waters o f the world. Cyanobacteria are mostly known for the critical
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insights they have provided into the origins o f life. The fossil record shows that 

cyanobacteria already existed 3.5 billion years ago. Cyanobacteria played a major role 

in the oxygenation o f the air by converting carbon dioxide and water with using solar 

energy into glucose and releasing oxygen in photosynthesis process. Another important 

aspect is the existence o f cyanobacterial strains dangerous to human and animal health. 

Some species o f cyanobacteria produce toxins [41]. The blue-green algae split into two 

major groups, the planktonics and the mat-formers. The planktonic blue-greens are 

microscopic and cause the typical pea-soup green colour to water. The most common o f 

the planktonic blue-green are Anabaena, Aphanizomenon, and Microcystis (commonly 

referred to as Annie, Fannie, and Mike!). In addition to causing water to turn green, they 

can rise to the surface o f calm or static waters and form surface scum. This yellowish- 

green scum formation is typical o f most planktonic blue-greens. The formation o f 

surface scum tends to block the light to the other types o f algae and aquatic plants that 

live deeper in the water column. By shading out their competitors, blue-greens can 

completely dominate a body o f  water Blue-green algae (one o f eleven groups o f algae) 

are microscopic plants that grow mainly in brackish ponds and lakes throughout the 

world [42]. O f the more than 1500 known species, some are useful as food, while others 

have been reported to cause gastroenteritis and hepatitis. Normally they appear green 

and sometimes may turn bluish when dying. Taste and odor problems commonly occur 

with large concentrations o f blue-green algae and some species are capable o f producing 

toxins.

Blue-green Algae Blooms. When conditions are optimal, including light, temperature, 

levels o f nutrients (i.e., phosphorous and nitrogen, and the ratio o f the two), and lack o f  

water turbulence, blue-green algae can quickly multiply into a bloom. Blue-green algae 

blooms are likely to occur more often in warmer months, some blooms occur in water 

bodies, exposure to the blue-green algae and their toxins can pose risks to humans, pets, 

livestock and wildlife. Exposure to blue-green algae can cause rashes, skin and eye 

irritation, allergic reactions, gastrointestinal upset, and other effects. At high levels, 

exposure can result in serious illness or death. Risks to people may occur when 

recreating in water in which a blue-green when algae bloom is present, or from the use 

o f drinking water that uses a surface water source in which a blue-green algae bloom is 

present. Exposure depending on the particular Cyanobacterium, and the amount to 

which one is exposed, blue-green algae have the potential to cause a variety o f adverse 

health effects, including liver toxicity (e.g., Microcystis aeruginosa) and neurotoxicity
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(e.g., Anabaena circinalis). Microcystin toxins may also promote tumour growth. 

Destruction o f Cyanobacteria cells may release the toxins into surrounding waters, so 

care must be taken in dealing with blue-green algae blooms, and these threats are not 

just theoretical. Several dog deaths have been reported following exposure to blue-green 

algae in water bodies, while worldwide animal poisonings and adverse human health 

effects have been reported. The concentration o f cyanobacterial cells in blooms was 

reported to be up to 250,000 cells/mL, which is approximately 300 mg/L cyanobacterial 

biomass [43].

Cyanobacterial cells have been shown to contain an average o f 0.2 pg o f  toxin per cell 

[44], ranging from 4 to 605 pg toxin/g dry weight o f biomass [45, 46] reported that total 

concentrations o f cyanotoxins in highly contaminated waters is 130-300 pg/L. 

Cyanotoxins lead to serious health problems for humans such as irritation o f the skin 

(dermatotoxins), cell damage (cytotoxins), liver damage (hepatotoxins), and damage to 

the nervous system (neurotoxins) [47]. The consequences o f cyanobacterial blooms 

have been reported in the United States as well as other parts o f the world. For example, 

exposure to cyanotoxins has been linked to increased liver cancer in China, the deaths 

o f 76 dialysis patients in Brazil, and elevated kidney failure and liver injury in Australia 

[48, 49]. Recently, harmful cyanobacterial blooms have resulted in health alerts in New 

York, Florida, and Nebraska [50, 51]. In the Great Lakes, cyanobacterial blooms have 

emerged as a serious problem in the last decade [52].

2.3 Microcystin-LR

Microcystin-LR (MC-LR) is the most studied and the most toxic representative o f  the 

cyanotoxin family. It is a cyclic peptide, stable and resistant to chemical hydrolysis or 

oxidation near neutral pH. It remains potent even after boiling. In natural water and in 

the darkness it survives for months or even years, but at 40°C and pH 1 it may break 

down in ten weeks [53, 54-59]. Its formal name is cyclo[2,3-didehydro-N-methylalanyl- 

D-alanyl-L-leucyl-(3S)-3-methyl-D-(3-aspartyl-L-arginyl-(2S,3S,4E,6E,8S,9S)-3-amino- 

9-methoxy-2,6 ,8 -trim ethyl-10-phenyl-4,6-decadienoyl-D-y-glutamyl]. The molecular 

formula o f MC-LR is C 4 9 H 7 4 N 1 0 O 1 2 .

The chemical structure o f MC-LR shown in Figure 2.1 consists o f two variable L-amino 

acids, three D-amino acids (alanine methyl-aspartic acid and glutamic acid) and two
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unusual amino acids (Mdha) and (Adda), the latter being one important for the 

biological activity o f the toxin [60, 61]. Concern regarding the effects cyanobacteria on 

human health has grown in recent years since human poisoning incidents attributed to 

toxic cyanobacteria have been reported worldwide. The use o f water from reservoirs 

containing cyanobacterial blooms and insufficient water treatment are the main reasons 

o f having microcystin in drinking water. Microcystins, released from Microcystis, 

Anabaena, Oscillatoria, and Nostoc are the most ubiquitous class o f cyanotoxins [62]. 

A recent study found that 82% o f 181 samples o f Canadian and U.S. utility waters 

tested were positive for the presence o f microcystins [63]. More than 60 structural 

variants o f microcystins have been identified [64], o f  which microcystin-LR has shown 

to be the most commonly occurring and one o f the most toxic congeners [62,16]. The 

chemical structure o f  microcystin-LR is shown in Figure 2.1. Microcystin- LR is a 

monocyclic heptapeptide containing five amino acids invariant in all microcystins, and 

two specific amino acids, Leucine and Arginine, designated “L” and “R”, respectively 

[17]. The size o f microcystin-LR is approximately 3 nm in diameter, with a molecular 

weight o f 995.2 [18]. Microcystin-LR is an amphiphatic molecule [18,19]. Hydrophilic 

functional groups include carboxyl groups on glutamic acid and methylaspartic acid and 

the amino group on arginine, while the ADDA residue is hydrophobic (see Figure 2.1). 

The net charge o f microcystin-LR is negative (-1 ) at most pH values (3 < PH < 1 2 ), as 

the net result o f  the dissociation o f two carboxyl groups and the single positive charge 

o f the amino group [17]. M icrocystin-LR is an extremely acute toxin. The lethal dose 

(LD50) by the intraperitoneal route ranges from 25 to 150 pg/kg while the oral LD50 is 

5000 pg/kg in mice [24].
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Figure 2.1 Chemical structure o f microcystin-LR [15]

There are 80 known toxic variants o f microcystins. The toxic effect o f MCs on humans 

is mostly related to the liver damage (MCs promote the formation o f hepatic tumors by 

chronic ingestion through food or drinking water). Microcystin-LR can also affect the 

kidney and the gastrointestinal tract. Less acute microcystin-LR toxicosis symptoms 

generally include headaches, blurred vision, abdominal pain, nausea, and vomiting. 

Their toxicity is related to the inhibition o f the protein phosphatises, thus disrupting the 

cellular processes [65]. The Wold Health Organization (WHO) has adopted a 

provisional guideline value o f 1 pg /L for microcystin-LR in drinking water (as it is the 

most toxic and frequent microcystin), and many countries have followed this guideline 

for drinking water and food as well. After a drought in February, 1996, all 126 patients 

in a haemodialysis unit in Caruaru, north-east Brazil, developed signs and symptoms o f 

acute neurotoxicity and sub-acute hepatotoxicity following the use o f water from a lake 

with a massive growth o f cyanobacteria (blue-green algae). 60 patients died [6 6 ] 

requirement o f  such sensors with increased accuracy, smaller size, high versatility and 

predominantly less financial outlay are therefore always in demand, from both 

commercial and scientific bodies. Microcystin-LR is cyclic peptides which has a 

comparatively large natural products, its molecular weight (MW) being 800-1,100, 

although it is still small compared to many other cell oligopeptides and polypeptides 

(proteins) (MW > 10,000) and diameter (3 nm) .It contains seven amino acids, with the 

two terminal amino acids o f the linear peptide being condensed (joined) to form a cyclic 

compound.
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The site o f action o f microcystins is the hepatocyte, the commonest cell type in the 

liver. They act by disrupting the cytoskeleton, the adaptable protein framework that 

constantly shapes and reshapes the cell as it responds to the environment. The cells die, 

and this destroys the finer blood vessels o f the liver, leading to massive hepatic 

bleeding. The molecular targets are a group o f enzymes called protein phosphatases that 

play a role in regulating protein interactions and activities. Very well-defined types o f 

protein phosphatase (Type 1 and Type 2A) are inhibited very specifically by very low 

concentrations o f microcystins. M icrocystins also activate the enzyme phosphorylase, 

which plays a very important role in the affairs o f the hepatocyte [67, 6 8 ] The 

combination o f inhibition and activation is rapidly lethal to the cell. The specificity o f 

some o f these toxins makes them valuable research tools. In aquatic environments, these 

toxins usually remain contained within the cyanobacterial cells and are only released in 

substantial amounts on cell lysis. Along with their high chemical stability and their 

water solubility, this containment has important implications for their environmental 

persistence and exposure to humans in surface water bodies.M icrocystin-LR cause 

damage to the liver which is rapid and irreversible. Dialysis or liver transplants may be 

the only effective treatments. The antibiotic rifampin shows protective effects in animal 

studies and could be used prophylactically if a genuine threat o f an attack exists [69].

No plastics were used in the preparation o f the aqueous m icrocystin-LR solutions as 

adsorption o f the toxin on polypropylene surfaces is known to occur. The mechanisms 

o f microcystin binding could be based on either simple hydrophobic, electrostatic or 

hydrogen bonding interactions or a combination o f those. Microcystins are amphipathic 

molecules which are characterized by a cyclic hepatapeptide structure containing a 

hydrophobic (3-amino acid (Adda) with a terminal phenyl group and conjugated double 

bonds in its side chain. M C-LR contains a number o f charged functional groups: i.e. the 

guanidine group o f the arginine residue is positively charged, and the two carboxylic 

acid groups are negatively charged at neutral pH giving a negative net charge at the 

tested pH 7. This is consistent with the theory that aromatic nature and conjugated 

double bonds in the substrate are important for removal and that electrostatic 

interactions also play a role. M icrocystin-LR (MC-LR) are the most frequently reported 

cyanotoxin class to cause outbreaks o f  mass poisoning and M C-LR are cyclic 

heptapeptides produced nonribosomally by microcystin synthetases In M icrocystis 

aeruginosa, genes o f microcystin synthetase have been identified and sequenced; this is 

a 55-kb gene cluster consisting o f 10 open reading frames bidirectionally transcribed
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from a central promoter o f 732-bp located in an intergenic region between mcyA and 

mcyD. Two transcriptional start sites (tsp) for the bidirectional promoter region have 

been identified and appear to be dependent on light conditions However, other start sites 

have been detected for mcyA and mcyD and putative internal promoters have also been 

determined for the genes mcyE, mcyF, mcyG, mcyH, mcyl and mcyJ employing RACE 

[54].

2.4 Presence of microcystins in aquatic systems

Once released into surrounding waters, microcystins go through a variety o f 

biochemical and geochemical processes in aqueous environments. Five pathways 

contribute to microcystin detoxification [32]: (1) dilution by uncontaminated water 

masses, (2) thermal decomposition aided by temperature and pH, (3) photolysis, (4) 

biological degradation, and (5) adsorption on particulate materials. Thermal 

decomposition does not significantly contribute to the decomposition o f microcystins in 

natural aquatic environments [53] since microcystins are non-volatile and relatively 

stable compounds due to their cyclic structure [35]. Microcystins are known to be 

resistant to pH extremes and temperatures up to 300 C° [33]. Microbial degradation has 

been a possible way to eliminate microcystins, but a lag period o f several days to weeks 

was required before biodegradation was initiated [55]. The photolysis o f  microcystins 

by sunlight alone was very slow, though the presence o f dissolved natural organic 

matter, such as cyanobacterial pigments and humic substances, enhanced the 

degradation, due to the formation o f highly oxidizing species [56]. At least 30 days are 

needed to achieve 90% degradation o f microcystin-LR by indirect photolysis in lake 

water [57]. Recent studies document that microcystins are strongly adsorbed on soils, 

sediments and clay particles in natural environments [58]. Clay minerals, in particular, 

adsorb microcystins effectively, and are proposed as a removal technology for 

microcystins from drinking water and for mitigation o f toxins in natural waters [59]. For 

example [40] examined the effect o f soil properties on the adsorption o f  hepatotoxins 

such as microcystin-LR and nodularin. They observed significant positive correlations 

between toxin adsorption and clay and silt contents o f the soils [60] found that clays in 

marine sediment, such as kaolinite and montmorillonite, played an important role in 

removing microcystin-LR from water. Suspended particulate matter (SPM) from lake 

sediment also significantly adsorbed both microcystin-LR and -LW, likely due to 

hydrophobic interactions [61].
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2.5 Liver toxicity of microcystin-LR

In general microcystin-LR is liver toxin. Most o f the consideration about the toxicity o f 

microcystin-LR is based on studies o f mice and rats that received intra-peritoneal (IP) 

injections o f microcystin LR, i.e. injections directly into the abdominal cavity. In these 

studies the injection o f microcystins caused death within a few hours. Early 

manifestations o f liver damage contain an increase in serum o f liver enzymes, a sign o f 

liver cell death, and increased liver weight. Liver damage and cell death can be seen 

microscopically in as little as 2 0  minutes following the injection o f a lethal dose o f 

microcystin LR. Within an hour, the liver cells (hepatocytes) die, losing their 

connection to each other and disrupting the normal architecture o f the liver [55]. For 

example, two mice given oral doses o f 16.8 and 2 0  mg/kg were dead within 160 

minutes [59].

Microcystin-LR inhibits a class o f enzymes known as protein phosphatases. This 

enzyme removes phosphate from a protein, a common step in many biochemical 

pathways. This inhibition, with the subsequent buildup o f phosphorylated proteins, is 

believed to be a mechanism by which microcystin-LR destroy livers. Hepatocytes from 

animals treated with microcystins appear to die by a process o f programmed cell death 

or cell suicide called apoptosis [21]. Cells undergoing apoptosis fade away in a 

characteristic fashion, cannibalizing their own cellular organelles [22]. There is some 

evidence that microcystin LR increases other proteins in pathways leading to apoptosis 

but this has not been as extensively studied as the inhibition o f phosphatases [23]. 

Microcystins LA, RR and YR inhibit the same phosphatases and induce histological 

changes in rodent livers similar to microcystin LR [24]. Therefore, the toxicity criteria 

computed for microcystin LR are also used for microcystins LA, RR and YR.

2.6 Health-based criteria for safe exposure to microcystin

The International Agency for Research on Cancer (IARC), a branch o f the WHO, prior 

to the 2006 IARC evaluation, the WHO conducted an evaluation o f the Tolerable Daily 

Intake (TDI) level, based on a non-cancer endpoint [4]. This value, 0.04 micrograms per 

kilogram body weight (pg/kg/d), is based on the results o f liver toxicity studies in mice 

[2, 5]. TDI is the maximum daily dose o f microcystins that is considered safe. Using
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this TDI, WHO also developed a drinking water concentration limit o f 1.5 pg/L for 

microcystin- LR . They assumed that a 60 kg (132 lbs.) person drinks two liters o f water 

each day and that 80% o f the two liters is from a contaminated source. Their calculation 

was as follows: 0.04 pg microcystin/kg body weight/day x 60 kg person / (2 L 

water/day x 0.80) = 1.5 pg/L.

The most recent publication [4] cites the 1998 provisional guideline o f 1 pg/L based on 

the above equation and rounded to one significant digit (rounding down to be health- 

protective). The WHO also categorized swimming risk levels as mild, moderate, high, 

or very high based on the water concentration o f microcystins. These water 

concentrations are related to whether a swimmer, weighing 60 kg and ingesting 1 0 0  ml 

o f water, would exceed the TDI.

2.7 Domestic animal poisonings

The greater part o f reported cyanotoxin poisonings have occurred in domestic animals 

that drink freshwater containing cyanobacterial blooms [3]. Worldwide, thousands o f 

livestock fatalities and numerous poisonings in dogs have been linked to the ingestion 

o f cyanobacteria [4]. Animal poisonings have even occurred under environmental 

conditions considered unfavorable to cyanobacteria bloom such as in cold lakes with 

low nutrient levels [6 ].

In North America, domestic animal poisonings have been linked to blooms o f 

Microcystis sp. in California, Colorado, Georgia, Michigan, Mississippi, Oklahoma, 

Wisconsin, and Saskatchewan, Canada. Most o f the poisonings were fatal and were 

associated with visible scum o f cyanobacteria. Symptoms o f microcystin poisoning in 

domestic animals include diarrhoe, vomiting, weakness and recumbency [62].

Unfortunately, some animals appear to be attracted to cyanobacteria in water and dried 

crusts o f algae on top o f the water [61]. Livestock and dogs have been observed to drink 

infested water while clean water was plainly accessible, and to keenly consume crust 

and mats. Lopez-Rodas and Costas [62] found that mice showed a clear preference for 

Microcystis aeruginosa scum (1,000 and 15,000 cells/ml) over clean drinking water. 

These mice did not prefer non-cyanobacterial phytoplankton over clean drinking water 

and did not differentiate between toxic and non-toxic strains o f the cyanobacteria. These 

observations and experiments indicate that at least some animals preferentially consume
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cyanobacteria. Domestic animals should be prevented from drinking or entering 

untested bloom waters and from eating crust or mats on the shoreline.

2.8 Effects of microcystins on fish and wildlife

M icrocystin-LR is toxic to fish at concentrations as low as a few micrograms per liter 

(pg/L) or perhaps even fractional pg/L. Bearing in mind that microcystin-LR has been 

measured in concentrations up to 25,000 pg/L in waters with cyanobacterial blooms, it 

is not surprising that potential impacts on fish are receiving increased attention. Fish 

typically either ingest cyanobacteria directly or in prey that have fed on cyanobacteria. 

To a lesser range, they can absorb the toxins directly from the water [62].

As with mammals, microcystins are actively taken up by the liver in fish where they 

disrupt normal cellular activity by inhibiting protein phosphatases. Inhibition o f these 

enzymes in fish can in the end result in widespread cellular death and loss o f liver 

structure [62], Protein phosphatases are particularly important during fish embryonic 

development because they regulate critical developmental processes. Due to the limited 

capacity o f fish to detoxify microcystins, they easily succumb to the toxic effects o f 

increased microcystin concentrations [62].

Field observations o f impacts on fish coincide with periods when blooms are plentiful. 

However, aquatic ecosystems are complex and it can be very difficult to distinguish the 

exact cause o f the impacts. For example, fish kills following a bloom could be caused 

by microcystin-LR being released from dying cells, but are more likely to be due to 

decreased oxygen and pH levels caused by the decaying

bloom [51]. As a result, the toxic effects o f microcystins in fish have been studied 

experimentally using several different fish species and exposure routes.

Like small mammals, most studies on the immediate (acute) lethality o f microcystins in 

fish have utilized IP injections o f extracted microcystins to determine the dose that is 

lethal to half the test population (LD50). Reported LD50 values o f m icrocystins in fish 

range from 20 to 1500 pg microcystin LR/kg body weight [50]. The large range o f 

values could reflect variations between fish species, or differences in toxin extraction, 

purification, or measurement methods. As a group, mature fish are less sensitive to 

acute microcystin toxicity than mammals. Data from these acute studies are useful for 

makeing general comparisons between species. However, IP injections o f microcystins 

are not analogous to field exposures. Since the toxin is absorbed faster and metabolized
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differently when administered into the abdominal cavity (as with the IP route) as 

compared to oral administration. For example, IP injection o f 50 pg M C/kg in carp 

killed all test fish while an oral dose o f 250 pg MC/kg in similar carp resulted in no 

lethality and minimal liver damage. No oral LD50 values were found for microcystins 

in fish. When developing loach were immersed in solutions o f isolated M C-LR (over 

multiple days), the median lethal concentrations (LC50) were 164.3 pg/L in embryos 

and 593.3 pg/L in small hatched juveniles [63].

Several studies have observed severe liver damage in fish following oral administration 

o f microcystins, usually in the form o f freeze-dried cyanobacterial cells. The sublethal 

microcystin concentrations shown below are commonly found in food items o f  fish 

during blooms. For example, a diet containing greater than 130 to 2,500 pg M C/kg diet 

wet weight (ww) for two or more weeks may result in sublethal effects in carp (based on 

5 kg fish consuming 2% body weight/day). Microcystin concentrations in 

cyanobacterial blooms commonly reach 20,000 pg MC/kg algae and have been reported 

as high as 129,000 pg MC/kg algae,(ww) converted from dry weight. Mussels, snails 

and zooplankton collected from areas with blooms have contained microcystin 

concentrations o f up to 2,500, 2,900 and 13,700 pg MC/kg body weight (bw), 

respectively. These estimates indicate that fish exposed to typical microcystin producing 

blooms may be experiencing sub lethal toxic effects (i.e., liver damage). This is in 

agreement with Carbis et al., where the majority o f common carp sampled from a lake 

with 22,000 -  40,000 pg MC-LR/kg bloom material (ww, converted from dry) exhibited 

widespread liver damage consistent with microcystin toxicity[64,65].

Since the early 1900s, bird deaths have been linked to cyanobacterial blooms in Canada 

and the United States. Species o f cyanobacterial blooms that produce microcystins have 

synchronized with the deaths o f ducks, gulls, songbirds, pheasants and hawks, as well as 

several other bird species. The severity o f such bird kills have ranged from a few 

individuals to several thousand birds per incident. In California, high mortality in birds 

wintering at the Salton Sea has been linked to microcystins [6 6 ]. Levels o f  microcystins 

found in many o f the dead birds were similar to those in mice exposed to lethal levels o f 

this toxin. Microcystin poisoning has also been linked to the mortality and illness o f 

great blue heron from Chesapeake Bay [67].

In other countries, microcystins have also been specifically implicated in bird 

poisonings. In Japan, approximately 20 spot-billed ducks died at a pond containing a 

bloom o f M. aeruginosa [6 8 ]. Bloom material contained high levels o f  m icrocystins and
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produced acute toxicity in a mouse bioassay that was consistent with the effects o f the 

toxin. Waterfowl and other animals died at a reservoir containing an extensive 

Microcystis sp. bloom in South Africa [69]. Examined individuals showed liver damage 

consistent with acute and chronic microcystin toxicity. Furthermore, water from the 

reservoir was used to recreate the same effects in experimental animals.

2.9 Detection of microcystin-LR

The problem o f microcystin-contaminated water bodies is increasing due to the 

eutrophication o f lakes and reservoirs, and also possibly to climate change. This has led 

to the establishing by The World Health Organization (WHO) a guideline for 

microcystin-LR in drinking water as 1.0 pg/L. Development o f reliable methods 

suitable for monitoring microcystin-LR in environmental samples has been the quest o f 

researchers. Variety and complexity o f widely encountered microcystins stimulate 

further development o f the procedures for greater analytical precision. Several 

analytical techniques were utilized recently for detection o f Microcystin-LR. The most 

widespread analytical method for the determination o f microcystin-LR in drinking or 

raw water is based on the high-performance liquid chromatography (HPLC) which is 

more precise but requires expensive equipment, complex procedures, and a long time 

frame. The other methods o f liquid chromatography/mass spectrometry (LC/M C) thin- 

layer chromatography (TLC), and capillary electrophoresis (CE) [70] require time- 

consuming sample preparation procedures that usually need pre-concentration o f 

samples prior to LC analysis; and a typical detection range o f chromatographic 

techniques from lpg/L to 1 pg/L. A major problem in quantitative analysis o f  MCs is the 

lack o f standards [71]. Enzyme-linked immunosorbant assay [ELISA] m ethod have 

been widely employed to monitor microcystin-LR at levels below lpg /L  [72]. Protein 

phosphatase inhibition assays (PPIA) [73] may yield false positives if  the enzyme is 

inhibited by other compounds present in the sample. Recently, a commercial lateral 

flow dipstick (Microcystin ImmunoStrip) method was introduced which is based on 

colloidal gold particles [74]. Surface Plasmon resonance (SPR) spectroscopy has 

become a widely used analytical technique which has led to the development o f  SPR 

based immunosensor for the determination o f MC-LR [75]. Quartz Crystal 

Microbalance (QCM) method was developed in combination with Au nanoparticle 

amplified sandwiched immunoassay lowering the detection limit for microcystin-LR
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(MCLR) down to 0.11 pg/L [76]. Another detection method using a color-changeable 

polydiacetylene vesicle achieved the lpgL-1 detection level. [77].

The current project focuses on further development o f optical bio-sensing methods for 

detection o f microcystins o f both purified and natural algae produced form. The main 

method in this study is spectroscopic ellipsometry in total internal configuration (TIRE) 

[78]. This method offers 10 times higher sensitivity than conventional SPR and has 

been extensively used recently in our research group for different bio-sensing 

applications, i.e. detection o f low molecular weight toxins (herbicides, mycotoxins, 

alkyphenols), immune analysis o f Alzheimers disease markers, the study o f  DNA 

hybridization [54], and in the most recent study o f protein-chaperon interaction [11]. 

The method o f  TIRE is suitable for the evaluation o f the thickness o f the molecular 

layer after adsorption and binding o f different molecules (from a single spectroscopic 

scan) as well as for the study o f kinetics o f molecular adsorption and evaluation o f the 

association (affinity) constants (from dynamic spectral measurements). Several other 

methods such as, UV-vis absorption and fluorescence spectroscopy, IFM, AFM, FT-IR 

and SEM are used as complementary techniques in this work .

2.10 Current treatment technologies for microcystin-LR

A number o f treatment technologies have been investigated to inactivate, degrade, and 

remove microcystin-LR from drinking water. These include conventional technologies 

(e.g., coagulation, sand filtration, chlorination, and activated carbon adsorption) as well 

as advanced technologies (e.g. ozonation, Fenton oxidation, and UV photolysis). The 

removal o f microcystin-LR by different processes is discussed below.

Coagulation, flocculation, and filtration are frequently used in drinking water treatment. 

These technologies are effective in removing particulate cyanobacterial cells, but not 

effective for dissolved toxins like microcystin-LR [59]scientests [53] used three 

different coagulants, including ferric sulphate, alum, and polyaluminium chloride, to 

remove microcystin-LR, but no toxin removal was observed [51] reported that chemical 

treatment and mechanical agitation may cause damage to cyanobacterial cells, and result 

in an additional release o f the toxin. The management o f the sludge containing 

cyanobacterial cells and toxins may be a serious concern in this process [59].
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Direct rapid filtration was not effective in removing cyanobacterial cells, while slow  

sand filters can remove 99% o f the cells [53]. In addition, slow sand filtration possibly 

develops a biofilm on the top o f the filter, due to its lower loading rate, resulting in 

biodegradation o f microcystins [59, [51] found that more than 90% o f  microcystins 

were removed during slow sand filtration, primarily due to the biodegradation on or 

inside the filter bed. However, plugging o f  the filter and toxin release from the lysed 

cyanobacterial cells entrained in filter beds are significant problems [59]. As research 

continue to search for procedures for removing microcystin-LR from drinking water.
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CHAPTER 3 

THE CONCEPT OF BIOSENSORS

Biosensor is described in this chapter in terms o f bio-sensing theory, principles, 

background and applications. Affinity sensors, especially immunosensors, are explained 

in detail, including the production o f antibodies and immobilization techniques.

3.1 Biosensors: definitions and classification

Biosensor can be defined as a self-contained analytical device that responds selectively 

and reversibly to the concentration or activity o f chemical species in a biological 

sample. No mention is made here o f a biologically active material involved in the 

device; thus any sensor physically or chemically operated in a biological sample can be 

considered as a biosensor. The first biosensor was the combination o f C lark’s 

amperometric oxygen electrode, serving as a transducer, and the enzyme glucose 

oxidase as a sensing element for glucose monitoring. In 1962 Clark and Lyons [79], 

took advantage o f the fact that an analyte like glucose, could be enzymatically oxidized 

and accompanied by consumption o f the reactant O 2 or the appearance o f  a product, 

H2 O2 , which could be electrochemically monitored.During the following decade a lot o f 

effort was devoted to obtaining bioconjugates for enzyme immunoassays.Various 

methods for enzyme immobilization were also described, including adsorption, 

entrapment in a gel lattice, covalent binding trough activated groups on the support, or 

the use o f a cross-linking reagent [80-82]. In 1967 Updike and Hicks [83] gave the 

name enzyme electrode to a device comprising a poly aery lam inde gel with entrapped 

glucose oxidase coating an oxygen electrode for the determination o f glucose. Besides 

amperometry, potentiometric electrodes were also proposed by Guilbault and M ontalvo 

in 1969 [84]. Since the early 1970 various combinations o f  biological materials 

associated with different types o f transducers gave brith to the concept o f a biosensor. 

As a matter o f fact, as shown in Figure 3.1, a biosensor associates a bioactive sensing 

layer with any suitable transducer giving a usable output signal. Biomolecular sensing 

can be defined as the possibility o f detecting analytes o f biological interest, like 

metabolites, but also includes drugs and toxins, using an affinity receptor like antibodies
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which can be a natural system or an artificial one mimicking a natural one, able to 

recognize a target molecule in a complex medium containing thousands o f others 

molecules.

M easurem ent electric 

output signal

Electrodes types: 

Transistors (FET) 

Optical fibers 

Photodiodes 

CCD

Thermistors 

Piezo devices

Physiocochemical
signal

■
Sensing layer

1

Transducer

Detection methods:

Electrochemical

Optical

Thermal

Mass variation

Biomolecular recognition

T
Target analyte

Complex medium

Figure 3.1 Configuration o f a biosensor.
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Generally, this device is electrical equipment with a transduction mode that can be 

electrochemical, thermal, optical, or based on mass variation. The selective molecular 

recognition o f the target molecule can theoretically be achieved with different types o f 

affinity systems, for example: enzyme for substrate, antibody for antigen, lactin - sugar 

interaction. Recently, arrays o f different detector molecules have been applied in so 

called electronic nose devices, where the pattern o f response from the detectors is used 

to fingerprint a substance.

3.1.1 Importance of the biological sensing system 

Operating Conditions

It must be kept in mind that most o f biological systems must be used under strictly 

defined conditions. For instance, most enzymes have an optimal pH range in which their 

activity is maximal; this pH zone must be compatible with the characteristics o f the 

transducer. Except for rare enzymes capable o f undergoing, for a short period, the 

temperatures higher than 100 C, most biocatalysts must be used in a quite narrow range 

o f temperatures (15-40) C.

Immobilization of the biological system

The simplest way to retain bioactive molecules on the tip o f a transducer is to trap them 

behind a perm-selective membrane (an ion-exchange material that allows ions o f  one 

electrical sign to enter and pass through). The availability o f preactivated membranes 

suitable for the immediate preparation o f any bioactive membrane thus appeares as a 

real improvement.

A biosensor should respond selectively, continuously, rapidly, specifically, and ideally 

without an added reagent, and then different criteria must also be considered.

• Effect o f the environment: the biosensing element must be either intimately 

connected to or integrated within a physicochemical transducer. The incompatibility o f 

the biosensing reaction (pH for urease in the urea detector) and o f detector itself (optical 

PNH3 sensor for Pencillin uses Penicillinase to catalyse the transformation o f Penicillin 

into Penicilloic acid, and this acid is detectable with a pH optical sensor). M icro

columns can sometimes be replaced by nylon coils, especially in luminescent reaction,
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with the luminescence enzyme system bound onto the internal wall o f the tube, allowing 

the reaction medium containing the sample to flow through.

• Rapidity (Rapid response): for enzyme electrodes a short response time may be 

between a few seconds and 30 sec, for instance. For immunosensors, 15 min is 

acceptable and considered to be short as compared to alternative techiques that are far 

more time consuming. For microbial sensors 20-30 min is a very short time, if  we 

understand that biological oxygen demand (BOD) measurments, for instance, may last 5 

days using conventional microbiological methods.

• Reusability: the cost and efficiency, when taking into account the preparation o f 

the bioactive part, from a device in which reagents must be added for each measurment.

3.1.2 Biosensors world market

The need for sensitive, easy to use, and low cost sensor devices is a requirement for 

monitoring diseases in the early stages, for environmental control, for security, bio

defence and home diagnostic continues the growth trend up to increase in demands. 

Points o f care diagnostics continue to be the largest market for biosensors. It has been 

estimated that global revenue from the biosensores market will continue to exhibit 

strong growth and will exceed USD 14 billion in the next seven years [85]. Other 

reports say that the USA and Europe dominate the global market for medical 

biosensors. While the Asian Pacific reached USD 794 million in 2012.

3.1.3 Labeled and label-free detection

Nowadays, the development o f biosensores faces the challenges o f detection o f  very 

low concentration (in fg to pg / ml range) o f traditional analytes such as antibodies, 

peptides, DNA oligomers, and low molecular weight (300 - 100 Da) analytes such as 

toxins. Due to the difficulties o f detecting biological analytes directly through their 

intrinsic properties such as size, mass, electrical impedance, or dielectric permittivity, 

labels that attach to one or more molecules have been used [ 85- 87]. A label, which is 

typically designed to be easily detected by its color or fluorescence acts as a surrogate to 

indicate the presence o f the analyte. For example, fluorescent dyes conjugated with 

DNA or proteins can be used as a label when the fluorescence is excited with a laser 

[85]. The use o f nanoparticles [8 8 ], enzymes [84], and radioactive labels [87, 89] are 

among the popular techniques to highlight biological interaction. In practical terms,
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label- based assay possess several potential problems. There is a need to reduce the cost 

o f raw materials (assay-related cost) and the complexity o f assay while at the same time 

providing more quantitative information.

Label-free detection generally involves a transducer capable o f measuring directly some 

physical properties o f biological objects, for example DNA, peptides, proteins, cells, 

etc. Physical properties, such as mass, volume, viscoelasticity, dielectric permittivity, 

conductivity, etc., can be utilized to indicate the presence o f these molecules. Label-free 

detection removes experimental uncertainty induced by the effect o f the label or 

molecular conformation, blocking active sites, steric hindrance, or inability to find an 

approperiate label that functions equivalently for all molecules in the experiment. Label- 

free detection is able to reduce the time and cost required for the assay development 

while removing experimental artifacts from quenching and background fluorescence.

3.2 Immunosensores

An immunosensor is a device for the detection o f an immune reaction, using antibodies 

as the bio-receptors. The use o f antibodies as a recognition element is justified by their 

higher affinity, versatility and commercial availability [90].

Immunoassays are based on the interaction between the antigen (Ag) and its specific 

antibody (Ab) to form an antigen-antibody complex.

Ag + Ab = AgAb (3.1)

Equilibrium is reached, and equilibrium constant for the reaction is defined as:

Ka = [AbAg] / [Ab] [Ag] (3.2)

This indicates that for a fixed concentration o f antibody the ratio o f bound to free 

antigen at equilibrium is quantitatively related to the total amount o f antigen present. 

The reaction forms the basis o f all immunoassays. When a fixed amount o f labeled 

antigen is introduced into the assay the concentration o f the unknown antigen can then 

be determined.

An antibody is typically an immunoglobulin, glycoprotein with a molecular weight o f 

-150,000 Daltons which is capable o f specific binding with its antigen. The process o f 

antibody - antigen binding is based on non-covalent interaction such as Van der W aals 

forces, Coulombic interaction, hydrophobic interaction, and hydrogen bonding [91].
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This combination o f interactions can make the antigen-antibody binding very specific. 

For instance, if two very similar antigens, A and B, are present where A has an 

additional hydrogen bond which B does not have, the strength o f the interaction o f A to 

the antigen compared to B can be 1,000 times greater. The affinity o f monoclonal 

antibodies for their antigens is typically in the range o f 106 - 108 mol /L.

3.2.1 Avidity and affinity

Avidity and affinity are two parameters describing the strength o f interaction between 

receptors and analytes. Affinity is the strength o f the binding site o f the antibody (Fab 

fragment or paratope) and the epitope o f the antigen (antigen binding site). In other 

words affinity measures the strength o f interaction between an epitope and an 

antibody’s antigen binding site. The time taken for this to occur depends on the rate o f 

diffusion, and is similar for every antibody. However high-affinity antibodies will bind 

a greater amount o f antigen in a shorter period o f time than low-affinity antibodies. KA 

can therefore vary widely for antibodies from below 1 0 5 mol ' 1 to above 1 0 i 2  m o l'1, and 

can be affected by factors including pH, temperature and buffer composition. High- 

affinity antibodies will bind to antigen in a shorter period o f time.

The affinity o f monoclonal antibodies can be measured accurately because they are 

homogeneous and selective for a single epitope. Polyclonal antibodies are 

heterogeneous and will contain a mixture o f antibodies o f different affinities 

recognizing several epitopes, therefore only an average affinity can be determined. 

Avidity is a measure o f the stability o f a complex formed as a result o f  antigen-antibody 

binding (Fig. 3.2).
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Figure 3.2. Illustrations for affinity, which is the strength o f binding between the 
antibody and the antigen, and avidity describing multivalent interaction.
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A measure o f avidity includes the sum o f the affinities for the multivalent interaction. In 

addition it measures the general strength o f binding, which includes the structural 

arrangement o f both molecules. Low affinity antibodies will bind weakly with the 

antigen and will dissociate easily, but high affinity ones will bind the antigen tightly and 

can remain bonded for longer.

3.2.2 Antibody - antigen interaction

Antibody-antigen reactions are widely used in medical diagnostics, environment 

analysis, forensic analysis, the food industry, etc. The use o f antibody-antigen 

interaction in a biosensor approach seems to be suitable because o f the following 

characteristics o f antibodies [92, 93]:

• High specificity o f antibody-antigen binding. A response to a specific antigen is 

specific for that antigen or a few closely related ones;

• The binding site o f the antibody is derived from a huge number o f  potential 

combinations o f 2 2  amino acid sequences which are able to bind a wide range o f bio

molecules, cells, bacteria, and viruses;

• Demonstrating memory. The antibody "like remembers" if it has seen an antigen 

before and it reacts with it quicker and made stronger binding (Ka is larger);
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• The antibody-antigen binding is non-covalent which allows for the recovery o f 

the sensor by breaking the antibody-antigen complex;

Generally there are five classes o f antibodies which excrete in serum, namely IgA, IgG, 

IgD, IgE, and IgM.

o Immunoglobulin alpha (IgA) can be found in mucosal areas o f the body

including the digestive, respiratory, and reproductive tracts. IgA is also present in 

saliva, tears, and breast milk,

o Immunoglobulin delta (IgD) appears in very small amounts in the blood, but is

mostly found as receptors on B-cells.

o Immunoglobulin epsilon (IgE) is found in attached to mast cells and basophils, 

although eosinophils, monocytes, macrophages, and blood platelets also have IgE 

receptors.

o Immunoglobulin gamma (IgG) makes up about 75% o f the antibodies found in 

the blood. It is the only antibody that can pass through the placenta from m other to 

fetus.

o Immunoglobulin mu (IgM) assist complement proteins to attack invaders by

providing a bridge to which the proteins can attach themselves.
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Figure 3.3. Diagram o f the basic unit o f immunoglobulin (antibody).
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Figure 3.4 The antibody structure.

The main idea o f detection o f immune reactions is the use o f antibodies as bio-receptors, 

which are capable o f specific binding with their specific antigen. The process o f 

antibody-antigen binding is based o f non-covalent interactions [94-96], such as Van der
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W aals forces, Coulombic interactions, hydrophobic interactions, and hydrogen bonding

[97]. The combination o f such interactions between few molecules can make the 

antigen-antibody binding very specific.

The antigen binding site o f an antibody is situated at the top o f each o f the two 

outspread arms as shown in Fig. 3.4. Each site is distinguished by 6 loops called 

Complementary Determining Regions (CDR). Three are found on the heavy chain (H I, 

H2, and H3) and 3 on the light chain (L I, L2, and L3). These protein loops mirror, or 

complement, the shape o f specific antigens. As a result, they determine to which 

specific antigens the antibody can and will bind.

Antibodies are typically generated in response to the challenge o f  an immunogen in the 

host animal, arising from separate cell lines which recognise various regions on the 

immunogen, termed polyclonal antibodies, while other antibodies are known as 

monoclonal antibodies [98, 99]. Both o f these antibodies have certain advantages and 

limitations for use in immune-sensing. Studies have shown that immunoglobin G (IgG), 

the most common human immunoglobin, consists o f two long "heavy" chains (A and B) 

and two short "light" chains (C and D). These are in the Y shape bonded together with 

disulfide bonds. There are several major areas o f globular tertiary structure on the 

chains. The globular structure on the ends o f the chains are variable and account for 

some o f the differences in specificity for different antigens. There are also two 

carbohydrate chains in between the A and B chains. The antibody structure is slightly 

different, but still maintains the Y shape as shown in the Figure 3.4.

In order to be used in bio-sensing, antibodies must be immobilised on the surface o f 

sensor (in our case, on the surface o f gold). There are several immobilization techniques 

routinely used in different bio-sensing applications [56], they include covalent binding 

onto the intermediate layer o f glutaraldehyde, encapsulation o f proteins alginate gel or 

lipid Langmuir-Blodgett films, which provide a natural environment for proteins. 

Another immobilization approach which was widely used in our research group is based 

on electrostatic binding via the layers o f polyelectrolytes [100]. This method proves 

strong binding o f proteins (antibodies in our case) by electrostatic interaction as well as 

through the structural stability o f proteins in polyelectrolyte membranes. 

Polyelectrolytes proved to be a natural environment for proteins and allow bio

molecules to keep their functions for a considerably long time (up to several months)

[98]. Polyelectrolytes are electrically charged polymers o f either cationic or anionic
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properties. Typical polyelectrolytes used are polycations - polyallylamine hydrochloride 

(PAH) and polyanion - polysterylsulfonate sodium salt (PSS). The chemical formulae o f 

PAH and PSS are shown in Figure 3.5 (a, b). The above polyelectrolytes are water 

soluble: PAH dissociates on positively charged polymer due to N H 3 + groups and 

counter ions C f, while a PSS chain containing SO 3 ' groups it has negatively charged 

polymer chain with N a+ counter ions. A multilayered film can be built by alternative 

deposition o f PAH and PSS layers as shown in Figure 3.5 (c). Proteins (IgG including) 

being either positively or negatively charged (depending on pH) can be adsorbed via the 

layer o f oppositely charged polyelectrolytes [101] as shown in Fig. 3.5.

Vi
^ N H 3+ Cl

(a)

Figure 3.5. Chemical structures o f (a) PAH and (b) PSS; (c) Multilayered film o f 

alternated layers o f PAH and PSS deposited on negatively charged surface.

3.2.3 Antibody immobilization

An antibody has four possible orientations on the solid surface as shown in Figure 3.6. 

Antibodies adsorbed electrostatically on the solid surface do not have preferential 

orientation and could end with Fc fragments directed upwards, downwards, or sideways, 

and therefore may not be available for binding antigens[102]. The desired “Fc upwards” 

orientation can be achieved using an interaction o f the binding site in the second domain 

with protein A or protein G adsorbed electrostatically on the surface. The 

immunosensor response can be increased by up to 3 times as a result [103].
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Figure 3.6. (a) Various orientations o f antibodies on surface, (b) improvement o f 

antibody orientation using proteins Protein A (or G).

The orientation o f an antibody towards an antigen can be optimized by its binding to 

protein A or protein G at the Fc fragment o f the antibody. The association o f protein A 

(or G) and the antibody has three significant characteristics [104]:

• Binding sites o f protein A or G and antibodies are located on the Fc fragment o f the 

antibody; the association capacity o f an antibody with an antigen cannot be changed;

• The affinity o f protein A or G to antibody is so high; however, the association o f 

protein A or G with an antibody will be lost in acidic solution;

• Protein A or G will resume its character readily.

3.3 Antibody production and purification

The production o f antibodies begins with the preparation o f antigen samples and their

safe injection into laboratory or farm animals so as to increase the levels o f  antigen-

specific antibodies in the serum, which can then be recovered from the animal. 

Polyclonal antibodies are recovered directly from serum. Monoclonal antibodies are 

produced by fusing antibody-secreting spleen cells from immunized mice with immortal 

myeloma cells to create monoclonal hybridoma cell lines that express the specific 

antibody in cell culture supernatant.

Antibody purification include isolation o f the antibody from the serum (polyclonal 

antibody), ascites fluid or culture supernatant o f  a hybridoma cell line (monoclonal 

antibody). Purification methods range from the very basic to the highly specific:

• Basic : sedimentation o f a subset o f total serum proteins that contain 

immunoglobulins

Protein A (or G)
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• Generic : affinity purification o f antibody classes (e.g., IgG) without regard to 

antigen specificity

• Specific: affinity purification o f only those antibodies in a sample that bind to a 

specific antigen molecule.

Which level o f purification is essential for obtaining usable antibodies depends on the 

intended application(s) for the antibody.

Figure 3.7. Production o f antibodies.

3.4 Optical biosensors and detection of immune reaction

Optical biosensors are a large class o f sensor devices which exploit some o f the optical 

principles for the conversion o f chemical (or bio-) reactions; they include light 

absorption, reflection, interference, diffraction, polarization,etc Label-free optical 

biosensors involve detection o f analytes in terms o f measurements o f changes in light 

intensity, peak wavelength, angle o f light coupling or phase shift. In the case o f  field 

applications, biosensors based on the intensity changes may be preferred over other 

methodologies due to the inherent simplicity in instrumentation and hence overall cost 

o f the sensing system. Most o f the label-free optical bio sensing schemes that rely on 

light intensity measurements at a particular wavelength or over a broad spectral range 

are based on the detection o f refractive index changes.
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3.4.1 ELISA method

Enzyme-linked immunosorbent assay [105], is one o f immunoassay technique using 

antibodies to apprehend an antigen and an enzyme, labelled antibody, to assessment the 

amount o f antigen. The extension signal constructs upon the traditional horseradish 

peroxidase (HRP) enzymatic colorimetric detection to allow for an additional log o f 

sensitivity. In ELISA, a dish with 96 wells (well-plate) is used, and wells are coated 

with antibodies. These antibodies are called “capture antibodies”, the role o f  which is to 

capture the target antigen molecules in the sample. Coating is carried out by adsorption 

on the surface o f bottom area. The well-plate is made o f polystyrene which is modified 

for very efficient adsorption. Because the concentration o f antibodies is related to the 

efficiency o f  capturing antigen for brilliant sensitivity, antibody preparation is used as 

an IgG fraction, or non-specific antibody fraction obtained by an affinity 

chromatography rather than a crude gamma-globulin fraction prepared by ammonium 

sulfate fractionation. This metode takes a long time, about 2 hours or more, so the series 

o f steps must occur as shown in Figure 3.8.

3.4.2 SPR (BIACORE)

There are growing concerns about applying optical biosensor knowledge, such as 

Surface Plasmon Resonance(SPR) based on Biacore tools, in drug discovery.SPR - 

based Biacore is one o f the broadly used, real time checking systems and was shown to 

be a convenient system for wide a range o f molecular sizes from small ligands to full 

cells. A biacore system can be effective in biomolecular interaction, selection processes, 

epitope mapping, kinetic analyses, screening processes and other applications. Biacore 

is an automated optical based detection system relying on SPR created by a Swedish 

company, founded in 1984, which detects refractive index changes in close proxim ity to 

a metal surface. Upon immobilization o f ligands on the sensors surface, the interfacial 

refractive index is altered, which will be detected and quantified by optical systems as 

the changes in the angle o f reflectance [106]. Biacore needs a flow system and it is 

expensive.

These labeling methods are not favourable in some cases, because labeling materials 

may occupy the important binding sites or cause steric hindrance, resulting in false 

information about interactions. On the other hand, in some cases an additional step is 

required prior to the analysis o f the interaction due to the difficulty o f the labeling 

procedure. To overcome these limitations several techniques for m onitoring
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biomolecular interactions were developed in the past, which including saturation 

transfer difference nuclear magnetic resonance analysis which can provide the original 

information [107].

-------------------------------------------------------------------------------

Basic procedure of ELISA

r
 Sample solution contian antigen was 

add to be measured to the well where 
antibody is solidified.

Antibody capture the antigen

Enzyme- labeled second antibody 
was add to the well.

r The enzyme- labeled second 
antibody binds to the captured 
antigen.

! S u b s l r a l e

C olor

Add a chromogenic substrate of 
the enzyme which shows coloration 
by enzyme.

Figure 3.8 ELISA Method.
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3.5 Summary

A biosensor is an analytical apparatus which converts a biological response into an 

electrical signal; there are many types o f biosensors. In 1961 the first report on the 

immobilization o f protein adsorption o f invertase (an enzyme produced by yeast that 

catalyzes the hydrolysis o f sucrose, forming glucose) on activated charcoal (Nelson and 

Griffin, 1922) involving the first glass pH electrode was undertaken. From this time 

many developments have occurred up to the present. Biosensor can be classified as:

• Receptor based biocatalytic-enzymes, cells, tissues biocomplexing-Ag/Ab- 

immunosensor Receptor/antagonists.

• Based on mode/transducers; electrochemical, optical, piezoelectric.

• Nanobiosensors, nanoparticles, nanotubes(CNTs), nanowires, and porous silicon.

The method o f TIRE was used as the main experimental method in the study o f 

microcystin-LR, and both o f aflatoxin Bj protein chaperone. UV-vis spectroscopy was 

selected as a secondary method to provide further analysis.
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CHAPTER 4

OPTICAL IMMUNOSENSING METHODS: TOTAL 
INTERNAL REFLECTION ELLIPSOMETRY (TIRE)

This chapter outlines the basic theory o f evanescent waves which is the chief 

mechanism for a number o f optical sensors. The methods o f Ellipsometry and Surface 

Plasmon Resonance (SPR) are described and the similarities between them highlighted. 

The background o f the TIRE method (a combination o f ellipsometry and SPR) is given.

4.1 Theoretical background of evanescent wave techniques

The optical procedure based on the evanescent field phenomenon combined with thin 

film technology gives some novel chances in the area o f biosensing. Such methods are 

label-free and appropriate for express, in-situ, and in-field analysis. Typical parameters 

detected by this method are the intensity and/or phase shift o f the reflected light.

Evanescent waves are an overall property o f the wave-equation, and can in general 

occur in any context to which a wave-equation applies. They are formed at the boundary 

between two media with different wave motion properties, and are most intense within 

one third o f a wavelength from the surface o f formation. A typical example o f 

evanescent wave is the electromagnetic wave propagating along the interface between 

two transparent media at the situations o f total internal reflection [43]. As shown in 

Figure 4.1, the incident light entering the medium with lower refractive index (ni>n 2 ) 

experiences total internal reflection at the critical angle o f 6C which can be defined as

S in 6 c = —  (4.1)

As shown in Figure 4.1 (c) the evanescent field propagates along the interface. The 

amplitude o f evanescent field decays exponentially in the direction z perpendicular to 

the interface
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E  = E0 exp(-^z ) (4.2)

The existence o f metal on (or near) the interface may play an important role in the 

propagation o f the evanescent wave due to the interaction o f  the evanescent wave with 

free electrons in metal as shown in Figure 4.2.

Transmitted
light

Incident Reflected
light light

Evanescent
wave

(a) (b) (c)

Figure 4.1 (a) Reflection and transmission o f light at the nj-n 2 interface; (b) Total 

internal reflection, (c) The formation o f evanescent wave.

Dielectric A AAA
— ~.C —

Metal

z
d «

Figure 4.2 Schematic diagram o f evanescent waves propagating along a metal- 

dielectric interface.

4 1



incident light reflected lig]

Gold thin film

evanescent field
water (n2) t^ "

Figure 4.3 the formation o f an evanescent wave at the boundary between two media 

(ni>n 2 ) while coupling the light through ther prism at total internal reflection conditions.

One o f the ways o f creating an evanescent wave on the metal-dielectric interface is 

coupling the light through the prism at total reflection conditions, as illustrated by 

Figure 4.3.

4.1.1 Ellipsometry

Ellipsometry is optical non-destructive procedure which provide an accurate description 

o f thin films, surfaces and interfaces. Ellipsometry is mostly used to determine the 

thickness and optical constants (n, k) o f thin films. The chief idea o f ellipsometry is the 

detection o f changes in polarization o f light upon its reflection from examined surfaces 

as shown in Figure 4.4 [108].

p-plane

Elliptically polarised
s-plane

Linearly po larised

Sample

Figure 4.4 Changes in polarization o f light reflected from the surface [108].
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Ellipsometry does not really measure thickness or optical constants o f the material but 

the angles o f (vj/) and (A). The ellipsometric parameters v|/ and A are defined, 

correspondingly, as a ratio o f amplitudes and the phase shift between p- and s- 

components o f the reflected electric vector:

where p- and s- planes are defined in Fig. 4.1.

The parameters o f thin films such as the thickness (d) and complex refractive index (

N  — n — j k )  can be found by fitting the ellipsometry data. The calculation o f  v|/mod and

Amod parameters (modelled) from given values o f n, k and d (so-called forward 

ellipsometry problem) can be solved using the following equation [48, 49]:

in which the reflection coefficients o f rp and rs are related to d, n, and k via F resnefs 

formula [108].

In reality, however, we need to solve the reverse ellipsometry problem o f finding d, n, 

and k from the experimental values o f v|/exp and Aexp. This could be achieved using one 

o f the least-square techniques [109-111], where the forward problem is solved m any 

times by varying initial parameters d, n, and k and minimizing the error function (MSE):

Where the summation goes over all the spectral points (N), and M is the target accuracy 

o f the fit. A smaller MSE implies a better fit.

There are several types o f ellipsometry instrumentation have been developed within the 

last four to five decades ranging from simple fixed angles, and single wavelength units 

to modem spectroscopic ellipsometric instruments. The most common types o f 

automated spectroscopic ellipsometric instruments nowadays expoit the principles o f 

either rotating optical elements (analyzer or compensator) or photoelastic modulators.

The J. A. Woollam M2000 spectroscopic ellipsometric instrument exploits the principle 

o f a rotating compensator, which consists o f a wide spectral range o f light source (370 -

(4.3)

p  = — = tan(vF) exp(/A) , 
r'

(4.4)

m od
iMSE

(4.5)



1 0 0 0  nm), a polarizer,a rotating compensator, an analyzer and a photodetector, as shown 

in Figure 4.5.

Normal

Elliptic Linear
Reflected

Light
Emitted

Light

Surface

Figure 4.5 The schematic o f rotating analyzer spectroscopic ellipsometry.

Elipsometry has been known for decades as a method for optical characterization o f 

materials. The instrumentation is under constant development, and modem 

spectroscopic instrumentation such as J.A. Woollaam is capable o f  finding the thickness 

and dispersion characteristics n(A,) and k(A,) for complex materials (composite, 

multilayered, anisotropic, etc.). The sensitivity o f ellipsometry is very high and 

sufficient for monitoring the variation o f thickness (or refractive index) o f molecular 

layers during adsorption or binding o f molecules. However, the applications o f 

ellipsometry for sensing are much more limited. The main problem o f  conventional 

ellipsometry is the fact that the light beam travels through the probing medium, so that 

variations o f the refractive index o f the medium, the absorption and the scattering o f 

light (in the case o f opaque or cloudy solutions) may affect the measurements. The cell 

is usually large (which is unsuitable for biosensing) and costly (because o f the use o f 

special non-polarized windows). Although J.A. Woollaam has recently produced a 

reaction cell o f  about 0.5 ml in volume, there is another solution to that problem, which 

is outlined in the next paragraph.

4.1.2 Surface plasmon resonance (SPR)

The method o f SPR uses properties o f thin layers o f gold (or other noble metals) on the 

surface o f glass to absorb the light and excite electron waves (surface plasmon) on the 

gold surface. Traditional geometries o f SPR (shown in Figure 4.6 involve the use o f
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glass prism, which allows coupling p-polarized into a thin metal films and the angle 

close to total internal reflection.

a) b)

Incident
Beam Prism

Metal: Si

Dielectric Surface
£2 Plasmon

Figure 4.6 Kretschmann (a) and Otto (b) configurations o f an Attenuated Total 

Reflection setup for coupling surface plasmons.

Usually, a monochromatic light (HeNe laser 633 nm) is used, and the variation o f the 

component o f k-vector in the interface plane (kx) is achieved by changing the angle o f 

incidence. In modern spectroscopic SPR instruments, however, the wavelength o f  the 

incident light is varied [112,113].

The evanescent wave propagating straight at the interface can interact with free 

electrons in the metal which is (20-40 nm in thickness). When the kx vector o f  the 

evanescent field matches the k-vector o f surface plasmons, the energy is transferred to 

surface plasmons and the reflected light intensity experienced a sharp dip (see Figure 

4.8 b). This phenomenon happens only at a specific angle (or wavelength) o f incident 

light and called surface plasmon resonance. The position o f the resonance is highly 

dependent on optical properties o f the metal layer used, such as Ag, Au, Cu. Different 

metals can be used in SPR, however gold was found to be the best practical solution 

because o f its chemical stability and well-developed chemistry o f  immobilization o f 

bio-molecules, as well as on the presence o f adsorbed molecular layer on its surface. A 

typical SPR apparatus contains a cell on the side o f the gold film which allows injection 

o f various chemicals into it and thus performing different bio-chemical reactions (Fig. 

4.7 a). For example, binding o f a target analyte to a receptor on the gold surface 

produces a measurable shift o f  the SPR curve to the right (high angles) and can be 

easily detected as shown in Figure 4.7 b). The SPR shift could be calibrated in term s o f 

the analyte concentration, and thus provide the result o f  the SPR bio-sensor. Otherwise,

4 5
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the SPR shift could be fitted to Fresnel’s theory and yields the sensor production in the 

units o f either a refractive index or the thickness o f adsorbed m olecular layer.

o  o

\ o y W c
O  - . Flow channel

Sensor chip 
U with gold film

Polarized
light Prism

Reflected
light

V
Optical 

detection 
unit /

Sensorgram

Angle Time

Figure 4.7 (a) Typical set-up o f an SPR biosensor [46]; (b) the shift o f  SPR minimum 
upon binding o f molecules; (c) kinetics o f the SPR response.

Another analytical possibility lies in recording the reflected light intensity at a fixed 

angle o f incidence or wavelength (see Fig 4.7 c). This allows the study o f the kinetics o f

chemecial reactions in real time, without the need for a molecular tag or label [114].

Optical biosensors that exploit the SPR principles have been widely used over the last 

two decades in the bio-analytical field. Advances in instrumentation and experimental 

design have led to the increasing application o f SPR biosensors in many areas such as 

immunoanalysis, drug development, DNA analysis, medical diagnostics, environmental 

control, etc [ 1 1 2 ].

The SPR angle is dependent on numerous factors, including the characteristics o f the 

metal film, the incident light, and the thickness and refractive index o f the m olecular 

layer making contact with the metal sensing surface [113]. As a result, spectra can be 

recorded on a metal surface with and without a coated molecular layer. Then, the shift 

in SPR angle between the two can be quantified and used to calculate the thickness or 

refractive index o f the adhered molecules [112]. SPR has been established as an 

analytical tool in monitoring the thickness o f a molecular layers [113]. The method was 

suitable for analysis o f molecular monolayers or adsorbed molecules [114].

molecular adsorption (or binding) and then the evaluation o f the affinity o f bio-
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Beside its capability to determine the thickness o f coated films, SPR has also emerged 

as a technology in the area o f sensors (e.g., for the detection o f physical quantities, 

chemicals and biologies) [114]. Physical quantities (such as temperature and humidity) 

can be deduced from changes in refractive index. Chemical sensing can use changes in 

refractive index to measure concentrations o f molecules adhering to the metal surface 

(as a result o f chemical reactions). Biosensing can also use refractive index changes to 

deduce the happening o f binding interactions (such as between antigens and 

antibodies). SPR also provide the significant advantage o f being able to monitor 

reactions in real-time, without the need to go through the often complex process o f 

labeling molecules with fluorescent or radioactive probes [115].

Like all surface analysis techniques, SPR has its restrictions in terms o f sensitivity (the 

smallest amount o f molecule detectable) [115], resolution (the smallest difference in 

SPR angle discernible), and sample characteristics (geometry, thickness, 

etc.). However, this technique still provides a remarkable diversity o f capability for the 

description o f reaction kinetics and thin film property, with a high degree o f  sensitivity, 

and in real-time, all important factors for a biomaterials scientist involved in the 

engineering, alteration and study o f functional ized surfaces.

4.2 Total internal reflection ellipsometry (TIRE)

Ellipsometry is an analytical tool which is a well-established for thin film and surface 

characterization. With respect to organic material, spectroscopic ellipsometry has been 

extensively used in studying polymer thin films [116] self-assembled layers [117], LB 

films and liquid crystal [115]. A majority o f these applications, however focus on the 

surface characterization. Ellipsometry is well known in thin film industry for in-situ 

monitoring o f film deposition to control layer thickness, growth rate and layer quality.

Due to the high sensitivity to the thickness increment (around 0 .01 nm) this method was 

recently adopted for the measurement o f  molecular layers absorbed on to solid surfaces 

which naturally leads to sensing applications. The advantages o f  the ellipsometry 

method in sensing application are [116]:

• The measurements are based on reflection o f polarized light, no refrence beam or 

label is needed.
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• It is possible to measure very thin molecular layers (0.01 nm) adsorbed on the 

surface with fast response.

•  Even higher sensitivity can be achieved using the parameter A (phase shift between 

p- and s components o f polarized light.

•  The method is capable o f in-situ dynamic monitoring o f both parameters T' and A in 

the course o f bio-reactions such as affinity binding.

• M olecular multilayers representing consecutively adsorbed (bound) molecules can 

be studied using the advanced multilayer modelling facilities usually available in 

modern spectroscopic ellipsometry instruments.

The only drawback o f the ellipsometry is an indirect method which needs an optical 

model for quantitative analysis and requires experienced personnel to do the fitting. On 

the other hand, modern ellipsometric instruments, such as J.A. Woollam's, provide a 

library o f models and algorithms for different materials for thin film analysis.

Spectroscopic ellipsometry method has been reported in various bio-sensing 

applications including the detection o f Hepatitis B, a-fetoprotien, and DNA 

hybridization. The detection limit o f 0.1 ng/ml, 0.01 ng/ml and 10 mol/ml were 

achieved [ 1 1 2 ].

In bio-sensing applications the use o f porous materials is a good approach, providing a 

large surface area for the immobilization o f reagents. For this purpose, the ellipsometry 

method was successfully employed to study a porous surface o f silicon [118] which was 

then suggested as a support for an enzyme based glucose sensor.

Other advances in spectroscopic ellipsometry for bio-sensing applications were 

achieved in its total internal reflection mode (TIRE). The idea o f using elipsometry in 

internal reflection mode was first realised experimentally by Wesphal [119], where the 

prism was used to couple the light beam into a thin metal film thus combining the 

ellipsometric principle o f detection with the phenomenon o f SPR. The increase in the 

sensitivity was achieved and the method was originally called Surface Plasmon 

Enhanced Ellipsometry. This method was further explored and theoretically explained 

by Arwin [120] and was given the current name o f  total internal reflection ellipsometry 

(TIRE). Further development o f the method o f TIRE was carried out by Nabok and his 

colleagues, the detailed modelling showed 1 0  fold gain o f the sensitivity with the use o f 

A spectra (as compared to NF spectra and traditional SPR measurements). The method o f
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TIRE was then successfully used in a number o f bio-sensing applications and 

particularly in the detection o f low molecular weight molecules such as pesticide like 

Simazine and Atrazine [121], T-2 mycotoxin [122] and nanylphenol [121].

The method o f Total Internal Reflection Ellipsometry (TIRE) represents a very effective 

mixture o f the spectroscopic ellipsometry instrumentation with the Kretchmann type 

SPR geometry o f the experiment. Theoretically TIRE method was known long time 

ago, but its experimental investigation has been achieved relatively in recent years 

[115]. The method o f TIRE was successful; at first, it was used for detection o f low 

molecular weight toxins and later applied in many other bio-sensing application [116].

Our TIRE experimental set-up (shown in Figure 4.8) is based upon J.A. Woollam 

spectroscopic ellipsometer M200V with an addition o f a 6 8 ° glass prism, a gold coated 

glass slide attached, and a 2 0 0  pi cell with inlet and outlet allowing the injection o f 

various liquids and thus performing various bio-reactions on the surface o f gold.

Figure 4.8 Experimental setup for surface Plasmon resonance enhanced ellipsometry.

The major benefit o f  TIRE is the use o f two parameters vj/ and A in contrast to only one 

parameter o f reflected intensity in SPR. Figure 4.9 shows typical spectra o f  ip and A 

recorded on the surface o f bare gold. The spectrum o f \j/(A.) being the ratio o f  amplitudes 

o f p- and s- components, resembles a typical SPR curve with the maximum and 

minimum equivalents, respectively, to total internal reflection and plasmon resonance
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conditions. At the same time, the spectrum o f A(k) represents a novel quantity o f phase 

shift which is not available in SPR.
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Figure 4.9 Typical TIRE spectra bare gold film on glass.

Both the modeling and experiments show about 10 times higher sensitivity o f A (as 

compared to \|/) to small changes in optical parameters (thickness and refractive index) 

o f thin film s[l 15]. This means that the TIRE method (which could be called as phase 

SPR) is 10 times more sensitive than conventional SPR. Similarly to conventional SPR 

instrumentation, two types o f measurements are available: single spectroscopic scans 

(for detection o f the thickness o f adsorbed molecular layers) and kinetic spectra 

measurement (for the study o f reaction kinetics and subsequent affinity calculation).

The method o f TIRE is an optical phase detection methods; the other possibilities are: 

(1) SPR interferometry which uses two polarizations (p- and s-) o f light and first 

proposed by Kabashin and Nikitin, (2) and planar polarization interferometry [116]. The 

polarization interferometry is particularly attractive because o f potential boost in 

sensitivity by two or three orders o f magnitude due to a multiple reflection o f light in 

the waveguide.

Considering the advantages o f the TIRE method mentioned above along with the plus 

relative low cost o f consumables and instrument running, the method o f  TIRE was 

selected as the main analytical technique for this PhD project.
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4.2.1 TIRE experimental set up

The TIRE experiment set up was based on the basis o f commercial M2000 J. A. 

Woollam Spectroscopic Ellipsometry operating in the 370 -  1000 nm spectral range and 

exploiting the rotating compensator principle ( Fig.4.5 a)

Figure 4.10 (a) J.A. Woollam M2000 Ellipsometry (b) Newly designed TIRE cell

In order to use the instrument as a biosensor operating in liquid, a special small-volume 

TIRE cell was designed and machined from polytetraflouroethylene (PTFE) material. 

The 200 pi volume o f the cell substantially reduces consumption o f bio-liquids, which 

is a very important factor in biosensing experiments. A silicon O-ring was used to seal

the gold slide against the cell, as shown in Fig 4.5 (b).
0

The choice o f a 6 8  glass prism which couples the light beam into a thin gold film was 

made to provide the condition o f total internal reflection on a glass - water interface. A 

gold - coated glass slide was brought into optical contact with the prism via index 

matching liquid in order to avoid an air gap.

TIRE data processing requires building an optical model consistent to a sample. 

Dielectric functions o f some layers (namely BK7 glass, gold, water) are known and can 

be selected from the WVASE software library [124], Parameters o f unknown layers( 

thickness and dispersal o f n and k) can be found by fitting the experimental data to the
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model layer which can be selected from the W VASE library. The most common model 

for the adsorbed molecular layers is the Cauchy model.

The measurement using on TIRE started with a single spectroscopic scan o f the sample 

o f a bare gold film in a standard Triz-HCl buffer for TIRE routine. The buffer solution 

(PH 8.0 ) to obtain the effective thikness and dispersion curves for optical parameters 

n(A) and k(A) o f the Chromium - gold layer.The other layers o f the model are ambient ( 

BK7 glass), gold , and substrate (water) were used, where the parameters for glass and 

water are fixed but the thickness and optical constants o f the metal layer are varied. The 

dispersion parameters o f n (X) and k (A.) for gold as well as the thickness o f  the 

evaporated gold layer were taken as initial guess values. The effective parameters for 

the Cr/ Au layer obtained by fitting for that particular sample were then used as fixed 

parameters for further fitting o f data obtained from the same sample.

c

M easu rem en t

C

M odel

Fit

o
Result

J

J

AM BIENT BK7

Au Cr 25.00 nm

Cauchy layer 0 . 0 0  nm

water 1 mm

Figure 4.11 The flow-chart o f data analysis in TIRE.

The process o f fitting in ellipsometry requires a great deal o f  experience and the result 

depends on the selection o f a physically adequate model as well as the choice o f initial 

parameters and the fitting routine, the use o f normal fit, global fit or spectral fit option, 

limiting the range o f variable parameters are removing anomalous data points, etc.
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In order to achieve reliable results, the fitting procedure needs to be repeated several 

times (preferably from different initial condition) until consistent values o f thickness 

(d), refractive index (n) and extinction coefficient (k) are achieved. In some cases a 

good fit cannot be achieved due to the following reasons [125]:

• Inappropriate dielectric function selected in data analysis.

• The optical model in data analysis is not suitable.

• The measurements o f (VP, A) spectra are inaccurate.

• The depolarization effect from the sample.

TIRE measurements usually consist o f recording single spectroscopic scans in the same 

buffer solution after completing each step o f  adsorption (or binding). Parameters o f 

adsorbed molecular layers (d, n, and k) were obtained by data-fitting to the four-layer 

model shown in Figure 4.11 and Table 4.1. In this model, the glass ( prism and glass 

slide ) acts as the ambient then the light goes through the Cr / Au film , the adsorbed 

molecular layer, and finally reaches the aqueous buffer solution in a cell which acts as a 

substrate. The molecular layer is modelled by the Cauchy dispersion function [125].

Table 4.1 Four-layer TIRE model.

No. Layer Parameters

3 BK7 glass(ambient) d  > lm m , w=1.515 (at 633nm), k= 0 n,k 

dispersion from WVASE32 library

2 Cr/Au d  is classically o f 20 - 25 nm, 

n = 0.359+ 0.078, 

k = 2.857+ 0.114 at 633 nm

1 Adsorbed layer Cauchy model: A = 1.396, B = 0.01, C = 0 

n =  1.42, 

k = 0 at 633 nm

0 Water n,k dispersions from WVASE32 library, 

n =  1.33

k = 0 at 633 nm.

The effective values o f thickness and refractive index dsispersion for Cr / Au were

found earlier by fitting TIRE data to a bare gold surface. TIRE measurements were
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always performed on the bare gold surface before deposition o f a molecular layer.Then 

the obtained values o f thickness (d), and the dispersion function for n and k were kept 

fixed in further TIRE fitting on this sample after deposition o f molecular layers. Such a 

procedure had to be repeated for every new sample. For organic layers deposited on the 

sensing surface, the Cauchy dispersion function was used

n = A  + - ^  + - j ,  k  = 0 (4.6)
A A

For organic material it is suitable to use the parameters o f A, B and C during fitting and 

these were fixed at 1.396, 0.01 and 0 respectively, giving a value for n o f about 1.42. A 

zero value for coefficient (k = 0 ) was used since all molecular layers were considered to 

be optically transparent in the spectral range used (270 - 1000 nm ). The only variable 

parameter was the thickness, d. In such approximation, all changes (mostly spectral 

shift) in the TIRE spectra are associated with changes in film thickness.

The proposed approach in data analysis (fixing the values o f n and k ) is not strictly 

correct but was enforced by the natural limitation o f both ellipsometry and SPR 

methods for thin dielectric films (thinner than 10 nm) [126]. Typical in bio-sensing it 

was assumed to fix the film thickness and relate all the changes to the refractive index. 

Recent experimental work has shown that the reflectivity increments caused by 

adsorption o f different bio-molecules represent only 0 . 1  -  0.14 % o f the refractive 

index, n, and therefore the spectral changes are associated mainly with thickness [127]. 

A similar value ( n = 1.44 ) o f the fixed refractive index was used in detection o f  E. coli 

phospholipids using Bruggeman effective medium approximation and resulting in the 

measurements o f the effective thickness o f lipids immobilized on silicon oxide [126].

4.2.2 Methodology of TIRE experiments

TIRE employs a prism coupler technique which combines the advantages o f 

spectroscopic ellipsometry and the experimental convenience o f Kretchmann SPR 

configuration. The angle o f incidence selected should be close to the angle o f  total 

internal reflection, which needs to use a suitable prism, the typical vp and A spectra from 

single sectroscopic measurements are shown in Fig. 4.12. The vp spectrum resembles
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typical SPR spectra with the maximal intensity corresponding to the conditions o f total 

internal reflection while the minimum is due to the surface plasmon resonance. At the 

same time, the A spectrum experiences a sharp drop from 270 to 90° near the plasmon 

resonance. From the spectra given in Fig. 4.12, it is quite obvious that the parameter o f 

A is more sensitive than \\/ to small variations o f the position o f spectra cause by 

molecular binding.

Experimental Data
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Figure 4.12 Typical time dependencies o f V|/ and A extracted from dynamic TIRE scane 

at selected wavelength.

Figure 4.12 shows typical dynamic spectra during immune reaction. From the large 

number o f data recorded, only the spectra o f vj/ and A at certain wavelengths (near the 

plasmon resonance) were selected. For example, the selection o f the wavelength at 600 

nm in Fig. 4.12 gives rising i[/ and decaying A signals. As one can see in Fig. 4.12, the A 

Kinetic curve is less noisy than the v|/ one, and therefore A (t) characterstics were 

selected for further analysis o f the molecular adsorption kinetics. Further analysis o f the 

absorption (binding) kinetics was required for the evalution o f the affinity constants o f 

the immune reaction studied [ 1 2 1 ].
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4.2.3 TIRE kinetics analysis

TIRE dynamic spectral measurements are based on recording a number o f spectra o f 

both 'T and A after a certain time interval, during the adsorption (binding) processes. 

The resulting time dependencies o f T' and A at selected wavelengths (similar to that 

shown in Fig 4.12) are utilized for in -situ monitoring o f all stages and molecular 

adsorption and biochemical reactions, such as immune reactions. TIRE dynamic 

spectral measurements followed by subsequent data processing allow the evaluation o f 

the association and affinity constants o f bio-reactions.

Adsorption o f molecules to binding sites o f concentration N on the surface is described 

by the following differential equation:

~T -  kaC (N  - n ) -  kdn (4.7)
at

Where k a fM o f 1 s"1], kd [s' 1 ] are adsorption and desorption rates, respectively, C [Mol] 

is the concentration o f analyte (antigen) in the environment (solution), n [Mol m '2] is the 

concentration o f adsorbed analyte on the surface, and N [ Mol m ' 2 ] is the concentration 

o f binding sites (antibody) on the surface. N - n is the concentration o f available binding

site on the surface. The solution o f this equation is given as:

n  =  N  k °C  [l -  exp(~{kaC + kd )f] (4.8)
K C  + K

It can be expressed as a sensor response, where the decaying exponential dependence 

for A is given as:

A = A ntLX , k“C, [ l - exp(-(fcnC +  kd)t] (4 .9 )
kaC + kd

The time constant in the above dependencies can be introduced as :

1 (4.10)
kaC  + kd

The reciprocal value S = — = kaC + kd depends linearly on the concentration o f
T

analyte. The rates o f  adsorption (ka ) and desorption {kd) can therefore be evaluated as, 

respectively, a gradient and intercept o f the graph S vs C. Then the association constant
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can be found as a ratio o f ka and kd ( K  A =  —  ) and the affinity constant Kd is the

1 kd
reciprocal o f KA ( K n = ------ — — ).

K  k^  A Ka

In order to find values for ka or kd, TIRE dynamic measurements have to be performed 

at different concentrations o f analytes and the time constant ( t)  has to be found by 

fitting every time dependence to the equation exp (-t / x) + b. The reciprocal values

S  = — = k aC  + k d have to be plotted against the concentration (C) o f  the analyte 
T

(antigen). The linear fit o f  such dependence yields the values o f ka and kd and 

consecutively KA or KD.

The correct analysis o f the immune reaction kinetics has to be performed for different 

concentrations o f antigen binding to originally empty binding sites for example 

antibodies freshly immobilized on the surface. In this work the adsorption steps started 

from the smallest concentration o f analytes. This is much more practical but it has to be 

justified. If No is the initial concentration o f the binding sites (antibody) on the surface, 

the concentration o f molecules adsorbed on the surface after first stage o f adsorption is 

given as:

"> =  N o L. kJ C ' > I1 "  e x P H ^ v C  +  k d ) 0 l  (4 1 1 )

Expanding eq (4.11) to a number of iterations, one can obtain that

K  = aV , - » » ,_ ,  = AV, *°C' (4.12)
k.C, +kd

until all binding sites are occupied and eventually N i = 0 . It is important to note that 

only the concentration o f available binding sites on the surface (N ^ ,)  is varied during

such consecutive adsorption steps, while the time constant r  = --------------- remains the
kaC  + k d

same as in the case o f single stage adsorption [ 1 2 1 ], and depends only on the parameters 

ka, kd and the concentration o f antigens in solution (C, ). Thus we can conclude that the 

procedure o f the evaluation o f ka and kd from graph 1/T; vs. Cj described in [128] is 

still valid in the case o f  consecutive adsorption. The above procedure was implemented 

for the immune analysis throughout the work and particularly for the detection o f 

microcystin-LR.
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CHAPTER 5

COMPLEMENTARY EXPERIMENTAL 
TECHNOLOGUES

This chapter outlines other experimental methods employed in this study, such as UV- 

vis. absorption spectroscopy as a complementary technique for the study o f MC-LR 

cleansing. Other methods used for surface morphology analysis, include scanning 

electron microscopy (SEM), infinitive focus microscopy (1FM), Fourier transform 

infrared spectrometry (FT-IR) and hemocytometery. Langm uir-Blodgett film 

deposition was used to transfer cells onto solid substrates.

5.1 UV-visible absorption spectrophotometry

The UV-visible spectral region is divided into three sub-domains termed near UV (185- 

400 nm), visible (400-700 nm) and near infrared (700-1100 nm). M ost commercial 

spectrophotometers cover the spectral range between 185 to 900 nm. The principles o f 

absorption spectroscopy are related to the interaction o f photons o f the incident light 

beam with atoms and molecules in the sample. When a molecule interacts with a 

photon, this photon is absorbed and its energy is captured by one or more o f outer 

electrons [129]. Consequently, such energy increase promotes electron transitions from 

the lower occupied molecular orbital (HOMO) to the higher unoccupied orbital 

(LUMO). The observed transitions involve electrons engaged in a  and ji bonding 

orbital's as well as n ( non-bonding) electron orbital's as shown in Fig. 5.1 below 

hypothetical energy diagram.
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Figure 5.1 Electron transitions in organic materials stimulated by light.

A spectrophotometer is designed around three fundamental parts: the light source, the 

monochromator, and the detection system as shown in Figure 5.2 (a). These components 

are typically integrated in a unique framework to make a spectrometer [130,131].

Io I

X

Figure 5.2. (a) Schematic diagram o f UV-vis spectrophotometer[132]; (b) absorption o f 
light by a sample (illustration to derivation o f Beer-Lambert law).

As illustrated in Fig. 5.2 (b), the intensity o f  the incident light (Io) and the intensity o f 

light after passing through the sample (7) are related throught the Beer-Lambert law:

I = I0 e x p  ( - a  x ) , (5.1)

Diode Array

Dispersion device

Entrance slit 

Sample
O i

Sourceo
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w h e r e  <2 is  th e  a b so rp t io n  c o e f f ic ie n t  an d  x  is  th e  th ic k n e s s  o f  th e  sa m p le .

In modern spectrophotometric instruments, the spectra o f several parameters are 

available, for example transmission T (%):

T  = I / I 0, (5.2)

However the most common parameter to measure is the logarithmic unit which is called 

absorbance (Abs. or A) and defined as:

(is)
W

Abs. = log . (5.3)

Threrefore, absorbance is linearly proportional to the absorption coefficient.

Abs. = a x / 2 3  (5.4)

In the case o f light absorption by a liquid sample, the Beer-Lambert law and ther 

absorbance can be related to the molar concentration (C) o f a light absorbing medium:

( I  \nI = I0 exp  (~aC x ) , A -  log 10 u
- a C x .  (5.5)

Other possibilities o f light losses are reflection and scattering o f light. Accounting for 

these two phenomena required some alterations in the eq (5.1). However in a simple 

case o f transparent materials (with negligible absorption) and normal incidence 

(negligible reflection), the light losses can be associated with the light scattering only. 

These conditions are used in the measurement o f optical density o f some biological 

samples which are transparent in the visible spectral range but look cloudy” due to light 

scattering.

5.2 Scanning electron microscopy SEM

Scanning Electron Microscopy (SEM) uses a focused beam o f high energy electrons to 

scan the sample surface [133]. Usually, a tungsten filament or a field emission gun are 

typically used as an electron source. The electron beam is accelerated by an electric 

field and focused by condenser electromagnetic lenses [134]. Another set o f lenses 

performs the beam detour in a raster mode to scan the surface o f  the sample. The 

electrons reflected by the sample (primary electrons) or re-emmited by the sample 

(secondary electrons) are detected, and these signals are used to form an image o f the 

sample. The operation principles o f the SEM are shown pictorially in Fig.5.3.
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Figure 5.3 Operation principles o f SEM.

The focused electron beam scans the sample surface. In standard imaging mode, 

backscattered and secondary electrons are detected and the measured signal is used to 

form a two-dimensional image. Because o f high energy o f incident electrons, the 

secondary electrons are usually emitted from deeper (core) electron elevels; the 

electrons from high orbitals move down to fill the vacancies. The resulted X-ray 

emission can be used for elemental analysis (EDX) [135].

SEM is a very versatile analytical tool having up to nm-scale spatial resolution.The 

resulting SEM image shows a mixture o f different types o f image. Because the electron 

beam not only interacts with the sample surface but also penetrate inside the material, 

the measured signal is affected by the three-dimensional structure o f the sample. This 

effect can be seen in Figure 5.3, which shows an SEM scan o f concentrated ion beam- 

milled lamellae (h-bar type) for transmission electron microscopy (SEM) studies [136, 

137]. The electron beam o f the SEM needs to be operated in a vacuum. There have been 

attempts to lower the vacuum requirements in electron microscopy but usually there is a 

problem with the vacuum compatibility o f biological samples. The SEM type FEI 

NOVA 200 NanoSEM was used in this study which has the following features:

• Field emission gun (FEG)

• High spatial resolutions o f 1.5 -  2.0 nm (at 15 -  30 kV) or 2.5 -  5.0 nm (at 1 kV)

• The instrument operates in both high vacuum and low-pressure environments;

• Energy dispersive X-ray spectroscopy (EDX or EDS)
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In the current project SEM was used for visualization o f microparticles as explained in 

detail in Chapter 8 .

5.3 Infinite focus microscopy (IFM)

The Infinite Focus Microscope (IFM) is a fast optical tool "non-touching” the sample

with a vertical and side resolutions down to 10 nm and 400 nm, respectively, enabling to 

reconstruct a pseudo-3D image from a number o f 2D images that have been captured 

between the lowest and highest focal planes. The instrument (Alicona) is capable o f 

capturing images o f samples with highly reflective surfaces and samples with a high 

surface roughness. The software for image analysis available in the IFM instrument 

allows presenting images in different shapes and formats and evaluates different 

parameters such as roughness [138].

m  u m

Figure 5.4 The view o f IFM (Alicona) instrument.

5.4 Fourier transform infrared spectrometery (FT-IR)

Total Reflectance Fourier Transform Infra Red (ATR-FTIR) spectroscopy can be used 

to study quite small samples. This surface sensitive mechanism can provide information 

on coatings and laminates by presenting various sides o f the sample to the beam, using 

ATR-FTIR to measure the adsorption o f  water and other solvents into polymer films

In f in it e
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[139]. This process provides an abundance o f information in addition to capturing the 

rate o f  diffusion o f the solvent species and can contain information on polymer swelling 

and crystallinity and the interactions between the solvent and the polymer [140]. FTIR 

spectroscopy can monitor reactions o f the amino acids, the ligands and specific water 

molecules in the active centre o f a protein in the time range from nanoseconds to 

seconds, thereby providing a detailed understanding o f the molecular reaction 

mechanism [141].

The principle o f FT-IR is: Light emitted from the source across the spectrum, a 

monochromater separates the radiation into its various wavelengths, a slit selects the 

collection o f wavelengths that glow through the sample at any given time. The sample 

absorbs light according to its chemical properties, a detector collects the radiation that 

passes through the sample, and puts out an electrical signal which is sent directly to an 

analog recorder. A link between the monochromater and the recorder allows recording 

energy as a function o f frequency or wavelength, depending on how the recorder is 

calibrated as shown in Fig 5.5(a) .There are many limitations:

• The monochromater/slit limits the amount o f signal one can get at a 

particular resolution. To improve resolution, you must narrow the slit and 

decrease sensitivity.

•  There is no simple way to run manifold scans to build up signal-to-noise 

ratios.

• The instrument must be repetitively calibrated.

While in FT a source, a sample and a detector the same, but everything else is different.

All the source energy is sent through an interferometer and onto the sample. In every

scan, all source radiation gets to the sample. The interferometer is a basically different

piece o f equipment than a monochromator. The light passes through a beamsplitter,

which sends the light in two directions at right angles. One beam goes to a stationary

mirror then back to the beamsplitter. The other goes to a moving mirror. The motion o f

the mirror makes the total path length variable versus that taken by the stationary-mirror

beam. When the two meet up again at the beamsplitter, they recombine, but the

difference in path lengths creates constructive and destructive interference, an

interferogram.The recombined beam passes through the sample. The sample absorbs all

the different wavelengths characteristic o f its spectrum, and this subtracts specific

wavelengths from the interferogram. The detector now reports variation in energy
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versus time for all wavelengths simultaneously. A laser beam is superimposed to 

provide a reference for the instrument operation as shown in Fig. 5.5 (b).

The frequencies o f electromagnetic radiation from source to proportionately slower 

oscillating signal. The sum o f slower oscillating signals is passed to the computer which 

mathematically separates the signal into individual oscillations and calculates the 

oscillations o f symmetric frequencies o f observed radiation. This data is constantly 

recorded. The amplitude o f each resolved oscillations is a function o f intensity o f 

radiation. A mathematical process called the Fourier Transform (FT) is used to convert 

time field spectrum to conventional frequency domain spectrum.Increasing the number 

o f flat mirrored surfaces increases the number o f  reflections.
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Figure 5.5 (a) the principles o f a classical spectrometer,(b) FT instrument. (c)A multiple 

reflection ATR system in FT-IT measurements.
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This tool was used in the current project to see the binding between m icrocystin-LR and 

the antibody MC10E7 as discussed in details in Chapter 7, also it was used to confirm 

that the core o f microcapsules was removed as shown in Chapter 8 .

5.5 Hemocytometery

Haemocytometery is the simplest and cheapest means o f accurately determining the 

number o f cells in a sample. It is based on the optical microscope and contains a 

Haemocytometer which is a specialised slide that has a counting chamber with a known 

volume o f liquid. The haemocytometer consisting o f  a heavy glass slide with two 

counting chambers, each o f which is divided into nine large 1 mm squares, on an etched 

and silvered surface separated by a trough. A coverslip sits on top o f the raised supports 

o f the 'H' shaped roughs enclosing both chambers. There is a 'V' or notch at either end 

where the cell suspension is loaded into the Haemocytometer. When loaded with the 

cell suspension it contains a defined volume o f liquid [142]. The engraved grid on the 

surface o f the counting chamber ensures that the number o f particles in a defined 

volume o f liquid is counted. The Haemocytometer is placed on the microscope stage 

and the cell suspension is counted. The diagram below shows the Haemocytometer slide 

under the microscope.

Figure 5.6 Haemocytometer slide and its cover.

Cover glass

Mounting
support
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Counting
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Figure 5.7 Standard Haemocytometer chamber.

Figure 5.6 shows one o f the two chambers in the Haemocytometer. The entire chamber 

has nine 1.0 mm x 1 .0 mm large squares separated from one another by triple lines. The 

area o f each is 1 mm2. Inside each o f  the larger corner 1 mm 2 squares are 16 small 

squares that serves as reference points to help avoid counting a given cell more than 

once. The central 1 mm 2 area is divided into 25 small squares, each 0.04 mm 2 and each 

o f these is marked into a further 16 tiny squares.

Primary Square 
area = 1.0 mm2 

depth = 0 .1  mm
volume = 1 x 1 0 ' '  mL • .  = counted = not counted

Figure 5.8 Example o f using Haemocytometer for counting cells. Inset shows the
sampling.
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This slide was used to count microcystis aeruginosa cells to make standard curves for 

cells, as explain in Chapter 7.

5.6 Fluorescence microscopy

Is an optical microscopy that uses fluorescence and phosphorescence in addition to, 

reflection and absorption. A fluorescence microscope uses fluorescence to generate an 

image, used in biological research, environmental monitoring, public health and 

medicine [143]. One o f the greatest advantages o f Fluorescence M icroscopy enables the 

viewer to obtain faster laboratory results that would not be seen with conventional 

optical microscopy. The sample is illuminated with light o f a specific wavelength 

which is absorbed by the fluorophores and causes emission o f longer wavelengths 

[144]. The illumination light is separated from the much weaker emitted fluorescence 

through the use o f a spectral emission filter light source (xenon arc lamps or mercury- 

vapor lamps are common; more advanced forms are high-power LEDs and lasers). 

Prominent peaks o f intensity occur at 313, 334, 365, 406, 435, 546, and 578 

nanometers. It also contain a combination o f dichroic mirrors and filters capable o f 

exciting fluorescent chromophores and filtering out the excitation light from the viewed 

image. Chromophore or Fluorophore is a chemical component that can re-emit light 

upon light excitation [145]. Fluorophore usually contains several combined aromatic 

groups, or plane or cyclic molecules with several n bonds. They used in many case as a 

tracer in fluids, for example dyes for staining cells, tissues, or materials in different 

analytical methods. These covalently bonded to a macromolecule. In my project I used 

two types o f dyes (SYTO-9 Green Fluorescence stain and Propidium iodide red 

Fluorescence stain). The fluorescence excitation maximum is 535 nm and the emission 

maximum is 617 nm for Propidium iodide red Fluorescence stain, is enhanced 20 to 30 

fold. PI binding shifts the maximum fluorescence excitation by about 35 nm towards 

red while also shifting the maximum emission by about 15 nm towards blue. But for 

SYTO-9 Green Fluorescence stain the absorption is 485 nm and the emission is 501 

nm.

At other wavelengths in the visible light region, the intensity is steady although not 

nearly so bright (but still useable in most applications). In considering illumination 

efficiency, mere lamp wattage is not the prime consideration. Instead, the critical 

parameter is the mean luminance must be considered, taking into account the source 

brightness, arc geometry, and the angular spread o f emission. Sample stains by many
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fluorescent stains have been designed for a range o f biological molecules.Fluorescent 

microscopy is frequently used to image specific features o f small samples such as 

microorganisms [146]. It is likewise used to visually improve 3-D features at small 

scales. This can be achieved by attaching fluorescent tags to anti-bodies that in turn 

attach to targeted features, or by staining in a less specific manner. When the reflected 

light and background fluorescence is filtered in this type o f microscopy the targeted 

parts o f a given sample can be imaged. This gives a detective the ability to visualize 

desired organelles or unique surface features o f a sample o f interest [147] as shown in 

Fig. 5.9.

detector

ocular
em ission  filter

dichroic mirror

light source

excitation  filter

objective

sp ecim en

Figure 5.9 Schematic diagram o f Fluorescence Microscope [143].

This microscopy was used in my project to capture image for microcapsules after they 

stained with fluorescence dye, these images are existing in chapter 8 .

5.7 Langmuir-blodgett trough

Langm uir-Blodgett (LB) trough is laboratory equipment used to study m onolayers o f 

amphihilic molecules on the surface o f subphase (water). An amphiphilic molecule is 

one that contains both a hydrophobic and hydrophilic groups, and therefore exist on the 

air-water iterface. The LB trough allows preparing a monolayer o f  amphiphilic
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molecules on the surface o f water, and then compress the monolayer thus modifying 

the molecular density or area per molecule [148]. This is accomplished by placing a 

subphase (typically water) in a trough, spreading a given amphiphile over the surface, 

and then compressing the molecular layer with barriers. The m onolayer’s effect on the 

surface pressure o f the liquid is measured with a W ilhelmy plate. LB film can then be 

transferred to a solid substrate by dipping the substrate through the monolayer [149].

One o f the important characteristics o f monolayer is the surface pressure - area per 

molecule isotherm. A schematic diagram in Figure 5.10 shows the main elements o f 

Langmuir trough which can be used to record surface pressure isotherms.

W ilhelm y p la te  
to  force tran sd u ce r

Teflon 
(hydrophobic)

M oveable delrin
barriers
(hydrophilic)

Figure 5.10 Schematic diagram o f Langmuir trough for isotherm measurements [151].
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Figure 5.11 Schematic diagram o f surface pressure -  area per molecule isotherm in 
dicating different stages o f monolayer compression [154].

As shown in Fig 5.11, the region o f constant slope in the isotherm indicates the 

homogeneous phase o f the monolayer, while the change in the slope would indicate a 

phase transition. Detailed monolayer structure can be investigated further by other 

techniques including X-ray and neutron diffraction, ellipsometry, and nonlinear optical 

spectroscopy [150 - 153].

The work on protein chaperon, which is described in detail in Chapter 6 , uses the 

NIMA-602 teflon LB trough o f 172.0cm2 in area equipped with two teflon barriers, 

Wilhelmy plate as a surface pressure sensor, and an dipping mechanism. The trough is 

interfaced to PC and controlled by dedicated NIMA software.

5.8 Edwards E360A evaporation unit

The Edwards E360A evaporation unit is commonly used in thin-film deposition (mostly 

metals). The metal evaporation unit is based on a vacuum system comprising a rotary 

pump (to create pre-vaccum in the range o f 10' 3 Torr) and the oil diffusion pump (to 

create high vacuum in the range o f 10' 6  Torr); the vacuum chamber in a shape o f  a glass 

dome is sealed against the stainless steel base via a rubber ring-seal.

Thermal evaporation o f  metals is achieved by passing high current through the filament 

made o f materials with high melting point (W or Mo). A piece o f metal to be evaporated 

(assumingly having a melting point much lower that o f the filament) is placed on a 

filament (typically having a boat-shape). After passing a sufficient current through the



filament, the heat produced causes the metal to melt and thus to evaporate into the space 

within a vacuum chamber. A number o f substrates, which are fixed inside the chamber, 

will be coated with the layer o f metal as a result. The control o f metal deposition is 

achieved with a QCM sensor which is placed on the same distance from metal source as 

the substrates. The frequency fall o f  the quartz crystal in QCM sensor can be calibrated 

to a particular metal used, thus providing values o f the evaporation rate in (nm/s) and 

the total layer thickness in (nm).

The evaporation unit has four compartments spaced at 90° on a turret, each containing 

an electrode; up to four filaments could be connected between these electrodes and the 

central one which is connected to the ground. By rotating the turret, these electrodes 

could be connected in turn to a power supply providing low voltage but high current (up 

to 100A). In that way, up to four metals could be evaporated one-by-one without 

breaking the vacuum in the chamber. The evaporation process can be terminated by 

either switching o ff power or by blocking the evaporation source with a shutter. In the 

current project, the Edwards E360A evaporation unit was used to deposit layers o f  Cr 

(2-3 nm) and Au (25-27 nm) on glass slides for TIRE measurements. The requirement 

o f not breaking the vacuum between depositions o f Cr and Au is crucial in order to 

achive good adhesion o f Au to glass, since a thin (2-3 nm) layer o f Cr layer will be 

almost instantly oxidised in atmospheric conditions.
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CHAPTER 6

FURTHER DEVELOPMENTS OF TIRE METHOD 

FOR OTHER APPLICATIONS

In addition to the main part o f my study dedicated to the detection o f microcystin-LR, a 

TIRE method was used successfully in other bio-sensing applications. My contribution 

to other research projects involved carrying out TIRE measurements and thus providing 

help to other researchers as well as learning TIRE method on the way. This chapter 

outlined the results obtained at the beginning o f my PhD study.

6.1 Study of protein-protein interaction

A number o f types o f biological interactions were well-studied, namely immune 

reactions (i.e. binding o f antigen to specific antibodies); enzyme reactions 

(decomposition o f small molecules catalyzed by enzymes); hybridization o f single DNA 

strands due to hydrogen bonding, etc., though the interaction o f proteins in general is 

not well-studied and not completely understood. Time and again, we associate 

molecular binding, which does not have a simple explanation with so-called non

specific binding. In this chapter, we attempt to explain in more detail the interaction 

between chaperones and their specific receptors [157].

Chaperone proteins play an important role in cells protecting proteins from high

temperatures and other cellular stresses, stabilizing protein structure and preventing

them from aggregation and degradation. It was recently suggested that molecular

chaperones, such as heat shock proteins Hsp 70 and Hsp 81, can form complexes with

freshly translated proteins and thus prevent their aggregation [158]. In addition, the new

finding o f  chaperone receptors in plants [159] indicates more specific participation of

molecular chaperones in protein targeting. The study o f the mechanisms o f  protein

targeting may have a substantial impact in a number o f applications including the origin

o f neurological diseases. It was shown recently that novel receptors OEP61 extracted

from leaves are capable o f specific binding o f Hsp 70 while not binding Hsp 81 [160].

In this work, the interactions o f chaperones with different receptors (including OEP61)
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electrostatically immobilized on the surface was accessed with the TIRE measurements. 

Apart from confirming the binding properties o f OEP61, this work showed a clear 

separation o f specific and no-specific binding in terms o f both the sensor response (i.e. 

thickness increment) and the binding affinity [161].

I was involved in a similar study o f chaperone-receptor interaction, but this time with 

the use o f receptors naturally embedded into chloroplast membrane. This work helped 

me to learn the techniques o f electrostatic and LB deposition as well as to master the 

use o f TIRE.

6.1.1 Study of chaperone interactions with receptors

This part o f the experimental work is dedicated to detailed quantitative study o f 

interaction between chaperone Hsp70 and Hsp90 with respective receptors present in 

the chloroplast membrane using the optical method o f total internal reflection 

ellipsometry (TIRE).

6.1.2 Sample preparation

Monolayers o f chloroplast were formed on the water surface in the Langmuir trough 

(NIMA mini-trough), compressed to a surface pressure o f 20mN/m, and then transferred 

onto solid substrates (gold coated glass slides) using horizontal lifting method called as 

the Langmuir-Schaefer technique.(the chloroplast membranes were prepared by 

biological team Dr. Verena and Dr. ben).

Gold coated glass slides ( 1 > < 1 inch) were prepared by thermal evaporation o f Cr (3 nm 

thick) and Au (25-27nm) onto microscopic glass slides using an Edwards 360 unit and 

the a vacuum o f about 10~6 Tor. In order to have the surface o f gold positively charged, 

the samples were treated overnight in a lOOmM methanol solution o f Cystamine 

hydrochloride. After this treatment the samples were suitable for coating with 

chloroplast membranes having a negative charge on lipid bi-layers.

Typical surface pressure-area (Ei-A) isotherm recorded during the compression o f

chloroplast monolayer is shown in Figure 6.1(a). The molecular weight and exact

concentration o f chloroplast cells in the buffer solution are not known, so that the area is

presented in cm units. The FI-A isotherm appeared to be reproducible with a small

hysteresis caused by penetration o f chloroplast in the water subphase. The deposition

was carried out at a constant pressure o f 20 mN/m, which was selected in the middle o f
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a linear section o f n -A  isotherm. The recording o f the surface pressure during 

deposition in Fig. 6.1(b) showed a repeatable pattern o f increasing pressure during 

monolayer compression, disturbance at the moment o f touch, followed by a sharp drop 

o f pressure during the layer transfer, and then again the increase o f n  to a target value
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Figure 6.1 (a) Typical Il-A diagram o f chloroplast membranes on a water surface, 
(b) Recording n  during Langmuir-Schaefer deposition o f chloroplast.

o f 20mN/m. The FI-A isotherm appeared to be shifted to a lower area values after each 

deposition step. The reduction in the area corresponds exactly to the area o f  the sample 

which indicates 1 0 0 % transfer ratio.
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6.1.3 TIRE measurements and data fitting

TIRE measurements were performed using the TIRE set up described earlier in chapter 

4. Both static and dynamic TIRE measurements were carried out, to monitor, 

respectively, changes in the adsorbed layer thickness during binding chaperones to 

receptors, and to evaluate the association ( or affinity) constant o f binding chaperones to 

receptors. The Cr/Au coated glass slides with deposited chloroplast membranes were 

attached to the prism via an index matching fluid and with the gold-side sealed against 

the cell. The required liquids were injected into the cell using micro-syringe. First, the 

initial single spectroscopic scan was performed in a 100 mM Tris-HCl, pH 8.0 buffer 

solution. Then the solutions o f chaperones in increasing concentrations (from 1 ng/ml to 

100 pg/ml) were injected, and the dynamic TIRE spectra were recorded during the 

incubation time o f 15 min. After each deposition the cell was rinsed by purging the 

lOOmM Tris-HCl, pH 8  buffer solution through the cell (amounting to at least 20 cell 

volumes), then the single spectroscopic scans were recorded after each adsorption.

A typical series o f TIRE spectra demonstrating binding o f Hsp70 chaperones to OEP61 

receptors naturally present in the chloroplast membranes are shown in Figure 6.2. The 

observed spectral shift is believed to be caused by the binding o f Hsp70 chaperones.

Experimental Data
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Figure 6.2 TIRE spectral shift caused by binding o f Hsp70 chaperones.

(1) The first layer is cr.au.chloroplast (2) 1 pig hsp70 (3) 2 pg HSP70 (4) 5 pg (5) 7 

pg (6 ) 10 pg (7) 50 pg and (8 ) 100 pg. The spectral shift is go to the right.
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The values o f the thickness o f the molecular layer were evaluated by fitting TIRE data 

using the software provided by J.A. Woollam Ltd [162]. A four-layer model built for 

the purpose o f data fitting is shown in Table 6.1 below. This is an upside-down 

ellipsometry model typically used for TIRE data fitting in our previous work [163]. In 

this model, the glass (BK 7) serves as an ambient and the substrate is water; dispersion 

parameters for these two layers were taken from J.A. Woollam user library [164]. The 

Cr/Au metal film was described as a mixed layer, the effective parameters o f which (d, 

n, and k) were found by fitting the TIRE data for uncoated Cr/Au films; then they 

obtained parameters were kept fixed during further fittings with the same 

sample. The molecular layer was described by the Cauchy model being typically used 

for transparent dielectric materials.

n = A + £  + y ,  k = 0,  (4.1)

where A, B, and C are constants and X is the wavelength o f light.
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Table 6.1 Four-layer TIRE model.

Layer Thickness (d), 

refractive index (N  = n - jk )

Comments

BK7 glass d > 1 mm, n= 1.515 (at 633nm), k=0 

dispersion function n(Z) for BK7 is from 

the user library o f M2000 instrument.

parameters are fixed

Cr/Au d  is typically o f 27 - 32 nm,

Initial dispersion function for Au is from

Effective optical dispersion 

parameters n(Z) for Cr/Au layer 

were found by fitting the date 

for bare Au surface; then d and 

n(Z) were fixed in consecutive 

data fitting

Molecular

layer

d  is variable (subject to fitting);

n(Z) is described by Cauchy model from

,  B C j n n — A H— — -\— — k — 0
Z Z

n is a fixed parameter 

(w=l .42 at 633 nm) with 

A =1.39, B =0.01, C =0

Water <7>lmm, w=1.33 (at 633nm), k=0 

dispersion function n(Z) for water is 

from the user library o f M2000 

instrument.

Parameters are fixed

One o f the characteristic features o f ellipsometry and SPR is that the simultaneous 

evaluation o f d  and n o f  thin (less than 1 0  nm) dielectric films is impossible, so that 

either d  or n must be assumed and fixed during the fitting. Here the refractive index is 

kept fixed and all the changes in the adsorbed layer are associated with the thickness. 

This is close to reality since all bio-organic substances have similar refractive indices o f 

about 1.42 at 630 nm [ 165],

TIRE single spectra measurements were performed for binding different chaperones, 

e.g. Hsp 70 and Hsp 90 to chloroplast membranes, and the results o f TIRE fitting are 

summarized in Figure 6.3 below.
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Figure 6.3 Calibration curves for Hsp70 (a) and Hsp90 (b) chaperones binding to 

receptors present in chloroplast membrane.

As one can see on Fig. 6.3 a, the calibration curve (layer thickness increment Ad vs. 

increasing chaperone concentrations) for Hsp70 (■) shows a typical rising with the 

concentration increasing up to saturation when all receptors are occupied. This is 

followed by a further increase o f Ad which is an indication o f non-specific binding. 

Similar features can be observed in Fig. 6.3 b for binding Hsp90 (□) chaperones to 

native chloroplast membranes. Two types o f negative control: (i) truncated chaperone 

proteins (Hsp70-C and Hsp90-C; A and A) and (ii) chloroplasts treated with the 

protease trypsin ( •  and o) were performed in order to distinguish between specific and 

nonspecific binding. Grey background indicates the area o f nonspecific binding, when 

the concentration o f chaperons is higher that o f the adsorbed receptors.

Both chaperones showed binding characteristics very similar to those observed earlier 

for binding chaperones to receptors immobilized on the surface electrostatically.
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6.1.4 Analysis of chaperone binding kinetics

For the evaluation o f the association (or affinity) constants a standard procedure o f 

adsorption kinetics was used. The interaction between receptor and chaperone was

monitored by observing changes in the sensor response. First, the time constants ( t )  

were determined from the time dependences o f the ellipsometric parameter A recorded 

during dynamic TIRE measurements at different chaperone concentrations. Figure 

6.4(a) shows typical time dependences o f A recorded during the binding o f Hsp70 and 

Hsp90 chaperones and the fitting to a first order exponential decay function 

A = AIliax e x p ( - / / r ) .  Then the reciprocal values o f the time constants (1/t were plotted 

against the concentration o f chaperones (C) as shown in Figure 6.4 (b) and fitted to a 

linear function 1 / r  = kaC + kd . The rates o f adsorption ( ka ) and de-sorption ( kd ), 

respectively, were calculated from the gradient and intercept o f the above line; the 

association and affinity constants defined respectively as K A = ka/k d and K D = \/K A

can therefore be evaluated. Data points in Figure 6.4(b) were obtained by averaging the 

results o f several TIRE kinetic measurements. The obtained values o f the gradient (ka) 

and intercept (kd) as well as the resulting values for Ka and Kd are given on respective 

graphs. The standard deviations were calculated as

K ^ d  ~ kcjAk,
Kk, (6 . 1 )
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Figure 6.4 Dynamic TIRE measurements (a) and evaluation o f the association constants 

(b) for binding chaperones Hsp70 and Hsp90.

The values o f the association constant ( K a) were calculated for chaperone 

concentrations from 1 pg/ml up to 1 0  pg/ml, representing the area o f specific membrane 

binding (Fig.6.3). KA values were determined as (9.15±0.24)xl06 (1/mol) for Hsp70 and 

(8.74±1.06)xl06 (I/mol) for Hsp90. For comparison Hsp70 and Hsp90 bind their co

chaperone the Hsp70-Hsp90-organising protein (Hop) with a KA o f 7.7x10' (1/mol) and 

1 . 1  x IO7 (1/mol), respectively providing further evidence that specific membrane 

interactions are being observed [38]. The KA values are two to three orders o f 

magnitude lower than the affinity constants previously calculated for chaperones with 

the recombinantly expressed receptors OEP61 and Toc64 which is probably due to the 

change to a more native environment and unspecific binding to proteins at the native 

membranes resulting in a higher dissociation rate.
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6.2 Study of Aflatoxin B1 binding to polyelectrolyte capsules

This section is dedicated to the study o f binding aflatoxin B1 (AFT B l)  to 

polyelectrolyte microparticles functionalized with specific anatibodies using UV-vis 

absorption spectroscopy. The purpose o f this work was to establish a new technology o f 

purification o f substances containing Aflatoxin. Later this method was utilized for 

cleansing MC-LR.

6.2.1 Functionalization of microcapsules

The capsules were prepared by coating the MnCC>3 core particles o f 4 pm in diameter 

(the core are from Dr. A. Nabok) by layers with PAH and PSS as described in Fig. 12 

(Chapter 3). We used the particles (still retaining the core) with four PAA/PSS bi

layers, terminating in PAH layer. In this work the particles were functionalized with 

monoclonal antibodies specific to aflatoxin Bl (AFT B l). For this purpose the particle 

suspension was mixed in a 1:1 ratio with a 100 pg AflatoxinBl solution for 15 minutes. 

Then the mixture was let to sediment for 30 min. After sedimentation o f particles the 

liquid (above the sediment) was removed with a micropipette and the flask was topped 

up with water for rinsing purposes. The mixture was stirred for 5 min and let to 

sediment; after 30 min the liquid again was removed with a micropipette. Such a rinsing 

procedure was repeated three times ending with particles being coated with Protein A. 

In the next stage, particles were functionalized with antibodies following the procedure 

described above.

The resulting microcapsules functionalized with Protein A and Antibodies to AFT B l, 

were viewed with IFM and a typical image obtained is shown in Figure 6.5.
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Figure 6.5 IFM image o f microcapsules functionalized with antibodies to Aflatoxin B l.

SEM images were recorded for the same purpose and shown in Figure 6 .6 ; the particles 

size was found to be about 5.15 pm in diameter.

spot ■ mode W D | mag HV det Lens Mode
5 5 SE 23 0 mm 1 15 884 r  3 00 kV ETD Field-Free

Figure 6 . 6  SEM image o f a microparticle with antibodies to Aflatoxin B l.
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6.2.2 UV-vis absorption spectra study

In order to study the binding o f AFT Bl to functionalized microparticles, a series o f 

UV-vis absorption spectra were performed using Carry-50 (Varian) spectro-photometer. 

First, the spectrum o f a quartz cuvette filled with de-ionized water was recorded as a 

reference (see horizontal line in Figure 6.7). Then, we recorded a spectrum o f pure 

solution o f AFT B l which was prepared by diluting the original lOmg/ml stock solution 

o f AFT Bl in methanol. Top curve represent the absorption spectra o f 10pg/ml solution 

o f AFT Bl having three characteristic absorption bands at about 224nm, 266nm, and 

362nm. Since the band at 362 nm is the most intensive, we will monitor its amplitude 

after binding AFT Bl [166].

AFT B l lOOgg/miChart Title
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Figure 6.7 Uv-vis absorption spectra o f 100pg/ml aqueous solution o f AFT B l

The suspension o f capsules modified with anti-AFT was mixed with a solution 

containing Aflatoxin B l. It was stirred for 5 minutes and left undisturbed for up to 30 

minutes. The optical absorption spectra were recorded on samples o f untreated solution 

o f AflatoxinBl as well as after treatment with microcapsules at various times. The 

results are shown in Figure 6 .8 .
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Figure 6 . 8  Spectra o f AFT Bl solutions o f (a) 20mg/ml and (b) 50 mg/ml 
concentrations, mixed with microparticles and incubated for a different periods o f time;
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Fig. 6.9 The dependence o f 362 nm band intensity o f AFT Bl on the incubation time.

The results obtained clearly show the reduction o f  the 362 nm absorption band intensity 

in the course o f the treatment o f AFT B l solution with functionalized micro-capsules. 

This can be explained by binding aflatoxin molecules to antibodies followed by 

sedimentation o f heavy micro-particles. As a result the solution above the sediment 

contains less amount o f aflatoxin. Obviously, solutions o f higher concentration o f AFT 

Bl are less affected by cleansing with capsules. Similar effect, i.e purification o f the 

solution containing another mycotoxin, zearalenone, was observed earlier with the use 

o f microcapsules functionalized with anti-zearalenone [167 -169].

It is clear from the data presented in Fig.6 . 8  a,b that treatment o f the AFT solution with

micro particles functionalized with anti-AFT causes the reduction in the absorbance

values; and that the larger incubation time results in more pronounced reduction in

absorbance. The reduction in absorbance at the band maximum at 362 nm was

investigated in more detail in Figure 6.9. A monotonous decrease o f relative absorbance

change (AA/A) with a trend to saturation was observed at all concentrations o f  AFT

studied. However, the concentration dependence was non-monotonous: a small

absorbance increment was observed for 5 pg/ml solution o f AFT, and it reached the

maximum at 10 pg/ml and then started to fall again with a concentration increase to 25
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and 5 0  pg/ml. The trend for a decrease in AA/A with an AFT concentration increase 

was caused by the saturation o f absorption sites, i.e., antibodies, on the surface o f  the 

microparticles. A deviation from this trend at the lowest concentration o f AFT o f  5  

pg/ml can be explained by the inaccuracy o f spectral measurements such as noise and 

the deviation in the reference spectra. The maximal purification effect was achieved at 

the concentration o f AFT o f 10 pg/ml which corresponds roughly to the number o f 

binding sites on the surface o f microparticles. Knowing the molecular weight o f AFT o f 

3 1 8 . 3 6  g/mol, the concentration o f AFT molecules in its 1 0  pg/ml solution can be 

estimated as N a f t = 2 1 0  cm' . The reduction o f Abs on 1 6 . 2  % yields approximately
1 C  T

A N a f t = 3 - 1 0  .cm for A F T  molecules adsorbed on the microparticles. On the other 

hand, from the preparation o f the microparticle suspension from initial the 0 . 6  mg/ml 

solution o f 6  pm M nC03 core particles in water, the concentration o f microparticles can
n  o

be estimated as 10 cm using the density o f M nC 0 3  in the range o f 3 .1-3 .4  g/cm3 and 

taking into account about 30 % o f material loss during multiple rinsings. Simple 

calculations o f the number o f binding sites (Nb.s.) for AFT on the surface o f  a 

microparticle having a radius r =3 pm can be caleculate as:

V , , = ^ » l ° 8  (6 -2 )
IgG

i * i  2It was assumed that the area occupied by an antibody on the surface A IgG _  20 nm , 

factor 2 in the determinant indicates two binding sites corresponding to two Fab 

fragments o f IgG molecule. Therefore, the maximal absorption capacity o f  the 

microparticle suspension used can be estimated as 1 0 1:,cm '3; in other words, 1 ml o f 

microparticle suspension is capable o f absorbing 1015 molecules o f AFT. This is quite 

close to the value o f A N a f t = 3 -  101;>cm " 3 which was found experimentally for 10 pg/ml 

AFT solution. Using similar calculations for all concentrations o f AFT, the reduction in 

the absorbance can be estimated; the results o f such calculations are summarized in 

Table 6.2. As can be seen, the reduction in AA/A was estimated reasonably acurately 

(particularly for low concentrations o f 5 and 10 pg/ml) with a clear tendency for a 

decrease in the purification effect with the increase in AFT concentration. It is predicted 

that the purification o f the sample with an AFT concentration o f 50 pg/ml will be 

minimal (around 1 %).
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Table 6.2 Calculation o f absorbance reduction caused by adsorption o f AFT on 

microparticales.

AFT concentration 

(pg/ml)

N Aft (cm 3) -AA/A(%) -AA/A(%)

estimated

5 1 0 16 9.2 1 0 . 0

1 0 2 . 1 0 16 16.2 5.0

25 5.10 16 13 2 . 0

50 1 0 17 1.7 1 . 0

6.2.3 Conclusions

Polyelectrolyte microparticles retaining a M nC03 core and functionalized with 

antibodies specific to aflatoxin Bl were made and characterized with SEM. Protein 

deposited was clearly visible on SEM images. Reduction in the concentration o f 

aflatoxin Bl in solution was achieved after treatment with microparticles functionalized 

with respective antibodies. These preliminary experiments proved the concept o f using 

functionalized microparticles for detoxification o f substances containing mycotoxins. 

Although can use these polyelectrolyte after they have functionalized with an antibody 

specific to microcystin-LR which is released by algae. Such a phenomenon can be 

utilized for the purification o f substances contaminated with mycotoxins as well as 

other toxins including microcystin. As explained in Chapter 7.

Smaller-sized microparticles having a larger surface area could be more effective for the 

absorption o f mycotoxins, in order to prove the principle; we deliberately used larger 4— 

6  pm particles which are heavier and thus sediment quickly. This research may lead to a 

number o f possible applications o f the new technology o f mycotoxin scavenging in the 

areas o f agriculture, food industry, environmental control, security, and biomedicine.

In summary, these studies o f protein chaperon demonstrated that chloroplasts can be 

deposited on gold coated glass slides by Langmuir-Schaefer technique, whilst retaining 

functionality o f the resident receptors. Binding o f receptors to their specific protein 

partner can be directly monitored using TIRE, without the need for labels. Potentially,
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molecular interactions with any other type o f membrane, such as mitochondrial or ER 

membranes, could be analyzed using this combination o f Langmuir-Schaefer films and 

spectroscopic ellipsometry and is the focus o f ongoing work. As such, this technique 

opens many possibilities including the quantification o f protein interactions involved in 

fundamental cellular processes, and rapid screening o f drugs that target membrane 

proteins.
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CHAPTER 7

TIRE DETECTION OF MICROCYSTIN-LR

7.1 Detection of microcystin-LR using TIRE

In this chapter experimental results on the detection o f Microcystin LR (M C-LR) using 

direct immunoassay with specific MC10E7 monoclonal antibodies and TIRE detection 

are presented and discussed.

7.1.1 Samples preparation and TIRE measurements

The following chemicals were used in this work: The immune pair M C-LR and specific 

monoclonal antibodies MC10E7 (from Enzo Life Scientific) were used for both the 

immunoassay calibration and detection o f natural MC-LR. For TIRE measurements 

antibodies were immobilized electrostatically on gold coated glass slides following the 

procedure described earlier in Chapter 4 and 6 . The following sequence o f  adsorptions 

was used: the surface o f Au layer was modified with the mercapto-ethyl sodium 

sulfonate (HS-CCFLh-SCE' Na+) to enhance the negative charge; the slides flooded with 

its lOOmM solution in methanol overnight, then washed with methanol the next day. 

Then the poly-cationic layer o f PAH was bound to the negatively charge substrate. 

Protein G molecules which are negatively charged in Triz-HCl buffer pH 8.0 were 

deposited on PAH, then MC10E7 antibodies were bound to Protein G via a binding site 

in the second domain and are ready to bind the antigen, i.e. MC- LR. Triz-HCl buffer 

PH 8.2 was used for rinsing the cell after molecular binding.

Two types o f TIRE measurements were typically carried out: (i) dynamic TIRE 

measurements for monitoring chemical reactions (adsorption and immune binding, and 

(ii) single spectroscopic scans which were typically carried out in a standard Tris/HCI 

buffer (pH 8.0) after the completion o f the every adsorption (or binding) stage. Dynamic 

spectral measurements were used for the study o f kinetics o f adsorption and binding and 

allowed the evaluation o f the association constant o f the immune reaction. While the 

spectra o f V)/ and A obtained from single spectroscopic scans were used for data fitting 

and subsequent evaluation o f the thickness o f adsorbed molecular layers.TIRE 

measurements and fitting procedure were described in detail previously [116,117].
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7.1.2 TIRE study of the immune reaction between MC LR and antibody MC10E7

Figure 7.1a shows a typical series o f (i|/) and (A) spectra recorded on the samples o f 

gold treated with SH-(CH 2 )2 -S 0 3 _ Na+ (curve 1), then after electrostatic deposition o f 

the PAH layer (curve 2), after the electrostatic deposition o f Protein G (curve 3), and 

after the deposition o f MC10E7 antibodies (curve 4). The remaining curves (5) 

correspond to the sequential binding o f  microcystin in different concentrations (starting 

from the smallest 0.1 ng/ml up to 10 pg/ml). All deposition and binding stages ( 1 - 4 )  

were performed by injecting corresponding solutions into a TIRE cell o f  0.2 ml in 

volume. Intermediate rinsing was performed between adsorption (binding) steps by 

purging 2 - 3 ml o f water or buffer through its cell. In-situ dynamic spectral 

measurements were performed during all adsorption and binding steps. Single 

spectroscopic scans (shown in Fig. 7.1(a) were performed in a standard Tris-HCl buffer 

solution (pH 8 ) after completion o f all stages o f adsorption (or binding).

It is clearly seen in Fig. 7.1a. that the spectral shift corresponds to the size (or rather 

molecular weight) o f  molecules attached: a small PAH polymer chain causes a small 

spectral shift, while the much larger molecules o f protein G and M C10E7 antibodies 

yield larger spectral shift, Relatively small analyte molecules o f M C-LR (molecular 

weight o f  less than 1000 Dalton) caused a measureable shift even at small 

concentrations o f 1 ng/ml. More precise conclusions on MC LR binding can be made 

after fitting TIRE data to a model similar to that described earlier in Chapter 6 .

Figure 7.1 b shows the results o f ellipsometry data fitting, i.e. the dependence o f  the 

adsorbed thickness increment vs. concentration o f microcystin. As one can see, the low 

detection limit o f microcystin was between 0.1 and 1 ng/ml. The maximal thickness 

increment o f about 1.2 nm is reasonable for a non-complete monolayer o f M C-LR 

molecules o f 3 nm. The study o f  binding kinetics yields the association constant Ka in 

the range o f 1 0 7 1/mol, which is typical for the highly specific immune reaction between 

MC-LR and MC10E7 antibodies.

90



300

200

% 100
■o
c
<

-100
690 725708 743 760

W avelength (nm)

(a)

1.5

0.5

0

0.1 1 0 100 1000 10000

MC-LR concentration (ng/ml)

(b)

Figure 7.1,(a) Series o f TIRE spectra recorded after each deposition step,

(b) Calibration curve for MC-LR was measured through a series o f dilutions beginning 

with 0 . 1  ng/ml up to 1 0 0 0 0  ng/ml from commercial toxin, and this curve is used to 

indicate the concentration o f natural toxin which extracted from algae.
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Table 7.1 shows TIRE fitting data for immune reaction between microcystin-LR and 

antibody MC10E7. The Asterisk (*) sign indicates that the parameters were fixed 

during fitting. The values o f n and k are given at the wavelength o f 633 nm.

We evaluated the molecular layer thickness increment by doing data TIRE data fitting 

to the reflective system model consisting o f glass (BK7) as an ambient, a Cr/Au metal 

layer, the deposited molecular layer, and aqueous solution. The data fitting procedure 

has been described in detail previously in Chapter 4 [116-117]. It is based on solving 

Fresnel equations and minimizing the error function between calculated and 

experimentally obtained v|/ and A parameters at each spectral point using least-square 

techniques (least squares means that the overall solution minimizes the sum o f  the 

square o f the errors made in the results o f every single equation) [171,172-175]. The 

optical constants o f glass and the aqueous buffer solution were kept constant; The 

thickness (d) and dispersions o f n and k, being real and imaginary parts o f complex 

refractive index N  = n -  jk, o f  the Cr/Au layer were fitted first before depositing 

molecular layers, and this was fixed at consecutive fitting. The adsorbed molecular 

layers were modeled by a Cauchy dispersion n = A + B/X2 + C/A4 typical for transparent 

(k=0) dielectric materials. Since all molecular layers used have similar refractive index 

(n=1.42 at 633 nm) [78, 116-117] it was fixed during the fitting and all changes in the 

adsorbed layesres were associated with changes in the effective layer thickness (d).

Table 7.1 TIRE fitting results for immune reaction between microcystin-LR and 

antibody MC10E7. Asterics indicate parameters which were fixed during fitting.

M icrocystin-L R  accum ulated  

concentration(ng/m l)

Ad(nm) n, k (at A=633 nm)

0 . 1 0.161 n* = 1.42, k=0

1 0.189 n* = 1.42, k=0

1 0 0.547 n* = 1.42, k=0

1 0 0 1 . 1 1 n* = 1.42, k=0

1 0 0 0 1 . 2 1 2 n* = 1.42, k=0

Protein G(65 kDa) and protein A(42 kDa) were used in our work. An intermediate layer 

o f protein G molecules having a binding site within the Fc region o f the IgG-type 

antibodies and also within the Fab region, were used to orient antibodies with their Fab 

fragments towards the solution as shown in Fig 7.1. The antibody MC10E7 have 

binding site also with protein A as shown in Fig. 7.2.
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Figure 7.2 Spectral shift recorded after each deposition step, add protein A.

7.1.3 Study of MC-LR and MC10E7 binding kinetics

The time evolution, i.e. kinetics o f 'F  and A, provide important information for instance 

analysis o f the kinetics allows the researcher to calculate adsorption and desorption 

coefficients as well as the association constant o f the reaction. The kinetics o f binding 

o f microcystin-LR to specific antibody MC10E7 were studied by measuring TIRE 

spectra every ( 1  to 2 0 ) second (depending on the duration o f the kinetics scan) during 

the exposure to microcystin-LR solution which was typically for 15-20 min. The time 

dependences o f either T1 or A could be obtained at selected wavelengths. Time 

dependencies o f *¥ and A at 633 nm o f different concentration o f microcystin-LR in the 

range 0.1 ng/ml to 1 pg/ml were extracted from TIRE dynamic spectral measurments 

during binding o f M C-LR to MC10E7 antibodies immobilised on the surface. Typical 

kinetic curves for 0.1 ng/ml MC-LR during binding are shown in Figure 7.4. It was 

demonstrated that a 15 min. incubation time was sufficient to reach the saturation at the 

lowest concentration o f MC-LR.
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Figure 7.3 Typical dependencies o f 'F (t)  and A(t) Evaluation o f the during M C-LR & 

MC10E7 binding.

Then the procedure for the evalution o f rates o f adsorption (ka) and desorption (kd) o f 

the immune reaction was applied [176-178]. The characteristic time constant (X ) o f the 

immune reaction was evaluated by fitting the data to the exponential function o f A .

The inverse value o f the time constant was plotted against the concentration o f the 

antigen in Figure 7.4, and the values o f ka and kd were found, respectively, from the 

gradient and intercept o f the linear graph. The values o f ka and kd obtained from the 

graph allowed the calculation o f the association and affinity constant as: Ka = kg/kd and 

Kd = 1/Ka

0.6
y = 0.0083x + 0.0929
Ka= 8.89.107 (l/m o l)0.5

0.4

0.3

0.2

20 40 60

Figure 7.4 to the evaluation o f the association constant Ka-
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The linear equation for the graph in Fig. 7.4 is: S = 0.0083 C -  0.0929

After adjusting the units and given the molecular weight for MC-LR o f 995.2 Da:

ka= 0.0083 f— — — 1 = 83.10 s——5 —— [— 1 = 13.833 [— 1|Ing.min] i ( r 9.60 Ig.si L̂ .sJ

ka = 13.833 .9 5 5 .2 =  13181.76 = 1318176.10 7 T— 1Igsi

1 0.0929 1
0.0929 min = ——— = 0.00154 

6U s

The association constant is therefore equal to:

Ka = — [— 1 = 13181'76 =  8.89.107 [— 1
kd \_mol.si 0.00154 Im oll

And the affinity constant is equal to:

1 _ rrao/iKd = — = 1.1682.10"7 —Ka I .
The obtained values o f Ka =8.89.107 (1/mol) and KD= 1.1682.10"7(mol/l) are typical fo ra

highly specific immune reaction with monoclonal antibodies.

Negative control

It is known that microcystin-LR has a negative charge. To ensure that M C-LR do not 

bind directly to PAH in the gaps between antibodies these potential binding sites were 

blocked with BSA (66.5 KDa). For that purpose the slides were treated for 2 hours in 

the 10 mg/ml solution o f BSA in PBS (100 mg BSA was dissolved in 1000 ml o f PBS); 

for maximal blocking efficiency pH was adjusted to 8.0 [179].

injection PAH, followed by protein A or G. Microcystin-LR didn’t bind as shown in 

Figure 7.6, as MC-LR has specific binding site with the antibody M C10E7[180-183].
• • • • •  • •  T

The study o f binding kinetics yields, the association constant Ka in the range o f  10 

1/mol, as shown in Fig 7.5 without antibody meaning there is no binding as shown in 

Fig. 7.6 (a) and (b).And the spectral shif was appeared sm
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Figure 7.5 Binding kinetics yields the association constant KA in the range o f

1 0  1/mol, without antibody

IM icrccys-tin - l K.

Antibody

Protien A 
^  ̂ *6SA layer 
■X/V ah layer 

^■Cr au layer

Q  _  Microcystm-IR

°  00  <=> O O  o  o
1 Protien A

o o - - o - o - < w w w V  BSA layer
■ PAH layer
1 Or a u  larrer

Figure 7.6 the nagetive test for blocking spaces between the antibody and protien A. In 

(a) there is no binding because there are no antibodies were immbolized, while in (b) 

there is binding occur.
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Figure7.7 Spectral shift for negative control without antibody, layer (1) is CrAu, layer 

(2) is PAH, layer (3) Protien A, layer(4) BSA. There is no binding.

The spectral shift after deposition o f the layers , shows no shift after (BSA layer).

7.2 Fourier transform infrared spectrometer (FT-IR) measurement

The interaction between microcystin -LR and the antibody MC10E7 was studied by FT- 

IR spectra. Microcystin-LR and its specific antibody were analysed for their infrared 

spectra. As shown in Figure 7.8 (a), the bands at 3300 cm ' 1 and 1600cm '1 correspond to 

the stretching vibrations associated with -  OH and -N H 2 groups, and the bands near 

1400 cm ' 1 and 1200cm ' 1 are the stretching vibration o f -N H 2 o f microcystin-LR. The 

band at 1594 and 1378 cm 1 are due to the bending vibrations o f  -N H 2  and the 

stretching o f C -N . In the spectra o f MC-LR/antibody complex, the band at 1594 cm '1, 

which belongs to the -N H 2 bending vibrations and a new band at 1000 cm ' 1 appeared 

which indicates the generation o f some new chemical bonds. When comparing 

experimental spectra with (a) with the scheme o f vibration bands (b) the band at 1 0 0 0  

cm ' 1 appears and the absorption intensity o f the band at 1151 cm ' 1 increases which was 

most-likely caused by the binding between the antibody MC10E7 and microcystin-LR. 

The FT-IR spectra o f the antibody and the toxin proved that interaction was strong, and 

is rich with many active functional groups, such as -O H  and -C O O -, which can 

spontaneously link to the active amino groups o f the (antibody) [184-186].
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Figure 7. 8  (a) FT-IR spectra o f 1 MC-LR, antibody MC10E7, and M C10E7/ M C-LR 
immune complex.(b) The scheme o f molecular vibration in the system illustrating

region o f active functional group.

7.3 UV-visible spectral study of microcystin-LR

UV-visible absorption spectroscopy (Varian, Carry 50) was used to m onitor the 

concentration o f MC-LR in solutions. The UV spectrum for MC-LR showed a peak at 

238-240 nm. The spectrum o f a quartz cuvette filled with de-ionized water was 

recorded as a reference then, we recorded the spectrum o f pure solution o f MC-LR 

5pg/ml. Following the procedure developed earlier [184] micro-particles functionalized 

with MC10E7 antibodies were utilized for purification o f solutions containing MC-LR.
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In terms o f spectroscopy, the solutions for MC-LR o f different concentrations were 

mixed 1 : 1  with a suspension o f functionalized microparticles and incubated for up to 1 

hour. Heavy particles sediment on the bottom o f sample tubes leaving purified solutions 

above. The results obtained clearly show the reduction o f the 238 nm absorption band 

intensity in the course o f the treatment o f the MC-LR solution, with functionalized 

micro-capsules. This can be explained as a result o f the binding o f M C-LR molecules to 

antibodies followed by the sedimentation o f heavy micro-particles as shown in Fig. 7.9.

24-0

• w a v e l e n g t h  ( n m  )

Figure 7.9 UV-vis spectra o f MC-LR solution before and after treatm ent with 

functionalized micro particles.
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7.4 Detection of MC-LR produced by cyanobacteria: effect of 

environmental factors in algae and toxin production

The methodology o f optical detection o f M C-LR was established previously using 

aqueous solutions spiked with known concentration o f toxin. Now we have to apply the 

developed methodology were applied to the detection o f MC-LR produced by algae 

[187]. It is known that Cyanobacteria growth and toxin release depend on a number o f 

environmental factors, there is an enzyme in the cell o f the mcy gene cluster coding for 

microcystin biosynthesis [188,189]. This enzyme is influenced by environmental 

conditions like light intensity, temperature, nutrients and salinity. The microcystis 

aeruginosa strain grows under different environmental conditions to determine the effect 

on the toxin produced. However, the control o f the production o f this enzyme is 

effecting in such a way as to reduce the microcystin-LR in water [189,190].

We examined growth rates, using isolated strains under various environmental 

conditions, such as water temperature, light intensity, salinity and nutrient 

concentration. The growth temperature is one o f the most effective param eters in this 

field. The growth rate o f M. aeruginosa was significantly higher growth under lower 

temperatures (20°C and 25°C). Reducing the growth temperature to the frozen range 

has been studied. Growth rate under various light intensities was determined. The toxin 

produced by this strain was extracted, in order to study the consequences o f 

environmental conditions on the producion o f the toxin. It was found that the amount o f 

toxin released by the effect o f the nutrient was about 1.7 o f the normal condition, which 

is much higher than normal by 14.6 pg/ml and approaching 40.5 p g / m l .  The toxin 

concentration is still stable due to the increasing o f  salinity concentration but the growth 

rate dropped to be almost zero.

7.4.1 Selection of microorganism and growth of algae

Microcystin-LR (MC-LR) was produced naturally by the cyanobacteria strain 

microcystis aeruginosa (M. aeruginosa) strain PCC7820, purchased together with a 

Bold 3N growth medium (Bold Modified Basal Freshwater Nutrient, Solution 50 x, 

liquid, plant cell culture tested). From the UTEX Culture Collection o f  the University o f 

Texas at Austin, we chose the most common and commercially available bacteria,

100



microcystis aeruginosa, whose cell size is 2  (am, as, when it forms bloom it can be seen 

with the naked eye, and it is easier to grow in the lab than other strains. There is an 

enzyme protease found in the cell o f the mcy gene cluster coding for microcystin 

biosynthesis, which is influenced by environmental conditions like light intensity, 

temperature, nutrients, and salinity [191]. M. aeruginosa algae was incubated in a 

shaker at 25°C for 12:12 hours o f light (full sun)/dark cycle. Sufficient growth o f  a 

Microcystis strain appeared after two months; the initial cell count o f the Microcystis 

strain at the beginning o f  the experiment was estimated at 15 103 cells/ml by using a 

haemocytometer. Growth for M. aeruginosa was carried out under different 

environmental conditions, i.e. light intensity, temperature, nutrient (NaNC>3 and 

K2 HPO 4 ) content, and salinity. MC-LR toxin was extracted by centrifuging M. 

aeruginosa cells cultures at 3000 rpm; then the liquid was passed through the 0 . 2  mm 

filter and left to sediment for two days. Both the M. aeruginosa cell count and the 

concentration M C-LR produced were monitored with optical density measurements 

(6715 JENW A), i.e. optical absorption at 600nm and 238nm, respectively. 

Haemocytometery and fluorescent microscopy were used to count M. aeruginosa cells 

in the culture. The water used was purified by distillation, producing water with 18.2 

MfLcm resistivity. The effect o f the environmental conditions on both the M. 

aeruginosa strain growth and toxin release was studied by monitoring, respectively, 

with the optical density o f M. aeruginosa culture at 600 nm (OD 6 0 0 ) and the 

concentration o f microcystin LR produced by optical density (or optical absorbance) in 

the adsorption band o f MC-LR at 238 nm (OD 2 3 8 ). The calibration curve in Figure 2a 

correlates the optical density o f M. aeruginosa culture at 600nm (OD 6 0 0 ) with the direct 

cell counts obtained from haemocytometery and fluorescent microscopy measurements.

7.4.2 The growth in optimal condition

M. aeruginosa growth was determined by optical density at 600 nm, UV-visible

spectroscopy and haematocytometer. After 1 month we obtained standard curves for

cells and toxin as shown in Fig7.10. As one can see, the OD 6 0 0  signal, and thus the

bacteria count goes up almost linearly for up to 15 days followed by saturation and

finally by its decline after 27 days o f growth. Obviously, the concentration o f  M C-LR

correlates with the M. aeruginosa cell count; the OD 2 3 8  signal and thus the

concentration o f MC-LR, generally follow the same trend, though showing no decrease
1 0 1



in M C-LR concentration since the toxin produced was kept constant despite the bacteria 

declining [191].
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Figure 7.10 Optimal condition 25C & sun light 

Optimal Condition for Cell Growth and Toxin production.

The calibration curve for MC-LR in Figure 7.11 was obtained by optical density 

measurements at 238nm (OD 2 3 8 ) o f aqueous samples having a known concentration o f 

MC-LR. The data points for naturally produced toxins were placed on this graph and 

thus allowed for an evaluation o f the concentration o f MC-LR produced by M. 

aeruginosa.

Calibration curves for M. aeruginosa cells and MC-LR toxin

Calibration o f optical density for M. aeruginosa cells has been done performing both 

haemocytometry and OD 600 measurements on bacteria cells culture taken every three 

days during bacteria growth. The methodology o f  such measurements is described 

earlier in Chapter 5. The data are shown in Figure 7.11.

102



E
c
o  o
VO
■M
CO
(/)

_Q
<

y = 5E-07x + 0.068 
R2 = 0.97421

0 . 8

0 . 6

0.4

0 . 2

0

0.00 1.00 2.00 3.00
Cell concentration /ml x 106

Figure 7.11 Calibration curve for microcystis aeruginosa cells.

Standard curves (type o f graphs used to determine unknown sample properties) was 

created to determine the concentration o f MC-LR which produced by micerocystis 

aeruginosa after grown it in the lab. Using known concentrations o f commercial toxin. 

The peak o f MC-LR in UV-vis at 238 nm as shown in Fig. 7.12, and measured in OD, 

after adjusting the wavelength to 238 nm, and graphed also measured in UV-vis. And 

graphed as shown in Fig. 7.13 and 7.14. Standard curve allowed determining the 

concentration o f unknown sample by interpolation on the graph.
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Figure 7 .13 Calibration curves for toxin (microcystin-LR) in OD.
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Standard  Curve for microcystin-LR in UV-vis
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Figure 7.14 Calibration curves for microcystin-LR by the UV-vis.

7.4.3 Growth of microcystis aeruginosa under increased and decreased 

nutrient levels in broth and change environmental condition

The medium which Microcystis aeruginosa was grown in Bold 3N medium [192]. The 

following stock solutions were made per 250 ml o f deionized water [NaN 0 3  7.5 ml 

(Fisher BP 360-500), CaCl2 2H 2 0(Sigm a C-3881), 2.5 ml, M gS0 4  7H2 0(S igm a 

230391), K2 H P 04(Sigma P 3786) 2.5 ml, K2 H P 0 4  (Sigma P 0662) 2.5 ml, NaCl (Fisher 

S271-500) 250 ml, P-1V Metal solution 1.5 ml, Soilwater: GR+Medium 10 ml, Vitamin 

B | 2  0.25 ml. The media was autoclaved in a Steam Autoclave at 121C (250F)/15 psi 

(103.4 kPa) [the SI unit for pressure is the Pascal (Pa), equal to one newton per square 

metre (N/m2)].The algae cultured in Bold 3N medium after added 5ml from [NaNC>3
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and K^HPCLCSigma P 3786). Additional amount o f nutrients (NaN ( > 3  and K 2 H P O 4 )  

increased the bacteria growth rate, thus leading to larger concentrations o f MC-LR 

extracted (40.5 gg/ml) while removing the above salts (NaN 0 3  and K 2 H P O 4 )  from the 

growing medium resulted in less bacteria growth rate and thus a smaller MC-LR 

concentration o f 7.55 gg/ml as shown in Fig.7.15. The effect o f environmental factors 

on cell growth is show in Fig. 7.16, and microcystin LR release is summarized in 

Figure 7.15.

0.07

0.06

0.05co
2  0.04
c<1)
£  0.03
0
1  0.02 Ho I-

0.01 -  

0.00

0 . 0

With 5ml Nutrient 
Rate 0.18041

0.5
- T -

1 . 0

Without Nutrient 
Rate 0.0147

1.5

Cell Concentration

~i—
2.0 2.5 3.0

Figure 7.15 MC-LR release after microcystis aeruginosa grown in cultures with 

increase and decrease nutrient.
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Figure 7.16 Cell growths with change in environmental conditions.

The light considered critical for microcystis aeruginosa growth and its ability to 

produce the MC-LR toxin, The light intensity had a significant effect on the bacteria 

growth rate and therefore on the concentration o f MC-LR produced; without 

illumination, the MC-LR concentration dropped down to 2.7pg/ml as explained in Fig. 

7.17. Temperature had a significant effect on growth o f M. aeruginosa, nevertheless 

there was a twofold interaction with light intensity [193]. Under high light intensity (sun 

light) growth increased with increased temperature, under low light intensity, growth 

decreased with increased temperature.

Fig. 7.17 presents the data for different samples produced in different environmental 

conditions in co-ordinates concentration o f M C-LR (pg/ml) vs Bacteria cell count per 

ml; this allows the evaluation o f the rates o f MC-LR to be released by M. aeruginosa. 

For example, in normal conditions each M. aeruginosa cell releases 1.64 pg o f MC-LR 

toxin, which is equivalent to approximately 109 molecules o f MC-LR.

Bacteria growth rate was examined under various environmental conditions such as 

temperature, light intensity, salinity, and nutrient concentrations. The growth rate o f M. 

aeruginosa was significantly higher at temperature o f (20 C - 25 C). Sunlight and 

nutrient content also had a positive effect on bacteria growth. Combined data for MC- 

LR and bacteria concentration in Fig.7.17 illustrates the bacteria efficiency o f  toxin 

production depending on temperature, light and nutrient content [194],

107



co

§oco<_>
CL_ia
O

■ Without nutrient 
#  Mo light

Optimal condition 
Y  Extra nutrient4

3

2

1

0

5 0x1 O'0 0 1 0 x 1 0 s 2 .0 x 1 0 *

Cell  c o n c e n t r a t i o n  (ce l l /ml )

Figure 7.17 Effect o f environmental conditions on MC-LRreleased by M.aeruginosa.

7.4.4 Extraction of MC-LR

M. aeruginosa cells cultures were centrifuged at a speed o f 3000 rpm. Then the liquid 

was passed through the 0.2 mm filter and left to sediment for two days. The 

concentration o f toxin was accessed by UV-visible absorption spectroscopy 

measurements [195,196]. The peak at 238 nm corresponds to MC-LR as shown in Fig. 

7.16 for toxin produed in culture with optimal condition and toxin from culture have 

increase nutrient.
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Figure 7.18 Natural MC-LR 40.5 (ig/ml extracted from culture grown with increase in 
nutrient.

To calculate the toxin concentration which extract from culture o f microcystis 

aeruginosa which grew under optimal condition found the peak 0.34 Abs at 238 nm 

weavelength as shown in Fig.7.16, by calculate the equation o f  the standard curve 

below :

y = 0.0109x + 0.0575 

0.34=0.0109x + 0.0575 

X=-0.34 + 0.0575/0.0109

X = 25.9 ug/ml is in optimal condition.In table 7.2 toxin concentration was caleculated 

for different cultures.
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Table 7.2 concentration o f microcystin-LR released by microcystis aeruginosa under 
different environmental conditions.

Environmental condition 
which growth rate happens 

under it.

The peak of natural MC-LR. 
in UV-vis.

MC-LR concentration.

Optimal condition 0.34 25.9

Increase nutrient 0.5 40.5

Absent nutrient 0.14 7.55

Absent light 0.0873 2.7

In Fig 7.19 many images were taken to microcystis aeruginosa after grown in petridish 

and cultures, the image which take by SEM the cell were coated by gold, while the 

image which taken by Florescence microscopy the cells were stained by SYTO-9 Green 

Fluorescence stain.
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Figure 7.19(a) Microcystis aeruginosa growth in optimal condition,(b) Microcystis 
aeruginosa cells in SEM, and (c)Microsystis.aeruginosa under Florescence microscopy 
lOOx.
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7.4.5 Effect of salinity on algae growth

Cultures o f Microcystis aeruginosa were grown in a Bold 3N medium. The following 

stock solutions were first made per 250 ml o f deionized water [NaNC>3 7.5 ml (Fisher 

BP 360-500), CaCl2  2H 2 0(Sigm a C-3881), 2.5 ml, M gS 0 4 7H 2 0(Sigm a 230391), 

K2 H P 0 4(Sigma P 3786) 2.5 ml, K 2 H P 0 4  (Sigma P 0662) 2.5 ml, NaCl (Fisher S271- 

500) 250 ml, P-IV Metal solution 1.5 ml, Soilwater: GR+Medium 10 ml, Vitamin Bi2 

0.25 ml. The media was autoclaved at 15 psi for 15 minutes. For the salinity using 

100ml flasks, 5 separat samples o f media were prepared. Treatments from 0M, 0.625M, 

0.125M, 0.250M, 0.5M, 1M. Sodium Chloride (NaCl) was prepared from the dissolved 

5.84 g in 100 ml (1M) and a series o f dilution were made and added to the media (1 ml) 

in every flask. The Optical Density OD meter was used to control the measurement. 

The toxic strain o f Microcystis aeruginosa used was UTEX 2385 (from the Culture 

Collection o f Algae at the University o f Texas), it was necessary to wear 

gloves.Salinity is determined from empirical relationships between temperature and the 

conductivity ratio o f a sample to the International Association for the Physical Sciences 

o f the Ocean (IAPSO) Standard Seawater. Comparison o f results with other laboratories 

required all researchers to use the IAPSO Standard Seawater for calibration[ 197-206].

2.5

2  -

MOAbs. M0.0625 M0.125 M0.250 M0.5 M1

Figure 7.20 Effect of salinity on rate growth of Microcystis aeruginosa.
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The salinity o f growth o f the medium (Bold 3N) for Microcystis aeruginosa was 

modified by adding NaCl salt up to a 1M concentration. The effect o f salinity on the 

growth o f M. aeruginosa was evaluated over one month o f incubation using in vivo 

fluorescence to estimate cell density. The data in Fig. 7.20 shows that the increase in 

NaCl concentration caused substantial reduction o f M. aeruginosa bacteria 

concentration. At the same time the concentration o f MC-LR toxin which was already 

produced had not affected.

To convert the molarity to PPM the equation below was used:

PPM weidht °f solute (g) 
volum of solution (ml)

ppm = 5.84g /  100 ml = 58400  ppm  

or

PPM = M * M wt * 1000

Dilution from 1M to 0.0625 M was carried out and converted to PPM by the equation 

below:

PPM = 1 * 58.4 *1000  = 58400 PPM 

0.5* 58.4*1000 = 29200 ppm 

0.250*58.4*1000= 14600 ppm 

0.125*58.4*1000 = 7300 ppm 

0.0625*58.4*1000 =3650 ppm

The algae were still alive, and released toxin in the presence o f salt at 3650 ppm.
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7.5 TIRE detection of naturally produced toxin (microcystin-LR)

The important thing is that in our work the antibody which we chose m ust work with 

the natural toxin, so for this purpose the TIRE method was carried out with natural 

toxin. A series o f dilutions was made from natural MC-LR which began with (1:20 to 

1:2000), as shown in Fig 7.21, and the TIRE measurements as shown in Fig 7.22, were 

done as explained in Chapter 4 and 6 .

broth Abs0.45 -
mclr Abs

■■■■ M Abs1 : 1mclr0.35 -

Abs4 :1 mclr

Abs10 :1 mclr

■■ ■■■■ Abs20 :1 mclr
0.15 -

0.05 -

2 0 0 250 300
W avelength  nm

350 400

Figure 7.21 a series o f dilutions was made from natural MC-LR.

Table 7.3 shows TIRE fitting data for immune reaction between natural m icrocystin-LR 

and antibody MC10E7. The (*) sign indicates that the parameters were fixed during 

fitting. The values o f n and k are given at the wavelength o f 633 nm.

We evaluated the molecular layer thickness increment by doing data TIRE fitting to the 

reflective system model consisting o f glass (BK7) as an ambient, a Cr/Au metal layer, 

the deposited molecular layer, and aqueous solution. The data fitting procedure has been 

described in detail previously in Chapter 4.

In Fig 7.22 the K ^fo r natural toxin in the range (107 1/mol )this mean strong binding 

between natural toxin and the antibody, and the calibration curve which obtained from 

TIRE measurements is shown in Fig 7.23 indicated that the data fitting for both 

commercial and MC-LR produced by M. aeruginosa were nearly the same.
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Table 7.3 the increase in thickness for natural MC-LR.

Natural m icrocystin-L R  

dilutions

d ( nm) Ad(nm) n, k (at A.=700 nm)

1 : 2 0 0 0 1.513 0.314 n* = 1.42, k=0

1 : 1 0 0 0 1.827 0.883 n* = 1.42, k=0

1 : 2 0 0 2.396 1.367 n* = 1.42, k=0

1 : 1 0 0 2.880 1.407 n* = 1.42, k=0

1 : 2 0 2.920 1.828 n* = 1.42, k=0

0 . 8

0.7

0 . 6

0.5

0.4

0.3

0 . 2

0 . 1

0

0 2 0 40 60 80 1 0 0 1 2 0

Figure 7.22 kinetic reactions between natural MC-LR and antibody MC10E7.
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Figure 7.23 Calibration curve obtained from TIRE measurements and data fitting for 
commercial MC-LR (blue diamond data points and blue dotted line). The data points for 
MC-LR produced by M. aeruginosa are shown as red crosses.
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Figure 7.24 Correlation between the optical density (absorbance) and the concentration 

o f MC-LR.
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Fig. 7.24 was obtained by optical density measurements at 238nm (OD238) o f  aqueous 

samples having a known concentration o f MC-LR. The data points for naturally 

produced toxin were placed on that graph and thus allowed to evaluate the concentration 

o f MC-LR produced by M. aeruginosa.

7.6 M icrocystin-LR removal with functionalized polyelectrolyte micro-particles

The technology o f layer-by-layer (LbL) electrostatic [199], deposition has generated 

numerous applications in the formation o f multilayer assemblies on solid surfaces. One 

o f the applications is related to the fabrication o f nano-engineered capsules which is 

based on the LbL coating o f inorganic micro-particles with layers o f oppositely charged 

polyelectrolytes, such as PAH and PSS, and was used after being functionalized with 

antibody M CI0E7, this method will be disccused in detail in Chapter 8 .

7.7 Conclusion

Detection o f microcystin-LR was successfully achieved by optical methods o f total 

internal reflection ellipsometry, UV-visible and FT-IR spectroscopies either in purified 

form (available commercially) or using naturally MC-LR produced by algae. The 

method of TIRE was particularly promising because o f its high sensitivity below the 

limit o f lng/m l established by the WHO.

The roles o f environmental factors such as temperature, light, nutrients, and salinity, on 

the production o f M C-LR by microcystis aeruginosa were studied. The production rate 

o f M C-LR o f 1.64 pg per bacteria cell was found at optimal conditions bacteria growth 

(20-25 C ° ), light-dark natural cycles, and balanced nutrients). Extra nutrients increase 

rate o f generation o f MC-LR, while the presence o f NaCl reduced substantially bacteria 

growth and therefore the production o f MC-LR.
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CHAPTER 8

THE USE OF FUNCTIONALIZED MICRO-PARTICALES 
AS AN ABSORBENT FOR MICROCYSTIN-LR

In this chapter the use o f  nanotechnology in cleaning samples containing M C-LR by 

using functionalized polyelectrolyte micro-particles is described in more detail, the 

modification o f micro-capsules with antibody MC10E7 which has specific binding to 

microcystin-LR, manufacturing hollow microcapsules to fill with dyes or living cells 

(antibodies or antigens) and a comparison between the reaction o f micro-capsules with 

natural and commercial toxins (with microcystin-LR).

8.1 Microencapsulation

Our approach for material encapsulation is to use a novel class o f carriers which are 

multilayered polyelectrolyte microcapsules that have recently been fabricated to 

encapsulate different molecules including drugs, by using polymers that are ecological 

or that can respond and release their load in response to well-defined reason. 

M icrocapsulation is the process by which individual particles or droplets o f solid or 

liquid material (the core) are surrounded or coated with a continuous film o f polymeric 

material (the shell) to produce capsules in the micrometre to millimetre range, there are 

known as microcapsules. The concept o f microencapsulation was first established by 

Chang in the 1960s by encapsulating proteins into stable microcapsules with 

semipermeable polymer membranes. After that, microencapsulation technology for the 

immobilization o f a variety o f biologically active species such as enzymes and living 

cells, have been advanced and used in biotechnologies for developing bioreactors, 

biosensors, and hybrid bio-artificial organs. Researchers have used many techniques to 

manufacture micro-capsules such as pan coating, air suspension coating, centrifugal 

extraction, spray drying and others. One o f these methods is the polyelectrolyte capsules 

which were used in my project, and are described in more detail in the following 

section.
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8.2 Polyelectrolyte microcapsules

The technology o f layer-by-layer (LbL) electrostatic deposition has found numerous 

applications in the formation o f multilayer assemblies on solid surfaces. The polymers 

adsorbed from an aqueous solution open the possibility o f incorporating biological 

macromolecules such as proteins or nucleic acids in their active state which may even 

be interesting for biosensing applications. The fabrication o f nano-engineered capsules 

was introduced at the Max Planck Institute; this method is based on the layer-by-layer 

(LbL) adsorption o f oppositely charged macromolecules, whereby each one o f the wall 

components adds functionality to the multilayered capsules

The idea o f fabrication o f polyelectrolyte capsules is very simple and lies in the coating 

o f the inorganic core particles with the layers o f PAH and PSS [199]. The process o f 

building such polyelectrolyte capsules is schematically shown in Figure 8.1

Figure8.1. Formation o f polyelectrolyte capsules: (a) Original CaC 0 3  core particle 

containing negative charge on the surface; (b) after coating with PAH layer; (c) after 

coating with PSS layer; (c) after deposition o f several bilayers o f PAH/PSS; (e) After 

further functionalisation o f a capsule with Protein A and IgG molecules.

Core particles (CaC 0 3  or M nC 0 3 ) which are commercially available in different sizes,

e.g. 2, 4, 6  pm, typically contain a negative charge on the surface and thus can be coated

with a PAH layer by a simple mixing CaC 0 3  suspension with PAH 2mg/ml aqueous

solution. The mixture should be stirred for 10-15 minutes and then let to sediment.

Following the same procedure, the layers o f PSS and PAH can be deposited

consecutively (using intermediate rinsing with water) resulting in the formation o f  a

PAH/PSS shell on the surface o f the core particle (Fig.8.1 d). This core particle can then
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be dissolved in HC1 solution (pH ~  2) and the capsule can be filled with some other 

liquid (e.g. drug) following the original idea using such capsules for targeted drug 

delivery [207]. The capsules can be further modified with antibodies (Fig. 8.1 d) for 

particular bio-sensing or bio-medical applications [208-210]. Shell thickness is 

determined by the number o f layers but is typically o f few nanometres. The variable 

size o f the capsules can be fully controlled from 50 nm to tens o f micrometres, 

depending on the size o f the core particle and the number o f layers deposited and the 

solution conditions (e.g., pH, ionic strength, etc.) used during fabrication. This 

polyelectrolyte multilayer coating can be easily and reproducibly formed on any 

charged surface, and the core o f the particles can be dissolved, making hollow capsules 

that can be refilled with substances o f interest and the permeability can be tuned to a 

wide class o f substances through designed layer thickness. Temperature has an effect on 

the manufacturing o f the capsules (causing shrinkage o f capsules with compensated 

charges which results in an increase in the wall thickness and a drastic reduction in 

permeability).A typical SEM picture o f microcaplsule Fig. 8.2 shows clearly its porous 

and thus chemically permeable structure [6 8 ].

Figure 8.2. Typical SEM image o f  the cross-section view of prepared hollow
microcapsule [6 8 ]

In this project, the capsules functionalized with antibodies has been utilized for 

purification o f substances contaminated with toxins, e.g. aflatoxin B 1 and microcystin- 

LR. For this purpose, we have prefer to keep the inorganic core intact in order to have 

the particles heavy and thus enable them to sediment quickly.
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8.3 Preparation of micro-particles

To prepare micro-capsules for modification with antibody MC10E7, it is mixed with 

M nCC^ which has a diameter o f 4pm  in a suspension o f PAH 2mg/ml aqueous 

solution. The mixture should be stirred for 10-15 minutes and then let to sediment. 

Following the same procedure, the layers o f PSS and PAH can be deposited 

consecutively (using intermediate rinsing with water) resulting in the formation o f a 

PAH/PSS shell on the surface o f the core particle. Such a procedure can be repeated 

many times until the desired number o f layers is reached (typically 3-4 bilayers o f PAH/ 

PSS. Adding NaCl into a solution o f PAH or PSS increases the ion strength and thus the 

thickness o f the shell. A series o f SEM images in Figure 8.3, taken at different 

magnifications, show the result micro-particles.
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(b

(c

Figure 8.3 Microcapsules which have a 4 pm diameter core.(a) captured in resolution 
200pm,(b) captured in resolution 5pm, and (c) captured in resolution 1 pm.
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Figure 8.4 M icrocapsules with 6 pm dimeter core after depositing many layers o f (PAH/
PSS) and coated with an enzyme.

8.3.1 UV-visible measurement

The procedure described in 8.3 involves the original MnCCE core particle o f 4-6pm  in 

diameter containing a positive charge on the surface being coated first with poly-anionic 

PSS layer and then with a poly-cationic PAH layer. Such procedure was repeated 

several times to form particles coated with 3 to 4 PSS/PAH bi-layers. These particles 

were functionalised further with Protein G and then with MC10E7 antibodies and later 

were used as an absorbent for MC-LR. The purification protocol is rather simple: 

functionalized microparticles, when mixed with aqueous solution containing MC-LR, 

bind MC-LR, molecules, then heavy microparticles sediment on the bottom o f a sample 

tube leaving the purified solution above as shown in Fig. 7.7 in Chapter 7. The 

concentration o f M C-LR in solution at different stages o f purification was monitored 

using UV-visible spectroscopy and TIRE methods [213, 214].

A typical series o f UV-visible spectra o f aqueous solution containing naturally produced 

MC-LR is shown in Figure 8.5 As one can see, the magnitude o f the absorption peak o f 

MC-LR is decrease with the time o f treatment with functionalized microparticles. 

Many concentration o f  MC-LR were prepared beginning with 0.1 pg to 1000 pg, Mixed 

with a 1:1 capsule with the dilution o f the MC-LR after enabled the TIRE measurement.
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Figure 8.5 UV-visible absorption spectra o f MC-LR (25.9 ug/ml) concentration 
recorded during treatment with functionalized microparticles. Inset: The reduction o f 
the amplitude o f absorption peak with time o f treatment.

8.3.2 TIRE measurements

The TIRE spectra measurements were carried out on samples o f the M C-LR toxin 

produced by M. aeruginosa culture. The graph in Figure 8.7 shows a 1.4 nm increase in 

the adsorbed layer thickness due to binding o f MC-LR toxin to MC10E7 antibodies. 

After treatment MC-LR solutions with functionalized microparticles, the response was 

reduced to 0.8 nm which is believed to be caused by partial absorption o f M C-LR on 

functionalized microparticles as shown in Fig. 8 .6 . The thickness increment appeared to 

be about half the original. Different concentrations o f naturally produced M C-LR were 

obtained by dilution o f the original MC-LR extract o f 25.9 pg/ml concentration.

original (1) 

10min (2) 

30min (3) 

60min (4) 

120min (5) 

240min (6)

20 40 60 80 100 120

Tim e (m in)
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Thickness decrease when microcvstin-LR mix with
capsules
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Figure 8 . 6  TIRE measurements taken on commercial MC-LR samples before and after 

treatment with functionalized capsules demonstrate the effect o f purification.

Thickness before & after treatment 
with modified capsules
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Figure 8.7 TIRE data: thickness increment concentration o f natural MC-LR: (a) 

in original MC-LR solution; and (b) after treatment with functionalized m icro

particles for 60min.
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8.4 Comparison between purification of natural and commercial toxin 
by microcapsules

In this study, these particles were used as a tool for the recovery and/or purification o f 

molecules in their associated environments. To observe the efficiency o f these capsules 

the measurement were taken with both commercial and natural M C-LR. The TIRE 

measurements, UV-visible, were used.

TIRE measurements showed similar effect, after treatment natural solutions o f M C-LR 

with functionalized microparticals, the thickness appeared to be about two times 

smaller.

In Fig 8 . 8  the concentration exponentially decay with the time, and the abs. decreased in 

length after treatment with functionalized microcapsules. And in Fig 8.9 the standard 

curve for natural toxin decreased in length after treatment with microcapsules.

Abs. VS. Time

1. natural Mc-lr 25.9ug/ml
2. natural Mc-lr 12.9ug/ml
3. natural Mc-lr 6.5ug/ml
4. natural Mc-lr 2.589ug/ml
5. natural Mc-lr 1.29ug/ml

0.35 -

0.30 -

0 .2 5 -

0.20  -

w
XI<

0 .1 5 -

0 . 1 0 -

0 .0 5 -

0.00
600 20 40 80 100 120

T i m e ( m i n )

Fig. 8 . 8  Effect o f microparticle treatment on concentration o f MC-LR: Abs. at 238 nm.
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Figure 8.9 standard curves for MC-LR after treatment with capsules.

8.5 Removing the core of the microcapsules

Multilayered polyelectrolyte microcapsules [211,212] have been fabricated to 

encapsulate various classes o f (drug, enzymes, antibodies molecules), by using 

polymers that can respond and release their payload. In our work the core M nC ( > 3  6 pm 

was used, along with polymers (PAH, PSS), to form polyelectrolyte micro-capsules o f 

eight layers (PAH/ PSS), as shown in Fig. 8.10a, and 8.10b. After preparing these 

capsules and removing the core by using (HC1 0.01 M) to change the pH to 2, after 

rinsing the sediment with water to remove the dissolved core and capture its image with 

fluorescence microscopy, the capsules without a core appear shrunken, as shown in Fig. 

8.10c. After this, the capsules were filled with dye immersed in water (pH 4), and this 

dye will go inside the capsules because o f the change in pH.
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(a

(b

Figure 8.10 (a Microcapsules with core MnCOi 6 pm and eight layers (PAH/ PSS).

(a and (b Microcapsule before removing the core, and (c) Microcapsule after removing 

the core. Images were taken by fluorescence microscopy.
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Figure 8 . 11 (a) Microcapsules with core MgC0 3 tested in FT-IR appear in wavelength 
1 0 0 0  nm, and (b) microcapsules without core in wavelength 1 0 0 0  nm the core not 
found.
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In Fig 8.11 after removing the core o f microcapsules, these capsules were examined by 

FT-IR spectroscopy, to prove that these microcapsules have lost their core. Two 

samples were prepared using about lOOpl from original capsules and the other from 

those which their core were removed. To the measure the material o f the core MnCC>3 

its appeared at lOOOnm, and then the original microcapsules which have core and finally 

these microcapsules without core, there is no peak appear in lOOOnm this mean these 

microcapsules have not core.

■
Figure 8.12 (a) microcapsules stained with SYTO-9 Green Fluorescence stain, and (b) 

Propidium iodide red Fluorescence stain.
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The process in involves adding 0.3 pi o f SYTO-9 Green Fluorescence stain to 50 pi o f 

microcapsules 6  pm core diameter. This is mixed by centrifuges at the speed o f 3000 

rpt; then 1 0  ml o f the capsule solution is dropped on the glass slide, covered by a cover 

slide and viewed under lOOx blue light. The same method was used to stain m icro

capsules with Propidium iodide red Fluorescence stain, viewed under lOOx purple light.

Hollow microcapsule filled with dye

Hollow micro-capsules were prepared by layer-by-layer (LBL) on the 6 pm diameter 

using oppositely charged polymers polysodium 4-styrene sulfonic acid and polyethelen- 

dihydro-chlorid then the core removed with (0.1 M) HCL, the capsules appear 

shrunkage under the fluorescence microscopy. After that the capsules are filled with 

organic dye (SYTO-9 Green Fluorescence) by changing the PH to 4. The dye goes 

inside the capsules. A fluorescence microscope was used to visualize the polymer shell, 

as shown in Figure 8.13.
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Figure 8.13 Processes o f fill microcapsules with organic dye: a) Capsules o f 6  pm 

stained with fluorescence dye under lOOx; (b) Microcapsules after removing the core 

appears shrunkage; (c) microcapsules after are filled with organic dye and stained with 

fluorescence dye (SYTO-9 Green Fluorescence stain) under lOOx.



8.6 Microcystin-LR removal by electrolysis

Since it was shown recently that microcystin-LR can be degraded photo-catalytically, 

The degradation process is based on the generation o f highly reactive oxygen species 

(e.g., HO*, O* - )  using Ag3 P0 4  under low pH. Maximum MC-LR degradation rates o f 

99.98% were obtained within 5 h. But the disadvantage the reaction must be under low 

pH [232]. This section describes the attepts o f using electrolysis o f  solutions containing 

MC-LR to reduce its concentration.

A simple experiment was carried out in a sample tube filled with a M C-LR natural 

extract with two stainless steel electrodes between which the DC voltage o f 3V was 

applied. The initial concentration o f microcystin-LR was 25.9 pg/ml.

UV-visible spectra measurements were carried out on liquid samples taken at different 

stages o f such treatment in order to monitor the amount o f M C-LR in the sample. The 

results o f such measurements presented in Figure 8.14 are showing the reduction o f the 

absorption peak amplitude which indicates the reduction in M C-LR concentration. Also 

it appeared that the absorption peak was shifted to the shorter wavelengths during 

electrolysis. The latter fact can be explained by changes in the Ji-conjugated electron 

system o f MC-LR molecules.

It is known that the position o f the absorption band o f aromatic molecules depends on 

the number o f Ji-conjugated electrons in the molecule; the reduction o f numbers o f  j i -  

conjugated electrons causes a “blue” spectral shift. Also a white insoluble layer was 

formed on the anode after several hours o f electrolysis which is most likely the result o f 

flocculation o f organic chemicals present, such as microcystin LR. According to [216, 

217], a possible mechanism for MC-LR modification involves electrochemical reactions 

on iron (stainless steel) electrodes, as a result o f  which Fe2+ and Fe3+ are formed and 

react subsequently with MC-LR to form iron-colloid precipitates. M ost-likely the Adda 

group and heptapeptide ring o f microcystin (see chemical structure in Fig.2.1) are 

affected. This model links well with the observed “blue” spectral shift due to disruption 

o f ji conjugated electrons.
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Figure 8.14 Absorption spectra o f Microcystin-LR samples during electrolysis.

After 24 hours o f continuos electrolysis, the MC-LR peak disappeared completely. The 

formation o f white deposite on the anode was observed after prolong elecrtrolysis.

Fingerprint region

O- H

C- H

Figure8.15 FT-IR spectrum o f MC-LR solution after 24h electrolysis.

Interestingly, the electrolysis o f the same solution in the same cell but with gold-coated 

electrodes did not show the formation o f white deposit. Also, the peak o f microcystin- 

LR at 238 nm was reduced in the intensity but there was no shift to the shorter
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wavelengths. The experiment was repeated with the commercial M C-LR with the same 

outcome.

FT-IR measurements in Figure 8.15 showed no traces o f signature vibration bands 

associated with M C-LR after 24 h electrolysis. The observed fact was showed that 

degradation o f MC-LR is related to the electrochemical reaction on steel (Fe) electrodes 

as was suggested in [216, 217].

Conclusions

Functionalized microparticales with antibodies successfully reduced M C-LR 

concentration in aqueous solution, and these particales worked better when keep their 

core, it deposited more quickly than those without core.

The reduction o f ferrate in water is caused by oxygen radicals and peroxide radicals
2 • •  •( O2 ’ and HO2 ") radicals these radicals make ferrate a stronger oxidizer and the ferric

ion makes it a good coagulants, so that toxin removal after a 30 min contact time was

93%. MCLR reacted with ferrate [228].
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CHAPTER 9 

CONCLUTION AND FUTURE WORK

9.1 Conclutions

The method o f total internal reflection ellipsometry (TIRE) was exploited in the study 

o f protein-protein interaction using the example o f interaction o f protein chaperon and 

its receptor in plants. In this work, the interaction o f chaperones Hsp 70 and Hsp90 with 

their receptors OEP61 naturally present in chloroplast membranes were studied using 

TIRE. For this purpose, chloroplast membranes were successfully deposited on gold 

coated glass slides using Langmuir-Schaefer technique, which was reported for the first 

time. Apart from confirming binding between chaperons and respective receptors, this 

work showed a clear separation o f specific and no-specific binding in terms o f both the 

sensor response (i.e. thickness increment) and the affinity o f binding. The m ethodology 

developed in this work opens exciting possibilities o f studying fundamental cellular 

processes and rapid screening o f drugs that target membrane proteins.

Optical methods o f total internal reflection elipsometry (TIRE), UV-visible and FT-IR 

spectroscopies were successfully adapted for detection o f microcystin-LR either in 

purified form available commercially or naturally produced by algae. The method o f 

TIRE was particularly promising because it was proved to be capable o f detection o f  

Microcystin LR in low concentrations down to O.lng/ml in direct immunoassay with 

specific monoclonal antibodies MC10E7. The above immune reaction is highly specific 

according to the results o f the binding kinetics which yielded the values o f the 

association constant in the range o f 10 -  10 (1/mol). In addition to comprehensive 

TIRE methodology, a much simpler method o f UV-visible spectroscopy was utilized for 

detection o f concentration o f microcystin in solutions.

The process o f production o f microcystin LB by M. aeruginosa was studied in more 

detail. The roles o f environmental factors (such as temperature, pH, salinity, nutrients) 

on both M  aeruginosa growth and MC-LR production were evaluated. The generation 

rate o f MC-LR was found to be the optimal conditions for bacteria growth (20-25 C ’ 

light-dark natural cycles, and balanced nutrients). Extra nutrients increase rate o f  

generation o f MC-LR, while the presence o f  NaCl substantially reduced bacteria growth 

and therefore the production o f MC-LR.
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The second part o f this work was focused on purification o f substances contaminated 

with microcystin. The methodology o f using polyelectrolyte coated microparticles 

functionalized with specific antibodies was first tested on another type o f toxin, i.e. 

Aflatoxin B1 from mycotoxin family. The developed method was adapted for 

purification o f substances containing microcystin LR. This time, polyelectrolyte coated 

microparticles o f 4 and 6  pm in diameter were further functionalized with antibodies 

specific to MC-LR and successfully used as a sorbent for MC-LR either in purified 

form or produced naturally by M. aeruginosa.

Another simple technique o f direct electrolysis can be used for M C-LR cleansing. This 

process may involve the coagulation o f MC-LR with Fe3+ ions appearing as a result o f  

the electrochemical reaction on iron electrodes.

9.2 Future work

TIRE method appeared to be a very promising analytical tool in biosensing and showed 

great potential for many applications including environmental control and and bio

medicine. At the same time, TIRE technique based on spectroscopic ellipsometry is a 

bench-top instrument suitable for in-lab testing. It will be useful to develop a portable 

sensor which can be used for medical and environmental teasting. Planar waveguide 

devices seem to be the most promising way o f doing so.

This research may lead to a number o f possible applications in the areas o f 

environmental pollution control, water industry, and biomedicine. Microparticles 

functionalized with MC10E7 antibodies act as an absorbent for M C-LR in water 

solutions, and could be used in future for purification o f  substances contaminated 

microcystin-LR. This method, however, might be too expensive for decontamination o f 

large quantities o f water (contaminated ponds, swimming pools, and water reservoirs), 

therefore microparticles will more suitable for purification o f small samples, maybe to 

treat food poisoning, and similar application.

Finally, a simple technique o f electrolysis was attempted to treat water samples 

contaminated with microcystin. It appeared to be promising for future application in 

water purification in a large scale but require more detailed study.

137



References:

[1] Lloyd L. Medsker, David Jenkins, and Jerome F. Thomas. (1968). Odorous 
compounds in natural waters.an earthy-smelling compound associated with blue-green 
algae and ActinomycetesUniversity o f California, berkeley, Calif. Sci. Technol., 6  (2), 
461-464.

[2] Aceroa Juan L., Rodrigueza Eva, Meriluotob Jussi. (2005). Kinetics o f reactions 
between chlorine and the cyanobacterial toxins microcystins. Water Research. 39 , 
1628-1638.

[3] Kull Tomas P. J., Backlund Peter H., Karlsson Krister M., and Meriluoto Jussi A. O. 
(2004). Oxidation o f the cyanobacterial hepatotoxin microcystin-LR by 
ChlorineDioxide: Reaction kinetics, characterization, and toxicity o f reaction 
products.£>7v/r0 /7 . Sci. Technol., 38 (22), 6025-6031.

[4] WHO. (1998.). Cyanobacterial toxins: Microcystin-LR. guidelines for drinking 
water quality.world health organization, geneva.

[5] Sangolkar Lalita N., Maske Sarikar S., Chakrabarti Tapan. (2006). Methods for 
determining microcystins(peptide hepatoxins) and microcystin-producing cyanobacteria. 
Water Research. 40 , 3485-3496.

[6 ] Hyenstrand P., M etcalf J.S., Beattie K. A. And Codd G. A. (2001). Effects o f 
adsorption to plastics and solvent conditions in the analysis o f the cyanobacterial toxin 
microcystin-LR by high performance liquid chromatography, Water Source. 35 , 3508- 
3511.

[7] Campas M., Marty Jean-Louis, (2007). Highly sensitive amperometric 
immunosensors for microcystin detection in algae. Biosensors and Bioelectronics. 22 , 
1034-1040.

[8 ] Jayaraj R., akshmana Rao P.V. L. (2006). Protien phosphorylation profile and 
adduct formation in liver and kidney o f microcystin-LR treated mice, Toxicon. 48 , 272- 
277.

[9] Lawton Linda A., Heather Chambers, Edwards Christine, Nwaopara Assumpta A., 
Healy Mike. (2010). Rapid detection o f microcystin in cells and water, Toxicon. 55 , 
973-978.

[10] Herranz Sonia. Bockova Marketa. Marazuela Maria Dolores. Homola Jiri. Cruz 
Moreno-Bondi Maria. (2010). An SPR biosensor for the detection o f m icrocystins in 
drinking water, Anal. Bioanal. Chem. 398 , 2625-2634.

[11] Nabok A., Tsagorodskaya A., Holloway A., Starodub N.F., Gojster O. (2007). 
Registration o f T-2mycotoxin with total internal reflction ellipsometry and QCM 
impedance methods, Biosensors and Bioelectronics. 22 , 885-890.

138



[12]Yan-Lei Su, Jin-ru Li, Long Jiang. (2004). Chromatic immunoassay based on 
polydiacetylene vesicles. Colloids and Surfaces B: Biointerfaces. 38 , 29-33.

[13] Baier W., Loleit M., Fischer B., Jung G., Neumann U., Web M., W eckesser J., 
Hoffimann P., Bessler W.G., M ittenbuhler K. (2000). Generation o f antibodies directed 
against the low-immunogenic peptide-toxins microcystin-LR/RR and nodularin, 
International Journal o f Immunopharmacology. 22 , 339-353.

[14] Nabok A. V., Hassan A.K., Ray A.K.. (1999). Optical and electrical 
characterisation o f polyelectrolyte self-assembled thin films. Material science and 
Engineering. 9 ,  505-508.

[15] Sadovoy AV, Lomova MV, Antipina MN, Braun NA, Sukhorukov GB and 
Kiryukhin MV. (2013). Layer-by-layer assembled multilayer shells for encapsulation 
and release o f fragrance./! cs Applied materials and Iinterfaces. 5 (18), 8948-8954.

[16] Nabok A., Tsargorodskaya A., Mustafa M.K., Szekacs I., Starodub N.F., Szekacs 
A. (2011). Detection o f low molecular weight toxins using optical phase detection 
techniques, Sensors and Actuators B, Chemical. 154 , 232-237.

[17] Nabok A., Parkinson D., Mustafa M. K., Tsargorodskaya A. (2010). Detection o f 
amyloid precursor protein using ellipsometry immunosensor with a view o f alzheimer's 
disease diagnostics. Sensors & Transducers, 120 , 53-61.

[18] Sung-Hye Cho, Chang-Hee Lee, Jang Mi-Ran, Young-W ook Son, Sang-Mok L., 
Choi In-Sun, Kim So-Hee, Kim Dai-Byung. (2008). Aflatoxins contamination in spices 
and processed spice products commercialized in koria, Food Chem. 107 , 1283-1288.

[19] Saleemullah A. I., Amjad Iqbal, Khalil I. A., Hamidullah Shah .(2006). Aflatoxin 
contents o f stored and artificially inoculated cereals and nuts. Food Chem. 98 , 699-703.

[20] Kershaw S.J. (1982). Occurrence o f aflatoxins in oilseeds providing coca-butter 
substitutes. ,4/?/?/. Environ. Microbiol., 43 , 1210-1212.

[21] Moss M. O. (2002). Risk assessment for aflatoxins in foodstuffs, Int. 
Biodetector.Biodegrad. 5 0 , 137-142.

[22] Yu Jom C.C. and Lai EPC. (2004). Polypyrrole film on miniaturized surface 
plasmon resonance sensor for ochratoxin A detection. Synthetic Metals, Elsevier 143 , 
253-258.

[23] Wild C.P. and Gong Y.Y. (2010). M ycotoxins and human disease: A largely 
ignored global health issue, Carcenogenesis. 31 , 71-82.

[24] Webster M.T., Groome N., Francis P.T., Pearce B.R., Sherriff F.E., Thinakaran G., 
Felsenstein K.M., Wasco W., Tanzi R.E. and Bowen D.M. (1995). A novel protein, 
amyloid precursor-like protein-2 , is present in human brain, cerebrospinal-fluid and 
conditioned media, Biochem. J. 310 , 95-99.

[25] Hudler G. W. (1998). Magical mushrooms, mischievous mold, new jersy: 
Princeton university press.

139



[26] Peraica M., Radic B., Lucic A. , and Pavlovic M. (1999). Toxic effects o f 
mycotoxins in humans Bull . Wold Health Organ. 77 , 754-766.

[27] Williams J. H., Phillips T. D., Pauline E. J., Stiles J. K., Curtis M. J., And 
Aggarwal D.(2004). Human aflatoxicosis in developing countries: A review 
o f toxicology, exposure, potential health consequences, and interventions, The 
American journal ..., Am Soc Nutrition 8 0 , 1106-1122.

[28] Sulyok M., Krska R. and Schuhmacher R. (2007). A liquid 
chromatography/tandem mass spectrometric multi-mycotoxin method for the 
quantification o f 87 analytes and its application to semi-quantitative screening o f moldy 
food samples, Anal. Bioanal.Chem. 389 , .1505-1523.

[29] Sarensen L. K. , and Elbaek T. H. (2005). Determination o f mycotoxins in bovine 
milk by liquid chromatography tanden mass spectrometry, Jurnal o f Chromatography 
B, 820 , 183-196.

[30] Thusu R. (2010). Strong growth predicted for biosensors market, weekly.

[31] Global industry Analyte Inc... (2008). Biosensors in medical diagnostics-global 
business rep o rt.

[32] Turko I. V., Lepesheva G. I. and Chashchin V. L. (1992). Direct antigen-detection 
in langmiur-blodgett-flims o f immunoglobulin-G modified with coproporphyrin-I ,
Anal. Chim. Acta. 265 , 21-26.

[33] Defillipo K. A., and Grayeski M. L. (1991). Flow-injection chemiluminescent 
method for an enzyme-labeld DNA probe , Anal. Chim. Acta. 249 , 155-162.

[34] Jayaraj R., Lakshmana Rao P.V. (2006). Protien phosphorylation profile and 
adduct formation in liver and kidney o f microcystin-LR treated mice. Toxicon. 48 , . 
272-277.

[35] Lawton A., Heather Chambers, Edwards C., Assumpta A. Nwaopara, Healy M.
(2010). Rapid detection o f microcystin in cells and water. Toxicon. 55 , 973-978.

[36] Herranz S. Bockova M., Dolores Marazuela M., Homola Jiri., Maria Cruz Moreno- 
Bondi; (2010). An SPR biosensor for the detection o f microcystins in drinking water, 
Anal. Bioanal. Chem. 398, 2625-2634.

[37] Nabok A., Kamarulzaki M. M., Tsagorodskaya A. and Nikolaj F. S. (2011). 
Detection o f aflatoxin B1 with a label-free ellipsometry immunosensor. 
BioNanoScience, 1 ,38-45.

[38]- Bohuslav Uher. (2010). Cyanobacteria and algae as significant. Book.Lap lambert 
academic publishing AG & co KG.

[39] Stoyneva, Maya P. (2000). Planktic green algae o f bulgarian coastal 
wetlands.Hydrobiologia. 438 , 25-41.

[40] Olson, Theodore A. (1960). Algae in water supplies. American Journal o f  Public 
Health and the Nation's Health, 50 , 16 2 1 -1622.

140



[41] Hyenstrand P., M etcalf J.S., Beattie K. A. , and Codd G. A. (2001). Effects o f 
adsorption to plastics and solvent conditions in the analysis o f the cyanobacterial toxin 
microcystin-LR by high performance liquid chromatography. Water Source. 35 , 3508- 
3511.

[42] David R. (2012). Environmental microbiology: Tampering with cyanobacterial 
m&is.Nature Reviews Microbiology. 10 , 239.

[43] Lehman P.W., Boyer G., Satchwell M., W aller S.(2008). The influence o f 
environmental conditions on the seasonal variation o f microcystis cell density and 
microcystins concentration in san francisco estuary. Hydrobiologia. 600 , 187-204.

[44] Liu J., Yue C., Yonghui D., Zhenkun S., Dong G., Bo To, Dongyuan Zhao. (2010) 
Magnetic 3-D ordered macroporous silica templated from binary colloidal crystals and 
its application for effective removal o f microcystin. Microporous and Mesoporous 
Materials, 130 (26-31).

[45] Pouria Shideh, Andrade A de, Barbosa J., Cavalcanti R. L., Barreto V. T. S., Ward
C. J., Preiser W., Grace K Poon, Neild G. H., Codd G. A.( 1998) ,Fatal microcystin 
intoxication in haemodialysis unit in Caruaru, Brazil. Lancet. 352, 21-26.

[46] Huang Winn-Jung , Cheng Bai-Ling , Cheng Yung-Ling. (2007). Adsorption o f 
microcystin-Z,/? by three types o f activated carbon. Journal o f Hazardous Materials 
,141, 115-122.

[47] Tao Lin, Wei Chen, Leilei Wang. (2010). Particle properties in granular activated 
carbon filter during drinking water treatment. Journal o f Environmental Sciences. 22 , 
681-688.

[48] Miguel Pelaeza, Polycarpos Falarasb, Vlassis Likodimosb, Athanassios G. 
Kontosb, Armah A. de la Cruzc, Kevin O ’shead, Dionysios D. Dionysioua. (2010). 
Synthesis, structural characterization and evaluation o f sol-gel-based N F -T i02  films 
with visible light-photoactivation for the removal o f microcystin-LR. Applied catalysis 
B: Environmental. 99 , 378-387.

[49] Robert W. MacKintosh, Kevin N. Dalby, David G. Campbell, Patricia T.W. 
Cohen, Philip Cohen, Carol M acKintosh.(1995), The cyanobacterial toxin microcystin 
binds covalently to cysteine-273 on protein phosphatase. FEBS Letters. FEBS Letters 
371 ,236— 240.

[50] Sangolkar Lalita N., Maske Sarikar S., Chakrabarti T. (2006). Methods for 
determining microcystins(peptide hepatoxins) and m icrocystin-producing 
cyanobacteria. Water Research. 40 , 3485-3496.

[51] Lopez C.B., Jewett E.B., Dortch, Q., Walton B.T., Hudnell H.K. (2008). 
Scientific Assessment o f Freshwater Harmful Algal Blooms. Interagency W orking 
Group on Harmful Algal Blooms, Hypoxia, and Human Health o f  the Joint 
Subcommittee on Ocean Science and Technology. Washington, DC.

141



[52] Campas M., Marty Jean-Louis. (2007). Highly sensitive amperometric 
immunosensors for microcystin detection in algae., Biosensors and Bioelectronics. 22 , 
1034-1040.

[53] Kull Tomas P. J., Backlund Peter H., Karlsson Krister M., and Meriluoto Jussi A. 
O. (2004). Oxidation o f the cyanobacterial hepatotoxin microcystin-LR by 
ChlorineDioxide: Reaction kinetics, characterization, and toxicity o f reaction 
products.Environ. Sci. Technol. 38 (22), 6025-6031.

[54] Nabok A., Tsargorodskaya A., Gauthier D., Davis F., Higson S.P.J., Berzina T., 
L. Cristofolini, Fontana M.. (2009). Hybridization o f genomic DNA adsorbed 
electrostatically onto cationic surfaces, Journal o f Physical Chemistry B. 113 , 7897- 
7902.

[55] Jayaraj R., akshmana P.V. L, Rao, (2006).Protien phosphorylation profile and 
adduct formation in liver and kidney o f microcystin-LR treated mice, Toxicon AS, 272- 
277.

[56] Stoyneva, Maya P., (2000), Planktic green algae o f Bulgarian coastal wetlands, 
Hydrobiologia. 438,(1), 25-41.

[57] Olson Theodore A .(1960), Algae in water supplies, Am. J. Public Health Nations 
Health. 50, (10),1621-1622.

[58] Cyanobacteria Environmental M icrobiology Reports,(2010), 2, 2, 340 -  341.

[59] Mohamed Z. A. (2001), Alum and Lime-Alum Removal o f Toxic and Nontoxic 
Phytoplankton from the Nile River Water: Laboratory Study, Water Resources 
Management 15, 213-221.

[60] Pelaez M., Falaras P., Likodimos V., Kontos A. G., Armah A. de la Cruz, Kevin 
O ’shea, Dionysios D. Dionysiou, (2010), Synthesis, structural characterization and 
evaluation o f sol-gel-based N F-T i02 films with visible light-photoactivation for the 
removal o f microcystin-LR^/?/?//e<7 Catalysis B: Environmental 99, 378-387.

[61] Ochimsen M.J., Carmichael W., Denisem Card J., Cookson S., Holmes C. M., 
Antunes M. B., Demelofilh D. A., Lyra T., Barreot V., Azevedo S. F. O., Arvis A. 
J.(1998). Liver failure and death after exposure to microcystins at a hemodialysis center 
in Brazil. The New England Journal o f Medicine 338,873- 878.

[62] Garcia L.Villada, Rico M., Altamirano Maria, Sanchez-Martin L., Lopez-Rodas V., 
Eduardo Costas(2004).Occurrence o f copper resistant mutants in the toxic 
cyanobacteria,M icrocystis aeruginosa, characterization and future implications in the 
use o f copper sulphate as algaecide. Water research, 38, 2207-2213.

[63] NOAA. (2006) Harmful algal blooms in the Great Lakes. NOAA Great Lakes 
Environmental Research Laboratory, National Oceanic and Atmospheric 
Administration.
http://www.glerl.noaa.gov/res/Centers/HumanHealth/hab/EventResponse/

142

http://www.glerl.noaa.gov/res/Centers/HumanHealth/hab/EventResponse/


[64] Vesterkvist P.S.M., M eriluoto J.A.O. (2003).0ccurrnce o f microcystins MC-LW 
and MC-LF in Dutch surface waters and their contribution to total microcystins toxisity. 
Toxicon. 41. 349-355.

[65] Tsuji K., Watanuki T., Kondo F., Watanabe M. F., Suzuki S., Nakazawa H., 
Suzuki M. H., Uchida, Ken-Ichi Harada,.(1995). Stability o f microcystins from 
cyanobacteria— II. Effect o f UV light on decomposition and isom erization.Toxicon. 
33,(12),1619-1631.

[6 6 ]Gan N, Sun X, Song L.,(2010), Activation o f N rf2 by microcystin-LR provides 
advantages for liver cancer cell growth, Chem. Res, Toxicol 23, 1477- 1484.

[67] Kondo F, Ikai Y,Oka H,Okumura M,I shikawa N ,et al.( 1992) 
Formation,characterization,toxicity o f the glutathione and cysteieneconjugates o f  toxic 
heptapeptide m icrocystins.Chem Res Toxicon.5,59 \ -596.

[6 8 ] Miller MJ, Hutson J, Fallowfield HJ.(2005), The adsorption o f cyanobacterial 
hepatoxins as a function o f soil properties../. Water Health., 3(4), 47-339.

[69] Mohamed Zakaria A., El-Sharouny Hassan M., Ali Wafaa S.(2007), M icrocystin 
concentrations in the Nile river sediments and removal o f m icrocystin-LR by seiments 
during batch experiments. Arch. Environ, Toxicon, 52, 489-495.

[70] Andreasen K., B. T. (1999). Validation o f urine drug-of-abuse testing methods for 
ketobemidone using thin-layer chromatography and liquid chrom atography-electrospray 
mass spectrometry.JChromatogr B. BiomedSci Appl. 736 (1-2), 13-103.

[71] Sajewicz M, Staszek D, Natic M, W aksmundzka- Hajnos M, Kowalska T, (2011). 
TLC-MS versus TLC-LC-MS fingerprints o f herbal extracts, part III. application o f 
reversed-C18 stationary phase../ Chromatogr Sci. 44 (7), 7-560.

[72] Engvall Eva, Perlmann Peter. (1971).Enzyme-linked immunosorbent assay 
(ELISA) quantitative assay o f immunoglobulin G.Immunochemistry. 8  (9), 871-874.

[73] Waynew W. Carmichael and Jisi An. (1999). Using an enzyme linked 
immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for 
the detection o f microcystins and nodularins. Natural Toxins. 7 (6 ), 377-385.

[74] Lawton Linda A., Chambers Heather, Edwards Christine, Nwaopara Assumpta A., 
Healy Mike. (2010). Rapid detection o f microcystins in cells and w ater.Toxicon. 55 (5), 
973-978.

[75] Herranz Sonia. Bockova Marketa. Marazuela Maria Dolores. Homola Jiri. Moreno- 
Bondi Maria Cruz. (2010). An SPR biosensor for the detection o f microcystins in 
drinking water, Anal. Bioanal. Chem. 398 , 2625-2634.

[76] Winn-Jung Huang, Bai-Ling Cheng, Yung-Ling Cheng. (2007). Adsorption o f 
m icrocystin-//? by three types o f activated carbon. Hazardous Materials. 141 , 115-122.

[77] Tao Lin, Wei Chen, Leilei Wang. (2010). Particle properties in granular activated 
carbon filter during drinking water treatment. Environmental Sciences. 22 (5), 681 -6 8 8 .

143



[78] Nabok A.V. , Tsargorodskaya A., Hassan A.K., Starodub N.F. (2005). Total 
internal reflection ellipsometry and SPR detection o f low m olecular weight 
environmental toxins .Applied Surface Science. 246 (4), 381-386.

[79] Brooks Steven L., Ashby Robert E., Turner Anthony P.F., Calder Michael R., 
Clarke David J. (1987). Development o f an on-line glucose sensor for fermentation 
monitoring. Biosensors. 3 (1), 45-56.

[80] Sai a V.V.R., Tapanendu Kundub, Deshmukhc Chitra, Titusc Susan, Pradeep 
Kumarc, Soumyo Mukherjia. (2010). Label-free fiber optic biosensor based on 
evanescent wave absorbance at 280nm. Sensors and Actuators B. 143 , 724-730.

[81] Rekha K., Thakur M. S. and Karanth N. G. (2000). Biosensors for the detection o f 
organophosphorous pesticides .Informa Health Care. 20 , 213-235.

[82] Gutierrez M., Alegret S., del Valle M.. (2007). Potentiometric bioelectronic 
tongue for the analysis o f urea and alkaline ions in clinical samples .Biosensors and 
Bioelectronics. 22 (9-10), 2171-2178.

i
[83] Hicks G. P . , Updike S. J. (1967). The enzyme electrode, Nature, 214,986-988.

[84] Guilbault, G. G. , and M ontalvo, J.(1969). A urea specific enzyme electrode, J. 
Am.Chem. Soc.91,2164.

[85] Blackburn G. F., Shah H. P., Kenten J. H., Leland J., Kamin R. A., Link J., 
Peterman J., Powell M. J., A. Shah, D. B. Talley, S. K. Tyagi, E. W illkins, T. G. Wu 
and R. J. M assaey,(1991), Electrochemiluminescence Detection for Development o f 
Immunoassays and Dna Probe Assays for Clinical Diagnostics, Clin. Chem., 37,1534- 
1539.

[8 6 ] Rocks B.F., Patel N. and Bailey M.P., (1991) Use o f a silver-enhanced gold- 
labeled immunoassay for detection o f antibodies to the human-immunodeficiency-virus 
in whole-blood samples Ann. Clin. Biochem., 28,155-129.

[87] Jansen E. H. M., Vandenberg R.H.and Zomer G.,(1989), characteristics and 
detection principles o f a new enzyme label producing a longe-term chemi-luminescent 
signal, J. Biolumin. Chemilumin., 4,129-135.

[8 8 ] Betazzo. U, Ehrlich S. D. and Bernardi g., (1973),radioactive labelling and analysis 
o f 3 -  Terminal nucleotides o f DNA fragments. Biochim. Biophys. Acta, 312,192-201.

[89] Hypia T., (1985), detection o f adenovirus in nasopharyngeal specimens by 
radioactiveand nonradioactive dna probe ,./. Clin. Microbial. 21, 730-733.

[90] Ricci F., Volpe G., micheli L., and palleschi G.,(2007), a review on novel 
developments and applications o f immunoscensors in food analysis, Anal. Chim. Acta, 
605, 111-129.

[91] Janis K. (1997), Immunology. W .h.freeman & co.

[92] Wild D., Ed.(2005). The immunoassay handbook. London: Elsvier.

144



[93] Dan Dua, Feng Yanb, Shengli Liuc, Huangxian Jua, (2003) Immunological assay 
for carbohydrate antigen 19-9 using an electrochemical immunosensor and antigen 
immobilization in titania sol-gel matrix . Journal o f Immunological Methods, 283 , 6 7 - 
75

[94] Elgersma A. V. , Zsom R. L. J., Norde W. and Lyklema J. ( 1991), The 
adsorption o f different types o f monoclonal immunoglobulin on positively and 
negatively charged polystyrene lattices, Colloids and Surfaces, 54, 89-101.

[95] Bagchi P. and Birmbaum S. M., (1981), Effect o f ph on the adsorption o f 
immunoglobulin-g on anionic poly(vinyltoluene) model latex- particales, J. Colloid 
Interface Sci.83, 460-478.

[96] Schramm W., Paek S. and Voss G. (1993) Strategies for the immobilization o f 
antibodies, Immunomethode, 3 ,93-103.

[97] Hicks G. P. and Updike S. J. (1967) The enzyme electrode, nature. 214 , 986.

[98] Edeleman G. M. (1972). Antibody structure and molecular immunology,Science. , 
830-840.

[99] Gerdes J., Lemke H., Baisch H., W acker H.H., Schwab U.and Stein H. (1984). 
Cell cycle analysis o f a cell proliferation-associated human nuclear antigen defined by 
the monoclonal antibody ki-67 .Immunology. 133 , 1710-1715.

[100] Donasik Yoo, Aiping Wu, Jinkyu Lee, Michael F. Rubner.(1997).New electro
active self-assembled multilayer thin films based on alternately adsorbed layers o f 
polyelectrolytes and functional dye molecules, Synthetic Metals.85 (1-3), 1425- 1426.

[101] Yuri Lvov , Heinrich Haas , Gero Decher , Helmuth M oehwald , Albert 
Mikhailov , Boris Mtchedlishvily , Ekaterina Morgunova , Boris Vainshtein(1994). 
Successive Deposition o f Alternate Layers o f Polyelectrolytes and a Charged Virus, 
Langmuir, 10 (11), 4232-4236.

[102] Janeway CA Jr,Travers P, Walport M, et al. (2001). Immunobiology: The 
immune system in health and diesease .5th edition.garlard science. .

[103] RE Bird, KD Hardman, JW Jacobson, S Johnson, BM Kaufman, SM Lee, T 
Lee,SH Pope, GS Riordan, M Whitlow. (1988). Single-chain antigen-binding proteins. 
Science. 242 ,423-426 .

[104] Mayer G., Immunoglobulins-structure and function. Microbiology. 5th edition, H 
edition, 110-113.

[105] Hornbeck P., Winston S. E., Fuller S. A. (2001). Enzyme-Linked immunosorbent 
assays (ELISA).Current protocols in molecular biology.

[106] Indyk H. E., Evans E. A., Bostrom Caselunghe M.C. (2000). Determination o f 
biotin and folate in infant formula and milk by optical biosensor-based 
immunoassay.^6T4C International. 83 , 1141-1148.

145



[107] Nagata K. and Handa H. Springer-Verlag. (2000). Real-time analysis o f 
biomolecular interactions:Applications o f biacore. tokyo.

[108] Azzam R,M.A. and Bashara N .M .,(1978). Ellipsometry and Polarized. Surface 
Technology, 7, (3) 269.

[109] Woollam J.A.Co.Inc, (2001),Guide to using WVASE32, Software for 
Spectroscopic Ellipsometry Data Acquisition and Analysis. New York: Wex Tech 
Systems Inc.

[110] Arwin H. (1998), Spectroscopic ellipsometry and biology: recent developments 
and challenges, Thin Solid film 764-774.

[111] Sai V.V.R., Tapanendu Kundu, Chitra Deshmukh, Susan Titus, Pradeep Kumar, 
Soumyo M ukherji,(2010), Label-free fiber optic biosensor based on evanescent wave 
absorbance at 280nm. Sensors and Actuators B 143, 724-730.

[112] Nabok A., Tsargorodskaya A., Frank Davis, Seamus Higson P.J. (2007) The study 
o f genomic DNA adsorption and subsequent interactions using total internal reflection 
ellipsometry. Biosensors and Bioelectronics 23, 377-383.

[113] M almqvist M(1993). Surface plasmon resonance for detection and measurement 
o f antibody-antigen affinity and kinetics. Curr Opin Immunol. 5,282-286.

[114] Alexander Szabo, Lesley Stolz and Russ Granzow(1995). Surface plasmon 
resonance and its use in biomolecular interaction analysis (BIA). Current Opinion in 
Structural Biology, 5( 5), 699-705.

[115] Herranz S., Bockova M. Marazuela M.D. Homola J. Moreno-Bondi M. C. (2010). 
An SPR biosensor for the detection o f microcystins in drinking water, Anal. Bioanal. 
Chem.398, 2625-2634.

[116] Kabashin A. V., and Nikitin P.I.,(1998), “Surface plasmon resonance 
interferometer for bio- and chemical-sensors, Opt. Commun. 150 (1-6), 5-8.

[117] Nabok A.V., Hassan A.K., Ray A.K.; (1999) Optical and electrical 
characterisation o f poly electrolyte self-assembled thin films. Material Science and 
Engineering C (8-9), 505-508.

[118] Nabok A., Parkinson D., Mustafa M. K.,Tsargorodskaya A.,(2010) Detection o f 
amyloid precursor protein using ellipsometry immunosensor with a view o f Alzheimer's 
disease diagnostics, Sensors & Transducerj,120 (9), 53-61.

[119] Westphal P. and Bornmann A.,(2002) bioelcular detection by surface Plasmon 
enhanced ellipsometry, Sensors and Actuators, B: Chemical, 84,.278-282.

[120] Arwin A., Poksinski M. and Johansen K. (2004) total internal reflection 
ellipsometry: principles and applications,^/?/?/. Opt A3,3028-3036.

146



[121] Nabok A.V., Tsargorodskava A., Hassan A.K. and Starodub N.F. ,(2005), total 
internal reflection ellipsometry and SPR detection o f low molecular weight 
environmental toxins. Applied Surface Science,246,381-386.

[122] Kim H. , Jung S., Kim S. , Suh I., Kim W.J., Jung J.,Yuk, J.S. Kim Y. and k. 
Ha,(2006), high-throughput analysis o f mumps virus and the virus-specific monoclonal 
antibody on the arrays o f a cationic polyelectrolyte with a spectral SPR Biosensor, 
Proteomics, 6 , 6426-6432.

[123] Anne Zeck, Anja Eikenberg, Michael G. Weller, Reinhard Niessner,(2001). 
Highly sensitive immunoassay based on a monoclonal antibody specific for [4- 
arginine]microcystins Chimica Acta. 441,1-13.

[124] Woollam J.A Co. Inc,(2001).Guide to using WVASE32, Software for 
Spectroscopic Ellipsometry Data Acquisition and analysis. New York,W ex Tech 
systems Inc.,

[125] Hiroyuki Fujiwara,(2007). Spectroscopic Ellipsometry: Principles and 
Applications. England: John Wiley& Son Ltd.

[126] Nabok A. (2005). Organic and inorganic nanostructure, artech house, boston.

[127] Indyk H. E., Evans E. A., Bostrom Caselunghe M.C . (2000), Determination o f 
biotinand folate in infant formula and milk by optical biosensor-based 
im m unoassay^OAC international. 83 , 1141-1148.

[128] Anne Zeck, Anja Eikenberg, Michael G. Weller. (2001). Reinhard niessner highly 
sensitive immunoassay based on a monoclonal antibody specific for [4- 
arginine]microcystins. Analytica Chimica Acta. 441 , 1-13.

[129] Shane Beck. (1998). Across the spectrum: Instrumentation for UV/Vis 
spectrophotometry,the scientist magazine technology profile,chart 1 .

[130] Andruch V., Kocurova L., Balogh I. S., Skrlikova J. (2012). Recent advancesin 
couplingsingle-drop and dispersive liquid-liquid microextraction with UV-vis 
spectrophotometry and related detection techniques. Microchemical Journal Elsevier 
1 0 2 , 1- 10.

[131] Bosch Ojeda C., Sanchez Rojas F. (2013) Recent applications in derivative 
ultraviolet/visible absorption spectrophotometry, microchemical journal, 106 , 1-16.

[132] Filipsky T., Riha M., Hrdina R., Vavrova K., M ladenka P. (2013). 
Mathematical calculations o f iron complex stoichiometry by direct U V -V is 
spectrophotometry. Bioorganic Chemistry. 49 , 1-8.

[133] Josep M. Verges, Juan I. Morales. (2014). Thegigapixel image concept for 
graphic SEM documentation.applications in archeological use-wear studies .Micron. 65 , 
15-19.

[134] Jiruse J., Havelka M., Lopour F. (2014). Novel field emission SEM column with 
beam deceleration technology. Ultramicroscopy. Elsevier 146 , 27-32.

147



[135]Chunli Zheng, Yafei Ding, Xiaoqing Liu, Yunkai Wu, Liang Ge. (2014). Highly 
magneto-responsive multilayer microcapsules for controlled release o f 
insulin. International Journal o f Pharmaceutics. 475 (1-2), 17-24.

[136] Woodward J.D., W epf R.A. (2014), Macromolecular 3D SEM reconstruction 
strategies: Signal to noise ratio and resolution. Ultramicroscopy. 144 , 43-49.

[137] Orkun Ersoy. (2010). Surface area and volume measurements o f volcanic ash 
particles by SEM stereoscopic imaging. Journal o f Volcanology and Geothermal 
research. 190 (3-4), 290-296.

[138] Ilker R. £apoglu, Jeremy D. Rogers, Allen Taflove, Vadim Backman. (2012). 
Chapter 1 - the microscope in a computer: Image synthesis from three-dimensional full- 
vector solutions o f M axwell’s equations at the nanometer scale.progress in optics. 57 , 
1-91.

[139] Perkins W.D. (1986). Fourier transform-infrared spectroscopy.part 1. 
instrumentation, topics in chemical instrumentation, ed. frank A. settle, Jr. Journal o f  
Chemical Education. 63 ,5-10.

[140] Smith B. C. (1996). Fundamentals o f fourier transform infrared spectroscopy, 
CRC press.

[141] Saptari V. (2003). Fourier-transform spectroscopy instrumentation engineering, 
SPIE publication, bellingham ..

[142] Cheng X., Irimia D., Dixon M., Sekine K., Demirci U., Lee Z., Tompkins R. G., 
William R. and Toner M.(2007). A microfluidic device for practical label-free CD4+ T 
cell counting o f HIV-infected subjects. Lab. Chip 7 , 170-178.

[143] Kubitscheck U. (2013). Fluorescence microscopy: From principles to biological 
applications. (Book), 1-539.

[144] Hausmann, Michael. (1997). High-precision distance microscopy o f 3D 
nanostructures by a spatially modulated excitation fluorescence m icroscope.Optical 
Biopsies and Microscopic Techniques. 3197 ,217 .

[145] Bailey B., Farkas D.L., Taylor D.L., and Lanni F. (1993). Enhancement o f axial 
resolution in fluorescence microscopy by standing-wave excitation, Nature. 366 , 44-48.

[146] Konstatinides K., and Rasure J. (1994). The khoros software development 
environment for image and signal processing IEEE trans. Imageproc. 3 (3), 243-252.

[147] Gunkel, M. (2009). Dual color localization microscopy o f cellular nanostructures. 
Biotechnology Journal. 4 (6 ), 38-927.

[148] Nabok A. V. and Richardson T.,Frank Davis and Stirling Charles J. M., (1997). 
Cadmium sulfide nanoparticles in Langm uir-Blodgett films o f calixarenes. 
Langmuir. 13 (12), 3198-3201.

148



[149] Nabok A.V. Author Vitae, Hassan A.K. , Ray A.K , Omar O., Kalchenko V.I. 
(1997). Study o f adsorption o f some organic molecules in calix[4]resorcinolarene LB 
films by surface plasmon resonance.Sensors and Actuators B: Chemical.. 45 (2), 115- 
1 2 1 .

[150] RAY, Hassan A. K., and Nabok, A. V. (2003). Nanocomposite organic films on 
silicon .Nanotechnology, IEEE transact. 2 (3), 149-153.

[151] Ebrahim S. (2012) Harvard college, properties o f silk III fibroin at the air-water 
interface.

[152] Nabok A. V. (2000). Registration o f immunoglobuline AB/AG reaction with 
planar polarization interferometer .Biochemical and Biomolecular Sensing. 4200 .

[153] Hassan, A. K., Nabok, A. V., Ray, A. K., Lucke, A., Smith, K., Strilling, C. J. M. 
and DAVIS, F. (1999). Thin films o f calix-4-resorcinarene deposited by spin coating 
and Langmuir-Blodgett techniques: determination o f film parameters by surface 
plasmon resonance. Materials Science and Engineering C, 8-9, 251-255.

[154] Ebrahim S. (2012). Harvard college, properties o f silk III fibroin at the air-water 
interface.

[155] Hayward D., Pethrick R. A. , Tiwaporn Siriwittayakom. (1992). Dielectric 
studies o f heterogeneous phase polymer systems: Poly(ethylene oxide) inclusions in 
polycarbonate - a model system .Macromolecules. 25 (2), 1480-1486.

[156] Sze-Shun Wong , Hajime Takano , and Marc D. Porter. (1998). Mapping 
orientation differences o f terminal functional groups by friction force microscopy .Anal. 
Chem. 70 (24), 5209-5212.

[157] Haberska K., Ruzgas T. (2009) Polymer multilayer film formation studied by in 
situ ellipsometry and electrochemistry .Bioelectrochemistry. 76 , 153-161.

[158] Gonzalez-Maeso J. (2010) Anxious interactions. Nature Neuroscience. 13 , 524- 
526.

[159] Maynard JA, Lindquist NC, Sutherland JN, Lesuffleur A, W arrington AE, et al. 
(2009). Surface plasmon resonance for high-throughput ligand screening o f 
membrane-bound proteins. Biotechnol J. 4 , 1542-1558.

[160]Nabok A, Tsargorodskaya A. (2008). The method o f total internal reflection 
ellipsometry for thin film characterisation and sensing. Thin Solid films. 516 , 8993- 
9001.

[161]Arwin H, Poksinski M, Johansen K. (2004). Total internal reflection ellipsometry: 
Principles and applications. Appl Optics. 43 , 3028-3036.

[162]Kriechbaumer V, Tsargorodskaya A, Mustafa MK, Vinogradova T, Lacey J, et al.
(2011). Study o f receptor-chaperone interactions using the optical technique o f 
spectroscopic ellipsometry. BiophysJ. 101 , 504-511.

149



[163] Von Loeffelholz O, Kriechbaumer V, Ewan RA, Jonczyk R, Lehmann S, et al.
(2011). OEP61 is a chaperone receptor at the plastid outer envelope. Biochem J. 438 , 
143-153.

[164] W ickner W, Schekman R. (2005). Protein translocation across biological 
membranes. Science. 310 , 1452-1456.

[165] Abell BM, Rabu C, Leznicki P, Young JC, High S. (2007). Post-translational 
integration o f tail-anchored proteins is facilitated by defined molecular chaperones. J  
Cell Sci. 120,  1743-1751.

[166] Nabok A., Tsargorodskaya,A., Mustafa, M. K., Szekacs, I., Starodub, (2011). 
Detection o f low molecular weight toxins using optical phase detection techniques. 
Sensors Actuators B Chemical, 154 , 232-237.

[167] Nabok A., Tsargorodskaya, A., Holloway, A., Starodub, N. F. (2007). Specific 
binding o f large aggregates o f amphiphilic molecules to respective antibodies. 
Langmuir. 23 , 8485-8490.

[168] Kershaw S. J. (1982). Occurrence o f aflatoxin in oilseeds providing cocoa-butter 
substitutes.^/?/?/. Environ. Microbiol. 43 , 1210-1212.

[169] Yu J. C. C. and Lai E. P. C. (2004). Polypyrrole film on miniaturized surface 
plasmon resonance sensor for ochratoxin A detection, Synth. Met. 143 , 253-258.

[170] Nabok, A. V., Daves, F., Hassan, A. K., RAY, A. K., Majeed, R. and 
Ghassemlooy, Z. (1999). Polyelectrolyte self-assembled thin films containing cyclo- 
tetrachromotropylene for chemical and bio-sensing. Materials Science and Engineering 
C, 8-9, 123-126.

[171] Nabok A., Tsargorodskaya A., Davis F., Higson S. P.J, (2007). The study o f DNA 
hybridisation using total internal reflection ellipsometry, Biosensors & Bioelectronics, 
23 (3), 377-383.

[172] Nabok A., Tsargorodskaya A. (2008). The method of total internal reflection 
ellipsometry for thin film characterisation and sensing, Thin Solid Films, 516 (24), 
8993-9001.

[173] Nabok A., Tsargorodskaya A., Gauthier D., Davis F., Higson S.P.J., T. Berzina, 
L. Cristofolini, Fontana M., (2009). Hybridization o f genomic DNA adsorbed 
electrostatically onto cationic surfaces, Journal o f Physical Chemistry B, 113 , 7897- 
7902.

[174] Nabok A.V. , Tsargorodskaya A., Holloway A., Starodub N.F., Demchenko A. 
(2007). Specific binding o f large aggregates o f amphiphilic molecules to respective 
antibodies, Langmuir, 23 (16), 8485-8490.

[175] Nabok A., Heriot S.Y., Richardson T. H. (2005). Optical study o f langmuir- 
schaeffer films o f gold colloid nanoparticles, Phys. Status Solid, 242 (4), 797-802.

150



[176] Mustafa M.K., Nabok A., Parkinson D., Tothill I.E., Salam F., Tsargorodskaya 
A., (2010). Detection o f beta- amyloid peptide (1-16) and amyloid precursor protein 
(APP770) using spectroscopic ellipsometry and QCM techniques: A step forward 
towards alzheimers disease diagnostics, Biosensors & Bioelectronics, 26 , 1332-1336.

[177] Nabok A., Tsargorodakaya A., Suryajaya. (2008). Ellipsometry study o f ultra 
thin layers o f evaporated gold, Phys. Stat. Solid C, 23 (5), 1150-1155.

[178] Nabok, A. V., Ray, A. K., Hassan, A. K., Omar, O., Taylor, R., Richardson, T. 
and Pavier, M. (1998). Inclusion phenomenon in mixed floating layers containing 
phthalocyanines. Thin Solid Films, 327, 104-108.

[179] M ackintosh C., Beattie K. A., Klump S., Cohen P.H., Codd G. A. (1990). 
Cyanobacterial microcystin-LR is a potent and specific inhibitor o f protein 
phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett, 264(2) 187- 
192.

[180] Carmichael, Carmichael W.W. (1992). Cyanobacteria secondary metabolites-the 
cyanotoxins Journal o f Applied Bacteriology, 72 , 445-459.

[181] Lindner P., Molz R., Yacoub-George E., Durkop A., W olf H. (2004) 
Development o f a highly sensitive inhibition immunoassay for microcystin-LR. 
Analytica Chimica Acta . 521 (1), 37-44.

[182] Anne Zeck , Michael G. W eller , Don Bursill and Reinhard Niessner, (2001). 
Generic microcystin immunoassay based on monoclonal antibodies against adda. 
Analyst. 126 ,2002-2007.

[183] Zeck A., W eller M. G., N iessner R. (2001). Highly sensitive immunoassay based 
on a monoclonal antibody specific for [4-argininelmicrocystins. Analytica Chimica 
Acta. 441(1), 1-13.

[184] Claire S. Peyratout Dr. and Lars Dahne Dr. Tailor-made polyelectrolyte 
microcapsules: From multilayers to smart containers. Angewandte Chemie International 
edition. 43 (29), 3762-3783.

[185] Kenne G., Deon van der Merwe. (2013). Classification o f toxic cyanobacterial 
blooms by fourier-transform infrared technology (FTIR). Advances in microbiology, 3 , 
1-8.

[186]Frank Higgins. (2013). Onsite quantitative FTIR analysis o f water in turbine oil.

[187]Sabine Ja hnichen, Benedict M. Long, Thomas Petzoldt. (2011). Microcystin 
production by microcystis aeruginosa: Direct regulation by multiple environmental 
factors,Harmful Algae. 12 , 95-104.

[188] Zhou Yang , Linlin Geng , Wei Wang , Jing Zhang. (2012). Combined effects o f 
temperature, light intensity, and nitrogen concentration on the growth and 
polysaccharide content o f microcystis aeruginosa in batch culture. Biochemical 
Systematics and Ecology. 41 , 130-135.

151



[189] Dittmann E., Bomer T.(2005). Genetic contributions to the risk assessment o f 
microcystin in the environment. Toxicology and Applied Pharmacology. 203 , 192-200.

[190] Sielaff H., Dittmann E., Tandeau de Marsac N., Bouchi C., von Dohren H., 
Bomer T., Schwecke T. (2003). The mcyF gene o f the microcystin biosynthetic gene 
cluster from microcystis aeruginosa encodes an aspartate racemase, Biochemical journal, 
immediate publication. .

[191] KRUGER G.H.J., E loff J. N. (1983). Effect o f C 0 2 and H C 0 3' on photosynthetic 
oxygen evolution by microcystis aeruginosa. Zeitschrift fur Pflanzenphysiologie 112
(3), 231-236.

[192] Taghavi D., Farhadian O., Mahboobi Soofiani N., Keivany Y. (2013). Effects o f 
different light/dark regimes and algal food on growth, fecundity, ephippial induction 
and molting o f freshwater cladoceran, Ceriodaphnia Quadrangula, Aquaculture. 410- 
4 11 ,190-196 .

[193]Karina H esse ,, Elke Dittmann, Thomas Borner. (2001). Consequences o f impaired 
microcystin production for light-dependent growth and pigmentation o f  microcystis 
aeruginosa PCC 7806, FEMS Microbiology Ecology . 37 (1), 39-43.

[194] Zhou Yang , Linlin Geng, Wei Wang, Jing Zhang. (2012). Combined effects o f 
temperature, light intensity, and nitrogen concentration on the growth and 
polysaccharide content o f microcystis aeruginosa in batch culture. Biochemical 
Systematics and Ecology. 41, 130-135.

[195] Carlos J. Pestana, Petra J. Reeve, , Gayle Newcombe. (2014). Extraction method 
for total microcystins in cyanobacteria-laden sludge, Journal o f  Chromatography B . 
965 ,6 1 -6 4 .

[196] Carmen Rojo, , Matilde Segura , Francisco Cortes , Maria A. Rodrigo . (2013). 
Allelopathic effects o f microcystin-LR on the germination, growth and metabolism of 
five charophyte species and a submerged angiosperm. Aquatic Toxicology. 144-145, 1- 
10 .

[197] Xi Hu, Yunguo Liu, Guangming Zeng, Xinjiang Hu, Yaqin Wang, Xiaoxia Zeng. 
(2014). Effects o f limonene stress on the growth o f and microcystin release by the 
freshwater cyanobacterium microcystis aeruginosa FACHB-905, Ecotoxicology and 
Environmental Safety 105 , 121-127.

[198] Timothy W. Davis, Dianna L. Berry, Gregory L. Boyer, Christopher J. Gobler. 
(2009). The effects o f temperature and nutrients on the growth and dynamics o f  toxic 
and non-toxic strains o f microcystis during cyanobacteria blooms, Harmful Algae. 8  (5), 
715-725.

[199] Yanfang Chen, Fengbo He, Yong Ren, Hong Peng, , Kaixun Huang. (2014). 
Fabrication o f chitosan/PAA multilayer onto magnetic microspheres by LbL method for 
removal o f dyes. Chemical Engineering Journal. 249, 79-92.

[200] Shideh Pouria, A de Andrade, J Barbosa, R L Cavalcanti, V T S Barreto, C J 
Ward, W Preiser, Grace K Poon, G H Neild, G A Codd (1998). Fatal microcystin 
intoxication in haemodialysis unit in caruaru, brazil. Lancet. 352 , 21-26.

152



[201] W inn-Jung Huanga, Bai-Ling Chengb, Yung-Ling Chenga. (2007). Adsorption o f 
microcystin-LR by three types o f activated carbon Journal o f  Hazardous Materials. 
141 ,115-122 .

[202] Tao Lin, Wei Chen, Leilei Wang. (2010). Particle properties in granular activated 
carbon filter during drinking water treatment Journal o f Environmental Eciences , 22
(5), 681-688.

[203] Lalita N. Sangolkar, Sarika S. Maske, Pradeep L. Muthal, Sanjay M. Kashyap, 
Tapan Chakrabarti. (2009). Isolation and characterization o f microcystin producing 
microcystis from a central indian water bloom. Harmful Algae. 8  (5), 674-684.

[204] Emad Y. A. Al-Sultan. (2011). The isolation , the purification and the 
identification o f hepatotoxin microcystin-LR from two cyanobacterial species and 
studying biological activity on some aquatic organisms. Journal o f Basrah Researches 
Sciences. 3 7 ,3 9 -5 7 .

[205 ] Straub C., Quillardet P., Vergalli J., Tandeau de Marsac N., Humbert J. 
F .(2011), A Day in the Life o f Microcystis aeruginosa Strain PCC 7806 as Revealed by 
a Transcriptomic Analysis.P/os One. Jornal Pone.

[206] Sabine Ja”hnichen a, Benedict M. Long, Thomas Petzoldt. (2011). Microcystin 
production by microcystis aeruginosa: Direct regulation by multiple environmental 
factors. Harmful Algae 12 (2011) 95 -104 .12  , 95-104.

[207] Qin Wei , Yanfang Zhao , Bin Du , Dan Wu , Yanyan Cai , Kexia Mao , He Li , 
and Caixia Xu. (2011). Nanoporous PtRu alloy enhanced nonenzymatic immunosensor 
for ultrasensitive detection o f microcystin-LR. Advanced Functional Material. 21 (21), 
4193-4198.

[208] Sharma V. K., Triantis M. T. M. , Antoniou G. X., Pelaez He M., Han C., Song 
W., Shea K. E. O, Cruz A. A. de la , Kaloudis T., Hiskia A., Dionysios D. Dionysiou,.
(2012). Destruction o f microcystins by conventional and advanced oxidation processes: 
A review .Separation and Purification Technology. 91 ,3-17.

[209] Liu J. , Huang Y. , Kumar A., Tan A. , Jin S. , Mozhi A. , Xing-Jie Liang.
(2013). pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnology 
Advances, 32, (4),693-710.

[210] Xiaoxue Song, Huanbin Li, Weijun Tong , Changyou Gao. (2014). Fabrication o f 
triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing. 
Journal o f  Colloid and Interface Science 416 , 252-257.

[211] Alireza Abbaspourrad , Sujit S. Datta , and David A. Weitz. (2013). Controlling 
release from pH-responsive microcapsules. Langmuir, 29 (41), 12697-12702.

[212] Feng Z., Wang Z., Gao C., Shen J. (2007). Hollow microcapsules with a 
complex polyelectrolyte shell structure fabricated by polymerization o f 4-vinylpyridine 
in the presence o f poly(sodium 4-styrenesulfonate) and silica particles. Materials 
Letters. 61 ,2560-2564.

153



[213] Bao-ling yuan, Jiu-Hui Qu, Ming-Lai Fu. (2002). Removel o f cyanobacterial 
microcystin-LR by ferrate oxidation- coagulation. Toxicon. 40 , 1129-1134.

[214] Alice Hudder, W eihua Song, Kevin E. O'Shea, Patrick J. W alsh. (2007). 
Toxicogenomic evaluation o f microcystin-LR treated with ultrasonic irradiation, 
Toxicology and Applied Pharmacology. 220 , 357-364.

[215] He X., Pelaez M., Judy A. Westrick , Kevin E. O ’Shea , A., H.,T., Triantis, T., 
Kaloudis, Mihaela I. Stefan f,Armah A. de la Cruz , Dionysios D. Dionysiou .
(2012). Efficient removal o f microcystin-LR by U V -C/H 202 in synthetic and natural 
water samples. Water Research. 4 (6 ), 1501-1510.

[216] Dai G., Quan C., Zhang X. , Jin Liu, L., Song. (2012). 
Nanqin gan. fast removal o f cyanobacterial toxin microcystin-LR by a low-cytotoxic 
microgel-fe(III) complex. Water Research. 46 , 1482-1489.

[217] Liana L., Caoa X., Wu Y., Sunb D., Loub D., (2014). A green synthesis o f 
magnetic bentonite material and its applicationfor removal o f microcystin-LR in water. 
Applied Surface Science. 289, 245-251.

[218] Geshan Z., Yong Cai Zhang, M., Nadagoudac, C., Hana,Kevin O ’Shead, Said M. 
El-Sheikhe, Adel A. Ismaile, D., D. Dionysioua. (2014). Visible light-sensitized S, N 
and C co-doped polymorphic Ti02forphotocatalytic destruction o f microcystin-LR. 
Applied catalysis B: Environmental. 144 , 614-621.

[219] Liu X., Chen Z., Zhou N., Shen J., M., Ye. (2010). Degradation and 
detoxification o f microcystin-LR in drinking water by sequential use o f UV and 
ozone. Journal o f Environmental Sciences. 22 (12), 1897-1902.

[220] Pelaez M., Armah A. de la Cruz, Elias Stathatos, Polycarpos Falaras, Dionysios
D. Dionysiou, (2009). Visible light-activated N-F-codoped T i02  nanoparticles for the 
photocatalytic degradation o f microcystin-LR in water.Catal Today. 144 , 19-25.

[221] Hong Zhang, Qing Huang, Zhigang Ke, Linfang Yang, Xiangqin Wang, 
Zengliang Yu. (2012). Degradation o f microcystin-LR in water by glow discharge 
plasma oxidation at the gasesolution interface and its safety evaluation. Water Research. 
46 , 6554-6562.

[222] Jacobs L. C.V., Peralta-Zamora P. , Campos F. R., Pontarolo R..
(2013). Photocatalytic degradation o f microcystin-LR in aqueous solutions. 
Chemosphere. 90 , 1552-1557.

[223] Wenjuan Liao , Yanrong Zhang, Mi Zhang , Muthu M urugananthan , Sachio 
Yoshihara. (2013). Photoelectrocatalytic degradation o f microcystin-LR using 
Ag/A gCl/Ti02 nanotube arrays electrode under visible light irradiation. Chemical 
Engineering Journal. 231 , 455-463.

[224] Jungju Lee, Harold W. Walker. (2011). Adsorption o f m icrocystin-lr onto iron 
oxide nanoparticles, colloids and surfaces A: Physicochem. Eng. Aspects. 373, 94-100.

[225] W arhurst A.M., IRaggettb S.L., McConnachie G.L., Pollard S.J.T., Chipofyad V., 
Codd G.A. (1997). Adsorption o f the cyanobacterial hepatotoxin m icrocystin-LR by a

154



low-cost activated carbon from the seed husks o f the pan-tropical tree, moringa oleifera. 
The science o f the total Environment. 207, 207-211.

[226] Nyboma S.M.K., DzigaHeikkila D., J.E., Kull T.P.J., Salminen S.J., Meriluoto. 
J.A.O. (2012). Characterization o f microcystin-LR removal process in the presence 
o f probiotic bacteria. Toxicon. 59 , 171-181.

[227] Hangjun Zhang, Guoying Zhu, Xiuying Jia, Ying Ding, Mi Zhang,
(2011). Removal o f microcystin-LR from drinking water using a bamboo-based 
charcoal adsorbent modified with chitosan. Journal o f Environmental Sciences . 23 (12), 
1983-1988.

[228] Baoling Yuan, Yanbo Li, Xiaodan Huang, Huijuan Liu, Jiuhui Qu. (2006). 
Fe(VI)-assisted photocatalytic degradating o f microcystin-LR using titanium dioxide. 

Journal o f Photochemistry and Photobiology A: Chemistry . 178 , 106- 111.

[229] Jin Z., Guo, K., Tian-Fang X., Rui S., Xue. (2013). An immunosensor for 
microcystins based on Fe304, au magnetic nanoparticle modified screen-printed 
electrode. Chin J  Anal Chem. 41 (9), 1353-1358.

[230] Dai G. , Quan C. , Zhang X. , J., Liu , L., Song. (2012). Fast removal o f 
cyanobacterial toxin microcystin-LR by a low-cytotoxic microgel-fe( HI) complex. 
Water Research. 46 , 1482-1489.

[231] Baoling Yuan , Yanbo Li , Xiaodan Huanga, Huijuan Liu , Jiuhui Qu. (2006) 
Fe(VI)-assisted photocatalytic degradating o f microcystin-LR using titanium dioxide. 
Photochemistry and Photobiology A: Chemistry 178, 106-111.

[232]Xin Sui, Xiangrong Wang, Honghui Huang, Guotao Peng, Shoubing 
W ang,Zhengqiu Fan(2014). A Novel Photocatalytic Material for Removing 
Microcystin-LR under Visible Light Irradiation: Degradation Characteristics and 
Mechanisms, DOI: 10.1371, Journal. Pone.009 519^.

155


