Sheffield
Hallam
University

Development and evaluation of vision processing algorithms in multi-robotic systems.

AHMED, M. Shuja.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19223/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19223/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Learning and Information Services
Adsetts Centre, City Campus
Sheffield S1 1WD

102 105 850 5

Sheffield Hallam University
Learning and Information Services
Adsetts Centre, City Campus
Sheffield S1 1WD

REFERENCE

ProQuest Number: 10694103

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10694103

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Development and Evaluation of \Distributed Vision
Processing Algorithms in Multi-Robotic Systems

M Shuja Ahmed

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallarh University
for the degree of Doctor of Philosophy

May 2013

Abstract

The trend in swarm robotics research is shifting to the design of more complicated systems in
which the robots have abilities to form a robotic organism. In such systems, a single robot has
* very limited memory and processing resources, but the complete system is rich in these resources.
As vision sensors provide rich surrounding awareness and vision algorithms also requires intensive
processing. Therefore, vision processing tasks are the best candidate for distributed processing in
such systems. . . o
To perform distributed vision processing, a number of scenarios are considered in swarm and
the robotic organism form. In the swarm form, as the robots use low bandwidth wireless commu-
nication medium, so the exchange of simple visual features should be made between robots. This
is addressed in a swarm mode scenario, where novel distance vector features are exchanged within
a swarm of robots to generate a precise environmental map. The generated map facilitates the
robot navigation in the environment. If features require encoding with high density information,
then sharing of such features is not possible using the wireless channel with limited bandwidth. So
" methods were devised which process such features onboard and then share the process outcome to
perform vision processing in a distributed fashion. This is shown in another swarm mode scenario
in which a number of optimisation stages are followed and novel image pre-processing techniques
are developed which enable the robots to perform onboard object recognition, and then share the
process outcome in terms of object identity and its distance from the robot, to localise the objects.
In the robotic organism, the use of reliable communication medium facilitates vision processing
in distributed fashion, and this is presented in two scenarios. In the first scenario, the robotic
organism detect objects in the environment in distributed fashion, but to get detailed surround-
ing awareness, the organism needs to learn these objects. This leads to a second scenario, which
presents a modular approach to object classification and recognition. This approach provides
a mechanism to learn newly detected objects and also ensure faster response to object recogni-
tion. Using the modular approach, it is also demonstrated that the collective use of 4 distributed
processing resources in a robotic organism can provide 5 times the performance of an individual
robot module. The overall performance was comparable to an individual less flexible robot (e.g.,
Pioneer-3AT) with significant higher processing capability. o ’

Publications

Journals:

(i) Vision Based Object Recognition and Localisation by a Wireless Connected Distributed
Robotic Systems. M Shuja Ahmed, Reza Saatchi and Fabio Caparrelli. Electronic Letters
on Computer Vision and Image Analysis (ELCVIA), Vol. 11, Issue. 1, Pages: 54-67, 2012.

(ii) Distributed Vision Processing in Multi-robotics Organism. M Shuja Ahmed, Reza Saatchi
and Fabio Caparrelli. In Journal of Robotics and Autonomous Systems, Elsevier, (In Review).

(iii) Object Classification and Recognition in Distributed Modular Robotic Systems. M Shuja
Ahmed and Reza Saatchi. Electronic Letters on- Computer Vision and Image Analysis (EL-
CVIA), (Re-submitted with Revisions). '

(iv) Performance Comparison of Distributed Modular Robotie Syétem vs High Processing Sys-
tems. M Shuja Ahmed and Reza Saatchi. Electronic Letters on Computer Vision and Image
Analysis (ELCVIA), (In Review). :

(v) Distributed Vision Processing in Reconfigurable Modular Robotlc Systems. M Shuja Ahmed
and Reza Saatchi. Journal of Intelligent and Robotlc Systems, Springer, (In Review).

(vi) Distributed Mosaic Formation and Object Detection in Modular Robotic Systems. M Shuja
Ahmed and Reza Saatchi. Journal of Intelligent and Robotic Systems, Springer, (In Review).

Conferences:

(i) VISION BASED OBSTACLE AVOIDANCE AND ODOMETERY FOR SWARMS OF SMALL
SIZE ROBOTS. M Shuja Ahmed, Reza Saatchi and Fabio Caparrelli. In Proceedings of 2nd
" International Conference on Pervasive and Embedded Computing and Communication Sys-
tems (PECCS), Rome, Italy, 24-26 February 2012, SciTePress, Pages: 115-122.

(ii) SUPPORT FOR ROBOT DOCKING AND ENERGY FORAGING - A Computer Vision .
- Approach. M Shuja Ahmed, Reza Saatchi and Fabio Caparrelli. In Proceedings of 2nd Inter-
" national Conference on Pervasive and Embedded Computing and Communication Systems
(PECCS), Rome, Italy, 24-26 February 2012, SciTePress, Pages: 123-128.

(iii) AN EFFICIENT APPROACH TO OBJECT RECOGNITION FOR MOBILE ROBOTS.
M Shuja Ahmed, Reza Saatchi and Fabio Caparrelli. In Proceedings of 3rd International
Conference on Pervasive and Embedded Computing and Communication Systems (PECCS),
‘Barcelona, Spain, 19-21 February 2013, SciTePress, Accepted for publication.

(iv) VISION BASED ENVIRONMENT MAPPING BY NETWORK CONNECTED MULTI-
ROBOTIC SYSTEM. M Shuja Ahmed, Reza Saatchi and Fabio Caparrelli. In Proceedings
of 3rd International Conference on Pervasive and Embedded Computing and Communica-
tion Systems (PECCS), Barcelona, Spain, 19-21 February 2013, Sc1TePress Accepted for
. pubhcatlon

ii

(v) IMPLEMENTATION OF DISTRIBUTED MOSAIC FORMATION AND OBJECT DE-
TECTION IN MODULAR ROBOTIC SYSTEMS. M Shuja-Ahmed, Reza Saatchi and Fabio -
Caparrelli. In Proceedings of 3rd International Conference on Pervasive and Embedded
Computing and Communication Systems (PECCS) Barcelona, Spain, 19-21 February 2013,
SciTePress, Accepted for publication.

EU-FP7 Research Project Replicator: Technical Deliverables

(i) EU-FPT Research Project Replicator. Year 3 Technical Deliverable. Title: “Distributed
Information Gathering and Appearance Based Places Recognition To Perform A Search Op-
eration By Swarm Of Robots”. M Shuja Ahmed and Fabio Caparrelli. Stuttga.rt University,
Germany, 24 March 2011. :

(ii) EU-FP7 Research Project Replicator. Year 4 Technical Deliverable. Title: “Distributed
Vision Processing in Multi-Robotic Organism”. M Shuja Ahmed and Fabio Caparrelli.
Stuttgart University, Germany, 16 March 2012. '

EU-FP7 Research Project Replicatof: Presentations
(i) Replicator/ Syrﬁbrion Progress Meeting, INRIA - Paris France, March 2011
(ii) Replicator/Symbrion Review Meéting, Stuttgart University, Germany, May 2011
(iii) Replicator/Symbrion Progress Meeting, York University, United Kingdom, Oct 2011
(iv) Replicator/Symbrion Progress Meeting, .Karlsruhe University, Germany, March 2012
(v) Replicator/Symbrion Review Meeting, Stuttgart University, Germany, 3 May 2012
(v1) Replicator/Symbrion Review Meeting, Stuttgart University, Germany, 4 May 2012

(vii) Material and Engineering Research Instltute (MERI) Day, Sheffield Hallam University, Sheffield,
United Kingdom, May 2011.

"EU-FPT Research Project Replicator: Technical Workshops
(1) Replicator Workshop, Sheffield Hallam Univérsity, Sheffield, United Kingdom, Dec 2010
- (ii) Replicator Workshop, Stuttgart University, Germany, April 2012 .

iii

Contents

il

Abstract i
Publications

* Acronyms-: ix
-Symbols xiii
List of Figures ‘ ' - xxiii
List of Tables xxiv
Acknowledgements - XXV
Declaration xxvi
Disclaimer xxvii
1 Introduction _ 1
1.1 Aims, objectives and background of thestudy e 4
1.2 Contribution of Thesis « . « v v o v v v v e e e e e 6
1.2.1 Object Recognition and Localisation in Distributed Robotic Systems 8
1.2.2 Computer Vision Support for Robot Docking and Energy Foraging . 10
1.2.3 . Environment Mapping by Distributed Multi-Robotic System 11

1.2.4 Distributed Object Recognition and Visual Information Gathering in a Multi-
Robotic Organism e 11

iv

1.2.5 Distributéd Object Classification and Recognition in a Robotic Organism .

1.3 Thesis Outline @ i v i v i s e e e e e e e e e e e e e

_ Literature Review

2.1 Communication e e e e e e . .7
2.2 Obstacle Avoidance
2.3 Energy Foraging and Vision Support for Docking P
2.4 Localisation.. e B : o
2.‘5 Appearance Based Object Recognition
2.6 Multi-robot Environment Mapping O SR
2.7 . Distributed Processing in. Robotic Organism P .
2.8 Conclusions...A...............A....b.., P

Hardware and Software Requirements

3.1 Hardware Requirements for Swarm Mode Scenarios
3.1.1 Swarm Robot Units
3.1.2 Hardware for Swarm Communication. ST

* 3.1.3 Robot Tracking Cameras e e e e e e e

© 3.2 - Hardware Requirement for Organism Mode Scenarios
3.2.1 Analog Devices - Blackfin Processor R S
3.2.2 Blaékﬁn'Evaluatlion Board EVAL-BFbxx PR

3.2.3 Blackfin Extender Board EXT-BF5xx-Camera e S
3.2.4 Blackfin Experimental Board i . e -
325 CMOS CameraSensor v v v v v v v uunen.. e .
3.2.6 Robot Base and Motor Contrbl Board L. L
3.2.7 Onboard Communication PR
3.2.8 Navigation board.. e e e e e e e e . e

3.3 Selection of Operatihg System (Robot Firmware)

3.4 Conclusions s .

Embedded Vision Processing

4.1 Robot Camera Calibration e e e e

12

15
21 .
23
24
2
28
32
33
35

36
36
37
39
10
41
41
44
4
45
46
46
47
48
49
51

52

4.2 Embedded Vision Algorithms e . . 62
4.2.1 YUV to Colour Image Conversion e | 62
4.2.2 Colour to Grey Scale Conversion L Lt e ‘63
4.2.3 Grey Scale Gradient e e e 64
424 Colour Gradient e P . 65
425 ~ Grey Scale and Colour imagé Segﬁentation e e e e e - ‘. ... 66
4.2.6 COIO;II’ Blob Detection0 o e 66
42.7 Image Erosion o 68 - |
4.2.8 Image Difation e e e 68

4.3 Vision Based Obstacle Avoidance P e L., 69
4.3.1 Approaches To Obstacle Avoidance. S .. 70
4.3.2 Experimental Results . . U . R 6

4.4 Energy Foraging e 86
4.4.1 .Expérmental Results . . . e 8T

4.5 Vision Based Docking Support . . ‘.> e e . 88,

451 Blob Detection of Red LEDs in ON State I .90
45.2 Obf;aining the Statistics of Red LED Blobs | O °
4.5.3 Classification of Red LED blobs S . e 94
4.5.4 Control Algorithm to Approach the Blobs - ‘. e e e .95
4.5.5 Experihlehtal Results 97

4.6 Conclusions e e e e B .. e 102

Multi-Rdbot Localisation and Tracking Syétem S ' o | 103

5.1 CameraCalibrationu........................7‘......‘.... 104

5.2 Visual Localisation and Traéking System e e e e e 111
5.2.1 Colour Blob Extraction ce e 112
5.2.2 Extraction éf Blobs Statistics 1130
5.2.3 Template Matching and Pattern Recognition e 113
5.2.4 Multi Camera Based Robot Tracking P 116

5.3 Multi—Robotv Visual Guidance e e e e 120

5.4 Conclusions PR e T e 126

vi

6 Distributed Vision Procvessing in Multi-Robotic Swarm 127
6.1 Communication among Swarm of Robots e e e e 128

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems . . . 128

6.2.1 Processor Specific Optimisation e e 133

6.2.2 ImagePre—procéssing............................;..134
6.2.3 Multi-resolution Analysis 135

6.2.4 Experimental Results o A .- e 138

6.3 Environment Mapping by Distributed Multi-robotic System 149
6.3.1 Methodology - Environment Mapping . . : i 151

6.3.2 Experimental Results F .. 159

6.4 Conclusions e e e e e e e e e e e e e 165

7 Distributed Object Recognition and Information Gathering in a Multi-Robotic
Organism ‘ B ‘ ' 166
7.1 Communication in the Robotic Organism R e e e e e 169

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathefing 173

7.2.1 Communication Awareness within the Robotic Organism 173
7.2.2 Distributed Object Recognition 176
7.2.3 Distributed Information Gathering 178
7.3 Experiments with Robotic' Orgahism LL.... 185
74 Cdnélusions.,.............,. e 200

8 Distributed Object Classification and Recognition in a Robotic Organism 201

- 81 Mult,i-processor'Robotic Organism it e 203
8.2 ‘Communicafion within the Robotic Organism 204
8.3 Vision Task Distribution for Distributed Object Classification and Recognition . . 205

8.3.1 Module 1: Information Pre-processing 206
832 Module 2: Object Classification S e o207
8.3.3 Moduie 3: Object Recognition, 210
8.3.4 Module 4: Vocabulary of Visual Words . . v oo L. 21

8.4 Experimental Results. L o 213

vii

8.5 Performance Comparison of Distributed Modular Robotic System versus High Pro-

cessing Systems Lo e e e 221

8.5.1 Object Recognition - High Processing System Ce . 222 A

8.5.2 Performance Comparison . . L 223
8.6 Conclusions R 231
Conclusions & Future Work 233
9.1 Conclusioné .. 233
9.2 Future Work @ o e e e 235

viii

Acronyms

CMOS Complementary meta.l oxide semiconductor
YUV Y luma,U chroma blue,V_chr(;ma red
LEDs - Light emitting diodes |

WiFi Wireless fidelity

A8 Adjagehcy in eight direcfions -

FOE Focus of expansion |

VSvURF Speeded up robust features

2D ‘ Two dimensional

3D Three dimensional

TCP Transmission control protocol

ubp . User datagram proﬁocdl |

DLT Divisible load theory

1IUB Inter-national univeréity Brémen
FPS Fraﬁ1e per second

MBPS Mega bits per second

COM .Component object modél

ix

' CORBA Common object request broker architecture
TEAR (Transmission control protocol) emulation at receiver
MANET Mobile adhoc network

PERA Probabilistic emergent routing algorithm

RSCA * Robot software communications aréhitecture
MAVs Micro aerial vehiéles " ;
IR . Infra red

A RFIDA_ Radid frequency identification
PO.M DP - Partially observable‘Marjkov decision pfocess
SIFT - : Séale—inyariant feature transform |
SVM | Subport vector machines

CRF ' Conditional random fields
PCA Principle component analysis

KNN K nearest neighbour

RANSAC Random sample éonse_nsus

kd-tree K-dimensional tree algorrithmi
MIPS Megzi instructions p'ér second
WLAN Wireless local area ﬁetwork
GNU A recursive acronym for ”GNU’s Not Unix!”
JTAG Joint test action group

-SDRAM N ‘Synchronous direct random access memory
DC | . Direct current

GPL - General public license

WEP | Wireless encrszption protocol
ADSP Advanced digital signal processor
DSP Digital signal processor

RISC Reduced instruction set computing
MMU Memof}; management unit o
SIMD ‘ Single instruction multiple data
ALU. , Arithmetic logic unit

MHz Mega hertz

1/0 . Input and output

DMA Direct memory access

SPORTs - Synchronous serial ports

PPI Parallel peripheral intérface
CMBF Core module Blackfin

DAC Digital to Analég ‘converter

SYMBRION Symbiotic Evolutionary Robot Organisms
REPLICATOR Robotic Evolutionary Self-Programming and Self-Assembling Organisms

ov7670 Omni-vision 7670 camera sensbr

‘SPI Serial peripheral interface bus
MAC . Media access control

GéIO - . General p.urpose input output
sb ,Secure digital

xi

UART
USB
PWM
VGA
GPS

0s
uCLINUX
FPU

R

G

B

TTC
QVGA
A¥

OPEN CV

SLAM

Universal asypchroﬁous receiver/t;,rénsmitte.:r
Universal sérial. bus

Pulse width modulation

Video graphics array

Global positionir‘1g system

Operating system

Micro controller Linux

Floating point unit

Red channel

Green channel

Blue channel

Time to contact

Quartér video graphics array

Path seérch algorithm

Open source computer vision library

Simultaneous localisation and mapping

xii

Symbols

(UOa UO)
T11
12
v 13
T21
T22
T23
731
732

733

Partial derivatives in x-axis
Partial derivatives in y-axis .= o
Partial derivatives of time

x component of camera focal length

y component of camera focal length

-Skew coeflicient between x and y axis of image

Principal point of the camera.
Parameter of camera rotation matrix -
Parameter of camera fotétion matrix
Paramétér of camera rptation matrix
Parameter of camera rotation matrix
Parameter of camera rotation vmatrixv
Parameter of camera rotation‘ matrix
Parameter of camera rotation matrix

Parameter of camera rotation matrix

‘Parameter of camera rotation matrix

Ty

CYw

. Ti
Yi
Z;
Yi

1H2

x parameter of camera translation matrix

'y parameter of camera translation matrix

7 parameter of camera tranélationmatrix)
Orientatibn f

Delta’

3D world points

2D image points

Camera matrix

Scale factor
x coordinate of world point

y coordinate of world point-

. z coordinate of world point

Camera intrinsic matrix
Rotation camera maﬁrix
Translation camera matrix
Ca.mera.extr_insic_s

x-coordinates of the features points from first image

y-coordinates of the features points from first image :

x-coordinates of the features points from second'inilage

y-coordinates of the features points from second image

~ Homography matrix from image 1 to image 2

Xiv

List of Figures

1.1

1.2

1.3
14
1.5

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

(a) Ants trying to move heavy prey [5]. (b) Robots search for the big red object in
the environment [6]. (c) Swarm of robots moving the object collectively [6]. 2

(a) Ants forming a bridge to facilitate other members for carrying food to the colony

[9]. (b) Robots physically joining together and forming a bridge [6]. R 3
Multi-Robotic Systems (a) Symbrion [7] (b) Replicator [§].. L Ce 7
Scenario for distributed vision processing among swarm of robots. . . . e 9
Chapters organisation. e .. 14
Swarm of self assembled robots moving over an obstacle [7]. 15

Single robot from a team, detecting and tracking a coloured ball to perform dis-

tributed map building [18].o o Lo 16
Active vision agents based target detection and tfacking 23] . .o 17
Prdces_sing stages for ‘remo’cely sensed images [28] 18
Image processing stages for image mining system [27]. 19
An omni-directional vision baisec_l formation of mobile robots [29]. 20
Ants following artificial pheromones [112]. . R 21
Robot moving around 7x7 WiFi grid [36]. [22
RFID tags attached to walls for robot loéalisation [50].v G 25
Negative image of a lamp on ceiliﬁg used for robot localisation [53]. 26
Some example markers from cantag [57). L L . 27
SURF features detected in omni-directional camera image [59]. 28

(a) Input image. (b) First eigen vector.(c)‘ Second eigen vector.(d) Third eigen
vectoi‘. [70). e e 30

Xv

2:14 (a) Image 1. (b) Image 2. (c) Reconstructed image from 20 dimensional eigen

vectors.[70].......................‘....‘

3.1 (a) REPLICATOR robot [8]. (b) SRV1 blackfin robot by surveyor corporation [89]
(c) Swarm of SRV] robots _ U A T
3.2 Linksys wireless access point [104]. P .
3.3 Logitech webcam Pro 9000 [105].
3.4 Blackfin CM-BF537E core [91]. e e e e e
3.5 Evaluation board EVAL-BF5xx [100].« vvvn v e .. e
3.6 Blackfin extender board EXT-BF5xx-Camera [101].. B
3.7 Blackfin experimental board “EXT-BF5xx-EXP” [106]. e
3.8 (a)Ov7670 camera sensor [107]. (b) Flexi cable [108].
3.9 (a) Robot base for the organism [109]. (b) Motor control board [09).
3.10 (a) Lantronix matchport 802.11b/g WiFi [110]. (b) Ethernet cpmmunicatioﬁ cable. -
3.11 Navigation board M3 [111]. & . . . oo v v v v e, L

3.12Robotorganism.~............;..........;.'

4.1 Image captured by the robot vision system.
4.2 Robot irhages used for calibration: image 1 (left) and image 2 (right)..
4.3 Robot Images used for calibration: image 3 (left) and image 4 (right)
4.4 Robot images used for calibration: image 5 (left) and image 6 (right) . . U
4.5 Robot images used for calibration: image 7 (left) and image 8 (right)
4.6 Robot images used for calibration: image 9 (left) and image 10 (right)
4.7 Robot images used for calibration: image 11 (left) and image 12 (right)
4.8 Robot images used for calibration: image 13 e e e e e
4.9 Calibration results: Re-projections on image (left) and enhanced image (right)
4.10 Calibration results: Re-projections on image (left) and enhanced image (right)
4.11 Calibration results: Re-projections on image (left) and enhanced image (right)
4.12 Calibration results: Re-projections on image (left) and enhanced image (right)
4.13 Calibration results: Re-projections on image (left) and enhanced image (right)

4.14 Image th.ained after YUV to colour image conversion.

xvi

40
40

42 .

53
55
55
56
56
56
57

57

58
59
60

61

62

4.15 Image obtained after colour image (left) to greyscale image (right) conversion. . . .

4.16 Image coordinates and Sobel opérator for gradient in z and y direction.

+4.17 Greyscale imagé (left) and gradient image (right) obtained from BF537E processor.

4.18 Colour image (left) and gradient image (right) obtained from BF537E processor.

4.19 A8 édjacency. Directions in which region can grow is shown by arrows.

4.20 Colour image (left) and segmented image (right) obtained from BF537E processbr.

4.21 ‘UV plane providing the chrominance information. e e e e
4.22 Colour input image (left) and processed image (right) showing detection of red colour
v‘blobs.' e
4.23 Input image (left) and pfocessed image (right) obtained after erosion.”
4.24 Input image (left) and processed image (right) obtained after dilation.

4.25 (a) Colour input image. (b) Processed image obtained after applying ségmentation.

(c) Initial ground map isolated from obstacle’s. (d) Ground map visible to the robot

4.26 The estimates Qf three partial derivatives Ez, E, and E; of image brightness at the
centre of the cube are éach obtained from the average of first differences along four
parallel edgeé of the cube. Here the index ’j’ corresponds to the z direction in the
image, the index ’i’ to the y direction and indéx 'k’ lies in the timeldirecti'on. ..

4.27 Focus of expansion (FOE).. e

4.28 Path finder approach to obstacle avoidance e e e e e e e e e e

4.29 Test pla.tform for SRV-1 robot with obstacles placed onit.

4.30 In left image robot environment and placerhent of obstacles are shown. In right

image, the path followed by therobotisshown.

4.31 Processed images obtained from segmentation based obstacle avoidance a]gorithm.'

Stepsland?., e e e e e e
4.32 Processed images obtained from segmentation based obstacle avoidance algorithm.

Steps3and4 e e

4.33 Processed images obtained from segmentation based obstacle avoidance algorithm.

StepsSand 6o e e e e e e e e e

68
68
69

71

74

.76

7
78

4.34 Processed images obtained from segmentation based obstacle avoidance élgorithm.
.Sfeps7and48 e e re t e e e e e e e e e I
. 4.35 Processed images obtained from segmentatiori based obstacle avoidance algorithm.
Steps9and 10 T
4.36 Processed images obtained frbm segmentation based obétacle avoidance algorifhm.
Steps1land12......... D R
4.37 Processed images obtained from segmentafion based obstacle‘avoidance algorithm.
Steps 13and 14 B

4.38 Path followed by the robot when segmentation based obstacle avoidance is used.

4.39 Optical flow field obtained between two consecutive images. [_

4.40 Zoom-in version of the optical flow field shown inFigure4.39.

4.41 Path followed by the robot whén optical flow based obstacle avoidance is used.

4.42 Image showing the detection of red colour blobs when colour blob detection algo-
rithmisused. O

4.43 Path followed by the robot to locate the enérgy resources. e e e e

4.44 Image showing LEDs used for docking operation o .
445 Uimage of Figure 4.44 '
4.46 V image of Figure 4.44 e '

4.47 Output of coldur blob detection algorithm’ e e e L.
448 Y image of Figure 444 . o oottt L
4.49 Blobs resulting from red LEDs in ON state. e e
4.50 Image representing. blobs statistical information. . . . e e

4.51 Search field for neighbouring blobs.o oL, c.

4.52 Flow diagram of control algorithm. e e e e e e e e e e ‘

4.53 Robot abproaching the LEDs for docking from left side with reference to the LEDs
Codocation. oL e
-4.54 Robot approaéhing the LEDs for docking from right side with ‘refer.ence to the LEDs
location. e e e e e e e e R

4.55 Initial pose of the robot before performing alignment. [

4.56 Trajectory followed by the robot in experiment 2.

xviii

81 .

82
82

83
83
84
85
85

4.57 Trajectory followed by the robot in experiment 4. 100
4.58 Pose of the robot after performing alignment. 101

4.59 (a) Swarm of robots starting collective search for docking port. (b) One robot finds

.the'dc.)'cking port and the rest quit mission. . I I L. 102
5.1 Imagel (leff) and image 2(right). L e e 105
5.2 Image 3 (left) and image 4 (right) e e e .. 106
5.3 Imageb (left) and image 6 (right) e P 106
5.4 Image 7 (left) and image 8 (right) S I A 106
5.5 Image 9 (left) and image 10 (right) T 107
5.6 Image 11 (left) and image 12 (right) C e e e e e 107
5.7 After grid points selection: image 1 (left) and image 2 (right) SN .. 107
'A 5.8 After grid points selection: image 3 (left) and image 4 (right) 108
5.9 After gfid points selection: image 5 (left) and image 6 (right) 109 |
5.10 After grid points selection: image 7 (left) and image 8 (right) . . " 109
5.11 After grid points selection: image 9 (left)‘and image 10 (right) 110
5.12 After grid points selection: ifnage' 11 (left) and image 12 (right) 110
5.13 Reprojected 2D grid points., IEICIT P e e e 111
5.14 Fiducial markers template. e 112
5.15 Color blobs eﬁtraction. e R 113

5.16 Pattern recognition process. (a) Window around the selected blob. (b) Selecting
_the expected tail blob. (c) Search line from tail to the head blob along which cover

blob will be searched. (d) Search line along which cover blob is searched for final

validation of the pattern. [... 114
5.17 Determining the location and orientation of the four robots. e .. 116
5.18 Ceiling mounted camera set-up for robot tracking. S 17
5.19 Collective tracking of robots from ceiling mounted cameras. 118
5.20 Collective tracking of robots from ceiling mounted cameras. 119
5.21 Robot arena used for the visual guidance of the robots. . .. L.121

5.22 Image showing the shortest path to the target location for all the robots on the grid

Xix

5.23 Test 1: Positions of the robots in the arena before the test started. 122

5.24 Test 1: Robots path to the target location on the grid map. 123
" 5.25 Robo.t 1 colliding the obstacle boundary. P 123
5.26 Test 1: Robots reached the target location successfully. R 124
5.27 Test 2: Positions of the robots before the test begin. S 124 |
5.28 Test 2: Shortest path to the target locétion on the grid map. | e.o.... 125
5.29 Test 2: Robots reached the target location successfully.. e 126

6.1 Scenario where group of robots performing search operation to find the object of

IBETESE. « © & v o e e e e e e e e e 131
6.2 Processor specific optimisation to reduce execution time. 134
6.3 Image pre-processing to reduce the amount of data to process. 136
6.4 Scale-space image pyramid. e e e v e i et e e e e e e 137
6.5 Resolution switching based on distance to object. . . . e 138
6.6 Execution timing - SURF vs Optimised SURF. R .. 139
6.7 Recognition rate - SURF vs Optimised SURF. [SR 141
6.8 Objects used in training to extract SURF features. e 141
6.9 Images from 16 poses of the 3D object. . . O - 142
6.10 Position of robots and objects of interest before experiment is performed. 143
6.11 Position of_ the robots §vhen they recognise the object in the environment. 143
6.12 Sequence of Robot 1 positions when it detected and then missed object 3. 144
6.13 Sequence of robot 2 positions when it detécfed and then missed object 1. 145
6.14 2D and 3D objects used for experiment. L0, 146
6.15 Position of robots before experiment. e e e e e 147

6.16 All objects are localised by using'information from the team of robots and visual

tracking'system collectively. . . . e . 148
6.17 Error observed in localising object. [.. 149
6.18 Input image used for boundary detection. e e e e e e e e e 152
6.19 Segmenfed imagé 153 -
6.20 Boﬁndary vector plotted on the segmented image. 153
6.21 Visual t.racking and localisation information (a) Left camera. (b) Right camera. .. 154

6.22 Zoom-in information of robot 1 position. PR 155
- 6.23 Profile between distance from object (pixels) and scale factor. e e e e e 156
6.24 Mapping process. . ‘. S e e e e e e e e e . 187
6.25 (a) Distance vector from robot 1 mapped To coordinates of visual tracking system. |

(b) Robot tracking image from second ceiling mounted camera. (c) Global map

generated using the two ceiling mounted carheras. e e e e e 159
6.26 ' Zoom-in version of_Figuré 6.25a. e 159
6.27 Experiment 1: Visual tracking system (a) Left camera. (b) Right camera. 160
6.28 Experiﬁlent half finished: (a) Left camera. (b) Right cémera. (c)Map. 161
6.29 Mapping error caused by the orientation error. e - 162
6.30 Experiment 2: Visual tracking system (a) Left camefa. (b) Right camera. 163

6.31 Experiment 2 half finished: (a) Position of robots in left camera after half of the
experiment is finished. (b) Position of robots in right camera after half of the
experiment is finished. (c) Progress on map generatidn after half of the experiment
is finished. (d) Experiment 2 final map generated. - 164

6.32 Experiment 3: (a) Left camera image from visual tracking system. (b) Right camera

image from visual tracking system. e 164
6.33 Experiment 3 final map generated. e ..., 165
7.1 Robotic organism scenario. ce e e 167
7.2 Robotic organism recognising the object in the environment. e 168
7.3 Robotic organism gathering the visual information and making mosaic. 169
7.4 Communication set-hp between robotic modules in the organism. 170
7.5 Communication network layers. 170
7.6 Application inteffaced to TCP/UDP layer. - e L1711
7.7 Application interfaced to ethernet layer. e . ..o 17
7.8 * Ethernet frame (IEEE 802.3 standard). 172
7.9 Example Replicator robots participating to form an organism [8].". . R 174 -
7.10 Replicafor robotic organism from three robots 8. e e 174
| 7.11 Communication within the organism 175

7.12 Distributed object recognition within the organism.. 177

xxi

7.13 Distributed information gathering - task communication. e 179

7.14 Image re-projection on common plane. R 181
7.15 Images re-projection using product of homographies. 182
7.16 Distributed information gathering - vision processing phases. | 183
7.17 Slave 2 :Four step processing phases - Step 1 and 2. o . 183
A7.18 Slave 2 :Four step processing phases - Step3and4. 184
7.19 Multi-processor robbtic organism.00 e e e e e 186
7.20 Target 2D objects.o S .. 186
7.21 Obstacle avoidance referesh time: Single robot vs robot organism. 187
7.22 Timing analysis of object recognit;ioﬁ algorithm with varying object features. . . . 189
7.23 ‘Object recognition: single robot vs distributed processing. 191
7.24 Unknown 2D objects. e ... 192
" 7.25 Test arena for distributed vision processing in organism mbde.' 192

7.26 (a) Position of the organiém when the test begin. (b) Position of the robot when

it has identified the target object 2. (c) Identified location of the target object 2 in

Vthel IMAge. . . . o i e e e IR 193
7.27 Object 2 surrounding scanned by the organism. e e e e e e e 193
7.28 Images grabbbed by the organism to form a mosaic. 194
7.29 Mosaic of irhages scanned around object 2. e e e e e 195
7.30 Mosaic of images sganned around object 2. oo . 196
7.31 Object detection in complete mosaic. . . S 197

7.32 Trajectory made by the organism and location from which mosaics were generated. 197
7.33 (a) Mosaic from the images scanned around object 1. (b) Segmentation based ground
elimination. (c) Objects detection in mosaics. L e e e 198

7.34 (a) Mosaic from the images scanned around object 3. (b) Se’gment‘ati(.)n based ground

elimination. (c) Objects detection in mosaics. e AU 198

7.35 (a) Erroneous image stitching. (b) Second last image. (c) Last image. - 200 ‘
8.1 REPLICATOR rdbotic organism [2]. e e e 204

- 8.2 Communication within the multi-processor system., e R 205
8.3 Vision task distribution. o L v ... -206

xxii

xxiii

8.4 (a) Low resolution image for close object. (b) High resolution image for far object. 208
8.5 Classification probability. ‘. e e e e e e e e . 209
8.6 Feature space clustering and histograms generation. 212
8.7 | Classiﬁcation and recognition ID. oL e e e e e e L. 214
8.8 Classification probability. oL 215
8.9 Processorusage.'.-...'...- 216
8.10 Memoryr usage. e RIS 217
8.11 Frame per second - Four processors éystem. ‘.A 219
8.12 Frame per second - Single processor robot. L. SRR 220
~ 8.13 Classification probabilities with increasing number of objects in the vocabulary.' ..o221
221
221
8;16 Pioneer-3AT robot. e . .. 222
8.17 Traditional object recognition implementation - high processor system. Se.o 224
8.18 Memory usage for a robot with a single blablc.ﬁn processor. 225
'8.19 Processor usage for a robot with a single blackfin prbcessor L.225
8.20 Frame processing time versus total SURF features for single processor systems. .. 226
8.21 Memory usage for multi-processing system. P .. . 227
8.22 Processor usage for multi-proéessing system.. <..229
8.23 Frame processing time versus number of SURF features for modular system. 230
8.24 Classification probabilities versus number of SURF features for modular system. 231

List of Tables

6.1 Object Localisation Information

..............................

6.2 Scale factor: From robot to ceiling camera.

Cxxiv

AcknoWledgments -

I would like to express sincere thanks to my Director of Studies and Supervisor Dr. Reza Saatchi .
who prov1ded me with the necessary support advice and enthu51asm required to carry on thls PhD
research work. Many thanks to my parents who allowed me to stay abroad for carrying on with
my studles. I am grateful to my wife for all the help she provided me to successfully finish the
PhD research. I am grateful to my colleagues, specially Jan Wedekind and Georgios Chliveros for
~ providing me necessary support and advice. Many thanks to Dr Fabio Caparrelli for fundmg my
PhD from EU Project REPLICATOR. At the end, specxal thanks to Dr Lyuba Alboul for all of

her moral support.

Declaration»

: Sheffield Hallam University

Materials and Engineering Research Institute

The undersigned hereby certify that they have read and recommend to .the Faculty of Ar't:s,
Computing, Engineering and Sciences for acceptance a thesis entitled “Development and Eval-
uation of Distributed Vision Processing Algorithms ih Multi'-Robotié Systems” by M
Shuja Ahmed in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

_Date: 2013

M Shuja Ahmed ___
Director of Studies: Dr. Reza Saatchi Zﬂ_i&ﬁabg:;
Supervisor: Dr. Reza Saatchi /ﬁ?_ﬂ-{/é.;

xxvi

Disclaimer

' : Shéfﬁeld Hallam University

Materials and Engineering Research Institute

Author: M Shuja Ahmed
Title: Development and Evaluation of Distributed Vision Processing Algorithms in ‘
Multi-Robotic Systems |

Department: Material and Engineering Research Institute

Degree: PhD Year: 2013

Permission is herewith granted to Sheffield Hallam University to circulate and to have cobied
for non—commércial purposes, at its diséretion, the above title upon the reqﬁest of individuals or
iﬁstitutions. ' - : ..

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE
OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF
- EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENTAIN SCHOLARLY WRIT-

. ING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED. |

xxvii -

| Chapter 1
Introduction

A major research in the field of robotics is focused on moving the robots and vehicles
autonomously in an unknown environment and taking intelligent decisions (e;g.; grab
- object after recognising) to accomplish specific tasks. After achieving excellence in
moving individual robots'autonomo_usly, the trend in the robotic research has shifted
to collaborative achievement of tasks in multi-robotic environmént, where multiple
small size robots work together to achieve common objectives and goals [1] [2] [3] [4].
This has led to the concept of swarm robotics. The idea of swarm robotics is based on
swarm intelligence which is inspired from the social behaviour exhibited by animals,
specially insects. One example in the nature showing collective behaviour is the
- manner ants pick up the prey together, which is many times heavier than their own
weight and bring this food back to their colony. This is shown in Figure 1.1a. The

same behaviour when exhibited by the swarm of robots, is shown in Figure 1.1b,
where a number of small size robots are collectively searchihg for a big Red coloured
“object. Once the object is found, then the robots have to move it. The object is too
‘heavy for a single robot to move. Hence, a robot swarm needs to cooperate with
each other for moving it. This cooperative behaviour exhibited by the robot swarm

for moving the object collectively towards the light source is shown in Figure 1.1c.
Some of the swarm robotic systems can take more complex forms by introducing
enhanced robotic,feature.s that, apart from contributing to the common objective by
working on individual basis, robots can also be f)hysically attached and de-attached
from each other to become a bigger structure (i.e. a single robotic organism) for
achieving a global objective [7] [8]. This is shown in Figure 1.2b where a group of
robots physically join together to cross over a gap. Again, the inspiration cames from

Figure 1.1: (a) Ants trying to move heavy prey [5]. (b) Robots search for the big red object in the
environment [6]. (¢) Swarm of robots moving the object collectively [6].

the nature as shown in Figure 1.2a. This intelligent practice is being adopted by a
type of ants, commonly found in Central and South America. These ants categorise
among themselves and select the members having suitable body size to fill the gaps
between the stems and eventually form a bridge. This cooperative behaviour by the
ants facilitates other ants to carry food back to their colony.

The term “Cooperation” requires “Knowledge Sharing”. In swarm robotics, the
cooperative achievement of a common task by multiple robots requires the robot
modules to share their knowledge with each other. In some cases, the robotic mod-
ules also share the computational resources with other team members. This knowl-
edge and resource sharing lead to the concept of distributed computing [84] [83].
So the swarm robotic system is basically a distributed robotic system, that acquires
rich energy and processing resources, but these resources are distributed among

many robotic units. The efficient utilisation of these resources introduces new chal-

Figure 1.2: (a) Ants forming a bridge to facilitate other members for carrying food to the colony [9].
(b) Robots physically joining together and forming a bridge [6].

lenges of efficient knowledge sharing among multiple robots, so that the collective
and cooperative achievement of the task can be made. In the field of robotics, the
use of inexpensive vision sensors provides rich surrounding information which can
be used effectively to enhance the robot’s knowledge about the environment. The
use of these sensors alone enables the solution to many problems in robotics (e.g
obstacle avoidance, object detection, scene understanding and pattern recognition).
Although integration of these vision sensors in swarm robotics has led researchers
to use the power of computer vision technology, but at a cost of increased com-
putational complexity as these sensors generate huge amount of data that require
processing. In swarm robotics, this computational complexity problem turns out to
be worst as the target robots have very limited memory and processing power. In
such systems, a single robot unit alone has limited processing power, but the swarm
system as a whole is rich in processing resources, which are distributed among the
whole system. So the computationally complex nature of the vision processing algo-
rithms makes the vision processing task the best candidate to be distributed in the
rich processing environment of the swarm systems. This distribution of vision in-
formation in swarm systems introduces the concept of distributed vision processing
among multi-robotic systems [12].

Vision processing in miniature size robots is a difficult task to perform (e.g. scene

understanding) and when it comes to a swarm of miniature size robots which are

1.1 Aims, ob jectives and background of the study

visually guided and trying to cooperate with each other by sharing the knowledge
they gained about the environment, this makes the scenario quite interesting and
challenging. So when a swarm of robots is moving in an environment to achieve
a certain task collectively, idéally the swarm is expected to achieve the task more
quickly as compared with a single robot, of-course subject to how efficient knoWledge
sharing and task distribution is performed by the robots. The task distribution can
be performed on equal level that is, all the robots are givén the same task. For
example, to perform energy foraging (2], searching and localising important objects
in the environment or mapping the environment. Or it can be on demand basis
that is, the robots which are performing computationally heavy tasks'dynamically"
determine when they want to distribute the tasks and may ask for help from other
robots which are less busy. ' ‘ |

Hence, distributed processing in the swarm robotic systems is a very active area
of robotic research in which researchers have solved many problems by sharihg the
knowledge learned from different on-board sensors. -But most of these research |
outcomes are based on computer simulations, with very little work done using real
. multi-robotic systems. However, distributed vision processing in swarm systems is
a new and open research area in which detailed research is required. The use of real
multi-robotic system for performing the distributed vision processing task makes
this research area interesting and more challenging. |

1.1 ~Aims, ob jéctives and background of the study

The main aim of this research is to address the manner distributed vision proceSsing o

could be achieved in a multi—robbtic system which could work in swarm and organism
modes. The multi-robotic system, in either swarm and organism form, is itself a
distributed embedded system environment, with processing and energy resources,
very limited in a single robot unit, but rich in terms of the whole system. So,
for distributed vision processing in swarm and the organism form, a number of
distributed vision processing scenarios are developed with the following objectives. -

(i) Development and implementation of a library of vision processing algoﬁthms
which can execute on small size robot with limited onboard memory and pro-’
cessing resources. This library of vision processing algorithms will act like basic
building blocks for the development of distributed vision processingscenarios

1.1 Aims, objectives and backgrouﬁd of the study

in swarm and the organism form. The vision processing algorithms are required
to provide high frame processing rate (i.e., 40 frames per second or higher), so
that they can provide real time response in the vision processing scenarios.

(i1) Development and implementation of light weight vision based obstacle avoid-
ance algorithms, so that when the robots are moving in the environment, they
avoid colliding with the obstacles.

~ (iii) Development of efficient vision based multi-robot doéking support so that tran-
sition from the swarm to the organism can be facilitated.

(iv) Provision of vision based object recognition functionality to the robots. This
requires the development and implementation of an efficient object recognition
approach suitable for executing on a small size robot.

(v) Provide vision based surrounding awareness (e.g., by environment mapping and
objects localisation) to the robots, which helps the robots to navigate in the
‘environment. ‘

(vi) Efficient utilisation of memory and processing resources in a robotic organism
by distributing the vision processing load among multiple processing modules.
This requires the development and implementation of vision based tasks (such
as, object classification, recognition and surrounding visual information gath-

* ering) in a modular fashion. The modular implementation of vision processing
tasks facilitate in distributing the vision processing load, and provides higher
frame processing rate, which helps the robotic organism to show quick response
to its observations (i.e., information from vision semsor).

This research is carried out as a part of European Commissions FP7 research
project “REPLICATOR” [8] [1]. REPLICATOR project is addressing multi robotic
systems in which mﬁltiple robots have the ability to dock, share information, en-

- ergy and computational resources with each other and are also able to locate the
charging points to charge their batteries, if their battery charge is going low. These
swarms of robots can physically join together, self assemble and artificially create a
single robotic organism, whenever the need arises. For this purpose, these swarms
of robots are required to interact physically with each other and also with their en-
vironment. Using a vision system on the robots, information about the surrounding
environment as well as other swarms of robots can be gathered in every single robotic

1.2 Contribution of Thesis

organisrﬁ. After performing various image processing algorithms, on the gathered

information, it can be used in the visual guidance of the swarm of robots so that they
 can accomplish some specific tasks collectively. As every robot in the swarm gets
independent processing resources, and considering that the vision proceséing tasks
can be computationally expensive for miniature size robots, so a need to efficiently
utilise the processing resources, in individual robots and also in assembled robotic
organism, naturally arises. , o

This PhD research addresses the different vision based tasks of REPLICATOR
project and presents the scenarios which essentially simulate how vision distribution -
can be achieved when the robots are in the swarm and organism forms.

Apart from the REPLICATOR project, the outcome of this research has applica-
tions in many diverse fields. It can be applied to provide robotic support to perform
search operations in a hazardous environment, where sending humans to accomplish
' the tasks may involve risks or dangers to life (e.g a gas leak in a factory). It can -

be used to gét robotic help in searching for survivals after natural disasters such as
an earthquake. A very interesting application could be in planetary explordtions,
e.g a mission to Mars. In planetary explorations, a mission failure is generally not
considered affordable and can cause huge sums of money to be lost, so the deploy-
ment of swarm of robots reduces the chances of a failure following the fact that, the
“malfunctioning of a single robot will not put the whole mission at risk. ’

" The fact that, swarm robotics is an emerging field and most of the research

performed is still limited to swarm intelligence theories and simulations, hence there

~ is still a long way to go to achieve éxcellence in this field.

1.2 'Contribution of Thesis

In this PhD research work, a swarm robotic system is considered in which robots
not only work in a swarm mode, but can also physically join together to work in an
organism mode. The swarm system considered in this research is shown in Figure 1.3,
where multiple robot units forming a robot organism are shown. The title of this
research work is “Development and Evaluation of Distributed Vision Processing
Algorithms in Multi-Robotic Systems” and this research deals with many different
scenarios, where the collective achievement of the common goal is performed in
"swarm and organism modes. However, as the title suggests, the main research is
focused on how the vision processing is performed in the distributed fashion and

6

1.2 Contribution of Thesis

in distributed multi-robotic systems. The main contributions of this research are

outline below.

(i)

(ii)

(iii)

(iv)

)

Figure 1.3: Multi-Robotic Systems (a) Symbrion [7] (b) Replicator [§].

Development of multi-processor robotic system which simulates the processing

and memory resources of a robotic organism.

Development of a library of vision processing algorithms optimised for target

embedded system based on Analog Devices Blackfin processor.

Distributed object recognition and localisation by wireless connected swarm
robotic system. This approach presents novel contributions (i.e., efficient im-
age pre-processing and distance based resolution switching techniques) in the
current state of the art appearance based recognition algorithm (i.e., SURF fea-
tures based recognition). The developed approach makes it possible to achieve
robust recognition on small size robots with limited onboard memory and pro-

cessing resources.

A novel distance vector features based environment mapping solution by a
swarm of robots. This distance vector feature is easy to compute and share
among swarm of robots, without overloading the wireless communication net-

work, and hence, plays a vital role in environment mapping.

Development and implementation of distributed visual information gathering

by making the collective use of processing and memory resources within the

1.2 Contribution of Thesis

robotic organism. This provides surrounding awareness to the robotic organism

and facilitate it in navigating in the environment.

'('vi) A novel approach to object classification and recognition in a robotic organism
~ in modular fashion. A vision processing architecture is developed which im-
plements a modular object classification and recognition approach and shows
that, the collective use of the processing and memory resources in a robotic
organism can provide performance comparable to bigger robots equipped with
high processing systems. '

In order to clearly highlight the achievements, the above described contributions
of the thesis are demonstrated in terms of distributed vision processing scenarios
in swarm and the organism form. These swarm and organism mode $cenarios are
described one by one below, and shows the effectiveness of the contributions in these
scenarios. ‘

1.2.1 Object Reéognition and Localisation in Distributed Robotic Sys-
tems

The first s¢enario addressed is “Object Reéognition and Localisation in Distributed
Multi-Robotic Systems”. For this scenario, as the robots are expected to come across
a number of obstacles during the operation, so first of all, a number of vision based
obstacle avoidance techniques are researched. A novel and very light weight vision
based obstacle avoidance ‘technique is developed which could run in parallel with
other vision based tasks, while consuming low processing power (i.e., the execution
time of obstacle avoidance algorithm is 22 msec). In this scenario, a set of miniature
size robots, with limited on-board pfocessihg capabilities and resources, are used to
‘recognise the objects of interest and then localise them in an unknown environment.
The overall picture of a targeted scenario is presented in Figure 1.4, where a swarm
of network connected robots is gathered near an assembly point and they have to
recognise and localise the objebts of interest (i.e. Cups images) in the environment.

The purpose of this scenario is the vision based objecﬁ recognition and localisa-.
tion in a distributed robotic system. Object recognition and localisation is a big
challenge in computer vision and robotics. Although advances in computer vision
have resulted in many object recognition techniques, most of them are computation-

ally very heavy and require robot units to have high processing systems. When it

8

1.2 Contribution of Thesis

Different Colors for
Directional Information

Battery Charging N
Point

S

% Target Objects

o SO

r *
1

Swarm of Robots

-4 Jp
Assembly] I 1
11 "'t

Figure 1.4: Scenario for distributed vision processing among swarm of robots.

comes to small size embedded robotic systems, these techniques can not be applied,
because of the constraints of execution time. Here, a popular Speeded Up Robust
Features (SURF) based recognition technique is adopted and some of the important
changes are addressed which makes it possible to use it on small size robots with
limited resources. A team of small robots are used which are given prior training
to search for 2D (i.e., images of objects) and 3D objects of interest in the envi-
ronment. So, unlike other swarm systems which rely on computationally light but
inefficient recognition techniques to recognise the objects in the environment, the re-
search work in this scenario bridges the gap between the computationally heavy and
efficient recognition techniques and their implementation on miniature size robots.
For the localisation of the robots and objects a new template, designed for passive
markers based tracking, is developed. These markers are placed on the top of each
robot and they are tracked by two ceiling mounted cameras. The information from
the ceiling mounted cameras and from the team of robots is used collectively to
localise the objects of interest in the environment. The research outcome of this
scenario gives two main contributions. First contribution is achieving reduced ex-
ecution time (i.e., frame processing time reduced to 800 msec from 33 sec) of the

appearance based recognition (Using SURF) algorithm, so that these algorithms can

1.2 Contribution of Thesis

~be executed on small size robots and can provide frame processing rate of at least
1 FPS (frame per second). The reduced execution time is achieved by performing
~the system specific optimisation and redundant data elimination from the images.
And for increasing the recognition performance with respect to the distance from the
target object, a novel resolution switching technique is developed. The second con-
tribution of this scenario is the development of novel approach for the localisation of
the objects of interest in the environment by fusing the visual features generated by
- the distributed multi-robotic systems. ’ N ‘

1.2.2 Computer Vision Support for Robot Docking and Energy Foraging

In the second scenario, a computer vision support to facilitate robot dockmg op-
eration and to search for energy points is addressed. As mentioned, the target
swarm robotic system had the ability to physically join or dock tyogeth‘er, whenever
it became necessary. And for this purpose, their mechanical system required precise
alignment before performing the docking operation. This docking operation is differ-
ent from other swarm robotic systems where simple grippers are used on the robots
to hold the other robots, and this can be performed from any direction without
requiring the robots to precisely align with each other. The major drawback in the -
docking operation achieved using grippers is that, they do not have the ablhty to
physmally lift the docked robots. In the considered swarm robotic system, physical
docking is required to move over a big obstacle or also to perform precise physical
connection with certain objectives such as battery charging for guaranteeing long
term operations. In this scenario, the information from vision sensors alone is con-
sidered to provide suppoft for performing' precise physical docking with the other
robots. A very simple, but effective, solution based on LEDs, used in a specified
pattern on docking station, is adopted. The approach presented in this research is
found computationally less expensive and provided real time performance improve-
" ment on the small size robots. With the developed approach, a collective search
operation for the docking port, performed by the swarm of robots, is addressed.
This docking port could be used for multiple purposes, e.g docking to another robot -
or for an energy point. The research work in this scenario presents a novel approach‘ ‘
for performing alignment between multiple robots. And this alignment is essential
for the formation of a robotic orgam’sm from the swarm. In more precise words,
the approach developed here plays a vital Tole during the swarm to the organism

10

1.2 Contribution of Thesis
~ transition stage.

1.2.3 Environment Mapping by Distributed Multi-Robotic System

In this scenario, a vision based mapping of the unknown environment by the dis-
tributed multi-robotic system is addressed, where the robots are provided with the

localisation information from a ceiling mounted. camera system. Different from other .

robotic systems that rely mostly on sensors (such as laser range finders) which
are very expensive and can not be used with miniature size robots, the technique
~addressed in this scenario solely relied on the vision information. The research ad-
dressed in this scenario presents a novel method based on very simple visual features,
which could be easily shared by the swarm of robots using a wireless commumcatzon‘ |
channel. = Using these visual features the robots collectively generated a sufficient
environmental map which could be effectively used for the robot nam’gation.‘

1.2.4 Distributed Object Recognition and Visual Information Gatherlng
in a Multi-Robotic Organism

Different from the previous scenarios, in this scenario, the distributed vision pro-

-cessing is performed in the organism mode. In the field of swarm or modular robotic
systems, this is the first time, distributed vision pro'ceséz'ng reseafch is performed

using the distributed memory and processing resources of a robotzc organism. In the

proposed scenario, a new method is mtroduced which is adopted by the robotic or-

-gamsm to perform vision based obstacle avoidance, efficient object recognition, and

visual information gathering in a distributed fashion. In the robotic organism, the

visual information is processed by multiple processing units at different stages and
finally, the information is gathered in'the form of image mosaics. Thes e image mo-
saics provided the necessary awareness about the surrounding of the target objects
~ to the robotic organism. '

1.2 5 Distributed ObJect ClaSSIﬁcatlon and Recognition in a Robotlc
Organism

This scenario presents a novel method which implements a vision based object classi-
fication and recognition approach in a modularffaéhz'on, using the distributed memory
- and processing resources of a robotic organism, comprising of four robotic modules.
This approach enabled the robotic organism to not only recognise the objects it is

11

v 1.3 Thesis Outline

‘given training for, but also facilitated the organism to learn new objects. This ap-
proach established a feedback mechanism between the different coniputing modules
-in the organism, and facilitated an efficient ‘utilisation of the distributed resources.
In this scenario, a detail comparative analysis is also performed with reference to
the high performance processing systems. It is found that, ‘the efficient utilisation
of the processing, memory and communication abilities of the organism, can provide
‘performance which could compete with high processing systems.

1.3 Thesis Outline

This thesis is organised in nine Chapters which are briefly described below.

e Chapter 1 provides the fundamental information about the field of research
area that is distributed vision processing in multi-robotic systems. It also ex-
plains the manner this research technically contributes to the field of computer
vision and robotics. '

e Chapter 2 presents the literature review in detail. Initially, different research
areas that have iniplemented distributed vision processing scenarios in swarm
and organism mode are identified. Then for each research area, a separate lit-
erature review is performed, while keeping the relevance with main objective of
vision processing in distributed systems. The different research areas identified
in literature review are Communication, Obstacle Avoidance, Energy forag-
ing and Vision Support for Docking, Localisatidn, Appearance Based Object
Recognition, Multi-robot Environment Mapping and Distributed Processing in
Robotic Organism. V '

e Chapter 3 describes the details of the hardware used in the swarm and or-
ganism mode‘scenario's. For the organism mode scenario, a robotic organism is
developed. Different hardware components which are integrated in the robotic
organism, are discussed in detail. Finally, the on-board operating system used

on each robot in the swarm is described briefly.

e Chapter 4 describes the basic vision pibcessing algorithms developed in this
- research. These algorithms provide the basis for the achievement of the swarm
and organism mode scenarios. Two small scenarios that are “Vision based

- 12

1.3 Thesis Outline

Obstacle Avoidance” and “Vision based Robot Docking Support” are also ex-
plained. The experimental results from these scenarios guarantee real time
performance of the basic vision algorithms.

e Chapter 5 explains Multi-robot Visual Tracking System developed in this re-
search to provide the localisation support to all the robots in a swarm.

e Chapter 6 presents the distributed vision processing scenarios in swarm mode.
Two main scenarios are identified. These scenarios include Vision based Dis-
tributed Search Operation in Multi-Robotic Systems and Multi-robots Environ-
ment Mapping. For these scenarios to work, vision based obstacle avoidance
discussed in Chapter 4 and the Fiducial markers based visual tracking method
discussed in Chapter 5 are also utilised. -

e Chapter 7 addresses the distributed vision processing in the organism mode.
| A scenario is presented which addresses the Distributed Implementation of Vi-
sion Based Object Reeognition and Distributed Visual Information Gathering to
provide surrounding awareness in the robotic organism. The robotic organism

- considered in this scenario comprised of three processing modules.

e Chapter 8 presents the second scenario, addressing the distributed vision pro--
cessing in the organism mode. This scenario presents the modular implementa-
tion of the object classification and recognition approach using the distributed
resources of a robotic organism. The robotic organism used in this scenario
comprised of four processing modules.-

e Chapter 9 draws conclusion and presents the future work to the study.

The manner the thesis is organised and Chapters are related to each other, is
shown in Figure 1.5. The title of PhD research is Development and Evaluation of
Distributed Vision Processing Algorithms in Multi-Robotic Systems. The distributed
vision processing research is split into two parts; that is, Swarm Mode and the
Organism Mode. '

The swarm mode research is demonstrated in Chapter 6, where two scenarios are
addressed to perform distributed vision processing in swarm systems. The relevant

literature review and the hardware/software requirements are presented in Chap-
ters 2 and 3, respectively. To work with the swarm mode scenarios, a multi-robot
localisation and tracking system is developed, which is described in Chapter 5. The

13

1.3 Thesis Outline

Development and Evaluation of Distributed Vision Processing (DVP) Algorithms in Multi-robotic Systems

Introduction (Chapter 1)

Literature Review(Chapter 2)

Hardware and Software Requirements (Chapter 3)

Embedded Vision Processing (Chapter 4)

Multi-robot Localisation and Tracking System (Chapter 5)

Swarm mode Robotic organism mode Robotic organism mode *

Distributed Object Recognition Distributed Object Classification

DVP in Swarm Systems & Visual Information Gathering and Recognition
(Chapter 6) in Multi-robotic Organism in Multi-robotic Organism
(Chapter 7) (Chapter 8)

Conclusions & Future Work (Chapter 9)

Figure 1.5: Chapters organisation.

swarm mode scenarios also rely on the vision based collision avoidance algorithms
and other light weight vision algorithms developed specially to run on embedded
platforms. These algorithms are described in detail in Chapter 4.

The organism mode research is addressed in the form of two main scenarios. The
first scenario, described in Chapter 7, presents the distributed object recognition and
visual information gathering. Whereas, the second scenario is described in Chapter
8 and it presents the modular implementation of object classification and recogni-
tion in the robotic organism. The related literature review and hardware/software
requirements for the organism mode scenarios are described in Chapters 2 and 3,
respectively. Like swarm mode scenarios, the robotic organism used in organism
mode scenarios, also relies on vision based collision avoidance algorithms and other
vision algorithms optimised specially for the target embedded systems. The imple-

mentation of these algorithms is explained in detail in Chapter 4.

14

Chapter 2

Literature Review

Swarm robotics [7] , multi-robotic systems [8] , evolutionary robotic systems [1] [2],
focus on understanding how cooperative achievement of a certain mutual task can
be guaranteed in such an efficient manner that the overall time to achieve the goal
can be reduced and optimised. The back bone of this efficient achievement is an
intelligent task distribution. In [7] [2], a distributed computing scenario is presented,
among the swarm of self-assembling robots (with no vision information) to overcome
obstacles which would be difficult for a single robot to avoid. This is shown in

Figure 2.1 where swarm of robots self assemble and try to move over an obstacle.

P '

Figure 2.1: Swarm of self assembled robots moving over an obstacle [7].

In [13] [14] [15] a vision based approach addressing the collective behaviour of the
robots, in transporting items which are too heavy to be moved by a single robot, is
presented. This example shows the distribution of the same task to all the robots

to achieve a common goal (i.e. to move the object of interest). In [8] distribution of

15

vision based task among individual robots and also between robot modules forming
a single robotic organism, to efficiently utilise the processing resources is proposed.
Most of the research work done in the field of distributed processing in multi-robotic
systems, is carried out using on-board high performance processing systems [16]. If
miniature size robots are used then online/on-board processing is not performed and
major processing is still performed by centralised high performance systems. In [12]
[18] [19] the work done in the domain of RoboCup competition is presented where
the robots are required to identify and track the ball collectively by distributing
the vision information between each other. Using an omni-directional vision sensor,
every mobile robot, built a local map of the environment, shared it with other team
members and helped all robots to build their own vision of the world. This is clearly
a distributed vision processing system. To achieve this cooperative distributed vision
processing task, robots with high processing systems were used. One of the robot

which cooperates in this task is shown in Figure 2.2.

Figure 2.2: Single robot from a team, detecting and tracking a coloured ball to perform distributed

map building [18].

From Figure 2.2, it can be seen that a large size robot is used which is trying
to recognise a coloured ball. Detection and tracking of the ball using colour fea-
tures make the vision processing, in this distributed task, less complicated. In [20]
a series of Motorola 68000 microprocessors were configured in master-slave configu-
ration to describe a distributed vision computing architecture. In this master-slave
configuration, the master processor extracts the information from the images and
passes them to the slave processor for detailed processing. A high speed network
communication was used for information sharing between the high performance Mo-
torola processors which make the distribution of vision based tasks possible. In [22],

robots were not equipped with vision sensors, but used mobile agents to enquire a

16

common vision system for required information. This is an example of centralised
processing architecture. The use of centralised architecture is necessary, if all the
robot modules needed to access common set of data on equal basis, for example,
in [22] all the robots need to access a centralised processing system for the processed
visual information. The use of centralised architecture is not very famous in swarm
robotic systems, because the failure of single central processing syterh will result in
failure of complete system. More over, in centralised processing architecture, the
processing resources of all the robots in a swarm can not be best utilised.

Agency
T .
7
non-worker 7 master %,
\
4 1
e . 1] H
A
\ \ J
3 N, ;
Ao : . .
\ -
\

O

; /
LookAlong3L
‘ e 4
. o
. /
% /
% A
-t <
. ~.~

non-worker non-worker

-
e

Object Detected

e

Figure 2.3: Active vision agents based target detection and tracking [23].

The higher utilisation of processing resources is only possible, if the information
is processed in distributed fashion. The use of active vision agents is also made
in [23] to distribute the vision tasks between the observation stations as shown in
Figure 2.3. These active agents were communicated between the observation stations
for performing theé vision based target detection and tracking. As the observation
points were fixed, so simple messages communicated between the stations can be
used to focus the attention of all the observation points on a single target. It can
be noticed that, in this type of distributed vision processing, the system in whole is
not really sharing the visual data between the observation points. Each observation
" point performs an independent on-board vision processing, and then shares the
target detection information in terms of target location in the environment. And

as the observation stations are fixed and know the other stations’ locations, so it is

17

easy to translate the target location with reference to the other stations view. This
type of distributed vision processing is far less complicated as comparéd with the
distributed vision processing in swarm robotics, where the position of the robots

keeps changing and it is also difficult for the robots to keep on tracking each other’s
 location. ' o ‘

In distributed systems, the efficiency of a system is directly related to how data
distribution is implemented. In [24] [25] a method called Divisible Load Theory
(DLT) is proposed for managing data distribution and its application‘to vision pro-
cessing is described. This method is based on the actuality that the data or tasks
can be divided arbitrarily into independent modules, where each module can be pro-
cessed independently from others. Another vision processing work based on DLT
is presented in [26] where a simple edge detector called Sobel operator is selected
as a distributed application. For distributed image processing, two different task
partitioning and scheduling strategies are compared. The first is Partitioning and
Scheduling Strategy using DLT (PSSD) and the second is Equal Partitioning Strat-
egy (EQS). The good performance achieved with this system is 'mainly because of
the efficient scheduling and load sharing strategies implemented in communication
middleware DLT: As there is no optimised version of DLT which makes it suitable
to run on an embedded system environment, so the processing and specially mem-
ory requirement of DLT is usually high. Like DLT, another approach to distributed

~Computing called Grid Computing is presented in [28] for performing distributed
processing of remotely sensed images. For distributed processing of these remotely
sensed images, the images are processed in different stages using a very high perfor-
mance system. The different stages are shown in Figure 2.4. |

Image distributed
processing (such as
segmentation or edge
detection)

© Compare the
. feature with pattem

DB and generate the
needed targets

/ /
/ /
/ /
- / !/ .
Initial high-resolution tl Remotely sensed | E, Remotely sensed
remotely sensed image 1 image feature 2 image target

Figure 2.4: Processing stages for remotely sensed images [28].

18

In the first stage, the high resolution images are transferred to the system through
the internet. Then segmentation and edge detection based features are extracted.
These features are passed to another system which performs the recognition task.
For recognition purposes, the system utilises pattern recognition techniques and
makes use of a very big library of target data. For this system to work, a high
performance system and high communication bandwidth medium are required. In
another work [27] an Image Mining System (IMS) is presented. In IMS, for online
image processing, the different parts of the image are processed in a parallel fash-
ion. For creating a parallel processing system, a number of personal computers are
connected by a local area network. The connectivity through local area network
enables large amount of data to be exchanged between number of processing sys-
tems. The different processing stages for this system are shown in Figure 2.5. The
first computer performs the image acquisition, the second performs image enhance-
ment, the third performs feature extraction and then finally the mining operation is
done. High communication bandwidth is required for transferring images between
computers for further processing. Moreover, image mining is itself a difficult task
to perform as it requires high processing for matching the extracted image features
with the library of features stored in the memory. The library of features usually is

also large and essentially have large memory requirements.

Image Mining
Mining Model
Classification

Acquisition Enhancement Feature Extraction

Figure 2.5: Image processing stages for image mining system [27].

In [16], the use of Player/Stage software tools for distributed computing in
robotics is presented. In this software, the Player is a robot device server which
provides a network transparent control to the target robot, whereas Stage is a robot
simulator which helps in simulating the robot and its environment. But the ma-
jor difference is that, all vision processing is performed on the central computer
with basic commands to control the robot may be executed on-board. A relevant

distributed vision based formation control research is carried out in [29] in which

19

a swarm of robots try to visually maintain the formation using motion segmen—v
tation approach and also avoid colliding with each other in the absence of any
communication medium. For performing the formation control, the robots use an
omni-directional camera with a mirror mounted on their top (as shown in Figure 2.6)
‘which provides a panoramic image to each robot. From the help of panoramic image,
the robots get the information about the other robots for maintaining the forma-
tion. As each robot processes its own panoramic image, so this implementation is
more towards vision processing in distributed systems, rather than distributed vision
processing in a complete swarm robotic system.

“Shah

- Figure 2.6: An omni-directional vision based formation of mobile robots [29)].

Central Panoramic Camcra

1In [17] a distributed machine vision application is presented that describes a visual
recognition method developed for IUB (International University Bremen) RoboCup
.team. To simplify the tasks, rather than executing the vision algorithm on the
robots, an external camera is placed over the field surface and is connected to a high
' processingb system (system acts as a server). The images captured from this camera
are processed at high rate by an external system (i.é. 25fps) and the vision based
robot detection performed using different colour markers placed on the robots. Upon
determining the location and orientation of the robots, the external systém gives
commands to the robots using UDP protocbl over a 100Mbps network. To establish
the.comm'unication and defining the transmission packets, a customised library of
algorithms was developed rather than relying on other middleware such as COM or
CORBA. The zippfoach of not using the communication middleware and relying on
the customised developed library-for data transmission acknowledge the pdssibility |
of achieving communication between swarms of robots in real time, considering the
embedded system impleméntation. All this work, in distributed vision processing
field, is performed using high performance systems which are the basic requirement
for most computer vision algorithms. Moreover, if low power embedded systems are
used then either they are using simple vision based tasks or they are used as still

20

2.1 Communication

observation stations set in a predefined configuration (i.e. [20]). To demonstrate
the distributed vision processing task for multi-robotic systems operating in swarm
and the organism mode, a number of distributed vision processing scenarios were
defined. For the implementation of these distributed vision processing scenarios, the
research areas identified which needed to be explored are: Communication, Obstacle
Avoidance, Energy foraging and Vision Support for Docking, Localisation, Appear-
ance Based Object Recognition, Multi-robot Environment Mapping and Distributed
Processing in Robotic Organism.

2.1 Communication

Communication is a backbone of any distributed computing system. It provides
a medium through which data or information can be distributed among several
processing systems following some communication rules called protocols. This com-
munication medium can be wired or wireless. In swarm robotic systems, there is a
more general description of types of communication that can be established among
robots, i.e. explicit or implicit communication. In explicit communication, the in-
formation is shared between robots directly using a communication medium. While
in implicit communication (e.g stigmatic), the information sharing is achieved by in-
teraction with the environment (e.g by modifying the environment) or by observing
the actions of the other robots in the surrounding [30]. In [31], simple communi-
cation strategies are explored which can be used to perform implicit and explicit
communication in a swarm robotic environment. Implicit communication can be
observed in nature, where ants use pheromones (a chemical substance) to mark the
environment for conveying messages (as shown in Figure 2.7). Hence it led some

researchers to use pheromones based communication among robot swarms [32].

Figure 2.7: Ants following artificial pheromones [112]

21

2.1 Communication

If the environment in which robots are required to operate is highly dynamic
then implicit communication is not considered suitable as it relies on the changes
that are brought into the environment or on the observations of other robots [21].
So, for distributing vision based tasks and knowledge sharing among robot swarms,
wireless communication medium can be considered as a sensible choice. A layered
protocol structure, based on data transport layers (inspired from computer network
system), to define protocols for wireless robot communication is presented in [33],
but it assumes the provision of communication network layers in robot which could
be possible if some communication middle-ware (a third party software that connects
other software together) is used. A cooperative distributed problem solving system
is discussed in [34], but it totally relies on a centrally controlled shared memory
architecture for data exchange which makes it unsuitable for systems where data
management or storing are not centralised, such as swarm of robots. A comparison
of TCP, UDP, TEAR and Trinomial protocols for formation control of robot swarms
is carried out in [35] with the help of middle-ware and centralised base station. The
comparison of MANET routing protocols in mobile robotics is performed in [36],
where a 7x7 grid of closely spaced WiFi nodes (equipped with a high performance
system to simulate wireless connected robot modules) are used and a mobile robot

moves around them. This is shown in Figure 2.8.

Figure 2.8: Robot moving around 7x7 WiFi grid [36].

The reason for moving the robot around the WiFi nodes is to describe how robot

routing table information is updated when a robot moves in different regions of

22

- 2.2 Obstacle Avoidance

a wireless grid. This closely simulates a swarm of robots connected using adhoc
networks, but in order to keep a record of all the robots in surroundings by every
Tobot in a swarm, the precessing demands could be high‘, and can overload the
network. Moreover, all the wireless nodes Which are simulating swarm of robots are
static. If they are also mobile, then changes in the routing table will be required
often.- | '

In [37], the use of PER_A (Probabilistic Emergent Routing Algorithm), an adhoc
type wireless protocol, for wireless connected robot is described, but again it requires
a network communication module in the robot ﬁrniware, which basically utilise
protocol defined by PERA to establish the communication. Similarly, distributed
communication among robots, as presented in [38], using CORBA (Common Object
Request Broker Architecture) and in [39] using Robot .Software Communications
Architecture (RSCA) is also possible, but these communication middle-ware are too
processing and memory intensive for miniature size robots which are based on an
embedded system with limited memory and processing power.

2.2 Obstacle Avoidance

When the robots are performing distributed vision processing tasks, they are not -
usually stationary. In the considered scenarios, the robots expect to encounter an
obstacle and so need to perform obstacle avoidance based on vision, as vision is
the only source of providing surrounding awareness to a robot. Computer vision
- provides many ways to achieve the obstacle avoidance task. In [40] an obstacle
avoidance technique using a monocular vision camera together with laser range
finder is addressed. The author has performed testing of the algorithm in an out-
door highly unstructured environment, but the testing system used was not strictly
an embedded system, as all the image processings were on a development platform.
Therefore, there is possibility that this technique rnay not be able to meet the real
time constraints. Another commonly used method for obstacle avoidance, addressed
in [41], is based on edge detection. In this method, the vision algorithm tries to de-
- termine the vertical edges of the obstacle and helps robot to move around the edges
without colliding with the obstacle. In [42] another approach called Lucas-Canade
‘optical flow based obstacle avoidance is used. This algorithm used for MAVs (Micro
Aerial Vehicle) in urban environment. Similar to the approach addressed in [42],
Horn and Schunck optical flow based algorithm is also adopted in [43] to perform |

23

2.3 Energy Foraging and Vision Suppért for Docking

obstacle avoidance by the autonomous ground robot. They used optical flow infor-
mation to determine the image velocity vectors. These vectors could be split into
two terms, translational and rotational components. Then using the translational
component of the velocity Vector, the time to contact information for the obstacle
can be calculated. This could then be used to determine when the obstacle was very
close to the robot and necessary action was required in order to avoid a collision.

2.3 Energy Foraging and Vision Support for Docking

When. robot swarms are performing an operation, there are possibilities that the
robots get hungry (i.e. they run out of battery) and need to look for energy re-
sources (can be collective or individually) so that the collective mission can be fin-
- ished successfully. There are a number of studies in the field of distributed robotics
which addresses the collective energy foraging [1] Search of energy resources can
be performed using the information provided by vision sensors [8]. In [7] [8], swarm
robotic systems were described which could look for energy resources individually or
share ehergy resources by docking to each other. “Autonomous Docking” is another
area of research in swarm robotics community. To perform autonomous docking
of robots, Infra-red (IR) or vision based information is used in most of the swarm
robotics projects. In [44] [45] IR sensor information is used to perform docking.
The use of vision support for docking is presented in [13] [14] [15] [46] [47], in which
~ swarm of robots dock together to drag heavy objects. In [48] [49], a more complicated
docking mechanism is presented which requires a precise alignment to successfully
- attach two robot modules, so help from both vision and IR sensor is utilised.

2.4 Localisation

In pervasive computing systems, determining the location information of the impor-
tant objects in the environment is given great importance. In multi-robotic systéms,

" this location information may be helpful to gather the where-about awareness to the
robots which are working in an unknown environment. Determining the localisation
information using radio frequency identification (RFID) data [50] tags is a popular
technique (an example of RFID tags attached to the walls is shown in Figure 2.9),
but advancements in machine vision field has shifted the research trend towards
vision based tracking and localisation systems.

24

2.4 Localisation

Figure 2.9: RFID tags attached to walls for robot localisation [50].

In machine vision, to localise an object, its detection and tracking in the envi-
ronment using stream of images are required. The overall localisation performance
depends strongly on the robustness of the object detection. A number of vision pro-
cessing algorithms are developed which locate objects in the images captured in the
natural environment (i.e. unconstrained images). The vision processing demands of
these algorithms are normally high due to the complexity of the environment. An-
other reason for complexity is the 3D appearance of the objects in the environment
due to which a 3D object recognition algorithm is required. If there is large number
of objects to localise, then markers based techniques are adopted [51], especially
when working in the indoor robotic environment. Markers used in these techniques
can be identified as active or passive markers. In [52] an infrared sensor based active
marker technique is presented. In the localisation system installed on the robot, the
author has used an image sensor to detect the position of infrared sources, attached
to the ceiling and then finally obtained the 2D position and orientation information
of the object. For more precise positioning, detection of more than one IR sources
is required. Similarly, in [53] ceiling lamps were used as natural landmarks for the
robot localisation. The image of a ceiling lamp used for robot localisation is shown
in Figure 2.10. The author has intelligently made use of the pre-install lamps as the
landmarks, which reduce the overall cost of the solution as no additional landmark

was required.

25

‘2.4 Localisation

Ceiling lamp used as a
~marker for robot
localisation

Figure 2.10: Negative image of a lamp on ceiling used for robot localisation [53].

In [54]," the author has used a colour histogram based landmark detection algo-
rithm. The landmark used has a symmetric design with repetitiVe colour patterns.
To make the landmark detection less sensitive to illumination changes, a colour
" similarity based approach is used to update the colour histogram model for the
landmark model. It is observed that, the solutions to active markers based ap-
proaches are-éomputationally less expensive and can easily run in real time. But
the big drawback is the enei‘gy consumption by these markers as these markers
require power to become functional. The solution to active markers can be more
expensivé as presented in [52], for detecting infrared sensors attached to a ceiling,
where each robot is required to be equipped with a camera and the direction of the
camera should be facing vertically upward. |

If the robots WOrking in the environment are less in number (e.g. two or three
robots), then an active marker solution may be justified as it makes the localisation
problem easier. But in case of multi-robotic systems, where the number of robots
working in the environment may be large (e.g. ten or more) then an active marker
solution does not remain energy efficient as each robot has to provide power to make
the markers functional. In such cases, the solution is to use passive markers.

The passive markers solution is.normally very cheap to install, but the most
challenging stage is their robust detection.. For their reliable detection, passive
markers are required to be designed very carefully such that their appearance in |
the environment is very prominent. In [55], the author has done a performance
analysis of different shape passive markers and has shown how the markers’ size
vary depending upon the density of information (i.e. information about marker ID)

26

2.4 Localisation

encode in it. The author has shown that, square shape markers require a simple
algorithm for their reading and detection. But, circular markers provide more robust
Tocalisation information as shape fitting algorithms work more efficiently when more
points contribute to the shape fitting process. In [56], the author has demonstrated
~ the use of passive markers to identify and track the robots playing in robotic soccer
team. To detect the position of robots, the author has used a camera mounted at
an oblique angle rather than directly on the top. No colour information is used in
designing the markers which reduces the possible number of robots which may be
identified. In [57], an open source implementation of a marker-based vision system,
called Cantag, is described. Most .of the markers used in Cantag are repre‘sénted
in a binary form and their coding scheme provides binary information about the
markers’ idéntity. Some examples of markers from Cantag are shown in Figure 2.11.

+@OH

(a) Circlelnner . (b) CircleSplit - (c) CircleOuter (d) Square
Figure 2.11: Some example markers from cantag [57].

- To detect these markers, very complex image processing techniques are adopted
in Cantag. As the density of binary information stored in the Cahtag binary marker
is high, so it is likely that it provides false result if the marker is viewed from a large
distance and at sharp angle. To improve the performance, in Cantag, the author

“has also shown the effect of varying the marker size. But, if it is to be used in an
environment where large number of small robots are working and needed to be given
an ID, then it is logical to keep the size of the marker at least smaller than the robot
top surface.. } | :

Similarly, in [58] a low cost localisation system using binary markers, attached
~ to the ceiling, is presented. To identify the markers, a camera (facing vertically up)
is mounted on every robot. In this case, high identification accuracy was possible
when the robot crossed under the marker. If the marker was viewed from a sharp
angle, false identification was pdssible. So, in multi-robotic environment, a marker

27.

2.5 Appearance Based Object Recognition

based technique which provides enough information to identify the robots robustly,

and also with less complicated algorithm, would be preferred.

2.5 Appearance Based Object Recognition

One of the distributed vision processing scenarios in swarm mode addressed in this
research, performs the “Distributed Object Recognition and Localisation in Multi-
Robotic Systems”. In this scenario, the major task given to swarm of robots is
to perform an appearance based recognition of the set of known objects in an un-
known environment. Appearance based recognition is an important research area
in autonomous robotics field and has been applied in many applications. A SURF
(Speeded Up Robust Features) feature based approach to appearance based recogni-
tion for performing robot navigation task is presented in [59] using omni-directional
camera images. The detection of SURF features in omni-directional camera im-
age is shown in Figure 2.12. As computing SURF features is processor intensive,
so a Core2Duo-2.66GHz high processing system was used to achieve the real time
performance which makes the task less challenging.

Figure 2.12: SURF features detected in omni-directional camera image [59].

In [61], an application to traffic sign recognition using SURF features in embedded
system environment is described. The system is first given a training to extract
feature points and create a library of visual words. The system is designed to
work in a real life unstructured environment, so measurements are taken to show
the system robustness to view point changes and changes in lighting conditions.
The advantage of SURF features is that they provide scale and rotation invariant
features [62]. For recognition purposes, the system implements the “bag of visual
words” approach [61]. The idea is to extract SURF feature points from all the traffic

28

2.5 Appearance Based Object Recognition

sign images provided in the library, and then group these feature points into a large
number of clusters (i.e. the features with similar SURF descriptors will be assigned
or lying in one cluster space). Each cluster will be considered as a visual word
representing a pattern shared by all the features lying in that cluster. This way
one single image can be représentéd by the bag of visual words with local features
mapped into visual words as a vector containing the weighted count of each visual
word. This bag of visual words is used to perform the model description of the sign
shown in the image and hence, facilitates the real time recognition of the sign. In
some approaches [63], this concept of clustering the feature space [62] is called feature
space quantisation. This provides a significant saving in memory compared to the
normal approach of saving all features independently during building the visual-
words vocabulary and thus makes the approach more suited for implementation on
embedded systems. A

Some researchers have used probabilistic models on the top of SURF feature based
bag of visual words to perform robot localisation and mapping [64]. In comparlson
to this, in some approaches [65], authors have relied on Harris features instead of
SURF features to reduce the computation time, and have used Partially Observable
Markov Decision Process (POMDP) probabilistic methods to track the probability
distribution of the robot’s where-about and to essentially localise it. Another exam-
ple of Harris feature based localisation is described in [66], where Harris extracted
features are used together with Scale-Invariant Feature Transform (SIFT) descrip-
tors. And then Support Vector Machines (SVM) is used for classification. But the
use of Harris features together with SIF'T makes the approach computationally very
heavy even for a high processing system. In another work [67], rather than relying
on SURF features alone, authors have used advantage of Conditional Random Fields
(CRF) to discard those features that do not show geometric consistency. In [68] [69],
a detailed comparison of SIFT, PCA-SIFT and SURF feature based approaches to
recognition is carried out. SURF was found fastest to compute and still provided |
SIFT comparable performance. Authors in [69] have used the K-Nearest Neighbour
(KNN) approach for feature matching and Random Sample Consensus (RANSAC)
to get rid of outliers and have shown that selection of method to perform recognition
mainly rely on the target application.

In [70], another probabilistic model based approach is developed, to perform
appearance based recognition and robot localisation. Unlike the work presented
in [59] [61] [63] [68], linear image features extracted using Principal Component

29

2.5 Appearance Based Object Recognition

Analysis (PCA) [71] are used. The appearance model developed is represented as
a probability density function of the image feature vectors given the location of
the robot. In PCA, the eigenvectors (i.e. image feature vectors) of the image are
computed and are used as an orthogonal basis for individual image representation.
In Figure 2.13, an example image and the first three eigen vectors computed are
shown. The motivation of using eigenvectors is that only few of them are required
for visual recognition (although for full image reconstruction all eigenvectors would
be required). These eigenvectors represent the eigenspace. PCA algorithm projects
the image data onto the eigenspace and resulting in the uncorrelated projections

(i.e. eigenvectors).

(d)

Figure 2.13: (a) Input image, (b) First eigen vector.(c) Second eigen vector.(d) Third eigen
vector. [70].

The eigenspace analysis reduces the dimensionality of the feature space tremen-
dously as compared to the SURF or SIFT features space as in [66] [68] [69] but,

in general, it is more sensitive to the effect of “perceptual aliasing”. The effect of

30

2.5 Appearance Based Object Recognition

perceptual aliasing is shown in Figure 2.14. In Figures 2.14a and 2.14b, two different
images are shown. The image reconstructed from 20 dimensional eigen vector, of
both of these images, is shown in Figure 2.14c. In other words, the two different

appearing images may look similar in eigen space.

(e)

Figure 2.14: (a) Image 1. (b) Image 2. (c) Reconstructed image from 20 dimensional eigen
vectors. [70].

In another work [60], fast gradient based feature extraction approach is used
together with PCA (in place of SURF or SIFT features) to perform the recognition
task. Like the work done in [61] [63], feature space is quantised using k-means
algorithm, to make an efficient use of memory. To boost the search process of finding
the corresponding features in the recognition phase, kd-tree algorithm is used which
stores the centroids of the feature clusters, resulted from k-mean algorithm. The
system used for recognition was a 3GHz high processing system which took 350 msec
on average to recognise an object. This seems a slow performance considering the
use of a high processing system.

Another similar approach using SIFT feature based recognition is presented in [72]
where features (feature space quantised using k-mean) in the vocabulary tree are
dynamically assigned different weights which are according to the uncertainty (i.e.
entropy) associated with the features. The author has claimed that, in most of

the appearance based matching approaches which successfully avoids the use of

31

2.6 Multi-robot Environment Mapping

common features (based on the feature entropies) to perform matching, still use
those features which are not common, ‘but at the same time they do not provide
strong object recognition clues. It is shown that this problem can be overcome by
using the vocabulary tree algorithm which modifies the feature entropies in such a
way that it discourages the use of those features which have given poor recognition
results. '

~ It is to be noted that, in most studies, a high performance systém is used for per-
forming recognition. So in spite of excellent results achieved with these recognition
techniques, when it comes to swarm of small size robotic sys‘tems, the bottle-neck
of the slow rate of visual information processing forces the researchers to make huge
compromises with the recognition performance and switch to computationally less
expensive algorithms.

2.6 Multi-robot Environment Mapping

In the second distributed vision processing scenario in swarm mode presented in this
research, a multi-robot environment mapping problem was addressed. Environment
‘mapping is a process in which a robot senses its surrounding using onboard pei'cep-
tion sensors and tries to obtain a global map. The generated global map essentially
helps the robot to navigate autonomously in the environment. Environment map-
ping is a challenging problem to address and in most caées, the robots require human
assistance if they are exploring the place first time. Some researchers have worked
around this problem in which the robots keep on localising themselves and at the
same time, they also build the environment map; This is called Simultaneous lo-
calisation And Mapping (SLAM) in robotics field. In [73], a vision based SLAM
is presented in which the SIFT (Scale Invariant Feature Transform) feature points
are extracted between the images to determine the robots’ updated position and
hence, it is used to determine the robots’ location and to map its trajectory. The
use of vision based solution on one hand provides the rich surrounding awareness to
the robots but at the same time, it increases the computational time considerably.
" This leaves most of the vision based solutions limited to be implemented usiﬁg high
performance robots only. In multi-robotics operations, the robots being used have
simple design to reduce the cost of overall system. So a single robot unit usually
have limited onboard memory and processing resources. For a single robot imple-
‘mentation, researchers have used many different sensors such as laser range finders,

32

2.7 Distributed Processing in Robotic Organism

infrared sensors, sonar and vision sensbrs. But most of the ‘res.earéh is focused on

using laser range finders. In [74] an approach to outdoor mapping is addressed using

2D laser range finder. Similarly, in [75] a stochastic approach is adopted to an envi-

ronment mapping using laser range finder. From the approaches adopted by [74] [75],

it can be seen that due to the physical size, high power and prdceséing requirement

of the laSer'range finders, they are used with large size robots. Moreover, a single

laser range finder can cost from £800 to £3000 which makes it unsuitable to be

used in multi-robotic environment where the objective is also to keep the cost of

each robot unit low. In [76], the inforiation from the laser scanner is fused with the

vision sensor to provide a more accurate map of the environment. But this further
increases the computational demands of the approach. In [77] [78] a multi-robot en-

vironment mapping problem is addressed. But the results are limited to simulations

only. In [79], a grid based mapping solution using multiple robots is vaddressed,’ but

it also utilised high performance systems. However, when using a group of small size
“robots, it is preferred to use simple and computaﬁonally less expensive algorithms

~ such that, the task can be achieved with limited on-board memory, processing and

energy resources. |

2.7 Distributed Processihg in Robotic Organism

As described in Chapter 1, the latest research in swarm robotics or multi-robotics
systems'is shifting to design more complicated systems that are reconﬁgurable.
These reconfigurable modular robotic systems hold a very unique feature that they
are not only capable of working in a swarm state, but they are also configurable to
prodlice different forms of three dimensional robotic organisms. A relavant research
is addressed in European Commissions Seventh Framework FP7 Replicator [80] and
Symbrion [81] projects which presents complicated designs of robot modules. These
robot modules are capable of physically joining together and creating a three dimen-)
sional robotic organism, whenever the need arises. The reason for robot modules to
physically join together is to perform some operation collectively which is not pos-
sible to be done by a Single robot. For collective achievement of the operation, the
robots also need to create certain shape of the organism, when they join together.
Collective achievment of tasks is the basic concept behind the idea of swarm
robotic systems [82], which comprises of many simple robotic modules with lim-
ited onboard memory and processing resources and basic sensors (e.g., infrared used

33

2.7 Distributed Processing in Robotic Organism

onboard). . In swarm robotic systems, to show collective effort in achieving a task,
the robot modules need to share their knowledge with each other over a wireless
medium. This knowledge is processed at multiple stages in different robotic mod-
ules to make it meaningful for a complete swarm system. All the robot modules in
a swarm share their memory resources, to hold the knowledge, and also processing
. Tesources, to process the sensor data in different stages. The sharing of memory
and processing resources in swarm robotics introduces the concept of distributed
computing [83] [84]. The complete swarm system is actually a distributed robotic

system in which each individual robot has limited onboard resources, but the swarm

system as a whole is considered very rich in memory and processing resources, which
are distributed in the complete system. The sharing of these resources in modular
swarm systems requires a reliable communication medium. The limited onboard
resources in swarm system, which also includes the energy resources, act as a bottle
neck even in establishing a communication medium. Due to limited onboard energy
resources, the robots in a swarm are equipped with low power wireless boards which
provide low signal to noise ratio and hence, a less reliable communication medium.
If the swarm of robots are equipped with basic sensors, such as infrared, and share
the information or knowledge learned from these sensors, then the wireless commu-
nication medium can be used effectively as these sensors generates less data. But’
if the Tobots in a swarm are equipped with vision sensors, then it becomes very
difficult to share the visual data between different robots as vision sensors generate

huge amount of data. It is to be noted that, the use of vision sensors in robotics
s becoming very common because a single vision sensor can be used to achieve
multiple objectives. But when these vision sensors are used in swarm systems, then
the use of low power wireless communication medium make it difficult to exchange
visual data among the robots.

The reconﬁgurable modular swarm systems are described as Networked Robotics
in [85]. They are also known as Modular Robotic Systems in [86] [87] [88], which
describe the design of modular robots with the ability to create different forms of
locomotion'systems These locomotion systems are inspired from nature, such as
snake, round shape and walking systems In such systems, once the robot modules
join together, then they can establish a physical communication medium. The pro-
vision of physical communication medium can ensure a reliable communication and |
hence, it can faciliate the robot organism to effectively utilise its rich distributed
processing and memory resources. It is to be noted that, after forming the organ-

34

2.8 Conclusions

ism, if the system still relies on the infbrmation leamed from the basic sensors, |
such as infrared, which is easy to process, then the system will not be fully ex-
ploring its communication capabilities and its rich processing resources. To fully
utilise the communication and distributed resources, the distributed system envri-
onment established within the organism, can be used to perform vision based tasks
in a distributed fashion. The vision based tasks require intensive processing, huge
amount of memory for its operations and high communication bandwidth for infor-
mation exchange. The provision of rich memory and processing resources and strong
- communication established within the organism, make it an ideal system for the pro-
cessing of the vision based tasks. Once the robotic modules form a robotic organism,
then the processing and memory resources accumulated within the robotic organ-
ism can be efficiently utilised to acquire surrounding awareness using the available
onboard sensors. These distributed resources can be used by the organism to gather
the surrounding information and to classify and recognise the different objects in
the environment. | ‘

2;8 Conclusions

In this Chapter the most relevant research areas have been identified which neéd
to be explored to successfully perform distributed vision processing in the swarm
and organism modes of the multi-robotic system and a detailed literature review in
each of the research areas has been presented. From the literature review, it can
be concluded that, most of the distributed processing research in swarm systems is
based on computer simulations, and very little work has been performed using real
multi-robotic systems. If the use of real multi-robotic systems is made, then in most
of the relavant distributed vision processing research, high performance robots or
systems have been used. In case, a swarm of small size robot was used, then either
the use of basic vision processing algorithms is made or the major vision processing is
-performed on high pérformarice servers with basic control commands implemented
on-board on the swarm of robots. It has been concluded that, distributed vision
processing in multi-robotic systems which could work in a swarm or organism form,

-is an open research area which requires detailed research. In this research, to address
distributed vision processing in the robotic swarm or the robotic organism, the use
of a real multi-robotic system which comprises of small size robots, is made which
makes this research more novel and challenging. '

35

Chapter 3

‘Hardware and Software

Requirements

- Based on a detailed literature review and several experiments, a number of dis-
tributed vision processing scenarios are defined as described in Chapter 1. For each
- of these scenarios, the required hardware and software are identified. In this Chap-
ter, the details of the hardware and software configuration used to implement the
swarm and organism mode scenarios, are discussed. The hardware requirements
for the swarm and organism mode scenarios are separately identified. " As this PhD
research is carried out as a part of the European Commission Seventh Framework
Programme FP7/2007-2013 r_esearch project REPLICATOR, so in order to ensure
compatibility, the selection of hardware made is solely based on what are used in
the REPLICATOR project. The software in terms of robot operating systems is
identical for both swarm and organism mode scenarios. This chapter is divided into
the following sections. '

(i) Hardware requirements for swarm mode scenarios.
(ii) Hardware requirements for organism mode scenarios.

(iii) Selection of an operating system (robot firmware). |

3.1 HardWare Requirements for Swarm Mode Scenarios

The hardware components for the demonstratlon of the swarm mode scenarios are

explamed in the following sections.

36

3.1 Hardware Requirements for Swarm Mode Scenarios

(1) Swarm Robot Units.
(i) Hardware for Swarm Communication.

(iii) Robot Tracking Cameras.

3.1.1 Swarm Robot Units

In Figure 3.1a, a single REPLICATOR robot unit is shown. These robot units are
not fully functional so for the demonstration of the swarm mode scenarios, Surveyor
SRVI1 robot was selected as it uses the same processing unit (i.e. Blackfin processor)
as the one used in the REPLICATOR robots. A single Surveyor SRV1 robot is shown
in Figure 3.1b and a swarm of these robots to be used in the scenarios is shown in

Figure 3.1c.

©

Figure 3.1: (a) REPLICATOR robot [§8]. (b) SRV1 blackfin robot by surveyor corporation [89].
(c) Swarm of SRVI robots

37

3.1 Hardware Requirements for Swarm Mode Scenarios

Surveyor SRV-1 [89] is an open Source Wireless Mobile Robot, especially devel-
oped for Autonomous and Swarm Operations. It is mainly designed for research
" purposes. Surveyor SRV-1 robot uses Blackfin camera board with 500MHz Analog
Devices Blackfin BF537 processor, a digital video camera with configurable resolu-
‘tion from 160x128 to 1280x1024 pixels, two laser pointers, and WLAN 802.11b/g
networking on a quad-motor tracked mobile robotic base. It can be operated re-
motely and can be programmed as a self-navigating autonomous robot. It can run
on-board interpreted C programs, or user-modified firmware. It can be remotely
operated from Windows or Linux b‘ase. station with help of Java-based console soft-
ware provided with the robot. The Java console software also includes a built-in web
server using which SRV-1 can be controlled through a web browser from anywhere
in the world. Detailed documentation on SRV-1 Robots can be found in [90]. The
SRV1 robot has wireless connection (WLAN 802.11b/g based network) to the code
development platform and through this wireless connection, the resultant binary
files, obtained after compiling C programs using GNU compiler, can be downloaded
and executed on the robot platform. The raw images captured by the robot and
also the processed images‘can be uploaded to development platform through the
wireless connection for debugging.

Robot Features

e Open Source: This allows the customers to re-use the already developed soft-
ware and helps in rapid development. ’

e Robot is fully programmable for an autonbmous operation.
e Extensive software support through third party applications.
e Robot can be tele—bperated via Web browser.

e Host software has built-in Web Server.

° Rbbot can execute programs written in interpreted C and stored in on-board
Flash. ’

e Wireless remote control or viewing up to 100m indoors and 1000m outdoors
(line of sight).

e Robot can be controlled from a terminal /console for easy testing.

e Firmware can be programmed with GNU bfin-elf-gcc.

38

3.1 Hardware Requirements for Swarm Mode Scenarios

Robot Hardware

e Processor: 1000mips.500MHz Analog Devices Blackfin BF537, 32MB SDRAM, :
4MB Flash, JTAG. :

. Camera: Omni-vision OV9655 1.3 mega-pixels 160x128 to 1280x1024 resolu-
- tion. v ‘ 4 »

 Robot Radio: Lantronix Matchport 802.1 1b/g WiFi .
e Range: 100m indoors, 1000m line-of-site in outdoor environment.

e Sensors: 2 laser pointers for ranging, support for up to 4 Maxbotics ultrasonic
ranging modules and various 12C sensors .

e Drive: Tank-style treads with differential drive via four precision DC gear mo-
tors. '

‘@ Speed: 20cm - 40cm per second. -

Robot Software

e Robot Firmware: Easily updated, written in C language under GPL Open
Source, compiled with GNU bfin-elf-gcc and bfin-uclinux-gec toolchains.

. e On-board Programming: Interpreter for C language with special robot-specific
commands, used to run programs directly from Flash memory.

e Development Tools: GNU toolchains via http:// blackfin.uclinux.org

e Console Software: Java based application for‘ Windows, MAC and Linux.

3.1.2 Hardware for Swarm Communication '

To achieve the tasks collectively, the robot units are required to share their knowl-
- edge with each other. To enable this ‘anowledge eiéhaﬁge, the wireless communica-
tion medium was established between the swarm of robot units shown in Figure’3.1c'
and for this purpose, a Linksys Wiréless Access Point was used. The wireless ac-
~ cess point used in this implementation is shown in Figure 3.2. The Linksys access |
point supports data rates up-to 54Mbps, which is up to 5 times faster than 802.11b.
It can be easily configured from any web-browser and supports 64/128 bit WEP
encryption. '

39

http://blackfin.uclinux.org

3.1 Hardware Requirements for Swarm Mode Scenarios

Figure 3.2: Linksys wireless access point [104].

3.1.3 Robot Tracking Cameras

To provide localisation information to the swarm of robots, a fiducial markers based
tracking system was developed as described in Chapter 5. Two ceiling mounted
cameras were used to track the position of swarm of robots in the environment.
The selection of these ceiling mounted cameras was done very carefully as they
were mounted higher from the surface of robot arena, so that they can cover more
area. At the same time they had to provide a higher resolution image too, so that
enough pixels contributed to the fiducial markers. After experimenting with some
web-eams, Logitech WebCam Pro 9000 was selected as shown in Figure 3.3. This
web-cam provides 2 mega-pixels for video and 8 mega-pixels for picture resolution. It
can be configured to provide the resolution of 160x120, 176x144, 320x240, 352x288,
640x480, 800x600, 960x720 and 1600x1200 pixels. In the beginning, 1600x1200
resolution was selected, but then it was found difficult to process such high resolution
images at high rate. So finally, 960x720 resolution was configured for grabbing the

images from ceiling mounted cameras.

Figure 3.3: Logitech webcam Pro 9000 [105].

40

3.2 Hardware Requiremenf for Organism Mode Scenarios

3.2 Hardware Requirement for Organism Mode Scenarios

Similar to the swarm mode, the REPLICATOR robot hardware was not fully f_uné-
tional to make a full robot organism. As in the robot organism, there were more
than one robot physically docked together, so unlike the case of swarm scenarios,
it was difficult to find pre-designed robot hardware for this purpose. To address
the distributed vision scenario in organism mode, a multi-processor robotic system
was developed in this research. In this multi-processor robotic system, multiple
Analog Devices Blackfin processors-were used, which were connected through the
Ethernet medium. Every processor in the multi—processor robotic system, simulates
the processmg resources of : a single robotic module which contributes in the forma-
tion of the robotic orgamsm In other words, the complete multl-processor robotic
system simulates the distributed processing and memory resources which are gath-
ered in a unified robotic organism. The hardware components used to develop this
multi—proceésor robotic system included the following.

e Analog Devices - Blackfin Prbcessor
e Blackfin Evaluation Board EVAL-BF5xx
- o Blackfin Extender Board EXT-BF5xx-Camera
e Blackfin Experimental board
e CMOS caméra sensor
e Robot base and Motor Control Boafd
e On-board Communication

° Navigati_on board

3.2.1 Analog Devices - Blackfin Processor

Analog Devices-Blackfin processors refer to the family of 16 or 32-bit micro-processors
with built-in Digital Signal Processor functionalities. These features are tradition-
ally only accompanied by small and power efficient micro-controller. Hence, it results
into a low power processor architecture that can run operating system and can si-
~multaneously handle complex numeric tasks such as real time H.264 video encoding.

41

3.2 Hardware Requirement for Organism Mode Scenarios

Because of its relevant features, many hardware development kits have used Black-
fin processors. Some of the Blackfin hardware development processors are BF522,
BF527, BF533, BF537 and BF561 etc.

Blackfin CM-BF537E Core Module

From the entire family of Blackfin processors, the Blackfin core CM-BF537E was
selected to be used on the robot organism. This core module comprises of three
main components, i.e. ADSP-BF537 Blackfin processor from Analog Devices, 32
MB SDRAM and 4 MB flash memory. As the Blackfin processor also integrates an
Ethernet controller, so a chip dedicated to Ethernet physical layer is also mounted
on the core. The provision of two 60-pin expansion connectors is made on the core
so that a variety of extension modules, provided by the company, can be connected
to the core. The hardware user manual for the core module is available from [91].
Figure 3.4 shows the top side of the core module CMBF537E. Some details about

the comprised components of CMBF537 core are given below.

Figure 3.4: Blackfin CM-BF537E core [91].

CM-BF537 PROCESSOR: The Blackfin processor combines DSP capabil-
ities and microprocessor features in a single architecture design. The provision
of microprocessor features is made by a 32-bit RISC architecture, a basic Memory
Management Unit (MMU) for memory protection, data cache, instruction cache and
by providing support for a variety of hardware peripherals. Like other processors,
Blackfin processor allows two modes of operation that are Supervisor and User mode.
In the supervisor mode, access to all resources can be made whereas in the user mode

some sources are reserved. A Single Instruction Multiple Data (SIMD) architecture

42

3.2 Hardware Requirement for Organism Mode Scenarios

is used to integrate DSP functionality in the Blackfin processors. This architecture
offers two hardware multiplier accumulators, two Arithmetic Logic Units (ALUs)
and a barrel shifter. The architecture allows the execution of three instructions per
clock cycle. In the instruction set of its processor, some instructions to facilitate
video and image processing are also provided. In general, BF537E processor has
maximum speed of 600 MHz, 132 Kilo-Bytes of on-chip memory (64 Kilo-Bytes in-
struction memory and 16 Kilo-Bytes is used as instfuctipn cache), 64 Kilo-Bytes
data memory (32 Kilo-Bytes used as data cache and 4 Kilo-Bytes can be used as
scratch-pad memory). An external SDRAM (upto 512 MB) can also be connected
through a PC-133 compliant controller. An address space of 32 bits is used for ac-
cessing memory and the I/O devices. A Direct Memory Access (DMA) controller is
also present for performing fast memory and I1/O transfers. More infbrmation about
- BF537E Blackfin processor is provided in the data-sheet [92] [93] and the hardware
reference manual [119]. Some of the key features of BF537E processor are given
below: ’

e Due to high execution speed, Blackfin BF537E processors fulfil the camera
devices needs. Space for later enhancement is also provided if more processing
power is required. ’

e.The processor architecture provides parallel peripheral interface (PPI). The
PPI has a dedicated clock inplit,' 16 data pins and 3 frame synchronisation
pins. For high speed transfers, DMA can be used, but PPI is made suitable for
a variety of applications by several general purpose modes. PPI is also used for
transferring data from camera devices. ' |

e Two bidirectional synchronous serial ports (SPORTSs) with adjustable word
length and support for frame synchronisation are also present. SPORTSs are
normally used to transfer digital data to DACs.

e The full duplex Serial Peripheral Interface Bus (SPI) is also supported. -

e A Fast Ethernet MAC peripheral, supporting operations like I0BASE-T and
100BASE-T modes is also an important feature of Blackfin processor.

" MAIN MEMORY: A 32 MB SDRAM is available on the core as a main mem-
ory. It supports the maximum clock speed of 133 MHz. The main memory is con-

nected - to the processor through data and address buses.

43

3.2 Hardware Requirement for Organism Mode Scenarios

FLASH MEMORY: A Flash memory is also integrated to the Blackfin core.
The total size of Flash memory is 4MB, but it is not fully addressable. It is divided
into two 2MB memory banks. A General Purpose I/O (GPIO) pin is used to switch
between its lower and upper 2 MB banks.

3.2.2 Blackfin Evaluation Board EVAL-BF5xx

Using an expansion slot, the BF537E core module can be connected to the evaluation
board EVAL-BF5xx. The basic components of the evaluation board are RJ45 Eth-
ernet plug, an SD card slot, a UART-to-USB converter, JTAG plug, two expansion
connectors, voltage regulator and a power connector. The evaluation board EVAL-
BF5xx is shown in Figure 3.5 below. The hardware user manual and schematic
can be found in [100]. BF537E core together with the EVAL-BF5xx provides a
basic embedded environment which can be connected to the development platform.
Using a UART-to-USB converter, the UART port of ADSP-BF537 processor can
be connected to USB port of the development platform. Using this connection
the communication is set-up with the development platform and program can be

downloaded and tested on the Blackfin processor.

Figure 3.5: Evaluation board EVAL-BF5xx [100].

3.2.3 Blackfin Extender Board EXT-BF5xx-Camera

To connect the evaluation board EVAL-BF5xx with the CMOS camera, the extender
board EXT-BF5xx-Camera is used as a bridge. The design of extender board is very

44

3.2 Hardware Requirement for Organism Mode Scenarios

simple and no microchips are installed on it. It simply provides connectors for one
LCD and two CMOS cameras. The extender board is used on the robot organism
to provide connection to the CMOS camera. The hardware user manual and the
schematic can be found in [101]. Blackfin Extender Board EXT-BF5xx-Camera is
shown in Figure 3.6 below.

Figure 3.6: Blackfin extender board EXT-BF5xx-Camera [101].

3.2.4 Blackfin Experimental Board

The Blackfin Experimental Board “EXT-BF5xx-EXP”, shown in Figure 3.7, is an
extender board which can plug-on the EVAL-BF5xx board. It provides all the con-
nectors from the Blackfin processor (e.g. Digital I/O, PPI signals, Serial clock and
data lines, timers outputs, power and ground) on the solder-able pads. The Blackfin
Experimental Board was needed for two reasons. First is to provide interface be-
tween the Blackfin processor and the Motor Control Board (shown in Figure 3.9b),
which is further connected with the four servos used to drive the robot wheels. Re-
quired pulse width modulation (PWM) signals were generated from the Blackfin
processor using the on-board timers. These PWM signals were used to generate the
frequencies which controls the wheel speed through the servos. Similarly, to control
the direction of wheels rotation, the digital I/O were also routed from the Blackfin
processor to the Motor Control Board through the Experimental Board. The second
reason for using Experimental board was to interface the Navigation Board with the
Blackfin processor. For this purpose serial data and serial clock signals were required

and they could be made available through the Experimental board only.

45

3.2 Hardware Requirement for Organism Mode Scenarios

Figure 3.7: Blackfin experimental board “EXT-BF5xx-EXP” [106].

3.2.5 CMOS Camera Sensor

Two CMOS camera sensors, that is, OV7660 and OV7670, were selected to be used
with the robot organism. It was decided to use one of this to provide surrounding
awareness to the organism. These are low cost and low power consumption camera
sensors and could provide 640x480 (VGA) resolution images. These camera sensors
could be installed directly to EXT-BF5xx-Camera extender board, but for the proper
placement of the camera sensor on the organism, Flexi cable was used. In Figure 3.8

OV7670 camera sensor and Flexi cable are shown.

(b)

Figure 3.8: (a)Ov7670 camera sensor [107]. (b) Flexi cable [108].

3.2.6 Robot Base and Motor Control Board

The robot base from the Surveyor SRV1 robot was used on which all the Blackfin

processing boards, comprising the robot organism, were installed. This robot base

46

3.2 Hardware Requirement for Organism Mode Scenarios

includes four motors to drive the robot wheels and 7.2V 2AH Li-poly battery pack.
The robot base is shown in Figure 3.9a. To drive the robot motors, the Motor
Control Board from Surveyor robot was also integrated with the robot base. It is
shown in Figure 3.9b.

Figure 3.9: (a) Robot base for the organism [109]. (b) Motor control board [109].

3.2.7 Onboard Communication

To establish a wireless communication between the development platform and the
robot organism, Lantronix WiFi port from the Surveyor robot was also integrated
with the organism. For this purpose, the UARTO signals were routed from the
Blackfin processor to the Lantronix wireless board through the Experimental Board
“EXT-BF5xx-EXP”. The Lantronix port provides two wireless ports which can be
used to connect the two UART ports (i.e. UARTO and UARTI1) available on the
Blackfin processor. In the designed robot organism, only one UART (i.e. UARTO)
was used with the wireless board. With the Lantronix board on the robot, the
wireless baud-rate up-to 2.5Mbps can be achieved. The Lantronix WiFi board is
shown in Figure 3.10a and it can be very easily configured through the web browser
to work in wireless Adhoc or the Infrastructure mode.

Similarly, to establish a communication backbone in the robot organism, through
which the vision information can be distributed between the different processing
units, a high speed Ethernet communication medium was established. The Ether-
net cable (shown in Figure 3.10b) was used to connect multiple on-board Blackfin
processors. The connection to each Blackfin processor was established through the
Ethernet port available on the Evaluation Board EVAL-BF5xx.

47

3.2 Hardware Requirement for Organism Mode Scenarios

(@) <b)

Figure 3.10: (a) Lantronix matchport 802.11b/g WiFi [110]. (b) Ethernet communication cable.

3.2.8 Navigation board

A navigation board, shown in Figure 3.11, was also integrated with the robot or-
ganism. The sensors available on the Navigation board were 3 axis accelerometers,
3 axis magnetometer and an on-board GPS unit. It was added to the organism so

that some navigational information may be provided to the robot.

Figure 3.11: Navigation board M3 [111].

Finally, it was decided to make a complete robot organism with multiple on-board
distributed processing systems. In the robot organism, the processor connecting to
the vision sensor simulates the processing resources of the master robot and the rest
ofthe processors acts as a slave processing units. In the organism mode scenarios, the
master processing unit is made responsible for performing the organism locomotion
task. At the same time, it also execute light weight vision processing algorithms to
pre-process the raw image data and distribute it for further detail processing to the
other slave processing units. The complete robot organism hardware would include

the following elements:

* 1 robot base with four motors.

48

3.3 Selection of Operating System (Robot Firmware)

1 motor control board.

4 Blackfin processing units
* 4 evaluation boards (EVAL-BF5xx) to integrate the Blackfin processors.

e 1 extender Board EXT-BF5xx-Camera to attach Omni-vision camera sensor
with the master robot.

1 Blackfin experimental board with the master robot

1 CMOS camera sensor
¢ 1 wireless board
* 1 navigation board

The developed robot organisms’ front and side view is shown in Figures 3.12a
and b, respectively.

\a) \vJ

Figure 3.12: Robot organism.

3.3 Selection of Operating System (Robot Firmware)

The selection of an Operating System (OS) plays an important role in the application
development for any embedded system. For Blackfin processor, selection of uClinux
(micro-controller Linux) was made because of its rapid development and popularity
among many embedded software developers. uClinux is a customised version or

derived from the Linux 2.0 kernel. It was basically derived to target micro-controllers

49

. 3.3 Selection of Operating System (Robot Firzﬁware)

or embedded systems without Memory Maﬁagement Units (MMUs). It requires
GNU cross compiler toolchains and C-libraries-on the development platform (host
system), to compile applications for Blackfin .proces’sor. Some of the important
features of this OS are the following. | '

e Open Source
e Provide support for a large number of applications which ar;a in mature stage.
e Provide sﬁpport for easy system configuration.
° Many de\}eloped open source applications can be cross compiled.
"o Facilitates fhe development of applications with real time constraints.
) Provides'basic frame-Work, customised for Blackfin pfocessqrs.
e Allows the use of bés_ic Linux cbmmands

e Hardware driver support.

Using the uClinux operating system, the drivers for different on-board sensors
were developed. In the distributed vision procéssing research, the most important
sensor which needed the uClinux drivers, was the on-board CMOS camera sensor. As
already mentioned, for the swarm mode scenarios, a third party SRV1 robot was used
and for the organism mode scenarios a customised robot organism was developed.
The CMOS sensor on the SRV1 robot (Omni-vision OV7725) was different from the
one used on the robot organism (OV7670), so uClinux camera drivers for both of
them were developed. To déve.lop' the camera drivers in uClinux, the software was"

“required to access the CMOS sensor registors. For this purpose, I12C interface was
setup between the CMOS sensor and the Blackfin processor [119]. The I2C interface
uses two bidirectional lines, that is, serial data and serial clock lines. The serial clock:
line was used to synchronise the peripheral (i.e., CMOS sensor) with the Blackfin
processor. And using serial data line, the appropriate registers on the CMOS sensor
‘were selected and required data was written on it. Once all the sensor registers are
programmed then the sensor is ready to provide image data to the camera driver,
when required. , , A '

For robot locomotion, the drivers for driving the robot motors were also devel-
oped. For this purpose, the pulse width modulation (PWM) signals were generated

- from the Blackfin processor using the on-board timers. These PWM signals were -

50

3.4 Conclusions

used to generate the frequencies which controls the wheel speed through the servos.
To control the direction of wheels rotation, the digital 1/0 provided by the Blackfin
-processor were also used. As Navigation board was also integrated in the organism,
so the drivers for the different components-available on the navigation board (e.g.
Compass and Three axis-accelerometer) were developed in uClinux environment.

3.4 Conclusions

In this Chap.ter the basic hardware components and on-board firmware required to
execute the déveloped distributed vision processing algorithms on' the robots, have
been described in detail. To perform distributed vision processing in the swarm
mode scenarios, off-the-shelf Surveyor SRV1 robots have been selected. These robots
- will be used in the two swarm mode scenarios presented' in Chapter 6. Whereas,
for organism mode scenarios, a robotic organism comprising of multiple processing
modules is developed. This multi-processor robotic dr‘ganivsm is utilised in the two
organism mode scenarios presented in Chapters 7 and 8. For the robot on-board
- firmware, it has been concluded that, an operating system should be selected which
facilitates rapid software developmént and also helps in integrating open source
computer vision libraries, such as, OpenCV and OpenSURF. For this purpose, the
selection of open source uClinux operating system has been concluded to be the best
choice. ' '

51

| Chapter 4
Embedded Vision Processing

“In swarm robotic systems, the robots have limited memory and processing resources.

In such systems, the use of an on-board vision sensor produces a huge amount of
visual informétion. This information requires intensive processing to become mean-
ingful for the robot control. So, to start working with the distributed vision process-
ing in multi-robotics systems, it is necessary to develop basic vision algorithms for
processing the visual information. These algorithms are required to be customised
for the underlying embedded vision system based on the Blackfin processor. In other
words, it is required to develop vision algorithms which could run in the embedded
system environment and at the same time, they are also customised for the Black-
fin processor architecture. For this purpose, a small library of vision algorithms
is created. These vision algorithms provided the basis for all the scenarios which
addressed the vision processing in distributed robotic systems. This Chapter details
the developed vision .processing' algorithms and vision based basic functionalities
which the underlying swarm system requires in all the devised scenarios. One basic
functionality identified is obstacle avoidance which is essential ina sense that swarm
of robots are required to detect the presence of obstacles in the environment and
take decision accordingly. The second functionality which facilitates the swarm of
robots to become an organism is the ability to detect the docking ports of the robots
and also the energy points in the environment to perform energy foraging. Apart
~from describing these basic functionalities, this chapter also discusses the ekpéri—
mental results which are intended to demonstrate the real time performance of the
developed vision algo'rithm‘s.k This chapter is divided into the following sections.

e Robot Camera Calibration.

52 - -

4.1 Robot Camera Calibration

* Embedded Vision Algorithms.
« Vision Based Obstacle Avoidance.

* Vision Based Robot Docking Support.

4.1 Robot Camera Calibration

In Figure 4.1, an image captured by the robot vision system is shown. It can be
clearly seen that the image is too distorted near the boundaries. So, before applying
the vision processing algorithms on the images captured by the robot vision system,
the enhancement of these images was required. This image enhancement may not
be necessary for performing the basic tasks such as obstacle avoidance, but it is
essential for achieving reliable performance from the object and pattern recognition
algorithms. For performing this image enhancement, the camera calibration of the

robot camera sensor is needed.

Figure 4.1: Image captured by the robot vision system.

The objective of camera calibration is to find the camera parameters which defines
the relation between the 3D world coordinate points, and the 2D points on the
camera image. These parameters are represented in the form of a 3x4 matrix which
is called camera matrix in computer vision terminology. The relation between 3D

world points Cw and 2D image points C* in terms of camera matrix K is shown as.

Ci =(4.1)

53

4.1 Robot Camera Calibration

This equation when expanded, can be written as

su - Ty

sv | =AB | y, (4.2)

s Zw ' ‘
su . Ty | . ‘
sv | = A[RT} | . (43)
s - Zw

~ where, u and v are the 2D camera coordinates and s is the scale factor. The
3D world coordihates are represented as Ty, Yw, 2w. The camera matrix K is -
represented as A[RT] where A is the camera intrinsic matrix, R is the rotation and
- T'is the translation matrix of camera with respect to the world coordinate points
(World coordinate system is the reference coordinate system. It can be used as the
starting position of the robot in the test arena, or it can be fixed to the origin of
the camera position). R and T together represent camera extrinsic parameters B.
The camera intrinsic A and extrinsic B matrix can be expanded as
a7 U |
A= 0 oy v | ‘ (4.4)
0 0 1 4

8

T Ti2 T3 .

B= T21 T2 T23 "(4.5)

S Sk S
<

T31 T32 T33 Uz
0 0 0 1

. where, o, and a, represent the focal length of camera in terms of pixels. 7y is the skew
coefficient between z and y axes of image. And uo and vy are the principal points of
the camera. Similarly, 711, 712, T13, 721, T22, T23, T31, T32, 733 define the parameters of
rotation matrix and t,, t,, ¢, define the parameters of translation matrix. For camera

calibration purpose, a calibration grid pattern was used together with MATLAB
camera calibration toolbox [115]. Thirteen images of calibration pattern, captured
by the brobo_t vision sensor, were used as input to MATLAB camera calibration
toolbox. These images are shown in Figures 4.2 to 4.8. It can be noticed that the
images were taken while keeping the grid pattern with different orientation and tilt

. 54

4.1 Robot Camera Calibration

in front of the robot’s camera. In some of the images, the grid pattern was kept
very near to the vision sensor. This was done so that the distortion, which is high

near the image boundaries, can be removed from the image.

Figure 4.2: Robot images used for calibration: image 1 (left) and image 2 (right)

X

Figure 4.3: Robot Images used for calibration: image 3 (left) and image 4 (right)

The grid points on all the input camera images (shown in Figures 4.2 to 4.8)
were selected very carefully using the calibration toolbox. It was necessary to select
the grid points accurately as a little error caused poor calibration results. It is a
very important feature of the MATLAB Camera Calibration Toolbox that if some
grid points on the images are not selected properly, then the error caused by them
can be reduced later. For reducing this error, the toolbox enables to consider the
specific images again and re-select the grid points. The camera intrinsic parameters

generated by the toolbox after complete camera calibration are given as.

1135.98925 0 647.73695
4= 0 1168.25320 532.58715 (4.6)
0 0 1

55

4.1 Robot Camera Calibration

Figure 4.4: Robot images used for calibration: image 5 (left) and image 6 (right)

Figure 4.5: Robot images used for calibration: image 7 (left) and image 8 (right)

Figure 4.6: Robot images used for calibration: image 9 (left) and image 10 (right)

In Equation 4.6, all measurements are defined in milli-meters. Using these ex-
tracted camera parameters, the 2D grid points were re-projected on all the input
images. These re-projected 2D points on the images are shown on the left column
of Figures 4.9 to 4.13. The enhanced images, after removing the distortion, are also
shown on the right column of Figures 4.9 to 4.13. It can be seen on all the en-
hanced images that the distortion was removed properly. The removal of distortion

is very clear from the grid lines. These lines were not appearing straight in the input

56

4.1 Robot Camera Calibration

Figure 4.7: Robot images used for calibration: image 11 (left) and image 12 (right)

Figure 4.8: Robot images used for calibration: image 13

images, but after enhancement, the grid lines appeared considerably straight even
near the image boundaries. The computed intrinsic parameters were used on-board
to enhance the images, captured by the robot vision system, before passing them
on to the vision algorithms for detailed processing. In most of the vision systems,
the effect of camera distortion can be controlled up-to some extent when the cam-
era driver initialises the camera modules and programs the hardware registers of
the camera. But for the CMOS camera used on-board in the robot organism, the
camera drivers were developed in this research for uClinux operating system and
no register settings were found which could help avoiding this calibration. So, the

camera calibration step was needed after the image capturing phase.

57

4.1 Robot Camera Calibration

Image | - Image points (+) and reprojected grid points (o)

Image 2 - Image points (+) and reprojected grid points (o)

200
300
400
500
600
700
800
900

1000

Image 3 + Image points (+) and reprojected grid points (o)

Figure 4.9: Calibration results: Re-projections on image (left) and enhanced image (right)

58

4.1 Robot Camera Calibration

Image 4 - Image points (+) and reprojected grid points (o)

+ Image points (+) and reprojected grid points (o)

Image 6,-Image points (+) and reprojected grid points (o)

Figure 4.10: Calibration results: Re-projections on image (left) and enhanced image (right)

59

4.1 Robot Camera Calibration

Image 7- Image points (+) and reprojected grid points (o)

Tmage 8 + Image points (+) and reprojected grid points (o)

Image 9 - Image points (+) and reprojected grid points (o)

100
200
300
400
. KM
600
700
800
900

1000
200 400 600 800 1000 1200

Figure 4.11: Calibration results: Re-projections on image (left) and enhanced image (right)

60

4.1 Robot Camera Calibration

Image 10 - Image points (+) and reprojected gnd points (0)

Image 11 + Image points (+) and reprojected grid points (0)

Image 12 wImage points (+) and reprojected grid points (o)

Figure 4.12: Calibration results: Re-projections on image (left) and enhanced image (right)

61

4.2 Embedded Vision Algorithms

Image 13 - Image points (+) and reprojected grid points (o)

600
700
300
900

1000

Figure 4.13: Calibration results: Re-projections on image (left) and enhanced image (right)

4.2 Embedded Vision Algorithms

A library of embedded vision algorithms was developed which provided the basic vi-
sion processing capabilities in all the distributed vision scenarios. These algorithms
were developed keeping in view that the Blackfin processor lacks Floating Point Unit
(FPU). So it was preferred to avoid floating point operations and rely only on deci-
mal operations. An effort was made to customise the vision algorithms specifically
for the Blackfin architecture. For this purpose, fixed point operations were used in
most parts of the vision algorithms. This was done because the Blackfin processor
architecture is a fixed point architecture and it provides hardware support for an
efficient implementation of fixed point operations. This hardware specific customi-
sation was necessary to achieve real time performance of the vision algorithms. The

vision algorithms included in the library are explained in the following sections.

4.2.1 YUYV to Colour Image Conversion

By default, the image captured by Blackfin BF537E processor using Omni-vision
OV7670 CMOS camera module is in YUV (where Y gives intensity, U and V provide
the chrominance information) format. To perform a colour image processing, YUV
to colour image conversion is required. For every pixel, YUV values are manipulated
to extract Red, Green and Blue colour information. An example colour image
obtained after performing YUV to colour image conversion is shown in Figure 4.14.
The selection of this picture is made so that the range of different colours can be

observed which guarantees proper implementation of algorithm.

62

4.2 Embedded Vision Algorithms

Figure 4.14: Image obtained after YUV to colour image conversion.

4.2.2 Colour to Grey Scale Conversion

To perform image processing on grey scale images, colour to grey scale image con-
version was required. For every pixel, Red, Green and Blue colour values are
weighted by 30%, 59% and 11%, respectively, to obtain the corresponding grey

scale values. To achieve this, the following simple equation was implemented.

G=03xR+059xG+011 x B 4.7)

where the Red, Green and Blue values of the pixels are represented by R, G, and
B, respectively. And G is the Grey scale value generated.
An example colour to grey scale converted image is shown in Figure 4.15.

Figure 4.15: Image obtained after colour image (left) to greyscale image (right) conversion.

63

4.2 Embedded Vision Algorithms

4.2.3 Grey Scale Gradient

To obtain the grey scale gradient, Sobel and Canny operator based gradient com-
putation algorithm was implemented. Here, the process of obtaining gradient using
Sobel operator is presented. To obtain gradient in x and y directions, following
Sobel operators were used. The assumed x and y directions of the image are also
shown in Figure 4.16.

> X

Image
S~
1 2 r -1 0 1
0 0 0 -2 0 2
“1 _2 ‘51 _1 O 1
Gradientinx Gradient iny

Figure 4.16: Image coordinates and Sobel operator for gradient in x and y direction.

An example grey scale gradient image obtained from the implemented algorithm

is shown in Figure 4.17.

Figure 4.17: Greyscale image (left) and gradient image (right) obtained from BF537E processor.

64

4.2 Embedded Vision Algorithms

4.2.4 Colour Gradient

To obtain the colour gradient [102], Sobel operators were applied in x and y direction
on Red, Green and Blue channels separately. Let GxR, GyR be the gradient obtained
when Sobel operatorapplied in x and y directions of Red channel, similarly GxG,
GyG forGreenchannel and GxB,GyB for Blue channel.Then the following set of

equations were implemented to obtain the final colour gradient magnitude.

Gxx = GxR2+ GxG2+ GxB2 (4.8)
Gyy= GyR2+ GyG2+ GyB2 (4.9)
Gxy = GxR x GyR + GxG x GyG + GxB x GyB (4.10)

Orientation and Magnitudeinformation of the gradient are obtainedusing the
following equations.

X arctan — Gxy) _ {41{[15
v

Magnitude —\/ x x [(Gxx + Gyy) + ((Gxx —Gyy) X cos29)+ (2 x Gxy x sin20)\
(4.12)

An example colour gradient image obtained using the implemented algorithm is
shown in Figure 4.18. The reason for using this image is due to the presence of
range of different colours.

Figure 4.18: Colour image (left) and gradient image (right) obtained from BF537E processor.

4.2 Embedded Vision Algorithms

4.2.5 Grey Scale and Colour Image Segmentation

A Region Growing based Image segmentation algorithm was implemented. The ba-
sic idea of region growing algorithm is that, if intensity difference of the current
pixel in the image from the neighbouring pixels lies within some predefined thresh-
old, then the current pixel and its neighbouring pixels are merged into one region.
A8 adjacency criteria is implemented so that the region can grow in all possible
directions from the current pixel. This criterion states that while processing every
pixel, its eight neighbouring pixels are also checked whether they fulfil the criterion
or not. It means the region can grow in eight different directions. The concept of
region growing and A8 adjacency is also shown in Figure 4.19. While segmenting
grey-scale images, only one grey-scale intensity channel is processed, whereas for
processing colour images, the Red, Green and Blue colour channels are processed
in parallel. In case of colour image segmentation, for a pixel to become a part of a
region, the difference of its Red, Green and Blue colour values from the mean Red,
Green and Blue values of the region should all be within some predefine threshold.
An example colour segmented image obtained from BF537E processor is shown in
Figure 4.20.

Figure 4.19: A8 adjacency. Directions in which region can grow is shown by arrows.

4.2.6 Colour Blob Detection

A colour blob detection algorithm was implemented to detect different colour blobs
in the input images. The algorithm was configurable to detect different colour blobs

by adjusting its input parameters. This algorithm directly processed the YUV im-

66

4.2 Embedded Vision Algorithms

Figure 4.20: Colour image (left) and segmented image (right) obtained from BF537E processor.

ages. The reason for not using RGB format for input image is that, the RGB format
did not separate the luminance information (i.e. the brightness) from the chromi-
nance information (i.e. the colour itself). For example, in RGB format of the image,
it is not possible to determine whether the colour is red or not by simply applying
a threshold on R, G and B colour values. In YUV format, Y provides luminance,
whereas U and V provide the chrominance information. In the current implemen-
tation, the chrominance information is utilised to detect the different colour blobs.
The UV coordinate plane providing the chrominance information is shown in Fig-
ure 4.21.

0 255

Figure 4.21: UV plane providing the chrominance information.

Now from Figure 4.21, it seems very easy to apply threshold on UV values for
the selection of colour blobs. For example, for the detection of Red colour blobs, V
values greater than 190 and U less than 200 are selected. This range of UV values
is identified by the black boundary line in Figure 4.21. It can be noticed that,
the range of U values greater than 130 seems not required. But this range is used

to make the algorithm more insensitive to the changes in lighting condition. An

67

4.2 Embedded Vision Algorithms

example image showing the detection of red colour blob in input image is shown in
Figure 4.22. The reason for using this image is that, it contains the range of different
colours and detection of red colour in this image guarantees proper implementation

of colour blob detection algorithm.

Figure 4.22: Colour input image (left) and processed image (right) showing detection of red colour
blobs.

4.2.7 Image Erosion

An image erosion algorithm was implemented for grey scale images. The size of
window used for erosion is made configurable. An example image showing proper
implementation of erosion algorithm is shown in Figure 4.23. The window size used

to obtain this output image is 5x5 pixels.

Figure 4.23: Input image (left) and processed image (right) obtained after erosion.

4.2.8 Image Dilation

Similar to image erosion, an algorithm to dilate grey-scale images is also imple-

mented. The size of window used for dilation is made configurable. An example

68

4.3 Vision Based Obstacle Avoidance

image showing proper implemeﬁtation of dilation algorithm is shown in Figure 4.24.
The window size used to obtain this output image-is 5x5 pixels.

Figure 4.24:'Input image (left) and processed image (right) obtained after dilation.

4.3 Vision Based Obstacle Avoidance

In this section the research undertaken for the development of the vision based ob-
stacle avoidance strategies, is presented. Obstacle avoidance is one of the important - |
. aspects of mobile robots. Without it, robotic movements would be very restrictive.
This functionality is also needed in every distributed vision processing scenario as
the robots will be performing operation in the environment, where obstacles are
also p'resent. There are many other sensors which can be used for achieving ob-
stacle avoidance tasks such as, infrared and laser range finders. But in the current
scenarios, as the vision information is needed any way for the distributed vision pro-
cessing tasks and knowing that it‘pr’ovides rich surrounding awareness which could
be efficiently used for different purposes. So based on this fact, it is also utilised
for performing the obstacle avoidance task. There are many ways to accomplish

obstacle avoidance, but efforts were made to devise an obstacle avoidance algorithm

with smallest computational complexity. For example, algorithms with more float-
ing point operations have more computational complexity and execution time. And

knowing that Analog Devices BF537E processor is a fixed point processor so floating
point operationsare not recommended as it slows down the performance. Therefore,

algorithms with less floating point operations are preferred.

69

4.3 Vision Based Obstacle Avoidance

4.3.1 Approaéhes To Obstacle Av,oidancev

Three obstacle avoidance approaches were implemented and tested ‘on the target
robot. These were segmentation based, optical flow based and path finder based
obstacle avoidance approach.

Segmentation based Obstacle Avoidance

A very simple segmentatibn baéed obstacle avoidance algorithm was implemented.
- To explain the basic concept, the image shown in Figure 4.25a is considered. This

~ image shows couple of obstacles placed on a test arena. Some assumptions were made '

in this obstacle avoidance algorithm. For example, it was assumed that, the robot is
placed on a flat ground and the camera was placed relatively straight or slightly tilted
- down. Now by looking at this image, it could be noticed that the ground surface of
the test arena had more or less the same colour. After segmentation algorithm was
applied, the resultant segmented image obtained is shown in Figure 4.25b. - .

The next step was to determine which region in the segmented image was the
floor. One way to isolate the floor was to assume that the biggest region is the floor.
But this assumption was not true when the robot was in front of a very'big' obstacle
as in that case, the region representing obstacle was the biggest. In the current
implementation, the speed of the robot was set to guarantee that, the robot was not
very close to the obstacle. With this implementation, the region covering the middle
bottom of the image was considered the ground region as this part of the image was
the one closest to robot camera. Sometime while turning, there was a possibility
that the obstacle was very close to robot in the robot field of view. In this scenario,
the robot could collide with the obstacle, assuming the obstacle region as the floor.
To overcome this problem, the robot kept track of the intensity of the ground region
in the last frames. If there was a sudden change in the ground region intensity, then
the robot determines that it was very close to the obstacle. The robot moved back a
small distance to get ground floor in its field of view. With these additional checks,
the assumption that the floor region was the one covering the middle bottom of the
image works well. Following this assumption, the isolated ground reglon from the
rest of the obstacles is shown in Figure 4.25¢.

Now to determine the ground map visible to the robot the bottom of the image
was considered initially as shown in Figure 4.25¢ and filled (filling was performed
with White pixels) vertically pixel by pixel until the obstacle boundary encounter

70

4.3 Vision Based Obstacle Avoidance

Figure 4.25: (a) Colour input image, (b) Processed image obtained after applying segmentation,
(c) Initial ground map isolated from obstacle’s, (d) Ground map visible to the robot vision system.

(i.e. the Black pixel detected). Upon detecting the obstacle boundary, the rest of
the pixels to the top were filled with Black pixels. The same was performed with all
columns. The resultant visible ground map is shown in Figure 4.25d. In this image,
the final visible ground map is also refined by the image dilation algorithm. Now
in this final ground map, the white region is the area where robot can move freely
without colliding with the obstacle. In the current implementation, the resolution of
the images captured by the robot is 160x120 pixels (initially, the experiments were
performed with the resolution of 320x240 pixels, but to reduce the computational
time, 160x120 resolution was selected). If from centre bottom of the final ground
map, robot detected continuous white pixels greater than 30 in vertical direction,
then it went straight ahead. It also checked whether any obstacle from left and right
side of the robot were not very near and there was enough space to go forward. If

the distance in vertical direction was less than 30 pixels, then the algorithm checked

71

4.3 Vision Based Obstacle Avoidance

<

from which part of the image (either left or right), the robot was closest to the
- obstacle. The robot took a turn in the direction opposite to the one from where it
- was closest to obstacle (i.e. If on the left side, white pixels in vertical direction was

less than right side, then Tobot took a right turn). Using this segmentation based

approach, the sequence of processes followed by the robot to avoid obstacles were
 the following. ' '

‘e Capture image
e Perform image conversion to grey scale

e Perform grey scale image segmentation. In segmentation results, there is pos-
sibility that obstacles shadows on the ground are also identified as separate
regions rather than a common ground region. The part of image representing
shadow image has intensity values slightly different from the ground region.
To overcome this problem, a large threshold value was used for segmentation
process. This value also resulted into lower number of segmented regions in the
resultant segmented image. ' '

e Remove small segments from the segmented image. This was used to further
reduce the number of segments to process. Moreover, if some dark spots were
preseﬁt on the ground plane, then they could be identified as a different segment
and could act as an obstacle. This could result into a ground map which was

different from the expected one. So to overcome this problem, a routine to -

‘remove small segments (segments comprising of pixels less than some predefined
number) was implemented. |

e Determine the ground map visible to the robot.
‘e Perform dilation on the visible ground map to refine the results.

e Determine the distance to obstacle in pixels. * If distance was greater than
predefined number then go forward, otherwise turn the robot in the direction
“opposite to the one where the obstacle is closest to the robot.

' Oﬁtical Flow based Obstacle Avoidance

An optical flow based control algorithm for obstacle avoidance was also implemented.
There are many methods to determine optical flow from a sequence of images. For

72

4.3 Vision Based Obstacle Avoidance

example; Kevin S.Pratt [42] used Lucas-Canade optical flow based obstacle avoid-

ance algorithm for MAVs in urban environment. And Kahlouch. [43] used Horn

and Schunck optical flow based algorithm for avoiding obstacle in their autonomous

ground robot. The selection of which optical flow algorithm to use is subjective

to the application, whether the resultant motion estimation information obtained
from optical flow is intended to be used for robot navigation, obstacle avoidance,

object tracking or some other application. One of the most important requirements

is the execution speed. If the algorithm to obtain optical flow information is highly

accurate, but cannot provide the output in necessary response time, then it is use-
less. ‘Similarly, the algorithm is also useless if it is very efficient but cannot provide

the necessary accuracy. Hongche [95] provides a detailed analysis on “Accuracy vs.

Efficiency Trade-offs in Optical Flow Algorithms”. For applications like navigation,

high accuracy is utmost important as a little error in the rotation estimation can

result into a big error in the robot estimated position and hence in navigation. For

applications like obstacle aVoidance, a compromise on accuracy can be made, but -
efficiency is important as if the algorithm fails to take decision within necessary
response time, then the robot can collide with the obstacle. In the current imple-
mentation, Horn and Schunck optical flow [96] based obstacle avoidance algorithm
was implemented. Horn and Schunck derived equations that relate the image bright-
ness at a point to the motion of the brightness pattern. Let the image brightness at
peint (z,y) in the image plane at time ¢ be denoted by E(z,y,t). When the image
pattern moves, the brightness of a particular point in the image pattern is constant.
This led to the following equations |

dE
— =0 . 4.13)
4 dt ()
Using chain rule Equation 4.13 can be written as, '

OE dz OE dy OE

<%XE+.—8_y—th+E 0 (4.14)
OF OF O0E
| a—xxu+%xv+§50 _ - (4.15)
Where,
, dz dy s
Exu+Eu+E, =0 (4.17)

73

4.3 Vision Based Obstacle Avoidance

Equation 4.17 is a single linear equation with two unknowns (i.e. # and v). The
equations used to obtain the three partial derivatives Ex, Ey and Et are given below.

The detailed derivation of these equations can be found in [96].

Ex - NEij+iNe—Eijr-bEi+ij+ifi—Ei+ij "+ Eij+'leii—Eij i-+Ei+ j+ifrH—Ei+ij "]

(4.18)
Ey ~ N[zt jik Eij+i pd-EiNijEijk+id-Ei+ijtgfctl Eijpjct]
(4.19)
Bt ~ -[Eijfcti—Eij "+ Ei+ij"+i—Ei+ij Eij+it+i—Eij+iNd-Ei+ij+i’+i—
(4.20)

It can be noticed that, the estimates EXx, and Et are obtained by taking the
average of the first four differences taken over the adjacent measurements. The

relationship in space and time between these measurements is shown in Figure 4.26.

y axis time axis

i+1

k+1

Figure 4.26: The estimates of three partial derivatives Ex, Ey and Et of image brightness at the
centre of the cube are each obtained from the average of first differences along four parallel edges
of the cube. Here the index corresponds to the x direction in the image, the index V to the y
direction and index lies in the time direction.

Similarly, to obtain optical flow vectors u and v the following equations can be

used, respectively.

untl =Un_ Ex[ExunT Eyvn+ Et) 421

74

4.3 Vision Based Obstacle Avoidance

E,|E,@" + E, " + Ey] . ‘
,v‘n+1 =" — Yyl . yv . . (422)
a2+ E2 + E2 -

‘The above are the recursive equations for obtaining the optical flow vectors.
~ Where a is a weighting factor which is also used to avoid division by zero. 4" and
7" are local averages and are defined as '

1 : .
uz,g, [uz— ,],k_l_ul,]-l-l k+ul+l,j,k+ul,] 1 k]+ [uz—— 1,71, k+uz— 1,7+1, k+uz+1,J+1 k+u1+1,] 1 k:]
, : ' (4.23)
_ 1 ’
Vijk = '6[vi~1,j,k+'Ui,j+1,k+vi+1,j,k+vi,j—1,k]+ [Vic1,j—1,6FVim1,541, k+Uz+1,J+1 ki1 j-1,k]
(4.24)

The detail derivation of these equations can be found in [96]. It can be seen from

12

the above equations that obtaining the optical flow information is a computation-
ally expensive process as to process every pixel, many floating point operations are
performed. As mentioned previously, Blackfin processor is not good in performing
floating point operations, so for computing the three partial derivatives E,, 'E and
E,, the decimal operation was performed in place of ﬁoatmg point operatlon This
‘reduces the accuracy of the computed optical flow vectors, but at the same time it
also reduces the computational complexity of the algorithm and also the execution -
time. Another approach used to reduce the computational complexity is to scale
the grey scale image values by some factor (for example, 10000) and then perform
the decimal operation in place of floating point operation. This way, it is defined in
the beginning that in floating point format, up to what decimal point the precision |
lost is affordable. With this approach, the resultant optical flow vector which is
1.3978654 when floating point operation is used, will now become 13978 if decimal
operation is used with scale factor set to 10000. | ‘ o _

The optical flow vectors, obtained using the above procedure, can be split into
two components, the rotational (x component of flow vector) and the translational
component (y component of the flow vector). Once the opfical flow vectors are ob-
tained, the next task is to determine when the obstacle is very close to the robot. In
typical approaches [43] the focus of expansion is calculated. Focus of expansion is a
singular point on the image plane from where the image motion (due to translational
motion of robot) everywhere is directed away. The focus of expansion is shown in
Figure 4.27. . _

Using the translational component of the optical flow vector and the calculated

75

4.3 Vision Based Obstacle Avoidance

Figuré 4.27: Focus of expansion (FOE).

FOE, the Time To Contact (TTC) to the obstacle is computed. The equatlon used

to determine the time to contact is glven as.

TTC = = (4.25)

14

- Where V, is the translational component of the flow vector and A; is the distance
~of the point (:zﬁi, ;) on the image plane from the focus of expansion. A lower thresh-
old value can be applied to the time to contact information such that, whenever
the time to contact is less than that threshold value, the robot determines that the
- obstacle is very close to the robot and necessary action is required.
The optical flow based approach used in this research, is based on a vefy simple
strategy. Based on the optical flow field, every time the magnitudes of the optical
_flow vectors of the left and right half of the image were calculated. If the sum of these
" magnitudes exceeded some predefined threshold, it was assumed that the obstacle
was in front of the robot. Then the flow magnitudes computed for the left and the
right half were used to determine the direction in which the robot was required to
turn. If the flow magnitude from left half was greater than the right half, then it
was assumed that the robot was closer to the obstacle from left 51de e 11; took a
. nght turn.

76

4.3 Vision Based Obstacle Avoidance

Path Finder Approach

The last vision based approach used for obstacle avoidance is given the name, ‘“Path
Finder”. In this approach, rather then segmenting the whole image, the segmenta-
tion is performed from the bottom part of the image only. This way, the biggest
segment resulting from the ground, providing the ground clearance, can be deter-
mined and finally can be used to determine the distance from obstacle lying in front
of the robot. The basic idea is illustrated in the Figure 4.28.

Figure 4.28: Path finder approach to obstacle avoidance

4.3.2 Experimental Results

In this section, the results obtained from the implemented obstacle avoidance ap-
proaches are presented. The objective of explaining the results here is that, the
developed obstacle avoidance approaches can be efficiently executed in real time.
An effort was made to minimise the execution time of these approaches so that they

can be executed in parallel to the distributed vision processing tasks.

Segmentation Based Obstacle Avoidance - Experiments

To test the image segmentation based obstacle avoidance algorithm, a test platform
for SRVI robot was developed. To make ground plane, white sheets of paper were
joined together and some objects were placed on the ground plane which acted as
an obstacle for the robot. In Figure 4.29, a view of the testing platform with SRV1
robot and many obstacles placed on it is shown.

The SRVI robot has a wireless connection to the development platform and

through this wireless connection the processed images can be uploaded to the de-

77

4.3 Vision Based Obstacle Avoidance

obstacles

SRY1
Robot

Figure 4.29: Test platform for SRV-1 robot with obstacles placed on it.

velopment platform for debugging. This image upload process is a slow process.
Moreover, if the robot is processing stream of images for performing obstacle avoid-
ance task, then uploading the stream of processed images can slow down the per-
formance of robot. Due to this, the required response time for processing images
and necessary action taken by the robot to avoid obstacle cannot be achieved by the
Blackfin processor. To view the processed images by the robot, when it is moving
towards the obstacle, the robot was programmed to move in non continuous fashion
(i.e. robot moved a small distance, stopped and executed the segmentation based
obstacle avoidance algorithm, transmitted the processed images to the development
platform and then moved again). This way, some processed images were uploaded
by the robot when it was moved in the testing platform with the position of obstacle
arranged as shown in Figure 4.30.

On the right side of Figure 4.30, the trajectory followed by the robot is shown.
The robot has gone straight, encountered the first obstacle and took a right turn.
It has gone straight again, encountered the second obstacle, and took a right turn
and then simulation over. The processed images uploaded from the robot are shown
in Figures 4.31 to 4.37. In Figures 4.31 to 4.37, on the left most side, raw image
stream captured by the robot vision system is shown. Image resolution is set to
120x160 pixels to reduce the computational load. In the middle, the processed im-
ages obtained after performing segmentation and removing small segments is shown.

On the right most side, the final visible ground map obtained is shown. As already

78

4.3 Vision Based Obstacle Avoidance

Figure 4.30: In left image robot environment and placement of obstacles are shown. In right image,
the path followed by the robot is shown.

mentioned, if the number of white pixels from the middle bottom of the image to
the obstacle (shown by blue line in the right column images) are greater than 30,
then robot moves forward assuming that the obstacle is far from the robot. It also
checks for enough free space for robot to go forward. For this purpose 80 pixels wide
region (shown by red line in the right column images) covering the middle bottom
of the image is also scanned. For example, in the images shown in Figures 4.31 to
4.37, from steps 1to 9, the distance to obstacle was greater than 30 pixels so robot
kept on moving forward. But in the image shown in step 10, the distance to obstacle
is less than 30 pixels. Moreover, in step 10, the information obtained from 80 pixels
wide scanned area also tells the robot that it is closer to the obstacle from the left
side. Considering these facts, the robot control algorithm takes the decision to turn
right. Now again from steps 11 to 12, the robot finds enough space to move forward,
but in step 13, the distance to obstacle is less than 30 pixels. Information obtained
from 80 pixels wide scanned area again tells that the robot is closer to the obstacle
from left side. So the robot control algorithm takes the decision to turn right. After
turning, the images processed by the robot give information about the new scene is
shown in step 14. Here, the test simulation ends at step 14.

Using this segmentation based obstacle avoidance algorithm, many tests were
performed. One of the paths followed by the robot, when obstacle avoidance algo-
rithm was tested in the testing platform, is shown in Figure 4.38. The path followed
by the robot is drawn in three different colours. If the same colour is used for
representing the path, then the fact that the robot trajectory is crossing at many

places makes it difficult to understand the exact path followed by the robot. Con-

79

4.3 Vision Based Obstacle Avoidance

Figure 4.31: Processed images obtained from segmentation based obstacle avoidance algorithm.
Steps 1 and 2

Figure 4.32: Processed images obtained from segmentation based obstacle avoidance algorithm.
Steps 3 and 4

sidering this problem, the places where the robot trajectory is going to overlap the
previously followed trajectory, a different colour is used to represent the path. In
Figure 4.38, the robot has started from the red path and the test ends when the
green path ends. The starting point and the ending point of the path followed by
the robot are also identified in the figure. The maximum frame rate achieved with
segmentation based obstacle avoidance approach is 2.46 frames per second, where

the image resolution is kept 160x120 pixels. This means, the algorithm requires

80

4.3 Vision Based Obstacle Avoidance

3&jK\#k

EEEEEEEEEEEEEER 4 |

Figure 4.33: Processed images obtained from segmentation based obstacle avoidance algorithm.
Steps 5 and 6

Figure 4.34: Processed images obtained from segmentation based obstacle avoidance algorithm.
Steps 7 and 8

406 msec to process one image. This is sufficiently fast considering the processing
power of the Blackfin processor. With this approach, it is possible to move the robot
without colliding with the obstacle in real time. But it is found that this approach
is not fast enough to execute in parallel to the distributed vision processing scenario
as it does not leave enough processing resources for performing the actual task of
distributed vision processing.

81

4.3 Vision Based Obstacle Avoidance

Figure 4.35: Processed images obtained from segmentation based obstacle avoidance algorithm.
Steps 9 and 10

Figure 4.36: Processed images obtained from segmentation based obstacle avoidance algorithm.
Steps 11 and 12

Optical Flow based Obstacle Avoidance - Experiments

In this section, the results obtained from optical flow based obstacle avoidance are
presented. As already explained in the previous section, when the robot is moving
and at the same time processing stream of images to take some decision, transmit-
ting the processed images to the development platform is not possible. As image
transmission is a slow process and to view the results obtained after every step, the

raw image and optical velocity vectors in x and y directions for the whole image

82

4.3 Vision Based Obstacle Avoidance

Figure 4.37: Processed images obtained from segmentation based obstacle avoidance algorithm.
Steps 13 and 14

Figure 4.38: Path followed by the robot when segmentation based obstacle avoidance is used.

were transmitted. This sums up to three times the number of bytes the actual im-
age comprises of. So acquiring the optical flow field computed by the robot for the
complete experiment is not performed.

An example optical flow field obtained when the robot is moving in the testing
platform towards an obstacle is shown in Figure 4.39. Frame 1 is the first image
taken by the robot and frame 2 is the second image. The optical flow field obtained
between these two consecutive frames is plotted on frame 1 in yellow and shown in

the bottom of figure. In Figure 4.40, a zoomed in version of optical flow field is also

&3

4.3 Vision Based Obstacle Avoidance

Frawr 1

Right Half Of
hnagf-

Figure 4.39: Optical flow field obtained between two consecutive images.

shown. Note that, the optical flow vectors obtained are in the correct direction (i.e.
downward, opposite to the direction of motion), but there are some vectors which
are in random directions. These vectors act as noise. These random vectors can
be eliminated by considering only those vectors which share the same direction and
greater in number. This way of eliminating random vectors works well if the robot is
minimum at 6cm distance from the obstacles such that, the obstacle is not covering
the field of view of robots’ camera. But when robot is very close to the obstacle then
obstacle boundaries result into optical flow vectors in all directions and these vectors
cannot be considered as noisy vectors in random directions. However, these noisy
vectors are not greater in number and in the current implementation of obstacle
avoidance, it does not affect the performance.

As mentioned before, every time the magnitudes of the optical flow vectors of the
left and right half of the image are calculated and if the sum of these magnitudes
exceeds some predefined threshold then the obstacle is assumed to be very close.
The way images are divided into left and right half is shown in the bottom right
of Figure 4.39. The flow magnitudes computed from these left and the right half
also provide information about the direction in which the robot is required to take
turn. The maximum frame rate achieved with optical flow based obstacle avoidance

approach is 3.5 frames per second, where the image resolution is kept 160x120 pixels.

84

4.3 Vision Based Obstacle Avoidance

Somr optical flon is in nrong direction
and acting

Figure 4.40: Zoom-in version of the optical flow field shown in Figure 4.39.

Figure 4.41: Path followed by the robot when optical flow based obstacle avoidance is used.

Following the above strategy, an example path followed by the robot is shown in
Figure 4.41. In the experiments, it is observed that, when the robot encounters an
obstacle and takes a turn and if after turning, it is very close to another obstacle,
then there are chances for the robot to collide with the obstacle. This is because the
algorithm is relying on the sum of the magnitudes of the optical flow vectors. And
when the robot is very close to the obstacle such that the obstacle surface is covering

the whole field of view of the robot, then there will be no optical flow generated

85

4.4 Energy Foraging

by the movement of the robot. So this behaviour of robot colliding the obstacle is
expected and is the drawback of this approach. ;

From the timing analysis of this algorithm, the execution time required by it to |
process one frame is 285 msec. The execution speed of this algorithm is found better
than the segmentation based approach, but it was again not good enough to execute
in parallel with the distributed vision processing scenarios. ‘

.Path Finder - Experiments

As mentloned this approach does not segment the whole image but tries to find
the blggest segment from the bottom section of the image, which ideally would be
resulting from the ground reglon Many experiments were performed using this
approach. The image size used with this approach is 320x240 pixels, which is hlgher
in resolution as compared with what is tested with the other approaches. This
algorithin is also found to be very reactive as it took only 22 msec to execute and
comparatively much faster than ségmentation and optical flow based approach which
took 406 msec and 285 msec respectively, to process one image. The selection of
this algorithm is made for use in the distributed vision processing scenario because
of two factors, namely: it is faster to compute and this élgorithm also leaves enough
time in which communication among robots and distributed vision processing task

(e.g. distributed appearance based recognition) can be performed.

4.4 Energy Foraging

As explained before, when the robots get hungry and running out of the battery,
they look for energy sources in the surrounding. Here vision support for finding the
energy sources is presented. To facilitate the identification of energy sources, it was -
decided to use different colour LEDs near the energy sources. Then using a colour
blob detection algorithm, the blob resulting from the LED could easily be identified
and location of energy source could be determined by the robot. In Figure 4.42, the
-output of the colour blob detection algorithm is shown when Red LED was used
near the energy source. In the left most image, the colour image is shown. In the -
middle, two images are shown. The top image shows the robot view and in bottom
the output of colour blob detection for the current view is shown. Similarly, the
robot. view and detected colour blob output, when the robot moved closer to the

86

4.4 Energy Foraging

last detected blob, is shown in the right most side of the figure.

Figure 4.42: Image showing the detection of red colour blobs when colour blob detection algorithm
is used.

4.4.1 Expermental Results

The results obtained for the colour blob detection algorithm, to facilitate robot to
locate energy resources for recharging battery, is presented in this part. To test
the effectiveness of the algorithm, the LED mounted on the extension cable was
used as an alternative to represent the energy source. So, whenever the robots
needed to recharge their batteries, they could, in parallel, process the stream of
images using the colour blob detection algorithm and could locate the charging
points. To test the performance of the algorithm, the robot was programmed to
work in parallel with obstacle avoidance (Path Finder based approach) and colour
blob detection mode to detect the LED. As long as the LED was not detected, the
robot continued to move and kept on avoiding the obstacles. As soon as the robot
found the LED, it will come out of the obstacle avoidance mode and tried to reach
the location where the LED was present. In Figure 4.43, the path followed by the
robot is shown. The objective of this experiment was also to show that the colour

2

blob detection algorithm discussed in the “Embedded Vision Library” section was
capable of running in real time. From the timing analysis performed during this
experiment, the execution time of this algorithm was found only 6 msec. This is
very promising and supports that this vision algorithm can run in real time while

leaving enough processing resources for the distributed vision processing scenarios.

87

4.5 Vision Based Docking Support

batUr-'

jk>4UI tPhot. SuoUuatjj for

Figure 4.43: Path followed by the robot to locate the energy resources.

4.5 Vision Based Docking Support

As discussed in Chapter 1, in the swarm robotic system considered in this research,
the robots were capable of forming a three dimensional organism by physically dock-
ing together. To achieve this, a computer vision based solution is discussed in this
section. On the docking side of all the robots, a special four LEDs pattern was
used. When the robot requires the other robots to dock to it, for forming an organ-
ism, it turned ON the four LEDs mounted on its backside. The other robots went
around and tried to look for the robot which had the four LEDs turned ON. Using a
computer vision algorithm, the robots tried to get close enough to the robot which
required docking operation. Once the robots were close enough then here the vision
based help for docking operation finishes. To achieve further precision in the align-
ment, the control was transferred to the Infrared sensor based docking operation,
which is not part of this study as it is not related to computer vision field.
Considering the distributed vision processing scenario presented in Figure 1.4, the
mobile robot went around in an unknown environment, doing obstacle avoidance and
computationally expensive appearance based search operation to look for the places
of interest. This was all based on input from vision sensor, so a very light weight
vision based docking algorithm was required to achieve the real time performance.
The fact, that this algorithm ran all the time (i.e. when docking was required) in

parallel with the other computation expensive vision algorithms and wireless based

4.5 Vision Based Docking Support

multi-robot communication algorithm. So this made the task more challenging.
Here a vision algorithm based on colour blob detection approach is presented. This
algorithm looked for the LEDs which were turned ON and were also in the required
known pattern. In the beginning, it seemed as the work could be done by identifying
the red blobs in the current image, filtering the blobs which were in the required
order to remove noise, measuring the distance between the detected LEDs blob to
figure out the distance from the robot and finally write a piece of control algorithm

to drive the motors. But the following observations made the task more challenging.

(i) When LEDs were turned OFF, then LEDs in red colour were detected as red
blobs in the image. But how it appeared when LEDs were turned ON? When
red LEDs were turned ON, then the centre of all the LEDs appeared red to
human eyes but to vision sensor it appeared as shown in Figure 4.44. For
comparison, a red LED in OFF mode was also present in the image. In case
of ON LEDs, it could be seen that the centre of all the LEDs appeared bright

White to the vision sensor.

Figure 4.44: Image showing LEDs used for docking operation

(i) As the Surveyor robots, used for experimentation, had only one camera in the
centre, so when the robot tried to get very close to object, the LED blobs go out
of its vision. This supports the idea that the alignment could be performed up

to some distance from the other robots which required docking. When robots

89

4.5 Vision Based Docking Support

were close enough then vision based help could not be provided for .precise
alignment and help from some other sensor was required.

(iii) The differential drive support on the Surveyor robots to perform robot motion
"did not allow very slow motion. The robot did not move if the speed reduced
from certain value. The‘_motors tried to move the robot but the robot appeared
to be too heavy to the motors to perform very precise movement. This obser-
vation was more true when motors tried to rotate the robot. This is mainly
because of the tank style treads tyres which increased the area by which the
robot was in contact with the ground surface. This resulted incfeasing the
robot grip to surface and caused lots of friction and hence restricted the precise
movement. -

(iv) When the robot was approaching' the four LEDs blobs, the blob did not appear
to be forming a reasonable required pattern. The pattern could be very tilted

depending on the direction and angle from which robot was approaching the
blobs for docking.

- Based on the above observations, it was required that a colour blob detection
based algorithm be adopted which also gave a certain level of confidence to drive
the robot in the right direction to perform the docking operation. One way to solve
the problem addressed in first observation was to explore for very bright spot in
the image only. But in this case, the colour of LEDs provided 1o information (i.e.
robot was treating LEDs of different colours equally). Also the bright white image
appearing in the background and reflections from the surfaces of objects around
(which in turn appeared to be bright White) caused extreme noise which resulted in
lowering the performance of the algorithm. It was therefore decided to breakdown
- the problem into a number of processing steps which in turn reduced the dimensions
of complexity in every processing step while not sacriﬁciﬁg the performance. The
operations done in the processing steps are the following: '

4.5.1 Blob Detection of Red LEDS in ON State

First of all, the image was processed with the developed blob detevctiovn algorithm

which was configured to detect Red colour blobs. The output of blob detection algo- |
rithm was further processed with the image dilation algorithm to fill the small holes
in the processed image. Normally an image dilation algorithm processes and di-

90

4.5 Vision Based Docking Support

lates the whole image. Considering the importance of processing time, a customised
dilation algorithm was implemented which, rather than dilating the whole image,
looked for only the part of image where the red blobs were detected and processed
it. Doing this was rather easy as the output image from colour blob detection algo-
rithm was a binary image. Now to show the performance of algorithm to detect the
blobs caused by red LEDs, the following figures are presented. Figure 4.44 shows
the colour image captured by the robot. This image shows the four red LEDs in
ON state and one LED in OFF state.

As mentioned before, the colour blob detection algorithm utilised the U and V'
images from YUV image format for blob detection so U and V' images of the above

input image are also shown in Figures 4.45 and 4.46 respectively.

sVGh

Figure 4.45: U image of Figure 4.44

In colour blob detection algorithm, all U values greater than 90 were considered
which also covered darker spots occurring around LEDs due to the presence of red
colour (i.e. Figure 4.45). As the U image did not provide the complete chrominance
information, so when U image was processed together with the V' image, then a
robust colour detection could be carried out. In Figure 4.46, it can be seen that the
image appears very bright where red LEDs are located. The LED in OFF state is
causing a perfect continuous bright spot in the image where the LED is located. But
the LEDs which are in ON state are causing brightness around the LEDs location
only but not in the centre which in-fact appears to be dark (i.e. not red) to the vision
sensor. So in the output image from colour blob detection algorithm, the unfilled
holes are expected in the centre of the red blobs caused by the red ON LEDs. This

91

4.5 Vision Based Docking Support

Figure 4.46: V image of Figure 4.44

was overcome by the use of a customised dilation algorithm. The processed output

image from this processing step is shown in Figure 4.47.

Figure 4.47: Output of colour blob detection algorithm

In order to determine the blobs caused by the LEDs in ON state, the brightness
information from YUV image was utilised. It is important to note that the feature
of ON LEDs, which in the beginning appeared to be a problem (i.e. the centre of the
LED image appeared bright White rather then Red), could be cleverly used to elimi-
nate the blobs caused by OFF LEDs. The output of colour blob detection algorithm

was further processed and only those blobs were extracted whose centre appeared

92

4.5 Vision Based Docking Support

to be bright White. The Y image in the YUV format provided the image brightness

information. The Y image resulted from Figure 4.44 is shown in Figure 4.48.

f'HIIDM L M

Figure 4.48: Y image of Figure 4.44

In Figure 4.48, it can be seen that it is very easy to identify the red LEDs which
are in ON state by simply thresholding the Y image and using it together with
the output of colour blob detection algorithm which is shown in Figure 4.47. The
final image showing the colour blobs resulted from LEDs in ON state is shown in
Figure 4.49. To increase the number of pixels representing the ON LEDs blobs, the

resulting image was further dilated.

Figure 4.49: Blobs resulting from red LEDs in ON state.

93

4.5 Vision Based Docking Support

4.5.2 Obtaining the Statistics of Red LED Blobs

To obtain the statistical information (i.e. the location of blobs in z and y coordinates

‘in image) of the red LED blobs, the output image shown in Figure 4.49 was processed
by a extract statistics algorithm. The image shown in Figure 4.49 is a binary
image in which 0 value is representing the dark part and 1 is representihg the
blobs caused by Red LEDs in ON state. Note that all the blobs appear as separate
segments. The developed statistics algorithm performed segmentation of the image.
* All the connected segments were given different IDs. This way, once the image was -
processed, a unique ID for all the pixels representing one blob (i.e. four unique
ID’s for four blobs) is produced. With the help of this ID, the centroid of all the
pixels contributing to one blob could be easily calculated. The processed image
providing statistical information of the LED blobs is shown in Figure 4.50. Using.
the statistical information, the centroid of LED blobs were marked with Red cross
sign.

Figure 4.50: Image representing blobs statistical information.

4.5.3 Classification of Red LED blobs

After determining the statistics, blobs satisfying the required pattern were classified
as Top, Bottom, Left and Right LED blobs. The classification algbrithm made a
reasonable assumption that while scanning the image from top to bottom, the first -
. blob found was most likely to be from the Top LED following some conditions.
Otherwise, the rest of the blobs were checked one by one. These conditions are as

94

4.5 Vision Based Docking Support

follows.

* Around the currently assumed Top blob, a cone shaped search field was defined
as shown in red colour in Figure 4.51. In this field, the algorithm tried to locate
the Bottom blob. Some checks were made to avoid the blobs resulting from
reflection of Top LED to be considered as Bottom LED blob. The bottom blob
should not be detected very close to the top blob. In the current implementa-
tion, it was defined to be detected at-least 20 pixels down from the top blob and
the blob size in pixels was almost the same as the top blob. Here, a 20 pixels
limit was determined empirically for QVGA resolution in which processing is

done.

* Once the top and bottom blobs were found, then their centre point was deter-
mined. Across this centre, 60 pixels wide search field was defined. The blob
which was found on the left side of this search field was most likely the blob
resulting from left LED. Then again, a cone shaped search field was defined,
extending in right direction (shown in yellow colour in Figure 4.51). Algorithm
searched this field to look for the blob resulting from right LED.

Figure 4.51: Search field for neighbouring blobs.

4.5.4 Control Algorithm to Approach the Blobs

Flow diagram of the control algorithm is shown in Figure 4.52. It performed the

following sequence of operations.

95

4.5 Vision Based Docking Support

Robot go around in
the environment

ound blobs \
pattern? " |lo

Get close to pattern .y

Distance
Awtop to bottom An Make anticlockwise turn,
left to right blob small or big depending on
Aequal? angle adjustment required.
preaching N Bring Leds back into view
from front?
Angle N) Go backward.
b/w left & right blob Rotate clockwise to
. negative move LEDs out of vie*'.
Alignmen
Done

Make clockwise turn,
small or big depending on
angle adjustment required.|
Bring Leds back into view

Go backward.
Rotate anti-clockwise to|
move LEDs out of view.

Figure 4.52: Flow diagram of control algorithm.

* Move robots in the environment and search for the blobs in the required pattern.
On finding the pattern, the algorithm performed the blobs classification. As
there was a strong possibility that the robot was not approaching the LEDs
from the front, but at some angle and this angle could be small or large (can
not be identified clearly from distance), so rather than performing alignment

in the first go, the robot first tried to get close to the blobs.

» If the distance between Top to Bottom and Left to Right blobs were equal
and robot was approaching from front, then robot assumed that the maxi-
mum precision was obtained using vision and control algorithm stopped there.

Otherwise, the robot determined the direction of its approach.

» If the robot was approaching the LEDs from left side with reference to the
LEDs locations, then the LEDs pattern appeared as shown in the Figure 4.53.

96

4.5 Vision Based Docking Support

The right LED blob made a negative angle with the left blob. The control
algorithm moved the robot backward, rotated it anti-clockwise so that the
LED blobs went out of its vision. Then the algorithm moved the robot to make
a clockwise turn. How big was the turn? It depended upon how big was the
angle adjustment required. It kept on making this turn until the LEDs were
back into its view field. Then it moved the robot again towards the blobs to

see the further correction required.

-rye angle with respect toTeft blob

Figure 4.53: Robot approaching the LEDs for docking from left side with reference to the LEDs
location.

* On the other hand, if the robot was approaching from right side then the LEDs
pattern appeared as shown in the Figure 4.54. The right blob made a positive
angle with the left blob. The control algorithm moved the robot backward,
rotated it clockwise and then made an anti-clockwise turn to bring the LEDs

back into view. This process continued until the robot align itself.

4.5.5 Experimental Results

The idea of using four LEDs on the back of robot and the vision based detection
of these LEDs to facilitate the docking operation was just described. Using this
approach together with a control algorithm, experiments were performed, for robot

alignment with the four LEDs in ON state. The results obtained from four of these

97

4.5 Vision Based Docking Support

Figure 4.54: Robot approaching the LEDs for docking from right side with reference to the LEDs
location.

experiments are presented. In Figure 4.55 the starting position of the robot, in four
conducted experiments, before alignment, is shown. In Experiments 1 and 2, the
robot was less misaligned but in experiments 3 and 4, more alignment was required
as robot was approaching the LEDs with a very sharp angle.

The trajectory followed by the robot in experiment 2, is shown in Figure 4.56.
As the robot was less misaligned with the LEDs shown on docking station, so con-
trol algorithm was able to achieve the vision based alignment in reduced time. In
comparison, the result obtained from experiment 4 is shown in Figure 4.57, where
more alignment was required to perform docking. In Figure 4.57, the different stages
followed by the control algorithm to perform alignment, are shown in terms of tra-
jectories followed by the robot in different colours. In the beginning, the robot
approached the docking station straight (shown in Black colour) and determined
the angle made by the left LED blob with the right blob. As the angle was large,
so it moved back and made a big turn while approaching the docking station to
reduce the error in angle (shown in blue). Finally, the robot was less misaligned so
it moved back again and made a short turn (shown in green). This time the robot
was reasonably aligned with the docking station and stopped further alignment.

The results obtained from the four experiments, after alignment was performed,

98

4.5 Vision Based Docking Support

.Xperime

xperimen:

Figure 4.55: Initial pose of the robot before performing alignment.

Experiment 2

Robot
aligned

Figure 4.56: Trajectory followed by the robot in experiment 2.

are shown in Figure 4.58. In all these experiments, the robots were almost fully
aligned with the four LEDs. This was the maximum support which vision could

provide in docking. If the robot tried to get further close, then LEDs went out of its

99

4.5 Vision Based Docking Support

Alignment

Robot
aligned

Further alignment
required

Figure 4.57: Trajectory followed by the robot in experiment 4.

vision (as the camera lies in the centre) and the robot could not take any decision
about alignment. For final mechanical docking and further precise alignment, the
control could rely on infra-red sensor information. Infra-red sensor provides accurate
information at short distances (i.e. 5 to 10cm). Following this fact, the vision
based docking algorithm will help the robots to get close (upto S5cm) to the docking
port. Then the algorithm will switch to the robot control based on infra-red sensor
information. Using infra-red sensor information, further alignment of the robot with
the docking port and final mechanical docking operation will be performed.

To demonstrate the functioning of vision based docking support in a swarm
robotic environment, an experiment was performed in which a number of robots
were looking for docking port collectively. The docking port was installed on one of
the robots. The robots were performing vision based obstacle avoidance, sharing in-
formation with each other and simultaneously looking for docking port. The robots
were performing this task collectively that was, when a robot in a swarm would
find the docking port, it would inform its team members to stop looking for the
docking port and quit the mission. After informing the team members, the robot
which found the docking port, aligned itself with the docking port using vision so

that docking operation could be facilitated. Several tests were performed using this

100

4.5 Vision Based Docking Support

ierimentl

perimentj

Figure 4.58: Pose of the robot after performing alignment.

approach. In Figure 4.59, one of the experiments is shown. Three robots were used
to perform the collective search operation. In the beginning, the LEDs used on the
docking port of the robot were turned OFF as shown in Figure 4.59a. The robots
started the mission with vision based obstacle avoidance, searching arena for docking
station and in parallel, also informing each other whether any of them have found
the docking port. Finally, one robot found the docking port, it informed the other
team members that they were no longer required to search for the docking station,
and align itself with docking station as shown in Figure 4.59b. All the other robots
left the search operation. It can be noticed that, this vision based docking support
may be used for the docking of two robots, so that they can become a single robotic
organism. Or it can be used for docking with the energy source so that battery

recharging operation can be performed.

101

4.6 Conclusions

Port ready
for dockinl

Robot aligned Docking port
for docking

Figure 4.59: (a) Swarm of robots starting collective search for docking port, (b) One robot finds
the docking port and the rest quit mission.

4.6 Conclusions

In this Chapter the development and implementation of basic vision processing
algorithms has been presented. These vision algorithms provide the basis for the
main distributed vision processing scenarios addressed in Chapters 6, 7 and 8. Using
these basic vision algorithms, the necessary functionality required by the robots
to move in the environment, that is obstacle avoidance, is also developed. The
developed vision based obstacle avoidance algorithm is utilised in both swarm and
the organism mode scenarios to facilitate a swarm of robots and a robotic organism
avoid colliding with a number of obstacles. For the vision processing algorithms
addressed in this Chapter, it is necessary that they achieve real time performance.
For this purpose, it has been concluded that the customisation and optimisation of

these algorithms is necessary for the target embedded system used on the robots.

102

Chapter 5

Multl-Robot Locallsatlon and
Trackmg System

Vision based robot tracking and localisation using a fiducial marker based approach
is adopted in many indoor multi-robotic research projects in which precise robot
position and orientation are required for certain objectives. In this chapter, a Multi-
~ robot Visual Tracking System is developed which performs the multi-robot localisa-
tion and tracking tasks using the information from two ceiling mounted cameras.
This system utilises a new passive marker template which is designed to uniquely -
idehtify the robots and to precisely determiné their positions and orientatidns in a
‘multi-robotic environment. Using the designed template, a multi-camera, solution
to track robots in the robot arena, using off-the-shelf web-Carhs,‘is provided. As
the passive markers do not consume energy, so their use together with off-the-shelf
web-cams provides the energy and cost effective solution to the multi-robot localisa-
tion problé.m; The approach presented is found robust for localisation and tracking ‘
problem. Passive markers, which use colour information to code markers ID and
orientation, are used on the top of each robot working in an environment. Two cam-
eras, mounted on the ceiling, gave a collective view of the robot working arena. To
show the effectiveness of this approach its application to guide robots along prede-
fined trajectories is also shown in this Chapter. Information from the two cameras is

~ .used to track and localise the robots’ position and then the robots are given further

instructions about their movements and orientation correction, so that they all could
reach the target location in the presence of obstacles. This multi-robot localisation ,.
and tracking system is developed to provide localisation information to the robots in

103

5.1 Camera Calibration

the distributed vision processing scenarios in swarm mode. This chapter is divided
into the following sections. ' '

° Camera Calibration. .
- @ Visual Localisatidn and Tracking System.

o Multi-robot Visual Guidance.

51 Camera Calibration

In a visual tracking and localiéation system the robots were tracked in the images
captured by the two ceiling mounted cameras. So to determine the robots’ .positions
in real units or world coordinate system, first of all, camera calibration of the ceiling
mounted cameras was required. The objective of camera calibrétion was to find
the camera parameters which defined the relation between the 3D world coordinate
points and the 2D points on the camera image. These parameters are representéd'
in the form of a 3x4 matrix which is called camera matrix in computer vision termi-
nology. The relation between 3D world points C,, and 2D image points C; in terms
of camera matrix K are explained next. The relevant equations are explained in
detail in Chapter 4. Here, they are briefly described for convenience.

C;=KC, - (51)

This equation when expanded, can be expressed as

su Toy :
sv | =AB| y, | (5.2)
s ' 2 | '
Su | Ty : .
sv | = A[RT) | yw : (5.3)
S Zw ‘

.where, u and v are the 2D camera coordinates and s is the scale factor. The 3D
world coordinates are represented as Ty, Yu, 2. The camera matrix K is represented
- as A[RT], where A is the camera intrinsic matrix, R is the rotation and T is the
translation matrix of camera with respect to the world coordinate points (World
coordinate system is the reference coordinate system). R and T together represent

104

5.1 Camera Calibration

Figure 5.1: Image 1 (left) and image 2 (right)

camera extrinsic parameters B. The camera intrinsic 4 and extrinsic B matrices

can be expanded as

ox 7
A— 0 ay v0 (5.4)
0 0 1

rn ri2 ri3 itx
B = 70 722 123ty (5.5)
Bl R 3B ¢z

0 0 o0 1

where, ax and ay are the focal length of camera in terms of pixels. 7 is the skew
coefficient between x and y axis of image. And Upand v§ are the principal points of
the camera. Similarly, rn, 772, ri3, 781, r2, 723, r3i, r32, r33 define the parameters
of rotation matrix and ¢x, zy, ¢z define the parameters of translation matrix. To
cover the complete robot arena, both ceiling cameras were mounted 5 feet above the
arena surface. Due to this, a big size calibration grid pattern was used for calibration
purposes. The use of big calibration pattern was made so that the pattern could be
clearly seen by the cameras. The images of calibration pattern captured by ceiling
cameras were processed with MATLAB camera calibration toolbox [115]. Twelve
images were used for calibrating the camera. These images are shown in Figures 5.1
to 5.6.

For camera calibration, the same procedure was adopted which was used for
calibrating the robot camera as explained in detail in Chapter 4. The grid points

were selected carefully o011 the pattern images using the calibration toolbox. The

105

5.1 Camera Calibration

Figure 5.2: Image 3 (left) and image 4 (right)

Figure 5.3: Image 5 (left) and image 6 (right)

Figure 5.4: Image 7 (left) and image 8 (right)

106

5.1 Camera Calibration

Figure 5.5: Image 9 (left) and image 10 (right)

Figure 5.6: Image 11 (left) and image 12 (right)

The red crosses should be close to the image comers

Figure 5.7: After grid points selection: image 1 (left) and image 2 (right)

107

5.1 Camera Calibration

The red crosses should be close to the image comers The red crosses should be close to the image comers

W

g

Wﬁ:

*
H N

|
<l

<

AN AL
|

\W4
u
|
U

g
S Em *

m m

Figure 5.8: After grid points selection: image 3 (left) and image 4 (right)

images obtained after grid points selection, are shown in Figures 5.7 to 5.12. It can

be seen that the grid points are selected accurately in all the images.
Finally, the camera intrinsic and extrinsic parameters obtained, after executing

the calibration routine, are shown below.

782.2 0 3723
4= 0 7822 466.1 (5.6)

0 0 1

-0.0216 0.9996 -0.0171 -310.5

B - 0.9952 0.0198 -0.0959 -589.2 5.7)
-0.0955 -0.0191 -0.9952 1286.6 .
0 0 0 1

where all measurements are defined in millimetres. To determine the accuracy of
these parameters, the 2D grid points were re-projected on the images. The result
obtained when these points were re-projected on image 1 is shown in Figure 5.13.
It can be noticed that, the re-projection of the grid points is done accurately. Now
these parameters were utilised in the Visual Tracking System, if the localisation and

tracking information were required in the real world coordinates.

108

5.1 Camera Calibration

The red crosses should be close to the image corners The red crosses should be close to the image corners

Figure 5.9: After grid points selection: image 5 (left) and image 6 (right)

The red crosses should be close to the image corners The red crosses should be close to the image corners

Figure 5.10: After grid points selection: image 7 (left) and image 8 (right)

109

5.1 Camera Calibration

The red crosses should be close to the image corners The red crosses should be close to the image corners

Figure 5.11: After grid points selection: image 9 (left) and image 10 (right)

The red crosses should be close to the image corners The red crosses should be close to the image corners

Figure 5.12: After grid points selection: image 11 (left) and image 12 (right)

110

5.2 Visual Localisation and Tracking System

Image points (+} and reprojected grid points (o)

urn mm
mm im m M mm
» m mit m m M |
mm a m m m mm | § |
mm m m m m
m am mm m -
H M tm mm m S ’

mm Mf mt mm mm —

Figure 5.13: Reprojected 2D grid points.

5.2 Visual Localisation and Tracking System

After performing the camera calibration, the second step was to process the camera
images and localise the robots. In robot localisation based on passive markers, the
most challenging stage was the design of the markers such that they were prominent
in the environment and easy to detect. They should code ID information so that
multiple robots could be identified and their design should also convey the robot
orientation information. The markers used in this research also utilised the colour
information based on the fact that colours appearing in certain pattern could be very
prominent in the environment. In Figure 5.14, four markers conveying the unique
ID information following the same the design template are shown.

In Figure 5.14, it can be noticed that, three colours are used in the design of
the markers. One marker, with blue colour cover, is labelled to define the template.
Cover colour region defines the boundary of the marker. Cover region surrounds the
head region from three directions, but is open from one side of the tail region. This
also differentiates the head region from the tail region. Head region is the one which
finds the tail region in one direction and cover region in three directions. And tail
region is defined as the one which is open from one direction, surrounded by cover
region from two directions, but finds the head and cover regions together in one
direction. Each marker is the result of colour blobs appearing in a certain pattern.
In Figure 5.14, markers using all three colours are shown, but with this approach,

markers of same colours can also be designed. With this approach, by using three

111

5.2 Visual Localisation and Tracking System

Cover N

Tail

Figure 5.14: Fiducial markers template.

colours together with a simple design template, not only 27 different robots can
be identified, but at the same time, it also conveys the orientation information.
This approach shows the advantage over other approaches such as the one used in
RoboCup [103] which uses the same number of colours, but can uniquely identify
only 9 robots. The approach presented here requires the colour image processing
techniques in order to detect the colour blobs appearing in a certain pattern. It
identifies the markers from which these blobs are resulting and then determines
their orientation information. To perform image processing, MATLAB was selected
as it provides a good platform for the proof of concept. The procedure adopted to
achieve the objective required extraction of colour blobs, blobs statistics and pattern
recognition in a designed template. Once marker identification was achieved, then
multi-camera based marker tracking system was used to provide visual guidance to

the robots. This is explained in the following sections.

5.2.1 Colour Blob Extraction

In the beginning, different colour blobs (i.e. red, green and blue) appearing in the
image were extracted. To extract the colour blobs, YUV image format was used. The
reason for processing in YUV format is that, it makes the blob extraction algorithm

less sensitive to the changes in lighting condition. In order to select the colour blobs,

112

5.2 Visual Localisation and Tracking System

the threshold was applied to the range of values in UV plane. The result obtained

when colour blobs were extracted from Figure 5.14 is shown in Figure 5.15.

Figure 5.15: Color blobs extraction.

5.2.2 Extraction of Blobs Statistics

In the next stage, segmentation of the resulting colour blobs is performed. In other
words, statistical information of each blob was extracted that is, the centroid of each
blob and the number of pixels the blobs comprised of. This way, each blob was also
assigned a fixed ID. This was to make sure that when the algorithm was searching
for the cover blob around the head blob, then it checked whether the blob (which
is a cover blob candidate) appeared around the head was all connected (i.e. it has

same ID) and was not resulting from different objects.

5.2.3 Template Matching and Pattern Recognition

The localisation system was given a prior knowledge about the identity of the differ-
ent colour patterns appearing in the form of designed template in the given image.
For example, blue cover, red head and green tail blob, this pattern was attached
to robot 1. The complete marker detection and identification process is as follows.
After segmenting and assigning a unique ID to all blobs, each blob was processed

one by one and checked whether it was the one resulting from the head blob. For ex-

113

5.2 Visual Localisation and Tracking System

Figure 5.16: Pattern recognition process, (a) Window around the selected blob, (b) Selecting
the expected tail blob, (c) Search line from tail to the head blob along which cover blob will be
searched, (d) Search line along which cover blob is searched for final validation of the pattern.

ample, if any robot marker had red colour in the head blob, then localisation system
considered all red blobs one by one and checked whether they follow the designed
pattern. An example showing the step by step process to identify that a marker
fitted the design template is shown in Figure 5.16. When red blob was considered as
the one resulting from the head region then to make the process of template valida-
tion faster, a window (35 pixels square window) was defined around the selected blob
(shown in Figure 5.16a). Only those blobs which lied in this window were considered
for template validation. From the prior knowledge, algorithm knew that a green tail
blob was in a possible set of patterns. In this case, it found the green blob in the

search window as shown in Figure 5.16b. The algorithm then determined the slope

114

5.2 Visual Localisation and Tracking System

X

R2

Figure 5.17: Determining the location and orientation of the four robots.

between the head and the tail blob. For this, it required the centroid of the head
and tail blob. This is where it utilised the statistical information it had extracted
during the blob segmentation process. After obtaining the slope, it drew a search
line along which it processed the pixels and searched for the closed cover blob in one
direction (head direction) and open cover blob in opposite direction (tail direction).
The search line is shown in Figure 5.16c. If algorithm found the expected pattern
along the search line in Figure 5.16c (i.e. head was covered by another expected
colour blob and the cover was open from the tail blob direction), then it drew an-
other search line perpendicular to the previous search line. This search line is shown
in Figure 5.16d. Along this search line, the algorithm searched for the cover blob on
both sides of head blob. Algorithm made a check that the cover blob found along
the search line shown in Figure 5.16d had the same ID which was found when the
search was made along the line shown in Figure 5.16c.

Following this approach, when the complete image was processed, then the four
robots identified are shown in Figure 5.17. To identify the orientation of the robots,
three white lines were plotted over each identified marker. Two lines spanned across
markers width whereas, one white line identified the direction, where robot was
facing. It can be seen that, with very simple designed markers, the robot orientation

is very accurately identified.

115

5.2 Visual Localisation and Tracking System

5.2.4 - Multi Camera Based Robot Tracking

After identifying the multiple robots in arena using the above defined marker based
approach, an algorithm to track their position and orientation in the arena was
developed using a multi-camera system. The setup of this multi-camera system
and the development of the robot tracking algorlthm are explamed in detail in the

following sub-sections.
(i) Multi-camera System

(ii) Robot Tracking Algorithm

Multi-camera System

This section is divided into In the beginning, a single camera was mounted on the
ceiling right above the middle of arena, so that the markers placed on the robots
could be identified. To grab images, a LogiTech webcam with 90 degree field of view
was used. With 90 degrees field of view, it was not possible to cover the complete
arena with single camera If cameras with higher degree field of view are used, then
their i image covers more area but at the same time they cause fish eye problem which -
reduces the precision of markers position detected near the boundary of the image. -
So to cover the complete arena, two LogiTech webcams were mounted parallel to
- each other above the arena. As the web-cams were mounted higher (i.e., 5 feet) above
the arena, so it was not possible to work with low resolution. With low resolution,
the markers appeared very small that is, not enough pixels were contributing to
provide information about the markers. Due to this, it was possible that some of
the markers left undetected due to the changes in the illumination." So, to overcome
this, it was decided to grab images in a higher resolution that is, 960x720 pixels.
The way the web-cams were mounted above the arena, is shown in Figure 5.18.
Both cameras were connected with a Core 2 Duo processing system. And for image
processing, to identify the markers and track the robots, MATLAB was used. As
images from both cameras were processed on a system by the same algorithm, so
the robots’ position information was shared within the algorithm. This way, the two
cameras collectively could track the robots. ‘ .
The complete arena surface was divided into three zones. Camera 1 could view
the robots in zones 1 and 2. So, camera 1 could effectively track the markers
mounted on the robots in zones 1 and 2. Similarly, zones 2 and 3 were in the

- 116

5.2 Visual Localisation and Tracking System

Ceiling
Camera 2 Camera 1
'\
\ \
\
Arena Surface
Zone 3 Zone 2 Zone 1

Figure 5.18: Ceiling mounted camera set-up for robot tracking.

visibility of camera 2. Zone 2 is the area which appears in both cameras 1 and
2 view. So, robots appearing in zone 2 were tracked by both cameras 1 and 2.
This way, cameras 1 and 2 collectively provided a wide field of view and covered
the complete arena. As mentioned before, the cameras were mounted higher above
the arena, so to identify the markers placed on the robot, a high resolution image
(i.e. 960x720 pixels) was used. Now if images captured by both cameras 1 and 2
were fully processed every time, then the algorithm to identify the markers could be
computationally demanding. So to reduce the computational load, the images from
cameras 1 and 2 were fully processed only once in the beginning or until the time,
when all the expected markers placed in the arena were identified. In Figure 5.19,
the images captured by the cameras 1 and 2, when four robot markers were placed
in the arena, are shown. All four markers positions and orientations were properly
determined. Camera 1 (shown in Figure 5.19a) will be tracking robots 1, 2 and 4
whereas, camera 2 (shown in Figure 5.19b) is responsible to track robots 1, 2, 3 and
4.

Robot Tracking Algorithm

Once all the markers were identified, then the tracking algorithm was developed to
track the robots positions in the environment. For the two cameras used in the

multi-camera system, the tracking algorithm made a tracking database to store the

117

5.2 Visual Localisation and Tracking System

M
0 ftu '
1,
Zone 3 Zone 2 Zone 2 Zone 1
HU B Y
(b) Camera 2 (a) Camera 1

Figure 5.19: Collective tracking of robots from ceiling mounted cameras.

robots positions. All the markers identified in camera 1 image were kept in camera 1
tracking database, and similarly, the markers in camera 2 view, were kept in camera
2 tracking database. After all the robots positions were identified, in the next image
frame, the algorithm made a search window (70 pixels wide) around each robot’s
last identified position. The algorithm expected the robots to appear in that search
window. If the robot was not identified in that window, then in the next frame,
the algorithm increased the search window size for that robot. In other words, the
algorithm increased the uncertainty about the robot’s position and increased the
search window size. If the robot which was tracked by camera 1 was in zone 1,
but now was entering zone 2, then this robot would be entering the shared zone
and would become visible in camera 2 view too. So, the algorithm would keep on
tracking the robot in camera 1 images, but at the same time, it would also add
the robot ID in camera 2 tracking database. Now the algorithm had to determine,
where the robot was expected to appear in the camera 2 image. For this purpose,
the algorithm solved the Homography[ll] between cameras 1 and 2 images. Using

the homography, algorithm identified the robot expected position in camera 2 image

118

5.2 Visual Localisation and Tracking System

and determined that where to draw a search window to track the robot in the coining
image frames from camera 2. On the other hand, if a robot moved from zone 3 to
zone 2, then tracking database update process was initiated for camera 1. Similarly,
the removal of robot ID from tracking database was also important when the robot
was moving from zone 2 to either zone 1 or zone 3. If it was moving from zone 2 to
zone 3, then it would go out from the camera 1 field of view and the algorithm would
remove this robot ID from camera 1 tracking database. And if it was moving from
zone 2 to zone 1, then removal of the robot ID would be performed from camera 2
database. The later case is also shown in Figure 5.20. Camera 1 was tracking robots
I, 2 and 4 (as shown in Figure 5.19) and camera 2 was tracking robots 1, 2, 3 and
4. Now robot 1 moves from zone 2 to zone 1. It is no more visible by camera 2 so

its ID was removed from camera 2 tracking database.

Zone 2

(b) Camera 2 (a) Camera 1

Figure 5.20: Collective tracking of robots from ceiling mounted cameras.

To determine the positions of all the robots on the combine image plane, the

following steps were taken.

* Robots appearing in zone 1, their positions and orientations were provided by

camera 1 as they were tracked by camera 1 only.

119

5.3 Multi-Robot Visual Guidance

e Robots appearing in zone 3, their positions and orientations were pr0v1ded by
camera 2 as they were tracked by camera 2 only.

e Robots which appear in zone 2, as they were tracked by both cameras 1 and 2,
so information from both cameras was fused together to determine the robot’s
- position. The advantage of this shared zone is that, due to light reflections
or illumination variations, if one of the camera was not able to identify the
marker in zone 2, then the marker position could still be 1dent1ﬁed using the

information from the other camera.

5.3 Multi-Robot Visual Guidance

To visually guide the multiple robots in the arena, using markers based localisation
information, initially all the ground surface was determined on which robots could
move to reach the target location. In Figure 5.21, the target location for the visually
guided robots is shown. To determine the ground surface, Canny edge detection
algorithm [120] was applied on the images captured from both cameras. As the arena
surface had no texture, so it did not cause any edges in the output image. Only
varena‘boundaries, obstacles and robots caused edges in the output image. As the
robot positions were known precisely through the marker detection approach, so the
édges appeared around robots positions were simply ignored as they were certainly
caused by robot bodies. This way, ground surface was successfully extracted and
all the obstacles were identified using the edge information caused by the obstacle
boundaries. This provi‘ded a ground map with obstacles identified on it. Now the
next task was to gulde all the robots to reach the same target location without
“colliding the obstacles in the env1r0nment For this purpose, the shortest distance
~ to the target location was determined in the presence of obstacles. This is a path
planning problem. For this purpose, A*[12] path planning algorithm was used. As
the ground map was defined in high resolution, so it could be computationally very

expensive to process every pixel while searching for the possible shortest path to the
' target location using A* algorithm. So to reduce the computational complexity, a
grid map was defined. This grid map was obtained by dividing the high resolution
ground map into 25x25 pixel windows and identifying each window as a single cell
which could convey the ground clearance or the obstacle presence. This grid map
- is shown in Figure 5.22. It can be noticed that, nine obstacles (O1 to O9 in green

120

5.3 Multi-Robot Visual Guidance

colour) are clearly identified on the grid map. As the positions of three robots was
precisely known on the grid map, so using A* algorithm, the shortest path to the
target location was determined. The shortest path obtained for the three robots is

also shown in Figure 5.22.

Figure 5.21: Robot arena used for the visual guidance of the robots.

To test the developed fiducial marker based approach for tracking and guiding
robots, tests were performed in which many obstacles were placed in the robot arena
such that the robots had to go through complicated way to reach the target. Two
of these tests are discussed here. In the first test, before the robots started receiving
the guidance commands, the positions of the robots in the arena are shown in
Figure 5.23. The paths to target for three robots are also shown in the Figure 5.24.
It can be noticed that, robots 1 and 3 have to go through a long path to reach
the target because they are surrounded by many obstacles. In case of robot 1, the
obstacle around it had some free space in between but this was not enough for the
robot to go through, so it is not shown as ground clearance to robot. The detected
obstacles were dilated in the grid map image so that the robots passed by their side
with safe distance. This is done to a avoid collision with obstacles.

It is noticed that, during the operation, some time the robots collided the obstacle

when they were passing near to them. This happened because, to avoid robot bodies

121

5.3 Multi-Robot Visual Guidance

Figure 5.22: Image showing the shortest path to the target location for all the robots on the grid
map.

Camera 1 Tracking Camera 2 Tracking

T

Target* .
r
A

Figure 5.23: Test 1: Positions of the robots in the arena before the test started.

from appearing as an obstacle, a window region was defined around robot detected
positions. And edges detected in those windowed regions were considered as the
one appearing because of robot bodies, and so were ignored. When robot was
very close to obstacle, some time this assumption failed as those edges actually
appeared because of obstacles boundaries but were mistakenly ignored. One of

this scenario in test 1 is shown in Figure 5.25 when robot 1 collided the obstacle

122

5.3 Multi-Robot Visual Guidance

Robots Path to Target

Figure 5.24: Test 1: Robots path to the target location on the grid map.

boundary on its way to target. Finally, the positions of the robots when they reached
the target location is shown in Figure 5.26. The robots were gathered around the

target location successfully.

Camera 1 Tracking Camera 2 Tracking

Figure 5.25: Robot 1 colliding the obstacle boundary.

Similarly, in the second test, the positions of the robot before they started receiv-
ing guidance and once they reached the target locations are shown in Figures 5.27
and 5.29, respectively. The shortest path to the target, before the robots started
moving, is also shown in Figure 5.28. In this experiment, again the robots reached

the target locations successfully as shown in Figure 5.29.

123

5.3 Multi-Robot Visual Guidance

Camera 1 Tracking Camera 2 Tracking

Figure 5.26: Test 1: Robots reached the target location successfully.

Camera 1 Tracking Camera 2 Tracking
1 . ili « "meildr
J -fi
J L e
I * .
#
« m Target

Figure 5.27: Test 2: Positions of the robots before the test begin.

In the presented approach, the path to target was determined every time. This
way, if some of the objects moved in the environment, then robot automatically
directed a new path to the target location. This on-line path determination some
time caused problems for the last robot reaching the target. This happened because
the robots which reached first, covered the target location and this caused problems
when the path to target was determined for the last robot. Another problem ob-
served was due to the difference in the positions of the robot in the captured image

and their actual position. The new commands to the robots was determined on

124

5.3 Multi-Robot Visual Guidance

Robots Path to Target

Figure 5.28: Test 2: Shortest path to the target location on the grid map.

Camera 1 Tracking Camera 2 Tracking

Figure 5.29: Test 2: Robots reached the target location successfully.

their detected position in the captured image. If the captured image conveyed the
robot position before the last control instruction was received and implemented by
the robot then the new command, which would be issued on the bases of captured
image, would not be truly valid for the actual position of the robot. This caused
an error when the robot tried to correct its orientation with the path to the target
location. However, this could be easily corrected by adding a feedback mechanism

from the robot, which conveyed that the robot had actually implemented the last

125

5.4 Conclusions

received commands. This synchronised the camera frame capturing with the control
command implementation on the robot. In this way, it could be ensured that before
the next frame was captured by the camera, the robots had already changed their
positions based.on the last received commands. ,

. ‘The results obtained from the described tests proved that the position and orien-
- tation information obtained from the developed fiducial markers were precise enough
- to guide the robots. ‘This solution to robot tracking and guidance is cost effective
and can be easily extended to cover more area by simply adding more cameras or by
- using the cameras with more wide field of view. The handshaking between the two
~ cameras while tracking the robots can also be easily extended to further increased
number of cameras. This solution can be made more effective by using smart cam-
eras, which have on-board processing capabilities, together with the wireless network
“technology to share robot tracking information between the different cameras.

5.4 Conclusio'ns}

In this Chapter the development and implementation of a “Visual Tracking System”
has been presented. This tracking system is developed to provide the localisation
information to a group of robots Working in the swarm mode. In the two swarm
mode scenarios addressed in Chapter 6, the group of robots obtain their localisation
information from the “Visual Tracking System” to precisély localise the target ob-
jects in the environment and also to map their environment boundaries. To show the
effectiveness of the localisation information provided by the “Visual Tracking Sys-
tem” to the robots, experimental results has been presented in this Chapter, which
demonstrate the manner the group of rdbots reaches the target location without
colliding with the obstacles, solely based on the guidance provided by the “Visual
Tracking System”. From the successful experiments, it has been concluded that, the
robot’s localisation information provided by the “Visual Tracking System” is precise

enough to be used for the swarm mode scenarios.

126

Chapter 6

Distributed Vision Processing in
Multi-Robotic Swarm

This chapter is dedicated to the two distributed vision processihg scenarios which
are pérformed in the swarm mode. In the first scenario, a group of robots are
used to search for the object of interest in the environment and localise them by
using their visual information together with the Visual Tracking System discussed
in Chapter 5. For this scenario, an object recognition algorithm is developed and
customised for the target embedded system and made it run efficiently on small size
robots with limited memory and processing resources. The Visual Tracking System
localised the robots and the group of robots recognised the objects. This way, the
group of robots and the Visual Traéking System localised the objects, collectively.
In the second scenario, a novel approach for mapping the environment by a group
of robots is discussed. The group of robots extracted very simple visual features,
which are used together with the localisation information from the Visual Tracking
System, to collectively map the environment. To discuss thése scenarios in detail,
this Chapter is divided into the following three sections. First section describes the
communication mediﬁm used to share the information among swarm of robots. The
other two sections describes the distributed vision processing scenarios in swarm
mode.

e Communication among Swarm of Robots.
e Vision Based Object Recognition and Localisation by Multi-robotic Systems.

e Environment Mapping by Distributed Multi-robotic System.

127

6.1 Communication among Swarm of Robots

6.1 Communication among Swarm of Robots

Following the discussion in Section 2.1, wireless communication medium was found
‘suitable to exchange information among swarm of robots. To establish communi-
cation, the robots neéd to use onboard communication middleware onboard. The
discussion in Section 2.1 shows that the use of such communication middleware is
not realisable in swarm robotic systems because these middlewares have very high
memory requirements. For this purpose; low level wireless communication routines
were developed in this research, and these routines are customised for the target
system. It is important to note that the robots have Véry limited onboard energy
resources, and due to this, the wireless communication boards used on the robots
‘have very low signal to noise ratio. Due to this low signal to noise ratio, the use
of adhoc communication mode caused severe communication delays which affected
the performance of the o_vérall system. To overcome the problem of low signal to
noise ratio, infra,structure communication mode was preferred over the adhoc mode.
The use of a wireless access point in infrastructure mode. incredsed the range of the
swarm by retransmlttlng signals at a higher power level; hence reducmg the chances
of data loss durmg transmission. For reliable data communication, the TCP com-
munication protocol was used which works at transport layer. To avoid overloadmg
the communication network, it was dec1ded to share visual features which encode
low density information. As the vision sensor generates huge amounts of data, so the
selection of visual features with low density information was critical. The selection
of appropriate visual features, which provide sufficient information to achieve the
target objectives, is addressed in detail in Sections 6.2 and 6.3. To transmit these
visual featurés, the data packets with maximum size of 400 bytes, were used. The
use of small size data packets, low density visual features and TCP communica-
tion protocol over reliable infrastructure communication mode made it possible to
achieve the efficient data exchange between swarm of robots, to.successfully achieve
‘the objectives of swarm mode scenarios.

6.2 _Vision Based Object Recognition and Localisation by
Multi-Robotic Systems |

Object recognition is an essential element of robotics. In most robotic applications,
the robot or group of robots are required to look for and recognise the objects of in-

128

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

terest in the environment to achieve given objectives. To perform object recognition,
the integration of vision sensors in robotic applications has provided many solutions.
In robotic applications, the need for object récognition arises when a robot has to
_perform a given manipulation task and before that it has to recognise the object
of interest in the environment. It may also be necessary when the robot has to
localise itself in the environment with respect to some specific landmarks which it
has to recognise. Hence, it may be 'thodght of as the basic functionality required for
advanced robotic applications. The object recognition functionality is considered
as one of the most challenging problems in computer vision as it presents several
- challenges such as, view point- changes, intensity variations, occlusions and back-
ground clutter. Additionally, the provisiori of this functionality in mobile robotics
applications introduces an important challenge given by the constraints for execu-
tion time (i.e. computational complexity) [113]. In real world scenarios, robots are
normally equipped with high processing systems, so that they can fulfil the real

time execution demand of the vision based object recognition algorithms. For such

high performance robots, the choices of object recognition techniqués may be large,

and the_number of vision based 6bject recognition techniques developed for offline

processing may be simply used With less changes. But when it comes to swarms of
“small robots, whlch come with very limited memory and processing resources, the

task becomes more challenging.

Over the past few decades, many obJect recognition technlques have been de-
-veloped. Some of them are computatlonally less expensive, such as content based
approaches (i.e. using colour, texture and shape) and geometric approaéhes (i.e.
using affine, projective or euclidean transformation to account for the appearance
variation of the object of interest) but are sensitive to changes in lighting condi-
tions. Other approaches are considered more computationally expensive, such as
context based and appearance based approaches (e.g. using SIFT, SURF or PCA
feature descriptors) but are found more flexible and show in-variation to changes
in scale, rotation, skew and lighting conditions. Most recent efforts are centred
on appearance-based approaches [114]. As these approaches are -computationally
expensive, they are suited for either offline image processing or can be considered
applicable to robots with high processing systems, as described in detail in Section
2.5 of Chapter 2. In spite of the excellent results achieved with these recognltlon
techniques, when it comes to small robots or groups of small robots working in a
* multi-robotic environment, the bottle-neck of the slow rate of information processing

129

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

forced the researchers to make huge compromises with the recognition performance
and switch to computationally less expensive algorithms. For exampie, shape based
recognition and blob detection based techniques have been used to recognise sim-
-ple objects in a given environment. The research work presented in this Chapter,
bridges the gap between these computationally expensive, but efficient object recog-
nition algorithms and their applicability on small robotic systems and suggests some
techniques following which, the advantages of computationally expensive algorithms
can be enjoyed in small robotic systems for recognition purposes.

In the current implementation, the focus is on efficiently applying appearance
- based approaches to object recognition using SURF (Speeded Up Robust Features)
features using a group' of small robots and show how multiple robots collectively
look for 3D and 2D (i.e., images of objects) objects of interest in an unknown
controlled environment. In Figure 6.1, a swarm of robots is shown. The objective .
is to send these robots in the environment in random directions. These robots
will go around, and using the developed object recognition techniques, they will
look for the objects of interest (e.g. shown on the righﬁ side of Figure 6.1) in the
environment. In this Figure, some obstacles are also shown in the environment. To
avoid colliding with these obstacles, the robots will also be performing vision based
obstacles avoidance (discussed in Chapter 4) in parallel to the recognition task. For
recognition purposes, all the robots will be given a common visual vocabulary to
use to identify the required objects. Here, the task of vision based recoghition to
search for objects of interest is distributed among all the robots, but on equal basis
(i.e. all robots are given the same task). To help achieve this task efficiently, all
robots will also be sharing their knowledge with other team members. They will be
communicating with each other and will be updating each other about the progress
information that is, what objects have already been found and what they are still -
looking for. This way, if a place is found by one robot, then the other robots will
not be searching for this place unnecessarily and this will avoid effort duplication,
showing a collective effort by the group of small robots to recognise the objects in
the unknown environment. , . ,

Once a robot in a swarm, successfully finds an object.of interest in the envi-
ronment, then apart from telling the other team members about it, the robot also
shares this ihformation with the Visual Tracking System developed in Chapter 5.
For establishing a connection between the robots and the tracking system, a Server
is shown in the Figure 6.1. This Server is responsible for running the Visual Tracking

130

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

1. Server to robots
wireless connection
2. Server to
cameras wired
connection

Robots connected over
wireless medium

Target Objects

Camera 1 field of view

. . Obstacles
Camera 2 field of view

Figure 6.1: Scenario where group of robots performing search operation to find the object of
interest.

System and sharing the localisation and tracking information with the robots. As
in the tracking system, two ceiling mounted cameras collectively track the robots,
so the area of the robot arena which is covered by the two cameras is also shown
in Figure 6.1. Now during the operation, when the robot recognises the target and
shares this information with the tracking system, then the tracking system locks the
robot position in the image, localises it and sends this localisation information to the
robot. This information contains robot’s position in the arena and its orientation
(i.e. heading). When the robot receives this localisation and heading information,
then it determines its distance to the the recognised object. Finally the robot lo-
calises the object with reference to its own position. For this purpose, it uses the
“distance to the object” information together with its position and heading infor-
mation. After localising the target object, the robot shares the object ID and its
location information with the Server which later displays the location of the target
objects in the environment.

From the scenario description, it can be seen that the performance of the object

recognition approach on the small robots plays an important role for successful op-

131

- 6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

eration. So, an aim of this research is to use the advantages of powerful appearance
 based recognition approaches and make them run efficiently to perform object recog-
nition using a group of small robots. Following the literature review in Chapter 2,
the SURF feature based recognition apprbach was found to be the fastest to compute
. and appeared to be more favourable for implementation on an embedded system.
~ Gradient based feature extraction [60] and Harris feature based approaches [65]
were also fast for performingv feature extraction but they did not provide features
which could be as robustly detected as carried out by SURF based approaches.
There are a number of open source implementations of SURF feature extraction
and matching algorithms. OpenCV [97] is an open source computer vision library
which provides one possible implementation of the SURF algorithm. Another open
source implementation of the SURF algorithm is found in OpenSURF [98] library
which is a faster and a bétter optimised implementation of SURF when compared to
OpenCV. In this research, it is decided to use the OpenSURF library as a reference
to.the SURF implementation for performing appearance based recognition tasks.
The target hardware used is also an important factor as it strongly influences the)
method adopted to solve the problem at hand. As mentioned in Chapter 3, for the
"swarm mode scenarios,' a group of SRV1 robots by Surveyor Cofporation were used
with Blackfin BF537E processor on-board. uClinux (micro controller Linux), which
is a popular operating system customised for embedded systems, was used as the.
on-board operating system. Code compilation was performed using GNU cross com-
pilers on a Linux based development platform. At the beginning, the OpenSURF'
library was cross compiled and ran on the target blackfin processor. The image
resolution was'set to 320x240 pixels. The execution time calculated to process one ,.
sihgle frame was 33sec. The reason for this was twofold, one is the computationally
expensive nature of the algorithm'and second is :that the algorithm performs many
floating point operations and the target blackfin processor lacks the floating point
unit (FPU). To reduce the execution time and also to increase the performance
of the algorithm to recognise the objects lying far from the robot, the following

optimisation operations were carried out.
e Processor specific optimisation to reduce execution time.
e Image pre-processing to reduce the amount of data to process.

e Multi-resolution analysis.

132

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

6.2.1 Processor’Speciﬁc Optimisation

To perform processor specific optimisation, the SURF algorithm was coded such
that it exploited the architectural advantages of the target embedded system. For
~ example, the Blackfin is a fixed point pr(:)ce'ssor, SO thé floating point operation
should be avoided as much as possible. In SURF algorithm, where it was necessaryv
to make use of floating point operations, the use of fast floating point emulation
library [119] was made. To perform fixed point operations on blackfin Processor,
there are further limitation posed by the uClinux operating system as it allows 1.31
fixed point operations only. In 1.31 fixed point operation, there is 1 integer bit
and 31 bits are used as fractional bits. The data which can be represented using
1.31 fixed point format lied in the range of -0.9 to 40.9. This limitation of data
representation made it necessary to normalize the fixed point data at every point in
the program flow in order to guarantee that it lied in the allowed range, otherwise
erroneous results can occurred. ‘

In general, Blackfin code optimisation can be done in three different phases i.e.
Compiler optimisation, System optimisation and Assembly optimisation [99]. Fol-
lowing these optimisation steps, the improvement in the algorithm’s execution per-
formance achieved is shown in Figure 6.2. When no optimisation was applied, the
program took 33sec to process a single frame. After performing the compiier opti-
misation (i.e. using “fast-math” and “mfast-fp” floating point libraries for Blackfin
processoi's) the execution time reduced to 10sec per frame. The fast-math library al- -
lows the compiler to use faster hardware floating point instructions, at the potential
expense of IEEE floating point compliance. If the program does not need strict com-
pliance, the use of “fast-math” library increases the performance of floating point
operations. The “mfast-fp” library further relaxes some of the IEEE ﬂoating—point
standard’s rules for checking inputs against Not-a-Number (NAN), in the interest

.of performance. As Blackfin processor lacks FPU, so “fast-math” and ;‘mfast-fp”
libraries performs floating point emulation. To reduce the execution time further,
the portion of the code which was costing more time was identified and customised -
by exploiting the fixed point architecture of the Blackfin. Therefore, 1.31 fixed poiiit'
opérations were adopted in place of floating point operations. This helped in re-
ducing the time to 3 sec per frame. Optimising the data flow helped in reducing
the time to 2.8sec per frame. A further reduction in time was achieved by scaling
down the image resolution, by a scale of 2. The last step reduced the time, but

133

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

affected heavily the recognition performance. From Figure 6.2, it can be seen that
the processor specific optimisation has performed a significant role in the reduction

of the execution time, although it needed to be reduced further.

Optimisation Resuits for Computing SURF Features

35 £Jo Optimization j
30 A -fast-math floating point emulation
\ i
25
Vo
*20
e\
g
4 Is

mfast-fp floating point \
10 emulation for blackfin

’

j1.31 fixed point* aall0W Management

i — i Low resolution

2 3 4 5
Optimisation Steps

Figure 6.2: Processor specific optimisation to reduce execution time.

6.2.2 Image Pre-processing

In the second stage, image pre-processing was performed. The objective of image
pre-processing stage was to identify the pixels in the image which defined the objects.
The intensity values of only these identified pixels contributed to the calculation of
SURF features. This avoided applying the SURF algorithm on the part of the
images which represented plain surfaces. These plain surfaces could result from the
smooth ground surface, or the parts of the objects which did not show any intensity
variation. It is to be noted that detection of the SURF features strongly relied on
the intensity variations in the image. So processing the smooth parts of the images
with the SURF algorithm increased the computational time, but did not provide any
reliable features. Avoiding plain surfaces in the image, to be processed by SURF
algorithm, reduced the processing load by a significant amount. To identify the

image pixels which defined the objects, a light weight feature extraction technique

134

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

(i.e., in this study the Harris feature extractions technique) was applied. At the
‘beginning, the images were divided into top and bottom portions. The top portion,

separated by a thick blue line (shown on the right column of Figure 6.3), always lied
outside the arena and was discarded. The bottom portion of the image was processed
with the Harris algorithm. If the edges resul’cing‘ from an object’s boundaries were
found very near to the bottom of the image, this indicated that the robot was very
close to the object. In this case, the pixels identified by the Harris features in the
- complete bottom portion of the image were used by the SURF algorithm for the
object recognition. If the edges resulting from the object boundaries were detected
far from the bottom of the image, then it was expected that the objects were not
present very near to the robot. In this case, the complete bottom portion of the
image was further divided into three portions that was middle, left and right (these
portions were also separated by a thin blue line as shown on the right column of
- Figure 63) When these three portions were processed by the Harris algorithm,

the extracted image features are also shown on the right column of Figure 6.3.
The centroids of the feature points were computed from the middle, left and right
portions and windowed images were extracted (identified by red boundary). These
~ windowed images were likely to contain objects in the image and were further used
to extract SURF features. There were two main reasons for splitting the bottom
portion of the image into further three portions. The algorithm first processed the
objects detected in the middle portion. If the object of interest was recognised,
then it avoided processing the objects detected in the left and right portions. This -
conditional processing of the objects detected in left and right portions made the
execution of recognition algorithm faster as the algorithm was not required to process
the middle, left and right portions every time. The second reason for dividing the
bottom portion into middle, left and right portion was that, if the objects detected
in any of these portions were recognised as the objects of interest, then it provided
simple directional cues to the robots. Then, the robots could turn in the direction
where the objects were recognised so that the recognised objects appeared in the
centre of the image and the robots could get close to them. '

6.2.3 | Multi-resolution Analysis

The SURF feature extraction and matching technique works in two stages: train-
ing and recognition. In the training stage, the features of the target object were

135

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

Figure 6.3: Image pre-processing to reduce the amount of data to process.

extracted and kept in memory. In the case of more target objects to recognise, a
database containing features, resulting from all the target objects, was generated
and kept in memory for recognition purposes. In the case of 2D object (i.e., im-
age of object) recognition, only a single object image was required during training
stage for extracting SURF features. If the target object was a 3D object, then pose
based feature extraction was performed. That is, the images from different poses
of the target object were taken and SURF features were computed for all of these
images. During the recognition stage, features from all these images were compared
with the features extracted from the current view and the best match provided the
information about the objects and also the direction from which the robot was head-
ing towards the object. This pose based recognition for 3D objects increased the
database size by a big factor, but keeping the resolution low during the training
stage helped in reducing the database size. To make the recognition technique scale
invariant, the SURF algorithm generated the scale-space image pyramid, where the
input image was iteratively convolved with the Gaussian kernel, and at the same
time, the image was sub-sampled iteratively (this reduced the size of the image) [98].
The scale-space image pyramid is also shown in Figure 6.4.

During the training stage, if the image resolution was 320x240 pixels and the

number of times the image was sub-sampled is set to 4, then in the image pyramid,

136

6.2 Vision Based Ob ject Recognition and Localisation by Multi-Robotic Systems

Figure 6.4: Scale-space image pyramid.

the sequence in which the resolution was down sampled was 320x240, 160x120, 80x60
and, finally, 40x30 pixels. As the target embedded system had a limited memory and
processing resources, the training was given in 320x240 pixelsv resolution so that the
resultant features database was smaller in size and could be kept in the memory for
recognition purposes. With this resolution, if the objects lied close to the robot then
it could be recognised, but ihcreasing the distance made the recognition difficult,
because the object appeared really small in the 320x240 pixels image. To overcome
the problem of recognising the objects lying far from the robot, a multi-resolution
analysis was performed. The distance to the objects was measured in the image with
320x240 pixels resolution. The objects which were lying near were processed in low
resolution and for the objects, which were detected far from the robot, their position
was determined in the high resolution image and windowed image was extracted from
the higher resolution image. This way, the number of pixels, defining the far lying
object, increased and made the recognition possible. In other words, to increase
the recognition performancé, the objects detected in the image were processed in
different resolutions, depending upon their distance from the robot. This idea is
explained in Figure 6.5. The two objects on the left and right side were placed
close to the robot vision system. The windowed image was extracted from the
. lower resolution image(i.e. 320x240 pixels) for the SURF features extraction and
matching purposes. The object in the centre of the image (i.e. another robot) lied
far from the robot, so higher resolution analysis was performed and windowed image
was extracted from the high resolution image. The high resolution windowed image
extracted for the central object is shown on the right side of Figure 6.5.

137

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

Figure 6.5: Resolution switching based on distance to object.

6.2.4 Experimental Results

The experimental results section is divided into three parts. As mentioned, the
performance of the distributed vision processing scenario relies strongly on the reli-
ability and the execution performance of the target object recognition algorithm. So
in the first part, the recognition results obtained will be described. The second part
demonstrates the experiment in which swarm of robots perform a collective search
operation for the objects of interest in the environment. The third part demon-
strates the experiment in which the swarm of robots also get localisation support
from the Visual Tracking System. In this experiment, the robots not only recognise

the target objects in the environment, they also try to localise them.

138

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

Recognition Results

To show the performance of the developed object recognition algorithm, first of all a
comparative analysis with the reference SURF recognition technique was performed.
The performance in terms of execution time and recognition was recorded. To test
the execution time, ten experiments were performed where in each experiment a
robot was trained to recognise a different object. The execution time obtained from
reference SURF based approach and the optimised SURF based approach are shown
in Figure 6.6. The SURF based approach, on average, took 35 seconds to recognise
an object, whereas the optimised SURF approach took 780 milliseconds. It can be
noticed that in the fourth experiment, the SURF approach took 39 seconds. This
is because, the object in the image had more features as compared with the objects
used in other experiments. A rise in execution time (i.e. 890 milliseconds) was also

noticed in case of optimised SURF approach.

Timing Analysis SURF vs Optimized SURF

- K - SURF

—10

Number of Experiments

—A — Optimized SURF

Number of Experiments

Figure 6.6: Execution timing - SURF vs Optimised SURF.

To check the recognition performance, rigorous testing was performed in compar-
ison to the SURF based approach. The use of “distance based resolution switching

technique” was expected to outperform simple SURF based approach in terms of

139

6.2 Vision Based Ob ject Recognition and Localisation by Multi-Robotic Systems

~ recognition performance with respect to the distance from the object. For train-
ing purposes, QVGA (Quarter Video Graphics Array) resolution was selected. The
robot was given training, while keeping the object at distance of 20cm from it.
Recognition experiments were performed while moving the robot 5cm away from
the object each time. For each robot position, one hundred tests were performed
so that the recognition percentage could be obtained. The recognition performance
obtained with reference to the SURF based approach is shown in Figure 6.7. At
distance of 20cm from the object, both approaches gave 100 percent accuracy. In
case of the SURF based approach, the recognition performance degraded gradu-
ally as the robot moved away from the object and at distance of 55cm, recognition
dropped below 70%. This happens because after 55cm distance, the object appears

very small in the QVGA image i.e. very small number of pixéls are defining the
| objéct and this effects the recognition. From 70cm distance onward, recognition
was not possible. In case of Optimised SURF based approach, the use of “Resolu-
tion Switching Technique” determined that the robot was far from the object and
it enabled the robot to process the object in the high resolution image. As a result,
a sudden increase in the recognition performance was noticed when the robot was
placed more than 50cm away from the object. This happened because the SURF
based recognition relies strongly on the number of features extracted from the image.
When the windowed image was extracted from the high resolution image, then it
- gave a very detailed description of the object, and hence, it produced more features
and increased the recognition performance. With the use of “Resolution Switching -
Technique”, the optimised SURF approach'was able to provide reliable performance -
even at the distance of 2.5 times the distance at which SURF was able to perform
the recognition. o - '

Distributed Search Operation by Swarm of Robots

In the first experiment, a test was planned in which the task of recognising a set of
objects was distributed among two robots. The training was given to recognise three
9D objects and one 3D object in the environment. Out of three 2D objects, one was
a plain text on a sheet of paper (i.e. “Replicator”) and the other two objects were
images of buildings. They are shown in Figure 6.8.

As appearance based recognition technique relied on the SURF features, it was
possible to recognise the text and building images providing that these images pro-

140

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

Recognition Performance - SURF vs Optimised SURF

SURF
*— Optimized SURF

20 30 40_,50 60_70 80, 90 100 110 120 130
Distance From Object (cm)

Figure 6.7: Recognition rate - SURF vs Optimised SURF.

2D Object 1

2D Object 3 3D Object

Figure 6.8: Objects used in training to extract SURF features.

141

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

duced enough features during the training stage. For the 3D object, another robot
was selected and is also shown in Figure 6.8. For 2D objects, a single image was
used to extract the SURF features during the training stage. But for the 3D ob-
ject, pose based recognition was performed. Images from 16 different poses of the
robot were taken and their SURF features were extracted during the training stage.
The 16 different poses of the robots, which were used for training are also shown in
Figure 6.9.

Figure 6.9: Images from 16 poses of the 3D object.

The features extracted from the 2D objects and the 3D objects were combined to
form a library which provided information about the object’s identity and also the
pose information, in case of the 3D object. This library was uploaded to the two
robots memory and provided visual clues to both robots about the objects to recog-
nise in the environment. The two robots were programmed to move randomly in the
unknown structured environment and search for the objects of interest collectively.
To perform the collective operation, a communication medium was also established
between the two robots. The robots could share information about the number of
objects found and which they were still looking for, over a wireless network. When
one robot found an object of interest, it informed the other robot to remove this
object from the search list so that redundancy of searching the same object by two
robots could be avoided. The placement of the objects of interest and the two robots

in the test arena is shown in Figure 6.10.

142

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

Robot 2 2D Object 1

2D Object 2

Robot 1

3D Object 3
2D Object 4

Figure 6.10: Position of robots and objects of interest before experiment is performed.

In this experiment, while collectively searching for the objects, robot 1 found the
2D objects 1 and 2, and 3D object 3. Robot 2 found 2D object 4. The positions
of the robots, when they communicated the presence of the objects to their team

members, are shown in Figure 6.11.

Robot 1 found
object 1 Robot 1 found
object 2

.Robot 2 found

object 4 Robot 1 found
object 3

Figure 6.11: Position of the robots when they recognise the object in the environment.

143

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

During this experiment, robot 1 missed the 3D object in the first attempt and
successfully found it in the second attempt. The sequence of robot 1 positions when
it missed object 3 (i.e. 3D object) are shown in Figure 6.12. In part a, robot 1
detected object 3. Then, it was required to get close to object 3 to confirm its
presence. In part b, robot 1 got close to object 3. Object 3 was detected on its right
side, so in part ¢, robot 1 turned right. After detecting the object in part ¢, the robot
went straight towards the object. But it moved more in the forward direction such
that it left object 3 on its left side undetected. Now, in part d, only a small portion
of the 3D object was in its field of view and this was not enough for recognition.

Similarly, robot 2 also missed object 1 after detection. This happens because of the

Robot 1 detected
object 3 Robot 1 getting

Object
missed

Robot 1 turned right
to correct orientation

Figure 6.12: Sequence of Robot 1 positions when it detected and then missed object 3.

interruption from the robot 1. The sequence of robots 1 and 2 positions, when robot
2 missed object 1, are shown in Figure 6.13. In part a, robot 2 detected object 1,
while robot 1 was also nearby. In part b, robot 1 also detected object 1 on its right
side. In part c, robot 1 corrected its orientation towards object 1 and robot 2 moved
towards object 1. In part d, robot 1 moved towards object 1, but it also moved
between robot 2 and object 1. Now in part d, it can be seen that robot 1 partially
blocked robot 2 field of view such that robot 2 could not see object 1. Due to this

robot 2 missed object 1 and then it was found by robot 1. It is observed that once

144

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

Figure 6.13: Sequence of robot 2 positions when it detected and then missed object 1.

the robot found the 2D objects, then they hardly missed them while got close to
the objects. But, in the case of the 3D object, sometimes after detecting the object,
when the robot got closer to the object, it missed the object. This is possible as the
robot is also switching between higher and lower resolutions, while extracting the
object of interest. This switching relies on the distance to the object information
and if, at some point this distance information is wrong, then the robot can lose the

object of interest.

Distributed Search And Localisation Operation by Swarm of Robots

In the second experiment, a test was planned to show the performance of recognition
and localisation algorithm together in the distributed robotic environment. In this
experiment, the task was to recognise three 2D and one 3D object by a group of
three robots working collectively in the environment. For the three 2D objects,
building images were used and for a 3D object, again another robot was selected
as in the first experiment. These objects are shown in Figure 6.14. Again, for 2D
objects, single image was used for training, but to recognise a 3D robot, training
from 16 different poses was given. During the tests, robots recognised the objects of
interest collectively, while they were also tracked by the ceiling mounted cameras. In

this experiment, all the robots shared information with each other over the wireless

145

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

channel in the infrastructure mode once per second. As mentioned before, on finding
an object of interest, apart from telling the team members about the object’s ID, the
robots also informed the server about the object’s ID and its distance to object. The
robots obtained localisation information from the server. They used the ‘“distance
to object” information together with the localisation information to localise the
objects. This object localisation information was also conveyed to the server by
the robots. The server displayed these determined positions of the objects in the
camera images. Apart from this, the server also displayed these object positions in

the combined map made by using both camera images.

Figure 6.14: 2D and 3D objects used for experiment.

In this experiment, the positions of the robots and the objects of interest, before
the test start, are shown in Figure 6.15. In Figure 6.15 it can be noticed that,
apart from the objects of interest, some obstacles are also placed in the arena. To
avoid colliding with these obstacles, the robot performed the vision based obstacle
avoidance technique as described in detail in Chapter 4. At the end of the test,
when all objects of interest were found, the localisation information obtained for
all the objects on the camera images and also on the combined map is shown in
Figure 6.16. The combined map actually shows the combined field of view of both
ceiling mounted cameras and its image resolution is 960x1040 pixels. In Figure 6.16,
objects 1-4 positions are identified as 01, 02, 03 and 04 respectively, both in the
camera images and also on the combined map. They are also marked by a yellow
cross sign. It can be seen that the objects of interest are successfully recognised and

localised by the team of robots and the cameras collectively.

146

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic Systems

Object 2
Object 1
%
Object Object 4
mm
Camera 2 view Camera 1 view

Figure 6.15: Position of robots before experiment.

To determine the accuracy of the identified positions of the target objects, the
objects’ locations information are shown in Table 6.1. The objects’ locations are
shown in terms of the x and y coordinates of the ceiling camera image space. As
shown in Table 6.1, the x and y coordinates detected for object 1 (i.e., a 3D object)
are (163,914) on the combined map. Where as, the actual coordinates (i.e., the
true coordinates of the object on the combined map) determined for object 1 are
(159,931). This shows a deviation of 17.5 pixels on the combined map. When
translated to the real world coordinates, the error is 2.8 cm. This shows a very small
error in the determined location of the first target object. Similarly, for objects
2, 3 and 4 (i.e.,, object images), the detected coordinates and the true position
coordinates are shown in Table 6.1. For objects 2, 3 and 4, the observed error was

14.2, 5.2 and 4.7 cm, respectively.

Object ID Actual Position Detected Position Error Localisation error (cm) in the
(x,y) (xy) (pixels) arena of area (150x150cm)
Object 1 (3D) (159,931) (163,914) 17.5 2.8
Object 2 (2D) (135,232) (60,262) 90.1 14.2
Object 3 (2D) (927,307) (946,280) 33 5.2
Object 4 (2D) (885,785) (896,757) 30 4.7

Table 6.1: Object Localisation Information

147

6.2 Vision Based Object Recognition and Localisation by Multi-Robotic, Systems

Camera 2 View

(0,0) 1040

960
Combined Map

Figure 6.16: All objects are localised by using information from the team of robots and visual
tracking system collectively.

During the test, the only problem observed was related to the synchronisation of
the robots with the localisation system. For example, in the Figure 6.17, when robot
3 identified object 2 image (left image in Figure 6.17) and transferred the “distance
to object” information to the localisation system (i.e., server), then the robot was
slightly far from the object. But by the time it sent the object’s ID information to the
server and enquired the localisation information from the Visual Tracking System, it
moved toward the object (right image in Figure 6.17)). The tracking system locked
the new position of the robot and passed it on to the robot. Now the robot used
the “distance to the object” information with the its localisation information (valid
for its new position) to localise the object with reference to its own position. As
the distance to the object information was valid for the last position of the robot,

but its use with the new robot position caused a shift in the object localisation.

148

6.3 Environment Mapping by Distributed Multi-robotic System

. S | bject Localized with
Robot sent ob}ect R Bosiii

neWw Robot Position
ID to sender

Figure 6.17: Error observed in localising object.

Due to this, object 2 (i.e., “object image”) mistakenly localised slightly far from
its actual position. The determined object’s position is shown on the right side of
Figure 6.17. This can also be observed in Table 6.1, where the error in the detected
position of object 2 is 14.2 cm which is comparatively much larger than the error
found in the positions of objects 1, 3 and 4. This problem can be easily fixed by
adding an acknowledgement between the robot to the server communication such
that the robot did not change its position unless it was informed by the server that

the “distance to object” information has been used.

6.3 Environment Mapping by Distributed Multi-robotic Sys

tem

Another distributed vision processing scenario in swarm mode is related to multi-
robot environment mapping. Environment mapping is the concept in which robot
senses or experiences its surrounding and tries to obtain a global map. In other
words, robots map the environment using the perception sensors available on-board.

The generated global map essentially helps the robots to navigate autonomously in

149

6.3 Environment Mapping by Distributed Multi-robotic System

the environment. Environment mapping is a difficult problem to address as in most
cases, the robots require human assistance, if they are exploring the place first time.
The robots can not know their locations without having an environment map and at
the same time, the robots can not built the environment map without knowing their
location. In some studies in the robotics field, researchers have worked around this
problem in which the robots keep on localising themselves and at the same: time,
they also build the environment map. This is called Simultaneous Localisation
And Mapping (SLAM) in computer vision and robotics field. In the environment
mapping problem, in the beginning, the robots go around in the énvironment, while
localising themselves, keep on building a map of what they sense in the environment
and this way, when they revisit a place, then from the generated map they already
have some awareness of their surrounding. If the robots are working in the static
environment then the full map of the environment can be generated, which can help -
the robots to perform the path planning efficiently, for example to determine a path
to reach some specific location.

' This environment mapping problem is addressed in robotics by many researchers.
Researchers have used many different sensors such as laser range finders, infrared
sensors, sonar and vision sensors. But most of the research is focused on using laser
range finders. The laser range finders pfovide a very good depth or- distance infor-
mation about the robot surroundlng, but at the same time, they are very expensive.
In case of swarm of robots the laser range finder solution can not be used as a
single laser range finder can cost from £800 to £3000. This is far too expensive to
integrate on a single small robot as the basic idea in swarm robotics is to use many,
but simple designed robots to kéep the cost of each robot low. At the same time,
the laser range finders are also very big in size and their power consumption is also
high and do not suit the robots which have limited on-board memory and energy
resources. . ‘ -

In this section, a distributed vision based multi-robot environment mapping prob-
lem is addressed in which swarm of robots collectively try to obtain a common global'
map of the environment using the visual clues they obtain from their surrounding.
The generated map is intended to facilitate the multi-robot mission planning as the
environmental map together with the robots position on the map will be available.
The problem addressed here is different from SLAM as in this case, the robots are
provided the localisation information and they do not have to keep on localising
themselves. This is done to keep the focus of the research on the distributed vision

150

6.3 Environment Mapping by Distributed Multi-robotic System

processing part rather than addressing the SLAM issue. _

The rest of this section is divided into two parts. In the first part, the method-
. ology followed to perform the _environment mépping is addressed. Whereas, in the
second part, the results from the multi-robot environment mapping technique are
discussed.

- 6.3.1 Methodology - Environment Mapping

To address the distributed multi-robot environment mapping problem, two Sur- .
veyor SRV1 robots (shown in Figure 3.1b) equipped with a vision sensor were used.

For obtaining the localisation information the Visual Tracking System, discussed in

Chapter 5, was used. This system is responsible to determine the robot position,

track it and pass the robot’s localisation information to other robots. The concept of
the overall scenario is the following. Each robot in the environment creates a map in
its memory. As the robots will be generating 2D map of the environment (i.e., only
the boundaries of the objects detected in the environment), so this will not require
large amount of mémory. The robots will allocate memory for map generation only
once in the beginning. This will avoid allocating or expanding allocated memory
- for map at run time. The robots could have used shared memory (e.g., the map is
generated on one robots’ memory in a swarm and this memory is shared amongst
all) for generating the common map. But in this case, if the robot which holds the.
map malfunctions or fails, then all the learned map will be lost. As the generated
‘map is two-dimensional and requires very low amount of memory (i.e., 1040x960
bytes only), so it was found more efficient to have a local copy of the map in all
the robots. When the robots are generating the map, this map is also updated .by
all other robots working in the environment. For this purpose, each robot gets its
location and orientation information from the localisation system. Once the robot
knows its-location and orientation, then in the direction of its heading, it utilises the
visual cues it obtained from _itsvvision sensor to determine the objects boundaries
detected in its neighbourhood. A robot uses these detected boundary information
to update its own map. Apart from updating its own map, the robot also broadcasts
this map update information to the other robot members in the environment. On
receiving this map update information, each robot in the environment also updates
its map. This way, each robot in the environment not only knows the other robots’
position, but at the same time, it also keeps on maintaining a common map which

151

6.3 Environment Mapping by Distributed Multi-robotic System

has been built by the contribution of all the robots in the environment. Each robot
also passes the map update information to the server on which tracking system is
running. This way, the map building process can be seen on the server side. As
the robots used had limited on-board memory and processing resources, so it was
decided to use a very light weight vision algorithm to solve this problem. In this

scenario, the vision algorithms which require the on-board processing are:

* Objects’ Boundary Detection.

* Mapping.

Objects’ Boundary Detection

To determine the objects boundaries in their neighbourhood, a segmentation based
algorithm was used. This is the same approach which was utilised to develop the ef-
ficient vision based obstacle avoidance algorithm described in Chapter 4. The vision
based obstacle avoidance algorithm also works in parallel to help the robot control
algorithm to take necessary decision. If the vision based obstacle avoidance algo-
rithm gave the ground clearance signal to the robot control algorithm, then mapping
algorithm was called which determined the object boundaries in the surrounding.
To explain the concept of segmentation based object boundary detection algorithm,

an example image in Figure 6.18 is considered.

Input Image

Figure 6.18: Input image used for boundary detection.

The segmentation of the input image, shown in Figure 6.18, is performed and the
resultant image is shown in Figure 6.19.
To determine the distance to the near obstacles or to determine the boundaries of

the obstacles in field of view, the region covering the middle bottom of the segmented

152

6.3 Environment Mapping by Distributed Multi-robotic System

Segmented Image

Figure 6.19: Segmented image.

image was considered for further processing. The boundary of this selected region
in terms of pixels, in the forward looking direction, was determined. The boundary
information was obtained in the form of a vector. This boundary vector information,
when plotted on the segmented image, is shown in Figure 6.20. It is to be noted
that, this boundary vector provides information about the distance to the objects

in the robot field of view, with reference to the robot’s current position.

Detected Boundaries

Figure 6.20: Boundary vector plotted on the segmented image.

Mapping

Once the distance vector information was obtained, then the second step was to
map this information on a global map. Here, the robot utilised its location and ori-
entation information provided by the tracking system. To demonstrate the manner
the robot mapped the distance vector information with reference to its location and
heading, the camera images from the tracking system was used. The use of camera

images, from tracking system, was made for demonstration because robot location

153

6.3 Environment Mapping by Distributed Multi-robotic System

was defined in image space of tracking system. To accomplish the complete mapping

process, following procedure was used.

* From the heading information obtained from the Visual Tracking System, the
distance vector was mapped across the field of view provided by the robot vision
system. From the specification of the Omni-vision camera sensor used on the
robot vision system, the field of view information determined was 90 degrees.
To illustrate the manner this 90 degrees field of view was spanned from the
current robot heading, consider the image shown in Figure 6.21. In Figure
6.21a, the tracking information from left ceiling mounted camera is shown and
similarly in Figure 6.21b, the tracking information from the right camera is
shown. It can be seen that there are four robots in the environment and the
tracking system has detected their positions properly. Lets consider robotl’s
position in camera 1 (represented as R1). The zoomed in version of this position
is also shown in Figure 6.22. The 90 degrees field of view across the current
heading of the robotl’s position is determined and shown by the red (on the left
side of robot heading) and yellow lines (on the right side of robot heading) in
Figure 6.22. The distance vector information (which is obtained by processing
the images from robot vision system) are mapped within this 90 degrees field

of view.

(a) (b)

Figure 6.21: Visual tracking and localisation information (a) Left camera, (b) Right camera.

* The second requirement, to perform perfect mapping of distance vector on the

154

6.3 Environment Mapping by Distributed Multi-robotic System

Figure 6.22: Zoom-in information of robot 1 position.

global map, was to determine the equation which translated the distance in
pixels, detected by the robot vision system, to the distance in pixels of the
images processed by the visual tracking system. This was performed because
the robot localisation information was provided in terms of heading and (x, y)
coordinates of the images obtained by the visual tracking system. Some exper-
iments were performed to determine the distance in pixels measurement from
robot vision system and their corresponding coordinates values in the images
of visual tracking system. To obtain these corresponding values, an object was
placed at some distance from the robot vision system and the distance detected
by the robot vision sensor and the corresponding coordinate values in the visual
tracking system were recorded. This experiment was repeated while increasing
the distance of the object from the robot vision sensor. Ten values recorded

are shown in Table 6.2.

In the first column of the Table 6.2, the distance in pixels “dr” recorded from
robot vision system is shown. In the second column the corresponding value
“dc” (i.e. distance in pixels detected by the ceiling cameras) determined by the
visual tracking system is shown. And in the third column, the scale factor ‘or”
determined between the first and second column values is shown. This scale
factor translates the distance in pixels from robot vision system to distance in
pixels valid for the visual tracking system. It can be noticed that this scale
factor is not constant. When this scale factor was plotted against the distance

in pixels from robot vision system, the profile shown by the Red colour in Figure

155

6.3 Environment Mapping by Distributed Multi-robotic System

Table 6.2: Scale factor: From robot to ceiling camera.

Distance in pixels - dr Distance in pixels - dc Scale Factor
(Image from Robot) (Image from ceiling camera) (a)
62 73.8 1.19
69 82.8 1.20
75 90.8 1.21
81 99.6 1.23
85 106.3 1.25
93 119.0 1.28
101 138.4 1.37
108 169.6 1.57
114 199.5 1.75
121 254.1 2.10

6.23 was obtained. It can be noticed that this is an exponentially rising profile.

Profile b/w Distance from Object (Pixels) and Scale Factor

2.6

24

o3
N

70 80 90 100 110 120 130
Distance in Pixels (dr) Using Robot Vision System

Figure 6.23: Profile between distance from object (pixels) and scale factor.

To determine the equation which satisfies the relation between the distance
in pixels udr” (from robot vision system) and the scale factor “a”, MATLAB
Equation Fitting Toolbox was used. After the equation fitting, the result ob-
tained is shown by the Blue colour profile in Figure 6.23. For this profile, a
fourth order fitting equation was obtained from the MATLAB Equation Fitting

156

6.3 Environment Mapping by Distributed Multi-robotic System

Toolbox as:

on = 4.4e“8" - Te~6ddi + 0.000117. + 0.028dri + 0.0051(6.1)

Where, i = 1 —» 320(Image width). Note that, as the vector of distance
information (Figure 6.20) is generated, so a vector of corresponding values of
a* will be generated. Equation 6.1 was used to determine the scale factor cq
for every value of the distance vector ‘dr ” shown in Figure 6.20. When these
scale factors were multiplied with their corresponding values of dri then a
vector d@ was obtained which determined the distance in pixels detected by

the visual tracking system. This is shown as:

dci dr{O{ (6.2)

(XY

heading

Figure 6.24: Mapping process.

From Figure 6.24, d@ can also be described in terms of the robot localisation
information (i.e. the coordinates of robot position (x,y)) and the final coordi-

nates (xmi, ymi) where the object boundaries were mapped;

157

6.3 Environment Mapping by Distributed Multi-robotic System

dei =/ (Tmi = ©)2 + (Ymi — y)? - (63)

Similarly, the corresponding slope values s; for each value of dc; were com-
puted using the coordinates (zx;, yx:;) which were uniformly spaced coordinates
spanning the robot field of view (see Figure 6.24);

sizyki_y:> Ymi — Y . (6.4)

Tpi — T Tmi — T

- Using the values of d.; (where i = 1 — 320 “Image width”) together with the
corresponding slope values s; and the robot position coordinates (i.e.(z,y)), the
coordinates (Zmi, Ymi) were computed for mapping the object boundaries. The
equations used to compute T andymi are given as:

i = ————t+z (6.5)

.. - . .

i = e - 69
Note that, (Zmi,ym:) are defined in ceiling camera imagé space. This way,
once (Zmi, Ymi) were computed then the complete distance vector information
was mapped to the ceiling camera image space. Following the above defined
- procedure an example distance vector from the robot 1 vision system, mapped
to the global map, is shown in Figure 6.25a. In Figure 6.25b, the tracking
information from the second ceiling mounted camera is shown. In Figure 6.25¢,
the global map generated when the two camera information was fused together,
is shown. The zoomed in version of Figure 6.25a is shown in Figure 6.26. It
can be seen that, the distance vector is mapped properly along the boundary
of the objects. ' ' ‘

158

6.3 Environment Mapping by Distributed Multi-robotic System

Combine! Image Map

©

Figure 6.25: (a) Distance vector from robot 1 mapped To coordinates of visual tracking system,
(b) Robot tracking image from second ceiling mounted camera, (c) Global map generated using
the two ceiling mounted cameras.

Figure 6.26: Zoom-in version of Figure 6.25a.
6.3.2 Experimental Results

To demonstrate the distributed vision based multi-robot environment mapping

scenario, several experiments were performed. A test platform was designed

159

6.3 Environment Mapping by Distributed Multi-robotic System

with obstacles placed in certain forms to create an environment to be mapped
by the multi-robotic system. In this section, the results obtained from three
experiments, are presented where in each experiment, a different environment
is provided to be mapped by the robots. All the robots were programmed to
follow the boundaries in the environment and at the same time, if the robot
found itself very near to an obstacle or stuck between a narrow passage, then
the robot could decide a new direction depending upon the ground clearance.

These three experiments are detailed below.

Figure 6.27: Experiment 1: Visual tracking system (a) Left camera, (b) Right camera.

Experiment 1

In experiment 1, the environment to map is shown in Figure 6.27. The images
provided by the left and right cameras of Visual Tracking System are shown in
Figures 6.27a and 6.27b, respectively. It can be seen that four robots (robots
are labeled as R1, R2, R3 and R4) have been detected in the environment.
Robots R3 and R4 are dummy and not contributing to map building process.
Only Robots Rl and R2 are working collectively to map the environment. In
these images, it can be noticed that some blocks and boxes are placed in the
vertical direction to generate an appropriate environment for map building
process. The two robots were expected to go around in the environment and
use the visual clues from their vision sensor together with the visual tracking
system information. This way they mapped the test arena boundary and walls

made by the blocks. The robots worked collectively to generate a common map

160

6.3 Environment Mapping by Distributed Multi-robotic System

which was blank in the beginning.

Combined Image F.lap

©

Figure 6.28: Experiment half finished: (a) Left camera, (b) Right camera, (c) Map.

In the experiment, the robots were left in the arena to map the environment.
This environment mapping process was a slow process because after every move,
the robots needed to wait so that the tracking system locked their current
positions and provided them their location information. This was done so
that the robots were provided with their locations and orientations information
which precisely represented their current positions. This was important as
robots had to use this vision based location and orientation information as
the basis for mapping the objects boundaries detected in the field of view of
their vision system. If this information represented their last position, then

inaccuracies in map were expected. For example, a small error in the orientation

6.3 Environment Mapping by Distributed Multi-robotic System

Mapping error
caused by.
orientation\rror

Figure 6.29: Mapping error caused by the orientation error.

information could generate considerable error in the mapped boundaries. The
two robots were kept operative for 4 minutes and 21 seconds. After half of the
experiment was complete, the progress on map generation process, done by the
robots is shown in Figure 6.28. In Figures 6.28a and 6.28b, the positions of
the robots, when half of the experiment was complete, are shown. In Figure
6.28c, the progress on the map generation process is shown. Finally when
the experiment completed, the final map generated by the robots is shown in
Figure 6.29. As mentioned before, a mapping error caused by a small error in
the detected robot’s orientation is also shown in Figure 6.29. The erroncously
mapped boundary is pointed out by the Blue arrow. The actual location where

this boundary should be mapped is also drawn in Red colour.

Experiment 2

In the second experiment, the environment was altered by placing the objects
in different order such that they contributed to a different map. The starting
position of the robots detected by the Visual Tracking System and the new en-
vironment to be mapped by the robots is shown in Figure 6.30. As the objective
of this scenario was to demonstrate the collective vision based map building
operation by a team of robots rather than the efficient robotic control, so the

robot control algorithm was kept very simple. The robots were programmed to

162

6.3 Environment Mapping by Distributed Multi-robotic System

perform the vision based wall following. To make sure that the robots explored
the most part of the arena, the initial positions of the robots were selected very
carefully. In Figure 6.30, it can be noticed that the position of the robot 1 (R1)
is set in a way that it started the mission by mapping the top right part of the
image (image shown in Figure 6.30b). Similarly, the robot 2 (R2) started the
mission by mapping the top left part of the image shown in Figure 6.30a.

(@) (b)

Figure 6.30: Experiment 2: Visual tracking system (a) Left camera, (b) Right camera.

After half of the experiment was completed, the progress in map generation pro-
cess is shown in Figure 6.31c. It can be noticed that the robot 2 has mapped
the part of the arena shown in top left side of the Figure 6.31a. After suc-
cessfully mapping the first part, robot 2 headed toward the part of the arena
which is shown in the bottom of the Figure 6.31a. Similarly, the robot 1 suc-
cessfully mapped the part of the arena shown in the top right side of the Figure
6.31b. Finally, robot 1 moved towards the part of the arena which was already
explored by the robot 2. Revisiting the part of the arena which was already
mapped by the other robot added the redundancy but at the same time, it also
filled the gaps in the map which were left by the other robot. When the test
finished, the final map generated by the two robots is shown in Figure 6.31d.

Experiment 3

Similar to the experiment 2, for the new map generation, again the environment
was altered significantly. At the start of experiment 3, the positions of the
robots in the environment and the new map to be generated by the robots is

shown in Figure 6.32. At the end of the experiment, the final map generated

163

6.3 Environment Mapping by Distributed Multi-robotic System

© @

Figure 6.31: Experiment 2 half finished: (a) Position of robots in left camera after half of the
experiment is finished, (b) Position of robots in right camera after half of the experiment is
finished, (c) Progress on map generation after half of the experiment is finished, (d) Experiment
2 final map generated.

is also shown in Figure 6.33. It can be seen that, at the end of the experiment,

the robots have successfully mapped the arena.

Figure 6.32: Experiment 3: (a) Left camera image from visual tracking system, (b) Right camera
image from visual tracking system.

164

6.4 Conclusions

-

7 |

- Figure 6.33: Experiment 3 final map generated.

6.4 Conclusions

In this Chapter distributed vision processing in swarm mode scenarios have
been presented. It has been concluded that, when multiple robots are working
in the swarm mode then due to the communication bottleneck, the robots can
not share the raw vision data between each other for distributing the process-
ing load. For information exchange, as the robots use wireless communication
medium which suffers from severe noise, so this also limits the sharing of com-
pressed images between multiple robots. It has been concluded that, the sharing '
of processed visual data in terms of features not only makes efficient use of the
communication medium, but it also shows the distribution'(‘)f vision process-
ing load. It is shown that, the use of simple visual features (e.g‘., distance to -
the neighbouring objects) can be made to map the environment by a group of
robots. However, if the features encode high density information (e.g., SURF
features), it has been concluded that, sharing of such features could overload
the network. In this case, the vision processing distribution can be achieved
by prdcessing the features on-board, and then sharing the outcome of these.
processing in terms of decision (e.g., identity of the target object or distance
to the target object).

165

Chapter 7

Distributed Object Recognition
and Information Gathering in a
‘Multi-Robotic Organism

As described in Chapter 1, in this research a swarm robotic system is cohsidered
in which robots have the ability to physically join together to become a single
three dimensional robotic organism: whenever the need arises. So when the
robots are in the form of an organism, each robot unit contributing to the
organism, has its own resources. These resources can be used to fulfil the
fequirements of that individual robot unit and at the same time, these resources
can also be used to contribute to a common objective set by the organism. In
other words, the resources from all the robots, accumulated in the organism,
can efficiently contribute to a major task which is set by the robotic organism.
In Figure 7.1, a robotic organism is shown. This organism is formed after
utilising a vision based physical docking sﬁpport_develbped in Chapter 4. The
physical formation of the complete organism is out of the scope of this research.
To address the issue of distributed vision processing in the robotic organism,
a scenario is described in this Chapter, in which the robotic organism is given
-a task to perform vision based obstacle avoidance, efficient object recognition,
and visual information gathering in the distributed fashion, while utilising the
energy and processing resources available within the robotic organism only.

In Figure 7.1, an example of an experimental platform is shown. Several obsta-

166

Multi-Robot
Organism

Places or Objects of Interest

Obstacles

Figure 7.1: Robotic organism scenario.

cles are placed in the environment, which the organism has to avoid colliding
while performing its task. At the same time, some places or objects of interest
are also shown which the organism has to identify. This scenario is different
from the one discussed in Chapter 6 where each robot in the swarm is do-
ing obstacle avoidance and recognition task on its own. In the swarm mode
scenarios, the robots had a wireless communication with each other. This com-
munication medium is a bottle neck in the distribution of vision based task
as communication bandwidth is much smaller to satisfy the exchange of vision
based information between the robot units. Whereas, in the case of robotic
organism, after a docking operation, the robots establish an Ethernet com-
munication medium (10/100M bits/sec) with the other robot modules. This
high speed communication backbone is promising to exchange the visual in-
formation and share the processing load between the robot modules forming
an organism. So, through the Ethernet medium, the organism split the vision

based control, obstacle avoidance, recognition and information gathering tasks

167

between different robotic modules. In the scenario addressed in this Chapter,
the organism searches for the objects of interest in the environment as shown in
Figure 7.2, where the organism is detecting and recognising one of the objects
in the environment. Once the object is identified, then the organism performs

the vision based scanning of the environment as shown in Figure 7.3.

Object Recognised

by an Organism
Organism Recognising
an Object of Interest

Figure 7.2: Robotic organism recognising the object in the environment.

In the vision based scanning of the environment (shown in Figure 7.3), the
organism gathers the visual information in terms of the sequence of images.
The organism stitches the sequence of images and makes a mosaic of it, which
provides a bigger picture of the environment. This mosaic provides the objects
surrounding awareness to the organism, that is, what lies on the left and right
sides of the object. This information can be very useful in navigating the
organism. For example, if the organism has to reach the same object again,
it can try to relate what it saw with what it had in the mosaics stored in its
memory. If it finds a match, then it can get clues that in which direction it is
likely to find the object. This Chapter is dedicated to the described distributed
vision processing scenario in the robotic organism. To address in detail the
different issues, which makes the vision distribution and its processing possible

in the organism, this Chapter is divided into the following sections.

168

7.1 Communication in the Robotic Organism

—Communication in the Robotic Organism.

—Tasks distribution for distributed object recognition and information gath-

ering.

—Experiments with the Robotic Organism.

Figure 7.3: Robotic organism gathering the visual information and making mosaic.

T.] Communication in the Robotic Organism

As communication medium is a backbone of any distributed computing system,
so careful consideration was given while selecting the medium for information
distribution in the robotic organism. Ethernet is a very high speed and reliable
communication medium and as the use of embedded systems is very common
in network application, so Ethernet modules can be found integrated in most of
the embedded systems. For this reason, Ethernet was selected for information
distribution in the organism. As Blackfin processor was used for information
processing, so like other embedded systems, Ethernet module is also provided on
Blackfin development board Eval-BF5xx as shown in Figure 3.5. As discussed
in Section 3.2, a multi-processor robotic organism was developed to perform

distributed vision processing tasks, so in this organism the basic communication

169

7.1 Communication in the Robotic Organism

network between the two processing modules (or robot units) can be viewed as

shown in Figure 7.4.

Ethernet

Robot 1 Processing Unit Robot 2 Processing Unit

Figure 7.4: Communication set-up between robotic modules in the organism.

The Ethernet port on the two EvalBF5xx boards (through which the robot
processing units are integrated) is also shown in Figure 7.4. Through this
Ethernet port, a communication network channel between the two robot units
is established in the organism. The information distribution over this network
is processed through four network layers. These are TCP/UDP, IP, Ethernet,

and Physical layers. These network layers are shown in Figure 7.5.

TCP/UDP

Ethernet

Physical

Robot 1 Processing Unit Network Layers Robot 2 Processing Unit

Figure 7.5: Communication network layers.

Generally, in network applications requiring information distribution over a
network, the application to network communication interface is made above
TCP/UDP layer as shown in Figure 7.6. In this case, all the communications
between the applications go through all the network layers. The data from
the sender side go from TCP/UDP to Physical and on the receiver side, it goes
through the Physical to the TCP/UDP layer. Whereas, from the basic network

protocol, the final data transmission happens on the Physical layer.

170

7.1 Communication in the Robotic Organism

TCP /1IUDP

i Ethernet

I Physical

Robot 1 Processing Unit Robot 2 Processing Unit
Communication Channel

Figure 7.6: Application interfaced to TCP/UDP layer.

In this configuration, it can be noticed that, the data are processed on the
TCP/UDP and IP layers twice, once on the sender side and then on the receiver
side. This causes a processing overhead. If applications are running on high
speed processing systems, then this processing overhead can be ignored but as
mentioned in the swarm robotic systems, the robot units have limited on-board
processing resources, so this information processing overhead should be avoided.
To avoid this processing overhead, all the applications can be interfaced with
the transmission channel at Ethernet layer as shown in Figure 7.7. In this case,
as the information bypasses the TCP/UDP and IP layers, so an increase in the

information throughput is expected.

TCP / UDP

Ethernet
~“Physical

Robot 1 Processing Unit Robot 2 Processing Unit
Communication Channel

Figure 7.7: Application interfaced to ethernet layer.

In case the application is interfaced with the TCP/UDP layer (as shown in
Figure 7.6), then it creates socket and the target robot IP is the only item
required to send data to the other robot. The TCP/UDP and IP layers auto-
matically create the frame from the data provided and these layers also perform

the checksum to validate the transmitted data. On the receiving side, the tar-

171

7.1 Communication in the Robotic Organism

get robot receives the data sent by the sender and does not require any data
validation. On the other hand, in case the application is interfaced through the
Ethernet layer (as shown in Figure 7.7), then this configuration provides a high
transmission data rate, but at the same time, the application is required to
know the target robot MAC (Media Access Control) address. The application
is also responsible for manually creating the frames for the Ethernet layer. This
frame format is shown in Figure 7.8. This is the basic frame format in which
an application is required to pack the data and send to the target robot. This
frame requires target robot MAC address (Destination MAC), sender robot
MAC address (Source MAC), Frame ID describing what type of information is
included in the frame, Data to send (User Data) and finally the check sum of
the complete frame (Check Sum). The application is responsible for adding this
check sum information in the frame to ensure data validation on the receiving
side. All the robot units in the complete organism act like a network connected
modules which exchange information at very high rate at Ethernet layer. It is
to be noted that, in this form of communication, once the data are sent by the
sender robot, then in the organism, the robot module with the MAC address
as mentioned in the target MAC address of the Ethernet frame, receives the
frame. As the sender MAC address is also a part of Ethernet frame, so the

target robot also knows which robot module has sent this information.

Destination Check
MAC Frame ID Sum
6 bytes) (2 bytes) (4 bytes)
Source User Data
MAC
(6 bytes)

Figure 7.8: Ethernet frame (IEEE 802.3 standard).

172

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

7.2 Tasks Dlstrlbutlon for Distributed Ob Ject Recogni-

tion and Information Gatherlng

Based on the promising data throughput: achieved using the low level Ether-
net communication layer, the distribution of vision based task is possible. The
distributed vision processing scenario addressed in this Chapter requires three
robot modules docked together to form a robotic organism. The robot organism
developed for this scenario is Ashown’ivn Figure 3.12. As discussed in the begin-
ning of this Chapter, the robot organism is required to perform vision based
control (or decision making),_ obstacle avoidance, object detection, recognition
and surrounding information gathering in parallel. From the work presented
in Chapter 4, very light weight vision based obstacle avoidance techniques are
already addressed. This task does not require to be distributed as it can be
performed by a single robot very efficiently and so is the case of vision based de-
cision making. The other two tasks, i.e., object recognition, visual information
gathering and mosaicing are comp_utatiohally very heavy and require collective
“processing from the robotic modules in the organism. The main objective of the
complete distributed vision processing scenario can be divided into following
three phases. -

— Communication Awareness within the Robotic Organism.
— Distributed Object Recognition.

- Dist'ributed Information Gathering,.

7.2.1 Communication Awareness within the Robotic Organism

In this scenario, a robot in the organism is a master robot and the other two

'aré‘slave robots. It is assumed that the robot which generates the need for
organism formation is the master robot. And all the robots which are called
to participate in forming an organism by going through the physical docking
procedure, are automatically the slave robots. An example image showing
the REPLICATOR robot units, which will part1c1pate to form an organism, is
shown in Figure 7.9.

An Active Wheel robot (i.e. one design of Replicator robot unit), is shown
as the master robot in Figure 7.9. This robot has the capability to perform

173

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

Slave Robot 1: Scout Robot
Slave Robot 2: Scout Robot

Master Robot: Active Wheel

Figure 7.9: Example Replicator robots participating to form an organism [§].

docking from both sides and mechanism to lift the organism. The other two
robots, acting as the slave robots are Scout Robots (another design of Replicator
robots). Once the two slave robots are physically docked to the master robot,
then the master robot also provides the Ethernet communication backbone to
organism. Through this communication backbone all the robots module can
communicate with each other directly. The manner master robot docks to the
slave robots using the docking port, which also surrounds the communication

backbone, is shown in Figure 7.10.

Slave Robot 1 Slave Robot 2

Master Robot

Figure 7.10: Replicator robotic organism from three robots [§].

174

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

In this implementation, once the organism is formed, in the beginning all the
robot modules in the organism are unaware of the identity of their neighbouring
robots. So after each robot is docked, it will start broadcasting a “Breathing
Frame” to all the other robots in the organism through the communication
backbone. This “Breathing Frame” is 100 bytes and it contains the frame ID
stating that this is breathing frame and the MAC address of the sender robot.
The manner breathing frame is broadcasted by the two slave robots, is shown
in Figure 7.11. This Figure shows that how the communication between the

two slave robots and the master robot takes place.

Breathing Message @ 10 Hz : MAC 3A:15:02:56:44:46

1/
Slave Robot 1
MAC Address Active
Master 3A:15:02:56:44:40 Yes
Neighbour 3A:15:02:56:44:47 Yes
Ack: MAC3A:15:02:56:44:40 Ack: MAC3A:15:02:56:44:40
Master Robot
E B JJB 1 MACAddress Active
Slave 1 3A:15:02:56:44:46 Yes
Slave 2 3A:15:02:56:44:47 Yes
Breathing Message @ 10 Hz : MAC 3A:15:02:56:44:47
Slave Robot 2
IESSEI MAC Address Active
Master 3A:15:02:56:44:40 Yes

Neighbour 3A:15:02:56:44:46 Yes

Figure 7.11: Communication within the organism.

This way, on receiving the breathing frame from the neighbouring robots, the
master robot knows the identification of its slave robots and starts populating
a Table. In this Table, master robot keeps identification information about its
slave robots and also their status whether they are still active or not. Master
robot senses the breathing signal from all slave robots continuously. This is im-
plemented in a way that each slave robot keeps sending the breathing frame at

10Hz frequency. In Figure 7.11 it is shown that, after forming an organism, the

175

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

slave robots 1 and 2 start broadcasting the breathing frame with MAC address
“3A:15:O2:56:44:46” and “3A:15:OQ:56:44:47”, respectively. Once the master
robot receives these breathing frames, then it updates the communication Ta-
ble and populates it with the slaves MAC addresses and declares these slaves as
active. As each slave robot has broadcasted its breathing frame and apart from
master .robot, the other slave robot has also sensed this frame. So the slave
robots also update their table and populate it with their neighbouring slave
robot information. From the acknowledgement received from the master robot,
slave robots also know the master robot’s MAC address and store them in the
table. The final populated tables for the current maste_r—slave configuration in
the robot organism, are shown in Figure 7.11. In the current implementation,
- if the master robot_does not sense breathing message for 2 seconds, then it
assumes that the slave robot is no more functioning. In this case, master robot
updates the table, declaring this slave robot as inactive. To assign the respon-
sibility of this inactive slave robot to another active robot, the master robot
checks if there are more active robots in the organism. If there are free active
robots in the organism, then it routes or distributes the vision tasks to these
active robots. ' |

7.2.2 Distributed Object Recognition

In the current scenario, it was decided that, once the organism is formed then
the master robot is made respon31ble to perform vision based obstacle avoid-
ance and performs the locomotion of the complete organism. It makes the
organism move in the environment without colhdlng with the obstacles. While
keeping the organism in continuous motion, the master robot also performs
distributed object recognition with the support from one of the active slave
robots. In Figure 7.12, the operations performed by the master robot while
performing the distributed object recognition task with slave 1 robot is shown.
For achieving the distributed object recognition task, the master robot is re-
sponsible to perform a light weight vision based detection of the objects in the
images (shown in Figure 7.12). For this purpose, it uses the Harris Feature
Detection algorithm for the detection of the features in the image. Rather than
considering the complete image for performing the distributed vision process-
ing, it looks for the part of images where more features are located. There is

176

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

a high probability that these parts of the image are resulting or describing the
objects in the environment. So, the master robot extracts the chunk of these
images and passes this visual information to one of the slave robots for per-
forming the computationally heavy object recognition. In case of Figure 7.12,
the master robot has extracted the parts of image representing two blocks and
one robot image and have transferred this information to the slave 1 robot for

further processing.

Communication Medium

Slave Robot
Slave Robot 2
[l Appearance based Object Recognition

Mastei

[1Vision based obstacle avoidance
UOrganism Locomotion

i , mm
wr ¥ m PPV

*Vision based Object Detection

J .

Recognised
Object IDis 3

[JMulti-resolution Analysis

Figure 7.12: Distributed object recognition within the organism.

Here, the master robot also determines that these parts of images are resulting
from the objects placed near or far from the organism. Based on the distance
to the detected object, the master robot utilises the multi-resolution switching
technique which is described in detail in Section 6.2.3. For the objects detected
near the organism, the parts of images are extracted from the QVGA (320x240
pixels) resolution image and if the object is found far, then extraction is per-
formed from VGA (640x480) resolution. In case of Figure 7.12, two blocks in

177

7.2 Tasks Distribution for Distributed Ob, ject Recognition and Information Gathering

the image are found near and their information is extracted from QVGA res-
olution. But the robot in the image is detected far from the vision system, so
high resolution rswitching‘ is performed and information from VGA resolution
is extracted. After performing feature detection and multi-resolution analysis,
if the master robot does not find enough features in the image, then it discards
these images and keeps on moving in the environment. In case, enough features
. are found then it distributes the extracted image parts to the slave robot.. On
the other hand, the slave robot keeps the features in the library for the target
objects. This library is provided in the form of SURF extracted features and is
obtained after the initial training is given to the robot to recognise the target
objects in the environment. This library is usually large in size and can grow
depending upon the number of target objeéts in the library. On recéiving- a
request from the master robot to process the image parts with object recogni--
tion algorithm, the slave robot executes the optimised appearance based object
recognition technique as shown in Figure 7.12 (optimised SURF features based
technique is discussed in detail in Chapter 6). This appearance based recogni-
tion technique further utilises the library of SURF features to identify whether
. the target object is located in the image part. On process completion, the slave
robot informs the master robot about the outcome of the recognition algorithm.
If one of the target objects was found in the image parts (robot image in case of
Figure 7.12), then the slave robot acknowledges the master robot and informs
it about the object’s identity found after processing the image data. In this
Case, the master robot saves the complete image (from which the parts were ‘
extracted to distribute to the slave robot) on the on-board memory. Master
robot retains a copy of this image in the memory after sending recognition
~ request to the slave robot. In case of negative outcome (i.e. when no object |
is found), the master robot discards this image copy. Here, one part of the
distributed vision processing, involving one master and slave robot, ends.

7.2.3 Distributed Informatidn Gathering

Once the positive outcome of the distributed recognition is obtained from the
slave robot, then the organism has to gather the visual information from the
. object surrounding. This is shown in Figure 7.13 where slave 1 robot is provid-
ing Object ID information to the master robot and master robot is preparing to

178

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

request slave 2 robot for performing Distributed Information Gathering task.

Communication Medium

Slave Robot 1
[JAppearance based Slave Robot 2
Object Recognition
Object ID
[IScan Images from object surrounding
Send Images to the Slave Robot

[JCompute Homographies
[JGenerate Mosaic
[JObject Detection

Figure 7.13: Distributed information gathering - task communication.

To gather object surrounding information, the control algorithm in the master
robot moves the organism in backward direction. It is performed for two rea-
sons. One is to reverse the motion done by the robot during the time when the
slave was performing the recognition task. And second is to bring the recog-
nised object back in the field of view of the organism so that the organism
can see the surrounding objects with reference to the identified object. After
moving backward, the master robot gives a big rotation to the organism in
left direction. Finally, it rotates the organism in right direction and scans the
environment around the object in terms of images. Here, it is to be noted
that, as the organism generates the mosaic from the images obtained after the
scanning, so the axis of rotation of the organism is kept constant. That is, the
organism’s location is not moved forward, backward and shifted right or left
during the scanning. If the axis of rotation is not kept constant, then mosaic
of images can not be generated as the objects in the images will appear with

different scales.

While performing the scan, the master robot utilises the vision based rotation
control strategy to rotate the organism before capturing each image. This is to
ensure that the organism was rotated at least 10 degrees each time. The use
of vision based rotation control was made because, the organism comprised of
many robots (i.e., three or more robot modules) and was too heavy. If the time

check is made, that is rotation command is given to the motor control board

179

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

for fixed time period for each image scan, then sometimes the motors are not
able to rotate the heavy organism. This way, the organism scans the images
from the same location, essentially providing no surrounding information. The
use of visual feedback makes sure that each image in the scan provides some
new information and at the same time, it has enough overlap with the last
scan image so that image stitching (mosaicing) can be performed properly.
While the master robot is obtaining images in the scan, at the same time, it
keeps on transferring the QVGA resolution images to another slave robot as
shown in Figure 7.13, where master robot stream the scan images to slave 2
~robot for further processing. Slave robot reéeives these images and executes
the optimised SURF based algorithm to extract scale invariant features from
the images. The slave robot performs matching of SURF features extracted
from each two consecutive images. These matching features are processed with
RANSAC (“RANdom SAmple Consensus”) algorithm to remove any outlier
features. The final matching features are then used to extract Homography
matrix between the two images. Homography matrix basically relates the two
images with same planar surface in space. The relation of Homography matrix
in terms of the corresponding features (or coordinates) of the two consecutive

images, is shown as:

z; scosd —ssinf t, | [2z , =
yi | = | ssinf scos® t, Yi | (7.1)
1| 0 0 1 1

z; hiy hig his 2z; » :

i | = | har ha hos y; (7.2)

1 hsi hsy 1 1

lmi =! H2 X2 m; : (73)

where 'z; and 'y; are coordinates of the features points from the first image and

2z; and 2y; are the corresponding coordinates of the features points in the second
.image. And hll, h12, h13, h21, hgz, h23,.h31, and h32 are‘the coéfﬁcients of the

Homography matrix (! Hy) from image 1 to image 2. The slave robot computes
this Homography matrix for every consecutive image. On expanding the above

180

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

equations, the relation between the coordinates of the second image and the
coordinates of the first image in terms of the coefficients of the Homography

matrix 1s obtained as:

i h-nx2X + h\2 x2yi+ h\3
h3l x2Xi + h32 x2yi + 1

1 _ A21 X2Xj+ M22 x 2yj + /123

h-31 X2 Xi + /132 X2 Vi+ 1

To form a mosaic, the re-projection of all the images on a common plane is
required, as shown in Figure 7.14. This Figure shows the manner the re-
projection of the three images on the common plane is performed to form a
mosaic. To obtain the re-projections on the common plane, the product of all

the Homographies is computed in an incremental fashion, and is given as:

g @

i=

Camera

Common
Projection Plane

Figure 7.14: Image re-projection on common plane.

At each step when the product of Homographies is computed, the corresponding
image (i.e. the image to which last Homography in the product belongs to)
is also re-projected o011 the common plane. For example, the first image is

projected straight away on the common plane. The second image uses the

181

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

Homography [H2. The third image uses the product of Homographies 2H3
with /H2 and so on. This relation of the product of Homographies with the
images is shown in Figure 7.15. In this Figure, the reference frame (or common
re-projection plane) is shown on which the images are re-projected using the

product of Homographies.

Image k+1

Image 2

Image 1

Reference Frame or Common Re-projection Plane

Figure 7.15: Images re-projection using product of homographies.

So in distributed information gathering task, the slave robot uses this image re-
projection approach to produce the image mosaic, once it receives the streams
of images from the master robot. This is shown in Figure 7.16 where slave
2 robot receives image stream from the master robot and has generated the
image mosaic. In Figure 7.16, the four step processing phases are shown which
are followed by the slave robot to process all the images. For providing the
detail of the image, the zoom in version of these four processing phases are also

shown in Figures 7.17 and 7.18.

The first step in Figure 7.17 generates the image mosaic. The image mosaic is
a large image providing the bigger view of the object surrounding. It is difficult
to process this large image so that the different objects in the environment can
be related with each other. So here, rather than processing the complete image
with computationally heavy feature extraction approach, it was decided to
identify the parts of image containing the objects. And then these parts of the

mosaic image will be processed by the appearance based approach. This makes

182

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

Communication Medium
Slave Robot 1

Appearance based Slave Robot 2

Object Recognition MiSt, r
Object ID j.Scan Images from object surrounding Compute Homographies
Generate Mosaic
K <».. . mm ...
Object Detection
[\]
Step2 £
[\]
Step3 S
v
W
s
an
[)
Step 4 ?-
P

Figure 7.16: Distributed information gathering - vision processing phases.

Complete Image Mosaic

- o.P
*

>Ground Region Extraction from Segmentation

"
Step2 3

-

SN

Figure 7.17: Slave 2 :Four step processing phases - Step 1 and 2.

the approach suitable to be implemented in an embedded system environment.
For the detection of the objects in the image, first of all the segmentation of
the complete image is performed and the regions resulting from the ground

and the boundary wall are isolated. In this case, the ground region surface and

183

7.2 Tasks Distribution for Distributed Object Recognition and Information Gathering

Pixels Contributing to Object Detection

sc
Step3 g

*Image Parts Describing the Objects in Mosaic

m IJIM

Figure 7.18: Slave 2 :Four step processing phases - Step 3 and 4.

the boundary wall appear to be the same so they appear in the same region
after segmentation. This is shown in Figure 7.17 as the second step of the
processing phases. The output from the second step is further processed in
step 3 to determine the number of pixels contributing to the object detection.
The number of image pixels in a mosaic, contributing to the object detection
in each column are determined and the generated profile is shown in the step
3. This profile is thresholded and the columns where the profile exceeds the
threshold, indicate the presence of an object. Finally in step 4, the pixels
contributing to the object are filled with blue colour. It can be seen that, six

objects in the mosaic are correctly detected and isolated.

These mosaics are generated to provide surrounding information for each target
object. After detecting the objects in the image mosaic, these objects can be
assigned labels and their appearance based information (in terms of SURF
features) can be extracted by the slave robot which eventually contributes to
building the features library. These mosaics also provide the location of these
newly detected objects with reference to the target objects. After adding these
new objects in the library, when they are re-visited and recognised by the
organism, then it provides surrounding awareness to the organism about what
it may expect around the object. The information gathered from mosaics, may

also help the organism to reach other objects. In other words, this information

184

7.3 Experiments with Robotic Organism

can help organism to navigate in the environment. For example, if an organism
has to reach certain objects then it matches the objects in its field of view with
the features of the object it is looking for. If there is a positive match, then the
organism is in-front of the target object. Otherwise, the organism compares
~ the objects in its field of view with the objects in the library. If it finds it in
the library, and the library also provides a directipnal hint to the target object
with reference to the current object in the field of view, then it facilitates the
organism to reach the target object in less time. Hence, it is expected that these

- gathered information contribute to the leafning mechanism in the organism and
enable to pfo'vide support to the higher level of autonomy within the organism.
It is to be noted that, in the described distributed vision processing architecture,
if any of the robot modules malfunctions or fails, then the task can still be
performed if another robot module with similar functionality as of the failed
module, _éxis_t in the robotic organism. '

7.3 Experiments with Robotic Organism

In this section, the experimental results obtained from the described distributed
vision processing scenario in the organism mode, are presented. Many exper-
iments were performed to practically demonstrate the two phase distribution
of the vision .based. tasks within the organism. As already mentioned, the
“Replicator” robots are not fully functional, so a multi-processor robotic or-
- ganism designed in this research was used for demonstration purposes. For
convenience, this robotic organism is again shown in Figure 7.19. Due to the
hardware limitations, the organism has one master robot with locomotion and
processing capabilities and one slave robot with only processing resources. This
slave robot performs the distributed objéct recognition together with the mas-
ter robot. Once the object is found, the master robot scans the environment
and performs the information gathering tasks using the same slave.

The robot organism was given training to recognfse the three target objects
shown in Figure 7.20. Building images were used as objects. These images
“are 2D objects and single image will be sufficient for training. Unlike the work
presented in Chapter 6, 3D objects were not used, so that the research is mainly
focused to the distributed vision processing rather than the complexities of 3D

185

7.3 Experiments with Robotic Organism

Figure 7.19: Multi-processor robotic organism.

recognition. The extracted SURF features of the target objects were provided
in the form of a library to the organism and they were stored in the memory
of the slave robot. The slave robot used this library to help the master robot

in performing the distributed recognition task.

Figure 7.20: Target 2D objects.

The basic idea of vision task distribution is to share the processing load between
multiple robot modules. So, before proceeding to the results obtained from the
targeted distributed vision scenario, first of all the execution time performance
comparison is made between a single robot implementation and the organism.
The performance evaluation is done in two parts. In the first part, the per-
formance of the refresh time of the vision based obstacle avoidance approach
is evaluated between a single robot and the organism. In the second part, the
distributed object recognition approach is evaluated with reference to the ob-

ject recognition performed by a single robot. The refresh time of the vision

186

Obstacle Avoidance Referesh Time (sec)

7.3 Experiments with Robotic Organism

based obstacle avoidance means how frequent this algorithm is called by the
robot control algorithm. The more frequent this algorithm is called, the more
the robot can show continuous locomotion and receives frequent surrounding

awareness. This helps the robot in decision making.

To evaluate the refresh time of obstacle avoidance algorithm, a test was per-
formed. In this test, the control algorithm ran the vision based obstacle avoid-
ance, object detection, distance based resolution switching and finally object
recognition in a sequence. A check was made before obstacle avoidance was
called, to determine the frequency of its execution. In a complete sequence,
the obstacle avoidance algorithm was called only once to tell the robot whether
it was close to an obstacle or not. In the test, a single robot from a swarm
was kept static at a fixed distance from an object. The test was run for some
time and results were recorded. In the same configuration, another test was
performed, but with the robot organism, and the frequency of the algorithm
call was recorded. The results obtained from a single robot test and also the
organism, are shown in Figure 7.21.

Obstacle Avoidance Referesh Time: Single Robot Vs Organism

Single Robot Test

Organism Test

100 200 250 300
Number of Iterations

Figure 7.21: Obstacle avoidance referesh time: Single robot vs robot organism.

The refresh time profile obtained from a single robot test is shown in red colour

187

7.3 Experiments with Robotic Organism

and the profile obtained from the organism test is shown in blue colour. In the
. single robot experiment, as the single robot unit was responsible for executing
all algorithms, so the average refresh time calculated for the obstacle avoidance
task was 950 milli-seconds. In case of the robot organism, the master robot
was responsible for the obs_taclé avoidance, object detection and distance based
resolution switching task. As already mentioned for the computationally heavy
object recognition tasks, the master robot transferred the processed vision data
- to the slave robot. So a high refresh time for the obstacle avoidance was
expected. It can also be seen in Figure 7.21 where the refresh time, in case
of organism, is 230 milli-seconds on average. This means that the obstacle
avoidance is called after every 230 milli-seconds, so the frequency to call the
algorithm is higher. This refresh time helpsv the organisni to show a continuous
motion without waiting for the outcome of the object recognition algorithm.

* During the test the object, that was placed at some distance from the robot,

was later moved closer to the robot. The vision system now produced a more
detailed visual information about the object. This caused more features in the
object recognition algorithm and hence, the algorlthm took longer to process
the vision data. This increase in time, from iteration number 50 to 80, can be
seen in Figure 7.21 for the case of a single robot test. It is noticed that the time
profile in case of the organism remained the same. This is because.the organism
transfers this vision data to the slave for processing and thé data transferring
time is much less due to fast Ethernet communication medium. So the execution
time on the slave side may rise, but the refresh time for the obstacle avoidance
does not change. Here, the first part of performance evaluation finishes. ‘In- the
second part, the evaluation of the distributed object recognition approach with
reference to the object recognition performed by a single. robot, is performed.
The performance of the optimised object recognition appfoach, on a single
robot in a swarm, is discussed in detail in Chapter 6. The evaluation of this
approach, in terms of execution time and recognition, with reference to the
conventional SURF based approach is also explained in Figures 6.6 and 6.7 of
Chapter 6. Here, first of all the execution time of the recognition algorithm on
a single robot, with varying object features, is determined. The profile obtained
is shown in Figure 7.22.

. In Figure 7.22; the number of iterations means the number of times the exper-

188

Time (sec)

Object Recognition: Execution

0.5

7.3 Experiments with Robotic Organism

Object Recognition: Timing Analysis With Varying Object Features

150 250 300
Number of Iterations

Figure 7.22: Timing analysis of object recognition algorithm with varying object features.

iment was performed. From iteration number 1 to 47, the object was kept at
fixed distance from the vision system of a robot. The average time taken by the
algorithm was 940 milli-seconds. From iteration number 48 to 66, the object
was gradually brought closer to the vision system. The image from the vision
system started providing a more detailed information. So, the number of object
features rose as the object was brought closer and hence, the execution time of
the algorithm also rose to 1.3 sec. Then the object was kept in that position
for some time and then brought away from the vision system gradually. This
effect can be seen in the Figure where the execution time reduced from 1.3 sec
to 0.5 sec in iteration 80 to 120. When it reduces below 750 milli-seconds, then
the successful recognition is not performed due to reduced number of features
in the image. Again when the object was brought closer, then the rise in the
execution time can be seen. In the test, some spikes in the profile of execution
time are observed. These are caused because the image provided by the vision
system was blur, which produced reduced features and hence a reduction in

execution time.

For the evaluation of the distributed object recognition with reference to the

189

7.3 Experiments with Robotic Organfsm

implementation on single robot, another test was performed. The execution
~ time profiles obtained are shown in Figure 7.23. The object was brought closer
and then moved away gradually from the vision system. To keep the vision data

. thesame for the organism and single robot implementation, the image data were

initially saved on the on-board memory. This data were later used for object
recognition on a single robot and also for distributed recognitibn pufpdses. In
~case of a single robot, the profile obtained is shown in black colour. In this
time, the robot executes the vision based obstacle avoidance, objeCt detection,
distance based resolution switching and object recognition (as the image data
were read from flash rather camera, so a delay of 100 milli-seconds was added
as this is image capturing time from the camera.). On the other hand, the
- execution time profile obtained from the distributed recognition is shown in
red and blue colours. The profile in blue colour is the execution time on the
master robot. It is 280 milli-seconds on average. In this 280 milli-seconds, the
master robot executed the vision baséd obstacle avoidance, object detection,
distance based resolution switching and also vision information communication
to the slave robot. The object recognition part was performed in distributed
fashion by the slave robot. The slave Tobot performed the featuré extraction
and the matching part using the features library. The profile obtained from the
slave robot is shown in red colour. When the red and blue profiles were added
together the black profile is expected. In this case, a difference from 1 to 10
milli-seconds was observed. This was due to inforrhation' exchange between the
master and slave robots. From the profiles shown in Figure 7.23, it can be seen.
that the distributed implementation of object recognition in the organism has
effectively distributed the processing load between the master and slave robots.

Now to test this distributed ob ject recognition approach in the main distributed
vision processing scenario, apart from the target 2D Objecté shown in Fig-
ure 7.20, some other 2D objects (in the form of images but unknown to the

- organism) were also used in the test environment. Some of these unknown 2D

objects are shown in Figure 7.24. The reason. for using these unknown 2D ob-
jects in the environment is two fold. One is to demonstrate that the organism
not only recognised the target objects, but also recognised their identity in the
presence of the other objects in the environment. This links to the recognition
performance in the distributed object recognition phase. And second is linked

190

Time (sec)

Object Recognition: Execution

0.6

0.2

7.3 Experiments with Robotic Organism

Object Recognition: Single Robot Vs Distributed Processing
Slave 1

Single Robot

100 150 200 300
Number of Iterations

Figure 7.23: Object recognition: single robot vs distributed processing.

to the distributed information gathering phase. During the second phase, the
robot gathered surrounding information of the object in one large image by
forming a mosaic. While forming a mosaic, when robot stitched two images to-
gether, the vision algorithm required salient features in the environment, which
were found common in the two consecutive images. So for this purpose, it was
necessary to add more objects in the environment so that common objects could

be found in the consecutive images.

Apart from these unknown 2D objects, some obstacles (blocks) were also placed
in the environment. These obstacles, unknown objects and target objects were
kept in the test arena, where distributed vision processing experiments were
performed. The test arena is shown in Figure 7.25. In the test arena, the

placement of the target objects is also identified as Objects 1, 2 and 3.

Here, the results obtained from one of the distributed vision processing exper-
iment are discussed in detail. In the experiment, the starting position of the
robot when the test began is shown in Figure 7.26a. The robot started its task
by doing the vision based obstacle avoidance and at the same time, distributing

the objects detected in its current view to the slave robot for further processing.

191

7.3 Experiments with Robotic Organism

Figure 7.24: Unknown 2D objects.

>§antsm

Figure 7.25: Test arena for distributed vision processing in organism mode.

The position of the robot organism when it found the first object is shown in
Figure 7.26b. The object which the organism processed to identify and the tra-
jectory made by it during this time is also shown in Figure 7.26b. The object
ID identified by the slave robot is “2”. As mentioned before, when the slave
notified the master robot about the successful detection of the target object,
then the master robot saved the image in which the object was identified, to its
memory. The coordinates where the object was identified, were also determined
by the slave and they were projected by the master robot on the image. The
image of object 2, stored by the master robot is shown in Figure 7.26c. The

location in the image, where the slave robot has found object 2, is also shown

192

7.3 Experiments with Robotic Organism

in the Figure.

Figure 7.26: (a) Position of the organism when the test begin, (b) Position of the robot when it
has identified the target object 2. (c) Identified location of the target object 2 in the image.

Figure 7.27: Object 2 surrounding scanned by the organism.

Once the object is identified, the organism scanned the environment to perform
distributed information gathering task and formed a mosaic. In this experi-

ment, the area the robot organism had scanned is shown in Figure 7.27.

193

7.3 Experiments with Robotic Organism

During this scan, the organism‘ grabbed 10 images for making a mosaic. These
10 images are shown in Figure 7.28. The distributed information gathering

phase started and the formation of mosaic image began for the current scan.

Figure 7.28: Images grabbed by the organism to form a mosaic.

In Figures 7.29 and 7.30, the complete process of the mosaic formatioﬁ is shown.
This Figure shows the progress in the mosaic formation when the images are
stitched one by one. Finally, in Figure 7.31, the process to detect the objects in
the mosaic is shown. Figure 7.31a shows the results obtained after ground re-
gion and arena boundary walls are eliminated using the segmentation approach.
Apart from segmentation, image dilation is also performed to connect the pix-
els which are describing the objects in the image. In Figure 7.31b, the profile
representing the density of pixels in déscribing the objects in-each column of
the mosaic is shown. Based on the pre-defined threshold (shown in blue colour
in Figure 7.31b), the number of objects identified are shown in Figure 7.31c.
The pixels describing the objects are identified by blue colour.

194

@

<b)

©

<d)

<e)

7.3 Experiments with Robotic Organism

Figure 7.29: Mosaic of images scanned around object 2.

195

7.3 Experiments with Robotic Organism

Figure 7.30: Mosaic of images scanned around object 2.

The complete trajectory made by the organism, in searching of the target ob-
jects and forming the mosaics, is marked by red colour in Figure 7.32. The
locations in the arena, where mosaics generation were performed to gather the
surrounding information of the target objects 1, 2 and 3 are also shown in

green, yellow and blue colours, respectively.

196

7.3 Experiments with Robotic Organism

identify Ground and Boundary Region

(a) 3k —

Object Existence Profile

Si 200

(b)

4m r.nn nnn inm i?nn unn imn
Pixels Along Width of Mosaic

Identify Parts of Image to Process

Figure 7.31: Object detection in complete mosaic.

%

Figure 7.32: Trajectory made by the organism and location from which mosaics were generated.

The mosaics information gathered for target objects 1 and 3 is shown in Fig-

197

7.3 Experiments with Robotic Organism

ures 7.33 and 7.34, respectively. All the objects in the mosaic view were prop-

erly detected and isolated from the ground surface.

(@

(b) 1

Figure 7.33: (a) Mosaic from the images scanned around object 1. (b) Segmentation based ground

elimination, (c) Objects detection in mosaics.

(@)

(b)

(©

Figure 7.34: (a) Mosaic from the images scanned around object 3. (b) Segmentation based ground

elimination, (c¢) Objects detection in mosaics.

It can be noticed that, the objects in the mosaics appeared very small and it
seemed that they were difficult to recognise. In the beginning, QVGA reso-
lution images were used for mosaic formation as this resolution was originally

selected for generating the Homographies between the images. In this case,

198

7.3 Experiments with Robotic Organism

the objects that appeared small can not be recogniséd: In the results shown in
Figures 7.29, 7.33 and 7.34, the QVGA resolution was selected for solving the
Homographies between the images, but for generating the mosaics, the VGA
resolution was used. To make the Homographies information applicable to the
VGA resolution, every element in the Homography matrix was scaled up by
2. This was done as QVGA resolution image could be obtained from VGA
resolution by using a scaled down factor of 2. As the mosaics were generated
using VGA resolution, so all the objects were present with their detail informa-
tion. Here again for object recognition, the distance based resolution switching :
could be performed. The objects which lied near in the mosaic, could be scaled
down by a factor of 2 so that they could be processed and recognised fast. On
the other hand, the objects that lied far needed to be processed in a higher
~ resolution, so that there were more pixels defining them and hence make the
recognition possible.

In one of the distributed vision processihg experiments, a problem was observed
during the image mosaiéing operation. In this experiment, the mosaic infor-
- mation generated is shown in Figure 7.35a. In the beginning of the mosaic,
the images were stitched properly. The problem occurred when the last two
images were stitched. These images are shown in Figures 7.35b and 7.35c. The
information contributed by these images in the mosaic is identified by the blue
arrow. After observing the images in Figures 7.35b and 7.35c¢ with the complete
mosaic, it can be noticed that these images are stitched at wrong points. The
two correct corresponding points, showing the placé where the image stitching
should have been performed, are identified in the mosaic with red arrow. The
reason for this error can be found very easily in the last two images. There is
a sufficient overlap between these images but there are no objects in this over-
lapping region. The presence of objects in the common part of images result
into the detection of salient features. These features help in determining the
corresponding 2D points between the images which are later used to determine
the Homography information for generating a mosaic. This is the reason that
m.any other objects (in the form of images shown in Figure 7.24) were placed
around the target objects. As the robot organism had to genefate the mosaic
- of the images providing the surrounding information of the target object, so
the presence of objects around the target objects helped in the detection of

199

7.4 Conclusions

features in the image, and hence facilitated the mosaic generation.

Correct Corresponding Points

Information from last two images

®) ©

Figure 7.35: (a) Erroneous image stitching, (b) Second last image, (c) Last image.

7.4 Conclusions

In this Chapter a distributed vision processing scenario in the organism mode
has been presented. It has been concluded that, the provision of a reliable
communication medium (i.e., the Ethernet) in the robotic organism, can be ef-
fective for exchanging the visual information between the robotic modules. But
the communication medium is the hardware feature of the underlying system.
From the scenario presented in this Chapter, it is found that the most critical
software aspect of the distributed vision processing in multi-robotic systems is
the modular implementation of the vision processing tasks. From the presented
scenario, it has been concluded that the robotic modules in the organism, not
only efficiently utilise the communication bandwidth by sharing the heavy vi-
sual clues, but they also make an efficient use of the distributed processing
resources by sharing the vision processing load between the modules. However,
it is observed that, for obtaining effective surrounding awareness, the features
of the detected objects in the mosaics needed to be added to the vocabulary
and also learned by the organism. The addition of a new object features sig-
nificantly increases the memory requirement. Therefore it has been concluded
that the efficient utilisation of memory resources is critical when dealing with

distributed vision processing applications.

200

Chapter 8

Distributed Object
Classification and Recogmtlon in

‘a Robotic Orgamsm

Following the research work presented in Chapter 7, this Chapter also focuses
on distributed vision processing in modular robotic systems, which are recon-
figurable and capable of producing different forms of three dimensional robotic
organisms. As described in Chapter 7, once a robotic organism is formed,
then based on the information from the vision sensor, the distributed imple-
mentation of the object recognition and mosaic formations can provide a rich
surrounding awareness to the robotic organism. For recognition purposes, the
robotic organism relied directly on the SURF features of the target objects.
This approach works well if the number of target objects is small. But if the
number of targét objects is large, or if the robotic organism extracts SURF
features of the objects detected in.-the mosaics so they can be recognised in
the later stage, then this causes a signiﬁcarvltv increase in the total number of
features (i.e., features space) representing the target objects. Hence, it be-
- comes difficult to process these large number of features in real time and this
makes the recognition process very slow. So ensuring a faster recognition in
the robotic organism is needed to be focused as it performs an important role
in the overall performance of the robotic organism. Following the Literature
Review presented in Chapter 2, to achieve a faster recognition, the SURF fea-
tures space clustering approach can be used [61]. The concept of clustering the

201

feature space is called feature space quantisation in some approaches [63] and
it provides significant savings in memory and thus makes the approach more
suited for implementation on embedded systems. It is expected that, this fea-
ture space clustering approach facilitates the robotic organism to classify and
recognise the different objects in the environment in reduced time. It is to be
noted that, considering the nature of the distributed processing environnient
of the robotic organism, the classification and recognition tasks are needed to
be implemented in a modular fashion. The niodularity in the implementation
of vision based tasks is a challenge as it requires different robotic modules in
the organism to form a feedback system, where each robotic module is assigned
a speciﬁc responsibility. The complete system is required to be strictly syn-
ehronised, such that each robotic module participates in processing the visual
data at some stage and passes on the results to the other robots for further
processing. '

In this Chapter, a distributed vision processing scenario is considered which
aims to present a modular implementation of vision based object classification
and recognition approach, using the distributed memory and processing re-
‘sources of a robotic organism, comprising of four robdtic modules.” Each of the
robotic modules in the organism is given a specific task, which facilitated the
-organism to classify and recognise the objects. In the beginning, the organism
is able to recognise only four target objects, where one of the robot modules
in the organism held the knowledge of these objects. During the operation, if
a new object is shown to the organism, then the organism failed to classify it
and used its distributed processing resources to learn this newly encountered
- object. For this purpose, a robotic module in the organism triggered a learning
mechanism. Once the new object is learnt, then it could be correctly classified
and recognised by the organism, if it is encountered again. This shows the
manner the organism learning mechanism evolved Wlth time. The remamder
“of this Chapter is divided into the followmg Sections.

(i) Multi-processor Robotic Organism

(i) Communication within the Robotic Organism -

(iii) Vision Task Distribution for Distributed Object Classification and Recog-

nition

(iv) Experimental Results

202

8.1 Multi-processor Robotic Organism

(v) Performance Comparison of Distributed Modular Robotic System versus
High Processing Systems '

Section 1 briefly describes the hardware considered for implementing the pro-
posed object classification and recognition approach. Section 2 explains the
manner communication medium is established between the multiple processing
modules within the organism. Section 3 discusses in detail the division of the
vision processing task among four processing modules and the manner, the par-
ticipating modules form a feedback system to accomplish the underlying tasks.
In Section 4, the results are presented with detailed discussions. Finally, in
Section 5, the performance obtained using modular impiementation of object
classification and recognition approach on a distributed robotic organism, is
compared with its implementétion on high processing systems.

8.1 Multi-processor Robotic Organism

To implemenﬁ a vision based object classification and recognition approach in
a modular fashion, first of all a robotic organism was required, which could
provide distributed processing resources for the tasks. An example robotic
organism is shown in Figure 8.1, where four robotic modules join together
to provide the distributed processing environment. The physical docking ports
which provide a communication gateway between the different robotic modules,
are also identified in red colour in Figure 8.1. To keep the focus of this study
on the distributed vision processing, the robotic organism shown in Figure
8.1 is simulated by a multi-processor robotic system as described in detail in
Chapter 3. This multi-processor robotic system is also shown in Figure 7.19.
For the scenario described in this Chapter, as four robotic modules needed
to be simulated, so four Analog-Devices Blackfin processors were used on this
multi-processor robotic system. To integrate these processors together, four
Evaluation boards EVAL-BF5xx (shown in Figure 3.5) were also used.

203

8.2 Communication within the Robotic Organism

Commuuicutioii
Channel

Figure 8.1: REPLICATOR robotic organism [2].
8.2 Communication within the Robotic Organism

As described in Section 7.2.1, to establish communication between the mul-
tiple processing modules of the multi-processor robotic system, a high speed
Ethernet communication medium (10/100M bits/sec) was used. The multi-
processor robotic system used in this scenario comprised of four Blackfin pro-
cessors, where each processor simulated the computing resources provided by
one robotic module in the organism. A robotic organism can comprise of many
robotic modules and there can exist many communication strategies to syn-

chronise the information exchange between these robotic modules.

The communication strategy used in this scenario was similar to the one de-
veloped in Section 7.2, and it is briefly described here. To establish commu-
nication, all the robotic modules were required to determine the identities of
their neighbouring robots in the organism. To achieve this, all the robots in the
organism were programmed to broadcast a “Breathing Frame” which was 100
bytes. This frame contained the MAC (Media Access Control) address of the
sender robot. The MAC address was used as robot ID because the communica-
tion was performed at Ethernet layer. Figure 8.2 shows the manner Breathing
Frame is exchanged between different processing modules. On receiving the
Breathing Frames, each robot module started populating an address table. In
this table, it kept the identification information of its neighbouring robots and
also their status, i.e., active or inactive. For example, in Figure 8.2, robot 1
has identified three robot modules in its neighbourhood with MAC addresses
“3A:15:02:56:44:42”, 43A:15:02:56:44:43” and &B3A:15:02:56:44:44” and has de-

204

8.3 Vision Task Distribution for Distributed Object Classification and Recognition

Breathing Message @10 Hz : MAC 3A:15:02:56:44:41

Robot 1
MAC Address Active
Robot 2 3A:15:02:56:44:42 Yes
Robot 3 3A:15:02:56:44:43 Yes
Robot 4 3A:15:02:56:44:44 Yes
MAC 3A:15:02:56:44:42 MAC 3A:15:02:56:44:42
Robot 2
MAC Address Active
Robot 1 3A:15:02:56:44:41 Yes
Robot 3 3A:15:02:56:44:43 Yes
Robot 4 3A:15:02:56:44:44 Yes
MAC 3A:15:02:56:44:43 MAC 3A:15:02:56:44:43
Robot 3
MAC Address Active
Robot 1 3A:15:02:56:44:41 Yes
Robot 2 3A:15:02:56:44:42 Yes
Robot 4 3A:15:02:56:44:44 Yes

Breathing Message @ 10 Hz : MAC 3A:15:02:56:44:44

Robot 4
MAC Address Active
Robot 1 3A:15:02:56:44:41 Yes
Robot 2 3A:15:02:56:44:42 Yes
Robot 3 3A:15:02:56:44:43 Yes

Figure 8.2: Communication within the multi-processor system.

clared them active. Each robot transmits the Breathing frame at rate of ten
frames per second (i.e., 10Hz). Ifthe robot modules do not sense this Breathing
signal from their neighbouring robots for a certain period, then they declare
those neighbours as inactive. Similar to robot 1, robot modules 2, 3 and 4 have

also updated their communication tables. These are also shown in Figure 8.2.

8.3 Vision Task Distribution for Distributed Object Clas-

sification and Recognition

To distribute the vision based object classification and recognition tasks among
the four processing modules, the tasks were required to be implemented in a
modular fashion. The first processing module in the multi-processor robotic
system acted as the main master processor. Once all the processing modules
were aware of their neighbouring processing modules, the master processing

module initiated the task. Figure 8.3 shows the manner object classification

205

8.3 Vision Task Distribution for Distributed Object Classification and Recognition

and recognition tasks were divided into sub-tasks and assigned to the differ-
ent processing modules. Figure 8.3 describes a complete feedback system and
shows that how the visual information is processed in multiple stages to achieve
the common goal. A detail description of the sub-tasks, assigned to different

processing modules, is provided in the following sub-sections.

1) Vision based Obstacle Avoidance
2) Organism Locomotion
3) Harris Features based Object Extraction.

Module 1
1
Extracted #
Objects
Low Resolution High Resolution
1) Optimised SURF Feature Extraction.
2) Object Classification
odule 2 "};’

Classified ID & SURF Features

SURF Features
1) Object Recognition.
2) Generating Requestto Learn New
Object.
odule 3
Vocabulary Vocabulary Update Signal & SURF Features
b Updated
>
1) Adding New Object in Vocabulary.
a) Clustering SURF Features - KNN
b) Generating Histograms
2) Transfer New Vocabulary of Visual Words.
™ .
1xI1J odule4 KNN Clustering
Vocabulary

Figure 8.3: Vision task distribution.

8.3.1 Module 1: Information Pre-processing

In Figure 8.3, processing module 1 simulates the processing and memory re-
sources of the master robot module in the organism. In other words, module
1 acts as the main processing modules and it initiates the visual information
processing task. This processing module is assigned three main tasks that

are, Organism locomotion, Vision based obstacle avoidance and Harris features

206

8.3 Vision Task Distribution for Distributed Object Classification and Recognition

based object detection. To perform the organism locomotion efficiently, this
processing module is required to process the information from vision sensor at
a high rate. For this purpose, it implements a very light weight vision based ob-
stacle avoidance technique which is described in detail in Chapter 4. To ensure
that enough processing time was allocated for the organism locomotion, this
processing module executed a very light weight features extraction techhique,
that is Harris features in this case, to detect the object in the images. To reduce
the execution time of the Harris feature extraction technique, the resolution of

the image was set to QVGA (i.e., 320x240 pixels). If the object was detected
' close to the vision sensor (or the robot organism), then a window was defined
around the detected Harris features and the object was extracted in the low
resolution image. This is shown in Figure 8.3, next to the sub-tasks of module
1. The extraction of object using Harris features is also shown in Figure 8.4a. -
To extract the object, the window image defined around the detected Harris
features, is identified by the red coloured boundary. On the other hand, if the
object was detected far (i.e., at a distance greater than 55cm) from the vi-
sion sensor, then the Harris features were detected in the low resolution image,
but the object image was extracted from the high resolution VGA image (i.e.,
640x480 pixels) as shown in Figure 8.4b. This kept the algorithm execution
time low as the Harris features were extracted in low resolution image, and at

the same time the object was provided with its detailed information as it was .

extracted from a high resolution image. The extracted object was then trans-
ferred to the processing module 2 for further processing. Extracting object
from a high resolution image also helped when the second processing module
tried to classify the bbject and extracted the SURF features for this purpose.
The SURF feature extraction algorithm was used to detect salient features in
the images. The detection of these salient features was only possible when the
object’s details were present in the image and for this purpose, the extraction
of far lying objects from a high resolution image was necessary. '

© 8.3.2 Module 2: Object Classification

When an object image was sent by module 1 to module 2, then the processing
-module 2 was required to classify the received object. For classification pur-
poses, it required a library of visual words. One of the modules in the organism

207

8.3 Vision Task Distribution for Distributed Object Classification and Recognition

Low Resolution High Resolution
Object Extracted Object Extracted

(a) (b)

Figure 8.4: (a) Low resolution image for close object, (b) High resolution image for far object.

held the SURF features of the target objects. In this case, module 4 hold these
SURF features. Module 4 processed the SURF feature and generated the li-
brary of visual words (or visual vocabulary). This library was provided to the
module 2, so that it could classify the objects, it received from module 1. The
library of visual words was provided in the form of the histograms for different
objects and the centroids of the clustered SURF features space, as described
in Section 8.3.4. Once module 2 received this visual vocabulary from module

4 (as shown in Figure 8.3), then it was able to classify the objects successfully.

For object classification, module 2 was required to extract the SURF features
of the received object’s image. For this purpose, it executed the SURF feature
extraction algorithm which was highly optimised for the Blackfin processor ar-
chitecture, and is described in detail in Chapter 6. For the SURF algorithm, the
Blackfin processor specific optimisation was performed as addressed in [99]. The
extracted SURF features were then compared with centroids of the clustered
features space. The feature space was clustered into fifty classes by module
4, so fifty centroids (one centroid for each cluster) were provided to module 2,
apart from the histograms. It was decided to cluster the SURF feature space
into fifty classes, because with fifty classes, the processing module took less time
to cluster the feature space and also provided sufficient classification accuracy.
After comparing the SURF features with the centroids of the clustered feature

space, module 2 generated a histogram with fifty bins. In histogram, each bin

8.3 Vision Task Distribution for Distributed Object Classification and Recognition

represented the number of features which fall into a corresponding cluster of
the SURF feature space. This histogram representation of the features is called
bag-of-visual-words [117] and it can be used to perform scene or object classi-
fication [116] and also to facilitate robot localisation and mapping [118] in the
field of computer vision and robotics. Finally to perform classification, the Sum
of Absolute Difference (SAD) of the generated histogram was computed with
reference to all the histograms included in the library of visual words. Figure
8.5 shows an example output of the SAD algorithm when there were Nineteen
objects in the library. The output shows that the object is classified as object
eighteen, because the generated histogram from the current object provided
minimum difference with the histogram of the 18il object.

0.35

Confidence level

20
Number of Objects in Vocabulary

Figure 8.5: Classification probability.

In order to determine the accuracy or the confidence level of the classification
results, a low computing intensive strategy was adopted. The mean value of
the SAD output was computed (shown by red colour line in Figure 8.5), where
the minimum difference value in the SAD output was not used in computing
this mean. The difference of the minimum SAD value from this mean shows
the confidence in classification. A high difference means the object is classified
with a high confidence. Similarly, a low difference shows a lower confidence
in the classification result. Module 2 passed this object classification ID and
the confidence in classification results to the module 1 and also to the module
3 (as shown in Figure 8.3). Apart from classification results, the extracted

SURF features were also transferred to the module 3 for further processing.

209

8.3 Vision Task Distribution for Distributed Ob ject Classification and Recognition

After receiving the classification resulﬁs, depending on the level of confidence,
module 1 took the appropriate actions. For example, if the organism was
searching for a specific target object, then it could approach the object with
the certain confidence level provided by module 2. This helped the organism to
take an appropriate decision quickly, without waiting for the object recognition
results from module 3. ‘

8.3.3 Module 3: Object Recognition

Module 3 received the object classification ID, confidence in classification and
object SURF features from module 2 and then it performed the object recog-
nition task. To perform the object recognition, it also held the SURF features
from all the target objects in its memory. It is to be noted that, to recognise
the object, module 3 did not perform the matchihg of received SURF features
with the SURF features of all the target objects, which was a computationally
expensive task. As module 3 was provided with the object classification ID
and this informed it about the identity of an expected object. So the Module 3
compared the received SURF features with the SURF features of the expected
target object only. If an expected object was recognised by the module 3, then
it sent the object ID confirmation (as Object Recognition Results) to the mod-
ule 1, as shown in Figure 8.3. This provided organism the confirmation of the
classification results generated by the module 2.

If the module 3 generated a negative confirmation results, that is the classifica-
- tion ID provided by module 2 was wrong, then module 3 checked the confidence
level which was provided by the module 2. If the confidence level was also low
then module 3 waited for the next three confirmation results. If the confidence
level stays low and the next three confirmation results were also négative, then
~ there was a high probability that the organism was viewing a new object. At
this point, module 3 triggered the organism learning mechanlsm It did this
task by storing the SURF features of this new obJect in its memory for later
- use and at the same time, it transferred these SURF features to the module 4
which generated the new vocabul‘ary of visual words.

210

8.3 Vision Task Distribution for Distributed Object Classification and Recognition

' 8.3.4 Module 4: Vocabtilary of Visual Words

This processing module was responsible for holding the organism knoWledge
about the target objects (i.e., the objects which the organism classified and
recognised). This knowledge was represented in the form of a library of visual
words which was generated using the SURF features. These SURF features
were initially computed by module 2 and after goingbv through further processing
- in module 3, these features arrived to module 4. There were two instances when
module 4 generated the library of visual words. The first instance was when
‘the organism was formed and only module 4 had the initial knowledge (in
terms of SURF features) of target objects. At this point, the organism was
not able to classify any object. Module 4 generated a library of visual words
and passed this library to the module 2 for classification purposes. The second
instance for the generation of library was triggered by module 3. When module
3 determined that the organism was viewing a new object, then it passed the
SURF features of new object to module 4. Module 4 then learnt the new object
by generatlng a new hbrary of visual words.

For generatlng the hbrary of visual words, module 4 clustered the complete
SURF features space using KNN (K-Nearest Neighbour) algorithm. It clus-
tered the SURF feature space into fifty clusters. If it was the first time it was
clustering the SURF feature space, then in KNN algorithm, it used random cen-
troid values for the different clusters and then found out the optimum centroid
values. But if it was learniﬁg a new object, then it used the last computed
centroid values as an input to the KNN algorithm and then determined the
optimum values of the centroids. This helped module 4 to generate the new
centroids for all the clusters in reduced time. Once the centroids for all clusters
were computed, then module 4 generated a histogram for each target object
in the library. As the SURF features space was partitioned into fifty clusters,
so each histogram also contained fifty bins. Where each bin in the histogram
represented the number of SURF features (extracted from a target object) fell
into the corresponding cluster. | |

To explain the concept of feature space clustering and histogram geﬁeration,
an example is shown in Figure 8.6. In this example, the complete feature space
was divided into four clusters that is, clusters 1, 2, 3 and 4, were identified
by red, blue, green and orange colours, respectively. For histogram generation,

211

8.3 Vision Task Distribution for Distributed Object Classification and Recognition

Object 1 Aobject2 "“Object3

-4<)bject2
Feature Space
Cluster 4
No. of Clusters
luster 2
luster
luster 1
No. of Clusters No. of Clusters

Figure 8.6: Feature space clustering and histograms generation.

three target objects were considered. The features resulting from these three
target objects were identified by different signs as shown on the top left side
of Figure 8.6. For object 1, the number of features falling in the clusters 1,
2, 3 and 4 were found equals to 1, 3, 4 and 2, respectively. This generated
a histogram for object 1, as shown on the right side of Figure 8.6. In the
histogram, the x-axis shows the total number of clusters in the feature space
and y-axis represents the number of object features lying in the corresponding
clusters. Similarly, depending on the number of features lying into different
clusters, the histograms generated for objects 2 and 3 were also shown in Figure
8.6. The histogram representation of SURF features for target objects is called
library or bag of visual words. The centroid computed by KNN algorithm, for
the different clusters in the feature space, are identified by the yellow circles in
Figure 8.6. These centroids of the clustered feature space, together with the
generated histogram for all the target objects, were transferred to the module
2 for object classification purposes (as shown in Figure 8.3). When module 2
received the new library of visual words, it discarded the old library. Using the
new library of visual words, module 2 was able to successfully classify the new
object. Similarly, module 3 also started recognising the new object as it also
held the SURF features of newly learned object.

212

8.4 Experimental Results

8.4 Experimental Results

The performance of the modular implementation of object classification and.
recognition task was demonstrated using the distributed memory and process-
~ ing resources of the robotic organism. A test was éon_ducted which lasted for
300 seconds. Following the sub-tasks assignment as discussed in Section 8.3,
module 4 in organism was provided with the SURF features of the target ob-
jects. In this test, module 4 was initially provided with the SURF features of 4
target objects. When the test started, in the beginning, the organism was not
. able to classify any object. This happened because module 4 was generating
' the library of visual words and module 2 needed this library to classify the
objects. This is shown in Figure 8.7, where for the first ten seconds, the classi-
fication ID was zero. In Figure 8.7, the classification ID (provided by module 2)
and Récognition,ID (provided by module 3) are shown in blue and red colours,
respectively. For the first ten seconds, when the classification ID was zero, the
classification probability was also zero as shown in Figure 8.8. Then the first
object was placed in front of the vision system attached to the module 1. Tt
was classified correctly by module 2 as shown in Figure 8.7 (blue profile from
10 to 40 seconds). Similarly, module 3 also confirmed that the classified ID
was correct. This is shown in Figure 8.7, where from 10 to 40 seconds, the red
- profile overlapped the blue profile. Later on, ob jects 2, 4 and then 3 were shown
in sequence and they were also classified and recbgnised correctly. Note that, -
as module 4 was provided the SURF features of first four objects, which it had
used for generating the visual vocabulary, so it was possible for module 2 to
classify the first four objects correctly. While classifying these four objects, the
classification probability computed by module 2 was also high. This is shown
in Figure 8.8 where the classification probability ranged from 0.5 to 0.88 'durihg
the period from 10* to 76" seconds. =~

At nearly 76.5™" seconds of the test, when the fifth object was shown to the
vision system, as it was a new object for the organism so a mismatch in the
classification and recognition ID was observed in Figure 8.7. It was mistakenly
classified as object 2 and module 3 generated a false recognition result (i.e.,
Recognition ID is zero). In other words, module 3 rejected the classification
‘result. During this time, the classification probability was also srhall, i.e., less
than 0.1. When module 3 found that false classifications occurred for the

213

8.4 Experimental Results

Object Classification

14
— C(lassification
12 0 Recognition
10
005
8
B
« 6
(0]
Ha
o 4
()]
S 9
O
0
100 150 200 250 300

Time (sec)

Figure 8.7: Classification and recognition ID.

consecutive three times and the classification probability remained low, then it
triggered module 4 to learn the object and generated a new vocabulary of visual
words. This can be observed in Figure 8.9 where the processor usage for all the
processing modules is shown. It can be noticed that, nearly at 76t seconds,
when module 3 triggered the organism learning mechanism, the processor usage
of modules 3 and 4 was very high. To learn the fifth object, module 4 received
its SURF features from module 3. Module 4 had to add the SURF features
of new object into the old SURF features space and then re-cluster the whole
SURF feature space using KNN algorithm for generating the library of visual
words. As this was a computationally heavy operation for module 4, so it has
shown 100% processor usage during this time (nearly at 76¢h seconds). When
module 4 provided the new library of visual words to module 2, then modules
2 and 3 were able to classify and recognise object five successfully, as shown in
Figure 8.7. The rise in classification probability for object 5 can also be seen
in Figure 8.8. Similarly, objects 6, 7, 8, 9, 10, 11 and 12 where shown to the
vision system, in sequential order, at approximately 112.5, 125, 152.5, 171, 201,

214

8.4 Experimental Results

Classification Probability

0.9

OOFO

0.7

.0'6
0.5

0.4

oz o~

0.3

i
=
I

0.2

°ls &

100 150 200 250 300
Time (sec)

Figure 8.8: Classification probability.

229 and 263th seconds. During these times, the mismatch in the classification
and recognition ID was observed and the classification probability was also
found low. To learn these objects, as module 3 again triggered the module 4
to generate the new library of visual words, so a rise in processor usage for
modules 3 and 4 can be seen in Figure 8.9. All these objects were successfully
learnt by module 4 and this can be seen in Figure 8.7, where modules 2 and 3

have started classifying and recognising the objects IDs correctly.

From Figure 8.9 it can be seen that, on average, processor usage for modules 1, 2
and 3 were 50%, 99.95% and 40%, respectively. Whereas, module 4 was utilising
the full processor performance occasionally, when it received the vocabulary
update signal from the module 3. The first spike indicates the 100% processor
usage of module 4 happens in the beginning 10 seconds. This is the time when
the module 4 was generating the initial vocabulary of visual words. The later
pulses in the module 4 processor usage were recorded when it received the

new objects features to generate a new library of visual words. As processor

215

8.4 Experimental Results

Processor Usage (%)

Module 1 Processor Usage . Module 2 Processor Usage
100 S 100 oMl % @
60 % 60
40
20 20
0 50 100 150 200 250 300 50 100 150 200 250 300
Time (sec) Time (sec)

Module 3 Processor Usage A Module 4 Processor Usage
100

ccgccow
B s

=]

150 200 250 300 50 100 150 200 250 300
Time (sec) Time (sec)

Processor Usage (%)
O

Figure 8.9: Processor usage.

usage of module 1 was 50% on average, this ensured that module 1 had enough
processing resources to control the organism locomotion mechanism. Module
2 was performing the most computationally expensive tasks amongst all the
modules, that is SURF feature extraction and object classification. That is
why it appears to be the busiest processor. In case of module 3, similar to
module 4, the rise in processor usage profile was observed when the decision
to add a new object in vocabulary was taken. It is to be noted that, the
second processing modules appears to be the busiest amongst all the processing
module. If more processing modules are available, then some of the processing
load from second processor can be shared with the other spare module. But to
achieve this operation, the task assigned to second module (i.e., SURF features
extraction) is required to be divided into further sub-tasks. This calls for
the further modular implementation of the vision based operations. However,
the processor usage profile from all the modules indicates that the distributed

processing resources of the organism were utilised properly.

Similar to the processor usage, the profiles showing the memory utilisation of

216

Available Memory (KB)

8.4 Experimental Results

Memory Usage

10000
Module 1

9500 Module 2
Module 3

9000 Module 4

8500

8000

7500

7000

6500

6000

5500

5000

0 50 100 200 250 300

Time (sec)

Figure 8.10: Memory usage.

the four modules during the experiment, were also recorded and it is shown
in Figure 8.10. This Figure shows how much memory in KB (Kilo bytes) is
available to the processor. As this research is dealing with the distributed vi-
sion processing tasks and vision processing applications utilises high amount of
memory, so considering the memory usage for the distributed processing mod-
ules was important. If the same task had been performed using a single pro-
cessor, then it was observed that, storing SURF features from 12 objects drops
the available system memory below 900KB and the application crashes when
the recognition algorithm tries to allocate more memory. It was found that,
in any distributed computing application, apart from the processor utilisation,
efficient utilisation of the distributed memory resources is also a very impor-
tant, especially when application deals with the vision information processing.
From Figure 8.10, it can be seen that, in case of modules 3 and 4, the drop in
memory profile is observed during the time when new objects were added to
the vocabulary. In case of module 3, as it keeps a copy of SURF features in its

memory for object recognition purposes, so it utilises memory on adding every

217

8.4 Experimental Results

new object. Whereas, in case of module 4, as this module adds the new object
SURF features into the old SURF feature space for generating new vocabu-
lary, so a drop in available memory was expected. In case of module 1, slight
variation in the available memory was observed throughout the experiment. In
case of module 2, the processing module deals with the computationally heavy
SURF feature extraction algorithm. As this algorithm allocates huge amount of
memory, which was de-allocated once the algorithm finished, so high variations
in the available memory profile were observed (shown in Blue colour in Figure

8.10). ' '

Ideally, the use of distributed or multi-processor computing systems shows an
increase in the frequency of operations, as compared to a single processor im-
plementation. In other words, as the distributed processing system provides' a
rich processing environment, so the implementation of modular vision process-
ing application on such a system is expected to decrease the execution time of
vision processing tasks as compared to a single processor system. To show the
frequencyvof operation, the frame processing rate achieved with the four pro-
cessor system, during the complete experiment, is shown in Figure 8.11. In the
‘recorded profile, sometimes zero FPS (frames per second) was recorded. This
- happened because the SURF algoi*ithm had producéd too many features, which
increased the computational time significantly. Or the processing modules ex-
perienced erroneous communication, which caused a delay in the completion of
the feedback sequence shown in Figure 8.3. However, on average, 0.614 FPS
were recorded with the modular impleméntation of object classification and
recognition task. |

A comparative result obtained, when the complete recognition task was per-
formed on a single processor system, is also shown in Figure 8.12. It can be
 seen that, when features from a single object was present in the vocabulary (i.e.,
green profile in Figure 8.12 shows 418 SURF features for one object), then 0.63
FPS was recorded. But as the number of objects increased in the vocabulary,
then the total number of features, resulting from the objects, also increased
(rise in green profile in Figure 8.12). It can be noticed that, the increase in
the total number of features is not strictly linear. This is because every object
'resullts in different number of features, depending upon the texture present on
~ the object. Due to the significant increase in the total number of features,

218

8.4 Experimental Results

the feature matching part of the recognition algorithm became more computa-
tionally expensive. Hence, a drop in the FPS profile was observed, as shown
by blue colour profile in Figure 8.12. When this single processor system was
programmed to recognise twelve objects, then the FPS was dropped to 0.13,
because the number of SURF features in the vocabulary increased to 5789 (i.e.,
Total number of features for 12 objects represented by the green colour profile
in Figure 8.12). When the single processor results were compared with the four
processor system, then the four processor system increased the FPS rate by the
factor of 5.

Frame Processing Rate
1 1 1 1

1.6 1 j 1 1
CO1'4 e, J erverreneeneenaens Jeeereeeeeeeneens) USSR | R
CL
0 SI4 .U ' r—
0 50 100 150 200 250 300
Time (sec)

Figure 8.11: Frame per second - Four processors system.

As the proposed modular vision processing approach strongly relied on the
generated classification probabilities, so an experiment was performed in which
the classification probabilities were recorded for increasing number of objects
in the vocabulary. The results obtained are shown in Figure 8.13. The number
of objects in the vocabulary were increased from four to twenty two objects. A
drop in the confidence probability was observed with an increase in the number

of objects. The zoom-in image, when there were four objects in the vocabulary,

219

8.4 Experimental Results

Frame Processing Frequency
10000

— — Frame Processing Frequency
mm¢—Total Number of Features

Number of Objects

Figure 8.12: Frame per second - Single processor robot.

is shown in Figure 8.14. The classification probability for the four objects
is coded in different colour bars. The classification probability ranged from
0.68 to 0.82. Similarly, when there were twenty-two objects in the vocabulary,
then the classification probability generated is shown in different colour bars in
Figure 8.15. The probability ranged from 0.04 to 0.21. It was observed that,
when the number of objects increased in the vocabulary, then this resulted
in more common features (i.e., features which were shared by more than one
target objects) in the complete SURF features space. These common features
could not be avoided as ignoring them made some of the target objects un-
recognisable. Hence, the increase in the number of common features affected
the classification results significantly and this was very prominent in the profile
shown in Figure 8.13. To overcome this problem, first of all, it is necessary
to identify the features which are common among different target objects, and
then these features should be given low weightage when performing the object
classification. To further improve the results, it is also important to identify

the features which produces false results in the complete classification and

220

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

Confidence Level Profile

8 10 12 14 16 18 20 22
Number of Objects in Vocabulary

Figure 8.13: Classification probabilities with increasing number of objects in the vocabulary.

2

O ok

SJ 0.06

2 314 g A 7 8> icril;1213 1flg 16~1j7iS 19;20 21 2?
Object ID Object ID

Figure 8.14: Classification probability: Figure 8.15: Classification probability:
Vocabulary contains 4 objects. Vocabulary contains 22 objects.

recognition process. Once identified, then these features should also be assigned

lower weightage while performing the classification.

8.5 Performance Comparison of Distributed Modular Robotic

System versus High Processing Systems

As described in Chapter 1, in swarm robotics or reconfigurable modular robotic

systems, an individual robot module has very limited memory and processing

221

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

resources, but the system as a whole is considered very rich in these resources.
When the modular robots use these resources collectively, they can achieve
efficient performance like the other high processing robotic systems. In this
Section, a detailed performance comparison is presented between the modular
implementation of object classification and recognition technique on a multi-
processor robotic system and a non-modular implementation of object recogni-
tion on high processing systems. For high processing systems, a Pioneer 3AT
robot (shown in Figure 8.16) with Dual Core 2.26 GHz processor and 2GB
RAM mounted on the on-board computer, was used for comparison. For an-
other high processing system, a Laptop with Core-2 Duo processor and 4GB
RAM was used.

Figure 8.16: Pioneer-3AT robot.

This Section is further divided into the following two sub-sections. The first
sub-section briefly describes the non-modular implementation of object recog-
nition on high processing systems. Whereas, the second sub-section presents a

detailed performance comparison.

1. Object Recognition - High Processing System

2. Performance Comparison

8.5.1 Object Recognition - High Processing System

For object recognition on a high performance and single processor system, the
SURF features based recognition approach was adopted. For recognition pur-

pose, the process followed by a single processor system or robot is shown in

222

8.5 Performénce Comparison of Distributed Modular Robotic System versus High Processing
Systems

Figure 8.17. The SURF features extracted from all the target objects were
kept in the robot’s memory. As shown in Figure 8.17, the robot grabs image
from vision sensor in QVGA (320x240 pixels resolution) format. The robot
extracted the' SURF features from the image. To determine the presence of the
target object in the image, the target objects in the vocabulary are considered
one by one. The SURF features of the target object are matched with the fea-
tures extracted from the current image. If no feature matching was found, then
the SURF features from the next target object were considered. If certain num-

" ber of features were matched (i.e., the feature matching result was positive),

~ then the matchirig features were processed with RANSAC (RANdom SAmple
Consensus) algorithm to remove all outlier features. After removing the out-
lier features, the resultant matching features were then used for computing the
Hombgraphy. Homography was computed in order to determine whether the
positions of the matching features of the target object were geometrically con-
sistent with the features of the current image. If the matching features were
geometrically consistent, then the object’s ID was determined and the object
was recognised. On the other hand, if the geometric consistency failed then the

- process was repeated with the features of the next target object (until all the
target objects were processed), as shown in Figure 8.17.

8.5.2 Performance Comparison

This Section presents the results obtained, when the object recognition was im-
plemented on a modular systems (as described in Section 8.3) in comparison to
~ high performance single processor based systems. Following the discussion in
Section 8.9, for single processor system, a Pioneer-3AT high processing robot
and Core-2Duo Laptop were considered. For detailed analysis, a robot with
single Blackfin BF537 on-board processor was also selected. For these systems
the object recognition technique discussed in Section 8.5.1, was used with in-
creasing the number of target objects. The number of target objects was from
1 to 12. When this technique was implemented on a robot with single Blackfin
processor, then the memory profile shown in Figure 8.18 was produced. This
Figure shows the drop in total amount of memory (in Kilo bytes) available
to the robot, when the number of target objects were increased from 1 to 12.
The vertical red coloured lines shows the drop in the available memory from

223

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

(Grab image

Extract SURF
features from image

Select features of
target object
in vocabulary

No
URF featun No ffall targe Yes
matching objects
. results _ processed
Yes
Remove outliers No obiect
(RANSAC) 0 0bjec
found
No .
Homography Discard target
~Geometric consistent' Object

[Yes

Determine
object ID

Figure 8.17: Traditional object recognition implementation - high processor system.

start to the end of test, for the corresponding number of target objects. For
example, for three target objects, the initial memory available to the system
was 8000-KBytes. But during the test, when the SURF features of these three
target objects were loaded into the memory and feature extraction and match-
ing techniques were executed, then the lowest available memory detected in
the robot was 5200-KBytes. The green coloured points on the red bars repre-
sent the average memory which was available to the system during the tests.
The significant drop in the available memory, due to the use of the SURF fea-
tures, was expected. This is because, the SURF features required huge amount
of memory for storage, as each feature was represented by a vector with 64
fields [98]. Figure 8.18 shows that, for 12 target objects, the lowest memory
detected in the system dropped to 1300-KBytes. It was observed that, if the
number of target objects exceeded by 12, then the available memory dropped
below 900-KBytes and this resulted the system crash when the SURF feature

extraction algorithm tried to allocate more memory for its operation.

Similar to memory usage, the processor usage recorded for the robot with single

224

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

Memory Usage

700G

6000

4000 =

4> 3000

Number of Objects

Figure 8.18: Memory usage for a robot with a single blackfin processor.

Blackfin processor, is shown in Figure 8.19. This Figure shows that, when there
was only one target object, then the processor usage (on average) was 73.5%.
The average processor usage exceeded 95% when the number of target objects
reached up-to 12. This indicated that the processor had become increasingly

occupied with increasing number of target objects.

8828

Number of Objects

Figure 8.19: Processor usage for a robot with a single blackfin processor.

For the considered single processor systems, the average frame processing achieved,

when the object recognition technique was used for increasing number of target

225

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

objects, is shown in Figure 8.20. For a robot with single Blackfin processor,
when there was one target object to recognise, then the average frame pro-
cessing time recorded was 1800 milli-seconds to process one image. This frame
processing time was gradually increased to 7000 milli-seconds (i.e., 7 seconds),
when the number of target objects reached 12. The reason for the increase in
processing time, was the significant increase in the number of SURF features
resulting from the target objects. The profile showing the increase in the total
number of SURF features, with increasing number of target objects, is also
shown in Figure 8.20 in green colour. Note that, the y-axis label on the right
side of Figure 8.20 shows the scale for total number of SURF features. The
total features profile is not strictly linear as every target object produces dif-
ferent number of features, depending upon the texture present on the target
object. When the same test was performed on the Pioneer-3AT high processing
robot, the frame processing time increased from 600 milliseconds (for one target
object) to 1850 milliseconds (up-to 12 target objects), as shown in blue colour
in Figure 8.20. Similarly, when another high processing system was used, that
is a Laptop with Core-2Duo processor, then the frame processing time ranged
from 250 milli-seconds to 500 milli-seconds when the target objects increased
from 1 to 12.

Average Frame Processing Time vs Total Number of SURF features

8000

Frame Processing Time
Core-2 Duo
Pioneer-3AT

i = * ' Blackfin BF537
6000 E

4000 4000

T'm& ™

2000 2000

Number of Objects

Figure 8.20: Frame processing time versus total SURF features for single processor systems.

226

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

For the performance comparison, the modular form of object recognition tech-
nique (described in Section 8.3) was implemented on a multi-processor robotic
system. As four processors were used on the robot (as described in Section 8.1),
where each processor was simulating the processing and memory resources of
one robot module, so the memory and processor usage for the four processing
modules were recorded. The memory usage for the four processing modules is
shown in Figure 8.21. As discussed in Section 8.3, the processing module 3 holds
SURF features to perform the feature matching process, and processing module
4 also held the complete SURF features space for generating the visual vocab-
ulary when new objects were learnt. Therefore, a drop in the available memory
profile is recorded for modules 3 and 4 as shown in blue and black coloured pro-
file, respectively. It is to be noted that, even after adding the SURF features
from 12 objects, all the processing modules still had enough memory resources
available to add more objects. Whereas, for a robot with single Blackfin proces-
sor, the system did not have more memory resources available to add features
for more target objects as shown in Figure 8.18. The memory usage profiles in
Figure 8.21 shows that the distributed memory resources are utilised efficiently
by the modular implementation of object recognition approach in distributed
robotic system.

Memory Usage

10500

10000
9500
CD
y 9000
%(3) 8500
8000 Module 1
Module 2
7500
O Module 3
E 7000 Module 4

6500
6000

5500

Number of Objects

Figure 8.21: Memory usage for multi-processing system.

227

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

Similar to memory usage, the processor usage recorded for all four processing
modules are also shown in Figure 8.22. From the processor usage, it can be
seen that module 1 processor usage is 60% on average (shown in red colour
in Figure 8.22). ‘As module 1 is responsible for the locomotion of the mod-
ular robot, so its 60% processor usage ensured that it has enough processing
resources available to process the data, from vision and other sensors, at high

rate to perform the locomotion efficiently. Module 2 was responsible for the . -

SURF features extraction task. This was a computationally very heavy task,
so due to‘this, the average processor usage for module 2 was above 95% (green
coloured profile in Figure. 822) Module 3 performed the feature matching and
recognition parts. The classification results provided the expected ID of the
target object to module 3, which made the feature matching part computa-
tionally less expensive and reSu_lts in the average processor usage around 70%.
Module 4 was active only when it received the vocabulary update request from
the module 3. So due to this, the processor was fully dccupied only when it
received the vocabulary update signal and clustered the complete SURF fea- .
ture space to generate the new vocabulary. Howéver, on average, the processor
usage for module 4 was found to be 25%. It can be seen that, based on the
assigned tasks, the distributed processing resources were utilised efficiently by
the modular object recognition approach. l

For comparison with the frame processing time obtained from high processing
systems (as shown in Figure 8.20), the processing time achieved with modular
| system is shown in Figure 8.23. The profile for the corresponding total number
- of features in the vocabulary, is also shown in green colour. It can be seen
that, the average frame processing time is 700 milli-second. The frame pro-
cessing time measured with 12 target objects was found to be less than 750
milli-second. This shows a.better pefformance in comparison to Pioneer 3-
AT high processing robot, which took nearly 1850 milli-seconds to process one
frame when there were 12 target objects. But in comparison to the Core-2Duo
Laptop system which took 500 milli-second to process a frame, the modular
system took 250 milli-seconds more. From Figure 8.23, it can be observed that
the significant increase in the total number of SURF features does not affect
the frame processing time in a modular system. Apart from providing com-
petitive processing performance, the modular robotic systems also provides a

228

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

Processor Usage
100
aT Module 1
0 — mmmm Module 2
mw o Module 3

£ 80 ’
é A " m Module 4

05 S
05
ig 40
90 30 A
£ 020 -
(1]
o 10

0 i 1 i i i i ;

10 11 12

Number of Objects

Figure 8.22: Processor usage for multi-processing system.

cost effective solution. The basic idea behind modular robotics is to keep the
design of individual robot units very simple, so that the individual robot unit
does not cost much and large number of robots can be produced. For exam-
ple, a single Pioneer-3AT robot used in the experiment cost 6000$ on average,
whereas, the better processing performance was achieved by multi-processor
robotic system, and this system cost less than 2000$. But at the same time,
the bigger size robots are also equipped with power and processing demand-
ing sensors (e.g., laser range finders) which facilitates the robots to perform
intelligent operations, and the use of such sensors is not realisable in modular
robotic systems. It is also important to consider that, in case of single big
size robot, any malfunction in robot will cause the mission failure. On the
other hand, the redundancy in terms of number of robotic modules in modular
robotic system reduces the chances of mission failure. In modular systems, if a
single robotic module malfunctions, then this will not result in mission failure

because another robotic module will replace the malfunctioned module.

Finally, the classification probability profile, showing the confidence in classi-
fication result, is shown in Figure 8.24. The profile for total number of SURF
features in the vocabulary is also shown in green colour. The classification

probability was 1 (i.e., 100% confidence level) when there were two target ob-

229

8.5 Performance Comparison of Distributed Modular Robotic System versus High Processing
Systems

Frame Processing Time vs Total Number of SURF Features
850 7000

“ emTotal SURF Features

800 Frame Processing Time

6000
750 5000-«
O 700
650
600 2000's!
550

500

Number of Objects

Figure 8.23: Frame processing time versus number of SURF features for modular system.

jects in the vocabulary, and it reduced to 0.82 for 3 target objects. When the
number of objects exceeded by 5, the classification probability dropped below
0.7. This happened because too many common features resulted in the vocabu-
lary which reduced the classification probability. The classification probability
dropped below 0.4 when the number of target objects reached up-to 12. It
was observed that, the classification accuracy highly depended upon the total
number of SURF features in the vocabulary. This is very prominent in Figure
8.24, where the confidence level keeps on dropping with an increase in the total

number of target objects and the SURF features in the vocabulary.

In multi-processor robot organism used in the scenarios in Chapters 7 and 8§,
the information from vision sensor connected to master processing module, was
processed in distributed fashion. This information was processed to provide
surrounding awareness to the robotic organism, and also help in performing
obstacle avoidance. It is important to note that, when a robotic organism is
going to be formed, then its 3D structure and overall size will be bigger than a
single robotic module. The field of view provided by a single vision sensor (on
master module), will not be sufficient enough to help the robotic organism to
avoid colliding with the obstacles. For this purpose, the information from vision

sensors present on other robotic modules, will also required to be processed.

230

8.6 Conclusions

Classification Probability vs Total Number of SURF Features
7000

Total SURF Features
' Classification Probability
0 6000

07 4000

TO 0.6 3000
0.5 2000 *m
04 1000

03,
Number of Objects

Figure 8.24: Classification probabilities versus number of SURF features for modular system.

To process that visual information, apart from performing distributed vision
processing task, all the robotic modules are required to have enough processing
resources to process the information from their own vision sensor. This is
completely realisable from the results achieved in this research. For example,
from Figure 8.22 it can be seen that, all the processing modules still have

enough processing resources to perform other necessary operations.

8.6 Conclusions

In this Chapter the second distributed vision processing scenario in organism
mode has been presented. This scenario addressed a modular approach to ob-
ject classification and recognition, using distributed memory and processing
resources of a robotic organism. The implementation of the approach using a
four-processor system has been found to execute 5 times faster than a single
processor system. In case of single processor system, the system crashed when
the number of objects in the library, exceeded 12. On the other hand, in multi-
processor robotic organism, enough memory resources will still be available,
even after 12 objects has been learned by the organism. The processors usage

also showed that all the processors have been utilised efficiently according to

231

8.6 Conclusions

-the assigned tasks. It is shown that, as the number of objects learned by the
ofganism increased, the classification probability showed less confidence in the
classification results. This happened because more common features resulted
among the target objeéts. In the Results Section, the robotic organism has
been kept static and only images from the robot camera has been used to per-
form object classification and recognition tasks. However, if the objective is the
organism localisation, then the presented approach can be used for landmark
recognition purposes and therefdre, it can effectively support the probabilistic
methods (such as Partially Observable Markov Decision Process - POMDP) to
track the probability distribution of the robot where-about and finally, localise
the robot. The research presented in this chapter also conclude that, the col-
lective use of processing resources in a modular robotic system can provide a
pefforniance comparable to high processing robots or systems. Similar to the
organism mode scenario presented in Chapter 7‘, it has been concluded that,
to achieve high pérformance from modular systems, the most challenging task
is the modular implementation of the underlying technique, such that efficient
use of the distributed memory and procesSing resources can be made. . '

232

Chapter 9

Conclusions & Future Work

9.1 Conclusions

From the research work presented in this PhD thesis, the following conclusions

have been made.

(i) A library of vision processing algorithms has been optimised for targeted
embedded system. The minimum frame rate achieved with algorithms in
this library, is 40 FPS, and hence, it guarantees the real time response.

- It has been concluded that, the efficient implementation of this library
plays an important role in the development of distributed vision processing
algorithms. v

(ii) A vision based obstacle avoidance technique has been developed, which
| provided the frame processing rate of 45 FPS. This shows the successful
achievement of the second objective sét in this research, and that is, the
provision of a light weight obstacle avoidance algorithm to help the robots

to avoid colliding with the obstacles.

 (ili) To facilitate the transition from swarm to robotic organism, a vision based
docking algorithm has been implemented. This algorithm facilitates the
robot to align and get close (i.e., 5cm) to the docking port. With V.iSiOIl‘
based support, it is not possible to perform full docking, because when
the robot tries to get very close (i.e., less than 5cm) to the docking port
then the markers used to detect the docking port goes outside the robot
field of view. To achieve final mechanical docking mechanism, it has been

233 -

9.1 Conclusions

concluded that the information from other sensor (i.e., IR sensor) will be

required.

(iv) In the swarm mode scenarios it has been shown that, the swarm of robots
| share novel distance vector features to efficiently generate a precise envi-
ronmental map. This distance vector features are very easy to compute and -
not encoded with high dénsity information, and this makes it possible to
exchange these features using the wireless channel with limited bandwidth.

(v) A novel appr_oéch to perform object recognition and localisation using dis-
tributed robotic system has been addressed. The localisation of objects
requirés the provision of efficient vision based recognitiori functionality. It
has been concluded that to reduce the object recognition time on small
size robots, the ‘compilér, system and assembly level optimisation of algo-
rithm plays an important role. The use of algorithm optimisation together
with novel image pre-processing and distance based resolution techniques
not only reduced the execution time (i.e., from 33 sec to 800 msec) of the
algorithm, but it has also enabled the robot to recognise far lying objects.
Hence, it fulfils the objective of providing robust vision based recognition

- functionality to the small size robot. |

(vi) From the research work presented in the swarm mode scenarios, it has been
concluded that, the generation of environmental map facilitates the robots
to naVigaj:e in the environment and do path planning efficiently. Similarly,
recognising and localising the objects of interest in the environment also
helps the robots to understand their environment. Hence, the environment
mapping and objects localisation operations provides surrounding aware-
ness to the.swarm of robots, Which is a major objective of this research.

(vii) It has been concluded that the most critical aspect of the distributed vision
processing is the modular implementation of the vision processing tasks.
This has been shown in a organism ‘mode scenario, where the modular
implementation of object 'recognition, mosaics generation, and detection of
objects in these mosaics is addressed. However, it has been concluded that,
for obtaining‘ effective surrounding awareness, the features of the detected
objects needed to be learned by the organism.

(viii) In orgamnism mode scenarios it has been shown that, the addition of new ob-
ject features significantly increases memory requirement. Therefore, it has

234

9.2 Future Work

) been concluded- that an efficient utilisation of memory resources is critical
when dealing with distributed vision processing applications. These issues
are addressed in the second organism mode scenario, which quantised the

~ objects’ features space to provide fast response to object recognition. This
scenario also presents a novel mechanism to learn newly detected objects

" in the organism. However, the drawback of the approach is reduction in
the classification probability as the number of target objects increases..

(ix) Tt has been concluded that the collective use of the memory and processing
resources of the robotic organism can provide performance comparable to
an individual less flexible robot (e.g., Pioneer-3AT) with significant higher
processing capability. S ' ’ |

9.2 Future Work

From the distributed vision processing scenarios presented in this reseafch,
number of different areas have been identified where further improvement can
be made. These are described as follows:

— Using vision based docking support presented in this research, it is not
possible to bring the robot closer than 5cm to the docking port. To bring
the robot further close to the port so that mechanical docking operation
can be performed, information from vision and IR sensors can be fused.

— To achieve further precision in environmental map generated by the swarm
of robots, the use of small size laser line emitter can be made. Laser line
emitted by the laser can be easily detected in the vision information, and
distance to nearby objects can be determined. This distance information -
can be fused with the npvél distance vector features, to increase accuracy

of environmental maps.

— The idea behind distributed object recognition and localisation approach
can be used to dynamically localise the robot positions without using infor- .
mation from Visual Tracking System. For this purpose, a number of target
landmarks can be used in the environments and their coordinates informa-
tion can be provided to the robots. When the robots recognise these target
objects, then using the coordinates information of these ob jects, the robots

. can also localise their own positions. - Y

235

9.2 Future Work

— The distributed object recognition and visual information gathering ap-
proach can be further expanded to localise the positions of detected objects
in the mosaics. To achieve this, the robot localisation information can be
acquired from the Visual Tracking System, and objects can be localised
with reference to robots positions. This objects-localisation will facilitate
the robot to navigate in the environment. '

— In distributed object classification and recognition approach, it has been
observed that the objects’ classification probability decreases as the number
‘of target objects increases. This occurred due to increase in the number'
of common features among target objects. To improve the results, the
use of common features should be avoided. All the features should also
be assigned different weights which depends upon the entropy associated
with those features. These entropies will be aSsigned in such a way that, it
discourages the use of those feature which has produced false classification

results.

— To exhibit the organism learning behaviour, some modules in the organ-
ism acted like memory bank where the organism knowledge evolves. This
can be extended to multiple modules holding the organism knowledge in
a distributed fashion. This way, if one of the modules holding the organ-
ism knowledge crashes, the other modules keeping the knowledge backup
replace the malfunctioned module.

— Just like the robotic research expanded from the single robot to the swarm
robotic system and then to the modular or multi-robotic organism. In
future, this research can be expanded to the swarm of multi-robotic organ-
isms in which the swarm of organisms would be performing the multi-level
distributed processing. That is from a distributed processing in an organ-
ism to the distributed processing in the swarm of organisms.’ '

236

References

[1] S. Kernbach, M. Szymanski, T. Schmickl and P. Corradi, “Symbiotic Robot

[2]

4]

[5]

[6]

Organisms: Replicator and Symbrion Projects”, Proceedings of the 8th
Workshop on Performance Metrics for Intelligent Systems (PerMIS), Spe-
_cial Session on EU-projects, Gaithersburg, MD, USA, Pages:62-69, August
19-21, 2008. | | |
S. Kernbach, E. Meister, O. Scholz, R. Humza, J. Liedke, L. Ricotti, J. Je-
mai, J. Havlik and W. Liu., “Evolutionary Robotics: The Next Generation-
Platform for On-line and On-board Artificial Evolution.”, IEEE. Congress
on Bvolutionary Computation, Trondheim, Norway, Pages: 1079-1086,
2009. :

M. Bonani, V. Longchamp, S. Magnendt, P. Rtornaz, D. Burnier, G. Roulet,
F. Vaussard, H.Bleuler and F. Mondada., “The MarXbot, a Miniature
Mobile Robot Opening new Perspectives for the Collective-ro‘bot'ic Re-
search.”, IEEE-RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2010), Taipei, Taiwan, Pages: 4187-4193, October 18-22, 2010.
K. Hyun, Y. Lee, H. Jih, B. 'Hyun and D. Hwah.,‘ “Swarm Robotics: Self
Assembly, Physical Configuration and Its Control.”, ICASE Intemqtional
Joint Conference in Bexco, Busan, Korea, Pages: 4276-4279 , 8-21 Oct,
+2006. v

J. Caddy, “Ants: Monarchs of ‘Symbiosis”, = http://www.morning-
earth.org/graphic-e/SymbiosisAnts.html, 2009. ’ '
E. Tuci, R. Gro, V. Trianni, F. Mondada, M. Bonani and M. Dorigo, “Co-

operation through self-assembly in multi-robot”, ACM Transactions on Au-
tonomous and Adaptive Systems, Vol. 1, Issue. 2, Pages: 115-150, 2006.

237

http://www.moming-

REFERENCES

[7] Symbrion, “Symbiotic Evolutionary Robot Organisms”, 7th Frame-
work Programme Project No FP7-ICT-2007.8.2. European Communities,
URL:www.symbrion.eu/, 2008. :

[8] Replicator, “Robotic Evolutionary Self-Programming and Self-Assembling
Organisms”, 7th Framework Programme Project No FP7-ICT-2007.2.1. Eu-
ropean Communities, URL:www.symbrion.eu/, 2008.

[9] M. Eusterbrock, “Altruism for the Win”,
http://ccsbio.blogspot.co.uk/2011/02/altruism- fbr—wg’n. html, 2011.

- [10] D. Brugali and M. E. Fayad., “Distributed Computing in Robotics and
Automation”, Transactions on Robotics and Automation, IEEE, Vol. 18,
Issue. 4, Pages: 409-420, August 2002. _

[11] X. Defago, “Distributed Computing on the Move: From mobile computing
to cooperative robotics and nano robotics.”, In Proceedings of 1st ACM In-
ternational Workshop on Principles of Mobile Computing (POMCO01), New-
port, RI, USA, Pages: 49-55, 2001.

[12] E. Menegatti and E. Pagello., “Cooperative Distributed Vision for Mobile
Robots.”, Workshop on Artificial Intelligence, Vision and Pattern Recog-
nition 7th Conference of the Italian Association for Artificial Intelligence
(AI*IA), Pages: 75-82, 2001.

[13] C.: Ampatzis, E. Tuci, V. Trianni, A.L. Christensen and M. Dorigo,
“Evolving Autonomous Self-Assembly in Homogeneous Robots”, IRIDIA-
Technical Report, 2008. '

[14] E. Tuci, R. Gross, V. Trianni, F. Mondada, M. Bonani and M. Dorigo, |

“Cooperation Through Self-assembling in multi-robot systems”, IRIDIA- o
Technical Report, 2005. '

[15] R. Gross, F. Mondada, M. Bonani and M. Dorigo, “Autonomous Self-
Assembly in Mobile Robotics”, IRIDIA-Technical Report, 2005.

[16] B.P. Gerkey, R.T. Vaughan and A. Howard., “The Player/Stage Project: |
Tools for Multi-Robot and Distributed Sensor Systems”, Proceedings of the
- International Conference on Advanced Robotics (ICAR 2003), Pages: 317-
323, 2003. ' '

' [17] H.V. Balan, “Visual Object Recognition in RoboCup”, RoboCup, 2004.

238

http://www.symbrion.eu/
http://www.symbrion
http://ccsbio

REFERENCES

[18] E. Menegattiband E. Pagello., “Omnidirectional distributed vision for
multi-robot mapping”, In Proceedings of International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS02), Pages: 279-288, 2002.

[19] E. Menegatti, A. Scarpa, D. Massarin, E. Ros and E. Pagello, “Omnidi-
rectional Distributed Vision System for a Team of Heterogeneous Robot”,

Conference on Computer Vision and Pattern Recognz'tz'on Workshop, Vol. 7,
Pages: 87-87, 2003.

- -[20] P.G. Selfridge and S. Mahakian., “Dlstrlbuted Computmg for Vision: Ar-
chitecture and Benchmark test”, IEEE-Transactions on Pattern Analysis
and Machine Intelligence, Vol. 7, Issue. 5, Pages: 750-755, 2009.'

[21] W. Agassounon, “Distributed Information Retrieval and Dissemination in
- Swarm-Based Networks of Mobile Autonomous Agents”, IEEE-Swarm In-
~ telligence Symposium (SIS), Pages: 152-159, 2003. '
[22] S.S. Nestinger and H.H. Cheng, “Flexible Vision - Mobile Agent Approach
to Distributed Vision sensor Fusion”, IEEE-Robotics And Automatzon Mag-
azine, Vol. 17, Pages: 66-77, 2010.

[23] T. Matsuyama, ‘fCooperatlve Distributed Vision - Dynamic integration
of Visual Perception”, Action and Communication. Proceeding KI ’99 Pro-
ceedings of the 29rd Annual German Conference on Artificial Intelligence:
Advances in Artificial Intelligence, Vol. 1701, Pages: 75-88, 1999.

; [24]' A. Shokripour and M. Othman, “Survey on Divisible Load Theory and its

- Applications”, IEEE-International Conference on Information Management
and Engineering, Pages: 300-304, 3-5 April, 2009. ,

* [25] A. Shokripour and M. Othman, “Categorizing DLT Researches and its

Applications”, European Journal of Sczentzﬁc Research, Vol 37, Issue. 3,
Pages: 496-515, 2009. '

[26] X.L. Li, B. Veeravalli and C. C Ko, “Distributed image processing on a
network of workstatlons International Journal of Computers and Appli-
cations, Vol. 25, Issue. 2, Pages: 136-145, 2003. ‘

[27] J. Fernandeza, R. Guerreroa, N. Mirandaa and F. Piccolia, “A dis-
tributed image processing function set for an image mining system”, Mec-
‘nica Computacional (artculo completo). Alberto Cardona, Mario Storti,
Carlos Zuppa. (Eds.), Pages: 2895-2906, 2008. '

239

REFERENCES

[28] Z. Shen, J. Luo, G. Huang, D. Ming, W. Ma and H. Sheng, “Distributed
computing model for processing remotely sensed images based on grid com-
puting”, Information Sciences, Vol. 177, Tssue. 2, Pages: 504-518, 15 Jan-
uary 2007. : ‘

[29] R. Vidal, O. Shakernia and S. Sastry, “Following the Flock: Distributed
Formation Control with Omnidirectional Vision-Based Motion Segmenta-
tion and Visual Servoing.”, IEEE-Robotics And Automation Magazzne De-
cember, 2004. '

[30] E. Menegatti and E. Pagello, “Cooperatlon Issues and Dlstrlbuted Sensing
“for Multirobot Systems”, IEEE- Speczal issue: Multirobot systems Vol 94,
Issue. 7 Pages: 1370-1383, July 2006.

[31] P. Rybski, A. Larson, H. Veeraraghavan, M. LaPoint and M.D. Gini,
“Communication Strategies in Multi-Robot Search and Retrieval: Expe-
riences with Mindart”, Proceedings of 7th International Symposium Dis-
tributed Autonomous Robotic Systems, Pages: 30‘1—310, 2007. -

[32] L. Panait and S. Luke, “A Pheromone-based Utility Model for Collabora-
tive Foraging”, IEEE-Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multi-agent Systems, Vol. 1, Pages: 36-43,
2004. |

[33] S.Y. Harmon and D.W. Gage, “Protocols for robot communications:
Transport and content layers”, Proceedings of 1980 International Confer-
. ence on Cybernetics and Society, Pages: 1090-1097, 1980.

[34] V.R. Lesser and D.D. Corkill., “Functionally Accurate, _Cooperative Dis-
tributed Systems”, IEEE-Transactions on Systems, Man and Cybernetics,
Vol. 11, Issue. 1, Pages: 81-96, 1981.

[35] R. Wirz, J. Sales, R. Marn, E. Cervera, U. Witkowski, J.V. Mart and L.
Nomdedeu, “End-to-End Congestion Control Protocols for Robot Swarms
using Ad-hoc Wireless Networks”, Proceedings of the RISE 2008. Robotics
for Risky Interventions and Surveillance of the Enﬁironment, Publications
de la Unwversitat Jaume I, Castell. Isbn: 978-84-8021-645-6., 2008.

[36] D.L. Johnson and A. Lysko, “Comparison of MANET routing protocols
using a scaled indoor wireless grid”, Mobile Networks and Applications, Vol.
13, Issue. 1-2, Pages: 82-96, 2008.

240

REFERENCES

[37] C. Aguero, J.M. Canas, M. Ortuno and V. Matellan, “Design and Imple-
mentation of an Ad-Hoc Routing Protocol for Mobile Robots”, Turk Journal
of Electronic Engineering, Vol. 15, Issue. 2, 2007.

[38] S. Jia, Y. Hada, G. Ye and K. Takase, “Distributed Tele care Robotic Sys-

tems Using Corba as'a Communication Architecture”, Proceedings of the

- 2002 IEEE. International Conference on Robotics And Automation. Wash-
ington, DC, Vol. 2, Pages: 2202-2207, 2002.

[39] J. Yool, S. Kim and S. Hong., “The Robot Software Communica-
tions Architecture (RSCA): QoS-Aware Middle-ware for Networked Service
Robots”, SICE-ICASE International Joint C’onference zn Bezco, Busan,
Korea, Pages: 330-335, 2006. |

[40] A. Saxena and J. Michels, “High speed obstacle avoidance using monocular
vision and reinforcement learning”, Proceedings of the 22nd International
Conference on Machine Learning, Bonn, Germany, Pages: 593-600, 2005.

[41] J. Borenstein and Y. Koren, “Obstacle avoidance with ultrasonic sensors”,
IEEE Journal of robotics and automation, Vol. 4, Issue. 2, Pages: 213-218,
1988.

[42] K.S. Pratt, “Smart sensors fof optic flow, obstacle avoidance for mavs in
" urban env1ronments” ISSRT, IROS 2007-MAV Workshop San Dzego CA,
2007. .

[43] K. Souhila and A. Karim, “Optical flow based robot obstacle avoidance”,

InTech-International Journal of Advanced Robotic Systems, Vol. 4, Issue. 1,
Pages: 13-16, 2007. '

[44] W.M. Shen and P. Will, “Dockihg in self—reconﬁguréble. i‘obots’f,
IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.
‘2, Pages: 1049-1054, 2001.

[45] S. Kornienko, O. Kornlenko A. Nagarathlnam and P. Levi., “From real
robot swarm to evolutionary multi-robot organism”, IEFEE Congress on
Evolutionary Computation, Pages: 1483-1490, 2007.

[46] R. Gro, M. Dorigo and M. Yamakita, “Self-assembly of mobile robots -
~ From swarm-bot to super-mechano colony”, Intelligent Autonomous System
(IAS) 9, Tokyo, Japan, 2006. '

241

REFERENCES

[47] C. Ampatzis, E. Tuci, V. Trianni, A.L. Christensen and M. Dorigo, “Evolv-
ing Self- Assembly in Autonomous Homogéneous Robots: Experiments with
Two Physical Robots” Artificial Life, Vol. 15, Issue. 4, Pages: 465-484,
2009.

(48] S. Murata, K. Kakomura and H. Kﬁrokawa, “Docking Experiments of a
Modular Robot by Visual Feedback”, IEEE/RSJ-International Conference
on Intelligent Robots and Systems, Pages: 625-630, 2006.

[49] M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan and C.J.
Taylor, “Towards robotic self-reassembly after vexplosion” IEEE/RSJ-
Internatzonal Conference on Intelligent Robots and Systems Pages: 2767-
2772, 2007.

[50] D. Hhnel, W. Burgard, D. Fox, K. Fishkin and M. Philipose, “Mapping

| and Localization with RFID Technology”, IEEE International Conference
on Robotics and Automation. Proceedings. ICRA, Vol. 1, Pages: 1015-1020,
2004. :

'[51] H. Lim and Y. S. Lee, “Real-time single camera SLAM using fiducial mark-
s”, ICROS- SICE International Joint Conference, Fukuoka International
Congress Center Japan, Pages: 177-182, 18-21 Aug. 2009.

[52] B. Sohn, J. Lee, H. Chae and W. Yu, “Localization system for moblle -
- robot using wireless communication with IR landmark”, RoboComm ‘07
Proceedings of the 1st international conference on Robot communication and
coordination, Article No. 6, Pagesi 61-66, 2007.

[53] S. Panzieri, F. Pascucci, R. Setola and G.Ulivi, “A low cost vision based |
- localization system for mobile robots”, In 9th Mediterranean Conference on
Control and Automation, Dubrovnik, Croatia, 2001.

[54] K.J. Yoon and I.S. Kweon, “Landmark design and real-time landmark
tracking for mobile robot localization”, Proceedings of SPIE, Vol. 4573,
2002. o |

[65] Andrew C. Rice, Robert K. Harle and Alastair R. Beresford, “Analysing
fundame'ntalb properties of marker-based vision system designs”, In Perva-
sive and Mobile Computing, Vol. 2, Issue. 4, Pages: 453-471, 2006.

[66] P. Furgale, J. Anderson and J. Baltes., “Real-Time Vision-Based Pattern
Tracking Without Predefined Colors”, In Proceedings of the Third Interna-

242

REFERENCES

tional Conference on Computatzonal Intelligence, Robotics and Automatzon
Szngapore 2005.

[57] R.K. Harle, A.C. Rice and A.R. Beresford, “Cantag: an open source
* software toolkit for designing and deploying marker-based vision systems”,
Fourth Annual IEEE International Conference on Pervasive Computing and
Communications (PerCom), Pages: 10-21, 2006.

[58] A. Mutka, D. Miklic, I. Draganjac and S. Bogdan, “A low cost vision based 4
localization system using fiducial markers”, Proceedings of the 17th World
Congress The International Federation of Automatic Control Seoul, Korea,
Vol. 17, Issue. 1, Pages: 9528- 9533 2008.

[59] M. Tabuse and D. Nakai, “Mobile Robot Nav1gat10n using SURF features”,
ACS’10 Proceedings of the 10th WSEAS international conference on Applied
computer science, Pages: 276-279, 2010. :

[60] K. _Welke, P. Azad and R.D. Dillmann, “Fast and Robust Feature-based
- Recognition of Multiple Objects”, International Conference on Humanoid
Robots, 6th IEEE-RAS, Pages: 264-269, 2007. -

[61] T. Goedeme, D.N. Instituut and J.D. Nayerlaan, “Traffic sign recognition
with constellations of visual words”, International conference on informatics -
~in control, automation and robotics - ICINCO, Vol. 1, Pages: 222-227, 2008." ‘

[62] H. Bay, T. Tuytelaars and L.V. Gool, “SURF speeded up robust features”,
Computer Vision and Image Understanding (CVIU), Vol. 110, Pages: 346-
359, 2008.”

[63] D. Asanza and B. Wirnitzer., “Improving feature based object recognition
in service robotics by disparity map based segmentation”, International
Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ Pages:
- 2716-2720, 2010. ‘

[64] M. Cummins and P. Newman, “FAB-MAP: Appearance-Based Place
Recognition and Mapping using a Learned Visual Vocabulary Model”, Pro-
ceedings of the 27th International Conference on Machine Learning (I CML-
10) Hazfa Israel, Pages: -3-10, 2010. :

[65] G. Chrysanthakopoulos and G. Shani, “Augmenting Appearance-Based
Localization and Navigation using Belief Update”, In Proceedings of AA-
MAS 2010, Vol. 2, Pages: 559-566, 2010.

243

REFERENCES

[66] M. Ullah, A. Pronobi, B. Caputo, J. Luo P. Jensfeltand and H.I..
Christensen, “Towards Robust Place Recognition for Robot Localization”,
IEEE/Intematzonal Conference on Robotzcs and Automation, ICRA, Pages:
~ 530-537, 2008.

[67] C. Cadena, D.G. Lopez, F.'Ramos, J.D. Tardos and J. Neira, “Robust
Place Recognition with Stereo Cameras”, International Conference on In-
telligent Robots and Systems (IROS), IEEE/RSJ, Pages: 5182-5189, 2010.

[68] R.C. Rodrigues and S.R. Pellegrino., “An Experimental Evaluation of Al-
~ gorithms for Aerial Image Matching”, Eletronic Engineerz'ng and Computer
Department. IWSSIP 2010 - 17th International Conference on Systems, Sig-
nals and Image Processing, 2010.

[69] L. Juan and O. Gwun, “A Comparison of SIFT, PCA-SIFT and SURF”
International Journal of Image Processing (IJIP), Vol. 3, Issue. 4, Pages:
143-152, 2009.

[70] B.J.A. Krose, N. Vlassis, R. Bunschoten and Y. Motomura, “A proba-
bilistic model for appearance-based robot localization”, In First European ‘
Symposium on Ambience Intelligence (EUSAI), Pages: 264-274 2001.

[71] G. Dunteman, “Prmc1pa1 Components Analysis”, Sage Umverszty paper -
~ series on quantitative application in the social sciences (Series No 07-069),
Beverly Hills: Sage, Vol. 69, 1989.

[72] D. Sabatta, D. Scaramuzza and R. Siegwart, “Improved Appearance-Based
Matching in Similar and Dynamic Environments-using a Vocabulary Tree”,
IEEFE International Conference on Robotics and Automation, ICRA 2010,
Anchorage, Alaska, USA, Pages: 1008-1013, 2010.

[73] Y. Shen, J. Liu and D. Xin, “Environment map building and localiza-
tion for robot navigation based on image sequences”, Journal of Zhejzang
Umverszty ScienceA, Vol.9, No.4, Pages: 489-499, 2008.

[74] D.F. Wolf and A.Y. Hata, “Outdoor Mapping Using Mobile Robots And
Laser Range Finders”, Conference of Electronics, Robotics and Automotive
Mechanics, Pages: 209-214, 2009.

[75] Y.D. Kwon and J. Lee, “A Stochastic Map Building Method for Mobile
Robot using 2-D Laser Range Finder”, Journal of Autonomous Robots, Vol.7
No.2, Pages: 187-200, 1999. '

244

REFERENCES

[76] P. Biber, H. Andreasson, T. Duckett and A. Schilling, “3D Modeling of In-
door Environments by a Mobile Robot with a Laser Scanner and Panoramic
Camera”, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Vol.4, Pages: 3430-3435, 2004.

[77] A. Howard, “Multi-Robot Mapping using Manifold Representations”,
IEEE International Conference on Robotics and Automatzon(I CRA), Vol. 4,
Pages: 4198-4203, 2004.

[78] L.J. Latecki, R. Lakaemper and N. Adluru, “Multi Robot Mapping Using
Force Field Slmulatlon” Joumal of Field Robotics, Vol.24, Pages: 747—762
2007. -

| [79] A. Leon, R. Barea, L.M. Bergasa, E. Lopéz, E. Ocana and D. Schleicher,
“Multi-robot SLAM and Map Merging”, Journal of Phyzcal Agents, Vol.3,
Pages: 171-176, 2009.

[80] S. Kernbach , H. Hamann and J. Stradner, “On Adaptive Self-Organization
in Artificial Robot Organisms.”, The First International Conference on
Adaptive and Self-adaptive Systems and Applications, Pages:33-43, 2009.

[81] S. Kernbach, M. Szymanski, T. Schmickl and P. Corradi, “Symbiotic
Robot Organisms: Replicator and Symbrion Projects.”, Proceedings of the
8th Workshop on Performance Metrics for Intelligent Systems (PerMIS),
Special Session on EU-pmjects Galthersburg, MD, USA. August 19-21,
Pages:62-69, 2008

[82] M. Dorigo, D. Floreano, L. Maria Gambardella, F. Mondada, S. Nolfi, T."
Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier,
A. Campo, A.L. Christensen, A. Decugniere, G. Di Caro, F. Ducatelle, F
Ferrante, A. Froster, J.G. Martinez, J. Guzzi, V. Longchamp, S. Magnenat;
N. Mathews, M.A. Montes de Oca, R. O’Grady, C. Pinciroli, G. Pini, P.
Rtornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stutzle, V.
Trianni, E. Tuci, A.E. Turgut and F. Vaussard. “Swarmanoid: A novel -
concept for the study of heterogeneous robotic swarms.”, IEEE Robotics
Automatzon Magazine, July 2011 |

[83] X. Defago, “Distributed Computing on the Move: From mobile computing
to cooperative robotics and nano robotics.”, In Proceedings of 1st ACM In-
ternational Workshop on Principles of Mobzle Computing (POM C01), New-
port, RI, USA, Pages: 49-55, 2001

25

REFERENCES

[84] D. Brugali and M. E. Fayad, “Distributed Computing in Robotics and
Automation.”, IEEE, Transactions on Robotics and Automatzon Volume
18, No.4 Pages 409- 420 2002.

[85] V. Kumar, G. Bekey and A. Sanderson, “Chapter 7: Networked Robots.”,
Automation Magazine, Volume 12, No. 2, Pages: 73-80, 2006.

[86] M. Yim, W.M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavms
and G.S. Chirikjian, “Modular Self-Reconfigurable Robot System.”, IEEE
Robotics and Automation Magazine, ISSN 1070-9932, Volume 14, No. 1,
Pages 43 52, 2007

[87] Y. Zhang, M. Yim, C. Eldershaw, D. Duff and K. Roufas, “Scalable and Re-
configurable Configurations and Locomotion Gaits for Chain-type Modular
Reconfigurable Robots”, IEEE Intematz’ondl Symposium on Computational
Intelligence in Robotics and Automation, 2003 .Juiy 16 - 20; Kobe; Japan,
Volume 2, Pages: 893-899, 2003

[88] T. Fukuda and S. Nakagawa, “Dynamically Reconfigurable Robotic Sys-
tem.”, Proceedings of the IEEE International Conference On Robotzcs and
Automation, Volume 3, Pages 1581-1586, 1988. '

[89] Surveyor, “Functional detail of surveyor robot”, http://www.surveyor.com,
2010. '

[90] Surveyor, “Analog devices blackfin bf537 processor data sheet”,
hitp://www.bluetechniz.at, 2009.

[91] Bluetechnix, “Hardware user manual for BF537E”,
hitp://www.bluetechniz.at, 2009. ‘ '
[92] Analog Devices., “ Embedded processor ADSP-BF537 datasheet”

www. analog.com, 2008.
[93] Analog Devices, “Ad1836 data sheet”, www.analog.com, 2009.

[94] Analog Devices, “ADSP-BF537 Blackfin processor hardware reference rev.
2.0.”, www.analog.com, 2007. o

[95] M.H. Hongche Liu, T. Hong and R. Chellappa, “Accuracy vs. efficiency -
trade-offs in optical flow algorithms”, Computer Vision and Image Under-
standing, Vol. 72, Issue. 3, Pages: 271-286, 1998.

[96] K.P. Horn and B.G. Schunck., “Determining optical flow”, Artificial Intel-
ligence, Vol. 17, Pages: 185-203, 1981.

246

http://www.surveyor.com
http://www.bluetechnix.at
http://www.bluetechnix.at
http://www.analog.com
http://www.analog.com
http://www.analog.com

REFERENCES

[97] G. Bradski and A. Kaehler, “Computer Vision with the OpenCV Library”,
Learning OpenCV, O’Reilly Media, Pages: 576, 2008.

[98] C. Evans, “Notes on the OpenSURF Library”, CSTR-09-001, University
of Bristol, 2009.

[99] D. Katz, T. Lukasiak and R. Lukasiak, “Enhance Processor Performance

" in Open-Source Applications”, Analog Dialogue, Vol. 39, Issue. 2, Pages:
1-4, 2005. - <

[100] Bluetechnix, “Hardware reference manual for Blackfin Evaluation Board

EVAL-BF5xx”, hitp://www.bluetechniz.at, 2009.

[101] Bluetechnik “Hardware reference manual for Blackfin Extender Board
'EXT-BFoxx-Camera”, hitp://www.bluetechniz.at, 2009.

[102] R.C. Gonzalez and R.E. Woods, “Digital Image Processing (2nd Edi-
tion)”, Prentice Hall, Isbn / ASIN: 0201180758, 2007.

[103] M. Simon, S. Behnke and R. Rojas, “Robust Real Time Colour Track-

"ing”, 4th International Workshop on RoboCup (Robot World Cup Soccer

Games and Conferences), Lecture Notes in Computer Science, Pages: 239-
248, 2000. | ’

~ [104] LinkSys, “LinkSys Smart Wi-Fi Routers and Access Point”
www. linksys.com/, 2011. -

[105] Logitech, “Logitech WebCam Pro 90007, http://www. lo'gitech.cor.n/,. 2011.

[106] Bluetechnix, “Hardware reference manual for Blackfin Experimental-
Board - EXT-BF5xx-EXP”, http://www.bluetechniz. at, 2009.

[107] OmniVision, “Ov7670 VGA Camera Sensor Product Brief”,
www.ovt.com, 2011.

[108] Flexi Cables., “Omni Vision Camera Samsung D600 Flex1 Cables.”,
www.samsung-cables. supaprice. co- uk, 2010.

[109] Surveyor Corporatlon “Surveyor SRV-1 Open Source Mobile Robot Base
" and Charger.”, , www.surveyor.com/SRV_info.html, 2011.

[110] Lantronix, “Lantronix: MatchPort b/g an Embedded Wireless Device
- Server for Wireless Networking Solution”, www.lantroniz.com, 2011.

[111] Ryan Mechatronics., “Navigation Board M3 User Manual for Surveyor
~ SRV-1 Robot”, www.ryanmechatronics.com, 2010.

247

http://www.bluetechnix.at
http://www.bluetechnix.at
http://www.linksys.com/'
http://www.logitech.com/'
http://www.bluetechnix.at
http://www.ovt.com
http://www.samsung-cables.supaprice.co.uk
http://www.surveyor.com/SRVJnfo.html
http://www.lantronix.com
http://www.ryanmechatronics.com

REFERENCES

[112] J. C. Moser., “Town ant workers following an artificial pheromone trail”,
http: / /www.srs.fs.usda.gov/idip/spb;i /photosants.himl, 2004.

[113] A. Ramisa, S. Vasudevan, D. Scaramuzza, R. Opez and L. Antaras, “A
Tale of Two Object Recognition Methods for Mobile Robots”, 6th Inter-
national Conference on Computer Visions Systems, Springer Verlag, San-
torini, Vol. 5008, Pages: 353-362, 2008.

[114] D. LoWe “Distinctive image features from scale-invariant key points”,
International Journal of Computer stzon, Vol. 60, Issue. 2, Pages: 91-110,
2004. :

[115] J.Y. Bouguet, “Camera Calibration Toolbox for Matlab”,
hitp:/ /www.vision. caltech. edu/bouguetj/calibgoc/, 2010.

[116] J. Yang, Y.G. Jiang, Hauptmann, G. Alexander and N. Chong—Wah
“Evaluating bag-of-visual-words representations 'in scene classification”,

Proceedings. of the z’ntemationdl workshop on multimedia information re-
trieval, Pages: 197-206, 2007. ‘

[117] J.R. Ujlings, A.-W.M. Smeulders and R.J.H. Scha, “Real-time bag of
words, approximately”, Proceedings of the ACM International Conference
on Image and Video Retrieval, Pages: 61-68, 2009.

[118] D. Filliat, “A visual bag of words method for interactive qualitative lo-
calization and mapping”, IEEE International Conference on Robotics and
Automation, Pages: 3921-3926 , 2007.

[119] Analog Devices, “Fast Floating—Point'Arithmetic Emulation on Black-
fin Processors”, Analog Devices: Technical notes on usmg Analog Devices

DSPs, processors and development tools, 2007

[120] J. Canny, “A Computational Approach To Edge Detection”, IEEE Trans-
actions on Pattern Analysis and Machme Intelligence, Vol. 8, Issue. 6,
Pages: 679-698, 1986.

248

http://www.srs.fs.usda.gov/idip/spbii/photoSants.html
http://www.vision.caltech.edu/bouguetj/calibdOc/

