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Abstract

The trend in swarm robotics research is shifting to  the design of more complicated systems in 
which the robots have abilities to form a robotic organism. In such systems, a single robot has 
very limited memory and processing resources, but the complete system is rich in these resources. 
As vision sensors provide rich surrounding awareness and vision algorithms also requires intensive 
processing. Therefore, vision processing tasks are the best candidate for distributed processing in 
such systems.

To perform distributed vision processing, a number of scenarios are considered in swarm and 
the robotic organism form. In the swarm form, as the robots use low bandwidth wireless commu­
nication medium, so the exchange of simple visual features should be made between robots. This 
is addressed in a swarm mode scenario, where novel distance vector features are exchanged within 
a swarm of robots to  generate a precise environmental map. The generated map facilitates the 
robot navigation in the environment. If features require encoding with high density information, 
then sharing of such features is not possible using the wireless channel with limited bandwidth. So 
methods were devised which process such features onboard and then share the process outcome to 
perform vision processing in a distributed fashion. This is shown in another swarm mode scenario 
in which a number of optimisation stages are followed and novel image pre-processing techniques 
are developed which enable the robots to  perform onboard object recognition, and then share the 
process outcome in terms of object identity and its distance from the robot, to localise the objects.

In the robotic organism, the use of reliable communication medium facilitates vision processing 
in distributed fashion, and this is presented in two scenarios. In the first scenario, the robotic 
organism detect objects in the environment in distributed fashion, but to get detailed surround­
ing awareness, the organism needs to  learn these objects. This leads to a second scenario, which 
presents a modular approach to object classification and recognition. This approach provides 
a mechanism to learn newly detected objects and also ensure faster response to  object recogni­
tion. Using the modular approach, it is also demonstrated th a t the collective use of 4 distributed 
processing resources in a robotic organism can provide 5 times the performance of an individual 
robot module. The overall performance was comparable to an individual less flexible robot (e.g., 
Pioneer-3AT) with significant higher processing capability.
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Chapter 1

Introduction

A major research in the field of robotics is focused on moving the robots and vehicles 
autonomously in an unknown environment and taking intelligent decisions (e.g., grab 
object after recognising) to accomplish specific tasks. After achieving excellence in 
moving individual robots autonomously, the trend in the robotic research has shifted 
to collaborative achievement of tasks in multi-robotic environment, where multiple 
small size robots work together to achieye common objectives and goals [1] [2] [3] [4]. 
This has led to the concept of swarm robotics. The idea of swarm robotics is based on 
swarm intelligence which is inspired from the social behaviour exhibited by animals, 
specially insects. One example in the nature showing collective behaviour is the 
manner ants pick up the prey together, which is many times heavier than their own 
weight and bring this food back to their colony. This is shown in Figure 1.1a. The 
same behaviour when exhibited by the swarm of robots, is shown in Figure 1.1b, 
where a number of small size robots are collectively searching for a big Red coloured 
object. Once the object is found, then the robots have to move it. The object is too 
heavy for a single robot to move. Hence, a robot swarm needs to cooperate with 
each other for moving it. This cooperative behaviour exhibited by the robot swarm 
for moving the object collectively towards the light source is shown in Figure 1.1c.

Some of the swarm robotic systems can take more complex forms by introducing 
enhanced robotic features that, apart from contributing to the common objective by 
working on individual basis, robots can also be physically attached and de-attached 
from each other to become a bigger structure (i.e. a single robotic organism) for 
achieving a global objective [7] [8]. This is shown in Figure 1.2b where a group of 
robots physically join together to cross over a gap. Again, the inspiration cames from
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Figure 1.1: (a) Ants trying to move heavy prey [5]. (b) Robots search for the big red object in the 
environment [6]. (c) Swarm of robots moving the object collectively [6].

the nature as shown in Figure 1.2a. This intelligent practice is being adopted by a 
type of ants, commonly found in Central and South America. These ants categorise 
among themselves and select the members having suitable body size to fill the gaps 
between the stems and eventually form a bridge. This cooperative behaviour by the 
ants facilitates other ants to carry food back to their colony.

The term “Cooperation” requires “Knowledge Sharing” . In swarm robotics, the 
cooperative achievement of a common task by multiple robots requires the robot 
modules to share their knowledge with each other. In some cases, the robotic mod­
ules also share the computational resources with other team members. This knowl­
edge and resource sharing lead to the concept of distributed computing [84] [83]. 
So the swarm robotic system is basically a distributed robotic system, that acquires 
rich energy and processing resources, but these resources are distributed among 
many robotic units. The efficient utilisation of these resources introduces new chal-
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Figure 1.2: (a) Ants forming a bridge to facilitate other members for carrying food to  the colony [9]. 
(b) Robots physically joining together and forming a bridge [6].

lenges of efficient knowledge sharing among multiple robots, so that the collective 
and cooperative achievement of the task can be made. In the field of robotics, the 
use of inexpensive vision sensors provides rich surrounding information which can 
be used effectively to enhance the robot’s knowledge about the environment. The 
use of these sensors alone enables the solution to many problems in robotics (e.g 
obstacle avoidance, object detection, scene understanding and pattern recognition). 
Although integration of these vision sensors in swarm robotics has led researchers 
to use the power of computer vision technology, but at a cost of increased com­
putational complexity as these sensors generate huge amount of data that require 
processing. In swarm robotics, this computational complexity problem turns out to 
be worst as the target robots have very limited memory and processing power. In 
such systems, a single robot unit alone has limited processing power, but the swarm 
system as a whole is rich in processing resources, which are distributed among the 
whole system. So the computationally complex nature of the vision processing algo­
rithms makes the vision processing task the best candidate to be distributed in the 
rich processing environment of the swarm systems. This distribution of vision in­
formation in swarm systems introduces the concept of distributed vision processing 
among multi-robotic systems [12].

Vision processing in miniature size robots is a difficult task to perform (e.g. scene 
understanding) and when it comes to a swarm of miniature size robots which are
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1.1 Aims, objectives and background of the study

visually guided and trying to cooperate with each other by sharing the knowledge 
they gained about the environment, this makes the scenario quite interesting and 
challenging. So when a swarm of robots is moving in an environment to achieve 
a certain task collectively, ideally the swarm is expected to achieve the task more 
quickly as compared with a single robot, of-course subject to how efficient knowledge 
sharing and task distribution is performed by the robots. The task distribution can 
be performed on equal level that is, all the robots are given the same task. For 
example, to perform energy foraging [2], searching and localising important objects 
in the environment or mapping the environment. Or it can be on demand basis 
that is, the robots which are performing computationally heavy tasks dynamically 
determine when they want to distribute the tasks and may ask for help from other 
robots which are less busy.

Hence, distributed processing in the swarm robotic systems is a very active area 
of robotic research in which researchers have solved many problems by sharing the 
knowledge learned from different on-board sensors. But most of these research 
outcomes are based on computer simulations, with very little work done using real 
multi-robotic systems. However, distributed vision processing in swarm systems is 
a new and open research area in which detailed research is required. The use of real 
multi-robotic system for performing the distributed vision processing task makes 
this research area interesting and more challenging.

1.1 Aims, objectives and background of the study

The main aim of this research is to address the manner distributed vision processing 
could be achieved in a multi-robotic system which could work in swarm and organism 
modes. The multi-robotic system, in either swarm and organism form, is itself a 
distributed embedded system environment, with processing and energy resources, 
very limited in a single robot unit, but rich in terms of the whole system. So, 
for distributed vision processing in swarm and the organism form, a number of 
distributed vision processing scenarios are developed with the following objectives.

(i) Development and implementation of a library of vision processing algorithms 
which can execute on small size robot with limited onboard memory and pro­
cessing resources. This library of vision processing algorithms will act like basic 
building blocks for the development of distributed vision processing scenarios
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1.1 Aims, objectives and background of the study

in swarm and the organism form. The vision processing algorithms are required 
to provide high frame processing rate (i.e., 40 frames per second or higher), so 
that they can provide real time response in the vision processing scenarios.

(ii) Development and implementation of light weight vision based obstacle avoid­
ance algorithms, so that when the robots are moving in the environment, they 
avoid colliding with the obstacles.

(iii) Development of efficient vision based multi-robot docking support so that tran­
sition from the swarm to the organism can be facilitated.

(iv) Provision of vision based object recognition functionality to the robots. This 
requires the development and implementation of an efficient object recognition 
approach suitable for executing on a small size robot.

(v) Provide vision based surrounding awareness (e.g., by environment mapping and 
objects localisation) to the robots, which helps the robots to navigate in the 
environment.

(vi) Efficient utilisation of memory and processing resources in a robotic organism 
by distributing the vision processing load among multiple processing modules. 
This requires the development and implementation of vision based tasks (such 
as, object classification, recognition and surrounding visual information gath­
ering) in a modular fashion. The modular implementation of vision processing 
tasks facilitate in distributing the vision processing load, and provides higher 
frame processing rate, which helps the robotic organism to show quick response 
to its observations (i.e., information from vision sensor).

This research is carried out as a part of European Commissions FP7 research 
project “REPLICATOR” [8] [1]. REPLICATOR project is addressing multi robotic 
systems in which multiple robots have the ability to dock, share information, en­
ergy and computational resources with each other and are also able to locate the 
charging points'to charge their batteries, if their battery charge is going low. These 
swarms of robots can physically join together, self assemble and artificially create a 
single robotic organism, whenever the need arises. For this purpose, these swarms 
of robots are required to interact physically with each other and also with their en­
vironment. Using a vision system on the robots, information about the surrounding 
environment as well as other swarms of robots can be gathered in every single robotic
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1.2 Contribution of Thesis

organism. After performing various image processing algorithms, on the gathered 
information, it can be used in the visual guidance of the swarm of robots so that they 
can accomplish some specific tasks collectively. As every robot in the swarm gets 
independent processing resources, and considering that the vision processing tasks 
can be computationally expensive for miniature size robots, so a need to efficiently 
utilise the processing resources, in individual robots and also in assembled robotic 
organism, naturally arises.

This PhD research addresses the different vision based tasks of REPLICATOR 
project and presents the scenarios which essentially simulate how vision distribution 
can be achieved when the robots are in the swarm and organism forms.

Apart from the REPLICATOR project, the outcome of this research has applica­
tions in many diverse fields. It can be applied to provide robotic support to perform 
search operations in a hazardous environment, where sending humans to accomplish 
the tasks may involve risks or dangers to life (e.g a gas leak in a factory). It can 
be used to get robotic help in searching for survivals after natural disasters such as 
an earthquake. A very interesting application could be in planetary explorations, 
e.g a mission to Mars. In planetary explorations, a mission failure is generally not 
considered affordable and can cause huge sums of money to be lost, so the deploy­
ment of swarm of robots reduces the chances of a failure following the fact that, the 
malfunctioning of a single robot will not put the whole mission at risk.

The fact that, swarm robotics is an emerging field and most of the research 
performed is still limited to swarm intelligence theories and simulations, hence there 
is still a long way to go to achieve excellence in this field.

1.2 Contribution of Thesis

In this PhD research work, a swarm robotic system is considered in which robots 
not only work in a swarm mode, but can also physically join together to work in an 
organism mode. The swarm system considered in this research is shown in Figure 1.3, 
where multiple robot units forming a robot organism are shown. The title of this 
research work is “Development and Evaluation of Distributed Vision Processing 
Algorithms in Multi-Robotic Systems” and this research deals with many different 
scenarios, where the collective achievement of the common goal is performed in 
swarm and organism modes. However, as the title suggests, the main research is 
focused on how the vision processing is performed in the distributed fashion and
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1.2 Contribution of Thesis

in distributed multi-robotic systems. The main contributions of this research are 
outline below.

Figure 1.3: Multi-Robotic Systems (a) Symbrion [7] (b) Replicator [8].

(i) Development of multi-processor robotic system which simulates the processing 
and memory resources of a robotic organism.

(ii) Development of a library of vision processing algorithms optimised for target 
embedded system based on Analog Devices Blackfin processor.

(iii) Distributed object recognition and localisation by wireless connected swarm 
robotic system. This approach presents novel contributions (i.e., efficient im­
age pre-processing and distance based resolution switching techniques) in the 
current state of the art appearance based recognition algorithm (i.e., SURF fea­
tures based recognition). The developed approach makes it possible to achieve 
robust recognition on small size robots with limited onboard memory and pro­
cessing resources.

(iv) A novel distance vector features based environment mapping solution by a 
swarm of robots. This distance vector feature is easy to compute and share 
among swarm of robots, without overloading the wireless communication net­
work, and hence, plays a vital role in environment mapping.

(v) Development and implementation of distributed visual information gathering 
by making the collective use of processing and memory resources within the
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1.2 Contribution of Thesis

robotic organism. This provides surrounding awareness to the robotic organism 
and facilitate it in navigating in the environment.

(vi) A novel approach to object classification and recognition in a robotic organism 
in modular fashion. A vision processing architecture is developed which im­
plements a modular object classification and recognition approach and shows 
that, the collective use of the processing and memory resources in a robotic 
organism can provide performance comparable to bigger robots equipped with 
high processing systems.

In order to clearly highlight the achievements, the above described contributions 
of the thesis are demonstrated in terms of distributed vision processing scenarios 
in swarm and the organism form. These swarm and organism mode scenarios are 
described one by one below, and shows the effectiveness of the contributions in these 
scenarios.

1.2.1 O bject R ecognition and Localisation in D istributed R obotic Sys­
tem s

The first scenario addressed is “Object Recognition and Localisation in Distributed 
Multi-Robotic Systems”. For this scenario, as the robots are expected to come across 
a number of obstacles during the operation, so first of all, a number of vision based 
obstacle avoidance techniques are researched. A novel and very light weight vision 
based obstacle avoidance technique is developed which could run in parallel with 
other vision based tasks, while consuming low processing power (i.e., the execution 
time of obstacle avoidance algorithm is 22 msec). In this scenario, a set of miniature 
size robots, with limited on-board processing capabilities and resources, are used to 
recognise the objects of interest and then localise them in an unknown environment. 
The overall picture of a targeted scenario is presented in Figure 1.4, where a swarm 
of network connected robots is gathered near an assembly point and they have to 
recognise and localise the objects of interest (i.e. Cups images) in the environment.

The purpose of this scenario is the vision based object recognition and localisa­
tion in a distributed robotic system. Object recognition and localisation is a big 
challenge in computer vision and robotics. Although advances in computer vision 
have resulted in many object recognition techniques, most of them are computation­
ally very heavy and require robot units to have high processing systems. When it
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Figure 1.4: Scenario for distributed vision processing among swarm of robots.

comes to small size embedded robotic systems, these techniques can not be applied, 
because of the constraints of execution time. Here, a popular Speeded Up Robust 
Features (SURF) based recognition technique is adopted and some of the important 
changes are addressed which makes it possible to use it on small size robots with 
limited resources. A team of small robots are used which are given prior training 
to search for 2D (i.e., images of objects) and 3D objects of interest in the envi­
ronment. So, unlike other swarm systems which rely on computationally light but 
inefficient recognition techniques to recognise the objects in the environment, the re­
search work in this scenario bridges the gap between the computationally heavy and 
efficient recognition techniques and their implementation on miniature size robots. 
For the localisation of the robots and objects a new template, designed for passive 
markers based tracking, is developed. These markers are placed on the top of each 
robot and they are tracked by two ceiling mounted cameras. The information from 
the ceiling mounted cameras and from the team of robots is used collectively to 
localise the objects of interest in the environment. The research outcome of this 
scenario gives two main contributions. First contribution is achieving reduced ex­
ecution time (i.e., frame processing time reduced to 800 msec from 33 sec) of the 
appearance based recognition (Using SURF) algorithm, so that these algorithms can
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be executed on small size robots and can provide frame processing rate of at least 
1 FPS (frame per second). The reduced execution time is achieved by performing 
the system specific optimisation and redundant data elimination from the images. 
And for increasing the recognition performance with respect to the distance from the 
target object, a novel resolution switching technique is developed. The second con­
tribution of this scenario is the development of novel approach for the localisation of 
the objects of interest in the environment by fusing the visual features generated by 
the distributed multi-robotic systems.

1.2.2 Com puter Vision Support for R obot Docking and Energy Foraging

In the second scenario, a computer vision support to facilitate robot docking op­
eration and to search for energy points is addressed. As mentioned, the target 
swarm robotic system had the ability to physically join or dock together, whenever 
it became necessary. And for this purpose, their mechanical system required precise 
alignment before performing the docking operation. This docking operation is differ­
ent from other swarm robotic systems where simple grippers are used on the robots 
to hold the other robots, and this can be performed from any direction without 
requiring the robots to precisely align with each other. The major drawback in the 
docking operation achieved using grippers is that, they do not have the ability to 
physically lift the docked robots. In the considered swarm robotic system, physical 
docking is required to move over a big obstacle or also to perform precise physical 
connection with certain objectives such as battery charging for guaranteeing long 
term operations. In this scenario, the information from vision sensors alone is con­
sidered to provide support for performing precise physical docking with the other 
robots. A very simple, but effective, solution based on LEDs, used in a specified 
pattern on docking station, is adopted. The approach presented in this research is 
found computationally less expensive and provided real time performance improve­
ment on the small size robots. With the developed approach, a collective search 
operation for the docking port, performed by the swarm of robots, is addressed. 
This docking port could be used for multiple purposes, e.g docking to another robot 
or for an energy point. The research work in this scenario presents a novel approach 
for performing alignment between multiple robots. And this alignment is essential 
for the formation of a robotic organism from the swarm. In more precise words, 
the approach developed here plays a vital role during the swarm to the organism
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transition stage. '

1.2.3 Environm ent M apping by D istributed M ulti-R obotic System

In this scenario, a vision based mapping of the unknown environment by the dis­
tributed multi-robotic system is addressed, where the robots are provided with the 
localisation information from a ceiling mounted, camera system. Different from other 
robotic systems that rely mostly On sensors (such as laser range finders) which 
are very expensive and can not be used with miniature size robots, the technique 
addressed in this scenario solely relied on the vision information. The research ad­
dressed in this scenario presents a novel method based on very simple visual features, 
which could be easily shared by the swarm of robots using a wireless communication 
channel. Using these visual features the robots collectively generated a sufficient 
environmental map which could be effectively used for the robot navigation.

1.2.4 D istributed O bject R ecognition and Visual Inform ation G athering  
in a M ulti-R obotic Organism

Different from the previous scenarios, in this scenario, the distributed vision pro­
cessing is performed in the organism mode. In the field of swarm or modular robotic 
systems, this is the first time, distributed vision processing research is performed 
using the distributed memory and processing resources of a robotic organism. In the 
proposed scenario, a new method is introduced which is adopted by the robotic or­
ganism to perform vision based obstacle avoidance, efficient object recognition, and 
visual information gathering in a distributed fashion. In the robotic organism, the 
visual information is processed by multiple processing units at different stages and 
finally, the information is gathered in the form of image mosaics. These image mo­
saics provided the necessary awareness about the surrounding of the target objects 
to the robotic organism.

1.2.5 D istributed O bject Classification and R ecognition in a R obotic  
Organism

This scenario presents a novel method which implements a vision based object classi­
fication and recognition approach in a modular fashion, using the distributed memory 
and processing resources of a robotic organism, comprising of four robotic modules. 
This approach enabled the robotic organism to not only recognise the objects it is
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given training for, but also facilitated the organism to learn new objects. This ap­
proach established a feedback mechanism between the different computing modules 
in the organism, and facilitated an efficient utilisation of the distributed resources. 
In this scenario, a detail comparative analysis is also performed with reference to 
the high performance processing systems. It is found that, the efficient utilisation 
of the processing, memory and communication abilities of the organism, can provide 
performance which could compete with high processing systems.

1.3 Thesis Outline

This thesis is organised in nine Chapters which are briefly described below.

• Chapter 1 provides the fundamental information about the field of research 
area that is distributed vision processing in multi-robotic systems. It also ex­
plains the manner this research technically contributes to the field of computer 
vision and robotics.

•  Chapter 2 presents the literature review in detail. Initially, different research 
areas that have implemented distributed vision processing scenarios in swarm 
and organism mode are identified. Then for each research area, a separate lit­
erature review is performed, while keeping the relevance with main objective of 
vision processing in distributed systems. The different research areas identified 
in literature review are Communication, Obstacle Avoidance, Energy forag­
ing and Vision Support for Docking, Localisation, Appearance Based Object 
Recognition, Multi-robot Environment Mapping and Distributed Processing in 
Robotic Organism.

• Chapter 3 describes the details of the hardware used in the swarm and or­
ganism mode scenarios. For the organism mode scenario, a robotic organism is 
developed. Different hardware components which are integrated in the robotic 
organism, are discussed in detail. Finally, the on-board operating system used 
on each robot in the swarm is described briefly.

• Chapter 4 describes the basic vision processing algorithms developed in this 
research. These algorithms provide the basis for the achievement of the swarm 
and organism mode scenarios. Two small scenarios that are “Vision based
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Obstacle Avoidance” and “Vision based Robot Docking Support” are also ex­
plained. The experimental results from these scenarios guarantee real time 
performance of the basic vision algorithms.

• Chapter 5 explains Multi-robot Visual Tracking System  developed in this re­
search to provide the localisation support to all the robots in a swarm.

• Chapter 6 presents the distributed vision processing scenarios in swarm mode. 
Two main scenarios are identified. These scenarios include Vision based Dis­
tributed Search Operation in Multi-Robotic Systems and Multi-robots Environ­
ment Mapping. For these scenarios to work, vision based obstacle avoidance 
discussed in Chapter 4 and the Fiducial markers based visual tracking method 
discussed in Chapter 5 are also utilised.

•  Chapter 7 addresses the distributed vision processing in the organism mode. 
A scenario is presented which addresses the Distributed Implementation of Vi­
sion Based Object Recognition and Distributed Visual Information Gathering to 
provide surrounding awareness in the robotic organism. The robotic organism 
considered in this scenario comprised of three processing modules.

•  Chapter 8 presents the second scenario, addressing the distributed vision pro­
cessing in the organism mode. This scenario presents the modular implementa­
tion of the object classification and recognition approach using the distributed 
resources of a robotic organism. The robotic organism used in this scenario 
comprised of four processing modules.

• Chapter 9 draws conclusion and presents the future work to the study.

The manner the thesis is organised and Chapters are related to each other, is 
shown in Figure 1.5. The title of PhD research is Development and Evaluation of 
Distributed Vision Processing Algorithms in Multi-Robotic Systems. The distributed 
vision processing research is split into two parts; that is, Swarm Mode and the 
Organism Mode.

The swarm mode research is demonstrated in Chapter 6, where two scenarios are 
addressed to perform distributed vision processing in swarm systems. The relevant 
literature review and the hardware/software requirements are presented in Chap­
ters 2 and 3, respectively. To work with the swarm mode scenarios, a multi-robot 
localisation and tracking system is developed, which is described in Chapter 5. The
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D evelopm ent and Evaluation of D istributed V ision P ro c ess in g  (DVP) A lgorithm s in M ulti-robotic S y s tem s

Introduction (Chapter 1)

Literature Review(Chapter 2)

Hardware and Software Requirem ents (Chapter 3)

Embedded Vision Processing (Chapter 4)

Multi-robot Localisation and Tracking System  (Chapter 5)

DVP in Swarm S ystem s  
(Chapter 6)

Swarm m ode ^  Robotic organism m ode Robotic organism  m ode ^

Distributed Object Recognition 
& Visual Information Gathering 

in Multi-robotic Organism  
(Chapter 7)

Distributed Object Classification  
and Recognition  

in Multi-robotic Organism  
(Chapter 8)

Conclusions & Future Work (Chapter 9)

Figure 1.5: Chapters organisation.

swarm mode scenarios also rely on the vision based collision avoidance algorithms 
and other light weight vision algorithms developed specially to run on embedded 
platforms. These algorithms are described in detail in Chapter 4.

The organism mode research is addressed in the form of two main scenarios. The 
first scenario, described in Chapter 7, presents the distributed object recognition and 
visual information gathering. Whereas, the second scenario is described in Chapter 
8 and it presents the modular implementation of object classification and recogni­
tion in the robotic organism. The related literature review and hardware/software 
requirements for the organism mode scenarios are described in Chapters 2 and 3, 
respectively. Like swarm mode scenarios, the robotic organism used in organism 
mode scenarios, also relies on vision based collision avoidance algorithms and other 
vision algorithms optimised specially for the target embedded systems. The imple­
mentation of these algorithms is explained in detail in Chapter 4.
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C hapter 2

Literature Review

Swarm robotics [7] , multi-robotic systems [8] , evolutionary robotic systems [1] [2], 
focus on understanding how cooperative achievement of a certain mutual task can 
be guaranteed in such an efficient manner that the overall time to achieve the goal 
can be reduced and optimised. The back bone of this efficient achievement is an 
intelligent task distribution. In [7] [2], a distributed computing scenario is presented, 
among the swarm of self-assembling robots (with no vision information) to overcome 
obstacles which would be difficult for a single robot to avoid. This is shown in 
Figure 2.1 where swarm of robots self assemble and try to move over an obstacle.

P  '

Figure 2.1: Swarm of self assembled robots moving over an obstacle [7].

In [13] [14] [15] a vision based approach addressing the collective behaviour of the 
robots, in transporting items which are too heavy to be moved by a single robot, is 
presented. This example shows the distribution of the same task to all the robots 
to achieve a common goal (i.e. to move the object of interest). In [8] distribution of
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vision based task among individual robots and also between robot modules forming 
a single robotic organism, to efficiently utilise the processing resources is proposed. 
Most of the research work done in the field of distributed processing in multi-robotic 
systems, is carried out using on-board high performance processing systems [16]. If 
miniature size robots are used then online/on-board processing is not performed and 
major processing is still performed by centralised high performance systems. In [12] 
[18] [19] the work done in the domain of RoboCup competition is presented where 
the robots are required to identify and track the ball collectively by distributing 
the vision information between each other. Using an omni-directional vision sensor, 
every mobile robot, built a local map of the environment, shared it with other team 
members and helped all robots to build their own vision of the world. This is clearly 
a distributed vision processing system. To achieve this cooperative distributed vision 
processing task, robots with high processing systems were used. One of the robot 
which cooperates in this task is shown in Figure 2.2.

Figure 2.2: Single robot from a team, detecting and tracking a coloured ball to perform distributed 
map building [18].

From Figure 2.2, it can be seen that a large size robot is used which is trying 
to recognise a coloured ball. Detection and tracking of the ball using colour fea­
tures make the vision processing, in this distributed task, less complicated. In [20] 
a series of Motorola 68000 microprocessors were configured in master-slave configu­
ration to describe a distributed vision computing architecture. In this master-slave 
configuration, the master processor extracts the information from the images and 
passes them to the slave processor for detailed processing. A high speed network 
communication was used for information sharing between the high performance Mo­
torola processors which make the distribution of vision based tasks possible. In [22], 
robots were not equipped with vision sensors, but used mobile agents to enquire a
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common vision system for required information. This is an example of centralised 
processing architecture. The use of centralised architecture is necessary, if all the 
robot modules needed to access common set of data on equal basis, for example, 
in [22] all the robots need to access a centralised processing system for the processed 
visual information. The use of centralised architecture is not very famous in swarm 
robotic systems, because the failure of single central processing sytem will result in 
failure of complete system. More over, in centralised processing architecture, the 
processing resources of all the robots in a swarm can not be best utilised.

Agency

n on-w ork er m a ste r

O 1

n on-w ork er non -w ork er

Figure 2.3: Active vision agents based target detection and tracking [23].

The higher utilisation of processing resources is only possible, if the information 
is processed in distributed fashion. The use of active vision agents is also made 
in [23] to distribute the vision tasks between the observation stations as shown in 
Figure 2.3. These active agents were communicated between the observation stations 
for performing the vision based target detection and tracking. As the observation 
points were fixed, so simple messages communicated between the stations can be 
used to focus the attention of all the observation points on a single target. It can 
be noticed that, in this type of distributed vision processing, the system in whole is 
not really sharing the visual data between the observation points. Each observation 
point performs an independent on-board vision processing, and then shares the 
target detection information in terms of target location in the environment. And 
as the observation stations are fixed and know the other stations’ locations, so it is

17



easy to translate the target location with reference, to the other stations view. This 
type of distributed vision processing is far less complicated as compared with the 
distributed vision processing in swarm robotics, where the position of the robots 
keeps changing and it is also difficult for the robots to keep on tracking each other’s 
location.

In distributed systems, the efficiency of a system is directly related to how data 
distribution is implemented. In [24] [25] a method called Divisible Load Theory 
(DLT) is proposed for managing data distribution and its application to vision pro­
cessing is described. This method is based on the actuality that the data or tasks 
can be divided arbitrarily into independent modules, where each module can be pro­
cessed independently from others. Another vision processing work based on DLT 
is presented in [26] where a simple edge detector called Sobel operator is selected 
as a distributed application. For distributed image processing, two different task 
partitioning and scheduling strategies are compared. The first is Partitioning and 
Scheduling Strategy using DLT (PSSD) and the second is Equal Partitioning Strat­
egy (EQS). The good performance achieved with this system is mainly because of 
the efficient scheduling and load sharing strategies implemented in communication 
middleware DLT. As there is no optimised version of DLT which makes it suitable 
to run on an embedded system environment, so the processing and specially mem­
ory requirement of DLT is usually high. Like DLT, another approach to distributed 
computing called Grid Computing is presented in [28] for performing distributed 
processing of remotely sensed images. For distributed processing of these remotely 
sensed images, the images are processed in different stages using a very high perfor­
mance system. The different stages are shown in Figure 2.4.

C om pare the  
. feature w ith  pattern 

DB and gen era te  th e  
< n eeded  targets .

Image distributed  
p rocessin g  (such  as 

segm en tation  or e d g e  
. d e tection ) *

Rem otely sensed 
image featuie

Rem otely sensed  
image target

Initial high-resolution 
remotely sensed image

Figure 2.4: Processing stages for remotely sensed images [28].
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In the first stage, the high resolution images are transferred to the system through 
the internet. Then segmentation and edge detection based features are extracted. 
These features are passed to another system which performs the recognition task. 
For recognition purposes, the system utilises pattern recognition techniques and 
makes use of a very big library of target data. For this system to work, a high 
performance system and high communication bandwidth medium are required. In 
another work [27] an Image Mining System (IMS) is presented. In IMS, for online 
image processing, the different parts of the image are processed in a parallel fash­
ion. For creating a parallel processing system, a number of personal computers are 
connected by a local area network. The connectivity through local area network 
enables large amount of data to be exchanged between number of processing sys­
tems. The different processing stages for this system are shown in Figure 2.5. The 
first computer performs the image acquisition, the second performs image enhance­
ment, the third performs feature extraction and then finally the mining operation is 
done. High communication bandwidth is required for transferring images between 
computers for further processing. Moreover, image mining is itself a difficult task 
to perform as it requires high processing for matching the extracted image features 
with the library of features stored in the memory. The library of features usually is 
also large and essentially have large memory requirements.

M ining
M odel

Classification

A c q u is i t io n Enhancement Feature Extraction

Image
Mining

Figure 2.5: Image processing stages for image mining system [27].

In [16], the use of Player/Stage software tools for distributed computing in 
robotics is presented. In this software, the Player is a robot device server which 
provides a network transparent control to the target robot, whereas Stage is a robot 
simulator which helps in simulating the robot and its environment. But the ma­
jor difference is that, all vision processing is performed on the central computer 
with basic commands to control the robot may be executed on-board. A relevant 
distributed vision based formation control research is carried out in [29] in which
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a swarm of robots try to visually maintain the formation using motion segmen­
tation approach and also avoid colliding with each other in the absence of any 
communication medium. For performing the formation control, the robots use an 
omni-directional camera with a mirror mounted on their top (as shown in Figure 2.6) 
which provides a panoramic image to each robot. From the help of panoramic image, 
the robots get the information about the other robots for maintaining the forma­
tion. As each robot processes its own panoramic image, so this implementation is 
more towards vision processing in distributed systems, rather than distributed vision 
processing in a complete swarm robotic system.

C entral P an oram ic C am era

M irror

C C D

R ob ot

Figure 2.6: An omni-directional vision based formation of mobile robots [29].

In [17] a distributed machine vision application is presented that describes a visual 
recognition method developed for IUB (International University Bremen) RoboCup 

• team. To simplify the tasks, rather than executing the vision algorithm on the 
robots, an external camera is placed over the field surface and is connected to a high 
processing system (system acts as a server). The images captured from this camera 
are processed at high rate by an external system (i.e. 25fps) and the vision based 
robot detection performed using different colour markers placed on the robots. Upon 
determining the location and orientation of the robots, the external system gives 
commands to the robots using UDP protocol over a 100Mbps network. To establish 
the communication and defining the transmission packets, a customised library of 
algorithms was developed rather than relying on other middleware such as COM or 
CORBA. The approach of not using the communication middleware and relying on 
the customised developed library for data transmission acknowledge the possibility 
of achieving communication between swarms of robots in real time, considering the 
embedded system implementation. All this work, in distributed vision processing 
field, is performed using high performance systems which are the basic requirement 
for most computer vision algorithms. Moreover, if low power embedded systems are 
used then either they are using simple vision based tasks or they are used as still
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observation stations set in a predefined configuration (i.e. [20]). To demonstrate 
the distributed vision processing task for multi-robotic systems operating in swarm 
and the organism mode, a number of distributed vision processing scenarios were 
defined. For the implementation of these distributed vision processing scenarios, the 
research areas identified which needed to be explored are: Communication, Obstacle 
Avoidance, Energy foraging and Vision Support for Docking, Localisation, Appear­
ance Based Object Recognition, Multi-robot Environment Mapping and Distributed 
Processing in Robotic Organism.

2.1 Communication

Communication is a backbone of any distributed computing system. It provides 
a medium through which data or information can be distributed among several 
processing systems following some communication rules called protocols. This com­
munication medium can be wired or wireless. In swarm robotic systems, there is a 
more general description of types of communication that can be established among 
robots, i.e. explicit or implicit communication. In explicit communication, the in­
formation is shared between robots directly using a communication medium. While 
in implicit communication (e.g stigmatic), the information sharing is achieved by in­
teraction with the environment (e.g by modifying the environment) or by observing 
the actions of the other robots in the surrounding [30]. In [31], simple communi­
cation strategies are explored which can be used to perform implicit and explicit 
communication in a swarm robotic environment. Implicit communication can be 
observed in nature, where ants use pheromones (a chemical substance) to mark the 
environment for conveying messages (as shown in Figure 2.7). Hence it led some 
researchers to use pheromones based communication among robot swarms [32].

Figure 2.7: Ants following artificial pheromones [112]
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If the environment in which robots are required to operate is highly dynamic 
then implicit communication is not considered suitable as it relies on the changes 
that are brought into the environment or on the observations of other robots [21]. 
So, for distributing vision based tasks and knowledge sharing among robot swarms, 
wireless communication medium can be considered as a sensible choice. A layered 
protocol structure, based on data transport layers (inspired from computer network 
system), to define protocols for wireless robot communication is presented in [33], 
but it assumes the provision of communication network layers in robot which could 
be possible if some communication middle-ware (a third party software that connects 
other software together) is used. A cooperative distributed problem solving system 
is discussed in [34], but it totally relies on a centrally controlled shared memory 
architecture for data exchange which makes it unsuitable for systems where data 
management or storing are not centralised, such as swarm of robots. A comparison 
of TCP, UDP, TEAR and Trinomial protocols for formation control of robot swarms 
is carried out in [35] with the help of middle-ware and centralised base station. The 
comparison of MANET routing protocols in mobile robotics is performed in [36], 
where a 7x7 grid of closely spaced WiFi nodes (equipped with a high performance 
system to simulate wireless connected robot modules) are used and a mobile robot 
moves around them. This is shown in Figure 2.8.

Figure 2.8: Robot moving around 7x7 WiFi grid [36].

The reason for moving the robot around the WiFi nodes is to describe how robot 
routing table information is updated when a robot moves in different regions of

22



2.2 Obstacle Avoidance

a wireless grid. This closely simulates a swarm of robots connected using adhoc 
networks, but in order to keep a record of all the robots in surroundings by every 
robot in a swarm, the precessing demands could be high, and can overload the 
network. Moreover, all the wireless nodes which are simulating swarm of robots are 
static. If they are also mobile, then changes in the routing table will be required 
often.

In [37], the use of PERA (Probabilistic Emergent Routing Algorithm), an adhoc 
type wireless protocol, for wireless connected robot is described, but again it requires 
a network communication module in the robot firmware, which basically utilise 
protocol defined by PERA to establish the communication. Similarly, distributed 
communication among robots, as presented in [38], using CORBA (Common Object 
Request Broker Architecture) and in [39] using Robot. Software Communications 
Architecture (RSCA) is also possible, but these communication middle-ware are too 
processing and memory intensive for miniature size robots which are based on an 
embedded system with limited memory and processing power.

2.2 Obstacle Avoidance

When the robots are performing distributed vision processing tasks, they are not 
usually stationary. In the considered scenarios, the robots expect to encounter an 
obstacle and so need to perform obstacle avoidance based on vision, as vision is 
the only source of providing surrounding awareness to a robot. Computer vision 
provides many ways to achieve the obstacle avoidance task. In [40] an obstacle 
avoidance technique using a monocular vision camera together with laser range 
finder is addressed. The author has performed testing of the algorithm in an out­
door highly unstructured environment, but the testing system used was not strictly 
an embedded system, as all the image processings were on a development platform. 
Therefore, there is possibility that this technique may not be able to meet the real 
time constraints. Another commonly used method for obstacle avoidance, addressed 
in [41], is based on edge detection. In this method, the vision algorithm tries to de­
termine the vertical edges of the obstacle and helps robot to move around the edges 
without colliding with the obstacle. In [42] another approach called Lucas-Canade 
optical flow based obstacle avoidance is used. This algorithm used for MAVs (Micro 
Aerial Vehicle) in urban environment. Similar to the approach addressed in [42], 
Horn and Schunck optical flow based algorithm is also adopted in [43] to perform
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obstacle avoidance by the autonomous ground robot. They used optical flow infor­
mation to determine the image velocity vectors. These vectors could be split into 
two terms, translational and rotational components. Then using the translational 
component of the velocity vector, the time to contact information for the obstacle 
can be calculated. This could then be used to determine when the obstacle was very 
close to the robot and necessary action was required in order to avoid a collision.

2.3 Energy Foraging and Vision Support for Docking

When robot swarms are performing an operation, there are possibilities that the 
robots get hungry (i.e. they run out of battery) and need to look for energy re­
sources (can be collective or individually) so that the collective mission can be fin­
ished successfully. There are a number of studies in the field of distributed robotics 
which addresses the collective energy foraging [1]. Search of energy resources can 
be performed using the information provided by vision sensors [8]. In [7] [8], swarm 
robotic systems were described which could look for energy resources individually or 
share energy resources by docking to each other. “Autonomous Docking” is another 
area of research in swarm robotics community. To perform autonomous docking 
of robots, Infra-red (IR) or vision based information is used in most of the swarm 
robotics projects. In [44] [45] IR sensor information is used to perform docking. 
The use of vision support for docking is presented in [13] [14] [15] [46] [47], in which 
swarm of robots dock together to drag heavy objects. In [48] [49], a more complicated 
docking mechanism is presented which requires a precise alignment to successfully 
attach two robot modules, so help from both vision and IR sensor is utilised.

2.4 Localisation

In pervasive computing systems, determining the location information of the impor­
tant objects in the environment is given great importance. In multi-robotic systems, 
this location information may be helpful to gather the where-about awareness to the 
robots which are working in an unknown environment. Determining the localisation 
information using radio frequency identification (RFID) data [50] tags is a popular 
technique (an example of RFID tags attached to the walls is shown in Figure 2.9), 
but advancements in machine vision field has shifted the research trend towards 
vision based tracking and localisation systems.
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Figure 2.9: RFID tags attached to walls for robot localisation [50].

In machine vision, to localise an object, its detection and tracking in the envi­
ronment using stream of images are required. The overall localisation performance 
depends strongly on the robustness of the object detection. A number of vision pro­
cessing algorithms are developed which locate objects in the images captured in the 
natural environment (i.e. unconstrained images). The vision processing demands of 
these algorithms are normally high due to the complexity of the environment. An­
other reason for complexity is the 3D appearance of the objects in the environment 
due to which a 3D object recognition algorithm is required. If there is large number 
of objects to localise, then markers based techniques are adopted [51], especially 
when working in the indoor robotic environment. Markers used in these techniques 
can be identified as active or passive markers. In [52] an infrared sensor based active 
marker technique is presented. In the localisation system installed on the robot, the 
author has used an image sensor to detect the position of infrared sources, attached 
to the ceiling and then finally obtained the 2D position and orientation information 
of the object. For more precise positioning, detection of more than one IR sources 
is required. Similarly, in [53] ceiling lamps were used as natural landmarks for the 
robot localisation. The image of a ceiling lamp used for robot localisation is shown 
in Figure 2.10. The author has intelligently made use of the pre-install lamps as the 
landmarks, which reduce the overall cost of the solution as no additional landmark 
was required.
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Ceiling lamp used as a
marker for robot 
localisation

Figure 2.10: Negative image of a lamp on ceiling used for robot localisation [53].

In [54], the author has used a colour histogram based landmark detection algo­
rithm. The landmark used has a symmetric design with repetitive colour patterns. 
To make the landmark detection less sensitive to illumination changes, a colour 
similarity based approach is used to update the colour histogram model for the 
landmark model. It is observed that, the solutions to active markers based ap­
proaches are computationally less expensive and can easily run in real time. But 
the big drawback is the energy consumption by these markers as these markers 
require power to become functional. The solution to active markers can be more 
expensive as presented in [52], for detecting infrared sensors attached to a ceiling, 
where each robot is required to be equipped with a camera and the direction of the 
camera should be facing vertically upward.

If the robots working in the environment are less in number (e.g. two or three 
robots), then an active marker solution may be justified as it makes the localisation 
problem easier. But in case of multi-robotic systems, where the number of robots 
working in the environment may be large (e.g. ten or more) then an active marker 
solution does not remain energy efficient as each robot has to provide power to make 
the markers functional. In such cases, the solution is to use passive markers.

The passive markers solution is . normally very cheap to install, but the most 
challenging stage is their robust detection. For their reliable detection, passive 
markers are required to be designed very carefully such that their appearance in 
the environment is very prominent. In [55], the author has done a performance 
analysis of different shape passive markers and has shown how the markers’ size 
vary depending upon the density of information (i.e. information about marker ID)
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encode in it. The author has shown that, square shape markers require a simple 
algorithm for their reading and detection. But, circular markers provide more robust 
localisation information as shape fitting algorithms work more efficiently when more 
points contribute to the shape fitting process. In [56], the author has demonstrated 
the use of passive markers to identify and track the robots playing in robotic soccer 
team. To detect the position of robots, the author has used a camera mounted at 
an oblique angle rather than directly on the top. No colour information is used in 
designing the markers which reduces the possible number of robots which may be 
identified. In [57], an open source implementation of a marker-based vision system, 
called Cantag, is described. Most of the markers used in Cantag are represented 
in a binary form and their coding scheme provides binary information about the 
markers’ identity. Some examples of markers from Cantag are shown in Figure 2.11.

■ * Q * . s-aei &
(a) Circlelnner (b) CircleSplit (c) CircleOuter (d) Square

Figure 2.11: Some example markers from cantag [57].

To detect these markers, very complex image processing techniques are adopted 
in Cantag. As the density of binary information stored in the Cantag binary marker 
is high, so it is likely that it provides false result if the marker is viewed from a large 
distance and at sharp angle. To improve the performance, in Cantag, the author 
has also shown the effect of varying the marker size. But, if it is to be used in an 
environment where large number of small robots are working and needed to be given 
an ID, then it is logical to keep the size of the marker at least smaller than the robot 
top surface.

Similarly, in [58] a low cost localisation system using binary markers, attached 
to the ceiling, is presented. To identify the markers, a camera (facing vertically up) 
is mounted on every robot. In this case, high identification accuracy was possible 
when the robot crossed under the marker. If the marker was viewed from a sharp 
angle, false identification was possible. So, in multi-robotic environment, a marker
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based technique which provides enough information to identify the robots robustly, 
and also with less complicated algorithm, would be preferred.

2.5 A pp earance B ased  O bject R ecogn ition

One of the distributed vision processing scenarios in swarm mode addressed in this 
research, performs the “Distributed Object Recognition and Localisation in Multi- 
Robotic Systems” . In this scenario, the major task given to swarm of robots is 
to perform an appearance based recognition of the set of known objects in an un­
known environment. Appearance based recognition is an important research area 
in autonomous robotics field and has been applied in many applications. A SURF 
(Speeded Up Robust Features ) feature based approach to appearance based recogni­
tion for performing robot navigation task is presented in [59] using omni-directional 
camera images. The detection of SURF features in omni-directional camera im­
age is shown in Figure 2.12. As computing SURF features is processor intensive, 
so a Core2Duo-2.66GHz high processing system was used to achieve the real time 
performance which makes the task less challenging.

Figure 2.12: SURF features detected in omni-directional camera image [59].

In [61], an application to traffic sign recognition using SURF features in embedded 
system environment is described. The system is first given a training to extract 
feature points and create a library of visual words. The system is designed to 
work in a real life unstructured environment, so measurements are taken to show 
the system robustness to view point changes and changes in lighting conditions. 
The advantage of SURF features is that they provide scale and rotation invariant 
features [62]. For recognition purposes, the system implements the “bag of visual 
words” approach [61]. The idea is to extract SURF feature points from all the traffic
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sign images provided in the library, and then group these feature points into a large 
number of clusters (i.e. the features with similar SURF descriptors will be assigned 
or lying in one cluster space). Each cluster will be considered as a visual word 
representing a pattern shared by all the features lying in that cluster. This way 
one single image can be represented by the bag of visual words with local features 
mapped into visual words as a vector containing the weighted count of each visual 
word. This bag of visual words is used to perform the model description of the sign 
shown in the image and hence, facilitates the real time recognition of the sign. In 
some approaches [63], this concept of clustering the feature space [62] is called feature 
space quantisation. This provides a significant saving in memory compared to the 
normal approach of saving all features independently during building the visual 
words vocabulary and thus makes the approach more suited for implementation on 
embedded systems.

Some researchers have used probabilistic models on the top of SURF feature based 
bag of visual words to perform robot localisation and mapping [64]. In comparison 
to this, in some approaches [65], authors have relied on Harris features instead of 
SURF features to reduce the computation time, and have used Partially Observable 
Markov Decision Process (POMDP) probabilistic methods to track the probability 
distribution of the robot’s where-about and to essentially localise it. Another exam­
ple of Harris feature based localisation is described in [66], where Harris extracted 
features are used together with Scale-Invariant Feature Transform (SIFT) descrip­
tors. And then Support Vector Machines (SVM) is used for classification. But the 
use of Harris features together with SIFT makes the approach computationally very 
heavy even for a high processing system. In another work [67], rather than relying 
on SURF features alone, authors have used advantage of Conditional Random Fields 
(CRF) to discard those features that do not show geometric consistency. In [68] [69], 
a detailed comparison of SIFT, PCA-SIFT and SURF feature based approaches to 
recognition is carried out. SURF was found fastest to compute and still provided 
SIFT comparable performance. Authors in [69] have used the K-Nearest Neighbour 
(KNN) approach for feature matching and Random Sample Consensus (RANSAC) 
to get rid of outliers and have shown that selection of method to perform recognition 
mainly rely on the target application.

In [70], another probabilistic model based approach is developed, to perform 
appearance based recognition and robot localisation. Unlike the work presented 
in [59] [61] [63] [68], linear image features extracted using Principal Component
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Analysis (PCA) [71] are used. The appearance model developed is represented as 
a probability density function of the image feature vectors given the location of 
the robot. In PCA, the eigenvectors (i.e. image feature vectors) of the image are 
computed and are used as an orthogonal basis for individual image representation. 
In Figure 2.13, an example image and the first three eigen vectors computed are 
shown. The motivation of using eigenvectors is that only few of them are required 
for visual recognition (although for full image reconstruction all eigenvectors would 
be required). These eigenvectors represent the eigenspace. PCA algorithm projects 
the image data onto the eigenspace and resulting in the uncorrelated projections 
(i.e. eigenvectors).

(d)

Figure 2.13: (a) Input image, (b) First eigen vector.(c) Second eigen vector.(d) Third eigen 
vector. [70].

The eigenspace analysis reduces the dimensionality of the feature space tremen­
dously as compared to the SURF or SIFT features space as in [66] [68] [69] but, 
in general, it is more sensitive to the effect of “perceptual aliasing” . The effect of

30



2.5 Appearance Based Object Recognition

perceptual aliasing is shown in Figure 2.14. In Figures 2.14a and 2.14b, two different 
images are shown. The image reconstructed from 20 dimensional eigen vector, of 
both of these images, is shown in Figure 2.14c. In other words, the two different 
appearing images may look similar in eigen space.

( e )

Figure 2.14: (a) Image 1. (b) Image 2. (c) Reconstructed image from 20 dimensional eigen
vectors. [70].

In another work [60], fast gradient based feature extraction approach is used 
together with PCA (in place of SURF or SIFT features) to perform the recognition 
task. Like the work done in [61] [63], feature space is quantised using k-means 
algorithm, to make an efficient use of memory. To boost the search process of finding 
the corresponding features in the recognition phase, kd-tree algorithm is used which 
stores the centroids of the feature clusters, resulted from k-mean algorithm. The 
system used for recognition was a 3GHz high processing system which took 350 msec 
on average to recognise an object. This seems a slow performance considering the 
use of a high processing system.

Another similar approach using SIFT feature based recognition is presented in [72] 
where features (feature space quantised using k-mean) in the vocabulary tree are 
dynamically assigned different weights which are according to the uncertainty (i.e. 
entropy) associated with the features. The author has claimed that, in most of 
the appearance based matching approaches which successfully avoids the use of
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common features (based on the feature entropies) to perform matching, still use 
those features which are not common, but at the same time they do not provide 
strong object recognition clues. It is shown that this problem can be overcome by 
using the vocabulary tree algorithm which modifies the feature entropies in such a 
way that it discourages the use of those features which have given poor recognition 
results.

It is to be noted that, in most studies, a high performance system is used for per­
forming recognition. So in spite of excellent results achieved with these recognition 
techniques, when it comes to swarm of small size robotic systems, the bottle-neck 
of the slow rate of visual information processing forces the researchers to make huge 
compromises with the recognition performance and switch to computationally less 
expensive algorithms.

2.6 M ulti-robot Environment M apping

In the second distributed vision processing scenario in swarm mode presented in this 
research, a multi-robot environment mapping problem was addressed. Environment 
mapping is a process in which a robot senses its surrounding using onboard percep­
tion sensors and tries to obtain a global map. The generated global map essentially 
helps the robot to navigate autonomously in the environment. Environment map­
ping is a challenging problem to address and in most cases, the robots require human 
assistance if they are exploring the place first time. Some researchers have worked 
around this problem in which the robots keep on localising themselves and at the 
same time, they also build the environment map. This is called Simultaneous lo­
calisation And Mapping (SLAM) in robotics field. In [73], a vision based SLAM 
is presented in which the SIFT (Scale Invariant Feature Transform) feature points 
are extracted between the images to determine the robots’ updated position and 
hence, it is used to determine the robots’ location and to map its trajectory. The 
use of vision based solution on one hand provides the rich surrounding awareness to 
the robots but at the same time, it increases the computational time considerably. 
This leaves most of the vision based solutions limited to be implemented using high 
performance robots only. In multi-robotics operations, the robots being used have 
simple design to reduce the cost of overall system. So a single robot unit usually 
have limited onboard memory and processing resources. For a single robot imple­
mentation, researchers have used many different sensors such as laser range finders,
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infrared sensors, sonar and vision sensors. But most of the research is focused on 
using laser range finders. In [74] an approach to outdoor mapping is addressed using 
2D laser range finder. Similarly, in [75] a stochastic approach is adopted to an envi­
ronment mapping using laser range finder. From the approaches adopted by [74] [75], 
it can be seen that due to the physical size, high power and processing requirement 
of the laser range finders, they are used with large size robots. Moreover, a single 
laser range finder can cost from £800 to £3000 which makes it unsuitable to be 
used in multi-robotic environment where the objective is also to keep the cost of 
each robot unit low. In [76], the information from the laser scanner is fused with the 
vision sensor to provide a more accurate map of the environment. But this further 
increases the computational demands of the approach. In [77] [78] a multi-robot en­
vironment mapping problem is addressed. But the results are limited to simulations 
only. In [79], a grid based mapping solution using multiple robots is addressed, but 
it also utilised high performance systems. However, when using a group of small size 
robots, it is preferred to use simple and computationally less expensive algorithms 
such that, the task can be achieved with limited on-board memory, processing and 
energy resources.

2.7 D istributed Processing in Robotic Organism

As described in Chapter 1, the latest research in swarm robotics or multi-robotics 
systems’is shifting to design more complicated systems that are reconfigurable. 
These reconfigurable modular robotic systems hold a very unique feature that they 
are not only capable of working in a swarm state, but they are also configurable to 
produce different forms of three dimensional robotic organisms. A relavant research 
is addressed in European Commissions Seventh Framework FP7 Replicator [80] and 
Symbrion [81] projects which presents complicated designs of robot modules. These 
robot modules are capable of physically joining together and creating a three dimen­
sional robotic organism, whenever the need arises. The reason for robot modules to 
physically join together is to perform some operation collectively which is not pos­
sible to be done by a single robot. For collective achievement of the operation, the 
robots also need to create certain shape of the organism, when they join together.

Collective achievment of tasks is the basic concept behind the idea of swarm 
robotic systems [82], which comprises of many simple robotic modules with lim­
ited onboard memory and processing resources and basic sensors (e.g., infrared used
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onboard). In swarm robotic systems, to show collective effort in achieving a task, 
the robot modules need to share their knowledge with each other over a wireless 
medium. This knowledge is processed at multiple stages in different robotic mod­
ules to make it meaningful for a complete swarm system. All the robot modules in 
a swarm share their memory resources, to hold the knowledge, and also processing 
resources, to process the sensor data in different stages. The sharing of memory 
and processing resources in swarm robotics introduces the concept of distributed 
computing [83] [84]. The complete swarm system is actually a distributed robotic 
system in which each individual robot has limited onboard resources, but the swarm 
system as a whole is considered very rich in memory and processing resources, which 
are distributed in the complete system. The sharing of these resources in modular 
swarm systems requires a reliable communication medium. The limited onboard 
resources in swarm system, which also includes the energy resources, act as a bottle 
neck even in establishing a communication medium. Due to limited onboard energy 
resources, the robots in a swarm are equipped with low power wireless boards which 
provide low signal to noise ratio and hence, a less reliable communication medium. 
If the swarm of robots are equipped with basic sensors, such as infrared, and share 
the information or knowledge learned from these sensors, then the wireless commu­
nication medium can be used effectively as these sensors generates less data. But 
if the robots in a swarm are equipped with vision sensors, then it becomes very 
difficult to share the visual data between different robots as vision sensors generate 
huge amount of data. It is to be noted that, the use of vision sensors in robotics 
is becoming very common because a single vision sensor can be used to achieve 
multiple objectives. But when these vision sensors are used in swarm systems, then 
the use of low power wireless communication medium make it difficult to exchange 
visual data among the robots.

The reconfigurable modular swarm systems are described as Networked Robotics 
in [85]. They are also known as Modular Robotic Systems in [86] [87] [88], which 
describe the design of modular robots with the ability to create different forms of 
locomotion systems. These locomotion systems are inspired from nature, such as 
snake, round shape and walking systems. In such systems, once the robot modules 
join together, then they can establish a physical communication medium. The pro­
vision of physical communication medium can ensure a reliable communication and 
hence, it can faciliate the robot organism to effectively utilise its rich distributed 
processing and memory resources. It is to be noted that, after forming the organ-
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ism, if the system still relies on the information learned from the basic sensors, 
such as infrared, which is easy to process, then the system will not be fully ex­
ploring its communication capabilities and its rich processing resources. To fully 
utilise the communication and distributed resources, the distributed system envri- 
onment established within the organism, can be used to perform vision based tasks 
in a distributed fashion. The vision based tasks require intensive processing, huge 
amount of memory for its operations and high communication bandwidth for infor­
mation exchange. The provision of rich memory and processing resources and strong 
communication established within the organism, make it an ideal system for the pro­
cessing of the vision based tasks. Once the robotic modules form a robotic organism,- 
then the processing and memory resources accumulated within the robotic organ­
ism can be efficiently utilised to acquire surrounding awareness using the available 
onboard sensors. These distributed resources can be used by the organism to gather 
the surrounding information and to classify and recognise the different objects in 
the environment.

2.8 Conclusions

In this Chapter the most relevant research areas have been identified which need 
to be explored to successfully perform distributed vision processing in the swarm 
and organism modes of the multi-robotic system and a detailed literature review in 
each of the research areas has been presented. From the literature review, it can 
be concluded that, most of the distributed processing research in swarm systems is 
based on computer simulations, and very little work has been performed using real 
multi-robotic systems. If the use of real multi-robotic systems is made, then in most 
of the relavant distributed vision processing research, high performance robots or 
systems have been used. In case, a swarm of small size robot was used, then either 
the use of basic vision processing algorithms is made or the major vision processing is 
performed on high performance servers with basic control commands implemented 
on-board on the swarm of robots. It has been concluded that, distributed vision 
processing in multi-robotic systems which could work in a swarm or organism form, 
is an open research area which requires detailed research. In this research, to address 
distributed vision processing in the robotic swarm or the robotic organism, the use 
of a real multi-robotic system which comprises of small size robots, is made which 
makes this research more novel and challenging.
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Chapter 3

Hardware and Software 
Requirem ents

Based on a detailed literature review and several experiments, a number of dis­
tributed vision processing scenarios are defined as described in Chapter 1. For each 
of these scenarios, the required hardware and software are identified. In this Chap­
ter, the details of the hardware and software configuration used to implement the 
swarm and organism mode scenarios, are discussed. The hardware requirements 
for the swarm and organism mode scenarios are separately identified. As this PhD 
research is carried out as a part of the European Commission Seventh Framework 
Programme FP7/2007-2013 research project REPLICATOR, so in order to ensure 
compatibility, the selection of hardware made is solely based on what are used in 
the REPLICATOR project. The software in terms of robot operating systems is 
identical for both swarm and organism mode scenarios. This chapter is divided into 
the following sections.

(i) Hardware requirements for swarm mode scenarios.

(ii) Hardware requirements for organism mode scenarios.

(iii) Selection of an operating system (robot firmware).

3.1 Hardware Requirements for Swarm M ode Scenarios

The hardware components for the demonstration of the swarm mode scenarios are 
explained in the following sections.
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(i) Swarm Robot Units.

(ii) Hardware for Swarm Communication.

(iii) Robot Tracking Cameras.

3.1.1 Swarm R obot U nits

In Figure 3.1a, a single REPLICATOR robot unit is shown. These robot units are 
not fully functional so for the demonstration of the swarm mode scenarios, Surveyor 
SRV1 robot was selected as it uses the same processing unit (i.e. Blackfin processor) 
as the one used in the REPLICATOR robots. A single Surveyor SRV1 robot is shown 
in Figure 3.1b and a swarm of these robots to be used in the scenarios is shown in 
Figure 3.1c.

(c)

Figure 3.1: (a) REPLICATOR robot [8]. (b) SRV1 blackfin robot by surveyor corporation [89]. 
(c) Swarm of SRV1 robots
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Surveyor SRV-1 [89] is an open Source Wireless Mobile Robot, especially devel­
oped for Autonomous and Swarm Operations. It is mainly designed for research 
purposes. Surveyor SRV-1 robot uses Blackfin camera board with 500MHz Analog 
Devices Blackfin BF537 processor, a digital video camera with configurable resolu­
tion from 160x128 to 1280x1024 pixels, two laser pointers, and WLAN 802.11b/g 
networking on a quad-motor tracked mobile robotic base. It can be operated re­
motely and can be programmed as a self-navigating autonomous robot. It can run 
on-board interpreted C programs, or user-modified firmware. It can be remotely 
operated from Windows or Linux base station with help of Java-based console soft­
ware provided with the robot. The Java console software also includes a built-in web 
server using which SRV-1 can be controlled through a web browser from anywhere 
in the world. Detailed documentation on SRV-1 Robots can be found in [90]. The 
SRV1 robot has wireless connection (WLAN 802.11b/g based network) to the code 
development platform and through this wireless connection, the resultant binary 
files, obtained after compiling C programs using GNU compiler, can be downloaded 
and executed on the robot platform. The raw images captured by the robot and 
also the processed images can be uploaded to development platform through the 
wireless connection for debugging.

Robot Features

•  Open Source: This allows the customers to re-use the already developed soft­
ware and helps in rapid development.

• Robot is fully programmable for an autonomous operation.

• Extensive software support through third party applications.

• Robot can be tele-operated via web browser.

• Host software has built-in web server.

• Robot can execute programs written in interpreted C and stored in on-board 
Flash.

• Wireless remote control or viewing up to 100m indoors and 1000m outdoors 
(line of sight).

•  Robot can be controlled from a terminal/console for easy testing.

•  Firmware can be programmed with GNU bfin-elf-gcc.
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Robot Hardware

• Processor: lOOOmips 500MHz Analog Devices Blackfin BF537, 32MB SDRAM, 
4MB Flash, JTAG.

• Camera: Omni-vision OV9655 1.3 mega-pixels 160x128 to 1280x1024 resolu­
tion.

• Robot Radio: Lantronix Matchport 802.11b/g WiFi .

•  Range: 100m indoors, 1000m line-of-site in outdoor environment.

• Sensors: 2 laser pointers for ranging, support for up to 4 Maxbotics ultrasonic 
ranging modules and various I2C sensors .

•  Drive: Tank-style treads with differential drive via four precision DC gear mo­
tors.

•  Speed: 20cm - 40cm per second.

Robot Software

• Robot Firmware: Easily updated, written in C language under GPL Open 
Source, compiled with GNU bfin-elf-gcc and bfin-uclinux-gcc toolchains.

• • On-board Programming: Interpreter for C language with special robot-specific 
commands, used to run programs directly from Flash memory.

• Development Tools: GNU toolchains via http://blackfin.uclinux.org

• Console Software: Java based application for Windows, MAC and Linux.

3.1.2 Hardware for Swarm Com m unication

To achieve the tasks collectively, the robot units are required to share their knowl­
edge with each other. To enable this knowledge exchange, the wireless communica­
tion medium was established between the swarm of robot units shown in Figure 3.1c 
and for this purpose, a Linksys Wireless Access Point was used. The wireless ac­
cess point used in this implementation is shown in Figure 3.2. The Linksys access 
point supports data rates up-to 54Mbps, which is up to 5 times faster than 802.11b. 
It can be easily configured from any web-browser and supports 64/128 bit WEP 
encryption.
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Figure 3.2: Linksys wireless access point [104].

3.1.3 R obot Tracking Cameras

To provide localisation information to the swarm of robots, a fiducial markers based 
tracking system was developed as described in Chapter 5. Two ceiling mounted 
cameras were used to track the position of swarm of robots in the environment. 
The selection of these ceiling mounted cameras was done very carefully as they 
were mounted higher from the surface of robot arena, so that they can cover more 
area. At the same time they had to provide a higher resolution image too, so that 
enough pixels contributed to the fiducial markers. After experimenting with some 
web-eams, Logitech WebCam Pro 9000 was selected as shown in Figure 3.3. This 
web-cam provides 2 mega-pixels for video and 8 mega-pixels for picture resolution. It 
can be configured to provide the resolution of 160x120, 176x144, 320x240, 352x288, 
640x480, 800x600, 960x720 and 1600x1200 pixels. In the beginning, 1600x1200 
resolution was selected, but then it was found difficult to process such high resolution 
images at high rate. So finally, 960x720 resolution was configured for grabbing the 
images from ceiling mounted cameras.

Figure 3.3: Logitech webcam Pro 9000 [105].
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3.2 Hardware Requirement for Organism M ode Scenarios

Similar to the swarm mode, the REPLICATOR robot hardware was not fully func­
tional to make a full robot organism. As in the robot organism, there were more 
than one robot physically docked together, so unlike the case of swarm scenarios, 
it was difficult to find pre-designed robot hardware for this purpose. To address 
the distributed vision scenario in organism mode, a multi-processor robotic system 
was developed in this research. In this multi-processor robotic system, multiple 
Analog Devices Blackfin processors were used, which were connected through the 
Ethernet medium. Every processor in the multi-processor robotic system, simulates 
the processing resources of a single robotic module which contributes in the forma­
tion of the robotic organism. In other words, the complete multi-processor robotic 
system simulates the distributed processing and memory resources which are gath­
ered in a unified robotic organism. The hardware components used to develop this 
multi-processor robotic system included the following.

•  Analog Devices - Blackfin Processor

•  Blackfin Evaluation Board EVAL-BF5xx

•  Blackfin Extender Board EXT-BF5xx-Camera

• Blackfin Experimental board

•  CMOS camera sensor

• Robot base and Motor Control Board

• On-board Communication

• Navigation board

3.2.1 Analog D evices - Blackfin Processor

Analog Devices-Blackfin processors refer to the family of 16 or 32-bit micro-processors 
with built-in Digital Signal Processor functionalities. These features are tradition­
ally only accompanied by small and power efficient micro-controller. Hence, it results 
into a low power processor architecture that can run operating system and can si­
multaneously handle complex numeric tasks such as real time H.264 video encoding.
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Because of its relevant features, many hardware development kits have used Black­
fin processors. Some of the Blackfin hardware development processors are BF522, 
BF527, BF533, BF537 and BF561 etc.

B lackfin  C M -B F 5 3 7 E  C ore  M o d u le

From the entire family of Blackfin processors, the Blackfin core CM-BF537E was 
selected to be used on the robot organism. This core module comprises of three 
main components, i.e. ADSP-BF537 Blackfin processor from Analog Devices, 32 
MB SDRAM and 4 MB flash memory. As the Blackfin processor also integrates an 
Ethernet controller, so a chip dedicated to Ethernet physical layer is also mounted 
on the core. The provision of two 60-pin expansion connectors is made on the core 
so that a variety of extension modules, provided by the company, can be connected 
to the core. The hardware user manual for the core module is available from [91]. 
Figure 3.4 shows the top side of the core module CMBF537E. Some details about 
the comprised components of CMBF537 core are given below.

Figure 3.4: Blackfin CM-BF537E core [91].

C M -B F 5 3 7 P R O C E S S O R :  The Blackfin processor combines DSP capabil­
ities and microprocessor features in a single architecture design. The provision 
of microprocessor features is made by a 32-bit RISC architecture, a basic Memory 
Management Unit (MMU) for memory protection, data cache, instruction cache and 
by providing support for a variety of hardware peripherals. Like other processors, 
Blackfin processor allows two modes of operation that are Supervisor and User mode. 
In the supervisor mode, access to all resources can be made whereas in the user mode 
some sources are reserved. A Single Instruction Multiple Data (SIMD) architecture
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is used to integrate DSP functionality in the Blackfin processors. This architecture 
offers two hardware multiplier accumulators, two Arithmetic Logic Units (ALUs) 
and a barrel shifter. The architecture allows the execution of three instructions per 
clock cycle. In the instruction set of its processor, some instructions to facilitate 
video and image processing are also provided. In general, BF537E processor has 
maximum speed of 600 MHz, 132 Kilo-Bytes of on-chip memory (64 Kilo-Bytes in­
struction memory and 16 Kilo-Bytes is used as instruction cache), 64 Kilo-Bytes 
data memory (32 Kilo-Bytes used as data cache and 4 Kilo-Bytes can be used as 
scratch-pad memory). An external SDRAM (upto 512 MB) can also be connected 
through a PC-133 compliant controller. An address space of 32 bits is used for ac­
cessing memory and the I/O devices. A Direct Memory Access (DMA) controller is 
also present for performing fast memory and 1 /0  transfers. More information about 
BF537E Blackfin processor is provided in the data-sheet [92] [93] and the hardware 
reference manual [119]. Some of the key features of BF537E processor are given 
below:

• Due to high execution speed, Blackfin BF537E processors fulfil the camera 
devices needs. Space for later enhancement is also provided if more processing 
power is required.

•.The processor architecture provides parallel peripheral interface (PPI). The 
PPI has a.dedicated clock input, 16 data pins and 3 frame synchronisation 
pins. For high speed transfers, DMA can be used, but PPI is made suitable for 
a variety of applications by several general purpose modes. PPI is also used for 
transferring data from camera devices.

• Two bidirectional synchronous serial ports (SPORTs) with adjustable word 
length and support for frame synchronisation are also present. SPORTs are 
normally used to transfer digital data to DACs.

• The full duplex Serial Peripheral Interface Bus (SPI) is also supported.

• A Fast Ethernet MAC peripheral, supporting operations like 10BASE-T and 
100BASE-T modes is also aii important feature of Blackfin processor.

M A I N  M EM O RY:  A 32 MB SDRAM is available on the core as a main mem­
ory. It supports the maximum clock speed of 133 MHz. The main memory is con­
nected to the processor through data and address buses.
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F L A S H  M E M O R Y :  A Flash memory is also integrated to the Blackfin core. 
The total size of Flash memory is 4MB, but it is not fully addressable. It is divided 
into two 2MB memory banks. A General Purpose I/O  (GPIO) pin is used to switch 
between its lower and upper 2 MB banks.

3.2.2 Blackfin Evaluation Board EVAL-BF5xx

Using an expansion slot, the BF537E core module can be connected to the evaluation 
board EVAL-BF5xx. The basic components of the evaluation board are RJ45 Eth­
ernet plug, an SD card slot, a UART-to-USB converter, JTAG plug, two expansion 
connectors, voltage regulator and a power connector. The evaluation board EVAL- 
BF5xx is shown in Figure 3.5 below. The hardware user manual and schematic 
can be found in [100]. BF537E core together with the EVAL-BF5xx provides a 
basic embedded environment which can be connected to the development platform. 
Using a UART-to-USB converter, the UART port of ADSP-BF537 processor can 
be connected to USB port of the development platform. Using this connection 
the communication is set-up with the development platform and program can be 
downloaded and tested on the Blackfin processor.

Figure 3.5: Evaluation board EVAL-BF5xx [100].

3.2.3 Blackfin Extender Board EX T-BF5xx-C am era

To connect the evaluation board EVAL-BF5xx with the CMOS camera, the extender 
board EXT-BF5xx-Camera is used as a bridge. The design of extender board is very
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simple and no microchips are installed on it. It simply provides connectors for one 
LCD and two CMOS cameras. The extender board is used on the robot organism 
to provide connection to the CMOS camera. The hardware user manual and the 
schematic can be found in [101]. Blackfin Extender Board EXT-BF5xx-Camera is 
shown in Figure 3.6 below.

Figure 3.6: Blackfin extender board EXT-BF5xx-Camera [101].

3.2.4 Blackfin Experim ental Board

The Blackfin Experimental Board “EXT-BF5xx-EXP” , shown in Figure 3.7, is an 
extender board which can plug-on the EVAL-BF5xx board. It provides all the con­
nectors from the Blackfin processor (e.g. Digital I/O , PPI signals, Serial clock and 
data lines, timers outputs, power and ground) on the solder-able pads. The Blackfin 
Experimental Board was needed for two reasons. First is to provide interface be­
tween the Blackfin processor and the Motor Control Board (shown in Figure 3.9b), 
which is further connected with the four servos used to drive the robot wheels. Re­
quired pulse width modulation (PWM) signals were generated from the Blackfin 
processor using the on-board timers. These PWM signals were used to generate the 
frequencies which controls the wheel speed through the servos. Similarly, to control 
the direction of wheels rotation, the digital I/O  were also routed from the Blackfin 
processor to the Motor Control Board through the Experimental Board. The second 
reason for using Experimental board was to interface the Navigation Board with the 
Blackfin processor. For this purpose serial data and serial clock signals were required 
and they could be made available through the Experimental board only.
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3.2 Hardware Requirement for Organism Mode Scenarios

Figure 3.7: Blackfin experimental board “EXT-BF5xx-EXP” [106].

3.2.5 CMOS Camera Sensor

Two CMOS camera sensors, that is, OV7660 and OV7670, were selected to be used 
with the robot organism. It was decided to use one of this to provide surrounding 
awareness to the organism. These are low cost and low power consumption camera 
sensors and could provide 640x480 (VGA) resolution images. These camera sensors 
could be installed directly to EXT-BF5xx-Camera extender board, but for the proper 
placement of the camera sensor on the organism, Flexi cable was used. In Figure 3.8 
OV7670 camera sensor and Flexi cable are shown.

(b )

Figure 3.8: (a)Ov7670 camera sensor [107]. (b) Flexi cable [108].

3.2.6 R obot Base and M otor Control Board

The robot base from the Surveyor SRV1 robot was used on which all the Blackfin 
processing boards, comprising the robot organism, were installed. This robot base
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includes four motors to drive the robot wheels and 7.2V 2AH Li-poly battery pack. 
The robot base is shown in Figure 3.9a. To drive the robot motors, the Motor 
Control Board from Surveyor robot was also integrated with the robot base. It is 
shown in Figure 3.9b.

Figure 3.9: (a) Robot base for the organism [109]. (b) Motor control board [109].

3.2.7 Onboard Com munication

To establish a wireless communication between the development platform and the 
robot organism, Lantronix WiFi port from the Surveyor robot was also integrated 
with the organism. For this purpose, the UARTO signals were routed from the 
Blackfin processor to the Lantronix wireless board through the Experimental Board 
“EXT-BF5xx-EXP” . The Lantronix port provides two wireless ports which can be 
used to connect the two UART ports (i.e. UARTO and UART1) available on the 
Blackfin processor. In the designed robot organism, only one UART (i.e. UARTO) 
was used with the wireless board. With the Lantronix board on the robot, the 
wireless baud-rate up-to 2.5Mbps can be achieved. The Lantronix WiFi board is 
shown in Figure 3.10a and it can be very easily configured through the web browser 
to work in wireless Adhoc or the Infrastructure mode.

Similarly, to establish a communication backbone in the robot organism, through 
which the vision information can be distributed between the different processing 
units, a high speed Ethernet communication medium was established. The Ether­
net cable (shown in Figure 3.10b) was used to connect multiple on-board Blackfin 
processors. The connection to each Blackfin processor was established through the 
Ethernet port available on the Evaluation Board EVAL-BF5xx.
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(a) <b)

Figure 3.10: (a) Lantronix m atchport 802.11b/g WiFi [110]. (b) Ethernet communication cable. 

3.2.8 N avigation board

A navigation board, shown in Figure 3.11, was also integrated with the robot or­
ganism. The sensors available on the Navigation board were 3 axis accelerometers, 
3 axis magnetometer and an on-board GPS unit. It was added to the organism so 
that some navigational information may be provided to the robot.

Figure 3.11: Navigation board M3 [111].

Finally, it was decided to make a complete robot organism with multiple on-board 
distributed processing systems. In the robot organism, the processor connecting to 
the vision sensor simulates the processing resources of the master robot and the rest 
of the processors acts as a slave processing units. In the organism mode scenarios, the 
master processing unit is made responsible for performing the organism locomotion 
task. At the same time, it also execute light weight vision processing algorithms to 
pre-process the raw image data and distribute it for further detail processing to the 
other slave processing units. The complete robot organism hardware would include 
the following elements:

• 1 robot base with four motors.
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• 1 motor control board.

• 4 Blackfin processing units

• 4 evaluation boards (EVAL-BF5xx) to integrate the Blackfin processors.

•  1 extender Board EXT-BF5xx-Camera to attach Omni-vision camera sensor 
with the master robot.

• 1 Blackfin experimental board with the master robot

• 1 CMOS camera sensor

• 1 wireless board

• 1 navigation board

The developed robot organisms’ front and side view is shown in Figures 3.12a 
and b, respectively.

\ a ) \ v j

Figure 3.12: Robot organism.

3.3 S election  o f  O perating  S y stem  (R ob ot F irm w are)

The selection of an Operating System (OS) plays an important role in the application 
development for any embedded system. For Blackfin processor, selection of uClinux 
(micro-controller Linux) was made because of its rapid development and popularity 
among many embedded software developers. uClinux is a customised version or 
derived from the Linux 2.0 kernel. It was basically derived to target micro-controllers
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or embedded systems without Memory Management Units (MMUs). It requires 
GNU cross compiler toolchains and C-libraries-on the development platform (host 
system), to compile applications for Blackfin processor. Some of the important 
features of this OS are the following.

• Open Source

• Provide support for a large number of applications which are in mature stage.

•  Provide support for easy system configuration.

•  Many developed open source applications can be cross compiled.

•  Facilitates the development of applications with real time constraints.

•  Provides basic frame-work, customised for Blackfin processors.

•  Allows the use of basic Linux commands

• Hardware driver support.

Using the uClinux operating system, the drivers for different on-board sensors 
were developed. In the distributed vision processing research, the most important 
sensor which needed the uClinux drivers, was the on-board CMOS camera sensor. As 
already mentioned, for the swarm mode scenarios, a third party SRV1 robot was used 
and for the organism mode scenarios a customised robot organism was developed. 
The CMOS sensor on the SRV1 robot (Omni-vision OV7725) was different from the 
one used on the robot organism (OV7670), so uClinux camera drivers for both of 
them were developed. To develop the camera drivers in uClinux, the software was 
required to access the CMOS sensor registors. For this purpose, I2C interface was 
setup between the CMOS sensor and the Blackfin processor [119]. The I2C interface 
uses two bidirectional lines, that is, serial data and serial clock lines. The serial clock 
line was used to synchronise the peripheral (i.e., CMOS sensor) with the Blackfin 
processor. And using serial data line, the appropriate registers on the CMOS sensor 
were selected and required data was written on it. Once all the sensor registers are 
programmed then the sensor is ready to provide image data to the camera driver, 
when required.

For robot locomotion, the drivers for driving the robot motors were also devel­
oped. For this purpose, the pulse width modulation (PWM) signals were generated 
from the Blackfin processor using the on-board timers. These PWM signals were
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used to generate the frequencies which controls the wheel speed through the servos. 
To control the direction of wheels rotation, the digital I/O provided by the Blackfin 
processor were also used. As Navigation board was also integrated in the organism, 
so the drivers for the different components available on the navigation board (e.g. 
Compass and Three axis-accelerometer) were developed in uClinux environment.

3.4 Conclusions

In this Chapter the basic hardware components and on-board firmware required to 
execute the developed distributed vision processing algorithms on the robots, have 
been described in detail. To perform distributed vision processing in the swarm 
mode scenarios, off-the-shelf Surveyor SRV1 robots have been selected. These robots 
will be used in the two swarm mode scenarios presented in Chapter 6. Whereas, 
for organism mode scenarios, a robotic organism comprising of multiple processing 
modules is developed. This multi-processor robotic organism is utilised in the two 
organism mode scenarios presented in Chapters 7 and 8. For the robot on-board 
firmware, it has been concluded that, an operating system should be selected which 
facilitates rapid software development and also helps in integrating open source 
computer vision libraries, such as, OpenCV and OpenSURF. For this purpose, the 
selection of open source uClinux operating system has been concluded to be the best 
choice.
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Chapter 4

Embedded Vision Processing

In swarm robotic systems, the robots have limited memory and processing resources. 
In such systems, the use of an on-board vision sensor produces a huge amount of 
visual information. This information requires intensive processing to become mean­
ingful for the robot control. So, to start working with the distributed vision process­
ing in multi-robotics systems, it is necessary to develop basic vision algorithms for 
processing the visual information. These algorithms are required to be customised 
for the underlying embedded vision system based on the Blackfin processor. In other 
words, it is required to develop vision algorithms which could run in the embedded 
system environment and at the same time, they are also customised for the Black­
fin processor architecture. For this purpose, a small library of vision algorithms 
is created. These vision algorithms provided the basis for all the scenarios which 
addressed the vision processing in distributed robotic systems. This Chapter details 
the developed vision processing algorithms and vision based basic functionalities 
which the underlying swarm system requires in all the devised scenarios. One basic 
functionality identified is obstacle avoidance which is essential in a sense that swarm 
of robots are required to detect the presence of obstacles in the environment and 
take decision accordingly. The second functionality which facilitates the swarm of 
robots to become an organism is the ability to detect the docking ports of the robots 
and also the energy points in the environment to perform energy foraging. Apart 
from describing these basic functionalities, this chapter also discusses the experi­
mental results which are intended to demonstrate the real time performance of the 
developed vision algorithms. This chapter is divided into the following sections.

• Robot Camera Calibration.

52



4.1 Robot Camera Calibration

• Embedded Vision Algorithms.

• Vision Based Obstacle Avoidance.

• Vision Based Robot Docking Support.

4.1 R o b o t C am era C alibration

In Figure 4.1, an image captured by the robot vision system is shown. It can be 
clearly seen that the image is too distorted near the boundaries. So, before applying 
the vision processing algorithms on the images captured by the robot vision system, 
the enhancement of these images was required. This image enhancement may not 
be necessary for performing the basic tasks such as obstacle avoidance, but it is 
essential for achieving reliable performance from the object and pattern recognition 
algorithms. For performing this image enhancement, the camera calibration of the 
robot camera sensor is needed.

Figure 4.1: Image captured by the robot vision system.

The objective of camera calibration is to find the camera parameters which defines 
the relation between the 3D world coordinate points, and the 2D points on the 
camera image. These parameters are represented in the form of a 3x4 matrix which 
is called camera matrix in computer vision terminology. The relation between 3D 
world points Cw and 2D image points C* in terms of camera matrix K  is shown as.

Ci = (4.1)
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This equation when expanded, can be written as

su xw
sv =  AB Vw
s

SU xw
sv =  A[RT\ Uw
s Zw

(4.2)

(4.3)

where, u and v are the 2D camera coordinates and s is the scale factor. The 
3D world coordinates are represented as xw, yw, zw. The camera matrix K  is 
represented as A[RT] where A is the camera intrinsic matrix, R is the rotation and 
T  is the translation matrix of camera with respect to the world coordinate points 
(World coordinate system is the reference coordinate system. It can be used as the 
starting position of the robot in the test arena, or it can be fixed to the origin of 
the camera position). R and T  together represent camera extrinsic parameters B. 
The camera intrinsic A and extrinsic B matrix can be expanded as

■A = 0
0

7
CXy Vq  

0 1
(4.4)

B =

rn r12 r13 tx
r2i r22 r23 ty
^ 3 1 r32 r33 tz
0 0 0 1

(4.5)

where, ax and ay represent the focal length of camera in terms of pixels. 7  is the skew 
coefficient between x and y axes of image. And u$ and vq are the principal points of 
the camera. Similarly, 7*n, ri2, r.1 3 , r21 , r22, r2 3 , r3 i, r32, r33 define the parameters of 
rotation matrix and tx, t y, tz define the parameters of translation matrix. For camera 
calibration purpose, a calibration grid pattern was used together with MATLAB 
camera calibration toolbox [115]. Thirteen images of calibration pattern, captured 
by the robot vision sensor, were used as input to MATLAB camera calibration 
toolbox. These images are shown in Figures 4.2 to 4.8. It can be noticed that the 
images were taken while keeping the grid pattern with different orientation and tilt
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in front of the robot’s camera. In some of the images, the grid pattern was kept 
very near to the vision sensor. This was done so that the distortion, which is high 
near the image boundaries, can be removed from the image.

Figure 4.2: Robot images used for calibration: image 1 (left) and image 2 (right)

X
Figure 4.3: Robot Images used for calibration: image 3 (left) and image 4 (right)

The grid points on all the input camera images (shown in Figures 4.2 to 4.8) 
were selected very carefully using the calibration toolbox. It was necessary to select 
the grid points accurately as a little error caused poor calibration results. It is a 
very important feature of the MATLAB Camera Calibration Toolbox that if some 
grid points on the images are not selected properly, then the error caused by them 
can be reduced later. For reducing this error, the toolbox enables to consider the 
specific images again and re-select the grid points. The camera intrinsic parameters 
generated by the toolbox after complete camera calibration are given as.

A =
1135.98925 0 647.73695

0 1168.25320 532.58715
0 0 1

(4.6)
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Figure 4.4: Robot images used for calibration: image 5 (left) and image 6 (right)

Figure 4.5: Robot images used for calibration: image 7 (left) and image 8 (right)

Figure 4.6: Robot images used for calibration: image 9 (left) and image 10 (right)

In Equation 4.6, all measurements are defined in milli-meters. Using these ex­
tracted camera parameters, the 2D grid points were re-projected on all the input 
images. These re-projected 2D points on the images are shown on the left column 
of Figures 4.9 to 4.13. The enhanced images, after removing the distortion, are also 
shown on the right column of Figures 4.9 to 4.13. It can be seen on all the en­
hanced images that the distortion was removed properly. The removal of distortion 
is very clear from the grid lines. These lines were not appearing straight in the input
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Figure 4.7: Robot images used for calibration: image 11 (left) and image 12 (right)

Figure 4.8: Robot images used for calibration: image 13

images, but after enhancement, the grid lines appeared considerably straight even 
near the image boundaries. The computed intrinsic parameters were used on-board 
to enhance the images, captured by the robot vision system, before passing them 
on to the vision algorithms for detailed processing. In most of the vision systems, 
the effect of camera distortion can be controlled up-to some extent when the cam­
era driver initialises the camera modules and programs the hardware registers of 
the camera. But for the CMOS camera used on-board in the robot organism, the 
camera drivers were developed in this research for uClinux operating system and 
no register settings were found which could help avoiding this calibration. So, the 
camera calibration step was needed after the image capturing phase.
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Figure 4.9: Calibration results: Re-projections on image (left) and enhanced image (right)
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Im age 3  • Im age po in ts  (+) and  rep ro jec ted  grid po in ts  (o)
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Im age 4 - Im age po in ts  (+) and  rep ro jec ted  grid p o in ts  (o)

• Im age po in ts  (+) and  re p ro jec ted  grid p o in ts  (o)

Im age  6 ,-.Im age  po in ts  (+) and  re p ro jec ted  grid p o in ts  (o)

Figure 4.10: Calibration results: Re-projections on image (left) and enhanced image (right)
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Figure 4.11: Calibration results: Re-projections on image (left) and enhanced image (right)
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Im age 10  - Im age po in ts  (+) and  rep ro jec ted  gnd p o in ts  (o)

Im age 11 • Im age po in ts  (+) and  rep ro jec ted  grid po in ts  (o)

Im age 12 ■ Im age po in ts  (+) an d  rep ro jec ted  grid p o in ts  (o)

Figure 4.12: Calibration results: Re-projections on image (left) and enhanced image (right)
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Figure 4.13: Calibration results: Re-projections on image (left) and enhanced image (right)

4.2 E m bedded  V ision  A lgorith m s

A library of embedded vision algorithms was developed which provided the basic vi­
sion processing capabilities in all the distributed vision scenarios. These algorithms 
were developed keeping in view that the Blackfin processor lacks Floating Point Unit 
(FPU). So it was preferred to avoid floating point operations and rely only on deci­
mal operations. An effort was made to customise the vision algorithms specifically 
for the Blackfin architecture. For this purpose, fixed point operations were used in 
most parts of the vision algorithms. This was done because the Blackfin processor 
architecture is a fixed point architecture and it provides hardware support for an 
efficient implementation of fixed point operations. This hardware specific customi­
sation was necessary to achieve real time performance of the vision algorithms. The 
vision algorithms included in the library are explained in the following sections.

4.2.1 Y U V  to Colour Image Conversion

By default, the image captured by Blackfin BF537E processor using Omni-vision 
OV7670 CMOS camera module is in YUV (where Y gives intensity, U and V provide 
the chrominance information) format. To perform a colour image processing, YUV 
to colour image conversion is required. For every pixel, YUV values are manipulated 
to extract Red, Green and Blue colour information. An example colour image 
obtained after performing YUV to colour image conversion is shown in Figure 4.14. 
The selection of this picture is made so that the range of different colours can be 
observed which guarantees proper implementation of algorithm.

Image 13 - Image points (+) and reprojected grid points (o)
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Figure 4.14: Image obtained after YUV to colour image conversion.

4.2.2 Colour to Grey Scale Conversion

To perform image processing on grey scale images, colour to grey scale image con­
version was required. For every pixel, Red, Green and Blue colour values are 
weighted by 30%, 59% and 11%, respectively, to obtain the corresponding grey 
scale values. To achieve this, the following simple equation was implemented.

G =  0.3 x R  +  0.59 x G +  0.11 x B  (4.7)

where the Red, Green and Blue values of the pixels are represented by R, G , and 
B , respectively. And G is the Grey scale value generated.

An example colour to grey scale converted image is shown in Figure 4.15.

Figure 4.15: Image obtained after colour image (left) to greyscale image (right) conversion.
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4.2.3 Grey Scale Gradient

To obtain the grey scale gradient, Sobel and Canny operator based gradient com­
putation algorithm was implemented. Here, the process of obtaining gradient using 
Sobel operator is presented. To obtain gradient in x and y directions, following 
Sobel operators were used. The assumed x  and y directions of the image are also 
shown in Figure 4.16.

►  X

Image

s~
1 2 r

0 0 0

“1 -2 “1

-1 0 1

-2 0 2

-1 0 1

Gradientinx Gradient in y

Figure 4.16: Image coordinates and Sobel operator for gradient in x  and y  direction.

An example grey scale gradient image obtained from the implemented algorithm 
is shown in Figure 4.17.

Figure 4.17: Greyscale image (left) and gradient image (right) obtained from BF537E processor.
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4.2.4 Colour Gradient

To obtain the colour gradient [102], Sobel operators were applied in x  and y direction 
on Red, Green and Blue channels separately. Let GxR, GyR be the gradient obtained 
when Sobel operator applied in x and y directions of Red channel, similarly GxG,
GyG for Green channel and GxB,GyB for Blue channel. Then the following set of
equations were implemented to obtain the final colour gradient magnitude.

Gxx = G xR2 +  GxG2 +  G xB 2 (4.8)

Gyy = GyR2 +  GyG2 +  GyB2 (4.9)

Gxy = GxR  x GyR  +  GxG  x GyG +  GxB  x GyB  (4.10)

Orientation and Magnitude information of the gradient are obtained using the
following equations.

n 1 x Gxy) / a t t \0 = -  x arctan —  ——- (4.11)
2 (Gxx -  Gyy) v '

Magnitude — \ /  x x [(Gxx +  Gyy) +  ((Gxx — Gyy) x cos29) +  (2 x Gxy  x sin20)\

(4.12)
An example colour gradient image obtained using the implemented algorithm is 
shown in Figure 4.18. The reason for using this image is due to the presence of 
range of different colours.

Figure 4.18: Colour image (left) and gradient image (right) obtained from BF537E processor.
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4.2.5 Grey Scale and Colour Image Segm entation

A Region Growing based Image segmentation algorithm was implemented. The ba­
sic idea of region growing algorithm is that, if intensity difference of the current 
pixel in the image from the neighbouring pixels lies within some predefined thresh­
old, then the current pixel and its neighbouring pixels are merged into one region. 
A8 adjacency criteria is implemented so that the region can grow in all possible 
directions from the current pixel. This criterion states that while processing every 
pixel, its eight neighbouring pixels are also checked whether they fulfil the criterion 
or not. It means the region can grow in eight different directions. The concept of 
region growing and A8 adjacency is also shown in Figure 4.19. While segmenting 
grey-scale images, only one grey-scale intensity channel is processed, whereas for 
processing colour images, the Red, Green and Blue colour channels are processed 
in parallel. In case of colour image segmentation, for a pixel to become a part of a 
region, the difference of its Red, Green and Blue colour values from the mean Red, 
Green and Blue values of the region should all be within some predefine threshold. 
An example colour segmented image obtained from BF537E processor is shown in 
Figure 4.20.

\
4--><—*■

/ \

Figure 4.19: A8 adjacency. Directions in which region can grow is shown by arrows.

4.2.6 Colour Blob D etection

A colour blob detection algorithm was implemented to detect different colour blobs 
in the input images. The algorithm was configurable to detect different colour blobs 
by adjusting its input parameters. This algorithm directly processed the YUV im-
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S

Figure 4.20: Colour image (left) and segmented image (right) obtained from BF537E processor.

ages. The reason for not using RGB format for input image is that, the RGB format 
did not separate the luminance information (i.e. the brightness) from the chromi­
nance information (i.e. the colour itself). For example, in RGB format of the image, 
it is not possible to determine whether the colour is red or not by simply applying 
a threshold on R, G and B colour values. In YUV format, Y provides luminance, 
whereas U and V provide the chrominance information. In the current implemen­
tation, the chrominance information is utilised to detect the different colour blobs. 
The UV coordinate plane providing the chrominance information is shown in Fig­
ure 4.21.

-------------------------------------------------------- ------------ - - — t

0 255

Figure 4.21: UV plane providing the chrominance information.

Now from Figure 4.21, it seems very easy to apply threshold on UV values for 
the selection of colour blobs. For example, for the detection of Red colour blobs, V 
values greater than 190 and U less than 200 are selected. This range of UV values 
is identified by the black boundary line in Figure 4.21. It can be noticed that, 
the range of U values greater than 130 seems not required. But this range is used 
to make the algorithm more insensitive to the changes in lighting condition. An
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example image showing the detection of red colour blob in input image is shown in 
Figure 4.22. The reason for using this image is that, it contains the range of different 
colours and detection of red colour in this image guarantees proper implementation 
of colour blob detection algorithm.

Figure 4.22: Colour input image (left) and processed image (right) showing detection of red colour 
blobs.

4.2.7 Image Erosion

An image erosion algorithm was implemented for grey scale images. The size of 
window used for erosion is made configurable. An example image showing proper 
implementation of erosion algorithm is shown in Figure 4.23. The window size used 
to obtain this output image is 5x5 pixels.

Figure 4.23: Input image (left) and processed image (right) obtained after erosion.

4.2.8 Image D ilation

Similar to image erosion, an algorithm to dilate grey-scale images is also imple­
mented. The size of window used for dilation is made configurable. An example
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image showing proper implementation of dilation algorithm is shown in Figure 4.24. 
The window size used to obtain this output image is 5x5 pixels.

Figure 4.24: Input image (left) and processed image (right) obtained after dilation.

4.3 Vision Based Obstacle Avoidance

In this section the research undertaken for the development of the vision based ob­
stacle avoidance strategies, is presented. Obstacle avoidance is one of the important 
aspects of mobile robots. Without it, robotic movements would be very restrictive. 
This functionality is also needed in every distributed vision processing scenario as 
the robots will be performing operation in the environment, where obstacles are 
also present. There are many other sensors which can be used for achieving ob­
stacle avoidance tasks such as, infrared and laser range finders. But in the current 
scenarios, as the vision information is needed any way for the distributed vision pro­
cessing tasks and knowing that it provides rich surrounding awareness which could 
be efficiently used for different purposes. So based on this fact, it is also utilised 
for performing the obstacle avoidance task. There are many ways to accomplish 
obstacle avoidance, but efforts were made to devise an obstacle avoidance algorithm 
with smallest computational complexity. For example, algorithms with more float­
ing point operations have more computational complexity and execution time. And 
knowing that Analog Devices BF537E processor is a fixed point processor so floating 
point operations are not recommended as it slows down the performance. Therefore, 
algorithms with less floating point operations are preferred.
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4.3.1 Approaches To O bstacle Avoidance

Three obstacle avoidance approaches were implemented and tested on the target 
robot. These were segmentation based, optical flow based and path finder based 
obstacle avoidance approach.

Segm entation based Obstacle Avoidance

A very simple segmentation based obstacle avoidance algorithm was implemented. 
To explain the basic concept, the image shown in Figure 4.25a is considered. This 
image shows couple of obstacles placed on a test arena. Some assumptions were made 
in this obstacle avoidance algorithm. For example, it was assumed that, the robot is 
placed on a flat ground and the camera was placed relatively straight or slightly tilted 
down. Now by looking at this image, it could be noticed that the ground surface of 
the test arena had more or less the same colour. After segmentation algorithm was 
applied, the resultant segmented image obtained is shown in Figure 4.25b.

The next step was to determine which region in the segmented image was the 
floor. One way to isolate the floor was to assume that the biggest region is the floor. 
But this assumption was not true when the robot was in front of a very big obstacle 
as in that case, the region representing obstacle was the biggest. In the current 
implementation, the speed of the robot was set to guarantee that, the robot was not 
very close to the obstacle. With this implementation, the region covering the middle 
bottom of the image was considered the ground region as this part of the image was 
the one closest to robot camera. Sometime while turning, there was a possibility 
that the obstacle was very close to robot in the robot field of view. In this scenario, 
the robot could collide with the obstacle, assuming the obstacle region as the floor. 
To overcome this problem, the robot kept track of the intensity of the ground region 
in the last frames. If there was a sudden change in the ground region intensity, then 
the robot determines that it was very close to the obstacle. The robot moved back a 
small distance to get ground floor in its field of view. With these additional checks, 
the assumption that the floor region was the one covering the middle bottom of the 
image works well. Following this assumption, the isolated ground region from the 
rest of the obstacles is shown in Figure 4.25c.

Now to determine the ground map visible to the robot, the bottom of the image 
was considered initially as shown in Figure 4.25c and filled (filling was performed 
with White pixels) vertically pixel by pixel until the obstacle boundary encounter
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Figure 4.25: (a) Colour input image, (b) Processed image obtained after applying segmentation, 
(c) Initial ground map isolated from obstacle’s, (d) Ground map visible to the robot vision system.

(i.e. the Black pixel detected). Upon detecting the obstacle boundary, the rest of 
the pixels to the top were filled with Black pixels. The same was performed with all 
columns. The resultant visible ground map is shown in Figure 4.25d. In this image, 
the final visible ground map is also refined by the image dilation algorithm. Now 
in this final ground map, the white region is the area where robot can move freely 
without colliding with the obstacle. In the current implementation, the resolution of 
the images captured by the robot is 160x120 pixels (initially, the experiments were 
performed with the resolution of 320x240 pixels, but to reduce the computational 
time, 160x120 resolution was selected). If from centre bottom of the final ground 
map, robot detected continuous white pixels greater than 30 in vertical direction, 
then it went straight ahead. It also checked whether any obstacle from left and right 
side of the robot were not very near and there was enough space to go forward. If 
the distance in vertical direction was less than 30 pixels, then the algorithm checked
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from which part of the image (either left or right), the robot was closest to the 
obstacle. The robot took a turn in the direction opposite to the one from where it 
was closest to obstacle (i.e. If on the left side, white pixels in vertical direction was 
less than right side, then robot took a right turn). Using this segmentation based 
approach, the sequence of processes followed by the robot to avoid obstacles were 
the following.

• Capture image

• Perform image conversion to grey scale

• Perform grey scale image segmentation. In segmentation results, there is pos­
sibility that obstacles shadows on the ground are also identified as separate 
regions rather than a common ground region. The part of image representing 
shadow image has intensity values slightly different from the ground region. 
To overcome this problem, a large threshold value was used for segmentation 
process. This value also resulted into lower number of segmented regions in the 
resultant segmented image.

• Remove small segments from the segmented image. This was used to further 
reduce the number of segments to process. Moreover, if some dark spots were 
present on the ground plane, then they could be identified as a different segment 
and could act as an obstacle. This could result into a ground map which was 
different from the expected one. So to overcome this problem, a routine to 
remove small segments (segments comprising of pixels less than some predefined 
number) was implemented.

•  Determine the ground map visible to the robot.

• Perform dilation on the visible ground map to refine the results.

•  Determine the distance to obstacle in pixels. If distance was greater than 
predefined number then go forward, otherwise turn the robot in the direction 
opposite to the one where the obstacle is closest to the robot.

O p tica l F low  b ased  O b stac le  A vo idance

An optical flow based control algorithm for obstacle avoidance was also implemented. 
There are many methods to determine optical flow from a sequence of images. For
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example, Kevin S.Pratt [42] used Lucas-Canade optical flow based obstacle avoid­
ance algorithm for MAVs in urban environment. And Kahlouch. [43] used Horn 
and Schunck optical flow based algorithm for avoiding obstacle in their autonomous 
ground robot. The selection of which optical flow algorithm to use is subjective 
to the application, whether the resultant motion estimation information obtained 
from optical flow is intended to be used for robot navigation, obstacle avoidance, 
object tracking or some other application. One of the most important requirements 
is the execution speed. If the algorithm to obtain optical flow information is highly 
accurate, but cannot provide the output in necessary response time, then it is use­
less. Similarly, the algorithm is also useless if it is very efficient but cannot provide 
the necessary accuracy. Hongche [95] provides a detailed analysis on “Accuracy vs. 
Efficiency Trade-offs in Optical Flow Algorithms”. For applications like navigation, 
high accuracy is utmost important as a little error in the rotation estimation can 
result into a big error in the robot estimated position and hence in navigation. For 
applications like obstacle avoidance, a compromise on accuracy can be made, but 
efficiency is important as if the algorithm fails to take decision within necessary
response time, then the robot can collide with the obstacle. In the current imple­
mentation, Horn and Schunck optical flow [96] based obstacle avoidance algorithm 
was implemented. Horn and Schunck derived equations that relate the image bright­
ness at a point to the motion of the brightness pattern. Let the image brightness at
point (x,y) in the image plane at time t be denoted by E(x,y, t).  When the image 
pattern moves, the brightness of a particular point in the image pattern is constant. 
This led to the following equations

f  = ° (4-13>
Using chain rule Equation 4.13 can be written as,

dE dx dE dy dE ■ , A-,A\
l ^ X di  +  'dy X d t + ~ d t =  (414)

dE dE dE
_ x u  +  _ x t , +  _  =  0 (4.15)

dx dy
|4 J 6 )

Exu +  EyV +  Ei =  0 (4.17)

Where,
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Equation 4.17 is a single linear equation with two unknowns (i.e. u and v). The 
equations used to obtain the three partial derivatives Ex, Ey and Et are given below. 
The detailed derivation of these equations can be found in [96].

Ex ~  [̂Eij+i k̂—Eij -̂bEi+ij+ifi—Ei+ij^+Eij+i'k+i—Eij^+i+Ei+\j+ifr+\—Ei+ij^+i]

Ey ~  ^ [-̂ z+1 ,j,k Ei j+i ]cd~Ei^.i j E i j k + i d - E i + i  j+gfc+l Eij+1,/c+l]

(4.18)

,j+l,k-
(4.19)

E-t ~  - [E i j fk+i —Eij^+Ei+i j ^ +i —Ei+ij^+Eij+i^+i—Eij+i^d-Ei+ij+i^+i—
(4.20)

It can be noticed that, the estimates Ex, and Et are obtained by taking the
average of the first four differences taken over the adjacent measurements. The 
relationship in space and time between these measurements is shown in Figure 4.26.

y axis time axis

i+1

k+1

Figure 4.26: The estimates of three partial derivatives E x, E y and Et of image brightness a t the 
centre of the cube are each obtained from the average of first differences along four parallel edges 
of the cube. Here the index corresponds to the x direction in the image, the index V to the y  
direction and index lies in the time direction.

Similarly, to obtain optical flow vectors u and v the following equations can be 
used, respectively.

Ex[Exun T Eyvn +  Et\un+l = Un _ (4.21)
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vn+l = i j n _  Ev[E u" +  EvV» +  Et] (
a 2 +  E£ +  E£

The above are the recursive equations for obtaining the optical flow vectors. 
Where a  is a weighting factor which is also used to avoid division by zero. un and 
vn are local averages and are defined as

1 r -I 1 r ,

(4.23)
1 r i 1 r i

(4.24)
The detail derivation of these equations can be found in [96]. It can be seen from 

the above equations that obtaining the optical flow information is a computation­
ally expensive process as to process every pixel, many floating point operations are 
performed. As mentioned previously, Blackfin processor is not good in performing 
floating point operations, so for computing the three partial derivatives Ex, Ey and 
Et, the decimal operation was performed in place of floating point operation. This 
reduces the accuracy of the computed optical flow vectors, but at the same time it 
also reduces the computational complexity of the algorithm and also the execution 
time. Another approach used to reduce the computational complexity is to scale 
the grey scale image values by some factor (for example, 10000) and then perform 
the decimal operation in place of floating point operation. This way, it is defined in 
the beginning that in floating point format, up to what decimal point the precision 
lost is affordable. With this approach, the resultant optical flow vector which is 
1.3978654 when floating point operation is used, will now become 13978 if decimal 
operation is used with scale factor set to 10000.

The optical flow vectors, obtained using the above procedure, can be split into 
two components, the rotational (x component of flow vector) and the translational 
component (y component of the flow vector). Once the optical flow vectors are ob­
tained, the next task is to determine when the obstacle is very close to the robot. In 
typical approaches [43] the focus of expansion is calculated. Focus of expansion is a 
singular point on the image plane from where the image motion (due to translational 
motion of robot) everywhere is directed away. The focus of expansion is shown in 
Figure 4.27.

Using the translational component of the optical flow vector and the calculated
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Figure 4.27: Focus o f expansion (FO E).

FOE, the Time To Contact (TTC) to the obstacle is computed. The equation used 
to determine the time to contact is given as.

TTC =  A -
IVSI

(4.25)

Where V* is the translational component of the flow vector and A* is the distance 
of the point (Xi, yi) on the image plane from the focus of expansion. A lower thresh­
old value can be applied to the time to contact information such that, whenever 
the time to contact is less than that threshold value, the robot determines that the 
obstacle is very close to the robot and necessary action is required.

The optical flow based approach used in this research, is based on a very simple 
strategy. Based on the optical flow field, every time the magnitudes of the optical 
flow vectors of the left and right half of the image were calculated. If the sum of these 
magnitudes exceeded some predefined threshold, it was assumed that the obstacle 
was in front of the robot. Then the flow magnitudes computed for the left and the 
right half were used to determine the direction in which the robot was required to 
turn. If the flow magnitude from left half was greater than the right half, then it 
was assumed that the robot was closer to the obstacle from left side so it took a 
right turn.
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P a th  F in d e r  A p p ro ach

The last vision based approach used for obstacle avoidance is given the name, “Path 
Finder” . In this approach, rather then segmenting the whole image, the segmenta­
tion is performed from the bottom part of the image only. This way, the biggest 
segment resulting from the ground, providing the ground clearance, can be deter­
mined and finally can be used to determine the distance from obstacle lying in front 
of the robot. The basic idea is illustrated in the Figure 4.28.

Figure 4.28: Path finder approach to  obstacle avoidance

4.3.2 Experim ental R esults

In this section, the results obtained from the implemented obstacle avoidance ap­
proaches are presented. The objective of explaining the results here is that, the 
developed obstacle avoidance approaches can be efficiently executed in real time. 
An effort was made to minimise the execution time of these approaches so that they 
can be executed in parallel to the distributed vision processing tasks.

S eg m en ta tio n  B ased  O b stac le  A vo idance - E x p e r im e n ts

To test the image segmentation based obstacle avoidance algorithm, a test platform 
for SRV1 robot was developed. To make ground plane, white sheets of paper were 
joined together and some objects were placed on the ground plane which acted as 
an obstacle for the robot. In Figure 4.29, a view of the testing platform with SRV1 
robot and many obstacles placed on it is shown.

The SRV1 robot has a wireless connection to the development platform and 
through this wireless connection the processed images can be uploaded to the de-
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obstacles
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Robot

Figure 4.29: Test platform for SRV-1 robot with obstacles placed on it.

velopment platform for debugging. This image upload process is a slow process. 
Moreover, if the robot is processing stream of images for performing obstacle avoid­
ance task, then uploading the stream of processed images can slow down the per­
formance of robot. Due to this, the required response time for processing images 
and necessary action taken by the robot to avoid obstacle cannot be achieved by the 
Blackfin processor. To view the processed images by the robot, when it is moving 
towards the obstacle, the robot was programmed to move in non continuous fashion 
(i.e. robot moved a small distance, stopped and executed the segmentation based 
obstacle avoidance algorithm, transmitted the processed images to the development 
platform and then moved again). This way, some processed images were uploaded 
by the robot when it was moved in the testing platform with the position of obstacle 
arranged as shown in Figure 4.30.

On the right side of Figure 4.30, the trajectory followed by the robot is shown. 
The robot has gone straight, encountered the first obstacle and took a right turn. 
It has gone straight again, encountered the second obstacle, and took a right turn 
and then simulation over. The processed images uploaded from the robot are shown 
in Figures 4.31 to 4.37. In Figures 4.31 to 4.37, on the left most side, raw image 
stream captured by the robot vision system is shown. Image resolution is set to 
120x160 pixels to reduce the computational load. In the middle, the processed im­
ages obtained after performing segmentation and removing small segments is shown. 
On the right most side, the final visible ground map obtained is shown. As already
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Figure 4.30: In left image robot environment and placement of obstacles are shown. In right image, 
the path followed by the robot is shown.

mentioned, if the number of white pixels from the middle bottom of the image to 
the obstacle (shown by blue line in the right column images) are greater than 30, 
then robot moves forward assuming that the obstacle is far from the robot. It also 
checks for enough free space for robot to go forward. For this purpose 80 pixels wide 
region (shown by red line in the right column images) covering the middle bottom 
of the image is also scanned. For example, in the images shown in Figures 4.31 to 
4.37, from steps 1 to 9, the distance to obstacle was greater than 30 pixels so robot 
kept on moving forward. But in the image shown in step 10, the distance to obstacle 
is less than 30 pixels. Moreover, in step 10, the information obtained from 80 pixels 
wide scanned area also tells the robot that it is closer to the obstacle from the left 
side. Considering these facts, the robot control algorithm takes the decision to turn 
right. Now again from steps 11 to 12, the robot finds enough space to move forward, 
but in step 13, the distance to obstacle is less than 30 pixels. Information obtained 
from 80 pixels wide scanned area again tells that the robot is closer to the obstacle 
from left side. So the robot control algorithm takes the decision to turn right. After 
turning, the images processed by the robot give information about the new scene is 
shown in step 14. Here, the test simulation ends at step 14.

Using this segmentation based obstacle avoidance algorithm, many tests were 
performed. One of the paths followed by the robot, when obstacle avoidance algo­
rithm was tested in the testing platform, is shown in Figure 4.38. The path followed 
by the robot is drawn in three different colours. If the same colour is used for 
representing the path, then the fact that the robot trajectory is crossing at many 
places makes it difficult to understand the exact path followed by the robot. Con-
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Figure 4.31: Processed images obtained from segmentation based obstacle avoidance algorithm. 
Steps 1 and 2

1 Vhibfc

Figure 4.32: Processed images obtained from segmentation based obstacle avoidance algorithm. 
Steps 3 and 4

sidering this problem, the places where the robot trajectory is going to overlap the 
previously followed trajectory, a different colour is used to represent the path. In 
Figure 4.38, the robot has started from the red path and the test ends when the 
green path ends. The starting point and the ending point of the path followed by 
the robot are also identified in the figure. The maximum frame rate achieved with 
segmentation based obstacle avoidance approach is 2.46 frames per second, where 
the image resolution is kept 160x120 pixels. This means, the algorithm requires
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Figure 4.33: Processed images obtained from segmentation based obstacle avoidance algorithm. 
Steps 5 and 6

Figure 4.34: Processed images obtained from segmentation based obstacle avoidance algorithm. 
Steps 7 and 8

406 msec to process one image. This is sufficiently fast considering the processing 
power of the Blackfin processor. With this approach, it is possible to move the robot 
without colliding with the obstacle in real time. But it is found that this approach 
is not fast enough to execute in parallel to the distributed vision processing scenario 
as it does not leave enough processing resources for performing the actual task of 
distributed vision processing.
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Figure 4.35: Processed images obtained from segmentation based obstacle avoidance algorithm. 
Steps 9 and 10

Figure 4.36: Processed images obtained from segmentation based obstacle avoidance algorithm. 
Steps 11 and 12

O p tica l F low  b ased  O b stac le  A vo idance  - E x p e r im e n ts

In this section, the results obtained from optical flow based obstacle avoidance are 
presented. As already explained in the previous section, when the robot is moving 
and at the same time processing stream of images to take some decision, transm it­
ting the processed images to the development platform is not possible. As image 
transmission is a slow process and to view the results obtained after every step, the 
raw image and optical velocity vectors in x  and y directions for the whole image
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Figure 4.37: Processed images obtained from segmentation based obstacle avoidance algorithm. 
Steps 13 and 14

Figure 4.38: Path followed by the robot when segmentation based obstacle avoidance is used.

were transmitted. This sums up to three times the number of bytes the actual im­
age comprises of. So acquiring the optical flow field computed by the robot for the 
complete experiment is not performed.

An example optical flow field obtained when the robot is moving in the testing 
platform towards an obstacle is shown in Figure 4.39. Frame 1 is the first image 
taken by the robot and frame 2 is the second image. The optical flow field obtained 
between these two consecutive frames is plotted on frame 1 in yellow and shown in 
the bottom of figure. In Figure 4.40, a zoomed in version of optical flow field is also
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Figure 4.39: Optical flow field obtained between two consecutive images.

shown. Note that, the optical flow vectors obtained are in the correct direction (i.e. 
downward, opposite to the direction of motion), but there are some vectors which 
are in random directions. These vectors act as noise. These random vectors can 
be eliminated by considering only those vectors which share the same direction and 
greater in number. This way of eliminating random vectors works well if the robot is 
minimum at 6 cm distance from the obstacles such that, the obstacle is not covering 
the field of view of robots’ camera. But when robot is very close to the obstacle then 
obstacle boundaries result into optical flow vectors in all directions and these vectors 
cannot be considered as noisy vectors in random directions. However, these noisy 
vectors are not greater in number and in the current implementation of obstacle 
avoidance, it does not affect the performance.

As mentioned before, every time the magnitudes of the optical flow vectors of the 
left and right half of the image are calculated and if the sum of these magnitudes 
exceeds some predefined threshold then the obstacle is assumed to be very close. 
The way images are divided into left and right half is shown in the bottom right 
of Figure 4.39. The flow magnitudes computed from these left and the right half 
also provide information about the direction in which the robot is required to take 
turn. The maximum frame rate achieved with optical flow based obstacle avoidance 
approach is 3.5 frames per second, where the image resolution is kept 160x120 pixels.
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Figure 4.40: Zoom-in version of the optical flow field shown in Figure 4.39.

Figure 4.41: Path followed by the robot when optical flow based obstacle avoidance is used.

Following the above strategy, an example path followed by the robot is shown in 
Figure 4.41. In the experiments, it is observed that, when the robot encounters an 
obstacle and takes a turn and if after turning, it is very close to another obstacle, 
then there are chances for the robot to collide with the obstacle. This is because the 
algorithm is relying on the sum of the magnitudes of the optical flow vectors. And 
when the robot is very close to the obstacle such that the obstacle surface is covering 
the whole field of view of the robot, then there will be no optical flow generated
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by the movement of the robot. So this behaviour of robot colliding the obstacle is 
expected and is the drawback of this approach.

From the timing analysis of this algorithm, the execution time required by it to 
process one frame is 285 msec. The execution speed of this algorithm is found better 
than the segmentation based approach, but it was again not good enough to execute 
in parallel with the distributed vision processing scenarios.

Path Finder - Experiments

As mentioned, this approach does not segment the whole image but tries to find 
the biggest segment from the bottom section of the image, which ideally would be 
resulting from the ground region. Many experiments were performed using this 
approach. The image size used with this approaches 320x240 pixels, which is higher 
in resolution as compared with what is tested with the other approaches. This 
algorithm is also found to be very reactive as it took only 22 msec to execute and 
comparatively much faster than segmentation and optical flow based approach which 
took 406 msec and 285 msec respectively, to process one image. The selection of 
this algorithm is made for use in the distributed vision processing scenario because 
of two factors, namely: it is faster to compute and this algorithm also leaves enough 
time in which communication among robots and distributed vision processing task 
(e.g. distributed appearance based recognition) can be performed.

4.4 Energy Foraging

As explained before, when the robots get hungry and running out of the battery, 
they look for energy sources in the surrounding. Here vision support for finding the 
energy sources is presented. To facilitate the identification of energy sources, it was 
decided to use different colour LEDs near the energy sources. Then using a colour 
blob detection algorithm, the blob resulting from the LED could easily be identified 
and location of energy source could be determined by the robot. In Figure 4.42, the 
output of the colour blob detection algorithm is shown when Red LED was used 
near the energy source. In the left most image, the colour image is shown. In the 
middle, two images are shown. The top image shows the robot view and in bottom 
the output of colour blob detection for the current view is shown. Similarly, the 
robot view and detected colour blob output, when the robot moved closer to the
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last detected blob, is shown in the right most side of the figure.

Figure 4.42: Image showing the detection of red colour blobs when colour blob detection algorithm 
is used.

4.4.1 Experm ental R esults

The results obtained for the colour blob detection algorithm, to facilitate robot to 
locate energy resources for recharging battery, is presented in this part. To test 
the effectiveness of the algorithm, the LED mounted on the extension cable was 
used as an alternative to represent the energy source. So, whenever the robots 
needed to recharge their batteries, they could, in parallel, process the stream of 
images using the colour blob detection algorithm and could locate the charging 
points. To test the performance of the algorithm, the robot was programmed to 
work in parallel with obstacle avoidance (Path Finder based approach) and colour 
blob detection mode to detect the LED. As long as the LED was not detected, the 
robot continued to move and kept on avoiding the obstacles. As soon as the robot 
found the LED, it will come out of the obstacle avoidance mode and tried to reach 
the location where the LED was present. In Figure 4.43, the path followed by the 
robot is shown. The objective of this experiment was also to show that the colour 
blob detection algorithm discussed in the “Embedded Vision Library” section was 
capable of running in real time. From the timing analysis performed during this 
experiment, the execution time of this algorithm was found only 6 msec. This is 
very promising and supports that this vision algorithm can run in real time while 
leaving enough processing resources for the distributed vision processing scenarios.
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Figure 4.43: Path  followed by the robot to locate the energy resources.

4.5 V ision  B ased  D ock in g  Support

As discussed in Chapter 1 , in the swarm robotic system considered in this research, 
the robots were capable of forming a three dimensional organism by physically dock­
ing together. To achieve this, a computer vision based solution is discussed in this 
section. On the docking side of all the robots, a special four LEDs pattern was 
used. When the robot requires the other robots to dock to it, for forming an organ­
ism, it turned ON the four LEDs mounted on its backside. The other robots went 
around and tried to look for the robot which had the four LEDs turned ON. Using a 
computer vision algorithm, the robots tried to get close enough to the robot which 
required docking operation. Once the robots were close enough then here the vision 
based help for docking operation finishes. To achieve further precision in the align­
ment, the control was transferred to the Infrared sensor based docking operation, 
which is not part of this study as it is not related to computer vision field.

Considering the distributed vision processing scenario presented in Figure 1.4, the 
mobile robot went around in an unknown environment, doing obstacle avoidance and 
computationally expensive appearance based search operation to look for the places 
of interest. This was all based on input from vision sensor, so a very light weight 
vision based docking algorithm was required to achieve the real time performance. 
The fact, that this algorithm ran all the time (i.e. when docking was required) in 
parallel with the other computation expensive vision algorithms and wireless based
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multi-robot communication algorithm. So this made the task more challenging. 
Here a vision algorithm based on colour blob detection approach is presented. This 
algorithm looked for the LEDs which were turned ON and were also in the required 
known pattern. In the beginning, it seemed as the work could be done by identifying 
the red blobs in the current image, filtering the blobs which were in the required 
order to remove noise, measuring the distance between the detected LEDs blob to 
figure out the distance from the robot and finally write a piece of control algorithm 
to drive the motors. But the following observations made the task more challenging.

(i) When LEDs were turned OFF, then LEDs in red colour were detected as red 
blobs in the image. But how it appeared when LEDs were turned ON? When 
red LEDs were turned ON, then the centre of all the LEDs appeared red to 
human eyes but to vision sensor it appeared as shown in Figure 4.44. For 
comparison, a red LED in OFF mode was also present in the image. In case 
of ON LEDs, it could be seen that the centre of all the LEDs appeared bright 
White to the vision sensor.

Figure 4.44: Image showing LEDs used for docking operation

(ii) As the Surveyor robots, used for experimentation, had only one camera in the 
centre, so when the robot tried to get very close to object, the LED blobs go out 
of its vision. This supports the idea that the alignment could be performed up 
to some distance from the other robots which required docking. When robots
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were close enough then vision based help could not be provided for precise 
alignment and help from some other sensor was required.

(iii) The differential drive support on the Surveyor robots to perform robot motion 
did not allow very slow motion. The robot did not move if the speed reduced 
from certain value. The motors tried to move the robot but the robot appeared 
to be too heavy to the motors to perform very precise movement. This obser­
vation was more true when motors tried to rotate the robot. This is mainly 
because of the tank style treads tyres which increased the area by which the 
robot was in contact with the ground surface. This resulted increasing the 
robot grip to surface and caused lots of friction and hence restricted the precise 
movement.

(iv) When the robot was approaching the four LEDs blobs, the blob did not appear 
to be forming a reasonable required pattern. The pattern could be very tilted 
depending on the direction and angle from which robot was approaching the 
blobs for docking.

Based on the above observations, it was required that a colour blob detection 
based algorithm be adopted which also gave a certain level of confidence to drive 
the robot in the right direction to perform the docking operation. One way to solve 
the problem addressed in first observation was to explore for very bright spot in 
the. image only. But in this case, the colour of LEDs provided no information (i.e. 
robot was treating LEDs of different colours equally). Also the bright white image 
appearing in the background and reflections from the surfaces of objects around 
(which in turn appeared to be bright White) caused extreme noise which resulted in 
lowering the performance of the algorithm. It was therefore decided to breakdown 
the problem into a number of processing steps which in turn reduced the dimensions 
of complexity in every processing step while not sacrificing the performance. The 
operations done in the processing steps are the following:

4.5.1 Blob D etection  of R ed LEDs in ON State

First of all, the image was processed with the developed blob detection algorithm 
which was configured to detect Red colour blobs. The output of blob detection algo­
rithm was further processed with the image dilation algorithm to fill the small holes 
in the processed image. Normally an image dilation algorithm processes and di­
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lates the whole image. Considering the importance of processing time, a customised 
dilation algorithm was implemented which, rather than dilating the whole image, 
looked for only the part of image where the red blobs were detected and processed 
it. Doing this was rather easy as the output image from colour blob detection algo­
rithm was a binary image. Now to show the performance of algorithm to detect the 
blobs caused by red LEDs, the following figures are presented. Figure 4.44 shows 
the colour image captured by the robot. This image shows the four red LEDs in 
ON state and one LED in OFF state.

As mentioned before, the colour blob detection algorithm utilised the U and V  
images from Y U V  image format for blob detection so U and V  images of the above 
input image are also shown in Figures 4.45 and 4.46 respectively.

;;;vCv7h

Figure 4.45: U image of Figure 4.44

In colour blob detection algorithm, all U values greater than 90 were considered 
which also covered darker spots occurring around LEDs due to the presence of red 
colour (i.e. Figure 4.45). As the U image did not provide the complete chrominance 
information, so when U image was processed together with the V  image, then a 
robust colour detection could be carried out. In Figure 4.46, it can be seen that the 
image appears very bright where red LEDs are located. The LED in OFF state is 
causing a perfect continuous bright spot in the image where the LED is located. But 
the LEDs which are in ON state are causing brightness around the LEDs location 
only but not in the centre which in-fact appears to be dark (i.e. not red) to the vision 
sensor. So in the output image from colour blob detection algorithm, the unfilled 
holes are expected in the centre of the red blobs caused by the red ON LEDs. This
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Figure 4.46: V image of Figure 4.44

was overcome by the use of a customised dilation algorithm. The processed output 
image from this processing step is shown in Figure 4.47.

Figure 4.47: O utput of colour blob detection algorithm

In order to determine the blobs caused by the LEDs in ON state, the brightness 
information from YUV image was utilised. It is important to note that the feature 
of ON LEDs, which in the beginning appeared to be a problem (i.e. the centre of the 
LED image appeared bright White rather then Red), could be cleverly used to elimi­
nate the blobs caused by OFF LEDs. The output of colour blob detection algorithm 
was further processed and only those blobs were extracted whose centre appeared
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to be bright White. The Y image in the YUV format provided the image brightness 
information. The Y image resulted from Figure 4.44 is shown in Figure 4.48.

f 'HJi D M .I. M

Figure 4.48: Y image of Figure 4.44

In Figure 4.48, it can be seen that it is very easy to identify the red LEDs which 
are in ON state by simply thresholding the Y image and using it together with 
the output of colour blob detection algorithm which is shown in Figure 4.47. The 
final image showing the colour blobs resulted from LEDs in ON state is shown in 
Figure 4.49. To increase the number of pixels representing the ON LEDs blobs, the 
resulting image was further dilated.

Figure 4.49: Blobs resulting from red LEDs in ON state.
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4.5.2 O btaining the Statistics of R ed LED Blobs

To obtain the statistical information (i.e. the location of blobs in x and y coordinates 
in image) of the red LED blobs, the output image shown in Figure 4.49 was processed 
by a extract statistics .algorithm. The image shown in Figure 4.49 is a binary 
image in which 0 value is representing the dark part and 1 is representing the 
blobs caused by Red LEDs in ON state. Note that all the blobs appear as separate 
segments. The developed statistics algorithm performed segmentation of the image. 
All the connected segments were given different IDs. This way, once the image was 
processed, a unique ID for all the pixels representing one blob (i.e. four unique 
ID’s for four blobs) is produced. With the help of this ID, the centroid of all the 
pixels contributing to one blob could be easily calculated. The processed image 
providing statistical information of the LED blobs is shown in Figure 4.50. Using, 
the statistical information, the centroid of LED blobs were marked with Red cross 
sign. .

Figure 4.50: Image representing blobs statistical information.

4.5.3 Classification of Red LED blobs

After determining the statistics, blobs satisfying the required pattern were classified 
as Top, Bottom, Left and Right LED blobs. The classification algorithm made a 
reasonable assumption that while scanning the image from top to bottom, the first 
blob found was most likely to be from the Top LED following some conditions. 
Otherwise, the rest of the blobs were checked one by one. These conditions are as
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follows.

• Around the currently assumed Top blob, a cone shaped search field was defined 
as shown in red colour in Figure 4.51. In this field, the algorithm tried to locate 
the Bottom blob. Some checks were made to avoid the blobs resulting from 
reflection of Top LED to be considered as Bottom LED blob. The bottom blob 
should not be detected very close to the top blob. In the current implementa­
tion, it was defined to be detected at-least 20  pixels down from the top blob and 
the blob size in pixels was almost the same as the top blob. Here, a 20 pixels 
limit was determined empirically for QVGA resolution in which processing is 
done.

• Once the top and bottom blobs were found, then their centre point was deter­
mined. Across this centre, 60 pixels wide search field was defined. The blob 
which was found on the left side of this search field was most likely the blob 
resulting from left LED. Then again, a cone shaped search field was defined, 
extending in right direction (shown in yellow colour in Figure 4.51). Algorithm 
searched this field to look for the blob resulting from right LED.

Figure 4.51: Search field for neighbouring blobs.

4.5.4 Control A lgorithm  to Approach the Blobs

Flow diagram of the control algorithm is shown in Figure 4.52. It performed the 
following sequence of operations.
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Figure 4.52: Flow diagram of control algorithm.

• Move robots in the environment and search for the blobs in the required pattern. 
On finding the pattern, the algorithm performed the blobs classification. As 
there was a strong possibility that the robot was not approaching the LEDs 
from the front, but at some angle and this angle could be small or large (can 
not be identified clearly from distance), so rather than performing alignment 
in the first go, the robot first tried to get close to the blobs.

• If the distance between Top to Bottom and Left to Right blobs were equal 
and robot was approaching from front, then robot assumed that the maxi­
mum precision was obtained using vision and control algorithm stopped there. 
Otherwise, the robot determined the direction of its approach.

• If the robot was approaching the LEDs from left side with reference to the 
LEDs locations, then the LEDs pattern appeared as shown in the Figure 4.53.
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The right LED blob made a negative angle with the left blob. The control 
algorithm moved the robot backward, rotated it anti-clockwise so that the 
LED blobs went out of its vision. Then the algorithm moved the robot to make 
a clockwise turn. How big was the turn? It depended upon how big was the 
angle adjustment required. It kept on making this turn until the LEDs were 
back into its view field. Then it moved the robot again towards the blobs to 
see the further correction required.

-rye angle with respect toTeft blob

Figure 4.53: Robot approaching the LEDs for docking from left side with reference to the LEDs 
location.

• On the other hand, if the robot was approaching from right side then the LEDs 
pattern appeared as shown in the Figure 4.54. The right blob made a positive 
angle with the left blob. The control algorithm moved the robot backward, 
rotated it clockwise and then made an anti-clockwise turn to bring the LEDs 
back into view. This process continued until the robot align itself.

4.5.5 Experim ental R esults

The idea of using four LEDs on the back of robot and the vision based detection 
of these LEDs to facilitate the docking operation was just described. Using this 
approach together with a control algorithm, experiments were performed, for robot 
alignment with the four LEDs in ON state. The results obtained from four of these
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■B
Figure 4.54: Robot approaching the LEDs for docking from right side with reference to the LEDs 
location.

experiments are presented. In Figure 4.55 the starting position of the robot, in four 
conducted experiments, before alignment, is shown. In Experiments 1 and 2, the 
robot was less misaligned but in experiments 3 and 4, more alignment was required 
as robot was approaching the LEDs with a very sharp angle.

The trajectory followed by the robot in experiment 2, is shown in Figure 4.56. 
As the robot was less misaligned with the LEDs shown on docking station, so con­
trol algorithm was able to achieve the vision based alignment in reduced time. In 
comparison, the result obtained from experiment 4 is shown in Figure 4.57, where 
more alignment was required to perform docking. In Figure 4.57, the different stages 
followed by the control algorithm to perform alignment, are shown in terms of tra­
jectories followed by the robot in different colours. In the beginning, the robot 
approached the docking station straight (shown in Black colour) and determined 
the angle made by the left LED blob with the right blob. As the angle was large, 
so it moved back and made a big turn while approaching the docking station to 
reduce the error in angle (shown in blue). Finally, the robot was less misaligned so 
it moved back again and made a short turn (shown in green). This time the robot 
was reasonably aligned with the docking station and stopped further alignment.

The results obtained from the four experiments, after alignment was performed,
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Figure 4.55: Initial pose of the robot before performing alignment.

Figure 4.56: Trajectory followed by the robot in experiment 2.

are shown in Figure 4.58. In all these experiments, the robots were almost fully 
aligned with the four LEDs. This was the maximum support which vision could 
provide in docking. If the robot tried to get further close, then LEDs went out of its

xperimen:

.xperim e

Experiment 2

Robot
aligned
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Robot
aligned
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Figure 4.57: Trajectory followed by the robot in experiment 4.

vision (as the camera lies in the centre) and the robot could not take any decision 
about alignment. For final mechanical docking and further precise alignment, the 
control could rely on infra-red sensor information. Infra-red sensor provides accurate 
information at short distances (i.e. 5 to 10cm). Following this fact, the vision 
based docking algorithm will help the robots to get close (upto 5cm) to the docking 
port. Then the algorithm will switch to the robot control based on infra-red sensor 
information. Using infra-red sensor information, further alignment of the robot with 
the docking port and final mechanical docking operation will be performed.

To demonstrate the functioning of vision based docking support in a swarm 
robotic environment, an experiment was performed in which a number of robots 
were looking for docking port collectively. The docking port was installed on one of 
the robots. The robots were performing vision based obstacle avoidance, sharing in­
formation with each other and simultaneously looking for docking port. The robots 
were performing this task collectively that was, when a robot in a swarm would 
find the docking port, it would inform its team members to stop looking for the 
docking port and quit the mission. After informing the team members, the robot 
which found the docking port, aligned itself with the docking port using vision so 
that docking operation could be facilitated. Several tests were performed using this
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ie r im en t l

perimentj

Figure 4.58: Pose of the robot after performing alignment.

approach. In Figure 4.59, one of the experiments is shown. Three robots were used 
to perform the collective search operation. In the beginning, the LEDs used on the 
docking port of the robot were turned OFF as shown in Figure 4.59a. The robots 
started the mission with vision based obstacle avoidance, searching arena for docking 
station and in parallel, also informing each other whether any of them have found 
the docking port. Finally, one robot found the docking port, it informed the other 
team members that they were no longer required to search for the docking station, 
and align itself with docking station as shown in Figure 4.59b. All the other robots 
left the search operation. It can be noticed that, this vision based docking support 
may be used for the docking of two robots, so that they can become a single robotic 
organism. Or it can be used for docking with the energy source so that battery 
recharging operation can be performed.
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Port ready  
for dockinl

D o c k i n g  p o r tR obot a ligned  
for docking

Figure 4.59: (a) Swarm of robots starting collective search for docking port, (b) One robot finds 
the docking port and the rest quit mission.

4.6 Conclusions

In this Chapter the development and implementation of basic vision processing 
algorithms has been presented. These vision algorithms provide the basis for the 
main distributed vision processing scenarios addressed in Chapters 6 , 7 and 8 . Using 
these basic vision algorithms, the necessary functionality required by the robots 
to move in the environment, that is obstacle avoidance, is also developed. The 
developed vision based obstacle avoidance algorithm is utilised in both swarm and 
the organism mode scenarios to facilitate a swarm of robots and a robotic organism 
avoid colliding with a number of obstacles. For the vision processing algorithms 
addressed in this Chapter, it is necessary that they achieve real time performance. 
For this purpose, it has been concluded that the customisation and optimisation of 
these algorithms is necessary for the target embedded system used on the robots.
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Chapter 5

M ulti-R obot Localisation and 
Tracking System

Vision based robot tracking and localisation using a fiducial marker based approach 
is adopted in many indoor multi-robotic research projects in which precise robot 
position and orientation are required for certain objectives. In this chapter, a Multi­
robot Visual Tracking System is developed which performs the multi-robot localisa­
tion and tracking tasks using the information from two ceiling mounted cameras. 
This system utilises a new passive marker template which is designed to uniquely 
identify the robots and to precisely determine their positions and orientations in a 
multi-robotic environment. Using the designed template, a multi-camera solution 
to track robots in the robot arena, using off-the-shelf web-cams, is provided. As 
the passive markers do not consume energy, so their use together with off-the-shelf 
web-cams provides the energy and cost effective solution to the multi-robot localisa­
tion problem. The approach presented is found robust for localisation and tracking 
problem. Passive markers, which use colour information to code markers ID and 
orientation, are used on the top of each robot working in an environment. Two cam­
eras, mounted on the ceiling, gave a collective view of the robot working arena. To 
show the effectiveness of this approach, its application to guide robots along prede­
fined trajectories is also shown in this Chapter. Information from the two cameras is 
used to track and localise the robots’ position and then the robots are given further 
instructions about their movements and orientation correction, so that they all could 
reach the target location in the presence of obstacles. This multi-robot localisation 
and tracking system is developed to provide localisation information to the robots in
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the distributed vision processing scenarios in swarm mode. This chapter is divided 
into the following sections.

• Camera Calibration..

•  Visual Localisation and Tracking System.

• Multi-robot Visual Guidance.

5.1 Camera Calibration

In a visual tracking and localisation system the robots were tracked in the images 
captured by the two ceiling mounted cameras. So to determine the robots’ positions 
in real units or world coordinate system, first of all, camera calibration of the ceiling 
mounted cameras was required. The objective of camera calibration was to find 
the camera parameters which defined the relation between the 3D world coordinate 
points and the 2D points on the camera image. These parameters are represented 
in the form of a 3x4 matrix which is called camera matrix in computer vision termi­
nology. The relation between 3D world points Cw and 2D image points C* in terms 
of camera matrix K  are explained next. The relevant equations are explained in 
detail in Chapter 4. Here, they are briefly described for convenience.

Ci =  KC w

This equation when expanded, can be expressed as

(5.1)

su xw
sv = AB Vw
s Zw

(5.2)

(5.3)

where, u and v are the 2D camera coordinates and s is the scale factor. The 3D 
world coordinates are represented as xw, yw, zw. The camera matrix K  is represented 
as A[RT], where A is the camera intrinsic matrix, R is the rotation and T  is the 
translation matrix of camera with respect to the world coordinate points (World 
coordinate system is the reference coordinate system). R and T  together represent

SU xw
sv =  A[RT] Vw
s Zw
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Figure 5.1: Image 1 (left) and image 2 (right)

camera extrinsic parameters B. The camera intrinsic A  and extrinsic B  matrices 
can be expanded as

otx 7
A — 0 a y v0 (5.4)

0 0 1

B =

rn  r i2 r 13 tx 
7*21 722  r 23 t y

7-31 7*32 r33 t z

0 0 0 1

(5.5)

where, ax and ay are the focal length of camera in terms of pixels. 7  is the skew 
coefficient between x  and y axis of image. And Uq and v$ are the principal points of 
the camera. Similarly, rn , 772, r i3, 7*21, r 22 , 7*23, r 3i, r32, r33 define the parameters 
of rotation matrix and t x , t y , t z define the parameters of translation matrix. To 
cover the complete robot arena, both ceiling cameras were mounted 5 feet above the 
arena surface. Due to this, a big size calibration grid pattern was used for calibration 
purposes. The use of big calibration pattern was made so that the pattern could be 
clearly seen by the cameras. The images of calibration pattern captured by ceiling 
cameras were processed with MATLAB camera calibration toolbox [115]. Twelve 
images were used for calibrating the camera. These images are shown in Figures 5.1 
to 5.6.

For camera calibration, the same procedure was adopted which was used for 
calibrating the robot camera as explained in detail in Chapter 4. The grid points 
were selected carefully 011 the pattern images using the calibration toolbox. The
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Figure 5.2: Image 3 (left) and image 4 (right)

Figure 5.3: Image 5 (left) and image 6 (right)

Figure 5.4: Image 7 (left) and image 8 (right)

106



5.1 Camera Calibration

Figure 5.5: Image 9 (left) and image 10 (right)

Figure 5.6: Image 11 (left) and image 12 (right)

The red c ro s s e s  should be c lo se  to  the  im age com ers

Figure 5.7: After grid points selection: image 1 (left) and image 2 (right)
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The red crosses should be close to the image comers The red crosses should be close to the image comers

■ ■ * ■ s
3  w*w* « ■ ■ ■ * « W *  * *
■ ■ ■ ■ ■ ■ ■ ■
U  U m m m

Figure 5.8: After grid points selection: image 3 (left) and image 4 (right)

images obtained after grid points selection, are shown in Figures 5.7 to 5.12. It can 
be seen that the grid points are selected accurately in all the images.

Finally, the camera intrinsic and extrinsic parameters obtained, after executing 
the calibration routine, are shown below.

A =
782.2

0
0

0 372.3
782.2 466.1 

0 1
(5.6)

B =

-0.0216 0.9996 -0.0171 -310.5
0.9952 0.0198 -0.0959 -589.2

-0.0955 -0.0191 -0.9952 1286.6
0 0 0 1

(5.7)

where all measurements are defined in millimetres. To determine the accuracy of 
these parameters, the 2D grid points were re-projected on the images. The result 
obtained when these points were re-projected on image 1 is shown in Figure 5.13. 
It can be noticed that, the re-projection of the grid points is done accurately. Now 
these parameters were utilised in the Visual Tracking System, if the localisation and 
tracking information were required in the real world coordinates.
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The red crosses should be close to the image corners The red crosses should be close to the image corners

Figure 5.9: After grid points selection: image 5 (left) and image 6 (right)

The red crosses should be close to the image corners The red crosses should be close to the image corners

Figure 5.10: After grid points selection: image 7 (left) and image 8 (right)
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The red crosses should be close to the image corners The red c rosses should be close to  the im age corners

*

Figure 5.11: After grid points selection: image 9 (left) and image 10 (right)

The red crosses should be close to the image corners The red crosses should be close to the image corners

Figure 5.12: After grid points selection: image 11 (left) and image 12 (right)
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Figure 5.13: Reprojected 2D grid points.

5.2 V isu a l L ocalisation  and Tracking S ystem

After performing the camera calibration, the second step was to process the camera 
images and localise the robots. In robot localisation based on passive markers, the 
most challenging stage was the design of the markers such that they were prominent 
in the environment and easy to detect. They should code ID information so that 
multiple robots could be identified and their design should also convey the robot 
orientation information. The markers used in this research also utilised the colour 
information based on the fact that colours appearing in certain pattern could be very 
prominent in the environment. In Figure 5.14, four markers conveying the unique 
ID information following the same the design template are shown.

In Figure 5.14, it can be noticed that, three colours are used in the design of 
the markers. One marker, with blue colour cover, is labelled to define the template. 
Cover colour region defines the boundary of the marker. Cover region surrounds the 
head region from three directions, but is open from one side of the tail region. This 
also differentiates the head region from the tail region. Head region is the one which 
finds the tail region in one direction and cover region in three directions. And tail 
region is defined as the one which is open from one direction, surrounded by cover 
region from two directions, but finds the head and cover regions together in one 
direction. Each marker is the result of colour blobs appearing in a certain pattern. 
In Figure 5.14, markers using all three colours are shown, but with this approach, 
markers of same colours can also be designed. With this approach, by using three
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Cover „  .

Tail

Figure 5.14: Fiducial markers template.

colours together with a simple design template, not only 27 different robots can 
be identified, but at the same time, it also conveys the orientation information. 
This approach shows the advantage over other approaches such as the one used in 
RoboCup [103] which uses the same number of colours, but can uniquely identify 
only 9 robots. The approach presented here requires the colour image processing 
techniques in order to detect the colour blobs appearing in a certain pattern. It 
identifies the markers from which these blobs are resulting and then determines 
their orientation information. To perform image processing, MATLAB was selected 
as it provides a good platform for the proof of concept. The procedure adopted to 
achieve the objective required extraction of colour blobs, blobs statistics and pattern 
recognition in a designed template. Once marker identification was achieved, then 
multi-camera based marker tracking system was used to provide visual guidance to 
the robots. This is explained in the following sections.

5.2.1 Colour Blob Extraction

In the beginning, different colour blobs (i.e. red, green and blue) appearing in the 
image were extracted. To extract the colour blobs, YUV image format was used. The 
reason for processing in YUV format is that, it makes the blob extraction algorithm 
less sensitive to the changes in lighting condition. In order to select the colour blobs,
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the threshold was applied to the range of values in UV plane. The result obtained 
when colour blobs were extracted from Figure 5.14 is shown in Figure 5.15.

Figure 5.15: Color blobs extraction.

5.2.2 Extraction of Blobs Statistics

In the next stage, segmentation of the resulting colour blobs is performed. In other 
words, statistical information of each blob was extracted that is, the centroid of each 
blob and the number of pixels the blobs comprised of. This way, each blob was also 
assigned a fixed ID. This was to make sure that when the algorithm was searching 
for the cover blob around the head blob, then it checked whether the blob (which 
is a cover blob candidate) appeared around the head was all connected (i.e. it has 
same ID) and was not resulting from different objects.

5.2.3 Template M atching and Pattern Recognition

The localisation system was given a prior knowledge about the identity of the differ­
ent colour patterns appearing in the form of designed template in the given image. 
For example, blue cover, red head and green tail blob, this pattern was attached 
to robot 1. The complete marker detection and identification process is as follows. 
After segmenting and assigning a unique ID to all blobs, each blob was processed 
one by one and checked whether it was the one resulting from the head blob. For ex-
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Figure 5.16: Pattern recognition process, (a) Window around the selected blob, (b) Selecting 
the expected tail blob, (c) Search line from tail to the head blob along which cover blob will be 
searched, (d) Search line along which cover blob is searched for final validation of the pattern.

ample, if any robot marker had red colour in the head blob, then localisation system 
considered all red blobs one by one and checked whether they follow the designed 
pattern. An example showing the step by step process to identify that a marker 
fitted the design template is shown in Figure 5.16. When red blob was considered as 
the one resulting from the head region then to make the process of template valida­
tion faster, a window (35 pixels square window) was defined around the selected blob 
(shown in Figure 5.16a). Only those blobs which lied in this window were considered 
for template validation. From the prior knowledge, algorithm knew that a green tail 
blob was in a possible set of patterns. In this case, it found the green blob in the 
search window as shown in Figure 5.16b. The algorithm then determined the slope
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Figure 5.17: Determining the location and orientation of the four robots.

between the head and the tail blob. For this, it required the centroid of the head 
and tail blob. This is where it utilised the statistical information it had extracted 
during the blob segmentation process. After obtaining the slope, it drew a search 
line along which it processed the pixels and searched for the closed cover blob in one 
direction (head direction) and open cover blob in opposite direction (tail direction). 
The search line is shown in Figure 5.16c. If algorithm found the expected pattern 
along the search line in Figure 5.16c (i.e. head was covered by another expected 
colour blob and the cover was open from the tail blob direction), then it drew an­
other search line perpendicular to the previous search line. This search line is shown 
in Figure 5.16d. Along this search line, the algorithm searched for the cover blob on 
both sides of head blob. Algorithm made a check that the cover blob found along 
the search line shown in Figure 5.16d had the same ID which was found when the 
search was made along the line shown in Figure 5.16c.

Following this approach, when the complete image was processed, then the four 
robots identified are shown in Figure 5.17. To identify the orientation of the robots, 
three white lines were plotted over each identified marker. Two lines spanned across 
markers width whereas, one white line identified the direction, where robot was 
facing. It can be seen that, with very simple designed markers, the robot orientation 
is very accurately identified.
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5.2.4 M ulti Camera Based R obot Tracking

After identifying the multiple robots in arena using the above defined marker based 
approach, an algorithm to track their position and orientation in the arena was 
developed using a multi-camera system. The setup of this multi-camera system 
and the development of the robot tracking algorithm are explained in detail in the 
following sub-sections.

(i) Multi-camera System

(ii) Robot Tracking Algorithm

M ulti-camera System

This section is divided into In the beginning, a single camera was mounted on the 
ceiling right above the middle of arena, so that the markers placed on the robots 
could be identified. To grab images, a LogiTech webcam with 90 degree field of view 
was used. With 90 degrees field of view, it was not possible to cover the complete 
arena with single camera. If cameras with higher degree field of view are used, then 
their image covers more area but at the same time they cause fish eye problem which 
reduces the precision of markers’ position detected near the boundary of the image. 
So to cover the complete arena, two LogiTech webcams were mounted parallel to 
each other above the arena. As the web-cams were mounted higher (i.e., 5 feet) above 
the arena, so it was not possible to work with low resolution. With low resolution, 
the markers appeared very small that is, not enough pixels were contributing to 
provide information about the markers. Due to this, it was possible that some of 
the markers left undetected due to the changes in the illumination. So, to overcome 
this, it was decided to grab images in a higher resolution that is, 960x720 pixels. 
The way the web-cams were mounted above the arena, is shown in Figure 5.18. 
Both cameras were connected with a Core 2 Duo processing system. And for image 
processing, to identify the markers and track the robots, MATLAB was used. As 
images from both cameras were processed on a system by the same algorithm, so 
the robots’ position information was shared within the algorithm. This way, the two 
cameras collectively could track the robots.

The complete arena surface was divided into three zones. Camera 1 could view 
the robots in zones 1 and 2. So, camera 1 could effectively track the markers 
mounted on the robots in zones 1 and 2. Similarly, zones 2 and 3 were in the
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Figure 5.18: Ceiling mounted camera set-up for robot tracking.

visibility of camera 2. Zone 2 is the area which appears in both cameras 1 and 
2 view. So, robots appearing in zone 2 were tracked by both cameras 1 and 2. 
This way, cameras 1 and 2 collectively provided a wide field of view and covered 
the complete arena. As mentioned before, the cameras were mounted higher above 
the arena, so to identify the markers placed on the robot, a high resolution image 
(i.e. 960x720 pixels) was used. Now if images captured by both cameras 1 and 2 
were fully processed every time, then the algorithm to identify the markers could be 
computationally demanding. So to reduce the computational load, the images from 
cameras 1 and 2 were fully processed only once in the beginning or until the time, 
when all the expected markers placed in the arena were identified. In Figure 5.19, 
the images captured by the cameras 1 and 2, when four robot markers were placed 
in the arena, are shown. All four markers positions and orientations were properly 
determined. Camera 1 (shown in Figure 5.19a) will be tracking robots 1, 2 and 4 
whereas, camera 2 (shown in Figure 5.19b) is responsible to track robots 1, 2, 3 and 
4.

R o b o t T rack ing  A lg o rith m

Once all the markers were identified, then the tracking algorithm was developed to 
track the robots positions in the environment. For the two cameras used in the 
multi-camera system, the tracking algorithm made a tracking database to store the
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Figure 5.19: Collective tracking of robots from ceiling mounted cameras.

robots positions. All the markers identified in camera 1 image were kept in camera 1 
tracking database, and similarly, the markers in camera 2 view, were kept in camera 
2 tracking database. After all the robots positions were identified, in the next image 
frame, the algorithm made a search window (70 pixels wide) around each robot’s 
last identified position. The algorithm expected the robots to appear in that search 
window. If the robot was not identified in that window, then in the next frame, 
the algorithm increased the search window size for that robot. In other words, the 
algorithm increased the uncertainty about the robot’s position and increased the 
search window size. If the robot which was tracked by camera 1 was in zone 1, 
but now was entering zone 2, then this robot would be entering the shared zone 
and would become visible in camera 2 view too. So, the algorithm would keep on 
tracking the robot in camera 1 images, but at the same time, it would also add 
the robot ID in camera 2 tracking database. Now the algorithm had to determine, 
where the robot was expected to appear in the camera 2 image. For this purpose, 
the algorithm solved the Homography[ll] between cameras 1 and 2 images. Using 
the homography, algorithm identified the robot expected position in camera 2 image
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and determined that where to draw a search window to track the robot in the coining 
image frames from camera 2. On the other hand, if a robot moved from zone 3 to 
zone 2, then tracking database update process was initiated for camera 1. Similarly, 
the removal of robot ID from tracking database was also important when the robot 
was moving from zone 2 to either zone 1 or zone 3. If it was moving from zone 2 to 
zone 3, then it would go out from the camera 1 field of view and the algorithm would 
remove this robot ID from camera 1 tracking database. And if it was moving from 
zone 2 to zone 1, then removal of the robot ID would be performed from camera 2 
database. The later case is also shown in Figure 5.20. Camera 1 was tracking robots 
1, 2 and 4 (as shown in Figure 5.19) and camera 2 was tracking robots 1, 2, 3 and 
4. Now robot 1 moves from zone 2 to zone 1. It is no more visible by camera 2 so 
its ID was removed from camera 2 tracking database.

Zone 2

(b) Camera 2 (a) Camera 1
Figure 5.20: Collective tracking of robots from ceiling mounted cameras.

To determine the positions of all the robots on the combine image plane, the 
following steps were taken.

• Robots appearing in zone 1, their positions and orientations were provided by 
camera 1 as they were tracked by camera 1 only.
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• Robots appearing in zone 3, their positions and orientations were provided by 
camera 2 as they were tracked by camera 2 only.

• Robots which appear in zone 2, as they were tracked by both cameras 1 and 2, 
so information from both cameras was fused together to determine the robot’s 
position. The advantage of this shared zone is that, due to light reflections 
or illumination variations, if one of the camera was not able to identify the 
marker in zone 2, then the marker position could still be identified using the 
information from the other camera.

5.3 M ulti-Robot Visual Guidance

To visually guide the multiple robots in the arena, using markers based localisation 
information, initially all the ground surface was determined on which robots could 
move to reach the target location. In Figure 5.21, the target location for the visually 
guided robots is shown. To determine the ground surface, Canny edge detection 
algorithm [120] was applied on the images captured from both cameras. As the arena 
surface had no texture, so it did not cause any edges in the output image. Only 
arena boundaries, obstacles and robots caused edges in the output image. As the 
robot positions were known precisely through the marker detection approach, so the 
edges appeared around robots positions were simply ignored as they were certainly 
caused by robot bodies. This way, ground surface was successfully extracted and 
all the obstacles were identified using the edge information caused by the obstacle 
boundaries. This provided a ground map with obstacles identified on it. Now the 
next task was to guide all the robots to reach the same target location without 
colliding the obstacles in the environment. For this purpose, the shortest distance 
to the target location was determined in the presence of obstacles. This is a path 
planning problem. For this purpose, A*[12] path planning algorithm was used. As 
the ground map was defined in high resolution, so it could be computationally very 
expensive to process every pixel while searching for the possible shortest path to the 
target location using A* algorithm. So to reduce the computational complexity, a 
grid map was defined. This grid map was obtained by dividing the high resolution 
ground map into 25x25 pixel windows and identifying each window as a single cell 
which could convey the ground clearance or the obstacle presence. This grid map 
is shown in Figure 5.22. It can be noticed that, nine obstacles (01 to 0 9  in green
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colour) are clearly identified on the grid map. As the positions of three robots was 
precisely known on the grid map, so using A* algorithm, the shortest path to the 
target location was determined. The shortest path obtained for the three robots is 
also shown in Figure 5.22.

Figure 5.21: Robot arena used for the visual guidance of the robots.

To test the developed fiducial marker based approach for tracking and guiding 
robots, tests were performed in which many obstacles were placed in the robot arena 
such that the robots had to go through complicated way to reach the target. Two 
of these tests are discussed here. In the first test, before the robots started receiving 
the guidance commands, the positions of the robots in the arena are shown in 
Figure 5.23. The paths to target for three robots are also shown in the Figure 5.24. 
It can be noticed that, robots 1 and 3 have to go through a long path to reach 
the target because they are surrounded by many obstacles. In case of robot 1, the 
obstacle around it had some free space in between but this was not enough for the 
robot to go through, so it is not shown as ground clearance to robot. The detected 
obstacles were dilated in the grid map image so that the robots passed by their side 
with safe distance. This is done to a avoid collision with obstacles.

It is noticed that, during the operation, some time the robots collided the obstacle 
when they were passing near to them. This happened because, to avoid robot bodies
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Figure 5.22: Image showing the shortest path to the target location for all the robots on the grid 
map.
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Figure 5.23: Test 1: Positions of the robots in the arena before the test started.

from appearing as an obstacle, a window region was defined around robot detected 
positions. And edges detected in those windowed regions were considered as the 
one appearing because of robot bodies, and so were ignored. When robot was 
very close to obstacle, some time this assumption failed as those edges actually 
appeared because of obstacles boundaries but were mistakenly ignored. One of 
this scenario in test 1 is shown in Figure 5.25 when robot 1 collided the obstacle
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Robots Path to Target

Figure 5.24: Test 1: Robots path to the target location on the grid map.

boundary on its way to target. Finally, the positions of the robots when they reached 
the target location is shown in Figure 5.26. The robots were gathered around the 
target location successfully.

Camera 1 Tracking Camera 2 Tracking

Figure 5.25: Robot 1 colliding the obstacle boundary.

Similarly, in the second test, the positions of the robot before they started receiv­
ing guidance and once they reached the target locations are shown in Figures 5.27 
and 5.29, respectively. The shortest path to the target, before the robots started 
moving, is also shown in Figure 5.28. In this experiment, again the robots reached 
the target locations successfully as shown in Figure 5.29.
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Camera 1 Tracking Camera 2 Tracking

Figure 5.26: Test 1: Robots reached the target location successfully.
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Figure 5.27: Test 2: Positions of the robots before the test begin.

In the presented approach, the path to target was determined every time. This 
way, if some of the objects moved in the environment, then robot automatically 
directed a new path to the target location. This on-line path determination some 
time caused problems for the last robot reaching the target. This happened because 
the robots which reached first, covered the target location and this caused problems 
when the path to target was determined for the last robot. Another problem ob­
served was due to the difference in the positions of the robot in the captured image 
and their actual position. The new commands to the robots was determined on
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Figure 5.28: 
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Figure 5.29: Test 2: Robots reached the target location successfully.

their detected position in the captured image. If the captured image conveyed the 
robot position before the last control instruction was received and implemented by 
the robot then the new command, which would be issued on the bases of captured 
image, would not be truly valid for the actual position of the robot. This caused 
an error when the robot tried to correct its orientation with the path to the target 
location. However, this could be easily corrected by adding a feedback mechanism 
from the robot, which conveyed that the robot had actually implemented the last

Robots Path  to Target

Test 2: Shortest path to the target location on the grid map.
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received commands. This synchronised the camera frame capturing with the control 
command implementation on the robot. In this way, it could be ensured that before 
the next frame was captured by the camera, the robots had already changed their 
positions based-on the last received commands.

The results obtained from the described tests proved that the position and orien­
tation information obtained from the developed fiducial markers were precise enough 
to guide the robots. This solution to robot tracking and guidance is cost effective 
and can be easily extended to cover more area by simply adding more cameras or by 
using the cameras with more wide field of view. The handshaking between the two 
cameras while tracking the robots can also be easily extended to further increased 
number of cameras. This solution can be made more effective by using smart cam­
eras, which have on-board processing capabilities, together with the wireless network 
technology to share robot tracking information between the different cameras.

5.4 Conclusions

In this Chapter the development and implementation of a “Visual Tracking System” 
has been presented. This tracking system is developed to provide the localisation 
information to a group of robots working in the swarm mode. In the two swarm 
mode scenarios addressed in Chapter 6, the group of robots obtain their localisation 
information from the “Visual Tracking System” to precisely localise the target ob­
jects in the environment and also to map their environment boundaries. To show the 
effectiveness of the localisation information provided by the “Visual Tracking Sys­
tem” to the robots, experimental results has been presented in this Chapter, which 
demonstrate the manner the group of robots reaches the target location without 
colliding with the obstacles, solely based on the guidance provided by the “Visual 
Tracking System”. Prom the successful experiments, it has been concluded that, the 
robot’s localisation information provided by the “Visual Tracking System” is precise 
enough to be used for the swarm mode scenarios.
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Chapter 6

D istributed Vision Processing in 
M ulti-R obotic Swarm

This chapter is dedicated to the two distributed vision processing scenarios which 
are performed in the swarm mode. In the first scenario, a group of robots are 
used to search for the object of interest in the environment and localise them by 
using their visual information together with the Visual Tracking System discussed 
in Chapter 5. For this scenario, an object recognition algorithm is developed and 
customised for the target embedded system and made it run efficiently on small size 
robots with limited memory and processing resources. The Visual Tracking System 
localised the robots and the group of robots recognised the objects. This way, the 
group of robots and the Visual Tracking System localised the objects, collectively. 
In the second scenario, a novel approach for mapping the environment by a group 
of robots is discussed. The group of robots extracted very simple visual features, 
which are used together with the localisation information from the Visual Tracking 
System, to collectively map the environment. To discuss these scenarios in detail, 
this Chapter is divided into the following three sections. First section describes the 
communication medium used to share the information among swarm of robots. The 
other two sections describes the distributed vision processing scenarios in swarm 
mode.

• Communication among Swarm of Robots.

• Vision Based Object Recognition and Localisation by Multi-robotic Systems.

• Environment Mapping by Distributed Multi-robotic System.
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6.1 Communication among Swarm of R obots

Following the discussion in Section 2.1, wireless communication medium was found 
suitable to exchange information among swarm of robots. To establish communi­
cation, the robots need to use onboard communication middleware onboard. The 
discussion in Section 2.1 shows that the use of such communication middleware is 
not realisable in swarm robotic systems because these middlewares have very high 
memory requirements. For this purpose, low level wireless communication routines 
were developed in this research, and these routines are customised for the target 
system. It is important to note that the robots have very limited onboard energy 
resources, and due to this, the wireless communication boards used on the robots 
have very low signal to noise ratio. Due to this low signal to noise ratio, the use 
of adhoc communication mode caused severe communication delays which affected 
the performance of the overall system. To overcome the problem of low signal to 
noise ratio, infrastructure communication mode was preferred over the adhoc mode. 
The use of a wireless access point in infrastructure mode increased the range of the 
swarm by retransmitting signals at a higher power level; hence reducing the chances 
of data loss during transmission. For reliable data communication, the TCP com­
munication protocol was used which works at transport layer. To avoid overloading 
the communication network, it was decided to share visual features which encode 
low density information. As the vision sensor generates huge amounts of data, so the 
selection of visual features with low density information was critical. The selection 
of appropriate visual features, which provide sufficient information to achieve the 
target objectives, is addressed in detail in Sections 6.2 and 6.3. To transmit these 
visual features, the data packets with maximum size of 400 bytes, were used. The 
use of small size data packets, low density visual features and TCP communica­
tion protocol over reliable infrastructure communication mode made it possible to 
achieve the efficient data exchange between swarm of robots, to. successfully achieve 
the objectives of swarm mode scenarios.

6.2 Vision Based Object Recognition and Localisation by 
M ulti-Robotic System s

Object recognition is an essential element of robotics. In most robotic applications, 
the robot or group of robots are required to look for and recognise the objects of in­
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terest in the environment to achieve given objectives. To perform object recognition, 
the integration of vision sensors in robotic applications has provided many solutions. 
In robotic applications, the need for object recognition arises when a robot has to 
perform a given manipulation task and before that it has to recognise the object 
of interest in the environment. It may also be necessary when the robot has to 
localise itself in the environment with respect to some specific landmarks which it 
has to recognise. Hence, it may be thought of as the basic functionality required for 
advanced robotic applications. The object recognition functionality is considered 
as one of the most challenging problems in computer vision as it presents several 
challenges such as, view point changes, intensity variations, occlusions and back­
ground clutter. Additionally, the provision of this functionality in mobile robotics 
applications introduces an important challenge given by the constraints for execu­
tion time (i.e. computational complexity) [113]. In real world scenarios, robots are 
normally equipped with high processing systems, so that they can fulfil the real 
time execution demand of the vision based object recognition algorithms. For such 
high performance robots, the choices of object recognition techniques may be large, 
and the number of vision based object recognition techniques developed for offline 
processing may be simply used with less changes. But when it comes to swarms of 
small robots, which come with very limited memory and processing resources, the 
task becomes more challenging.

Over the past few decades, many object recognition techniques have been de­
veloped. Some of them are computationally less expensive, such as content based 
approaches (i.e. using colour, texture and shape) and geometric approaches (i.e. 
using affine, projective or euclidean transformation to account for the appearance 
variation of the object of interest) but are sensitive to changes in lighting condi­
tions. Other approaches are considered more computationally expensive, such as 
context based and appearance based approaches (e.g. using SIFT, SURF or PC A 
feature descriptors) but are found more flexible and show in-variation to changes 
in scale, rotation, skew and lighting conditions. Most recent efforts are centred 
on appearance-based approaches [114]. As these approaches are computationally 
expensive, they are suited for either offline image processing or can be considered 
applicable to robots with high processing systems, as described in detail in Section 
2.5 of Chapter 2. in spite of the excellent results achieved with these recognition 
techniques, when it comes to small robots or groups of small robots working in a 
multi-robotic environment, the bottle-neck of the slow rate of information processing

129



6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

forced the researchers to make huge compromises with the recognition performance 
and switch to computationally less expensive algorithms. For example, shape based 
recognition and blob detection based techniques have been used to recognise sim­
ple objects in a given environment. The research work presented in this Chapter, 
bridges the gap between these computationally expensive, but efficient object recog­
nition algorithms and their applicability on small robotic systems and suggests some 
techniques following which, the advantages of computationally expensive algorithms 
can be enjoyed in small robotic systems for recognition purposes.

In the current implementation, the focus is on efficiently applying appearance 
based approaches to object recognition using SURF (Speeded Up Robust Features) 
features using a group of small robots and show how multiple robots collectively 
look for 3D and 2D (i.e., images of objects) objects of interest in an unknown 
controlled environment. In Figure 6.1, a swarm of robots is shown. The objective 
is to send these robots in the environment in random directions. These robots 
will go around, and using the developed object recognition techniques, they will 
look for the objects of interest (e.g. shown on the right side of Figure 6.1) in the 
environment. In this Figure, some obstacles are also shown in the environment. To 
avoid colliding with these obstacles, the robots will also be performing vision based 
obstacles avoidance (discussed in Chapter 4) in parallel to the recognition task. For 
recognition purposes, all the robots will be given a common visual vocabulary to 
use to identify the required objects. Here, the task of vision based recognition to 
search for objects of interest is distributed among all the robots, but on equal basis 
(i.e. all robots are given the same task). To help achieve this task efficiently, all 
robots will also be sharing their knowledge with other team members. They will be 
communicating with each other and will be updating each other about the progress 
information that is, what objects have already been found and what they are still 
looking for. This way, if a place is found by one robot, then the other robots will 
not be searching for this place unnecessarily and this will avoid effort duplication, 
showing a collective effort by the group of small robots to recognise the objects in 
the unknown environment.

Once a robot in a swarm, successfully finds an object, of interest in the envi­
ronment, then apart from telling the other team members about it, the robot also 
shares this information with the Visual Tracking System developed in Chapter 5. 
For establishing a connection between the robots and the tracking system, a Server 
is shown in the Figure 6.1. This Server is responsible for running the Visual Tracking
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Figure 6.1: Scenario where group of robots performing search operation to find the object of 
interest.
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System and sharing the localisation and tracking information with the robots. As 
in the tracking system, two ceiling mounted cameras collectively track the robots, 
so the area of the robot arena which is covered by the two cameras is also shown 
in Figure 6.1. Now during the operation, when the robot recognises the target and 
shares this information with the tracking system, then the tracking system locks the 
robot position in the image, localises it and sends this localisation information to the 
robot. This information contains robot’s position in the arena and its orientation 
(i.e. heading). When the robot receives this localisation and heading information, 
then it determines its distance to the the recognised object. Finally the robot lo­
calises the object with reference to its own position. For this purpose, it uses the 
“distance to the object” information together with its position and heading infor­
mation. After localising the target object, the robot shares the object ID and its 
location information with the Server which later displays the location of the target 
objects in the environment.

From the scenario description, it can be seen that the performance of the object 
recognition approach on the small robots plays an important role for successful op-
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eration. So, an aim of this research is to use the advantages of powerful appearance 
based recognition approaches and make them run efficiently to perform object recog­
nition using a group of small robots. Following the literature review in Chapter 2, 
the SURF feature based recognition approach was found to be the fastest to compute 
and appeared to be more favourable for implementation on an embedded system. 
Gradient based feature extraction [60] and Harris feature based approaches [65] 
were also fast for performing feature extraction but they did not provide features 
which could be as robustly detected as carried out by SURF based approaches. 
There are a number of open source implementations of SURF feature extraction 
and matching algorithms. OpenCV [97] is an open source computer vision library 
which provides one possible implementation of the SURF algorithm. Another open 
source implementation of the SURF algorithm is found in OpenSURF [98] library 
which is a faster and a better optimised implementation of SURF when compared to 
OpenCV. In this research, it is decided to use the OpenSURF library as a reference 
to the SURF implementation for performing appearance based recognition tasks. 
The target hardware used is also an important factor as it strongly influences the 
method adopted to solve the problem at hand. As mentioned in Chapter 3, for the 
swarm mode scenarios, a group of SRV1 robots by Surveyor Corporation were used 
with Blackfin BF537E processor on-board. uClinux (micro controller Linux), which, 
is a popular operating system customised for embedded systems, was used as the 
on-board operating system. Code compilation was performed using GNU cross com­
pilers on a Linux based development platform. At the beginning, the OpenSURF 
library was cross compiled and ran on the target blackfin processor. The image 
resolution was set to 320x240 pixels. The execution time calculated to process one 
single frame was 33sec. The reason for this was twofold, one is the computationally 
expensive nature of the algorithm and second is that the algorithm performs many 
floating point operations and the target blackfin processor lacks the floating point 
unit (FPU). To reduce the execution time and also to increase the performance 
of the algorithm to recognise the objects lying far from the robot, the following 
optimisation operations were carried out.

•  Processor specific optimisation to reduce execution time.

• Image pre-processing to reduce the amount of data to process.

•  Multi-resolution analysis.
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6.2.1 Processor Specific O ptim isation

To perform processor specific optimisation, the SURF algorithm was coded such 
that it exploited the architectural advantages of the target embedded system. For 
example, the Blackfin is a fixed point processor, so the floating point operation 
should be avoided as much as possible. In SURF algorithm, where it was necessary 
to make use of floating point operations, the use of fast floating point emulation 
library [119] was made. To perform fixed point operations on blackfin processor, 
there are further limitation posed by the uClinux operating system as it allows 1.31 
fixed point operations only. In 1.31 fixed point operation, there is 1 integer bit 
and 31 bits are used as fractional bits. The data which can be represented using 
1.31 fixed point format lied in the range of -0.9 to +0.9. This limitation of data 
representation made it necessary to normalize the fixed point data at every point in 
the program flow in order to guarantee that it lied in the allowed range, otherwise 
erroneous results can occurred.

In general, Blackfin code optimisation can be done in three different phases i.e. 
Compiler optimisation, System optimisation and Assembly optimisation [99]. Fol­
lowing these optimisation steps, the improvement in the algorithm’s execution per­
formance achieved is shown in Figure 6.2. When no optimisation was applied, the 
program took 33sec to process a single frame. After performing the compiler opti­
misation (i.e. using “fast-math” and “mfast-fp” floating point libraries for Blackfin 
processors) the execution time reduced to lOsec per frame. The fast-math library al­
lows the compiler to use faster hardware floating point instructions, at the potential 
expense of IEEE floating point compliance. If the program does not need strict com­
pliance, the use of “fast-math” library increases the performance of floating point 
operations. The “mfast-fp” library further relaxes some of the IEEE floating-point 
standard’s rules for checking inputs against Not-a-Number (NAN), in the interest 
of performance. As Blackfin processor lacks FPU, so “fast-math” and “mfast-fp” 
libraries performs floating point emulation. To reduce the execution time further, 
the portion of the code which was costing more time was identified and customised 
by exploiting the fixed point architecture of the Blackfin. Therefore, 1.31 fixed point 
operations were adopted in place of floating point operations. This helped in re­
ducing the time to 3 sec per frame. Optimising the data flow helped in reducing 
the time to 2.8sec per frame. A further reduction in time was achieved by scaling 
down the image resolution, by a scale of 2. The last step reduced the time, but
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affected heavily the recognition performance. From Figure 6.2, it can be seen that 
the processor specific optimisation has performed a significant role in the reduction 
of the execution time, although it needed to be reduced further.
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Figure 6.2: Processor specific optimisation to reduce execution time.

6.2.2 Image Pre-processing

In the second stage, image pre-processing was performed. The objective of image 
pre-processing stage was to identify the pixels in the image which defined the objects. 
The intensity values of only these identified pixels contributed to the calculation of 
SURF features. This avoided applying the SURF algorithm on the part of the 
images which represented plain surfaces. These plain surfaces could result from the 
smooth ground surface, or the parts of the objects which did not show any intensity 
variation. It is to be noted that detection of the SURF features strongly relied on 
the intensity variations in the image. So processing the smooth parts of the images 
with the SURF algorithm increased the computational time, but did not provide any 
reliable features. Avoiding plain surfaces in the image, to be processed by SURF 
algorithm, reduced the processing load by a significant amount. To identify the 
image pixels which defined the objects, a light weight feature extraction technique
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(i.e., in this study the Harris feature extractions technique) was applied. At the 
beginning, the images were divided into top and bottom portions. The top portion, 
separated by a.thick blue line (shown on the right column of Figure 6.3), always lied 
outside the arena and was discarded. The bottom portion of the image was processed 
with the Harris algorithm. If the edges resulting from an object’s boundaries were 
found very near to the bottom of the image, this indicated that the robot was very 
close to the object. In this case, the pixels identified by the Harris features in the 
complete bottom portion of the image were used by the SURF algorithm for the 
object recognition. If the edges resulting from the object boundaries were detected 
far from the bottom of the image, then it was expected that the objects were not 
present very near to the robot. In this case, the complete bottom portion of the 
image was further divided into three portions that was middle, left and right (these 
portions were also separated by a thin blue line as shown on the right column of 
Figure 6.3). When these three portions were processed by the Harris algorithm, 
the extracted image features are also shown on the right column of Figure 6.3. 
The centroids of the feature points were computed from the middle, left and right 
portions and windowed images were extracted (identified by red boundary). These 
windowed images were likely to contain objects in the image and were further used 
to extract SURF features. There were two main reasons for splitting the bottom 
portion of the image into further three portions. The algorithm first processed the 
objects detected in the middle portion. If the object of interest was recognised, 
then it avoided processing the objects detected in the left and right portions. This 
conditional processing of the objects detected in left and right portions made the 
execution of recognition algorithm faster as the algorithm was not required to process 
the middle, left and right portions every time. The second reason for dividing the 
bottom portion into middle, left and right portion was that, if the objects detected 
in any of these portions were recognised as the objects of interest, then it provided 
simple directional cues to the robots. Then, the robots could turn in the direction 
where the objects were recognised so that the recognised objects appeared in the 
centre of the image and the robots could get close to them.

6.2.3 M ulti-resolution Analysis

The SURF feature extraction and matching technique works in two stages: train­
ing and recognition. In the training stage, the features of the target object were
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Figure 6.3: Image pre-processing to reduce the amount of data to process.

extracted and kept in memory. In the case of more target objects to recognise, a 
database containing features, resulting from all the target objects, was generated 
and kept in memory for recognition purposes. In the case of 2D object (i.e., im­
age of object) recognition, only a single object image was required during training 
stage for extracting SURF features. If the target object was a 3D object, then pose 
based feature extraction was performed. That is, the images from different poses 
of the target object were taken and SURF features were computed for all of these 
images. During the recognition stage, features from all these images were compared 
with the features extracted from the current view and the best match provided the 
information about the objects and also the direction from which the robot was head­
ing towards the object. This pose based recognition for 3D objects increased the 
database size by a big factor, but keeping the resolution low during the training 
stage helped in reducing the database size. To make the recognition technique scale 
invariant, the SURF algorithm generated the scale-space image pyramid, where the 
input image was iteratively convolved with the Gaussian kernel, and at the same 
time, the image was sub-sampled iteratively (this reduced the size of the image) [98]. 
The scale-space image pyramid is also shown in Figure 6.4.

During the training stage, if the image resolution was 320x240 pixels and the 
number of times the image was sub-sampled is set to 4, then in the image pyramid,
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Figure 6.4: Scale-space image pyramid.

the sequence in which the resolution was down sampled was 320x240, 160x120, 80x60 
and, finally, 40x30 pixels. As the target embedded system had a limited memory and 
processing resources, the training was given in 320x240 pixels resolution so that the 
resultant features database was smaller in size and could be kept in the memory for 
recognition purposes. With this resolution, if the objects lied close to the robot then 
it could be recognised, but increasing the distance made the recognition difficult, 
because the object appeared really small in the 320x240 pixels image. To overcome 
the problem of recognising the objects lying far from the robot, a multi-resolution 
analysis was performed. The distance to the objects was measured in the image with 
320x240 pixels resolution. The objects which were lying near were processed in low 
resolution and for the objects, which were detected far from the robot, their position 
was determined in the high resolution image and windowed image was extracted from 
the higher resolution image. This way, the number of pixels, defining the far lying 
object, increased and made the recognition possible. In other words, to increase 
the recognition performance, the objects detected in the image were processed in 
different resolutions, depending upon their distance from the robot. This idea is 
explained in Figure 6.5. The two objects on the left and right side were placed 
close to the robot vision system. The windowed image was extracted from the 
lower resolution image(i.e. 320x240 pixels) for the SURF features extraction and 
matching purposes. The object in the centre of the image (i.e. another robot) lied 
far from the robot, so higher resolution analysis was performed and windowed image 
was extracted from the high resolution image. The high resolution windowed image 
extracted for the central object is shown on the right side of Figure 6.5.
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H i g h  R e s o l u t i o n  

W i n d o w e d  I m a g e

Figure 6.5: Resolution switching based on distance to object.

6.2.4 Experim ental R esults

The experimental results section is divided into three parts. As mentioned, the 
performance of the distributed vision processing scenario relies strongly on the reli­
ability and the execution performance of the target object recognition algorithm. So 
in the first part, the recognition results obtained will be described. The second part 
demonstrates the experiment in which swarm of robots perform a collective search 
operation for the objects of interest in the environment. The third part demon­
strates the experiment in which the swarm of robots also get localisation support 
from the Visual Tracking System. In this experiment, the robots not only recognise 
the target objects in the environment, they also try to localise them.
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R eco g n itio n  R esu lts

To show the performance of the developed object recognition algorithm, first of all a 
comparative analysis with the reference SURF recognition technique was performed. 
The performance in terms of execution time and recognition was recorded. To test 
the execution time, ten experiments were performed where in each experiment a 
robot was trained to recognise a different object. The execution time obtained from 
reference SURF based approach and the optimised SURF based approach are shown 
in Figure 6.6. The SURF based approach, on average, took 35 seconds to recognise 
an object, whereas the optimised SURF approach took 780 milliseconds. It can be 
noticed that in the fourth experiment, the SURF approach took 39 seconds. This 
is because, the object in the image had more features as compared with the objects 
used in other experiments. A rise in execution time (i.e. 890 milliseconds) was also 
noticed in case of optimised SURF approach.

Timing Analysis SURF vs Optimized SURF

- ■X - SURF

i— 10

Number of Experiments

—^ — Optimized SURF

|  0.4

H  0.2

Number of Experiments

Figure 6.6: Execution timing - SURF vs Optimised SURF.

To check the recognition performance, rigorous testing was performed in compar­
ison to the SURF based approach. The use of “distance based resolution switching 
technique” was expected to outperform simple SURF based approach in terms of
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recognition performance with respect to the distance from the object. For train­
ing purposes, QVGA (Quarter Video Graphics Array) resolution was selected. The 
robot was given training, while keeping the object at distance of 20cm from it. 
Recognition experiments were performed while moving the robot 5cm away from 
the object each time. For each robot position, one hundred tests were performed 
so that the recognition percentage could be obtained. The recognition performance 
obtained with reference to the SURF based approach is shown in Figure 6.7. At 
distance of 20cm from the object, both approaches gave 100 percent accuracy. In 
case of the SURF based approach, the recognition performance degraded gradu­
ally as the robot moved away from the object and at distance of 55cm, recognition 
dropped below 70%. This happens because after 55cm distance, the object appears 
very small in the QVGA image i.e. very small number of pixels are defining the 
object and this effects the recognition. From 70cm distance onward, recognition 
was not possible. In case of Optimised SURF based approach, the use of “Resolu­
tion Switching Technique” determined that the robot was far from the object and 
it enabled the robot to process the object in the high resolution image. As a result, 
a sudden increase in the recognition performance was noticed when the robot was 
placed more than 50cm away from the object. This happened because the SURF 
based recognition relies strongly on the number of features extracted from the image. 
When the windowed image was extracted from the high resolution image,, then it 
gave a very detailed description of the object, and hence, it produced more features 
and increased the recognition performance. With the use of “Resolution Switching 
Technique”, the optimised SURF approach was able to provide reliable performance 
even at the distance of 2.5 times the distance at which SURF was able to perform 
the recognition. •

Distributed Search Operation by Swarm o f Robots

In the first experiment, a test was planned in which the task of recognising a set of 
objects was distributed among two robots. The training was given to recognise three 
2D objects and one 3D object in the environment. Out of three 2D objects, one was 
a plain text on a sheet of paper (i.e. “Replicator”) and the other two objects were 
images of buildings. They are shown in Figure 6.8.

As appearance based recognition technique relied on the SURF features, it was 
possible to recognise the text and building images providing that these images pro-
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Recognition Performance - SURF vs Optimised SURF
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Figure 6.7: Recognition rate - SURF vs Optimised SURF.

Figure 6.8: Objects used in training to extract SURF features.

3D Object2D Object 3

2D Object 1
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duced enough features during the training stage. For the 3D object, another robot 
was selected and is also shown in Figure 6.8. For 2D objects, a single image was 
used to extract the SURF features during the training stage. But for the 3D ob­
ject, pose based recognition was performed. Images from 16 different poses of the 
robot were taken and their SURF features were extracted during the training stage. 
The 16 different poses of the robots, which were used for training are also shown in 
Figure 6.9.

Figure 6.9: Images from 16 poses of the 3D object.

The features extracted from the 2D objects and the 3D objects were combined to 
form a library which provided information about the object’s identity and also the 
pose information, in case of the 3D object. This library was uploaded to the two 
robots memory and provided visual clues to both robots about the objects to recog­
nise in the environment. The two robots were programmed to move randomly in the 
unknown structured environment and search for the objects of interest collectively. 
To perform the collective operation, a communication medium was also established 
between the two robots. The robots could share information about the number of 
objects found and which they were still looking for, over a wireless network. When 
one robot found an object of interest, it informed the other robot to remove this 
object from the search list so that redundancy of searching the same object by two 
robots could be avoided. The placement of the objects of interest and the two robots 
in the test arena is shown in Figure 6.10.
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Robot 2 2D Object 1

2D Object 2

Robot 1

3D Object 3
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Figure 6.10: Position of robots and objects of interest before experiment is performed.

In this experiment, while collectively searching for the objects, robot 1 found the 
2D objects 1 and 2, and 3D object 3. Robot 2 found 2D object 4. The positions 
of the robots, when they communicated the presence of the objects to their team 
members, are shown in Figure 6.11.

Robot 1 found 
object 1 Robot 1 found 

object 2

.Robot 2 found 
object A Robot 1 found 

object 3

Figure 6.11: Position of the robots when they recognise the object in the environment.
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During this experiment, robot 1 missed the 3D object in the first attem pt and 
successfully found it in the second attempt. The sequence of robot 1 positions when 
it missed object 3 (i.e. 3D object) are shown in Figure 6.12. In part a, robot 1 
detected object 3. Then, it was required to get close to object 3 to confirm its 
presence. In part b, robot 1 got close to object 3. Object 3 was detected on its right 
side, so in part c, robot 1 turned right. After detecting the object in part c, the robot 
went straight towards the object. But it moved more in the forward direction such 
that it left object 3 on its left side undetected. Now, in part d, only a small portion 
of the 3D object was in its field of view and this was not enough for recognition. 
Similarly, robot 2 also missed object 1 after detection. This happens because of the

Figure 6.12: Sequence of Robot 1 positions when it detected and then missed object 3.

interruption from the robot 1. The sequence of robots 1 and 2 positions, when robot 
2 missed object 1, are shown in Figure 6.13. In part a, robot 2 detected object 1, 
while robot 1 was also nearby. In part b, robot 1 also detected object 1 on its right 
side. In part c, robot 1 corrected its orientation towards object 1 and robot 2 moved 
towards object 1. In part d, robot 1 moved towards object 1, but it also moved 
between robot 2 and object 1. Now in part d, it can be seen that robot 1 partially 
blocked robot 2 field of view such that robot 2 could not see object 1. Due to this 
robot 2 missed object 1 and then it was found by robot 1. It is observed that once

Robot 1 detected  
object 3

Robot 1 turned right 
to correct orientation

a.-.

Robot 1 getting

Object
missed
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Figure 6.13: Sequence of robot 2 positions when it detected and then missed object 1.

the robot found the 2D objects, then they hardly missed them while got close to 
the objects. But, in the case of the 3D object, sometimes after detecting the object, 
when the robot got closer to the object, it missed the object. This is possible as the 
robot is also switching between higher and lower resolutions, while extracting the 
object of interest. This switching relies on the distance to the object information 
and if, at some point this distance information is wrong, then the robot can lose the 
object of interest.

D is tr ib u te d  S earch  A n d  L o ca lisa tio n  O p e ra tio n  by  S w arm  o f R o b o ts

In the second experiment, a test was planned to show the performance of recognition 
and localisation algorithm together in the distributed robotic environment. In this 
experiment, the task was to recognise three 2D and one 3D object by a group of 
three robots working collectively in the environment. For the three 2D objects, 
building images were used and for a 3D object, again another robot was selected 
as in the first experiment. These objects are shown in Figure 6.14. Again, for 2D 
objects, single image was used for training, but to recognise a 3D robot, training 
from 16 different poses was given. During the tests, robots recognised the objects of 
interest collectively, while they were also tracked by the ceiling mounted cameras. In 
this experiment, all the robots shared information with each other over the wireless
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channel in the infrastructure mode once per second. As mentioned before, on finding 
an object of interest, apart from telling the team members about the object’s ID, the 
robots also informed the server about the object’s ID and its distance to object. The 
robots obtained localisation information from the server. They used the “distance 
to object” information together with the localisation information to localise the 
objects. This object localisation information was also conveyed to the server by 
the robots. The server displayed these determined positions of the objects in the 
camera images. Apart from this, the server also displayed these object positions in 
the combined map made by using both camera images.

Figure 6.14: 2D and 3D objects used for experiment.

In this experiment, the positions of the robots and the objects of interest, before 
the test start, are shown in Figure 6.15. In Figure 6.15 it can be noticed that, 
apart from the objects of interest, some obstacles are also placed in the arena. To 
avoid colliding with these obstacles, the robot performed the vision based obstacle 
avoidance technique as described in detail in Chapter 4. At the end of the test, 
when all objects of interest were found, the localisation information obtained for 
all the objects on the camera images and also on the combined map is shown in 
Figure 6.16. The combined map actually shows the combined field of view of both 
ceiling mounted cameras and its image resolution is 960x1040 pixels. In Figure 6.16, 
objects 1-4 positions are identified as 01, 02, 03 and 04  respectively, both in the 
camera images and also on the combined map. They are also marked by a yellow 
cross sign. It can be seen that the objects of interest are successfully recognised and 
localised by the team of robots and the cameras collectively.
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Figure 6.15: Position of robots before experiment.

To determine the accuracy of the identified positions of the target objects, the 
objects’ locations information are shown in Table 6.1. The objects’ locations are 
shown in terms of the x  and y coordinates of the ceiling camera image space. As 
shown in Table 6.1, the x and y coordinates detected for object 1 (i.e., a 3D object) 
are (163,914) on the combined map. Where as, the actual coordinates (i.e., the 
true coordinates of the object on the combined map) determined for object 1 are 
(159,931). This shows a deviation of 17.5 pixels on the combined map. When 
translated to the real world coordinates, the error is 2.8 cm. This shows a very small 
error in the determined location of the first target object. Similarly, for objects 
2, 3 and 4 (i.e., object images), the detected coordinates and the true position 
coordinates are shown in Table 6.1. For objects 2, 3 and 4, the observed error was 
14.2, 5.2 and 4.7 cm, respectively.

Object ID Actual Position 
(x,y)

Detected Position
(x,y)

Error
(pixels)

Localisation error (cm) in the 
arena of area (150x150cm)

Object 1 (3D) (159,931) (163,914) 17.5 2.8
Object 2 (2D) (135,232) (60,262) 90.1 14.2
Object 3 (2D) (927,307) (946,280) 33 5.2
Object 4 (2D) (885,785) (896,757) 30 4.7

Table 6.1: Object Localisation Information
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Figure 6.16: All objects are localised by using information from the team  of robots and visual 
tracking system collectively.

During the test, the only problem observed was related to the synchronisation of 
the robots with the localisation system. For example, in the Figure 6.17, when robot 
3 identified object 2 image (left image in Figure 6.17) and transferred the “distance 
to object” information to the localisation system (i.e., server), then the robot was 
slightly far from the object. But by the time it sent the object’s ID information to the 
server and enquired the localisation information from the Visual Tracking System , it 
moved toward the object (right image in Figure 6.17)). The tracking system locked 
the new position of the robot and passed it on to the robot. Now the robot used 
the “distance to the object” information with the its localisation information (valid 
for its new position) to localise the object with reference to its own position. As 
the distance to the object information was valid for the last position of the robot, 
but its use with the new robot position caused a shift in the object localisation.
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Figure 6.17: Error observed in localising object.

Due to this, object 2 (i.e., “object image”) mistakenly localised slightly far from 
its actual position. The determined object’s position is shown on the right side of 
Figure 6.17. This can also be observed in Table 6.1, where the error in the detected 
position of object 2 is 14.2 cm which is comparatively much larger than the error 
found in the positions of objects 1, 3 and 4. This problem can be easily fixed by 
adding an acknowledgement between the robot to the server communication such 
that the robot did not change its position unless it was informed by the server that 
the “distance to object” information has been used.

6.3 E nvironm ent M apping by D istr ib u ted  M u lti-ro b o tic  S ys­

tem

Another distributed vision processing scenario in swarm mode is related to multi­
robot environment mapping. Environment mapping is the concept in which robot 
senses or experiences its surrounding and tries to obtain a global map. In other 
words, robots map the environment using the perception sensors available on-board. 
The generated global map essentially helps the robots to navigate autonomously in
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the environment. Environment mapping is a difficult problem to address as in most 
cases, the robots require human assistance, if they are exploring the place first time. 
The robots can not know their locations without having an environment map and at 
the same time, the robots can not built the environment map without knowing their 
location. In some studies in the robotics field, researchers have worked around this 
problem in which the robots keep on localising themselves and at the same time, 
they also build the environment map. This is called Simultaneous Localisation 
And Mapping (SLAM) in computer vision and robotics field. In the environment 
mapping problem, in the beginning, the robots go around in the environment, while 
localising themselves, keep on building a map of what they sense in the environment 
and this way, when they revisit a place, then from the generated map they already 
have some awareness of their surrounding. If the robots are working in the static 
environment then the full map of the environment can be generated, which can help 
the robots to perform the path planning efficiently, for example to determine a path 
to reach some specific location.

This environment mapping problem is addressed in robotics by many researchers. 
Researchers have used many different sensors such as laser range finders, infrared 
sensors, sonar and vision sensors. But most of the research is focused on using laser 
range finders. The laser range finders provide a very good depth or distance infor­
mation about the robot surrounding, but at the same time, they are very expensive. 
In case of swarm of robots, the laser range finder solution can not be used as a 
single laser range finder can cost from £800 to £3000. This is far too expensive to 
integrate on a single small robot as the basic idea in swarm robotics is to use many, 
but simple designed robots to keep the cost of each robot low. At the same time, 
the laser range finders are also very big in size and their power consumption is also 
high and do not suit the robots which have limited on-board memory and energy 
resources.

In this section, a distributed vision based multi-robot environment mapping prob­
lem is addressed in which swarm of robots collectively try to obtain a common global 
map of the environment using the visual clues they obtain from their surrounding. 
The generated map is intended to facilitate the multi-robot mission planning as the 
environmental map together with the robots position on the map will be available. 
The problem addressed here is different from SLAM as in this case, the robots are 
provided the localisation information and they do not have to keep on localising 
themselves. This is done to keep the focus of the research on the distributed vision
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processing part rather than addressing the SLAM issue.
The rest of this section is divided into two parts. In the first part, the method­

ology followed to perform the environment mapping is addressed. Whereas, in the 
second part, the results from the multi-robot environment mapping technique are 
discussed.

6.3.1 M ethodology - Environm ent M apping

To address the distributed multi-robot environment mapping problem, two Sur­
veyor SRV1 robots (shown in Figure 3.1b) equipped with a vision sensor were used. 
For obtaining the localisation information the Visual Tracking System, discussed in 
Chapter 5, was used. This system is responsible to determine the robot position, 
track'it and pass the robot’s localisation information to other robots. The concept of 
the overall scenario is the following. Each robot in the environment creates a map in 
its memory. As the robots will be generating 2D map of the environment (i.e., only 
the boundaries of the objects detected in the environment), so this will not require 
large amount of memory. The robots will allocate memory for map generation only 
once in the beginning. This will avoid allocating or expanding allocated memory 
for map at run time. The robots could have used shared memory (e.g., the map is 
generated on one robots’ memory in a swarm and this memory is shared amongst 
all) for generating the common map. But in this case, if the robot which holds the 
map malfunctions or fails, then all the learned map will be lost. As the generated 
map is two-dimensional and requires very low amount of memory (i.e., 1040x960 
bytes only), so it was found more efficient to have a local copy of the map in all 
the robots. When the robots are generating the map, this map is also updated by 
all other robots working in the environment. For this purpose, each robot gets its 
location and orientation information from the localisation system. Once the robot 
knows its location and orientation, then in the direction of its heading, it utilises the 
visual cues it obtained from its vision sensor to determine the objects boundaries 
detected in its neighbourhood. A robot uses these detected boundary information 
to update its own map. Apart from updating its own map, the robot also broadcasts 
this map update information to the other robot members in the environment. On 
receiving this map update information, each robot in the environment also updates 
its map. This way, each robot in the environment not only knows the other robots’ 
position, but at the same time, it also keeps on maintaining a common map which
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has been built by the contribution of all the robots in the environment. Each robot 
also passes the map update information to the server on which tracking system is 
running. This way, the map building process can be seen on the server side. As 
the robots used had limited on-board memory and processing resources, so it was 
decided to use a very light weight vision algorithm to solve this problem. In this 
scenario, the vision algorithms which require the on-board processing are:

• Objects’ Boundary Detection.

• Mapping.

O b je c ts ’ B o u n d a ry  D e te c tio n

To determine the objects boundaries in their neighbourhood, a segmentation based 
algorithm was used. This is the same approach which was utilised to develop the ef­
ficient vision based obstacle avoidance algorithm described in Chapter 4. The vision 
based obstacle avoidance algorithm also works in parallel to help the robot control 
algorithm to take necessary decision. If the vision based obstacle avoidance algo­
rithm gave the ground clearance signal to the robot control algorithm, then mapping 
algorithm was called which determined the object boundaries in the surrounding. 
To explain the concept of segmentation based object boundary detection algorithm, 
an example image in Figure 6.18 is considered.

Input Im age

Figure 6.18: Input image used for boundary detection.

The segmentation of the input image, shown in Figure 6.18, is performed and the 
resultant image is shown in Figure 6.19.

To determine the distance to the near obstacles or to determine the boundaries of 
the obstacles in field of view, the region covering the middle bottom of the segmented
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S e g m e n te d  Im age

Figure 6.19: Segmented image.

image was considered for further processing. The boundary of this selected region 
in terms of pixels, in the forward looking direction, was determined. The boundary 
information was obtained in the form of a vector. This boundary vector information, 
when plotted on the segmented image, is shown in Figure 6.20. It is to be noted 
that, this boundary vector provides information about the distance to the objects 
in the robot field of view, with reference to the robot’s current position.

Detected Boundaries

Figure 6.20: Boundary vector plotted on the segmented image.

M ap p in g

Once the distance vector information was obtained, then the second step was to 
map this information on a global map. Here, the robot utilised its location and ori­
entation information provided by the tracking system. To demonstrate the manner 
the robot mapped the distance vector information with reference to its location and 
heading, the camera images from the tracking system was used. The use of camera 
images, from tracking system, was made for demonstration because robot location
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was defined in image space of tracking system. To accomplish the complete mapping 
process, following procedure was used.

• From the heading information obtained from the Visual Tracking System, the 
distance vector was mapped across the field of view provided by the robot vision 
system. From the specification of the Omni-vision camera sensor used on the 
robot vision system, the field of view information determined was 90 degrees. 
To illustrate the manner this 90 degrees field of view was spanned from the 
current robot heading, consider the image shown in Figure 6.21. In Figure 
6.21a, the tracking information from left ceiling mounted camera is shown and 
similarly in Figure 6.21b, the tracking information from the right camera is 
shown. It can be seen that there are four robots in the environment and the 
tracking system has detected their positions properly. Lets consider ro b o tl’s 
position in camera 1 (represented as R l). The zoomed in version of this position 
is also shown in Figure 6.22. The 90 degrees field of view across the current 
heading of the robo tl’s position is determined and shown by the red (on the left 
side of robot heading) and yellow lines (on the right side of robot heading) in 
Figure 6.22. The distance vector information (which is obtained by processing 
the images from robot vision system) are mapped within this 90 degrees field 
of view.

(a) (b)

Figure 6.21: Visual tracking and localisation information (a) Left camera, (b) Right camera.

• The second requirement, to perform perfect mapping of distance vector on the
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Figure 6.22: Zoom-in information of robot 1 position.

global map, was to determine the equation which translated the distance in 
pixels, detected by the robot vision system, to the distance in pixels of the 
images processed by the visual tracking system. This was performed because 
the robot localisation information was provided in terms of heading and (x, y ) 
coordinates of the images obtained by the visual tracking system. Some exper­
iments were performed to determine the distance in pixels measurement from 
robot vision system and their corresponding coordinates values in the images 
of visual tracking system. To obtain these corresponding values, an object was 
placed at some distance from the robot vision system and the distance detected 
by the robot vision sensor and the corresponding coordinate values in the visual 
tracking system were recorded. This experiment was repeated while increasing 
the distance of the object from the robot vision sensor. Ten values recorded 
are shown in Table 6.2.

In the first column of the Table 6.2, the distance in pixels “dr” recorded from 
robot vision system is shown. In the second column the corresponding value 
“dc” (i.e. distance in pixels detected by the ceiling cameras) determined by the 
visual tracking system is shown. And in the third column, the scale factor “ot” 
determined between the first and second column values is shown. This scale 
factor translates the distance in pixels from robot vision system to distance in 
pixels valid for the visual tracking system. It can be noticed that this scale 
factor is not constant. When this scale factor was plotted against the distance 
in pixels from robot vision system, the profile shown by the Red colour in Figure
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Table 6.2: Scale factor: From robot to ceiling camera.
Distance in pixels - dr 
(Image from Robot)

Distance in pixels - dc 
(Image from ceiling camera)

Scale Factor 
(a)

62 73.8 1.19
69 82.8 1.20
75 90.8 1.21
81 99.6 1.23
85 106.3 1.25
93 119.0 1.28
101 138.4 1.37
108 169.6 1.57
114 199.5 1.75
121 254.1 2.10

6.23 was obtained. It can be noticed that this is an exponentially rising profile.

Profile b/w Distance from Object (Pixels) and Scale Factor

2.6

2.4

*
PS

& ' 6
1.4

70 80 90 100 110 120
Distance in Pixels (dr) Using Robot Vision System

130

Figure 6.23: Profile between distance from object (pixels) and scale factor.

To determine the equation which satisfies the relation between the distance 
in pixels udr” (from robot vision system) and the scale factor “a ” , MATLAB 
Equation Fitting Toolbox was used. After the equation fitting, the result ob­
tained is shown by the Blue colour profile in Figure 6.23. For this profile, a 
fourth order fitting equation was obtained from the MATLAB Equation Fitting
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Toolbox as:

on = 4.4e“8̂  -  7e~6d3ri +  0.00011^. +  0.028dri +  0.0051(6.1)

Where, i = 1 —» 320(Image width). Note that, as the vector of distance 
information (Figure 6.20) is generated, so a vector of corresponding values of 
a* will be generated. Equation 6.1 was used to determine the scale factor cq 
for every value of the distance vector “dr ” shown in Figure 6.20. When these 
scale factors were multiplied with their corresponding values of dri then a 
vector dCi was obtained which determined the distance in pixels detected by 
the visual tracking system. This is shown as:

d ci d r{Oi{ (6 .2)

(x,y,
heading

Figure 6.24: Mapping process.

From Figure 6.24, dCi can also be described in terms of the robot localisation 
information (i.e. the coordinates of robot position (x,y))  and the final coordi­
nates (xmi, ymi) where the object boundaries were mapped;
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d c i  — “\ / { % m i  . “f“ (i/m i y)^ (6.3)

Similarly, the corresponding slope values Si for each value of dCi were com­
puted using the coordinates (X&, Vh) which were uniformly spaced coordinates 
spanning the robot field of view (see Figure 6.24); •

Using the values of dCi (where i =  1 —>• 320 “Image width”) together with the 
corresponding slope values s* and the robot position coordinates (i.e.(a;, y)), the 
coordinates (xmi,2/rm) were computed for mapping the object boundaries. The 
equations used to compute xmi and ymi are given as:

Note that, (xmi,ymi) are defined in ceiling camera image space. This way, 
once (xmi ŷmi) were computed then the complete distance vector information 
was mapped to the ceiling camera image space. Following the above defined 
procedure an example distance vector from the robot 1 vision system, mapped 
to the global map, is shown in Figure 6.25a. In Figure 6.25b, the tracking 
information from the second ceiling mounted camera is shown. In Figure 6.25c, 
the global map generated when the two camera information was fused together, 
is shown. The zoomed in version of Figure 6.25a is shown in Figure 6.26. It 
can be seen that, the distance vector is mapped properly along the boundary 
of the objects.

—
Vki y   Vmi y
Xfci '■ X 3'mi %

(6.4)

(6.5)

(6 .6)
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Combine! Image Map

(C)

Figure 6.25: (a) Distance vector from robot 1 mapped To coordinates of visual tracking system, 
(b) Robot tracking image from second ceiling mounted camera, (c) Global map generated using 
the two ceiling mounted cameras.

Figure 6.26: Zoom-in version of Figure 6.25a.

6.3.2 Experim ental R esults

To demonstrate the distributed vision based multi-robot environment mapping 
scenario, several experiments were performed. A test platform was designed
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with obstacles placed in certain forms to create an environment to be mapped 
by the multi-robotic system. In this section, the results obtained from three 
experiments, are presented where in each experiment, a different environment 
is provided to be mapped by the robots. All the robots were programmed to 
follow the boundaries in the environment and at the same time, if the robot 
found itself very near to an obstacle or stuck between a narrow passage, then 
the robot could decide a new direction depending upon the ground clearance. 
These three experiments are detailed below.

Figure 6.27: Experiment 1: Visual tracking system (a) Left camera, (b) Right camera. 

E x p e r im e n t 1

In experiment 1, the environment to map is shown in Figure 6.27. The images 
provided by the left and right cameras of Visual Tracking System are shown in 
Figures 6.27a and 6.27b, respectively. It can be seen that four robots (robots 
are labeled as R l, R2, R3 and R4) have been detected in the environment. 
Robots R3 and R4 are dummy and not contributing to map building process. 
Only Robots R l and R2 are working collectively to map the environment. In 
these images, it can be noticed that some blocks and boxes are placed in the 
vertical direction to generate an appropriate environment for map building 
process. The two robots were expected to go around in the environment and 
use the visual clues from their vision sensor together with the visual tracking 
system information. This way they mapped the test arena boundary and walls 
made by the blocks. The robots worked collectively to generate a common map
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which was blank in the beginning.

C om bined Im age F.lap

i
(C)

Figure 6.28: Experiment half finished: (a) Left camera, (b) Right camera, (c) Map.

In the experiment, the robots were left in the arena to map the environment. 
This environment mapping process was a slow process because after every move, 
the robots needed to wait so that the tracking system locked their current 
positions and provided them their location information. This was done so 
that the robots were provided with their locations and orientations information 
which precisely represented their current positions. This was important as 
robots had to use this vision based location and orientation information as 
the basis for mapping the objects boundaries detected in the field of view of 
their vision system. If this information represented their last position, then 
inaccuracies in map were expected. For example, a small error in the orientation
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Mapping error 
caused by. 
orientation\rror

Figure 6.29: Mapping error caused by the orientation error.

information could generate considerable error in the mapped boundaries. The 
two robots were kept operative for 4 minutes and 21 seconds. After half of the 
experiment was complete, the progress on map generation process, done by the 
robots is shown in Figure 6.28. In Figures 6.28a and 6.28b, the positions of 
the robots, when half of the experiment was complete, are shown. In Figure 
6.28c, the progress on the map generation process is shown. Finally when 
the experiment completed, the final map generated by the robots is shown in 
Figure 6.29. As mentioned before, a mapping error caused by a small error in 
the detected robot’s orientation is also shown in Figure 6.29. The erroneously 
mapped boundary is pointed out by the Blue arrow. The actual location where 
this boundary should be mapped is also drawn in Red colour.

E x p e r im e n t 2

In the second experiment, the environment was altered by placing the objects 
in different order such that they contributed to a different map. The starting 
position of the robots detected by the Visual Tracking System  and the new en­
vironment to be mapped by the robots is shown in Figure 6.30. As the objective 
of this scenario was to demonstrate the collective vision based map building 
operation by a team of robots rather than the efficient robotic control, so the 
robot control algorithm was kept very simple. The robots were programmed to
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perform the vision based wall following. To make sure that the robots explored 
the most part of the arena, the initial positions of the robots were selected very 
carefully. In Figure 6.30, it can be noticed that the position of the robot 1 (Rl) 
is set in a way that it started the mission by mapping the top right part of the 
image (image shown in Figure 6.30b). Similarly, the robot 2 (R2) started the 
mission by mapping the top left part of the image shown in Figure 6.30a.

(a) (b)

Figure 6.30: Experiment 2: Visual tracking system (a) Left camera, (b) Right camera.

After half of the experiment was completed, the progress in map generation pro­
cess is shown in Figure 6.31c. It can be noticed that the robot 2 has mapped 
the part of the arena shown in top left side of the Figure 6.31a. After suc­
cessfully mapping the first part, robot 2 headed toward the part of the arena 
which is shown in the bottom of the Figure 6.31a. Similarly, the robot 1 suc­
cessfully mapped the part of the arena shown in the top right side of the Figure 
6.31b. Finally, robot 1 moved towards the part of the arena which was already 
explored by the robot 2. Revisiting the part of the arena which was already 
mapped by the other robot added the redundancy but at the same time, it also 
filled the gaps in the map which were left by the other robot. When the test 
finished, the final map generated by the two robots is shown in Figure 6.31d.

E x p e r im e n t 3

Similar to the experiment 2, for the new map generation, again the environment 
was altered significantly. At the start of experiment 3, the positions of the 
robots in the environment and the new map to be generated by the robots is 
shown in Figure 6.32. At the end of the experiment, the final map generated
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A
(C) (d)

Figure 6.31: Experiment 2 half finished: (a) Position of robots in left camera after half of the 
experiment is finished, (b) Position of robots in right camera after half of the experiment is 
finished, (c) Progress on map generation after half of the experiment is finished, (d) Experiment 
2 final map generated.

is also shown in Figure 6.33. It can be seen that, at the end of the experiment, 
the robots have successfully mapped the arena.

Figure 6.32: Experiment 3: (a) Left camera image from visual tracking system, (b) Right camera 
image from visual tracking system.
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%

J  5
Figure 6.33: Experiment 3 final map generated.

6.4 Conclusions

In this Chapter distributed vision processing in swarm mode scenarios have 
been presented. It has been concluded that, when multiple robots are working 
in the swarm mode then due to the communication bottleneck, the robots can 
not share the raw vision data between each other for distributing the process­
ing load. For information exchange, as the robots use wireless communication 
medium which suffers from severe noise, so this also limits the sharing of com­
pressed images between multiple robots. It has been concluded that, the sharing 
of processed visual data in terms of features not only makes efficient use of the 
communication medium, but it also shows the distribution of vision process­
ing load. It is shown that, the use of simple visual features (e.g., distance to 
the neighbouring objects) can be made to map the environment by a group of 
robots. However, if the features encode high density information (e.g., SURF 
features), it has been concluded that, sharing of such features could overload 
the network. In this case, the vision processing distribution can be achieved 
by processing the features on-board, and then sharing the outcome of these 
processing in terms of decision (e.g., identity of the target object or distance 
to the target object).
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Chapter 7

D istributed Object R ecognition  
and Information Gathering in a 
M ulti-R obotic Organism

As described in Chapter 1, in this research a swarm robotic system is considered 
in which robots have the ability to physically join together to become a single 
three dimensional robotic organism whenever the need arises. So when the 
robots are in the form of an organism, each robot unit contributing to the 
organism, has its own resources. These resources can be used to fulfil the 
requirements of that individual robot unit and at the same time, these resources 
can also be used to contribute to a common objective set by the organism. In 
other words, the resources from all the robots, accumulated in the organism, 
can efficiently contribute to a major task which is set by the robotic organism. 
In Figure 7.1, a robotic organism is shown. This organism is formed after 
utilising a vision based physical docking support developed in Chapter 4. The 
physical formation of the complete organism is out of the scope of this research. 
To address the issue of distributed vision processing in the robotic organism, 
a scenario is described in this Chapter, in which the robotic organism is given 
a task to perform vision based obstacle avoidance, efficient object recognition, 
and visual information gathering in the distributed fashion, while utilising the 
energy and processing resources available within the robotic organism only.

In Figure 7.1, an example of an experimental platform is shown. Several obsta-
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Multi-Robot
Organism

Places or Objects o f  Interest

Obstacles

Figure 7.1: Robotic organism scenario.

cles are placed in the environment, which the organism has to avoid colliding 
while performing its task. At the same time, some places or objects of interest 
are also shown which the organism has to identify. This scenario is different 
from the one discussed in Chapter 6 where each robot in the swarm is do­
ing obstacle avoidance and recognition task on its own. In the swarm mode 
scenarios, the robots had a wireless communication with each other. This com­
munication medium is a bottle neck in the distribution of vision based task 
as communication bandwidth is much smaller to satisfy the exchange of vision 
based information between the robot units. Whereas, in the case of robotic 
organism, after a docking operation, the robots establish an Ethernet com­
munication medium (10/100M bits/sec) with the other robot modules. This 
high speed communication backbone is promising to exchange the visual in­
formation and share the processing load between the robot modules forming 
an organism. So, through the Ethernet medium, the organism split the vision 
based control, obstacle avoidance, recognition and information gathering tasks
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between different robotic modules. In the scenario addressed in this Chapter, 
the organism searches for the objects of interest in the environment as shown in 
Figure 7.2, where the organism is detecting and recognising one of the objects 
in the environment. Once the object is identified, then the organism performs 
the vision based scanning of the environment as shown in Figure 7.3.

Object Recognised 
by an Organism

Organism Recognising 
an Object o f Interest

Figure 7.2: Robotic organism recognising the object in the environment.

In the vision based scanning of the environment (shown in Figure 7.3), the 
organism gathers the visual information in terms of the sequence of images. 
The organism stitches the sequence of images and makes a mosaic of it, which 
provides a bigger picture of the environment. This mosaic provides the objects 
surrounding awareness to the organism, that is, what lies on the left and right 
sides of the object. This information can be very useful in navigating the 
organism. For example, if the organism has to reach the same object again, 
it can try to relate what it saw with what it had in the mosaics stored in its 
memory. If it finds a match, then it can get clues that in which direction it is 
likely to find the object. This Chapter is dedicated to the described distributed 
vision processing scenario in the robotic organism. To address in detail the 
different issues, which makes the vision distribution and its processing possible 
in the organism, this Chapter is divided into the following sections.
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— Communication in the Robotic Organism.

— Tasks distribution for distributed object recognition and information gath­
ering.

— Experiments with the Robotic Organism.

m

Figure 7.3: Robotic organism gathering the visual information and making mosaic.

T .l C om m u nication  in th e  R o b o tic  O rganism

As communication medium is a backbone of any distributed computing system, 
so careful consideration was given while selecting the medium for information 
distribution in the robotic organism. Ethernet is a very high speed and reliable 
communication medium and as the use of embedded systems is very common 
in network application, so Ethernet modules can be found integrated in most of 
the embedded systems. For this reason, Ethernet was selected for information 
distribution in the organism. As Blackfin processor was used for information 
processing, so like other embedded systems, Ethernet module is also provided on 
Blackfin development board Eval-BF5xx as shown in Figure 3.5. As discussed 
in Section 3.2, a multi-processor robotic organism was developed to perform 
distributed vision processing tasks, so in this organism the basic communication
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network between the two processing modules (or robot units) can be viewed as 
shown in Figure 7.4.

Ethernet

Robot 1 P r o c e ss in g  Unit Robot 2 P r o c e s s in g  Unit

Figure 7.4: Communication set-up between robotic modules in the organism.

The Ethernet port on the two EvalBF5xx boards (through which the robot 
processing units are integrated) is also shown in Figure 7.4. Through this 
Ethernet port, a communication network channel between the two robot units 
is established in the organism. The information distribution over this network 
is processed through four network layers. These are TCP/UDP, IP, Ethernet, 
and Physical layers. These network layers are shown in Figure 7.5.

TCP/UD P

Ethernet

Physical

Network Layers Robot 2 P ro c ess in g  UnitRobot 1 P rocess in g  Unit

Figure 7.5: Communication network layers.

Generally, in network applications requiring information distribution over a 
network, the application to network communication interface is made above 
TCP/U D P layer as shown in Figure 7.6. In this case, all the communications 
between the applications go through all the network layers. The data from 
the sender side go from TCP/UDP to Physical and on the receiver side, it goes 
through the Physical to the TCP/UDP layer. Whereas, from the basic network 
protocol, the final data transmission happens on the Physical layer.
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Figure 7.6: Application interfaced to TC P/U D P layer.

In this configuration, it can be noticed that, the data are processed on the 
TCP/U D P and IP layers twice, once on the sender side and then on the receiver 
side. This causes a processing overhead. If applications are running on high 
speed processing systems, then this processing overhead can be ignored but as 
mentioned in the swarm robotic systems, the robot units have limited on-board 
processing resources, so this information processing overhead should be avoided. 
To avoid this processing overhead, all the applications can be interfaced with 
the transmission channel at Ethernet layer as shown in Figure 7.7. In this case, 
as the information bypasses the TCP/U D P and IP layers, so an increase in the 
information throughput is expected.

TCP / l U D P

i Ethernet

I Physical

Robot 2 P ro c ess in g  Unit
Comm unication Channel

Robot 1 P rocess in g  Unit

TCP / UDP

Ethernet

^ P h y s i c a l

Robot 1 P rocess in g  Unit
Communication Channel

Robot 2 P ro c ess in g  Unit

Figure 7.7: Application interfaced to ethernet layer.

In case the application is interfaced with the TCP/UDP layer (as shown in 
Figure 7.6), then it creates socket and the target robot IP is the only item 
required to send data to the other robot. The TCP/UDP and IP layers auto­
matically create the frame from the data provided and these layers also perform 
the checksum to validate the transmitted data. On the receiving side, the tar-
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get robot receives the data sent by the sender and does not require any data 
validation. On the other hand, in case the application is interfaced through the 
Ethernet layer (as shown in Figure 7.7), then this configuration provides a high 
transmission data rate, but at the same time, the application is required to 
know the target robot MAC (Media Access Control) address. The application 
is also responsible for manually creating the frames for the Ethernet layer. This 
frame format is shown in Figure 7.8. This is the basic frame format in which 
an application is required to pack the data and send to the target robot. This 
frame requires target robot MAC address (Destination MAC), sender robot 
MAC address (Source MAC), Frame ID describing what type of information is 
included in the frame, Data to send (User Data) and finally the check sum of 
the complete frame (Check Sum). The application is responsible for adding this 
check sum information in the frame to ensure data validation on the receiving 
side. All the robot units in the complete organism act like a network connected 
modules which exchange information at very high rate at Ethernet layer. It is 
to be noted that, in this form of communication, once the data are sent by the 
sender robot, then in the organism, the robot module with the MAC address 
as mentioned in the target MAC address of the Ethernet frame, receives the 
frame. As the sender MAC address is also a part of Ethernet frame, so the 
target robot also knows which robot module has sent this information.

Destination 
MAC Frame ID
6 bytes) (2 bytes)

Source User Data
MAC
(6 bytes)

Figure 7.8: Ethernet frame (IEEE 802.3 standard).

Check
Sum
(4 bytes)
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7.2 Tasks Distribution for D istributed Object Recogni­
tion and Information Gathering

Based on the promising data throughput achieved using the low level Ether­
net communication layer, the distribution of vision based task is possible. The 
distributed vision processing scenario addressed in this Chapter requires three 
robot modules docked together to form a robotic organism. The robot organism 
developed for this scenario is shown in Figure 3.12. As discussed in the begin­
ning of this Chapter, the robot organism is required to perform vision based 
control (or decision making), obstacle avoidance, object detection, recognition 
and surrounding information gathering in parallel. From the work presented 
in Chapter 4, very light weight vision based obstacle avoidance techniques are 
already addressed. This task does not require to be distributed as it can be 
performed by a single robot very efficiently and so is the case of vision based de­
cision making. The other two tasks, i.e., object recognition, visual information 
gathering and mosaicing are computationally very heavy and require collective 
processing from the robotic modules in the organism. The main objective of the 
complete distributed vision processing scenario can be divided into following 
three phases.

— Communication Awareness within the Robotic Organism.

— Distributed Object Recognition.

— Distributed Information Gathering.

7.2.1 Com m unication Awareness w ithin the R obotic Organism

In this scenario, a robot in the organism is a master robot and the other two 
are slave robots. It is assumed that the robot which generates the need for 
organism formation is the master robot. And all the robots which are called 
to participate in forming an organism by going through the physical docking 
procedure, are automatically the slave robots. An example image showing 
the REPLICATOR robot units, which will participate to form an organism, is 
shown in Figure 7.9.

An Active Wheel robot (i.e. one design of Replicator robot unit), is shown 
as the master robot in Figure 7.9. This robot has the capability to perform
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Slave Robot 1: Scout Robot
Slave Robot 2: Scout Robot

M aster Robot: Active Wheel

Figure 7.9: Example Replicator robots participating to form an organism [8].

docking from both sides and mechanism to lift the organism. The other two 
robots, acting as the slave robots are Scout Robots (another design of Replicator 
robots). Once the two slave robots are physically docked to the master robot, 
then the master robot also provides the Ethernet communication backbone to 
organism. Through this communication backbone all the robots module can 
communicate with each other directly. The manner master robot docks to the 
slave robots using the docking port, which also surrounds the communication 
backbone, is shown in Figure 7.10.

Slave Robot 1 Slave Robot 2

Master Robot

Figure 7.10: Replicator robotic organism from three robots [8].
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In this implementation, once the organism is formed, in the beginning all the 
robot modules in the organism are unaware of the identity of their neighbouring 
robots. So after each robot is docked, it will start broadcasting a “Breathing 
Frame” to all the other robots in the organism through the communication 
backbone. This “Breathing Frame” is 100 bytes and it contains the frame ID 
stating that this is breathing frame and the MAC address of the sender robot. 
The manner breathing frame is broadcasted by the two slave robots, is shown 
in Figure 7.11. This Figure shows that how the communication between the 
two slave robots and the master robot takes place.

Breathing Message @ 10 Hz : MAC 3A:15:02:56:44:46 1/
Slave Robot 1

MAC Address Active
Master 3A:15:02:56:44:40 Yes
Neighbour 3A:15:02:56:44:47 Yes

Ack: MAC 3A:15:02:56:44:40 Ack: MAC 3A:15:02:56:44:40

Master Robot 
E B J J B I  MAC Address Active

Slave 1 3A:15:02:56:44:46 Yes

Slave 2 3A:15:02:56:44:47 Yes

Breathing Message @ 10 Hz : MAC 3A:15:02:56:44:47

Slave Robot 2

ie sse i MAC Address Active

Master 3A:15:02:56:44:40 Yes

Neighbour 3A:15:02:56:44:46 Yes

Figure 7.11: Communication within the organism.

This way, on receiving the breathing frame from the neighbouring robots, the 
master robot knows the identification of its slave robots and starts populating 
a Table. In this Table, master robot keeps identification information about its 
slave robots and also their status whether they are still active or not. Master 
robot senses the breathing signal from all slave robots continuously. This is im­
plemented in a way that each slave robot keeps sending the breathing frame at 
10Hz frequency. In Figure 7.11 it is shown that, after forming an organism, the
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slave robots 1 and 2 start broadcasting the breathing frame with MAC address 
“3A:15:02:56:44:46” and “3A:15:02:56:44:47”, respectively. Once the master 
robot receives these breathing frames, then it updates the communication Ta­
ble and populates it with the slaves MAC addresses and declares these slaves as 
active. As each slave robot has broadcasted its breathing frame and apart from 
master robot, the other slave robot has also sensed this frame. So the slave 
robots also update their table and populate it with their neighbouring slave 
robot information. From the acknowledgement received from the master robot, 
slave robots also know the master robot’s MAC address and store them in the 
table. The final populated tables for the current master-slave configuration in 
the robot organism, are shown in Figure 7.11. In the current implementation, 
if the master robot does not sense breathing message for 2 seconds, then it 
assumes that the slave robot is no more functioning. In this case, master robot 
updates the table, declaring this slave robot as inactive. To assign the respon­
sibility of this inactive slave robot to another active robot, the master robot 
checks if there are more active robots in the organism. If there are free active 
robots in the organism, then it routes or distributes the vision tasks to these 
active robots.

7.2.2 D istributed Object R ecognition

In the current scenario, it was decided that, once the organism is formed then 
the master robot is made responsible to perform vision based obstacle avoid­
ance and performs the locomotion of the complete organism. It makes the 
organism move in the environment without colliding with the obstacles. While 
keeping the organism in continuous motion, the master robot also performs 
distributed object recognition with the support from one of the active slave 
robots. In Figure 7.12, the operations performed by the master robot while 
performing the distributed object recognition task with slave 1 robot is shown. 
For achieving the distributed object recognition task, the master robot is re­
sponsible to perform a light weight vision based detection of the objects in the 
images (shown in Figure 7.12). For this purpose, it uses the Harris Feature 
Detection algorithm for the detection of the features in the image. Rather than 
considering the complete image for performing the distributed vision process­
ing, it looks for the part of images where more features are located. There is
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a high probability that these parts of the image are resulting or describing the 
objects in the environment. So, the master robot extracts the chunk of these 
images and passes this visual information to one of the slave robots for per­
forming the computationally heavy object recognition. In case of Figure 7.12, 
the master robot has extracted the parts of image representing two blocks and 
one robot image and have transferred this information to the slave 1 robot for 
further processing.

Communication M edium  

❖ Appearance based Object Recognition

Slave Robot

j M

J L

Recognised 
Object ID is 3

•Vision based Object Detection

❖Multi-resolution Analysis

Figure 7.12: Distributed object recognition within the organism.

Here, the master robot also determines that these parts of images are resulting 
from the objects placed near or far from the organism. Based on the distance 
to the detected object, the master robot utilises the multi-resolution switching 
technique which is described in detail in Section 6.2.3. For the objects detected 
near the organism, the parts of images are extracted from the QVGA (320x240 
pixels) resolution image and if the object is found far, then extraction is per­
formed from VGA (640x480) resolution. In case of Figure 7.12, two blocks in

Slave Robot 2

Mastei

❖Vision based obstacle avoidance 
❖Organism Locomotion

- is* f t  ’ . rsnpwmm
W T  m
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the image are found near and their information is extracted from QVGA res­
olution. But the robot in the image is detected far from the vision system, so 
high resolution switching is performed and information from VGA resolution 
is extracted. After performing feature detection and multi-resolution analysis, 
if the master robot does not find enough features in the image, then it discards 
these images and keeps on moving in the environment. In case, enough features 
are found then it distributes the extracted image parts to the slave robot. On 
the other hand, the slave robot keeps the features in the library for the target 
objects. This library is provided in the form of SURF extracted features and is 
obtained after the initial training is given to the robot to recognise the target 
objects in the environment. This library is usually large in size and can grow 
depending upon the number of target objects in the library. On receiving a 
request from the master robot to process the image parts with object recogni­
tion algorithm, the slave robot executes the optimised appearance based object 
recognition technique as shown in Figure 7.12 (optimised SURF features based 
technique is discussed in detail in Chapter 6). This appearance based recogni­
tion technique further utilises the library of SURF features to identify whether 
the target object is located in the image part. On process completion, the slave 
robot informs the master robot about the outcome of the recognition algorithm. 
If one of the target objects was found in the image parts (robot image in case of 
Figure 7.12), then the slave robot acknowledges the master robot and informs 
it about the object’s identity found after processing the image data. In this 
case, the master robot saves the complete image (from which the parts were 
extracted to distribute to the slave robot) on the on-board memory. Master 
robot retains a copy of this image in the memory after sending recognition 
request to the slave robot. In case of negative outcome (i.e. when no object 
is found), the master robot discards this image copy. Here, one part of the 
distributed vision processing, involving one master and slave robot, ends.

7.2.3 D istributed Inform ation Gathering

Once the positive outcome of the distributed recognition is obtained from the 
slave robot, then the organism has to gather the visual information from the 
object surrounding. This is shown in Figure 7.13 where slave 1 robot is provid­
ing Object ID information to the master robot and master robot is preparing to
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request slave 2 robot for performing Distributed Information Gathering task.

Communication Medium

Slave Robot 1 
❖Appearance based 
Object Recognition

Slave Robot 2

Object ID
❖Scan Images from object surrounding

Send Images to the Slave Robot

❖Compute Homographies 
❖Generate Mosaic 
❖Object Detection

Figure 7.13: Distributed information gathering - task communication.

To gather object surrounding information, the control algorithm in the master 
robot moves the organism in backward direction. It is performed for two rea­
sons. One is to reverse the motion done by the robot during the time when the 
slave was performing the recognition task. And second is to bring the recog­
nised object back in the field of view of the organism so that the organism 
can see the surrounding objects with reference to the identified object. After 
moving backward, the master robot gives a big rotation to the organism in 
left direction. Finally, it rotates the organism in right direction and scans the 
environment around the object in terms of images. Here, it is to be noted 
that, as the organism generates the mosaic from the images obtained after the 
scanning, so the axis of rotation of the organism is kept constant. That is, the 
organism’s location is not moved forward, backward and shifted right or left 
during the scanning. If the axis of rotation is not kept constant, then mosaic 
of images can not be generated as the objects in the images will appear with 
different scales.

While performing the scan, the master robot utilises the vision based rotation 
control strategy to rotate the organism before capturing each image. This is to 
ensure that the organism was rotated at least 10 degrees each time. The use 
of vision based rotation control was made because, the organism comprised of 
many robots (i.e., three or more robot modules) and was too heavy. If the time 
check is made, that is rotation command is given to the motor control board
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for fixed time period for each image scan, then sometimes the motors are not 
able to rotate the heavy organism. This way, the organism scans the images 
from the same location, essentially providing no surrounding information. The 
use of visual feedback makes sure that each image in the scan provides some 
new information and at the same time, it has enough overlap with the last 
scan image so that image stitching (mosaicing) can be performed properly. 
While the master robot is obtaining images in the scan, at the same time, it 
keeps on transferring the QVGA resolution images to another slave robot as 
shown in Figure 7.13, where master robot stream the scan images to slave 2 
robot for further processing. Slave robot receives these images and executes 
the optimised SURF based algorithm to extract scale invariant features from 
the images. The slave robot performs matching of SURF features extracted 
from each two consecutive images. These matching features are processed with 
RANSAC (“RANdom SAmple Consensus”) algorithm to remove any outlier 
features. The final matching features are then used to extract Homography 
matrix between the two images. Homography matrix basically relates the two 
images with same planar surface in space. The relation of Homography matrix 
in terms of the corresponding features (or coordinates) of the two consecutive 
images, is shown as:

l X i scosQ —ssinO t x

lVi = ssinO scosO t y

1 0 0 1
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where lxi and lyi are coordinates of the features points from the first image and 
2Xi and 2yi are the corresponding coordinates of the features points in the second 
image. And hn , h\2, /ii3 , h2i , h22, h2s, /i3 i and h%2 are the coefficients of the 
Homography matrix {lH2) from image 1 to image 2. The slave robot computes 
this Homography matrix for every consecutive image. On expanding the above
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equations, the relation between the coordinates of the second image and the 
coordinates of the first image in terms of the coefficients of the Homography 
matrix is obtained as:

i _  h-n x 2 Xj +  h\2 x 2 y i +  h\3 .
h.31 x 2 Xi +  h-32 x 2 yi +  1

1 _  ^ 2 1  X 2 X j  +  /122 x 2 y j  +  / l 23 , .

h-31 X 2 X i  +  /132 X 2 Vi +  1

To form a mosaic, the re-projection of all the images on a common plane is 
required, as shown in Figure 7.14. This Figure shows the manner the re­
projection of the three images on the common plane is performed to form a 
mosaic. To obtain the re-projections on the common plane, the product of all 
the Homographies is computed in an incremental fashion, and is given as:

'̂ +i=rr̂+i (7.6)
i=  1

Plane

Figure 7.14: Image re-projection on common plane.

At each step when the product of Homographies is computed, the corresponding 
image (i.e. the image to which last Homography in the product belongs to) 
is also re-projected 011 the common plane. For example, the first image is 
projected straight away on the common plane. The second image uses the

Camera

Common
Projection
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Homography 1H2. The third image uses the product of Homographies 2H3 
with 1H2 and so on. This relation of the product of Homographies with the 
images is shown in Figure 7.15. In this Figure, the reference frame (or common 
re-projection plane) is shown on which the images are re-projected using the 
product of Homographies.

Image k+1

Image 2

Image 1

Reference Frame or Common Re-projection Plane

Figure 7.15: Images re-projection using product of homographies.

So in distributed information gathering task, the slave robot uses this image re­
projection approach to produce the image mosaic, once it receives the streams 
of images from the master robot. This is shown in Figure 7.16 where slave 
2 robot receives image stream from the master robot and has generated the 
image mosaic. In Figure 7.16, the four step processing phases are shown which 
are followed by the slave robot to process all the images. For providing the 
detail of the image, the zoom in version of these four processing phases are also 
shown in Figures 7.17 and 7.18.

The first step in Figure 7.17 generates the image mosaic. The image mosaic is 
a large image providing the bigger view of the object surrounding. It is difficult 
to process this large image so that the different objects in the environment can 
be related with each other. So here, rather than processing the complete image 
with computationally heavy feature extraction approach, it was decided to 
identify the parts of image containing the objects. And then these parts of the 
mosaic image will be processed by the appearance based approach. This makes
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Communication Medium
Slave Robot 1 

❖  A p p e a r a n c e  b a se d  

O b je c t  R e c o g n it io n  M i$ t , r

Object ID .j .S c a n  Im a g e s  fr o m  o b je c t  su rro u n d in g

s i  < » r . .  i n mm b s h iK

S la v e R o b o t 2

❖  C o m p u te  H o m o g r a p h ie s
❖  G e n e r a te  M o sa ic

r
o

Step 2 £;

❖Object Detection

o
Step 3 S 

v>w
S 'cm■o

Step 4 Q) v* »

Figure 7.16: Distributed information gathering - vision processing phases.
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Figure 7.17: Slave 2 :Four step processing phases - Step 1 and 2.

the approach suitable to be implemented in an embedded system environment. 
For the detection of the objects in the image, first of all the segmentation of 
the complete image is performed and the regions resulting from the ground 
and the boundary wall are isolated. In this case, the ground region surface and
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Figure 7.18: Slave 2 :Four step processing phases - Step 3 and 4.

the boundary wall appear to be the same so they appear in the same region 
after segmentation. This is shown in Figure 7.17 as the second step of the 
processing phases. The output from the second step is further processed in 
step 3 to determine the number of pixels contributing to the object detection. 
The number of image pixels in a mosaic, contributing to the object detection 
in each column are determined and the generated profile is shown in the step 
3. This profile is thresholded and the columns where the profile exceeds the 
threshold, indicate the presence of an object. Finally in step 4, the pixels 
contributing to the object are filled with blue colour. It can be seen that, six 
objects in the mosaic are correctly detected and isolated.

These mosaics are generated to provide surrounding information for each target 
object. After detecting the objects in the image mosaic, these objects can be 
assigned labels and their appearance based information (in terms of SURF 
features) can be extracted by the slave robot which eventually contributes to 
building the features library. These mosaics also provide the location of these 
newly detected objects with reference to the target objects. After adding these 
new objects in the library, when they are re-visited and recognised by the 
organism, then it provides surrounding awareness to the organism about what 
it may expect around the object. The information gathered from mosaics, may 
also help the organism to reach other objects. In other words, this information
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can help organism to navigate in the environment. For example, if an organism 
has to reach certain objects then it matches the objects in its field of view with 
the features of the object it is looking for. If there is a positive match, then the 
organism is in-front of the target object. Otherwise, the organism compares 
the objects in its field of view with the objects in the library. If it finds it in 
the library, and the library also provides a directional hint to the target object 
with reference to the current object in the field of view, then it facilitates the 
organism to reach the target object in less time. Hence, it is expected that these 
gathered information contribute to the learning mechanism in the organism and 
enable to provide support to the higher level of autonomy within the organism. 
It is to be noted that, in the described distributed vision processing architecture, 
if any of the robot modules malfunctions or fails, then the task can still be 
performed if another robot module with similar functionality as of the failed 
module, exist in the robotic organism.

7.3 Experim ents w ith R obotic Organism

In this section, the experimental results obtained from the described distributed 
vision processing scenario in the organism mode, are presented. Many exper­
iments were performed to practically demonstrate the two phase distribution 
of the vision based tasks within the organism. As already mentioned, the 
“Replicator” robots are not fully functional, so a multi-processor robotic or­
ganism designed in this research was used for demonstration purposes. For 
convenience, this robotic organism is again shown in Figure 7.19. Due to the 
hardware limitations, the organism has one master robot with locomotion and 
processing capabilities and one slave robot with only processing resources. This 
slave robot performs the distributed object recognition together with the mas­
ter robot. Once the object is found, the master robot scans the environment 
and performs the information gathering tasks using the same slave.

The robot organism was given training to recognise the three target objects 
shown in Figure 7.20. Building images were used as objects. These images 
are 2D objects and single image will be sufficient for training. Unlike the work 
presented in Chapter 6, 3D objects were not used, so that the research is mainly 
focused to the distributed vision processing rather than the complexities of 3D
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Figure 7.19: Multi-processor robotic organism.

recognition. The extracted SURF features of the target objects were provided 
in the form of a library to the organism and they were stored in the memory 
of the slave robot. The slave robot used this library to help the master robot 
in performing the distributed recognition task.

Figure 7.20: Target 2D objects.

The basic idea of vision task distribution is to share the processing load between 
multiple robot modules. So, before proceeding to the results obtained from the 
targeted distributed vision scenario, first of all the execution time performance 
comparison is made between a single robot implementation and the organism. 
The performance evaluation is done in two parts. In the first part, the per­
formance of the refresh time of the vision based obstacle avoidance approach 
is evaluated between a single robot and the organism. In the second part, the 
distributed object recognition approach is evaluated with reference to the ob­
ject recognition performed by a single robot. The refresh time of the vision
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7.3 Experiments with Robotic Organism

based obstacle avoidance means how frequent this algorithm is called by the 
robot control algorithm. The more frequent this algorithm is called, the more 
the robot can show continuous locomotion and receives frequent surrounding 
awareness. This helps the robot in decision making.

To evaluate the refresh time of obstacle avoidance algorithm, a test was per­
formed. In this test, the control algorithm ran the vision based obstacle avoid­
ance, object detection, distance based resolution switching and finally object 
recognition in a sequence. A check was made before obstacle avoidance was 
called, to determine the frequency of its execution. In a complete sequence, 
the obstacle avoidance algorithm was called only once to tell the robot whether 
it was close to an obstacle or not. In the test, a single robot from a swarm 
was kept static at a fixed distance from an object. The test was run for some 
time and results were recorded. In the same configuration, another test was 
performed, but with the robot organism, and the frequency of the algorithm 
call was recorded. The results obtained from a single robot test and also the 
organism, are shown in Figure 7.21.

Obstacle Avoidance Referesh Time: Single Robot Vs Organism

Single  R obot T es t 

O rgan ism  T es t

1 5

i   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .. . . . . . . . . . m iiiittiii— iiiii i im ii in i iu u n n r n J in in n m jiT niftn  " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  r . .* - r r ^

100 200 300250

Number of Iterations

Figure 7.21: Obstacle avoidance referesh time: Single robot vs robot organism.

The refresh time profile obtained from a single robot test is shown in red colour
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and the profile obtained from the organism test is shown in blue colour. In the 
single robot experiment, as the single robot unit was responsible for executing 
all algorithms, so the average refresh time calculated for the obstacle avoidance 
task was 950 milli-seconds. In case of the robot organism, the master robot 
was responsible for the obstacle avoidance, object detection and distance based 
resolution switching task. As already mentioned for the computationally heavy 
object recognition tasks, the master robot transferred the processed vision data 
to the slave robot. So a high refresh time for the obstacle avoidance was 
expected. It can also be seen in Figure 7.21 where the refresh time, in case 
of organism, is 230 milli-seconds on average. This means that the obstacle 
avoidance is called after every 230 milli-seconds, so the frequency to call the 
algorithm is higher. This refresh time helps the organism to show a continuous 
motion without waiting for the outcome of the object recognition algorithm. 
During the test the object, that was placed at some distance from the robot, 
was later moved closer to the robot. The vision system now produced a more 
detailed visual information about the object. This caused more features in the 
object recognition algorithm and hence, the algorithm took longer to process 
the vision data. This increase in time, from iteration number 50 to 80, can be 
seen in Figure 7.21 for the case of a single robot test. It is noticed that the time 
profile in case of the organism remained the same. This is because the organism 
transfers this vision data to the slave for processing and the data transferring 
time is much less due to fast Ethernet communication medium. So the execution 
time on the slave side may rise, but the refresh time for the obstacle avoidance 
does not change. Here, the first part of performance evaluation finishes. In the 
second part, the evaluation of the distributed object recognition approach with 
reference to the object recognition performed by a single robot, is performed. 
The performance of the optimised object recognition approach, on a single 
robot in a swarm, is discussed in detail in Chapter 6. The evaluation of this 
approach, in terms of execution time and recognition, with reference to the 
conventional SURF based approach is also explained in Figures 6.6 and 6.7 of 
Chapter 6. Here, first of all the execution time of the recognition algorithm on 
a single robot, with varying object features, is determined. The profile obtained 
is shown in Figure 7.22.

In Figure 7.22, the number of iterations means the number of times the exper-
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7.3 Experiments with Robotic Organism

Object Recognition: Timing Analysis With Varying Object Features

0.5

150

Number of Iterations
3002 50

Figure 7.22: Timing analysis of object recognition algorithm with varying object features.

iment was performed. From iteration number 1 to 47, the object was kept at 
fixed distance from the vision system of a robot. The average time taken by the 
algorithm was 940 milli-seconds. From iteration number 48 to 66, the object 
was gradually brought closer to the vision system. The image from the vision 
system started providing a more detailed information. So, the number of object 
features rose as the object was brought closer and hence, the execution time of 
the algorithm also rose to 1.3 sec. Then the object was kept in that position 
for some time and then brought away from the vision system gradually. This 
effect can be seen in the Figure where the execution time reduced from 1.3 sec 
to 0.5 sec in iteration 80 to 120. When it reduces below 750 milli-seconds, then 
the successful recognition is not performed due to reduced number of features 
in the image. Again when the object was brought closer, then the rise in the 
execution time can be seen. In the test, some spikes in the profile of execution 
time are observed. These are caused because the image provided by the vision 
system was blur, which produced reduced features and hence a reduction in 
execution time.

For the evaluation of the distributed object recognition with reference to the
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implementation on single robot, another test was performed. The execution 
time profiles obtained are shown in Figure 7.23. The object was brought closer 
and then moved away gradually from the vision system. To keep the vision data 
the same for the organism and single robot implementation, the image data were 
initially saved on the on-board memory. This data were later used for object 
recognition on a single robot and also for distributed recognition purposes. In 
case of a single robot, the profile obtained is shown in black colour. In this 
time, the robot executes the vision based obstacle avoidance, object detection, 
distance based resolution switching and object recognition (as the image data 
were read from flash rather camera, so a delay of 100 milli-seconds was added 
as' this is image capturing time from the camera.). On the other hand, the 
execution time profile obtained from the distributed recognition is shown in 
red and blue colours. The profile in blue colour is the execution time on the 
master robot. It is 280 milli-seconds on average. In this 280 milli-seconds, the 
master robot executed the vision based obstacle avoidance, object detection, 
distance based resolution switching and also vision information communication 
to the slave robot. The object recognition part was performed in distributed 
fashion by the slave robot. The slave robot performed the feature extraction 
and the matching part using the features library. The profile obtained from the 
slave robot is shown in red colour. When the red and blue profiles were added 
together the black profile is expected. In this case, a difference from 1 to 10 
milli-seconds was observed. This was due to information exchange between the 
master and slave robots. From the profiles shown in Figure 7.23, it can be seen 
that the distributed implementation of object recognition in the organism has 
effectively distributed the processing load between the master and slave robots.

Now to test this distributed object recognition approach in the main distributed 
vision processing scenario, apart from the target 2D objects shown in Fig­
ure 7.20, some other 2D objects (in the form of images but unknown to the 
organism) were also used in the test environment. Some of these unknown 2D 
objects are shown in Figure 7.24. The reason, for using these unknown 2D ob­
jects in the environment is two fold. One is to demonstrate that the organism 
not only recognised the target objects, but also recognised their identity in the 
presence of the other objects in the environment. This links to the recognition 
performance in the distributed object recognition phase. And second is linked
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Object Recognition: Single Robot Vs Distributed Processing

Slave 1

S ingle  R obot
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Figure 7.23: Object recognition: single robot vs distributed processing.

to the distributed information gathering phase. During the second phase, the 
robot gathered surrounding information of the object in one large image by 
forming a mosaic. While forming a mosaic, when robot stitched two images to­
gether, the vision algorithm required salient features in the environment, which 
were found common in the two consecutive images. So for this purpose, it was 
necessary to add more objects in the environment so that common objects could 
be found in the consecutive images.

Apart from these unknown 2D objects, some obstacles (blocks) were also placed 
in the environment. These obstacles, unknown objects and target objects were 
kept in the test arena, where distributed vision processing experiments were 
performed. The test arena is shown in Figure 7.25. In the test arena, the 
placement of the target objects is also identified as Objects 1, 2 and 3.

Here, the results obtained from one of the distributed vision processing exper­
iment are discussed in detail. In the experiment, the starting position of the 
robot when the test began is shown in Figure 7.26a. The robot started its task 
by doing the vision based obstacle avoidance and at the same time, distributing 
the objects detected in its current view to the slave robot for further processing.
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Figure 7.24: Unknown 2D objects.

>§antsm

Figure 7.25: Test arena for distributed vision processing in organism mode.

The position of the robot organism when it found the first object is shown in 
Figure 7.26b. The object which the organism processed to identify and the tra­
jectory made by it during this time is also shown in Figure 7.26b. The object 
ID identified by the slave robot is “2” . As mentioned before, when the slave 
notified the master robot about the successful detection of the target object, 
then the master robot saved the image in which the object was identified, to its 
memory. The coordinates where the object was identified, were also determined 
by the slave and they were projected by the master robot on the image. The 
image of object 2, stored by the master robot is shown in Figure 7.26c. The 
location in the image, where the slave robot has found object 2, is also shown
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in the Figure.

Figure 7.27: Object 2 surrounding scanned by the organism.

Once the object is identified, the organism scanned the environment to perform 
distributed information gathering task and formed a mosaic. In this experi­
ment, the area the robot organism had scanned is shown in Figure 7.27.

Figure 7.26: (a) Position of the organism when the test begin, (b) Position of the robot when it 
has identified the target object 2. (c) Identified location of the target object 2 in the image.
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During this scan, the organism grabbed 10 images for making a mosaic. These 
10 images are shown in Figure 7.28. The distributed information gathering 
phase started and the formation of mosaic image began for the current scan.

Figure 7.28: Images grabbed by the organism to form a mosaic.

In Figures 7.29 and 7.30, the complete process of the mosaic formation is shown. 
This Figure shows the progress in the mosaic formation when the images are 
stitched one by one. Finally, in Figure 7.31, the process to detect the objects in 
the mosaic is shown. Figure 7.31a shows the results obtained after ground re­
gion and arena boundary walls are eliminated using the segmentation approach. 
Apart from segmentation, image dilation is also performed to connect the pix­
els which are describing the objects in the image. In Figure 7.31b, the profile 
representing the density of pixels in describing the objects in each column of 
the mosaic is shown. Based on the pre-defined threshold (shown in blue colour 
in Figure 7.31b), the number of objects identified are shown in Figure 7.31c. 
The pixels describing the objects are identified by blue colour.
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(a)

<b)

(c)
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Figure 7.29: Mosaic of images scanned around object 2.
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Figure 7.30: Mosaic of images scanned around object 2.

The complete trajectory made by the organism, in searching of the target ob­
jects and forming the mosaics, is marked by red colour in Figure 7.32. The 
locations in the arena, where mosaics generation were performed to gather the 
surrounding information of the target objects 1, 2 and 3 are also shown in 
green, yellow and blue colours, respectively.
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Figure 7.31: Object detection in complete mosaic.
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Figure 7.32: Trajectory made by the organism and location from which mosaics were generated.

The mosaics information gathered for target objects 1 and 3 is shown in Fig-
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ures 7.33 and 7.34, respectively. All the objects in the mosaic view were prop­
erly detected and isolated from the ground surface.

(a)

(b) 1

Figure 7.33: (a) Mosaic from the images scanned around object 1. (b) Segmentation based ground 
elimination, (c) Objects detection in mosaics.

m .
r *  ■

(a)

(b)

(c)

Figure 7.34: (a) Mosaic from the images scanned around object 3. (b) Segmentation based ground 
elimination, (c) Objects detection in mosaics.

It can be noticed that, the objects in the mosaics appeared very small and it 
seemed that they were difficult to recognise. In the beginning, QVGA reso­
lution images were used for mosaic formation as this resolution was originally 
selected for generating the Homographies between the images. In this case,
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7.3 Experiments with Robotic Organism

the objects that appeared small can not be recognised. In the results shown in 
Figures 7.29, 7.33 and 7.34, the QVGA resolution was selected for solving the 
Homographies between the images, but for generating the mosaics, the VGA 
resolution was used. To make the Homographies information applicable to the 
VGA resolution, every element in the Homography matrix was scaled up by 
2. This was done as QVGA resolution image could be obtained from VGA 
resolution by using a scaled down factor of 2. As the mosaics were generated 
using VGA resolution, so all the objects were present with their detail informa­
tion. Here again for object recognition, the distance based resolution switching 
could be performed. The objects which lied near in the mosaic, could be scaled 
down by a factor of 2 so that they could be processed and recognised fast. On 
the other hand, the objects that lied far needed to be processed in a higher 
resolution, so that there were more pixels defining them and hence make the 
recognition possible.

In one of the distributed vision processing experiments, a problem was observed 
during the image mosaicing operation. In this experiment, the mosaic infor­
mation generated is shown in Figure 7.35a. In the beginning of the mosaic, 
the images were stitched properly. The problem occurred when the last two 
images were stitched. These images are shown in Figures 7.35b and 7.35c. The 
information contributed by these images in the mosaic is identified by the blue 
arrow. After observing the images in Figures 7.35b and 7.35c with the complete 
mosaic, it can be noticed that these images are stitched at wrong points. The 
two correct corresponding points, showing the place where the image stitching 
should have been performed, are identified in the mosaic with red arrow. The 
reason for this error can be found very easily in the last two images. There is 
a sufficient overlap between these images but there are no objects in this over­
lapping region. The presence of objects in the common part of images result 
into the detection of salient features. These features help in determining the 
corresponding 2D points between the images which are later used to determine 
the Homography information for generating a mosaic. This is the reason that 
many other objects (in the form of images shown in Figure 7.24) were placed 
around the target objects. As the robot organism had to generate the mosaic 
of the images providing the surrounding information of the target object, so 
the presence of objects around the target objects helped in the detection of
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features in the image, and hence facilitated the mosaic generation.

Correct Corresponding Points

Information from last two images

(b) (c)

Figure 7.35: (a) Erroneous image stitching, (b) Second last image, (c) Last image.

7.4 C onclusions

In this Chapter a distributed vision processing scenario in the organism mode 
has been presented. It has been concluded that, the provision of a reliable 
communication medium (i.e., the Ethernet) in the robotic organism, can be ef­
fective for exchanging the visual information between the robotic modules. But 
the communication medium is the hardware feature of the underlying system. 
From the scenario presented in this Chapter, it is found that the most critical 
software aspect of the distributed vision processing in multi-robotic systems is 
the modular implementation of the vision processing tasks. From the presented 
scenario, it has been concluded that the robotic modules in the organism, not 
only efficiently utilise the communication bandwidth by sharing the heavy vi­
sual clues, but they also make an efficient use of the distributed processing 
resources by sharing the vision processing load between the modules. However, 
it is observed that, for obtaining effective surrounding awareness, the features 
of the detected objects in the mosaics needed to be added to the vocabulary 
and also learned by the organism. The addition of a new object features sig­
nificantly increases the memory requirement. Therefore it has been concluded 
that the efficient utilisation of memory resources is critical when dealing with 
distributed vision processing applications.
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Chapter 8

D istributed Object 
Classification and R ecognition in 
a R obotic Organism

Following the research work presented in Chapter 7, this Chapter also focuses 
on distributed vision processing in modular robotic systems, which are recon- 
figurable and capable of producing different forms of three dimensional robotic 
organisms. As described in Chapter 7, once a robotic organism is formed, 
then based on the information from the vision sensor, the distributed imple­
mentation of .the object recognition and mosaic formations can provide a rich 
surrounding awareness to the robotic organism. For recognition purposes, the 
robotic organism relied directly on the SURF features of the target objects. 
This approach works well if the number of target objects is small. But if the 
number of target objects is large, or if the robotic organism extracts SURF 
features of the objects detected in the mosaics so they can be recognised in 
the later stage, then this causes a significant increase in the total number of 
features (i.e., features space) representing the target objects. Hence, it be­
comes difficult to process these large number of features in real time and this 
makes the recognition process very slow. So ensuring a faster recognition in 
the robotic organism is needed to be focused as it performs an important role 
in the overall performance of the robotic organism. Following the Literature 
Review presented in Chapter 2, to achieve a faster recognition, the SURF fea­
tures space clustering approach can be used [61]. The concept of clustering the
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feature space is called feature space quantisation in some approaches [63] and 
it provides significant savings in memory and thus makes the approach more 
suited for implementation on embedded systems. It is expected that, this fea­
ture space clustering approach facilitates the robotic organism to classify and 
recognise the different objects in the environment in reduced time. It is to be 
noted that, considering the nature of the distributed processing environment 
of the robotic organism, the classification and recognition tasks are needed to 
be implemented in a modular fashion. The modularity in the implementation 
of vision based tasks is a challenge as it requires different robotic modules in 
the organism to form a feedback system, where each robotic module is assigned 
a specific responsibility. The complete system is required to be strictly syn­
chronised, such that each robotic module participates in processing the visual 
data at some stage and passes on the results to the other robots for further 
processing.

In this Chapter, a distributed vision processing scenario is considered which 
aims to present a modular implementation of vision based object classification 
and recognition approach, using the distributed memory and processing re­
sources of a robotic organism, comprising of four robotic modules. Each of the 
robotic modules in the organism is given a specific task, which facilitated the 
organism to classify and recognise the objects. In the beginning, the organism 
is able to recognise only four target objects, where one of the robot modules 
in the organism held the knowledge of these objects. During the operation, if 
a new object is shown to the organism, then the organism failed to classify it 
and used its distributed processing resources to learn this newly encountered 
object. For this purpose, a robotic module in the organism triggered a learning 
mechanism. Once the new object is learnt, then it could be correctly classified 
and recognised by the organism, if it is encountered again. This shows the 
manner the organism learning mechanism evolved with time. The remainder 
of this Chapter is divided into the following Sections.

(i) Multi-processor Robotic Organism

(ii) Communication within the Robotic Organism

(iii) Vision Task Distribution for Distributed Object Classification and Recog­
nition

(iv) Experimental Results
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8.1 Multi-processor Robotic Organism

(v) Performance Comparison of Distributed Modular Robotic System versus 
High Processing Systems

Section 1 briefly describes the hardware considered for implementing the pro­
posed object classification and recognition approach. Section 2 explains the 
manner communication medium is established between the multiple processing 
modules within the organism. Section 3 discusses in detail the division of the 
vision processing task among four processing modules and the manner, the par­
ticipating modules form a feedback system to accomplish the underlying tasks. 
In Section 4, the results are presented with detailed discussions. Finally, in 
Section 5, the performance obtained using modular implementation of object 
classification and recognition approach on a distributed robotic organism, is 
compared with its implementation on high processing systems.

8.1 M ulti-processor Robotic Organism

To implement a vision based object classification and recognition approach in 
a modular fashion, first of all a robotic organism was required, which could 
provide distributed processing resources for the tasks. An example robotic 
organism is shown in Figure 8.1, where four robotic modules join together 
to provide the distributed processing environment. The physical docking ports 
which provide a communication gateway between the different robotic modules, 
are also identified in red colour in Figure 8.1. To keep the focus of this study 
on the distributed vision processing, the robotic organism shown in Figure
8.1 is simulated by a multi-processor robotic system as described in detail in 
Chapter 3. This multi-processor robotic system is also shown in Figure 7.19. 
For the scenario described in this Chapter, as four robotic modules needed 
to be simulated, so four Analog-Devices Blackfin processors were used on this 
multi-processor robotic system. To integrate these processors together, four 
Evaluation boards EVAL-BF5xx (shown in Figure 3.5) were also used.
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Commuuicutioii
Channel

Figure 8.1: REPLICATOR robotic organism [2].

8.2 C om m u nication  w ith in  th e  R o b o tic  O rganism

As described in Section 7.2.1, to establish communication between the mul­
tiple processing modules of the multi-processor robotic system, a high speed 
Ethernet communication medium (10/100M bits/sec) was used. The multi­
processor robotic system used in this scenario comprised of four Blackfin pro­
cessors, where each processor simulated the computing resources provided by 
one robotic module in the organism. A robotic organism can comprise of many 
robotic modules and there can exist many communication strategies to syn­
chronise the information exchange between these robotic modules.

The communication strategy used in this scenario was similar to the one de­
veloped in Section 7.2, and it is briefly described here. To establish commu­
nication, all the robotic modules were required to determine the identities of 
their neighbouring robots in the organism. To achieve this, all the robots in the 
organism were programmed to broadcast a “Breathing Frame” which was 100 
bytes. This frame contained the MAC (Media Access Control) address of the 
sender robot. The MAC address was used as robot ID because the communica­
tion was performed at Ethernet layer. Figure 8.2 shows the manner Breathing 
Frame is exchanged between different processing modules. On receiving the 
Breathing Frames, each robot module started populating an address table. In 
this table, it kept the identification information of its neighbouring robots and 
also their status, i.e., active or inactive. For example, in Figure 8.2, robot 1 
has identified three robot modules in its neighbourhood with MAC addresses 
“3A: 15:02:56:44:42” , 4C3A: 15:02:56:44:43” and cc3A: 15:02:56:44:44” and has de-
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R o b o t 1
MAC A ddress Active

Robot 2 3A:15:02:56:44:42 Yes

Robot 3 3A :15:02:56:44:43 Yes
Robot 4 3A:15:02:56 :44 :44 Yes

B reath ing  M essage  @ 10 Hz : MAC 3A :15 :02 :56 :44 :41

MAC 3A :15:02:56:44:4  2

R o b o t 2
MAC 3 A: 15 :02 :56 :44 :4  2
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R o b o t 3
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R obot 2 3A: 15 :02:56:44:42 Yes
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Figure 8.2: Communication within the multi-processor system.

clared them active. Each robot transmits the Breathing frame at rate of ten 
frames per second (i.e., 10Hz). If the robot modules do not sense this Breathing 
signal from their neighbouring robots for a certain period, then they declare 
those neighbours as inactive. Similar to robot 1, robot modules 2, 3 and 4 have 
also updated their communication tables. These are also shown in Figure 8.2.

8.3  V ision  Task D istr ib u tio n  for D istr ib u ted  O b ject C las­

sification  and R ecogn ition

To distribute the vision based object classification and recognition tasks among 
the four processing modules, the tasks were required to be implemented in a 
modular fashion. The first processing module in the multi-processor robotic 
system acted as the main master processor. Once all the processing modules 
were aware of their neighbouring processing modules, the master processing 
module initiated the task. Figure 8.3 shows the manner object classification
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8.3 Vision Task Distribution for Distributed Object Classification and Recognition

and recognition tasks were divided into sub-tasks and assigned to the differ­
ent processing modules. Figure 8.3 describes a complete feedback system and 
shows that how the visual information is processed in multiple stages to achieve 
the common goal. A detail description of the sub-tasks, assigned to different 
processing modules, is provided in the following sub-sections.

M o d u le  1

Extracted
Objects

Vocabulary 
u  Updated 
0 
>

1) Vision based Obstacle Avoidance
2) Organism Locomotion
3) Harris Features based Object Extraction.

:

1#

Low Resolution High Resolution

1) Optimised SURF Feature Extraction.
2) Object Classification

odule 2

Classified ID & SURF Features

1) Object Recognition.
2) Generating Request to  Learn New 

Object.

odule 3

Vocabulary Update Signal & SURF Features

"3y

SURF Features

1) Adding New Object in Vocabulary.
a) Clustering SURF Features -  KNN
b) Generating Histograms
2) Transfer New Vocabulary of Visual Words.

llx llJ ™
Vocabulary

odule 4 KNN Clustering

Figure 8.3: Vision task distribution.

8.3.1 M odule 1: Information Pre-processing

In Figure 8.3, processing module 1 simulates the processing and memory re­
sources of the master robot module in the organism. In other words, module 
1 acts as the main processing modules and it initiates the visual information 
processing task. This processing module is assigned three main tasks that 
are, Organism locomotion, Vision based obstacle avoidance and Harris features
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based object detection. To perform the organism locomotion efficiently, this 
processing module is required to process the information from vision sensor at 
a high rate. For this purpose, it implements a very light weight vision based ob­
stacle avoidance technique which is described in detail in Chapter 4. To ensure 
that enough processing time was allocated for the organism locomotion, this 
processing module executed a very light weight features extraction technique, 
that is Harris features in this case, to detect the object in the images. To reduce 
the execution time of the Harris feature extraction technique, the resolution of 
the image was set to QVGA (i.e., 320x240 pixels). If the object was detected 
close to the vision sensor (or the robot organism), then a window was defined 
around the detected Harris features and the object was extracted in the low 
resolution image. This is shown in Figure 8.3, next to the sub-tasks of module
1. The extraction of object using Harris features is also shown in Figure 8.4a. 
To extract the object, the window image defined around'the detected Harris 
features, is identified by the red coloured boundary. On the other hand, if the 
object was detected far (i.e., at a distance greater than 55cm) from the vi­
sion sensor, then the Harris features were detected in the low resolution image, 
but the object image was extracted from the high resolution VGA image (i.e., 
640x480 pixels) as shown in Figure 8.4b. This kept the algorithm execution 
time low as the Harris features were extracted in low resolution image, and at 
the same time the object was provided with its detailed information as it was 
extracted from a high resolution image. The extracted object was then trans­
ferred to the processing module 2 for further processing. Extracting object 
from a high resolution image also helped when the second processing module 
tried to classify the object and extracted the SURF features for this purpose. 
The SURF feature extraction algorithm was used to detect salient features in 
the images. The detection of these salient features was only possible when the 
object’s details were present in the image and for this purpose, the extraction 
of far lying objects from a high resolution image was necessary.

8.3.2 M odule 2: O bject Classification

When an object image was sent by module 1 to module 2, then the processing 
module 2 was required to classify the received object. For classification pur­
poses, it required a library of visual words. One of the modules in the organism
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Low Resolution

Object Extracted 
(a)

  _____
High Resolution

Object Extracted 
(b)

Figure 8.4: (a) Low resolution image for close object, (b) High resolution image for far object.

held the SURF features of the target objects. In this case, module 4 hold these 
SURF features. Module 4 processed the SURF feature and generated the li­
brary of visual words (or visual vocabulary). This library was provided to the 
module 2, so that it could classify the objects, it received from module 1. The 
library of visual words was provided in the form of the histograms for different 
objects and the centroids of the clustered SURF features space, as described 
in Section 8.3.4. Once module 2 received this visual vocabulary from module 
4 (as shown in Figure 8.3), then it was able to classify the objects successfully.

For object classification, module 2 was required to extract the SURF features 
of the received object’s image. For this purpose, it executed the SURF feature 
extraction algorithm which was highly optimised for the Blackfin processor ar­
chitecture, and is described in detail in Chapter 6. For the SURF algorithm, the 
Blackfin processor specific optimisation was performed as addressed in [99]. The 
extracted SURF features were then compared with centroids of the clustered 
features space. The feature space was clustered into fifty classes by module 
4, so fifty centroids (one centroid for each cluster) were provided to module 2, 
apart from the histograms. It was decided to cluster the SURF feature space 
into fifty classes, because with fifty classes, the processing module took less time 
to cluster the feature space and also provided sufficient classification accuracy. 
After comparing the SURF features with the centroids of the clustered feature 
space, module 2 generated a histogram with fifty bins. In histogram, each bin
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represented the number of features which fall into a corresponding cluster of 
the SURF feature space. This histogram representation of the features is called 
bag-of-visual-words [117] and it can be used to perform scene or object classi­
fication [116] and also to facilitate robot localisation and mapping [118] in the 
field of computer vision and robotics. Finally to perform classification, the Sum 
of Absolute Difference (SAD) of the generated histogram was computed with 
reference to all the histograms included in the library of visual words. Figure 
8.5 shows an example output of the SAD algorithm when there were Nineteen 
objects in the library. The output shows that the object is classified as object 
eighteen, because the generated histogram from the current object provided 
minimum difference with the histogram of the 18i/l object.
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Figure 8.5: Classification probability.

In order to determine the accuracy or the confidence level of the classification 
results, a low computing intensive strategy was adopted. The mean value of 
the SAD output was computed (shown by red colour line in Figure 8.5), where 
the minimum difference value in the SAD output was not used in computing 
this mean. The difference of the minimum SAD value from this mean shows 
the confidence in classification. A high difference means the object is classified 
with a high confidence. Similarly, a low difference shows a lower confidence 
in the classification result. Module 2 passed this object classification ID and 
the confidence in classification results to the module 1 and also to the module 
3 (as shown in Figure 8.3). Apart from classification results, the extracted 
SURF features were also transferred to the module 3 for further processing.
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After receiving the classification results, depending on the level of confidence, 
module 1 took the appropriate actions. For example, if the organism was 
searching for a specific target object, then it could approach the object with 
the certain confidence level provided by module 2. This helped the organism to 
take an appropriate decision quickly, without waiting for the object recognition 
results from module 3.

8.3.3 M odule 3: O bject R ecognition

Module 3 received the object classification ID, confidence in classification and 
object SURF features from module 2 and then it performed the object recog­
nition task. To perform the object recognition, it also held the SURF features 
from all the target objects in its memory. It is to be noted that, to recognise 
the object, module 3 did not perform the matching of received SURF features 
with the SURF features of all the target objects, which was a computationally 
expensive task. As module 3 was provided with the object classification ID 
and this informed it about the identity of an expected object. So the Module 3 
compared the received SURF features with the SURF features of the expected 
target object only. If an expected object was recognised by the module 3, then 
it sent the object ID confirmation (as Object Recognition Results) to the mod­
ule 1, as shown in Figure 8.3. This provided organism the confirmation of the 
classification results generated by the module 2.

If the module 3 generated a negative confirmation results, that is the classifica­
tion ID provided by module 2 was wrong, then module 3 checked the confidence 
level which was provided by the module 2. If the confidence level was also low 
then module 3 waited for the next three confirmation results. If the confidence 
level stays low and the next three confirmation results were also negative, then 
there was a high probability that the organism was viewing a new object. At 
this point, module 3 triggered the organism learning mechanism. It did this 
task by storing the SURF features of this new object in its memory for later 
use and at the same time, it transferred these SURF features to the module 4 
which generated the new vocabulary of visual words.
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8.3.4 M odule 4: Vocabulary of V isual Words

This processing module was responsible for holding the organism knowledge 
about the target objects (i.e., the objects which the organism classified and 
recognised). This knowledge was represented in the form of a library of visual 
words which was generated using the SURF features. These SURF features 
were initially computed by module 2 and after going through further processing 

• in module 3, these features arrived to module 4. There were two instances when 
module 4 generated the library of visual words. The first instance was when 
the organism was formed and only module 4 had the initial knowledge (in 
terms of SURF features) of target objects. At this point, the organism was 
not able to classify any object. Module 4 generated a library of visual words 
and passed this library to the module 2 for classification purposes. The second 
instance for the generation of library was triggered by module 3. When module 
3 determined that the organism was viewing a new object, then it passed the 
SURF features of new object to module 4. Module 4 then learnt the new object 
by generating a new library of visual words.

For generating the library of visual words, module 4 clustered the complete 
SURF features space using KNN (K-Nearest Neighbour) algorithm. It clus­
tered the SURF feature space into fifty clusters. If it was the first time it was 
clustering the SURF feature space, then in KNN algorithm, it used random cen­
troid values for the different clusters and then found out the optimum centroid 
values. But if it was learning a new object, then it used the last computed 
centroid values as an input to the KNN algorithm and then determined the 
optimum values of the centroids. This helped module 4 to generate the new 
centroids for all the clusters in reduced time. Once the centroids for all clusters 
were computed, then module 4 generated a histogram for each target object 
in the library. As the SURF features space was partitioned into fifty clusters, 
so each histogram also contained fifty bins. Where each bin in the histogram 
represented the number of SURF features (extracted from a target object) fell 
into the corresponding cluster.

To explain the concept of feature space clustering and histogram generation, 
an example is shown in Figure 8.6. In this example, the complete feature space 
was divided into four clusters that is, clusters 1, 2, 3 and 4, were identified 
by red, blue, green and orange colours, respectively. For histogram generation,
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Figure 8.6: Feature space clustering and histograms generation.

three target objects were considered. The features resulting from these three 
target objects were identified by different signs as shown on the top left side 
of Figure 8.6. For object 1, the number of features falling in the clusters 1, 
2, 3 and 4 were found equals to 1, 3, 4 and 2, respectively. This generated 
a histogram for object 1, as shown on the right side of Figure 8.6. In the 
histogram, the x-axis shows the total number of clusters in the feature space 
and y-axis represents the number of object features lying in the corresponding 
clusters. Similarly, depending on the number of features lying into different 
clusters, the histograms generated for objects 2 and 3 were also shown in Figure 
8.6. The histogram representation of SURF features for target objects is called 
library or bag of visual words. The centroid computed by KNN algorithm, for 
the different clusters in the feature space, are identified by the yellow circles in 
Figure 8.6. These centroids of the clustered feature space, together with the 
generated histogram for all the target objects, were transferred to the module 
2 for object classification purposes (as shown in Figure 8.3). When module 2 
received the new library of visual words, it discarded the old library. Using the 
new library of visual words, module 2 was able to successfully classify the new 
object. Similarly, module 3 also started recognising the new object as it also 
held the SURF features of newly learned object.
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8.4 Experimental Results

The performance of the modular implementation of object classification and 
recognition task was demonstrated using the distributed memory and process­
ing resources of the robotic organism. A test was conducted which lasted for 
300 seconds. Following the sub-tasks assignment as discussed in Section 8.3, 
module 4 in organism was provided with the SURF features of the target ob­
jects. In this test, module 4 was initially provided with the SURF features of 4 
target objects. When the test started, in the beginning, the organism was not 
able to classify any object. This happened because module 4 was generating 
the library of visual words and module 2 needed this library to classify the 
objects. This is shown in Figure 8.7, where for the first ten seconds, the classi­
fication ID was zero. In Figure 8.7, the classification ID (provided by module 2) 
and Recognition ID (provided by module 3) are shown in blue and red colours, 
respectively. For the first ten seconds, when the classification ID was zero, the 
classification probability was also zero as shown in Figure 8.8. Then the first 
object was placed in front of the vision system attached to the module 1. It 
was classified correctly by module 2 as shown in Figure 8.7 (blue profile from 
10 to 40 seconds). Similarly, module 3 also confirmed that the classified ID 
was correct. This is shown in Figure 8.7, where from 10 to 40 seconds, the red 
profile overlapped the blue profile. Later on, objects 2, 4 and then 3 were shown 
in sequence and they were also classified and recognised correctly. Note that, 
as module 4 was provided the SURF features of first four objects, which it had 
used for generating the visual vocabulary, so it was possible for module 2 to 
classify the first four objects correctly. While classifying these four objects, the 
classification probability computed by module 2 was also high. This is shown 
in Figure 8.8 where the classification probability ranged from 0.5 to 0.88 during 
the period from 10^ to 76th seconds.

At nearly 76.5th seconds of the test, when the fifth object was shown to the 
vision system, as it was a new object for the organism so a mismatch in the 
classification and recognition ID was observed in Figure 8.7. It was mistakenly 
classified as object 2 and module 3 generated a false recognition result (i.e., 
Recognition ID is zero). In other words, module 3 rejected the classification 
result. During this time, the classification probability was also small, i.e., less 
than 0.1. When module 3 found that false classifications occurred for the
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Figure 8.7: Classification and recognition ID.

consecutive three times and the classification probability remained low, then it 
triggered module 4 to learn the object and generated a new vocabulary of visual 
words. This can be observed in Figure 8.9 where the processor usage for all the 
processing modules is shown. It can be noticed that, nearly at 76th seconds, 
when module 3 triggered the organism learning mechanism, the processor usage 
of modules 3 and 4 was very high. To learn the fifth object, module 4 received 
its SURF features from module 3. Module 4 had to add the SURF features 
of new object into the old SURF features space and then re-cluster the whole 
SURF feature space using KNN algorithm for generating the library of visual 
words. As this was a computationally heavy operation for module 4, so it has 
shown 100% processor usage during this time (nearly at 76th seconds). When 
module 4 provided the new library of visual words to module 2, then modules 
2 and 3 were able to classify and recognise object five successfully, as shown in 
Figure 8.7. The rise in classification probability for object 5 can also be seen 
in Figure 8.8. Similarly, objects 6, 7, 8, 9, 10, 11 and 12 where shown to the 
vision system, in sequential order, at approximately 112.5, 125, 152.5, 171, 201,
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Figure 8.8: Classification probability.

229 and 263th seconds. During these times, the mismatch in the classification 
and recognition ID was observed and the classification probability was also 
found low. To learn these objects, as module 3 again triggered the module 4 
to generate the new library of visual words, so a rise in processor usage for 
modules 3 and 4 can be seen in Figure 8.9. All these objects were successfully 
learnt by module 4 and this can be seen in Figure 8.7, where modules 2 and 3 
have started classifying and recognising the objects IDs correctly.

From Figure 8.9 it can be seen that, on average, processor usage for modules 1, 2 
and 3 were 50%, 99.95% and 40%, respectively. Whereas, module 4 was utilising 
the full processor performance occasionally, when it received the vocabulary 
update signal from the module 3. The first spike indicates the 100% processor 
usage of module 4 happens in the beginning 10 seconds. This is the time when 
the module 4 was generating the initial vocabulary of visual words. The later 
pulses in the module 4 processor usage were recorded when it received the 
new objects features to generate a new library of visual words. As processor
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Figure 8.9: Processor usage.

usage of module 1 was 50% on average, this ensured that module 1 had enough 
processing resources to control the organism locomotion mechanism. Module 
2 was performing the most computationally expensive tasks amongst all the 
modules, that is SURF feature extraction and object classification. That is 
why it appears to be the busiest processor. In case of module 3, similar to 
module 4, the rise in processor usage profile was observed when the decision 
to add a new object in vocabulary was taken. It is to be noted that, the 
second processing modules appears to be the busiest amongst all the processing 
module. If more processing modules are available, then some of the processing 
load from second processor can be shared with the other spare module. But to 
achieve this operation, the task assigned to second module (i.e., SURF features 
extraction) is required to be divided into further sub-tasks. This calls for 
the further modular implementation of the vision based operations. However, 
the processor usage profile from all the modules indicates that the distributed 
processing resources of the organism were utilised properly.

Similar to the processor usage, the profiles showing the memory utilisation of
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the four modules during the experiment, were also recorded and it is shown 
in Figure 8.10. This Figure shows how much memory in KB (Kilo bytes) is 
available to the processor. As this research is dealing with the distributed vi­
sion processing tasks and vision processing applications utilises high amount of 
memory, so considering the memory usage for the distributed processing mod­
ules was important. If the same task had been performed using a single pro­
cessor, then it was observed that, storing SURF features from 12 objects drops 
the available system memory below 900KB and the application crashes when 
the recognition algorithm tries to allocate more memory. It was found that, 
in any distributed computing application, apart from the processor utilisation, 
efficient utilisation of the distributed memory resources is also a very impor­
tant, especially when application deals with the vision information processing. 
From Figure 8.10, it can be seen that, in case of modules 3 and 4, the drop in 
memory profile is observed during the time when new objects were added to 
the vocabulary. In case of module 3, as it keeps a copy of SURF features in its 
memory for object recognition purposes, so it utilises memory on adding every
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new object. Whereas, in case of module 4, as this module adds the new object 
SURF features into the old SURF feature space for generating new vocabu­
lary, so a drop in available memory was expected. In case of module 1, slight 
variation in the available memory was observed throughout the experiment. In 
case of module 2, the processing module deals with the computationally heavy 
SURF feature extraction algorithm. As this algorithm allocates huge amount of 
memory, which was de-allocated once the algorithm finished, so high variations 
in the available memory profile were observed (shown in Blue colour in Figure 
8 .10).

Ideally, the use of distributed or multi-processor computing systems shows an 
increase in the frequency of operations, as compared to a single processor im­
plementation. In other words, as the distributed processing system provides a 
rich processing environment, so the implementation of modular vision process­
ing application on such a system is expected to decrease the execution time of 
vision processing tasks as compared to a single processor system. To show the 
frequency of operation, the frame processing rate achieved with the four pro­
cessor system, during the complete experiment, is shown in Figure 8.11. In the 
recorded profile, sometimes zero FPS (frames per second) was recorded. This 
happened because the SURF algorithm had produced too many features, which 
increased the computational time significantly. Or the processing modules ex­
perienced erroneous communication, which caused a delay in the completion of 
the feedback sequence shown in Figure 8.3. However, on average, 0.614 FPS 
were recorded with the modular implementation of object classification and 
recognition task.

A comparative result obtained, when the complete recognition task was per­
formed on a single processor system, is also shown in Figure 8.12. It can be 
seen that, when features from a single object was present in the vocabulary (i.e., 
green profile in Figure 8.12 shows 418 SURF features for one object), then 0.63 
FPS was recorded. But as the number of objects increased in the vocabulary, 
then the total number of features, resulting from the objects, also increased 
(rise in green profile in Figure 8.12). It can be noticed that, the increase in 
the total number of features is not strictly linear. This is because every object 
results in different number of features, depending upon the texture present on 
the object. Due to the significant increase in the total number of features,
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the feature matching part of the recognition algorithm became more computa­
tionally expensive. Hence, a drop in the FPS profile was observed, as shown 
by blue colour profile in Figure 8.12. When this single processor system was 
programmed to recognise twelve objects, then the FPS was dropped to 0.13, 
because the number of SURF features in the vocabulary increased to 5789 (i.e., 
Total number of features for 12 objects represented by the green colour profile 
in Figure 8.12). When the single processor results were compared with the four 
processor system, then the four processor system increased the FPS rate by the 
factor of 5.

Frame Processing Rate
1.6----------- 1----------- j------------1----------- 1----------- 1------------

C O 1'4 ................... j ..................;....................I .......................................i ..................
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o ---------- S-L-!-------- . U ------- 1-------- —------------ 1---- -----
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Figure 8.11: Frame per second - Four processors system.

As the proposed modular vision processing approach strongly relied on the 
generated classification probabilities, so an experiment was performed in which 
the classification probabilities were recorded for increasing number of objects 
in the vocabulary. The results obtained are shown in Figure 8.13. The number 
of objects in the vocabulary were increased from four to twenty two objects. A 
drop in the confidence probability was observed with an increase in the number 
of objects. The zoom-in image, when there were four objects in the vocabulary,

219



8.4 Experimental Results

Frame Processing Frequency
10000

— — Frame Processing Frequency 
■■♦—Total Number of Features

Num ber of Objects

Figure 8.12: Frame per second - Single processor robot.

is shown in Figure 8.14. The classification probability for the four objects 
is coded in different colour bars. The classification probability ranged from
0.68 to 0.82. Similarly, when there were twenty-two objects in the vocabulary, 
then the classification probability generated is shown in different colour bars in 
Figure 8.15. The probability ranged from 0.04 to 0.21. It was observed that, 
when the number of objects increased in the vocabulary, then this resulted 
in more common features (i.e., features which were shared by more than one 
target objects) in the complete SURF features space. These common features 
could not be avoided as ignoring them made some of the target objects un­
recognisable. Hence, the increase in the number of common features affected 
the classification results significantly and this was very prominent in the profile 
shown in Figure 8.13. To overcome this problem, first of all, it is necessary 
to identify the features which are common among different target objects, and 
then these features should be given low weightage when performing the object 
classification. To further improve the results, it is also important to identify 
the features which produces false results in the complete classification and

220



8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

Confidence Level Profile

8 10 12 14 16 18 20 22

N um ber of O bjects in Vocabulary
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recognition process. Once identified, then these features should also be assigned 
lower weightage while performing the classification.

8.5 P erform ance C om parison  o f D istr ib u ted  M od u lar R o b o tic  

S ystem  versus H igh  P rocessin g  S ystem s

As described in Chapter 1, in swarm robotics or reconfigurable modular robotic 
systems, an individual robot module has very limited memory and processing
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resources, but the system as a whole is considered very rich in these resources. 
When the modular robots use these resources collectively, they can achieve 
efficient performance like the other high processing robotic systems. In this 
Section, a detailed performance comparison is presented between the modular 
implementation of object classification and recognition technique on a multi­
processor robotic system and a non-modular implementation of object recogni­
tion on high processing systems. For high processing systems, a Pioneer 3AT 
robot (shown in Figure 8.16) with Dual Core 2.26 GHz processor and 2GB 
RAM mounted on the on-board computer, was used for comparison. For an­
other high processing system, a Laptop with Core-2 Duo processor and 4GB 
RAM was used.

Figure 8.16: Pioneer-3 AT robot.

This Section is further divided into the following two sub-sections. The first 
sub-section briefly describes the non-modular implementation of object recog­
nition on high processing systems. Whereas, the second sub-section presents a 
detailed performance comparison.

1. Object Recognition - High Processing System

2. Performance Comparison

8.5.1 Object Recognition - High Processing System

For object recognition on a high performance and single processor system, the 
SURF features based recognition approach was adopted. For recognition pur­
pose, the process followed by a single processor system or robot is shown in
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Figure 8.17. The SURF features extracted from all the target objects were 
kept in the robot’s memory. As shown in Figure 8.17, the robot grabs image 
from vision sensor in QVGA (320x240 pixels resolution) format. The robot 
extracted the SURF features from the image. To determine the presence of the 
target object in the image, the target objects in the vocabulary are considered 
one by one. The SURF features of the target object are matched with the fea­
tures extracted from the current image. If no feature matching was found, then 
the SURF features from the next target object were considered. If certain num­
ber of features were matched (i.e., the feature matching result was positive), 
then the matching features were processed with RANSAC (RANdom SAmple 
Consensus) algorithm to remove all outlier features. After removing the out­
lier features, the resultant matching features were then used for computing the 
Homography. Homography was computed in order to determine whether the 
positions of the matching features of the target object were geometrically con­
sistent with the features of the current image. If the matching features were 
geometrically consistent, then the object’s ID was determined and the object 
was recognised. On the other hand, if the geometric consistency failed then the 
process was repeated with the features of the next target object (until all the 
target objects were processed), as shown in Figure 8.17.

8.5.2 Performance Comparison

This Section presents the results obtained, when the object recognition was im­
plemented on a modular systems (as described in Section 8.3) in comparison to 
high performance single processor based systems. Following the discussion in 
Section 8.5, for single processor system, a Pioneer-3AT high processing robot 
and Core-2Duo Laptop were considered. For detailed analysis, a robot with 
single Blackfin BF537 on-board processor was also selected. For these systems 
the object recognition technique discussed in Section 8.5.1, was used with in­
creasing the number of target objects. The number of target objects was from 
1 to 12. When this technique was implemented on a robot with single Blackfin 
processor, then the memory profile shown in Figure 8.18 was produced. This 
Figure shows the drop in total amount of memory (in Kilo bytes) available 
to the robot, when the number of target objects were increased from 1 to 12. 
The vertical red coloured lines shows the drop in the available memory from
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Figure 8.17: Traditional object recognition implementation - high processor system.

start to the end of test, for the corresponding number of target objects. For 
example, for three target objects, the initial memory available to the system 
was 8000-KBytes. But during the test, when the SURF features of these three 
target objects were loaded into the memory and feature extraction and match­
ing techniques were executed, then the lowest available memory detected in 
the robot was 5200-KBytes. The green coloured points on the red bars repre­
sent the average memory which was available to the system during the tests. 
The significant drop in the available memory, due to the use of the SURF fea­
tures, was expected. This is because, the SURF features required huge amount 
of memory for storage, as each feature was represented by a vector with 64 
fields [98]. Figure 8.18 shows that, for 12 target objects, the lowest memory 
detected in the system dropped to 1300-KBytes. It was observed that, if the 
number of target objects exceeded by 12, then the available memory dropped 
below 900-KBytes and this resulted the system crash when the SURF feature 
extraction algorithm tried to allocate more memory for its operation.

Similar to memory usage, the processor usage recorded for the robot with single
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Figure 8.18: Memory usage for a robot with a single blackfin processor.

Blackfin processor, is shown in Figure 8.19. This Figure shows that, when there 
was only one target object, then the processor usage (on average) was 73.5%. 
The average processor usage exceeded 95% when the number of target objects 
reached up-to 12. This indicated that the processor had become increasingly 
occupied with increasing number of target objects.

N u m b er o f O b je c ts

CD
0 5
CO
CO

Figure 8.19: Processor usage for a robot with a single blackfin processor.

For the considered single processor systems, the average frame processing achieved, 
when the object recognition technique was used for increasing number of target
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objects, is shown in Figure 8.20. For a robot with single Blackfin processor, 
when there was one target object to recognise, then the average frame pro­
cessing time recorded was 1800 milli-seconds to process one image. This frame 
processing time was gradually increased to 7000 milli-seconds (i.e., 7 seconds), 
when the number of target objects reached 12. The reason for the increase in 
processing time, was the significant increase in the number of SURF features 
resulting from the target objects. The profile showing the increase in the total 
number of SURF features, with increasing number of target objects, is also 
shown in Figure 8.20 in green colour. Note that, the y-axis label on the right 
side of Figure 8.20 shows the scale for total number of SURF features. The 
total features profile is not strictly linear as every target object produces dif­
ferent number of features, depending upon the texture present on the target 
object. When the same test was performed on the Pioneer-3 AT high processing 
robot, the frame processing time increased from 600 milliseconds (for one target 
object) to 1850 milliseconds (up-to 12 target objects), as shown in blue colour 
in Figure 8.20. Similarly, when another high processing system was used, that 
is a Laptop with Core-2Duo processor, then the frame processing time ranged 
from 250 milli-seconds to 500 milli-seconds when the target objects increased 
from 1 to 12.

Average Frame Processing Time vs Total Number of SURF features
8000

Frame Processing Time
Core-2 Duo 
Pioneer-3A T 

i ■ *  ' Blackfin BF537
6000 E

toTO£=Oo<1)(O on4000 4000
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£
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2000 2000

Number of Objects

Figure 8.20: Frame processing time versus total SURF features for single processor systems.
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For the performance comparison, the modular form of object recognition tech­
nique (described in Section 8.3) was implemented on a multi-processor robotic 
system. As four processors were used on the robot (as described in Section 8.1), 
where each processor was simulating the processing and memory resources of 
one robot module, so the memory and processor usage for the four processing 
modules were recorded. The memory usage for the four processing modules is 
shown in Figure 8.21. As discussed in Section 8.3, the processing module 3 holds 
SURF features to perform the feature matching process, and processing module 
4 also held the complete SURF features space for generating the visual vocab­
ulary when new objects were learnt. Therefore, a drop in the available memory 
profile is recorded for modules 3 and 4 as shown in blue and black coloured pro­
file, respectively. It is to be noted that, even after adding the SURF features 
from 12 objects, all the processing modules still had enough memory resources 
available to add more objects. Whereas, for a robot with single Blackfin proces­
sor, the system did not have more memory resources available to add features 
for more target objects as shown in Figure 8.18. The memory usage profiles in 
Figure 8.21 shows that the distributed memory resources are utilised efficiently 
by the modular implementation of object recognition approach in distributed 
robotic system.
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Figure 8.21: Memory usage for multi-processing system.
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Similar to memory usage, the processor usage recorded for all four processing 
modules are also shown in Figure 8.22. From the processor usage, it can be 
seen that module 1 processor usage is 60% on average (shown in red colour 
in Figure 8.22). As module 1 is responsible for the locomotion of the mod­
ular robot, so its 60% processor usage ensured that it has enough processing 
resources available to process the data, from vision and other sensors, at high 
rate to perform the locomotion efficiently. Module 2 was responsible for the 
SURF features extraction task. This was a computationally very heavy task, 
so due to this, the average processor usage for module 2 was above 95% (green 
coloured profile in Figure 8.22). Module 3 performed the feature matching.and 
recognition parts. The classification results provided the expected ID of the 
target object to module 3, which made the feature matching part computa­
tionally less expensive and results in the average processor usage around 70%. 
Module 4 was active only when it received the vocabulary update request from 
the module 3. So due to this, the processor was fully occupied only when it 
received the vocabulary update signal and clustered the complete SURF fea­
ture space to generate the new vocabulary. However, on average, the processor 
usage for module 4 was found to be 25%. It can be seen that, based on the 
assigned tasks, the distributed processing resources were utilised efficiently by 
the modular object recognition approach.

For comparison with the frame processing time obtained from high processing 
systems (as shown in Figure 8.20), the processing time achieved with modular 
system is shown in Figure 8.23. The profile for the corresponding total number 
of features in the vocabulary, is also shown in green colour. It can be seen 
that, the average frame processing time is 700 milli-second. The frame pro­
cessing time measured with 12 target objects was found to be less than 750 
milli-second. This shows a better performance in comparison to Pioneer 3- 
AT high processing robot, which took nearly 1850 milli-seconds to process one 
frame when there were 12 target objects. But in comparison to the Core-2Duo 
Laptop system which took 500 milli-second to process a frame, the modular 
system took 250 milli-seconds more. From Figure 8.23, it can be observed that 
the significant increase in the total number of SURF features does not affect 
the frame processing time in a modular system. Apart from providing com­
petitive processing performance, the modular robotic systems also provides a
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Figure 8.22: Processor usage for multi-processing system.

cost effective solution. The basic idea behind modular robotics is to keep the 
design of individual robot units very simple, so that the individual robot unit 
does not cost much and large number of robots can be produced. For exam­
ple, a single Pioneer-3AT robot used in the experiment cost 6000$ on average, 
whereas, the better processing performance was achieved by multi-processor 
robotic system, and this system cost less than 2000$. But at the same time, 
the bigger size robots are also equipped with power and processing demand­
ing sensors (e.g., laser range finders) which facilitates the robots to perform 
intelligent operations, and the use of such sensors is not realisable in modular 
robotic systems. It is also important to consider that, in case of single big 
size robot, any malfunction in robot will cause the mission failure. On the 
other hand, the redundancy in terms of number of robotic modules in modular 
robotic system reduces the chances of mission failure. In modular systems, if a 
single robotic module malfunctions, then this will not result in mission failure 
because another robotic module will replace the malfunctioned module.

Finally, the classification probability profile, showing the confidence in classi­
fication result, is shown in Figure 8.24. The profile for total number of SURF 
features in the vocabulary is also shown in green colour. The classification 
probability was 1 (i.e., 100% confidence level) when there were two target ob-
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Figure 8.23: Frame processing time versus number of SURF features for modular system.

jects in the vocabulary, and it reduced to 0.82 for 3 target objects. When the 
number of objects exceeded by 5, the classification probability dropped below 
0.7. This happened because too many common features resulted in the vocabu­
lary which reduced the classification probability. The classification probability 
dropped below 0.4 when the number of target objects reached up-to 12. It 
was observed that, the classification accuracy highly depended upon the total 
number of SURF features in the vocabulary. This is very prominent in Figure 
8.24, where the confidence level keeps on dropping with an increase in the total 
number of target objects and the SURF features in the vocabulary.

In multi-processor robot organism used in the scenarios in Chapters 7 and 8, 
the information from vision sensor connected to master processing module, was 
processed in distributed fashion. This information was processed to provide 
surrounding awareness to the robotic organism, and also help in performing 
obstacle avoidance. It is important to note that, when a robotic organism is 
going to be formed, then its 3D structure and overall size will be bigger than a 
single robotic module. The field of view provided by a single vision sensor (on 
master module), will not be sufficient enough to help the robotic organism to 
avoid colliding with the obstacles. For this purpose, the information from vision 
sensors present on other robotic modules, will also required to be processed.
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Figure 8.24: Classification probabilities versus number of SURF features for modular system.

To process that visual information, apart from performing distributed vision 
processing task, all the robotic modules are required to have enough processing 
resources to process the information from their own vision sensor. This is 
completely realisable from the results achieved in this research. For example, 
from Figure 8.22 it can be seen that, all the processing modules still have 
enough processing resources to perform other necessary operations.

8.6 Conclusions

In this Chapter the second distributed vision processing scenario in organism 
mode has been presented. This scenario addressed a modular approach to ob­
ject classification and recognition, using distributed memory and processing 
resources of a robotic organism. The implementation of the approach using a 
four-processor system has been found to execute 5 times faster than a single 
processor system. In case of single processor system, the system crashed when 
the number of objects in the library, exceeded 12. On the other hand, in multi­
processor robotic organism, enough memory resources will still be available, 
even after 12 objects has been learned by the organism. The processors usage 
also showed that all the processors have been utilised efficiently according to
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the assigned tasks. It is shown that, as the number of objects learned by the 
organism increased, the classification probability showed less confidence in the 
classification results. This happened because more common features resulted 
among the target objects. In the Results Section, the robotic organism has 
been kept static and only images from the robot camera has been used to per­
form object classification and recognition tasks. However, if the objective is the 
organism localisation, then the presented approach can be used for landmark 
recognition purposes and therefore, it can effectively support the probabilistic 
methods (such as Partially Observable Markov Decision Process - POMDP) to 
track the probability distribution of the robot where-about and finally, localise 
the robot. The research presented in this chapter also conclude that, the col­
lective use of processing resources in a modular robotic system can provide a 
performance comparable to high processing robots or systems. Similar to the 
organism mode scenario presented in Chapter 7, it has been concluded that, 
to achieve high performance from modular systems, the most challenging task 
is the modular implementation of the underlying technique, such that efficient 
use of the distributed memory and processing resources can be made.
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Chapter 9

Conclusions & Future Work

9.1 Conclusions

From the research work presented in this PhD thesis, the following conclusions
have been made.

(i) A library of vision processing algorithms has been optimised for targeted 
embedded system. The minimum frame rate achieved with algorithms in 
this library, is 40 FPS, and hence, it guarantees the real time response. 
It has been concluded that, the efficient implementation of this library 
plays an important role in the development of distributed vision processing 
algorithms.

(ii) A vision based obstacle avoidance technique has been developed, which 
provided the frame processing rate of 45 FPS. This shows the successful 
achievement of the second objective set in this research, and that is, the 
provision of a light weight obstacle avoidance algorithm to help the robots 
to avoid colliding with the obstacles.

(iii) To facilitate the transition from swarm to robotic organism, a vision based 
docking algorithm has been implemented. This algorithm facilitates the 
robot to align and get close (i.e., 5cm) to the docking port. With vision 
based support, it is not possible to perform full docking, because when 
the robot tries to get very close (i.e., less than 5cm) to the docking port 
then the markers used to detect the docking port goes outside the robot 
field of view. To achieve final mechanical docking mechanism, it has been
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concluded that the information from other sensor (i.e., IR sensor) will be 
required.

(iv) In the swarm mode scenarios it has been shown that, the swarm of robots 
share novel distance vector features to efficiently generate a precise envi­
ronmental map. This distance vector features are very easy to compute and 
not encoded with high density information, and this makes it possible to 
exchange these features using the wireless channel with limited bandwidth.

(v) A novel approach to perform object recognition and localisation using dis­
tributed robotic system has been addressed. The localisation of objects 
requires the provision of efficient vision based recognition functionality. It 
has been concluded that to reduce the object recognition time on small 
size robots, the compiler, system and assembly level optimisation of algo­
rithm plays an important role. The use of algorithm optimisation together 
with novel image pre-processing and distance based resolution techniques 
not only reduced the execution time (i.e., from 33 sec to 800 msec) of the 
algorithm, but it has also enabled the robot to recognise far lying objects. 
Hence, it fulfils the objective of providing robust vision based recognition 
functionality to the small size robot.

(vi) From the research work presented in the swarm mode scenarios, it has been 
concluded that, the generation of environmental map facilitates the robots 
to navigate in the environment and do path planning efficiently. Similarly, 
recognising and localising the objects of interest in the environment also 
helps the robots to understand their environment. Hence, the environment 
mapping and objects localisation operations provides surrounding aware­
ness to the swarm of robots, which is a major objective of this research.

(vii) It has been concluded that the most critical aspect of the distributed vision 
processing is the modular implementation of the vision processing tasks. 
This has been shown in a organism mode scenario, where the modular 
implementation of object recognition, mosaics generation, and detection of 
objects in these mosaics is addressed. However, it has been concluded that, 
for obtaining effective surrounding awareness, the features of the detected 
objects needed to be learned by the organism.

(viii) In organism mode scenarios it has been shown that, the addition of new ob­
ject features significantly increases memory requirement. Therefore, it has
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been concluded that an efficient utilisation of memory resources is critical 
when dealing with distributed vision processing applications. These issues 
are addressed in the second organism mode scenario, which quantised the 
objects’ features space to provide fast response to object recognition. This 
scenario also presents a novel mechanism to learn newly detected objects 
in the organism. However, the drawback of the approach is reduction in 
the classification probability as the number of target objects increases.

(ix) It has been concluded that the collective use of the memory and processing 
resources of the robotic organism can provide performance comparable to 
an individual less flexible robot (e.g., Pioneer-3AT) with significant higher 
processing capability.

9.2 Future Work

Prom the distributed vision processing scenarios presented in this research, 
number of different areas have been identified where further improvement can 
be made. These are described as follows:

— Using vision based docking support presented in this research, it is not 
possible to bring the robot closer than 5cm to the docking port. To bring 
the robot further close to the port so that mechanical docking operation 
can be performed, information from vision and IR sensors can be fused.

— To achieve further precision in environmental map generated by the swarm 
of robots, the use of small size laser line emitter can be made. Laser line 
emitted by the laser can be easily detected in the vision information, and 
distance to nearby objects can be determined. This distance information 
can be fused with the novel distance vector features, to increase accuracy 
of environmental maps.

— The idea behind distributed object recognition and localisation approach 
can be used to dynamically localise the robot positions without using infor­
mation from Visual Tracking System. For this purpose, a number of target 
landmarks can be used in the environments and their coordinates informa­
tion can be provided to the robots. When the robots recognise these target 
objects, then using the coordinates information of these objects, the robots 
can also localise their own positions. ^
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— The distributed object recognition and Visual information gathering ap­
proach can be further expanded to localise the positions of detected objects 
in the mosaics. To achieve this, the robot localisation information can be 
acquired from the Visual Tracking System, and objects can be localised 
with reference to robots positions. This objects localisation will facilitate 
the robot to navigate in the environment.

— In distributed object classification and recognition approach, it has been 
observed that the objects’ classification probability decreases as the number 
of target objects increases. This occurred due to increase in the number 
of common features among target objects. To improve the results, the 
use of common features should be avoided. All the features should also 
be assigned different weights which depends upon the entropy associated 
with those features. These entropies will be assigned in such a way that, it 
discourages the use of those feature which has produced false classification 
results.

— To exhibit the organism learning behaviour, some modules in the organ­
ism acted like memory bank where the organism knowledge evolves. This 
can be extended to multiple modules holding the organism knowledge in 
a distributed fashion. This way, if one of the modules holding the organ­
ism knowledge crashes, the other modules keeping the knowledge backup 
replace the malfunctioned module.

— Just like the robotic research expanded from the single robot to the swarm 
robotic system and then to the modular or multi-robotic organism. In 
future, this research can be expanded to the swarm of multi-robotic organ­
isms in which the swarm of organisms would be performing the multi-level 
distributed processing. That is from a distributed processing in an organ­
ism to the distributed processing in the swarm of organisms.
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